NCJRS

This microfiche was produced from documents received for inclusion in the NCJRS data base. Since MCJRS cannot axercise control over the physical condition of the documents submitted, the individual frame quality will vary. The resolution chart on this frame may be used to evaluate the document quality.

Microfilming procedures used to create this fiche comply with the standards set forth in 41CFR 101-11.504

Points of view or opinions stated in this document are those of the author(s) and de not represent the official position or policies of the U.S. Department of Justice.

U.S. DEPARTMENT OF JUSTICE

Law Enforcement assistance administration mational criminal justice reference service WASHINGTON, D.C. 20531

LAW ENFORCEMENT STANDARDS PROGKAM

LEAA Police Equipment Survey of 1972 Volume 1: The Need for Standards--Priorities for Police Equipment

$\begin{array}{r}n \\ \cdot \\ -\infty \\ - \\ - \\ \hline\end{array}$
U.S. DEPARTMENT OF JUSTICE
aw Enforcement Assistance Administration
Institute of Law Enforcement and Criminal Justice

LAW ENFORCEMENT STANDARDS PROGRAM

LEAA Police Equipment Survey of 1972
Volume 1: The Need for
Standards--Priorities for Police Equipment

National Institute of Law Enforcement and Criminal dustice Law Enforcement Assistance Administration
U. S: Department of Justice
by
R. Ku, E. Bunten, P. Klaus Technical Analysis Division National Bureau of Standard

MARCH 1974
U.S. DEPARTME'NT OF JUSTICE

Law Enforcement Assistance Administration National Institute of Law Enforcement and Criminal Justice

Donald E. Santarelli, Administrator Richard W. Velde, Deputy Administrator Charles R. Work, Deputy Administrator

NATIONAL INSTITUTE OF LAW ENFORCEMENT AND CRIMINAL JUSTICE Gerald M. Caplan, Director

ACKNOWLEDGMENTS

We are grateful to the 1142 police departments throughout the United States who contributed their time and knowledge to make this report possible. Special thanks go to the more than 40 police departments whose officers and administrators helped the survey team during the developmental and testing phases of the work. In addition, we thank the Program Managers of the Law Enforcement Standards Laboratory of the National Bureau of Standards: Jacob J. Diamond, Chief; Marshall J. Treado; Marshall - Isler; Robert Mills; Avery \because Horton; and Jared J. Collard. The support and asstance our project develop the analysis plan; are gratefully acknowledged.

The work could not have been accomplished without the capable and conscientious efforts of many members of the Technlcal Analysis Division. We thank William L. O'Neal for his help in computerizing the sample selection and for helping design and computerizing the sample selection and for helping design and
programming interactive record-keeping system; Robert j. Cunltz, ph. D. for his help in editing and reviewing the report; jenny L. Eidreth for helping design and for malntaining the computerlzed record-keeping system; Sandra J. Mumford for supervising the codinglediting of the questionnaires; Jure R. Cornog, Ph.D. for her advice, support, and help with initial interviews; Gail B. Hare for conducting pretest interviews; Diane R. Beall for the many ypings of the various versions of the questionnaires; Suellen Halpin, P. Clare Peiser, Mary L. Friend, Susan E. Bergsman, and Dwight F. Doxey, for editing and coding data and for making follow-up telephone calls; Lorraine S. Freeman for her administrative support; Karen Jackson, Cassandra Streeter, and Janice Davis, summer employees, for their help with questionnalre coding and record-keeping; and Mary Hawkins for typing the report.
IST OF TABLES AND FIGURES. viv!
FOREWORT
vil
1.0 INTRODUCTION 1
1.1. Project Background 1
1.2 Sample Design 2
7$\begin{array}{r}10 \\ 13 \\ \hline\end{array}$
4 evion
1.5 An Overview of the EPQ Analysis
13
1.5.1 Composite Rankings 15
2.0 CIARACTERISTICS OF RESPONDING DEPARTMENTS 16
3.0 analysis of ranking 23
3.1 Rankings of Categories of Equipment 24
3.1.1 The Categories 24
3.2 Protective Equipment and Clothing 30
3.3 Communications Equipment and Supplies 34
37
3.4 Lethal Weapons
41
44
3.6 Vehicles 44
49
3.7 Building Systems
52
57
3.9 Surveillance and Security Equipment 613.10 Detection Systems
APBDIX . Sampling Considerations.Questionnaire
APPENDIX E. Complete Data Tables.3.2-3

Stratification Categories
Number of Police Departments by Region and Type. 4
Sample of Polife Departments by Region and Type. 6
Respondents to the EPQ by Region and Type . . . 9
Percent of Respondents Having Each Activity . . 17
Descriptive Averages by Department Type 19
Descriptive Averages by LEAA Region 19
Numbers of officers in City Departments 20
Monthly Rates of Response to the EPQ 22
Percent Respondents Selecting Each Category
as Number 1 in Importance 25
Ranks for All Departments for Equipment Categories

Ranks for All Cities for Equipment Categories. . 27
Department Type Ranks for Equipment Categories . 28
Region Ranks for Equipment Categories 28
Reasons Given for Ranking Category Number l . . 29
Ranks for All Departments for Protective
Equipment and Clothing •••••••••••••
Ranks for All Cities for Protective
Equipment and Clothing
Department Type Ranks for Protective
Equipment and Clothing 33
Region Ranks for Protective Equipment and ClothingRanks for All Departments for Communications35

Ranks for All Departments for Communications Equipment and Supplies
35 Equipment and Supplies36
Equipment and Supplies 36Department Type Ranks for Communications
Region Ranks for Communications Equipmen and Supplies. 36
Ranks for All Departments for Lethal Weapons 38
Ranks for All Cities for Lethal Weapons 38
Department Type Ranks for Lethal Weapons 40
Region Ranks for Lethal Weapons 40
weapons 42
Ranks for All Cities for Non-Lethal Weapons - 42
Department Type Ranks for Non-Lethal Weapons . . 4
Region Ranks for Non-Lethal Weapons 43
Ranks for All Departments for Vehicles 45
Ranks for All Cities for Vehicles 45
Department Type Ranks for Vehicles 47
Region Ranks for Vehicles 47Levels of Agreement Between State Compositeand Other Department Type Composites forVehicles48
Ranks for All Departments for Building Systems 50Department Type Ranks for Building Systems51
Region Ranks for Building Systems 51

Ranks for All Departments for Emergency Warning and Rescue Equipment

Ranks for All Cities for Emergency Warning and Rescue Equipment

Department Type Ranks for Emergency Warning and Rescue Equipment

Region Ranks for Emergency Warning and Rescue Equipment

Ranks for All Departments for Surveillance and Security Equipment

Ranks for All Cities for Surveillance an Security Equipment

Department Type Ranks for Surveillance and Security Equipment

Region Ranks for Surveillance and Security Equipment

Percent of Sample Departments Ranking a Detection System 1,2,3,4 or 5.
Ranks for All Departments for Detection Systems. 63
Ranks for All Cities for Detaction Systems . . . 63
Department Type Ranks for Detection Systems . . 64
Region Ranks for Detection Systems 64
Number of Police Departments by Region and Type. B-4
Sample of Police Departments by Region and Type. B-6
Results of post Card Follow-up C-3
Response Rates by Department Type C-5
Cumulative Number of Equipment Priorities Questionnaires Returned

Following a Congressional mandate* to develop new and improved techniques, systems, and equipment to strengthen law enforcement and criminal justice, the National Institute of Law Enforcement and Criminal Justice (NILECJ) has established the Law Enforcement Standards Laboratory (LESL) at the National Bureau of Standards. LESL's function is to conduct research that will assist law enforcement and criminal justice agencies in the selection and procurement of quality equipment.

In response to priorities established by NILECJ, LESL is (1) subjecting existing equipment to laboratory testirig and evaluation and (2) conducting research leading to the voluntary equipment standards of documents, including national the-art surveys and other reports. guidelines, state-of-

This document, LESP-RPT-0001.00, LEAA Police Equipment survey of 1972 Volume 1: The Need for Standards--Prioritie prepared by LESL and is a law enforcement equipment report well as other documents will be issued under the LESL program in the areas of protective equipment, communications equipment security systems, weapons, emergency equipment, investigative aids, vehicles, and clothing. A list of the documents lready completed under this program will be found on the inside back cover of this document.

Technical comments and suggestions concerning the subject matter of this report are invited from all interested parties. Comments should be addressed to the Program Manager for Standards, National Institute of Law Enforcement and U. S. Department of Justice, Washingtontance Administration, . S. Department of Justice, Washington, D. C. 20530.

Lester D. Chubin, Standards Program
National Institute of
National Institute of Law Enforcement and Criminal Justice

* Section 402(b) of the Omnibus Crime Control and Safe Streets Act of 1968, as amended.
I. SUMMARX OF BACKGROUND \& METHODOLOGY
A. Background (p. 1)
- Law Enforcement Standards Laboratory (LESL) was established in 1971 as part of the NILECJ Equipment Systems Improvenent Division (ESID).
- NILECJ asked the Behavioral Sciences Group of National Bureau of Standards to develop and carry out a procedure to get information from the users of law enforcement equipment.
- "User" information would aid NIIECJ in setting priorities for LESL programs and would provide some detailed information so that research to develop standards could begin.
- In addition, gathexing information from the users would help to make police agencies aware of LESL and ESIP
- A nationwide mail sample survey was selected as the best procedure to collect user information.
- An Equipment Priorities Questionnaire (EPQ) and 6 Detaile Questionnaires (DQs) were developed and administered. A separate report was prepared for each of these seven questionnaires.
B. Design of Questionnaires (pp. 10-12)
- Questionnaires were developed in conjunction with NILECJ, LESL, and cooperating police departments. Questionnaires were pretested at various times with approximately 45 police departments.
- The EPQ was designed to provide information about needs for standards for various types of equipment.
- A list of categories of equipment was developed (9 categories: Building Systems, Communications, Detection Systems, Emergency larning Equipment, Lethal Weapons, Non-Lethal Weapons, Protective Equipment and Clothing, Security Equipment, and Vehicles).
- Lists of equipment items within each of these nine categories were developed
- Each respondent ranked the items in each list (taking each list separately) in terns of needs for standards for the items within his own department.
- In addition, the EPQ asked for data about numbers of fulland part-time officers, activities performed in the department, budget, size of jurisdiction, etc.
- The six DQs (Alarms, Security and Surveillance Equipment; Communications Equipment and Supplies; Handguns and Handgun Ammunition; Lights and Sirens; Body Armor and Confiscated Weapons; and Patrolcars) were each developed separately.
- The $D Q s$ asked about kinds and quantities of equipment in use, problems with existing equipment, suggestions for improving equipment, needs for standards related to the equipment, etc. Although entitled Detailed questionnaires these questionnaires were designed to give an overview of the use of specific items of equipment.
C. Sample (pp. 2-7, and Appendix B)
- The population sampled was made up of all police departments listed in a computerized file compiled and maintained by the LEAA Statistical Service.
- Courts, correctional institutions, forensic labs, special police agens $\stackrel{\text { es }}{ }$, etc., were excluded.
- The sample was stratified by LEAA Geographic Region (10 Regions) and by Department Type (7 Department Types: State police; County Police and Sheriffs; City Departments with 1-9 officers; City Departments with 10-49 officers, City Departments with 50 or more officers, excluding the Fifty Largest Cities; the Fifty Largest U.S. Cities by population; and Township Departments.
- Overall, approximately 10% of the 12836 departments in the population were selected as respondents. (See Table 1.2-2 and Table 1.2-3.)
- The Equipment Priorities Questionnaire was sent to every sample department (1386). Each Detailed Questionnaire was sent to all States, to all of the Fifty Largest Cities, and to a randomly selected subsample of the main sample (about 530 departments received each $D 2$).
- Therefore, States and the Fifty Largest Cities were asked to fill in all seven questionnaires. Each of the remaining 1186 departments were asked to fill in the EPQ and two of the D Q $\%$.
D. Questionnaire Administration (pp. 7-10, and Appendix C)
- Stringent control of administration was required.
- Introductoxy letters were sent to heads of departments asking cooperation.
- In June 1972, questionnaire packages mailed.
- In July 1972, follow-up by self-return post card was begun.
- In August 1972, follow-up by telephone was begun. Depart ments which had not returned questionnaires were called. Also, calls were made to clear up ambiguities in the returned questionnaires. About 1300 calls were made. About 708 of the sample departments were called at least once.
- Each questionnaire was edited and coded by a specialized team to ensure consistency; they were then keypunched and tabulated.
- Completed questionnaires were accepted for tabulation through January 7, 1973.
E. Rates of Return ($p, 20$)
- 838 of the 1386 departments returned usable EPQS.
- 81-85\% of the $D Q$ subsamples returned usable questionnaires.
- Highest rates of return (over 908) were from States, the Fifty Largest Cities, and Cities with 50 or more officers.
- Lowest rates of return were from Counties and Townships (less than 75\%).
F. Analysis of Rankings (pp. 20-22, and Appendix D)

Objectives were: (1) Establish "composite rankings" for all departments, all cities, each Department Type and each Region; and (2) Determine the levels of agreement of rankings within these 19 aggregates.

- Composite rankings were formed separately for each list, for each aggregate.
- The composites were computed from scores that were made up of three elements: (1) The rank assigned to an item transformed such that poorer ranked items received exponentially less importance than better ranked items; (2) A weight that corresponded to the sampling ratio of eight that corresportu officers in a department.
- Coefficients of Concordance were calculated to determine levels of agreement.
- 95% confidence intervals for each composite were calculated.
II. SUMMARY OF RESULTS
A. Characteristics of Responding Departments (pp. 16-23)
- The activities most commonly carried out by the respondents were Serving Traffic and Criminal Warrants (88\%), Traffic Safety and Traffic Control (87\%), and Intra-departmental Communications (87\%).
- All of the responding Fifty Largest Cities said they provided In-House Training and Criminal Investigations. This compared to 68% and 86%, respectively, of all responding departments.
- Only 13% of all respondents had Crime Laboratories. 73\% of the Fifty Largest Cities and 55\% of the States had Crime Laboratories
- About three-fifths of the departments in all Department Types were providing Emergency Aid and Rescue: Ranging from 60% of the Cities with 50 or More Officers to 67% of the Counties
- Overall, the reported Equipment Budgets represented somewhat over 10% of the Total Budgets reported.
- Among Department Types, there was a wide range of total equipment expenditures: From a mean of about $\$ 10,000$ for Cities with l-9 Officers to a mean of almost $\$ 2.6$ miliion for the Fifty Largest Cities.
- One of the Fifty Largest Cities reported an Equipment Budget of $\$ 40$ million.
- Overall, the Fifty Largest Cities reported a mean of 2491 Full-Time Sworn Officers. However, one of the Fifty Largest Cities had 27% of all the Full-Time officers reported by that Department Type and another had about 12%
- The mean numbers of Full-Time Sworn Of:تicers reported by the seven Department Types were

Mean No.
Full-Time
Officers
2491
889
132
60
22
14
8

Department 'rype
Fifty Largeist Cities
State
City with $50+$ officers County City with 10-49 Officers City with 1-9 Officers
B. Categories of Equipment (pp. 24-30)

- Two of the 9 categories of equipment were said to be of high importance for standards by all classes of departments Communications and Vehicles.
- 39\% of the respondents ranked Vehicles number one, and 33\% of the respondents ranked Communications number one. About three-quarters of the responding depariments ranked these two categories in one of the first three positions
- Building Systems tended to receive low priority ranks fro most of the aggregates of respondents: It was ranked 8th or 9 th of nine categories by five of the seven Department Types
- About 70% of the respondents ranked Building Systems either 7 th, 8 th, or 9 th.
- The National Composite Ranking for the Categories List was

Rank

* Communications Equipment and Supplies \checkmark Vehicles
Protective Equipment and Clothing
Wrotective Equipment and Weapons, Lethal and Related Ammunition
\checkmark Weapons, Non-Lethal
\checkmark Emergency Warning and Rescue Equipment
\checkmark Detection Systems
Security Equipment
Security Equipmen
Building Systems
- The "level of agreement" among Department Types and Regions and within Department Types and Regions was very high.
- 42\% of the departments that ranked Comunications number 1 gave as their reason "We plan to buy this kind of equipment in the near future. Standards would help us to select the best equipment at the least cost."
- 57\% of the departments that ranked vehicles number 1 gave as their reason "We now have maintenance and repair problems with much of this kind of equipment. Standards might solve these problems."
C. Communications Equipment and Supplies (pp. 34-37)
- Of the 9 items in this list, the 3 items basic to most communications systems were said to need standards most: Mobile Transceiver, Base Radio Transceiver, and Hand-held Transceiver.
- These 3 items were ranked either 1, 2 , or 3 in six of the seven Department Type Composites and in eight of the ten Regional Composites.
- The National Composite Ranking for the Communications list was

Rank Equipment Item
Mobile Transceiver
Base Radio Transceiver
Hand-held Transceiver
Digital Data Communications
Scramblers
Car Locators
Repeater Transceiver
Tele-printer Communications
Helmet with Built-in Transceiving Capacity

- Respondents tended to make more comments about the use of the items on the communications list than any other list.
D. Vehicles (pp. 44-49)
- The Patrolcar was the top priority item in every Vehicle Composite; 74\% of the respondents ranked Patrolcars number 1
- The Fifty Largest Cities ranked Motorcycles 2nd and Scooters 3rd. These two items received poorer ranks in the other six Department Type Composites.
- The State Composite seemed to be significantly different from the other Department Types: States tended to give high priority to Heliconters and Other Aircraft.
- Mobile Communications/Command/Control Vehicles was ranked 2nd in the National Composite and in five of the seven Department Type Composites.
- The National Composite Ranking for the Vehicles list was

Equipment Iter:

Patrolcars

Mobile Communications/Command/Control Vehicles other Land Vehicles
Motocycles
Helicopters
Scooters
Boats and Other Watercraft Other Aircraft
E. Protective Equipment and Clothing (pp. 30-34)

- Police Uniform was the lst of 11 items in 18 of the 19 Protective Equipment and Clothing Composites.
- In the State Composite, Riot Helmet was ranked number 1. In all other Departinent rypes, Riot Helmet was ranked 2 nd
- Bomb Disposal Device was ranked 3rd in the Fifty Largest City Composite and 4th in the City With 50+ Officers Composite. It was ranked poorly in all other Department Type Composites.
- Hand-heid Shields, Vehicle Arnor, and Crash Helmets tended to be in the three lowest priority positions (9th, loth, and llth).
- The National Composite Ranking for the Protective Equipment and Clothing list was

Equipment Item

Police Uniform
Riot Helmets
Gas Masks
Rainwear
Body Armor
Bomb Disposal Devices
Ballistic Helmets
High Visibility Clothing or Patches
Crash Helmets
ehicle Armor
Hand-held Shields
F. Lethal Weapons (pp. 37-41)

- 40% of the departments ranked the .38 Special Revolver number 1 . It was lst in 17 of the 19 Iethal Weapons Composites.
* The . 357 Magnum Revolver was ranked number 1 in the State Composite.
- Regular Service Ammunition was 2nd in most of the Composites. However, it was in 4th place in the unweighted National Composite.
G. Non-Lethal Weapons (pp. 4l-44)
- Many departments said the items on this list did not apply to them, and many said they were unfamiliar with the items.
- No single item on this list dominated the top priority position in the Composites.
- Six of the 11 items (Blackjacks/Saps, Batons/Billy Clubs/ Nightsticks, and the 4 Tear Gas items) tended to be ranked in the top 5 or 6 positions.
- The Shotgun was clearly the highest priority shoulder weapon.
- The National Composite Ranking for the Lethal Weapons list

The
was

Rark	Equipment Item
1	. 38 Special Revolver
2	Regular Service Ammunition for Handguns
3	Shotgun
4	. 357 Magnum Revolver
5	Frangible Bullets
6	Rifle
7	Regular Service Armunition for Shoulder Weapons
8	High-drag Bullets
9	9 mm Pistol
10	Carbine
11	Armor-picrcing Bullets
12	. 45 Automatic

I. Detection Systerns (pp. 61-64)

- In general, the 11 itens in this list fell into two groups reflecting higher and lower priorities for standards.
- 5 of the items (Field Narcotic Screening Kits, Quantitative Breath-Alcohol Screening Device, Pre-arrest Breath-alcohol Screening Device, Narcotic and Explosive Detectors, and Fingerprint Kits) were ranked in one of the top five positions by more than two-thirds of the respondents.
- This general pattern was found in all of the Composites except for the Fifty Largest City Composite in which Walk Through and Hand-held Metal Weapons Detectors were given higher priorities.
- The National Composite for Detection Systems (with the dotted line marking the general division in priorities) was

Rank	Eqpipment Item
1	Fingerprint Kits
2	Field Narcotic Screening Kits
3	Narcotic and Explosive Detectors
4	Quantitative Breath-Alcohol Device
5	Pre-arrest Breath-Alcohol_Screening_Device
$\frac{5}{7}$	Polygraph
7	Hand-held Metal Weapons Detectors
8	X-Ray Equipment Used by Bomb Squads
9	Walk-through Metal Weapons Detectors
10	Gas Chromatograph for Laboratory Use Only
11	Other Types of Weapons Detectors

- The only item consistently in a high priority position in all aggregates was Field Narcotic Screening Kits.
J. Surveillance and Security Equipment (pp. 57-61)
- The weighting scheme played a significant role in the Composite for this list.
- Smaller departments (in terms of numbers of officers) tended to give higher priorities to Alarm Displays in Department. Larger departments tended to give betcer rankings to Low Light Level closed Circuit TV.
- State departments tended to give higher priority to Night vision Scope Suitable for Rifles than any other Department Type.
- 418 of the respondents ranked Alarm Displays in Department number 1 , although this item received only the 3rd rank in the National Composite.
- Hand-held Night Vision Equipment was the top ranked item in the Fifty Largest City Composite.
- The National Composite Ranking for the Surveillance and Security Equipment list was

Rank \qquad
Unweighted Weighted

Equipment Item

5
2
1
3
8
6
7
4
3

1 Low-Light Level Closed Circuit TV Fiand-held Night Vision Equipment Alarm Displays in Department Still Camera Equipment for Night Vision Devices Closed Circuit TV
Night Vision Scope Suitable for Rifles

- Lenses-for Night Vision Surveillance Equipment General Purpose Locks Special Locking Devices for Detention Centers
K. Building Systems (ip. 49-52)
- Police Station Design/Construction was ranked number 1 by 63% of the respondents. It was 1st in every Composite.
- Since each of the items in this list covered a broad range of equipment and/or facilities and since respondents may not have had the same things in mind when assigning ranks, the analysis of this list may not be as meaningful as the others.
- The National Composite Ranking for the Building Systems list was

1.1 Project Background

During the past several years, law enfozcement agencies in the United States have become more aware of the importance of equipment in the performance of their duties. Much of the:r equipment had originally been designed for other uses and had to be modified. Other equipment items had to be used as given. No standards existed against which equipment performance could be measured nor were any standard test methods or procedures available. It has been difficult for agencies to compare the performance of equipment items. Recognizing this problem, in 1971, the Law Enforcement Assistance Administration (LEAA) of the Department of Justice began a concentrated program toward the improvement of law enforcement equipment

As the first step in its Equipment Systems Improvement fivision (ESTD), LEAA, in cooperation with the Department of Commerce, established a Law Enforcement Standards Laboratory (LESL) at the National Bureau of Standards (NBS). The broad goal of LESL is to recomend performance standards which can be promulgated by LEAA as voluntary aids for the selection of equipment by law enforcement agencies. Additionally, LESL is developing standard test methods and procedures, so that the relative performance of similar items may be evaluated by departments themselves.

In order to provide equipment user information for the ESIP program, in 1971. the National Institute of Law Enforcement and Criminal Justice (NILECJ) of LEAA asked the Behavioral Sciences Group of the Technical

Analysis Division at NBS to gather information from law enforcement agencies about their specialized equipment needs and problems.

Although face-to-face interviews with a large sample of representatives from law enforcement agencies would have been desirable, time and manpower constraints led to the development of a nationwide mail sample survey having two general objectives: (1) To assist NILECJ in the establishment of priorities for LESL's standards development activities; and (2) to obtain detailed information about certain broad equipment categories so that research to develop standards in these areas could begin.

The present report deals with the first general objective stated, and the associated survey questionnaire will be referred to as the Equipment Priorities Questionnaire (EPQ) . A copy of the EPQ may be found in Appendix A. The second objective is accomplished in the reports on Alarms, Security and Surveillance Systems; Communications Equipment and Supplies; Handguns and Handgun Ammunition; Sirens and Emergency Warning Lights; Body Armor and Confiscated Weapons; and Patrolcars. The six questionnaires associated with these specific equipment areas will be referred to as Detailed Questionnaires (DQs).

1.2 Sample Design

Although the objective of ESTP is to serve all types of law enforcement agencies, this particular study was purposefully limited to police departments as the largest single group of law enforcement agencies with identifiable equipment needs. No attempt was made to survey correctional
institutions, courts, forensic laboratories, or special police agencies such as park police, harbor patrols or university police. The computerized directory of approximately 14,000 police agencies, compiled and maintained by LEAA's Statistics Division, provided the population from which the sample was drawn. Care was taken to exclude the double listings that existed for some agencies. Details of the selection process are given in Appendix B.

The final list of 12,842 departments was cross-stratified by LEAA geographic region, and department type by the mutual agreement of NBS and NILECJ. The assignment of states to regions and the seven department types chosen for study are shown in Table 1.2-1.

Table 1.2-1. Stratification Categories

DEPARTMENT TYPES

State Police
County Police \& Sheriffs
County Police \& Sheriff
City with 1-9 Officers
City with 10-49 Officer
City with 10-49 Officers
City with 50 or more Officers
City with 50 or more Officers
The 50 Largest U.S. Cities**
Township Departments

* Excluding the 50 largest U.S.
cities.
** By population, U.S. 1970 census

The breakdown of the population of police departments by cross-strata is exhibited in Table 1.2-2. As can be seen from the table, there were no 10 = Alas., Idaho, Ore., Wash.

$1=$ Conn., Maine, Mass., N.H., R.I., Ver.

3 = Del., Md., Penn., Va., W.Va.,
D.C.
$=$ Ala., Fla., Ga.,
N.C., S.C., Tenn.
5 = Ill., Ind., Mich., Ohio, Wis.
Minn Ind., Mich., Ohio, Wis.
= Ark., La., N.M., Okla., Tex.
7 = Iowa, Kan., Mo., Neb.
$8=$ Colo., Mont., N.D., S.D., Utah, Wyo.
9 = Ariz., Calif., Nev., Hawaii

Townships in Regions $4,6,7,8,9$ and 10 . Almost 63% of the departments were City police, 43% havirg 1-9 full-time officers. County departments comprised about 24% of the population. By Region, the smallest (Region 10) contained only 3.4% of the police departments, while Region 5 , the largest, had 22.5\%. The variation in the number of departments in a cell (Region/Department Type combination) was even greater than that across the strata, i.e. the number of departments in each cell ranged from 0 to 1470 .

The considerations discussed in the previous paragraph led to the sampling plan discussed brfefly below, and in detail in Appendix B. All of the State dopartments and the Fifty Largest City departments were included in the sample and were asked to complete all six DQs, i.e. they were sent the entire package of seven questionnaires. For the remaining colls the variation in cell size presented a problem: If the same fraction of the entire population were to be selected from the members of each cell, a constant sampling fraction large enough to allow a sufficient number of sample units (police departments) in small cells would yield an unmanageably large total sample; on the other hand, a constant sampling fraction small enough to make the total sample manageable would yield too few sample units in small cells. To solve this problem, a fixed sample of 30 police departments/cell was chosen, wherever possible, resulting in a difforent sampling fraction for each cell. A fixed sample size of thirty departments/cell was chosen to facilitate the equitable distribution of the six DQs. This plan resulted in sending the EPQ to 1392 departments, and each $D Q$ to approximately 530 departments. Table $1.2-3$ presents the total EPQ sample which represents 10.8% of the total population of police departments under consideration.

Comparison of Tables 1.2-2 and 1.2-3 shows the effect of employing a constant sized sample/cell. The cell having the smallest sampling fraction is Region 5, City (1-9 officers), with just over 28 sampled, whereas some cells are sampled 100\%. Furthermore, it should be noted that about 5.5% of Cities with 1-9 officers are in the sample, compared to 100 of the Fifty Largest Cities. The fractions sampled by region show somewhat more stability, lying between 6% and 25%.

The departments were selected randomly within each cell, from the total cell population, for EPQ mailing. The DQs were also randomly distributed within each cell, each department (other than the States and the Fifty Largest Cities) receiving two DQs. Thus, in cells having 30 sample units, each $D Q$ was mailed to 10 departments; cells having fewer sample units were allocated correspondingly fewer of each $D Q$ (see Appendix B).

Once the sample was selected, each sample unit was assigned a unique seven-digit identification number, coding region, type, and questionnaire assignment.

1.3 Questionnaire Administration

From the beginning of the project, it was evident that stringent control would be required in administering the questionnaires to ersure a high rate of response. Computer-stored daily status records were input via a teletypewriter terminal for each sample department. In general the following procedure was used:
(a) Each department in the sample was mailed a letter, signed by the director of NILECJ, addressed to the head of the
department. This letter introduced the survey and requested cooperation.
(b) About one week later, the questionnaire packages were mailed.
(c) Departments not returning the questionnaires within a month were identified by the computer and were sent a postcard requesting information as to the status of the questionnaires. Departments not receiving the questionnaire package were sent another; those not returning the postcard were placed on a list for telephone follow-up.
(d) About a month and a half later, departments with which no contact had been made were called by telephone.
(e) Returned questionnaires were reviewed for completeness and either coded for keypunching or filed for telephone callback to supply missing data or to clear up ambiguities. Considerable effort was expended to ensure a high rate of response, and this effort was rewarded with an 83% response for the EPQ, and between 81% and 85% for each DQ .

The distribution of respondents (departments which returned usable EPQ's) is exhibited in Table 1.3-1. Comparing this table with Table 1.2-3 shows that greatest response rate was from the States and larger cities (over 908), while Counties and Townships had the poorest response rates (under 75\%). This would seem to be partly explained by the fact that the larger departments use more equipment than do smaller departments and therefore have a greater interest in developing standards. An inspection of the average annual equipment budget for the various department types supports

Table 1.3-1. Nunber of Respondents to the Equipment Priorities Questionnaire by Region and Type.

this hypothesis. Additionally, telephone contacts with non-respondents revealed that many small departments considered themselves to be understaffed and thus unable to answer the questionnaires.

A more detailed description of the $E P Q$ administration may be found in Appendix C.

1.4 Development and Design of the EPQ

The survey plan and questionnaire design evolved over a 12 -month period. During this time the survey team consulted at length with NILECJ equipment experts, LESL program managers, and equipment manufacturers. In addition, the officers and administrators of about 40 police departments served as consultants andior as respondents for pretests of various versions of the questionnaires.

The EPQ in its final form is reproduced in Appendix A. Each respondent was asked to rank-order the items on each of ten lists: One list contained nine general equipment categories; the other nine lists contained items within each category. There were 87 items (or item/ systems) in the nine category lists, the longest list (Lethal Weapons) having 12 items and the shortest (Building Systems) having 5 items.

The criterion for rank-ordering was the need for standards of entries in the list. Considerable care was taken to render the phrase "in need of standards" and its negative as clearly and concisely as possible (see page $A-4$ of the $E P Q$, Appendix A). Emphasis was given to the request that rankings reflect the needs of the respondent's department, not what the respondent thought were general police department needs. this distinction is important. For example, a respondent may have felt
that standards development for sophisticated cormunications equipment was important, but he may have had no need for such equipment himself and was not planning to buy any. Therefore, these items should have been ranked poorly by him.

The nine categories of equipment were established on the basis of discussions with LESL, NILECJ, and police departments. Computers and computer related equipment were purposefully excluded from the survey. Other ways to group police equipment (e.g. by cost) were clearly possible, but grouping by type seemed to offer the most convenient and logical form. Furthermore, this type of categorization presumably minimized the number of "apples/oranges" comparisons.

One of the more difficult tasks in the preparation of the lists was that of limiting the number of items in each list. Ranking a number (N) of items involves assigning the integers 1 through N (in some permutation) to each item. (Instructions for this survey asked that rank 1 be assigned to the highest priority item, rank 2 to the next higher priority item, etc., and rank N to the lowest priority item.) In a task of this kind, if N is too large, a respondent may not be able to make rational comparisons and may be more prone to making errors, e.g. assigning the same rank to two different items. Therefore, decisions were made by the study group (with the advice of LESL, NILECJ, and the pretest departments) to exclude those items least likely to be found in the field. However, space was provided at the bottom of each list for the respondent to "write-in" additional items or make comments. These additions were not ranked with the others but were recorded and are discussed in this report.

In addition to the nine category lists, the respondents were asked to rank the categories themselves and to check two of eight reasons for their choice of the top priority category.

Explicit instructions appeared on each page of the EPQ in an effort to minimize the number of misinterpretations and errors. Since it was learned through pretesting that many police departments receive more than ten questionnaires per month from universities and other research organizations, extra care was taken to obtain conscientious and thoughtful responses. Because it is likely that an item's position in a list may influence the ranking it receives, approximately half of the respondents were sent EPQs with lists in reverse order from those sent to the other half. Although no statistical tests were made, it is assumed that this procedure led to a cancelling of order effects, if any.

Other dața describing the characteristics of the responding departments were requested in the EPQ. Among these were population served and physical size of the jurisdiction served; type of jurisdiction (as a check against the NILECJ data tape); number of full- and part-time officers (as an update to the original data tape); approximate total, equipment and personnel expenditures during 1971; and activities handled by the police department (e.g, custody/Detention, Traffic Safety and Control).
1.5 An Overview of the EPQ Analysis

The analysis of the rankings performed for this study had two major objectives:
(a) To determine the level of agreement in rankings within various aggregates of respondents; and
(b) to establish "composite rankings"* for various aggregates of zespondents
In the following discussion of analytical techniques, no distinction is made between the nine category lists of items and the list of categories The generic term for a list "item" or "category" is entry. Furthermore, since all ten lists were analyzed in the same way, the discussion of analytical techniques refers to "the list" instead of referencing a particular list.

1.5.1 Composite Rankings

The final form of the EPQ asked respondents to rank each entry in the lists. Both rating and partial ranking techniques were considered as alternatives to the ranking method selected and were not adopted. A rationale for the choice of the present ranking scheme over these alternative methodologies is presented in Appendix D.

[^0]The rankings from each department were aggregated into composite rankings.* Each composite ranking was obtained by ordering "scores" based on the rankings given by individual departments within the entire aggregate under consideration. That is, a "score" was calculated for each entry on the list, based on the ranks assigned by departments in the group of interest. The score for an entry, then, was:

$$
\sum W_{K} 2^{-r_{K}}
$$

Where the summation was taken over all respondents (K) in the aggregate of interest; r was the rank givert the entry by the respondent, and W was the weight associated with the respondent.

This method of aggregating ranked data yields a "composite ranking" influenced importantly by two factors. Firstly, the exponential formula ** employed has the property of assigning most importance to an entry ranked number one by many respondents and exponentially less importance to the poorer rankings given that entry. For example, the assignment of an entry to third place by eight departments would be equivalent to the assignment of that same entry to first place by one department. This procedure gives considerable emphasis, then, to positive statements (i.e. ranking an entry number one) about "needs for standards" and very little emphasis to expressions of either indifference or lack of need for standards.

* The aggregates of respondents considered are Regions, Department Types, all Cities, and the nation (i.e., for each list, there are ten composite rankings for the ten LEAA Regions, seven composite rankings for the seven Department Types, a composite ranking for the Cities and a national composite ranking.) The Cities composite ranking is based on data from the responding departments in the four City Department Types: Fifty Largest Cities, Cities ($50+$), Cities ($10-49$), and Cities (1-9).
** This formula was supplied by Mr. Marc Nerenstone of NILECJ, Department of Justice.

Secondly, the weighting factor multiples the department's vote by the number of full-time sworn officers in that department, and in that sense, gives each officer one vote. Other means of weighting the responses were considered and rejected: Developmental work indicated that the number of officers in the responding department was generally the best single index of that department's use of equipment. Composite rankings assuming equal weights for all responding departments ($\mathrm{W}=1$) were calculated as well, and are used in Section 3.0 of this report to highlight the effects of the present weighting scheme. In addition, details of the several formula/weight combinations considered during the course of the analysis are discussed in Appendix D.

1.5.2 Level of Agreement

The analysis included the calculation of a statistic (Coefficient of Concordance) which would indicate whether or not certain groups of departments tended to assign similar ranks to an entry, (e.g., whether there was agreement among the seven Department Types or among the ten Regions in their rankings of the entries). This statistic was calculated for the departments within each Department Type, and wịthin each Region. In addition it was calculated among Regions (with all departments in a LEAA Region regarded as a single "respondent") and among Department Types (with all departments in a particular Department Type regarded as a single "respondent"). Note that when calculating the statistic among Department Types or Regions, that it is possible for the level of agreement among the groups to be high while the level of agreement between any two of those groups is low, and vice versa.

One additional statistical test was made regarding the rankings. This test identifies entries ranked consistently high or low (based upon the simple rank sum) by respondents and was applied to the same aggregates of respondents as were tested for level of ạgreement. (See Appendix D)

Complete tables, including simple relative fa:equency counts (or distributions) of the ranks, have been tabulated and appear in Appendix E.

2.0 CHARACTERIS'rICS OF RESPONDING DEPARTMENTS

Equipment needs of police departments are clearly a function of their activities as evidenced by the responses to the check-list of 30 typical police department activities that was included in the EPQ. Results are tabulated by Department Type in Table 2.0-1.

The activities most frequently checked were (1) Serving Traffic and Criminal Warrants (88\%): (2) Traffic Safety and Traffic Control (87\%); and (3) Intra-departmental Communications (87\%). All 45 of the Fifty Largest Cities responding indicated that their departments provided Inhouse rraining and performed Criminal Investigations. These compare to 68\% and 86\%, respectively, of all respondents. Although only 13% of the responding departments overall had Crime Laboratories, 73\% of the Fifty Largest City Departments had them, as did 55% of the state Departments. The activity appearing to be most constant for all Department Iypes was that of providing Emergency Aid and Rescue, ranging from 60\% (Cities with 50+ officers) to 67% (County Departments).

Table 2.0-1. Percent of Respondents Having Each Activity, By Department Type.

DESCRIPTION OF ACTIVITY:	state $\%$	$\begin{gathered} \text { County } \\ 8 \\ \hline \end{gathered}$	City (1-9) $\%$	$\begin{gathered} \text { City } \\ (10-49) \\ \% \end{gathered}$	City (50+) \%	$\begin{gathered} 50 \\ \text { Largest } \\ \text { \% } \end{gathered}$	Township $\%$	Total $\%$
Serve Traffic and Criminal Warrants	70	89	84	89	94	87	93	88
Traffic Safety and Traffic Control	92	56	94	96	96	98	94	87
Communications for own Department	94	86	76	95	94	96	70	87
Criminal Investigation	66	86	71	95	97	100	79	86
Police Training for Own Department	98	55	48	77	87	100	42	68
Custody/Detention-Less than 1 Day	15	79	51	73	72	80	43	65
Breath-Alcohol. Test	89	46	4.7	72	83	91	49	64
Emergency Aid and Rescue	62	67	62	63	60	67	62	63
Public Building Protection	15	40	63	60	58	44	68	54
Service Function	30	30	48	55	60	60	42	48
Animal Control (Dog Catcher)	0	26	58	63	42	16	37	44
Highway Patrol	96	38	48	36	31	24	88	43
Maintenance of Police Buildings	51	36	34	41	48	47	30	40
Custody/Detention-Less than 1. Week	0	73	20	36	46	49	2	38
Communications for other Agency	66	56	29	40	24	24	14	36
Serve Civil Process	6	88	29	15	9	17.	31	32
Police Training for Other Agency	77	22	2	11	42	84	10	24
Custody/Detention-One Year or Less	0	78	7	10	14	16	1	22
Underwater Recovery	34	42	6	11	16	42	9	19
Bomb Dispnsal	45	20	5	11	23	82	1	17
Polygraph	62	8	1	5	36	90	2	17
Vehicle Inspection	55	1.6	21	14	14	11	9	17
Crime Laboratory	55	6	2	7	20	73	1	13
Narcotics Laboratory Analysis	43	9	2	8	12	62	1	11
Harbor Patrol	6	14	3	2	9	31	1	7
Lab Analysis for Blooa Alcohol	34	7	0	1	7	53	2	7
Other	2	7	4	7	5	2	5	6
Coroner	0	16	2	3	1	0	2	5
Tests for Drivers License	34	4	4	2	0	2	0	3
Custody/Detention/More than I Year	0	13	0	0	1	2	1	3

Other activities, not on the list but written in, included meter parking and maintenance; crossing guards; court duties; river, lake and park patrol: licensing and license regulation; juvenile detention; vehicle accident investigation; and local zoning and ordinarce enforcement.

Table 2.0-2 shows a sumary of the descriptive data obtained from the responding departments. As can be seen from the column for Annual Equipment Budget, there was a wide range of expenditures among the different Department rypes, from a mean of about $\$ 10$ thousand for cities with 1-9 Officers to almost $\$ 2.6$ million for the Fifty Largest Cities. The largest individual equipment budget was $\$ 40$ million, occurring in one of the Fifty Largest cities. Overall, Equipment Budgets represented somewhat over $10 z$ of the total annual budgets reported.

The mean Number of Part-time Officers was based on those respondents having Part-time Officers in their departments. Of the 45 responding from the Fifty Largest Cities, only six had Part-time Officers, including one city which had, nearly 6000. Thus, the mean value of 1115 for this Department Type is somewhat misleading. It should be noted that the category "Part-time Officers" included officers described as auxiliary, volunteer, zeserve, school-crossing guard, dispatcher, summer, special agent, traffic supervisor, posse, and cadet. All of these classifications were counted in the Part-time Officer category since it has different meanings for different departments.

Variations in these descriptive averages by LEAA Region (see Table 2.0-3) were considerably smaller than variations by Department Type.

Table 2.0-2. Descriptive Data by Department Type (Means)

Department Type	Area (Sq. Miles)	Population	Number of Full-Time Officers	Number of part-Time officers	Annual Total Budget	Annual Equipment Budget	Annual Personnel Buãget
50 Largest	187	851,342	2,491	1,115	\$43,268,865	52,669,920	\$34,712,818
State	62,580	3,936,410	889	18	\$16,377,358	\$2,304,3.39.	\$12,020,572
County	1,518	130,254	60	25	\$ 1,089,919	\$ 58,539	\$ 859,984
City (50+)	31	83,344	132	26	\$ 1,733,340	\$ 173,099	\$ 1,407,177
City (10-49)	12	15,849	22	9	\$ 257,927	\$ 24,362	\$ 206,187
Township	28	13,228	14	8	\$ 175,654	\$ 20,854	\$ 141,675
City (1-9)	9	5,038	8	5	\$ 82,381	\$ 9,764	\$ 60,061

Table 2.0-3. Descriptive Data by LEAA Region (Means)

IEAA Region	$\begin{gathered} \text { Area } \\ \text { (Sq. Miles) } \\ \hline \end{gathered}$	Population	Number of Full-Time Officers	Number of Part-Time Officers	Annual Total Budget		nual ipment dget	Annual Personnel Budget	
1	750	158,112	96	18	\$ 1, 360,155	\$	135,130	\$	979,911
2	648	240,781	365	97	\$ 7,148,315	S	148,172	\$	5,265,546
3	1,096	245,733	216	7	\$ 3,412,567	S	435,153	\$	2,879,293
4	3,691	340,996	151	11	\$ 2,318,382	S	248,600	\$	1,767,292
5	2,652	448,174	283	6	\$ 4, 916,607	\$	431,478	\$	3,879,374
6	5,738	271,386	160	17	\$ 2,193,823	S	160,3631	\$	1,709,910
7	2,379	112,094	84	9	\$ 1,220,385	\$	121,001	\$	983,696
8	6,346	83,023	54	9	\$ 728,549	\$	77,081	\$	568,463
9	4,218	372,094	281	46	\$ 5,743,553	\$	728,801	\$	4,528,692
10	3,580	104,877	69	9	\$ 1,253,894	\$	82,198	\$	1,011,604

Regions 1 and 8 had smaller budgets than the others, primarily because each had only one of the fifty Largest Cities.

It was mentioned previously that the number of officers cited by respondents could serve as a cross-check and update of the original data tape fron LEAA. Table 2.0-4 indicates changes in the original classification. As an example of how this table can be read, 33 of the city departments having l-9 officers according to the LEAA tape in fact reported 10-49 officers. The relative symmetry of the table matrix indicates that changes in numbers of officers occurred approximately equally in the positive and negative directions.

Table 2.0-4 Numbers of Officers in City Departments
DEPARTMENT TYPE: ACTUAL NUMBER OF OFFICERS REPORTED FROM THE SURVEY: (From LEAA Tape)

City (1-9 Officers)
City (10-49 Officers)
City (50 or more Officers

$\underline{50+}$
 4 4
 236

33 230

Eighteen different titles for respondents were coded. slightly over 37% of the EPQs were completed by department chiefs. The EPQ was more likely to be completed by department chiefs in the smaller cities and rownships. Only 4% of the EPQs sent to the Fifty Largest cities were filled in by the chief; over 228 of the respondents from the Fifty Largest Cities were non-uniformed personnel (planning staff, administrators, etc.). Sheriffs, Deputies and under-Sheriffs comprised over 78% of the county respondents. For cities other than the Fifty Largest, Chiefs, Captains and ricutenants were the primary respondents. State departments
provided a fairly even distribution of responding personnel, including Captains, Majors, Lieutenants, Sergeants and non-uniformed personnel. Rates of response by department type are exhibited in Figure 2.0-5. (p. 22). Generally; the two months having the highest rates of return were June (after the initial mailing) and August (after the follow-up post card). State departments and the larger Cities had higher than average returns, while the small cities (1-9 officers), Counties and Townships indicated the lowest. It is interesting to note that the Fifty Largest Cities had their highest return rate during the month of July, prior to the post card mailing, suggesting possibly a longer time period to complete the EPQ because of the six DQs they received. A similar observation may be made for State Departments. (See the further discussion of this topic in Appendix C.)

3.0 ANALYSIS OF RANKINGS

This section presents a discussion of the results of the analyses of the responses to the EPQ . A subsection is provided for the analysis of each of the ten lists in the $E P Q$. Note again that composite rankings were based on a weighted exponential formula*, the weights being proportional to the number of full-time officers in the responding department. It should be further emphasized that these analyses of rankings provide only one of many inputs to the decision-making process by which priorities for developing standards for police equipment will be determined by nilecj.

[^1]Figure 2.0-5. Cumulative Percentages of EPQ Returns by Month and Department Type.

The reader should also be cautioned to treat individual lists separately. For example, there is no basis in the data for comparisons between the priorities from two different lists. The type of infexence that one might be tempted to draw is that since Communications was ranked higher than Protective Equipment and clothing, Mobile Transceivers (the top priority Communications item) should be ranked higher than Police Uniform (the top priority Protective Equipmont and clothing item). This conclusion would not be deducible from the data.

It is highly likely that many of the respondents ranked lists according to the criterion of importance to the police department, rather than that of need for standards development. Although the latter is in principal what was sought, it is fully appreciated that some respondents used the former in selecting ranks. This possible ambiguity in the interpretation of the criterion has not necessarily generated "contaminated" data. The imposition of a strict distinction between that which is important to departments (for which relatively little standards development would be needed) and that which departments rarely used (for which considerable standards development would be needed) contributed an additional dimension to the problem of setting priorities. Leaving this trade-off decision to individual respondents' rankings yielded data which more accurately reflected the overall priorities as individually perceived.

3.1 Rankings of Categories of Equipment

3.1.1 The Categories

Nine general equipment categories were selected for inclusion in the EPQ. It was assumed, based on discussions with law enforcement experts during the developmental phase of the study, that the categories were meaningful to the respondent departments and that they provided a logical structure for the wide variety of equipment used by those departments.

Of the nine categories in the list, two categories were said to be of high importance for standards by all classes of departments: Comunications and Vehicles. Almost 39% of the respondents ranked vehicles number one, and over 33% ranked Communications in that position. Communications and Vehicles were ranked among the top three (of nine categories) by over 78 and 74\%, respectively, of the respondents. These same two categories received either the number one or two rank for each Department Type composite, except for the Fifty Largest Cities (for which Vehicles ranked third); for each Region composite except region 2 (for which Vehicles ranked third); for the City composite; and for the National composite. In the case of Region 2, one respondent, which had over twothirds of the total weight for that Region (i.e. over two-thirds of the full-time officers in the Region were in one department), ranked Vehicles seventh. This partially accounts for the fact that Vehicles was third in the Reqion 2 composite ranking.

At the other extreme, Building Systems tended to receive low priority ranks fran most of the aggregates of respondents. Only cities With 10-49 Officers and Townships failed to arrive at a composite rank
of 8 or 9 (out of 9) for this category among the seven Department Types. Composites for six of the zen LEAA Regions ranked Building Systems eighth or ninth, and in both the City composite and National composite it was ninth. These results are not surprising in view of the fact that almost 40% of all respondents ranked Building Systems ninth; nearly 70% ranked that category seventh, eighth or ninth.

Relative frequency histograms for the number one-ranked category appear in Figure 3.1-1.

Figure 3.1-1. Percent.Respondents Selecting Each Category as Number 1 In Importance.

EQUIPMENT CATEGORY:
Communications Vehicles Protective Equipment Lethal Weapons Non-Lethal Weapons Emergency Warning Security Equipment Building systems

relative

FREQUENCY:
$33 \% \quad++++++++++++++++++++++++++++++++$
39 ++
5 +++++
$+++++$
++
+++
++++
+++
$\stackrel{+++}{++++}$
+++++

In the histogram, the categories have been ordered according to the National composite rankings, so that the extent to which the latter corresponds to a ranking based on the number of number-one ranks received may be seen from the overall trend of the histogram. Although the vehicles category received more number one ranks than did Communications, the latter nevertheless was ranked number one in the National composite. The level of agreement among the seven Department Types, taking their ranking of all of the categories into consideration, was 100% as was the level of agreemont within each Department Type. (See Appendix D for a discussion of
the meaning of the phrase "level of agreement." Basically if the "level of agreement" is 100%, there is a negligible probability that the observed similarity of rankings could have occurred by chance alone.)

Tables 3.1-2 through 3.1-5 show the National composite, the Cities composite, the Department Type composites, and the Regional composites, respectively. Regional differances appear to be somewhat less pronounced than Department Type differences. A closer examination, however, does reveal significant differences in pairs of Regional composites. For example, there was a relatively low level of agreement (82.1\%) between Regions 2 and $6(t=0.278)$. Additionally, the level of agreement for the Fifty Largest City composite and the Cities composite was determined. In this case, the lavel of agreement was $99.98 \%(t=0.78)$. This latter example illustrates the possible effect of the weights upon the determination of the composite rankings. That is, the largest weight carried by respondents in the Fifty Largest Cities might account for the high level of agreement between this aggregate and the aggregate of all cities. This hypothesis is supported by the fact that the levels of agreement of the Fifty Largest Cities with each of the other city department types were: 87\% (Cities With 1-9 Officers); 46\% (Cities With 10-49 Officers); and 96\% (Cities With 50 or More Officers).

3.1.2 Reasons for Choosing Number One Category

Respondents were asked to indicate two of seven reasons for their selections of the category ranked number one. Table 3.1-6 indicates the distribution of their choices of reasons by top priority category and overall. Of the departments choosing Communication as the equipment area

Table 3.1-2 Composite Ranks for All Departments for Equipment Categories

CATEGORY: RANK
Communications Equipment and Supplies 1
Vehicles 2
Frotective Equipment and Clothing 3
Weapons, Lethal and Related Ammunition 4
Weapons, Non-Lethal 5
Emergency Warning and Rescue Equipment 6
Detection Systems 7
Security Equipment 8
Building Systems 9
Table 3.1-3 Composite Ranks for All Cities for Equipment Categories
CATEGORY RANK
Communications Equipment and Supplies 1
Vehicles 2
Protective Equipment and Clothing 3
Weapons, Lethal and Related Ammunition 5
Weapons, Non-Lethal 4
Emergency Warning and Rescue Equipment 7
Detection Systems 6
Security Equipment 8
Building Systems 9

Table 3.1-4 Department Type Composite Ranks for Equipment Categories

	DEPARTMENT TYPE					50	
CATEGORY	State	County	City (1-9)	City (10-49)	City (50+)	Largest	Township
Communications Equipment and Supplies	2	1	- 2	2	1	1	2
Vehicles	1	2	1	1	2	3	1
Protective Equipment and Clothing	5	4	5	7	3	2	5
Weapons, Lethal and Related Ammunition	4	3	3	3	4	7	3
Weapons, Non-Lethal.	7	5	8	9	9	4	8
Emergency Warning and Rescue Equipment	3	7	4	4	6	8	4
Detection Systems	6	8	6.	8	7	- 5	9
Security Equipment	8	6	7	6	5	6	7
Building Systems	9	9	9	5	8	9	6

Table 3.1-5 Region Composite for Equipment Categories

Table 3.1-6. Reasons Given for Ranking Category Number 1, by Category.

KEY TO REASONS

1. Most of this kind of equipment is now made by one or two firms. S.tartards might encourage others to start making it.
2. We plan to buy this kind of equipment in the near future. Standards would help us to select the best equipment at the least cost.
3. Much of the equipment we now have of this kind does not really meet our needs. standards could be used to guide the manufacturexs who develop equipment,
4. We now have maintenance and repair problems with much of this kind of equipment. Standards might salve these problems.
5. We buy equipment in this category from several different makers and find that parts and components cannot be interchanged among the different brands. Standards might help solve this problem.
6. When we buy equipment in this category, we must compare many different brands. If there were standards, we could stop a lot of this investigation and/or testing.
7. We are not able to test this type of equipment. If there were standards, we could use the results of tests made by the laboratory.
8. Other
which most required standards, 42% chose the response "We plan to buy this kind of equipment...standards would help us to select..." of the department choosing vehicles as the equipment area which most required standards, 57\% chose the response "We now have maintenance and repair problems...Standards might solve these problems." Four of the seven alternatives were chosen with almost equal frequency regardless of the equipment category marked number one. In addition to the two reasons mentioned above, the departments said that standards would help eliminate their current need to test and compare different brands of equipment and cited their inability to test equipment.

Nearly 100 comments were given by respondents regarding the reasons for why various equipment was in need of standards. Many of these suggested that respondents were thinking of the importance of equipment in running a police department, rather than of the need for setting equipment standards, although these two notions are obviously related. The absence of interchangeability of components and high costs of desired equipment were two comments made which may relate more directly to standards. Despite the fact that Building Systems ranked last in priority for standards development several comments were made regarding lack of space, inadequacy of facilities and outdated equipment. Some of these problems, however, could probably be attributed to budget constraints rather than to lack of standards. It is interesting to note that 59% of those ranking Building Systems first indicated that their reason was the forthcoming purchase of such systems.

3.2 Protective Equipment and Clothing

Of the eleven items on the Protective Equipment \& Clothing list, nearly 50% of all respondents indicated the police Uniform as the item of protective
equipment and clothing most in need of standards. The National composite, Cities composite and all Regional composites had Police Uniform in first place. The State Department composite ranked Riot Helmets first and Police Uniform second. All other Department Type composites ranked Police Uniform first and Riot Helmets second.

The Fifty Largest Cities composite had Bomb Disposal Devices ranked third, and the composite for Cities With 50 or More Officers ranked this fourth. However, Bomb Disposal Devices were ranked poorly in all other Department Type composites. One obvious explanation for this is that the threat of bombs is greater in larger cities, perhaps because of greater concentrations of people and the sociological pressures existing in such high-density areas.

Hand-Held Shields, Vehicle Armor and Crash Helmets tended to occupy the three lowest priority positions (ranks $9,10,11$ for most composites. One significant exception was Region 8 which ranked Crash Helmets with the second highest priority. This item was ranked eleventis (last) in Region 8 in the unweighted (equal weights) case, suggesting that perhaps a few respondents having many officers ranked Crash Helmets as high priority

Although the level of agreement is 100% among the Department Types and among Regions, there are some pairs that have lower levels of agreement. These, however, all appear to be above the 90% level, i.e. there is certainly not much conflict among composite rankings. Tables 3.2-1 through 3.2-4 show composite rankings for the several aggregates considered.

Among the additional iters listed, although by less than 9 departments each, were specific uniform and accessory clothing items; equipment to
Table 3.2-1 Composite Ranks for All Departments for ProtectiveEquipment and clothing
CATEGORY ITEM RANK
Police Uniform 1
Riot Helmets 2
Gas Masks 3
Rainwear 4
Body Armor 5
Bamb Disposal Devices 6
Ballistic Helmets 7
High Visibility Clothing or Patches 8
Crash Helmets 9
Vehicle Armor 10
Hand Held Shields 11
Table 3.2-2 Composite Ranks for All Cities for Protective Equipment and Clothing
CATEGORY ITEM RANK
Police Uniform 1
Riot Helmets 2
Gas Masks 5
Rainwear 6
Body Armor 4
Bomb Disposal Devices 3
Ballistic Helmets 7
High Visibility Clothing or Patches 10
Crash Helmets 8
Vehicle Armor 9
Hand Held Shields 11

Table 3.2-3 Department Type Composite Ranks for Protective Equipment and Clothing

Table 3.2-4 Region Composite Ranks for Protective Equipment and Clothing

CATEGORY ITEM	LEAA REGION									
	1	2	3	4	5	6	7	8	9	10
Police Uniform	1	1	1.	1	1	1	1	1	1	1 1:
Riot Helmets	4	2	2	3	2	2	2	3	2	5
Gas Masks	2	3	7	6	5	3	8	4	5	7
Rainwear	3	6	3	2	7	6	3	6	3	4
Body Armor	6	5	6	4	3	7	5	8	4	2
Bomb Disposal Devices	5	4	4	8	4	4	6	7	8	3
Ballistic Helmets	7	7	8	5	9	5	7	9	7	6
High Visibility Clothing or Patches	9	9	5	10.	6	9	4	5	9	9
Crash Helmets	10	8	10	9	8	8	9	2	6	8
Vehicle Armor	11	11	9	7	10	11	10	11	10	10
Hand Held Shields	8	10	11	11	11	10	11	10	11	11

protect the hands and feet; face shields; in custody restraints; tamperproof identification cards; and waterproof shoes.

3.3 Communications Equipment and Supplies

This category of equipment was ranked number one in the National composite. (See Section 3.1 above.) Of the nine items of communications equipment listed, the three items basic to most compunications systems predominated: Mobile Transceiver (National composilee - number l rank); Base Radio Transceiver (Naticnal composite - number 2 rank); and Hand-Held Transceiver (National composite - number 3 rank). These three items appeared in the top three ranks in six of the seven Department Type composites, in eight of the 10 Regional composites; in the City composite and in the National composite. In the exceptional cases, the worst rank received by any of the three was rank 5. Mobile Transceivers were ranked 1, 2 or 3 by 67% of all respondents; Base Radio Transceiver and Hand-Held Transceiver by 56% and 62\%, respectively.

Tables 3.3-1 through 3.3-4 present the various composites. Tables 3.3-3 and 3.3-4 show that the levels of agreement anong all Department Types and among all Regions were high; in fact, calculated to be 100\%. Additionally, the level of agreement within each Department Type and within each Region was also 100 percent.

Several departments commented about their communication equipment: on the general importance of communications equipment to the police function; that their communications systems were outdated and that they were planning to buy new equipment; that an improved scrambler system was needed; and that their spectrum allocation was insufficient. Twenty-five respondents

Table 3.3-1 Composite Ranks for All Departments for Commanications Equipment and Supplies

RANK
Mobile Transceivers
Base Radio Receiver
hand-Held Transceivers
Digital Data Communications
Scramblers
Car Locators
Repeater Transceivers
Tele-Printer Communications
Helmet with Built-in Transceiving Capacity

Table 3.3-2 Composite Ranks for All Cities for

 Communications Equipment and SuppliesCATEGORY ITEM
RANK
Mobile Transceivers
Base Radio Transceive
Hand-Held Transceivers
Digital Data Communications
Scramblers
Car Locators
Repeater Transceivers
Tele-Printer Communications
Helmet with Built-in Transceiving Capacity

Table 3.3-3 Department Type Composite Ranks for Communications Equipment and Supplies

CATEGORY ITEM

DEPARTMENT TXPE
City $50 \quad 50$ City(1-9 City(10-49 or More Largest State County Officers) Officers) Officers Cities Township

Mobile Transceivers	1	3	2	2	3	1	1
Base Radio Transceiver	2	5	1	1	2	2	
Hand-Held Transceivers	3	1	3	3	1	3	3
Digital Data Commancations	5	2	9	8	7	4	8
Scramblers	7	4	4	4	4	8	4
Car Locators	6	6	7	7	5	7	
Repeater Transceivers	4	8	6	6	6	7	6
Tele-Printer Communications	8	7	5	5	8	6	5
Helmet with Built-in Transceiving Capacity	9	9	8	9	.	9	9

Table 3.3-4 Region Composite Ranks for Communications Equipment and Supplies

Mobile Transceivers

1	2	3	4	5	6	7	8	9	10
	2	1	1	2	2	2	1	2	2
3	1	3	2	3	2	2	3	5	3
1	3	2	3	1	3	5	2	3	1
7	4	8	8	5	9	3	8	1	6
4	7	4	4	4	4	6	5	8	5
8	8	7	5	7	6	4	6	4	7
5	5	6	7	8	5	8	4	7	4
6	6	5	6	6	7	7	7	6	8
9	9	9	9	9	8	9	9	9	9

Ludicated that their departments do not use or were not planning to use iters on the list because of large cost or lack of need. Many additional communications items were suggested:

Teleccmmunications Equipment*

Computer Dispatching*
Paging Systems
Generators
Radio Moni.tors
Miniature Transceivers
Portable/Mobile Repeater
ndercover Transceiver
Microfiche for Dispatch
Departments tended to discuss their problems with Communications equipment more than for any other list. Six respondents attempted to explain their rankings of this list.

3.4 Lethal Weapons

This 12 -item list was the longest list in the EPQ. Since a wide
variety of handguns and shoulder weapons are employed by police departments in this country, it was necessary to include at least the four most frequently used handgun calibers, the three most frequently used types of shoulder weapons, and five general types of ammunition in the list.

Table 3.4-1 shows the National composite ranks. The . 38 Special Revolver was the top priority item, having received 40% of its ranks in the number 1 position. Only state Departments indicated a preference for another type of handgun, the .357 Magnum Revolver, ranking this item number 1 in 438 of the cases; the .357 Magnum also ranked first in the state

* These items would probably involve computers

CATEGORY ITEM

RANK

. 38 Special Revolver

Regular Service Ammunition for Handguns Shotgun
.357 Magnum Revolver
Frangible Bullets
Rifle
Regular Service Ammunition for Shoulder Weapons High-Drag Bullets
9 mm Pistol
Carbine
Armor-Piercing Bullets
. 45 Automatic

Table 3.4-2 Composite Ranks for All Cities for Lethal Weapons

CATEGORY ITEM

RANK
. 38 Special Revolver
Regular Service Ammunition for Handguns
Shotgun
. 357 Magnum Revolver
Frangible Bullets
Rifle
Regular Service Ammunition for Shoulder Weapons
High-Drag Bullets
9 mm Pistol
Carbine
Armor-Piercing Bullets
. 45 Automatic

Department composite. (The detailed hanagun questionnaire* showed that 94\% of all departments had officers using a . 38 handgun on duty, but 66\% of all State Departments had officers using a . 357 handgun on duty.) Region 10 respondents also showed less favor to the .38 Special, ranking it behind the . 357 Magnum, Regular Service Ammunition for Handguns, and Shotguns. (89% of the departments in Region 10 had officers using a . 357 Magnum on duty*.) The . 38 special ranked number one in all other composites. Furthermore, it was identified as having a significantly consistent high priority, both within aggregates and among aggregates (i.e. Department Types and Regions).

Regular Service Ammunition received the second highest priority rank in the National composite, but this result is somewhat attributable to the weighting factor. Handgun Ammunition ranked behind the . 357 Magnum and the Shotgun in the unweighted version: Regular Service Ammunition for Shoulder Weapons ranked pretty far down the list, in the number 7 spot nationally. If it were not for the weights, this item would have ranked tenth (of twelve).

The Shotgun is clearly ranked ahead of all other shoulder weapons in every composite.

Of the more esoteric items, Frangible Bullets ranked ahead of both High-Drag and Armor-Piercing Bullets in all composites but Townships. Armor-Piercing bullets tended to be ranked poorly and in fact ranked next to last in the National composite (last in the unweighted case).

Tables 3.4-3 and 3.4-4 show the composite rankings for Department

[^2]Table 3.4-3 Department Type Composite Ranks for Lethal Weapons

DEPARTMENT TYPE
City(1-9 City(10-49 or more Largest State County Officers) Officers) Officers Cities Township
. 38 Special Revolver
Regular Service Ammunition for Handguns
Shotgun
. 357 Magnum Revolver
Frangible Bullets
Rifle
Regular Service Armunition for Shoulder Weapons
High-Drag Bullets
9 mm Pistol
Carbine
Armor-Piercing Bullets
. 45 Automatic

3	1	1	1	1	1	1	
2	2	2	3	2	2	4	
4	4	3	4	3	3	3	
1	5	4	2	5	9	2	
5	3	5	5	4	5	6	
6	6	6	6	6	7	8	
7	9	11	10	9	4	10	
9	7	8	7	7	6	5	
8	8	7	9	8	10	12	
11	10	9	8	11	11	8	11
10	11	12	12	10	12	9	
12	12	10	11	12	11	7	

Table 3.4-4 Region Composite Ranks for Lethal Weapons

CATEGORY ITEM

. 38 Special Revolver
Regular Service Ammunition for Handguns
Shotgun
. 357 Magnum Revolver
Frangible Bullets
Rifle
Regular Service Ammunition for Shoulder Weapons
High-Drag Bullets
9 mm Pistol
Carbine
Armor-Piercing Bullets
. 45 Automatic

LEAA REGION

1	2	3	4	5	6	7	8	9	10
1	2	1	1	1	1	1	1	1	4
3	1	2	3	4	3	2	4	2	2
2	3	3	4	3	5	3	3	3	3
4	5	8	2	5	2	4	2	4	1
8	6	5	6	2	4	5	5	6	5
6	7	4	5	8	6	6	6	5	7
9	4	9	8	10	9	7	10	7	11
12	8	10	9	6	7	8	9	8	9
10	11	6	10	7	12	9	7	9	8
5	9	7	7	9	8	10	8	12	10
11	10	11	11	11	10	12	11	11	12
7	12	12	12	12	11	11	12	10	6

Types, and Regions, respectively. The level of agreement within each aggregate was 100%, as were the levels of agreement between Department Types and between Regions. The two Department Types which appeared to be most divergent were the Fifty Largest Cities and Townships. Even in this case, however, the level of agreement was about 88%.

Other items in this category suggested by respondents included rifle scope, pistol range, machine gun and submachine gun, small concealed handgun, holster, and tear gas adaptor. Eight respondents ranked only items which applied so them, and five provided explanation of their rankings. Three others emphasized the need for test standards.

3.5 Non-Lethal Weapons

As a general category, Non-Lethal Weapons received the smallest overall percentage of top prioxity ranks (2\%). Several of the smaller departments indicated that some of the items did not apply to them or that there was a general lack of knowledge about some of the Non-Lethal Weapons in the list.

Although all levels of agreement were 100%, no single item seemed to dominate the top priority position in the composites. Tables 3.5-1 through 3.5-4 show the composite rankings. Of the eleven items, the Blackjacks/ Saps, Batons/Billy Clubs/Nightsticks, and the four tear gas related items tended to rank in the top six positions, while the remaining, less frequently used items, tended to have poorer composite ranks. This was true for the National composite, the City composite, four of the seven Department Types, and six of ten Regional composites. In the remaining composites, five of the six top positions were always filled by some combination of these same six items.

Table 3.5-1 Composite Ranks for All Departments for Non-Lethal Weapons

CATEGORY ITEM

Batons/Billy Clubs/Nightsticks Tear Gas Dispensers Tear Gas
Tear Gas
Gas Grenades and Cannisters
Blackfacks/Saps
Tear Gas Generators
Tranquilizer Dart Guns
Water Cannon
Dye-Marker Guns
Pellet Guns
Electric Shockers 11

Table 3.5-2 Composite Ranks for All Cities for Non-Lethal Weapons

CATEGORY ITEM
RANK
Batons/Billy Clubs/Nightsticks Tear Gas Dispensers
Tear Gas
Gas Grenades and Cannisters
Blackjacks/Saps
Tear Gas Generators
Tranquilizer Dart Guns
Water Cannon
Dye-Marker Guns
Pellet Guns
Electric Shockers
11

Table 3.5-3 Department Type Composite Ranks for Non-Lethal Weapons
CATEGORY ITEM

Batons/Eilly Clubs/Nightsticks	4	3	1	3	4	1	4
Tear Gas Dispensers	1	2	2	1.	1	3	2
Tear Gas	2	4	4	2	2	2	1
Gas Grenades and Cannisters	3	1	5	4	3	4	3
Blackjacks/Saps	8	5	3	5	7	6	5
Tear Gas Generators	5	8	6	6	5	5	6
Tranquilizer Dart Guns	6	7	7	7	6	8	7
Water Cannon	11	6	8	11	8	9	11
Dye-Marker Guns	7	10	10	8	9	7	9
Pellet Guns	9	9	11	9	10	10	10
Electric Shockers	10	11	9	10	11	11	8

Table 3.5-4 Region Composite Ranks for Non-Lethal Weapons

CATEGORY ITEM							RE			
	1	2	3	4	5	6	7	8	9	10
Batons/Billy Clubs/Nightsticks	4	1	1	4	2	3	3	4	3	4
Tear Gas Dispensers	1	4	3	1	3	2	2	2	1	2
Tear Gas	3	2	2	2	1	1	1.	3	4	1
Gas Grenades and Cannisters	2	3	4	3	4	4	4	1	2	3
Blackjacks/Saps	6	7	5	5	5	6	6	7	6	8
Tear Gas Generators	5	5	6	6	8	5	5	6	5	5
Tranquilizer Dart Guns	9	6	7	7	7	9	7	5	7	6
Water Cannon	11	11	10	8	6	8	10	9	9	10
Dye-Marker Guns	7	9	9	9	9	7	8	8	10	9
Pellet Guns	8	8	11	10	10	11	9	10	8	11
Electric Shockers	10	10	8	11	11	10	11	11	11	7

Levels of agreement between pairs and other sub-aggregates of composite rankings were all very high (over 95\%), even though the item ranks in each composite were not the same. This occurred because the same items consistently appeared in the same groups of rankings (e.g. the top six ranks). For example, considering the 4 City Department Types as a sub-aggregate of the seven Department Types (see Table 3.5-3), the level of agreement among these was 100%.

3.6 Vehicles

Vehicles, as a category, received the greatest number of number 1 ranks and was ranked number 2 in the National composite. The top priority Vehicle item was the Patrolcar in all Department Type composites, all Regional composites, the composite for the Cities, and the National composite (see Tables 3.6-1 through 3.6-4). Overall, Patrolcars was ranked number one in priority by 74% of the respondents. The range of percentages by Department Type was 61% (Counties) tis 85% (States). One possible explanation for the dominance of Patrolcars in the rankings is the fact that all police departments were familiar with that item, all departments probably had at least one, and Patrolcars probably represented a significant fraction of their annual equipment budgets. (See the $D Q$ on Patrolcars* for more details.) And, in addition, the notion of a performance standard was likely to be better understood when applied to vehicles than to Protective Equipment and Clothing. Since patrolcars probably were,

CATEGORY ITEM RANK
Patrolcars
Mobile Communications/Command/Control Vehicles Other Land Vehicles
Motorcycles
Scooters
Boats and Other Watercraf
Other Aircraft

Table 3.6-2 Composite Ranks for All Cities for Vehicles.

CATEGORY ITEM

Patrolcars
Mobile Communications/Command/Control Vehicles Other Land vehicles
Motorcycles
Helicopters
Scooters
Boats and Other Watercraft
Other Aircraft
and still are, more frequently used than many other types of equipment, respondents may have developed stronger opinions regarding their drawbacks. It is interesting to note that the sum of the ranks for Patrolcars in Cities with 1-9 officers was 299 , and there were 234 such cities in the sample for a mean rank of 1.28 .

Table 3.6-2 shows the Cities composite ranking and Table 3.6-3 shows the Department Type composite rankings. Motorcycles and Scooters ranked behind Patrolcars (ranks 2 and 3, respectively) in the Fifty Largest Cities. These items received progressively poorer ranks in the composites of the smaller Cities, Counties and States.

Mobile Communications/Command/Control (MCCC) Vehicles ranked second in all Department Type composites except Cities With 1-9 Officers (where it was ranked third) and the Fifty Largest Cities (where it was ranked fourth). This item received the second highest number of rank positions (18\%) and the largest percentage of number 2 ranks (31\%) overall. MCCC Vehicles ranked ahead of scooters in the Fifty largest cities unweighted composite, where scooters ranked sixth, suggesting that a few of the largest cities (i.e. those with many full.-time officers) ranked Scooters with high priority.

The State Department composite seemed to be significantly different from all the other Department Type composites, primarily due to the high priorities given Helicopters and Other Aircraft by the States. The 1.evels of agreement between the state and other department types are given in Table 3.6-5.

Table 3.6-3 Department Type Composite Ranks for Vehicles.
DEPARTMENT TYPE

City(1-9 City(10-49 or More Largest

 State County Officers) Officers) Officers) Cities Township| Patrolcars | 1 | 1 | 1 | | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mabile Communications/Command/Control Vehicles | 2 | 2 | 3 | | 2 | 2 | 4 | 2 |
| Other Land Vehicles | 6 | 3 | 2 | | 3 | 4 | 5 | 3 |
| Motorcycles | 5 | 6 | 4 | .. | 4 | 3 | 2 | 4 |
| Helicopters | 3 | 4 | 7 | | 6 | 6 | 6 | 7 |
| Scooters | 8 | 7 | 6 | | 5 | 5 | 3 | 5 |
| Boats and Other Watercraft | 7 | 5 | 5 | | 7 | 7 | 7 | 6 |
| Other Aircraft | 4 | 8 | 8 | | . 8 | 8 | 8 | 8 |

Table 3.6-4 Region Composite Ranks for Vehicles.

CATEGORY ITEM	LEAA REGION									
	1	2	3	4	5	6	7	8	9	10
Patrolcars	1	1	2	1	1	1	1	1	1	1
Mobile Communications/Command/Control Vehicles	2	3	3	2	2	2	2	2	2	2
Other Land Vehicles	3	5	2	4	3	3	3	4	5	5
Motorcycles	4	4	4	3	5	4	4	3	3	4
Helicopters	7	7	6	5	4	5	6	5	4	3
Scooters	5	2	5	6	7	6	5	7	7	7
Boats and Other Watercraft	6	6	7	8	6	7	7	8	8	6
Other Aircraft	8	8	8	7	8	8	8	6	6	8

Table 3.6-5. Levels of Agreement Between State Composite and Other Department Type Composites

	Level of Agreement
State vs. County	94.6%
State vs. City (50 or More Officers)	9.18
State vs. City (10-49 Officers)	86.28
State vs. City (1-9 Officers)	81.18
State vs. Township	81.1%
State vs. Fifty Largest Cities	72.6%

Since the level of agreement was 99.978 among all seven pepartment Types, it may be safely concluded that it was higher than this among all Department Types, excluding the States. Within each Department Type, the level of agreement among all respondents was 100%

Regional composite rankings are given in Table 3.6-4. The number 2 position of Scooters in Region 2 may be explained ky the high priority given that item by the single department having over two-thirds the total weight for that Region. With this exception, regicnal differences were relatively minor. Helicopters seemed to be ranked more favorably in the more western regions. The levels of agreement within each Region were 100\%.

The most frequent comment made by respondents who ranked Vehicles first among the main categories was that Vehicles are probably the single most important type of equipment used by police departments. Several respondents indicated that their patrolcars, (basically modified passenger sedans), were inadequate for police use, not simply in terms of road performance, but also in terms of durability of seats, repair downtime and expense, and comfort. These aspects of the patrolcar were also revealed to be important by the $D Q$ on Patrolcars.

A larger than average number of vehicles lists were not completely ranked. It is likely that the high cost of some of the items (Helicopters, Aircraft and Watercraft) and the absence of need eliminated them from 'purchase consideration. Several comments were aiso made regarding the desirability of a specialized police patrol vehicle.

Other items suggested include snownobiles, 4 -wheel drive vehicles for rugged terrain, armored vehicles, bicycles/light motorcycles, mobile

- laboratories, beach buggies, and amphibious vehicles

3.7 Building Systems

As a general category, Building Systems ranked last in priority in the National composite. Overall, it received almost 48% of the rank 9 (of 9) responses, and only about 58 of the rank 1 responses. Interviews with department officials during the pretest phase of the project revealed that departments would almost always rank Building Systems low in priority unless they were considering, planning, or actually constructing such facilities.

Additionally, since the pretests demonstrated that it was difficult to identify a meaningful list of Building System components, a relatively short list of general entries, each encompassing a fairly wide scope of individual items, was developed. This list included: Detention Center Design/Construction; Institutional Furnishings, Police Station Design/ Construction; Institutional Equipments; and Building Materials. Detention Centers were meant to include only those facilities controlled by the department to whom the EPQ was sent. Institutional Furnishings included items such as desks, chairs, lighting fixtures, and the like. Institutional

Table 3.7-1 Composite Ranks for All Departments for Building Systems

CATEGORY ITEM RANK
Police Station Design/Construction 1
Detention Center Design/Construction 2
Building Materials 3
Institutional Equipment 4
Institutional Furnishings 5
Table 3.7-2 Composite Ranks for All Cities for Building Systems
CATEGORY ITEM RANK
Police Station Design/Construction 1
Detention Center Design/Construction 3
Building Materials 2
Institutional Equipment 4
Institutional Furnishings 5

Table 3.7-3 Department Type Composite Ranks for Building Systems

CATEGORY ITEM

| DEPARTMENT TYPE | City(50 Fifty |
| :--- | :--- | :--- |
| City(1-9 City(lo-49 or More Largest | |
| State County Officers) Officers Officers Cities Township | |

Police Station Design/Construction Detention Center Design/Construction Building Materials

1	1	1	1		1	1	1
5	2	2	2		3	3	4
3	4	5	5	\ldots	5	2	5
2	3	4	3		2	4	2
4	5	3	4		4	5	3

Table 3.7-4 Region Composite Ranks for Building Systems

CATEGORY ITEM

Police Station Design/Construction Detention Center Design/Construction Building Materials
Institutional Equipment
Institutional Furnishings

LETA REGION

1	2	3	4	5	6	7	8	9	10

$1 \begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

1	1	1	1	1	1	1	1	1	1

4	4	4	3	2	3	2	4	3	2
4	2	2	5	3	5	5	5	5	5

4	2	2	5	3	5	5	5	5	5
3	3	3	2	4	2	3	2	2	3

3	3	3	2	4	2	3	2	2	3
5	5	5	4	5	4	4	3	4	4

Equipment included typewriters, filing cabinets, sanitary facilities, kitchen equipment, and heating/air conditioning.

Pollce Station Design/Construction received the largest proportion of number 1 ranks (63%) and was the top priority ertry in every composite (although it did rank number 2 in the unweighted County composite, where Detention Center Design/Construction ranked number 1). A large majority of the written comments about this list pertained to the inadequacies of police Station Design/Construction.

Tables 3.7-1 through 3.7-4 show the composite rankings for the Nation, the Cities, the Department Types, and the Regions, respectively. Statistical analyses of these data are probably less meaningful since each of the items covered a broad range of equipment and/or facilities, and respondents may not have had the same things in mind while assigning ranks. Differences among Department Type composites were more pronounced than those among regions. For example, State and Township Departments gave low rankings to the Detention Center Design/Construction because, perhaps, almost none of the State and Township Departments said that they were responsible for detaining prisoners longer than one day (see Table 2.0-1). The level of agreement among Department Types was 99.9%, and it was 100 w whin each Department Type. The level of asreement was 100% within each Region and among the ten Regions.

3.8 Energency Warning and Rescue Equipment

The Emergency Warning and Rescue Equipment list contained eleven 1tems. The Combined Siren/Light/Loudspeaker (CS/L/L) systeri ranked number 1 in all composites except two, and in both of these cases it was xanked number 1 in the unweighted composite. The $C S / L / L$ system received

38\% of the total first priority ranks for this list, ranging from a low of 27% of Townships to 45% of Cities With 50 or More Officers. Furthermore, this item was identified by the rank sum test (see Appendix D) as having been consistently ranked in a high priority position in every aggregate considered. Pretest interviews revealed that many departments were considering or planning to convert to a CS/L/L system. Note that two of the components of this system, Flashing Lights and Sirens, also received relatively high rankings (second and fourth in the National composite). Furthermore, the Lights and Sirens DQ* showed that flashing lights were used by 99% of all responding departments for signallying motorists to pull over at night and that 62% of those departments used sirens in the same context. These two items of equipment were the two most frequently used pieces of emergency warning equipment, overall.

The relatively high rankings of Rescue Equipment (third in the National and Cities composites) perhaps reflect the high percentages of departments (60-67\% of each Department Type, see Table 2.0-1) which assume responsibility for Emergency Aid and Rescue activities in their jurisdictions.

The National composite and the City composite appear in Tables 3.8-1 and $3.8-2$, respectively. Note that except for a reversal of the eighth and ninth-ranked items, they were identical. The unweighted composites of these two aggregates were identical and were only slightly diffesert from the corresponding weighted composites.

[^3]

Table 3.8-3 shows the composite rankings for the seven Department Types. The level of agreement within each Department Type was 100\%, as it was among Department Typers. The rank correlaticn coefficient between the composite for the Fifty Largest Cities and the composite for Townships, which seems to be the most divergent pair, was 99.7\%. Thus, the results showed general agreenent among all types of departments.

Within each Region and among Regions, the levels of agreement were 1008. The Regional composite rankings appear in Table 3.8-4. The pair of Regions appearing to have the most widely divergent composites were Regions 2 and 7, where the level of agreement was only 91\%. It should be noted that a comparison of the unweighted composites of these two regions yielded a 100% level of agreement.

Additional items named by respondents included: Oxygen/oxygen kits, resuscitatnrs/hand operated breathing devices, blarkets, folding ladders (all of which may be considered "rescue equipment"); flashlights/batteries, high intensity lights, mounting devices for items on the list, traps, and animal snares.

Twelve respondents made comments regarding the use or non-use of specific items, and four indicated problems with speci.fic items. Four other respondents suggested the use of standard colors for lighting systems (e.g. blue for police, red for fire). As mentioned earlier (see Section 2.0), Emergency Aid and Rescue was the most onsistently-checked activity of departments, with an overall average of nearly 63%.

Table 3,8-3 Department Type Composite Ranks for Emergency Warning and Rescue Equipment

CATEGORY ITEM			DEPARTMEN	T TYPE			
	State	County	$\begin{aligned} & \text { City (1-9 } \\ & \text { Officers) } \end{aligned}$	$\begin{aligned} & \text { City (10-49 } \\ & \text { Officers } \end{aligned}$	City (50 or More Officers)	Fifty Laxgest Cities	Township
Combined Siren/Light/Loudspeaker System	2	1	1	1	1	1	1
Flashing Lights	1	2	2	2	2	3	4
Rescue Equipment	3	3	3	3	3	2	2
Sirens	4	5	7	5	5	4	5
First Aid Kits	5	4	5	4	4	8	3
Spot Lights	9	8	6	6	6	5	8
Loudspeakers	6	7	9	7	7	6	10
Fire Extinguishers	8	6	8	9	8	7	6
Flares	7	10	4	8	10	5	7
Flood Lights	11	9	10	10	9	11	11
Reflectors	10	11	11	11	11	10	9

Table 8.3-4 Region Composite Ranks for Emergency Warning and Rescue Equipment

CATEGORY ITEM

Combined Siren/Light/Loudspeaker system
Elashing Lights
Rescue Equipment
Sirens
First Aid Kits
Spot Lights
Louáspeakers
Fire Extinguishers
Elares
Flood Liahts
Reflectors

LEAA REGION

1	2	3	4	5	6	7	8	9	10
1	3	1	1	1	1	1	1	1	1
4	2	2	2	2	2	2	2	2	2
3	1	3	3	3	3	6	3	4	4
6	4	5	5	5	5	7	5	3	6
2	6	6	4	4	4	4	4	9	3
9	8	7	6	8	7	5	7	6	5
10	9	8	8	6	6	3	8	5	8
8	5	10	7	7	8	8	9	10	7
5	10	4	10	9	9	10	6	7	10
7	11	11	11	10	10	9	10	8	9
11	7	9	9	11	11	11	11	11	11

Surveillance and Security Equipment was the eighth ranked category (of nine) in the National composite for the Categories list. The levels of agreement between the composite rankings for items on this list, however, tended to be considerably lower than in the other lists, particularly among Department Type composites.

Two National composite rankings of Surveillance and Security Equipment, weighted and unweighted, are presented in Table 3.9-1. The weighting scheme played a significant role here as may be seen by a comparison of the two rankings. This comparison, as well as the comparison of the Department Type composites, showed that, in general, small departments (those with fewer officers) tended to give Alarm Dispiays in Department better rankings while large departments tended to give Low Light Level Closed Circuit TV better rankings.

The Cities composite (Table 3.9-2) was basically similar to the National composite.

Tabie 3.9-3 shows the Department Type composites. State Departments ranked Night Vision Scope Suitable for Rifles in the top priority position in both the weighted and unweighted composites. This item tended to rank poorly in other Department Type composites. Cities and Townships, except for the Fifty Largest, ranked Alarm Displays in Departments with a high priority; this item was ranked sixth in the Fifty Largest Cities composite. Hand-held Night Vision was the top priority item in the composite for the Fifty Largest Cities. A comparison of the Cities composite with each individual City Type composite shows the effect of the larger weights carried by the larger cities. This is even further dramatized by the fact

CONTINUED

Table 3.9-1 Composite Ranks for All Departments for Surveillance and Security Equipment

CATEGORY ITEM

RANKS
Low-Light Level Closed Circuit TV
Hand-Held Night Vision Equipmen
Alarm Displays in Department
Still Camera Equipment for Night Vision Device losed Circuit TV
ision Scope Suitable for Rifles
tenses for Night Vision Surveillance Equipment eneral Purpose Lock
Special Locking Devices for Detention Centers

Weighted	Unweighted
1	5
2	2
3	1
4	3
5	8
6	6
7	7
8	4
9	9

ε

Table 3.9-2 Composite Ranks for All Cities for Surveillance and Security Equipment

CATEGORY ITEM

Low-Light Level Closed Circuit TV
fand-Held Night Vision Equipment
Alarm Displays in Departments
Still Camera Equipment for Night Vision Devices Closed Circuit TV
ight Vision Scope Suitable for Rifle
Lenses for Night Vision Surveillance Equipment eneral Purpose Locks
Special Locking Devices for Detention Centers
that the level of agreement between the weighted and unweighted city composites is only 87\%. Another example of the effects of the weights on the rankings is the fact that Low Light Level Closed Circuit TV was ranked first in the weighted County composite although it was ranked fifth in the unweighted County composite.

Even though Department Type composite rankings were somewhat dissimilar (for example, the level of agreement was only 38% between the State composte and the Township composite), the level of agreement among all seven Department Types was 97.7% for the weighted composite and 99.5% for the unweighted. Furthermore, it was 100% within each Department Type. Nevertheless, pairwise comparisons yielded very low levels of agreement.

Regional differences were negligible in comparison to Department Type differences. The Regional composites are given in Table 3.9-4. The levels of agreement within Regions were all 100% as was the level of agreement among Regions. The number one priority item was either Alarm Displays in Department or Low-Light Level Closed Circuit TV in each Regional composite but one, namely Region 2 where Hand-Held Night Vision Equipment occupied the top priority position. (Recall that one of the Fifty Largest Cities has over two-thirds of the total Region 2 weight.) It is interesting to note that Alarm Displays in Department ranked first in every unweighted Regional composite, having received over 41\% of the overall top priority ranks.

Other items suggested by respondents for this category include binoculars, telephoto camera equipment, restraint equipment for those apprehended, listening devices (electronic eavesdropping), radar, and mobile surveillance vans (which would properly belong in the vehicles list).

Table 3.9-3 Department Type Composite for Surveillance and Security Equipment

CATEGORY ITTEM

DERARTMENT TYPE	City(50 Fifty
City(1-9 City(10-49 or More Iargest	
State County Officers) Officers) Officers Cities. Township	

Low-Light Level Closed Circuit TV	5	1	7	2	1	2	2
Hand-Held Night Vision Equipment	2	4	5	5	3	1	7
Alarm Displays in Department	7	3	1	1	2	6	1
Still Camera Equipment for Night Vision Devices	4	5	3	4	7	4	3
Closed Circuit TV	3	9	8	3	4	3	6
Night Vision Scope Suitable for Rifles	1	6	6	7	5	7	9
Lenses for Night Vision Surveillance Equipment	6	8	4	6	6	5	8
General Purpose Locks	8	2	2	8	9	9	5
Special Locking Devices for Detention Centers	9	7	9	9	8	8	4

Table 3.9-4 Region Composite Ranks for Surveillance and Security Equipment

CATEGORY ITEM

Low-Light Level Closed Circuit TV
Hand-Held Night Vision Equipment
Alarm Displays in Department
Still Camera Equipment for NightVision Devices Closed Circuit TV
Night Vision Scope Suitable for Rifles
Lenses for Night Vision Surveillance Equipment
General Purpose Locks
Special Locking Devices for Detention Centers

LEAA REGION

1	2	3	4	5	6	7	8	9	10
2	5	1	4	1	4	5	1	1	1
5	1	2	3	3	3	4	5	4	6
1	3	4	1	4	1	1	2	5	2
8	2	3	5	5	5	3	3	7	5
4	4	7	6	2	7	7	6	3	3
6	7	8	2	6	2	6	7	8	4
3	6	5	7	7	6	2	4	9	7
9	8	6	9	9	8	8	8	2	9
7	9	9	8	8	9	9	9	6	8

Thirty-four of the respondents indicated that some of the items listed did not apply to their departments, that some of the equipment was beyond the scope of their departments, or that they were not familiar with some of the items on the list. Two respondents, both City departments, expressed a need for performance data and test methods.

3.10 Detection Systems

As a general category, Detection Systems ranked seventh in priority for development of standards. The list of items in this category number eleven. Twenty-six respondents indicatea that they did not use many of the items on the list, and six said that they had difficulty ranking the items.; Overall, each of the items was left un-ranked by about 6% of the respondents. Despite this, a multitude of additional items were suggested, including laboratory equipment (microscopes, infrared lighting, ultraviolet equipment), tape recording equipment, automobile speed detection/ radar equipment, and cainera equipment.

In general, the rankings appeared to fall into two groups reflecting generally higher and lower priorities for standards. This is perhaps best represented by Table 3.10-1, which presents the percentages of departments ranking each item in one of the top five positions.

Table 3.10-1. Percent of Sample Departments Ranking a Detection System 1,2,3,4 or 5 .

\% Respondents

Field Narcotic Screening Kit
Quantitative Breath-Alcohol Screening Device
Pre-Arrest Breath-Alcohol Screening Device
Narcotic and Explosive Detectors 72
68
Fingerprint Kits -

olygraph

Hand-Held Metal Weapons Detector
Walk-Thruugh Metal Weapons Detector
Other Matal Weapons Detectors
Gas Chromatograph for Lab. Use Only
11

The National composite, City composite, Department Type composites, and the Region composites, appear in Tables 3.10-2 through 3.10-5, respectively. A glance at the composites shows that the grouping shown above was maintained (in some cases with minor variation) in all of the composites, except for the Fifty Largest Cities. The pattern was duplicated exactly, however, in all of the unweighted ccmposites. Thus, the weights played a significant role in the Fifty Largest Cities composite where Walk-Through and Hand-Held Metal Weapons Detectors were given higher priority. The only item identified consistently in a high priority position in all aggregates considered was Field Narcotic Screening Kits.

The levels of agreement within Department Types and within Regions were 100%, as were the levels of agreement among Department Type composites and among Regional composites. An inspection of Table 3.10-4 suggests that the Fifty Largest Cities composite ranking was the only composite that was different from the others. For example, the level of agreement between the Fifty Largest Cities and Townships was 80%.

Table 3.10-2 Composite Ranks for All Departments for Detection Systems
CATEGORY ITEM RANK
Fingerprint Kits 1
Field Narcotic Screening Kits 2
Narcotic and Explosive Detectors 3
Quantitative Breath-Alcohol Device 4
Pre-Arrest Breath-Alcohol Screening Device 5
Polygraph 6
Hand-Held Metal Weapons Detectors 7
X-Ray Equipment Used by Bomb Squads 8
Walk-Through Metal Weapons Detectors 9
Gas Chromatograph for Laboratory Use Only 10
Other Types of Weapons Detectors 11
Table 3.10-3 Composite Ranks for All Cities for Detection Systems
CATEGORY ITEM RANK
Fingerprint Kits 1
Field Narcotic Screening Kits 2
Narcotic and Explosive Detectors 3
Quantitative Breath-Alcohol Device 4
Pre-Arrest Breath-Alcohol Screening Device 5
Polygraph 6
Hand-Held Metal Weapons Detectors 7
X-Ray Equipment Used by Bomb Squads 9
Walk-Through Metal Weapons Detectors 8
Gas Chromatograph for Laboratory Use Only 10
Other Types of Weapons Detectors 11

Table 3.10-4 Department Type Composite Ranks for Detection Systems

CATEGORX ITEM			DEPARTMENT	TYPE			
	State	County	$\begin{aligned} & \text { City (1-9 } \\ & \text { Officers } \end{aligned}$	$\begin{aligned} & \text { City (10-49 } \\ & \text { Officers) } \end{aligned}$	City(50 or More officers)	Fifty Largest Cities	Township
Fingerprint Kits	5	1	1	4	5	1	5
Field Narcotic Screening Kits	3	3	3	1	1	5	1
Narcotic and Explosive Detectors	4	2	5	5	2	2	4
Quantitative Breath-Alcohol Device	1	4	2	3	3	8	2
Pre-Arrest Breath-Alcohol Screening Device	2	7	4	2	4	10	3
Polygraph	6	6	6	6	6	6	6
Hand-Held Metal Weapons Detectors	9	10	7	7	8	3	7
X-Ray Equipment Used by Bomb Squads	8	5	9	10	7	7	8
Walk-Through Metal Weapons Detectors	11	9	8	8	9	4	9
Gas Chromatograph for Laboratory Use Only	7	8	10	11	11	9	11
Other Types of Weapons Detectors	10	11	11	9	10	11	10

Table 3.10-5 Region Composite Ranks for Detection Systems

CATEGORY ITEM					RE					
	1	2	3	4	5	6	7	8	9	10
Fingerprint Kits	5	1	1	5	5	6	5	5	7	5
Field Narcotic Screening Kits	1	2	3	1	2	2	1	2	5	1
Narcotic and Explosive Detectors	3	4	5	2	1	1	3	1	4	3
Quantitative Breath-Alcohol Device	2	6	2	3	4	3	4	4	2	4
Pre-Arrest Breath-Alcohol Screening Device	4	5	7	4	6	4	2	3	8	2
Polygraph	7	9	4	6	7	5	6	6	7	6
Hand-Held Metal Weapons Detectors	8	7	8	7	3	7	7	9	10	8
X-Ray Equipment Used by Bomb Squads	6	8	9	8	8	8	11	10	6	7
Walk-Through Metal Weapons Detectors	9	3	6	9	9	9	9	8	9	11
Gas Chromatograph for Laboratory use Only	11	11	11	11	11	10	8	7	3	9
Other Types of Weapons Detectors	10	10	10	10	10	11	10	11	11	10

APPENDIX A

U.S. Department of Commerce National Bureau of Standards
ε
EQUIPMENT PRIORITIES QUESTIONNAIRE

Police Equipment Survey

Sponsored By:

ational institute of Law Enforcement and Criminal Justice waw Enforcement Assistance Administration
U.S. Department of Justice.

Directed and Conducted By:

[^4]
WHY ONE MORE SURVEY?

Every police department in this country has to have special equipment to do its law enforcement work. In many cases departments have been forced to buy equipment that was designed for general civilian use

The Law Enforcement Assistance Administration (LEAA) of the Department of Justice, is trying to help the police obtain equipment suited to thei particular needs. It has set up a Law Enforcement Standards Laboratory which will write voluntary STANDARDS for several kinds of police
equipment. The standards will be based on the complaints and suggestions that you and other law enforcement officials make about the equipment
you are now using. Police departments will be able to use these standards, if they wish, when selecting and buying equipment for their departments.
What is a standard?
Most of the standards for law enforcement equipment will describe the minimum performance that will be acceptable for certain types of police equipment. Materials and design will still be up to the manufacturer The standard for handguns, for example, will state that the gun must be able to perform in certain ways under various conditions.

WHY STANDARDS?

When the Law Enforcement Standards Laboratory sets up STANDARDS for police equipment, it will be one part of an overall EQUIPMENT IMPROVEMENT PROGRAM by LEAA's National Institute of Law Enforcement and Criminal Justice (NILECJ). Standards are one of the best ways of giving EVERY law enforcement agency help in knowing what to look for when they go to buy equipment. These standards will be a way for YOU, the BUYER, to ell the equipment maker, the SELLER, what you want and must have to $d a$ your work well.

EEAA NEEDS YOUR HELP in deciding what equipment items should have standards written for them. That is what this questionnaire is about.

1. This questionnaire asks about nine different types of police equipment. The officers in your department who know the most about actual operations and/or maintenance of each of these different equipment that they know most about. Do not ther pages out of the questionnair that they know most about. Do not tear pages out of the questionnaire
Each person who answers must read these instructions.
2. Instructions in how questions should be answered vary from place to place. All instructions appear in boxes - please be sure to read them carefully.
3. Fill in the questionnaires completely. LEAA needs to know when a piece of equipment is NOT important to you as well as when it is important.
4. Answer all questions for YOUR OWN DEPARTMENT. Do not try to decide what might be best for police departments in general. LEAA wants to know about YOUR needs.
5. We would like to have your Comments about the questions. Use the "Comments" section provided but do not write comments anywhere else because all questionnaires will be machine processed. Any comment written in among the regular questions will confuse the keypunch operators. Please PRINT your comments CLEARLY!
6. If you will answer all questions in the space provided; the survey results will be much less expensive to process.
7. No individual department will be identified in the report of this survey; all results will be published only in table form. Please be as accurate as you can.
8. When the questionnaires are completely filled in, put all of them in the stamped, addressed envelope and return it to the National Bureau of Standards
9. If you have any questions, write or call collect:

> E. Bunten or P. Klaus
> Technology Building, A-110
> National Bureau of Standards
> Hashington, D.C. 20234

Phone: 301--921-3558
10. Only by getting answers to these questionnaires from the men who are using the equipment can LEAA find out what police departments really need. NILECJ must have your help before it can begin to help you solve your equipment problems.
11. If you would like to have a copy of the results of this survey, please let us know at the end of the questionnaire.

READ THIS INSTRUCTION

Almost every question in this questionnaire asks you to tell us which items of equipment you think are most in need of STANDARDS. By this we mean:
It is IMPORTANT for a piece of equipment to have a standard written if you think:
...It does not now give good performance;
...It needs to be made more suitable for police work;
...You may be buying some for your department and could use guidelines in choosing among the brands offered.

It is NOT important for a piece of equipment to have a standard written if you think...
...It meets your needs as it is:
...Your department does not now use it and doesn't expect to use it.
I. first -- the Importance of general types of equipment

1. This list and the next page, "Why Did You Mark It Number 1?", should be filled in by the person in your department who knows most about your department.'s OVERALL equipment needs.
2. Listed below are 9 types of equipment. Look over the entire list and then number the i.tems in order of THEIR IMPORTANCE TO YOUR DEPARTMENT in terms of YOUR DEPARTMENT'S GENERAL NEED FOR STANDARDS. Put 1 by the MOST important, and 9 by the least important.
3. Do not put the same number beside more than one type of equipment.

NUMBER

(1-9)
\qquad DETECTION SYSTEMS: For example; explosives detectors, weapons detectors, dangerous drug detectors, breath analyzers.
___SECURITY EQUIPMENT: For example; surveillance equipment night vision devices, locks, alarm displays for receiving direct-to-police alarms.

EMERGENCY WARNING AND RESCUE EQUIPMENT: For example; sirens, flashing lights, first aid equipment, fire flashing lights, first aid equig
extinguishers, flood lights.
\qquad BUILDING SYSTEMS: For example; building materials, building furnishings, building supplies
_ - VEHICLES: For example; patrolears, motorcycles, scooters, boats, aircraft.
\qquad WEAPONS, LETHAL AND RELATED AMMUNITION: For example; handguns shotguns, rifles, amunition, special purpose ammunition.
_ WEAPONS, NON-LETHAL: For example; tear gas, tranquilizer dart guns, blackjacks, water cannon, batons, dye-marker guns.
\qquad COMMUNICATIONS EQUIPMENT AND.SUPPLIES: For example; scramblers, radios, car locators, repeaters.
___ PROTECTIVE EQUIPMENT AND CLOTHING: For example; body armor, shields, helmets, gas masks, uniforms.

Comments: \qquad
\qquad

I Con't.

WHY DID YOU MARK IT NO. $1 ?$

1. Write on line J. below the name of the equipment you marked on the previous page as the most important (Number 1) to your department in terms of needs for standards.
2. Read below the entire list of possible reasons why that kind of equipment is most in need of standards
3. Mark x by the two reasons that come closest to telling why that type of equipment needs standards most FROM YOUR DEPARTMENT'S that type of
4. The type of equipment we named as number $\underline{1}$ in importance on page 5 was:
5. Which two of the statements below do you think BEST describe why this type of equipment is most important to your department in terms of needs for standards

MARK

by TWO
Most of this kind of equipment is now made by one or two firms Standards might encourage others to start making it.
___ We plan to buy this kind of equipment in the near future. Standards would help us to select the best equipment at the least cost.

Much of the equipment we now have of this kind does not really meet our needs. Standards could be used to guide the manufacturers who develop equipment.
___ We now have maintenance and repair problems with much of this kind of equipment. Standards might help solve these problems.
_ We buy equipment in this category from several different makers and find that parts and components cannot be interchanged among the different brands. Standards might help solve this problem.

When we buy equipment in this category, we must compare many different brands. If there were standards, we could stop a lot of this investigation and/or testing.

We are not able to test this type of equipment. If there were standards, we could use the results of tests made by the laboratory.Other (Specify) \qquad

II. ABOUT PARTICULAR ITEMS OF EQUIPMENT

On page 5 of this questionnaire you were asked to number 9 general kinds of equipment from MOST to LEAST IMPORTANT in terms of your department's need for standards. Now we ask that you tell us about the importance. of performance standards for sone particular items of equipment. within
those general types.

There are nine lists of equipment items on the next nine pages:
Building Systems, Communications Systems, Detection Systems, Emergency Warning and Rescue Equipment, Protective Equipment and Clothing, Security Equipment, Vehicles, Lethal Weapons and Related Ammunition, and NonLethal Weapons. If there are officers in your department who know more about actual operations and/or maintenance of some of these groups, this questionnaire should be pased about for them to fill in the section ther

```
know most about
``` questionnaire should be passed about for them to fill in the section they
 ON PAGE 4 OF THE QUESTIONNAIRE AS WELL AS THE GENERAL INSTRUCTIONS FOR THIS - SECTION.

On the next 9 pages ...
1. Read through the whole list on a page before marking any.
2. Put a number 1 by the equipment which needs standards MOST, a number 2 by the equipment which has the second greatest need for standards, etc., until you have given a number to all the equipment on the list.
3. Do not put the same number beside more than one item on any one list.
4. Do not add items to the lists to be numbered. If you think something should be added, put it in the space at the bottom of the page.
5. Number the lists in pencil first so that your changes, if any, will be easier to make.
6. THE LISTS OF ITEMS ON THE NEXT 9 pages DO NOT INCLUDE ALL POSSIble EQUIPMENT. SOME OF THE ITEMS REPRESENT GROUPS OF EQUIPMENT. If we had listed every possible equipment, the lists would have been much too long. The equipment listed often represent several kinds of material.
7. The instructions on this page apply to each of the lists on the next 9 pages. Consider each page separately when numbering equipment items.

II-A: COMMUNICATIONS EQUIPMENT AND SUPPLIES
Number the items in this list rrom \(\frac{1}{\text { (most important) }}\) to 9 (least important) IN TERMS OF YOUR DEPARTMENT'S NEEDS FOR STANDARDS.

NUMBER
(1 to 9) EQUIPMENT ITEM
Digital Data Communications (allows two-way transmission of messages using keyboards and printers in police cars and headquarters)
\(\qquad\) Mobile Transceivers (car radios)Base Radio TransceiverHelmet with Built-in Receiving and/or Transmitting
CapabilityCar Locators (automatically transmit signals to headquarters indicating the location of the car Hand-held Transceivers (portable radios)
\(\qquad\) Repeater Transceivers (placed in elevated locations to re-transmit signals to headquarters)Scramblers (to scramble messages so they can be understood only by the police)
___ Tele-printer Communications (allows headquarters to transmit a message to a printer in the police car)

List in the spaces below any important equipment items
that you think should have been in the Communications Equipment and supplies list above.

\section*{ADDITIONAL ITEMS}
\(\qquad\)
\(\qquad\)

Comments: \(\qquad\)
\(\qquad\)
\(\qquad\)

Number the items in this list from 1 (most amportant) to 11 (least important) IN TERMS OF YOUR DEPARTMENT'S NEEDS FOR STAMDARDS

\section*{NUMBER}
(1 to 11) EQUIPMENT ITEM
\(\qquad\) Polygraph

Field Narcotic Screening Kits (chemical tests used BEFORE arrest to distinguish narcotics from non-narcotics)
\(\qquad\) X-ray Equipment Used By Bomb Squads
Gas Chromatograph For Laboratory Use Only
Walk-through Metal Weapons DetectorsHand-held Metal Weapons Detectors
OTHER Types of Weapons Detectors (example: X-ray)
\(\qquad\) Fingerprint Kits

Pre-arrest Breath-alcohol Screening Device (used BEFORE arrest)
——Quantitative Breath-alcohol Device (used AFTER arrest, can be used for evidence)
\(\qquad\) Narcotic and Explosive Detectors

List in the spaces below any important equipment items
that you think should have been included in the
Detection Systems list above.
ADDITTONAL ITEMS
\(\qquad\)
\(\qquad\)
Comments \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

II-C: EMERGENCY WARNING AND RESCUE EQUIPMENT
to 11 (least importan
NEEDS FOR STANDARDS.

\section*{NUMBER}
(1 to 11) EQUIPMENT ITEM
. Rescue EquipmentReflectors (OTHER than on cars - fluorescent reflective triangles to be used in place of flares Spot Lights (either on vehicle or hand-held)Flashing Lights (beacons or flashers on top of patrolcars.)
\(\qquad\) Combined Siren/Light/Loudspeaker Sysfem Fire Extinguishers
Loudspeakers (vehicle mounted)--not PA systems in police departments
Sirens
First Aid Kits
\(\qquad\) Flood Lights
___ Flares (chemical and electronic)
List in the spaces below any important equipment items
that you think should have been included in the
Emergency Warning and Rescue Equipment List above.
ADDITIONAL ITEMS
\(\qquad\)

\(\qquad\)
:
Comments: \(\qquad\)
\(\qquad\)

II-D: PROTECTIVE EQUIPMENT AND CLOTHING
Number the items in this list Erom 1 (most important) to 11 (least important) IN TERMS OF YOUR DEPARTMENT'S

\section*{numer}
(1 to 11) EQUIPMENT :TTEMBallistic Helmets (having some degree of resistance to penetration by bullets)
\(\qquad\) Crash Helmets (for motorcycle riders)
\(\qquad\) Riot Helmets
\(\qquad\) righ Visibility Clothing or PatchesHand-held ShieldsVehicle Armor
Police UniformBody Armor
\(\qquad\) Gas MasksBomb Disposal Devices (Bomb Protective. Suits Bomb Baskets, Bomb Trailers) Rainwear

Dist in the spaces below any important equipment items
you think should have been included in the Protective
Equipment and Clothing list above.
ADDITIONAL ITEMS
\(\qquad\) \(\because\)

Comments: \(\qquad\)
\(\qquad\)
\(\qquad\)

II-E: SURVEILLANCE AND SECURITY EQUIPMENT
Number the items in this list from 1 (most important) t \(\underline{g}\) (least inportant) in TERMS OF YOUR DEPARTMENT'S NEEDS FOR STANDARDS

\section*{NUMBE}
(1. to 9) EQUIPMENT ITEM
_ Night Vision Scope Suitable for Rifles (can also be hand-held when needed)
___ Hand-held Night Vision Equipment (nightscope
infrared. Not suitable for rifle mounting)
_ General Purpose Locks (padlocks, door locks)
___ Special Locking Devices for Detention Centers
_ Still Camera Equipment to be Used with Night Vision Devices
___ Lenses for Night Surveillance Equipment
__ Closed Circuit TV (which needs daylight or artificial illumination
__ Low-Light Level Closed Circuit TV (operates under night-time conditions without artificial light)
__ Alarm Displays in Department (for receiving burglar or hold-up alarms)

List in the spaces below any important equipment items
that you think should have been included in the Sur-
that you think should have been included in the Sur
veillance and Security Equipment list above.
ADDITIONAL ITEMS
\(\qquad\)

\section*{II-F: VEHICLES}

Number the items in this list from 1 (mose important
to 8 (least important) IN TERMS OF YOUR DEPARTMENT'S
NEEDS FOR STANDARDS

\section*{NUMBER}
(1 to 8) EQUIPMENT ITEM
\(\qquad\) Boats and Other Watercraftpatrolcars
\(\qquad\) Helicopters
\(\qquad\) Other AircraftMotorcyclesScooters
___ Mobile Communications/Command and Control Vehicles
Other Land Vehicles (Paddy Wagons, Surveillance Vans, Dog Wagons, Ambulances, etc.

List in the spaces below any important equipment items that you think should have been included in the Vehicles list above.

ADDITIONAL ITEMS
\(\qquad\)
\(\qquad\)

Comments: \(\qquad\) \(\stackrel{\rightharpoonup}{*}\)
\(\qquad\)

II-H: WEAPONS, NON-LETHAL
Number the items in this iist from 1 (most important) to 11 (least important) IN TERMS OF YOUR DEPARTMENT' NEEDS FOR STANDARDS

\section*{number}
(1 to 11) EQUIPMENT ITEM
Tear Gas (its chemical formulation)
\(\qquad\) Tear Gas Dispensers (hand-held)Tear Gas Generators
Pellet GunsElectric Shockers
Dye-marker GunsGas Grenades and Canisters
Tranquilizer Dart GunsWater Cannon (dispenses water for crowd control)Batons/Billy Clubs/Nightsticks
\(\qquad\) Blackjacks/Saps

List in the spaces below any important equipment items
that you think should hav
Lethal Weapons \(\frac{\text { list above. }}{}\)
ADDITIONAL ITEMS
\(\qquad\)
\(\qquad\)

Comments: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Number the items in this list from 1 (most important) to 5 (least important) IN TERMS OF YOUR DEPARTMENT'S NEEDS FOR STANDARDS.

\section*{number}
(1 to 5) EQUIPMENT ITEM
\(\qquad\) Building Materials
\(\qquad\) Institutional Equipment
\(\qquad\) Police Station Design/Construction
\(\qquad\) Institutional Furnishings
\(\qquad\) Detention Center Design/Construction

List in the spaces below any important equipment items
List in the spaces below any important equmen
Building Systems list above.
ADDITIONAL ITEMS
\(\qquad\)
\(\qquad\)

Comrients: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{IIL: ABOUT YOUR DEPARTMENT}

In this section, you are asked to tell us something about your department and its activities. We want to know how the needs of various kinds of departments differ. No individual police departments will be identified in the report of this survey; but we do ask for the names of individuals ho filled in the questionnaire so that we may know whom to call if here are questions about your answers.
1. Department name: \(\qquad\)
2. Address: \(\qquad\)
Street \& Number
\(\qquad\)
. Phone: \(\square\)
4. Name of the person(s) who filled in this questicnnaire:

Title/Rank \(\qquad\) Name \(\qquad\)
Title/Rank \(\qquad\) Name
Title/Rank \(\qquad\) Name \(\qquad\)
5. About what size area is served by your department in square miles:
\(\qquad\) Square Miles
6. What size population is served by your department:

> Total population served
\(\qquad\)
7. Political jurisdiction of your department: (MARK X BY ONE OF THE FOLLOWING)
\(\qquad\) State
\(\qquad\) County or Parish
\(\qquad\) CityTownVillageTownship.
\(\qquad\) Other (Specify) \(\qquad\)
8. How many full time sworn officers are there in your department?

Number \(\qquad\)
9. How many part time officers are there in your department?

\section*{Number}
\(\qquad\)
10. Which of the following activities are normally handled in your OWN DEPARTMENT rather than by some other agency or group? (MARK X BY EACH ITEM THAT APPLIES

Custody or Detention of Less Than 24 Hours Custody or Detention of Less Than 1 Week - Custody or Detention of 1 Year or Less. Custody or Detention of More Than 1 Yea -Traffic Safety and Traffic Control -Highway Patrol
_Yighway Patrol
-Tests for Drivers' License
_Maintenance of Building Used Exclusively for Police Purposes
Public Building Protection
-_Service Function
Emergency Aid and Rescue
Underwater Recovery
Harbor Patrol
——Police Communications for Own Department
Communications for Other Law Enforcement Agency _ Police Training for Own Department
-Police Training for Other Law Enforcement Agency _ Bomb Disposal
—Polygraph
_Criminal Investigation
- Breath-Alcohol Tests
_Laboratory Analysis of Blood for Alcohol content
_ Narcotics Laboratory Analysis
Crime Laboratory
Serve Traffic and Criminal Warrants
Enforce Tax Laws
Enforce
_Coroner Animal Control (Dog Catcher)
_ Other (Specify) \(\qquad\)
11. What was your approximate TOTAL budget for 1971? (Use either fiscal year 1971 or calendar year 1971, whichever you \(\frac{\text { normally }}{}\) use.)

Approximate TOTAL Budget (1971): \$ \(\qquad\)
12. What was the approximate amount (in dollars) spent by your department in 1971 for each of the following:

Approximate Dollars Srent for EQUIPMENT: \(\qquad\)
Approximate Dollars Spent for PERSONNEL:
\$ 13. Would you like to receive a copy of the report on this survey?
\(\qquad\) yes

THANK YOU for your help. LEAA believes the police deserve to have the best equipment possible. This is the first step towards improvement.

\section*{APPENDIX B: SAMPLING CONSIDERATIONS}

\section*{B. 1 Description of the Population}

The first problem encountered in developing the sample was the definition of the population. The population base consisted (in August 1971) of a file of roughly 14,000 law enforcement agencies. This file, maintained by the LEAA, contained the name, address and LEAA region for each listed police agency. In addition, each city was assigned a code which corresponded to one of three categories of numbers of full-time officers: 1-9, officers, 10-49 officers, or more than 50 officers.

The population was purposefully limited to police departments, as this group was regarded as the largest single class of law enforcement agencies with identifiable equipment needs. Even with this definition extensive effort was required to remove from consideration such inappropriato agencies,as: University police, county and district coroners medical examiners, toll highway authorities, port authorities; marine police, tunnel police, motor vehicle registries, state capitol police, bridge authorities, park commissions, Departments of Natural Resources, Texas Rangers, airport police and training academies. These types of agencies were regarded as inappropriate, either because they did not primarily perform a law enforcement function, or because their functions were too specialized and would bias responses. Duplicate listings were also eliminated.

The police department population was stratified by the ten LEAA geographic regions and by seven department types as discussed below.
B.1.1 State Departments. If State Police was listed, then it was included as a member of the population. If several listings appeared under a common state organization, the Highway Patrol section was selected. (This was the case in five states.) Six states listed Highway Patrol and Investigative units, with no reference to a larger common organization. In these six cases, both were included in the population and when the questionnaires were returned, the one with wider range of law enforcement activities, as determined by their responses on \(p . A-18\), Appendix \(A\), was retained in the sample.
B.1.2 County Departments. County Departments were usually listed in the LEAA master file as sheriff's office. City sheriffs, also listed in this category on the file were excluded from the County Department category. County sheriffs vere included in favor of county jails and county police (under the sheriff's office).
B.1.3 City Departments. Four types of departments were established for this category. First, the 50 largest cities by population (according to the 1970 census) were assigned their own stratum. The remaining cities were then stratified by the number of full-time officers: 1-9, 10-49, 50 or more. Departments for suburban areas or subdivisions (e.g. Cleveland Heights, East Detroit) were left in the population as they may or may not have been autonomous.
B.1.4 Townships. This class of jurisdiction has a special status in local government and appeared in only four of the LEAA regions (regions \(1,2,3,5)\).
B.1.5 Summary. The final population consisted of 12,842 police departments, cross-stratified into 70 cells by LEAA regions (10) and types (7). The number of units in the population in each cell is given in Table 1.2-2 in the text, repeated here for the reader's convenience in Table B-1.

\section*{B. 2 Sample Plan}

It may readily be seen from Table B-l that there was considerable variation in the number of departments from one cell to another. To send questionnaires to all 12,842 departments would have produced an unmanageable amount of data, from the point of view of both administration and analysis. With these two considerations in mind, it was apparent that the fraction of departments sampled in one region/type combination would differ from the fraction sampled in another, i.e. the stratified sample would have to be disproportionate. However, this was not simply a consequence of the way in which the population was distributed into the various cross-strata; as it was decided a priori to have a 100 percent sample for state departments and departments in the 50 largest cities, and that these departments would be sent the entire questionnaire package (the EPQ and \(6 \mathrm{DQ}^{\prime} \mathrm{s}\)).

Two factors were used to determine the sample sizes in the remaining 44 cells. Firstly, an overall sample fraction of about 10 percent for these cells was felt to give sufficient representation and a manageable sample. Secondly, equal sample sizes for the 44 cells was regarded as the best alternative to proportional sampling, in view of the desirability of distributing the \(D Q ' s\) equally among cells (2 DQ's per department). Furthermore, this constant sample size was selected to be a multiple of six, so that each \(D Q\) could be sent to the same number of departments.

Table B-1. Number of Police Departments By Region and Type
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{LEAA REGION} \\
\hline DEPARTMENT TYPE & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & TOTAL \\
\hline State & 6 & 2 & 5 & 8 & 6 & 5 & 4 & 6 & 4 & 4 & 50* \\
\hline County & 66 & 84 & 257 & 764 & 536 & 506 & 413 & 288 & 103 & 120 & 3137 \\
\hline City (1-9 Officers) & 27 & 348 & 713 & 979 & 1470 & 703 & 611 & 283 & 135 & 217 & 5486 \\
\hline City (10-49 Officers) & 40 & 237 & 166 & 344 & 508 & 230 & 142 & 71 & 168 & 79 & 1985 \\
\hline City (50 or More officers) & 60 & 64 & 36 & 83 & 119 & 46 & 23 & 19 & 87 & 17 & 554 \\
\hline \(50^{\circ}\) Largest Cities & 1 & 4 & 5 & 8 & 10 & 8 & 3 & 1 & 8 & 2 & 50 \\
\hline Township & 629 & 349 & 362 & - & 234 & - & - & - & - & - & 1574 \\
\hline MOTAL & 829 & 1088 & 1544 & 2186 & 2883 & \[
\begin{aligned}
& 1498
\end{aligned}
\] & 1196 & 668 & 505 & 439 & 12,836 \\
\hline
\end{tabular}
* Questionnaires were actually sent to 56 State Police departments since there were 6 state Departments which listed two police agencies without reference to a common central agency. However, only one set of questionnaires was accepted from each of these 6 agencies.

Specifically, taking 10 percent of \(12,736(12,736=12,842\) police departments - 50 largest cities - 56 different state departments) and dividing the result by 44 yielded 28.95 . Therefore, a sample of 30 departments/cell (the nearest multiple of 6) was randomly selected. The four cells in which the population was less than 30 were sampled \(100 \%\). Note that but for these four exceptional cells, each \(D Q\) was sent to 10 departments (2 DQ 's per department \(\times 30\) departments \(/ 6 \mathrm{DQ}\) 's), distributed candomly within each cell. For the four exceptional cells, 2 DQ's were sent to each department as well, but in only one of the four cases (xegion 1, cities with l-9 officers) were the DQ 's able to be sent in equal numbers (9 of each); in the remaining three cells, unequal numbers of \(D Q^{\prime} s\) had to be distributed. Those \(D Q\) 's appearing more frequently were selected at random in these cases. The distribution of the sample selected appears in Table 1.2-3 and is duplicated here in Table B-2.

*Questionnaires were actually sent to 56 State police departments since there were 6 State
Departments which listed two police agencies without reference to a common central agency.
However, only one set of questionnaires was accepted from each of these 6 agencies.

\section*{APPENDIX C: QUESTIONNAIRE ADMINISTRATION}

\section*{C. 1 Gencral procedure}

The Police Equipment Survey was administered by the Technical Aralysis Division, National Bureau of Standards. The questionnajres were mailed to police departments during the first week in June, 1972. The last questionnaires accepted for inclusion in this report were recelved the first week in January, 1973.
C.1.1 preparation for Administration. When the sample was selected cach sample department was assigned a unique 7-digit identification number which coded Region, Department Type, department number, the detailed questionnaires assigned, and the version (see section 1.4 of this report) of the EPQ assigned. An interactive, on-line computer file was established to record the status of the questionnaires, by identification code number, for each sample department.

Because pre-test interviews had shown that many police departments received 10-25 questionnaires per month, it was determined that special efforts would be required to insure priority handing of these questionnaixes by the sample departments. To this end, one week prior to the questionnaire mailing, each sample department vas mailed a personalized letter from Martin Danziger, Assistant Administrator, NILECJ, of LEAN, which explained the purposes of the survey and asked for the department's coperation.
C.1.2 Administration. The first week of June, 1972, questionnaire packets were mailed to the 1386 sample departments. Each packet was addressed to the chief, or highest official of the department, and asked that he direct the questionnaires to the most appropriate persons in his department. In addition, the chief was asked to personally review his staff's answers if circumstances permitted. It was requested that the questionnaires be retained in the department until all could be mailed in the same self-return package.
C.1.3 Returned Questionnaires. As questionnaires were received at NBS they were date stamped, recorded in the computer file, and distributed to specialized coding/editing teams (one for each questionnaire). As each questionnaire was processed, the computerized file was changed to indicate current status (e.g. coded, sent to keypunch, keypunched, etc.). Questionnaires which were incomplete or which had ambiguous (uncodable) answers were filed for telephone calls

After coding and keypunching, all identifying information except for the 7-digit identification number was removed. This was done so that the original questionnaires could be made available to researchers (some indication of size and geographic location, for reference, would still be available via the identification number) without jeopardizing the anonymity of the department.

\section*{C. 2 Follow-up Procedures}
C.2.1 Mail Follow-up. The questionnaire packets were mailed during the first week of June, 1972. By July 1, approximately \(40 \%\) of the packets had been returned. During the first two weeks in July, those departments
which had not returned their packets were identified from the computer file and were sent follow-up post cards. These self-return post cards asked for an incication of the status of that department's questionnaires:
(a) The questionnaires had not been received, and if so, a name to which to direct a new questionnaire packet; or
(b) The questionnaires were still being completed; aic
(c) The questionnaires had been mailed back, but had not yet been received at NBS.
These post cards were mailed to about 800 sample dejartments. About \(50 \%\) of those departments returned the post cara. A tally of their answers was made:
table c.2.i
Results of the Post Card Follow-Up
\begin{tabular}{lc}
RESPONSE & \begin{tabular}{c}
APPROXIMATE \% \\
OF POST CARDS SENT
\end{tabular} \\
Questionnaires not received & \(13 \%\) \\
Still completing & 25 \\
Questionnaires already mailed & 13 \\
No answer & 50
\end{tabular}

TOTAL NUMBER OF POST CARDS MAILED \(=800\)

This post card follow-up appeared to have been responsible for a second surge in questionnaire returns.
C.2.2 Telephone Follow-up. Beginning in the midale of August, 1972, follow-up telephone calls were begun to departments which still had not returned the questionnaires, about 338 of the total sample. (Calls were also begun to departments whose returned questionnaires were incomplete
or ambiguous. The numbers of calls made for these two separate purposes were not tabulated separately in the computer record, so any numbers presented must apply to both,) These calls were continued throughout the fall of 1972. Almost 1000 departments (about \(70 \%\) of the sample) were contacted at least once during this phase of the administration Moxe than 1300 telephone calls were made altogether.

The overwhelming majority of departments which received telephone calls from NBS were cooperative and helpful. In the few departments in which the recipient of the call was uncooperative, some of the common replies to the request for participation in the survey were that the officer was too busy to participate; that the department saw no reason for another survey; that the department did not believe in standards; or that they were not participating in any LEAA programs.

\section*{C. 3 Rates of Return}

Eighty-three percent (1153) of the sample departments participated in the survey. The differences in levels of participation among the department types may be seen in Table C. 3-1 below. More than 90\% of the States, the Fifty Largest Cities, and the Cities With 50 or More Officers returned questionnaires. The lowest levels of participation were in County and Township departments.
\begin{tabular}{|c|c|c|c|c|}
\hline DEPARTMENT TYPE & & \begin{tabular}{l}
NO. DEPTS. \\
IN SAMPLE
\end{tabular} & NO. DEPTS. RETURN QS. & \% DEPTS. RETURN QS. \\
\hline State & & 50* & 47 & \(94 \%\) \\
\hline City (50+) & & 269 & 244 & 91 \\
\hline 50 Largest & & 50 & 46 & 90 \\
\hline City (10-49) & & 300 & 262 & 87 \\
\hline City (1-9) & & 297 & 238 & 80 \\
\hline county & & 300 & 225 & 75 \\
\hline Township & & 120 & 81 & 68 \\
\hline
\end{tabular}
* On the LEAA master tape, two divisions of state police were sometimes listed for a single state with no reference to a common agency. In six cases it could not be determined in advance which of these groups (e.g. Highway Patrol, Detective Bureau' should receive the questionnaires. Thus, questionnaires were mailed to both divisions. If both sets wer returned, the division with the greater number of police functions wa chosen to represent the

A variety of reasons were given by departments which were unable to return the questionnaires. Many of the smaller departments reported that their departments had been consolidated so that some or all of their functions had been taken over by another police agency. Many other smaller departments said that they felt their answers would be of little value since they had so little equipment. One department reported that the courthouse had burned down so they no longer had any equipment, and several departments reported that the questionnaires were lost in the summer floods of 1972. Many of the non-participating departments, however, said during the telephone follow-ups that they would complete the questionnaires, so their subsequent non-responses can only be taken as a lack of interest and/or time.

\section*{Milestones indicate the beginning of post card and telephone follow-ups.}

Figure C.3-2. Cumulative Number of Equipment Priorities Questionnaires Returned.

\section*{APPENDIX D: DETAILS OF EPQ ANALYSIS}

This appendix presents the mathematical rationale for the procedures used to analyze the data from the Equipment Priorities Questionnaire. The first section of this appendix presents the methods used to obtain composite ranking, at various levels of aggregation. Statistical methods to determine the significance of agreement in rankings are discussed in the second section.

\section*{D. 1 Determination of Composite Rankings}
D.1.1 Selection of Ranking as the Task. The final form of the EPQ asked respondents to rank all entries in each list in order to establish priorities for developing equipment standards. Two alternatives to ranking the lists were considered for the \(E P Q\), rating and partial ranking, but were rejected. A simple rating scheme, such as would have been required for this survey, tends to lack discrimination and to be inordinately sensitive to response biases. The other alternative, partial ranking in which respondents rank only top priority entries, results in a loss of information and yields data which are mathematically difficult to aggregate and describe.
D.1.2 Determination of Composite Rankings. As described in the text, four sets of composite rankings were determined for each list:
(a) A composite ranking for each Department Type;
(b) a composite ranking for each Region;
(c) a composite ranking for all cities; and
(d) a National composite ranking for all departments.

The discussion below refers to one list in order to reduce the amount of notation required; the procedures were the same for each list. Briefly, composites were computed from scores which were made up of three elements: (1) The rank assigned to an entry transformed such that poorer ranked items received exponentially less importance than better ranked items;* (2) a weight that corresponded to the sampling ratio of the cell from which a department was selected; and (3) a weight that corresponded to the number of full time officers in a department.

The notation below is used for the discussion to follow:
\(r_{i j k m}=\) the rank assigned entry \(m\) by respondent \(k\) in departments of type \(i\), region \(j\) (cell (i,j)),
\(r_{\text {im }}=\) the composite rank determined for department type \(i\), of entry \(m\),
\(r_{j m}=\) the composite rank determined for region \(j\), of entry \(m\),
\(r_{\mathrm{cm}}=\) the composite rank for cities of entry \(m_{i}\).
\(r_{m}=\) the national composite rank of entry \(m\),
\(s_{i m}=\) the score calculated for entry \(m\) in departments of type \(i\),
\(s_{j m}=\) the score calculated for entry \(m\) in region \(j\),
\(\mathrm{s}_{\mathrm{cm}}=\) the score calculated for entry \(m\) for cities,
\(s_{m}=\) the national score calculated for entry \(m\),
* Mr. Marc Nerenstone of NILECJ first suggested and formulated this concept. His contribution is gratefully acknowledged.
\(w_{i j k}=\) the weight assigned to respondent \(k\) in department type \(i\), region \(j\), corresponding to the number of full-time officers in the department,
\(u_{i j}=\) the weight assigned to departments in cell \((i, j)\) to account for unequal sampling fractions.*

The score of entry \(m\), at any level of aggregation, was obtained by multiplying the weights (\(u_{i j}\) and \(w_{i . j k}\)) by the constant 2 , raised to the negative rank (\({ }^{-r}{ }_{i j k m}\)). For example, entry m's score for respondents in Region 5 would be calculated from the following formula.
\[
s_{5 m}=\sum_{i k \varepsilon(i, 5)} u_{i 5} w_{i 5 k} 2^{-r_{i 5 m}}
\]
D.1.2-1
where the notation \(k \varepsilon(i, 5)\) imples that the inner sum is taken over respondent \(k\) in cell (\(i, 5\)). These scores would then be ordered from highost to lowest to obtain composite rankings. Not dividing by the total weight does not affect the ranking of the scores since the total weight is constant for a given entry \(m\).

For the cities, the formula for calculating the scores would be:
\[
s_{c m}=\sum_{i=3}^{6} \sum_{j} \sum_{k \varepsilon(i, j)} u_{i j} w_{i j k} 2^{-x_{i j k m}} \quad \text { D.1.2-2 }
\]
since Department Types \(i=3,4,5\) and 6 are, (in the coding employed),
all city police departments.
It was implicitly assumed that the ranks \(r_{i j k m}\) were permutations of the intergers \(1,2, \ldots, M\), where \(M\) was the number of entries in the list
* Departments were selected randomly within each cell. Since the cells had unequal sampling fractions, \(u_{i j}\) was needed to compensate for unequal probabilities of selection to the sample from cell to cell.
considered. However, some respondents either did not follow the questionnaire directions or felt that tied ranks reflected their true preferences. Adjustments were made in all cases in which something other than a permutation of the integers \(1,2, \ldots, M\) was assigned. The purpose of those adjustments was to give all respondents an equal total contribution to entry scores for any given list. To take an extreme example: If respondent \(k\) in Department Type \(i\), Region \(j\), were to assign \(r_{i j k m}=1\) for all \(m=\) \(1,2, \ldots, M\), his total contribution to aggregate scores would be larger than that of a respondent assigning \(M\) distinct interger ranks. Three "error" cases and the ways in which they were adjusted are shown below.

Case 1. When ranks \(m_{1}, \ldots, m_{t}\) were not assigned and the other entries were assigned the remaining ranks up to \(M+t\) : In this case, the ranks were all shifted, preserving the rank orders, to the appropriate permutation of \(1, \ldots, M\). It was assumed that the respondents were simply careless in assigning ranks.
Case 2. When ranks \(m_{1}, \ldots, m_{t}\) were not assigned and the other entries were assigned the remaining ranks, but none higher than M: In this case, it was assumed that the unranked entries would have received the poorest ranks. Thus, the entries ranked were shifted, preserving the rank orders, to the appropriate permutation of \(1,2, \ldots, \mathrm{M}-\mathrm{t}\); and the unranked entries were considered tied for the places \(M-t+1, M-t+2, \ldots, M\).

Case 3. Tied ranks: It was necessary to adjust for tied ranks such that the total scores contributed would be equal to what they would have been if distinct ranks \(1,2, \ldots, M\) had been assigned. Suppose there were \(t\) entries tied for rank positions \(m, m+1, \ldots\) \(m+t-1\) : If \(M=9\), and three entries were ranked as some permutation of \(1,2,3,4,4,4,7,8,9\) then \(t=3\) and \(m=4\), (i.e., the three entries ranked 4 were tied at rank positions 4, 5, and 5) It would then be necessary to find \(\bar{r}\) such that
\[
\begin{aligned}
& t 2^{-\bar{r}}=2^{-m}+2^{-(m+1)}+\ldots+2^{-(m+t-1)} \text { D.1.2-3 } \\
& \text { Thus } \\
& -\bar{r}
\end{aligned}=\log _{2}\left(\left(2^{-m}+2^{-(m+1)}+\ldots+2^{-(m+t-1)}\right) / t\right) .
\]
from which it follows that
\[
\bar{x}=\log _{2} t=m-\log _{2}\left(1+2^{-1}+\ldots+2^{-(t+1)}\right)
\]
D.1.2-5

Again, for example
\[
\begin{aligned}
\bar{r} & =\log _{2} 3+4-\log _{2}(1+2+4) \\
& =4+\log _{2} 3-\log _{2} 7 \simeq 2.77 .
\end{aligned}
\]
are identical, in which case the rank sums would be \(L, 2 L, \ldots, M L\), and the sum of the squared deviations from this mean would be \(L^{2}\left(M^{3}-M\right) / 12\). The minimum sum of squared deviations from the mean occurs when all rank sums equal the mean, in which case it is zero. If we let \(s\) denote the sum of squared deviations from the mean, then the statistic
\[
w=12 S /\left(L^{2}\left(M^{3}-M\right)\right)
\]
is normalized, taking values between 0 (no agreement) and 1 (complete agreement). Assuming that the rankings represent a random sample from the set of all rankings, the distribution of \(W\) may be obtained (see Kendall, 1948, for a description of this test). For the values of \(L\) in the present study, two approximations to the distribution of \(W\) were used:
(a) for \(M>7, L(M-1) W\) is approximately distributed as Chi-square with \(v=M-1\) degrees of freedom.
(b) for \(M\) S 7 , (\(\mathrm{L}-1\)) \(\mathrm{W} /(1-\mathrm{W})\) is approximately distsubstad as \(F\) with \(v_{1}=M-1-(2 / L)\) and \(v_{2}=(L-1) v_{1}\) degress of freedom (Abramovitz \& Stegun, 1964).

For case (b) above, \(v_{1}\) and \(v_{2}\) were taken to the nearest integer and for large \(v_{1}\) and \(v_{2}\), a normal approximation to \(F\) is used (see Abramovitz \& Stegun, 1964, p. 947).

Under the assumption that the rankings were random, it was possible to calculate the probability of obtaining a value of \(W\) less than that actually obtained. The larger this probability, the greater the level of agreement (meaning the smaller the probability that the rankings were random). For example, a 97\% level of agreement, in this context, meant
that the probability was only .03 that a value as large as that calculated for \(W\) occurred by chance.

For comparing sets of rankings, the rank correlation coefficient \(\tau\) was used. This statistic takes values between -1 and +1 , corresponding to complete disagreement (rankings are reverses of each other) and complete agreement. The rank correlation coefficient \(\tau\) is a normalized version of the statistic \(S\) which is calculated as follows:
(a) Consider, each pair of entries (for a list of \(M\) entries, there are \(M(m-1) / 2\) pairs)
(b) If both rankings have one of the pair preferred to the other, score +1
(c) If the rankings have the pair in opposite order of preference, score -1.
(d) S equals the sum of scores in (b) and (c)
ince the range of values for \(S\) is \(-M(M-1) / 2\) to \(M(M-1) / 2, \tau=2 S / M(M-1)\) takes values between -1 and +1 . For values of \(M\) between 4 and 10 , probabilities for \(\tau\) (or equivalently S) are tabulated (Kendall, 1948 able 1). For \(M>10, \tau\) is approximately normal with mean zero, and variance \(\sigma^{2}=M(M-1)(2 M+5) / 18\)

For present parposes, the level of agreement between two rankings was the probability of not exceeding the calculated value of \(\tau\). This implies that only one tail of the distribution of \(\tau\) was used, as there was no concern with levels of disagreement.

Consider the example in Table D.2-1.

\section*{table D.2-1}

Two Rankings of Five Entries
\begin{tabular}{llllll}
& A & B & C & D & \(E\) \\
Ranking & I & 3 & 5 & 1 & 2 \\
4 \\
Ranking & II & 1 & 4 & 2 & 5 \\
& & &
\end{tabular}

For the pair \(A B\), Ranking I prefers \(A\) to \(B\), as does Ranking II. Thus, the score for \(A B\) is +1 . On the other hand, Ranking \(I\) prefers \(D\) to \(E\), but Ranking II prefers \(E\) to D. Thus, the score for the pair DE is -1 . The ten scores in this example are:
\(A B:+1\)
\(A C:-1\)
\(A D:-1\)
\(A E:+1\)
\(B C:+1\)\(\quad\)\begin{tabular}{l}
\(B D:-1\) \\
\\
\end{tabular}
and \(S=1-1-1+1+1-1+1+1+1-1=6-4=2\).

The probability that \(s \geq 2\), from the Thompson and Willke (1963) table, is 0.408. Thus, the level of agreement between Rankings I and II is \(59.2 \%\).

There are shorter methods to calculating \(\tau\) (or S) than that described in (a)-(d) above. See Thompson and Willke (1963), Chapter 1 for a description of these.

\section*{REFERENCES}
(1) Abramovitz, M. and Stegun, T.A. (eds.) Handbook of Mathematical Functions (AMS 55), National Bureau of standards, 1964.
(2) Kendall, M. G., Rank Correlation Methods, Charles Griffin and Company Limited, London, 1948.
(3) Thompson, W. A., Jr. and Willke, T.A., "On an Extreme Rank Sum Test for Outliers," Biometrika, Vol. 50, Nos. 3,4, 1963.

\section*{APPENDIX E}

DATA TABLES

\section*{NATIONAL PANKS}

PROTETTIVF EOUTPMENT ANT CLOTHTNG
COMYUNICATIONS EQUPPMENT ANO SUPPLIFE WEAPONGOLETHAL AND RELATED AYMIINITTON WEAPONS NOMM-LETHAL
VEHICLES
BUILDING GYSTEVS
EMERGENCY WARNING ANI RFSCIF FRUIPUFNT SECIIRITY FOUTPVENT DETECTION SYSTFMS

Table
ITEMS WITH EXTREME RANK SUMS BY OEPARTMENT TYPE (NINETY-FIVE PERCENT INTERVAL GIVEN AT COLUMN HEADI
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline state & COUNTY & CITY(1-9
OFFICERS) & \[
\text { CITY } 10-49
\]
OFFICERS) & CITYI50 OR MORE OFFICERS) & \[
\begin{aligned}
& \text { FIFTY } \\
& \text { LARGEST } \\
& \text { CITIES }
\end{aligned}
\] & TOWNSHIP \\
\hline 186. 283 & 1018,1231 & 1080.1299 & 1194.1425 & 1108.1331 & 177,272 & 340.469 \\
\hline * \({ }^{*}\) * & **** & **** & **** & **** & **** & **** \\
\hline 116 & 580. & 654 。 & 669. & 563. & 118. & 219. \\
\hline **** & 909. & 983. & **** & **** & **** & **** \\
\hline **** & **** & **** & **** & * * \(^{*}\) & **** & **** \\
\hline 107. & 694. & 639. & 694. & 694. & 133. & 227. \\
\hline 346. & **** & **** & **** & **** & 348. & 577. \\
\hline 181. & **** & **** & **** & **** & **** & 335. \\
\hline 351. & **** & **** & **** & **** & * * \(^{*}\) * & 517. \\
\hline 307. & **** & **** & **** & **** & **** & 554. \\
\hline
\end{tabular}

The COEFFICTEMT OF ennientonance is gigmiEicant at tur THE COEFFICIE:AT OF CONRORDANCF IS GTRNIEICANT AT THE THE COFFFICIENT OF CONCORDANCE IS GIGNTEICANT AT TUE THE COEFFICITENT OF GONRORDANCE TS GTANTFICANT AT THE THE COEFFITTENT DF GONCARDANCE IS SIGNIEICANT AT TUE THE COEFFICTENT OF CONERRDANCE IS GIGNTEICANT AT THE THE COEFFICIEAT OF CONTORDAMCE IS GTANTFICAMT AT THE

AEDADTMEATG. MFDARTMFATE AFOARTYEATG NEDADTMEATE. AFDARTMEATE. AFDADYARAITY

RANIKS BY MEPADTHEAT TYOF
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CTATE & renimity & \[
\begin{aligned}
& \text { CITY(t-a } \\
& \text { OFFICFRS) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CITY (1n-LQ } \\
& \text { OFFITFDC) }
\end{aligned}
\] & CTTY(FO OR MORF OFETCFRS) & \[
\begin{aligned}
& \text { FYEYY } \\
& \text { LAQRFST } \\
& \text { CYTTFS }
\end{aligned}
\] & TAWNSMTS \\
\hline
\end{tabular}

PROTECTIVF FQUTPMEVT ANIN CLOTHTNG
CORMUNICATTONS EQUTPMEMT ANT TIIPPLIFE WEAPONS.LETHAL AND DELATED AYPIUITTAN WEAPONS, NON-LETHAL
VEUICLES
BUILDIAG SYSTEMS
EMERGENCY WARNYNG ANI RFSCIJF FOUIPMFUT
SECURITY FOUTPVENT
DETECTION SYSTEMS
\(5 \quad 4\)
\begin{tabular}{ll}
5 & 4 \\
2 & 1 \\
4 & 2 \\
7 & 5 \\
1 & 0 \\
9 & 7 \\
3 & 6 \\
8 & 0
\end{tabular}

PROTECTIVF FQUTPME AT ANN CLOTHING
COMMUNICATTONS EQUTRMENT ANO GIIPPLTFS WEAPONS, LETHAL AND RFLATED AMMUNITIOA WEAPOVS, NON-LETHAL
VEHICLES
BUILOING SYSTEMS
EMERGENCY WARNING AMI RESCIIF. FQUIPMFNT
SECURITY EOUIPUENT
DETECTION SYSTFMS

\section*{Table}

IH-4

THE COEFFICIFN OF CONCORDANCF IS EITNIEICAMT AT YHE THE COEFFICIEMT OF CONCOROANCE IS EIGNIFICAMT AT THF THF COFFFICIFNT OF CONCARDANCF IS CIGNIFICANT AT THE THE COEFFICIENT OF EONRORDANCF IS EIGNTFICANT AT TWF THF COEFFICTENT OF CONCORDANCE IS EIGNIEICANT AT THE THE COEFFICIENT OF CONCOROANCE IS STANTFICAAT AT THF THF COEFFICIFNT OF CNNCOROANCF. IS GTANTEICAMT AT THE THF COFFFICIENT OF CONEORDANCF IS. STGNIEICANTT AT THE THF COEFFICTENT OF CONCOROANCF TS STGNTEICANT AT THE THE CNEFFICIENT OF CNNRORDANCE IS STGNIEICANT AT THE
- AnAn DERCEAT LEVEL END THF IIG DFOAQTVENTE TA LEAA AFATOA
 - ONON OFRCFAT LEVFL EAD THE i刀口 nEDADTMENTE IN LEAA DEATON
 - DONA DERCFNT LEVEL FOD TLIF 13 B OFPARTMENTE TN LFAA DESYMA
 - OnOत DERMFAT LEVFL END THF ION OFPARTMENTE PAK LEAA RFFTON
 OnNत DFRCFNT LEVFL ERN THE 117 DFPARTMENTG IN LFAA DECINA \(n\)

PROTECTIVF FOUYPMENT ANO CLOTIITAG
COMMUVICATYONS EQUTPMENT ANT EIIPPLTFG WEAPONS, LETHAL ANO OELATED AMMUNITTOM WEAPONSFNON-LETHAL

\section*{VEHICLES}

BUTLDING SYSTEHS
EMERGFNCY WARNING AND RESCIJF FOUIPMEYT
SECURITY FOUITPMENT
DETECTION GYSTFMS

DANKG BY LFAA REGION

4
2
3
7
1
5
6
\(a\)
0
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 3 & 4 & 6 & 6 & 6 & 4 & \$ & 4 \\
\hline \(?\) & , & \% & 8 & 9 & \(?\) & , & \(t\) & 1 \\
\hline 7 & 5 & \% & 4 & 3 & 3 & 5 & 4 & 6 \\
\hline 4 & R & n & 1 & R & 5 & 7 & 5 & 7 \\
\hline 3 & 1 & 1 & \(?\) & ? & 1 & 9 & \(?\) & \(?\) \\
\hline 9 & 6 & a & 0 & 7 & A & 6 & 0 & 9 \\
\hline 6 & 4 & 5 & 0 & 4 & 4 & 7 & 7 & 5 \\
\hline Q & \(\bigcirc\) & 7 & 7 & 0 & 7 & 9 & 6 & 7 \\
\hline 5 & 7 & f & 5 & 5 & 9 & R & Q & 9 \\
\hline
\end{tabular}

Table
I-5

ITEAS WITH EXTREVE RANK SUMS DY LEAA REGION \{NIVETY-FIVE PEREENT IVTERVAL GIVE゙N AT COLJMN HEADI
\begin{tabular}{|c|c|c|c|c|}
\hline \(503 \% 656\) & \(564 \cdot \frac{2}{} 725\) & \(359{ }^{3} 720\) & 489.640 & 596.763 \\
\hline **** & * \({ }^{*}\) * & **** & **** & \\
\hline 292. & 364. & 341. & 297. & 333. \\
\hline **** & **** & **** & 473. & **** \\
\hline **** & * \({ }^{\text {+ }}\) + \({ }^{\text {a }}\) & **** & 655. & 784. \\
\hline 325. & 367. & 422. & 250. & 366. \\
\hline 809. & 988. & 890. & 826. & 942. \\
\hline **** & **** & **** & **** & **** \\
\hline 710. & 783. & 761. & 704. & 781. \\
\hline 764. & 792. & 808. & 731. & 080. \\
\hline
\end{tabular}

ITENS WITH EXTREME RANK SUMS BY LEAA REGION (NINETYMFIVE PERCENT INTERVAL GIVEI AT COLUMN HEAB)
\begin{tabular}{|c|c|c|c|c|}
\hline 6 & 7 & 8 & 9 & 10 \\
\hline 451: 598 & 428.571 & 442,587 & 507. 662 & 405:544 \\
\hline **** & **** & **** & **** & **** \\
\hline 245. & 203. & 279: & 328. & 236. \\
\hline **** & * * \(_{\text {* }}\) & 426. & **** & **** \\
\hline 612. & 580. & 597. & **** & 552. \\
\hline 305. & 281. & 281. & 350. & 240. \\
\hline 711. & 688. & 715. & 826. & 686. \\
\hline **** & **** & **** & **** & **** \\
\hline 611. & 598. & 616. & **** & **** \\
\hline 635. & 664. & 658. & 727. & 554. \\
\hline
\end{tabular}
```

Taule
I-6
REGARDING EACH REGION AS A RESPONDENT: IF THE TEN RANKINGS WERE RANDOM.
THE RIANK SUM OF AN ITEM WOULD LIE IN THE INTERVAL ( 27. 73)
95 PERCENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THIS INTERVAL:
COMMUNICATIONS EQUIPMENT AND SUPPLIES
13.
vEHICLES
21.
bulLOING sYSTEMS
90.
regarding each leaa region as a respondent.
THE COEFFICIENT DF CONCOROANCE 15 SIGNIFICANT AT THE . 0000 pERCENT LEVEL.
REGAROING EACH DEPARTMENT TYPE AS A RESPONDENT, IF THE SEVEN RANKINGS WERE RANDOM.
THE RANK SUM OF AN ITEM WOULD LIE IN THE INTERVAL ( 16, 54)
95 PERCENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THIS INTERVAL:
COMMUNICATIONS EQUIPMENT AND SUPPLIES
11.
vehicles
13.
building systems
53.
REGARDING EACH DEPARTMENT TYPE AS A RESPONOENT,
the coefficient of concordance is significant at the .0000 percent level.

```


\section*{Table}

I-7 cont.

\section*{Table}
PROTECTIVE EOUIPMENT AND CLOTHING
COMMUNICATIGNS EQUIPMENT AND SUPPLIES
WEAPONSILETHAL AND RELATED AYMUNITION
WEAPONSHNON-LETHAL
VEHICLES
BUILDING SYSTEMS
EMERGENCY WARNING AND RESCUE EQUIPMENT
SECURITY EQUIPYENT
DETECTION SYSTEMS

\section*{total}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
NUYBER \\
ONE RANK \\
NO PCT
\end{tabular}}} & HIG & HEST
1 & RIOR & ITY
2 & TEGOR & \[
\begin{aligned}
& \text { RY } \\
& 3
\end{aligned}
\] & FOR & \[
\begin{aligned}
& \text { NUMBER } \\
& 4
\end{aligned}
\] & & \[
\int_{5}^{\text {RANK }}
\] & & 6 & & 7 & & 8 \\
\hline & & NO & PCT & No. & PCT & NO & PCT & No & PCT & No & PCT & NO & PCT & 110 & DCT & 10 & PCT \\
\hline 60 & 5.3 & 4 & 6.7 & 19 & 31.7 & 11 & 18.3 & 2 & 3.3 & 8 & 13.3 & 37 & 61.7 & 28 & 46.7 & 5 & 8.3 \\
\hline 375 & 32.8 & 68 & 18.1 & 159 & 42.4 & 79 & 21.1 & 96 & 25.6 & 58 & 15.5 & 119 & 31.7 & 126 & 33.6 & 25 & 6.7 \\
\hline 65 & 5.7 & 14 & 21.5 & 25 & 38.5 & 9 & 13.8 & 9 & 13.8 & 11 & 16.9 & 22 & 33.8 & 24 & 36.9 & 5 & 7.7 \\
\hline 20 & 1.8 & 2 & 10.0 & 6 & 30.0 & 5 & 25.0 & 0 & . 0 & 0 & - 0 & 11 & 55.0 & 13 & 65.0 & 2 & 10.0 \\
\hline 441 & 38.6 & 28 & 6.3 & 126 & 28.0 & 101 & 22.9 & 251 & 56.9 & 57 & 12.9 & 139 & 31.5 & 129 & 29.3 & 29 & 6.6 \\
\hline 56 & 4.9 & 1 & 1.8 & 33 & 58.9 & 16 & 28.6 & 20 & 35.7 & 5 & 8.9 & 5 & 8.9 & 12 & 21.4 & 13 & 23.2 \\
\hline 42 & 3.7 & 4 & 9.5 & 14 & 33.3 & 8 & 19.0 & 11 & 26.2 & 12 & 28.6 & 16 & 38.1 & 15 & 35.7 & 2 & 4.8 \\
\hline 50 & 4.4 & 3 & 6.0 & 28 & 56.0 & 9 & 58.0 & 8 & 16.0 & 5 & 10.0 & 12 & 24.0 & 26 & 52.0 & 2 & 4.0 \\
\hline 33 & 2.9 & 4 & 12.1 & 15 & 45.5 & 7 & 21.2 & 3 & 9.1 & 2 & 6.1 & 9 & 27.3 & 15 & 45.5 & 5 & 15.2 \\
\hline & & 123 & 11.2 & 425 & 37.2 & 245 & 21.5 & 400 & 35.0 & 158 & 13.8 & 370 & 32.4 & 388 & 34.0 & 88 & 7.7 \\
\hline
\end{tabular}

\section*{KEY TO REASONS}

1 MOST OF THIS KIND OF EQUIPMENT IS NOW MADE bY ONE OR TWO FIRMS. STANDARDS MIGHT ENCOURAGE OTHERS TO START MAKING IT.
2 WE PLAN 10 buy this kind of equipment in the near future. standardS would help us to select the rest EQUIPMENT AT THE LEAST COST.
- 3 much of the equipment we now have of this kind does not really meet our needs. standards coulo be USED TO GUIDE THE MANUFACTURERS WHO DEVELOP EQUIPMENT.
4 WE NOW HAVE MAINTENANCE AND REPAIR PROBLEYS WITH MUCH OF THIS KIND OF EQUIPMENT. STANDARDS MIGHT SOLVE THESE PROBLEMS.
5 WE BUY EQUIPMENT IN THIS CATEGORY FROM SEVERAL DIFFERENT MAKERS AND FIND THAT PARTS AND COMPONENTS CANNOT BE INTERCHANGED AMONG THE OIFFERENT BRANDS. STANDARDS MIGHT HELP SOLVE THIS PROBLEM.
6 WHEN WE BUY EQUIPMENT IN THIS CATEGORY, WE MUST COMPARE MANY DIFFERENT BRANDS. IF THERE WERE STANDARDS. WE COULD STOP A LOT OF THIS INVESTIGATION ANDIOR TESTING.
7 we are not able to test this type of equipment. if there were standards. we could use the results of TESTS MADE BY THE LABORATORY.
8 OTHER

\section*{Table \\ II \(\mathrm{A}-1\)}

NATIONAL QANKS
TELLE-DQINTFR COMMUAYCATIONS A
SC:\AMALERS
REREATFR TRANSCEIVFRS
HA!!O-HELD TRANSCEIVEOS
CAR LOCATERS
HELMET WITH QUTLT-IN'TRANSCEIVTNG CADACTTY
BASE DADIO TRANSCETVER
MOBILE TRANSCEIVERC
OIGITAL DATA COMMUMTRATTONS

Table
II A-2

ITEMS WITH EXTREME RANK SUMS BY DEPARTMENT TYPE (NINETY-FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline - & STATE
186 P 283 & COUNTY

979.1190 & \begin{tabular}{l}
CITY(1-9 \\
OFFICERS)
\[
1056.1273
\]
\end{tabular} & CITY(10-49 OFFICERS)
\[
1185,1414
\] & \begin{tabular}{l}
CITYI50 OR MORE \\
OFFICERS) \\
1094.1315
\end{tabular} & FIFTY LARGEST CITIES 172. 267 & TOWNSHIP
331.458 \\
\hline TELE-PRINTER COMMUNICATIONS & 290. & **** & **** & **** & **** & **** & **** \\
\hline SCRAMBLERS & **** & **** & **** & **** & * \({ }_{\text {* }}\) * & **** & 322. \\
\hline REPEATER TRANSCEIVERS & **** & **** & **** & **** & **** & **** & 471. \\
\hline HAND-HELD TRANSCEIVERS & 152. & 832 - & 818. & 883. & 828. & 138. & 289. \\
\hline CAR LOCATERS & 302. & **** & **** & * * \(^{\text {* }}\) * & **** & **** & **** \\
\hline HELMET WITH BUILT-IN TRANSCEIVING CAPACITY & 340. & **** & **** & **** & **** & 323. & 558. \\
\hline BASE RADIO TRANSCEIVER & 146. & 765. & 722. & 789. & 941. & **** & 257. \\
\hline MOBILE TRANSCEIVERS & 112. & 694. & \(634^{\circ}\) & 773. & 861. & 160. & 229. \\
\hline DIGITAL DATA COMMUNICATIONS & 303. & **** & **** & * * ** \(^{\text {* }}\) & * * \(^{\text {* }}\) * & **** & 541. \\
\hline
\end{tabular}

II A-3

The Coefficient of concordance is gignificamit at tha THE COEFFICIENT OF CONCORDANCE IS SIGNIFICANT AT THE THE COEFFICIENT OF CONCORDANCF IS EICNIFICAHT AT THE THE COEFFICIENT OF CONCORDANCE IS GIGNIFICANT AT THE The COEFFICIENT OF CONCORDANCF IS SIGNIFICANT AT THE THE COEFFICIENT OF CONCORDANEE IS SIGNTEICANT AT THF THE COEFFICIENT OF CONCORDANCE IS SIGNTFICANT AT THE
nnnn pFRCFNT LFVFI EnD TLF 47 ETATE
- Onnत perrant Levfil Fnn the oit COIINTY

- InNत PFRFENT LEVFL FON THF OKN CTTY(1n-40 OFFYCRRC)

ONON DFRCFNT LEVFL EON THF \(厶 U\) FTFTY LARGEST CTTTFE...
ONO D PFRCFNT LEVFL EAD THE 70 TNWNGHTP AEOADTMENTE
nEOADTMENITS RFOADTMENTS. ПEOADTMENTG. NEOAPTMENTS. ПFPADTMEAITS. nEDADTMFATE.

RANIKS QY NFPAOTMEAT TYOF

\section*{COMPNSITF RANKS FOR ALL CTTTES}
```

TELE-PRINTER COMMUNICATTONS
SCRAMPLFRS
REPFATER TRANSCEIVFRS
HAND-HELD TRANSCEIVFRS
CAR LOCATFRS
HELMET WITH RUTLT-IN TRANSCFIVING CAPACTTY
BASE RADIO TRANSCEIVER
MOBILE TRANSCEIVERS
DIGITAL DATA COMMUNICATIONS

```
the coefficient of manfordanice is ciguificant at the THE COEFFTCIENT DF COMCORDANEE IS CTEATTICAMT AT THE THE COEFFICIFNT OF CONORRDANCE TS CIGNTEICIG AT THE THE COFFFICIENT OF CNNCORDANCE IS GTENTICANT AT THE THF COEFFICIEAT OF CNNGOSDANCE IS SIGNTFICANT AT THF THE COEFFICTENT OF CONRORDANCF IS STGNTFICMNT AT THF THE COEFFICIENT OF CONCORDANEE IS STGNIFICANT AT THE THE COEFFICIENT OF CONRORDANEE TS GIGNIEICANT AT THE THF COFFFICIENT OF CONCORDANCE IS GIENIFICANT AT THF the coefficient of concordance ts gitanieicant at thf

 - On On DFRCENT LEVFI. END THF ITつ DFPADTMENTC IN LFAN DEATMA

 - ONAN PEPCFNT I.EVFL END THF 35 DFPARTMENTE TM LFAA OFAION IO

\section*{DANKC BY LFAA RFGION}

\section*{TELE-PPINTFR COMMUATCATIONS \\ SCBAMALFRS}

REDEATER TRANSTEIVFPS
HAND-HELD TRANSCEIVFRS
CAR LOCATFRS
HELMET WITH AUTLT-IN TRANSCFIVVNG CADACTTY BASE QADIO TRANSCEYVFR
MORILE TRANSCETVERE
DIGITAL DATA COMMUPITCATTONS
\begin{tabular}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & \(A\) & 0 & 10 \\
& & & & & & \\
\hline
\end{tabular}

\section*{Table}

II A-5
ITEYS WITH EXTREME RANK SUMS GY LEAA REGION (ninety-five percent interval given at column heaj)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
484: 635
\] & \[
5640^{2} 725
\] & \[
545 \cdot \frac{3}{3} \cdot 704
\] & \[
4890^{4}, 640
\] & \[
\begin{array}{r}
5 \\
578 \cdot 741
\end{array}
\] \\
\hline YELE-PRINTER COMMUNICATIONS & **** & 783. & **** & & \\
\hline SCRAMBLERS & 417. & **** & **** & **** & **** \\
\hline REPEATER TRANSCEIVERS & **** & 763. & 727. & **** & 766. \\
\hline HAND-HELD TRANSCEIVERS & 389. & 462 . & 387. & 430. & 451. \\
\hline CAR LOCATERS & 657. & 762. & 726. & **** & 783. \\
\hline HELMET WITH BUILT-IN TRANSCEIVING CAPACITY & 831. & 889. & 904. & 798. & 976. \\
\hline BASE RADIO TRANSCEIVER & 371. & 385. & 465. & 372. & 427. \\
\hline MOBILE TRANSCEIVERS & 363. & 328. & 394. & 345. & 448. \\
\hline DIGITAL DATA COMMUNICATIONS & 759. & 846. & 830. & 735. & 786. \\
\hline
\end{tabular}

ITEMS WITH EXTREME RANK SUMS GY LEAA REGION (NiNETY-FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD)

TELE-PRINTER COMMUNICATIONS
SCRAMBLERS
REPEATER TRANSCEIVERS
HAND-HELD TRANSCEIVERS
CAR LOCATERS
HELMET WITH BUILT-IN TRANSCEIVING CAPACITY
OASE RADIO TRANSCEIVER
MOBILE TRANSCEIVERS
OIGITAL DATA COMMUNICATIONS
\begin{tabular}{|c|c|c|c|c|}
\hline \[
437 \cdot 582
\] & \[
424 \stackrel{7}{7}^{7} 565
\] & \[
\begin{gathered}
8 \\
424: 565
\end{gathered}
\] & \[
498,651
\] & \[
\begin{gathered}
10 \\
405.544
\end{gathered}
\] \\
\hline 595. & **** & 591. & **** & **** \\
\hline 419. & **** & **** & **** & **** \\
\hline **** & 570. & * * \(^{\text {* }}\) + & **** & **** \\
\hline 384. & 392. & 317. & 404. & 322. \\
\hline **** & **** & 583. & **** & 569. \\
\hline 756. & 714. & 690. & 794. & 680. \\
\hline 352. & 320. & 325. & **** & 321. \\
\hline 314. & 304. & 283. & 400. & 284. \\
\hline 705. & 623. & 637. & 676. & 637. \\
\hline
\end{tabular}

E-14.

\section*{Table}

II A-6
REGARDING EACH DEPARTVENT TYPE AS A RESPONDENT, IF THE SEVEN RANKINGS WERE RANDOM. THE RANK SUY OF AIF ITEY WOULG LIE IN THE IVTERVAL (15. 54)
95 PERCENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THIS INTERVAL:
HAND-HELO PRANSCEIVERS
14.

HELMET WITH BUILT-IN TRANSCEIVING CAFASITY 62.
MOEILE TRANSCEIVERS
12.

RESAROING EACH DEPARTMENT TYPE AS A RESPONDENT.
THE COEFFICIENT OF CONCOROANEE IS SIGNIFICANT AT, TAE . OOOU PERCENT LEVEL.

REGARDING EACH REGION AS A RESPONDENT, IF THE TEN RANKINGS WERE RANDOM
THE RANK SUM OF AN ITEM WOULD LIE IN THE INTERVAL (27.73)
95 PERCENT OF THE TIME, THE FOLLOWING ITEMS LIE OUTSIDE THIS INTERVAL:
HAND-HELD TRANSCEIVERS
19.

HAND-HELD TRANSCEIVERS
89.

MOUILLE TRANSCEIVERS

REGAROING EACH LEAA REGION AS A RESPONDENT.
THE COEFFICIENT OF CONCOROANCE IS SIGNIFICANT AT THE \(\quad 0000\) PERCENT LEVEL:

FREQUENCY OISTRIBUTION OF RANKS OF
COMMUNIGATIONS EQUIPMENT AND SUPPLIES BY DEPARTMENT TYPE

Table
II A-7 cont.
FREQUENCY OISTRIBUTION OF RANKS OF
COMMUNICATIONS EQUIPMENT AND SUPPLIES BY OEPARTMENT TYPE

Table
II A-7 cont.

\section*{ANALYSIS FOR OETECTION SYSTEMS}

Table
II B-1

\section*{NATIONAL DANKS}

Table
II B-2
II B-2

NARCOTIC AND EXPLOSIVE DETECTORS
ORE-ARREST BREATH-ALCOHOL SCREENING DEVICE QUANTITATIVE BREATH-ALCOHOL DEVICE
FINGERPRINT KITS
WALK-THROUGH METAL WEAPONS DETECTORS
HANO-HELD METAL WEAPONS DETECTORS OTHER TYPES OF WEAPONS DETECTORS
GAS CHROMATOGRAPH FOR LABORATORY USE ONLY X-RAY EQUIPMENT USED BY BOMB SQUAOS FIELD NARCOTIC SCREENING KITS POLYGRAPH

ITEMS WITH EXTREME RANK SUMS by department type (NINETY-FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
1
\] & STATE
221.342 & COUNTY
1154.1413 & \[
\begin{aligned}
& \text { CITY(1-9 } \\
& \text { OFFICERS }) \\
& 1217.1482
\end{aligned}
\] & CITY(10-49 OFFICERS).
\[
1417.1702
\] & \begin{tabular}{l}
CITY(50 OR MORE \\
OFFICERS) \\
1302.1577
\end{tabular} & \begin{tabular}{l}
FIFTY \\
LARGEST \\
CITIES \\
210. 329
\end{tabular} & TOWNSHIP
384. 539 \\
\hline NARCOTIC ANO EXPLOSIVE DETECTORS & 218. & 887. & * \({ }^{\text {a }}\) * \({ }^{\text {\% }}\) & **** & 926. & 143. & 300. \\
\hline ORE-ARREST BREATH-ALCOHOL SCREENING DEVICE & 156. & 994. & 743. & **** & **** & **** & 268. \\
\hline QUANTITATIVE BREATH-ALCOHOL DEVICE & 161. & ****. & 788. & 975. & **** & **** & 256. \\
\hline FINGERPRINT KITS & **** & 824. & 862. & **** & **** & **** & 285. \\
\hline WALK-THROUGH METAL WEAPONS DETECTORS & 416. & **** & **** & **** & **** & **** & 601. \\
\hline HANO-HELD METAL WEAPONS DETECTORS & **** & **** & **** & **** & **** & **** & **** \\
\hline OTHER TYPES OF WEAPONS DETECTORS & 407. & **** & **** & **** & **** & 331. & 629. \\
\hline GAS CHROMATOGRAPH FOR LABORATORY USE ONLY & **** & **** & **** & **** & * \# \(_{\text {* }}\) (& 354. & 762. \\
\hline X-RAY EQUIPMENT USED BY BOMB SQUADS & 344. & **** & * \({ }_{\text {*** }}\) & **** & **** & **** & 689. \\
\hline FIELD NARCOTIC SCREENING KITS & 169. & 820. & B13. & 844. & 807. & . 259. & 240. \\
\hline POLYGRAPH & **** & **** & **** & **** & **** & **** & **** \\
\hline
\end{tabular}

\section*{Table}

\section*{I B-3}

THE COEFFICIENT OF CONCORDANCE IS GTENTEICANTT AT TLF
THE COEFFICIENT OF CONCORDANCE iS SIGNIFTCONT AT THE THE CDEFFICIENT OF CONEARDANCE IS GYGNI GANT AT THE ThF CDEFFICIENT OF CONCORDANIE IS GTGNI : EAANT AT THE THE COEFFICIENT OF CONCORDANCE is gigntFicant at the THE CDEFFICIENT OF CONCORDANCF IS STGNIEICANTT AT THE THE COEFFICIENT OF CONCORDANCT IS STGNIFICANT AT THF

AFDAOTMENTE пEDADYMENTE. GPDARTMENTS. AEDADPMENTE OPDADTMENTE AFOADTMENTE. AFOARTMEATG.

RAAKS BY NEPADTMFAIY TYPF
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CTATF & C.OUNITY & CITY(1-9 OEFICFRS) & \[
\begin{gathered}
\text { CITY(1n-49 } \\
\text { OFFICFOS }
\end{gathered}
\] & CrTV(50 0Q MORF OFFTCERS) & \[
\begin{aligned}
& \text { FYFTY } \\
& \text { LARGFST } \\
& \text { CTTYEG }
\end{aligned}
\] & TOWNGHYP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline NARCOTIC AND EXPLOSTVE DETECTIRS
PRE-ARREST DREATH-ALCOHOL SCRFENING DEVICE & & & & 2 & \(\frac{2}{4}\) & & & \\
\hline PRE-ARREST GREATH-ALCOHOL SCREENING NEVICE & 2. & 7 & 4 & 3 & 4 & & 10 & \(?\) \\
\hline FIHGERPRINT KITS & 5 & 1. & 1 & 4 & 5 & & 1 & 5 \\
\hline WALK-THROUGH MFTAL WFAPONS DETECTORS & 11 & 0 & R & 9 & 9 & & 4 & 9 \\
\hline HAIND-HELD METAL WEAPONS DETFCTORS & 9 & 10 & 7 & 7 & 8 & & * & 7 \\
\hline OTMER TYPES OF WEADONS NETFCTORS & 10 & 19 & 11 & 9 & 10 & & 11 & 10 \\
\hline GAS CHROMATOGRAPH FOR LABORATORY UEE ONLY & 7 & A & 10 & 11 & 19 & & 0 & 11 \\
\hline X-RAY EQUYDMFNT USFD BY ROMA SOIIADE & A & 5 & 9 & 10 & 7 & & 7 & R \\
\hline FIELD MARCOTIC SCRFFNIMS KITS & \(\cdots\) & 7 & 3 & 1 & 1 & & 5 & 1 \\
\hline POLYGRAPH & 6 & \(k\) & 6 & 6 & 6 & & 6 & 6 \\
\hline
\end{tabular}

\section*{COMPOSITF RANKS FOR ALL CTTTFS}

\section*{CONTINUED \(20 F 5\)}

Table.
II B-4

THF COFFFICIENT OF CONCORDANEF IS GIGNTFICANT AT TWF THE COEFFICTENT OE CNNCOROANCE IS STANTEICANT AT THE THE COFFFICTENT OF COUUORDANEE TS GTGNTEICANT AT THE THE COEFFICTENT OF CONCORDANEF TS EIGNTFICANT AT THE THE COFFFICIFNT OF CAMIORDANCE IS CIGNTEICANT AT THE THE COEFFICIENT OF PONCORDAMCF IS SICNTEICAMT AT THE THE COEFFICIENT OF CONCORDAMCF IS STGNIEICAAT AT THE
THE COFFFICIENT OF CONCOROAICF TS CIGNIFICAMT AT THE THE COFFFICIENT OF CONCOROANICE TS EIGNIFICAHT AT THE
THF COEFFICIENT OF CONCORDANCE IS EYGNIFICAMT AT THE THE COEFFICTENT OF CONCORDANCE IS CIGNTEICAMT AT THE THF COFFFICTENTT OF CONGORDANICF IS CTGNTFICANT AT THE

 Onnत DFRCENT LEVFL ENO THE IT NENAOTAENTE IN LEAA DEATAA

 Onnn DERCFNT LEVFL ENO THF ION חFOARTUFNTE IN LFAA OFRTAA
 - OnAn PERCENT LEVEL ENO THE OT MFOAQTMFNTE IN LEAA DEATMA - חnnn. nEREFMT LFVFL EON TLF 19 DFDADTMFNTE TN LFAA REGTOA - OnN二 DFRFFNT LFVFI EOD TUE O\& DFDADTMFNTG TN LFAA OFAGAM In

\section*{CANKG BY LFAA REGIOA}

NARCOTIC ANA EXPLOSTVE DETECTORS
PRF-ARDEST BREATH-ALCOHOL GCREENINA NEVTCE QUANTTTATIVE RPEATH-ALCOHOL DFVICE
QUANTTTATIVE BPE
FIMGERPRINT KITS
FIMGERPRINT KITS
WALK-THROUGH MFTAL WEADONS IETFCTODS
HAYIO-HFLD MFTAL WEAPONS DETFCTORS
OTHER TYPFS OF WEAPONS NETFCTODS
GAS CHROMATOGRAPH FOR LARORATORY USE ONLY
X-RAY EOUIPMENT USFN BY BOMA SOIIADS
FIELD NARCOTIC SCRFENIMG KITS
POLYGRAPH

ITEMS WITH EXTREME RANK SUMS BY LEAA REGION (NINETY-FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\cdots\) & \[
572^{1} 759
\] & \[
650^{2} \cdot 849
\] & \[
\begin{gathered}
3 \\
645^{\prime} \\
\hline
\end{gathered}
\] & \[
583.772
\] & \[
\begin{gathered}
5 \\
684: 887
\end{gathered}
\] \\
\hline NARCOTIC AND EXPLOSIVE DETECTORS & 449. & 526. & 510. & 472. & 539. \\
\hline PRE-ARREST BREATH-ALCOHOL SCREENING DEVICE & 493. & 482. & 495. & 483. & 534. \\
\hline QUANTITATIVE GREATH-ALCOHOL DEVICE & 478. & 437. & 483. & 487. & 555. \\
\hline FINGERPRINT KITS & 438. & 560. & 521. & 447. & 586. \\
\hline WALK-THROUGH METAL WEAPONS DETECTORS & 830. & 949. & 958. & 814. & **** \\
\hline HAND-HELD METAL WEAPONS DETECTORS & 1**** & **** & **** & **** & **** \\
\hline OTHER TYPES OF WEAPONS DETECTORS & 906. & 971. & 992. & 911. & **** \\
\hline GAS CHROMATOGRAPH FOR LABORATORY USE ONLY & **** & **** & **** & **** & **** \\
\hline X-RAY EQUIPMENT USEO 3Y gome SQuads & 920. & **** & **** & 944. & **** \\
\hline FIELO NARCOTIC SCREENING KITS. & 359. & 400. & 450. & 428. & 460. \\
\hline POLYGRAPH & **** & **** & **** & **** & **** \\
\hline
\end{tabular}

ITEMS WITH EXTREME RANK SUMS BY LEAA REGION (Ninety-five pegcent interval given at column head)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
511 \cdot 688
\] & \[
500,675
\] & \[
494 \text { : } 669
\] & \[
594: 785
\] & \[
\begin{aligned}
& 10 \\
& 478, \\
& \hline 849
\end{aligned}
\] \\
\hline NARCOTIC AND EXPLUSIVE DETECTORS & 423. & 410. & 422. & 474. & 389. \\
\hline PRE-ARREST GREATH-ALCOHOL SCREENING DEVICE & 442. & 348. & 398. & 469. & 375. \\
\hline QUANTITATIVE BREATH-ALCOHOL DEVICE. & 448 . & 403. & 387. & 442 . & 379. \\
\hline FINGERPRINT KITS & 508. & 453. & 430. & 563 . & 395. \\
\hline WALK-THROUGH METAL WĖAPONS DETECTORS & 742. & 768. & 776. & 889. & 767. \\
\hline HANO-HELD METAL WEAPONS DETECTORS & **** & **** & **** & **** & **** \\
\hline OTHER TYPES OF WEAPONS DETECTORS & 823. & 771. & 829. & 918* & 785. \\
\hline GAS CHROMATOGRAPH FOR LABORATORY USE ONLY & 897. & 870. & 771. & **** & 882. \\
\hline X-RAY EQUIPMENT USED GY BOMB SQUADS & 761. & 831. & 810. & 927. & 753. \\
\hline FIELO NARCOTIC SCREENING KITS & 356. & 379. & 359. & 393. & 256. \\
\hline POLYGRAPH & **** & **** & **** & **** & **** \\
\hline
\end{tabular}

\section*{Table \\ II B-6}

REGAROING EACH REGION AS A RESPONDENT, IF THE TEN RANKINGS WERE RANDOM THE RANK SUM OF AN ITEM WOULD LIE IN THE INTERVAL (32, 88)
95 PERTENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THIS IVTERVAL:
NARCOTIC AND EXPLOSIVE DETECTORS 21.
OTHER TYPES OF WEAPONS DETECTORS
21.
99.

GAS CHROMATOGRAPH FOR LABORATORY USE ONLY
99.
9.

FIELD NARCOTIC SCREENING KITS USY ONLY 29.9

REGAROING EACH LEAA REGION AS A RESPONDENT.
THE COEFFICIENT OF CDNCORDANCE IS SIGNIFICANT AT THE 0000 PERCENT LEVEL.

REGARDING EACH DEPARTMENT TYPE AS A RESPONDENT IF THE SEVEN RANKINGS WERE RANOOM. THE RANK SUM OF AN ITEM WOULD LIE IN THE INTERVAL (19. 65) 95 PERCENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THIS INTERVAL:
OTHER TYPES OF WEAPONS DETECYORS
68.

GAS CHROMATOGRAPH FOR LABORATORY USE ONLY
\(72{ }^{\circ}\)
FIELD NARCOTIC SCREENING KITS
14.

1

REGARDING EACH DEPARTMENT TYPE AS A RESPONDENT. THE COEFFICIENT OF CONCORDANGE IS SIGNIFICANT AT THE 0000 PERCENT LEVEL.

\section*{FREQUENEY DISTRISUTION OF RANKS OF}

DETECTION SYSTEYS BY DEPARTMENT TYPE

FREQUENCY DISTRIBUTION OF RANKS OF
DETECTION SYSTEMS
BY DEPARTMENT TYPE

\section*{FREQUENCY DISTRIBUTION OF RANKS OF}

DETECTION SYSTEMS
BY DEPARTMENT TYPE

fivle
II \(B-7\) cont.

FREQUENCY DISTRIGUTION OF RANKS OF
DETECTION SYSTEYS BY DEPARTMENT TYPE

Table
II C-1

\section*{MATIONAL RANKS}

FLARES
FLOOD LIGHTS
FIRST AID ICITS
SIRENS
LOUDSDEAKFRS
FIRE EXTIUITUYSHERS
COMAIVED GIREN/LIGHT/LOUOSPFAKER SYCTEM
FLASHING LIGHTS
SPOT LIGHTS
REFLECTORS
RESCUE EOUTPUENT

Table
II C-2

Table
II C-3

THE COEFFICIENT OF CONCORDANCE is GIGNTFICANT at ThF THE COEFFICIFNT OF CONCORDANCE IS SIGNIFICANT AT THE THE COEFFICIENT OF CONEORDANCE IS SIGNIEICANT AT THE THF. COEFFICIENT OF CONCORDANCF IS CIGNIEICANT AT THF TH: COEFFICIENT OF CONEARDANCE IS CISNIFICANT AT THF THE COEFFICTENT OF CONCORDANCF IS GIANIEICANT AT THE THE COEFFICTENT OF CONCORDANCF IS GTGNIFICANT AT THE
```

.ONON DERCFNT LEVEE END THF 47 STATF
OHIN DERCENT LEVFL FOD THF g,o COUNTY
ONIN DFREFNT LFVFL END THF ST4 CYTY(1-G OEFPCFRS:

```

```

.0NAN PFRCFNT LFVFI. FON THF SHN CYTYPSN OR UNRF OFFICFDE
|Onח\Omega DFRCFNT LEVEL FOR THF 45 FYFTY LARGEST CTTYFS
|DNON DERCFMIT LEVFI. FNA THF ON TOWNGHTP

```

MFDABTMEAITS. AFDADTMEATC. AFQAOTMEATS. GFOADTMEMTS. ПFOADTMENTE. ПFO\&DTMRATE ПFOARTMENTS.

RAAIKS PY NEPAPTMEATT TYOF
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CTATE & raunty & \[
\begin{aligned}
& \text { CrTY(ima } \\
& \text { OFEICFRS) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CITY(10-40 } \\
& \text { OFEPFRS) }
\end{aligned}
\] & CITYPSN OR MORF. OFFTCERS) & FTETY LARGFET CITIFS & TOWMSMTO \\
\hline
\end{tabular}
FLARES
FLOOD LIGHTS
FIRST AIO KITS
SIRENS
LOUDSPFAKFRS
FIYE EXTIIGGIISHERS
COMRINED SIREN/LIGHT/LOUOSPEAKFR SYSTEM
FLASHING LIGHTS
SPOT LIGHTS
REFLECTORS
RESCUE EQUIPMENT

COMPOSITE RANKS FOR ALL CTTIFS
\begin{tabular}{|c|c|}
\hline Flares & 8 \\
\hline FLOOD LIGHTS & 10 \\
\hline FIRST AID KITS & 5 \\
\hline SIRENS & 4 \\
\hline LOUDSPFAKERS & 7 \\
\hline FIRE EXTINGUISHERS & \(a\) \\
\hline COMBINED SIREN/LIGHT/LOUDSPEAKER SYSTEM & 1 \\
\hline FLASHING LTGHTS & 7 \\
\hline SPOT LIGHTG & 6 \\
\hline REFLECTORS & 11 \\
\hline RESCUE EQUTPVENT & \(\cdots\) \\
\hline
\end{tabular}

Table
II C-4

THE CDEFFIEIFNT OF CONCORDAHCF IS SIGNIEICAMT AT THF THE COEFFICIENT OF CONEOROANCE IS SIGNIEICMNT AT THE THE COEFFICIENT OF CONCORDANICE IS GTSNIEICANT AT Y HE THE COEFFICIENT OF CONCORDANEE IS GYSNIEICANT AT YHE THE COEFFICIENT OF CONEORDANCE IS GTENYEICANT AT THF
THE COEFFICIENT OF CONCORONME IS STGNTEICANT AT YUE THF COEFFICIENT OF CONCORDANE IS SIGNIFICANT AT THE THF COFFFICIFNT OF CONCOROANCE IS STGNIEICANT DT THF THE COEFFICIENT OF CONCORDANCE IS SIGNTEIEANT AT THF THF COEFFICTENT OF CONCORDANCE IS SIGNIFICANT AT THE THF COEFFICIENT OF CONCORDANCF IS STGMTETCANT AT YHE
- OnND DEREFVT LEVFL EAR THF 114 DFDARTMFNTS TM LEAA DFAYON -ODNA ロFOPFNT LEVFL ENO THF I2A DFOAOTUFNTE IN LFAA OFGINN
 - ONAN DEREENT LEVEL EAD TLE IIX DFDAQTMENTE IN LFAA PFGTAN -OAND DFRCFNT LFVFL ENB TUE IXY OFOADTMENTE IN LFAB DEGTON - DAn D DFRCFMT LFVFL FOR THF in* OFDARTMENTS IM LFAA DFGION - DANA DEREFNT LEVEL FBO TUE 90 DEDAOTMENTE IN LFAA GFGTOAI - OnNO DEREEMT LEVEL END THE OA DEDADTMENTE EA LEAA REfTOA - nnñ degrent level Eno the ila dephatuente fil leaa berinn - OnAn DERTFAT LEVEL ENO THE OF OFPADTMENTS IN LEAA DFEITA IN

FLARES
FLOOD LIGHTS
FIRST AIO XITS
SIRENS
LOUDSOFAKERS
FIRE EXTINGUISHERS
COYBINFD SIRFN/LIGHT/LOHDSDEAKFR SYSTEN
FLASHING LTGHTS
SPOT LIGHTS
REFLECTORS
RESCUF EOUIPMENT

DANKS BY LFAA PFGION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 5 & 17 & 4 & \(1^{n}\) & 0 & \(\square\) & 10 & m & 7 & 10 \\
\hline 7 & 11 & 11 & 11 & 10 & If & 0 & 10 & 9 & 0 \\
\hline 3 & 6 & 6 & 4 & 4 & 4 & 4 & 4 & 0 & 3 \\
\hline 6 & 4 & 5 & 5 & 5 & 5 & . 7 & 5 & 3 & 6 \\
\hline 10 & 9 & 9 & A & 6 & 6 & 3 & 2 & 5 & ? \\
\hline A & 5 & 10 & 7 & 7 & 9 & A & 0 & 10 & 7 \\
\hline 1 & 3 & 1 & 1 & 1 & 1 & 1 & 1 & j & 1 \\
\hline 1 & 7 & 2 & 5 & \(?\) & 3 & \(?\) & 3 & 2 & 3 \\
\hline 0 & R & 7 & 6 & A & 7 & 5 & 7 & 6 & 5 \\
\hline 11 & 7 & 9 & 0 & 11 & 11 & 11 & 11 & 11 & 19 \\
\hline 3 & 1 & 3 & 3 & 3 & * & 6 & 7 & 4 & 4 \\
\hline
\end{tabular}

T゙ale II C-5

Flares
FLOOD LIGHTS
FIRST AID KITS
SIRENS
LOUDSPEAKERS
FIRE EXTINGUISHERS
COMBINED SIREN/LIGHT/LOUOSPEAKER SYSTEM
FLASHING LIGHTS
SPOT LIGHTS
REFLECTORS
rescue equipment
flares
FLOOD LIGHTS
FIRST AIO KITS
SIRENS
SIRENS
LOUDSPEAKERS
LOUDSPEAKERS
COMBINED SIREN/LIGHT/LOUOSPEAKER SYSTEM.
FLASHING LIGHTS
SpOT LIGHTS
REFLECTORS
RESCUE EQUIPMENT
ITEMS WITH EXTREME RANK SUMS BY LEAA REGION (NINETY-FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD)
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 589.778 & 667, 868 & 656. 855 & 583. 772 & 695. 900 \\
\hline **** & **** & **** & 081. & **** \\
\hline 843. & **** & 954. & . 883. & **** \\
\hline 505. & **** & 633. & **** & 635. \\
\hline **** & **** & **** & **** & **** \\
\hline **** & 938\% & 858. & 802. & 903. \\
\hline **** & **** & **** & **** & **** \\
\hline 4B8. & 500. & 473. & 404. & 468. \\
\hline 524. & 506. & 603. & 455. & 569. \\
\hline **** & **** & **** & **** & **** \\
\hline 977. & **** & **** & 924. & **** \\
\hline 576. & 610. & **** & **** & **** \\
\hline
\end{tabular}

ITEMS WITH EXTREME RANK SUMS BY LEAA REGION (NINETY-FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD)
\begin{tabular}{|c|c|c|c|c|}
\hline 6 & 7 & 8 & 9 & 10 \\
\hline 528.707. & 505, 682 & 500.675 & 589.778 & 483. 656. \\
\hline 780. & 699. & 721. & **** & 660. \\
\hline 789. & 711. & 745. & 822. & 696. \\
\hline **** & 461. & 445. & **** & 445. \\
\hline **** & **** & **** & **** & - \({ }^{\text {a }}\) 禹 \\
\hline **** & 714. & **** & **** & 697. \\
\hline **** & **** & **** & **** & **** \\
\hline 323. & 358. & 373. & 408. & 321. \\
\hline 410. & 409. & 426. & 529. & 391. \\
\hline **** & **** & **** & **** & **** \\
\hline 887. & 843. & 856. & 960. & 799. \\
\hline **** & **** & **** & **** & **** \\
\hline
\end{tabular}

Inile
In 6

GEGAROING EACH REGION AS A RESPONJENT: IF THE TEN RANKINGS WERE RANDOM, THE RANK SUM OF AH ITEM WOULD LIE IN THE INTERVAL (32, BA 95 PERCENT OF THE THE. THE FOLLOWING ITEMS LIE OUTSIOE THIS INTERVAL:
FLOOO LIGHTS 96.
COMEIVEO SIREN/LIGHT/LOUDSPEAKER.SYSTEY
FLASHING LIGHTS
96.

REFLECTORS
21.
105.
regarding each leat region as a responoent.
THE COEFFICIENT OF COVCOROANCE IS SIGNIFICANT AT THE
. 0000 PERCENT LEVEL.

REGAROING EACH OEPARTMENT TYPE AS A RESPONDENT, IF THE SEVEN RANKINGS WERE RANDOM, THE RANK SUM OF AN ITEY WOULD LIE IN THE INTERVAL (19 : 65) 95 PERCENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THIS INTERVAL:
FLOOD LIGHTS
70.

COMBINED SIREN/LIGHT/LOUDSPEAKER SYSTEM
12.

COMBINED SIREN/
12*
FLASHING LIGHTS
13.

REGARDING EACH DEPARTMENT TYPE AS A RESPONDENT: THE COEFFICIENT OF CONCORDANGE 15 SIGNIFICANT AT THE , OOON PERCENT LEVEL.

FREquency distribution of ranks of
EMERGENCY WARNING AND RESCUE EQUIPMENT BY DEPARTMENT TYPE

Table
II C-7 cont.

FRESUEACY NISTHIRUTIOJ OF RANKS UF
EMERGEVCY WARVTYG ANO RFSEIE FOUINMEWI QY DEPNHTYEYT TYPE

\section*{FQFNUENEY TISTHIGUTIU.A OF RANKS UF}

EMERGEVEY WARNETG AND PESCUE FRUIPME II GY OEIPNKIWE IT IYAE

Table
II C-7 cont.

FREQUENCY DISTRISUTION OF RANKS OF
EMERGEVCY WARNING ANO RESCUE EQUIPMENT BY DEPARTMENT TYPE

\section*{Table \\ II D－1}

\section*{NATIONAL PANKS}

RATNWEAR
BOMB OISPOSAL NEVICES
GAC，YASKS
BO：IY ARMOR
POLICE IINIEORM
VEIICLF ARMOR
HAND HFLD SHIEIDS
HIGH VISIRILTTY CLOTHINA OD DATCHES
BALLISTIC HFLMETS
CRASH HELNFTS
RIOT HFLMFTS

Table
II D－2
RAINWEAR
BOMB OISPOSAL OEVICES
GAS MASKS
BODY ARMOR
POLICE UNIFORM
VEHICLE ARMOR
HAND HELD SHIELDS
HIGH VISIBILITY CLOTHING OR PATCHES
BALLISTIC HELMETS
CRASH HELMETS
RIOT HELMETS

TEMS WITH EXTREME RANK SUMS BY DEPARTMENT TYPE ININETY－FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline STATE
221.342 & COUNTY
1182.1445 & \[
\begin{aligned}
& \text { CITY(1-9 } \\
& \text { OFFICERS } \\
& 1257.1526
\end{aligned}
\] & \[
\begin{aligned}
& \text { CITY(10-49 } \\
& \text { OFFICERS) } \\
& 1411,1696
\end{aligned}
\] & \[
\begin{aligned}
& \text { CITY(50 OR } \\
& \text { MORE } \\
& \text { OFFICERS) } \\
& \text { 1308.1583 }
\end{aligned}
\] & \begin{tabular}{l}
FIFTY \\
LARGEST \\
CITIES \\
210． 329
\end{tabular} & TOWNSHIP
395． 552 \\
\hline ＊＊＊＊ & ＊＊＊＊ & ＊\({ }_{\text {＊}}\)＊\({ }^{\text {\％}}\) & ＊＊＊＊ & ＊\({ }_{\text {＊}}+\)＊ & 351． & 328. \\
\hline ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & 661. \\
\hline 183． & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ \\
\hline ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊\(* * *\) & ＊＊＊＊ & 208 。 & ＊＊＊＊ \\
\hline 211. & 778． & 678. & 851. & ＊＊＊＊ & ＊＊＊\({ }^{\text {＋}}\) & 228． \\
\hline 353. & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & 585. \\
\hline 347. & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & 586. \\
\hline ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊\(* * * *\) & ＊＊＊＊ & 362 ． & ＊＊＊＊ \\
\hline ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ \\
\hline 389 。 & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊ ＊\(_{\text {＊}}\) & ，661． \\
\hline 173. & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & & 207 。 & 319． \\
\hline
\end{tabular}

\section*{Table \\ \section*{II D-3}}

THE COEFFICIENT OF CONCORDANCE IS GTENTEICANT AT THE THE COEFFICIENT OF SONCORDANCE IS ETANTEICANT AT TUF THE COEFFICIFNT OF GONCORDANCE IS EIGNIFICANT AT THE THF COEFFICIEMT OF CONCORDANICE IS GTANTEICANT AT THE THE COEFFICIENT OF CONCORDANCE IS ETENTEICANT AT THE THE COEFFICIENT OF CONCORDANCE IS GYENTFICANT AT TUE THE COFFFICIENT OF CONCORDANCE IS CTENTEICAMT AT THE
```

-ONNO DEREENT LEVEL FON PLF 47 STATF
-ONON DEREFNT LEVFL EONS THF pin CNIMMY
.ONON DFRCENT LEVFL FOS THF S.3P CYTY(I-9 NEEYCFRS)
|OnN DERCFNT LEVFL ENO THF 2SO CITY(1n-UO NFFYCFRE)

```

```

-OnN\# pFDPENT LEVFL ERN THF LE FYETY L.AROEGT CTTIFE
.Onnत PFRCENT I.EVFL FON THE 7O TOWNSLYP

```

TEDADTMEMTE ПEDARTMENTC. CEDADTMENTE. BẼOADTMFMTE. neoadtarnic. RFOADYMEATC. CFOADTMENTS.

RAINWEAR
BOMR IISPOSAL REVICFS
GAS MASKS
BODY ARMOR
POLICE UNIFOEV
VEHICLE ARMOR
HANO HELD GHIELOS
HIGH VISIAII.TTY CLOTHINIA OR PATCHES
BALLISTIC HFLMETS
CRASH HELMFTS
RIOT HELMFTS

RANKS OY NFPADTVENT TYOF

\section*{COMPOSITF RANKS FOR ALL CTTTES}

Table
II D-A
The coeffictent of enneordance is ctontficant at the THE COEFFICIENT OF CONGORDANCE IS GTANTFICANT AT THF THE COEFFICTENT OF CONCORDAICE IS GTANTICANT AT THE The coefficient of gnirghdanice is gianticant at the The coefficient of ennenrdanct is cienticicnnt at thf The coefficient of concordayce is gtinticant at tue THE COFFFICIENT OF CONCORDAICE TS EIANTEICONT MT THE the coefficifnt of conroronice is stanteicnelt at the
the coffaticient of connondomee is gtenteicant at the
THE COEFFICIFNT OF GNCORONACE IS STANTEICANT AT THE

\begin{abstract}
;nnnn neprfin level enn tue iqx DFDAptuFnte pht lFad ofrina

 - OnAN DERCFMT LEVEL ENO THE 11 T DFDADTMFNTG YN LFAA DFAYON
 - ONAN PERCFNT LEVEL END THF 1 OUG DFPADTMENTE PA LEAA DFOTOM

 - OnOn DFDCENT LEVFI. END THE ita חFOADTMFNTE TN LEAA DEGIOM

\end{abstract}

\section*{RAINWEAR}

BOVB DISPOSAL DEVICES
GAS MASKS
BODY ARMOR
POLICE UNIFORM
VEHICLE ARMOR
HAHD HELD SHIELDS
HIGH VISIAILITY CLOTHING on patches
BALLISTIC HELMFTS
CRASH HFLMFTS
RIOT YELMFYS

OANKE BY LFAA PFGION

\section*{RA＇INNEAR}

BOMB DISPOSAL DEVICES
GAS MASKS
BOOY ARMOR
POLICE UNIFORM
VEHICLE ARYOR
HAND HELD SHIELDS
HIGH VISIBILITY CLOTHING OR PATCHES
GALLISTIC HELMETS
CRASH HELMETS
RIOT HELMETS

BOMB DISPOSAL UEVICES
GAS MASKS
BODY ARMOR
POLICE UNIFORM
VENICLE ARMOR
HAND HELD SHIELDS
HIGH VESIOILITY CLOTHING OR PATCHES BALLISTEG HELMETS
CRASH HELMETS
RIOT HELMETS
itevs with extreye rank sums ay leaa region （ninety－five percent interval given at column head）
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 583． 772 & 673． 874 & 650． 849 & 583． 772 & 695．900 \\
\hline 530. & 661. & 583. & 568. & ＊＊＊\({ }^{\text {＊}}\) \\
\hline 871. & 966. & 915. & 858. & 951． \\
\hline 507. & 624. & 611. & 564. & 660. \\
\hline ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ \\
\hline 422． & 466. & 471． & 406. & 462． \\
\hline 813. & 929. & 914. & 779. & 956. \\
\hline 798. & 914. & 913. & 791. & 984. \\
\hline ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & 791. & ＊＊＊＊ \\
\hline ＊＊＊＊ & ＊＊\({ }_{\text {＊}}\)＊ & ＊＊＊＊ & ＊＊＊＊ & \\
\hline 90́。 & ＊\(⿻\)＊+ ＊ & ＊ ＊\(^{*}\)＊ & 822. & ＊＊＊＊ \\
\hline 509. & 519． & 583． & 539. & 554. \\
\hline
\end{tabular}

ITEMS WITH EXTGEME RANK SUMS GY LEAA REGION （NINETY－FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD）
\begin{tabular}{|c|c|c|c|c|}
\hline 6 & 7 & 8 & 9 & 10 \\
\hline 533． 714 & 500．675 & 305． 682 & 589． 778 & 478．649 \\
\hline ＊＊＊＊ & 430. & ＊＊＊＊ & ＊＊＊＊ & 469. \\
\hline ＊＊＊＊ & 736. & 721. & ＊＊＊＊ & ＊＊＊＊ \\
\hline 520. & ＊＊＊＊ & ＊\({ }^{\text {＊}}\)＊ & 474． & 464. \\
\hline ＊＊＊＊ & ＊＊＊＊ & & 575. & ＊＊＊＊ \\
\hline 451． & 280． & 291． & 520. & 298． \\
\hline 762. & 750. & 724. & 842. & 706. \\
\hline 751. & 714. & 737. & 811． & 660. \\
\hline 736. & ＊＊＊＊ & ＊＊＊＊ & 795. & ＊＊＊＊ \\
\hline ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ \\
\hline 762 。 & 737 。 & 724 。 & 861. & 698. \\
\hline 449. & 483. & 444. & 503. & ＊＊＊＊ \\
\hline
\end{tabular}
REGAROING EACH REGION AS A RESPONDENT. IF THE TEN RANKINGS WERE RANDOM,
YHE RAYK SUM OF AN ITEY WOULS LIE IN THE INTERVAL I \(32 . ~ B R) ~\)
9S PERCENT OF THE TIYE. THE FOLLONING ITEMS LIE OUTSIDE THIS INTERVAL:
GAS YASKS
POLICE UNIFORM
VEHICLE ARYOR
HAND HELD SHIELDS
RIOT HELMETS

REGARDING EACH LEAA REGION AS A RESPONDENT. THE COEFFICIENT OF CONCORDANEE IS SIGNIFICANT AT PHE 0000 DERCENT LEVEL.
REGARDING EACH DEPARTMENT TYPE AS A RESPONDEVT, IF THE SEVEN RANXINGS WERE RANDOM, THE RANK SUM OF AN ITEY WOULD LIE IN THE. INTERVAL (19. 65) 95 PERCENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THIS INTERVAL: POLICE UNIFORM
10.
RIOT HELMETS
12.
REGARDING EACH DEPARTMENT TYPE AS A RESPONDENT,
THE COEFFICIENT OF CONCORDANCE IS SIGNIFICANT AT THE \(\quad 00\) NO PERCENT LEVEL.

FREQUENCY OISTRIGUTION OF HANKS OF
FqOTECTIVE EJUTPMENT AND CLOTHINS AY OEPARIME II TYPE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & TATE & \multicolumn{2}{|l|}{COINTY} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { C(TY } \\
\text { (1-G } \\
\text { OFFICERS) }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { CITY } \\
\text { (IU-4y } \\
\text { OFF(CERS) }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { CIFY } \\
\text { (50+ } \\
\text { OFFICERS) }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{l}
FIFTY \\
LARGEST \\
CITIES
\end{tabular}} & \multicolumn{2}{|l|}{TONDSAIO} & \multicolumn{2}{|r|}{TSTAL} \\
\hline , 10 & PCT & No & \({ }^{\text {Of }}\) & NO & Prt \\
\hline 2 & 4.3 & 19 & A. 4 & 25 & 14.5 & 23 & 8.4 & 8 & \(3 \cdot 3\) & 1 & 2.2 & 7 & 8.6 & 84 & 7.4 \\
\hline 10 & 21.3 & 63 & 28.0 & 77 & 32.4 & 72 & 27.5 & 53 & 21.7 & 5 & 11.1 & 34 & 42.0 & 314 & 27.5 \\
\hline 5 & 10.6 & 31 & 13.0 & 32 & 13.4 & 25 & 9.5 & 15 & 6.1 & 2 & 4.4 & 11 & 13.6 & 121 & 10.6 \\
\hline 3 & 6.4 & 10 & 4.4 & 15 & 0.3 & 27 & 10.3 & 18 & 7.4 & 4 & 8.9 & 4 & 4.9 & 81 & 7.1 \\
\hline 4 & 8.5 & 11 & 4.9 & 7 & 2.9 & 18 & 6.9 & 18 & 7.4 & 1 & 2.2 & 2 & 2.5 & 61 & 5.3 \\
\hline 3 & 6.4 & 11 & 4.9 & 10 & 4.2 & 18 & 6.9 & 13 & 3.3 & 1 & 2.2 & 3 & 3.7 & 59 & 5.2 \\
\hline 4 & 9.5 & 12 & 5.3 & 12 & 5.0 & 16 & 5.7 & 23 & 9.4 & 4 & 8.9 & 1 & 1. 2 & 71 & 6.2 \\
\hline 5 & 10.6 & 9 & 4.0 & 10 & 4.2 & 12 & 4.6 & 11 & 4.5 & 1 & 2.2 & 2 & 2.5 & 50 & 4.4 \\
\hline 2 & 4.3 & 9 & 4.0 & 11 & 4.6 & 11. & 4.2 & 18 & 7.4 & 1 & 2.2 & 7 & 8. 6 & 59 & 5.2 \\
\hline 5 & 10.6 & 20 & 8.9 & 9 & 3.8 & 10 & 6.1 & 25 & 10.2 & 11 & 24.4 & 3 & 3.7 & 89 & 7.8 \\
\hline 4 & 9.5 & 19 & 8.4 & 21 & 6.8 & 20 & 7.6 & 36 & 14.8 & 13 & 2B.9 & 5 & 6.2 & 118 & 10.3 \\
\hline 0 & - 0 & 11 & 4.9 & 9 & 3.8 & 6 & 2.3 & 6 & 2.5 & 1 & 2.2 & 2 & 2.5 & 35 & 3.1 \\
\hline 0 & - 0 & 3 & 1.3 & 4 & 1.7 & 0 & . 0 & 3 & 1,2 & 0 & . 0 & 0 & . 0 & 10 & .9 \\
\hline 0 & - 0 & 1 & . 4 & 3 & 1.3 & 2 & - 9 & 1 & . 4 & 0 & .0 & 1 & 1.2 & A & .7 \\
\hline 4 & 8.5 & 16 & \(7 \cdot 1\) & 7 & 2.9 & 10 & 3.8 & 30 & 12.3 & 7 & 15.6 & 2 & 2.5 & 76 & 6.7 \\
\hline 2 & 4.3 & 9 & \(4 \cdot 0\) & H & 3.4 & 8 & 3.1 & 15 & 6.1 & 3 & 6.7 & 4 & 4.9 & 49. & 4.3 \\
\hline 2 & \(4 \cdot 3\) & 12 & 5.3 & H & 5.4 & 9 & 3.4 & 17 & 7.0 & 3 & 6.7 & 0 & .0 & 51 & 4.5 \\
\hline 2 & 4.3 & 15 & 6.7 & 12 & 5.0 & 19 & 7.3 & 21 & H.6 & 9 & 20.0 & 1 & 1.2 & 79 & 6.9 \\
\hline 4 & 8. 5 & 12 & 5.3 & 13 & 5.5 & 13 & 6.9 & 15 & 6.1 & 3 & 0.7 & 5 & 6.2 & 70 & 6.1 \\
\hline 4 & A. 5 & 16 & 7.1 & 24 & 14.1 & 22 & 8.4 & 18 & 7.4 & 7 & 15.6 & 4 & 4.9 & 95 & 8.3 \\
\hline 2 & 4.3 & 13 & 5.8 & 19 & 0.0 & 23 & 8.8 & 22 & 9.0 & 3 & 6.7 & 5 & 6.2 & 87 & 7.6 \\
\hline 6 & 12.8 & 28 & 12.4 & 24 & 10.1 & 34 & 13.0 & 16 & 6.6 & 4 & 13.3 & 14 & 17.3 & 128 & 11.2 \\
\hline 5 & 10.6 & 28 & 12.4 & 29 & 12.2 & 27 & 10.3 & 27 & 11.1 & 2 & 4.4 & A & 9.9 & 126 & 11.0 \\
\hline 9 & 19.1 & 25 & 11.1 & 32 & 13.4 & 36 & 13.7 & 23 & 9.4 & 0 & . 0 & 15 & 18.5 & 1.40 & 12.3 \\
\hline 5 & 10.6 & 32 & 14.2 & 46 & 19.3 & 47 & 17.9 & 33 & 13.5 & 2 & 4.4 & 19 & 23.5 & 184 & 16.1 \\
\hline 2 & 4.3 & 12 & 8.4 & 16 & 6.7 & 9 & 3.4 & 7 & 2.9 & 0 & .0 & 4 & 4.9 & 57 & \(5 \cdot 0\) \\
\hline 0 & - 0 & 3 & 1.3 & 1 & . 4 & 0 & . 0 & 1 & . 4 & 0 & . 0 & 0. & - 0 & 5 & .4 \\
\hline 0 & . 0 & 3 & 1.3 & 4 & 1.7 & 1 & . 4 & 1 & . 4 & 0 & . 0 & 1 & 1.2 & 10 & . 9 \\
\hline 3 & 6.4 & 13 & 5.A & 11 & 4.6 & 19 & 7.3 & 13 & 5.3 & 3 & 6.7 & 5 & 6.2 & 67 & 5.9 \\
\hline 12 & 25.5 & 30 & 13.3 & 20 & 8.4 & 31 & 11.8 & 24 & 9.8 & 8 & 17.8 & 4 & 4.9 & 129 & 11.3 \\
\hline 6 & 12.E & 35 & 15.6 & 26 & 10.9 & 37 & 14.1 & 50 & 20.5 & 5 & 11.1 & 11 & 13.6 & 170 & 14.9 \\
\hline 10 & 21.3 & 39 & 17.3 & 39. & 16.4 & 36 & 13.7 & 35 & 14.3 & 2 & 4.4 & 9 & 11:1 & 170 & 14.9 \\
\hline 8 & 17.0 & 27 & 12.0 & 34 & 14.3 & 42 & 16.0 & 43 & 17.6 & 8 & 17.8 & 11 & 13.6 & 173 & 15.1 \\
\hline 4 & A. 5 & 18 & & 28 & 11.8 & 34 & 13.0 & 26 & 10.7 & 2 & 4.4 & 13 & 16.0 & 225 & 10.9 \\
\hline 2 & 4.3 & 15 & \% & 25 & 14.5 & 20 & 7.6 & 17 & 7.0 & 7 & 15.6 & '1.4 & 17.3 & 100 & 8.8 \\
\hline 1 & 2.1 & 10 & 4.4 & 13 & 5.5 & 7 & 2.7 & 15 & 6.1 & 3 & 6.7 & 2 & 2.5 & 51 & 4.5 \\
\hline 0 & - 0 & 11 & 4.9 & B & 3.4 & 6 & 2.3 & 7 & 2.9 & 4 & 8.9 & 4 & 4.9 & 40 & 3.5 \\
\hline 0 & - 0 & 7 & 3.1 & 12 & 5.0 & 18 & 6.9 & 6 & 2.5 & 3 & 6.7 & 3 & 3.7 & 49 & 4.3 \\
\hline 1 & 2.1 & \(?\) & . 0 & 7 & 2.9 & 3 & 1.9 & 4 & 1.6 & \(\cup\) & . 0 & 1 & 1.2 & 20 & 1.8 \\
\hline 0 & - 0 & 18 & 8.0 & 15 & 0.3 & 7 & 2.7 & 4 & 1.6 & 0 & . 0 & 4 & 4.9 & 48 & 4.2 \\
\hline 0 & . 0 & 0 & - 0 & 3 & 1.3 & 0 & . 0 & 1 & .4 & 0 & . 0 & 0 & . 0 & 4 & .4 \\
\hline 0 & . 0 & \(?\) & - 9 & 2 & . 8 & 2 & . 8 & 1 & . 4 & \(1)\) & . 0 & 1 & 1.2 & 3 & . 7 \\
\hline
\end{tabular}

Table
II D-7 cont.

-7 cont.
EREQUENCY OISTRIBUTION OF RANKS OF
PROTECTIVE EGUIPMENT AND CLOTHING BY OEPARTMENT TYPE

Table
II D-7 cont.
frequency oistribution of ranks of
protective equipment and clothing ay oepartment type

\section*{ANALYSIS FOR SECURITY EQUIPMENT}

Table
II E-1

\section*{NATIOMAL DANVE}

Table
II E-2

Table
II E-3

THE COEFFICIENT OF CONCORDANCE IS SISNIEICANY AT THE THF. COEFFICIENT OF CONCORDANCF IS GTGNIFICANT AT THF THE COEFFICIENT OF CONCORDANCE IS SIGNIEICANT AT THE THE COFFFICIENT OF CONRORDAMEE IS SITNIEICAMIT AT THF THE COEFFICIENT OF CONCOROANCE IS SIGNIEICAMT AT THF THE COEFFICIENT OF CONCOROANIE IS SIGNIEICAAT AT THF
THE COEFFICIENT OF CONCORDANCE IS SIGNTEICANT AT THF THE COEFFICIENT OF CONCORDANCE IS SIGNIEICANT AT THF
THE COEFFICYFNT OF CONCORDANCF IS STGNIEICANT AT THE
```

-nnnत oEqPFNT l.EVFf. En= THE b= STATE
.nnnz pERCFMT LEVEI. FOR THE 2nO CNINTY

```



```

-nnON DFECFAJT LEVFL FOO THE 74 TOWNGHYD

```

RANIKS GY NFPAOTMEAIT TYOF
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline STATE & rounty & \[
\begin{aligned}
& \text { CITY(q-a } \\
& \text { OFEICTRS }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CITY(gn=4a } \\
& \text { OFFICFDC) }
\end{aligned}
\] & CyTYISO Ab MORF nertcfres & \[
\begin{aligned}
& \text { FYFTY } \\
& \text { LARGEGT } \\
& \text { RITYES }
\end{aligned}
\] & TOWNGHPP \\
\hline
\end{tabular}

ALARM DISPLAYS IN REPADTMENT
CLOSED CIRCUIT TV
LOW-LIGHT LEVEL CLOSFD CIRCUIT TV
LENSES FOR NIGHT VISION SURVEILLANCF ENHIPURNT
STILL CAMERA ENUIPMENT FOR NIGHT VTSTON DEVICES GENERAL PURPOSE LOCKS
SPECIAL LOCKING DEVICES FOR DETENTIOA CENTFRS
NIrHT VISION SCOPE SUITARLF FER RIFLFS
HAND-HFLD NIGHT VISION FQUIDMENT

7
3
5
6
4
8
0
1
2
2
9
1
9
5
2
7
6
4
\begin{tabular}{lll}
1 & & 1 \\
9 & & 3 \\
7 & & 2 \\
4 & & 6 \\
3 & & 4 \\
2 & & 1 \\
0 & & 9 \\
6 & & 7 \\
5 & & 5
\end{tabular}
alarm displays in ifpartment
CLOSED CIRCUIT TV
LOW-LIGHT LEVEL CLOSED CIRCUIT TV
LENSES FOR NIGHT VISION SURVEILLANCE EOIIIPMFAT
STILL CAMERA EQUIPMFNT FOR NIGHT VYSION DEVICE?
GENERAL PIJRPOSE LOCKS
SPECIAL LOCKING DEVICES FOR DETENTTON CFNTERS
NIGHT VISION SCOPE SUITARLF FOR RIFLES
HAND-HELD NIGHT VISION FQUIPMFNT

Table
- II E-4

THE COEFFICIENT OF CONCORDANIEE IS SIGNIFICANT AT TLE THE COEFFICIENT OF CONCORDANCE IS GITANIFICANT AT TUE THE COEFFICIENT OF CONCORDANCF IS GIGNIFICANT AT TME THE COFFFICIENT OF CONRORDANCF IS CIGNIFICANT AT THF THE COEFFICIENT OF CONCORDANCE IS STANTFICANT AT THE THE COEFFICIENT OF CONCORDAMCE IS SIGNIFICANT AT THF THE COEFFICIENT OF CONCORDANCE IS SIGNTFICANT AT THE THE COEFFICIENT OF CONCORDANCE IS SIGNTEICANT AT THF THF COEFFICIENT OF CONCORDANCF IS GIGNIFICANT AT THF THE COFFFICPFNT OF CONCORDANCF IS SIGNIFICANT AT THE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline - & PERCFNT LEVEE & F00 & r & 111 & DEPAQTMEN & PM & 4 & & \\
\hline Onn & EERTENT LEVFIL & Enn & TH & 174 & CFPAQTUEN & IN & LEAA & ON & \\
\hline กn & PFRCFNT LEVEL & Fn & THE & 133 & nEPARTME & IN & LEAA & an & , \\
\hline 0กロก & DFRCFENT LEVFL & ni & THF & 119 & OFOARTAENT & IN & LFAA & [04 & \\
\hline กnกก & DFRCFNT LEVEL & ก & THF & 131 & DFPARTMEN & IN & LEAA & तat & 5 \\
\hline กロก & PFRCENT LEVEL & 0 & THI & 101 & CFPARTMFNT & TM & lfena & N & 6 \\
\hline กกกด & DFPRCFNT LEVFL. & FOO & TUE & 96 & OFPARTMENTC & IN & LFAA & TCAI & 7 \\
\hline ¢n¢ & PFRCFNT LEVEL. & Fnb & THE & 95 & DFPARTMENT & I' & LFAA & GTON & \\
\hline onno & PFRCFNT LEVFI, & & THF & 114 & DFPARTMENTS & & LFAA & Iont & 9 \\
\hline \(0 \cap 0\) & PFRCFNT LEV & & THE & an & DFPARTME & TA1 & LFAA & ErT0 & 10 \\
\hline
\end{tabular}

DANKG BY LFAA RFGION

ALARM DISPLAYS IN DFPADTMENT CLOSED CIRCUIT TV
LOW-LIGHT LEVEL CLOSFD S.IRCUIT TV
LENSES FOR NIGHT VIGION SURVETLLANEF ENIITPMENT STILL CAMERA EQUIPMFNT FOR NIGHT VYSTON DEVTCES GENERAL PURPOSE LOCKS
GENERAL PURPOSE LOCKS SPECIAL LOCKING DEVICES FOR OETENTION CFNTFRS NIGHT VISION SCOPE SUITABLE FOR RIFLF NIGHT VISION SCOPE SUITABLE FOR RIFLFS HAND-HELD NIGHT VISION FQUIPMENT
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
479^{1} \cdot 630
\] & \[
540^{2}, 699
\] & \[
\text { b35, } 694
\] & \[
479: 630
\] & \[
573^{5} 736
\] \\
\hline ALARM OISPLAYS IN DEPARTMENT & 325. & 393. & 465. & 374. & 483. \\
\hline CLOSED CIRCUIT TV & **** & **** & **** & **** & **** \\
\hline LOW-LIGHT LEVEL CLOSED CIRCUIT TV & **** & **** & **** & **** & **** \\
\hline LENSES FOR NIGHT VISION SURVEILLANCE EQUIPMENT & **** & **** & **** & **** & **** \\
\hline STILL CAMERA EQUIPMENT FOR NIGHT VISION DEVICES & **** & **** & 516. & **** & **** \\
\hline general purpose Locks & 648. & 708. & 708. & 709. & 780. \\
\hline SPECIAL LOCKING DEVICES FOR DETENTION CENTERS & 668. & 729. & 778. & 715. & 809. \\
\hline NIGHT VISION SCOPE SUITABLE FOR RIFLES & 649. & 708. & 2**** & **** & **** \\
\hline HAND-HELD NIGHT VISION EQUIPMENT & **** & **** & **** & **** & **** \\
\hline \multicolumn{6}{|c|}{ItEMS WITH EXTREME RANK SUMS GY leat region (NINETY-FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD)} \\
\hline & 6 & 7 & 8 & 9 & 10 \\
\hline & 433. 576 & 410, 549 & 405,544 & 493. 646 & 382. 517 \\
\hline ALARM OISPLAYS IN DEPARTMENT & 388. & 335. & 350. & 482. & 330. \\
\hline CLOSED CIRCUIT TV & **** & **** & **** & **** & **** \\
\hline LOW-LIGHT LEVEL CLOSED CIRCUIT TV & **** & **** & **** & 438. & 363. \\
\hline LENSES FOR NIGHT VISION SURVEILLANCE EQUIPMENT & **** & **** & **** & **** & **** \\
\hline STILL CAMERA EQUIPMENT FOR NIGHT VISION DEVICES & **** & **** & **** & **** & **** \\
\hline GENERAL PURPOSE LOCKS & 658. & 563. & **** & 700. & 562. \\
\hline SPECIAL LOCKING DEVICES FOR DETENTION CENTERS & 691. & 610. & 585. & 723. & 569. \\
\hline NIGHT VISION SCOPE SUITABLE FOR RIFLES & 415. & **** & **** & **** & *** \\
\hline HAND-HELD NIGHT VISION EQUIPMENT & 406. & **** & **** & **** & ** \\
\hline
\end{tabular}

REGAROING EACH REGION AS A RESPONDENT, IF THE TEN RANKINGS WERE RANDOMO. THE RANK SUM OF AN ITEM NOULD LIE IN THE IVTERVAL (27. 73)
95 PERCENT OF THE FIME. THE FOLLONING. ITEMS LIE OUTSIDE THIS INTERVAL:
*ON-LIGHT LEVEL CLOSED CIRCUIT TV
GENERAL PURPOSE LOCKS
24.
80.

SPECIAL LOCKING DEVICES FOR OETENTION CENTERS
80.
86.

REGARDING EACH LEAA REGION AS A RESPONOENT.
THE COEFFICIENT OF COVCORDANCE IS SIGNIFICANT AT THE .0000 PERCENT LEVEL.

REGARDING EACH DEPARTMENT TYPE AS A RESPONDENT. IF THE SEVEN RANKINGS WERE RANOOM. THE RANK SUM OF AN ITEM WOULD LIE IN THE INTERVAL (16 , 54)
95 PERCENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THIS INTERVAL: SPECIAL LOCKING DEVICES FOR DETENTION CENTERS 57.

REGAROING EACH DEPARTMENT TYPE AS A RESPONDENT. THE COEFFICIENT OF CONCORDANCE IS SIGNIFICAVT AT THE
. 0230 PERCENT level.

SECURITY EQUIPMENT GY OEPARTMEINT TYPE

\section*{ANALYSIS FOR VEHICLES}
```

Table
II F-1

```

\section*{MATINNAL DANKS}

MORILE COMMIJNICATIOME/COMMAMO/CONTQOL VEHICLES SCOOTERS
MOTORCYCLES
HELICORTERS
OThER AIRCRAFT
patrolcars
BOATS AND OTHEP WATFRCRAFT
OTHER LANG VEHICLES

Ifple

\title{
CONTINUED
} 3 OF 5

HF CDEFFICIENT OF EOUIORRDONCE is gifnificant at the THF COEFFICIENT OF CONCORDANCF IS STENIEICANT AT THE THF COFFFICIENT OF CONCORDANCF IS CIGNIFICANT AT THE THE COEFFICIENT OF CONCORDANCF IS GIENTFICANT AT THF THE COFFFICIENT OF CONCORDANCF IS CTONIEICAMIT AT THE THE COEFFICIENT OF CONCORDANCE IS SIGNTFICAMT AT THF the COEFFICIENT OF CONCORDANCE IS GTGNTEICANT at the
－חnnn DERCENT LEVEL Enの THF 47 STATE
－Onn O DEREEAT LEVFL END THF 215 COIJNTY

－Onn DERTENT LEVFi FNO THE 2 दの CTTY（！n－40 néfrFRG）

－ONON DFREENT LFVFL END．THF 45 ETRTY LARGFST PTTYES －Onn D DERCEVT LEVFL FOR THE 79 TOWNSHTP

のFOADTMEATC MERARTMEMTE． MFOADTMFATS GEDADYMENTE． ПFDADYMEMTS． AEDADTMENTE neondtMents．

RANIKS RY חEPaRTMFATT TYPF
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline STATE： & enunity & CTTY（1－9 nFEICERS） & \begin{tabular}{l}
CITY（1n－49 \\
OFFICEDC）
\end{tabular} & Crty（5n OR MORF & EIETY & TOWASLTO \\
\hline & & & & OFFTCFRC） & CTTEF & \\
\hline
\end{tabular}

MORILE COMUUNITATYONS／COMMAND／CONTOOL VFHIPLES SCOOTERS
\begin{tabular}{lll}
2 & 2 & 3 \\
8 & 7 & 6 \\
5 & 6 & 4 \\
3 & 4 & 7 \\
4 & 9 & 9 \\
1 & 1 & 1 \\
7 & 5 & 5 \\
6 & 4 & 2
\end{tabular}

\section*{COMPNSITE DANKS FOR ALL CTTTFS}

MORILE COMMUNICATIONS／COMMAND／CONTRAL VF．HICLFS
SCOOTERS
MOTORCYCLFS
HELICOPTERS
OTHER AIRCRAFT
PATROLCARS
BOATS AND OTHER WATFGCRAFT
OTHER LAND VEHICLES
\begin{tabular}{llll}
2 & 2 & 4 & 2 \\
5 & 5 & 2 & 5 \\
4 & 3 & 2 & 4 \\
6 & 6 & 6 & 7 \\
\(A\) & \(A\) & \(A\) & \(R\) \\
1 & 1 & 1 & 1 \\
7 & 7 & 7 & 6 \\
7 & 4 & 5 & 3
\end{tabular}

PATROLCARS
BOATS AND OTHER WATFRCRAFT
OTHER LANO VEHICLES

THE CAFFFICIENT OF ENVINADAMCE IS GTAMTEICAMT AT THE THE COEFFICTENT OF COMIENRDAVCE IS CTENTEICANT AT THE THE COEFFICIENT OF CONIEMRDANCE IS CTENIEICANT AT THE THF COEFFICIENT OF CONIORDANCE IS SIGNPEICANT AT THE THE COEFFICIENT OF CONEORDANES IS SIGNIFICAMT AT THE THE COEFFICIENT OF CONCORDANCF TS CPENTEICANT AT YHE
THE COEFFICIENT OF COMCORDMNE IS CTONIEICAMT AT YLE
THE COEFFICIENT OF CONCORDANEE IS KYANIEICANT AT THE THE COEEFICYENT OF EONCORDANGF IS GY ONIEICANT AT THE THE COEFFICTENT OF CONCORDANCE IS GIGNTEICANT AT TIN

 onnn georevt level men tur iol hroantmente yal lean derina - Dnan DERCENT LEVFL FAN THE \(1:\) I* DFПARTUENTE TA LFAA DECICA - OnNA DEREFNT LEVFI. END TUE, 2* DEDADYMENTG YM LFAA DEGTOA - Onn DERCENT LFVFL EAD THF IC? NEDADYWENTG IM LEAA RFGIOAI
 - Onnत rfareat level eno the ro nfodatmente rn lean rfoinn - OnNO DFRCEAT LFVFI END THE 115 DEDADTNENTE PA LFAA DFATAN O

\section*{RANKE BY LEAA DEGGION}

MOMILE COMMINICATIONS/COMMANT/CONTDOL VFHICLES SCOOTERS
MOTORCYCLES
HELICOPTERS
OTHER AIRCRAET
patrollcaris
BOATS AND OTHER WATERCRAFT
OTHER LAND VEHICLES

ITEMS WITH EXTREME RANK SUMS BY LEAA REGION (Ninetyofive percent interval given at column head)
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 441.574 & 500. 641 & 488, 627 & 441.574 & 525.670 \\
\hline 313. & 369. & 338. & 377. & 398. \\
\hline 605. & 672. & 661. & 602. & 752. \\
\hline **** & **** & **** & **** & **** \\
\hline 683. & 763 . & 724. & 619. & 742. \\
\hline 794. & 896. & 859. & 742. & 901. \\
\hline 184. & 192. & 181. & 145. & 208. \\
\hline 583. & **** & 731. & 698. & 729. \\
\hline 365. & 458. & 414. & 427. & 449. \\
\hline
\end{tabular}

ITEMS WITH EXTREME RANK SUMS BY LEAA REGION (NINETY-FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
395^{6} \cdot 522
\] & \[
3799^{7} 502
\] & \[
382 \cdot 507
\] & \(4499^{9} 584\) & \[
365,488
\] \\
\hline MOBILE COMMUNICATIONS/COMMANO/CONTROL VEHICLES & 279. & 277. & & & \\
\hline SCOOTERS & 606. & 535. & 577. & 67\%. & 340. \\
\hline MOTORCYCLES & **** & **** & **** & **** & \\
\hline HELICOPTERS & 550. & 584. & 570. & **** & 544** \\
\hline OTHER AIRCRAFT & 664. & 631. & 616. & 710. & 611. \\
\hline PATROLCARS & 168. & 149. & 146. & 170. & 130. \\
\hline BOATS AND OTHER WATERCRAFT & 605. & 592. & 590. & 722. & **** \\
\hline other lano vehicles & 350. & 337. & 350. & 406. & **** \\
\hline
\end{tabular}

Table
II F-G
REGARDING EACH REGION AS A RESPONDEHT, IF THE TEN RAVKINGS WERE RANDOM. THE RANK SUY OF AN ITEM WOULD LIE IN THE INTERVAL (25.65\()\)
95 PERCENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THIS INTERVAL:
OTHER AIRCRAFY 7 TIVE THE FOLLONING ITEMS WAE OUTSIOE 75
PATROLCARS.
75.
10.

BOATS AND OTHER WATERCRAFT
67.

REGARDING EACH LEAA REGION AS A RESPONDENT.
THE COEFFICIENT OF CONCOROANCE IS SIGNIFICANT AT THE
.0000 PERCENT LEVEL.

REGARDING EACH OEPARTYENT TYPE AS A RESPONDENT, IF THE SEYEN RANKINGS WERE RANOOM. THE RANK SUM OF AN ITEM WOULO LIE IN THE INTEAVKL (15. 481 95 PERCENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THIS INTERVAL:
OTHER AIRCRAFT
51.
7.
patrolcars

REGARDING EACH DEPARTMENT TYPE AS A RESPONDENT. THE COEFFICIENT OF CONCORDANCE IS SIGNIFICANT AT THE OOOS PERCENT LEVEL.

EHICLES FQEQUEVCY NISTRIBUTIOA OF KA:NKS UF

FREOUENCY NISTRIRUTIU.J UF KANKS OF

\section*{Table}

\section*{NATIONA: OANKS}

Table
II G-2

ITEMS WITH'EXTREME RANK SUMS BY DEPARTMENT TYPE (NINETY-FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAO)

FRANGIBLE BULLETS
- 45 AUTOMATIC

ARMOR-PIERCING BULLETS
regular service ammunition fon handeuns
HIGH-DRAG BULLE IS
9 MM PISTOL
SHOTGUN
- 36 SPECIAL REVOLVER

CARBINE
regular serviceammunition for shoulder weapons - 357 MAGNUM REVOLVER

RIFLE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline STATE
237. 372 & COUNTY
\(1265 \cdot 1554\) & \[
\begin{aligned}
& \text { CITY(1-4 } \\
& \text { OFFICERS } \\
& 1370.1671
\end{aligned}
\] & CITY(10-49 OFFICERS)
\[
1524 \cdot 1841
\] & \[
\begin{aligned}
& \text { CITY(50 OR } \\
& \text { MORE } \\
& \text { OFFICERSS } \\
& 1407: 1712
\end{aligned}
\] & \begin{tabular}{l}
FIFTY \\
LARGEST \\
CITIES \\
226. 357
\end{tabular} & TOWNSHIP
432.607 \\
\hline **** & **** & **** & , **** & **** & **** & **** \\
\hline 483. & **** & **** & **** & * \(* * *\) & 421. & 674. \\
\hline **** & **** & * \(* *\) * & **** & * 4 ** & 394. & 664. \\
\hline 188. & **** & **** & * \({ }^{\text {* }}\) + & 963. & 160. & 403. \\
\hline 402. & ** \({ }^{\text {* }}\) + & **** & **** & **** & **** & 727. \\
\hline 381. & *** & **** & **** & **** & 413. & 672. \\
\hline 177. & 886. & 922. & **** & 995. & 207. & 330. \\
\hline 235. & 809. & 898. & 820. & 769. & 269. & 282. \\
\hline **** & **** & **** & **** & **** & **** & **** \\
\hline & **** & **** & * 4 ** & **** & **** & **** \\
\hline 1770 & 973. & **** & **** & & *が* & 340. \\
\hline
\end{tabular}

\section*{Table \\ II G－3}

THE COEFFICTEVT OF CONCORDANCE 15 GIGNTEICANT AT TUE THE COEFFICIENT OF CONCOROANCE IS GTGNTFICANT AT THE THE COEFFICIEMT OF CONCORDANCF IS SIGNTEICANT at THF THE COEFFICIENT OF CONRORDANCE IS STGNTEICANT AT THF the coffficient of conenrdance is significant at the THE COEFFICIENT OF CONCOROANCE IS SIGNIEICANT AT THE THE COEFFICIENT OF CONCORIANCE IS SIENTEICANT AT THF

MEOADTMENTS MEDAPYMEATS AEOROTMEATS AEDADTMENTS neDnotmente のFONOYMールTE AFOROTMEATE ПFOADTMEATE．

QANJS AY RFPAPTMENT TYOF

FRANgitale rullfys
－ 45 AUJTOMATIC
ARAOR－PIERCIVG BULLETS
REGULAQ SFRVICF AMMIJNITION FOR HANOGIINS
HIGH－IRAG RULLETS
9 YM OISTOL
SHOTGIIS
－ 34 SPECIAL QEVOLVFR
CARBIAF
REGILAR SFRVICF AMMUNITION FOR SHOULIER WEAPMNE
－ 357 MAGNUY REVOLVFR
RIFLE

\section*{COMPOSITE RANKS FOR ALL CTTIFS}

THF. COFFFICIENT OF CONRORDAMCF IS SIENIFICANT AT TUE THE CJEFFICIENT OF CONEARDANCE IS STGNTEICANT AT TUE THE COEFFICTENT OF CONCOROANEE IS CIGNIEICANT AT TUE THE COEFFICIENT OF CONCORDANCE IS CTENIFICANT AT THE THE COEFFICIENT OF CONCORDANCF IS SIGNIFICANT AT THE THF COEFFICIFNT OF CCNEORDANICF TS SIGNTEICANT AT THE THE COEFFICIENT OF CCNEORDANICF IS SIGNI-ICANT AT THE THF COEFFICIENT OF CONCORDAMCF IS SIGNIEICANT AT THE
THE COEFFICIENT OF CONROROANCF IS SIGNIFICANT AT THE THE COEFFICIENT OF CONROROANCF IS SIGNIFICANT MT THE
THE COFFFICIENT OF CONCORDANICF IS STONTEICAMT AT THF THF COEFFICTFNT OF CONCORDANEF IS STGNIEICANT AT THE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline On & T LEVFL & ค & & 1 & DFPADTMENTE & 141 & LFAa & (\\
\hline nnan & DFQCFMT LEVEL & End & THE & 977 & OFPADTAFNTE & \(\mathrm{T}^{\mathrm{M}}\) & lFAa & an \\
\hline - onna & SERCFNT I.FVFL & Eñ & THE & 136 & MEDARTUFNTE & IN & LEAA & On \\
\hline -onna & DFRCENT LEVFL & Fns & THe & 117 & DEDAOTMENTE & I \({ }^{4}\) & lfan & FCind \\
\hline - onnor & DERCENT LEVEL & Eno & THF & 139 & DFQADTVEN & IN & LEAA & On \\
\hline - \(0 n^{n}\) n & PFRCFNT LFVFL & Eñ & THF & ins & CFDAPTMEATE & [4 & LFAA & cotol \\
\hline -nnna & OFRCFNT LEVFL & End & TLE & an & DFPADTMFNTS & IN & lFAa & FGIOM \\
\hline กกกด & FRCENT LEVEL & Eno & THF & 170 & DEDARTUFATS & \(\mathrm{P}^{\mathrm{H}}\) & LFAA & Frital \\
\hline - 0 - & gramt Levfl & 0 & THF & \(19^{9}=\) & DFPARTVFITS & [\({ }^{1}\) & LFAA & (a) \\
\hline -00nn & DFREFMT LEVF.L & ¢ & THF & Oll & TFDADTMFNTS & I' & LEAA & \\
\hline
\end{tabular}

FRANGIBLE GULLETS
. 45 AUTOMATIC
ARMOR-PIERCING BULLFTS
ARMOR-PIERCING BULLFTS REGULAR SERVICF AMMIINITION FOR HANCGINS
HIGH-TRAG BIILLFTS
9 MM OISTOL
SHOTGUN
- 3a SDFCIAL revolvfr

CA:RIMF
REGULAR SFRVICF AMYIINITION FOR SHOIILDEQ WEAPONE - 357 YAGNIM REVOLVER

RIFLE
RIF

DANKG GY LFAA REGION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 6 & 5 & 6 & \(?\) & 4 & 5 & 5 & A & 5 \\
\hline \(1 ?\) & 12 & 19 & \(13^{\circ}\) & 19 & 11 & 19 & 10 & 5 \\
\hline 10 & 11 & 11 & 11 & 10 & 12 & 11 & 11 & \(1 ?\) \\
\hline 1 & \(?\) & * & 4 & 3 & \(?\) & 4 & \(?\) & ? \\
\hline 8 & 10 & 0 & 6 & 7 & n & 0 & 9 & 0 \\
\hline 11 & 6 & 10 & 7 & 13 & 0 & 7 & 9 & R \\
\hline 3 & 3 & 4 & 3 & 5 & 3 & 2 & 3 & 3 \\
\hline \(?\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 4 \\
\hline 0 & 7 & 7 & 9 & Q & 10 & Q & 19 & 10 \\
\hline 4 & 9 & 9 & 10 & 9 & 7 & 10 & 7 & 11 \\
\hline 5 & Q & \(?\) & 5 & \(?\) & 4 & , & 4 & 1 \\
\hline 7. & 4 & 5 & Q & 5 & 6 & 6 & 5 & 7 \\
\hline
\end{tabular}

\section*{Taple}

REGARDING EACH REGION AS A RESPONOENT ITF THE TEN RANKINGS WERE RANDOMA THE RANK SUY OF AH ITEY WOULD LIE IN TNE INTERVAL \(\{34.96\))
95 PEREENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIOE THIS INTERVAL
- 45 AUTOMAYIC
112.

ARMOR-PIERCING GULLETS
100.

REGULAR SERVICE AMYUNITION FOR HANDGUNS
23.

HIGH-ORAG BULLETS
99.

9 MM PISTOL
99.
101.

SHOTGUN
23.
- 3S SPECIAL REVOLVER
17.

REGAROING EACH DEPARTMENT TYPE AS A RESPONDENT, IF THE SEVEN RANKINGS WERE RANDOM,
THE RANK SUM OF AN ITEM WOULD LIE IN THE INTERVAL (20. 715
95 PERCENT OF THE TIME. THE FOLLOWING ITEVS LIE OUTSIDE THIS INTERVAL:
- 45 AUTOMATIC
79.

ARMOR-PIERCING EULLETS
REGULAR SERUICE AMMUNITION FOR HANDGUNS 18.
9 MM PISTOL
72
SHOTGUN
38 SPECIAL REVOLVER 10.

REGAROING EACH DEPARYMENT TYPE AS A RESPONDENT.
THE COEFFICIENT OF CONCORDANCE IS SIGNIFICANT AT THE 0000 PERCENT LEVEL.

FREQUENCY RISTRIBUTIOH OF HANKS OF
WEAPONSTLETHAL AND REIATET AMMUNITIUN OY DÉPARTME IT TYOE .

WEAPONFOLETHAL ANT RELATET AMYUIJTIDN BY DEPAATVE IT TYIJ

FREQUEVCY OTSTGYBUTION OF HANKS O:
WEAPONS.LETHAL AND RELATEN AYMUNITION GY DIPAKTYE IT TYPE

FREQUENCY OISTRIGUTION OF LANKS OF
WEAPONSALETHAL AND RELATED AMMUNITION BY OEPARTMENT TYPE

REGULAR SERVICE AMMUNITION FOR HANOGUNS R SER
RANK
HANK

\section*{ANALYSIS FOR NEAPONSVNON-LETHAL}

Table
II H-I
NATIONAL OANWS

BLACK JACKS/SADS
BATONS/BILLY CLURSINIGHTSTICKS
WATER CANNON
TRANQUILIZER DART GIINS
GAS GOENADES AND CANNISTERS
GAS GDENADES AND
OYE-MARKER GUNS
ELECTRIC SHOCKFRS
ELECTRIC \(5 H\)
PELLET GUNS
TEAR GAS
TEAR GAS OISDEASERG
TEAR GAS GENFRATORG

Table
II \(\mathrm{H}-2\)

\section*{Table}

II \(\mathrm{H}-3\)

THF CDFFFICIENT OF CCNCOROANCE IS CTGNIEICANT AT THE
THE COEFFICIENT OF CONCORDANCF IS CTENIFICANT AT THE THE COFFFICIFAT OF CONEORDANCE IS SIGNTEICAMT AT THE THE COEFFICIENT OF GONEORDANICE IS CTMNTEICANT AT THE THE COEFFICIENT OF CONCORDANCF IS GIGNIFICANT AT THE THE COGFFICIENT CF CONCORDANCF IS CTGNTEICANT AT TWE THE COFFFICIFNT OF CONCORDANCF IS CIGNIEICANT AT TWE

BLACK JACKCISAPS
BATONG/RILLY CLUBS/NYGHTSTICKS
WATER CANNON
TRANQUJLITEER DART GIINS
GAS GRENADES AND CANIISTERS
DYE-MARKER GIINS
ELECTATC SHOCKFRS
PELLET GUNS
TEAR GAE
TEAR GAS OTSOENSERT
TEAR GAS GFNFRATORS

\title{
RAFIKS AY MFPNRTMFAT TYOF
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CTATE & rounty & \[
\begin{aligned}
& \text { CJTY(1-0 } \\
& \text { OFFICCOS }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CIYY (1n-1 } 0 \\
& \text { OFETCFQS }
\end{aligned}
\] & CYTYISN OR MORE & \[
\begin{aligned}
& \text { FIETY } \\
& \text { LARGEST }
\end{aligned}
\] & TOWMSHTO \\
\hline & & & & OFFTCFRE) & CTTYF & \\
\hline
\end{tabular}

COMOQSITE RANKS FOR ALL CTTTTS

BLACK JACKS/SAPS
BATONS/BLLLY CLUBS/NIGHTSTTCKS
WATER CANNON
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 8 & 5 & 3 & & 5 & 7 & 6 & 5 \\
\hline 4 & 3 & 1 & & 3 & 4 & 1 & 4 \\
\hline 11 & 6 & 8 & & 11 & R & \(\bigcirc\) & 11 \\
\hline 6 & 7 & 7 & & 7 & 6 & 9 & 7 \\
\hline 3 & 1 & \% 5 & & 4 & 3 & 1 & 3 \\
\hline 7 & 10 & 10 & & 8 & 0 & 7 & 9 \\
\hline 10 & 11 & 9 & , & 10 & 11 & 19 & A \\
\hline 9 & 0 & 11 & & 9 & 10 & 10 & 10 \\
\hline 2 & 4 & 4 & & 2 & ? & \(?\) & 1 \\
\hline 1 & \(?\) & 2 & & 1 & 1 & 7 & \(?\) \\
\hline 5 & \(\rho\) & - 6 & . & 6 & 5 & 5 & 6 \\
\hline
\end{tabular}
```

```
-annn orgeENT L_EVFL. FAM THF &T STATF
```

```
-annn orgeENT L_EVFL. FAM THF &T STATF
nnnत EEQCEMT LEVFL EnN THF oIG CNINTY
```

```
nnnत EEQCEMT LEVFL EnN THF oIG CNINTY
```

```


ARDADTMEATE MFPADTMEATE. nEPADTMIENTS: AFDARTMENTE. MFDQRTMENTC. ПEDADTMENITE, CEDADTMEATS. AFOADTMEATE.

TRANQUILIZFR OART GIINS
GAS GRFNADFS AND CANINISYERE
DYE-MARKER GUNS
ELECTRTC SHOCKFRS
PELLET GUISS
TEAR GAS
TEAR GAS DTSPENSERS
TEAR GAS GFAERATORS

\section*{6} 1

7
4
\(\therefore 8\)
11
10 3

The COEFFICIFNT OF CONCORDANEF iS Gi sniEicant at tur THE COEFFICIENT OF CONCORDANCE IS SISNIEICANY AT TWE THE COEFFICTENT OF CONCORDANEE TS CIGNTEICANT AT THE THE COEFFICIENT OF CONCOROANC - IS GTGNTFICONT AT THF THE COEFFICIENT OF CONCORDANCE IS GIGMIFICANT AT THE THE COEFFICIENT OF CONCORDANCF IS SIGNIEICANT AT THE THE COEFFICTENT OF CONCORDANCE IS CIGNIEICAMT AT THE THE COEFFICIENT OF CONCORDANCF IS SIGNTFICANT AT THE THE COEFFICIENT OF CONEORDANCE IS STGNIEICANT AT THE THE COEFFICIENT OF CONCORDANCF IS SIGNIEICANT. AT THE

 OONA DFRFEMT LEVEL EOS TLE 133 DFDADTUENTE IV LEAA QEAYOA -ONON DERCFNT LFVFL FAN THE in? DEDARTMENTE TH LFAN OFGIMAI - Inती DFRCFNT I.FVEL FOD THE OO DFQADTMENTE TN LEAA DFATOA

 . Inn \(\quad\) DFRCFNT LEVEI. FOS THF Q* OEDARTMENTE TM LFAA REGIOM 10

BLACK JACKS/SADS
BATONS/BILLY CLUBS/NIGHTSTICKS
WATER CANNON
TRANQUILIZER DART GUNS
GAS GRENADES AND CANNISTERS
DYF-MARKER GUNS
ELECTRIC SHOCKFRS
PELLET GUNS
TEAR GAS
TEAR GAS
TEAR GAS DISPENSERS
TEAR GAS GFNERATORS

DANKG BY LFAA REGION
\(n \rightarrow \infty \rightarrow 0+0-\infty\)
\begin{tabular}{rr}
7 & 5 \\
9 & 1 \\
19 & 10 \\
6 & 7 \\
3 & 4 \\
0 & 0 \\
10 & 9 \\
0 & 11 \\
2 & 2 \\
4 & 3 \\
5 & 6
\end{tabular}
fadn
II \(\mathrm{H}-5\)

BLACK JACKS/SAPS
BATOYS/BILLY CLUBS/NIGHTSTICKS
WATER CANVON
tranquilizer oart guns
GAS GRENADES ANO CANNISTERS
OYE-MARKER GUNS
ELECTRIC SHOCXERS
PELLET GUNS
TEAR GAS
TEAR GAS DISPENSERS
TEAR GAS GENERATORS

BLACK JACKS/SAPS
BATONS/BILLY CLUBS/NIGHTSTICKS
WATER GANNON
TRANQUILIZER DART GUNS
GAS GRENAOES AND GANNISTERS
DYE-MARKER GUNS
ELECTRIC SHOCKERS
PLECTRIC SH
PELLEA G
TEAR GAS OISPENSERS
TEAR GAS GENERATORS

ITEMS WITH EXTREME RANK SUMS GY LEAA REGION (NIVETY-FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD)
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 583.772 & 650, 849 & 656. 955 & 583. 772 & 690.893 \\
\hline * \({ }_{\text {* }}\) * \({ }^{\text {\% }}\) & **** & 637. & * * \({ }_{\text {* }}\) * & **** \\
\hline 491. & 532. & 513. & 495. & 542. \\
\hline 940. & **** & - **** & 919. & **** \\
\hline **** & **** & **** & 794. & **** \\
\hline 490. & 481. & 555. & 485. & 540. \\
\hline 863. & 946. & 946. & 901. & **** \\
\hline 880. & 964. & 915. & 846. & **** \\
\hline 869. & 971. & 994. & 918. & **** \\
\hline 480. & 522. & 552. & 468. & 544. \\
\hline 363. & 416. & 468. & 346. & 424. \\
\hline **** & **** & **** & **** & **** \\
\hline
\end{tabular}

ITEMS WITH EXTREME RANK SUMS GY LEAA REGION (NINETY~FIVE PERCEVT INTERVAL GIVEN AT COLUMN HEAD)
\begin{tabular}{|c|c|c|c|c|}
\hline 6 & 7 & 8 & 9 & 10 \\
\hline 522. 701 & 500.675 & 600. 675 & 600. 791 & 472.643 \\
\hline & 1 . & & & \\
\hline **** & **** & **** & 833. & 667. \\
\hline 488. & 447. & 435. & 561. & 452. \\
\hline 777. & 840. & 804. & 988. & 783. \\
\hline **** & **** & **** & **** & **** \\
\hline 459. & 470. & 456. & 408. & 352. \\
\hline 718. & 736. & 702. & 852. & 679. \\
\hline 832. & 798. & - 820. & 953. & 727. \\
\hline 830. & 777. & 771. & 964. & 763. \\
\hline 425. & -378. & 400. & 461. & 353. \\
\hline 360. & 321. & 301. & 272. & 243. \\
\hline **** & **** & **** & **** & **** \\
\hline
\end{tabular}

\section*{Table}

II H-6

REGAROING EACH REGION AS A RESPONDENT, IF THE TEN KANKINGS NERE RANDOY. THE RANK SUY OF AN ITEY AOULD LIE IN THE INTERVAL (32.88) 95 PERCENT OF THE TIME. THE FOLLOWING TTEMS LIE OUTSIDE THIS IVTE:VAL: water cannon
GAS GRENADES AND CANNISTERS 95.
ELECTRIC SHOCKERS
105.
pellet guns
tear gas
TEAR GAS DISPENSERS
22.
15.

REGAROING EAGH LEAA REGION AS A RESPONDENT.
THE COEFFICIENT OF CONCORDANCE IS SIGNIFICANT AT THE
.0000 PERCENT LEVEL.

REGARDING EACH DEPARTYENT TYPE AS A RESPONDENT; if THE SEVEN RaNXINGS WERE RANOOM. THE RANK SUM OF AN ITEM WOULD LIE IN THE INTERVAL (19, 65)
95 PERCENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THIS INTERVAL: WATER CANNON
71.

ELECTRIC SHOCKERS
70.

TEAR GAS
TEAR GAS OISPENSERS
9.

REGARDING EACH DEPARTMENT TYPE AS A RESPONDENT, THE COEFFICIENT OF CONGORDANCE IS SIGNIFICANT AT THE
. 0000 PERCENT LEVEL.
\[
\mathrm{E}-74 \quad-\mathrm{l}
\]

FREQUENCY DISTRIBUTION OF RANKS OF
WEAPONS NON-LETHAL
BY DEPARTMENT TYPE

Table
II H-7 cont.

\section*{FREQUENCY DISTRIRUTION OF RANKS OF}

WEAPONS,NON-LETHAL BY DEPARTMEINT TYPE

\(\underset{\text { Table }}{\text { TI }}\)
II H-7 cont.

FREQUEVCF MISTOIBUTION OF NANKS OF
WEAPOUS, NON LEETHAL
GY DEPGRTMEIST TYPE.

Table
II \(\mathrm{H}-7\) cont.

\section*{WEAPONS,NON-LETHAL BY DEPARTMEYT,TYPE}
frequever oistaisution of ranks of

ANALYSIS FOR BUILDING SYSTEMS

\section*{Table}

II I-1

NATIONAL QANKS
DETENTION CENTER DESSGM/CONGTRIICTINN
INSTITUTLONAL FURNISHINGS
POLICF STATION DESTGM/CONSTRUCTION 5
5

INSTITUTIONAL FQUIDMENT
BUILOYNG MATERIALS

Table
II I-2

ITEMS WITH EXTREME RANK SUMS EY OEPARTMENT TYPE ININETY FIVE PERCENT INTERVAL GIVEN AT COLUMN HEAD
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline STATE
113.162 & COUNTY
586.691 & \[
\begin{aligned}
& \text { CITY(1-9 } \\
& \text { OFFICERS) } \\
& 614.723
\end{aligned}
\] & \[
\begin{aligned}
& \text { CITY(10-49 } \\
& \text { OFFICERS) } \\
& 710,825
\end{aligned}
\] & ```
CITY(50 OR
 MORE
OFFICERS)
 658. }76
``` & EIFTY LARGEST CITIES 110. 159 & TOWNSHIP
193. 256 \\
\hline 203. & 499. & **** & * *** \(^{\text {a }}\) & 787. & **** & * \({ }^{\text {+ }}\) * \\
\hline **** & * \({ }_{\text {\% }}^{\text {- }}\) & 761. & 880. & 807. & 160 。 & +車* \\
\hline 78. & 545. & 352. & 372. & 375. & 69. & 123. \\
\hline **** & **** & \(726{ }^{\circ}\) & **** & **** & **** & **** \\
\hline **** & 847. & 793. & 946. & 879. & 174. & 275. \\
\hline
\end{tabular}
Table
II 1-3

THE COEFFICIENT OF CNNEORDANCE IS ETGNPEICANT AT TLE THE COEFFICIENT OF CONRORDANCF IS EIGNIEICANT AT TWE THE COEFFICIENT OF CONCORDANCF IS EITNTEICANT AT puE THF COEFFICIENT OF CONCORDANCE IS STANYEICANIT OT THE THE COEFFICIENT OF CONCORDANCF IS EITAMFICANT AT THE THE CDEFFICIENT OF CONICORDANCE IS CIFNTFICANT AT THE THF COEFFICIENT OF CANCORDANCF IS GIGNIFICANT AT THE


Annत DERFEYT LEVEI EAR THE uR eTATE
Annत PERCENT LEVFL ENR THE 31 EAIINTY

 - DAn D DERCENT LEVFL ENN THE 45 ETFTY LARGEST CTTTES DOnNO DERPENT LEVFL ENC THF 75 TOWNGHPP

MyOADPMEMTS. CFDADTMENTS. CEARTMENTG. NEDADTMENTF. FEOARTVENITE

RAMIKS ay RFOARTNFATT TYPE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CTATF & rounty & \[
\begin{aligned}
& \text { IITYIT-9 } \\
& \text { OFEICFRS }
\end{aligned}
\] & \[
\begin{gathered}
\text { CITY(in-40 } \\
\text { OFETCTOS) }
\end{gathered}
\] & Curvisin no MORE & \[
\begin{aligned}
& \text { FTVTY } \\
& \text { LARGECT }
\end{aligned}
\] & TAWASCHTD \\
\hline
\end{tabular}

DETENTION CENTER DFGIGN/COMGTRUCTION INSTITUTIONAL FIJRNTSUINGS
POLICE STATION DESTGN/CONSTRUCTION
INSTITUTIONAL EQUIPMFNT
5
4

BUILDTNG NATFRTALS . . . 3
\begin{tabular}{llllll}
2 & 2 & 2 & 3 & 2 & 4 \\
5 & 3 & 4 & 4 & 2 & 2 \\
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 4 & 3 & 2 & 4 & 2 \\
4 & 4 & 5 & 5 & 2 & 5
\end{tabular}

\section*{COMPOSITE RANKS FOR ALL CTTTFS}

OETENTION CENTER DFGIGN/CONSTRUCTION
3
POLICE STATION DESTGH/CONSTRUCTION
INSTITITIONAL EQUIPMFNT
5
1
4


```

.noma negeryit i ruri
.nnan mrgrmat l.gur!
.nnmo nromenit ifve
.nnan nenerat i,ruri

```

```

-nman niperat I Fvel
-manN nepmFNT I EVE

```




 Fnn tur inn nenantarnte jil Lean grepha man fist ixa nfnanturaite fil｜man breinai ran pur ing nmandrarfite ill fan néran ran Thr na inenantweare Yい LFBA nEainm of henantwearte ！LFOA néinal Enm tur ，tu nenantmpaitr il lean nerinu

```

```
?
```

```
```

```
?
```

```
－nnnn orbrrait four －nnno nroment layel －nnnn menrent irvir －nnmo nitperait lave

DETFNTION CEMTFR DRSTGM／COMSTDISTIOM IN＇ST ITITI OAIAL．FIRNTSUI＂IAS

INJTITITIクAKL EO．JIVEVT
GUILDTMG ：ATruTALS
onajer bu lean oeritan
nanger ay leran oeritan
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline n & 1 & 11 & \％ & 0 & ＊ & 2 & 4 & ， & 2 \\
\hline － & \(=\) & － & 11 & a & 4 & 4 & F & 4 & \％ \\
\hline 1 & 1 & 1 & 1 & 1 & － & 1 & 1 & 1 & ＋ \\
\hline ＊ & ， & \％ & ？ & 11 & 1 & ＊ & 3 & ， & － \\
\hline 11 & 2 & 0 & 5 & ， & 5 & E & 5 & 5 & 5 \\
\hline
\end{tabular}

\section*{Table}

II I－5

ITEMS WITH EXTPEVE RANV SUMS UY LEAA REGION
（NIVETY－FIVE PERCENT IMIERVAL GIVEI＇AT COLUMIN HEAJ）
\begin{tabular}{|c|c|c|c|c|}
\hline 6 & 7 & 8 & 9 & 10 \\
\hline 269．34？ & 252， 323 & co2． 323 & 303． 380 & 23t．317 \\
\hline ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ \\
\hline 352. & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & 313. \\
\hline ion． & 189． & 1 ¢\％． & P．J．t． & 1.5 ． \\
\hline ＊＊＊＊ & －＋＊ & ＊＊＊ & ＊．．． & －．＊＊ \\
\hline 3\％\％． & 3 ¢5． & \(34 \%\) ． & 4.81 ． & 3.4 .7 ． \\
\hline
\end{tabular}

DETENTION CENTER UESIGN／CJMSTRUCTIO： HUSTITUTIOHAL FUANISHINGS
PULICE STATION DESIGN／CONSTKUCYION INSTITUTIOVAL EOUIPVE厅T
BUILDING MATEKIAL＇

OETENTION CENTER JESIGN／CONSTRUCTIIN INSTITUTIUNAL FURNISHINGS
PULICE STATIOH DESIGN／CONSTRUCTION INSTIIUTIUNAL EQULPMENT
EUILUJNG BATEHIALS

ITEUS WITH EXTREVE RAHK SUMS BY LEAA HEGIUN （MIVETY－FIVE PERCENT INTERVAL GIVGI AT CULUMIV HEAJ）


1

\title{
CONTINUED
}

4 OF 5

\section*{- シ2 \\ II 1-6}

REGARJING EACH QEGION AS A RESPONDENT, IF THE TEV FANKINGS WERE RANOOM, THE RANK SJM OF AN ITEY WOULJ. LIE IN THE IVTERVAL (13, 42)
95 PERCENT OF THE TIVE. THE FOLLOMING ITEUS LIE OUTSIJE THIS IUTERUAL:
POLICE STATIOV DESIGNICONSTRJCTION
10.

REGARJING EACH LEAA PESION AS A RESPONOENT.
THE COEFFICIEITT OF CONCORDANCE IS SIGNIFICAVT AT THE OOOIG DERCENT LEVEL.

REGARDING EACH DEPARTMENT TYPE AS A RESPONDEVT, IF THE SEVEN YANKINGS WERE RANOOM. THE RANK SUM OF AN ITEM WOULO LIE IN THE IVTERVAL (11. 31) 95 PERCENT OF THE TIME. THE FOLLOWING ITEMS LIE OUTSIDE THTS IVTERVAL: POLICE STATION DESIGN/CONSTRUCTION

REGAROING EACH DEPARTMENT TYPE AS A RESPONDENT THE COEFFICIENT OF CONCOROANCE IS SIGNIFICANT AT THE . 0049 PERCENT LEVEL.

RESUEVCY ПIST:IFUTIOH OF mANKS OF
GUILOUV SYSTEMS
AY DEPARTHEIIT TYPE


OISTRISUTION OE QESPONDENTS BY DEPARYMENT TYPE AND STATE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline STATE & & NTY & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { CITY(1-9 } \\
& \text { OFFICERS) }
\end{aligned}
\]} & \multicolumn{2}{|l|}{CITY(10-49 OFFICERS)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { CITY(50 OR } \\
& \text { YORE } \\
& \text { OFFICERS) }
\end{aligned}
\]} & & \multicolumn{2}{|l|}{FIFTY LARGEST CITIES} & \multicolumn{2}{|l|}{TCANSHIP} & \multicolumn{2}{|l|}{TOTAL} \\
\hline & NO & PCT & No & PCT & vo & PCT & NO & PCT & & NO & PCT & NO & PCT & NO & PGT \\
\hline AL & 3 & \(1 \cdot 3\) & 3 & 1.3 & 2 & - 8 & 1 & - 4 & & 1 & \(2 \cdot 2\) & 0 & - 0 & 11 & \\
\hline AK & 0 & -0 & 2 & . 8 & 0 & - 0 & 2 & . 8 & & 0 & 2.20 & 0 & - 0 & 11 & 1.0
.4 \\
\hline \(A Z\) & 3 & 1.3 & 5 & 2.1 & 2 & . 8 & 2 & - 8 & & 1 & 2.2 & 0 & . 0 & 14 & 1.2 \\
\hline AR & 2 & - 9 & 4 & 1.7 & 4 & 1.5 & 4 & 1.6 & & 0 & 2.0 & 0 & - 0 & 15 & 1.2
1.3 \\
\hline CA & 22 & 9.8 & 17 & \(7 \cdot 1\) & 25 & 9.5 & 2.4 & 9.8 & 1 & 6 & 13.3 & 0 & - 0 & 95 & 8.3 \\
\hline CO & 8 & 3.6 & 3 & 1.3 & 12 & 4.6 & 9 & 3.7 & & 1 & 2.2 & 0 & . 0 & 34 & 3.0 \\
\hline CT & 0 & - 0 & 3 & 1.3 & 5 & 1.9 & 7 & 2.9 & & 0 & - 0 & 2 & 2.5 & 18 & 1.6 \\
\hline DE & 0 & . 0 & 1 & . 4 & 3 & 1.1 & 1 & . 4 & & 0 & . 0 & 0 & . 0 & 6 & .6
.5 \\
\hline FL & 2 & - 9 & 7 & 2.9 & 8 & 3.1 & 11 & \(4 \cdot 5\) & & 3 & 6.7 & 0 & - 0 & 32 & 2.8 \\
\hline GA & 3 & 1.3 & 4 & 1.7 & 2 & - 8 & 3 & 1.2 & & 1 & 2.2 & - 0 & - 0 & 14 & 1.2 \\
\hline HI & 1 & . 4 & 0 & . 0 & 0 & - 0 & 0 & - 0 & & 1 & \(2 \cdot 2\) & 0 & - 0 & 14 & 1.2 \\
\hline ID & 6 & 2.7 & 6 & 2.5 & 5 & 1.9 & 2 & . 8 & & 0 & . 0 & 0 & - 0 & 20 & 1.8 \\
\hline IL & 5 & 2.2 & 8 & 3.4 & 10 & 3.8 & 4 & 1.6 & & 1. & 2.2 & 0 & - 0 & 29 & 2.5 \\
\hline IN & 7 & 3.1 & 1 & . 4 & 4 & 1.5 & 3 & 1.2 & & 1 & 2.2 & 1 & \(1 \cdot 2\) & 18 & 1.6 \\
\hline I A & 7 & 3.1 & 7 & 2.9 & 9 & 3.4 & 5 & 2.0 & & 0 & . 0 & 0 & - 0 & 29 & 2.5 \\
\hline KS & 9 & 4.0 & 3 & 1.3 & 4 & 1.5 & 5 & 2.0 & & 0 & -0 & 0 & - 0 & 22 & 1.9 \\
\hline KY & 3 & 1.3 & 2 & - 8 & 1 & . 4 & 3 & 1.2 & & 1 & 2.2 & 0 & . 0 & 11 & 1.0 \\
\hline LA & 2 & -.9 & 2 & . 8 & 2 & - 8 & 1 & . 4 & & 1 & 2.2 & 0. & - 0 & 9 & - 8 \\
\hline ME & 7 & 3.1 & 5 & 2.1 & 6 & 2.3 & 2 & - 8 & & 0 & -0 & 1 & 1.2 & 22 & 1.9 \\
\hline MD & 0 & - 0 & 2 & -8 & 2 & - 8 & 4 & 1.6 & & 0 & - 0 & 0 & - 0 & 9 & -.8 \\
\hline MA & 2 & - 9 & 2 & -8 & 3 & 1.1 & 13 & 5.3 & \(\cdots\) & 1 & 2.2 & 10 & 12.3 & 32 & 2.8 \\
\hline MI
\(M N\) & 7 & \(3 \cdot 1\) & 6 & 2.5 & 2 & - 8 & 7 & 2.9 & & 1 & \(2 \cdot 2\) & 5 & 6.2 & 29 & 2.5 \\
\hline \[
\begin{aligned}
& M N \\
& M S
\end{aligned}
\] & 1 & . 4 & 2 & - 8 & 4 & 1.5 & 2 & - 8 & - & 1 & \(2 \cdot 2\) & 0 & . 0 & 11 & 1.0 \\
\hline MS
\(M O\) & 0 & .0
1.8 & 2 & .8
2.9 & 4
7 & 1.5
2.7 & 2 & .8
3.3 & , & 0
.2 & .0
4.4 & 0 & - 0 & 9
28 & . .8 \\
\hline MT & 6 & 1.8
2.7 & 6 & 2.9
2.5 & 7
4 & 2.7
1.5 & 8
2 & 3.3
.8 & & -2 & 4.4
.0 & 0
0 & . 0 & 28
19 & 2.5
1.7 \\
\hline NB & 5 & 2.2 & 6 & 2.5 & 7 & 2.7 & 2 & . 4 & & 1 & 2.0 & 0
0 & . 0 & 19
21 & 1.7
1.8 \\
\hline NV & 3 & 1.3 & 1 & . 4 & 0 & . 0 & 1 & . 4 & & 0 & . 0 & 0 & . 0 & 6 & . 5 \\
\hline NH & 3 & 1.3 & 0 & - 0 & 7 & 2.7 & 1 & . 4 & & 0 & - 0 & 5 & 6.2 & 17 & 1.5 \\
\hline NJ & 4 & 1.8 & 6 & 2.5 & 15 & 5.7 & 9 & \(3 \cdot 7\) & - & 1 & 2.2 & 14 & 17.3 & 50 & 4.4 \\
\hline NM & 2 & - 9 & 1 & . 4 & 2 & - 8 & 0 & . 0 & & 0 & . 0 & 0 & . 0 & 6 & . 5 \\
\hline NY & 20 & 8.9 & 21 & 8.3 & 11 & 4.2 & 14 & \(5 \cdot 7\) & & 2 & 4.4 & 10 & 12.3 & 79 & 6.9 \\
\hline NC & 4 & 1.8 & 5 & \(2 \cdot 1\) & 2 & . 8 & 8 & \(3 \cdot 3\) & & 0 & . 0 & 0 & . 0 & 20 & 1.8 \\
\hline ND & 3 & 1.3 & 5 & \(2 \cdot 1\) & 5 & 1.9 & 2 & . 8 & & 0 & - 0 & 0 & - 0 & 16 & 1.4 \\
\hline OH & 2 & -9 & 7 & 2.9 & 5 & 1.9 & 5 & \(2 \cdot 0\) & & 4 & 8.9 & 10 & \(12 \cdot 3\) & 34 & 3.0 \\
\hline OK & 4 & 1.8 & 1 & -4 & 5 & 1.9 & 3 & 1.2 & & 2 & 4.4 & 0 & - 0 & 16 & 1.4 \\
\hline OR & 11 & 4.9 & 4 & 1.7 & 15 & \(5 \cdot 7\) & 3 & 1.2 & & 1 & 2.2 & - 0 & . 0 & 35 & 3.1 \\
\hline PA & 3 & 1.3 & 14 & 5.9 & 11 & 4.2 & 11 & 4.5 & & 2 & 4.4 & 21 & 25.9 & 63 & 5.5 \\
\hline \[
\begin{aligned}
& \text { RI } \\
& \text { SC }
\end{aligned}
\] & 2 & - 9 & 0 & - 0 & 1 & . 4 & 4 & 1.6 & & 0 & - 0 & - 0 & . 0 & 8 & . 7 \\
\hline \[
\begin{aligned}
& \text { SC } \\
& \text { SD }
\end{aligned}
\] & 0 & .0
1.8 & 4 & 1.7
.4 & 1 & . 4 & 1 & . 4 & & 0 & -0 & 0 & - 0 & 7 & - 6 \\
\hline TN & 3 & 1.8
1.3 & 1 & . 4 & 2 & -8 & 2 & -8 & & 0 & -0 & 0 & -0 & 10 & . 9 \\
\hline TX & 9 & 4.0 & 11 & 4.6 & 12 & 4.6 & 21 & 8.6 & & 5 & 11.1 & 0 & . 0 & 59 & 5.2 \\
\hline UT & 2 & - 9 & 5 & 2.5 & 3 & 1.1 & 3 & 1.2 & & 0 & \(\bigcirc .1\) & 0 & - 0 & 15 & 1.3 \\
\hline VT & 3 & 1.3 & 11 & 4.6 & 3 & 1.1 & 0 & . 0 & & 0 & . 0 & 1 & 1.2 & 19 & 1.7 \\
\hline VA & 11 & \(4 \cdot 9\) & 6 & 2.5 & 6 & 2.3 & 11 & 4.5 & & 1 & 2.2 & 0 & - 0 & 36 & 3.2 \\
\hline WA & 7 & 3.1 & 10 & 4.2 & 8 & 3.1 & 9 & 3.7 & & 1 & \(2 \cdot 2\) & 0 & - 0 & 36 & 3.2 \\
\hline WV & 5 & 2.2 & 3 & 1.3 & 2 & - 8 & 2 & . 8 & & 0 & . 0 & 0 & - 0 & 13 & 3.1 \\
\hline WI & 3 & \(1 \cdot 3\) & 1 & - 4 & 4 & 1.5 & 5 & 2.0 & & 0 & . 0 & 1 & 1.2 & 15 & 1.3 \\
\hline WY & 2 & . 9 & 3 & 1.3 & 3 & 1.1 & 0 & - 0 & & 0 & - 0 & 0 & - 0 & 9 & . 8 \\
\hline DC & 0 & - 0 & 0 & - 0 & 2 & . 8 & 0 & . 0 & & 1 & 2.2 & 0 & . 0 & 1 & \\
\hline
\end{tabular}

Table III-5,6, \(8,9,11,12\)
DEPARTMENT TYPE
STATE
COUNTY
CITY(1-9 OFFICERS)
CITY(10-49 OFFIICERS)
CITY(50 OR MORE OFFICERS)
FIFTY LARGEST CITIES
TOWNSHIP
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AREA & POPIJATION & NuMBER OF FULL-TiME OFFICERS. & number of PART-TIME OFFICERS & ANNUAL TOTAL BUDGET & ANNUAL EQUIPMENT GUDGET & \[
\begin{aligned}
& \text { ANNUAL } \\
& \text { PERSONVEL } \\
& \text { BUDGET }
\end{aligned}
\] \\
\hline 62580. & 3936410. & 889. & 18. & 16377358. & & 1202057?. \\
\hline 1518. & 130254. & 60. & 25. & 1089919. & 58539. & . 859984. \\
\hline 9. & 5038. & 8. & 5. & 82381. & 9764. & 60061. \\
\hline 12. & 15849. & 22. & 9. & 257927. & 24362. & 206187. \\
\hline 31. & 83344. & 13 ? & 26. & 1733340. & 173099. & 1407177. \\
\hline \[
187
\] & 851342. & 2491. & 1115. & 43268865. & 2669920. & \[
34712818 .
\] \\
\hline 28. & 13228. & 14. & 18. & 175654. & 20854. & \[
141675
\] \\
\hline
\end{tabular}
LEAA REGION
\begin{tabular}{cc} 
AREA & POPULATION \\
& \\
& \\
750. & 1581120 \\
\(648^{\circ}\) & 240781. \\
1096. & \(245733^{\circ}\) \\
\(3691^{\circ}\) & 340996. \\
2652. & \(448174^{\circ}\) \\
5738. & 271386. \\
2379. & \(112094^{\circ}\) \\
6346. & \(83023^{\circ}\) \\
4218. & \(372094^{\circ}\) \\
3580. & \(104877^{\circ}\)
\end{tabular}
\begin{tabular}{ll} 
NUMBER OF & NUMBER OF \\
FULL-TIME & PART-TIME \\
OFFICERS & OFFICERS
\end{tabular}
ANNUAL TOTAL
GUDGET
ANNUAL
EQUIIPMENT

ANNUAL PERSONNEL BUDGET
1
2
3
4
5
6
7
8
9
10
96
\(365^{\circ}\)
216.
\(1510^{\circ}\)
283.
160.
\(84^{\circ}\)
\(54^{\circ}\)
\(281^{\circ}\)
\(690^{\circ}\)
18
97
7.
11.
8.
17.
9.
9.
46.
9.
1360155.
\(7148315{ }^{\circ}\)
3412567.
2318382.
4916607.
2193823.
\(1220385{ }^{\circ}\)
728549.
5743553.
\(1253894^{\circ}\)

1253894 .
135130.
135130. 148172. 435153.
248600. 248600.
431478.
431478.
160363.
160363.
121001.
121001.
77081.
728801.
82198.
979911. 5265546 . 2879293. 1767292 . 3879374 . 1709910 . \(983696^{\circ}\) \(568463^{\circ}\) 4528692. 1011604 .

NATIONAL AVERAGES OF GENERAL OATA.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AREA & POPULATION & NUMBER OF FULL-TIME OFFICERS & NUMBER OF PART-TIME OFFICERS & ANNUAL TOTAL Budget & ANNUAL EQUIPMENT BUDGET & ANNUAL PERSONNEL BUDGET \\
\hline 2993. & 247738. & 185. & 26. & 3197528 & 270067 . & 2501380. \\
\hline
\end{tabular}

\section*{distrigution of respondents}


\section*{Table III-4}
bISTRIBUTION OF RESPONDENTS BY TITLE/RANK
Table III-7
DISTRIBUTION DF RESPONDENTS BY JURISOICTION
JURISOICTION NUMBER PERCENT
\begin{tabular}{lrr} 
& & \\
STATE & 47 & 4.1 \\
COUNTY & 223 & 19.5 \\
CITY & 619 & 54.2 \\
TOWN & 85 & 7.4 \\
VILLAGE & 63 & 5.5 \\
TOWNSHIP & 56 & 4.9 \\
BOROUGH & 40 & 3.5 \\
OTHER & 9 & \\
& &
\end{tabular}
:
\begin{tabular}{|c|c|c|}
\hline CH & 424 & 37.1 \\
\hline CA & 123 & 10.8 \\
\hline CM & 2. & . 2 \\
\hline CL & 6 & . 5 \\
\hline AC & 4 & . 4 \\
\hline AS & 37 & 3.2 \\
\hline MJ & 16 & 1.4 \\
\hline LT & 109 & 9.5 \\
\hline CP & 2 & . 2 \\
\hline PV & 0 & . 0 \\
\hline DP & 61 & 5.3 \\
\hline IN & 10 & . 9 \\
\hline SH & 99 & 8.7 \\
\hline CT & 1 & . 1 \\
\hline SG & 111 & 9.7 \\
\hline Pa & 37 & 3.2 \\
\hline MR & 75 & 6.6 \\
\hline US & 25 & 2.2 \\
\hline
\end{tabular}

Table III-8.
NUMBERS OF OFFICERS IN CITY OEPARTMENTS
DEPARTMENT TYPE ACTUAL NUMEER OF OFFICERS
CITY(1-9 OFFICERS)
CITY(10-49 OFFICERS)
CITY(50 OR MORE OFFICERS)
\(\begin{array}{rr}195 & 33 \\ 28 & 230 \\ 1 & 7\end{array}\)
4
4
236

\section*{DESCRIPTION OF ACTIVITY}

CUSTODY/OETENTION-LESS THAN 1 DAY CUSTOOY/DETENTION-LESS THAN 1 WEEK CUSTODYIDETENTION - 1 YEAR OR LESS CUSTOOY/OETENTION-MORE THAN 1 YEAR traffic safety and traffic control highway patrol
VEHICLE INSPECTION
TESTS FOR DRIVERS LICENSE
MAINTENANCE OF POLICE BUILOINGS
PUaltc guiloing protection
SERVICE FUNCTION
EMERGENCY AID ANO RESCUE
UNDERWATER RECOVEHY
HARGOR PATROL
COMMUNICATIONS FOR OWN DEPARTMENT
COMMUNICATIONS FOR OTHER AGENCY
POLICE TRAINING FOR OWN DEPARTMEN
POLICE TRAINING FOR OTHER AGENCY
BOMB OISPOSAL
POLYGRAPH
CRIMINAL INVESTIGATION
BREATH-ALCOHOL TEST
LAE ANALYSIS FOR GLOOD ALCOHOL
NARCOTICS LABORATORY ANALYSIS
CRIME LABORATORY
SERVE CIVIL PROCESS
SERVE TRAFFIC AND CRIMINAL WARRANTS CORONER
RNIMAL CONTROLIDOG CATCHER)
OTHER

ACTIVITIES OF RESPONDENTS GY DEPARTMENT TYPE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ST
NO & TE
OCT & \multicolumn{2}{|l|}{COUNTY} & \multicolumn{2}{|l|}{CITY(1-9 OFFICERS)} & \multicolumn{2}{|l|}{CITY(10-49 OFFICERS)} & \multicolumn{2}{|l|}{CIYYI50 OR MORE OFFICERSI'} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { FIFTY } \\
& \text { LARGEST } \\
& \text { CITIES }
\end{aligned}
\]} & \multicolumn{2}{|l|}{TOWNSHIP} & \multicolumn{2}{|r|}{TOTAL} \\
\hline 7 & 14.9 & 178 & \(79 \cdot 1\) & 122 & 51.3 & 191 & 72.9 & 177 & 72.5 & 36 & 80.0 & 35 & 43.2 & 746 & 65.3 \\
\hline 0 & - 0 & 164 & 72.9 & 47 & 19.7 & 93 & 35.5 & 111 & 45.5 & 22 & 48.9 & 2 & 4.2
2.5 & 439 & \[
\begin{aligned}
& 15.3 \\
& 38.4
\end{aligned}
\] \\
\hline 0 & - 0 & 175 & 77.8 & 16 & 6.7 & 25 & 9.5 & - 31 & 13.5 & 7 & 15.6 & 1 & 1.2 & 257 & 22.5 \\
\hline 4 & \(\bigcirc{ }^{\circ} \mathrm{O}\) & 30 & 13.3 & 0 & . 0 & 1 & . 4 & 3 & 1.2 & 1 & 2.2 & 1 & 1.2
1.2 & 36 & 2.5
3.2 \\
\hline 43 & 91.5 & 126 & 56.0 & 223 & 93.7 & 252 & 96.2 & 234 & 95.9 & 44 & 97.8 & 76 & 93.8 & 998 & 87.4 \\
\hline 45 & 95.7 & 95 & 37.8 & 114 & 47.9 & 95 & 36.3 & 76 & 31.1 & 11 & 24.4 & 71 & 87.7 & 497 & 43.5 \\
\hline 26 & 55.3 & 35 & 15.6 & 49 & 20.6 & 37 & 14.1 & 33 & 13.5 & 5 & 11.1 & 7 & 8.6 & 192 & 16.8 \\
\hline 16 & 34.0
51.1 & 8 & 3.6
36.0 & 8 & 3.8
34.5 & 15 & 1.9 & 11 & . 4 & 1 & 2.2 & 0 & . 0 & 40 & 3.5 \\
\hline 24 & 51.1
14.9 & 81 & 36.0 & 82 & 34.5 & 107 & 40.8 & 118 & 48.4 & 21 & 46.7 & 24 & 29.6 & 457 & 40.0 \\
\hline 14 & 14.9
29.8 & 89 & 39.6
29.8 & 151 & 63.4 & 157 & 59.9 & 141 & 57.8 & 20 & 44.4 & 55 & 67.9 & 620 & 54.3 \\
\hline 24 & 29.8
61.7 & 67
150 & 29.8
66.7 & 113
147 & 47.5
61.8 & 143 & 54.6 & 146 & 59.8 & 27. & 60.0 & 315 & 42.0 & 544 & 47.6 \\
\hline 16 & 34.0 & 150
94 & 66.7
41.8 & 147
14 & 61:8 & 165 & 63.0 & 146 & 59.8 & 30 & 66.7 & 50 & 61.7 & 717 & 62.8 \\
\hline 3 & 6.4 & 31 & 13.8 & 7 & 2.9 & 5 & 1.9 & 23 & 9.4 & 14 & 1 & 7 & 5 & 217 & 19.0 \\
\hline 44 & 93.6 & 193 & 85.8 & 181 & 76.1 & 250 & 95.4 & 229 & 93.9 & 43 & 95.6 & 57 & 70.4 & 997 & . 4 \\
\hline 31 & 66.0 & 127 & 56.4 & 69 & 29.0 & 105 & 40.1 & 58 & 23.8 & 11 & 24.4 & 11 & 13.6 & 412 & 87.3
36.1 \\
\hline 46 & 97.9 & 123 & 54.7 & 115 & 48.3 & 202 & 77.1 & 212 & 86.9 & 45 & 100.0 & 34 & 42.0 & 777 & 69.1 \\
\hline 36 & 76.6 & 49 & 21.8 & 6 & 2.5 & 30 & 11.5 & 102 & 41.8 & 38 & 84.4 & 1 & 9.9 & 269 & 23.6 \\
\hline 21 & 44.7 & 45 & 20.0 & 11 & 4.6 & 28 & 10.7 & 56 & 23.0 & 37 & 82.2 & 1 & 1.2 & 199 & 1.7 .4 \\
\hline 29 & 61.7 & 177 & 7.6
85 & 3
109 & 1.3 & 13 & 5:0 & 89 & 36.5 & 40 & 88.9 & 2 & 2.5 & 193 & 16.9 \\
\hline 31
42 & 66.0
89.4 & 193. & 85.8
45.8 & 169 & 71.01 & 248 & 94.7 & 236 & - 96.7 & 45 & 100.0 & 64 & 79.0 & 986 & 86.3 \\
\hline 42
16 & 89.4
34.0 & 103 & 45.8
6.7 & 112 & 47.16. & 189 & . 72.1 & 203 & 83.2 & 41 & 91.1 & 40 & 49.4 & 730 & 63.9 \\
\hline 20 & 42.6 & 21 & 9.3 & 6 & 2.5 & 20 & 1.18 & 17
30 & 7.0
12.3 & 24 & 53.3
62.2 & 2 & 2.5 & 77 & 6.7 \\
\hline 26 & 55.3 & 14. & 6.2 & 5 & 2.1 & 19 & 7.3 & 48 & 19.7 & 33 & 73.3 & 1 & 1.2 & 146 & 12.0
12.8 \\
\hline 3 & 6.4 & 198 & 89.0 & 68 & 28.6 & 40 & 15.3 & 22 & 9.0 & 5 & 11.1 & 25 & 30.9 & 361 & 12.8
31.6 \\
\hline 33 & 70.2 & 200 & 88.9 & 199 & 83.6 & 233 & 88.9 & 229 & 93.9 & 39 & 86.7 & 75 & 92.6 & 1008 & 88.3 \\
\hline 0 & - 0 & 37 & 16.4 & 5 & 2.1 & 9 & 3.4 & 3 & 1.2 & 0 & . 0 & 2 & 2.5 & 56 & 4.9 \\
\hline 0 & . 0 & 59 & 26.2 & 138 & 5B.0 & 164 & 62.6 & 102 & 41.8 & 7 & 15.6 & 30 & 37.0 & 500 & 43.8 \\
\hline 1 & 2.1 & 16 & 7.1 & 10 & \(4 \cdot 2\) & 19 & 7.3 & 13 & 5.3 & 1 & 2.2 & 4 & 4.9 & 64 & 5.6 \\
\hline
\end{tabular}

\section*{Standards}

NILECJ-STD-0101.00, March 1972. Ballistic Resistance of Police Body Armor (Stock No. 2700-0155; Price 25 cents)

NILECJ-STD-0102.00, March 1973. Hearing Protectors for Use on Firing Ranges (Stock No. 2700-00182; Price 40 cents)

NILECJ-STD-0103.00, October 1973. Portable Ballistic Shields (in press)

NILECJ-STD-0205.00, June 1973. Mobile Antennas (in press)
NILECJ-STD-0301.00, March 1974. Magnetic Switches for Burglar Alarm Systems (Stock No. 2700-00238; Price 65 cents)
NILECJ-STD-0302.00, June 1973. Mechanically Actuated Switches for Burglar Alarm Systems (in press)
NILECJ-STD-0303.00, March 1974. Mercury Switches for Burglar Alarm Systems (in press)

NILECJ-STD-0601.00, January 1974. Walk-Through Metal Detectors for Use in Weapons Detection (in press)

Reports
LESP-RPT-0001.00, March 1973. LEAA Police Equipment Survey of 1972 Volume I: The lleed for Standards--Priorities for Police Equipment (in press)
L.ESP-RPT-0007.00, April 1974. LEAA Police Equipment Survey of 19 Volume VII: Patrolcars (in press)
L.ESP-RPT-0201.00, May 1972. Batteries Used with Law

Enforcement Communications Equipment: Comparison and Performance Characteristics (Stock No. 2700-0156; Price 50 cents)```


[^0]:    * The term "composite ranking" is used to dispel any notion that there i ome here ex agrement is he though the level of agreement is high, as indicated by the appropriate statistical
    tests.

[^1]:    * See Section 1.5.1 or Appendix D.

[^2]:    * See LEAA POLICE EQUIPMENT SURVEY OF 1972, Volume V: Handguns and Handgun Ammunition.

[^3]:    * LEAA POLICE EQUIPMENT SURVEY OF 1972, Volume III: Sirens and•Emergency Warning Lights.

[^4]:    Shavioral Sciences Group
    National Bureau of Standards
    ashington, D.C. 20234
    Phone: 301-921-3558

