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Abstract 20 

In this study, we characterized a Klebsiella pneumoniae strain in a patient with shrapnel hip 21 

injury, which resulted in multiple phenotypic changes, including the formation of a small 22 

colony variant (SCV) phenotype. Although already described since the 1960s, there is little 23 

knowledge about SCV phenotypes in Enterobacteriaceae. The formation of SCVs has been 24 

recognized as a bacterial strategy to evade host immune responses and compromise the efficacy 25 

of antimicrobial therapies, leading to persistent and recurrent courses of infections. In this case, 26 

14 different, clonally identical resisto- and morpho-types were distinguished from the patient's 27 

urine and tissue samples. Whole genome sequencing revealed the K. pneumoniae high-risk 28 

clonal lineage belonging to sequence type 147. Subculturing the SCV colonies consistently 29 

resulted in the reappearance of the initial SCV phenotype and three stable normal-sized 30 

phenotypes with distinct morphological characteristics. Additionally, an increase in resistance 31 

was observed over time in isolates that shared the same colony appearance. Our findings 32 

highlight the complexity of bacterial behavior by revealing a case of phenotypic “hyper-33 

splitting” in a K. pneumoniae SCV and its potential clinical significance. 34 

 35 
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Introduction 36 

Klebsiella pneumoniae, an opportunistic pathogen known for its ability to cause a wide range 37 

of nosocomial and community-acquired infections, has emerged as a significant public health 38 

threat due to its strain-specific, extensive arsenal of resistance and virulence factors (1, 2). 39 

Infections caused by multi-, extensively-, and pandrug-resistant strains result in high mortality 40 

due to limited response to antibiotic therapy, which poses an increasing threat (3-5). Apart from 41 

classic strains, a hypervirulent K. pneumoniae (hvKp) pathotype occurs and is characterized by 42 

invasive, often life-threatening and multiple site infection, characteristically in healthy patients 43 

from the general population (6). In addition, convergent types that successfully combine 44 

resistance and hypervirulence represent a “perfect storm” and have been increasingly reported 45 

in recent years (7-9). 46 

Beyond typical resistance mechanisms against various antimicrobials, functional resistance 47 

mechanisms have been elucidated that lead to antimicrobial treatment failure and foster the 48 

development of relapses and persistent infections (10). The formation of a biofilm matrix 49 

represents one of these mechanisms that facilitates antibiotic tolerance and the generation of 50 

bacterial persister cells (10). Interestingly, it has been demonstrated that a decrease in capsule 51 

biosynthesis, which is crucial for hypervirulent phenotypes, leads to increased in vitro biofilm 52 

formation and intracellular persistence (11). Another non-classical mechanism leading to 53 

functional resistance is the formation of the small colony variant (SCV) phenotype. SCVs are 54 

subpopulations of bacteria that exhibit slow growth, reduced colony size, and altered 55 

phenotypic properties compared to their normal-growing counterparts, making them difficult 56 

to detect and treat effectively (12, 13). Their ability to evade the host's immune surveillance 57 

and to undermine the effectiveness of antimicrobial interventions by host cell internalization 58 

results in intracellular persistence, which contributes significantly to the recurrence and 59 

chronicity of the infection (14, 15). Another pivotal attribute facilitating this phenomenon is 60 

their capability to modulate metabolic processes and virulence characteristics (16, 17). 61 
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Hypermutator SCVs characterized by higher mutation frequencies than wild-type strains and 62 

isolated especially from cystic fibrosis (CF) patients (18, 19) have also been associated with 63 

antibiotic resistance (20, 21) and biofilm formation (22). 64 

To date, research has focused on staphylococcal SCVs, while SCVs of Gram-negative bacteria 65 

have been investigated in only a few studies and case reports (12). Although the formation of 66 

small colonies in K. pneumoniae has been noticed during resistance studies against 67 

cephalosporins in the mid-1960s (23), this issue has not received sufficient attention and 68 

detailed research has not been conducted on this subject. The first clearly defined SCV of K. 69 

pneumoniae (SCV-Kp) in literature was obtained by in vitro exposure to gentamicin (24). SCV-70 

Kp were also isolated from a patient treated with aminoglycoside antibiotics (25). Smaller and 71 

non-mucoid colonies were obtained as a result of conjugation-induced mutation in the outer 72 

membrane protein of a hypervirulent K. pneumoniae isolate (26). Another study showed that 73 

biofilm-forming K. pneumoniae developed heteroresistance to colistin by presenting slow-74 

growing SCV-Kp (27).  75 

Here, we report on K. pneumoniae isolates displaying 14 different resisto- and morpho-types 76 

obtained from an immunocompetent male patient, who had sustained a traumatic injury caused 77 

by shrapnel shell fragments. The isolates comprise an initial, mostly susceptible K. pneumoniae 78 

isolate with typical morphological characteristics isolated from the patient's urinary specimen. 79 

From the urine and tissue samples, 13 additional phenotypes with different combinations of 80 

resistance and morphological characteristics including K. pneumoniae SCV phenotypes were 81 

isolated.  82 

 83 

Methods 84 

Patient data. Sufficient information could not be obtained regarding the period from the 85 

patient's first acetabular and femoral head shrapnel-caused war injury in Ukraine in March 86 

2022, where he underwent hip prosthesis at an external center before his transfer to our 87 
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orthopedic service in July 2022. Fracture-related joint infection treatment in our hospital 88 

continued through November 2022. The administration of antibiotics during this period 89 

included piperacillin/tazobactam from July to October, 2022, trimethoprim/sulfamethoxazole 90 

from July to August, 2022, cefiderocol from August to November, 2022, and colistin from 91 

October to November, 2022. Daptomycin was introduced into the treatment protocol starting 92 

from October 2022 upon detection of Staphylococcus epidermidis from tissue samples and 93 

central venous catheter tip, and continued until the patient's discharge. Subsequently, a planned 94 

course of post-discharge antibiotic suppression therapy with doxycycline for three months was 95 

initiated. The first identification of carbapenem-resistant K. pneumoniae (CRKP) occurred in 96 

July 2022, followed by the initial detection of SCV-Kp in September 2022. Therefore, we 97 

decided to aggregate and systematically assess the entirety of K. pneumoniae strains isolated 98 

from the patient. 99 

Strain identification. The urine sample obtained from the patient was quantitatively inoculated 100 

onto a Columbia agar plate with 5% sheep blood (BD Diagnostics, Heidelberg, Germany) and 101 

a MacConkey II-Agar plate (BD Diagnostics) using a 10 µl disposable sterile loop. The plates 102 

were then incubated for 48 hours. Tissue samples collected during surgery were inoculated onto 103 

Columbia agar plates with 5% sheep blood, MacConkey II-Agar plates, and Mueller Hinton 104 

Chocolate agar plates (all from BD Diagnostics). These plates were incubated under 105 

capnophilic conditions for up to seven days. The remaining tissue material was inoculated onto 106 

Schaedler agar and into BBL Fluid Thioglycollate media (both from BD Diagnostics) and 107 

incubated for up to 14 days under anaerobic and capnophilic conditions, respectively. 108 

Preliminary characterization of each phenotype was grounded in colony morphology and 109 

minimal inhibitory concentration (MIC) results for antibiotics encompassed within the 110 

VITEK® 2 AST card specific to Enterobacterales (bioMérieux SA, Marcy l'Étoile, France) 111 

according to EUCAST criteria. All K. pneumoniae strains, isolated from various patient’s 112 

specimens during the period from July to December 2022, were identified by matrix-assisted 113 
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laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) utilizing the 114 

MALDI Biotyper® sirius system (Bruker Daltonics, Bremen, Germany) with MBT Biotargets 115 

96 (Bruker Daltonics). The presence of carbapenemase-encoding genes was verified by a loop-116 

mediated isothermal amplification (LAMP)-based assay (eazyplex®, AmplexDiagnostics, 117 

Gars-Bahnhof, Germany). 118 

Characterization of the phenotypes. Sequential subcultures of all phenotypic variants were 119 

carried out on various agar plates (including Columbia agar + 5% sheep blood, MacConkey 120 

agar from BD, and CHROMID® CPS® Elite agar from bioMérieux) to observe whether 121 

changes in colony morphology occurred and SCVs remained stable, followed by meticulous 122 

analysis of generated phenotypic profiles. 123 

In order to determine colony sizes, each phenotype was inoculated onto 5% sheep blood agar 124 

plates in triplicate on different days. After overnight incubation at 35±1°C in ambient air, the 125 

diameters of ten colonies were measured on each plate and mean values were determined. 126 

Antimicrobial susceptibility testing. In addition to the initial VITEK® 2 AST, the MICs of a 127 

standardized set of antibiotics were determined by the broth microdilution (BMD) method using 128 

cation-adjusted Mueller–Hinton broth (CAMHB; Micronaut-S 96-well microtiter plates, 129 

Merlin, Bornheim-Hersel, Germany), and for cefiderocol using iron-depleted CAMHB 130 

(UMIC®, Merlin, Bornheim-Hersel, Germany), as recommended by ISO 20776-1, the 131 

European Committee on Antimicrobial Susceptibility Testing (EUCAST), and the Clinical and 132 

Laboratory Standards Institute (CLSI) guidelines (28-30). The results were observed following 133 

18±2 hours of incubation at 35±1°C in ambient air. All tests were conducted in triplicate on 134 

different days, and median MIC values were computed for analysis. Escherichia coli ATCC 135 

25922, E. coli ATCC 35218, K. pneumoniae ATCC 700603, and Pseudomonas aeruginosa 136 

ATCC 27853 were used as quality control (QC) strains, and their results were within the QC 137 

range throughout the study. EUCAST Clinical Breakpoint Tables v. 13.1 were used for MIC 138 

interpretation (31). 139 
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DNA isolation and sequencing. After overnight growth on blood agar plates at 37 °C, ten 140 

colonies were randomly selected and suspended in 1.5 mL tubes (Carl Roth, Karlsruhe, 141 

Germany) with 1 mL of phosphate buffered saline. Total DNA was extracted using the 142 

MasterPure DNA Purification kit for Blood, v. 2 (Lucigen, Middleton, WI, USA) according to 143 

the manufacturer’s instructions. Quantification of isolated DNA was performed with the Qubit 144 

4 fluorometer and the dsDNA HS Assay kit (Thermo Fisher Scientific, Waltham, MA, USA). 145 

DNA was sent to SeqCenter (Pittsburgh, PA, USA), where sample library preparation using the 146 

Illumina DNA Prep kit and IDT 10bp UDI indices was performed. Subsequently, libraries were 147 

sequenced on an Illumina NextSeq 2000, producing 2x151bp reads. Demultiplexing, quality 148 

control and adapter trimming at the sequencing center was performed with bcl-convert v. 3.9.3 149 

(https://support-150 

docs.illumina.com/SW/BCL_Convert/Content/SW/FrontPages/BCL_Convert.htm). 151 

Assembly and genomic characterization. We employed a custom assembly and polishing 152 

pipeline to assemble raw sequencing reads to contigs. This pipeline consists of four parts, 153 

namely trimming (BBDuk from BBTools v. 38.98 [https://sourceforge.net/projects/bbmap/], 154 

quality control (FastQC v. 0.11.9 155 

[https://www.bioinformatics.babraham.ac.uk/projects/fastqc/]), assembly (shovill v. 1.1.0 156 

[https://github.com/tseemann/shovill]) with SPAdes v. 3.15.5 (32), and polishing (BWA-157 

MEM2 v. 2.2.1 (33), Polypolish v. 0.5.0 (34)). 158 

Genotyping was performed with Kleborate v. 2.2.0 (35) and Kaptive (36, 37). 159 

Confirmation of clonality. Trimmed sequencing reads of all isolates were mapped against 160 

isolate 1-A with snippy v. 4.6.0 (https://github.com/tseemann/snippy) and the SNP distance 161 

matrix calculated with snp-dists v. 0.8.2 (https://github.com/tseemann/snp-dists). 162 

 163 

Results 164 
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Overall, 14 distinct phenotypes were determined (Table 1). From the urine, two phenotypes (1-165 

A and 1-B) exhibiting a normal colony size and glistening surface but differing in the color of 166 

their colonies displaying whitish or grey colonies, were isolated. All other phenotypes (n = 12) 167 

were isolated from tissue specimens. Strains numbered 1-A, 2-A, 3-A, 4-B, 5-B, numbered 1-168 

B, 2-B, 3-B, 4-C, 5-C, and numbered 4-D, 5-D, displayed identical morphological attributes 169 

each, distinguished by whitish, glistening, and smooth (Figure 1-A), grey, glistening, and 170 

smooth (Figure 1-B), and grey, dry, and rough colonies (Figure 1-C), respectively. These strains 171 

revealed a normal colony size of 2.4 mm on average (range, 1 – 5.5 mm). The isolates displaying 172 

the SCV phenotype, numbered 4-A and 5-A, exhibited similar morphological characteristics, 173 

and colony sizes were smaller than 0.5 mm (Figure 1-D). No discernible variation in terms of 174 

colony clustering was observed among the various agar plates. 175 

Initially, largely antibiotic-susceptible K. pneumoniae phenotypes exhibiting whitish and grey 176 

colony morphologies on Columbia agar plates were isolated from the urine sample. Following 177 

antibiotic treatment, MDR K. pneumoniae strains displaying the normal colony size were 178 

isolated from tissue samples, again characterized by subsequent whitish or grey colony 179 

formations. Subsequently, SCVs of K. pneumoniae were isolated from tissue samples. 180 

Subcultivation of different SCV colonies consistently yielded a division into four distinct 181 

colony morphotypes including one SCV phenotype that resembled the initial SCV, along with 182 

three normal-sized phenotypes distinguished by variations in colony color and visual attributes. 183 

While normal-sized phenotypes exhibited stability following each round of re-cultivation, SCV 184 

isolates displayed instability and recurrently diverged into the four phenotypes described above. 185 

We have designated the emergence of these multiple phenotypes as “hyper-splitting”. Despite 186 

minor variations in MIC values, these “hyper-splitting” phenotypes exhibited multidrug 187 

resistance (Table 1).  188 

Except for isolates 1-A and 1-B, all isolates were resistant to the tested carbapenems. Initially, 189 

during routine diagnosis, isolate 2-B was found to be carbapenem-resistant by VITEK® 2 AST, 190 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.11.575232doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.11.575232
http://creativecommons.org/licenses/by-nc-nd/4.0/


and to harbor blaOXA-48 gene by LAMP. After subcultivation of this isolate for MIC 191 

determination, this resistance disappeared and the isolate became susceptible to all tested beta-192 

lactam antibiotics except piperacillin. Only isolates 1-A and 1-B were susceptible to 193 

piperacillin, and only isolate 4-B was not resistant to the cephalosporins tested. Interestingly, 194 

only isolates 4-A and 5-A, which demonstrated the SCV phenotype, were resistant to amikacin 195 

and trimethoprim-sulfamethoxazole. Another remarkable finding was the observed increase in 196 

the MIC values of cefiderocol and trimethoprim-sulfamethoxazole over time (Table 1). 197 

Whole-genome sequence (WGS) analysis revealed that all isolates belonged to sequence type 198 

(ST) 147. Lipopolysaccharide antigen (O) loci were O1/O2v1 and capsule biosynthesis (KL) 199 

loci were KL64 for all isolates except isolate 4-D, which could not be assigned, as it missed 200 

most genes of this locus. Isolates 1-A, 1-B and 2-B showed lower Kleborate resistance score 201 

than the other isolates (resistance: 0 vs. 2). The resistance score of 0 indicates that the isolate(s) 202 

did not carry any genes for extended-spectrum beta-lactamases (ESBL) or carbapenemases and 203 

a score of 2 correlated with the presence of carbapenemase genes without colistin resistance 204 

genes (35). In accordance with the resistance scores, we detected several beta-lactamase genes, 205 

such as blaSHV-11, blaTEM-1 and blaOXA-9, ESBL genes, such as blaCTX-M-15 and blaOXA-1, and the 206 

carbapenemase genes blaNDM-1 and blaOXA-48. blaSHV-11 was found in all isolates whereas blaTEM-207 

1 and blaOXA-9 were present in all isolates except 1-A and 1-B. However, blaCTX-M-15 was not 208 

found in isolate 4-A. Genes associated with sulphonamide (sul1) and chloramphenicol (catB3) 209 

resistance were also detected in all isolates except 1-A, 1-B and 2-B (Table S1). Note that we 210 

did not detect any common cefiderocol resistance genes.  211 

The isolates exhibited clonality as emphasized by the low number of SNPs among them (Table 212 

S1). Especially isolates from the same time point showed no difference in the core genome 213 

alignment (5,360,988 bp) with the exception of 2-A and 2-B (six SNPs) and 5-D (one additional 214 

SNP compared to 5-A–C). The largest distance with 17 SNPs was between 2-A and 5-D (Table 215 

S1). 216 
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 217 

Discussion 218 

When evaluating the results, we can roughly identify three distinct outcomes. The first 219 

significant observation concerns the emergence of resistance development chronologically 220 

within a K. pneumoniae strain, originating from a patient subjected to continuous, uninterrupted 221 

antibiotic intervention. This scenario promptly elicits contemplation of the subject concerning 222 

within-host adaptive evolution of bacteria. In fact, in-host resistance evolution, either due to 223 

plasmid mediation or chromosome mutations, has been observed even shortly after the initiation 224 

of antimicrobial treatment (38).  225 

The second notable observation in our study is the occurrence of SCVs from patient specimens 226 

following the detection of normal-sized morphotypes. SCVs demonstrate remarkable abilities 227 

to invade and persist within host cells, thus evading the surveillance mechanisms of the immune 228 

system (39). The existence of SCVs, mostly observed in Staphylococcus spp., has been 229 

documented since the onset of the 20th century and has gained increasing attention due to its 230 

potential implications for both clinical and basic research (12, 40). Regarding the SCVs of 231 

Gram-negative bacteria, studies have particularly focused on Burkholderia and Pseudomonas 232 

spp. isolated from CF patients (18, 41, 42). However, there are only sparse data on the 233 

occurrence of SCV in Klebsiella spp. (23-27). 234 

Basically, SCVs have been determined as a subpopulation characterized by their distinct 235 

phenotypic properties, such as atypical colony morphologies including the reduced colony size 236 

(43). Their decreased growth rate is thought to contribute to their inherent resistance, given that 237 

the decelerated growth dynamics potentially hinder the effectiveness of antibiotics geared 238 

towards rapidly proliferating cell populations (44). Furthermore, this phenomenon concurrently 239 

signifies decreased metabolic activity, which may engender modifications in cell wall 240 

permeability, drug uptake, or the modulation of efflux pump expression (45).  241 
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For electron transport chain-defective staphylococcal SCVs, lower efficacy of aminoglycosides 242 

known to be taken up through electrical potential across the cytoplasmic membrane (ΔΨ) was 243 

demonstrated, which is attributable to low ΔΨ (46). These alterations could collectively 244 

contribute to enhancing resistance patterns. In this study, we observed an increase in the MIC 245 

values of amikacin, cefiderocol, and trimethoprim-sulfamethoxazole in the isolates recovered 246 

over time. This MIC increase was especially pronounced for amikacin in SCV phenotypes. 247 

Moreover, most antibiotics penetrate into host cells poorly, so the concentrations required to 248 

kill intracellularly persistent SCVs cannot be achieved (12). 249 

SCVs, known for their inducible formation through in vitro processes involving various agents, 250 

including antibiotics (23), have exhibited a propensity for increased persistence and adaptability 251 

when confronted with challenging environments (47). An enhanced ability to form biofilms on 252 

biotic and abiotic surfaces has been shown for SCVs of different bacterial species (41, 48-51). 253 

The substantial implication of SCVs extends to their involvement in biofilm development, as 254 

biofilms effectively shield bacteria from harsh host environments, thereby complicating the 255 

elucidation of drug resistance mechanisms within biofilm structures (52). Biofilms not only 256 

confer protection against host immune defenses but also serve as reservoirs for persistent 257 

infections and recurrent episodes (53). The impact of SCV phenotype on biofilm formation in 258 

in Klebsiella remains to be elucidated in further studies. 259 

Furthermore, the emergence of SCVs could plausibly be due to selection pressure from 260 

antibiotic regimens or other host-associated factors, e.g., host cationic peptides. Consistent with 261 

the case that was the subject of our study, the higher frequency of SCVs in isolates from chronic 262 

and recurrent infections compared to acute infections suggests a potential role for these variants 263 

in evading host immune responses and antimicrobial treatments (12). In the context of our 264 

study, the emergence of SCVs after the initiation of cefiderocol treatment while already 265 

undergoing antibiotic therapy could be construed as a form of in vivo or in host induction.  266 
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The third noteworthy finding from our study underscores the inherent instability of SCVs. This 267 

dynamic interplay between stable and unstable SCVs is still poorly understood and its 268 

elucidation may contribute to a deeper understanding of their role in infection in general and 269 

persistence phenomena in particular (54). Despite comprehensive explorations largely focusing 270 

on staphylococci, a lack of investigations concerning Klebsiella spp. persists, and requires 271 

attention.  272 

The observed instability among SCVs, combined with distinct antibiotic susceptibility profiles 273 

across phenotypes, increases the significance of investigating SCV plasticity (43). Stable SCVs 274 

represent a long-term adaptation strategy, whereas their unstable counterparts may arise as 275 

stress-induced variants that result from rapid adaptation to fluctuating environments (14, 55, 276 

56). This inherent instability potentially serves as a mechanism for evading host immune 277 

responses and circumventing antibiotic interventions (55). Furthermore, the involvement of 278 

epigenetic modifications, including alterations in DNA methylation patterns, could 279 

significantly influence SCV stability (57). In addition, regulatory systems, such as two-280 

component systems and quorum sensing, play a crucial role in SCV formation by modulating 281 

bacterial behavior and adaptation. Disruption or dysregulation of these systems could lead to 282 

the emergence of SCVs with altered phenotypic properties (58). Due to instability, slow-283 

growing SCVs may generate mutants that exhibit a faster growth rate than usual (59). In 284 

instances of reversion to the wild type, rapidly growing mutant revertants may demonstrate 285 

either the loss or preservation of antibiotic resistance (59). 286 

A high mutation rate might favor the emergence of SCVs (20) and also explain the emergence 287 

of antibiotic resistance as a result of antibiotic selective pressure and the adaptation of 288 

hypermutable strains in patients, especially CF patients (19). CF-like chronic infections have 289 

been shown to specifically contribute to the development of bacterial mutations (60). 290 

Hypermutation could result in a subpopulation of bacteria that temporarily does not grow, thus 291 

leading to persistence (61). Additionally, an increase in the prevalence of mutator bacterial 292 
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strains with deficient DNA mismatch repair (MMR) system has been detected in CF patients, 293 

who are used as a reservoir for mutation (62). To our best knowledge, we were unable to identify 294 

any instance in the available literature wherein a solitary SCV colony has given rise to four 295 

distinct colonies exhibiting disparate morphologies. Accordingly, we suggest the designation 296 

"phenotypic hyper-splitting" for this distinctive phenomenon.  297 

We described in this study unprecedented phenotypic attributes and primarily focused on in 298 

vitro experiments. Therefore, the clinical relevance of our findings necessitates validation 299 

through animal models and clinical sample analyses. In this context, macrophage and neutrophil 300 

assays would be valuable for assessing both the extent of immune response and the presence of 301 

persistent cells. Moreover, the determination of the auxotrophism (13, 17) of K. pneumoniae 302 

SCVs and of the molecular mechanisms that drive SCV formation and the resulting antibiotic 303 

resistance in this species require further investigation. Integrating a comprehensive range of 304 

approaches encompassing genomics, transcriptomics, and proteomics, the utilization of 305 

experimental evolutionary models can yield valuable insights into the genetic determinants and 306 

regulatory networks orchestrating SCV phenotypes. 307 

The genomic analysis conducted in this study has revealed clonality among all 14 isolates. 308 

Further exploration is warranted to uncover the intricate molecular mechanisms underlying 309 

phenotypic hyper-splitting and to elucidate the potential pathogenic implications of this 310 

phenomenon. To better understand the formation of the SCV phenotype especially in Gram-311 

negative pathogens, efforts need to be intensified (i) to improve the detection and 312 

characterization of SCVs recovered from clinical samples and (ii) to elucidate their clinical 313 

impact. 314 
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The data for this study have been deposited in the European Nucleotide Archive (ENA) at 317 

EMBL-EBI under accession number PRJEB71325 318 

(https://www.ebi.ac.uk/ena/browser/view/PRJEB71325). 319 
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Supplemental material 321 

Table S1. Core SNP distance matrix. The complete core genome alignment (gaps and 322 

ambiguous bases removed) contained 5,360,988 bp. The reference sequence for alignment was 323 

1-A. 324 
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 340 

Table 1. Colony morphology and antimicrobial susceptibility characteristics of the 14 phenotypes of the Klebsiella pneumoniae strain 

14 phenotypes of the K. pneumoniae strain Median minimum inhibitory concentrations (MICs), µg/mla 

Isolate number Specimen Date 
Colony morphology 

PIP TZP TEM FDC CTX CAZ CZA C/T IPM MEM CIP LVX AMK TGC CHL CST FOF SXT 
Color Surface 

1-A 

Urine Jul 22 

Whitish 
Glistening, 

smooth  
≤8 ≤4 ≤32 ≤0,03 ≤1 ≤1 ≤1 ≤1 ≤1 ≤0,125 >2 >2 ≤4 0,5 16 ≤1 >128 ≤1 

1-B Grey 
Glistening, 

smooth  
≤8 ≤4 ≤32 ≤0,03 ≤1 ≤1 ≤1 ≤1 ≤1 ≤0,125 >2 >2 ≤4 0,5 16 ≤1 >128 ≤1 

2-A 

Tissue Jul 22 

Whitish 
Glistening, 

smooth  
>16 >64 >128 1 >2 >128 >16 >8 >8 128 >2 >2 8 0,5 >16 ≤1 >128 ≤1 

2-B Grey 
Glistening, 

smooth  
>16 8 ≤32 0,06 ≤1 ≤1 ≤1 ≤1 ≤1 ≤0,125 >2 >2 8 ≤0,25 ≤8 ≤1 >128 ≤1 

3-A 

Tissue Aug 22 

Whitish 
Glistening, 

smooth  
>16 >64 >128 1 >2 >128 >16 >8 >8 128 >2 >2 8 ≤0,25 >16 ≤1 >128 ≤1 

3-B Grey 
Glistening, 

smooth  
>16 >64 >128 2 >2 >128 >16 >8 >8 128 >2 >2 8 ≤0,25 >16 ≤1 >128 ≤1 

4-A 

Tissue Sep 22 

Small colony variant >16 >64 >128 0,25 >2 >128 >16 >8 >8 128 >2 >2 32 0,5 >16 ≤1 >128 >4 

4-B Whitish 
Glistening, 

smooth  
>16 64 >128 0,125 2 ≤1 ≤1 ≤1 8 16 >2 >2 8 0,5 >16 ≤1 >128 2 

4-C Grey 
Glistening, 

smooth  
>16 >64 >128 1 >2 >128 >16 >8 >8 128 >2 >2 8 0,5 >16 ≤1 >128 4 

4-D Grey Dry, rough >16 >64 >128 2 >2 >128 >16 >8 >8 64 >2 >2 8 0,5 >16 ≤1 >128 ≤1 

5-A 

Tissue Sep 22 

Small colony variant >16 >64 >128 0,25 >2 >128 >16 >8 >8 >128 >2 >2 32 0,5 >16 ≤1 >128 >4 

5-B Whitish 
Glistening, 

smooth  
>16 >64 >128 2 >2 >128 >16 >8 >8 128 >2 >2 8 0,5 >16 ≤1 >128 4 

5-C Grey 
Glistening, 

smooth  
>16 >64 >128 2 >2 >128 >16 >8 >8 128 >2 >2 8 0,5 >16 ≤1 >128 4 

5-D Grey Dry, rough >16 >64 >128 1 >2 >128 >16 >8 >8 64 >2 >2 8 0,5 >16 ≤1 >128 4 

aAbbreviations of antibacterial agents: PIP: piperacillin, TZP: piperacillin-tazobactam, TEM: temocillin, FDC: cefiderocol, CTX: cefotaxime, CAZ: ceftazidime, CZA: ceftazidime-avibactam, C/T: ceftolozane-tazobactam, IPM: imipenem, 
MEM: meropenem, CIP: ciprofloxacin, LVX: levofloxacin, AMK: amikacin, TGC: tigecycline, CHL: chloramphenicol, CST: colistin, FOF: fosfomycin, SXT: trimethoprim-sulfamethoxazole 
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Figure legends 342 

FIG 1 Columbia blood agar plates showing the different colonial morphotypes of the K. 343 

pneumoniae isolates comprising regular sized colonies (wild-type) with glistening whitish 344 

(Figure 1-A) and grey (Figure 1-B), and dry and rough grey colonies (Figure 1-C), respectively, 345 

as well as tiny grey and whitish colonies displaying the SCV phenotype (Figure 1-D). Figure 346 

1-D also shows the hyper-splitting phenomenon of the SCV phenotype into the colony 347 

morphotypes shown in figures 1-A–C. 348 

  349 
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