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PREFACE

The aircraft flight control system reconfiguration problem
following a damage or a generic failure on a main control surface has
been considered in this study.

First, the estimated model of the damaged aircraft is obtained by
using a Multiple Model Kalman Filtering approach. Then, a particular
algorithm is applied to the flight control reconfiguration. The
determination of the desired control law, which can adapt in a very
short period of time to a major damage to a main control surface, is
obtained by making use of the recent control and response time
histories. In addition, a method is proposed to efficiently distribute
the reconfiguration task among all the remaining healthy control
surfaces. Furthermore, a particular approach is proposed in order to
calculate a new set of feedback gains of the flight control system such
that dynamic decoupling and desirable handling qualities are retained
even after the damage.

The model estimation, the control algorithm and the feedback gains
updating process have been codified in computer simulation programs for
a 6 degrees of freedom aircraft model. The simulation results of the
reconfiguration are presented.
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NOMENCLATURE

a = angle of attack

B = sides1ip angle

u = forward perturbed speed (along X)
p = roll rate

q = pitch rate

=
1]

yaw rate

B = pitch attitude angle
¢ = bank roll angle

W = airplane weight

p = air density

VEL = airplane true speed
MACH = Mach number

n = altitude

I = moments of inertia around

s Tyys I
x> yyr n2z X,Y,Z axes respectively

I, = products of inertia in the XZ plane

X

c

wing mean geometric aerodynamic chord

b

wing surface reference span

S

wing surface reference area

Xc g. = distance from the leading edge of c to the
I airplane center of gravity in tenths of c

6gL = left elevator deflection angle

rignt elevator deflection angle

SR

AL left aileron deflection angle

xi1i

(deg)
(deg)
(ft sec"l)

(deg sec‘l)

(deg sec‘l)

(deg sec"l)
(deg)
(deg)
(1bs)
(sTug ft=3)

(ft sec'l)

(ft)

(sTug ft2)
(slug ft2)
(ft)
(ft)
(Ft?)

(deg)
(deg)
(deg)



6pp = right aileron deflection angle (deg)
6g. = Teft spoiler deflection angle (deg)
6gp = right spoiler deflection angle (deg)
O = left canard deflection angle (deg)
Scp = right canard deflection angle (deg)
6g = rudder deflection angle (deq)

Cr = thrust coefficient

Cp = drag coefficient

C_ = 1ift coefficient

Cy = Tateral force coefficient

Cqy = rolling moment coefficient

Cp = pitching moment coefficient
C, = yawing moment coefficient
C;, = steady state value of the coefficient of the
1 i-th aerodynamic force or moment
with i = T,D,L,Y,T,m,n
C;. = general form of the aerodynamic stability and

J control derivatives : variation of the coefficient
of the i-th aerodynamic force or moment with
changes of the j-th variable

with i = T,D,L,Y,1,m,n

j= a,&,q,u,B,p,r, (Stability derivatives)

GE’GA’GS’GC’GR (Control derivatives)

X(k) = state vector at the time instant 'k’

U(k) = input vector at the time instant 'k’

W(k) = disturbance vector at the time instant 'k’

Z(k) = measurement vector at the time instant 'k'

V(k) = measurement error vector at the time instant 'k'
Y(k) = response vector at time instant 'k’

A = discrete-time state matrix
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CHAPTER I
INTRODUCTION
Reconfiguration Problem

For a military aircraft one of the biggest challenges is the design
of a flight control system that allows the aircraft to recover from
battle damages and/or generic failures.

0ften the accident investigations report that there was a way in
which the disaster could have been avoided if the proper actions had
been taken in a timely fashion. However, the length of time when valid
effective actions to save the aircraft could be taken is just a few
seconds. Given the understandable panic during those moments, a pilot,
even well trained, may not find the solution in time.

The integration and application of recent advances in failure
detection, failure identification and control systems technologies may
make it possible to detect and identify potentially catastrophic
failures in the flight control system and the restructure the control
system of the aircraft in real time in order, depending on the size of
the problem, to continue the mission (or the flight) or to execute a
safe landing.

The objective is to be able to control the aircraft immediately
after battle damages and/or generic failures on a control surface. Note

that this classification does not include unsolvable problems (e.g.



wings falling off) where the aircraft cannot be saved. Therefore, the
flight control task is to utilize whatever control resources remain in
order to regain control of the aircraft, to prevent further damage by
excessive air loads, and to give the crew time to assess the options
(Ref.[1]).

In the period after a damage on a control surface the following

will be experienced:

1 - Altered trim conditions.

2 - Changes in the aerodynamic forces and moments.

3 - Changed control effectiveness.

4 - Altered aircraft dynamics.

5 - Changes, even losses, of control components, including sensors,

communication devices, computers and actuators.

Reconfiguration Conditions and Requirements

In order to implement a reconfiguration strategy, we may introduce
a variety of control surfaces (speed brakes, wing flaps, differential
(even dihedral) canards, spoilers, rudder below fuselage) and thrust
control mechanisms (differential thrust, thrust vectoring, canted
engines), as shown in Ref.[12]. It is clear that, as the number of
control surfaces and thrust control mechanisms available on the aircraft
increases, lower degrees of performance loss occur after a damage.

The selection of the control surfaces and thrust control mechanisms
to be used for the reconfiguration is a function of several factors:
control effectiveness, increased aircraft complexity and costs, weignt
penalties, increased aerodynamic drag due to the increased wetted area,

applicability depending on aircraft type. Fig. 1 shows a F-16 aircraft



with 9 independent control surfaces.

The following quantities, along with a fully operational flight
computer, are assumed to be available for reconfiguration purposes:

1 - Actuator position for each actuator. |

2 - Aircraft body angular and Tinear velocities in the three body

axes.

3 - Ajrcraft attitude and angle of attack.

Essentially we can classify the failures and or battle damages of a
control surface in two categories : that is locked and missing
surface. Generally we can say that a locked surface corresponds to a
failure in the control surface's actuator. A battle damage, instead,
mainly implies missing surface or, more realistically, both missing and
Tocked surface. Of course, in order to describe mathematically the
model of the damaged aircraft, the behaviors of the aircraft due to a
Tocked surface or a missing surface will be different.

In terms of requirements for aircraft survival and performance
after a damage and/or failure on the control surfaces, two types of
requirements were imposed by the military aircraft specifications
(Ref.[19]).

First was the requirement to perform the mission and return home
safely after the loss of one or more flight control system elements due
to ballistic weapons. For such requirement the following groundrule was
stated: after a single component failure or hit by the 37 mm HEJ
projectile, the aircraft should (at minimum) be able to abort the
mission, return to friendly territories, and perform a landing, without
a significant increase susceptibility (which means retaining Terrain

Following/ Terrain Avoidance capabilities). This groundrule is



consistent with the U.S. Air Force program goal of reducing the
probability of kill per hit from 37 mm projectiles by one order of
magnitude and it is reasonable when considering the expected high cost
and relatively Tow procurement of an advanced future fighter (compared
to the F-4 or F-16 procurements of about 4000 and 2000 aircrafts
respectively).

Second was the requirement for the equipment to be designed from a
spectrum of sufficiently reliable elements so that the probability of
aircraft loss per mission due to a random damage and/or generic failure

on a flight control system component is smaller than 1 * 1077,

Reconfiguration Tasks

There are several approaches to the reconfiguration problem which
have been introduced, implemented in software and more or Tless
successfully tested. A list can be given as:

1 - Quantitative Feedback Theory (Ref.[3]-[6]).

2 - Direct Digital Output Feedback with a Linear Quadratic design

procedure (Ref.[7]-[9]).

3 - Pseudo Inverse technique with the application of a Control

Mixer (Ref.[10],[11]).

According to the way that we addressed the reconfiguration problem,
the task of battle damage and/or generic failure accomodation can be
broken into the following main tasks:

1 - EXECUTIVE CONTROL task, which provides essentially

synchronization of the remaining tasks.

2 - FAILURE DETECTION task, which controls the aircraft behavior

and detects significant abnormalities.



3 - FAILURE IDENTIFICATION task, which searches the cause or a set
of probable causes.

4 - FAILED MODEL ESTIMATION task, which generates a mathematical
model of the aircraft dynamics considered to reflect changes
due to the damage.

5 - RECONFIGURATION LAW DESIGN task, which determines what actions
should be taken in order to recover the damaged aircraft.

6 - FEEDBACK GAINS UPDATING task, which calculates a new set of
feedback gains, in order to retain stability, dynamic
decoupling and desirable handling qualities even after the
damage.

Frequently, in the 1iterature the FAILURE DETECTION task and the
FAILURE IDENTIFICATION task are found combined in a unique task. Fig.2
shows a 'step-by-step' overview of the reconfiguration problem.

In the present work only the last three tasks of the overall
reconfiguration problem are considered; therefore it is assumed that the
occurrence of a damage on a control surface has been detected and that
the damaged control surface has been identified.

Eventually, another task to be introduced is a PILOT ADVISORY
function. While the computers of the flight control system are
reconfiguring the aircraft, it would be desirable for the pilot to be
able to see on a cockpit display which control surface has been damaged,
what the flight control system is trying to achieve and what actions, if
possible under current conditions, could eventually benefit the overall
reconfiguration, for example reduction of speed or reduction of

altitude.



CHAPTER TI

AERODYNAMIC EFFECTS OF A DAMAGE
AND/OR GENERIC FAILURE

Aerodynamic Considerations

As stated in the previous chapter, our objective is to identify and
to control a system with changed dynamics. Regardless of the approach
used to control such a system, a more efficient way to estimate the
changed dynamics can be 1mpTemented if we have some knowledge on how the
dynamics may actually change following a damage on a control surface.

The aerodynamic characteristics of a surface are expressed in terms
of normal force, axial force and moment around some fixed points or
axes. A damage on a control surface, which involves a missing part of
it, implies changes in the aerodynamic characteristics of such
surface. In order to evaluate these changes the following aerodynamic
consideration can be made: the main control surfaces (typically
ailerons, elevator and rudder) are not located in directly wetted area.

This implies that the aerodynamic drag exerted by the surface's
deflection, which is related to the axial force, is negligible
(Ref.[13]). On the other hand the aerodynamic moments of a control
surface around various axes are just proportional, through the geometric

parameters of the aircraft, to the normal force exerted on the



surface. Therefore, with the axial force negligible and with the
aerodynamic moments a function of the normal force, we can say that the
changed aircraft dynamics following a damage on a control surface is due
essentially to an instantaneous change of the normal force coefficient
of the damaged surface. Such coefficient is then used for the
calculation of the corresponding non-dimensional stability and control
derivatives.

Therefore, it would be very useful if we can implement a set of
closed-form expressions of the non-dimensional aerodynamic stability and
control derivatives as functions of the normal force coefficient of the
control surface (CNG) considered to be damaged; for example :

Cma = Cma(CNG) s CLa = CLa(CNG) s eee (271)

C]B = C]B(CNG) s CnB = C"B(CNG) s e (ZTZ)

While there exist efficient analytical closed-form expressions for
aerodynamic stability derivatives as functions of the normal
coefficients of the control surfaces for conventional subsonic airplanes
(Ref. [17]-[18]), an accurate wind-tunnel investigation and relative
data correlation would be strongly needed for unconventional supersonic
aircraft like the modern fighters.

This implies that, following this approach, the design of an
aircraft reconfiguration system is not merely a control theory problem;
it involves also a certain amount of aerodynamic investigations in order
to develop these closed-Toop forms to be used for the aircraft

mathematical modeling.



Aircraft Model and Aerodynamic Data

In order to test the control techniques to be used for the
reconfiguration in a computer simulation program, an aircraft model with
relative aerodynamic characteristics, geometric and inertial data needed
to be introduced.

The main candidates for the implementation of a reconfiguration
system are, of course, military airplanes, especially fighters. But,
since data from a military aircraft were not available to us, a civil
aircraft has been considered, without any loss of generality. Such
model of a business jet, shown in Fig. 3 (Ref.[13]) is assumed to have 9
independent control surfaces: Teft and right elevators, left and right
ailerons, left and right spoilers, left and right canards and rudder.
However, even if the aircraft aerodynamic, geometric and inertial data
do not correspond to those of a fighter, the considered flight
conditions are typical of an air combat scenario, that is high altitude
and high subsonic Mach number. Also, the flight maneuvers, which will
be later introduced and analyzed, are typical of a combat situation,
with step inputs on elevators and ailerons.

The aerodynamic characteristics, the geometric and inertial data,
and the flight conditions of the introduced aircraft model are reported
in Table I.

Note that, at this point of the work, in order to introduce a
reconfiguration approach, the chosen aircraft exhibits satisfactory
handling qualities in terms of short period, phugoid, rolling, spiral
and dutch-roll damping and natural frequencies. Therefore, there is no
need for introducing a stability augmentation system (S.A.S.), whose

feedback gains K essentially give rise to a closed-loop expression of



the state matrix Ac(C.L;) = (Ac'BcK)f In a general case, which will be
later considered, the.ciosed loop characteristics of the aircraft with a
S.A.S. will be discussed.

Also we assume that the considered aircraft model does not
implement any Control Configured Vehicle (C.C.V.) function, such as gust
or maneuver load alleviation systems, flight envelope limiting systems,
etc.

As we have previously stated, it would be useful to have a set of
closed-form expressions of the non-dimensional stability derivatives as
functions of the normal force coefficient of the damaged control
surface. Unfortunately, among the available data, we do not have the
value of CNGT However, as expected, we have the value of the control
derivatives for each control surface. Therefore, in order to illustrate
the introduced approach, instead of using CNG’ we are going to implement
closed-form expressions of the stability derivatives as function of the
control derivatives.

Since the introduced aircraft is a rather conventional subsonic
airplane, Ref. [13],[17,] have provided sufficiently exact methods in
order to obtain closed-form expressions for the non-dimensional
stability derivatives.

Considering a damage on one of the elevator surfaces, the following
stability derivatives would be affected by changes in the values of CLGE
and CmGE (which is proportional to CLGE) due to the damage:

C C C

sC ’ o ? o ? ’
La m, La m L m

Furthermore there will be an induced rolling moment.
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In order to introduce a relation between the stability derivative
CL and the control derivative CLdE’ recall the following expression
a
(Ref. [131,[17]):

c, =¢

L +C

L qH/q SH/S (1 - de/da) (2f3)

o oWB La

H

C =C

L

L qH/q SH/S e (274)

6E aH

where CLaWB is the contribution to CLa from the (wing and body) of the
aircraftf In other words it is the CLa of the aircraft if the
horizontal tail is not considered; CLaH is the contribution to CLa from
the horizontal tail.

qy/q is the ratio between the dynamic pressure at the horizontal
tail Tocation and the nominal value of the dynamic pressure. Such ratio
is less than 1 because of the loss of flow energy at the horizontal tail
in the form of friction and separation drag of the wing surface; a
typical value of gy/q is around 0.9.

Sy/S 1is the ratio between the horizontal tail surface area and the
wing surface area.

de/da is the downwash effect induced on the horizontal tail by the
wing-trailing-vortex system. Such effect is directly proportional to
the wing sweep angle, to the wing taper ratio and inversely proportional
to the wing aspect ratio.

Tg is the angle of attack effectiveness of the elevator.

By solving for CLaH as function of CLGE from Eq. (2.4):

C

L
SE (2.5)

C =
ol quq SH/S T

L
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If we substitute Eq. (2.5) in Eq. (2.3) we have:

()
]

(9
+

C,

(1 - de/da)/Tg (2.6)
a aWB 6E :

From Ref. [13],[17] we have found that we can assume:

(1 - de/da)

T = 0.5 (2.7)

Therefore, Eq. (2.6) will become:
C, =¢C

Lo Laws  Ler

‘Hence, we have obtained a closed-form relation of the stability

+C (2.8)
derivative C| as a function of the control derivative CLGE'
a .

Similarly, we may introduce a relationship between the stability

derivative C, and the control derivative CmGE’ which is proportional to

o
CLGE; in order to do so, recall the following expressions (Ref.

[137,[17]:

C =¢C (Xan = X /¢ o+
My Loy  CG&  TACus
- CL qH/q SH/S (XAC - XCG)/c (1-de/da) (279)
oH H
C = -C a,/9 S,/S (X - Xap)/C T (2.10)
Msp LaH H H ACH CG E _

where XACWB and XACH are the 1ocatiQns along the X axis of the
aerodynamic center of the (wing + body) part of the aircraft and of the
horizontal tail of the aircraft respectively. Generally, the
aerodynamic center of an airfoil is defined as that point about which
the pitching moment coefficient remains invariant with the angle of
attack.

By solving for C H as function of Cm6E from Eq. (2.10):
a : .
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-C
"oE (2.11)
C = . - .
LaH qH/q SH/S (XACH XCG)/c T ,
If we substitute Eq. (2.11) into Eq. (2.9) we have:
C =¢C (X X )/c + C_ (1 - de/da)/T (2.12)
My Loy~ & Ay MsE E -
By using the approximation introduced in Eq. (2.7) we have:
C =¢C (Xap = X )/c + C (2.13)
My Law C& ACp MsE -

Hence, we have obtained a closed-form relation of the stability

derivative C as function of the control derivative C
My M§E
About the stability derivatives C,. and Cn. from the "lag of
a a
downwash' theory (Ref. [13]) we recall that there is a fixed relation

between C, , C and C, . This can be seen in the following
L& ms, LGE‘
expressions from Ref. [13],[17]:

C . =2C, qu/q 5,5 X,/c de/da (2.14)
Ly Ly W93k Ky _
C =-2C, q,/q S,/S X,%/c? de/da (2.15)
m: L H H H *
a aH

If we substitute Eq. (2.5) into Egs. (2.14) and (2.15), using the
approximation in Eq. (2.7) and the numerical values introduced in Table

I for the stability and control derivatives, we have:

C,.,=C, *C (2.17)
La 1 LGE ,
C.=C,*C (2.18)
M 2 L6E :

where Cq = 3.957, Cp = -12.051.
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Hence, we have obtained closed-form expressions of the stability

derivatives C, and C as function of the control derivative C; _.
L ms Lsg®
Finally, we need a similar expression for C and Cmq. In order to
q .
do so, recall that for most airplanes the center of gravity is located
somewhere on the wing mean aerodynamic chord. This implies that the
contribution of the wing to C; and Cmq is small with respect to the
q

contributions of the horizontal tail and of the canards. Therefore,

from Ref. [13],[17], recall the following expressions:

c, =2¢C q,/q S,/S (X - Xap)/C o+
Ly Ly 39 307> Uae = Xeg
+ 2 CL qc/q SC/S (XCG - XAC )/c (2719)
acC C
C, =-2.2C_  Q/qS,/S (Xpo - Xeg)o/c® +
q ' aH H
S 2C .9 5S./S (Xan = X, )2/c? (2. 20)
L o o CG AC *

ac C

where the parameters CLac’ dc/9, Sc/Ss XACC’ T. are related to the
canards; they have the same meanings of the corresponding parameters
introduced for the horizontal tail.

By using the geometric data and the values of the control
derivatives relative to the canards introduced in Table I, using Eq.
(215) for the canards, assuming q./q =1, 1. = 0T9 and (Xgg - XACC)/C =
2.368 we have that:

2 CL qc/q SC/S (XCG - XAC )/c = C4 = 21105 (2721)

ac c

2,2
2 CL qc/q SC/S (XCG - XAC ) /c” = —C6 = 47984 (2722)

ac C
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Also, by substituting Eq. (2.11) into Eqs. (2.19), (2.20), we have:

CLq = (€3 * CmGE) +Cy (2123)

cmq = (Cg * cméE) + Cp (2.24)
By using the numerical values of Table I for CLq and Cmq and the
previously calculated values for C4 and Cg we have:

C3 = -2.635 (2.25)

Cg = 9.977 (2.26)

Therefore, we have obtained closed-form expressions of the stability
derivatives C, and C, as function of the control derivative C
Lq mq mGE
As final result, the following expressions for the stability

derivatives corresponding to a damaged aircraft condition can be

obtained:
dc, =¢ - (C, ~-dc, ) (2.27)
L L et Lse -
dc. =C - (. -dc_ ) (2.28)
Mo Mo MsE Mse :
dC, . = Cy * dC (2.29)
Ly~ 7L Lg ,
dc_. C, * dC (2.30)
ma = 72 L6E ,
dc, = (C, *dC_ ) +¢C (2.31)
Lq 3 mGE 4 )
dC_ = (C. *dC_ ) +¢C (2.32)
mq 5 Msg 6 _
with Cy = 3.957, Cp = -12.051, Cj3 = -2.635,
Cq = 2.105, C5 = 9.977, Cg = ~4.984;

where the prefix 'd' indicates the value of the stability and control
derivatives after the damage; as it can be seen, they are all functions
of dC and dC ich i tiona d

LsE mgg? which is proportional to CLGET

0f course, in the particular case when the damage doesn't imply a

missing part of the control surface but only locked actuator's surface,
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the values of the stability and control derivatives under nominal and
damaged conditions will be coincident.

Such analytical closed forms of the non-dimensional aerodynamic
characteristics are to be stored in the flight computer, ready to be

used for on-Tline reconfiguration purposes.
State Varijable Model of the Aircraft

The non-dimensional aerodynamic stability and control derivatives
previously introduced are then combined with the flight conditions data,
and with the geometric and inertial data of the aircraft in order to
calculate the dimensional stability and control derivatives. The
details of these calculations are shown in Ref.[13]. Generally we can
say that these dimensional stability and control derivatives are
proportional to the wing surface, to the dynamic pressure (which is
given by 1/2*p*Ve12), to the wing aerodynamic chord and to the wing
span. They are inversely proportional to the aircraft mass, to the
velocity and to the inertial moments of the aircraft around the
stability axes. These are the axes with respect to which the steady
state values of the forward and vertical linear velocities are different
than zero while the the steady state values of the lateral velocity and
of the angular velocities are zero.

Following the Newtonian equations of the motion, such dimensional
parameters are then linearly combined for calculating the elements of
the A. and B, matrices of the continuous-time state variable model of
the aircraft. The chosen state variables are : {a, q, u, 8, B, p, r, ¢}.
The result is a set of 8 equations describing the dynamics of the

aircraft linearized with respect to some equilibrium points; such points
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are known as "trim conditions", and for each particular aircraft they
are functions of the flight conditions.

Table II shows the state variable model of the aircraft with the
numerical values of the matrices A. and B, relative to an undamaged

nominal situation at the flight conditions reported in Table I.



CHAPTER III
DAMAGED MODEL ESTIMATION
Discrete-time State Variable Model

In this chapter a particular application of the Kalman Filter is
introduced for the purpose of estimating the mathematical model of the
aircraft considered to refiect the changed dynamic characteristics
following the damage.

The Tinearized aircraft dynamics can be described in the discrete
form by the following equations :

X(k+1) = A X(k) + B U(k) + L W(k) (3.1)

Z(k) = C X(k) + V(k) (3.2)
where X(k) is a n-th dimension state vector,

U(k) is a m-th dimension control vector,

Z(k) is a 1-th dimension observation vector,

V(k) is a 1-th dimension measurement noise vector,

W(k) is a r-th dimension disturbance vector,
withn=8,m=9,1=6,r=2;

A and B are the discretized versions of the A. and B. matrices
introduced in the previous chapter (with T = sampling period = 0,01
sec).

W(k) and V(k) can be considered mutually independent white noise

random vectors with zero mean and known covariance matrices, Q and R,

17
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respectively. While V(k) describes sensors' measurement errors with the
values of R depending on the sensor's performance (usually given by the
company producing the sensors), W(k) allows us to model atmospheric
turbulence.

The matrix L reflects the propagation of the turbulence on the
overall aircraft dynamics. Given that the atmospheric turbulence can be
modeled as additional inputs Og and Bg (where 'g' stands for 'gust'), L
can be considered as an (8x2) matrix with columns corresponding to the a
and B columns of the A matrix. The numerical values of the elements of

the matrices A, B, L ,C , Q , R are shown in Table III.
Multiple Model Kalman Filtering

Once we have the aerodynamic characteristics of the aircraft as
functions of the normal force coefficients for each control surface,
provided that the Failure Detection and Identification tasks are able to
indicate which control surface has been damaged, we can discretize the
value of the normal force coefficient of that particular control surface
in a number N of values. Note that the particular case of a damage with
a locked actuator but without missing part of the control surface has
been considered by selecting the Tast of the N models as the normal
undamaged aircraft model, with the nominal value of the normal force
coefficient.

Therefore Eq. (3.1) and (3.2) will become:

Xj(k+1) = A; X5(k) + By U(k) + LjW(k) (373)

Zi(k) = CXj(k) + V(k) withi=l,...,N (3.4)

The estimation task is to determine which one of the N models

correctly characterizes the system (Ref. [15],[16],[21]). Let Hj be the
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event that model 'j' is the most exact system characterization; H will

be then a random variable with discrete values Hy, Hp,..., Hys

furthermore, let Y(k) be as:

Y(k) = {U(0),U(1),....,U(k=-1)5Z(1),2(2) ..., 2(K)}
then we define:

Pj(k) = P(H= Hj / Y(k) )
which represents the probability that model 'j' is the correct system
characterization, given measurements Y(k). Of course we are looking for
the condition of one of the N probabilities associated with the N
discretized models converging to 1, which physically means that the
mathematical model associated with that particular probability closely
describes the dynamics of the aircraft following the damage.

Therefore, using the Y(k) data as input, an iterative algorithm was
needed in order to implement a recursive formula for the probabilities
P;j(k); the algorithm stops when one of the probabilities converges with
a satisfactory accuracy to 1.

In order to solve this problem, a bank of N steady state Kalman
Filters has been introduced; extensive use of the MATRIX, package has
been made for calculating the Kalman Filter gains and covariances
matrices while the remaining algorithm has been implemented in a Pascal
program. The algorithm proceeds as in the following (Ref.
[14],[15],[16],[21]):

STEP 1: A set of N steady state Kalman Filters is constructed for the
N models with the relative gains aﬁd covariance matrices
calculated with MATRIX,.

STEP 2: For each of the N models the filter residuals are calculated

by using:
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-~

ro (k+1) = Z(k+1) - C X, (k+1/k) (3.5)

STEP 3: The Bayesian probabilities are updated by using:

T -1
. e-1/2{r1 (k+1) S ri(k+1)}*[Pi(k)]

1
T -1
g 8. e 172 {rj (k+1) sj r.(k+1)},

P, (k+1) (3.6)

j J [PJ(k)]

where S; is the covariance matrix calculated from the Kalman Filter
equations for each model and:

B, = (2“)-2/2 DET [Si]-1/2
STEP 4: The convergence is checked for all the probabilities; if none

of them converges with a sufficient accuracy to 1, the

algorithm goes back to STEP 2, otherwise it exits the loop and

the model associated with the probability which has converged
represents the closest model characterization. Note that, in
order to avoid false model estimation due to highly
fluctuating probabilities, we may want to exit the algorithm
only when a probabi1ity has converged to 1 with a sufficient
accuracy (let's say (5-10)%), for a certain number of time
steps (let's say 30-40).
Such algorithm has to be implemented on-1line on the flight
computer.
Note that the initial probability P;(1) can be chosen by
using a statistic law to indicate that, following the damage, the normal
force coefficient of the damaged surface is more 1ikely to take on some

particular range of values. In our case a binomial distribution with



21

p=q=0.5 has been introduced to simulate such behavior of the normal
force coefficient following the damage.

Also note that in the approach used in this study, since we
introduce steady-state Kalman Filters rather than time-varying Kalman

Filters, the P;(k) are not exactly conditional probabilities (Ref.[15]).
Simulation Results

This approach for the estimation of the model of the damaged
aircraft has been tested with data from a computer simulation, with
randomly generated white noises V(k) and W(k), following a damage on the
left elevator, at the flight conditions reported in Table I. The
correspondent elevator's inputs are shown in Fig.4. Note that the Teft
elevator has been damaged and it remains fixed at a -5° deflection;
therefore the aircraft is going to have a tendency to roll.

The values of the A and B matrices following the damage are shown
in Table IV; of course, due to the damage, several elements of these
matrices have different values than the ones reported in Table III.
Particularly the damage involves a decrease of the value of the normal
force coefficient from the nominal value of CLGEL = OT276 to CLGEL =
0.121.

By discretizing the nominal value of the coefficient in a set of N
values, the corresponding set of A and B matrices are constructed by the
algorithm. Note that in the B matrix only the elements of the column
corresponding to the Teft elevator change.

The parameter N plays a very important role. For high values of N,
corresponding to an high modeling accuracy, long convergence times are

expected for the probability corresponding to the model that closer
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describes the damaged system; the reverse occurs for small values of N.
For our purposes, the values of N=12 and N=23 have been considered.
Table V shows the two sets of discretized values of the normal force
coefficient of the left elevator relative to N=12 and N=23.

The simulation proceeds as the following: it starts with the
aircraft flying under normal, nominal, undamaged conditions; then, at
time = 1 sec., the damage occurs, causing an instantaneous change in the
value of CLGEL; 4 seconds are assumed to be the difference in time
between the instant when the damage occurs and the instant when the
model estimation process starts; in these seconds we assume that the
Failure Detection and Identification tasks are able to detect the oc-
currence of the damage and to indicate the damaged control surface;
furthermore, during these seconds, we build the N models and the
relative Kalman Filters structure. Therefore, the model estimation
process starts at time = 5 sec.

When N=12, with the damaged dynamics numerically described by a
model somewhere between model #5 and model #6, but closer to model #6,
the probability corresponding to model #6 converges to 1, as shown in
Fig.5, in a short amount of time, around 1.2 sec., with a time increment
of 0.01 sec.

When N=23, with the damaged dynamics numerically described by a
model somewhere between model #10 and model #11, but closer to model
#11, the probability corresponding to model #11 converges to 1, as shown
in Fig.6, in a longer time, around 4 sec., with the same time increment.

Furthermore, given that the calculations for the N steady state
Kalman Filters have to be done before the iterative algorithm starts,

with N=23 Tonger initial computational time has to be added to the
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already longer convergence time of the algorithm. Therefore, a small
increase in modeling accuracy is paid with a much Tonger pre-estimation
computational and algorithm convergence time. On the other side we know
that, since the length of time when valid effective actions to save the
aircraft could be taken is just a few seconds, evén one or two seconds
can be a decisive matter.

Once we have shown that for N=23 we have a longer convergence time,
let's consider N=12 and let's examine a condition when the value of the
normal force coefficient changes, due to the damage, from CLGEL = 01276
to CLGEL = 071147 The relative mathematical model, in terms of matrices
A and B, is still close to model #6, but is more in between model #6 and
model #5 than the mathematical model shown in Table IV is, as it can be
easily understood by looking at Table V. This implies higher values of
the residuals in Eq.(3.5) and, therefore, a larger fluctuation of the
probability associated with model #6. The result is shown in Fig. 7; the
convergence to the right model still occurs but in a time Tonger than
the one shown in Fig. 5, that is around 1.6 sec. instead of 1.2 sec.

Given that this algorithm has to be implemented on-line, for an
accurate selection of a value for N we also have to consider the
computational speed of the airborne computer. The role played by the
various parameters for the selection of N is shown in Fig. 8. Note that
1 and 2 sec. of computational time for the steady state Kalman Filter
gains and covariances are assumed for N=12 and N=23, respectively.

As a final remark, a value of N around 10-12 should provide a very
acceptable modeling accuracy without paying an excessive price in terms
of (initial computational time + convergence time), and the on-line

implementation for N=10-12 models should be within the available
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computational power and speed of the today's aircraft computers.
Probability Convergence Sensitivity Analysis

For the determination of a Kalman Filter structure for a generic
system, the dynamical model parameters (matrices A,B, L and C), the
noise properties in terms of correlation, the noise statistics (matrices
Q and R) have to be specified. Generally speaking, since the system
model is usually an approximation to a physical situation, the model
parameters and noise statistics are seldom exact. In other words the
system model used in constructing the filter is different from the real
system that generates the measurements.

Sometimes such an approximation is intentional; for example,
expecially for radar tracking application where a large number of states
are involved, it may be desirable to use a system model of lower
dimension than the dimension of the real system in order to gain
computational speed and simplicity. However, it is clear that an inexact
filter will degrade the filter performances. Suppose that the real

system is described by :

X(k+l) = A X(k) + B U(k) + L W(k) + Bias (3.7)
Z(k) = C X(k) + V(k) (3.8)

with  W(k) = N [w,q], V(k) = N [V,R];

where the model used to describe the system is given by:
Xp(k+1) = A Xo(k) + B U(k) + L Wy(k) + Biasy (3.9)
Zn(k) = Cp Xp(k) + Vg (k) (3110)

with W (k) = N [wm,om] s Vo(k) =N [vm, Rm]

where Bias and Biasy conventionally account for various sources of

errors, for example: non-linearities, reduction in system dimensions and



25

so on.

Using the equations of the model we build the Kalman Filter
structure, that is a recursive or steady state expression for the gain
matrix K, and for the estimation error covariance matrix P . The
problem is that the computed matrix P, is not the estimation error
covariance matrix because the filter model is different from the real
model. Neither is this filter the minimum variance filter for the actual
system described by Eqs. (3.7) and (3.8).

A measure of the filter performance is provided by the "actual
estimation error covariance matrix" defined by:

P_(k+1/k) = E [X(k+1/k) R (k+1/k) ] (3.11)
(or the relative steady state expression) where

R(k+1/k) = X(k#1) - X(k+1/k) (3.12)
Ref. [25] provides a general form of an algorithm for obtaining a
recursive expression for P,.

Let's go back now to our original problem, that is to determine
which model among a set of N models more closely describes the real
aircraft dynamics following the damage, given the measurements.

The next point to be investigated is how the damaged model
estimation algorithm performs when some discrepancies (other than
differences in the A,B and L matrices) occur between the modeled system
and the real system, which means differences in the C,Q and R matrices.

We can state that the assumption of uncorrelated disturbance noises
and measurement noises can be considered acceptable and that it is
reasonable to think that the observation matrix C is the same for the
real and for the modeled system (which is consistent with the original

assumption of availability of operating sensors for reconfiguration
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purposes from Chapter I). Also that the values of the elements of the
matrix R are furnished with a sufficient accuracy by the company
manifacturing the sensors. Therefore, the only parameters that in the
real 1ife occurrences can show remarkable discrepancies between the real
system and the modeled system are the values of the elements of the
disturbance covariance matrix Q and, moreover, the statistical structure

itself of the random vector W(k).

Probability Convergence Sensitivity Analysis

For Different Values of the Elements of the Q Matrix

We have previously considered the turbulence covariance matrix Q
with the coefficients q; = gpp = 0.0005 and qp = qp = 0.0. In terms
of gust components we would have a vertical velocity component wg whose
trend is shown in Fig.9. As we can see, the aircraft is going through a
gust with vertical velocities up to +35 ft/sec. The relative set of N
Kalman Filters is designed for the same values of such matrix.
Therefore, at this condition, Q = Q.

Let's consider now a turbulence with a covariance matrix Q with the
coefficients qy; = qpp = 0.002 and gy = qp; = 0., wnile inside the
Kalman Filter's structures we still have qpuy1 = G2 = 0.0005 and qpqp =
Op21 = 0. In terms of gust components we woqu have a vertical velocity
component wg whose trend is shown in Figflof As we can see,in this case
the aircraft is going through a gust with vertical velocities up to +75
ft/sec. Such kind of turbulence can be found in low altitude storms; it
is a turbulence whose peak values are much higher than the previous
ones. Aircraft simulation data corrupted with such a turbulence have

been fed to our set of N = 12 Kalman Filters and the previously
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introduced damaged model estimation process has been attempted. The
expected result is that the convergence to the right model should still
occur because, given that the wrong turbulence modeling is common to all
N models, there is always a model that better describes the real
dynamics but the estimation performance should somehow deteriorate. The
result, shown in Fig.1ll, is that the convergence to the right model
still occurs, but in a Tonger time and with a more 'turbulent' trend.

The reason for such trend of the probability associated with the
model that more closely describes the aircraft dynamics Ties in the
complex nature of Eq.(3.6). It is clear that turbulence higher than
expected give rise to higher values of the residuals of Eq.(3.5).
Therefore, for values of Q higher than the corresponding values of Qg,
we are going to have higher negative values of the exponent of the
numerator of Eq.(3.6) and, thus, smaller values of the of the overall
numerator; in other words this means that Probi(k+1) is less correlated
to the Prob;(k), which explains the big changes in the time of the
probability and the 'turbulent' behavior shown in Fig.ll.

From the Kalman Filter equations we also can say that higher values
of the elements of Qg , which is related to the modeled but not to the
real turbulence, imply higher values of the estimation error covariance
matrix Pm and, therefore, higher values of the residual covariance
matrix S and, of course, smaller values of the inverse of such matrix.
It may be thought that if we design the Kalman Filters for values of the
elements of Qm much greater than the ones that we may expect from the
real 1ife turbulence it may help during severe turbulence because we
would have higher values of the numerator of Eq.(3.6); this is only

partially true because such approach would also imply smaller values of
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the constants B's and higher values of the residuals, which, again, will
make the probabilities at the instant (k) and (k+1) less correlated and
the trend still 'turbulent', as shown in Fig.12. After all, we only
have one 'optimal' solution! In Fig.l2 the following values for the
elements of Q and Q, were considered: qg11 = Qo2 = 0.0005, qqq = qpp =
0.0001, with all the off-diagonal elements being zeros. -

A more functional approach to the problem would be to implement in
the flight computer a relation of the elements of Q as function of the
altitude (starting from a certain altitude in order to avoid Tocal
ground effects) instead of using one configuration for the matrix Q
valid for all flight conditions (as shown in Ref.[30]), then to multiply
the so calculated values for a factor moderately bigger than 1 to
account for particularly severe turbulence and , finally, to store such
values in the Q, matrix of the Kalman Filter structure. Such an
approach should protect the estimation process from unexpected high
levels of atmospheric turbulence without excessively deteriorating the
performances of the estimation process, as shown in Fig.13. In this
case the following values for Q and Qm were considered : qn11 = Gpop =
0.0005 and gy7 = qpp = 0.00033. This result has to be compared with the
nominal conditions (Q=Q,) result shown in Fig.5.

Another obvious approach in order to reduce the effects of the
turbulence would be to filter the probabilities calculated with the
previously introduced algorithm. A second order probability filter can
take the generic form:

Fpgi (k+1) = cq Fpri(k) +Cy Fpri(k-l) *Cy Pri(k+1) (3713)
z

where c, =1, Fpr,(k) is the filtered probability relative at the
i=1

instant k. By adjusting the values of the c;'s we can change the
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correlation between the probabilities at instant (k+l) and instant (k).

Note that this approach is particularly useful when the model |
estimation task is also coupled with a control task in order to reduce
excessive excursions in control input activities (Ref.[14],[15],[16],
[21]). In our case, where we are only concerned with the damaged model
estimation task, such approach doesn't improve the performance of the
estimation process. In fact it increases the convergence time as shown
in Fig. 14 (relative to the same values of Q and Qp as in Fig.13) for 3
different set of values of the constants c;'s. This is definitely an
undesirable effect. As we can see in Fig.l4, the convergence time
increases with increasing values of 1 and Cos which are the
coefficients relative to the filtered probability at the instants (k)
and (k-1) with respect to the value of c3, which is the coefficient

relative to the unfiltered probability at the instant (k+1).

Probability Convergence Sensitivity Analysis

For Correlated Disturbance Noise W(k)

Up to this point the assumption of atmospheric turbulence modeled
with a white noise Gaussian random vector has been made. In the real
1ife the components of the atmospheric turbulence may show some form of
correlation (Ref.[27]). The result of such approximation is typically
an underestimation of the peak gusts by the Gaussian model. A great
amount of research has been devoted in the past for creating realistic
non-Gaussian correlated models of atmospheric turbulence to be used in
flight simulators instead of Gaussian white noise generated turbulence.
Data analysis have allowed modeling such turbulences with autoregressive

(AR) processes of the first or, at most, of the second order. However,
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expecially at higher altitude, the atmospheric turbulence components are
not highly correlated.
For our purposes, let's consider now our atmospheric turbulence

model vector W(k) given by two AR(1l) processes:

ag(k+1) = OTS ag(k) + ea(k) | (3114)
Bg(k+1) = 075 Bg(k) + eB(k) (3f15)
where e, (k) and es(k) are white noise Gaussian with zero means and
2 2

variances Oy = 08 = 070005, which are the diagonal elements of the U
matrix previously 1ntroduced7 Note that ag(k) and Bg(k) are still
assumed to be mutually independent.

The vertical velocity compoment of the gust for the cases of
correlated atmospheric turbulence are shown in Fig. 15 and Fig. 9. Of
course the autocorrelation function associated with the data for
uncorrelated gust velocity component will tend to the classical "impulse

at the origin and zero elsewhere" typical of a white noise process, as

2 2 2

shown in Fig.16; as a check we know that o, = (Vel) Oy

= Rw (t =0) = 22778 (Appt B), which is inggood agreemegt with the
plotted data. Note that such autocorrelation function has been
calculated for 2500 data points. As expected, the autocorrelation
function associated with the data for correlated gust velocity component
will tend to zero more gradually as shown in Fig.17 for the same number
of data points.

Our aircraft system is therefore going to be excited by a non-white
noise random input vector, and consequently the aircraft response will
also show some correlation. At the same time, our Kalman Filters

structure is designed for an atmospheric turbulence modeled as a white

noise process. This will generate, therefore, an inconsistency. A way
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to detect the presence of unmodeled or uncorrectly modeled disturbance
noise in our system is to analyze the autocorrelation function of the
residuals of the Kalman Filters of Eq.(3.5). If the atmospheric
turbulence exciting our aircraft system is a white noise process
correctly modeled in the Kalman Filters structure, the associated
autocorrelation function of the residuals (for the a and B states) will
tend to the "impulse" Took, as shown in Fig.18. For the residuals of
model #6; on the other side, if the atmospheric turbulence exciting our
aircraft system is not a white noise process and, therefore, not
correctly modeled in the Kalman Filters structure, the associated
autocorrelation function of the residuals (for the o and B states) will
decrease a little more gradually, as shown in Fig.19, for the residuals
of model #6.

At this point let's analyze how this affects the performance of the
model estimation process. The real mathematical model describing the
aircraft system generating the dynamic data increases its order from 8
to 10 for modeling the correlation in the components ag(k) and Bg(k)f
The now increased order state variable model is shown in Table VI,

Dynamic simulation data from this system which at a certain time
experiences a change in the dynamics due to the damage have been fed to
our Kalman Filters structure and the damaged model estimation process
has been attempted. The result is that, with a certain amount of
surprise, the probability still converges to the right model (which is
model #6), as shown in Fig.20, with approximatively the same convergence
time shown in Fig.5, which was relative to nominal conditions of exactly
modeled atmospheric turbulence in terms of covariance and color. Note

that the peak shown in Fig.20 is not of particular concern to us because
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by the time that such peak occurs we would have already exited the
algorithm because we already had reached the convergence condition for
same time. Next, we will try to understand the reasons for a behavior
so relatively similar to the conditions of uncorrelated noise. Again,
an explanation Tlies in the complex structure of Eq.(3.6). The covariance
residual matrix Syye (or its inverse SUNC‘I)’ where 'UNC' stands for
uncorrelated atmospheric turbulence, relative to model #6, implemented
in the algorithm up to this point, is associated with the estimation
error covariance matrix Punc» relative to model #6, calculated by the
Kalman Filter structure using the relation:

Sune = C*Pync*Cl + R (3.16)
Such Syne and PUNC are therefore relative to a 8-th order system with
atmospheric turbulence correctly modeled as white noise processes.
Next, we would Tike to calculate the "true" estimation error covariance
matrix, relative to model #6, for a 10-th order system with a 8-th order
filter and the associated covariance residual matrix, PCOR and SCOR’
where 'COR' stands for correlated atmospheric turbulence. In order to
do so, let's recall the system equations and the Kalman Filter
equations; note that, without any Toss of generality, the deterministic
input U(k) is not considered; also note that the matrices A and L are

relative to model #6.

X(k+1) = A X(k) + L W(k) (3.17)
Z(k) = C X(k) + V() (3.18)
X(k+1/k) = A [I - KC] X(k/k=1) + AK Z(k) (3.19)

where the gain matrix K is calculated by the Kalman Filter and it is
relative to model #6. By using Eq.(3.18), Eq.(3.19) will become:
X(k+1/k) = A [I - KC] X(k/k=-1) + AK (C X(k) + V(k)) (3.20)
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If we introduce e(k+1) = X(k+1)-X (k+1/Kk), we have:
e(k+l) = AX(K) + L W(K) - A X(k/k-1) + AKC X (k/k-1)
= AKC X(K) - AK V(K) (3.21)

Next, we can introduce a new augmented state variable vector:

”e(k+1) A (18—KC) L ~AK e (k)
V(k+1_} 0(6x8 0(6x2) 0(6x6) V(k)
Xaug (k+1) Anue Xaug (k)
]
0(8x2) 0(8x6) . (k)
vl 0 v 3.22
2 (2x6) e, (k) (3.22)
O(6x2) Ie
Laug Waug (k)

Note that the order of Xpyg 1S (8+2+6) = 16;
the order of Wpyg 15 (2+6) = 8;
the size of AAUG is (16x16);
the size of Laug is (16x8).
Also note that V(k), the measurements noise, is still a white noise
Gaussian random vector with covariance matrix R.
QAUG’ which is the covariance matrix for WAUG’ CAUG and E will be

given by :

Qaug = (3.23)
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Caug = I; O(6x8)] (3.24)
0.5 0.0
E - (3.25)

0.0 0.5
The diagonal elements of the matrix E are the coefficients of the two
AR(1) process which are modeling the elements of vector W(k), which are

ag(k) and Bg(k). Therefore we have a new set of state variable

equations:
Xaug(k+1) = Aayg X(K) + Lpyg Waug(k) (3.26)

The steady state estimation error covariance matrix for correlated
(but not modeled by the Kalman Filters structure) atmospheric turbulence

and the residuals covariance matrix can be found from :

T T
Pcor = Aaue Pcor Aaue * Laug Qaus Laus (3.28)

T
Scor = Caue Pcor Cavg' * R (3.29)
Note that Pqgp and Scor are respectively the "true" estimation

error covariance matrix and "true" residual covariance matrix for a
10-th order system modeled with a 8-th order filter. These matricial
manipulations have been implemented in a user defined function on
MATRIX, and the results in terms of S"l, which is the matrix playing a
key rule in Eq.(3.6), are shown in Table VII. Note that the unmodeled
correlated turbulence does not involve very big changes in the S matrix
and the B costant, with respect to Syyc and Bunce On the other hand, by
looking at the trends of the uncorrelated and correlated vertical
velocity components of the gust in Fig. 15 and Fig. 9, we don't expect
the magnitudes of the residuals of the Kalman Filter for model #6 to be

too different between the two cases.
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Therefore, this similarity of the residuals and the closeness
between SUNC-l and SCOR-I’ Bunc and Begr Justify the not too different
trend of the probability convergence shown in Fig.20 and Fig.5. The
bigger correlation between the probabilities in following instants shown
in Fig.20 with respect to the nominal conditions is surely related to
the correlation of the turbulence components which influence the corre-
lation of the probability troughout the correlation of the filter
residuals.

The shown robustness of the Multiple Model Kalman Filtering
approach to non-Gaussian correlated noise is consistent with what it is
stated in Ref.[21].

Essentially, up to this point, we have shown that a moderate
correlation in the atmospheric turbulence, if it really exists, doesn't
deteriorate the performance of the model estimation process. Again,
let's point out that correlation in the components of the atmospheric
turbulence is not very high and surely decreases with altitude because
it is mostly due to ground effects. Once it occurs that we have to
perform a model estimation process in such atmospheric conditions, the
question is the following: Could we be able to model such correlation
on-1line, before implementing the Kalman Filters structure?

The previously carried analysis was essentially done off-line with
the residuals of an already designed Kalman Filters structure. In real
1ife we should first estimate such correlation and then design an
appropriate Kalman Filters structure ; however, in order to do so, there
are three main problems. First, it may be impossible, in those instants
when the aircraft is drastically changed its dynamics due to the damage,

to extract from the sensors data the turbulence components in order to
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analyze them; second, whatever method we would eventually use to
determine the order and then the coefficients of the correlation, we are
going to need to collect a certain amount of data and then we have to
analyze them with some computationally time consuming algorithms; all of
this has to be done while the damaged aircraft is "waiting" to be
reconfigured and we know that time is a key point for the success of the
reconfiguration; third, if eventually we could come up with an increased.
order system to account for correlated turbu]ence, then the computaional
time to design the Kalman Filters will exponentially increase.

These real life factors combined with the fact that correlation, if
any, doesn't deteriorate too much the model estimation process
performance lead to the conclusions that, for our purposes, the
components of the atmospheric turbulence can be modeled with sufficient

accuracy as white noise Gaussian random vectors.

Probability Convergence Sensitivity Analysis

for Nonlinear Damaged Aircraft Dynamics

As far as the nonlinearity of the real dameged aircraft system is
concerned, the issue is whether the tracking error from the Kalman
Filter corresponding to the linearized model closest to the true,
nonlinear system is markedly smaller than the errors from filters based
on 'more distant' models.

Given that the residual covariance matrices S's are fixed for each
model, the values of the exponents of the Eq. (3.6) and therefore the
probability will depend upon the values of the residuals; higher values
of the residuals (which is typical from nonlinear system response), with

fixed S'l's, will reduce the tracking capabilities of the approach and
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it will make more difficult to distinguish among the models.
Consequently, from a numerical simulation point of view, we are
going to have trends similar to the ones shown for the probability
convergence sensitivity analysis to higher than expected turbulence.
Intuitively, we can say that.the performance of the model estimation
process will depend upon how 'far apart' the different models are.
However, future considerations introduced in Chapter IV will show us

that this problem is not of particular concern to us.
Conclusions

In this chapter an approach for estimating the mathematical model
of the aircraft reflecting the changes due to the damage using Multiple
Model Kalman Filters is proposed. The advantage of this approach is the
relative simplicity since we can take advantage of the particular way
th t the elements of thé matrices A and B may change following a damage
on a control surface. This could make such an approach particularly
attractive for practical implementation. The rule played by the number
N of models to be implemented has been outlined; a choice of N around
10-12 has been assumed to represent an acceptable trade-off point
between modeling accuracy and (Kalman Filters design computational time
+ probability convergence time). The effects of atmospheric turbulence
with intensities higher than expected on the model estimation process
are considered; it is suggested to implement an expression of the values
of Qm as function of the flight conditions, mostly of the altitude,
rather then using only one atmospheric turbulence model for the design
of the Kalman Filters structure. Finally, the effects of correlated

components of atmospheric turbulence on the model estimation process are
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considered. The usually small amount of correlation, the almost
unchanged model estimation performance, the impossibility of extracting
atmospheric turbulence data from the sensors in the instants immediately
following a damage, the excessive price in terms of computational time
for calculating and modeling such correlation bring us to the conclusion
that it is reasonable to model the atmospheric turbulence components as

white noise Gaussian random processes.



CHAPTER IV
RECONFIGURATION ALGORITHM
Statement of a Control Problem

In the previous chapter we have introduced an approach in order to
determine the mathematical model of the aircraft which reflects the
changed dynamics due to the damage. Now we need an algorithm which,
given the models of the nominal undamaged and damaged aircraft system
and the time histories of the deterministic control surfaces input, is
able to find the equivalent input that will make the damaged aircraft

system respond as the undamaged system would under normal circumstances.
Introduction to the Reconfiguration Algorithm

The reconfiguration algorithm used for our purposes was introduced
in Ref.[1]. In order to present such an approach, let's consider a 2-nd
order Tinear time invarient controllable system. In the continuous-time
state variable form we have:

X

X (4.1)

17 %2

X2 =3 X2 ta, X1 tagu (412)
where u is the control variable, required to be bounded; aj, a, and aj
are constant coefficients,

Our goal is to determine a method of computing u which will make

the system defined by Egs.(4.1) and (4.2) to behave Tike the ideal

39



40

system described, in the same state variables form, by:

?1 =Y, (4.3)
Yp = by Yo+ by ¥y +b3uy (4.4)
where U, is the control variable for the ideal system, which is also

required to be bounded; by, b, and b are also constant coefficients.
By integrating Eq.(4.2) between the time t=nh and t=(n+1)h, assuming
that u has a value u(n) over this interval, we will have:

Xo(n+l) - Xo(n) = A + Bu(n) (4.5)
where X,(n) and u(n) are used to denote X,(nh) and u(nh) and A and B
are:

(n+1)h (n+1)h
{ X, (t)dt (4.6)

B=a3zh (4.7)

The desired change in X, over the time interval is defined as Z(n). If
the actual change has to be the same as the desired change, from
Eq.(4.5) we have:

u(n) = [Z(n) - A]/B (4.8)
Once we determine A and B, the control required to make the actual
change in X, equal to the desired change can be provided by Eq.(4.8).
Note that the two terms in A will not generally be constant and they
will depend on the varying values of X; and X,. At this point we assume
that A and B both are approximately constant over a small group of

intervals. Therefore, by applying Eq.(4.5) on these preceding intervals

we have:
Xo(n) = Xo(n-1) = A + B u(n-1) (4.9)
Xo(n-1) - Xp(n-2) = A + B u(n-2) (4f10)

At the beginning of the n-th interval, where u(n) is to be
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computed, all the terms in Eqs.(4.9) and (4.10) will be known from
measurements (or from computer simulations), except A and B. These ‘can

be determined by elimination between the two equations:

u(n-2)[X2(n)-X2(n-1)] - u(n-1)[x2(n-1)-x2(n-2)]
u(n-2) - u(n-1)

(4.11)

2 Xp(n-1) = X,(n-2) = X,(n)

B = u(n-2) - u(n-1)

(4.12)

The Tast parameter that we need to calculate is the desired change
Z(n). For example, suppose that the system is responding to a constant
step input of magnitude M, then the desired change in X, over the n-th
interval is taken as:

Z(n) =h [by X5(n) + by Xy(n) + b3 M] (4.13)

Substituting this value of Z(n) into Eq. (4.8), together with the
values of A and B previously calculated, we will have a control
algorithm which will make the reé] system behave Tike the ideal one
would at the same point under normal circumstances. By accomplishing
this in succeeding time intervals, then the real system will be
reconfigured.

The introduced methodology looks surprisingly simple and, at the
same time, efficient. However, there are two problems that need to be
kept in mind:

1 - The resulting value of u(n) might not be bounded.

2 - u(n) might be too close to u(n-1) and numerical problems may

arise for the computation of u(n+l). This is because we deal

with small denominators in Eqgs.(4.11) and (4.12).
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Characteristics of the Reconfiguration Approach

Before going to the details of the application of the method to
flight control reconfiguration, some further considerations need to be
made. According to the way that the algorithm is going to be used, this
can essentially be classified as a "model following" problem, where the
model of the nominal aircraft can be constructed on-line (see Fig.2) by
using the aerodynamic, inertial, geometric characteristics stored in the
flight computers along with the closed-loop characteristics, if a S.A.S.
or a C.C.V. function is implemented, and the flight data (velocity,
dynamic pressure, air density) coming from the operational sensors. The
dynamic model of the real damaged aircraft is also constructed on-line
by using the previously introduced Multiple Model Kalman Filters method.

As it can be seen from Eqs.(4.9)-(4.11), there is a 2 sample
instants delay associated with the calculation of the required control
input at time 'nh', u(n).

In order to illustrate the approach we have considered a 1inear
time-invariant system. But, without any loss of generality, we could
consider a nonlinear system as long as we are able to simulate it
(Ref.[1]). In fact Eqs.(4.8),(4.11) and (4.12) still hold; the only
difference 1ies in Eq.(4.13). Of course, given that the damaged and
nominal nonlinear systems have to be simulated on-line, the dynamic
simulations of such systems are going to be computationally more time
consuming.

Note, that using such approach, the model estimation task and the
control task are totally separated, with the noise problem faced in the
model estimation part. The dynamic simulation by the recohfiguration

algorithm is essentially deterministic, without any disturbance. A
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previous attempt to use in the reconfiguration algorithm some computer
simulated noised data representing the damaged aircraft dynamic response
has given rise to an unacceptable control activity, in terms of actuator
- frequencies and unrealistic maximum and minimum angular deflections of

the control surfaces.

Application of the Method to

Aircraft Reconfiguration

The technique introduced for a simple single-input 2nd order system
has been used for a much more complex multi-input aircraft system.
Again, the Tinearized models of the damaged and nominal aircraft
dynamics can be calculated using the procedures described in Ref.[13].
Note that, in order to evaluate the performance of the reconfiguration
algorithm only, we assume that the damaged aircraft model has already
been estimated and that the damaged aircraft dynamics is 'exactly'
described by one of those N models of the Multiple Model Kalman Filters
structure. This is a reasonable assumption if a sufficiently high number
N of models is implemented, that is N = 10-15,

For a realistic simulation we have to consider the following
possibilities for a damaged control surface:

1 - Control surface that remains fixed at a particular position.

2 - Control surface that jams to the maximum angular deflection.

3 - Control surféce that jams to the minimum angular deflection.

As it was introduced in Chapter II, the aircraft is assumed to have
9 independent control surfaces:

- Right and Teft elevators (max. and min. defl. of +259),

- Right and left spoilers (max. and min. defl. of #45°),
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- Right and Tleft ailerons (max. and min. defl. of +259),

- Right and Teft canards (max. and min. defl. of +259).

- Rudder (max. and min. defl. of +30°).

A key factor for a successful application of this reconfiguration
technique consists of being able to implement on-line a very small value
of the reconfiguration step 'h', introduced in Eq. (4.6); that is, at
each interval of time that the reconfiguration method is applied. Such
value is a function of the reconfiguration algorithm complexity and
available computational power of the airborne computer.

On the other side, values of h too small may potentially give rise
to a problem because u(n-2) might be too close to u(n-1), as previously
mentioned. In order to avoid this problem a control is performed in the
code such that in case of a 'flat' input, that is u(n-2)=u(n-1), a
minimum fixed quantity is assumed for (u(n-2)-u(n-1)).

Given that a Tinearized set of equations represents the best
compromise between modeling accuracy and Tow computational time for
modeling a 6 degrees-of-freedom aircraft, our next goal is to minimize
the reconfiguration algorithm complexity. In order to do so, the
following consideration can be made. Because of the nature of the
aircraft dynamics, such system is a completely state controllable
system. From a mathematical point of view this implies that:

rank W, = rank [B, AB, ...., A" 18] - n (4.14)
where 'n' is the order of the system, as it has been proved by using
MATRIXXT

From a practical point of view this means that it is enough to find

the control inputs that reconfigure some of the states to be sure that

all the states are reconfigured. A typical choice would be to
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reconfigure p,q,r, which are the angular velocities around the stability

axes Xs, Yo, Z

s* “s°

Once that the amount of control input needed for the recon-
figuration of a state is calculated by using Eq.(4.8), after we have
obtained for each time interval the quantities Z(n), A and B, the next
step is to distribute efficiently from an aerodynamic point of view this
control input among all the remaining available healthy independent
control surfaces. The approach that has been implemented is that each
control surface contributes to the reconfiguration with an amount, wi,

proportional to its effectiveness:

Control effectiveness of the
- i-th control surface (4.15)
i Sum of control effectiveness :
of all surfaces

W

For example, in order to reconfigure the q state after the damage
on the Tleft elevator, we have that the remaining right elevator will

furnish Wggp of the amount of needed control, where WeRr is given by:

abs (C )
MSER
WER = STM(abs(C_ ) (4.16)
Me s
§i
ith SUM(abs (C = abs (C + 2 abs(C + 2 abs(C .
" (abs (Cpg ;) Cmggp) (g Crger )

The p and r states are ordinarily reconfigured by using,
respectively, the ailerons and the rudder.

Such approach will avoid the saturation of a particular control
surface used for the reconfiguration leaving some angular deflection
margins to be used in the following flight manoeuvers by the pilot or by
the stability augmentation systems (S.A.S.) or control configured

vehicle (C.C.V.) functions implemented on the aircraft.
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Reconfiguration Simulation Results

The introduced algorithm to be used for the aircraft recon-
figuration has been implemented in a Pascal program.

Let's recall one more time that, for the time being, we are still
assuming the aircraft being originally ‘'naturally' stable with
satisfactory handling qualities and, therefore, S.A.S. or any form of
C.C.V. functions are not considered. This has only been done for
simplicity purposes and it does not affect the performance of the
reconfiguration algorithm because the algorithm only uses the
mathematical models of the damaged and of the nominal aircraft,
regardless if they represent an open-Toop or a closed-Toop dynamics.
However, we may want to keep this in mind for future comments.

The dynamics of the chosen aircraft model is simulated at the
flight conditions shown in Table I, that is high altitude and high
subsonic Mach number, which is typical of an air combat scenario. The
introduced maneuvers are also typical of a duel situation, with step
inputs on elevators and ailerons, as shown in Fig.4 and Fig.2l.

The damage is simulated to occur at time = 1 sec.; consistently
with what we have done in the previous chapter, we assume that (4-4.5)
sec. is the time needed by the Failure Detection and Identification
tasks and for the design of the Kalman Filters structure while (1.5-2)
sec. is the time needed for the convergence of the probability
associated with the model that more closely describes the damaged
aircraft dynamics. Therefore, the total time span between the instant
when the damage occurs and when the reconfiguration algorithm takes over
is assumed to be 6 sec. Two different cases have been considered.

Case 1 (Fig.22-Fig.24) is relative to a situation where a damage on



47

the Teft elevator implies a reduction of around 1/2 of its control
effectiveness (from CLG = 0.278 to 05121); with the deflection
remaining fixed at the position at the instant of the damage, that is
-59,

| The task of the damaged surface is distributed, using the criteria
introduced in Eq.(4.16), among the remaining half elevator, the right
and left spoilers, the right and left canards. Particularly, using the

data in Table I, we have:

Wep = 41.86% (4.17)
Wg = Wgg = 20.35% (4.18)
WSL = WSR = 8.7% (4. 19)

Fig.22-Fig.24 show that the introduced algorithm, which takes over
at time = 7 sec., achieves in a very short amount of time an accurate
reconfiguration for the angle of attack, for the pitching angular
velocity and proper]y counteracts the rolling moment induced by the
damaged left elevator. Fig. 25 shows the associated right elevator and
canards deflection inputs calculated by the algorithm. In such figure
the opposite sign of the deflection of the canards and the right
elevator is due to the fact that they are located in opposite positions
with respect to the center of gravity. Also note that the absolute
values of these deflections happen to be very ;imi]ar because of the

values of W , WCR? and Wgp in Eqst (4T17’ 4718) and because of the

values of C C in Table I.

C ,
mscL’ “MscR® “MSER

It is important to notice expecially from Fig.22 and Fig.23 how the
characteristics of the aircraft dynamic response change following the
damage. In fact the damage on the left elevator, which, as we have

previously stated, involves a reduction of the value of CLGE and,
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consequently, a reduction of the value of CmGE’ influences moreless
strongly the values of Cma’ Cmq, Cm&’ and CLa’ as shown in Chaptf II
(Ref.[13] and Ref.[17]-[18]), which then cause mostly a change in the
short period characteristics of the aircraft. This can be shown in the

following expressions, valid for the short period approximation in the

longitudinal dynamic stability (Ref.[13]):

1/2

0 = ( (Zan/Ul) - Ma) (4720)
S.p.
-M_, +Z /U, + M)
i q a 1 a
%s.p. ~ Zu (4.21)
C S.p.

Zys Mq, Mas M& are the dimensional stability derivatives con-

taining, respectively, CLa’ Cmq, Cma’ Cm&, Uy is the steady state
forward speed. This can be seen in Fig.26, where the short period
characteristics are plotted in the s-plane; the reason that we go back
to the continuous time domain is that this is the plane where the
conditions in terms of handling qualities are usually assigned. For
normal damaged conditions the poles obtained by using the EIG command in
MATRIX, are shown with the symbol '+'. The ones calculated by using
Eqs. (4.20) and (4.21) are shown by using the symbol '*', Given that
the short period poles are complex conjugates (or, at least, this is the
way that they normally are) only the positive one is shown. Under
damaged conditions, the positions of the poles calculated by using
MATRIX, and Egs.(4.20)-(4.21) are shown, respectively, with the symbols

'-'* and 'x'. The closeness of these poles for both conditions proofs
the validity of the short period approximation. Table VIII shows

instead the effects of the damage on the natural frequency and on the



49

damping of the short period mode; in the Table both the results using
MATRIX, and using Eqs.(4.20) and (4.21) are reported.

This discussion brings up the issue that the damage may decrease
the stability, in this case the Tongitudinal stability, and we can even
reach the point where the aircraft (regardless if it is designed
‘naturally' stable for those particular flight conditions or it is
‘artificially' stabilized with a S.A.S.) becomes unstable after the
damage.

In this extreme case time is really a key factor because if the
reconfiguration algorithm is applied too late, that is the unstable
dynamic trend is already well developed, there may not be enough control
authority to bring back the aircraft to perform with the desired dynamic
characteristics because the aircraft may have already gone into some
unrecoverable flight conditions.

However, back to our case, as it can be seen in the enclosed
figures, the application of the reconfiguration algorithm 'forces' the
damaged aircraft to give the same dynamic response of the nominal
aircraft. No attempt has been made, up to this point, in order to
restore desirable handling qualities. If a S.A.S. is implemented on the
aircraft, Tike it is always the case for fighters, this could be
achieved by redesign of the feedback gains. However, this is going to
be the topic of the next chapter.

Also, in Fig.22-24, by looking at the values of the transients of
the plotted parameters we can see that we are around the Timits of the
linearity assumption.

Case 2 (Fig. 27-30) is relative to a similar situation. The only

difference is that, following the damage, the Teft elevator jams to the
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minimum angular deflection, that is -25°. Note that this is a very
severe condition. Even in this case, an acceptable reconfiguration is
achieved for the angle of attack and for the pitching and rolling
angular velocities; note that the induced rolling moment is in thfs case
a not negligible side-effect. By looking at the relative figures we can
clearly see the 2 instants delay nature of the reconfiguration
algorithm. The differences in Fig.27-29 between the undamaged and the
reconfigured responses are bigger than the respective differences shown
in Fig.22-24, because of the higher amount of aerodynamic forces
exerted, during that 2 instants delay, by the damaged surface jammed to
the minimum deflection.

However, the magnitude of the parameters plotted in Fig.27-29 leads
us to some considerations; in fact such magnitudes are surely outside
the 1imits of the linearity assumption. For those values of the angle
of attack and of the angular velocities the Tinear plant models are
definitively no longer valid, given that the aircraft aerodynamics
becomes highly non-linear.

Now, recall that we have considered an open loop aircraft, without
any form of S.A.S. or C.C.V. functions implemented in the flight control
system. Today's generation fighters are equipped with fly-by-wire
systems in which control surface deflections are not commanded directly
by the pilot but are generated by the flight control computers in order
to achieve commanded states or to achieve some desired dynamic response.

Therefore, in the instants following a damage on a control surface
when the aircraft is experiencing substantial T1inear and rotational
impulses, these damage induced disturbances to the aircraft would be

opposed by the closed-loop control Tlaws. In other words, the C.C.V.
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functions (for example yaw, pitch, roll dampers, maneuver and gust load
alleviation, flight envelope limiting,...) would be using multiple
control surfaces, even if not for reconfiguration purposes, that would
keep the values of a,p,q and all other state variables at lower
magnitudes than the ones shown in Fig. 27-29, Even if not numerically
simulated in this study, the dynamic characteristics of the aircraft
modified by the sophisticated C.C.V. functions are considered in our
overall approach to the reconfiguration problem, shown in Fig.2, under
the name of closed-loop characteristics to be introduced for the
construction of both the damaged and the nominal mathematical models of
the aircraft. Hence, for a modern C.C.V. fighter, the magnitudes of the
states after a damage would be much Tower than the ones shown in Fig.
27-29 and, most 1ikely, within the Timits of the Tinearity assumption.

Looking back to Chapter III, this surely helps the damaged model
estimation process to perform within the basic assumption that the
aircraft dynamics for the N models can be described by N sets of
Tinearized equations.

After these reflections concerning the nature of the aircraft
transient response immediately after the damage it is important to point
out that other main factors for the reconfiguration success are the
maximum angular velocity of the actuators and the maximum number of
impulses that can be sent to such actuators in a time unit. 1In the
reconfiguration algorithm the maximum allowed actuator angular speed was
200°/sec, which is around the average of today's actuators.

This brings up the problem that the advantages of a reconfiguration
technique can be experienced only if the remaining actuators impiemented

are strong and quick enough.
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Conclusions

In this chapter the algorithm to be used for the reconfiguration
has been introduced, outlining some of its characteristics and some of
the problems associated with it.

We have illustrated the particular way that such algorithm has been
used, that is in a "model following" mode, with the damaged and nominal
aircraft system models being deterministic and consfructed on-line using
the f1ight data and the closed-loop characteristics.

We also have pointed out that such algorithm can be applied to
nonlinear aircraft models, but this would require much longer
computational time in the simulation. A key point for the success of the
reconfiguration is to implement a small value of the reconfiguration
step 'h'.

Also, a particular procedure in order to reduce the algorithm
complexity has been introduced, that is reconfiguring only some key
states, by taking advantage of the controllability of the aircraft
system. Furthermore, a method is proposed to efficiently distribute the
reconfiguration task among all the remaining healthy control surfaces.

Then, the simulation results for a typical combat inputs in a
typical combat scenario have been shown, discussing some important
points, Tike the change in the stability characteristics of the aircraft
following the damage, the validity of the linearity assumption and the
need for strong and quick actuators to be driven by this reconfiguration

algorithm.



CHAPTER V

REDESIGN OF THE FEEDBACK GAINS
BY EIGENSPACE ASSIGNMENT

Introduction

Up to this point, we have introduced a Multiple Model Kalman
Filtering approach for the estimation of the mathematical model of the
aircraft considered to reflect the damage and a reconfiguration
algorithm which "forces" the damaged aircraft to behave Tike the nominal
one would under normal circumstances. In other words, by using the
introduced reconfiguration algorithm, we merely calculate a set of
"compensating" inputs.

The chosen aircraft model is considered to be, at that particular
flight condition, 'naturally' stable and satisfying some particular
requirements for handling qualities in terms of rigid body
characteristics (that is, short period, phugoid, dutch-roll, spiral and
rolling modes); therefore a S.A.S. has not been considered; also, the
model is assumed to implement none of the C.C.V. functions (pitch, roll
and yaw damping, gust and load alleviation, flight envelope limiting,
etCe..)e

However, for military aircraft, expecially fighters, strict
requirements in terms of maneuvrability make the resulting aircraft

'naturally' unstable throughout all its flight envelope (altitude vs.

53



54

Mach number). Therefore, some form of S.A.S. needs to be implemented in
order to satisfy the handling qualities requirements. On top of the
S.A.S. we may then design other control systems that implement other
C.C.V. functions.

Therefore, in order to reflect this real 1ife situation, we are
going to modify the given aircraft model by making it 'naturally’
unstable; then, by using MATRIXx, a feedback control can be designed to
make the closed-loop aircraft satisfy the handling qualities
requirements. Next, once the damaged model has been estimated, we would
like the Feedback structure to be redesigned in order to accomodate the
changed dynamics of the controlled aircraft system.

Consider now the conservative case when the damaged control
surface, besides being used by the pilot, has a feedback control input
to the surface. In this case, by redesigning the feedback structure, we
not only want to guarantee the nominal undamaged satisfactory handling
qualities but also would 1ike to remove the unavoidable coupling between
the Tongitudinal and lateral-directional dynamics that the damage on the
control surface has generated.

It may be thought that the reconfiguration has been already
accomplished with the introduced algorithm, and this is true. However,
we may look at the problem as in the following: After the damage occurs,
once the damaged model estimation has been succesfully accomplished, let
the reconfiguration algorithm perform the initial heaviest load of the
reconfiguration itself, that is to bring back the aircraft from whatever
conditions it had reached immediately following the damage to the
desired states. In the same time, on a parallel computational 1line, Tlet

the feedback structure be redesigned for that particular flight



55

condition and for all the flight envelope with the goal of retaining
desirable handling qualities and removing the damage-induced dynamic
coupling.

Once this has been done, the closed-loop characteristics of the
aircraft need to be modified such to reflect the redesign of the
feedback structure and, consequently, we can update the damaged aircraft
mathematical model used in the reconfiguration algorithm. In other
words, the reconfiguration, initially obtained by using only the
algorithm previously introduced, is now accomplished by using both the
Feedback Structure and the reconfiguration algorithm itself, as it can
be seen in Fig.2.

From a f1ight management point of view this is suhe1y a more
functional approach. In fact it wouldn't make sense to maintain for the
rest of the flight the original feedback structure for a system that

changed its characteritics.
Statement of the Problem

For the design of a S.A.S. the most common approach is given by the
state feedback technique. Generally, given a dynamic system described in
the discrete-time form by:

X(k+l) = A X(k) + B U(k) (5.1)
The control input vector U(k) can be expressed as:

U(k) = Ug(k) + Up(k) (572)
where Up(k) indicates control inputs used by the state feedback while
Up(k) indicates pilot deflection inputs. Using the state feedback
approach we have:

Up(k) = K X(k) (5.3)
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where K is a (mxn) matrix of feedback gains. By using Eq.(5.1),
Eq.(5.3) becomes:

X(k+l) = [ A+ BgK ] X(k) + Bp Up(k) (5.4)
where Br is relative to Up(k); Bp is relative to Up(k); [A + BpK] =
Ac.L. = closed-Toop state matrix. Note that Ug(k) and Up(k) may have
some common elements.

An aircraft cannot be considered to be a single-input system, given
that the control surfaces are at least 3. However, for most aircraft
configurations, under design conditions, the Tongitudinal and the
lateral-directional dynamics can be decoupled. Therefore, we can split
the design of an aircraft S.A.S. into the Tongitudinal part and the
lateral-directional part, each one using a single control input (usually
elevator or canards in the longitudinal case and rudder and/or ailerons
in the lateral directional case). Note that this is not necessarily
true for particular aerodynamic configurations, for example, aircraft
with wings or horizontal tails with high dihedral angle (Ref.[32]) or
with oblique wings (Ref.[15],[16]).

In order to show the implementation of this design philosophy, some
of the original aerodynamic data have been changed in order to simulate
a 'naturally' unstable aircraft, which requires a S.A.S. in order to be

stable. Particularly, the following data from Table I have been

modified:
Cma = -0775 -=> Ofl
C = -6.7 --> -5,36
ms, , .
Cmq = -20,15 --> =-16.12
CL = 5.9 --> 5,605
o . .

This reduction of the aerodynamic data values has been made empirically
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but it reflects the fact that an 'artificially' stable aircraft usually
has smaller wings and a very reduced size of the horizontal tail
(Ref.[31]). This can be seen in Fig. 31. The short-period
characteristics relative to the aircraft without a S.A.S. show that the
handling qualities are unacceptable. In fact we have:

POLE 15 p, = -2.1890; POLE 25 p = -0.0962

POLE 1p = 0.1708 + i 0.1112;  POLE 2p = 0.1708 - i 0.1112
As we can seé, the short period poles are no 16nger complex conjugates,
and the phugold has become unstable. However, the S.A.S. has to
guarantee satisfactory flying quatities throughout all the flight
envelope. This is obtained with a form of gain scheduling. From an
implementation point of view this means that the flight envelope is
subdivided into a certain number of regions within which the aircraft
exhibits satisfactory flying qualities with that particular set of
gains. Fig. 32 shows a typical flight envelope. Twenty-eight different
regions have been introduced where the actual eigenvalues are within a
Timited range from the desired eigenvalues. For example the flight
condition AgV3 is relative to a condition with altitude at level 4, that
is between 25,000 and 35,000 ft, and with Mach number at level 3, that
is between 1.0 and 1.3.

At this point we recall that, because of the damage, the
Tongitudinal and lateral directional dynamics are no Tonger decoupled.
This implies that, if we want to modify or, more realistically, redesign
the flight control system in order to retain desirable flying qualities
even after the damage, the approach of using 2 separated single-input

subsystems is no longer valid,
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Control of a Multi-Input Linear

Time-Invariant System

For the design of a feedback structure for a Tinear (or linearized)
time-invariant multi-input system, two different approaches can be
followed :

1 - Linear Quadratic Optimal Control method.

2 - Eigenstructure Assignment technique (a more general definition

for the pole assignment approach).

Optimal state feedback controllers, which minimize certain costs
associated with control, can simultaneously provide control laws by
solution of the Riccati equation, assuming that the system is
controllable. One difficulty associated with this approach has its
origin in the nature of the optimal control approach. By optimizing
certain costs, the control designer has no direct control over the
closed-loop system eigenvalues and eigenvectors (which, in our case, are
directly related to the aircraft handling qualities). Furthermore,
Optimal State Feedback controllers may require excessively long
computations. Therefore, the eigenvalues/eigenvectors technique seems
to better fit our needs of redesigning a flight control system which
retains desirable flying qualities.

In the single-input case a unique feedback matrix is required to
obtain desired eigenvalues. With each eigenvalue, there is an
associated eigevector which is also unique (Ref. [33]). However, for
the multi-input case there are an infinite number of feedback matrices
which can assign specified eigenvalues. Also, with each feedback
matrix, there is a new set of associated eigenvectors. Since the

eigenvectors also affect the time response, it is important to assign
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both the eigenvalues and the associated eigenvectors. Therefore, for
the multi-input systems, there are a number of degrees of freedom given
by free parameters (Ref.[34]-[36]).

A considerable amount of research effort has been devoted in the
past years to investigate the relationships between the specified
closed-1oop eigenspace structure and the weighting matrices of the
performance index of an optimal Tinear quadratic control for a
single-input system (Ref.[37]) or, more recently, for a multiple-input
system (Ref.[38], [39]). ‘

A very interesting approach is to utilize the extra degrees of
freedom for the selection of a set of eigenvectors from the allowable
ones for a robust eigenspace structure assignment, where for
'robustness' the insensitivity of the desired eigenvalues to
perturbations in the components of the matrices A and B is intended.
Several methods have been introduced in order to realize a robust
control. Remarkable theoretical results have been shown in Ref.[40].
The design of a robust eigenstructure assignment has been tried with an
jterative approach, with eigenvalues assigned on the real axis only
(Ref.[41]), or arbitrarily assigned in the complex plane (Ref.[42]).
Furthermore, one more point which has been investigated is the coupling
of a state feedback controller with a state estimation structure, in the
case when not all the states are directly available for feedback
(Ref.[44]).

But the robustness of the controller is not the only goal that can
be achieved with the extra-degrees of freedom furnished by the
analytical nature of the multi-input system control problem. Another

desirable feature is to try to use these extra degrees of freedom to
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obtain the most desirable response (Ref.[45]-[48]). In this case the
eigenstructure assignment problem reduces itself to an optimization

problem.
Feedback Structure Redesign

Our objective is to redesign the feedback structure
such that desirable flying qualities and dynamic uncoupling can be
achieved even with an aircraft with damaged control surfaces.

With the selection of the eigenvalues, we have essentially the
possibility to assign the poles of the system. The dynamic response is
also affected by the locations of the zeros and, by merely using
eigenvalues, we do not have the possibility to change the zeros. From a
mathematical point of view, the dynamic coupling can be seen in the
values of the eigenvectors of the damaged closed-loop state matrix,
which causes an interference between the longitudinal and the
lateral-directional modes.

A Togical solution to this problem would be to assign, in addition
to the desired eigenvalues, a set of desirable eigenvectors which
reflect uncoupling between these modes. In other words, it would be
desirable to assign a set of eigenvectors reflecting the original,
nominal, undamaged decoupled dynamics. In order to do so, the approach
introduced in Ref. [45]-[48] to eliminate structural interferences of
elastic modes with rigid modes is used.

For an n-th order observable and controllable system with m control
inputs and 1 measurements available for direct output feedback, we can
exactly assign MAX(m,1) eigenvalues and MIN(m,1) of the associated

eigenvectors (Ref.[44]). We have an aircraft with 9 independent control
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surfaces but a reduced number of control inputs are implemented in a
feedback structure, that is around 3-4. Note that this implies that the
matrix Bp considered in this study is only a part of the original matrix
B. Therefore, we have m< 1., If we desire to specify more than m
eigenvectors, the best achievable result can be some Teast-squares fit
to the desired eigenvectors (Ref.[45]).

Assume that 1=n=8, that is all the states, measured by appropriate
sensors, are directly available for feedback purposes. This is within
our original assumption for implementing a reconfiguration strategy.
Therefore, we have:

Z(k) =M X(k) (5.5)
where M is an (8x8) identity matrix.

In order to determine K, note that the augmented closed-loop system
eigenvalues (I';) and eigenvectors (Q2;) are related
by the following relation:

F
Introduce a set of m-dimensional vectors w1:

(A+BKM) @, =T, 0, fori=1i,...,n=8 (5.6)

w1'=KM Q‘i f0r1-=-i,'no’ n=8 (507)
Given that m < n, the best achievable eigenvectors for each of the

1=n modes will be obtained by minimizing the following modes' cost

function:
*T
g = 12 (055 - g5) 0 (85 - 8y4) (5-8)
where Q,; = achievable eigenvector associated with T';;
Q47 = desired eigenvector associated with Fi3
Q; = i-th (nxn) symmetric positive semi-definite weighting matrix

for the eigenvectors;

*T indicates conjugate transpose.
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Such a cost function represents the error between the achievable
eigenvector and some desired eigenvector, weighted by the matrix Q. It
can be shown (Ref.[45]) that the W; that minimizes J; is given by:
WiT = 5 05 Ly [LyTT Q5 L407Y (5.9)
for i=1,...,1=n=8, where Ly = (I41, - A)”IBFT
Note that in order for the inverse of Eq.(5.9) to exist we must have:
Rank [Q;] > Rank [Bg] (5.10)
Also we can see that such approach can be extended for synthesizing
reduced order feedback control laws, depending on the dimension 1 of the

vector Z(k). Once we have found Wi, the relation that allows us to

calculate the achievable eigenvectors is given by:

(T3, = A) 255 = BgW; for i=1,...,n=8 (5.11)
which gives:
Ry1 = (TjI, - A)7L By for i=l,...,n=8 (5. 12)

Finally, the control gain matrix is given by:
K =W vt (5.13)

where W

matrix of concatinated W; vectors = [wl,...,w]];

V = matrix of concatinated achievable Q,; eigenvectors

= Larseee ol l,

Results of The Application of The
Method To The S.A.S. Redesign

For A Damaged Aircraft

The introduced method for the redesign of the feedback structure of
the S.A.S. has been codified and tested by using several MATRIXx
user-defined functions.

The following study has been done in the continuous-time domain.
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There is no particular reason for this other than the fact that the
handling qualities conditions are mostly assigned in the s-domain. A
similar study can be done in the discrete-time domain. The hand]%ng
qualities conditions can be obtained in the z-domain by using the

relation z = eST

, where T is the sampling period. Note that, following
this approach, we should select a value of T such that all the desired
pole locations are within the unit circle.

For this study we have used the previously introduced flight
conditions (Altitude=40,000 ft. , Mach number=0.7); of course, the
feedback structure redesign has to be performed for all the regions of
the flight envelope.

In order to show the results of the application of the introduced
methods the following steps have been followed:

STEP 1:

At the introduced flight conditions the design of the feedback

structure is performed for the undamaged, 'naturally' unstable

aircraft with the previously reported data. The selected values
for the eigenvalues are taken from Ref.[13]. Note that such design
could be performed separately for the longitudinal and
lateral-directional dynamics because there was no coupling
introduced by the values of the B matrix. Also note that only the
elevators and the rudder control inputs are considered in this
design. The calculated feedback gains relative to the rudder
control input are almost null because the bare-air frame

Tateral-directional handling qualities are already acceptable. The

resulting closed-Toop A matrix has all the eigenvalues located in

the desired positions, which means desirable handling qualities.
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The resulting eigenvectors reflect a desirable uncoupling between
the longitudinal and Tateral-directional dynamics. Besides this,
there is nothing unique in this set of eigenvectors. Ref.[48]
contains several considerations regarding the selection of a
desirable matrix of eigenvectors. For our purposes it is enough to
achieve a dynamic uncoupling. However, particular relationships
between the rigid dynamic modes may be investigated. The selected
eigenvalues and the calculated eigenvectors are assumed to be our
desired eigenstructure. Such eigenstructure, the associated
feedback gains, the closed-loop A matrix and the B matrix are shown
in Table IX .

2:

The previously calculated feedback gains are now used with the
damaged, unstable aircraft with the same control inputs. Note that
the rolling moment induced by the damage on the left elevator
causes a certain amount of coupling. This can be seen in the
values of the closed-loop A matrix as well as in the eigenvectors
shown in Table X. Also, the eigenvalues reported in the same table
show some remarkable differences with respect to the ones shown in
Table IX. Particularly from Table X, we see that the phugoid has
become unstable and that the short period characteristics are not
satisfactory. This proves the need for a complete redesign of the
feedback structure. The resulting eigenstructure, the closed-loop A
matrix, the B matrix and the feedback gains are shown in Table X.
3:

Finally, given our desired eigenstructure and given the data for

the damaged unstable aircraft, the redesign of the feedback
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structure is now done. From what we have said in the introduction
of the method recall that we can assign precisely MAX(m,1) desired
eigenvalues and MIN(m,1) desired eigenvectors. We have selected
1=n=8. So, by increasing the value of m, we can achieve
closed-Toop dynamics whose eigenvectors are closer to the desired
set of eigenvectors; we can still assign 1=n=8 desired
eigenvalues. Also, we should achieve a closed-Toop A matrix
similar to the one shown in Table IX.

On the other side, for simplicity purposes, we do not want to
introduce in the feedback structure too many deflection inputs,
because our goal is only to remove the coupling between the
lTongitudinal and the lateral-directional dynamics. Of course, in
the selection of the feedback control inputs, we have excluded the
damaged left elevator. By using m=3 control inputs, that is SgreScL
and ORs we already achieve our goals, as shown in Table XI, where
the resulting eigenvalues, eigenvectors, closed-loop A matrix, B
matrix and feedback structure are shown. Even better results are
obtained, as expected, for m=4 control inputs, that is
GER’GCL’GCR’GRj Table XII shows the resulting eigenvalues,
eigenvectors, closed-Toop A matrix, B matrix and feedback
structure. Note that the absolute value of the feedback gains are
Tower than the ones shown in Table XI, which means that the task of
removing the coupling has been more widely spread among the
deflection inputs. Also, in Table XII, we can see that the
achieved closed-loop A matrix, besides having all the desired
eigenvalues, is almost coincident to the one relative to undamaged

conditions shown in Table IX.
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State Estimation with Eigenstructure Assignment

At this point go back to our original assumption that all the
states are directly available for feedback, which means that 1=n=8; so,
we can assign 8 eigenvalues. When this assumption is no longer valid,
we would have 1 < n = 8 and we would be able to assign a reduced number
of eigenvalues. This can be a serious problem, since we have no control
of all the eigenvalues, some can take on unstable values, 1ike positive
values in the s-domain.

In order to assign all the n eigenvalues, an effective approach
would be to introduce an Observer or a Kalman Filter to estimate the
unmeasured states. However, two points need to be considered when state
estimation is coupled with eigenstructure assignment. They are the
effects on the transient response due to a pilot input and the effects
on the controller dynamics itself.

The effects on the aircraft transient response due to a pilot input
can be analyzed by considering the augmented system transfer

functions. Given the general state variable form of a continuous-time

system:
X(t) = A X(t) + B U(t) + L W(t) (5.14)
Z(t) = M X(t) + V(t) (5.15)
with Y(t) = C X(t) (5. 16)
U(E) = Up(t) + Up(t) (5.17)
Up(t) = K X(t) (5.18)
X(t) = A X(t) + B U(t) + F (Z(t) - M X(t)) (5.:19)

where F is a matrix of estimator gains. Using the state estimation

error:

-~

e(t) = X(t) - X(t) (5720)
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the correspondent augmented system can be written as:

X(t) (A + BK) —BFKJ X(t)l
)

b+
e(tn

—

[BP} [L [j W(tj
Up(t) + (5.21)
0 | o - V(t) :

Taking the Laplace transform of Eq. (5.21) we have:

e(t) 0 (A - FM

X(s)] ((sxn - (A + BK)) BFﬂ5 -1

Up(s) + (5.22)
0 0 -F| |V(s) -

with Y(s) = [C 0] |X(s) (5.23)
o
From Eq. (5.23) we can sée that the transfer functions between Y(s)and
Up(s) are given by:

Y(s) = € [s, = (A + Bk)T7'8p Up(s) (5.24)
which is the same as it would be with a feedback structure but without
state estimation. Therefore, with the redesigned feedback structure, as
implemented, the closed-loop system transient response due to any pilot
input is independent of the state estimator dynamics, regardless if we
implement an Observer or a Kalman Filter.

On the other side, the state estimator will affect the controller

dynamics. In order to show this relation, recall that, from Eq. (5.19),
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we have:
" -1
X(s) = (sIn - A - BFK + FM) (BP Up(s) + F Z(s)) (5725)
which will change Eq. (5.18) to:
. ]
UF(s) = K [sIn - Acon] (BP Up(s) + F Z(s)) (5726)
where A, = A + BEK - FM (5727)

Therefore, the estimator gain matrix F should also be selected to
avoid undesirable controller characteristics, such as unstable

eigenvalues of the matrix A It should not be difficult to realize

con*
that this condition is not very restrictive. In other words, if the

matrix (A - FM) has to have stable eigenvalues, regardless if F comes
from an Observer or a Kalman Filter, most 1ikely the matrix (A + BFK -

FM) also should have stable eigenvalues. However, a full address of

this problem has not been considered in this study.
Conclusions

In this chapter a particular approach has been introduced in order
to redesign the feedback structure of the flight control system to
accomodate the changed dynamics due to damage.

The approach is based on Eigenstructure assignment. Through such
assignment we would 1ike to have closed-loop aircraft dynamics with
desirable handling qualities and without the Tongitudinal and
lateral-directional coupling induced by the damage. Such desirable
uncoupling can be assigned with a particular eigenvectors matrix where
the Tongitudinal modes are not influenced by the lateral modes and vice
versa, which means that the elements of the upper right and Tower left
blocks of the desired eigenvectors matrix are zeros.

The introduced method allows us to assign MAX(m,1) eigenvalues and
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MIN(m,1) eigenvectors. If we want to assign the overall eigenstructure,
the best achievable result is a least squares fit to the desired
eigenvectors (Ref.[45]).

For 1=n=8, the result is that the desirable uncoupling is achieved
with the implementation of a Timited number of control inputs in the
feedback structure (m = 3 or 4). The closed-loop characteristics to be
used for the construction of the mathematical model of the damaged
aircraft can, therefore, be updated. The resulting closed-Tloop A
matrix, besides having the eigenvalues coincident with the desirable
eigenvalues, is very similar to the closed-Toop A matrix of the
undamaged aircraft. Such feedback structure redesign has to be achijeved
on-line by the airborne computer for all the flight regions of the
flight envelope. The difference with the previous reconfiguration tasks
is that, for this particular phase, time is not a crucial factor. In
fact, while a computational 1ine is redesigning the feedack structure,
on another parallel line the algorithm introduced in Chapter IV is
taking care of the reconfiguration. Also, if not all the states are
available for feedback purposes (1<n), the effects of adding a state
estimation structure on the feedback structure have been illustrated.

As final comment, it should be outlined that, one more time,
MATRIX, has shown to be an invaluable tool for computational tasks

involving heavy matricial manipulations.



CHAPTER VI
CONCLUDING REMARKS
Summary , Conclusions and Recomendations

In this study the overall problem of flight control system
reconfiguration following a damage and/or a generic failure on a control
surface has been considered. Given that the problem has been broken
down into the tasks shown in Fig.2, new approaches have been proposed
for:

Damaged model estimation task;

Reconfiguration law design task;

Redesign of the feedback structure task.

The main characteristic of the approach used in this study is that
the model estimation task and the control task are totally separated.
The reason is that the presence of noises, both atmospheric turbulence
and measurement errors, do not allow a successful implementation of the
reconfiguration algorithm without a previous model estimation due to
resulting unacceptable control activities. Therefore, the noise problem
is faced in the model estimation task; the result is a deterministic
damaged aijrcraft mathematical model whose dynamics tend to match, using
the reconfiguration algorithm, the dynamics of the nominal aircraft
mathematical model, also deterministic, built with computer stored data.

Furthermore, a method is proposed to redesign the feedback structure.

70
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For the damaged model estimation task, there is a unique
characteristic in the introduced approach. We formulated the problem
from two different perspectives. One from an aerodynamic point of view
and one from an estimation point of view. More precisely, the
aerodynamics furnish precious hints to the estimation part on how the
system has changed following the damage. Furthermore, the Multiple
Model Kalman Filters structure has shown to be a remarkable robust
environment for the model estimation process.

For the reconfiguration law design task, the introduced algorithm
can be classified as a 2 instants delay matching technique, potentially
able to handle nonlinear problems, with an enbodied method to distribute
the reconfiguration task among all the remaining healthy control
surfaces.

For the redesign of the feedback structure, the main idea behind
the introduced approach is to use the extra degrees of freedom furnished
by the analytical nature of the control of a multi-input Tinear
time-invariant system problem in order to restore desirable closed-Toop
handling qualities and to remove the damage generated dynamic coupling.
For the considered aircraft model, such goal is easily achieved with a
not too complex feedback structure (m=3 or m=4),

At this point it would be proper to include a critical analysis of
the work presented in this study and to outline some limitations of the
approaches used. A certain number of comments should be made in order
to justify some assumptions, or some real 1ife factors, which may
eventually play a rule in the reconfiguration problem. Therefore,
review the assumptions made and recall what actions should be taken if

they are no longer valid.
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First, we assumed the reconfiguration problem to be solved for a
rigid aircraft. This is because the most Tikely aircraft for a
reconfiguration strategy are fighters, which given their size and weight
distribution, can be reasonably approximated as rigid bodies. Of
course, the rigid body assumption can not longer be valid for large size
vehicles, 1ike bombers or transport aircraft. For these the state
variables vector needs to include a certain number of flexible modes,
causing an increase in the system order and an increase in computational
time. Note that, eventually the damage generated interference between
rigid and elastic modes may represent a serious threat to the success of
the reconfiguration.

Next, in constructing the aircraft mathematical model, no attempt
has been made to model the actuator dynamics. This has only been done
for simplicity purposes and the results do not loose generality. A
mathematical model including the actuator dynamics would have an order
higher than the one used in this study and higher computational times
but will add no conceptual difficulty.

In Chapter III and IV no S.A.S. or C.C.V. functions were considered
to be implemented on the aircraft. This assumption was made for sim-
plicity purposes and caused no loss of generality. Fortunally it is the
real 1ife implementation of these systems that makes reconfiguration
possible. Thanks to these closed-Toop systems ( Stability Augmentation
Systems, Dampers, Gust and Load Alleviation Systems, Flight Envelope
Limiting Systems, Ride Quality Control Systems ...), the validity of the
1inearity assumption is saved for the case when the damaged control
surface jams to the minimum and maximum deflection. This is extremely

important to us because the damaged model estimation via Multiple Model
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Kalman Filters is based on the linear model assumption.

A possible Timitation of this approach, particularly related to the
damaged model estimation part, is that the software needs a data base
which is aircraft dependent. This is because the closed form
expressions for the stability derivatives as a function of the normal
force coefficient for each control surface depend on the aircraft
aerodynamics. Also the computer stored data should include the weight,
inertial and geometric characteristics of the considered aircraft.
However, this is not major problem.

Another possible limitation of the approach is it does not consider
the possibility of the occurrence of a damage simultaneously on more
than one control surface.

However, we are still able to handle multiple damage as long as it
occurs with a certain time difference because the aircraft data would be
updated after each damaged model estimation. Of course, the probability
to achieve a full and accurate reconfiguration decreases with the number
of damaged control surfaces.

In this study we have reported different steps of the overall
reconfiguration process following a damage on the left elevator, which
along with the right elevator, are the main longitudinal control
surfaces. We have not considered any damage and/or generic failure on a
lateral-directional control surface, that is rudder and ailerons.

The reason for this is that, by analyzing a reconfiguration
following a damage on an elevator surface, we have considered the most
conservative case. In fact, in aircraft dynamics, a damage on a
Tongitudinal control surface involves more aerodynamic coupling with the

Tateral directional dynamics than a damage on a lateral-directional
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control surface involves with the longitudinal dynamics.

The physical explanation for this is that the point of application
of the normal force exerted by the ailerons is usually located closer to
the center of gravity location along the mean aerodynamic chord, such
that very Tittle pitching moment is exerted. The aerodynamic force
generated by the rudder has a null component along the normal direction
which means a null pitching moment. Note that a reconfiguration
following a damage on the rudder cannot be attempted if on the aircraft
there is not at least one control surface, other than the rudder, with
control authority around the yaw axis. The most suitable solution would
be a pair of canards with high dihedral angle.

From a mathematical point of view a damage on a lateral-directional
control surface implies a small (or almost null, especially for a damage
on the ailerons) changes in the elements of the A matrix. 0On the other
hand, for a damage on the longitudinal control surface, we have shown
quite remarkable changes in some of the elements of the A matrix.
However, the introduced approaches for the different reconfiguration
steps still hold.

One more point that needs to be mentioned is that the probability
for a successful reconfiguration with the introduced approaches is
strongly dependent on the available computational power and speed. We
have discussed this aspect in Chapter III, where the computer speed
affects the selection of the number of models N and in Chapter IV, where
the computer speed affects the selection of the reconfiguration step h.
However, this is true for all other reconfiguration methods. The
reconfiguration needs to be sized on the computer performance; a slow

f1ight computer may hurt probabilities of success, expecially when the
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damaged aircraft dynamics turns out to be unstable.

The author is not aware of the current status of the art of flight
computers. It is well known that their performance improves drastically
year by year. From the studies reported in Ref. ([15],[16],[20],[21],
[22]) the proposed approaches seem to be within today's computer capa-
bilities.

The main advantage of the reconfiguration algorithm introduced in
Chapter IV is that it considers the real 1ife occurrence that, following
the damage on the control surface, not only the elements of the B matrix
but also some elements of the A matrix change and this is particularly
true for a damage on the longitudinal control surfaces. With the ap-
proach introduced in Chapter V we have shown that it is possible to
achieve a closed-Toop A matrix almost coincident to the one relative to
the undamaged conditions. Thus, there is no Tonger going to be a real
need for an accurate but more sophisticated algorithm 11ike the one
introduced in Chapter IV. Instead, it would be more appropriate to use
simpler approaches 1ike the Control Mixer Concept using a Pseudo Inverse
Technique (Ref.[10],[11]), which assumes the state matrix A being the
same for nominal and damaged conditions. Now, if we had an extremely
fast and powerful flight computer, the sequence of the reconfiguration
tasks introduced in Fig. 2 may be modified such that the redesign of the
feedback structure is attempted immediately after the damaged model
estimation. Then the Control Mixer Concept takes the place of the
reconfiguration algorithm introduced in Chapter IV. However, this
suggestion is valid only if the redesign of the feedback structure may
be accomplished in a very short amount of time, in the order of a

fraction of a second. Otherwise, the advantages of implementing a
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simpler reconfiguration algorithm are not worth the trouble of delaying
the reconfiguration itself.

This work does not claim to bring revolutionary trends in the
flight control reconfiguration problem. The main concept introduced
here is that we should not Took at this problem only as a control theory
problem. It is the author's personal beljef that, given the complexity
of the aircraft system, given the extremely wide ranges of flight
conditions and associated noises, given the unpredictable number of po-
tential failures or damages, one fixed controller structure robust
enough to any change in the dynamics due to a damage on any control
surface is a fiction and it always will be so.

On the other hand, it does not make sense, on the today
sophijsticated flying machines, to implement only a few precomputed
procedures for emergency conditions; for example, implementing effective
procedures for handling an engine failure during takeoff., But, from an
aerodynamic and flight dynamics perspective, we may have a view point
that, combined with the tools offered by control theory, may guarantee
us a greater flexibility and adaptability.

As final comment, the author hopes that the overall relative
simplicity of the damaged model estimation and feedback structure
redesign methods, é]ong with the accuracy and efficiency of the
reconfiguration algorithm, may be the key factors for successful real
1ife on-1ine implementation of these approaches to the aircraft flight

control reconfiguration problem.
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APPENDIX A

TABLES



FLIGHT CONDITIONS, AERODYNAMIC,
INERTIAL, GEOMETRIC DATA

VEL = 675.0 ft/sec™!
MACH = 0.7

h = 40,000.0 ft

o = 0.000588 slug ft=3
W = 13,000.0 1bs

I

28,800.0 slug ft2

TABLE I

where 's' stands for 'stability axes'

XX

I,y = 18,800.0 slug ft2

I,; = 47,000.0 sTug ft?

I, = 1,350.0 slug ft?

¢ =7.04 ft
b = 34.2 ft

S = 232.0 ft?

Xc.g. = 0-315
ash='2f7 deg

Cp, = 0.0, Cp, = 0.0330,
Cp,, = 0-3, Cpgg, = 0-0:
“gcp = % fo,, = 0.0,
L, = 0-4, Cp, = 0.410,
0 = 611, CLyg, = 0-276,
“Locr = 02 Cugg = 0-15,
Cp, = 0050,  Cp = 0.007,
C_ =-0.75, C__ =0.0,

Cr, = 0.0,
C = 0.0,
Dsgr ~— °
c = 0.0
CDGSR o
Ly = 2%
C . = 0.276,
SER
c = 0.15
Lesp = O
¢ = -0.0034
MTy -
C.. = -6.7
ma )

Cr, = 0.0330
C - 0.0
DscL ¢

C . = 2.20
Le = 2
C = 0.2
LscL
C._ = -0.007
mT1
C. = -20.15
mq )
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c = -0.72, ¢C = -0.72
MsEL 4 MsER -
= -0.15 ¢ = -0.15
MssL - MsSR -
Cy =-0.730, Cy =0.0,
Yg , Y, :
C = 0.0, C = 0.138
YsAR YR
C]B = -0.132, €y = -0.45,
p .
Cq = 0.089, C;, _ =0.0172
SAR 6R .
C, =0.127, C - 0.0,
g nT8
Cp.., = -0.0086, C, = -0.0086,
SAL SAR

MscL
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- -0.35
MsCR ~
C - 0.0
YoaL ~
Ci.. = 0.089
SAL

C, = -0.2412
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TABLE II

CONTINUOUS-TIME STATE VARIABLE MODEL OF THE

AIRCRAFT FOR UNDAMAGED NOMINAL CONDITIONS

-0.032 -0.032 -0.017

-8.838 -8.838 -1.742

{ 0,0 0.0 0.0 0.0
0. 0 0. 0 0. O 0.0

0. 0 0. 0 0.0 O. 0

o] 206752 0.9951 -0.0002 0.0 0.0 0.0 0.0 0.0 |
q -8.4535 -1.6274 0.0009 0.0 0.0 0.0 0.0 0.0
&2 8.4608 0.0 0.0 -32.1756 0.0 0.0 0.0 0.0
5| 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
Bl 0.0 0.0 0.0 0.0 -0.0832 0.0 -0.9988 0.0477
p 0.0 0.0 0.0 0.0 -4.9803 -0.4369 0.1550 0.0
r 0.0 0.0 0.0 0.0 2.8191 0.0004 -0.1365 0.0
3 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0
Ac matrix (8 x 8)

-0.017 -0.023 -0.023 0.0 0.0 0.0
-1.742 4.068 4.068 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

0. 0 0. 0 0. 0 0. 0 0. 0
0. O 0. 0 0.0 0. O 0.017

3. 387 -3. 387 3. 084 -3. 084 2. 894 -2. 894 3.386 3. 386 0. 628’

0. 032 -0.032 0 03 -0. 03 0. 028 -0. 028 0 162 -0. 162 -1. 68

LOfO OfO OfO 0.0

0.0 0.0 0.0 0.0 0.0

B, matrix (8 x 9)

I
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TABLE III

MATRICES OF THE DISCRETE-TIME STATE
VARIABLE MODEL OF THE AIRCRAFT FOR
UNDAMAGED NOMINAL CONDITIONS

0.9929 0.0098 0.0
-0.0836 0.9834 0.0

0.0844 -0.0012 80.0 0.0
A= {-0.0004 0.0099 0.0
-~ 0.999 0.0 —0 01 -0.
-0.0496 0.9956°0.0018
0.0282 0.0 0.8985

-0.0002 0.01 - 0.0

.0
.0
.0
.0
‘0.0
1

I—JOOOOOOO
. e e, Qe o a. o
OO go oo o,

OO OO
OO OO
L e. ®. a. ®
OO0 OoOOoO
[en N e I an N an)
. e . e . @
OOOO

. e . ®. e. e
OO0 OoOCOHFOO
. L]

lcooco
. @ @ [ [ ]

-0.0008 -0.0008 -0.0003 -0.0003 -0.0004 -0.0004 0.
-0.0876 -0.0876 -0.0173 -0.0173 -0.0403 -0.0403 0
0.0 0.0 0.0- 0.0 - 0.0 - 0.0 0.0
B = |-0.0004 -0.0004 -0,0001 -0.0001 -0.0002 -0.0002 0.
0.0 0.0 0.0- 0.0 - 0.0 0.0 0.0 0.0 O. 0003
0.034 -0.034 0.031 -0.031 0.029 -0.029 0.0338 0.0338 0.0062
6.0 0.0 0.0 0.0 0.0 0.0 -0.0016 -0.0016 -0.0168
LO;O 0.0 0.0 0.0 0. 0 0.0 0.0002 -0.0002 - 0.0

cooco
¢

0.9929 0.0]
-0.0836 0.0
0.0844 0.0
L= {-0.0004 0.0
0.0 0.9990
0.0 -0.0496
0.0 0.0282
0.0 -0. 0002
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
c= 0.0 0,0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 o0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
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.0
0.0 0.0005

P‘.ooo5 0

qQ =




TABLE IV

DISCRETE-TIME A AND B MATRICES OF THE
STATE VARIABLE OF THE AIRCRAFT
FOLLOWING THE DAMAGE

0.9933 0.0099 0.0 0.0 0.0 0.0 0.0 0.0

-0.0348 0.9875 0.0 0.0 0.0 0.0 0.0 0.0

0.0843 -0.0012 1.0 -0.3218'0.0 0.0 0.0 0.0

-0.0002 0.0099 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 ‘0.0 0.0 0.999 0.0 -=0.01-0.0005

0.0 0.0 0.0 0.0 -0.0496 0.9956 0.0018 0.0

0.0 0.0 0.0 0.0 0.028 0.0 0.8985 0.0

0.0 0.0 0.0 0.0 -0.0002 0.01 ‘0.0 1.0
-0.0003 -0.0008 -0.0003 -0.0003 -0.0004 -0.0004 0.0 0.0 0.0
-0.0379 -0.0876 -0.0173 -0.0173 -0.0403 -0.0403 0.0 0.0 0.0
0.0 0.0 0.0- 0.0 - 0.0 - 0.0 0.0 *0.0- 0.0
-0.0002 -0.0004 -0.0001 -0.0001 -0.0002 -0.0002 0.0-0.0 0.0
0.0 0.0 0.0- 0.0 - 0.0 0.0 ‘0.0 0.0 0.0003
0.015 -0.034 0.031 -0.031 0.029 -0.029 0.0338 0.0338 0.0062
0.0 0.0 0,0 0.0 0.0° 0.0 -0.0016 -0.0016 -0.0168
0.0 0.0 0.0 0.0 0.0 0.0 - 0.0002 - 0.0002- 0.0
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0.121 ->

TABLE V

DISCRETIZED VALUES OF THE NORMAL
FORCE COEFFICIENT OF THE LEFT
ELEVATOR RELATIVE TO N=12 AND N=23

C after the damage = 0.121
( NGEL) g _

N =12
1 - 0.0
2 - 0.0251
3 - 0.0502
4 - 0.0753
5 - 0.1004
' 0.121 ->
6 - 0.1254 '
7 - 0.1505
8 - 0.1756
9 - 0.2007
10 - 0.2258

11 - 0.2509
12 - 0.2760

=
WNHHROWONOOIRRWN -

23

0.0

0.0125
0.0251
0.0376
0.0502
0.0627
0.0753
0.0878
0.1004
0.1129
0.1254
0.1379
0.1505
0.1630
0.1756
0.1881
0.2007
0.2132
0.2258
0.2383
0.2509
0.2634
0.2760
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TABLE VI

INCREASED ORDER STATE VARIABLE MODEL FOR
MODELING ATMOSPHERIC TURBULENCE
WITH AR(1) PROCESSES

(o, (k+1),B,, (k+1))
o (k+1)] | 1)
q (k+1) | q (k)
u (k+1) l u (k)
8 (k+1) | A | L 8 (k)
8 (k+1)) | | 8 (k)
p (k+1)f = l p (k)
r (k+1)§f ! r (k)
¢ (k+1)§ ———————————————————————— I ' (k)
aw(k+1)f 0.0 evevrniininns 0.0 | 0.5 0.0 ::aw(k)
N O B Y S S PR I Y




0.0 | 0.0]

|

|

|

|

|

|
0.0 | 0.0
--------- |
1.0 | 0.0]
0.0 | 1.0|
(k) =
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T
| 8g (k)
5ep ()
i 6 (k)

ey (k) B Sgp (k)

+ 6cL (k)
eg (k) Scr (k)
| 6p (k)
————————————————————————————— 6pp (k)
0.0 vetirinnneeeeeeanns 0.0| 6p (k)
0.0 1eveeveeeveeieeeenes 0.0) )
@ (k) |
| 0.0 0.0 q (k)
l u (k)
| - 6 (k)
C I 8 (k) bV
| P (k)
. e (k)
g 0.0 0 0] P (k)
o, (k)
8, )




TABLE VII

COMPARISON BETWEEN S~ (INVERSE OF THE RESIDUAL
COVARIANCE MATRIX FdH“hNCOR ELATED TURBULENCE
CORRECTLY MODELED) AND S~ (INVERSE OF
THE RESIDUAL COVARIA MATRIX
FOR CORRELATED TURBULENCE
UNCORRECTLY MODELED)

-%23.151 33.887 -1.129 0.
33.887 656.989 0.498 0.
-1.129 0.498 9:.749 0.

24

SUNC = 0.0 0.0 0.0 515.100 17 26 034
0.0 0.0 0.0 2.817 40.719 0.983

0.0 0.0 0.0 -26.034 0.983 655. 74@

539. 301 21.843 -0.741 0.0 0.0 0.0

21,843 659,608 0.331 0.0 0.0 0.0

-1 -1.741 0.331 9:843 0.0 0.0 0.0
SCOR = 0.0 0.0 0.0 534.583 1.803 =-16.673
0.0 0.0 0:0 2.817 40,747 0.695

0.0 0.0 0.0 -16.673 0.695 659.121

il
S
(%31
S
w

. [ ]
[0 e]

Bcor
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TABLE VIII

COMPARISON BETWEEN THE SHORT PERIOD NATURAL
FREQUENCIES AND DAMPINGS AT NOMINAL AND
DAMAGED CONDITIONS USING EQS.(4.20),

(4.21) AND MATRIX, * -

Nominal Conditions

My = -8f7281
M& = -0f4066
Mq = —172228
Za = -458734

SHORT PERIOD characteristics using:

Eqs . (4. 20)- (4.21) MATRIX,
Ung = 3:091 3.062
Zs.p, = 0.373 0.376

Damaged Conditions

My = _3f7339
M& = —0f2917
Mq = —079567
Za = —444727

SHORT PERIOD characteristics using:

Eqs . (4. 20)- (4. 21) MATRIX,
- 2.089 2.063

“ns. p, . -

Zs.p. =  0.456 0. 462
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TABLE IX

CLOSED-LOOP A MATRIX, Br MATRIX, EIGENVALUES,
EIGENVECTORS AND FEEDBACK GAINS FOR NOMINAL,
UNDAMAGED, ' NATURALLY' UNSTABLE AIRCRAFT

<> ac

AC =

-0.6768 0.9939 -0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
-8.4604 -1.6258 0.0008 -0.0015 0.0000 0.0000 0.0000 0.0000
8.4608 0.0000 0.0000 -32.1756 0.0000 ©.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000 0,0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 -0.0B32 0.0000 -0.9988 0.0477
0.0000 0.0000 0.0000 0.0000 -4.9804 -0.4363 0.1551 0.0000
0.0000 0.0000 0.0000 0.0000 2.8192 0.0003 -0.136€ 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

<>b
B =

-0.0633 0.0000
-17.6583 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.6278
0.0000 -1.6802
0.0000 0.0000

<>



EIVEC

1.0D+02 »

COLUMNS

-0.0007
0.0034
0.0030

-0.0008
0.0000
0.0000
0.0000
0.0000

+
+
+
+

COLUMNS

0.0000
0.0000
0.0000
0.0000
0.0019
-0.0063
0.0030
0.0025
<>

<> eival
EIVAL

-1.1510
-0.0003
-0.0003
-1.1510
-0.0701
-0.0701
-0.508%
-0.0080
<> k

K
-0.55€68

0.0000
<>

+
+
+
+
+
+
+

1 THRU
0.0011i
0.0014i
0.0086i
0.0009i
0.0000i
0.0000i
0.0000i1
0.0000i

S THRU
0.0000i
0.0000i
0.0000i
0.0000i
0.00171
0.0040i
0.0031i
0.0036i

2.8598i
0.0890i
0.0890i
2.8598i
1.6858i
1.6858i
0.0000i
0.0000i

-0.0183
0.0000

4
0.0000 -
0.0000 -

-0.0085

-0.0001
0.0000
0.0000
0.0000
0.0000

IR IR |

8
0.0000
0.0000
0.0000
0.0000
0.0001
0.0081

-0.0049
0.0012

+ 4+ 144+ 44+

0.0000i
0.0000i
0.0231i
0.0000i
0.0000i1
0.0000i
0.00001
0.0000i

0.0000i
0.0000i
0.0000i
0.0000i
0.0029i
0.0024i
0.0003i
0.0048i

SHORT FERIOD (+2

FHUEOID
FHUGOID

SHORT FERIOD
DUTCH ROLL
DUTCH ROLL

FOLLING
SHIRAL

0.0000
0.0000

C+)

(=)

=)
(+)
(=)

-0.0001
0.0000

0.0000
0.0002
0.6970
0.0049
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
-0.0001
-0.0095
0.0008
0.0188

0.0000
0.0000

+ 14+t

0.00011i
0.0004i
1.7544i
0.0019i1
0.0000i
0.0000i
0.00001
0.0000i

0.0000i
0.0000i
0.0000i1
0.0000i1
0.0000i
0.0000i
0.0000i
0.0000i

0.0000
0.0000

0.0045
0.0063
0.0369
0.0036
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0001
-0.0003
0.0020
0.0412

0.0000
-0.0001

+++ 4+

+ 1+ 1+ 4+ + 4
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0.0029i
0.0143i
0.0118i
0.0036i
0.0000i
0.0000i
0.0000i
0.0000i

0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i

0.0000
0.0000



CLOSED-LOOP A MATRIX, B

TABLE X

MATRIX, EIGENVALUES,

EIGENVECTORS AND FEEDBACK GAINS FOR DAMAGED,

'NATURALLY' UNSTABLE AIRCRAFT WITH THE
FEEDBACK GAINS RELATIVE TO THE
UNDAMAGED CONDITIONS

<> adamcl

ADAMCL =

-0.6493 O.
. 4800
. 0000
. 0000
. 0000
.0353
. 0003
. 0000

-0.7206 -1
8.4608 O
0.0000 1
0.0000 O

-1.0716 -0

-0.0102 -0
0.0000 O

<> bd
BDAM

-0.
-12

-1
-0.

<>

9954

am

0454

.6803
. 0000
. 0000
. 0000
<9244

0184

. 0000

-0.0002

000000

O=00000C0C

. 0008
. 0000 -32.
. 0000
. 0000
. 0000
. 0000
. 0000

. 0000
.0000
. 0000
. 0000
.0000
.6278
. 6802
.0000

0.
=0.

0.
0.
=-0.
0.
0.

0000 O.
oo11 O.
1756 O.
0000 O.
0000 —-O0.
0002 —4.
0000 2.
0000 O.

0000
0000
0000
0000
0832
9804
8192
0000

. 0000
. 0000
. 0000
. 0000
. 9988
. 1551
. 1366
- 0000

20000000

. 0000

. 0000
. 0000
. 0477
» 0000
. 0000

anNnnn
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EIVECDAM =
1.0D+02
COLUMNS 1 THRU
0.0000 + 0.0000i1
00,0000 - 0.0000i
0.0000 - 0,0000i
00,0000 + 0.0000i1
-0.0019 + 0.0018i
-0.0034 - 0.0066i
0.0028 + 0.0033i
-0.0038 + 0.0022i
COL.UMNS S THRU
0.0000 + 0.0000i
0.0000 - 0.0000i
0.0000 - 0.0000i
0.0000 + 0.0000i
-0.0001 + 0.00011i
~0.0057 + 0.0101i
0.0003 -~ 0.0009i
0.0112 - 0.0199i
<>
<> eivaldam
EIVALDAM =
-0.0701 + 1.6858i
-1.0662 + 0.7332i
-0.0701 - 1.6838i
-1.06€62 - 0.7332i
-0.5085 - 0.0000i
0.0016 + 0.1157i
0.0016 - 0.1157i
-0.0080 + 0.0000i
<> k
K =
-0.5568 -0.0183
0.0000 0.0000

<>

4
-0.0001
0.0007
-0.0019
-0.0003
0.0000
0.0008
0.0000
-0,0008

8
0.0000
0.0000
0.0194
0.0003
0.0000
0.0000
0.0000

-0.0004

0.0009i
0.00032i
0.0097i
0.0005i
0.0000i
0.0007i
0.0000i
0.0001i

0.0000i
0.0000i
0.0842i
0.0001i
0.0000i
0.0001i
0.0000i
0.0003i

DUTCH ROLL <+
SHORT FERIOD C(+)
DUTCH ROLL (=)
SHORT PERIOD (-

FOLLING
PHUGOID
FHUSOID
SEIRAL

0.0000
0.0000

C+)
(]

0.0000
0.0000
0.0000
0.0000
0.0022
0.0037
~0.0031
0.0044

0.0004
0.0005
1.2951
-0.0023
0.0000
=0.0007
0.0003
0.0061

~-0.0001 0.0000
0.0000 0.0000

0.0000i1
0.0000i
Q.00001
0.0000i
0.0019i
0.0076i
0.00381i
0.0024i

0.0003i
0.0003i
0.6485i
0.0047i
0.0000i
0.00071i
0.00031i
0.00611

0.0000
0.0000

-0.0053

0.0025
-0.0573
-0.0032

0.0000
-0.0031
=0.0001
=0.0003

0.0000
0.0000
0.0000
0.0000
0.0001
-0.0004
0.0025
0.0524

0.0000
-0.0001

0.0003i
0.0038i
0.0032i
0.0013i
0.0001i
0.0051i
0.0002i
0.0046i

0.0000i
0.0000i
0.0000i
0.0000i1
0.0000i
0.0000i
0.0000i
0.0000i

0.0000
0.0000
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<> redadamcl
REDADAMCL

COLUMNS
-0.8335 +
-8.3387 +

B8.4608 +
0.0000 +
0.0001 +
-0.0159 -
-0.00€E8 -
0.0000 +

COLUMNS
0.0000 -
0.0000 -
0.0000 +
0.0000 +

-0.0832 +
-4.9804 +
2.8192 -
0.0000 +
<>

<> bred
BRED

-0.0317
-8.8380
0.0000
0.0000
0.0000
-3.3876
-0.0324
0.0000
<>

CLOSED LOOP A MATRIX, B

o
(0]
0o
0
¢]
(o]
@)
(o]

O
(o]
O
(4]
(o)
(o]
0]
[¢]

1 THRU
. 0000i
+ 00001
.0000i
. 0000i
000014
«0000i
. 0000i
- 00001

5 THRU
.0000i
. 0000i
. 00001
. 00001
.0000i
. 0000i
.0000i
. 0000i

0.0228
4.0685
0.0000
0.0000
0,0000
2.8941
0.0277
0.0000

4
0.9931
-1.4691
0.0000
1.0000
0.0000
0.0005
-0.0012
0.0000

8
0.0000
0.0000
0.0000
0.0000
0.0000

-0.4369
0.0003
1.0000

0.0000
0.0000
0.0000
0.0000
0.0167
0.6278
-1.6802
0.0000

TABLE XI

0.0000i
0.0000i
0.0000i
0.00001
0.0000i
0.0000i
0.0000i
0.0000i

0. 00001
0.0000i
0.0000i1
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i

MATRIX, EIGENVALUES,

EIGENVECTORS AND FEEDBACK GAINS FOR DAMAGED,
"NATURALLY' UNSTABLE AIRCRAFT WITH

REDESIGNED FEEDBACK STRUCTURE

(m=3 :GER,6CL,6R)

-0.0002
0.0007
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
~0.9988
0. 1551
-0.1366
0.0000

0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i

0.00001
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i

-0.0001
~0.0056
-32.1756
0.0000
0.0000
-0.0002
0.0001
0.0000

0.0000
0.0000
0.0000
0.0000
0.0477
0.0000
0.0000
0.0000

0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
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0.0000i -

0.00001
0.0000i

0.0000i
0.0000i
0.0000i
0.0000i
0. 00001
0.00001
0.0000i
0.0000i



REDEIVEC =
1.0D+02 %
COLUMNS 1 THRU
0.0010 + 0.0008i

-0.0027 + 0.0025i
0.0004 + 0.00911i
0.0011 + 0,0005i1
0.0000 - 0,0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i

COLUMNS 5 THRU
0.0000 + 0.0000i
0.0000 - 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0001i.
0.0015 + 0.0094i

-0.0001 - 0.0008i

-0.0029 - 0.01861

<>

REDEIVAL =
-1.1510 + 2.8598i
-1.1510 - 2.8598i
-0.0701 + 1.6858i
-0.0701 - 1.6858i
~-0.5085 + 0.0000i
-0.0003 + 0.089390i
-0.0003 -~ 0.0890i
-0.0080 + 0.0000i

<> redk

REDK =

COLUMNS 1 THRU

<>

3.5953 - 0.0000i

4.2021

- 0.0000i

0.0039 + 0.0000i

COLUMNS

S THRU

0.0000 + 0.0000i
0.0000 + 0.0000i
0.0000 + 0.0000i

4
-0.0017 —-
-0.0032 +
-0.0154 +
-0.0012 -
0.0000 +
0.0000 +
0.0000 +
0.0000 -

8
0.0000 -
0.0000 -
0.0468 -
0.0000 -
0.0000 +
0.0000 +
0.0000 +
0.0000 +

SHORT PERIQD
SHORT PERIOD

0.0013i
0.0054i
0.0026i
0.0016i
0.0000i
0.0000i
0.0000i
0.0000i

0.0000i
0.0000i
0.0078i
0.00011%
0.0000i
0.0000i
0.0000i1
0.0000i

DUTCH ROLL (+)

DUTCH ROLL €D
FOLL IMNG
FHUGOID C+)
FHUGOID <--)
SPIRAL
4
0.0544 + 0.0000i
0.0637 + 0.0000i
0.0007 - 0.0000i
8
0.0000 - 0.0000i
0.0000 - 0.,0000i
0.0000 -~ 0.0000i

(+)
(=)

0.0000
0.0000
0.0000
0.0000
-0.0023
0.0051
-0, 0022
-0.0033

0.0001
0.0006
2.4069
=0.0003
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

0.0000
0.0000
0.0001

0.0000i
0.0000i
0. 0000i
0.0000i
0.0012i
0.0054i
0.0037i
0.0029i

0.0000i
0.0000i
0.1434i
0.0067i
0.0000i
0.0000i
0.0000i
0.0000i

0.0000i
0.0000i
0.00001

0.00001
0.0000i
0.0000i

0.0000
0.0000
0.0000
0.0000
0.0020
0.0045
-0.0035
0.0041

0.0000
0.0000
0.0000
0.0000
0.0001
-0.0003
0.0020
0.0412

0.0013
0.001S
-0.0001

0.0000
0.0000
0.0000

0.0000i
0.0000i1
0.0000i
0.0000i
0.002214
0.0071i
0.00341
0.0028i1

0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i1
0.0000i

0.0000i
0.00001
0.0000i1

0.0000i1
0.0000i
0.00001
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<> redadamcl
REDADAMCL

COLUMNS
-0.6768 +
-B8.4604 +

B8.4608 +
00,0000 +
0.0000 -
0.0000 -
0.0000 +
0.0000 +

COLUMNS
0.0000
0.0000
0.0000
0.0000

-0.0832
-4.9804
2.8192 -
0.0000 +

<>

+
+
+
+

<> bred
BRED

-0.0317
-8.8380
0.0000
0.0000
0.0000
~-3.3876
~0.0324
0.0000
<>

TABLE

CLOSED LOOP A MATRIX, B
EIGENVECTORS AND FEEDBACK GAINS FOR DAMAGED,

'NATURALLY' UNSTABLE AIRCRAFT WITH

1 THRU
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i1
0.0000i
0.0000i1
0.0000i

S THRU
0.0000i1
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i

-0.0228
4.0685
0.0000
0.0000
0.0000
2.8941
0.0277
0.0000

XTI

MATRIX, EIGENVALUES,

REDESIGNED FEEDBACK STRUCTURE

(m=4: GER,GCL,GR,GR)

4
0.9939
-1.6258
0.0000
1.0000
0.0000
0.0000
0.0000
0.0000

8
0.0000
0.0000
0.0000
0.0000
0.0000

-0.4369
0.0003
1.0000

-0.0228
4.0685
0.0000
0.0000
0.0000

-2.8941

-0.0277
0.0000

+ 4+ 4+ 1+ 440

0.0000i
0.0000i
0. 0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i

0.0000i1
0.0000i
0.00001
0.0000i1
0.0000i
0.0000i1
0.0000i
0.00001

0.0000
0.0000
0.0000
0.0000
0.0167
0.6278
-1.6802
0.0000

=0.0002
0.0008
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
-0.9988
0.1551
-0.1366
0.0000

S I e

144441

0.0000i
0.00001
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i

0.0000i
0.0000i1
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i

0.0000
-0.0015
-32.1786
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0477
0.0000
0.0000
0.0000

+ 1+ 4+ 441

T+ 4+ +

0.0000i1
0.0000i1
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i
0.0000i

0.0000i
0.0000i
0.0000i
0.00001
0.0000i1
0.0000i
0.0000i
0.0000i
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REDEIVEC

<>

1.0D+02 =

COLUMNS

-0.0012
-0.0002
-0.0071
-0.0011
0. 0000
0.0000
0.0000
0.0000

+
+

+

COL.UMNS

0.0000
0.0000
0.0449
0.0000
0.0000
0.0000
0.0000
0.0000

+
+
+
+

<> redeival

R

EDEIVAL

-1.1510
-1.1510
~0.0701
-0.0701
-0.0003
~0.0003
~0.5085
-0.0080

<> redk

REDK

<>

P+ + 0+ 1 4+ 1

COLUMNS

1.6728
0.9770
-0.9811
0.0000

-+

COLUMNS

0.0000
0.0000
0.0000
0.0000

+
+

1 THRU
0.0003i
0.0037i
0.0057i
0.0005i
0.0000i
0.0000i
0.0000i
0.0000i

5 THRU
0.0000i
0.0000i
0.0150i
0.0001i
0.0000i
0.0000i

.0.0000i

0.0000i

2.85981
2.8598i
1.68581
1.6858i
0.08301
0.0890i
0.000014
0.0000i

1 THRU
0.0000i1
0.0000i
0.0000i
0.0000i

5 THRYU
0.0000i
0.0000i
0.0000i
0.0000i

4
-0.0001
0.0063
0.0118
-0.0005
0.0000
0.0000
0.0000
0.0000

8
0.0001
0.0005
1.9576
0.0040
0.0000
0.0000
0.0000
0.0000

+H L4+ o+

0.0022i
0.0009i
0.0102i
0.00201
0.0000i1
0.0000i
0.0000i
0.00001

0.00014
0.00041i
1.4313i
0.0054i
0.0000i
0.0000i
0.0000i
0.0000i

SHORT FERIOD (-)
SHORT FERIOD <+
DUTCH ROLL (=)
DUTCH ROLL (+)
FHUGOID (-2
FHUSOID (+)
FOLLING

SFIRAL

4
0.0546
0.0448

-0.0191
0.0000

8
0.0000
0.0000
0.0000
0.0000

0.00001%
0.0000i
0.0000i
0.0000i

0.0000i
0.00001
0.0000i
0.0000i

0. 0000
0.0000
0.0000
0.0000
~0.0002
0.0073
~0.0043
0.0007

0.0000
0.0000
0.0000
0.0000
0.0000
-0.0022
0.0002
0.0043

0.0000
0.0001
0.0000
0.0000

0.0000
0.0000
0.0000
0.0001

1+ 4+ 1 +

0.0000i
0.0000i
0.00001
0.0000i
0.0026i
0.0014i
0.00011i
0.0044i

0.0000i
0.0000i
0.0000i
0.0000i
0.00011i
0.0093i
0.0008i
0.0183i

0.0000i
0.0000i
0.0000i
0.0000i

0.0000i
0.0000i
0.0000i
0.0000i

0.0000
0.0000
0.0000
0.0000
0.0026
0.0017
=0.0020
0.0048

0.0000
0.0000
0.0000
0.0000
0.0001
-0.0003
0.0018
0.0383

0. 0002
0.0001
-0.0001
0.0000

0.0000
0.0000
0.0000
0.0000

0.0000i
0.0000i
0.0000i
0.0000i
0.0013i
0.0083i
0.0044i
0.0012i

0.0000i1
0.0000i1
0.0000i
0.0000i
0.00001
0.0001i
0.0007i
0.0151i

0.0000i
0.0000i
0.0000i
0.0000i

0.0000i1
0.0000i
0.0000i
0.0000i
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APPENDIX B

FIGURES



Ind. flaperons

xight leading edge flaps (sym.)

Ind. right and left
horizontal tail

Ind. canards

Figure 1.

Rudder

Left leading edge flaps (sym.)

F-16 aircraft with independent control surfaces.
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Problem.
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Elevator deflections (deq)
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Figure 4. Right and left (damaged) elevator inputsf
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Probability assoc. with configuration #6

1.00; {f "  EER
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i
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0.50 L
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Figure 5. Probability convergence to the closest model
(N =12, CLGEL = 0.121).
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Probability assoc. with configuration #6
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Figure 6.
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Probability assoc. with configuration #6

r

r

% LEGEND
0.75 l— 1 Prob

F

i

r
0.50 &

0.25

1 1 1 1 l 1 I 1 1 ]
5.00 6.00 7.00 8.00 9.00 10.00

l 1 1 1 l 1 1 1

Time (sec)

Figure 7. Probability convergence to the closest model
(N =12, CLGEL = 0.114).
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Figure 10. Ggst's vertical velocity (ag(k) = white noise,
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Probcbility assoc. with model #6
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Probability assoc. with model #6
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Probability assoc. with mode! #6
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Probability assoc. with model #6
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Figure 14. Filtered probability convergence to the closest model
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for different values of the filter constants.



Gust's vertical velocity (ft/sec)

50.0

- ~ LEGEND
25.0

1 W turb
0.0 H .:

-
-25.0
-50.0 -
_750 i 1 1 1 | 1 1 Il 1 | 1 i ! 1 | 1 1 1 1 L 1 1 1 |

0.0 5.0 10.0 15.0 20.0 25.0

Time (sec)

Figure 15. Gust's vertiga] velocity (ag(k+1) = 0.5 ag(k) +
eq(k) with o¢, = 0.0005). '
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Autocorrelation function assoc. with Wg(k)
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Figure 16. Autocorrelation functiog of the gust's vertical velocity
- (ag(k) = white noise, ¢, = 0.0005)
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Autocorrelation function assoc. with Wg(k)
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Figure 17. Autocorrelation function of thg gust's vertical velocity

(ag(k+1) = 075 ag(k) +e(k), 0% = 070005)7
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Autocorrelation function assoc. with residuals
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Figure 18. Autocorrelation function of the residuals for the states a

and B associated with uncorrelated atmospheric turbulence.
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Autocorrelation function assoc. with residuals
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Figure 19. Autocorrelation function of the residuals for the states a

and B associated with correlated atmospheric turbulence.
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Probability assoc. with model #6

1.00 -

0.75 |+

0.50

0.25

1

OOO 1 1 | 1 1 J__LJ 1 I} 1 ' | 1 ] 1 1 l_] 1 1 1]
5.00 6.00 7.00 8.00 9.00 10.00
Time (sec)
Figure 20. Probability convergence to the closest model (N =12,

C
LsEL

= 0.121) for correlated atmospheric turbulence.
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Ailerons deflection (deg)
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Figure 21. Ailerons inputs.
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Figure 22. CASE 1 - Angle of attack vs. time

(1-nominal; 2-reconfigured).
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Pitching angular velocity (deg/sec)
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