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PREFACE 

The aircraft flight control system reconfiguration problem 

following a damage or a generic failure on a main control surface has 

been considered in this study. 

First, the estimated model of the damaged aircraft is obtained by 

using a Multiple Model Kalman Filtering approach. Then, a particular 

algorithm is applied to the flight control reconfiguration. The 

determination of the desired control law, which can adapt in a very 

short period of time to a major damage to a main control surface, is 

obtained by making use of the recent control and response time 

histories. In addition, a method is proposed to efficiently distribute 

the reconfiguration task among all the remaining healthy control 

surfaces. Furthermore, a particular approach is proposed in order to 

calculate a new set of feedback gains of the flight control system such 

that dynamic decoupling and desirable handling qualities are retained 

even after the damage. 

The model estimation, the control algorithm and the feedback gains 

updating process have been codified in computer simulation programs for 

a 6 degrees of freedom aircraft model. The simulation results of the 

reconfiguration are presented. 
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NOMENCLATURE 

~ =angle of attack 

e =sideslip angle 

u = forward perturbed speed (along X) 

p = roll rate 

q = pitch rate 

r = yaw rate 

8 = pitch attitude angle 

~=bank roll angle 

W =airplane weight 

p = air density 

VEL = airplane true speed 

MACH = Mach number 

h = altitude 

Ixx' IYY' Izz =moments of inertia around 
X,Y,Z axes respectively 

Ixz =products of inertia in the XZ plane 

c = wing mean geometric aerodynamic chord 

b = wing surface reference span 

S = wing surface reference area 

Xc.g. = distance from the leading edge of c to the 
airplane center of gravity in tenths of c 

6EL = left elevator deflection angle 

6ER = right elevator deflection angle 

6AL = left aileron deflection angle 

xii 
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0AR = right aileron deflection angle 

0SL = left spoiler deflection angle 

0SR = right spoiler deflection angle 

°CL = left canard deflection angle 

°CR = right canard deflection angle 

oR = rudder deflection angle 

Cr thrust coefficient 

c0 = drag coefficient 

CL lift coefficient 

Cy lateral force coefficient 

c1 rolling moment coefficient 

em = pitching moment coefficient 

en =yawing moment coefficient 

ci 1 steady state value of the coefficient of the 
i-th aerodynamic force or moment 

with i = T,D,L,Y,l,m,n 
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Ci. =general form of the aerodynamic stability and 
J control derivatives : variation of the coefficient 

of the i-th aerodynamic force or moment with 
changes of the j-th variable 

with i = T,D,L,Y,l,m,n 

j = a,a,q,u,S,p,r, (Stability derivatives) 
oE,oA,oS,oC,oR (Control derivatives) 

X(k) state vector at the time instant 1 k 1 

U(k) input vector at the time instant 1 k 1 

w (k) = disturbance vector at the time instant I k I 

Z(k) = measurement vector at the time instant I k I 

V(k) = measurement error vector at the time instant I k I 

y (k) = response vector at time instant I k I 

A = discrete-time state matrix 
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B =discrete-time control matrix 

L = disturbance propagation matrix 

C observation matrix 

Q covariance matrix associated with the disturbance vector 

R = covariance matrix associated with the measurement noise vector 

X(t) state vector at the time •t• 

U(t) input vector at the time •t• 

Ac continuous-time state matrix 

Be continuous-time control matrix 

n order of the state vector 

m order of the input vector 

1 order of the observation vector 

N number of discretized values of the normal force 
coefficient of the damaged control surface 

xiv 



CHAPTER I 

INTRODUCTION 

Reconfiguration Problem 

For a military aircraft one of the biggest challenges is the design 

of a flight control system that allows the aircraft to recover from 

battle damages and/or generic failures. 

Often the accident investigations report that there was a way in 

which the disaster could have been avoided if the proper actions had 

been taken in a timely fashion. However, the length of time when valid 

effective actions to save the aircraft could be taken is just a few 

seconds. Given the understandable panic during those moments, a pilot, 

even well trained, may not find the solution in time. 

The integration and application of recent advances in failure 

detection, failure identification and control systems technologies may 

make it possible to detect and identify potentially catastrophic 

failures in the flight control system and the restructure the control 

system of the aircraft in real time in order, depending on the size of 

the problem, to continue the mission (or the flight) or to execute a 

safe landing. 

The objective is to be able to control the aircraft immediately 

after battle damages and/or generic failures on a control surface. Note 

that this classification does not include unsolvable problems (e.g. 



wings falling off) where the aircraft cannot be saved. Therefore, the 

flight control task is to utilize whatever control resources remain in 

order to regain control of the aircraft, to prevent further damage by 

excessive air loads, and to give the crew time to assess the options 

(Ref.[1]). 

In the period after a damage on a control surface the following 

will be experienced: 

1- Altered trim conditions. 

2 -Changes in the aerodynamic forces and moments. 

3 - Changed control effectiveness. 

4 - Altered aircraft dynamics. 

2 

5- Changes, even losses, of control components, including sensors, 

communication devices, computers and actuators. 

Reconfiguration Conditions and Requirements 

In order to implement a reconfiguration strategy, we may introduce 

a variety of control surfaces (speed brakes, wing flaps, differential 

(even dihedral) canards, spoilers, rudder below fuselage) and thrust 

control mechanisms (differential thrust, thrust vectoring, canted 

engines), as shown in Ref.[12]. It is clear that, as the number of 

control surfaces and thrust control mechanisms available on the aircraft 

increases, lower degrees of performance loss occur after a damage. 

The selection of the control surfaces and thrust control mechanisms 

to be used for the reconfiguration is a function of several factors: 

control effectiveness, increased aircraft complexity and costs, weight 

penalties, increased aerodynamic drag due to the increased wetted area, 

applicability depending on aircraft type. Fig. 1 shows a F-16 aircraft 



with 9 independent control surfaces. 

The following quantities, along with a fully operational flight 

computer, are assumed to be available for reconfiguration purposes: 

1 - Actuator position for each actuator. 

2 -Aircraft body angular and linear velocities in the three body 

axes. 

3 -Aircraft attitude and angle of attack. 

3 

Essentially we can classify the failures and or battle damages of a 

control surface in two categories : that is locked and missing 

surface. Generally we can say that a locked surface corresponds to a 

failure in the control surface•s actuator. A battle damage, instead, 

mainly implies missing surface or, more realistically, both missing and 

locked surface. Of course, in order to describe mathematically the 

model of the damaged aircraft, the behaviors of the aircraft due to a 

locked surface or a missing surface will be different. 

In terms of requirements for aircraft survival and performance 

after a damage and/or failure on the control surfaces, two types of 

requirements were imposed by the military aircraft specifications 

(Ref.[l9]). 

First was the requirement to perform the mission and return home 

safely after the loss of one or more flight control system elements due 

to ballistic weapons. For such requirement the following groundrule was 

stated: after a single component failure or hit by the 37 mm HEJ 

projectile, the aircraft should (at minimum) be able to abort the 

mission, return to friendly territories, and perform a landing, without 

a significant increase susceptibility (which means retaining Terrain 

Following/ Terrain Avoidance capabilities). This groundrule is 
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consistent with the U.S. Air Force program goal of reducing the 

probability of kill per hit from 37 mm projectiles by one order of 

magnitude and it is reasonable when considering the expected high cost 

and relatively low procurement of an advanced future fighter (compared 

to the F-4 or F-16 procurements of about 4000 and 2000 aircrafts 

respectively). 

Second was the requirement for the equipment to be designed from a 

spectrum of sufficiently reliable elements so that the probability of 

aircraft loss per mission due to a random damage and/or generic failure 

on a flight control system component is smaller than 1 * 10-7. 

Reconfiguration Tasks 

There are several approaches to the reconfiguration problem which 

have been introduced, implemented in software and more or less 

successfully tested. A list can be given as: 

1- Quantitative Feedback Theory (Ref.[3]-[6]). 

2 - Direct Digital Output Feedback with a Linear Quadratic design 

procedure (Ref.[7]-[9]). 

3- Pseudo Inverse technique with the application of a Control 

Mixer (Ref.[10],[11]). 

According to the way that we addressed the reconfiguration problem, 

the task of battle damage and/or generic failure accomodation can be 

broken into the following main tasks: 

1 - EXECUTIVE CONTROL task, which provides essentially 

synchronization of the remaining tasks. 

2 - FAILURE DETECTION task, which controls the aircraft behavior 

and detects significant abnormalities. 
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3 - FAILURE IDENTIFICATION task, which searches the cause or a set 

of probable causes. 

4 - FAILED MODEL ESTIMATION task, which generates a mathematical 

model of the aircraft dynamics considered to reflect changes 

due to the damage. 

5 - RECONFIGURATION LAW DESIGN task, which determines what actions 

should be taken in order to recover the damaged aircraft. 

6 - FEEDBACK GAINS UPDATING task, which calculates a new set of 

feedback gains, in order to retain stability, dynamic 

decoupling and desirable handling qualities even after the 

damage. 

Frequently, in the 1 iterature the FAILURE DETECTION task and the 

FAILURE IDENTIFICATION task are found combined in a unique task. Fig.2 

shows a •step-by-step• overview of the reconfiguration problem. 

In the present work only the last three tasks of the overall 

reconfiguration problem are considered; therefore it is assumed that the 

occurrence of a damage on a control surface has been detected and that 

the damaged control surface has been identified. 

Eventually, another task to be introduced is a PILOT ADVISORY 

function. While the computers of the flight control system are 

reconfiguring the aircraft, it would be desirable for the pilot to be 

able to see on a cockpit display which control surface has been damaged, 

what the flight control system is trying to achieve and what actions, if 

possible under current conditions, could eventually benefit the overall 

reconfiguration, for example reduction of speed or reduction of 

altitude. 



CHAPTER II 

AERODYNAMIC EFFECTS OF A DAMAGE 

AND/OR GENERIC FAILURE 

Aerodynamic Considerations 

As stated in the previous chapter, our objective is to identify and 

to control a system with changed dynamics. Regardless of the approach 

used to control such a system, a more efficient way to estimate the 

changed dynamics can be implemented if we have some knowledge on how the 

dynamics may actually change following a damage on a control surface. 

The aerodynamic characteristics of a surface are expressed in terms 

of normal force, axial force and moment around some fixed points or 

axes. A damage on a control surface, which involves a missing part of 

it, implies changes in the aerodynamic characteristics of such 

surface. In order to evaluate these changes the following aerodynamic 

consideration can be made: the main control surfaces (typically 

ailerons, elevator and rudder) are not located in directly wetted area. 

This implies that the aerodynamic drag exerted by the surface's 

deflection, which is related to the axial force, is negligible 

(Ref.[13]). On the other hand the aerodynamic moments of a control 

surface around various axes are just proportional, through the geometric 

parameters of the aircraft, to the normal force exerted on the 

6 
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surface. Therefore, with the axial force negligible and with the 

aerodynamic moments a function of the normal force, we can say that the 

changed aircraft dynamics following a damage on a control surface is due 

essentially to an instantaneous change of the normal force coefficient 

of the damaged surface. Such coefficient is then used for the 

calculation of the corresponding non-dimensional stability and control 

derivatives. 

Therefore, it would be very useful if we can implement a set of 

closed-form expressions of the non-dimensional aerodynamic stability and 

control derivatives as functions of the normal force coefficient of the 

control surface (CN ) 
0 

C"\x = C"\x (CN0) 

cla = cla(cNo) 

considered to be damaged; for example : 

' ... 
' ... 

( 2. 1) 

(2.2) 

While there exist efficient analytical closed-form expressions for 

aerodynamic stability derivatives as functions of the normal 

coefficients of the control surfaces for conventional subsonic airplanes 

(Ref. [17]-[18]), an accurate wind-tunnel investigation and relative 

data correlation would be strongly needed for unconventional supersonic 

aircraft like the modern fighters. 

This implies that, following this approach, the design of an 

aircraft reconfiguration system is not merely a control theory problem; 

it involves also a certain amount of aerodynamic investigations in order 

to develop these closed-loop forms to be used for the aircraft 

mathematical modeling. 
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Aircraft Model and Aerodynamic Data 

In order to test the control techniques to be used for the 

reconfiguration in a computer simulation program, an aircraft model with 

relative aerodynamic characteristics, geometric and inertial data needed 

to be introduced. 

The main candidates for the implementation of a reconfiguration 

system are, of course, military airplanes, especially fighters. But, 

since data from a military aircraft were not available to us, a civil 

aircraft has been considered, without any loss of generality. Such 

model of a business jet, shown in Fig. 3 (Ref.[l3]) is assumed to have 9 

independent control surfaces: left and right elevators, left and right 

ailerons, left and right spoilers, left and right canards and rudder. 

However, even if the aircraft aerodynamic, geometric and inertial data 

do not correspond to those of a fighter, the considered flight 

conditions are typical of an air combat scenario, that is high altitude 

and high subsonic Mach number. Also, the flight maneuvers, which will 

be later introduced and analyzed, are typical of a combat situation, 

with step inputs on elevators and ailerons. 

The aerodynamic characteristics, the geometric and inertial data, 

and the flight conditions of the introduced aircraft model are reported 

in Table I. 

Note that, at this point of the work, in order to introduce a 

reconfiguration approach, the chosen aircraft exhibits satisfactory 

handling qualities in terms of short period, phugoid, rolling, spiral 

and dutch-roll damping and natural frequencies. Therefore, there is no 

need for introducing a stability augmentation system (S.A.S.), whose 

feedback gains K essentially give rise to a closed-loop expression of 
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the state matrix Ac(C~L~} = (Ac-BcK}~ In a general case, which will be 

later considered, the closed loop characteristics of the aircraft with a 

S.A.S. will be discussed. 

Also we assume that the considered aircraft model does not 

implement any Control Configured Vehicle (C.C.V.} function, such as gust 

or maneuver load alleviation systems, flight envelope limiting systems, 

etc. 

As we have previously stated, it would be useful to have a set of 

closed-form expressions of the non-dimensional stability derivatives as 

functions of the normal force coefficient of the damaged control 

surface. Unfortunately, among the available data, we do not have the 

value of CN • However, as expected, we have the value of the control 
6-

derivatives for each control surface. Therefore, in order to illustrate 

the introduced approach, instead of using CN , we are going to implement 
6 

closed-fonn expressions of the stability derivatives as function of the 

control derivatives. 

Since the introduced aircraft is a rather conventional subsonic 

airplane, Ref. [13],[17,] have provided sufficiently exact methods in 

order to obtain closed-form expressions for the non-dimensional 

stability derivatives. 

Considering a damage on one of the elevator surfaces, the following 

stability derivatives would be affected by changes in the values of cl6E 

and Cm6E (which is proportional to CL6E) due to the damage: 

Furthermore there will be an induced rolling moment. 
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In order to introduce a relation between the stability derivative 

Cla and the control derivative CLoE' recall the following expression 

(Ref. [13],[17]): 

(2. 3) 

(2.4) 

where CL is the contribution to CL from the (wing and body) of the 
aWB a 

aircraft. In other words it is the CL of the aircraft if the 
a 

horizontal tail is not considered; CLaH is the contribution to Cla from 

the horizontal tail. 

qH/q is the ratio between the dynamic pressure at the horizontal 

tail location and the nominal value of the dynamic pressure. Such ratio 

is less than 1 because of the loss of flow energy at the horizontal tail 

in the form of friction and separation drag of the wing surface; a 

typical value of qH/q is around 0.9. 

SH/S is the ratio between the horizontal tail surface area and the 

wing surface area. 

dE/da is the downwash effect induced on the horizontal tail by the 

wing-trailing-vortex system. Such effect is directly proportional to 

the wing sweep angle, to the wing taper ratio and inversely proportional 

to the wing aspect ratio. 

TE is the angle of attack effectiveness of the elevator. 

By solving for CL as function of CL from Eq. (2.4): 
aH oE 

(2.5) 



If we substitute Eq. (2.5) in Eq. (2.3) we have: 

CL = CL + CL (1 - dE/da)/TE 
a aWB oE 

From Ref. [13],[17] we have found that we can assume: 

(1 - dE/da) = TE = 0~5 

Therefore, Eq. (2.6) will become: 

(2.6) 

(2.7) 

CL = CL + CL (2.8) 
a aWB oE 

Hence, we have obtained a closed-form relation of the stability 

derivative CL as a function of the control derivative CL • 
a dE-

11 

Similarly, we may introduce a relationship between the stability 

derivative Cma and the control derivative CmoE' which is proportional to 

CL ; in order to do so, recall the following expressions (Ref. 
oE 

[13],[17]: 

( 2 0 9) 

( 2. 10) 

where XAc and XAc are the locations along the X axis of the 
WB H 

aerodynamic center of the (wing + body) part of the aircraft and of the 

horizontal tail of the aircraft respectively. Generally, the 

aerodynamic center of an airfoil is defined as that point about which 

the pitching moment coefficient remains invariant with the angle of 

attack. 

By solving for CL as function of em from Eq. (2.10): 
aH oE 
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( 2~ 11) 

If we substitute Eq. (2.11) into Eq. (2.9) we have: 

(2.12) 

By using the approximation introduced in Eq. (2.7) we have: 

(2. 13) 

Hence, we have obtained a closed-form relation of the stability 

derivative em as function of the control derivative em . 
a 6E-

About the stability derivatives eL· and em· from the 'lag of 
a a 

downwash' theory (Ref. [13]) we recall that there is a fixed relation 

between el·, e • and el • This can be seen in the following 
a rna oE· 

expressions from Ref. [13],[17]: 

el· = 2 el qH/q SHS XH/c dE/da 
a aH 

(2. 14) 

(2.15) 

where XH = XAe - XeG (2.16) 
H 

If we substitute Eq. (2.5) into Eqs. (2.14) and (2.15), using the 

approximation in Eq. (2.7) and the numerical values introduced in Table 

I for the stability and control derivatives, we have: 

where e1 = 3.957, e2 = -12.051. 

(2. 17) 

( 2. 18) 



13 

Hence, we have obtained closed-form expressions of the stability 

derivatives el· and em· 
a a 

as function of the control derivative el • 
oE-

Finally, we need a similar expression for el and em. 
q q. 

In order to 

do so, recall that for most airplanes the center of gravity is 1 ocated 

somewhere on the wing mean aerodynamic chord. This implies that the 

contribution of the wing to el and em is small with respect to the 
q q 

contributions of the horizontal tail and of the canards. Therefore, 

from Ref. [13],[17], recall the following expressions: 

( 2. 19) 

( 2. 20) 

where the parameters el , qclq, Sc!S, XAe , Tc are related to the 
ac c 

canards; they have the same meanings of the corresponding parameters 

introduced for the horizontal tail. 

By using the geometric data and the values of the control 

derivatives relative to the canards introduced in Table I, using Eq. 

(2.5) for the canards, assuming qclq = 1, Tc = 0.9 and (XeG- XAe )/c 
. c 

2.368 we have that: 

( 2. 21) 

(2.22) 
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Also, by substituting Eq. (2.11) into Eqs. (2.19), (2.20), we have: 

+ Cr 
0 

(2. 23) 

(2.24) 

By using the numerical values of Table I for el and em and the 
q q 

previously calculated values for c4 and c6 we have: 

c3 = -2.635 

c5 = 9.977 

(2.25) 

(2.26) 

Therefore, we have obtained closed-form expressions of the stability 

derivatives CL and em as function of the control derivative em . 
q q 6E-

As final result, the following expressions for the stability 

derivatives corresponding to a damaged aircraft condition can be 

obtai ned: 

with c1 = 3.957, c2 = -12.051, c3 = -2.635, 

c4 = 2.105, c5 9.977, e6 = -4.984; 

where the prefix •d• indicates the value of the stability and control 

derivatives after the damage; as it can be seen, they are all functions 

of delt'iE and demoE' which is proportional to del • 
6E. 

Of course, in the particular case when the damage doesn•t imply a 

missing part of the control surface but only locked actuator•s surface, 
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the values of the stability and control derivatives under nominal and 

damaged conditions will be coincident. 

Such analytical closed forms of the non-dimensional aerodynamic 

characteristics are to be stored in the flight computer, ready to be 

used for on-line reconfiguration purposes. 

State Variable Model of the Aircraft 

The non-dimensional aerodynamic stability and control derivatives 

previously introduced are then combined with the flight conditions data, 

and with the geometric and inertial data of the aircraft in order to 

calculate the dimensional stability and control derivatives. The 

details of these calculations are shown in Ref.[l3]. Generally we can 

say that these dimensional stability and control derivatives are 

proportional to the wing surface, to the dynamic pressure (which is 

given by 1/2*p*Vel 2), to the wing aerodynamic chord and to the wing 

span. They are inversely proportional to the aircraft mass, to the 

velocity and to the inertial moments of the aircraft around the 

stability axes. These are the axes with respect to which the steady 

state values of the forward and vertical linear velocities are different 

than zero while the the steady state values of the lateral velocity and 

of the angular velocities are zero. 

Following the Newtonian equations of the motion, such dimensional 

parameters are then linearly combined for calculating the elements of 

the Ac and Be matrices of the continuous-time state variable model of 

the aircraft. The chosen state variables are : {a, q, u, 8, S, p, r, ~}. 

The result is a set of 8 equations describing the dynamics of the 

aircraft linearized with respect to some equilibrium points; such points 
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are known as "trim conditions", and for each particular aircraft they 

are functions of the flight conditions. 

Table II shows the state variable model of the aircraft with the 

numerical values of the matrices Ac and Be relative to an undamaged 

nominal situation at the flight conditions reported in Table I. 



CHAPTER III 

DAMAGED MODEL ESTIMATION 

Discrete-time State Variable Model 

In this chapter a particular application of the Kalman Filter is 

introduced for the purpose of estimating the mathematical model of the 

aircraft considered to reflect the changed dynamic characteristics 

following the damage. 

The linearized aircraft dynamics can be described in the discrete 

form by the following equations : 

X(k+1) A X(k) + B U(k) + L W(k) (3.1) 

Z(k) C X(k) + V(k) (3.2) 

where X(k) is a n-th dimension state vector, 

U(k) is a m-th dimension control vector, 

Z(k) is a 1-th dimension observation vector, 

V(k) is a 1-th dimension measurement noise vector, 

W(k) is a r-th dimension disturbance vector, 

with n = 8 , m = 9 , 1 = 6 , r = 2 , 

A and Bare the discretized versions of the Ac and Be matrices 

introduced in the previous chapter (with T =sampling period = 0.01 

sec). 

W(k) and V(k) can be considered mutually independent white noise 

random vectors with zero mean and known covariance matrices, Q and R, 

17 
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respectively. While V(k) describes sensors' measurement errors with the 

values of R depending on the sensor's performance (usually given by the 

company producing the sensors), W(k) allows us to model atmospheric 

turbulence. 

The matrix L reflects the propagation of the turbulence on the 

overall aircraft dynamics. Given that the atmospheric turbulence can be 

modeled as additional inputs ~g and Sg (where 'g' stands for 'gust'), L 

can be considered as an (8x2) matrix with columns corresponding to the a 

and S columns of the A matrix. The numerical values of the elements of 

the matrices A , B , L , C , Q , Rare shown in Table III. 

Multiple Model Kalman Filtering 

Once we have the aerodynamic characteristics of the aircraft as 

functions of the normal force coefficients for each control surface, 

provided that the Failure Detection and Identification tasks are able to 

indicate which control surface has been damaged, we can discretize the 

value of the normal force coefficient of that particular control surface 

in a number N of values. Note that the particular case of a damage with 

a locked actuator but without missing part of the control surface has 

been considered by selecting the last of the N models as the normal 

undamaged aircraft model, with the nominal value of the normal force 

coefficient. 

Therefore Eq. (3.1) and (3.2) will become: 

X;(k+1) 

z i (k) 

A; X;(k) + B; U(k) + L; W(k) 

C Xi(k) + V(k) with i=1, ••• ,N 

(3.3) 

( 3. 4) 

The estimation task is to determine which one of the N models 

correctly characterizes the system (Ref. [15],[16],[21]). Let Hj be the 



19 

event that model 'j' is the most exact system characterization; H will 

be then a random variable with discrete values H1, H2, ••• , HN; 

furthermore, let Y(k) be as: 

Y(k) = {U(O),U(l), •••• ,U(k-l);Z(1),Z(2), •••• ,z(k)} 

then we define : 

Pj(k) = P ( H = Hj I Y(k) ) 

which represents the probability that model 'j' is the correct system 

characterization, given measurements Y{k). Of course we are looking for 

the condition of one of theN probabilities associated with theN 

discretized models converging to 1, which physically means that the 

mathematical model associated with that particular probability closely 

describes the dynamics of the aircraft following the damage. 

Therefore, using the Y(k) data as input, an iterative algorithm was 

needed in order to implement a recursive formula for the probabilities 

P;{k); the algorithm stops when one of the probabilities converges with 

a satisfactory accuracy to 1. 

In order to solve this problem, a bank of N steady state Kalman 

Filters has been introduced; extensive use of the MATRIXx package has 

been made for calculating the Kalman Filter gains and covariances 

matrices while the remaining algorithm has been implemented in a Pascal 

program. The algorithm proceeds as in the following {Ref. 

[14],[15],[16],[21]): 

STEP 1: A set of N steady state Kalman Filters is constructed for the 

N models with the relative gains and covariance matrices 

calculated with MATRIXx. 

STEP 2: For each of the N models the filter residuals are calculated 

by using: 



r. (k+1) 
1 

Z(k+1) - C X; (k+1/k) 

STEP 3: The Bayesian probabilities are updated by using: 

P.(k+1) 
1 
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(3.5) 

(3.6) 

where Si is the covariance matrix calculated from the Kalman Filter 

equations for each model and: 

S. = (2TT)-9./2 DET [S. r 112 
1 1 

STEP 4: The convergence is checked for all the probabilities; if none 

of them converges with a sufficient accuracy to 1, the 

algorithm goes back to STEP 2, otherwise it exits the loop and 

the model associated with the probability which has converged 

represents the closest model characterization. Note that, in 

order to avoid false model estimation due to highly 

fluctuating probabilities, we may want to exit the algorithm 

only when a probability has converged to 1 with a sufficient 

accuracy (let•s say (5-10)%), for a certain number of time 

steps (let•s say 30-40). 

Such algorithm has to be implemented on-line on the flight 

computer. 

Note that the initial probability P;(1) can be chosen by 

using a statistic law to indicate that, following the damage, the normal 

force coefficient of the damaged surface is more likely to take on some 

particular range of values. In our case a binomial distribution with 



p=q=0.5 has been introduced to simulate such behavior of the normal 

force coefficient following the damage. 

Also note that in the approach used in this study, since we 

introduce steady-state Kalman Filters rather than time-varying Kalman 
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Filters, the Pi(k) are not exactly conditional probabilities (Ref.[15]). 

Simulation Results 

This approach for the estimation of the model of the damaged 

aircraft has been tested with data from a computer simulation, with 

randomly generated white noises V(k) and W(k), following a damage on the 

left elevator, at the flight conditions reported in Table I. The 

correspondent elevator's inputs are shown in Fig.4. Note that the left 

elevator has been damaged and it remains fixed at a -5° deflection; 

therefore the aircraft is going to have a tendency to roll. 

The values of the A and B matrices following the damage are shown 

in Table IV; of course, due to the damage, several elements of these 

matrices have different values than the ones reported in Table III. 

Particularly the damage involves a decrease of the value of the normal 

force coefficient from the nominal value of CLoEL 

o. 121. 

0. 276 to CL 
· oEL 

By discretizing the nominal value of the coefficient in a set of N 

values, the corresponding set of A and B matrices are constructed by the 

algorithm. Note that in the B matrix only the elements of the column 

corresponding to the left elevator change. 

The parameter N plays a very important role. For high values of N, 

corresponding to an high modeling accuracy, long convergence times are 

expected for the probability corresponding to the model that closer 
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describes the damaged system; the reverse occurs for small values of N. 

For our purposes, the values of N=12 and N=23 have been considered. 

Table V shows the two sets of discretized values of the normal force 

coefficient of the left elevator relative to N=12 and N=23. 

The simulation proceeds as the following: it starts with the 

aircraft flying under normal, nominal, undamaged conditions; then, at 

time= 1 sec., the damage occurs, causing an instantaneous change in the 

value of CL ; 4 seconds are assumed to be the difference in time 
oEL 

between the instant when the damage occurs and the instant when the 

model estimation process starts; in these seconds we assume that the 

Failure Detection and Identification tasks are able to detect the oc-

currence of the damage and to indicate the damaged control surface; 

furthermore, during these seconds, we build theN models and the 

relative Kalman Filters structure. Therefore, the model estimation 

process starts at time = 5 sec. 

When N=12, with the damaged dynamics numerically described by a 

model somewhere between model #5 and model #6, but closer to model #6, 

the probability corresponding to model #6 converges to 1, as shown in 

Fig.5, in a short amount of time, around 1.2 sec., with a time increment 

of 0.01 sec. 

When N=23, with the damaged dynamics numerically described by a 

model somewhere between model #10 and model #11, but closer to model 

#11, the probability corresponding to model #11 converges to 1, as shown 

in Fig.6, in a longer time, around 4 sec., with the same time increment. 

Furthermore, given that the calculations for theN steady state 

Kalman Filters have to be done before the iterative algorithm starts, 

with N=23 longer initial computational time has to be added to the 
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already longer convergence time of the algorithm. Therefore, a small 

increase in modeling accuracy is paid with a much longer pre-estimation 

computational and algorithm convergence time. On the other side we know 

that, since the length of time when valid effective actions to save the 

aircraft could be taken is just a few seconds, even one or two seconds 

can be a decisive matter. 

Once we have shown that for N=23 we have a longer convergence time, 

let•s consider N=12 and let•s examine a condition when the value of the 

normal force coefficient changes, due to the damage, from CL = 0.276 
oEL 

to CL = 0.114. The relative mathematical model, in terms of matrices 
oEL 

A and B, is still close to model #6, but is more in between model #6 and 

model #5 than the mathematical model shown in Table IV is, as it can be 

easily understood by looking at Table V. This implies higher values of 

the residuals in Eq.(3.5) and, therefore, a larger fluctuation of the 

probability associated with model #6. The result is shown in Fig. 7; the 

convergence to the right model still occurs but in a time longer than 

the one shown in Fig. 5, that is around 1.6 sec. instead of 1.2 sec. 

Given that this algorithm has to be implemented on-line, for an 

accurate selection of a value for N we also have to consider the 

computational speed of the airborne computer. The role played by the 

various parameters for the selection of N is shown in Fig. 8. Note that 

1 and 2 sec. of computational time for the steady state Kalman Filter 

gains and covariances are assumed for N=12 and N=23, respectively. 

As a final remark, a value of N around 10-12 should provide a very 

acceptable modeling accuracy without paying an excessive price in terms 

of {initial computational time + convergence time), and the on-line 

implementation for N=10-12 models should be within the available 
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computational power and speed of the today•s aircraft computers. 

Probability Convergence Sensitivity Analysis 

For the determination of a Kalman Filter structure for a generic 

system, the dynamical model parameters (matrices A,B, L and C), the 

noise properties in terms of correlation, the noise statistics (matrices 

Q and R) have to be specified. Generally speaking, since the system 

model is usually an approximation to a physical situation, the model 

parameters and noise statistics are seldom exact. In other words the 

system model used in constructing the filter is different from the real 

system that generates the measurements. 

Sometimes such an approximation is intentional; for example, 

expecially for radar tracking application where a large number of states 

are involved, it may be desirable to use a system model of lower 

dimension than the dimension of the real system in order to gain 

computational speed and simplicity. However, it is clear that an inexact 

filter will degrade the filter performances. Suppose that the real 

system is described by 

X ( k + 1) = A X ( k ) + B U ( k ) + L W ( k ) + Bias 

Z(k) = C X(k) + V(k) 

with W(k) = N [w,Q], V(k) = N [v,R]; 

where the model used to describe the system is given by: 

Xm(k+1) =A Xm(k) + Bm U(k) + Lm Wm(k) + Biasm 

Zm(k) = Cm Xm(k) + Vm(k) 

with Wm(k) = N [wm,Qm] , Vm(k) = N [vm' Rm] 

(3.7) 

(3.8) 

(3.9) 

(3. 10) 

where Bias and Biasm conventionally account for various sources of 

errors, for example: non-linearities, reduction in system dimensions and 
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so on. 

Using the equations of the model we build the Kalman Filter 

structure, that is a recursive or steady state expression for the gain 

matrix Km and for the estimation error covariance matrix Pm. The 

problem is that the computed matrix Pm is not the estimation error 

covariance matrix because the filter model is different from the real 

model. Neither is this filter the minimum variance filter for the actual 

system described by Eqs. (3.7) and (3.8). 

A measure of the filter performance is provided by the 11 actual 

estimation error covariance matrix 11 defined by: 

Pa(k+l/k) = E [X(k+l/k) X(k+l/k)T] 

(or the relative steady state expression) where 

X(k+l/k) = X(k+l) - X(k+l/k) 

(3.11) 

(3. 12) 

Ref. [25] provides a general form of an algorithm for obtaining a 

recursive expression for Pa. 

Let•s go back now to our original problem, that is to determine 

which model among a set of N models more closely describes the real 

aircraft dynamics following the damage, given the measurements. 

The next point to be investigated is how the damaged model 

estimation algorithm performs when some discrepancies (other than 

differences in the A,B and L matrices) occur between the modeled system 

and the real system, which means differences in the C,Q and R matrices. 

We can state that the assumption of uncorrelated disturbance noises 

and measurement noises can be considered acceptable and that it is 

reasonable to think that the observation matrix C is the same for the 

real and for the modeled system (which is consistent with the original 

assumption of availability of operating sensors for reconfiguration 
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purposes from Chapter I). Also that the values of the elements of the 

matrix R are furnished with a sufficient accuracy by the company 

manifacturing the sensors. Therefore, the only parameters that in the 

real life occurrences can show remarkable discrepancies between the real 

system and the modeled system are the values of the elements of the 

disturbance covariance matrix Q and, moreover, the statistical structure 

itself of the random vector W{k). 

Probability Convergence Sensitivity Analysis 

For Different Values of the Elements of the Q Matrix 

We have previously considered the turbulence covariance matrix Q 

with the coefficients q11 = q22 = 0.0005 and q12 = q21 = 0.0. In terms 

of gust components we would have a vertical velocity component Wg whose 

trend is shown in Fig.9. As we can see, the aircraft is going through a 

gust with vertical velocities up to +35 ft/sec. The relative set of N 

Kalman Filters is designed for the same values of such matrix. 

Therefore, at this condition, Q = Qm. 

Let•s consider now a turbulence with a covariance matrix Q with the 

coefficients q11 = q22 = 0.002 and q12 = q21 = 0., while inside the 

Kalman Filter•s structures we still have qmll = qm 22 = 0.0005 and qm12 = 

qm2l = 0. In terms of gust components we would have a vertical velocity 

component w9 whose trend is shown in Fig.lO. As we can see,in this case 

the aircraft is going through a gust with vertical velocities up to ~75 

ft/sec. Such kind of turbulence can be found in low altitude storms; it 

is a turbulence whose peak values are much higher than the previous 

ones. Aircraft simulation data corrupted with such a turbulence have 

been fed to our set of N = 12 Kalman Filters and the previously 
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introduced damaged model estimation process has been attempted. The 

expected result is that the convergence to the right model should still 

occur because, given that the wrong turbulence modeling is common to all 

N models, there is always a model that better describes the real 

dynamics but the estimation performance should somehow deteriorate. The 

result, shown in Fig.ll, is that the convergence to the right model 

still occurs, but in a longer time and with a more •turbulent• trend. 

The reason for such trend of the probability associated with the 

model that more closely describes the aircraft dynamics lies in the 

complex nature of Eq.(3.6). It is clear that turbulence higher than 

expected give rise to higher values of the residuals of Eq.(3.5). 

Therefore, for values of 0 higher than the corresponding values of Om, 

we are going to have higher negative values of the exponent of the 

numerator of Eq.(3.6) and, thus, smaller values of the of the overall 

numerator; in other words this means that Probi(k+l) is less correlated 

to the Probi(k), which explains the big changes in the time of the 

probability and the •turbulent• behavior shown in Fig.ll. 

From the Kalman Filter equations we also can say that higher values 

of the elements of Om, which is related to the modeled but not to the 

real turbulence, imply higher values of the estimation error covariance 

matrix Pm and, therefore, higher values of the residual covariance 

matrix S and, of course, smaller values of the inverse of such matrix. 

It may be thought that if we design the Kalman Filters for values of the 

elements of Om much greater than the ones that we may expect from the 

real life turbulence it may help during severe turbulence because we 

would have higher values of the numerator of Eq.(3.6); this is only 

partially true because such approach would also imply smaller values of 
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the constants S's and higher values of the residuals, which, again, will 

make the probabilities at the instant (k) and (k+l) less correlated and 

the trend still 'turbulent', as shown in Fig.12. After all, we only 

have one 'optimal' solution! In Fig.12 the following values for the 

elements of Q and Om were considered: qm 11 = qm 22 = 0.0005, q11 = q22 

0.0001, with all the off-diagonal elements being zeros. 

A more functional approach to the problem would be to implement in 

the flight computer a relation of the elements of Q as function of the 

altitude (starting from a certain altitude in order to avoid local 

ground effects) instead of using one configuration for the matrix Q 

valid for all flight conditions (as shown in Ref.[30]), then to multiply 

the so calculated values for a factor moderately bigger than 1 to 

account for particularly severe turbulence and , finally, to store such 

values in the Om matrix of the Kalman Filter structure. Such an 

approach should protect the estimation process from unexpected high 

levels of atmospheric turbulence without excessively deteriorating the 

performances of the estimation process, as shown in Fig.13. In this 

case the following values for Q and Qm were considered : qm11 = qmZZ 

0.0005 and q11 = q22 = 0.00033. This result has to be compared with the 

nominal conditions (Q=Om) result shown in Fig.5. 

Another obvious approach in order to reduce the effects of the 

turbulence would be to filter the probabilities calculated with the 

previously introduced algorithm. A second order probability filter can 

take the generic form: 

Fpr. 
31 

where ~ 

i =1 
instant k. 

(k + 1) (3.13) 

c1 = 1, Fpri(k) is the filtered probability relative at the 

~adjusting the values of the ci's we can change the 
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correlation between the probabilities at instant (k+1) and instant (k)~ 

Note that this approach is particularly useful when the model 

estimation task is also coupled with a control task in order to reduce 

excessive excursions in control input activities (Ref.[14],[15],[16], 

[21]). In our case, where we are only concerned with the damaged model 

estimation task, such approach doesn•t improve the performance of the 

estimation process. In fact it increases the convergence time as shown 

in Fig. 14 (relative to the same values of Q and Om as in Fig.13) for 3 

different set of values of the constants ci•s. This is definitely an 

undesirable effect. As we can see in Fig.14, the convergence time 

increases with increasing values of c1 and c2, which are the 

coefficients relative to the filtered probability at the instants (k) 

and (k-1) with respect to the value of c3, which is the coefficient 

relative to the unfiltered probability at the instant (k+1). 

Probability Convergence Sensitivity Analysis 

For Correlated Disturbance Noise W(k) 

Up to this point the assumption of atmospheric turbulence modeled 

with a white noise Gaussian random vector has been made. In the real 

life the components of the atmospheric turbulence may show some form of 

correlation (Ref.[27]). The result of such approximation is typically 

an underestimation of the peak gusts by the Gaussian model. A great 

amount of research has been devoted in the past for creating realistic 

non-Gaussian correlated models of atmospheric turbulence to be used in 

flight simulators instead of Gaussian white noise generated turbulence. 

Data analysis have allowed modeling such turbulences with autoregressive 

(AR) processes of the first or, at most, of the second order. However, 
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expecially at higher altitude, the atmospheric turbulence components are 

not highly correlated. 

For our purposes, let's consider now our atmospheric turbulence 

model vector W(k) given by two AR(1) processes: 

ag(k+1) = 0.5 ag(k) + ea{k) 

Sg{k+1) = 0.5 Sg{k) + e8{k) 

(3. 14) 

(3.15) 

where ea{k) and e8(k) are white noise Gaussian with zero means and 

variances a~= a~ = 0~0005, which are the diagonal elements of the Om 

matrix previously introduced. Note that ag(k) and Sg(k) are still 

assumed to be mutually independent. 

The vertical velocity compoment of the gust for the cases of 

correlated atmospheric turbulence are shown in Fig. 15 and Fig. 9. Of 

course the autocorrelation function associated with the data for 

uncorrel a ted gust velocity component will tend to the cl assi ca 1 "impulse 

at the origin and zero elsewhere" typical of a white noise process, as 

shown in Fig.16; as a check we know that a 2 = (Vel) 2 a 2 
wg ag 

= R (t = 0) = 227.8 
wg 

(App. B), which is in good agreement with the 

plotted data. Note that such autocorrelation function has been 

calculated for 2500 data points. As expected, the autocorrelation 

function associated with the data for correlated gust velocity component 

will tend to zero more gradually as shown in Fig.17 for the same number 

of data points. 

Our aircraft system is therefore going to be excited by a non-white 

noise random input vector, and consequently the aircraft response will 

also show some correlation. At the same time, our Kalman Filters 

structure is designed for an atmospheric turbulence modeled as a white 

noise process. This will generate, therefore, an inconsistency. A way 
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to detect the presence of unmodeled or uncorrectly modeled disturbance 

noise in our system is to analyze the autocorrelation function of the 

residuals of the Kalman Filters of Eq.(3.5). If the atmospheric 

turbulence exciting our aircraft system is a white noise process 

correctly modeled in the Kalman Filters structure, the associated 

autocorrelation function of the residuals (for the a and a states) will 

tend to the "impulse" look, as shown in Fig.18. For the residuals of 

model #6; on the other side, if the atmospheric turbulence exciting our 

aircraft system is not a white noise process and, therefore, not 

correctly modeled in the Kalman Filters structure, the associated 

autocorrelation function of the residuals (for the a and S states) will 

decrease a little more gradually, as shown in Fig.19, for the residuals 

of model #6. 

At this point let's analyze how this affects the performance of the 

model estimation process. The real mathematical model describing the 

aircraft system generating the dynamic data increases its order from 8 

to 10 for modeling the correlation in the components a9 (k) and s 9 (k)~ 

The now increased order state variable model is shown in Table VI. 

Dynamic simulation data from this system which at a certain time 

experiences a change in the dynamics due to the damage have been fed to 

our Kalman Filters structure and the damaged model estimation process 

has been attempted. The result is that, with a certain amount of 

surprise, the probability still converges to the right model (which is 

model #6), as shown in Fig.20, with approximatively the same convergence 

time shown in Fig.5, which was relative to nominal conditions of exactly 

modeled atmospheric turbulence in terms of covariance and color. Note 

that the peak shown in Fig.20 is not of particular concern to us because 
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by the time that such peak occurs we would have already exited the 

algorithm because we already had reached the convergence condition for 

same time. Next, we will try to understand the reasons for a behavior 

so relatively similar to the conditions of uncorrelated noise. Again, 

an explanation 1 ies in the complex structure of Eq.(3.6). The covariance 

residual matrix SUNC (or its inverse SuNc- 1), where 'UNC' stands for 

uncorrelated atmospheric turbulence, relative to model #6, implemented 

in the algorithm up to this point, is associated with the estimation 

error covariance matrix PuNC' relative to model #6, calculated by the 

Kalman Filter structure using the relation: 

C*PuNc*CT + R (3.16) 

Such SuNC and PuNC are therefore relative to a 8-th order system with 

atmospheric turbulence correctly modeled as white noise processes. 

Next, we would like to calculate the "true" estimation error covariance 

matrix, relative to model #6, for a 10-th order system with a 8-th order 

filter and the associated covariance residual matrix, PeaR and ScaR' 

where 'COR' stands for correlated atmospheric turbulence. In order to 

do so, let's recall the system equations and the Kalman Filter 

equations; note that, without any loss of generality, the deterministic 

input U(k) is not considered; also note that the matrices A and L are 

relative to model #6. 

X(k+l) =A X(k) + L W(k) 

Z(k) = C X(k) + V(k) 
- -
X(k+l/k) =A [I - KC] X(k/k-1) + AK Z(k) 

(3. 17) 

(3.18) 

( 3. 19) 

where the gain matrix K is calculated by the Kalman Filter and it is 

relative to model #6. By using Eq.(3.18), Eq.(3.19) will become: 
- -
X(k+l/k) =A [I - KC] X(k/k-1) + AK (C X(k) + V(k)) ( 3. 20) 



If we introduce E(k+l) = X(k+l)-X(k+l/k), we have: 

E(k+l) = AX(k) + L W(k) -A X(k/k-1) + AKC X(k/k-1) 

- AKC X(k) - AK V{k) 

Next, we can introduce a new augmented state variable vector: 

tre; {k+l~ 

W(k+l)j 
, I 

V(k+1lj 

~A {!8-KC) 

= ~~(2x8) 
L0( 6x8) 

0 ( 8x2) 0 ( 8x6) 

+ !2 0 ( 2x6) 

0 ( 6x2) !6 

LAUG 

Note that the order of XAUG 

the order of WAUG 

the size of AAUG 

the size of LAUG 

is 

is 

is 

is 

L 

E 

0 ( 6x2) 

( 8 +2 +6) = 16; 

( 2+6) = 8; 

( 16x16) ; 

( 16x8) • 

-AK e: (k ) 

w (k) 

v (k) 
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( 3. 21) 

(3.22) 

Also note that V(k), the measurements noise, is still a white noise 

Gaussian random vector with covariance matrix R. 

QAUG' which is the covariance matrix for WAUG' CAUG and E will be 

given by : 

( 3. 23) 
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(3~ 24) 

E - r-5 0~~ 
~-0 0.~ ( 3. 25) 

The diagonal elements of the matrix E are the coefficients of the two 

AR(l) process which are modeling the elements of vector W(k), which are 

ag(k) and Sg(k)~ Therefore we have a new set of state variable 

equations: 

XAuG(k+l) AAUG X(k) 

Z(k) = CAUG XAUG(k) 

+ LAUG WAuG(k) 

+ v (k) 

(3. 26) 

(3.27) 

The steady state estimation error covariance matrix for correlated 

(but not modeled by the Kalman Filters structure) atmospheric turbulence 

and the residuals covariance matrix can be found from 

AAUG PeaR AAUGT + LAUG QAUG LAUGT 

CAUG PeaR .CAUGT + R 

(3.28) 

( 3. 29) 

Note that PeaR and ScaR are respectively the "true" estimation 

error covariance matrix and "true" residual covariance matrix for a 

10-th order system modeled with a 8-th order filter. These matricial 

manipulations have been implemented in a user defined function on 

MATRIXx and the results in terms of s-1, which is the matrix playing a 

key rule in Eq.(3.6), are shown in Table VII. Note that the unmodeled 

correlated turbulence does not involve very big changes in the S matrix 

and the 8 costant, with respect to SUNC and SuNC· On the other hand, by 

looking at the trends of the uncorrelated and correlated vertical 

velocity components of the gust in Fig. 15 and Fig. 9, we don't expect 

the magnitudes of the residuals of the Kalman Filter for model #6 to be 

too different between the two cases. 
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Therefore, this similarity of the residuals and the closeness 

between SuNC-l and ScoR- 1, SuNC and ScaR justify the not too different 

trend of the probability convergence shown in Fig.20 and Fig.5. The 

bigger correlation between the probabilities in following instants shown 

in Fig.20 with respect to the nominal conditions is surely related to 

the correlation of the turbulence components which influence the corre­

lation of the probability troughout the correlation of the filter 

residuals. 

The shown robustness of the Multiple Model Kalman Filtering 

approach to non-Gaussian correlated noise is consistent with what it is 

stated in Ref.[21]. 

Essentially, up to this point, we have shown that a moderate 

correlation in the atmospheric turbulence, if it really exists, doesn't 

deteriorate the performance of the model estimation process. Again, 

let's point out that correlation in the components of the atmospheric 

turbulence is not very high and surely decreases with altitude because 

it is mostly due to ground effects. Once it occurs that we have to 

perform a model estimation process in such atmospheric conditions, the 

question is the following: Could we be able to model such correlation 

on-line, before implementing the Kalman Filters structure? 

The previously carried analysis was essentially done off-line with 

the residuals of an already designed Kalman Filters structure. In real 

life we should first estimate such correlation and then design an 

appropriate Kalman Filters structure ; however, in order to do so, there 

are three main problems. First, it may be impossible, in those instants 

when the aircraft is drastically changed its dynamics due to the damage, 

to extract from the sensors data the turbulence components in order to 
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analyze them; second, whatever method we would eventually use to 

determine the order and then the coefficients of the correlation, we are 

going to need to collect a certain amount of data and then we have to 

analyze them with some computationally time consuming algorithms; all of 

this has to be done while the damaged aircraft is "waiting" to be 

reconfigured and we know that time is a key point for the success of the 

reconfiguration; third, if eventually we could come up with an increased 

order system to account for correlated turbulence, then the computaional 

time to design the Kalman Filters will exponentially increase. 

These real life factors combined with the fact that correlation, if 

any, doesn't deteriorate too much the model estimation process 

performance lead to the conclusions that, for our purposes, the 

components of the atmospheric turbulence can be modeled with sufficient 

accuracy as white noise Gaussian random vectors. 

Probability Convergence Sensitivity Analysis 

for Nonlinear Damaged Aircraft Dynamics 

As far as the nonlinearity of the real dameged aircraft system is 

concerned, the issue is whether the tracking error from the Kalman 

Filter corresponding to the 1 inearized model closest to the true, 

nonlinear system is markedly smaller than the errors from filters based 

on 'more distant• models. 

Given that the residual covariance matrices S's are fixed for each 

model, the values of the exponents of the Eq. (3.6) and therefore the 

probability will depend upon the values of the residuals; higher values 

of the residuals (which is typical from nonlinear system response), with 

fixed s-1•s, will reduce the tracking capabilities of the approach and 



it will make more difficult to distinguish among the models. 

Consequently, from a numerical simulation point of view, we are 

going to have trends similar to the ones shown for the probability 

convergence sensitivity analysis to higher than expected turbulence. 

Intuitively, we can say that the performance of the model estimation 

process will depend upon how 'far apart' the different models are. 

However, future considerations introduced in Chapter IV will show us 

that this problem is not of particular concern to us. 

Conclusions 
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In this chapter an approach for estimating the mathematical model 

of the aircraft reflecting the changes due to the damage using Multiple 

Model Kalman Filters is proposed. The advantage of this approach is the 

relative simplicity since we can take advantage of the particular way 

th t the elements of th~·matrices A and B may change following a damage 

on a control surface. This could make such an approach particularly 

attractive for practical implementation. The rule played by the number 

N of models to be implemented has been outlined; a choice of N around 

10-12 has been assumed to represent an acceptable trade-off point 

between modeling accuracy and (Kalman Filters design computational time 

+probability convergence time). The effects of atmospheric turbulence 

with intensities higher than expected on the model estimation process 

are considered; it is suggested to implement an expression of the values 

of Om as function of the flight conditions, mostly of the altitude, 

rather then using only one atmospheric turbulence model for the design 

of the Kalman Filters structure. Finally, the effects of correlated 

components of atmospheric turbulence on the model estimation process are 
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considered~ The usually small amount of correlation, the almost 

unchanged model estimation performance, the impossibility of extracting 

atmospheric turbulence data from the sensors in the instants immediately 

following a damage, the excessive price in terms of computational time 

for calculating and modeling such correlation bring us to the conclusion 

that it is reasonable to model the atmospheric turbulence components as 

white noise Gaussian random processes. 



CHAPTER IV 

RECONFIGURATI ON ALGORITHM 

Statement of a Control Problem 

In the previous chapter we have introduced an approach in order to 

determine the mathematical model of the aircraft which reflects the 

changed dynamics due to the damage. Now we need an algorithm which, 

given the models of the nominal undamaged and damaged aircraft system 

and the time histories of the deterministic control surfaces input, is 

able to find the equivalent input that will make the damaged aircraft 

system respond as the undamaged system would under normal circumstances. 

Introduction to the Reconfiguration Algorithm 

The reconfiguration algorithm used for our purposes was introduced 

in Ref.[l]. In order to present such an approach, let's consider a 2-nd 

order linear time invarient controllable system. In the continuous-time 

state variable form we have: 

xl = x2 

x2 = al x2 + a2 xl + a3 u 

( 4. 1) 

( 4. 2) 

where u is the control variable, required to be bounded; a1, a2 and a3 

are constant coefficients. 

Our goal is to determine a method of computing u which will make 

the system defined by Eqs.(4.1) and (4.2) to behave like the ideal 
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system described~ in the same state variables form, by: 

yl = y2 

y2 = bl y2 + b2 yl + b3 urn 
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( 4. 3) 

( 4. 4) 

where urn is the control variable for the ideal system, which is also 

required to be bounded; b1, b2 and b3 are also constant coefficients. 

By integrating Eq.(4.2) between the time t=nh and t=(n+l)h, assuming 

that u has a value u(n} over this interval, we will have: 

x2(n+l) - x2(n) = A + B u (n) ( 4. 5} 

where x2(n) and u (n) are used to denote X2(nh) and u(nh} and A and B 

are: 
(n+l}h (n+l )h 

A = a1 f X2(t)dt + a2 f x1 (t}dt (4.6} 
nh nh 

( 4. 7) 

The desired change in x2 over the time interval is defined as Z(n}. If 

the actual change has to be the same as the desired change, from 

Eq.(4.5} we have: 

u(n} = [Z(n} - A]/B (4.8) 

Once we determine A and B, the control required to make the actual 

change in x2 equal to the desired change can be provided by Eq.(4.8). 

Note that the two terms in A will not generally be constant and they 

will depend on the varying values of x1 and x2• At this point we assume 

that A and B both are approximately constant over a small group of 

intervals. Therefore, by applying Eq.(4.5) on these preceding intervals 

we have: 

X2(n) - X2(n-1) = A + B u(n-1} 

X 2 ( n-1) - X 2 ( n- 2) = A + B u ( n- 2} 

At the beginning of the n-th interval, where u(n) is to be 

( 4. 9) 

(4.10) 
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computed~ all the terms in Eqs~(4~9) and (4.10) will be known from 

measurements (or from computer simulations), except A and B~ These ·can 

be determined by elimination between the two equations: 

u(n-2)[X 2(n)-X 2(n-1)]- u(n-1)[X2(n-1)-X 2(n-2)] 
A z u(n-2) - u(n-1) ( 4. 11) 

2 x2(n-1) - x2(n-2) - x2(n) 
B • u(n-2) - u(n-1) ( 4. 12) 

The last parameter that we need to calculate is the desired change 

Z(n). For example, suppose that the system is responding to a constant 

step input of magnitude M, then the desired change in x2 over the n-th 

interval is taken as: 

( 4. 13) 

Substituting this value of Z(n) into Eq. (4.8), together with the 

values of A and B previously calculated, we will have a control 

algorithm which will make the real system behave like the ideal one 

would at the same point under normal circumstances. By accomplishing 

this in succeeding time intervals, then the real system will be 

reconfigured. 

The introduced methodology looks surprisingly simple and, at the 

same time, efficient. However, there are two problems that need to be 

kept in mind: 

1 - The resulting value of u(n) might not be bounded. 

2- u(n) might be too close to u(n-1) and numerical problems may 

arise for the computation of u(n+l). This is because we deal 

with small denominators in Eqs.(4.11) and (4.12). 
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Characteristics of the Reconfiguration Approach 

Before going to the details of the application of the method to 

flight control reconfiguration, some further considerations need to be 

made. According to the way that the algorithm is going to be used, this 

can essentially be classified as a "model following" problem, where the 

model of the nominal aircraft can be constructed on-line (see Fig.2) by 

using the aerodynamic, inertial, geometric characteristics stored in the 

flight computers along with the closed-loop characteristics, if a S.A.S. 

or a C.C.V. function is implemented, and the flight data (velocity, 

dynamic pressure, air density) coming from the operational sensors. The 

dynamic model of the real damaged aircraft is also constructed on-line 

by using the previously introduced Multiple Model Kalman Filters method. 

As it can be seen from Eqs.(4.9)-(4.11), there is a 2 sample 

instants delay associated with the calculation of the required control 

input at time 'nh', u(n). 

In order to illustrate the approach we have considered a linear 

time-invariant system. But, without any loss of generality, we could 

consider a nonlinear system as long as we are able to simulate it 

(Ref.[1]). In fact Eqs.(4.8) ,(4.11) and (4.12) still hold; the only 

difference lies in Eq.(4.13). Of course, given that the damaged and 

nominal nonlinear systems have to be simulated on-line, the dynamic 

simulations of such systems are going to be computationally more time 

consuming. 

Note, that using such approach, the model estimation task and the 

control task are totally separated, with the noise problem faced in the 
' model estimation part. The dynamic simulation by the reconfiguration 

algorithm is essentially deterministic, without any disturbance. A 
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previous attempt to use in the reconfiguration algorithm some computer 

simulated noised data representing the damaged aircraft dynamic response 

has given rise to an unacceptable control activity, in terms of actuator 

frequencies and unrealistic maximum and minimum angular deflections of 

the control surfaces. 

Application of the Method to 

Aircraft Reconfiguration 

The technique introduced for a simple single-input 2nd order system 

has been used for a much more complex multi-input aircraft system. 

Again, the linearized models of the damaged and nominal aircraft 

dynamics can be calculated using the procedures described in Ref.[13]. 

Note that, in order to evaluate the performance of the reconfiguration 

algorithm only, we assume that the damaged aircraft model has already 

been estimated and that the damaged aircraft dynamics is 'exactly' 

described by one of those N models of the Multiple Model Kalman Filters 

structure. This is a reasonable assumption if a sufficiently high number 

N of models is implemented, that is N = 10-15. 

For a realistic simulation we have to consider the following 

possibilities for a damaged control surface: 

1- Control surface that remains fixed at a particular position. 

2 - Control surface that jams to the maximum angular deflection. 

3 - Control surface that jams to the minimum angular deflection. 

As it was introduced in Chapter II, the aircraft is assumed to have 

9 independent control surfaces: 

-Right and left elevators (max. and min. defl. of ~25°). 

-Right and left spoilers {max. and min. defl. of ~45°). 
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-Right and left ailerons (max. and min. defl. of ~25°)~ 

-Right and left canards (max. and min. defl. of ~25°). 

-Rudder (max. and min. defl. of ~30°). 

A key factor for a successful application of this reconfiguration 

technique consists of being able to implement on-line a very small value 

of the reconfiguration step •h•, introduced in Eq. (4.6); that is, at 

each interval of time that the reconfiguration method is applied. Such 

value is a function of the reconfiguration algorithm complexity and 

available computational power of the airborne computer. 

On the other side, values of h too small may potentially give rise 

to a problem because u(n-2) might be too close to u(n-1), as previously 

mentioned. In order to avoid this problem a control is performed in the 

code such that in case of a •flat• input, that is u(n-2)=u(n-1), a 

minimum fixed quantity is assumed for (u(n-2)-u(n-1)). 

Given that a linearized set of equations represents the best 

compromise between modeling accuracy and low computational time for 

modeling a 6 degrees-of-freedom aircraft, our next goal is to minimize 

the reconfiguration algorithm complexity. In order to do so, the 

following consideration can be made. Because of the nature of the 

aircraft dynamics, such system is a completely state controllable 

system. From a mathematical point of view this implies that: 

rank We =rank [B, AB, •••• , An-lB] = n ( 4. 14) 

where •n• is the order of the system, as it has been proved by using 

MATRIXx. 

From a practical point of view this means that it is enough to find 

the control inputs that reconfigure some of the states to be sure that 

all the states are reconfigured. A typical choice would be to 
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reconfigure p,q~r, which are the angular velocities around the stability 

axes Xs, Y s, Zs. 

Once that the amount of control input needed for the recon-

figuration of a state is calculated by using Eq.(4.8), after we have 

obtained for each time interval the quantities Z(n), A and B, the next 

step is to distribute efficiently from an aerodynamic point of view this 

control input among all the remaining available healthy independent 

control surfaces. The approach that has been implemented is that each 

control surface contributes to the reconfiguration with an amount, Wi, 

proportional to its effectiveness: 

Control effectiveness of the 
i-th control surface 

Wi = Sum of control effectiveness 
of all surfaces 

(4.15) 

For example, in order to reconfigure the q state after the damage 

on the left elevator, we have that the remaining right elevator will 

furnish WER of the amount of needed control, where WER is given by: 

abs (C ) 
m6ER 

WER = SUM (abs (C ) ) 
moi 

with SUM(abs(Cm0i)) = abs(CmoER) + 2 abs{Cm\SSL) + 2 abs{Cm\SCL): 

The p and r states are ordinarily reconfigured by using, 

respectively, the ailerons and the rudder. 

( 4. 16) 

Such approach will avoid the saturation of a particular control 

surface used for the reconfiguration leaving some angular deflection 

margins to be used in the following flight manoeuvers by the pilot or by 

the stability augmentation systems (S.A.S.) or control configured 

vehicle (C.C.V.) functions implemented on the aircraft. 



Reconfiguration Simulation Results 

The introduced algorithm to be used for the aircraft recon­

figuration has been implemented in a Pascal program. 
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Let's recall one more time that, for the time being, we are still 

assuming the aircraft being originally •naturally' stable with 

satisfactory handling qualities and, therefore, S.A.S. or any form of 

C.C.V. functions are not considered. This has only been done for 

simplicity purposes and it does not affect the performance of the 

reconfiguration algorithm because the algorithm only uses the 

mathematical models of the damaged and of the nominal aircraft, 

regardless if they represent an open-loop or a closed-loop dynamics. 

However, we may want to keep this in mind for future comments. 

The dynamics of the chosen aircraft model is simulated at the 

flight conditions shown in Table I, that is high altitude and high 

subsonic Mach number, which is typical of an air combat scenario. The 

introduced maneuvers are also typical of a duel situation, with step 

inputs on elevators and ailerons, as shown in Fig.4 and Fig.21. 

The damage is simulated to occur at time= 1 sec.; consistently 

with what we have done in the previous chapter, we assume that (4-4.5) 

sec. is the time needed by the Failure Detection and Identification 

tasks and for the design of the Kalman Filters structure while (1.5-2) 

sec. is the time needed for the convergence of the probability 

associated with the model that more closely describes the damaged 

aircraft dynamics. Therefore, the total time span between the instant 

when the damage occurs and when the reconfiguration algorithm takes over 

is assumed to be 6 sec. Two different cases have been considered. 

Case 1 (Fig.22-Fig.24) is relative to a situation where a damage on 
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the left elevator implies a reduction of around 1/2 of its control 

effectiveness (from el = 0.278 to 0.121), with the deflection 
0EL 

remaining fixed at the position at the instant of the damage, that is 

-5o. 

The task of the damaged surface is distributed, using the criteria 

introduced in Eq.(4.16), among the remaining half elevator, the right 

and left spoilers, the right and left canards. Particularly, using the 

data in Table I, we have: 

WER = 41~86% 

WeL = WeR = 20~35% 

WsL = WsR = 8~7% 

(4.17) 

(4.18) 

( 4.19) 

Fig.22-Fig.24 show that the introduced algorithm, which takes over 

at time = 7 sec., achieves in a very short amount of time an accurate 

reconfiguration for the angle of attack, for the pitching angular 

velocity and properly counteracts the rolling moment induced by the 
I 

damaged left elevator. Fig. 25 shows the associated right elevator and 

canards deflection inputs calculated by the algorithm. In such figure 

the opposite sign of the deflection of the canards and the right 

elevator is due to the fact that they are located in opposite positions 

with respect to the center of gravity. Also note that the absolute 

values of these deflections happen to be very similar because of the 

values of w weR' and WER in Eqs. (4.17, 4.18) and because of the 
CL' · · 

values of em , e em in Table I. 
oeL moeR' oER . 

It is important to notice expecially from Fig.22 and Fig.23 how the 

characteristics of the aircraft dynamic response change following the 

damage. In fact the damage on the left elevator, which, as we have 

previously stated, involves a reduction of the value of CL and, 
oE 



consequently, a reduction of the value of em , influences moreless 
oE 
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strongly the values of em , em , em·' and el , as shown in ehapt. II 
a q a a . 

(Ref.[13] and Ref.[17]-[18]), which then cause mostly a change in the 

short period characteristics of the aircraft. This can be shown in the 

following expressions, valid for the short period approximation in the 

longitudinal dynamic stability (Ref.[13]): 

l; s.p. 

(4.20) 

( 4. 21) 

Za, Mq, Ma, Ma are the dimensional stability derivatives con­

taining, respectively, el, em, em, em·' U1 is the steady state 
a q a a 

forward speed. This can be seen in Fig.26, where the short period 

characteristics are plotted in the s-plane; the reason that we go back 

to the continuous time domain is that this is the plane where the 

conditions in terms of handling qualities are usually assigned. For 

normal damaged conditions the poles obtained by using the EIG command in 

MATRIXx are shown with the symbol '+'. The ones calculated by using 

Eqs. (4.20) and (4.21) are shown by using the symbol '*'. Given that 

the short period poles are complex conjugates (or, at least, this is the 

way that they normally are) only the positive one is shown. Under 

damaged conditions, the positions of the poles calculated by using 

MATRIXx and Eqs.(4.20)-(4.21) are shown, respectively, with the symbols 

'-' and 'x'. The closeness of these poles for both conditions proofs 

the validity of the short period approximation. Table VIII shows 

instead the effects of the damage on the natural frequency and on the 



damping of the short period mode; in the Table both the results using 

MATRIXx and using Eqs.(4.20) and (4.21) are reported. 
. . . . 
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This discussion brings up the issue that the damage may decrease 

the stability, in this case the longitudinal stability, and we can even 

reach the point where the aircraft (regardless if it is designed 

•naturally• stable for those particular flight conditions or it is 

•artificially• stabilized with a S.A.S.) becomes unstable after the 

damage. 

In this extreme case time is really a key factor because if the 

reconfiguration algorithm is applied too late, that is the unstable 

dynamic trend is already well developed, there may not be enough control 

authority to bring back the aircraft to perform with the desired dynamic 

characteristics because the aircraft may have already gone into some 

unrecoverable flight conditions. 

However, back to our case, as it can be seen in the enclosed 

figures, the application of the reconfiguration algorithm •forces• the 

damaged aircraft to give the same dynamic response of the nominal 

aircraft. No attempt has been made, up to this point, in order to 

restore desirable handling qualities. If a S.A.S. is implemented on the 

aircraft, like it is always the case for fighters, this could be 

achieved by redesign of the feedback gains. However, this is going to 

be the topic of the next chapter. 

Also, in Fig.22-24, by looking at the values of the transients of 

the plotted parameters we can see that we are around the limits of the 

linearity assumption. 

Case 2 (Fig. 27-30) is relative to a similar situation. The only 

difference is that, following the damage, the left elevator jams to the 
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minimum angular deflection, that is -25°. Note that this is a very 

severe condition. Even in this case, an acceptable reconfiguration is 

achieved for the angle of attack and for the pitching and rolling 

angular velocities; note that the induced rolling moment is in this case 

a not negligible side-effect. By looking at the relative figures we can 

clearly see the 2 instants delay nature of the reconfiguration 

algorithm. The differences in Fig.27-29 between the undamaged and the 

reconfigured responses are bigger than the respective differences shown 

in Fig.22-24, because of the higher amount of aerodynamic forces 

exerted, during that 2 instants delay, by the damaged surface jammed to 

the minimum deflection. 

However, the magnitude of the parameters plotted in Fig.27-29 leads 

us to some considerations; in fact such magnitudes are surely outside 

the limits of the linearity assumption. For those values of the angle 

of attack and of the angular velocities the linear plant models are 

definitively no longer valid, given that the aircraft aerodynamics 

becomes highly non-linear. 

Now, recall that we have considered an open loop aircraft, without 

any form of S. A. S. or C .C. V. functions implemented in the flight control 

system. Today's generation fighters are equipped with fly-by-wire 

systems in which control surface deflections are not commanded directly 

by the pilot but are generated by the flight control computers in order 

to achieve commanded states or to achieve some desired dynamic response. 

Therefore, in the instants following a damage on a control surface 

when the aircraft is experiencing substantial linear and rotational 

impulses, these damage induced disturbances to the aircraft would be 

opposed by the closed-loop control laws. In other words, the C.C.V. 
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functions (for example yaw, pitch, roll dampers, maneuver and gust load 

alleviation, flight envelope limiting, •• ~) would be using multiple 

control surfaces, even if not for reconfiguration purposes, that would 

keep the values of a,p,q and all other state variables at lower 

magnitudes than the ones shown in Fig. 27-29. Even if not numerically 

simulated in this study, the dynamic characteristics of the aircraft 

modified by the sophisticated C.C.V. functions are considered in our 

overall approach to the reconfiguration problem, shown in Fig.2, under 

the name of closed-loop characteristics to be introduced for the 

construction of both the damaged and the nominal mathematical models of 

the aircraft. Hence, for a modern C.C.V. fighter, the magnitudes of the 

states after a damage would be much lower than the ones shown in Fig. 

27-29 and, most likely, within the limits of the linearity assumption. 

Looking back to Chapter III, this surely helps the damaged model 

estimation process to perform within the basic assumption that the 

aircraft dynamics for the N models can be described by N sets of 

linearized equations. 

After these reflections concerning the nature of the aircraft 

transient response immediately after the damage it is important to point 

out that other main factors for the reconfiguration success are the 

maximum angular velocity of the actuators and the maximum number of 

impulses that can be sent to such actuators in a time unit. In the 

reconfiguration algorithm the maximum allowed actuator angular speed was 

200°/sec, which is around the average of today•s actuators. 

This brings up the problem that the advantages of a reconfiguration 

technique can be experienced only if the remaining actuators implemented 

are strong and quick enough. 
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Conclusions 

In this chapter the algorithm to be used for the reconfiguration 

has been introduced, outlining some of its characteristics and some of 

the problems associated with it. 

We have illustrated the particular way that such algorithm has been 

used, that is in a "model following" mode, with the damaged and nominal 

aircraft system models being deterministic and constructed on-line using 

the flight data and the closed-loop characteristics. 

We also have pointed out that such algorithm can be applied to 

nonlinear aircraft models, but this would require much longer 

computational time in the simulation. A key point for the success of the 

reconf1guration is to implement a small value of the reconfiguration 

Step I hI o 

Also, a particular procedure in order to reduce the algorithm 

complexity has been introduced, that is reconfiguring only some key 

states, by taking advantage of the controllability of the aircraft 

system. Furthermore, a method is proposed to efficiently distribute the 

reconfiguration task among all the remaining healthy control surfaces. 

Then, the simulation results for a typical combat inputs in a 

typical combat scenario have been shown, discussing some important 

points, like the change in the stability characteristics of the aircraft 

following the damage, the validity of the 1 inearity assumption and the 

need for strong and quick actuators to be driven by this reconfiguration 

algorithm. 



CHAPTER V 

REDESIGN OF THE FEEDBACK GAINS 

BY EIGENSPACE ASSIGNMENT 

Introduction 

Up to this point, we have introduced a Multiple Model Kalman 

Filtering approach for the estimation of the mathematical model of the 

aircraft considered to reflect the damage and a reconfiguration 

algorithm which 11 forces 11 the damaged aircraft to behave like the nominal 

one would under normal circumstances. In other words, by using the 

introduced reconfiguration algorithm, we merely calculate a set of 

11 Compensating 11 inputs. 

The chosen aircraft model is considered to be, at that particular 

flight condition, 'naturally' stable and satisfying some particular 

requirements for handling qualities in terms of rigid body 

characteristics (that is, short period, phugoid, dutch-roll, spiral and 

rolling modes); therefore a S.A.S. has not been considered; also, the 

model is assumed to implement none of the C.C.V. functions (pitch, roll 

and yaw damping, gust and load alleviation, flight envelope limiting, 

etc ••• ) • 

However, for military aircraft, expecially fighters, strict 

requirements in terms of maneuvrability make the resulting aircraft 

'naturally' unstable throughout all its flight envelope (altitude vs. 
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Mach number). Therefore, some form of S.A~S~ needs to be implemented in 

order to satisfy the handling qualities requirements. On top of the 

S.A.S. we may then design other control systems that implement other 

C.C.V. functions. 

Therefore, in order to reflect this real 1 ife situation, we are 

going to modify the given aircraft model by making it •naturally• 

unstable; then, by using MATRIXx, a feedback control can be designed to 

make the closed-loop aircraft satisfy the handling qualities 

requirements. Next, once the damaged model has been estimated, we would 

like the Feedback structure to be redesigned in order to accomodate the 

changed dynamics of the controlled aircraft system. 

Consider now the conservative case when the damaged control 

surface, besides being used by the pilot, has a feedback control input 

to the surface. In this case, by redesigning the feedback structure, we 

not only want to guarantee the nominal undamaged satisfactory handling 

qualities but also would like to remove the unavoidable coupling between 

the longitudinal and lateral-directional dynamics that the damage on the 

control surface has generated. 

It may be thought that the reconfiguration has been already 

accomplished with the introduced algorithm, and this is true. However, 

we may look at the problem as in the following: After the damage occurs, 

once the damaged model estimation has been succesfully accomplished, let 

the reconfiguration algorithm perform the initial heaviest load of the 

reconfiguration itself, that is to bring back the aircraft from whatever 

conditions it had reached immediately following the damage to the 

desired states. In the same time, on a parallel computational line, let 

the feedback structure be redesigned for that particular flight 



condition and for all the flight envelope with the goal of retaining 

desirable handling qualities and removing the damage-induced dynamic 

coupling. 
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Once this has been done, the closed-loop characteristics of the 

aircraft need to be modified such to reflect the redesign of the 

feedback structure and, consequently, we can update the damaged aircraft 

mathematical model used in the reconfiguration algorithm. In other 

words, the reconfiguration, initially obtained by using only the 

algorithm previously introduced, is now accomplished by using both the 

Feedback Structure and the reconfiguration algorithm itself, as it can 

be seen in Fig.2. 

From a flight management point of view this is surely a more 

functional approach. In fact it wouldn't make sense to maintain for the 

rest of the flight the original feedback structure for a system that 

changed its characteritics. 

Statement of the Problem 

For the design of a S.A.S. the most common approach is given by the 

state feedback technique. Generally, given a dynamic system described in 

the discrete-time form by: 

X (k + 1) = A X (k) + B U (k) ( 5. 1) 

The control input vector U(k) can be expressed as: 

U(k) = UF(k) + Up(k) ( 5. 2) 

where UF(k) indicates control inputs used by the state feedback while 

Up(k) indicates pilot deflection inputs. Using the state feedback 

approach we have: 

(5. 3) 
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where K is a (mxn) matrix of feedback gains. By using Eq~(5.1), 

Eq.(5.3) becomes: 

X ( k + 1 ) = [ A + B FK ] X ( k ) + B p Up ( k ) (5. 4) 

where BF is relative to UF(k); Bp is relative to Up(k); [A+ BFK] = 

Ac.L. =closed-loop state matrix. Note that UF(k) and Up(k) may have 

some common elements. 

An aircraft cannot be considered to be a single-input system, given 

that the control surfaces are at least 3. However, for most aircraft 

configurations, under design conditions, the longitudinal and the 

lateral-directional dynamics can be decoupled. Therefore, we can split 

the design of an aircraft S.A.S. into the longitudinal part and the 

lateral-directional part, each one using a single control input (usually 

elevator or canards in the longitudinal case and rudder and/or ailerons 

in the lateral directional case). Note that this is not necessarily 

true for particular aerodynamic configurations, for example, aircraft 

with wings or horizontal tails with high dihedral angle (Ref.[32]) or 

with oblique wings (Ref.[15],[16]). 

In order to show the implementation of this design philosophy, some 

of the original aerodynamic data have been changed in order to simulate 

a •naturally' unstable aircraft, which requires a S.A.S. in order to be 

stable. Particularly, the following data from Table I have been 

modified: 

em = -0.75 
ex . 

c = -6.7 rna . 
em = -20.15 q 

CL = 5.9 
ex . 

--> 0. 1 

--> -5.36 

--> -16.12 

--> 5.605 

This reduction of the aerodynamic data values has been made empirically 



57 

but it reflects the fact that an •artificially• stable aircraft usually 

has smaller wings and a very reduced size of the horizontal tail 

(Ref.[31]). This can be seen in Fig. 31. The short-period 

characteristics relative to the aircraft without a S.A.S. show that the 

handling qualities are unacceptable. In fact we have: 

POLE 1s.P. = -2~1890; POLE 2s.P. = -0:0962 

POLE 1p. = 0.1708 + i 0.1112; POLE 2p. = 0.1708- i 0.1112 

As we can see, the short period poles are no longer complex conjugates, 

and the phugold has become unstable. However, the S.A.S. has to 

guarantee satisfactory flying qualities throughout all the flight 

envelope. This is obtained with a form of gain scheduling. From an 

implementation point of view this means that the flight envelope is 

subdivided into a certain number of regions within which the aircraft 

exhibits satisfactory flying qualities with that particular set of 

gains. Fig. 32 shows a typical flight envelope. Twenty-eight different 

regions have been introduced where the actual eigenvalues are within a 

limited range from the desired eigenvalues. For example the flight 

condition A4v3 is relative to a condition with altitude at level 4, that 

is between 25,000 and 35,000 ft, and with Mach number at level 3, that 

is between 1.0 and 1.3. 

At this point we recall that, because of the damage, the 

longitudinal and lateral directional dynamics are no longer decoupled. 

This implies that, if we want to modify or, more realistically, redesign 

the flight control system in order to retain desirable flying qualities 

even after the damage, the approach of using 2 separated single-input 

subsystems is no longer valid. 



Control of a Multi-Input Linear 

Time-Invariant System 
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For the design of a feedback structure for a linear (or 1 inearized) 

time-invariant multi-input system, two different approaches can be 

followed 

1- Linear Quadratic Optimal Control method. 

2 - Eigenstructure Assignment technique (a more general definition 

for the pole assignment approach). 

Optimal state feedback controllers, which minimize certain costs 

associated with control, can simultaneously provide control laws by 

solution of the Riccati equation, assuming that the system is 

controllable. One difficulty associated with this approach has its 

origin in the nature of the optimal control approach. By optimizing 

certain costs, the control designer has no direct control over the 

closed-loop system eigenvalues and eigenvectors (which, in our case, are 

directly related to the aircraft handling qualities). Furthermore, 

Optimal State Feedback controllers may require excessively long 

computations. Therefore, the eigenvalues/eigenvectors technique seems 

to better fit our needs of redesigning a flight control system which 

retains desirable flying qualities. 

In the single-input case a unique feedback matrix is required to 

obtain desired eigenvalues. With each eigenvalue, there is an 

associated eigevector which is also unique (Ref. [33]). However, for 

the multi-input case there are an infinite number of feedback matrices 

which can assign specified eigenvalues. Also, with each feedback 

matrix, there is a new set of associated eigenvectors. Since the 

eigenvectors also affect the time response, it is important to assign 
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both the eigenvalues and the associated eigenvectors. Therefore, for 

the multi-input systems, there are a number of degrees of freedom given 

by free parameters (Ref.[34]-[36]). 

A considerable amount of research effort has been devoted in the 

past years to investigate the relationships between the specified 

closed-loop eigenspace structure and the weighting matrices of the 

performance index of an optimal linear quadratic control for a 

single-input system (Ref.[37]) or, more recently, for a multiple-input 

system (Ref.[38], [39]). 

A very interesting approach is to utilize the extra degrees of 

freedom for the selection of a set of eigenvectors from the allowable 

ones for a robust eigenspace structure assignment, where for 

'robustness' the insensitivity of the desired eigenvalues to 

perturbations in the components of the matrices A and B is intended. 

Several methods have been introduced in order to realize a robust 

control. Remarkable theoretical results have been shown in Ref.[40]. 

The design of a robust eigenstructure assignment has been tried with an 

iterative approach, with eigenvalues assigned on the real axis only 

(Ref.[41]), or arbitrarily assigned in the complex plane (Ref.[42]). 

Furthermore, one more point which has been investigated is the coupling 

of a state feedback controller with a state estimation structure, in the 

case when not all the states are directly available for feedback 

(Ref.[44]). 

But the robustness of the controller is not the only goal that can 

be achieved with the extra-degrees of freedom furnished by the 

analytical nature of the multi-input system control problem. Another 

desirable feature is to try to use these extra degrees of freedom to 
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obtain the most desirable response (Ref~[45]-[48]). In this case the 

eigenstructure assignment problem reduces itself to an optimization 

problem. 

Feedback Structure Redesign 

Our objective is to redesign the feedback structure 

such that desirable flying qualities and dynamic uncoupling can be 

achieved even with an aircraft with damaged control surfaces. 

With the selection of the eigenvalues, we have essentially the 

possibility to assign the poles of the system. The dynamic response is 

also affected by the locations of the zeros and, by merely using 

eigenvalues, we do not have the possibility to change the zeros. From a 

mathematical point of view, the dynamic coupling can be seen in the 

values of the eigenvectors of the damaged closed-loop state matrix, 

which causes an interference between the longitudinal and the 

lateral-directional modes. 

A logical solution to this problem would be to assign, in addition 

to the desired eigenvalues, a set of desirable eigenvectors which 

reflect uncoupling between these modes. In other words, it would be 

desirable to assign a set of eigenvectors reflecting the original, 

nominal, undamaged decoupled dynamics. In order to do so, the approach 

introduced in Ref. [45]-[48] to eliminate structural interferences of 

elastic modes with rigid modes is used. 

For an n-th order observable and controllable system with m control 

inputs and 1 measurements available for direct output feedback, we can 

exactly assign MAX(m,l) eigenvalues and MIN(m,l) of the associated 

eigenvectors (Ref.[44]). We have an aircraft with 9 independent control 



61 

surfaces but a reduced number of control inputs are implemented in a 

feedback structure, that is around 3-4. Note that this implies that the 

matrix BF considered in this study is only a part of the original matrix 

B. Therefore, we have m < l. If we desire to specify more than m 

eigenvectors, the best achievable result can be some least-squares fit 

to the desired eigenvectors (Ref.[45]). 

Assume that l=n=8, that is all the states, measured by appropriate 

sensors, are directly available for feedback purposes. This is within 

our original assumption for implementing a reconfiguration strategy. 

Therefore, we have: 

Z(k) = M X(k) (5.5) 

where M is an (8x8) identity matrix. 

In order to determine K, note that the augmented closed-loop system 

eigenvalues (fi) and eigenvectors (Qi) are related 

by the following relation: 

(A+ BFKM) 0. = r. Q. fori i, ••• , n=8 
1 1 1 

Introduce a set of m-dimensional vectors Wi: 

W.=KMQ. 
1 1 

fori= i, ••• , n=8 

(5. 6) 

(5. 7) 

Given that m < n, the best achievable eigenvectors for each of the 

l=n modes will be obtained by minimizing the following modes' cost 

function: 
*T J. = 112 (O.- od.) Q. (O . - od.) 

1 a1 1 1 d1 1 
(5.8) 

where Oai =achievable eigenvector associated with ri; 

Qdi =desired eigenvector associated with ri; 

Qi = i-th (nxn) symmetric positive semi-definite weighting matrix 

for the eigenvectors; 

*T indicates conjugate transpose. 
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Such a cost function represents the error between the achievable 

eigenvector and some desired eigenvector, weighted by the matrix Qi. It 

can be shown (Ref.[45]) that the Wi that minimizes J; is given by: 

w.*T = n .*T 0· L· [L·*T Q· L·]- 1 
1 a1 1 1 1 1 1 (5.9) 

for i=1, ••• ,l=n=8, where Li = (riin- A)- 1BF. 

Note that in order for the inverse of Eq.(5.9) to exist we must have: 

Rank [0;] > Rank [BF] ( 5.10) 

Also we can see that such approach can be extended for synthesizing 

reduced order feedback control laws, depending on the dimension 1 of the 

vector Z(k). Once we have found Wi, the relation that allows us to 

calculate the achievable eigenvectors is given by: 

(riin- A) nai = BFWi for i=1, ••• ,n=8 

which gives: 

nai = (riin- A)- 1 BFWi for i=1, ••• ,n=8 

Finally, the control gain matrix is given by: 

K = w [Mvr1 

where W =matrix of concatinated Wt vectors = [W 1 ,~::,W 1 ]; 

V = matrix of concatinated achievable nai eigenvectors 

Results of The Application of The 

Method To The S.A.S. Redesign 

For A Damaged Aircraft 

(5.11) 

( 5. 12) 

(5.13) 

The introduced method for the redesign of the feedback structure of 

the S.A.S. has been codified and tested by using several MATRIXx 

user-defined functions. 

The following study has been done in the continuous-time domain. 
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There is no particular reason for this other than the fact that the 

handling qualities conditions are mostly assigned in the s-domain. A 

similar study can be done in the discrete-time domain. The handling 

qualities conditions can be obtained in the z-domain by using the 

relation z =esT, where T is the sampling period. Note that, following 

this approach, we should select a value ofT such that all the desired 

pole locations are within the unit circle. 

For this study we have used the previously introduced flight 

conditions (Altitude=40,000 ft. , Mach number=0.7); of course, the 

feedback structure redesign has to be performed for all the regions of 

the flight envelope. 

In order to show the results of the application of the introduced 

methods the following steps have been followed: 

STEP 1: 

At the introduced flight conditions the design of the feedback 

structure is performed for the undamaged, 'naturally' unstable 

aircraft with the previously reported data. The selected values 

for the eigenvalues are taken from Ref.[13]. Note that such design 

could be performed separately for the longitudinal and 

lateral-directional dynamics because there was no coupling 

introduced by the values of the B matrix. Also note that only the 

elevators and the rudder control inputs are considered in this 

design. The calculated feedback gains relative to the rudder 

control input are almost null because the bare-air frame 

lateral-directional handling qualities are already acceptable. The 

resulting closed-loop A matrix has all the eigenvalues located in 

the desired positions, which means desirable handling qualities. 
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The resulting eigenvectors reflect a desirable uncoupling between 

the longitudinal and lateral-directional dynamics~ Besides this, 

there is nothing unique in this set of eigenvectors. Ref.[48] 

contains several considerations regarding the selection of a 

desirable matrix of eigenvectors. For our purposes it is enough to 

achieve a dynamic uncoupling. However, particular relationships 

between the rigid dynamic modes may be investigated. The selected 

eigenvalues and the calculated eigenvectors are assumed to be our 

desired eigenstructure. Such eigenstructure, the associated 

feedback gains, the closed-loop A matrix and the 8 matrix are shown 

in Table IX 

STEP 2: 

The previous 1 y ca 1 cul a ted feedback gains are now used with the 

damaged, unstable aircraft with the same control inputs. Note that 

the rolling moment induced by the damage on the left elevator 

causes a certain amount of coupling. This can be seen in the 

values of the closed-loop A matrix as well as in the eigenvectors 

shown in Table X. Also, the eigenvalues reported in the same table 

show some remarkable differences with respect to the ones shown in 

Table IX. Particularly from Table X, we see that the phugoid has 

become unstable and that the short period characteristics are not 

satisfactory. This proves the need for a complete redesign of the 

feedback structure. The resulting eigenstructure, the closed-loop A 

matrix, the 8 matrix and the feedback gains are shown in Table X. 

STEP 3: 

Finally, given our desired eigenstructure and given the data for 

the damaged unstable aircraft, the redesign of the feedback 
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structure is now done~ From what we have said in the introduction 

of the method recall that we can assign precisely MAX(m,l) desired 

eigenvalues and MIN(m,l) desired eigenvectors. We have selected 

l=n=8. So, by increasing the value of m, we can achieve 

closed-loop dynamics whose eigenvectors are closer to the desired 

set of eigenvectors; we can still assign l=n=8 desired 

eigenvalues. Also, we should achieve a closed-loop A matrix 

similar to the one shown in Table IX. 

On the other side, for simplicity purposes, we do not want to 

introduce in the feedback structure too many deflection inputs, 

because our goal is only to remove the coupling between the 

longitudinal and the lateral-directional dynamics. Of course, in 

the selection of the feedback control inputs, we have excluded the 

damaged left elevator~ By using m=3 control inputs, that is oER,oCL 

and oR, we already achieve our goals, as shown in Table XI, where 

the resulting eigenvalues, eigenvectors, closed-loop A matrix, 8 

matrix and feedback structure are shown. Even better results are 

obtained, as expected, for m=4 control inputs, that is 

6ER,6CL,6CR,6R. Table XII shows the resulting eigenvalues, 

eigenvectors, closed-loop A matrix, 8 matrix and feedback 

structure. Note that the absolute value of the feedback gains are 

lower than the ones shown in Table XI, which means that the task of 

removing the coupling has been more widely spread among the 

deflection inputs. Also, in Table XII, we can see that the 

achieved closed-loop A matrix, besides having all the desired 

eigenvalues, is almost coincident to the one relative to undamaged 

conditions shown in Table IX. 
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State Estimation with Eigenstructure Assignment 

At this point go back to our original assumption that all the 

states are directly available for feedback, which means that l=n=8; so, 

we can assign 8 eigenvalues. When this assumption is no longer valid, 

we would have < n = 8 and we would be able to assign a reduced number 

of eigenvalues. This can be a serious problem, since we have no control 

of all the eigenvalues, some can take on unstable values, like positive 

values in the s-domain. 

In order to assign all then eigenvalues, an effective approach 

would be to introduce an Observer or a Kalman Filter to estimate the 

unmeasured states. However, two points need to be considered when state 

estimation is coupled with eigenstructure assignment. They are the 

effects on the transient response due to a pilot input and the effects 

on the controller dynamics itself. 

The effects on the aircraft transient response due to a pilot input 

can be analyzed by considering the augmented system transfer 

functions. Given the general state variable form of a continuous-time 

system: 

X(t) =A X(t) + B U(t) + L W(t) 

Z(t) = M X(t) + V(t) 

with Y(t) = C X(t) 

U(t) = UF(t) + Up(t) 

UF(t) = K X(t) 

X(t) =A X(t) + B U(t) + F (Z(t)- M X(t)) 

(5.14) 

( 5. 15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

where F is a matrix of estimator gains. Using the state estimation 

error: 

e(t) X(t) - X(t) (5.20) 



the correspondent augmented system can be written as: 

~~(t~ = [(A+ 

le (t ~ a 

rw (t~ 
lv(t] 

~ (t~. 
I + 

e (t )\ 
..... 

Taking the Laplace transform of Eq. (5.21) we have: 

lx (s )I 1 (sin- (A+ BFK)) BFKl 
-1 

le(sj 
I 

i 
l 0 (si - (A - FM) ~ n 

[:J Up(s) 
+ [~ -~ [~(sJ 

v ( s) 

with Y(s) [C 0] ~(s] 
e (s) 
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( 5. 21) 

* 

(5.22) 

(5.23) 

From Eq. (5.23) we can see that the transfer functions between Y(s)and 

Up(s) are given by: 
-1 Y(s) = C [sin - (A + BFk)] Bp Up(s) (5.24) 

which is the same as it would be with a feedback structure but without 

state estimation. Therefore, with the redesigned feedback structure, as 

implemented, the closed-loop system transient response due to any pilot 

input is independent of the state estimator dynamics, regardless if we 

implement an Observer or a Kalman Filter. 

On the other side, the state estimator will affect the controller 

dynamics. In order to show this relation, recall that, from Eq. (5. 19), 
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we have: 
-1 X(s) = (sin- A- BFK + FM) (Bp Up(s) + F Z(s)) (5.25) 

which will change Eq. (5.18) to: 
-1 

UF(s) = K [sin- Aeon] (Bp UP(s) + F Z(s)) 

where Aeon = A + BFK - FM 

(5.26) 

(5.27) 

Therefore, the estimator gain matrix F should also be selected to 

avoid undesirable controller characteristics, such as unstable 

eigenvalues of the matrix Aeon· It should not be difficult to realize 

that this condition is not very restrictive. In other words, if the 

matrix (A - FM) has to have stable eigenvalues, regardless ifF comes 

from an Observer or a Kalman Filter, most likely the matrix (A+ BFK­

FM) also should have stable eigenvalues. However, a full address of 

this problem has not been considered in this study. 

Conclusions 

In this chapter a particular approach has been introduced in order 

to redesign the feedback structure of the flight control system to 

accomodate the changed dynamics due to damage. 

The approach is based on Eigenstructure assignment. Through such 

assignment we would like to have closed-loop aircraft dynamics with 

desirable handling qualities and without the longitudinal and 

lateral-directional coupling induced by the damage. Such desirable 

uncoupling can be assigned with a particular eigenvectors matrix where 

the longitudinal modes are not influenced by the lateral modes and vice 

versa, which means that the elements of the upper right and lower left 

blocks of the desired eigenvectors matrix are zeros. 

The introduced method allows us to assign MAX(m,l) eigenvalues and 
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MIN(m,l) eigenvectors. If we want to assign the overall eigenstructure, 

the best achievable result is a least squares fit to the desired 

eigenvectors (Ref.[45]). 

For l=n=8, the result is that the desirable uncoupling is achieved 

with the implementation of a limited number of control inputs in the 

feedback structure (m = 3 or 4). The closed-loop characteristics to be 

used for the construction of the mathematical model of the damaged 

aircraft can, therefore, be updated. The resulting closed-loop A 

matrix, besides having the eigenvalues coincident with the desirable 

eigenvalues, is very similar to the closed-loop A matrix of the 

undamaged aircraft. Such feedback structure redesign has to be achieved 

on-line by the airborne computer for all the flight regions of the 

flight envelope. The difference with the previous reconfiguration tasks 

is that, for this particular phase, time is not a crucial factor. In 

fact, while a computational line is redesigning the feedack structure, 

on another parallel line the algorithm introduced in Chapter IV is 

taking care of the reconfiguration. Also, if not all the states are 

available for feedback purposes (l<n), the effects of adding a state 

estimation structure on the feedback structure have been illustrated. 

As final comment, it should be outlined that, one more time, 

MATRIXx has shown to be an invaluable tool for computational tasks 

involving heavy matricial manipulations. 



CHAPTER VI 

CONCLUDING REMARKS 

Summary , Conclusions and Recomendations 

In this study the overall problem of flight control system 

reconfiguration following a damage and/or a generic failure on a control 

surface has been considered. Given that the problem has been broken 

down into the tasks shown in Fig.2, new approaches have been proposed 

for: 

Damaged model estimation task; 

Reconfiguration law design task; 

Redesign of the feedback structure task. 

The main characteristic of the approach used in this study is that 

the model estimation task and the control task are totally separated. 

The reason is that the presence of noises, both atmospheric turbulence 

and measurement errors, do not allow a successful implementation of the 

reconfiguration algorithm without a previous model estimation due to 

resulting unacceptable control activities. Therefore, the noise problem 

is faced in the model estimation task; the result is a deterministic 

damaged aircraft mathematical model whose dynamics tend to match, using 

the reconfiguration algorithm, the dynamics of the nominal aircraft 

mathematical model, also deterministic, built with computer stored data. 

Furthermore, a method is proposed to redesign the feedback structure. 
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For the damaged model estimation task, there is a unique 

characteristic in the introduced approach. We formulated the problem 

from two different perspectives. One from an aerodynamic point of view 

and one from an estimation point of view. More precisely, the 

aerodynamics furnish precious hints to the estimation part on how the 

system has changed following the damage. Furthermore, the Multiple 

Model Kalman Filters structure has shown to be a remarkable robust 

environment for the model estimation process. 

For the reconfiguration law design task, the introduced algorithm 

can be classified as a 2 instants delay matching technique, potentially 

able to handle nonlinear problems, with an enbodied method to distribute 

the reconfiguration task among all the remaining healthy control 

surfaces. 

For the redesign of the feedback structure, the main idea behind 

the introduced approach is to use the extra degrees of freedom furnished 

by the analytical nature of the control of a multi-input linear 

time-invariant system problem in order to restore desirable closed-loop 

handling qualities and to remove the damage generated dynamic coupling. 

For the considered aircraft model, such goal is easily achieved with a 

not too complex feedback structure (m=3 or m=4). 

At this point it would be proper to include a critical analysis of 

the work presented in this study and to outline some 1 imitations of the 

approaches used. A certain number of comments should be made in order 

to justify some assumptions, or some real life factors, which may 

eventually play a rule in the reconfiguration problem. Therefore, 

review the assumptions made and recall what actions should be taken if 

they are no longer valid. 
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First, we assumed the reconfiguration problem to be solved for a 

rigid aircraft. This is because the most likely aircraft for a 

reconfiguration strategy are fighters, which given their size and weight 

distribution, can be reasonably approximated as rigid bodies. Of 

course, the rigid body assumption can not longer be valid for large size 

vehicles, like bombers or transport aircraft. For these the state 

variables vector needs to include a certain number of flexible modes, 

causing an increase in the system order and an increase in computational 

time. Note that, eventually the damage generated interference between 

rigid and elastic modes may represent a serious threat to the success of 

the reconfiguration. 

Next, in constructing the aircraft mathematical model, no attempt 

has been made to model the actuator dynamics. This has only been done 

for simplicity purposes and the results do not loose generality. A 

mathematical model including the actuator dynamics would have an order 

higher than the one used in this study and higher computational times 

but will add no conceptual difficulty. 

In Chapter III and IV no S.A.S. or C.C.V. functions were considered 

to be implemented on the aircraft. This assumption was made for sim­

plicity purposes and caused no loss of generality. Fortunally it is the 

real life implementation of these systems that makes reconfiguration 

possible. Thanks to these closed-loop systems (Stability Augmentation 

Systems, Dampers, Gust and Load Alleviation Systems, Flight Envelope 

Limiting Systems, Ride Quality Control Systems ••• ),the validity of the 

linearity assumption is saved for the case when the damaged control 

surface jams to the minimum and maximum deflection. This is extremely 

important to us because the damaged model estimation via Multiple Model 



73 

Kalman Filters is based on the linear model assumption. 

A possible limitation of this approach, particularly related to the 

damaged model estimation part, is that the software needs a data base 

which is aircraft dependent. This is because the closed form 

expressions for the stability derivatives as a function of the normal 

force coefficient for each control surface depend on the aircraft 

aerodynamics. Also the computer stored data should include the weight, 

inertial and geometric characteristics of the considered aircraft. 

However, this is not major problem. 

Another possible limitation of the approach is it does not consider 

the possibility of the occurrence of a damage simultaneously on more 

than one control surface. 

However, we are still able to handle multiple damage as long as it 

occurs with a certain time difference because the aircraft data would be 

updated after each damaged model estimation. Of course, the probability 

to achieve a full and accurate reconfiguration decreases with the number 

of damaged control surfaces. 

In this study we have reported different steps of the overall 

reconfiguration process following a damage on the left elevator, which 

along with the right elevator, are the main longitudinal control 

surfaces. We have not considered any damage and/or generic failure on a 

lateral-directional control surface, that is rudder and ailerons. 

The reason for this is that, by analyzing a reconfiguration 

following a damage on an elevator surface, we have considered the most 

conservative case. In fact, in aircraft dynamics, a damage on a 

longitudinal control surface involves more aerodynamic coupling with the 

lateral directional dynamics than a damage on a lateral-directional 
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control surface involves with the longitudinal dynamics. 

The physical explanation for this is that the point of application 

of the normal force exerted by the ailerons is usually located closer to 

the center of gravity location along the mean aerodynamic chord, such 

that very little pitching moment is exerted. The aerodynamic force 

generated by the rudder has a null component along the normal direction 

which means a null pitching moment. Note that a reconfiguration 

following a damage on the rudder cannot be attempted if on the aircraft 

there is not at least one control surface, other than the rudder, with 

control authority around the yaw axis. The most suitable solution would 

be a pair of canards with high dihedral angle. 

From a mathematical point of view a damage on a lateral-directional 

control surface implies a small (or almost null, especially for a damage 

on the ailerons) changes in the elements of the A matrix. On the other 

hand, for a damage on the longitudinal control surface, we have shown 

quite remarkable changes in some of the elements of the A matrix. 

However, the introduced approaches for the different reconfiguration 

steps still hold. 

One more point that needs to be mentioned is that the probability 

for a successful reconfiguration with the introduced approaches is 

strongly dependent on the available computational power and speed. We 

have discussed this aspect in Chapter III, where the computer speed 

affects the selection of the number of models Nand in Chapter IV, where 

the computer speed affects the selection of the reconfiguration step h. 

However, this is true for all other reconfiguration methods. The 

reconfiguration needs to be sized on the computer performance; a slow 

flight computer may hurt probabilities of success, expecially when the 
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damaged aircraft dynamics turns out to be unstable~ 

The author is not aware of the current status of the art of flight 

computers. It is well known that their performance improves drastically 

year by year. From the studies reported in Ref. ([15],[16],[20],[21], 

[22]) the proposed approaches seem to be within today's computer capa­

bilities. 

The main advantage of the reconfiguration algorithm introduced in 

Chapter IV is that it considers the real life occurrence that, following 

the damage on the control surface, not only the elements of the B matrix 

but also some elements of the A matrix change and this is particularly 

true for a damage on the longitudinal control surfaces. With the ap­

proach introduced in Chapter V we have shown that it is possible to 

achieve a closed-loop A matrix almost coincident to the one relative to 

the undamaged conditions. Thus, there is no longer going to be a real 

need for an accurate but more sophisticated algorithm like the one 

introduced in Chapter IV. Instead, it would be more appropriate to use 

simpler approaches like the Control Mixer Concept using a Pseudo Inverse 

Technique (Ref.[IO],[ll]), which assumes the state matrix A being the 

same for nominal and damaged conditions. Now, if we had an extremely 

fast and powerful flight computer, the sequence of the reconfiguration 

tasks introduced in Fig. 2 may be modified such that the redesign of the 

feedback structure is attempted immediately after the damaged model 

estimation. Then the Control Mixer Concept takes the place of the 

reconfiguration algorithm introduced in Chapter IV. However, this 

suggestion is valid only if the redesign of the feedback structure may 

be accomplished in a very short amount of time, in the order of a 

fraction of a second. Otherwise, the advantages of implementing a 
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simpler reconfiguration algorithm are not worth the trouble of delaying 

the reconfiguration itself. 

This work does not claim to bring revolutionary trends in the 

flight control reconfiguration problem. The main concept introduced 

here is that we should not look at this problem only as a control theory 

problem. It is the author•s personal belief that, given the complexity 

of the aircraft system, given the extremely wide ranges of flight 

conditions and associated noises, given the unpredictable number of po­

tential failures or damages, one fixed controller structure robust 

enough to any change in the dynamics due to a damage on any control 

surface is a fiction and it always will be so. 

On the other hand, it does not make sense, on the today 

sophisticated flying machines, to implement only a few precomputed 

procedures for emergency conditions; for example, implementing effective 

procedures for handling an engine failure during takeoff. But, from an 

aerodynamic and flight dynamics perspective, we may have a view point 

that, combined with the tools offered by control theory, may guarantee 

us a greater flexibility and adaptability. 

As final comment, the author hopes that the overall relative 

simplicity of the damaged model estimation and feedback structure 

redesign methods, along with the accuracy and efficiency of the 

reconfiguration algorithm, may be the key factors for successful real 

life on-line implementation of these approaches to the aircraft flight 

control reconfiguration problem. 
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APPENDIX A 

TABLES 



TABLE I 

FLIGHT CONDIT! ONS, AERODYNAMIC, 
INERTIAL, GEOMETRIC DATA 

VEL = 675.0 ft/sec- 1 

MACH= 0.7 

h = 40,000.0 ft 

p = 0.000588 slug ft-3 

W = 13,000.0 lbs 

Ixx = 28,800.0 slug ft 2 

Iyy = 18,800.0 slug ft 2 

Izz = 47,000.0 slug ft 2 

Ixz = 1,350.0 slug ft 2 

c = 7.04 ft 

b = 34.2 ft 

2 s = 232.0 ft 

xc.g. = 0.315 

as= 2.7 deg 
where •s• stands for 'stability axes• 

Co = 0.0, Co = 0.0330, cT = 0.0, 
u 1 u 

Co = 0.3, c0 = o.o, c0 = o.o, 
a 6EL · 6ER · 

c0 = o.o, Co = 0.0, c = 0.0 oCR oSL 0osR 
CL = 0. 4, CL = 0.410, CL = 5.9, 

u 1 a 
CL = 6.11, CL = 0.276, CL = 0.276, 

q 6EL · oER · 
c 

LacR = 0.2, c 
LasL = 0.15, CL = 0.15 

6SR 
c = 0.050, cm1 = 0.007, c = -0.0034 

mu mTu 

em = -0.75, c = 0.0, em. = -6.7 
a mTa a 

cT1 = o. 0330 

CooCL = 0.0 

CL' = 2.20 a . 
CL = 0.2 

oCL 

c = -0.007 mn 
c = -20.15 mq 
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em = -o. 72, c = -0.72 c == -0.35 c = -0.35 
6EL · m6ER m6CL m6eR 

e m6SL 
= -0.15 c m6SR 

= -0.15 

Cy = -0.730, Cy = 0.0, Cy = 0.4, c = 0.0 8 . p r YML 
Cy = 0.0, c = 0.138 

6AR y 6R 
c 1 = -0. 132' c1 = -0. 45' c1 =0.163, c1 = o.089 

8 p r 6AL 
e 1 = 0. 089' c = 0.0172 

6AR 16R 
en = 0.127, en = 0.0, en = 0.008, en = -0.2412 

8 T8 p r . 
en = -0.0086, en = -0.0086, e = -0.0747 

6AL oAR noR 



TABLE I I 

CONTINUOUS-TIME STATE VARIABLE MODEL OF THE 

AIRCRAFT FOR UNDAMAGED NOMINAL CONDITIONS 

l:l 
I , 

I u i 
I ; 
1 e · 
a 

~I 
rl 

j 

~J 

j-0.6752 0.9951 -0.0002 0.0 0.0 0.0 0.0 0.0 l 
I . . . . . . . ! 

,-8.4535 -1.6274 0.0009 0.0 0.0 0.0 0.0 0.0 
I ! 8.4608 0.0 0.0 -32.1756 0.0 0.0 0.0 0.0 
! 
1 

i 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

I 0.0 0.0 0.0 0.0 -0.0832 0.0 -0.9988 0.0477 

I 
0.0 0.0 0.0 0.0 -4.9803 -0.4369 0.1550 0.0 

0.0 0.0 0.0 0.0 2.8191 0.0004 -0.1365 0.0 

I L 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 

Ac matrix (8 x 8) 

I 
_j 

l-0.032 -0.032 -0.017 -0.017 -0.023 -0.023 0.0 0.0 0.0 

1-8.838 -8.838 -1.742 -1.742 4.068 4.068 0.0 0.0 0.0. 
I . . . . . . 
! 
i 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

' 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.017 
1 

I 3.387 -3.387 3.084 -3.084 2.894 -2.894 3.386 3.386 0.628! 
l 
i 0.032 -0.032 0.03 -0.03 0.028 -0.028 -0.162 -0.162 -1.681 
! . 
: 

L o~ o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .J 

Be matrix (8 x 9) 

* 

[OEL~ 
OERI 

I 

IOSL 

j osR 

!6cL 
i 
i 

j 6cR 
I 

' 

:0ALI 
' i 

: 0ARJ 
; , I 

~oR j 
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A = 

B = 

L = 

c = 

TABLE I I I 

MATRICES OF THE DISCRETE-TIME STATE 
VARIABLE MODEL OF THE AIRCRAFT FOR 

UNDAMAGED NOMINAL CONDITIONS 

f 
I 

0~9929 0~0098 0~0 0.0 0~0 0~0 0~0 0.01 
-0.0836 0.9834 0.0 0.0 0.0 0.0 0.0 o.o. 
o~0844 -o~oo12 1.0 -o~3218·o~o o.o o~o o.ol 

~-0.0004 0.0099 0.0 1~0 0~0 0.0 0~0 0~0 
.0.0 0.0 0.0 0.0 0.999 0.0 -0.01 0.0005 

~o~o o~o o~o o~o -o~o496 o.9956 o.oo1a o.o~ 
0~0 0~0 0~0 0~0 0~0282 0.0 0.8985 0~0 
o~o o~o o~o o~o -o.ooo2 o.o1 · o.o 1~0 

. . . 
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[
0.0008 -0.0008 -0.0003 -0.0003 -0.0004 -0.0004 0.0 0.0 0.0 
-o~o876 -o~o876 -o~o173 -o~0173 -o~o403 -o~o4o3 o~o o;o o;o 
a~o o.o o.o o.o · o.o · o.o o.o ·o.o· o~o 

-0;0004 -0.0004 ~0.0001·-0.0001 -0.0002 -0.0002 0.0·0.0 0~0 
1 o ~ o o. o o. o · o. o o. o o. o o ~ o o. o o. o oo3 
!0.034 -0.034 0.031 -0.031 0.029 -0.029 0.0338 0.0338 0~00621 

lo.o a~o o~o o.o o.o o.o·-o.oo16 -o.0016 -o~0168I 
o~o o~o o~o o;o o~o O;O 0;0002 ·o.ooo2 · o.~ 

. . . . . . 

0.9929 0.0 
-0.0836 o~o 
0.0844 0~0 
-0.0004 0;0 
0.0 0.9990 

[
;0 -0~0496 

0;0 0~0282 
0;0 -0.0002 

r~o 0.0 0.0 
;0. 0 1.0 0.0 
:o. 0 0~0 LO 
iO. 0 0~0 o~o 
iO~ 0 0;0 0~0 
Lo~o 0;0 o~o 

0.0 
0~0 
0~0 
o~o 
o~o 
0~0 

0.0 0.0 0.0 0.0 
o~o 0;0 0~0 o~o 
0~0 0~0 0~0 0~0 
LO 0.0 o~o o~o 
0~0 1.0 0~0 0~0 
o~o o~o LO o~o 



Q = ro.ooo5 o~Ol 
La~ o o.ooo~ 

0.0006 0.0 
a~o 0. 0015 

0.0 
a~o 

0.0 0.0 0.0 
0.0 a~o a~o 

R = 0~0 0~0 0.1000 0~0 0~0 0~0 
0~0 a~o 0~0 0.0006 a~o a~o 
0~0 0~0 0~0 0~0 0.0245 0~0 
a~o a~o 0.0 o~o 0~0 0.0015 
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TABLE IV 

DISCRETE-TIME A AND B MATRICES OF THE 
STATE VARIABLE OF THE AIRCRAFT 

FOLLOWING THE DAMAGE 

0.9933 0.0099 0.0 o.o 0.0 0.0 o.o o.o 
-o~o348 o~9875 o~o o~o o~o o~o o~o o~o 
0~0843 -0~0012 1~0 -0~3218·0.0 0.0 0~0 0~0 

A= -o~ooo2 o~0099 o~o 1~0 o.o· o.o o~o o~o 
o~o o.o ·o.o o.o o.999 o.o ~o.o1·o.ooo5 

o~o o~o o~o o~o -o~o496 o~9956 o.oo18 o.o~ 
0~0 0~0 0~0 0~0 0~0282 0.0 0.8985 0~0 
o~o o~o o~o o~o -o.ooo2 o.o1 ·o.o 1~0 

-0.0003 -0.0008 -0.0003 -0.0003 -0.0004 -0.0004 0.0 0.0 o.o 
-o~o379 -o~0876 -o~0173 -o~0173 -o~o403 -o~0403 o~o o~o o~o 
o~o o.o o.o· o.o o.o · o.o ·o.o ·o.o· o~o 

B = -o~ooo2 -o.ooo4 ~o.ooo1·-o.ooo1 -o.ooo2 -o.ooo2 o.o·o.o o~o 
o~o o.o o.o· o.o · o.o o.o ·o.o o~o o.ooo3 

0.015 -0.034 0.031 -0.031 0.029 -0.029 0.0338 0.0338 0~0062 
o.o o.o o.o o.o· o.o· o.o ~o.oo16 -o.oo16 -o~0168 
o~o o.o o.o o.o o~o o.o o.ooo2 o.ooo2· o.o 
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N = 12 

1 -

2 -

3 -

4 -

5 -
0.121 -> 

6 -

7 -

8 -

9 -

10 -

11 -

12 -

TABLE V 

DISCRETIZED VALUES OF THE NORMAL 
FORCE COEFFICIENT OF THE LEFT 

ELEVATOR RELATIVE TO N=12 AND N=23 

(CN ) after the damage= 0.121 
6EL · 

0.0 

0.0251 

o.a502 

0.0753 

0.1a04 
a.121 -> 

0.1254 

a .15a5 

a.1756 

0.2a07 

0.2258 

0.25a9 

0.2760 
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N = 23 

1 - 0.0 
2 - 0~0125 
3 - 0~0251 
4 - a~a376 
5 - a~0502 
6 - o~a627 
7 - 0~0753 
8 - a~ 0878 
9 - a~ 1004 

10 a~ 1129 
11 - a~1254 
12 - a~ 1379 
13 - a~1505 
14 0~1630 
15 - a~ 175 6 
16 0~1881 
17 - 0~20a7 
18 - a~2132 
19 - 0~2258 
20 0~ 2383 
21 - 0~2509 
22 0~ 2634 
23 - 0~2760 



r<l (k+l) 

q (k+1) 

fu (k+1) 

1 a (k+1) 
i 

te (k+1) 
J 
j 

I P (k+1) 

I 
: r (k + 1) : 
I ' , I 

i ~ (k+l) i 

ll <lw ( k + 1 )Jl 
w(k+l) 

TABLE VI 

INCREASED ORDER STATE VARIABLE MODEL FOR 
MODELING ATMOSPHERIC TURBULENCE 

WITH AR(l) PROCESSES 

I 
I 

I 
I 
I 

( <lw ( k + 1 ) , Sw { k + 1 ) ) 

A 

~-----------------------

1 0.0 ••••••••••••••• 0.0 

lo.o ···~··········~~o.o 

L 

l 
I 

I 
! 

1---------1 
1 o.5 o.o 

o.o 0.5 
. ....; 

ja (k~ 
I q (k) 
I 
I u (k) 
I 
1 a (k) 

I 

! e (k J 

p (k) 

r (k) 

,:P (k) 
! 
j<:Xw(k) 
I 

Law (k) 
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o~ o 1 o. al 
' 

I ' 
• i 

' 
' 

• ! 
' 
l 

• l 
l 

I •n (k~ 

. I : / •a (k ~ 
I o.o 1 o.o1 
I, 

i i 

1---------l I . 
ILO I 0.0\ 

i 

Lo.o 1 1.~ 

Z(k) = 

I 

c 

+ 

I 1 
I 
I 

I 
I 
I 
! 

i 
I 
I 
i B 

I 
I 
! 

i 

-----------------------------1 
0.0 ..................... 0.01 

j 

Lo.o ~~···~~··~···~~~·~·~~ o.~ 

ct ( k) 

0.0 0.0 q (k) 

u (k) 

e (k) 

! e (k) . I 
. I P (k) I 

I I 
I 

I r (k) I . I 
' I I 

o.o o.oj .<P(k)l 
. _j l ! 

I I 
lCLw(k)! 
I ' 

1 Sw(k ~~ 

+ 
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rOEL(k ~ 
oER(k) 

I OL ( k) 

I 
oSR (k) 

I ocL (k) 
j 

j6cR(k) 

ioAL(k) 
I 

i 0AR(k) 
I 
LOR (k) 

V(k) 



TABLE VII 

COMPARISON BETWEEN s-1l1NC_ (INVERSE OF THE RESIDUAL 
COVARIANCE MATRIX FOR-UNCOR¥ELATED TURBULENCE 

CORRECTLY MODE LED) AND s- CDR (INVERSE OF 
THE RESIDUAL COVARIANCE-MATRIX 

FOR CORRELATED TURBULENCE 
UNCORRECTLY MODELED) 

523.151 33.887 -1.129 
33.887 656~989 0~498 
-1~129 0~498 9~749 
o.o 0.0 0.0 515~100 
0~0 0~0 0~0 2~817 
o~o o~o o~o -26~034 

539.301 
21.843 
-L741 
0.0 0.0 
0~0 0~0 
o~o o~o 

SuNG 4342.6 

ScaR 4543.8 

21.843 -0.741 
659~608 0~331 

0~331 9~843 
0~0 534.583 
0~0 2~817 
o~o -16~673 

0.0 0.0 0.0 
0~0 0~0 0~0 
o~o o~o o~o 
2~ 817 ..;.26. 034 
40.719 0~983 
0.983 655.746 

o.o 0.0 0.0 
o~o o~o o~o 
0~0 0~0 0~0 
L803 .:..16.673 
40.747 0~695 
o. 695 659~ 121 
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TABLE VI II 

COMPARISON BETWEEN THE SHORT PERIOD NATURAL 
FREQUENCIES AND DAMPINGS AT NOMINAL AND 

DAMAGED CONDITIONS USING EQS.(4.20), 
(4.21) AND MATRIXx · 

Nominal Conditions 

M = -8.7281 a . 

M· = -0.4066 a . 
M = -1.2228 q . 

z = -458.34 a . 

SHORT PERIOD characteristics using: 

wn 

Eqs.(4.20)-(4.21) 

3.091 
S. P. 

~s. P. · 0.373 

Damaged Conditions 

M = -3.7339 a . 
M· = -0.2917 a . 
M = -0.9567 q . 

za = -444~ 27 

SHORT PERIOD characteristics using: 

wns. P. 

~s. P. 

Eqs.(4.20)-(4.21) 

2.089 

o. 456 

MATRIXx 

3.062 

0.376 

MATRIXx 

2.063 

o. 462 
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TABLE IX 

CLOSED-LOOP A MATRIX, Bf MATRIX, EIGENVALUES, 
EIGENVECTORS AND FEEDBACK GAINS FOR NOMINAL, 

UNDAMAGED,'NATURALLY' UNSTABLE AIRCRAFT 

<> •c 
AC 

-0.6768 0.9'33'9 
-8.4604 -1.6258 
8.4608 o.oooo 
o.oooo 1.0000 
0.0000 0.0000 
0.0000 0.0000 
0.0000 o.oooo 
0.0000 0.0000 

< > b 

B 

-0.0633 
-17.6583 

<> 

0.0000 
0.0000 
o.oooo 
0.0000 
0.0000 
o.oooo 

-0.0002 0.0000 
0.0008 -0.0015 
o. 0000 -32. 1756 
0.0000 
0.0000 
o.oooo 
o.oooo 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.6278 

-1.6802 
0.0000 

o.oooo 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 0.0000 o.oooo o.oooo 
0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 o.oooo o.oooo 
o.oooo o.oooo 0.0000 o.oooo 

-0.0832 0.0000 -0.'3988 0.0477 
-4.9804 -0.4369 0.1551 0.0000 

2.8192 0.0003 -0.1366 0.0000 
0.0000 1.0000 0.0000 0.0000 
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EIVEC 

1. 00+02 * 
COLUMNS 1 THRU 

-0.0007 - o.0011i 
0.0034 - 0.0014i 
0.0030 - O.OOB6i 

-0.0008 - 0.0009i 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
o.oooo + O.OOOOi 
0.0000 + O.OOOOi 

COLUMNS 5 THRU 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
o.oooo + O.OOOOi 
0.0019 + 0. 00171 

-0.0063 + 0.0040i 
0.0030 - 0.0031i 
0.0025 + 0.0036i 

<> 

< > ei val 

EIVAL 

-1.1510 + 2.8598i 
-0.0003 + 0.0890i 
-0.0003 - 0.0890i 
-1.1510- 2.8598i 
-0.0701 + 1.6858i 
-0.0701 - 1.6858i 
-o.soss + o.ooooi 
-0.0080 + O.OOOOi 

< > k 

K 

<> 

-0.55E.8 
o.oooo 

-0.0183 
0.0000 

4 
0.0000- O.OOOOi 
0.0000 - O.OOOOi 

-0.0085 - 0.0231i 
-0.0001 + O.OOOOi 

o.oooo + O.OOOOi 
o.oooo + O.OOOOi 
0.0000 + O.OOOOi 
o.oooo + O.OOOOi 

8 
o.oooo + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
o.oooo + O.OOOOi 
0.0001 + 0.0029i 
0.0081 - 0.0024i 

-0.0049 + 0.0003i 
0.0012 + 0.0048i 

SHORT PERIOD (+) 
PI HJGO I D ( +) 

PHUGDI D (-) 
SHOF~T PER I 00 (-) 
DUTCH ROLL (+) 
DUTCH ROLL (-) 
ROLLING 
SPHU\L 

0.0000 - 0.0001i 
0.0002 - 0.0004i 
0.6970 - 1. 7544i 
0.0049 + 0.0019i 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
o.oooo + O.OOOOi 

0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
o.oooo + O.OOOOi 
0.0000 + O.OOOOi 

-0.0001 + O.OOOOi 
-0.0095 + O.OOOOi 
0.0008 - O.OOOOi 
0.0188 + O.OOOOi 

0.0000 
0.0000 

-0.0001 o. 0000 
o.oooo o.oooo 

o.oooo 
0.0000 
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0.0045 + 0.0029i 
0.0063 - 0.0143i 
0.0369 - 0. 0118i 
0.0036 + 0.0036i 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 

0.0000 + O.OOOOi 
0.0000 
0.0000 
0.0000 
0.0001 

-0.0003 
0.0020 
0.0412 

o.oooo 
-0.0001 

+ O.OOOOi 
+ O.OOOOi 
+ O.OOOOi 
- O.OOOOi 
+ O.OOOOi 
- O.OOOOi 
+ O.OOOOi 

0.0000 
0.0000 



TABLE X 

CLOSED-LOOP A MATRIX, Bf MATR.IX, EIGENVALUES, 
EIGENVECTORS AND FEEDBACK GAINS FOR DAMAGED, 

•NATURALLY• UNSTABLE AIRCRAFT WITH THE 
FEEDBACK GAINS RELATIVE TO THE 

UNDAMAGED CONDITIONS 

< > adamcl 

ADAMCL 

-0.6493 
-0.7206 
8.4608 
0.0000 
o.oooo 

-1.0716 
-0.0102 

0.0000 

0.9954 -0.0002 o.oooo 0.0000 o.oooo 
-1.4800 0.0008 -0.0011 0.0000 0.0000 
0.0000 0.0000-32.1756 0.0000 o.oooo 
1.0000 o.oooo o.oooo 0.0000 o.oooo 
o.oooo o.oooo 0.0000 -0.0832 o.oooo 

-0.0353 o.oooo -0.0002 -4.9804 -0.4369 
-0.0003 0.0000 0.0000 2.8192 0.0003 
0.0000 0.0000 o.oooo 0.0000 1.()()()() 

< > bdam 

BDAH 

-0.0454 
-12.6809 

<> 

0.0000 
0.0000 
0.0000 

-1.9244 
-0.0184 
0.0000 

= 

o.oooo 
o.oooo 
o.oooo 
o.oooo 
0.0000 
0.6278 

-1.6802 
0.0000 

0.0000 o.oooo 
o.oooo o.oooo 
o.oooo o.oooo 
o.oooo o.oooo 

-0.9988 0.0477 
o. 1551 0, 0000 

-0.1366 o.oooo 
n. onoo ro nnnn 
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EIVECDAM 

1.00+02 * 

COLUMNS 1 THRU 
o.oooo + O.OOOOi 
0.0000 - O.OOOOi 
0.0000 - O.OOOOi 
o.oooo + O.OOOOi 

-0.0019 + 0.0018i 
-0.0034 - 0.0066i 

0.0028 + 0.0033i 
-0.0038 + 0.0022i 

COLUMNS 5 THRU 
0.0000 + O.OOOOi 
0.0000 - O.OOOOi 
0.0000 - O.OOOOi 
o.oooo + O.OOOOi 

-0.0001 + O.OOOli 
-0.0057 + o. 0101 i 

0.0005 - 0.0009i 
0.0112 - 0.01991 

<> 

EIVALDAM 

-0.0701 + 1.6858i 
-1.0662 + 0.7332i 
-0.0701 - 1.6858i 
-1,0662- 0.7332i 
-0.5085 - O.OOOOi 

0.0016 + 0.1157i 
0. 0016 0. 1157i 

-0.0080 + O.OOOOi 
< > k 

K 

<> 

-0.5568 
0.0000 

-0.0183 
0.0000 

4 
-0.0001 - o.ooo9i 0.0000 - O.OOOOi 
0.0007 + 0.00031 

-0.0019 - 0.0097i 
-0.0003 - 0.0005i 

0.0000 - O.OOOOi 
0.0008 - 0.0007i 
0.0000 - O.OOOOi 

-0.0008 + 0. OOOli 

8 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0194 + 0.0842i 
0.0003 - o. 0001 i 
0.0000 - O.OOOOi 
0.0000 - o. 0001i 
o.oooo + O.OOOOi 

-0.0004 + 0.0003i 

DUTCH POLL (+) 

SHORT PERIOD (+) 
DUTCH ROLL (-) 
SHORT PERIOD (-) 
ROLLING 
PHUGOID (+) 

FHUGOID (··) 
SF' IF.:AL 

0.0000 
0.0000 
0.0000 
0.0022 
0.0037 

-0.0031 
0.0044 

0.0004 
0.0005 
1. 2951 

-0.0023 
0.0000 

-0.0007 
0.0003 
0.0061 

o.oooo 
o.oooo 

-0.0001 o. 0000 
0. 0000 0 • 0000 

- O.OOOOi 
- O.OOOOi 
+ O.OOOOi 
+ 0.0019i 
- 0.0076i 
+ 0.0038i 
+ 0.0024i 

+ 0.0003i 
+ 0.0003i 
+ 0.6485i 
+ 0.0047i 
- O.OOOOi 
- 0.0007i 
- 0.00031 
- 0.00611 

0.0000 
o.oooo 

-0.0053 + 0.0003i 
0.0025 + 0.0038i 

-0.0573 - 0.0032i 
-0.0032 - 0.0013i 
0.0000 + 0, OOOli 

-0.0031 + o. 0051 i 
-0.0001 - o. 0002i 
-0.0003 - 0.0046i 

0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 - O.OOOOi 
0.0000 
0.0001 

-0.0004 
0.0025 
0.0524 

o.oooo 
-0.0001 

+ 0. OOOOi 
- O.OOOOi 
+ 0. OOOOi 
+ O.OOOOi 
- 0. OOOOi 

o.oooo 
0.0000 
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TABLE XI 

CLOSED LOOP A MATRIX, Bf MATRIX, EIGENVALUES, 
EIGENVECTORS AND FEEDBACK GAINS FOR DAMAGED, 

'NATURALLY' UNSTABLE AIRCRAFT WITH 
REDESIGNED FEEDBACK STRUCTURE 

< > red&damc l 

REDADAMCL 

COLUMNS 1 THRU 
-0.8335 + O.OOOOi 
-8.3387 + O,OOOOi 
8.4608 + O.OOOOi 
0.0000 + 0. OOOOi 
0.0001 + O.OOOOi 

-0.0159 - O.OOOOi 
-0.0068 - O.OOOOi 
0.0000 + O.OOOOi 

COLUMNS 5 THRU 
o.oooo 
0.0000 
0.0000 
0.0000 

-0.0832 
-4.'9804 
2.8192 
0.0000 

<> 

< > bred 

BRED 

<> 

-0.0317 
-8.8380 

0.0000 
0.0000 
0.0000 

-3.3876 
-0.0324 
o.oooo 

- O.OOOOi 
- O.OOOOi 
+ O.OOOOi 
+ O.OOOOi 
+ O.OOOOi 
+ O.OOOOi 
- O.OOOOi 
+ O.OOOOi 

-0.0228 
4.0685 
0,0000 
o.oooo 
o.oooo 
2.8941 
0.0277 
0.0000 

(m=3 :oER,oCL,oR) 

4 
0.9931 - O.OOOOi 

-1.4691 - O.OOOOi 
0.0000 + O.OOOOi 
1. 0000 + O.OOOOi 
0.0000 - O.OOOOi 
0.0005 + O.OOOOi 

-0.0012 + O.OOOOi 
o.oooo + O.OOOOi 

8 
o.oooo + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + 0.00001 
0.0000 - O.OOOOi 

-0.436'3 - O.OOOOi 
0.0003 
1. 0000 

0.0000 
o.oooo 
0.0000 
o.oooo 
0.0167 
0.6278 

-1.6802 
0.0000 

+ O.OOOOi 
+ O.OOOOi 

-0.0002 + O.OOOOi 
0.0007 + O.OOOOi 
0.0000 + O.OOOOi 
0,0000 + O.OOOOi 
0.0000 - O.OOOOi 
0.0000 - O.OOOOi 
0,0000 + O.OOOOi 
0.0000 + O.OOOOi 

0.0000 - O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 

-0.9988 - O.OOOOi 
0.1551 + O.OOOOi 

-0.1366 + O,OOOOi 
0.0000 + O.OOOOi 

-0,0001 - O.OOOOi 
-0.0056 - O.OOOOi 

-32.1756 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 - O.OOOOi 

-0.0002 + O.OOOOi. 
0,0001 + O.OOOOi 
0.0000 + O.OOOOi 

0.0000 + O.OOOOi 
0.0000 - O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + 0.00001 
0.0477 + O.OOOOi 
0.0000 - O.OOOOi 
0.0000 - O.OOOOi 
0.0000 + O.OOOOi 



REDEIVEC • 

1. 00+02 * 
COLUMNS 1 THRU 4 

0.0010 + 0.0008i -0.0017 0.0013i 
-0.0027 + 0.0025i -0.0032 + 0.0054i 

0.0004 + 0.0091i -0.0154 + 0.0026i 
0.0011 + 0.0005i -0.0012 - 0.0016i 
0.0000 - O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 

COLUMNS 5 THRU 
0.0000 + O.OOOOi 
o.oooo - O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + 0. 0001i 
0.0015 + 0.0094i 

-0.0001 - 0.0008i 
-0.0029 - 0.0186i 

<> 

REDEIVAL 

-1.1510 + 2.8598i 
-1. 1510 - 2.8598i 
-0.0701 + 1. 6858i 
-0.0701 - 1. 6858i 
-0.5085 + O.OOOOi 
-0.0003 + 0.0890i 
-0.0003 - 0.0890i 
-0.0080 + O.OOOOi 

<> Yedk 

REDK 

<> 

COLUMNS 1 THRU 
3.5953 - O.OOOOi 
4.2021 - O.OOOOi 
0.0039 + O.OOOOi 

COLUMNS 5 THRU 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 

0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
0.0000 - O.OOOOi 

8 
0.0000 - O.OOOOi 
o.oooo - O.OOOOi 
0.0468 - 0.0078i 
0.0000 - 0.0001i 
0.0000 + O.OOOOi 
o.oooo + O.OOOOi 
0.0000 + O.OOOOi 
o.oooo + O.OOOOi 

SHORT PERIOD (+) 

SHORT PERIOD (-) 

DUTCH F:OLL (+) 

OUTCII F:OLL ( ·-) 

POLLING 
PHUGOID ( 1-) 

PHUGOID ( --) 

SPIRt,L 

4 
0.0544 + O.OOOOi 
0.0637 + O.OOOOi 
0.0007 - O.OOOOi 

8 
0.0000 - O.OOOOi 
0.0000 - O.OOOOi 
0.0000 - O.OOOOi 

0.0000 + O.OOOOi 
0.0000 - O.OOOOi 
0.0000 - O.OOOOi 
0.0000 + O.OOOOi 

-0.0023 - 0.0012i 
0.0051 - 0.0054i 

-0.0022 + 0.0037i 
-0.0033 - 0.0029i 

0.0001 + O.OOOOi 
0.0006 + O.OOOOi 
2.4069 + 0. 1434i 

-0.0003 + 0.0067i 
o.oooo - O.OOOOi 
o.oooo - O.OOOOi 
0.0000 - O.OOOOi 
o.oooo - O.OOOOi 

o.oooo 0.0000 
0.0000 - 0.0000 
0.0000 - 0.0000 

0.0000 - O.OOOOi 
0.0000 + O.OOOOi 
0.0001 - 0.00001 

0.0000 + O.OOOOi 
0.0000 + O.OOOOi 
o.oooo - O.OOOOi 
0.0000 + O.OOOOi 
0.0020 + 0.00221 
0.0045 - 0.0071i 

-0.0035 + 0.0034i 
0.0041 + 0.0028i 

o.oooo - O.OOOOi 
0.0000 - O.OOOOi 
o.oooo + O.OOOOi 
0.0000 + O.OOOOi 
0.0001 - O.OOOOi 

-0.0003 + 0. OOOOi 
0.0020 - O.OOOOi 
0.0412 - O.OOOOi 

0.0013 + O.OOOOi 
0.0015 + O.OOOOi 

-0.0001 O.OOOOi 

0.0000 + O.OOOOi 
0.0000 O.OOOOi 
0.0000 + O.OOOOi 
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<> redadamcl 

TABLE XI I 

CLOSED LOOP A MATRIX, Bf MATRIX, EIGENVALUES, 
EIGENVECTORS AND FEEDBACK GAINS FOR DAMAGED, 

I NATURALLy I UNSTABLE AIRCRAFT WITH 
REDESIGNED FEEDBACK STRUCTURE 

(m=4: oER,oCL,oR,oR) 

REDADAMCL 

COLUMNS 1 THRU 4 
-0.6768 + O.OOOOi 0.9939 - O.OOOOi -0.0002 + O.OOOOi 0.0000 - O.OOOOi 
-8.4604 + O.OOOOi -1.6258 - O.OOOOi 0.0008 + O.OOOOi -0.0015 - O.OOOOi 
8.4608 + O.OOOOi o.oooo + O.OOOOi 0.0000 + O.OOOOi -32.1756 + O.OOOOi 
0.0000 + O.OOOOi 1.0000 + O.OOOOi 0.0000 + O.OOOOi o.oooo + O.OOOOi 
0.0000 - O.OOOOi 0.0000 + O.OOOOi 0.0000 - O.OOOOi 0.0000 + O.OOOOi 
o.oooo - O.OOOOi 0.0000 + O.OOOOi 0.0000 + O.OOOOi o.oooo + O.OOOOi 
0.0000 + O.OOOOi o.oooo - O.OOOOi 0.0000 + O.OOOOi 0.0000 - O.OOOOi 
0.0000 + O.OOOOi 0.0000 + O.OOOOi 0.0000 + 0. OOOOi 0.0000 + O.OOOOi 

COLUMNS S THRU 8 
0.0000 + O.OOOOi 0.0000 - O.OOOOi 0.0000 - O.OOOOi o.oooo + O.OOOOi 
0.0000 - O.OOOOi 0.0000 + O.OOOOi 0.0000 - O.OOOOi o.oooo + O.OOOOi 
0.0000 + O.OOOOi 0.0000 + O.OOOOi 0.0000 + O.OOOOi 0.0000 + O.OOOOi 
o.oooo + O.OOOOi 0.0000 + O.OOOOi 0.0000 + O.OOOOi 0.0000 + O.OOOOi 

-0.0832 + O.OOOOi 0.0000 - O.OOOOi -0.9988 + O.OOOOi 0.0477 - O.OOOOi 
-4.9804 - O.OOOOi -0.4369 + O.OOOOi 0.1551 + O.OOOOi 0.0000 - O.OOOOi 

2.8192 - O.OOOOi 0.0003 + O.OOOOi -0.1366 - O.OOOOi 0.0000 + O.OOOOi 
0.0000 + O.OOOOi 1.0000 + O.OOOOi 0.0000 + O.OOOOi o.oooo + O.OOOOi 

<> 

<> bred 

BRED "' 
-0.0317 -0.0228 -0.0228 0.0000 
-8.8380 4.0685 4.0685 0.0000 
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KALMAN FILTER 

In order to review the Kalman Filter (Ref.[23]-[26]), recall the 

state variable equations introduced in Chapter III: 

X(k+1) A X(k) + B U(k) + L W(k) 

Z(k) = C X(k) + V(k) 

We assume that: 

E [ W(i) WT(j) ] = Q oij 

E [ V(i) VT(j) ] = R oij 

E [ W(i) VT(j) ] = 0 

with oij = 1 for i = j 

oij = 0 for i <> j 

X(O) is independent of W(i) •s and V(i)•s, with: 

X(O) = N (mx(O) ,Px(O) ) 

We are assuming a stationary process. 

(C .1) 

(C. 2) 

(C. 3) 

(C. 4) 

(C. 5) 

Our objective is to find an estimate X, given measurements Z. 

Particularly, we are looking for: 

X(k/k} =best estimate of X at time •k•, given the 

measurements at time •k•. 

We can write X(k/k) as: 
ft 

X(k/k} = E [X(k}/z(1}, z(2), •••• , z(k}] (C. 6} 

The term on the right hand side of Eq. (C.6} is a Conditional Mean. 
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This estimate will minimize: 

Px(k/k) = P(k/k) = E [(X(k)-X(k/k)) (X k)-X(k/k))T] (C.7) 

The overall Kalman Filter process can be broken down into two 

separate parts: 

PREDICTION: predict X(k+l), given data up to instant 1 k1 ; 

FILTERING: update the estimation with data at instant 1 k+l 1 • 

The equations for these two parts are given next: 

PREDICTION 

X(k+l/k) =A X(k/k) + B U(k) 

P(k+l/k) = A P(k/k) AT + LQLT 

FILTERING 

X(k+l/k+l) = X(k+l/k) + K(k+l) Z(k+l/k) 

where Z(k+l/k) = Z(k+l) - C X(k+l/k) 

(C .8) 

(C. 9) 

(C.10) 

(C. 11) 

is called •Innovation Sequence• and its elements are called Filter 

Residuals. 

K(k+1/k) = P(k+l/k) cT [ C P(k+1/k) cT + R r 1 

P(k+l/k+l) = [ I - K(k+1) C ] P(k+l/k) 

with the INITIAL CONDITIONS 

X(0/0) = mx(O) 

P(0/0) = E [ (X(O)- mx(O)) (X(O)- mx(O))T] 

( c .12) 

(C .13) 

(c. 14) 

(C.15) 

Note that if the disturbance or the measurement noises are not white, 

the innovation sequence is also not white. 

As previously stated, our system is stationary; that is, the 

matrices of Eqs.(C.l) and (C.2) are time-invariant, also the system is 
. . . 

assumed to be asymptotically stable; that is, all the eigenvalues of A 

lie inside the unit circle. Therefore, we can introduce: 

lim P(k+l/k) = P (C.l6) 
k + 00 
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which satisfies the following steady-state version of Eq. (C.l3) 

combined with Eq. (C.l2): 

(C.17) 

Eq.(C.17) is often referred as steady-state or algebraic Riccati 

equation. The steady-state version of Eq.(C.12) is 

K = ~ cT [c ~ c + R]-1 (C. 18) 

The eigenvalues of the steady-state Kalman Filter all lie within 

the unit circle, so that the filter is asymptotically stable; this means 

that: 

eig. [A-RC A] I< 1 (C.19) 
1 

If the dynamical model described in the Eqs. (C.l) and (C.2) is 

time-invariant and stationary, but it is not asymptotically stable, it 

can be shown that Eqs. (C.17),(C.l8) and (C.l9) still hold as long as 

the system is at least stabilizable (which means that all the unstable 

states are controllable) and detectable (which means that all the 

unobservable states are stable). 
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MODELING OF ATMOSPHERIC TURBULENCE 

Atmospheric turbulence can be considered in aircraft dynamcs as a 

two- dimensional random vector W(k), whose components are ag(k) and 

Sg(k)~ These are considered to be mutually independent, Gaussian, white 

noise random vectors with zero mean and known variances a2a = a2s = 

0.0005, which are the diagonal elements of the Q matrix. The 

off-diagonal elements of such matrix are zeros because of the mutual 

independence assumption. 

The modeling of atmospheric turbulence has been and still is a 

topic of massive investigation and research (Ref. [27]-[30]). Several 

kinds of Gaussian and Non-Gaussian atmospheric turbulence models have 

been introduced in order to describe life turbulence and to reproduce it 

in flight simulators. A detailed description of atmospheric turbulence 

modeling procedures is beyond the scope of this study. However, it is 

worth mentioning that atmospheric turbulence can be described as 

components of the velocity (Ug(k}, Vg(k), Wg(k)) acting on the airplane 

along the X,Y and Z body axes. 

These components of the velocity behave essentially as random 

processes. For such a process the following definitions apply: If we 

collect an infinite number of time histories, such set is called an 

ensemble; a random process is stationary if its statistical properties 

are not dependent on the time of their measurement. In other 
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words~ if we take an ensemble average across the ensemble at time t 1 and 

time t 2 and if these ensemble averages are not functions of the time, 

the process is stationary. A random process is homogenous if its 

statistical properties are independent of position. Thus, if 

atmospheric turbulence were homogenous (which is not), its statistical 

properties would be independent of altitude and geographical location. 

The lack of homogeneity is an important factor for modeling atmospheric 

turbulence for STOL flight simulators. Since, in turbulence measure­

ments, it is virtually impossible to obtain ensembles of turbulence data 

from atmospheric measurements, it is necessary to use time averages to 

get statistical informations. If such a time average gives the same 

statistical properties as the ensemble average the process is called 

ergodic. Note that ergodi city impl es stationarity. Realistically, 

turbulence is not an ergodic process; however, since only relatively 

short time histories are generally available, we can assume ergodicity. 

For the generic component Ug and Wg we can define the following 

quantities: 

MEAN VALUE 

VARIANCE 

(0. 1) 

(0. 2) 

AUTO-CORRELATION FUNCTION = Ru(1) = E[U(t)U(t + 1)] (0.3) 

CROSS-CORRELATION FUNCTION 

POWER SPECTRAL DENSITY = 

Ruw(1) = E(U(t)W(t+T)] 

~U(f) = fooRU(T) e-i (2rrf)TdT 
-oo 

(0. 4) 

(0.5) 
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The white noise is a particular random process for which the power 

spectral density is a constant, independent of frequency. We also can 

define: 

CROSS POWER SPECTRAL DENSITY 

~uw(f) = Joo Ruw(t) e-1(2nf)T dT (D.6) 
-oo 

As long as the variables Ug(t), Vg(t) and Wg(t) can be translated 

into an electronic signal, a power spectrum can actually be measured by 

means of filters or an harmonic analyzer. This is the manner in which 

turbulence data are usually represented and this is the reason why the 

turbulence power spectral density is a most important statistical 

parameter. The most accurate power spectral densities forms were 

proposed by Theodore Von Karman (Ref. [27]). However, these forms are 

not very convenient for turbulence model work because they cannot be 

exactly matched using linear filters. 

This problem is usually overcome by assuming the power spectral 

density suggested by H.L. Dryden (Ref. [27]-[29]): 

~ug (n) 
2 2 Lu 1 

(J --

+ ( Lu £2) 2] u rr [ 1 
(D. 7) 

~ ( n) 
2 2 LV (1 + 3(Lv n2)] 

vg 0 v -rr-
[1 + (L £2) 2] v 

(D. 8) 

2 2 L [1 + 3(L n) 2] 
~ ( n) (J w w 

wg w --n-- [1 + (L n)2] 
w 

(D. 9) 

where Lu, Lv, Lw are scale lengths; 

n is a spatial frequency (n = 2nf/Vel), where Vel is 
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the aircraft true airspeed. 

In general the scale lengths and the variances of each gust 

component are expected to be functions of the heading angle, altitude, 

atmospheric stability and mean wind speed relative to the surface. 

Explicit relationships, results of a massive data investigation, are 

available (Ref. [30]) and can be implemented on a flight computer. On 

the other hand, very little is known about the cross spectral densities 

of the Ug, Vg and Wg gust components, particularly with variation of 

altitude, heading angle and other motion variables. However, such cross 

effects between the gust components are neglectable at high altitudes 

since they are mostly due to ground effects. The importance of the Eqs. 

2 2 2 (0.7), (0.8) and (0.9) is the fact that we can calculate aU' a V' a w 

as: 

(0.10) 

Once we calculated these variances we can then calculate a2a and 

a28 by using: 

ag = W9tu 1 

Sg = Vg/U 1 

where u1 is the aircraft forward speed. Therefore, we have: 
2 

<P (n) = 11u1 <P (n) 
ag wg 

<Ps (n) 1/u/ <Pv ( n) 
g g 

2 
a a 

g 
1/U12 a2 

wg 

2 1/U 2 2 
(J s 1 (J v 

g g 

(0.11) 

(0.12) 

(0.13) 

(0. 14) 

(0. 15) 

(D. 16) 
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COMPUTER PROGRAM LISTINGS 

Damaged Model Estimation 

A certain number of computer codes have been written 

for the purpose of estimating the mathematical model of the aircraft 

following damage. All the non-MATRIXx codes have been written in Pascal 

and implemented on the HP-9000. 

First the continuous-time state variable models of the aircraft for 

damaged and undamaged conditions are calculated by using the program 

MODELING.P, with the aircraft data of Table I contained in the input 

file DATA1.DAT. Such a program has been used iteratively for 

calculating the set of N Ac and Be matrices. These matrices, 

discretized by using MATRIXx, are then given as input to the program 

MODAUX.P. This is an auxiliary program for creating time-histories re­

flecting the occurrence of the damage in discrete-time with randomly 

generated noise with desired statistics. The main output files of this 

program are the data files KALMAN1.DAT and KALMAN2.DAT which contains 

the state variables data and the control data for Kalman Filter 

analysis. On the other hand, using MATRIXx, with the user-defined 

function FILTER.FNC two sets of N=12 and N=23 steady-state Kalman Filter 

gain matrices (KE), inverse of the covariance of the residual matrices 

{S-1) and 8 constants are calculated. The 8 constants, the KE, s-1 
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matrices along with the matrices A, B, Q, L and R matrices are stored in 

the data files MODMMl.DAT and MODMM2.DAT, for N=12 and N=23, 

respectively. 

The files KALMANl.DAT, KALMAN2.DAT along with the files MODMMl.DAT 

(for N=12) or MODMM2.DAT (for N=23) are the input files of the program 

MODMMKF.P which performs the model estimation using the Multiple Model 

Kalman Filtering. The output of the MODMMKF.P program is the file 

PROB.DAT, which contains the probabilities associated with each A and B 

configuration. 

The probability convergence sensitivity analysis for different 

values of the Q matrix is performed by changing the values of the Q 

matrices in the program MODAUX.P. A modification of the program 

MODMMKF.P is the program FILMODMMKF.P, where the probabilities filtering 

is performed. 

The probability convergence sensitivity analysis for correlated 

atmospheric turbulence is instead performed using the program 

CORMODAUX.P where the discrete-time dynamics is simulated with a 10-th 

order system rather than a 8-th order system. The corresponding data 

files CORKALMANl.DAT and CORKALMAN2.DAT are then used in the program 

MODMMKF.P which generates the file CORPROB.DAT. The analysis of the 

differences of the s-1 matrices for correlated and correlated 

atmospheric turbulence is instead performed with the MATRIXx user 

defined functions CORSTEP2.FNC and STEP2P2.FNC. We had to break down 

the analysis in two user-defined functions because of the large amount 

of memory required by the manipulation of the large size matrices 

involved in the analysis. 

In the next pages the listings of the following programs are 



enclosed: 

MODELING. P 

MODAUX.P 

MODMMKF.P 

along with the MATRIXx user-defined functions: 

FILTER. FNC 

CORSTEP2. FNC 

STEP2P2. FNC • 
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progra\'\ Modeling (input ~outpu·t); 
type datal array[l .. B~l .. SJ o f real; 

data2 arra:,;Ll .. 3J of ,-eal; 
dat.:..3 ai'Tay( 1 ... 0 "1 •. 3] n f n:!al; 
data4 = arr·ay[ 1 .. B ,.1 . , 6] of real; 

<• flight c onditions • ) 
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betald,thetald~alphald~phild:real; <• angles with respect s tability a 
beta·t :; theta·: ~alptiai :r: pl·t:i. -~ ~~ r-e:al; 

cseg,s,xcg,bs:real; 
(11 ::;=..; ·t ~w ·l ;i ..... eal~; 

(* angles with respect s tability a 
( * georta"b-ic para;qetars •) 
(* ini t1al l. i .neat·· veloci. t;,.• *) 

(• initial angular ualocity •> 
<• weight distribution in body axes 
<~ weight distribution in stab axes 

(-*loragi tudirtal aa:~-odyrta•·J.'iiic ;,.Ji~eE15iGalless. c1nd dinensio:niUl deriu.t:-2t. 

uar cdu~cdl ~ctxu,ctxl ~cda,cdda :real; 
enu :ifcn·i :rct~·t.u ::;Gr.t 1 ,\:~ttta ~cMla .,cr.adt.1t :7CMtl :Ji c~a;de : r·eal; 

cl1 ,clu,cla~cladot~clq~clde :re~l; 
xu~xtu~xa~xde :re~l; 

zu,za,zadat~zq~zde :real: 
"u~Mtu~na~Mta 2M~dat.Mq~Mde: real; 

uar dcdu~dcdl~dctxu,.dctxl 3 dcda~dcdde :real; 
dcMu.dcMl~dcMtu~dcMtl~dcMa,.dc"ta?dcMadot ~dcMq~dcMde: ~eal; 

dcll,dclu~dcla~dcladot,dclq,dclde: real; 
dxu,dxtu~dxa~dxde:real; 

dzu,.dza,dzadot,.dzq,.dzde:real; 
d;•tu ,dMtu ,.drta .dt~ta ~d;;adnt ,.dr-tq ,.dMde : r-·eal; 

<•lat-d1rez. aerodynaM~C diMensionless and diMensional deriuativ 
uar cyb,cyp,cyr,cyda ~ cydr: real; 

elb :llclp :J"clr- z-elda 2 Cldr: r~eal; 

cnb~cntb;cnp.cnr "'cnda"cndr : real; 
yb,.yp,yr,.yda,.ydr:real; 
lb"'lp~lr"'lda,.ldr:real; 

nb"'ntb,np"'nr,nda,ndr:real; 
lder,ldal~ldsr ,. ldsl,ldcr~ldcl : real: 

uar dcyb,.dcyp,.dcyr,dcyda~dcydr:real; 

dclb,dclp ,. dcl r,. dclda, dcldr: r eal: 
dcnb :?dcntb :l' dcnp :o<dcnr .~dcnda 3 dcndr: i .... eal; 
dyb"dyp~dyr ~ dyda~dydr:real: 

dlb _.,.dlp 7 dlr 7 dlda ;ldldt,_: real; 
dnb ~ dntb,dnp ~dnr ~ dnda ~ 4ndr:real; 

( * control derivative& far the recanf~guratian task distribution 
var cldel,clder,c ldsl , cldsr.cldcr,cldcl : real; 

cMdel . c~der ,cMdsl . cMd&r 3CMdcr~cMdcl : r eal ; 
croldcr· ,.croldcl,croldsr- ,. cr·oldsl ,cr·al.der- ~ c•oldel - r~ aal; 



uar recdzdel~recdzder • real; 

i...~ar l ~n :rl :l'j ::;>'k : Ln·teger~:; 

pos~side :integer; 
~3·t .. ~~~.::~1 ._,c·l 
~]tO =-~ idi..:.'O ; 

bbJdbb : data3'; 

procedure 1ntro; 
be:gi~-· 
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w r i t e: l n ( "!' ·*"·~~*'****·*'**-"***·**·~**~:;c:.***~;:.****'·1:f*-·*~·*:lt:--*iit··**··~~~-***~**~~*-r-~***~ ~~**·*-=-** 

• • .w.iteln; 
wr1 telrt( ·:r. Wt:t_COME T 0 
wri-t.eln~ 

M 0 D E L I N G . p 

r .. Jri ~telt-:; 

;~; t- ·it .el n ( 'j5 -:."i:*-***-~*****·*-·*i~***~·m-·*-***·j;J!~=-**-:*-1t~**·l'!f-#~~-:f*il-f*~;.i:f.~~**-ll&·::t.-*~~~***~**-~***"* 

wtite.ln(" Th~s progr~M calculates the continuous-tiMe R and B Matrice 

writeln(~ Hit <Return} to continue."); 

beg:i..rt 
writeln<~Enter the naMe of the file where you saued the data • 
readln(fildat1); 
~r-esat.(f''l =ftldat1 ); 
while not eof(flJ ao 
t;egiri 
~-,··e,.:=Jdln( ·f1 :. ... ~, ... .D =it -:-·s····o ~'-'"'iach}; 

,-·c<:tdl K1·( ·f ·t ""t. t··~e ta ·1 ct :c a l5-Joh'\"3 ·~ ~J ;'; }1~·-,] ·w d ::;: b c t:a -~ d > ~; 
.:···eadlr~(f~ 

"·.i! ...... 
~'" -:1 .t ~r 

'".·-cadl.-~<.fi ~P··: ~q~ =-'-t J; 

~,..e.a~:Lt n ( -r··~ , ]_ ~;y :7 i xxb "'.f i zz.b ::; ~i. ~.c.zb). ;: 
u-··-e.aGl ;~, ( f 1 :~ cdu .~cd1 ~ c·txu 7 C-tx·; :s: cJ,q .'9 c~dde >; 



-eadln(f1 Lll ~clu~cla,cladot~clq); 
r ~=c~dln f. t -~ L 1.{~51. =-c ld~;~~· ::<Cl\Jc1 ... -~-cldcl 

t···e::?.adJ.~--~-:... -r i -:c~.:::-c--.b ~c:~--i--tb ~c;ca~J ;;>,-..:;rtF~~ ~:~nda :;t~:r1dt ;- .. ~ 

readln(f1~dcdu 7 dcdl 2 dctxu~dctxl ~dcda.dcdde); 
~-,...t~.adlr~ ( f'l :;r cLci~t~J ~ dch.,; ·; ;;. .dcJ"""i-t\..i =--' dcr~t.i :l' ;Jcrtt.a) :;. 

,~ .. ead]~n ( f·l :fdcl;;:]e ;:;rdC-i~de > :~: 
readln(fl ~dcyb~dcyp~dcyr~dcyda~dcydrl; 
r .... ea,Jl·it ( ·f·a ~tiel b ~·de: 1 p ~ diL:-:.1 r· ;, ;:1c l. ~:iq ::r rl~~l ;d, .... J ~~~ 
r.~-eadl&-1( f1 ;;:dcnb _,:dcn·tb ::::dcr~p ·'"" dcnr :=: d-cnda ::l'~jcndr~); 
i-ea~Jlra(f~ ~-P{J-6 ~:side);: 

421\l(i:; 

j:fl ... l5'"l.-3; 
{:fi ,/'57- :3; 
.~-j /~.i7. 3~; 

alphal := alphald/5?.3; 
theta1 := thetald/57.3; 
f.3hi1 ~~.:;; phild,/'5? .. 3; 
t:;e··fc;.-3 .. ~ ;·~ ~-== bet~3 -~ dl'~:;?' ... 3 ~; 

oroceaure stab deriuatiues; 
const g=32.l752; 

i"'~ : ;;:;; ((...,L.:" g ; 
q := 0.5 * ro • sqr(u1); 

zadot := -(q&c*cladot)/(2•M•u1); 
zq -- -qsc•clq/(2•M•u1); 
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Ma ==qscAcMa/iyy; 
..• ..iL-- "'· ··-·-··-·········' ·-- •. .ii ••••.. !•_.;: ...... 
M LC:1!., ·-·-·-~'\ :r.·_, c;.·~- ~ .. :;"K-, ~ ... 'i::R o!" • .!.. ':.•·• :~~~-:; 

Mada~:z(q5c•cseg•cMadot)/(2•ivy•ul)~ 

i-~Q . : ~= (qse:·~f; 5(::g-~enq) ;-·" < 2-~i. iJi~*'U-i ) ::; 

Mde := ~Q5C*cnde)/(iyy)~ 

151 

~i- XZ5 ~ ~= L~"' ~;,::..: .1. ;(~:,_'r,:t·-~5i ~-! ( ~~-~·isl ~hE.~~ ) - ~J,. ~~-'"' i ·:t·_:;_:b-;~5:2.. f~ ( :;~~-~~·-a1 p~i..DO J > -~ --~ :< :zh-~·Cf.~~~ ( 2-:~-sl p}ia ·: 

\.~~:.1 ... -- {:~ -~i·-~- :L;- ~} t:;, ~-~-·f•i!·:; 

ndr -- (qsb~cndr)/izzs~ 
___ _j __ 

C!tU;; 

prDCi'2ciurc""2 

canst g - 32.1?52; 
uar q~qs,qsc,qsb:real; 

bEgin 

~:=;sc ~ =--:: c;s· 
;;:_?Sb :.:::: Ci~5 * bs; 

dcnado·t 

'"]' >"'\ii-.,..._. -· 
.~.J "' ·:;; ·;_:) !" -ii 

. ·, ~·· -,. ""'' 
·,::._,.-; 1!:,5.;:-,J:~ 

r~ ~--~ """]! ""11 
:J·,. ·::l I .r 

cia - {clde-dcld~;~ 

cna - (cnde-~cnde); 

;: ·;-;; t.er1:p·l :.::.~d~~~l-~::lt.::; 

~ ~ ·t.e;~p2·)f.-dclde.; 

( -~~.et:-tp3~.;;t-rJ(:;l~-ide) ~~· i· !E~r~tp'"i; 



dcMq := (teMp5•dcMde)+te~p6; 

dxu := -(os•<dcdu~Z*dcd~))/ZM•ul~; 

;t:j::;.(a :; :.::::·-.. ((~:;..::.:·::.~ < dcd.r:J.······dcl ~ > :.: ~~)'f,..:;; 

dxde :;-(qs•dcdde)/A; 

dAu ;= qsc•(dcMu+2~dcAI)/(iyy•~1): 

dMtu := qsc•(dcMtu~2kdc~t1 )/(iyy•u1): 
c1l·1:a :;.~ ·::: ~-~15 c * r.i cna .r .. ~' i. ~-l y ; 

dMadot := (qsc•cseg•dcMadot)l(2*iyy•til); 
d::h;(~~ ;; ~.:.:. (qs;c~-~~c:~:::;eg~·de;;'sc~)./(::?*·"i .. y\;·*·u·R); 

dyda := (qs•dcyda)/M; 

(qsb~dclb) /i x)oe;:s;: 
(qsb•bs•dclp)/(2•ixxs•u1); 

dl~:ia :;;:~-::: <q:sb~~:iclda)/i:K.r(S; 

dldr := {qsb•dcldr)/ixxs; 
dnb := (qsb•dcnb)/izzs; 
dntb := (qsb•dcntb)/izzs; 
dnp .~ .:.-.:: (i~sb*i:J:s·~~::-iCtcr·•t:-1 > / ( :l*::t. ~Lzs-~-u·r ) :; 

dnr := (qsb•bs•dcnr)l<2•izzs•u1 >; 

(qsb•dcndr)/izzs; 

.. ~ .... -.~·· ----i!-
~--u~•·:::~ ~--

~:Jeg·in 

a1:~ 1-(zadot/uJ): 

;;-··I 
.;.:3aL ~ 

.... -~ 
...,.{....i O .. l1; 

(-g•s1n(phi1)*cos(thetal)/b1) 
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aa[2 .. 2'J 
··-c ~-•. f- --~._, ··;;: .... ~ 
Cl.Olo. .. .t:. •••. ..!' .• .!: 

~~~~q -i~ (nado"t.*aa[ l ~2])); 

((~u+Mtu) + (Aadot~aa(1 ~3]))~ 

aa[2,q] -- (Madot•aa[l ~4]); 
i~a[ Z :r- ~.:i] ... --- (;":"'i~3,dat..~aa[ 1 ~; EJ >:;; 

___ .., -··· r· ·::: {.~ ··-:; 
.c:;:QL. . .....; -~!='-.1\..J 

~:3a[ 3 ~~ ?J 
aa[:3 ~,BJ 
-- _,_ r .cll. --~ ···-~ 

::.·_~t::J,L 'i -:r ~ -l 

aa[ .CJ J2J 
·-.-..it"" .~i. --::;:--: 
;:•,:zor:J;;... ~ o:; ··-' ...li 

........... r .;-~ ,;;:.~. -.. ;; 
<:::'1'.:::11-. I .,, Q •• .:1 

i:.=ia[ ~1-:;: ~;] 

aa[ ~~ ~,{;] 
··-- ........ r ;;.'1 ''"J :l 

.-';_-::J.CJ.L. 1? \1 .. .I: 

aa[·~~- ::;,HJ 

·-.--.ir'' c _,..}'"1! 
.Q-e.\L....JI_,..t:....J. 

.r3a[5 :o-3] 

aa(5~5J 

aa[5:r-6] 
~;;a[5 ~ ?J 
i::ta[5 .,iJJ 

;,--.:- ·t ""l! 

aaLu ::r· a_; 

(-g•cos(thetal)); 

·-·siti(ph:t.-1 >~ 

0 .. {5~ 

(-g•sin(phil)•sin(thetal)/ul>: 
/ • .i}...., )' ~ n ·j ). •: 
·:..yul' •.J.t. ~· ~ 

((yp+; ... .-l )./u·i) ; 
( .(~:;-... -;.J-1) i'u·l) ;: 

(g•cos(phil)•cos<thata1)/u1); 
f'} {"'!I ... 
~. ~J""" 

·4-- (lb·*ixxs/'c-1 )); 

.a.a[?:: 1 J : .-;;:; {L. 0; 
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aa[?~2] := ((sqr(ixzs)•p1/(1xxs•d1)) + (ixzs*1YY*r1/(ixxs•d1)) • (-ixzs 

rl/(ixxs•dl)) ~ (-iyy•p1/dl) L (ixx5*p1/dl) & (-ixzs•r1/d1)) ~ 

4·38 [ ''".? ::: -~i J 
~~a[? .. ,, i{-] 

aa[7:v6J 

n .. ~J :; 
((ixzs•lb/dl)+(nb•izzs/dl)); 
((sqr(ixzs)¥q1/(ixxs•d1)) + 

dl) + (np•izzs/dl)) ; 

,.·· .. , . 
.,_ .. :: .. 



~-:iaLl_;jlBJ - ·- U.U; 
~··- ·-· a- () ·r: ·--~ 
=COL.'-... ::!' J ~-' "" ·-· 

aa[8 :i'"2] ... -· sin(pl-ii 1 )·*sira(·the·tal )l'cos(the·ta1); 
aa[B=.::;] :~~- iJ.O; 
c.Ja(S :v :=t] ~ ~-­

aa[i~~~~~J ,., .... 
aa[8,6] ~-

·n n. u.u., 

1.0; 
aa[B~?J -- cos(ph~l>•sin<thetal)/co&(thetal); 

~3a[8 ~8] ... -- 0 .. 0; 
end; 

procedt.u·-e b_,..t~alri x; 
begin 
bl -- ul • <1-(zadot/ul)); 
c·t ;;::: l.K~iCs - (sqr-··(i~-~zs)/::!.zzs);~ 

d .. l ~= :izzs --- (sqr(ixzs)" .. ·txxs); 
bb[1~.-fJ ~- zde,/b1; 
bb[2,1J .- Ade + <nadat•bb[1~1]); 

~JtJ[ 2~ :J; '1 J 
bh["l:1>'1] 
bb[S~·;J 

bb[6~1] 

bb[i ~;;:] 
bb[2~2] 

~·- 0.0; 

-- 0.0; 

l:LO;: 
n n-u .. u, 

bb[4 ,.2] • - n n. 
u.,u~ 

bb[5~2J :;::= ~;da/u1; 

bb[6,2J -- (ixzs•nda/cl)+(lda*ixx&/cl>; 
bb[i~= :;:2] :.. ...... (:ixza-*ldal'd1 )+ (nda*i:t~zo./{]1) ~~ 

bb[B:l'2J ·~-- 0.0; 

bb(2,3J 0 .. 0:; 
bb[3 ~~3] .. ~- i]. 0; 
bb["-1 ,3] 
bb[!i~3] 

fJ. 0; 

bb[?~3J .- (ixzs•ldr/d1)+(ndr~izzs/d1); 

bbUJ~3J ···- 0.0; 

begin 
al:= 1-(dzadot/ul); 
bl:= ul • <1-(dzadot/ul)); 
c·t === i::-:::xs ·- (sqr(ixzo).lizzs):; 
di ::=== i.zzs ·-~· (:sqr-·(:i.:n::z:s)/'::i>,.::xs)~; 

daa[ 1 ~ 1 ] : =iiza,...rb 1 ; 
daa[ -~ :r ;,~]: = ( ( ( tizq/tJ 'I ) ·~·· '1 ) ~ ... ~a 1 ) ~~ 
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daa[1 ~1J:=((-g•cos<phil)*&in(theta1J)/b1)~ 
daa[1 ~S] 

---~ --.. -- ~-- -1 ~-~-· -; 
~J.OClL ~ ::: ! _.:, 

Gaa[-~ =-'HJ 
daa[ 2 :c.~ ·1 ] 
, . ..; - ~- f'" ry ··:.:· "1 
l. ... U:::S.Cl L L 7 L. ..J. 

~J.aa( 2 :.' 3:J 

n. c1; 

(dMq + (dMadot~daa(l 7 2])); 
( dt-1rJ·t· di""!tu) -~-- ( ;rj;ricr5t;Jo·t·~:-1L·.iaa[ 1 
< dMado·t~.\,;.ifaa[ 1 :!' .o!l J); 

( di=tadoi:.-3.~·\1.t:ia[ ·i ;:. SJ) ::~~ 
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~:iaa[ 2 ::- ~:~J 
daa[2~6J 
-~~ -... ·-.. c -~f _.,...;~ '"? 
". . .'~~~·- .:..... ~-· ; __ , 

( ( izz:s~, .. -1 ./'i_Y\t) -!~ ( -i xxs·::t-r·l -rJ't;:?V) + ( --Z~i xzs·*p·t /i.yy) + (dnadot·*daa[ 
((izzs•pl/iyy)+(-ixxs•pl/iyy)+(2•ixzs•r1/iyy)+(d"adot•daa[l 

daa[2=-B] 

daa[ 3 ~"' ·1] 
daa[3 .:r2J 
daa[3::-3] 

~--~ --. ..... ,_ :r- ~, rc -·: 
Uc:&OL.. -.J 7 .,_,, •. 1 

daa[3~6J 

daa[3 _71 8] 

,j::iaa[ 4 7 2] 
daa[4 :~ .31 
daa[4~4] 

daa[·4~5] 

daa[4"6] 
daa[1 ~'?] 

{1aa[5 ~3] 
~iaa[6 :0' i J 

da.a[6 :,.3] 
daa[ 6 ~" ,t:~.] 

t~aa[6 ~5J 

di'iadoi*-daa[] ~SJ; 
{:ixa-(~~~J.1 ~u-~) ~~· 

(-g*cos(theta1)); 

.. ri' n ... 
'!..J- 0 ~,. 

cos(phi1); 
0 .. 0; 
n n .... 
\.JI .. u~ 

i]. D; 

(-g•sin(phi1)*sin(thetal)/u1); 
(dy£.1/'u·: ); 
((th;p-t-~.i"l ),~·~u1 > -~ 

< ( d<,.J!"" -- :.J -~ ) / td ) 

0 .. 0; 

(ixzs•ql/c1)+(dlp*ixxs/c1)); 
daa[6~7] := ((-sqr(ixzs)•ql/(cl•izzs))+({xzs•dnr/cl)+(iyy•ql/cl)+(-ixzs 
<dlr•ixxs/cl)) ; 



c~aa["? :."5] 

daa[ .. l :.~6] 

fL. iJ; 
((ixzs•dlb/dl)+(dnb•izzs/dl)); 
((sqr(ixzs)¥ql/(ixxs•d1)) ~ 

dl) + (dnp•1zzs/d1)) ; 

+(-ixzs*ql/dl) + (dnr•izzs/dl)); 
~Jaa[? "73] 

daa[B ::'2'] 

daa[fi :;>3J 
.... ~·-c.-· r· o .-;j!, "1 
l\.JC2"3 L ;!,..J ::< ::. .....:1 

daaLt.1 ~/~;] 
~1aa[8 $6] 
daa[8 -~ ?] 

0 .. 0; 
~] .. 0~; 
sin(phil)•sin(thetal)/cos(thetal); 
(¥,,. 0;: 
n .n,.. 
u .. 1\..,11.':1' 

0.0; 
"'i ' 0 ~; 

cos(phil)*sin(thetal)/cos(thetal); 

flracedu;~-e :·-·e:c __ b_Matr-ix; 

uar i,j . integer; 
canst g = 32.1752; 
uar Q,qs~qsc,qsb:real; 

if.,..; ~~ r e~a 1 ~; 

begin 
, .. :&:= w/g; 

q := 0.5 • ro • sqr(u1>; 
iL~S :;;:::: f:fi ·:P:~ -;_:j:~ 

qsc := qs * cseg; 

:= izzs - (sqr(ixzs)/ixxs); 

bel.e~.t ::::::::: -~ .. 6; 
bs2 :;::::; .S .. O:; 

lf (side= I> then 

c::ld.el 
{::i"lde:r-· 

i~~MtJ~::I 

i····ecdndel 
1] 

cldf..:a·= .. 

(qsc ~;;f· ct•ider··j-=~--L~/Y; 

(qsc • cMdel)/jyy; 
........ ; ... -ecdzdel/b-: :; 

156 



uhl"·ecbb("l :;2] 

~-... echb[2 :!'2] 

t·'"·ecdzder/bl; 

croldsl 
...... ...... ~ ..... ··a .... .r. ···~ ...., .. 
• ... .,.; UJI."'....U'-' 

f:~~~-uldcl 

c..::; ..... tllde.r. 
croldal 

ldcl 
ldst· 
ldsl 

'1 ..-1 ... ··1 
.LuC..L 

··­"" --· 

-cldsr•(bspoil/b&2); 
--(~r-·oi d~a;F:; 

-croldc;r.; 
-clder*(beleu/bs2); 
cldal•(belev/bs2); 

qsb•croldcr/ixx~; 

qsb•craldcl/ixxs; 
qsb•crol~ar/ixxs; 

qsb•croldsl/ixxs; 
qsb•cralder/ixxs; 
qsb•croldel/ixxs; 

~·-··echt;[6 ~ -~] 

1r·ecbb[ 7:.: ·1] 
ldel*i.)(:xs/cl :; 
J..del*iX:ZS.l'd1;: 
1der"*±.'{X:t~/c1:; 

if (s~de - 2) then 
begin 

cldal 
cldea· 

clde./2. 0; 
dcl~~e ···-- Glde.l; 

cndel 
ci"'dar 

cMde1'Z. 0:; 
dr.::Mde. ·-- Ci''iidel; 

recdzder -- -(qs•clder)/M; 
necdzdel ~ - -~ (qs·*cl del ) .lt"i; . 
r-ecdMder ~- (qsc • cr-u:fer)/iyy:; 
r-ecdt•u:iel ~­

;:-ecbb[ 1 "I ] 
recbb(2~1J 

r··ecbb[ 1 :;o 2] 
,~-ecbb[2 :F;:J 
cn~ld:sr ~ ·-
croldsl 
craldcr 

!t;rolder­
er--oldel 

r>-ecdzder.-'b1:; 
recdi""•der- • (di"iadot·~<£·recbh[1 

t·-ecdzde.l..--"b·1; 
r·acd;,.;del + ( d>"!'ladot*r"ecbb[ 1 

-cldsr•(bspoil/bsZ); 
--cnJldsl~; 

-cldcr~(bcan/bsZ>; 

-·e•-·oldc!····:; 
-clder•<beleu/~s2); 

cldel•Cbeleu/bs2); 
ldcr -- qsb*croldcr/ixxs; 
ldcl -- q&b*croldcl/ixxs; 
ldsr .- qsb•croldsr/ixxs; 
ldsl -- qsb•croldsl/ixxs; 
lder .- qsb•crolder/ixxs; 
ldel -- q~b•croldel/ixxs; 

i-e~.:bb[ 6 ~ 1 ] 
it·-ecbb[ ~-; :l' t ] 
n:cbb[6 ~2] 
i'-.£~cbb["{ :i'ZJ 

en:d; 
for :t ,; ::;::::_'3 to 5 ;cia 

begin 

ldet .... *-·ixxsi'c-;·1; 

ldar··*·:i .. XZ&t·"ct1:;: 

157 



for 3 := 1 TG Z do 
begi.r~ 
............... ~--~ i-.... t-~ r- --:: :. ~ 
~ '!.".:::L..UUL. . ..:.,. ::;-,J ~ 

....... ··-- .-i ,.. 
C::'l:U':J' 

ft:.r· _j : ::::= 

hegin 
'"~--,~:=ct.~b[8 -:::J] 0,. G; 

•.. -· ........ -~-~_, •. a ....... Jl ...... ..., .. 
~ tr.::'.':',...,.u . .;; ... u ........ a 

r-ecbb[ 1 :v ..j -.i 

~ .. --E~et.~l:~[-~ ::: .. ~-] 

--- (qs-~cl dsl ) /',';i; 
----- ((~:r.::;*cl dst···) .i·i~~ ~;: 

(('~SC*Gt"iCisl) /'i. YV; 

.( Li :5'(:::~.~ i."".:l"'~il.:i .0~ ~~--- ) / i ~:) ~:1 ;. 

r··· ~= c ~·J :1.~ d c ;-··· /,. h --~ ~~ 

r·ecd1";"1dsl · ~ (c.1t-~ado-t~-r ... ecbb[1 

for 1 := 3 to B do 
biF..~gin 

for j 
'"· ..... --· ~ , .. , 'L .• c:y.;...~:l 

do 

r-ecbb[ i _7 j J 0.0:; 

a.r•· .• ., r~ ~-!, u ... , ~-- £.: .:~: -"l 
t c;,,_..,.UULU -:::'\..J.,_, 

t~·e:cbb[ 7 :."' 3] 
r··e{:.':~3b[ r.? ::. ~-] 
ij~··ecbb[ '? =-' SJ 
;"'···-ec:JtJ[? ~.6] 

ldsl-;":-iKz.S, ... ad1; 

1 i[j s a-'"•l>f l .. :~"1:: z :r~~ ,/ ~j 1 ;: 
ldcl*·i xzs/Q'i ·:; 
1 d ;.::; i'''' -:t i :;.;: z. :s ./ ,-j 1 ~: 

~Jr-oc~.::dui·--e tJ __ G_~_f'ti..:3 tri. ;< :; 
bc:g1.n 
h1 ul * <1-(dzadot/ul)); 

~Jbb[2~1J 

(1bb[ ~=-~~·;e .. ~ ] 
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dbb[ s ~·· -~ J 
dbb[67-"1J 
dbh[ '"? ~1 "i ] 
~jbb[8 7"1 J 

dbbL2~2J 

~Jbb[3 ~2] 

recbb[6~1J+recbb[6.2J; 

recbb[7,1]+recbb[7~2]; 

0 .. 0; 

G .. O:;: 

0.0; dbb[-1· ~ZJ 
dbb[5,2J 
fJbb[6 .~2] 
d4Jb[7 :-ZJ 

dvdr..:.~/t,;"'t :; 
(i~zs•dnda/cl)+(dlda•~xxs/cl); 

~ ~ ......... It" Cr ~~;o -~ 
; . ..JUL.JLU 7 L...2i 

dbb["i ~3] 
dbb[2 ~~)] 
dhb[.3' ~3] 
-.$khii-· ,;£. ·-::r:·-; 
~._.;U'lJL : ::-v·...J....J. 

0.0:; 

n. t1; 
dbbrs =J3] 

dbb[? ... 3J Q< 

d~idr· ,/·u ·~ :; 

(ixzs•dndr/cl)+(dldr•1xxs/c1); 
(ixzs*dldr/dl)+(dndr~izzs/dl); 

c!bb[8 ~:3] 
o.::nd:; 

D .. O; 

procedua··e i nput __ gi S!=Jl,_,-::1_'<'~ 
uar i~j : integer; 
beg;..n 
wri te.lt'1( ""Eri"ter ·-the. narte of tf',e ·file wher~~ =.~jou ~;ant 

writeln<~of the A and B Matrices : 
~-eadli""'i( filda-t3); 
r--et..H'~i te< ~r:3 ~ fi lclat3):: 
\.,i&i te:ln(f3 ::< ~ 

fG~... t ~ =·l !~tJ (J •io 

~ ·~o:,. "" ..... 
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saue the coeffici 

begin 
writeln(f3~aa[i~1]~aa[i~2J~aa[i~3l,aa[i 7 4]~aa[i,SJ~aa[i~6J~aa[t~?J,a 

,,._,.-< •• 
lr,:=t I ILl.,. 

"' ) ::; 

for- j :=·1 t~; g ~jo 

~Je:girl 

writeln(f3,bb[J~1]Jbb[j~ZJ,bb[j~3]); 

~3egin: 

~.~;~···i_ -t.eln( f3 ~daa[ i :c ··~] :-daa( i _7 :~J ... daa[ i :T- 3] :!'da~J[ i ::- ·4] ~~ 

daaLi ::.s:J ~daa[i ~,,L,] :~daa[i ::o ?] :~,d~3a[i ~BJ); 

w.-~·i~telr&{ f3 =-""' B Matrix of the daMaged aircraft ~); 

f ;..-::t t' j ;:: ::·;:: ·:. ~~ .. "'--' 8 ti !..\ 
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reconfigured a1rcraft 

begi.--, 

writeln(f3~recbb[j~1J.recbb[j~ZJ,recbb[j.3J.recbb[j.1J.recbb[j~5J~recb 

input ____ da·ta; 

set. :Lrti.l c:o.nc:~ 

stab deriuatiues; 

b .. __ t'';a t n-·-· i ~~~: ~; 

(]_ ~::3: ___ i"' .. -sa t ,.- :t x .; 
~----e~,.-: _______ b ___ 1 . .,.,~3 t•·:t :~.;;::; 



array[1 .. 8_l •. 8J of reaL; 
data2- array[1 .. B~l •. 9] of real: 
data3- array[l .. SJ of real; 

~"";ar a ;l*i·-ia -:t'da ::: dat.a1:; 

b~nb~db • dataZ~ 

1 ::ral ~dl = dal.a4:; 
data.3; 

thbeta~thp,thr~thphi 

wturb,uturb : data; 
ul ~u2~u3,ui~u5,u6,u7~uB~u9~t~M2 : data; 

j,Ja:~;-:cjd~-::t : i.n·te~;)er~; 

seedl ~seed2~seed3 : integer; 
:be.i:i-~ _"":c;ed~:~sed3 : :t;·•tegFt-··~:; 

ualuar,conufac : real; 

beta1d=theta1d 3alpha1d~phild : 
~J~-* ~ :::- ~.}-~ "';~...;"i ,. , .. -·cal;: 

•-~ 1 :., q -; :!' s"b 1 .. ~- ea l ; 
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·fildat1 ~ 'fi lda-t2 ~ ·fild~:a·-t.:3:, filda·t4; fi ldat~:; ~ filda·t6:? f·ildat? ... s·ta--·ing[2 

ans : {~h.ar; 

procedure intra; 
begin 
wr .. i t.el it ( ":! -=~***=-**~~~-~:*****.**·*~~******"****-*~·.;;!··lfo-!!~~l'l!-****-!:!--=:-*~--::;-******~~*"*~*~~ 'Y ) ; 

~ ~ ........ .;; .. ij.. ~- ·:: -·-·· ... 
l!..at ..L 'L.C .. .:L ~ 1 -:..• 

" ..... ~ ~-,·- ~~- t £": 1 n ; 
~••:;_ ·-t~=:ln( 'f 

Wi ... ·ilelri; 

~ .. JEL:~:Gt1E r o 

wr-i ·tel n ( ~~ -~<&***~******-*·:t:.·***·11t:·*·*-·~;;.~'*"**~'f.-****"**-1,~*~t-·:::::-********·~*~******·*:·*.-:~*~-:.*" ) :; 

ii.--.#S"'"""j_t.~=:l.r·n("d:i.sc;·-·e:-t.e-t.ii~~=-.: iJ.,-;it~·-, t.t·~e Gc:C4t·~;-r··ence ;[]f t.t·~r- r.:l.r3rla~je: .c:ti ~::.i.ne '~ ):; 

wr1telnC" sec. The dyn~Mics is affected bv at"ospheric turbu-'); 
writeln('lence siMulated with the des1red statistics. ); 

writeln("Hit <Return) con1.:..j_rtue .. ...,); 

·. ,..... _,..~ ·'" 
•:.:.:t•u~ 

function randaMl: real; 
,,._,_, ____ Ji '" 
l ~.:::.c:t .. _ .... 

·< :5e.ed 1 -~ ?'7) 
{} thert 



.G2e.d2 -~ 76); 
if beedL C 0 then 
seed2 := seed2 + 30307; 

(see:d3 ciiu 
if seed3 D then 

teftp :~ seedl/30269.0 + see~Z/30307.0 • seed3/30323.0; 

function randoA2: real; 

i ?'?) --- . ___ ~ (~:;ed·i diu 
.l!.. f r;e:d1 < f] t:·-~en 

sedZ := 1?2 * {sea2 Mod 176) 35 ~ (sed2 diu 176); 

-::.:;ed2 ~: ::::: 
sed3 :~ 170 * (sed3 MOd 178) 63 ~ •sad3 diu 178); 

sed3 := sed3 + 30323; 
teAp := sedl/30269.0 • sedZ/30307.0 + sed3/303Z3.0; 
-~·-·andot:';2: ... , --- -terip --- ~:~t .... ·ur~c { teJ"'tp .>:; 
·~nd~ 

function narMal:real; 

begi.n 

;:·at'1s:iun2:; 
:.: :::.~ sqr .. ··t .. ( =Jal. ( .. ~at· ... ) ; 

be:gin 
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writeln(~Enter the naMe of the file where you saued your A and B Matric 
writeln('and yaur 1nitial condit1ons : ~); 

r·2a~Jln<_-fildat1 >; 

~ '- . .-~ , .. , .,_; ..... 
'LJIC~J-;_ ~ ;_ 

~-··eadl•···i .( f1 ~ na[ i :;< 1] :e na[·i. ::' 2] .,. nq[ i 2 ~jJ ,-raa[i ':'! ·'~l J :1' ild[ i ~ 5J ~n:a[ i ~ 6]:;: t•a[ i -.~ ?] ·.~ r\a[ i 7 

,-~:nd;: 

tor 1 := 1 to 8 do 
tt..F-.:g:!.n 

readln(fl ,da[i 3 1J~da[i,2J,da[i,3J,da[i~4J,da[i,5J,Ja[i,6J,da[i,?J~da[l, 
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to 8 do 

readln(fl ,nb[i 3 1]~nb[i 7 2J~nb[i,3J,no[i,~J~nb[i 3 5] 1 nb[i~6J.nb[i~7]~nb[i, 

~-·«t?.[ i ~ '9]) ~ 

-~ 
~· . -~ it to G dG 

~Je~?ir~ 

reariln(f1 ~db[i,IJ 7 db[i.lJ,db[i 7 3J~db[i~4],db[i,5J~db[1 3 6]~db[i 7 7l,db[i, 

-dt;[i.~'9]); 

enci; 
: .. -E.::?idlr-. ( ·f·-~ ~ l.he·ta ·;_d ::'al p~·~a-·i ~j ::-phi 1 d ::;beta t d >:; 
:---eadlr·,(-t'i ::!uul :.•r._;~! :J'w.·l); 

~ .. ··cadlt&(f'1 ;:;op-1 ~q-~ :,t-··t) ~ 

;-r··eat.il n ( ·f -g ~ dr~: ::!' 1nl i.~"\); 
:r·-eadlra(f1 -;u·al:...,:ar ::;>cun:..;f~::~c):; 

t_:l o::.;;::\ < sr--·~ ) ; 

nl[i 3 1J .- na[i 7 1]; 

nl[i~~~ -- na[i,5J; 
dl[i:!'-;] ... --·- ~.Ja[i~l]; 

dl[i~2] -- da[i,S]; 
<.:'nd; 

sed1 

"'l1 £"") ... 
.. "-··'':!' 

i f·sn ... 
'l ~J~..,. 

1001 :; 

sed2 :"' l 01:; 
sed3 ·= :.::.:: ·~: ·1 ; 

wri·!.:_el~--,(-·,, "); 

wri telti < ~ Et-ltea··- .. J. !.-.• -. 
'l..llC 

tiMe when daMages haue been detected and identified 
writeln(~(as Mult1ple 
~?~eadl n (j de t) ~; 
end; 

procedure Manoeuuer; 

begin 

r·E{Jeat. 

ul[j] := -5.0/57.3; 



r·epeat 
ul[j] == 0.0/5?.3; 
u2[j] = 0.0/57.3; 
-ti1""te[jJ ;::::::: J<'; 

j :: ::;·;: j 

it'··epeal 

u2[jJ := 5.0/5?.3; 

~-.Jrlt:il J 
~~·~epea·i 

, __ ,·t r·.-~] 
La2[j J 

·~ : ~::.: ,} .<'- "i :; 

urrti l j -"-= -~ ·4[i1 :; 
;·-e:oe:at 

ul(j] := -3.0/57.3; 
uZ[j] ---

j :== j -J l; 

r·e:pea r 

ul[jJ := 3.0/57.3; 
uZ[j] :~ 3.0/57.3; 

~--·eoea·t. 

t.iMe[j] ;;: :::::: ){; 
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c-epeat 
u ''l[j] 
.• if..Jiti- . .;: ····: 
~.:;. ~..J:L • .,J -.:1 

~--·-epea-t. 

"" "7~-- .. ;; ·--:: co -~ 
!1 .... 1. t.. •• J --~ 

~~8[j] 

begirt 
u3[i] ~- CL. 0; 

procedure si"ulation; 
t~;pe cialaS ;.;;;: ar-·:.-·a~~[O .... 5(;] a.f a--e:al;, 

~.;ar ~-:1cf ... rlata5; 
uar lag~tau integer; 
-3aa· i 31 j~k:r-~·q::fi;: 'Lftteg~r- .. ; 

l::.tegi1~ 

thalpha[l] := 0.8: 
tttq[1] ~= () ... 0; 
t_hu[l] ::== 0.0; 
ththeta[1J := 0.0; 
thbeta[l] := 0.0; 

for i :=1 to 8 do 
beg .in 

fo-r- j ~· --·~ ··i to B ~-ln 

beg:i.r .. ~ 

beg:tc~ 

fo.- j :": := 

be§ii1 

na[i"j].;: 
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for· ~ 

2nd; 
f (iF :i "" ···" 

be~pi rli 

·; 
"" -- ~ t.o 8 t:]o 

l[i,1J ~~ dl[L,l]; 
l[i.ZJ -- dl[i.2J: 
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tJaalpha[kp·t J ; ;;;.;; (,:::[ -~ ~-1 J-~t~--~alpha[~·:J -:-- a[1 ~2]*1:.i·&·=t[l(] c7 ,;~[ 1 ;:;:3]~!~t~r-iu[k.J ··1-

a[1 ~1J•ththeta[k] ~ a[1 ~SJ•thbeta[kJ • a[1 3 6J•thp[kJ + a[l ~?J•thr[k 
£3l[·t .:;<SJ*thphi[kJ) +- (b[1 .:!' ·; J~~-~J-l [kJ + b['1 ~2]:rJ-u2[~~] + b[ 1 :¥3]*~-13[k] + 

b["i :;.·1!]*~-t4[kJ -1· b[-; ~,S]*;.J5[!•;.J + h[1_:~>6J~uf,[k] ·i Lt["i :.~?J*iJW./[kJ + 

b['l ::,8]-~uB[kJ + b[1 ~~3J·~·tJ9[}~]) + (1[1.7>1]·~~--tui-·t:lal) ··!-- (1[1 :l'ZJ-~nai'""M,3l); 

~:.hq[kr-'' J :;:;:: ((;:![27--; ]-:1#t·t.hc.:.Ipha[kJ + r3L2~2]-~·"t.hci[K.J ·;T·· a[2::<3J·~tt·tu[I<J -.;r­

a[2?1J•ththeta[kJ + a[2,5]*thbeta[k] + a[2~6J•thp(k] + a[2~7J•thr[k 

a[2.9J•thphi[k]) + (b[2.1J•u1[k] • b[2.2J•u2[kJ + b[2.3l•u3[kJ + 

n[2,q]Eu1[kJ • b[2~5J•u5[kJ + b[2.6J•u6[k] + b[2,7J•u7[k] + 

b[2~BJ•u8[k] + b[2~9J•u9[kJ) + (1[2~1J•norMal) + (1[2~2J•norMal); 

thu[kplJ := (a[3~1]•thalpha[k] + a[3~2J•thq[k] • a[3,3J•thu[kJ + 

a[3~1J•ththeta[kJ + a[3~5J•thbeta[kJ + a[3,6J•thp[k] + a[3~7J•thr[k 

a[3~8J•thphi[k]) ·~ (b[3~1J•ul[kJ + b[3,2J•u2[k] + b[3,3J•u3[k] + 

b[3,4J•u4[k] + b[3,5J•u5EkJ + b[3,6J•u6[kJ + b[3~?J•u7[kJ + 

ththeta[kpl] := (a(1,1J•thalpha[kJ ~ a[1~2J•thq[k] + a[1.3J*thu[kJ 0 

a[4~1J•ththeta[k] ·~ a[1.SJ•thbeta[k] + a[4~6]•thp[k] + a[4~7]*thr[k 

b[4~1J•u1[k] + b[4,5]*u5[k] + b[1~6J•uG[kJ ~ b[4,7J•u7[k] + 
b[ ·~l :~· ~:lJ~~·uB[ k.] + b[ ·1 ·:;]·*·~ .. ~9[ ~:.:;.]) ·-=-· ( 1[ 4 =~ -~ ]-:r-!i·rH.:n,...r .. ,c.ll. > ··?:·· ( 1 [ -1• ~ 2]-lt~~--~~J;•··~·"":a.al) ~; 

thbeta[kplJ := (a[5 3 1J•thalpha[kJ + a[5~2J•thq[kJ + a[5,3]*thu[kJ + 

a[5~4J•ththeta[k] ~ a£5;5J•thbeta[k] + a[5~6J•thp[k] + a[S~?]*thr[k 

a[5~3]*thphi[k]) ~ (b[5~1J*u1[kJ • b[5,2J•u2[kJ • b[5.3J•u3[k] + 
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f:.hp'[ it.:. f.~ .i J ;: :::.~: 1.:~3[ 6. :" ·~ ] *f.t·~.al r.Jih(:;a[ k] ·t· ,:::t[ 6 ~ 2J ~~ tf·H::f[ h.J ·!· ~:::1[ t; ::;r 3]* "Lt1u[ kJ + 

a[6~4J•ththeta[k] + a(6,5J•thbeta[k] + a[6,6J•thp[k] + a[6~7J•thr[k 
a[6~8J•thphi[kJ) ~ (b[6~1J•u1[kJ + b(6,2]*u2[kJ + b[6~3J•u3[k] ~ 

b[6~4J•u4[kJ • b[6?5]*u5[kJ • b[6~6l•u6[k] + b[6 3 ?J•u7[kJ + 

b[6~BJ•uB[kJ + b[6~9]•u9[k]) i (l[6~1J•norMal> + (l[6~2J•narMal); 

thr[kp1J := (a[7,1J•thalpha[kJ + a[7~2J•thq[k] + a[7~3J•thu[k] + 

a[7,4J•ththeta[k] + a[7 3 5J•thbeta[k] + a[7,6J•thplkJ + a[?~?J•thr[k 

a[7,8J•thphi[k]) • (b[7,1J•ul[k] + b[7.2J•u2[k] + b[?~3J•u3[k] + 

b[7~1J•u4[k] ~ b[7;SJ•~5EkJ + b[7,6J•u6[k] + b[7~7J*u?[k] • 
u[7 7 8J•u8[k] + b[7~9]~u9[k]) + (l[?~lJ•narAal) ~ (1[7 ZJ•nor~al): 

thphi[kplJ := (a[8 3 1J•thalpha[kJ + ~[8 7 2J•thq[k] + a[B~3J•thu[kJ • 
a[8 7 4J•ththeta[k] + a[B~SJ•thbeta[kJ + a(8 7 6J•thp[kJ + a[B,?J•thr[k 
a[B~BJ•thphl[kJ) + (b[B,lJ~ul[kJ + b[8.ZJ•u2[k] • b[8 7 3l•u3[k] + 

b[9~4J•u4[k] b(8,5J•u5[k] + b[8~6J•u6[k] + b[B~?J•u7[k] + 

b[8:;8]~-!l·u~:~[!<.] :· b[fl~v~JJ~~·U.9[iz]) -:-- (1[f~:..l]~~~-i0t.-i~,;..i1) ·l· (l[B .. ;~2]·;~-rtCi~P;al.)~ 
L ""'- t .. · ._ ·f .. 
t·~ ""·- :'c. ~ \!, 7 

-·- ..... 'j .. ;; ...... "' 
- t :1"..1.. ..; •• ·~ -:~ 

~--.. .--... ..._ --. ~-- .. 
l. .. t.C~~-~-"-;.. 

tiial ~=d·1a[ k.J : ~;; -( -thalpl-iaCk.]·*S7"' ;_1-) .:;.. ~~::.1 pf1a1 d-: 

thu[kJ := thu[kJ • uul; 
ththeLa[kJ := <ththeta[kJ•57.3> + thetald; 
thbeta[kJ := Cthbeta[kJ•57.3) 
thp[k] := (thp[kJ•57.3) • p1; 
thr[kJ := <thr[kJ~57.3) + rl; 
thphi[k] -- (thphi[kJ•57.3) + ph~ld; 

uturb[kJ := narMal•u~1; 
uturb[kJ := norMal*uul; 
ul[kJ -- ul[kJ•57.3; 
u2EkJ -- u2[k]•57.3; 
u?[k] -- u?[kJ•5?.=; 
uB[k] -- uS[kJ•57.3; 

~.::nd~ 

•·epeat 
4-:.;i~-·itclri(";Juuld yau likf.=: ta E'"3"Je {;Gu.-· loaagi.ludi.nal data Gi""'i a file .(Y,-'t-4) 
"··e.adlrli(an:s); 

if ans ~ •y• then 
~Jegi t-i 

writeln(~data of the si~ulatian : 
i'-eadlat(f·.ild.-3·t2); 

~if "'1. .. , ,... ~ 

~.-.G save 

;~-e.pee;·l 

writeln<f2~tiMe[iJ~thalpha[iJ~thq[iJ,ththeta[iJ~ul[i]~u2[i]); 

1 ................... .;; .. ;.. 
_.... •J''Y-'- ~,... 



,.·e.peat 
w.---i ·-telrt-( "11 Would 
rea~jlrt(alns) ~; 

yuu 

until an& in ["y' 
.if a1rtc 

-begi.n 
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like lat·-d·ir···ectional on a fi.le 

wrlteln<'Enter the naMe of the file where you want to saue the direct 
writeln<"data of the ~~"ulation : 
·t Eadlr·t( fi lda t3); 

'li ;_~ •• , 
.... ":!" 

n;;;peat 

writeln(f3~tiMe[iJ~thbeta[iJ~thp[i]~thr[iJ~thphi[i]~u?[iJ); 
.l. ;:;:.;; ~.i. )/-- ~;; 

writeln<'Uould you like tu saue 
wr~teln('of the turbulenpe on a 
~-·-eadln (arcs); 

~..Jrtt:il atis ii-a 
if ans = "y' then 
b.eg!.rt 

wr··i_ tel n ( ~~ Eriter the tlaMe a·i' 

·the ii,;eloci 
data file (V/N) : 

file where you want to save the ueloci 
.;..wi teln< '" coMpon~~~~ts o:f' the tur·bulence . "):; 

readln(fildat6)~ · 
rewrite(f6~fildat6); 

;--epeat 
wr1teln<f6~tiMe[i]~wturb[iJ.uturb[i]); 

~ ..... epea··t 

w• ..... :i lelr-~{ "1 ~]rtce. =:!<'=ou r-,a~..;e -the ·turbulence da·ta"' ~.;cJuld ~;uu lik.e to or-,alyze: 
writeln("their autocorrelation function? (Y/N) ); 
r·--eadlr~(ailS); 

unt~l ans in r·v·~'n']; 
if ans = "y 9 then 
t..~eg].n 

nliN -- .,} -~ .. 
for l := I to (nlin-j) do 
be~~:~.r-~ 

2:iCf[j] acf[j] ~ <wturb[±J•wturb[i+jJ)/tau; 



writeln<•Enter the naMe of the file where you want 
writelnC"turbulence autocorrelation function :'); 
readln(fildat?); 

for 1 :~ 0 to lag da 
beg1.ri 

save . .;.!,!...,_ ....... ')' '"-· .. 
11.-llC .l' "!" 

writeln(·Uould you like to saue your tiMe histories on a file 
Wtr-i.telr~(Tfor iCa]..t~1afi f-ilt(-::t- ar~a.i.~,..~si.5 ~- .(V/t~) 

rea,Jlrt(ar;s); 
until ans ~n [•y• '<;1 or-e~: -a .Q 

t: t . -~- ? 

b-e:y::;_n 
writeln('Enter the naMe f.i.le for s·t:.ate :~ar-iablas 

th:e n:ane the file for the controls data : 
readlnCfildat5); 
rewrite(f5~fildat5); 

a··epeat 

data .... 
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wa-·itel;l(-f•l:l"tit'te[i]:7~ "'I ~-thalplla[iJ~~ ~ :;>tl-·tq[i] 7 "!i ':'~ :J'ttn.J[i]:.'l'~~ ~ :l'-ththeta 
writeln(f~,thbetaril,~ •.thp[LJ~' '~thr[iJ~· •,thphi[iJ); 
wr:i-te:ln(f5:!'ti,""'"te[i.Js.~ ":rt(~[i],~ ~~u2[i]:;J~ -~:7u3[iJ~--~ ~=«u.tf[i]):;: 

writeln(f5~u5[iJ~' ~~u6[iJ~' ~~u7[i]~' ·~uB[i], ·~u9[i]j; 

i := i + 1; 
until 1 > (jdet+501); 
·c::lose(f4); 
c;luse( f5):; 

erad:; 
€i-id; 

Ge.gin 
~'~-'-··-"" .; .. ll t L1 tt..J! "'l' 

input_~:Jata:; 

~ii:~ula·t:i un; 
er·•d .. 



:i. n ·t.t!1gei""··; 

~{-~;pe data ~-~ di""·ray[1,.. .:·t z:J'-~ '>- ... "l 2] o··f ,.--r~al; 

datal array[l .. S~l-.9.1 .. 12] of real; 
dataZ ---- a,,-~~y[ ·t ..... 8:; ~ .... B ~ 1 , .. ·: 2J of r··eal; 
data3 arrav[1 .. S05~1 •. 12] of real; 
data1 array[0 .. 50~1 .. 6J of real; 
uectur ~ array[l .. 12J af real; 

5)ar r···st--~:7xt~at.~:~(prf=d~~ir· ~ ciata; 
b : ~iata·l; 

k_e :c<a'Z'sin:...; :~ data2.:; 
beta~xO~x~prob~u~z~u • uector; 

dat.a.;j;: 

uar fildat1~fildat2,fildat3~fildat1 3 fildat5- atring[20J; 
fl ::-·fL 3 f:·~~""f~-:~,-f5 ;;; le:x:t.~~ 

var ans :: 

procedu~ .... e intt·-o:; 
begi.n 
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war·i teln( "9 ***ilf-:***.******************i:f~***~****':!!·~*-**********~·********.,); 
w.-·i.-tcln.~.: 

;,.4ri·te.lrl(" WELCOME~ 

M 0 D M M K f . P 
tJ~ ... i -tel r·:; 

writeln("••••••••••••••*•*•*********•••••••••••••*****•••••••******'); 
• .,,._..-. ..;; .,3.._,_._·1! ••.. ,, '"' 
'P~I .:a. ,._,C-'-fil':l' 

~-Jri.""telr-,('~ Ii-•i:c progra.~"s pe~··fGtt"'15 l.!-.a dat=\a~Jeci i"i{Jdel ~2si::.ia~alion {Js'ing·~ > 
~,i . .-i.tel.-.(~:·a t'-1t.RltipJe tl:,:1ode1 K-~~lt·~'t(3ri riltcr:ing ~3\f.llpi~---i((..(~Cr·tr, :r. >~:; 

» •••. ;;-~-i tEln; 
writeln('Hit <RETURN> to continue.~); 

if seedll ( 0 then 

U.Lr.,; 

if seed21 ( 0 then 
seed2'1 seed2:-: 



se:ed31 170 • {seed31 Mod 
if aeed31 < 0 then 
seed31 saed3l -~ 30323; 

,. 

fttr.ctiGn: t··artdOM2 : real; 
:..,;ar ·t.erip ;:;; real; 
begin 

d:iv 

saed12 1 71 -~ (seed12 &'lad 1 ?7> 2 • (seed12 diu 177); 
if seed12 < 0 then 
seed12 := seed12 + 30269; 
seed22 := 172 • (see~22 Mod 176) - 35 • (seed22 diu 176); 
if seed22 C 0 then 
seed22 := seed22 + 30307; 
seed32 == 170 * (seed32 Mod 1?8) - 63 * (seed32 diu 178); 
if seed32 < 0 then 
seed32 := seed32 • 30323; 
teMp :; seed12/30269.0 + seed22/3030?.0 + seed32/30323.0; 
~---andol""a2 ,., - ~;:enp -- tt··unp ( tf.Wip >; 

end; 

procedure norMal (sig ~ real; var norM : r·ei3l); 
~:a&..- t.a :?;J !:!'z :Fr~ig2 ;: i.--eal'; 

begin 
u : = ,~andul'\ ·a ; 
d : :::::: t'"·.andon2; 
sig2 :z sqrt(sig); 
z := sqrt(-2.0*ln(d))*~ig2; 

end; 

p.-·acedu;-e ge·-t_data __ in; 
uar i~J.k- integer; 
begir1 
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wti telr-i ('~[;-,tea -tha r·tai~e of tt•e ·fi 1 e whe.a·E t:.tH~~ a"~atri ce:s da-ta and the s 
writeln('data for the Multiple Model KalMan filter analysis 
readln(fildatl); 
reset(f1 7 fildat1); 
r-eadl;1( --r-·1 :;l'n); 

~.,--it:=adl r·; ( ·f"t ;~ ··f(~); 

~..-eadl;·~.(fl 3 flou); 

t·-e:adlri(··f·] :~dt); 
..r-.-.-. ..... .i "i ~·-:. i" -~ -· -!i- ,;~:.•""" ... 
I C:.Q\.JI.l..l'lo..._. 1'. ' :;;> 'L. ~ _,;? 

;"'·-eadl~r~(f"i ~seed··;·; .r-seed2··a :.:,2;JF.et13·t);: 

readln(fl ,seed12~seed22~seed32); 
for k := 1 to nfc do 
begin 

do 



e.r•d; 
2i-,d~ 

begirt 
for i : = 
L~egi.r~ 

t.o r;fc dG 

to n do 

readln(fl~b[i~1 ~kl,b(i,2.kJ,b(i,3,kJ~b[i~4.kJ~b[i~5,kJ~ 

b[is6.kJ~b[i~7,kJ.b[i.8~k] 3 b(i~9~k]); 

end; 
for i := 1 to nau 

readln(fl ,r[i,1]~r[i~2J,r[i.3J~r[i,1].r[i,5J,r[i.6]); 
. . 

far l := 1 to nov d6 
begin 
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r-eadli1( f1 .~:-t[i ~ 1 J =~·~[i 7"2] ~h[i ~3] 7 t-)[i. :?4J ~,t·-.[i 7 '5] :::!··•[i :2'6] ~t-;[i;; ~7 ] :,(";[i 7 3]); 

end; 

heg1.n 
for i := 1 to n do 
bE:gir; 
readln(fl,ke[i,l ,kJ.ke[i,2.kJ.ke[i,3.kJ,ke[i.1,kJ.ke[i,5,kJ.ke[i, 
end; 

end; 
for k 1 to ;:1·fc do 
begin 

for i := 1 to nou do 
begi ,.-, 

~ ..... eadln(f-~ :;l'.sin=J[t :?·~ .7 kJ :::ositiu[i ~2 :;oft-... ) :l'si;i:..J[i :2'3 ;:,~(] =-siriv[i ~if· 7 k] ~5inu[i :7 

:t;irvJ[i :.>6 .•. kJ >; 
erid; 

er1d:; 

begin 
tG rtf'c do 

readln(ft,beta[kJ); 
€:f1(i: 

for k := 1 to nfc do 
~ ...... ...._ ··~ "" ,..... 
UC".':_-:1'.1..'' 

readln<fl ~prob[k]); 

procedure siMulation; 
;.::c:~r· ~- :;: :i i ::r.J :;; k ~: .i n:·"Li.=~J€:1: -:r 

!:iUM '"SUM .. i :;5Urt2 .:; ~ ... eal:; 
:r= ·-t .. ~:; u :.· iL n ·t ;r:::. f.! f=. ,,~. ~r 

uectar = array[1 .. 12] of ~eal; 



L;.:::gl. r-a 
iteration& := ruund(tf/dt); 
wa··f telr,( ~ Enite;~ tf·;e nat~e G ·f t!-ae f'l.le w:i tt·• ·tt·1e Glate v.at""·iabl•:::s da-ta 
~--·-ea.~dl ,--~ ( fi. l ;c~~= t.Z) ;; 
i··;2set< ·f2 7 -fildat.Z>; 
readln(f2~tiMe~x[ll.x[2J,x[3J~x[1]); 

re6dln(f2~x(5]~x[6l.x[?J.x[8]); 

wr~teln('Enter the name af 
~.-.··cadln ( ·f:i ldat3); 
reset(f3~fildat3); 

t.he. --~~ t 1 e wj.l_h 
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writeln<~Enter the naMe of th~ file where you want to saue the probab 
writeln('for each of the selected configurations of Matrix B -
readln(fildat1); 
rewrite(f1~fildat4); 

for i := 1 to n do 

.'if (:... <> .::l) t~--'lett 

x[iJ 

x[i] := x(i] - xOliJ; 
e:nd ~; 
for i := 1 to nou do 
be~_~i:n 

norAal(r[i~iJ~u[iJ); 

Efti1 ~ 

~-......... ····-. ... .,..,_ 
t..J.-!1:':~~-'ol. \II 

.su.~l *-~~ 0 .. 0; 
for j := ! to n do 
begin 
~~Uti-: :: :::-:: SUM'I -~A h[ i _.,j ]it- X[j]; 

:e.nd; 

fur k := 1 to nfc do 
bc::i:;Jir·t 

for i :;:;: 1 i.o ni do 

for j := I to n do 
beg~in 

:t --~- ~:k:;:::fe:) then 

fl 
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for j := 1 to oau do 
V_3~gir¥ 

.suM : ::;; ~sur. + -~::.e[ i '<'j :A' &~]*zr[j :~ir...]; 

)rJ-~a-t[i =<'k.] ... .,... Xpi'*"'tad(i :JkJ -~ :SUM; 

~;;::l-id:; 

end.~ 

writeln(f1~tiMe~prob[fc-2J~prab[fc-1J~prob[fc]~prob[fc+1J~prob[fc+2J) 

for ii :~ 2 to (iterations+1) do 
begin 

for i := 1 to nau do 
~---- ....... ..... . .;. ., ... ,_ 
UC!-::J·.l.-'1!: 

non"lal (r[i ~ i 1 ~u[ i]); 

~-==n.ci::;: 

readln(f2 7 tiMe~x[1J.x[2]~x[3J,x[1J); 

readln(f2~x[5J~x[6J,x[?J~x~8J); 

readln<f3,tiMe,u[1J,u[2J,u(3J~u~1J); 

readln<f3~u[5J~u[6J.u[7J~wLBJ=u[9J>; 

for i :~ 1 to " do 

u[i] := u[iJ/57.3; 

if (i {} 3 ) then 

x[i] := x[i]/57.3; 
i=.nn:; 

x[i] := x[i] - xO[tl; 
end; 
for i := 1 to nou do 

O.D; 
- ... ., 
"'' ""'" II tn n. dt~ 

~Jegiri 

sur.i ~ "" sun1 <- hLt ,j ]*x[j J; 
~:!:~~ ~rtti ;: 

z[iJ := suMl + u[iJ; 

far·· k ... 

beg:i.n 

bf.::f~:t li 

-~ t_a r1fc du 

~::; tU-'\ -, '"' ···· 0 ,. 0 .;: 
,, ... u ..... tu I ~ '1.-tl ~-: 

begin 
s.uo·~ ;; ::~.: sun1 -:· '.a[i .~-i -:rk]·:.t-xtta·t[j ~kJ:; 

t:::i:-tC~; 

begin 



b-r..::g:tn 
~;:jUri ~ :-::= 0 .. Q; 

e:r~gJ; 

fGF' _'L 

begin 
SU•"• : ·=-= 0. U:; 

t.o n du 

for J := 1 to nou do 
be:qin 
SUM ;:::;: SUM -~L ~<.e[i':.j ~~~~J-*Z\.-[j ;ar[.-::_]; 

er~c~; 

.. <a·~a-:_[i::]kJ ... ·- }(f.JF"'f~d[i: .. ~7 .. ] + :r.ltlt~; 

end; 

be~Ji.n 

fGr 
be:g:i.n 
f5UM :::;.::= O .. D; 

to nou ~---~ ....., ....... 

for j -- l to nou do 
iJegin 
5Ui•i ~=--:: SUM + :5in~=(i =='j :;<k]-~·zr[j :.k]; 

e:n<1; 

end; 
SUM ;.-.:::: f.}.fJ; 

for ~ :~ 1 to nau do 
begin 
6t.ii't : .::" ~:;ut1 -~ zr( i ,. ~-<.]·-~·t_ef1p[-i J:; 

na ..... [ ~<. J ·"' --- h Ui"~; 

s t.i1"''~ : ;.:;.. -·- ~s tb''' i' 2 .. [~ :; 
if (suM < -40.0 ~ then 

GUi-1 ~ .::::: --~1·!] .. 0:; 

e[kJ := exp(suM); 

ernd; 

·for·· ~..: 

~=~e:g 1. r; 

r-: n .. 
~-, .. u ':!' 

SUM :~ SUM+ prob[k]*beta[k]•e[kJ; 

for k := 1 to n~c do 
t~e~j t r~ 
prob[k] .- prob[kJ•beta[kJ•e[k]/su~; 

tt (~:n··nb[k] < o.uncn ) -then 

begin 
prob[k] ·- 0.0001; 
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end:; 
SUM := 0.0:; 

for k := 1 to nfc do 
begin: 
~5UM : ·= 5UM ·J· pt .. ··ob[k]; 

end; 
for k := 1 to nfc do 
begin 
prob[kJ := prob[kl/suM; 

writeln(f4,tiMe~prob[fc-2l 3 prob[fc-1] 7 prob[fc]~prob[fc+~J~prob[fc+2 

ertd; 
clase(f4); 
clo:oe(f3);:: 
close(f2):; 
;·e:peai:. 
writeln(~Dnce you haue the res1dual data, would you like to analyze 
w;-·itell:l("'theil" at.d~nco;rr·elation furu>li\.H'i ·;:; <V~··N> '>~ 

.-·eadln(an:s); 
until an:s in [~y•.•n•J; 

if an& ~ ~y' then 
tJegi.n 
writeln<~Enter the "lag'' of the autocorrelation functions (integer> 

, ... ·eadln(lag); 
for i := 1 to nou do 
bef.Ji.n 

fur· j :;::;; lag do 
begin 

acf[j 3 i] --·- 0.0:; 
tau :: = i. terati.m•i:i··--j; 
for ii := 1 to (iteratians-j) do 
begirt 

acf[j.i] .- acf[j,i] + (re:s[ii,iJ•ras[ii+j,i])/tau; 
end; 

erad; 

writeln(~Enter the naMe of the file where you want to saue the'); 
~.-;···i. telrt ( "'aii"'c;···af·t ~t:r:ata ~~ut.ocni-relatiorr. ftlftc.ti~Ji'"ts ~ 

t'··eadlrt( fildatS-); 
rewrile(f5~fildat5>; 

for 1 :: 0 to lag do 
u~::~1tr1 

writeln(f5 L,acf[i~1J~acf[i,ZJ,acf[i~3]~acf[i~4]~acf[i~5J~acf[i 7 6 
_ .. ,_ .. .., .. --~ "" 
r.:::lt"-.1-:-:· 

c~luse(f5); 

E: r·i! ci :~: 

beg 'in 
., ···-'· ~·---.z.-;ILI U·.l" 



//[pp,ke,pzri,betal = filter<a,b,h,d,r,q) 
for i=1:8, g(i,l)=aCi,ll; 
for i=1:8, g<i,2)=a<i,5); 
gqg = g*q*g'; 
[eval,k,pJ = destimatorca,h,gqg,r); 
ke = inv(a)*k; 
pp = a*p*a' + gqg; 
pzr = h*PP*h' + r; 
beta= 1./sqrt(((6.2832l**6l*detCpzr)l; 
pzri = inv(pzr); 
retf 
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//[phib,hb~gamqgamJ = corstep2Ca,b,h,d,r,q) 
for i = 1 : 8 , g ( i , 1 ) =a ( i , 1 ) ; 
for i=i:B, gCi,2l=aCi,5); 
gqg ::::: g*q*g, ; 
[eval,k,pJ = destimatorCa,h,gqg,rl; 
ke = inv(a)*k; 
pp = a*p*a' + gqg; 
pzr = h*PP*h' + r; 
beta= 1./sqrt(((6.2832l**6l*det(pzrll; 
pzri = inv(pzrl; 
iB = eye<B>; 
i2 = eye(2); 
i6 = eye(6); 
all = a*(i8-ke*hl; 
a12 = g; 
a13 = -a*ke; 
a21 - O.O*eyeC2,8l; 
a22 = C0.5,0.0;0.0,0.5J; 
a23 - O.O*eye(2,6l; 
a31 = O.O*eyeCG,Bl; 
a32 = O.O*eyeC6,2l; 
a33 = o.o•eye<6,6l; 
phib = [ a11,a12,a13;a21,a22,a23;a31,a32,a33 J; 
gll = O.O*eye(8,2l; 
g12 = O.O*eye<8,6); 
g21 = i2; 
g22 = O.O*eyeC2,6l; 
g31 = O.O*eye<6,2l; 
g32 = i6; 
gammab = [g11,g12;g21,g22;g31,g32J; 
qb12 - O.O•eye(2,6l; 
qb21 = O.O*eyeC6,2l; 
qb = [ q,qb12;qb21,rJ; 
gamqgam = gammab*qb*gammab'; 
hb12 = O.O*eye(6,8l; 
hb = [h,hb12J; 
ret f 

//[ppl,pzr1,pzri1,beta1J = step2p2(phib,hb,gamqgam,rl 
Ceval,k,pl = destimatorCphib,hb,gamqgam,rl; 
ppl = phib*p*phib' + gamqgam; 
pzrl = hb*ppl*hb' + r; 
pzril = inv(pzr1l; 
beta1 = 1.0/sqrtCCC6.2832l**6l*det(pzrlll; 
retf 
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Reconfiguration Algorithm 

The reconfiguration algorithm introduced in Chapt IV has been 

implemented in the program RECONF4.P. The listing of this program is not 

enclosed because of its size; however, a list of the subroutines with 

their purposes is reported. 

Procedure INTRO: the task of the program is introduced. 

Procedure INPUT_DATA: the aerodynamic data for the damaged 

and undamaged conditions, the inertial and geometric 

characteristics and the flight conditions are given as 

input to the program. 

Procedure SET INIT CONDIT: the angular conversions are per­

fanned and the deflection 1 imits for the control sur­

faces are set. 

Procedures STAB_DERIVATIVES, ~MATRIX, B_MATRIX: the state 

variable mathematical model of the aircraft for undama­

ged conditions is built using the dimensional stability 

and control derivatives. The modeling procedures are 

taken from Ref.[l3]. 

Procedures O_STAB_DERIVATIVES, O_A~MATRIX, D_B_MATRIX, 

REC B MATRIX: the state variable mathematical model of 

the aircraft for damaged conditions is built using the 

dimensional stability and control derivatives. The 

'RECB' matrix, calculated in the procedure REC_B_MATRIX, 

is relative to all the available control surfaces. 

Procedure INPUT_DISPLAY: the resulting A, B matrices pre­

viosly calculated for nominal and damaged conditions are 



saved on a file. 

Procedure DE FUN: a certain number of elevator inputs are 

built to be used for simulation purposes. 

Procedure DA FUN: a certain number of ailerons inputs are 

built to be used for simulation purposes. 

Procedure DR_FUN: a certain number of rudder inputs are 

built to be used for simulation purposes. 

Procedure RK4: a Rounge Koutta 4-th order integration is 

performed. 

Procedure RK4 FUN: the state variable models for all the 

different flight conditions are implemented. 

Procedure RECONF_INPUT: all the parameters for the dynamic 

simulation of the reconfiguration are given by the user, 

that is: 

- Reconfiguration time step; 

- Selected elevator manoeuver; 

- Selected aileron manoeuver; 

- Selected rudder manoeuver; 

- Time instant when the damage occurs; 

-Time instant when the reconfiguration algorithm is 

applied; 

-Minimum value for [u(n)-u(n-1)]. 

Procedure WEIGHTS: the weight with which each available 

healthy control surface contributes to the reconfigura­

tion is calculated. The used criterium is shown in 

Chapt. IV (Eqs. [4.15] and [4.16]). 

Procedure RECONF CONDIT: all the data and the conditions for 
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the reconfiguration process are saved on a file for 

future analysis and considerations. 

Procedure WEIGHTED RECONFIGURATION: the amounts of control 

needed for reconfiguring the selected states at that 

particular time instant (calculated in the procedure 

RECONFIGURATION) are spread among the available healthy 

control surfaces. A check is made for each control sur­

face such that the resulting input desired for there­

configuration doesn't exceed the deflection 1 imits. 

Procedure RECONFIGURATION: the overall dynamic simulation of 

the reconfiguration is performed, by using the procedu­

res RK4 and RK4_FUN. First, from the initial time to the 

time when damage occurs, the dynamic responses of the 

damaged and undameged aircraft are coincident; then, we 

have a drastically changed dynamics from the time when 

the damage occurs to the time when the reconfiguration 

algorithm is applied; finally, the reconfiguration algo­

rithm takes over and the amounts of control power needed 

in order to reconfigure the key states 'p', 'q' and 'r' 

for that particular time instant are calculated. Such 

amount is then sent to the WEIGHT RECONFIGURATION pro­

cedure. All the results of the dynamic simulation can 

be saved, if so desired, on output files for future 

analysis. 
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Feedback Structure Redesign 

A certain number of MATRIXx user defined functions have been 

implemented for redesigning the Feedback Structure with the approach 

introduced in Chapt.V. In the following pages the MATRIXx functions 

used in Step 1, Step 2 and Step 3 of Chapt. V are reported: 

CONTPOLES.FNC 

DAMDYNAMICS.FNC 

REDESIGN. FNC 
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//[kl,kld,acJ=contpolesCalong,blong,alat,blat); 
polesl=C-1.1510+2.8598*jay,-0.0003+0.089*jayJ; 
kl=poleplace(al,bl,polesl); 
blk=bl*kl; 
acl=al-blk; 
polesld=[-0.0701+1.6858*jay,-0.5085,-0.00BJ; 
kld=poleplace(ald,bld,polesld); 
bldk=bld*kld; 
acld=ald-bldk; 
z=O.O*eye(4); 
ac=Cacl,z;z,acldl; 
retf 

//[adamcl,eivecdam,eivaldamJ=damdyn(adam,bdam,k); 
bdamk = bdam*k; 
adamcl=adam-bdamk; 
Ceivecdam,eivaldaml=eig(adamcl); 
retf 
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//[redk,redadamcll = redesignCeivec,eival,ared,bred); 
eveo: =ei ve•:; 
lam=eival; 
a=ared; 
b=bred; 
n=8; 
for i =1: n, ••• 
eigvec1Cil=eveo:(i~1); 

f c•r i = 1 : n, ••. 
eigvec2(i)=evecCi,2l; 
f c•r i = 1 : n , ••• 
eigvec3(i)=evec(i,3); 
for i=l:n, ••. 
eigvec4Ci)=evecCi,4); 
fen'" i=l:n, ••. 
eigvec5Ci)~evecCi,5); 

for i = 1: n, ••• 
eigvec6Ci>=evecCi,6); 
for i=1:n, ••• 
eigvec7(i)=evecCi,7); 
for i=l:n, ••• 
eigvec8(i)=evecCi,8l; 
eigvec1t=eigvec1'; 
eigvec2t=eigvec2'; 
eigvec3t=eigvec3'; 
eigvec4t=eigvec4'; 
eigvec5t=eigvec5'; 
eigvec6t=eigvec6'; 
eigvec7t=eigvec7'; 
eigvec8t=eigvec8'; 
q=eye(8); 
m=eye(8); 
id=eyeC8); 
11 =i nv (1 am ( 1) *i d 
12=i nv (1 am(2) *i d 
13=inv(lamC3)*id 
14=inv<lam(4)*id 
15=inv(lam(5)*id 
16=inv(lam(6)*id 
17=inv(lam(7)*id 
18=i nv ( 1 am< 8) -~<·i d 
11t=l1'; 
12t=l2'; 
13t=l3'; 
14t=14'; 
15t=l5'; 
16t=l6'; 
17t=l7'; 
18t=l8'; 

a)*b; 
a)*b; 

- a)*b; 
a)*b; 

- a)*b; 
aH·b; 

- a)*b; 
a)*b; 
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wlt=eigvec1t*q*l1*inv(l1t*q*l1); 
w2t=eigvec2t*q*l2*inv(l2t*q*l2l; 
w3t=eigvec3t•q•l3*inv(l3t*q*l3); 
w4t=eigvec4t*q*l4*invC14t*q*l4l; 
w5t=eigvec5t*q*l5*invC15t*q*l5); 
w6t=eigvec6t*q*I6*inv(l6t*q*l6); 
w7t=eigvec7t*q*l7*invC17t*q*l7l; 
w8t=eigvec8t*q*l8*invC18t*q*l8l; 
w1=wlt'; 
w2=w2t'; 
w3=w3t'; 
w4=w4t'; 
w5=w5t'; 
w6=w6t'; 
w7=w7t'; 
w8=w8t'; 
vl=inv(lam(ll*id al*b*w1; 
v2=inv<Iam(2)*id - a)*b*w2; 
v3=invClam(3)*id - al*b*w3; 
v4=inv(lamC4l*id - a)*b*w4; 
v5=inv<lam(5l*id a)*b*w5; 
v6=inv(lam(6)*id - al*b*w6; 
v7=invClam(7)*id al*b*w7; 
v8=inv(lam(8)*id - a)*b*w8; 
w=[w1,w2,w3,w4,w5,w6,w7,w8J; 
v=Cvl,v2,v3,v4,v5,v6,v7,v8J; 
redk=w•inv(m*vl; 
redadamcl=a+b*redk*m; 
retf 
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