Skip to main content
Log in

Modelling environmental effects of selected agricultural management strategies with regional statistically based screening LCA

  • LCA FOR AGRICULTURE
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Despite the farm being considered by many as the most suitable level of decision-making and strategic management in agriculture, there is an increasing interest in evaluating agricultural management strategies at the regional level. Recent initiatives attempted to aggregate and generalise farm-level lifecycle inventory (LCI) data and lifecycle impact assessment (LCIA) results to describe the environmental performance of agricultural regions. This article describes our development and application of a regional statistics-based approach for constructing virtual representative farms (VRFs), representing dominant farm types for a given region, as a tool for comparing alternative regional agricultural strategies in contexts of insufficient farm (e.g. LCI) data.

Methods

Based on statistical sources, we constructed VRFs of the dominant farm types in the largely agricultural region of Brittany, France. Environmental impacts of different agricultural management strategies were estimated at the regional level by modelling the strategies as changes in VRF-based LCIs, calculating LCIAs and extrapolating their mean per-ha impacts to the total land use in the region. Based on this assessment, performed using a regional lifecycle assessment framework, we analysed relative environmental impacts of each management strategy on the region. A strategy-comparison table was built to allow decision makers to understand the potential regional environmental consequences of implementing each strategy.

Results and discussion

Once VRFs impact assessment results were extrapolated to the regional level, all strategies show environmental impacts per ha similar to those of the baseline, with differences ranging from −15 to +6%. The scenario featuring centralised fodder drying by 50% of cattle farms (50FOD) is the only one featuring surpluses for all products, due to associated cattle diet adjustments including reduced maize silage intake and partial substitution of concentrate feeds. The scenario featuring grass specialisation by all cattle farms (100GRA) shows a large deficit of grassland products, suggesting that a region-wide extensification strategy would not be self-sufficient.

Conclusions

The method developed enables comparing environmental consequences of region-wide implementation of agricultural strategies, yet, for our case study, it is particularly difficult to identify a “best” one. Nonetheless, the method serves as an initial step for preselecting strategies to investigate at a more detailed level. Prioritisation of a given strategy would likely be based on the environmental pressures considered most pressing by regional decision makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acosta-Alba I, Lopéz-Ridaura S, van der Werf HMG et al (2012) Exploring sustainable farming scenarios at a regional scale: an application to dairy farms in Brittany. J Clean Prod 28:160–167

    Article  Google Scholar 

  • Agabriel J (2010) Alimentation des bovins ovins et caprins. Besoins des animaux—Valeurs des aliments—Tables INRA 2010

  • AGRESTE (2011) Agreste, statistique agricole annuelle 2010. Direction Régionale de l’Alimentation de l’Agriculture et de la Forêt, Service Régional de l’Information Statistique et Economique, Rennes

    Google Scholar 

  • AGRESTE (2015) Agreste Zoom sur... Productions fourragères 2014: Des rendements très satisfaisants. Direction régionale de l’Alimentation, de l’Agriculture et de la Forêt

  • AGRESTE (2013) Résultats du Recensement Agricole 2010. Aviculture: une volaille française sur trois est bretonne. Direction Régionale de l’Alimentation de l’Agriculture et de la Forêt, Rennes

    Google Scholar 

  • Avadí A, Nitschelm L, Corson M, Vertès F (2016) Data strategy for environmental assessment of agricultural regions via LCA: case study of a French catchment. Int J Life Cycle Assess 21:476–491

    Article  Google Scholar 

  • Bartl K, Verones F, Hellweg S (2012) Life cycle assessment based evaluation of regional impacts from agricultural production at the Peruvian coast. Environ Sci Technol 46:9872–9880

    CAS  Google Scholar 

  • CAB (2014) The Agrifood industry in Brittany: clear and comprehensive—the 2014 figures. Chambres d’Agriculture de Bretagne, Rennes

    Google Scholar 

  • CAB (2013) Résultats PORCS Bretagne 2013. Chambres d’Agriculture de Bretagne, Rennes

    Google Scholar 

  • Cadoret P (2008) 8 systèmes, 40 élevages en Bretagne. Chambres d’agriculture de Bretagne, Rennes

    Google Scholar 

  • CAGO (2011) 30 ans d’enquête avicole 1981–2011 (30 years of poultry survey 1981–2011). Chamber d’Agriculture du Grand-Ouest

  • CCI (2013) Chiffres Clés Bretagne 2013 (key figures Brittany 2013). Chambre de commerce et d’industrie de Bretagne, Rennes

    Google Scholar 

  • Corson MS, Avadí A (2015) Environmental assessment of diversification strategies of mixed farming at district and catchment levels. Deliverable D4.7, of the FP7 CANTOGETHER project, Crops and ANimals TOGETHER

  • Dalgaard R, Schmidt J, Flysjö A (2014) Generic model for calculating carbon footprint of milk using four different life cycle assessment modelling approaches. J Clean Prod 73:146–153

    Article  Google Scholar 

  • de Vries M, de Boer IJM (2010) Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest Sci 128:1–11

    Article  Google Scholar 

  • Delaby L, Vertes F, Ruiz L et al (2015) Des scénarios co-construits pour une transition agroécologique. In: Comment réconcilier agriculture et territoire. Vers une agroécologie des territoires. Editions Quae, Versailles, pp 49–74

    Google Scholar 

  • Del Prado A, Crosson P, Olesen JE, Rotz CA (2013) Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems. Animal 7:373–385

    Article  Google Scholar 

  • EC_JRC (2005) Soil Atlas of Europe

  • Ellies M-P (ed) (2014) Les filières animales françaises—Caractéristiques, enjeux et perspectives (French animal supply chains—Characteristics, issues and perspectives). Lavoisier, Paris

    Google Scholar 

  • FAO (2010) Greenhouse gas emissions from the dairy sector: a life cycle assessment. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus H et al (2007) Overview and methodology. Data v2.0 (2007). Swiss Center For Life Cycle Inventories

  • Gascuel C, Ruiz L, Vertès F (eds) (2015) Comment réconcilier agriculture et littoral ? Vers une agroécologie des territoires (reconciling agriculture and coastal areas? Towards territorial agroecology). Quae, Versailles

    Google Scholar 

  • González-García S, Belo S, Dias AC et al (2015) Life cycle assessment of pig meat production: Portuguese case study and proposal of improvement options. J Clean Prod 100:126–139

    Article  Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    Article  CAS  Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R et al (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: guide. IIb: operational annex. III: scientific background. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hijbeek R, Wolf J, Van Ittersum M (2014) Compatibility of agricultural management practices and types of farming in the EU to enhance climate change mitigation and soil health. A typology of farming systems , related soil management and soil degradation in eight European countries

  • IDF (2010) A common carbon footprint approach for dairy: the IDF guide to standard lifecycle assessment methodology for the dairy sector. International Dairy Federation

  • IPCC (2006) 2006 IPCC guidelines for National Greenhouse Gas Inventories. The Intergovernmental Panel on Climate Change (IPCC), Geneva

    Google Scholar 

  • IPCC (2014) 2013 revised supplementary methods and good practice guidance arising from the Kyoto protocol. The Intergovernmental Panel on Climate Change (IPCC), Geneva

    Google Scholar 

  • Jensen AA, Hoffman L, Møller BT, Schmidt A (1997) Life cycle assessment (LCA)—a guide to approaches, experiences and information sources. European Environment Agency, Denmark

    Google Scholar 

  • Koch P, Salou T (2015) AGRIBALYSE ® : methodology version 1.2. Ed. ADEME, Angers

    Google Scholar 

  • Lehuger S, Gabrielle B, Gagnaire N (2009) Environmental impact of the substitution of imported soybean meal with locally produced rapeseed meal in dairy cow feed. J Clean Prod 17:616–624

    Article  CAS  Google Scholar 

  • Levain A, Vertès F, Ruiz L et al (2015) “I am an intensive guy”: the possibility and conditions of reconciliation through the ecological intensification framework.

  • Loiseau E, Junqua G, Roux P, Bellon-Maurel V (2012) Environmental assessment of a territory: an overview of existing tools and methods. J Environ Manag 112:213–225

    Article  Google Scholar 

  • Nguyen TTH, Doreau M, Corson MS et al (2013) Effect of dairy production system, breed and co-product handling methods on environmental impacts at farm level. J Environ Manag 120:127–137

    Article  CAS  Google Scholar 

  • Payraudeau S, van der Werf HMG (2005) Environmental impact assessment for a farming region: a review of methods. Agric Ecosyst Environ 107:1–19

    Article  Google Scholar 

  • Reckmann K, Traulsen I, Krieter J (2013) Life cycle assessment of pork production: a data inventory for the case of Germany. Livest Sci 157:586–596

    Article  Google Scholar 

  • Regan J, Nesme T, Korevaar H (2015) Synthesis of advantages and gaps of existing innovative mixed farming practices and systems at the district level. Deliverable D3.6, of the FP7 CANTOGETHER project, Crops and ANimals TOGETHER

  • Rosenbaum RK, Bachmann TM, Gold LS et al (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546

    Article  CAS  Google Scholar 

  • Sadok W, Angevin F, Bergez J-E et al (2009) MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron Sustain Dev 29:447–461

    Article  Google Scholar 

  • Salou T, Espagnol S, Gac A et al (2014) Life cycle assessment of French livestock products: results of the AGRIBALYSE® program. In: 9th International Conference LCA of Food, 8–10 October 2014

  • Salou T, Le Mouël C, van der Werf HMG (2017) Environmental impacts of dairy system intensification: the functional unit matters. J Clean Prod 140(Part 2):445–454

    Article  Google Scholar 

  • Vayssières J, Vigne M, Alary V, Lecomte P (2011) Integrated participatory modelling of actual farms to support policy making on sustainable intensification. Agric Syst 104:146–161

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded under the EU seventh Framework Programme by the CANTOGETHER project no. 289328: Crops and Animals Together (http://www.fp7cantogether.eu/). The views expressed in this work are the sole responsibility of the authors and do not necessary reflect the views of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Avadí.

Additional information

Responsible editor: Greg Thoma

Electronic supplementary material

ESM 1

(DOCX 76 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avadí, A., Corson, M.S. & van der Werf, H.M. Modelling environmental effects of selected agricultural management strategies with regional statistically based screening LCA. Int J Life Cycle Assess 23, 12–25 (2018). https://doi.org/10.1007/s11367-017-1300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-017-1300-4

Keywords

Navigation