Skip to main content
Log in

Truncated form of tenascin-X, XB-S, interacts with mitotic motor kinesin Eg5

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

XB-S is a protein with an amino-terminal-truncated form of tenascin-X (TNXB). However, the precise roles of XB-S in vivo are unknown. In this study, to determine the role of XB-S in vivo, we screened XB-S-binding proteins. FLAG-tagged XB-S was transiently introduced into 293T cells. Then its associated proteins were purified by immunoprecipitation using an anti-FLAG antibody and its components were identified by mass spectrometric analyses. Mitotic motor kinesin Eg5 was identified in the immunoprecipitates. XB-S and Eg5 proteins were co-localized in the cytoplasm in interphase and mitosis, but XB-S did not localize on mitotic spindle microtubules, on which Eg5 prominently localized in mitosis. As for Eg5 binding to XB-S, glutathione S-transferase-fused XB-S expressed in vitro directly bound to full-length Eg5 translated in reticulocyte lysate, and the XB-S-binding region was located in the motor domain of Eg5. Furthermore, during cell cycle progression XB-S showed a similar expression profile to that of Eg5. These results suggest possible involvement of XB-S in the function of Eg5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xie T, Rowen L, Aguado B et al (2003) Analysis of the gene-dense major histocompatibility complex class III region and its comparison to mouse. Genome Res 13:2621–2636. doi:10.1101/gr.1736803

    Article  CAS  PubMed  Google Scholar 

  2. Shen L, Wu LC, Sanlioglu S et al (1994) Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region. J Biol Chem 269:8466–8476

    CAS  PubMed  Google Scholar 

  3. Blanchong CA, Zhou B, Rupert KL et al (2000) Deficiencies of human complement component C4A and C4B and heterozygosity in length variants of RP-C4-CYP21-TNX (RCCX) modules in caucasians The load of RCCX genetic diversity on major histocompatibility complex-associated disease. J Exp Med 191:2183–2196. doi:10.1084/jem.191.12.2183

    Article  CAS  PubMed  Google Scholar 

  4. Burch GH, Gong Y, Liu W et al (1997) Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nat Genet 17:104–108. doi:10.1038/ng0997-104

    Article  CAS  PubMed  Google Scholar 

  5. Wei J, Hemmings GP (2004) TNXB locus may be a candidate gene predisposing to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 125:43–49. doi:10.1002/ajmg.b.20093

    Article  Google Scholar 

  6. Gardella R, Zoppi N, Assanelli D et al (2004) Exclusion of candidate genes in a family with arterial tortuosity syndrome. Am J Med Genet A 126:221–228. doi:10.1002/ajmg.a.20589

    Article  Google Scholar 

  7. Kamatani Y, Matsuda K, Ohishi T et al (2008) Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population. J Hum Genet 53:64–73. doi:10.1007/s10038-007-0219-1

    Article  CAS  PubMed  Google Scholar 

  8. Veit G, Hansen U, Keene DR et al (2006) Collagen XII interacts with avian tenascin-X through its NC3 domain. J Biol Chem 281:27461–27470. doi:10.1074/jbc.M603147200

    Article  CAS  PubMed  Google Scholar 

  9. Lethias C, Descollonges Y, Boutillon MM et al (1996) Flexilin: a new extracellular matrix glycoprotein localized on collagen fibrils. Matrix Biol 15:11–19. doi:10.1016/S0945-053X(96)90122-5

    Article  CAS  PubMed  Google Scholar 

  10. Minamitani T, Ikuta T, Saito Y et al (2004) Modulation of collagen fibrillogenesis by tenascin-X and type VI collagen. Exp Cell Res 298:305–315. doi:10.1016/j.yexcr.2004.04.030

    Article  CAS  PubMed  Google Scholar 

  11. Lethias C, Carisey A, Comte J et al (2006) A model of tenascin-X integration within the collagenous network. FEBS Lett 580:6281–6285. doi:10.1016/j.febslet.2006.10.037

    Article  CAS  PubMed  Google Scholar 

  12. Egging D, van den Berkmortel F, Taylor G et al (2007) Interactions of human tenascin-X domains with dermal extracellular matrix molecules. Arch Dermatol Res 298:389–396. doi:10.1007/s00403-006-0706-9

    Article  CAS  PubMed  Google Scholar 

  13. Gitelman SE, Bristow J, Miller WL (1992) Mechanism and consequences of the duplication of the human C4/P450c21/gene X locus. Mol Cell Biol 12:2124–2134

    CAS  PubMed  Google Scholar 

  14. Tee MK, Thomson AA, Bristow J et al (1995) Sequences promoting the transcription of the human XA gene overlapping P450c21A correctly predict the presence of a novel, adrenal-specific, truncated form of tenascin-X. Genomics 28:171–178. doi:10.1006/geno.1995.1128

    Article  CAS  PubMed  Google Scholar 

  15. Hagan I, Yanagida M (1992) Kinesin-related cut7 protein associates with mitotic and meiotic spindles in fission yeast. Nature 356:74–76. doi:10.1038/356074a0

    Article  CAS  PubMed  Google Scholar 

  16. Sawin KE, LeGuellec K, Philippe M et al (1992) Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359:540–543. doi:10.1038/359540a0

    Article  CAS  PubMed  Google Scholar 

  17. Ikuta T, Sogawa N, Ariga H et al (1998) Structural analysis of mouse tenascin-X: evolutionary aspects of reduplication of FNIII repeats in the tenascin gene family. Gene 217:1–13. doi:10.1016/S0378-1119(98)00355-2

    Article  CAS  PubMed  Google Scholar 

  18. Ono T, Kitaura H, Ugai H et al (2000) TOK-1, a novel p21Cip1-binding protein that cooperatively enhances p21-dependent inhibitory activity toward CDK2 kinase. J Biol Chem 275:31145–31154. doi:10.1074/jbc.M003031200

    Article  CAS  PubMed  Google Scholar 

  19. Matsumoto K, Arai M, Ishihara N et al (1992) Cluster of fibronectin type III repeats found in the human major histocompatibility complex class III region shows the highest homology with the repeats in an extracellular matrix protein, tenascin. Genomics 12:485–491. doi:10.1016/0888-7543(92)90438-X

    Article  CAS  PubMed  Google Scholar 

  20. Satou A, Taira T, Iguchi-Ariga SM et al (2001) A novel transrepression pathway of c-Myc. Recruitment of a transcriptional corepressor complex to c-Myc by MM-1, a c-Myc-binding protein. J Biol Chem 276:46562–46567. doi:10.1074/jbc.M104937200

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto K, Kinoshita T, Hirose T et al (2006) Characterization of mouse serum tenascin-X. DNA Cell Biol 25:448–456. doi:10.1089/dna.2006.25.448

    Article  CAS  PubMed  Google Scholar 

  22. Minamitani T, Ariga H, Matsumoto K (2000) Transcription factor Sp1 activates the expression of the mouse tenascin-X gene. Biochem Biophys Res Commun 267:626–631. doi:10.1006/bbrc.1999.2006

    Article  CAS  PubMed  Google Scholar 

  23. Hughes TA, Cook PR (1996) Mimosine arrests the cell cycle after cells enter S-phase. Exp Cell Res 222:275–280. doi:10.1006/excr.1996.0035

    Article  CAS  PubMed  Google Scholar 

  24. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292. doi:10.1016/0092-8674(86)90762-2

    Article  CAS  PubMed  Google Scholar 

  25. Sawin KE, Mitchison TJ (1995) Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proc Natl Acad Sci USA 92:4289–4293. doi:10.1073/pnas.92.10.4289

    Article  CAS  PubMed  Google Scholar 

  26. Le Guellec R, Paris J, Couturier A et al (1991) Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein. Mol Cell Biol 11:3395–3398

    PubMed  Google Scholar 

  27. Uzbekov R, Prigent C, Arlot-Bonnemains Y (1999) Cell cycle analysis and synchronization of the Xenopus laevis XL2 cell line: study of the kinesin related protein XlEg5. Microsc Res Tech 45:31–42. doi :10.1002/(SICI)1097-0029(19990401)45:1<31::AID-JEMT3>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  28. Bauer A, Lickert H, Kemler R et al (1998) Modification of the E-cadherin-catenin complex in mitotic Madin-Darby canine kidney epithelial cells. J Biol Chem 273:28314–28321. doi:10.1074/jbc.273.43.28314

    Article  CAS  PubMed  Google Scholar 

  29. Matsumoto K, Saga Y, Ikemura T et al (1994) The distribution of tenascin-X is distinct and often reciprocal to that of tenascin-C. J Cell Biol 125:483–493. doi:10.1083/jcb.125.2.483

    Article  CAS  PubMed  Google Scholar 

  30. Hann SR, King MW, Bentley DL et al (1988) A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas. Cell 52:185–195. doi:10.1016/0092-8674(88)90507-7

    Article  CAS  PubMed  Google Scholar 

  31. Acland P, Dixon M, Peters G et al (1990) Subcellular fate of the int-2 oncoprotein is determined by choice of initiation codon. Nature 343:662–665. doi:10.1038/343662a0

    Article  CAS  PubMed  Google Scholar 

  32. Saris CJ, Domen J, Berns A (1991) The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J 10:655–664

    CAS  PubMed  Google Scholar 

  33. Tee MK, Jaffe RB (2001) A precursor form of vascular endothelial growth factor arises by initiation from an upstream in-frame CUG codon. Biochem J 359:219–226. doi:10.1042/0264-6021:3590219

    Article  CAS  PubMed  Google Scholar 

  34. Németh AL, Medveczky P, Tóth J et al (2007) Unconventional translation initiation of human trypsinogen 4 at a CUG codon with an N-terminal leucine. A possible means to regulate gene expression. FEBS J 274:1610–1620. doi:10.1111/j.1742-4658.2007.05708.x

    Google Scholar 

  35. Yu PJ, Ferrari G, Galloway AC, et al (2007) Basic fibroblast growth factor (FGF-2): the high molecular weight forms come of age. J Cell Biochem 100(5):1100–1108. doi:10.1002/jcb.21116

    Google Scholar 

  36. Blangy A, Lane HA, d’Hérin P et al (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1169. doi:10.1016/0092-8674(95)90142-6

    Article  CAS  PubMed  Google Scholar 

  37. Giet R, Uzbekov R, Cubizolles F et al (1999) The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J Biol Chem 274:15005–15013. doi:10.1074/jbc.274.21.15005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kiyomi Takaya for her technical assistance. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, T., Ariga, H. & Matsumoto, Ki. Truncated form of tenascin-X, XB-S, interacts with mitotic motor kinesin Eg5. Mol Cell Biochem 320, 53–66 (2009). https://doi.org/10.1007/s11010-008-9898-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9898-y

Keywords

Navigation