Skip to main content
Log in

CdS nanoparticles (< 5 nm): green synthesized using Termitomyces heimii mushroom–structural, optical and morphological studies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The paper describes the physical characterization of CdS nanoparticles, green synthesized using Termitomyces heimii mushroom extract. The CdS samples obtained are wurtzite type. The amount of extract used for synthesis affects the particle size. FT-IR spectra confirmed the presence of proteins as well as the formation of CdS. A blue shift of the absorption maximum based on particle size was observed in the UV–Vis spectra. The size of the nanocrystallites estimated from the XRD and UV–Vis studies were in 3–5 nm range which is in conformity with the results obtained from the SEM and TEM studies. Electronic polarizability of the CdS samples has been estimated. The study presents a simple, cost effective and eco-friendly method of CdS nanoparticle (size < 5 nm) synthesis suitable for large scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Ahmed, M.A. Babu, L. Swami, A. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28 (2016)

    Google Scholar 

  2. H. Agarwal, S. Venkatkumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resour.-Effic. Tech. 3, 406–413 (2017)

    Google Scholar 

  3. S. Ahmad, S. Munir, N. Zeb, A. Ullah, B. Khan, J. Ali, M. Bilal, M. Omer, M. Alamzeb, S.M. Salman, S. Ali, Green nanotechnology: a review on green synthesis of silver nanoparticles—an ecofriendly approach. Int. J. Nanomed. 14, 5087–5107 (2019)

    Google Scholar 

  4. C. Jayaseelana, A.A. Rahumana, A.V. Kirthi, S. Marimuthua, T. Santhoshkumara, A. Bagavana, Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta Part A. 90, 78–84 (2012)

    ADS  Google Scholar 

  5. K. Gopinath, V.K. Shanmugam, S. Gowri, V. Senthil Kumar, S. Kumaresan, A. Arumugam, Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. leaf extract. J. Nanostruct. Chem. 4, 83–88 (2014)

    Google Scholar 

  6. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18, 105104–105114 (2007)

    ADS  Google Scholar 

  7. A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356 (2013)

    Google Scholar 

  8. S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011)

    Google Scholar 

  9. G.S. Dhillon, S.K. Brar, S. Kaur, M. Verma, Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit. Rev. Biotechnol. 32, 49–73 (2012)

    Google Scholar 

  10. A. Arumugama, C. Karthikeyan, A.S.H. Hameed, K. Gopinath, S. Gowri, V. Karthika, Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C Mater. Biol. Appl. 49, 408–415 (2015)

    Google Scholar 

  11. I. Hussain, N.B. Singh, A. Singh, H. Singh, S.C. Singh, Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38, 545–560 (2016)

    Google Scholar 

  12. Y. Shao, C. Zhu, Z. Fu, K. Lin, Y. Wang, Y. Chang, L. Han, H. Yu, F. Tian, Green synthesis of multifunctional fluorescent carbon dots from mulberry leaves (Morus alba L.) residues for simultaneous intracellular imaging and drug delivery. J. Nanopart. Res. 22, 229–239 (2020)

    ADS  Google Scholar 

  13. H. Nadaroğlu, A. Alayli Güngör, S. Ince, Synthesis of nanoparticles by green synthesis method. Int. J. Innovative Res. Rev. 1, 6–9 (2017)

    Google Scholar 

  14. N.K.S. Kumar, V.P. Jose, M.J. John, J. Jyothimol, Synthesis of silver nanaoparticles from neem leaf (Azadirachta Indica) extract and its antibacterial activity. CIBTech. J. Biotech. 4, 20–31 (2015)

    Google Scholar 

  15. H. Korbekandi, M. Reza Chitsazi, G. Asghari, R. Bahri Najafi, A. Badii, S. Iravani, Green biosynthesis of silver nanoparticles by using Quercus brantii (oak) leaves hydroalcoholic extract. Pharm. Biol. 53, 807–812 (2015)

    Google Scholar 

  16. A.R. Bagherpour, F. Kashanian, S.A. Seyyed Ebrahimi, M. Habibi-Rezaei, L-arginine modified magnetic nanoparticles: green synthesis and characterization. Nanotechnology 29, 075706 (2018). https://doi.org/10.1088/1361-6528/aaa2b5

    Article  ADS  Google Scholar 

  17. B. Mohapatra, D. Kumar, N. Sharma, S. Mohapatra, Morphological, plasmonic and enhanced antibacterial properties of Ag nanoparticles prepared by Zingiber officinale extract. J. Phys. Chem. Solids 126, 257–266 (2019)

    ADS  Google Scholar 

  18. Q. Wei, S.Z. Kang, J. Mu, Green synthesis of starch capped CdS nanoparticles. . Colloids Surfaces A: Physicochem. Eng. Aspects 247, 125–127 (2004)

    Google Scholar 

  19. R. Sanghi, P. Verma, A facile extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem. Eng. J. 155, 886–891 (2009)

    Google Scholar 

  20. K. Prasad, A.K. Jha, Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci. 342, 68–72 (2010)

    ADS  Google Scholar 

  21. H. Bai, Z. Zhang, Y. Guo, W. Jia, Biological synthesis of size controlled CdS nanoparticles using immobilized Rhodobacter sphaeroides. Nanoscale Res. Lett. 4, 717–723 (2009)

    ADS  Google Scholar 

  22. R.M. Tripathi, B.A. Singh, P. Singh, A. Shrivastav, M.P. Singh, B.R. Shrivastav, Mechanistic aspects of biogenic synthesis of CdS nanoparticles using Bacillus Licheniformis. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 25006–25010 (2014)

    Google Scholar 

  23. R. Lakshmipathy, N.C. Sarada, K. Chidambaram, S.K. Pasha, One step, low temperature fabrication of CdS quantum dots by watermelon rind: a green approach. Int. J. Nanomed. 10, 183–188 (2015)

    Google Scholar 

  24. G.B. Srinivasa, Y. Suresh, S. Annapurna, A.K. Singh, G. Bhikshamaiah, Green synthesis and characterization of cadmium sulphide nanoparticles. Mater. Today: Proc. 3, 4003–4008 (2016)

    Google Scholar 

  25. S.S. Abd Elsalam, R.H. Taha, A.M. Tawfeik, M.O. Abd El-Monem, H.A. Mahmoud, Antimicrobial activity of bio and chemical synthesized CdS nanoparticles. Egyptian J. Hospital Med. 70, 1494–1507 (2018)

    Google Scholar 

  26. M.S. Alsaggaf, A.F. Elbaz, S. El Badawy, S.H. Moussa, Anticancer and antibacterial activity of cadmium sulfide nanoparticles by Aspergillus niger. Adv. Polymer Tech (2020). https://doi.org/10.1155/2020/4909054

    Article  Google Scholar 

  27. Z. Gholami, M. Dadmehr, N.B. Jelodar, M. Hosseini, F. Oroojalian, A.P. Parizi, One-pot biosynthesis of CdS quantum dots through in vitro regeneration of hairy roots of Rhaphanus sativus L. and their apoptosis effect on MCF-7 and AGS cancerous human cell lines. Mater. Res. Express 7, 015056–015067 (2020)

    ADS  Google Scholar 

  28. K. Natarajan, South Indian Agaricales V: Termitomyces heimii. Mycologia 71, 853–855 (1979)

    Google Scholar 

  29. G. Tai, J. Zhou, W. Guo, Inorganic salt-induced phase control and optical characterization of cadmium sulphide nanoparticles. Nanotechnology 21, 175601–175606 (2010)

    ADS  Google Scholar 

  30. J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 192, 55–69 (1993)

    ADS  Google Scholar 

  31. R.R. Pawar, R.A. Bhavsar, S.G. Sonawane, Structural and optical properties of chemical bath deposited Ni doped Cd-Se thin films. Ind. J. Phys. 86, 871–876 (2012)

    Google Scholar 

  32. K. Manickthai, S.K. Viswanathan, M. Alagar, Synthesis and characterization of CdO and CdS nanoparticles. Ind. J. Pure Appl. Phys. 46, 561–564 (2008)

    Google Scholar 

  33. C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E= Sulfur, Selenium, Tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Google Scholar 

  34. Z.R. Khan, M. Zulfikar, Md.S. Khan, Chemical synthesis of CdS nanoparticles and their optical and dielectric studies. J. Mater. Sci. 46, 5412–5416 (2011)

    ADS  Google Scholar 

  35. L.V. Titova, T.B. Hoang, H.E. Jackson, L.M. Smith, J.M. Yarrison-Rice, J.L. Lensch, L.J. Lauhon, Low Temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires. Appl. Phys. Letts. 89, 53119–53122 (2006)

    ADS  Google Scholar 

  36. M. Borovaya, Y. Pirko, T. Krupodorova, A. Naumenko, Y. Blume, A. Yemets, Biosynthesis of cadmium sulphide quntum dots by using Pleurotus ostreatus (Jacq.). Biotech. Biotech. Equipment 29, 1156–1163 (2015)

    Google Scholar 

  37. M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12, 470–475 (2018)

    Google Scholar 

  38. U.S. Senapati, D. Sarkar, Structural, spectral and electrical properties of green synthesized ZnS nanoparticles using Elaeocarpus floribundus leaf extract. J. Mater. Sci: Mater. Electron. 26, 5783–5791 (2015)

    Google Scholar 

  39. N.W. Ashcroft, N.D. Mermin, Solid State Physics, Sanders College Publishing, Forth Worth, 320–340 (1976)

  40. N. Qutub, S. Sabir, Optical, thermal and structural properties of CdS quantum dots synthesized by a simple chemical route. Int. J. Nanosci. Nanotechnol. 8, 111–120 (2012)

    Google Scholar 

  41. U.S. Senapati, D.K. Jha, D. Sarkar, Structural, optical, thermal and electrical properties of fungus guided biosynthesized ZnS nanoparticles. Res. J. Chem. Sci. 5, 33–40 (2015)

    Google Scholar 

  42. Z.R. Khan, M. Zulfikar, Md.S. Khan, Optical and structural properties of thermally evaporated CdS thin films on silicon (100) wafers. Mater. Sci. Eng. B. 174, 145–149 (2010)

    Google Scholar 

  43. S. Kumar, J.K. Sharma, Stable phase CdS nanoparticles for optoelectronics: a study on surface morphology, structural and optical characterization. Mater. Sci. Poland 34, 368–371 (2016)

    ADS  Google Scholar 

  44. C. Ricolleau, L. Audinet, M. Gandais, T. Gacoin, P. Boilot, 3D morphology of II-VI semiconductor nanocrystals grown in inverted micelles. J. Cryst. Growth 203, 486–499 (1999)

    ADS  Google Scholar 

  45. R.R. Reddy, Y. Nazeer Ahammed, M. Ravi Kumar, Variation of magnetic susceptibility with electronic polarizability in compound semiconductors and alkali halides. J. Phys. Chem. Solids 56, 825–829 (1995)

    ADS  Google Scholar 

  46. S. Suresh, Studies on the dielectric properties of CdS nanoparticles. Appl. Nanosci. 4, 325–329 (2014)

    ADS  Google Scholar 

  47. H. Bao, N. Hao, Y. Yang, D. Zhao, Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano. Res. 3, 481–489 (2010)

    Google Scholar 

  48. Y. Chen, H. Tuan, C. Tien, W. Lo, H. Liang, Y. Hu, Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol. Prog. 25, 1260–1266 (2009)

    Google Scholar 

  49. N. Bruna, B. Collao, A. Tello, P. Caravantes, N. Díaz-Silva, J.P. Monrás, N. Órdenes-Aenishanslins, M. Flores, R. Espinoza-Gonzalez, D. Bravo, Synthesis of salt-stable fluorescent nanoparticles (quantum dots) by polyextremophile halophilic bacteria. Sci. Rep. 9(1), 1953–1966 (2019)

    ADS  Google Scholar 

  50. G.J. Zhou, S.H. Li, Y.C. Zhang, Y.Z. Fu, Biosynthesis of CdS nanoparticles in banana peel extract. J. Nanosci. Nanotechnol. 14, 4437–4442 (2014)

    Google Scholar 

  51. K.S. Prasad, T. Amin, S. Katuva, M. Kumari, K. Selvaraj, Synthesis of water soluble CdS nanoparticles and study of their DNA damage activity. Arab. J. Chem. 10, S3929–S3935 (2017)

    Google Scholar 

  52. I.U. Haq Bhat, Y.S. Yi, Green synthesis and antibacterial activity of cadmium sulfide nanoparticles (CdSNPs) using Panicum sarmentosum. Asian J. Green Chem. 3, 455–469 (2019)

    Google Scholar 

  53. B. Durga, S. Raziya, S.G. Rajmahanti, B. Govindh, K.V. Raju, N. Annapurna, Synthesis and characterization of cadmium sulfide nanoparticles using Annona Muricata leaf extract as reducing/capping agent. Chem. Sci. Trans 5, 1035–1041 (2016)

    Google Scholar 

  54. A.S. Bhadwal, R.M. Tripathi, R.K. Gupta, N. Kumar, R.P. Singh, A. Shrivastava, Biogenic synthesis and photocatalytic activity of CdS nanoparticles. RSC Adv. 4, 9484–9490 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Prof. S. Koner, Department of Chemistry, Jadavpur University, India for providing the FT-IR data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhattacharjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tudu, S.C., Zubko, M., Kusz, J. et al. CdS nanoparticles (< 5 nm): green synthesized using Termitomyces heimii mushroom–structural, optical and morphological studies. Appl. Phys. A 127, 85 (2021). https://doi.org/10.1007/s00339-020-04245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04245-3

Keywords

Navigation