No Excess Babbage - Design Considerations for the
Interface to a Systolic Matrix Processor

T. Shaw
B.Sc., B.E. (Hons)

A thesis submitted to the Department of Electrical and
Electronic Engineering, The University of Adelaide, to meet the
requirements for award of the degree of Master of Engineering
Science by research.

May 1995

Contents

List of Figures

List of Tables

Abstract

Statement of Originality

Acknowledgements
1 Introduction
1.1 Systolic ATTays e e e e e e e e e e e
1.2 Wavefront ATrays o oo e e e s e e e
1.3 Standard Systolic/Wavefront Arrays i s e e
1.3.1 Systolic and Wavefront SIMD Array Processorso
1.3.2 Multi-bit SIMD Processing ATTays« o v v v v v v s s o bb s s s e
1.3.3 Configurable Processing Arrays o o u o e e e
1.4 Conclusion e e e e e e e
2 The System
2.1 The University of Adelaide Systolic Processing Arrayo
2.1.1 The Basic Architecture L e e e e e e e
2.1.2 The Outer Product e e e e e e e e e e s e e
2.1.3 Interfacing to the Processing Arrayo v i v b e e s e
2.1.4 Processing Element Redundancy oo
2.2 Evolution of the System Lo e e
2.3 Conclusion e e e e s e e e e e e s
3 Algorithms
3.1 Memory Subsystem: An Overview e e e e e
3.2 Matrix Multiplication e e e e
3.2.1 Partitioning e e
3.3 Solution of Sets of Linear Equationso e
34 Gauss-Jordan Elimination e e e e e e
341 Block Version o e e e e e e s e s
3.4.2 Determining the Inverse of the Pivot Block oo
3.4.3 TImplementation on the Proposed Memory Architecture
3.4.4 Inverting Rather Than Solving a Set of Matrix Equations
3.4.5 Solving Sets of Equations That Don’t Fit Into the Cache
3.4.6 Iteratively Improving a Set of Solutions oo
3.5 The Discrete Fourier Transform o e
3.5.1 Implementation L e e e
3.6 The Kalman Filter e e e s
3.7 Conclusion e e e e e e

iv
viii

ix

»
=.

O 00 =] TT 0 D o =

4 Arithmetic

4.1

4.2

4.3

4.4

Signed-Digit, or Carry-Propagation Free, Arithmetico oo
4.1.1 Why SD Arithmetico
4.1.2 Sign Magnitude Specifics
4.1.3 Conversion To and From Signed Digit and Two’s Complement
4.1.4 Signed Digit Implementationo
4.1.5 VLSI Layout and Implementationo
Byte Divider e e
4.2.1 Newton-Raphson Iterative Divider oo oo
429 Byte Divider e e
8 x 8§ Multiplier e e e
4.3.1 Pipelined Multiplier e e
Conclusion o e e e e e e e e

5 Address Generator

0.1

9.2
5.3
5.4

5.0.1 Matrix Addressing
5.0.2 Parallelizing and Expanding the Difference Engine
5.0.3 Example Mappings on the Difference Engine
Address Generator Componentso e e e e e e e e e
5.1.1 Sign Detector e e e
5.1.2 Tmitialisation e e e e e e e e e e
5.1.3 Dimension Counter e e e e s e
5.1.4 Complete Decrement Units oo
5.1.5 Multiplexer Selection o e
Implementation e e e e e e
After Calculating the Offset o
Conclusion i o e e e e e e e s e e

6 Memory Interface

6.1
6.2

6.3

6.4

6.5

6.6

6.7

Tntroduction e e e e e e e e e e e e s
Applying and Extracting the Outer Producto o oo
6.2.1 Extracting the OQuter Product oo e
Memory OVEIVIEW . . . v o o v v v v e e i i e e e e e e e e e e e
6.3.1 Difference From Vector Memory Systems« .. oo v v v v oo oo e e
Cache LG e e e R G R R R E RS W
6.4.1 Cache Size e e e e e e e
6.4.2 Block Size e e e e e e e e e e e e e e
6.4.3 Assoclativity L. e e e e e e e e e
6.4.4 Latency After a Miss 0 ittt e e e e
6.45 Write Policy e e e e e
6.46 Implementation L i e e e e e e e e e e e
Main MemoTy o o o e e e e e e e s e e e e
6.5.1 Implementation e s e e e e e e
6.5.2 Synchronous DRAMs
6.5.3 Bank Size e e e e e e e e e e e e e e
Bus Exchangers e e e e e e e e e e e
6.6.1 Control e s e s s w e e e e s e m a e e
6.6.2 Read/Write Path it v e e e
6.6.3 The Complete Bus Exchanger v oo v v v v v v v i v i v v n v
Loading Double-length Wordso oo

ii

7 Performance Estimates 125

7.1 Matrix Multiplication L e e e e e e 125

7.2 Gauss Jordan Elimination and Inversion 0. 130

7.2.1 Gaussian Elimination for Matrices Smaller than the Cache Size 130

7.2.2 Gaussian Elimination for Matrices Larger than the Cache Size 134

7.2.3 Conclusion e e e e e e 136

7.3 Discrete Fourier Transform e e s e e 136

7.3.1 Discrete Fourier Transform Without Multi-level Memory System 138

7.4 The Kalman Filter e e e e 142

7.4.1 Small Problem Size Running From SRAM 145

7.4.2 Large Problem Size Running From SRAM 146

7.4.3 Kalman Filter With a Multi-level Memory Sub-system 148

7.5 Conclusion e e e e e e e 152

8 Future Projects 153

8.1 A Multi-Processor Teraflop Engine oo 153

8.1.1 The Hypercube . . . - e e e e e e e e e e 153

8.1.2 Fibre-Optical Interconnection oo e e 154

8.1.3 Utilising the Hypercube - the Proposed Model 1565

81.4 Algorithms e e e e 156

8.2 Wavelet Processor o i i e e e e e e e e e 163

8.2.1 Still Picture Compression« v v ou it e e e e e e e e 169

8.2.2 Moving Picture Compression0 e e e e e e 169

8.3 Conclusion e e e e e e e e e e 169

9 Summary and Conclusion 171
Appendices

A SCAP Data Sheets 173

B Proof of Convergence for Iterative Matrix Inversion 179

B.1 Imitialising the Pivot Inverse Iteration B e G L RS ARBAEGAEEEA 179

C Broadcasting Data on a Hypercube 182

C.1 Simple Broadcast e e e e e e e e e e 182

C.2 Pipelined Broadcast e e e e e e 183

C.3 Parallel or Rotated Broadcast o v o i i e e e e 184

C.4 Pipelined and Rotated Broadcast00 v o0 e e e 185

Bibliography 187

iii

List of Figures

1.1 Basic Systolic Array e e e e e 2
1.2 Timing Ring Diagram for a) Systolic Array b) Wavefront Array 3
1.3 Linear Systolic Array for Convolution 4
1.4 Array for the Direct Solution of a Set of Linear Equations 4
1.5 MPP Architecture. e e e 5
1.6 DAP Architecture e e e e e 6
1.7 Saxpy-1 Block Structure e 7
1.8 Processing Element Structure 8
1.9 Warp Architecture 9
2.1 Processing Element Structure Lo 11
2.2 Nibble (Digit) Skewing Input Data 12
2.3 a) Inner Product b) Outer Product 12
2.4 Block Diagram of Data Controller 14
2.5 Block Diagram of System e 15
2.6 Redundant Array a) Before Failure b) After Failure. 15
2.7 Redundancy Using Data Controller 16
3.1 Block Diagram of System 21
3.2 Four Regions of a Partitioned Matrix Product 23
3.3 Memory Access for Matrix Product00 23
3.4 Row Oriented Gauss-Jordan Elimination 25
3.5 Extracting a) Standard b) Transposeo ov v v 26
3.6 Column Oriented Gauss-Jordan Elimination 28
3.7 Dividing Sets of Equations Into Blocks, 30
3.8 3 Dimensional Representation of Prime Factor DFT 34
4.1 Sign-Digit Addition Cell. 39
4.2 Sign-Digit Propagation Path. 000 40
4.3 Converting Positive 2’s Complement to Signed Digit. 42
4.4 Converting Negative 2’s Complement to Signed Digit. 42
45 Converting Signed Digit to 2’s Complement. 43
4.6 a) L2 T N T T e g 46
46 «¢) d) i NsunERES 46
4.6 Karnaugh Maps for First Digit Cell of an Adder 46
4.7 a) b) ... AR GEERS 47
AT €)oo e e e 47
B) T T L0 47
4.7 Karnaugh Maps for First Digit Cell of an Adder 47
4.8 a) b) .. e i mmea e 47
48 ¢) d) . B s e e 47
4.8 Karnaugh Maps for Last Digit Cell of an Adder with Single Input 47
4.9 Unlatched Signed-Digit Adder Cell 49
4.10 HSpice Plots for Unlatched Adder Cell, 49
4.11 Layout of Latch Cell e 50

iv

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.19
4.20
4.20

4.21
4.21
4.22
4.22

4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.30
4.30
4.30
4.31
4.32
4.33

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.17
5.17
5.18
5.18
5.18
5.19

Latched Signed-Digit Adder Cell 50

HSpice Simulation for Latched Adder Cell 51
Latched Adder Cell With Multiplexer 51
Layout of Unlatched Beginning Cell 52
HSpice Simulation Results for Unlatched Beginning Cell 52
Layout of Latched Beginning Cell 93
Layout of Latch & Multiplexed Input Beginning Cell 53
a) Unlatched End Cell With Standard Propagated Outputs 54
b) Unlatched End Cell With Sign Magnitude Progopated Outputs 54

a) Unlatched End Cell With Standard Propagated Outputs Simulation Results 55
b) Unlatched End Cell With Sign Magnitude Progopated Outputs Simulation

Results e 55
a) Latched End Cell With Standard Propagated Outputs 56
b) Latched End Cell With Sign Magnitude Progopated Outputs 56

a) Latched End Cell With Standard Propagated Outputs Simulation Results . 57
b) Latched End Cell With Sign Magnitude Progopated Outputs Simulation

Results e 57
Error graphs for a) 0.5 <@ < 2 b)2<Q<1 60
Error graph over fullrange of Q oo 61
Difference in Errors for Two Schemes 61
Wallace-tree Multiplier. 67
Signed Digit Multiplier. 67
VLSI Layout of Digit Multiply Cell 69
VLSI Layout of 8 x 8 Non-pipelined Multiplier 69
a)b=1 byb=64................ 70
ci) b = 141 Gi)b=141 70
c¢iii) b = 141 d)b=255 71
dii) b = 255 diii)b=255 71
Processing Cell Using Pipelined Multiplier 4
VLSI Layout of Pipelined 8 x 8 Multiplier 75
HSpice Simulation Plots a) Input b) Qutput 75
Lattice Representation of a Matrix Produet 79
2D Addr Gen. e e e e e e e 79
4D Addr Gen. e e e e e e e e e 81
Sign Detect Unit Cell e e 82
Sign Detect Unit 84
Domino Logic Exclusive-OR Gate 85
Flow Diagram for Decrement Cell, 87
Decrement Cell e 87
Full Decrement Cell e e 88
Four Input Zero Detection Cell 89
Four-Bit Decrement Unit e e 90
Simulation Results of Four Bit Decrement Cell 90
Sixteen-Bit Decrement Unit e g1
HSpice Simulation Results for Sixteen Bit Decrementer. 92
Delta Register Multiplexers. 92
VLSI Layout of an Eight-bit Address Generator 93
a)DO0toD3b)D4toD7 e 95
)Q0toQ3d)Q4to QT & Neg e 95
Simulation of Normal Address Generation 95
a)DOtoD3b)D4to DT 97
¢)Q0toQ3d)Q4to Q7and NegOut 97
Simulation of Transposed Address Generation 97
a)DOtoD3b)D4toDT 99

5.19
5.19
5.20

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

7.1
7.2
7.3
7.4
7.4
7.4
7.5
7.5
7.5
7.6
7.6
7.6
7.7
7.7
7.7
7.8
7.8
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.14
7.14
7.15
7.15
7.15
7.16
7.16

) Q0toQ3d)Q4to Q7and Neg Outt 99

Simulation of Prime Factored Address Generation 99
Extended Address Generator L e 101
Extraction Hardware 104
Vector Memory Architecture. e 105
Non-uniform Stride Conflict. 106
Data Controller / Cache Memory pair 109
Internal Structure of 1M X 4 Static Column DRAM 112
Block Diagram of Four Way Interleaved DRAM Subsystem 113
Initial Timing of Burst Read, 113
Synchronous DRAM Internal Block Diagram 114
Memory Bank Configuration using a) Thin & b) Wide DRAMS , ., 115
Initiating a Read Simultaneously to Completing a Write 116
a) Latch Cell b) Driver Cell 116
VLSI Layout of the Driver/Transmission Cell 117
Four-to-One Multiplexer/Demultiplexer 119
VLSI Section of Four-to-One Mux/DeMux 119
Bus Exchanger VLSI Layout i 120
Latched Read With Constant Select Signals 121
Latched Read With Varying Select Signals, 122
Latched Write With Varying Select Signals 122
Transparent Read With Varying Select Signals 123
Transparent Write With Varying Select Signals 123
Performance Figures for Simple Multiplication Model (MFlops) 126

Performance for a)Array Dimension = 64 b) Load/Store Time = 5ns (MFlops) 126
Performance for Array Dimension = 64 and Load/Store Time = 5ns (MFlops) 127

a) Block Size = 4 b) Block Size =16 129
¢) Block Size = 64 d) Block Size =512 129
Performance Estimates for Matrix Multiplication Without Streaming 129
a) Block Size = 4 b) Block Size =16 131
¢) Block Size = 64 d) Block Size =512 131
Performance Estimates for Matrix Multiplication With Streaming 131
a) Block Size = 4 b) Block Size =16 133
¢) Block Size = 64 d) Block Size =512 133
Performance for Gauss-Jordan Elimination on Matrices that Fit Into Cache . 133
a) Block Size = 4 b) Block Size =16 135
¢) Block Size = 64 d) Block Size =512 135
Performance for Gauss-Jordan Inversion on Matrices that Fit Into Cache . . . 135
a) Block Size = 4 b) Block Size =16 137
¢) Block Size = 64 d) Block Size =512 137
Performance for Gauss-Jordan Inversion on Matrices that Do Not Fit Into Cachel37
Performance of Two Dimension DFT - FLOPs vs DFT length 140
Performance of Partitioned Two Dimension DFT - FLOPs vs DFT length 140
Performance of Partitioned Two Dimension DFT - FLOPs vs DFT length 142
Performance of Three Dimension DFT - FLOPs vs DFT length 143
Performance of Four Dimensional DFT - FLOPs vs DFT length 144
10ns Cycle Time a) Array Size = 32b) Array Size=64 146
20ns Cycle Time ¢) Array Size = 32 d) Array Size =64 146
Simple Kalman Filter for State Vector Smaller Than Array Dimension 146
10ns Cycle Time a) Array Size = 32b) Array Size =64 149
20ns Cycle Time c) Array Size = 32 d) Array Size =64 149
Simple Kalman Filter for State Vector Larger Than Array Dimension 149
a) Block Size = 4b)Block Size =16 151
a) Block Size = 64 b) Block Size = 512 151

vi

7.16 Lower Bound on Kalman Filter With Multilevel Memory 151

8.1 Node Labelling for a 3-Cube 0 154
8.2 a) Extended Simple Memory Structure b) X-Connect Memory Structure . .. 156
8.3 Processing/transmission Diagram for 1st Partitioning 157
8.4 a) First Multiplication Phase, 158
8.4 b) Second Multiplication Phase After First ‘Roll’ 158
8.5 a) 100ns Internode Delay b) 1000ns Internode Delay 161
8.5 ¢)10000ns Internode Delay 161
8.5 Performance Estimates for Multiprocessor Multiplication 161
8.6 Distributed Row-wise Gauss-Jordan Elimination 161
8.7 a) Latency = 100ns b) Latency = 1000ns 164
8.7 «¢) Latency = 10000ms 164
8.7 Performance Estimates for Multiprocessor Gauss-Jordan Elimination . . , . . . 164
8.8 Four Coefficient Compact Wavelet Transformation Matrix 165
8.9 Pyramidical Transform and Permute Procedure 166
8.10 Cell from a Linear Array for the Wavelet Transform 166
8.11 Linear Array for n-dimensional Wavelet Transform 167
8.12 Single Cell for Wavelet Implementation 168
9.1 Complete System Block Diagram 172
C.1 Spanning Tree for a 4 Dimensional Hypercube 183
C.2 4 Rotated Spanning Trees for 4-Dimensional Hypercube 186
C.3 3-Dimensional Edge-disjoint Spanning Binary Tree 186

vii

List of Tables

2.1
2.2
2.3
2.4
2.5

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
9.3
5.4
9.5
9.6
5.7

6.1

7.1
7.2
7.3
7.4
7.5

8.1
8.2

Contemporary Systolic Arrays in SIMD Configuration 17
Contemporary Systolic Arrays in MIMD Configuration 18
Comparison of Vector Computers in the 1980’ 18
Comparison of Vector Computers in the 1990°s 19
Comparison of Massively Parallel Computers 19
Ordering when Number of State Vectorsis Small 0000000 . 36
Ordering when Number of State Vectorsis Large 36
Table of SD representation oo e e 41
Table of SM representation vt e e e e 41
Digit Outputs for Unlatched Multiplier, b=1 72
Digit Outputs for Unlatched Multiplier, b=64 72
Digit Outputs for Unlatched Multiplier, b=141 73
Digit Outputs for Unlatched Multiplier, b=255 73
2 Dimensional Mappings on Difference Engine 82
4 Dimensional Mappings on Difference Engine 83
Decrement Cell Combinations 85
a) Sour & Mot b)Neg-Out 86
Resultant Addresses for Normal Addressing Data 96
Result of Simulation of Addressing for Transposed Access 98
Result of Simulation of Addressing for Prime Factored Access 100
Tag Requirementsttt v v v v v e e o e e e e e e e 110
2 Dimensional DFT Performance unnnnnn.n 139
Partitioned 2 Dimensional DFT Performance 141
Partitioned 2 Dimensional DFT Performance« 141
Three Dimensional DFT Performanceo vu e 143
Four Dimensional DFT Performance 144
Parallel Multiplication Allocation Table 159
Wavelet Products versus Time v v v v v v in o oo e e 168

viii

Abstract

Computational systems used for the solution of large matrix-based numerical problems are
rapidly converging on the limits of technology, and novel architectures are now being sought to
improve performance. In signal processing and control theory, high performance systems are
required which do not contain the physical size penalty of current supercomputers. To achieve
performance comparable with current supercomputers, a systolic processing array specifically
targeted at matrix applications has been developed at the University of Adelaide.

The work of this thesis involves the problem of delivering and receiving the data moving
between the processing array and the memory subsystem. This involves the reformatting of
existing algorithms to map efficiently onto the matrix array, the design and VLSI layout of a
matrix address generation unit using signed digit arithmetic for enhanced performance, and the
block level description of a multiport cached memory system. Performance estimates predict a
modest configuration will perform selected matrix routines in excess of three GigaFLOPs.

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or
diploma in any university or other tertiary institution and, to the best of my knowledge and
belief, contains no material previously published or written by another person except where due

reference has been made in the text.
I give consent to this copy of my thesis, when deposited in the University Library, being

available for loan and photocopying. Parts of this thesis may have been removed for commercial

confidence reasons.

Acknowledgements

[would especially like to thank my supervisor Mr Michael Liebelt for his direction, advice and
support throughout my work.

The work undertaken for the degree is based around a project at the Univerisity of Adelaide
which has been largely carried out by Dr Warren Marwood. Dr Marwood has provided a great
deal of knowledge, enthusiasm and encouragement to me over the past two years, and I extend
my grateful thanks to him as well.

The advice of Dr C.C. Lim and Dr N. Burgess has been of great benefit, and led me into
areas of great interest.

Thanks also go to the group of other postgraduate students with whom I have worked, for
their comments and thoughts. Particularly to David Standingford, Richard Beare, Ali Moini,
Andrew Blanksby and the HiPCAT team.

Finally, I would like to thank my parents, for the support they have always given me in
whatever I wished to do, and to Alison, for all her enthusiasm.

X1

Chapter 1 ‘*’&W
Introduction

This thesis describes some design considerations made during a project at the University of
Adelaide involving the design of a Systolic Processor and Interface. The processor is a specialized
architecture intended for use as a generic matrix processing engine, comprising a large number
of processing elements configured in a two-dimensional array, and some support hardware. The
processor elements themselves are kept very simple, with more complex operations taking place
in the support hardware. On its own, the processing array performs the simple operation of a
matriz outer-product, which can be used to perform other algorithms by clever addressing and
application of data to the array.

The work presented in this thesis is the culmination of several design ‘tasks’. Briefly, they
are:

1. the development and redesign of various matrix algorithms to map efficiently to the defined
matrix array structure. This process indicated what hardware features would significantly
enhance or reduce the system performance.

2. the VLSI design of the address generation hardware, which is the critical path in the
processing-array /memory interface. To maximize the performance of this critical compo-
nent, non-conventional arithmetic was used to implement an expanded Marwood Difference
Engine.

3. the specification of a memory subsystem. The organisation of the memory system and
its inter-relationships with the algorithms significantly affects the overall system perfor-
mance. Therefore, a memory system that can support the matrix processing array at
nearly peak speed was designed to extract maximum performance while still retaining
relatively moderate cost.

Additionally, a multiprocessor architecture with a matrix processor as each node is proposed
and its feasibility investigated.

The thesis is organised around the work in such a way that each distinct task has its own
chapter. However, as the tasks are heavily inter-related, there is some overlap among the
chapters. The tasks occupy Chapters 3 to 8. Chapter 2 introduces the architecture of the
system design to the time of the start of this project, while conclusions of this project are
made in Chapter 9. The rest of this chapter is devoted to an brief introduction to systolic and
wavefront systems.

1.1 Systolic Arrays

Originally proposed by H.T.Kung and C.E.Leiserson in 1978 and described in the landmark text
“Introduction to VLSI Systems” [66], the term ‘systolic’ refers to the systolic cycle of the heart.
The systole is the contraction of the heart and arteries to expell blood and pass it throughout
the body. Similarly, a systolic computer system is one in which data is ‘pumped’ through the
systolic hardware or array, and is operated on by several sections of the hardware in turn. A
basic system of this form is shown in Figure 1.1. Data moves from the memory and is passed
to each processing cell in turn until it is finally returned to memory. As can be seen from the
diagram, data is utilised by each cell (in this case six times) for the cost of only one memory
load and one memory store operation. Obviously, for a memory bandwidth limited system, the
speed-up of a linear systolic system is equal to the number of cells in the array.

PE |PE |(PE |PE |PE |PE
41 2 3 4 5 6 =

T
|

Memory

Figure 1.1: Basic Systolic Array

Systolic arrays have been constructed in linear, rectangular, triangular and hexagonal con-
figurations, to name a few, to solve various specific problems, such as Gaussian analysis, LU
decomposition radar adaptive beam-forming and data formatting.

The properties of a systolic array are that the array is constructed of cellular processing units,
that can be theoretically repeated indefinitely in each dimension. The cells contain only local,
homogeneous interconnections, and operate such that the array exhibits linear pipelinability, ie
that the array can be pipelined into as many stages as there are processing cells.

1.2 Wavefront Arrays

S.Y. Kung [49] distinguishes between systolic arrays and wavefront arrays by the single feature
of a global clock. The global clock is required for the pumping action of data through a pipeline,
as each cell passes data on to the next at cycle intervals. However, if there is no global clock, and
the data operations are locally timed, data flow techniques become applicable, and the array
takes on a wavefront approach, ie data is processed in waves that propagate through the array
using local synchronization. Kung reproduces diagrams from a report by Q.E. Dolecek entitled
“Parallel processing systems for VHSIC.” that show the difference [49, 22]. These are shown in
Figure 1.2a) for a systolic processor and Figure 1.2b) for a wavefront processor.
Kung goes on to compare the wavefront and systolic structures and draws the conclusion

Wavefront array = Systolic array + data flow compuling

P.E. _{PE.

P.E. ‘ PE. | |pE. P.E.
| \ '.\.
Global
P.E. | Clock AP.E -4 o P.E.
/
\ [y \ /
1P.E. [PE. | 1pE. pE. |
!
1
P.E P.E

Figure 1.2: Timing Ring Diagram for a) Systolic Array b) Wavefront Array

Note that a wavefront array that uses a local clock synchronised to an adjacent processor
could be considered to be either a wavefront or a systolic array, depending on the interpretation
of the clock signal. For example, the local clock could be synchronised with and derived from
an input clock, and an output clock could be the local clock delayed by one cycle. Thus, the
output clock could be considered a data-flow timing parameter, as it is derived locally and there
is no global propagation parameter. However, as the output clock is derived from the input
clock which is ultimately applied to all the edge cells of the array, the output clock could be
considered to be a global clock. It is just a matter of interpretation as to which class some
processing arrays should be classed.

1.3 Standard Systolic/Wavefront Arrays

Initially, systolic arrays implemented structures designed to solve specific algorithms. Dedicated
to their task, they were of little use for anything but the task they were designed to achieve.
Some examples are shown below.

1. Convolution
Given two sequences of numbers u; and w; for j = 0,1,...,N — 1 , then the linear
convolution of the two sequences is defined by [49]

Yy ———Zi:o URW;_k j=0,1,....N =1 (1.1)

A linear systolic array that implements this algorithm is shown in Figure 1.3.

2. Direct Solution of the Linear System Az = b
Using the Gauss-Jordan elimination scheme, the direct solution of a set of linear equations
can be formed. Figure 1.4 shows an array that implements this algorithm [76]. Data
inputs arc propagated through the array together with a ‘control’ word that determines
the operation to be undertaken at the processing cell. The cells can become quite complex
because of the control word and the various operations that are available, although the
general interconnection scheme is only suitable for a very limited sct of algorithms.

e = e

Ain W =~ 2 out
b

b, % i L

Figure 1.3: Linear Systolic Array for Convolution

a
556
a a
64 45
a a a
53 44 as
norm 252 34 234 225
wrieng a5 2 42 2 43 2 24 245
trieng 2 4 2 32 22 24 i
trlang a a1 a 22 a ™ - -
trlang a 21 a 12 - - =
Init a " - - - -
| |
L L ¥ i i
oY
. T
AR i i i i
b3
bt | | 1 T
A & i | }
-
control @ | '[l
in n e i
> {7y j
P ou y,
= control out N
L3 L l
eontrot : .
out n { -
In i =
|
. i
b In . __, bout
controf -l —= eontrol
In out
f
. out

Figure 1.4: Array for the Direct Solution of a Set of Linear Equations (from [76])

1.3.1 Systolic and Wavefront SIMD Array Processors

The early systolic and wavefront machines were often modelled on the Single-Instruction-Multiple-
Data (SIMD) model [49]. In these architectures, there is local interconnection between the pro-
cessors, and between a processor and its local memory. Each instruction is globally broadcast by
a host controller, and a processing cell has the choice of either executing the instruction or mask-
ing the instruction. Thus, two processing elements can not be executing different instructions
during the same instruction cycle.

Initially, many of the early systolic SIMD arrays operated in bit-serial form, and were there-
fore referred to as Binary Array Processors (BAP) [49]. The bit-serial architecture provides for
flexible data formatting, and is efficient in terms of the memory resources and chip intercon-
nections, as a large number of processing elements fabricated on a chip will require minimal
I/O interconnections. However, as available chip resources have increased with time and the
memory bandwidth is now often the bottleneck of a system, there has been a decline in bit-serial
processing architectures. Example BAPs include the Massively Parallel Processor (MPP), from
Goodyear Aerospace, the Distributed Array Processor (DAP), from International Computer
Limited, and the Geometric-Arithmetic Parallel Processor (GAPP), from NCR [38, 49, 24].

The Massively Parallel Processor

Comumissioned by NASA for the processing of satellite images, and running considerably over
budget in the process, the MPP comprises 16,384 bit-serial processing elements, configured as a
128 x 128 array. An additional four rows of processing elements are included for redundancy in
the event of failure, so the actual array is in fact 128 x 132, although the user only sees the square
128 x 128 array. The PEs in the MPP can accept inputs from one of several nearest neighbours
and allows overlapping data I/O and array operations. The PEs are custom designs, with eight
PEs on a chip. Each chip has access to fast local RAM, although the memory interface still
represents the performance bottleneck due to the speed of the custom circuits. A block diagram
of the MPP is shown in Figure 1.5, from [80].

Staging
Memary
128 x 128
Array Unit
(ARU)
i ¥
Program
and Data Arraly}ncl'onlrm Host
Management | bl B | Computer
Unit (PDMU) (ACU)

Figure 1.5: MPP Architecture (from [80])

The processing elements have no built in fixed or floating point arithmetic, only a full adder.
Thus, the range of applications that can be run on the MPP is limited to those that do not

require complex arithmetic to run efficiently. The MPP provides working performance of up to
seven billion additions per second [80].

Distributed Array Processor

The DAP is constructed of blocks of 16 PEs, in various two dimensional sizes, such as 32 x
32, 64 x 64, etc. A DAP PE combines 4096 bits of RAM with a bit-serial adder, and local
interconnections to the nearest four neighbours. The local interconnections combine to form a
grid, along which arbitrary data movement is possible (within the confines of the SIMD array
architecture). Therefore, data shifting becomes very easy. A diagram adapted from Hockney
and Jesshope [37] is shown in Figure 1.6.

r = Registers
| 8x64 bits
N
NxN
DAP
w Array E |
S o
Hodlfioy Instruction
Buffer
60x32 bits
DAP | ! |
Access Column Highway
Instruction
Instruction
Counter

Figure 1.6: DAP Architecture (from [37])

Geometric Arithmetic Parallel Processor

The Geometric Arithmetic Parallel Processor (GAPP) is aimed at low precision image pro-
cessing, and as such uses very simple processing primitives. The GAPP processor cascades an
arbitrary number of chips, each containing an array of 6 x 12 processing elements (PEs). A com-
mercial array typically will contain approximately 2304 PEs, configured as an array of 48 x 48
PEs. Each PE contains an ALU, 128 bits of RAM, and local interconnection to each of the PE’s
four nearest neighbours. Each instruction is broadcast to the complete array, in the standard
SIMD form. The ALUs are single-bit processing cells.

The GAPP structure is very similar to that of the DAP, although there is much less memory
made available to each PE (128 bits compared to 4096 bits). This results in a very high chip
density, and so a large number of chips can be packed into a small area. However, as the
GAPP PEs were designed for use in image processing and low precision applications, the PE’s
resources would rapidly be exhausted in the event that a numerically intensive algorithm, such
as boundary integral evaluation, were attempted. The problem could still be feasibly run on a
DAP system with greater system resources.

1.3.2 Multi-bit SIMD Processing Arrays
The Cellular Array Processor

The Cellular Array Processor (CAP) [49] was developed by Fujitsu, and includes a multibit ALU
that can perform block floating point operations on the applied data. Each PE is more complex
than those of the DAP and GAPP and only twenty will fit on a chip, even though the CAP
was implemented using a 1.25um process instead of the 3um process used for the GAPP. Of
the twenty PEs, only sixteen are used at any one time. The remaining four are used to provide
fault-tolerance in the system, so that up to 25% of the PEs can fail on a chip and the operation
of the system will show no apparent change. Each PE incorporates 4000 bits of memory, and
more can be added externally if required.

Not only are the arithmetic units of the CAP processor more complex than those of the
DAP and GAPP systems, the control is more complex as well. The CAP processing elements
can control three independent functions of the PE, which are the arithmetic/logic function,
the memory/common bus function and the I/O function. Thus, the CAP is aimed at more
computationally- and I/O- sophisticated problems that exhibit a large degree of parallelism,
such as parallel searches and Kalman filtering.

The Saxpy-1

The Saxpy-1 is a vector architecture that uses systolic principles to obtain fast inter-processor
communication. It was developed by Saxpy Computer Corp in the mid to late eighties. The
system is composed of five major segments, shown in Figure 1.7. The peak performance is
estimated at approximately 1000 MFLOPs.

System
Controller

Saxpy Interconnect

System
Matrix Memory Mass
Processor Storage
System

Figure 1.7: Saxpy-1 Block Structure

The five segments are:

e The System Controller. This a general purpose computer, such as a DEC VAX, running
VMS. The System Controller is used to compile and link the application program, and
coordinate the allocation of resources.

e Matrix Processor. This is a linear array of up to 32 pipelined, floating-point proces-
sors that have systolic and global interconnections. Although global interconnections are
against the philosophies that drove initial systolic designs, the practicalities of the Saxpy-1

implementation justify this departure [27]. A diagram of the Matrix Processor segment
and the arrangement of the 32 processing elements is shown in Figure 1.8

To/From
System Memory

i

-

o K7 | commmsionn X

|land

|Buffers L——' . ‘_'

| : + +

| ' M { : . i

' ' | [Zoene 1 | i | Zone 31
| [| Memory | Memory
| -

|
L

Figure 1.8: Processing Element Structure

e System Memory, which stores all the data arrays for use by the matrix processor.

e Mass Storage System, an I/Q interface that provides access to high speed data-storage
peripherals

e Saxpy Interconnect, a bus containing both data and control that links the other four units
of the system.

The only part of the Saxpy-1 that uses systolic techniques is the Matrix Processor, which
operates as a SIMD systolic machine. None of the processing elements possess independent
program code, and program control ultimately resides with the host computer or workstation.

1.3.3 Configurable Processing Arrays

With the very large range of systolic algorithms that have been developed, attempts have been
made to design systolic systems that can be reconfigured to optimally suit several algorithms.
Examples of these include the *Configurable Highly Parallel Computer’ (CHiP)[87] and the
‘Programmable Systolic Chip’ (PSC) (from Marwood[58], [26]), although probably the best
known architecture of this class is the (i)Warp machine, which was designed and developed by
Carnegie-Mellon University and various industry partners [49].

The Warp system is composed of an array of ten or more programmable processing cells,
each capable of 10 MFLOPS performance, together with a host MC68020-based machine and
a host/array interface unit. A block diagram of the Warp is shown in Figure 1.9. Data flows
through the array onpaths labelled X & Y, with a third path allocated to address and control
signals.

Each processing cell contains its own program store and sequencer, a SMFLOP multiplier,
a SMFLOP ALU, a 64 Kword memory, communication interface and a register file. The cells
can operate on the data with IF-THEN-ELSE and DO-WHILE structures, and must each be
programmed separately. More complex operations such as divide and square root are left to
specialised ‘Boundary Processors’ (BP), which can be attached to one end of the array. A 10-
cell Warp machine is capable of computing a 1024-point complex FFT every 0.6 ms, and a 2-D
cosine transform on a 256 X 256 image in 13mS.

The Warp system was followed by the iWarp architecture, a partnership between Carnegie-
Mellon University and Intel Corp. The cell in the iWarp became a custom VLSI processor

Host

Addr & Cantrol L Y date
Interface
X data Unit
| |
Cell 1 cen lecem [7 lcen |
1 2 3 N

Figure 1.9: Warp Architecture (from [49])

consuming some 600,000 transistors for a computational output of 20 MFLOPS per processor,
together with up to 64 Mbytes of memory. It can be seen, therefore, that the transistor count
becomes very high for systems of any significant number of cells if the cells themselves become
complex. Indeed, the increase in complexity is contrary to one of the initial aims of systolic
processing as defined by H.Kung, namely the construction of arrays of small, simple cells that
can be repeated across a VLSI structure.

1.4 Conclusion

The one point that becomes apparent from a study of the existing architectures is a simple
conundrum involving the complexity of the cells (processing elements):

1. If the processing elements are very simple, the versatility of the processing array is greatly
restricted, and so the potential market and range of applications is limited.

2. If the processing elements are too complex, then systems involving large numbers of pro-
cessing elements hecome unwieldy, and the advantage of systolic processing is lost.

This led the designers of the processing element structure to the conclusion of keeping the
processing element structure simple, while increasing the versatility of the array by using an
intelligent interface between the array and the data storage to perform the more complex data
and address operations at the boundary of the array.

Chapter 2

The System

2.1 The University of Adelaide Systolic Processing Array

Over the past few years, the Department of Electrical & Electronic Engineering and the Centre
for Gallium Arsenide VLSI Technology, at the University of Adelaide, have been engaged in a
project to implement a systolic processor for matrix computation. The array can perform the
basic matrix operations of addition, subtraction, multiplication and Hadamard multiplication,
with more complex operations provided in firmware in the array controllers [54, 7, 62, 59, 63, 55,
56, 65, 57, 5, 18]. In this way, Marwood et al. attempt to produce the generality desired to make
a systolic architecture useful for a large range of applications, while maintaining the complexity
at a level simple enough to minimise overheads and contain the cost of the large number of
computational units necessary. By using novel address generation hardware, Marwood has
created the generality in address mappings that are required for various systolic arrays, while
the integration of computational units with more complex address generation/boundary interface
data controller units ensures that the simplicity of the repeated cells is retained.

2.1.1 The Basic Architecture

The systolic processor developed by the University of Adelaide is composed of a two dimen-
sional square array of simple processing elements. Fach processing element (P.E.) is capable
of performing the operations multiply, addition €& multiply-accumulate, and contains a simple
multiplier, accumulator, output register and control structure. The structure of a P.E. is as
shown in Figure 2.1.

Before the data is supplied to the multiplier cell, a control word of four bits is applied to the
input of the processing element. This control word defines the cell operation for the duration of
the next operation, and includes information including:

e which operation to apply to the operands

e whether to reset the accumulators (perform multiply), or to leave the data in the accumu-
lators (multiply-accumulate)

e whether to unload the accumulators, and, if so, in which direction to move the output
data.

The operands supplied to the multiplier ccll arc broken into one nibble (four bits) digits,
and supplied one at a time from the ‘A in’ & *B in’ inputs, which progressively builds the full
product from the successive partial products. The input data is also passed on to the next cell
in the direction of propagation. As there will be some propagation delay within the cell, the

10

B out

:
| Rea |
|

Output

Figure 2.1: Processing Element Structure

data is latched before being retransmitted, thus ensuring a fixed propagation delay through a
cell. As the data delayed by this amount is one nibble in size, the delay is referred to a ‘nibble
propagation delay’, or nibble delay.

As data is coming from two directions, the propagation delay in one dimension must be
compensated for when data is applied in the other dimension. For example, if all cells on an
array boundary were to receive data at the same time, then a processing element located at
co-ordinate (1,4) (first row, fourth column) will receive its row data immediately and its column
data after three nibble delays'. Therefore, the row data must be delayed by four nibble delays
for proper coordination to occur. Of course, this applies equally for the processing element (4,1),
in which the column data must be delayed by three nibble delays, and similarly the row data
must delay applying data to the second column by one nibble delay and to the third column by
two nibble delays, etc. These delays result in a skewing of the input wavefronts, by one nibble
delay period, and so the inputs are said to be ‘nibble skewed’. The nipble skewing is shown in
Figure 2.2. Note that the loading of adjacent words in a column for the vertical dimension or
in a row for the horizontal dimension is initiated before the completion of the loading of the
previous word.

By nibble skewing, the operation of the array can be approximated to be that of the cal-
culation of an outer product. A matrix product is then a series of outer products that are
accumulated within the array, and then unloaded as a batch at the end of computations. This
approach requires no long bus drivers (and the inherent delay in such devices) that are needed
for broadcast strategies, and hence can be scaled to an arbitrary size limited only by the speed
data can be fetched from memory.

In practice, the ‘arbitrary’ size of the processing array is bounded on each side by practical
considerations. If the processing array is too small, then the start-up overhead will be significant,
and no speed improvement over a scalar processor is obtained (consider the limiting caseof n — 1
for an n x n array). The maximum size of the processing array is limited mainly by algorithm
considerations. While a large array is very efficient if it is operating on data that ‘fills’ the
array, the efficiency drops considerably if the problem dimension is significantly smaller than
the processing array dimension (eg. a 10 x 10 matrix product on a 20 x 20 processing array only
uses one quarter of the available processing elements). Simulations of algorithms have shown

INot four nibble delays. Note that the first position must wait zero nibble delays

11

03

12

21

30

b
b |.'I“5 né
b bnzhﬂa."'" '
bﬂO Inl Il J ' q '
e v
I S
. b 28
p b byy bas P24 78
20 21 Ty byalis 16
b, by P1z713 3
10 b bmhus 08
b obcl 02703
don T 302 301 290
ay T a4z 3y a0
ay T a2 84y 2y
asn T 232 a43 330 =
gn 77777 42 314 240
asn TTT7C 452 245 450
agn "7 g2 215 60

Figure 2.2: Nibble (Digit) Skewing Input Data

that a processing array of between 20 x 20 and 100 x 100 processing elements is practically
feasible [58].

2.1.2 The Outer Product

Contrary to most matrix systolic arrays which perform matrix multiplication in the inner-
product, our matrix processor calculates the answer in outer-product form. There are two reasons
for this:

e Memory access patterns are simplified. This is a simple observation of the access patterns
of the two configurations.

b b
b - - 10 11 12 i3
10 o1
b = - = 00 01 b 02 03
| o0 i | |
f, v i U (| i i i
a, @ a e | ee 1 pe b pe o a,. B %, G IPE[|PETPEPE]T
01 00 : ;
-i I ; {.l ¥ Y * il
—-— - _ " — . a a a a - ? e+ o = o = E |-
a 1 a 10 PE PE |+ PE PE |- 13 12 11 10 P'!: P.l' PE P
y il]) i ¢ ¥ y
e - =4 S = il . a a a a A pr = pPE VA PE | PE
P PE |+ PE | PE | PE |- 5 7 - 20 PE P PE
! i) v] Y] !
— - - il a o = . a a a a =1 >
PE || PE | +| PE || PE = 5 31 0 | FE PE PE | PE
¥ ¢ v K -;: ¥ b b
Figure 2.3: a) Inner Product b) Outer Product

Consider the inner product configuration in Figure 2.3a). If it is assumed that the malrix
is stored in standard form in memory (ie a complete row or column is stored linearly in
memory, followed by the next row or column) and the systolic array is of size P x @, then
the access pattern to fetch agg, then apy & @10, followed by ap2, ar1 & azo, as shown in the
figure, will be

12

0, (P, P+1), (2P, 2P+1,2P+2), ...
ie. an out of order access.

For the outer product array in Figure 2.3b), the same storage arrangement will result in
the access pattern

0,1,2,..., P—1, P, P+1, ...

which is an in order access. This results in fewer memory bank conflicts and a higher ‘hit’
rate for the caches.

e Operations on smaller matrices are more evenly balanced. This relates to the previously
mentioned advantage, but is concerned more with the delay slots which must be inserted
into the inner-product configuration.

One of the motivations behind using systolic arrays is that the computational cells, or
processing elements (P.E.’s), can be made simple and be replicated many times on a
single chip. Therefore, it is not desirable to attempt to make the cells run at varying
speeds.

However, if the cells all run at the same speed all the time, only % of the available
bandwidth is utilised at start-up, then %, etc until the full bandwidth is utilized after

%2 accesses after the initial access. Although this may not be significant if the matrix
being operated on is much larger than the array dimension P, the effect on matrices that
are a similar order to the array is to double the time a computation takes. In Gaussian
elimination (discussed later) operations on matrices of similar order to the processing array
are common place. As the outer product configuration uses all the processing elements all

the time, the full computational rate can be achieved.

2.1.3 Interfacing to the Processing Array

A complete system based around an array of processing elements will include a memory system
for storing all the required operands. Therefore, a memory interface is required, that will
provide the link between the array and the memory subsystem. The hardware that is used
for the generation of the correct addresses, the receiving of the desired data, and other sundry
functions can be incorporated into one unit, termed the *Data Controllers’. The functions these

provide include:

e Address Generation
The addresses of the next memory access must be calculated according to some formula.
In this architecture, a difference engine is used, which calculates addresses according to
the formula
next addr. = (prev addr. + offset) mod maz. addr.

The address generator is dealt with in more detail in Chapter 5.

e Memory Interface
The Data Controllers must supply the address calculated by the Address Generators to
the correct memory unit, and then read the result back. In the event that a multi-level
memory is implemented, the Data Controllers must also check cache memory tags before
reading data to ensure that the correct data is read into the controllers. A proposed
memory structure is presented in Chapter 6.

13

Memory Array

Side Side
Data Reglater -
Support Dot Reglster f—==
Arithmetic R B9
| - Data Reglster {—=
Data I l Data Path Data Reglater -
Tag
" IMemory Coherence/|
Tag Checking Unit [
P
Adgroes 1} A d d re S S Data Reghter |+
Generator ey
Data Reglaler —-

Figure 2.4: Block Diagram of Data Controller

¢ Convert and Supply Data to Array
The data that is read from memory is supplied in ‘word’ form from the memory, and must
be converted to nibble form and the rate of supply slowed down before it is passed to
the array. This is done with a series of shift registers with parallel load and serial unload
facilities.

e Support Arithmetic
As the processing elements only perform the most basic of arithmetic operations (multiply
and addition), any extra operations that are required in an algorithm must be implemented
within the Data Controllers, either before the operands are applied to the array (such as
row normalisation) or after they are extracted (such as trace determination).

A block diagram of a Data Controller is shown in Figure 2.4, while a diagram of the complete
system is shown in Figure 2.5.

2.1.4 Processing Element Redundancy

As the typical size of a processing array will vary approximately between 20 x 20 to 100 x 100
processing elements, the total number of P.E.’s in a system will vary between approximately
400 and 10,000. With numbers this high, consideration needs to be given to the reliability of
the processing elements, and hence of the complete system. Marwood and others [62, 75] have
noted the importance of including redundancy into such large systems, and techniques have
been devised that effectively reduce the defect rate to close to zero. These include concepts
such as configuring the processing array with an extra row or column of processing elements and
switching the data flow ‘down’ or ‘across’ a row or column in the event of processing element
failure. Figure 2.6a) shows the a 5 x 4 processing array operating correctly, while Figure 2.6b)
shows the same processing array reconfligured after the failure of processing element number 11.
Using this approach, two extra multiplexers are required for each processing element for each
dimension of redundancy, for a total of 4p? multiplexers if the array is of dimension p X p and
two dimensions of redundancy are implemented.

14

Processing Array

A
‘ .

B el

Data Data Data
Controller Controller Controller

I 1 I

Memory

Figure 2.5: Block Diagram of System

By B2 Bia B4 By B2 Bya Big
L4 R T
Ay R | 4 2 J 3 4 4 L 4 1 o | 2 3 4 4
! \ | i ¥ i
nyy A4 5 |4 e |47 |8 fa,, {5 |6 |47 |8
iz [} L] I i \]r * i
A, o (1o | J1r [z |ay Ao | {10 | 1|22
1 I ; 1 1 1\’fl
Ny A3 (e | s (a6 |a, 13 | {1 [{15 | |16
\ L1/
\ T/
17 18 19 20 17 18 \ 19 20

Figure 2.6: Redundant Array a) Before Failure b) After Failure

15

Similarly, failure among the processing elements can be dealt with by the data controllers, by
switching in a complete new row or column fed by the controllers. This is illustrated in Figure 2.7.
Although the versatility of this approach is reduced compared to placing the switching with the
processing elements, the number of multiplexers is greatly reduced, to 2p from 4p?.

Data Controller

Data in 1 }-n\- A 11 -
Datain 2 -\3 Aoy -
Datain 3 -\u' Agy -
Datain 4 «-\J Agy -
Datain 5 _\:! —
|
Data in —-\-s-
Data in *\q ot
Data i A —
atain p - p1
| \ Spare .
Mux Data
Registers

Figure 2.7: Redundancy Using Data Controller

2.2 Evolution of the System

The matrix engine designed at the University of Adelaide is very similar to one designed and
implemented by Marwood and others at the Defence, Science & Technology Organisation at
Salisbury, South Australia, called the Systolic Configurable Array Processor (SCAP) [18, 54, 55,
56, 58,59, 61, 62, 63, 75]. Although the projects were initiated by Marwood at approximately the
same time, several SCAP systems have already be constructed. The SCAP processing elements
were constructed using CMOS technology, whereas the University of Adelaide design was in
Gallium Arsenide, partly to aid development of that technology. The data sheets describing the
SCAP architecture are included in Appendix A. The important comparison points from the
data sheet of the SCAP A17502 Data Controller are reproduced below.

e Convenient interface between conventional memory architectures and a Processor Array

e Cascadable to service arbitrary sized processor arrays.
e Bus interface allows common or independent memory subsystems.

e Flexible matrix addressing modes are built in [to] provide zero cost matrix operations
such as Transposition, Negation, Conjugation and Mapping for prime factor and other
algorithms.

e Direct support for both real and complex matrices, submatrices and non-square matrices.
e Maps arbitrary sized problems onto a fixed-sized array. The problem is limited only by

available host memory.

16

e Programmable modes of operation. The same device can be used to fetch operands or to

store results.

o Executes its own instruction stream from host memory, allowing complicated algorithns
to be performed without host intervention.

e Each Data Controller can fetch operands or store results at a rate of 6.25M floating point

words per second.

These are the items that will be used for direct comparison with the system described in this

thesis.

A range of systolic processors that are not as closely related to our system as SCAP was
presented by Johnson, Hurson & Shirazi[41]. Their tables are reproduced in part in Tables 2.1
& 2.2. Some of these are briefly described in Chapter 1.

System Name, Development Topology Key Features
Developer stage
Brown Systolic Array Prototype Linear Very small VLSI footprint; 100s of cells
per chip; Brown University 470 cells ISA,SSR architecture; 8-bit ALU only;
157 MOPS
Micmacs Prototype Linear 16-bit fixed point maths
IRISA, Campus de Beaulier 18 cells broadcast data: 90 MOPS
Geometric Arith. Par. Proc. Commercial | 48 x 48 array | Bit-slice cellular arch.; global
NCR 2304 cells data; 900 MOPS
Saxpy-1M Commercial Linear 32-bit f.p. capability; broadcast and Saxpy
Computer Corp. 32 cells global data with block
processing; 1000 MFLOPs
Systolic/Cellular Arch. Prototype 16 x 16 array | 32-bit fixed-function units
Hughes Research Lab. 256 cells
Cylindrical Banyan Multicomp. Research Packet-switched programmable topology
University of Texas at Austin with programmable cells
Programmable Systolic Device Research Instruction decoding occurs once per chip;
ANU each chip has many cells

Table 2.1: Contemporary Systolic Arrays in SIMD Configuration

For comparison purposes, the matrix engine can also be compared to high end ‘add-on’ array

processors or, alternatively, with vector processors. In 1987, Dongarra produced a comparison of
the characteristics of vector supercomputers in the 1980s, which was repeated in 1992 by Kahan
in his examination of supercomputing in Japan in 1992 [43]. These were used by Marwood [58]
as benchmarks against which he could compare the principles of systolic processing. The tables
detailing the comparisons are reproduced below, as Table 2.3 and Table 2.4 respectively.

2.3 Conclusion

By performing an outer product on the array instead of an inner product, memory patterns are
simplified and start-up delays are reduced. The simple processing elements can be replicated a
large number of times on a single chip and many chips included on a single MultiChip-Module
(MCM) to produce a large factor of parallelism while maintaining the simplicity of the simple
architecture. More complex algorithms will be implemented by performing more complex tasks
on an interface ‘Data Controller’ chip.

17

System Name, Development Topology Key Features

Developer stage

PSC Prototype Linear Early predecessor of Warp;

CMU 9 cells 8-bit fixed-point ALUs

Warp Commercial Linear 32-bit f.p. multiplication; block

CMU 10 cells processing; I/O queuing; 100 MFLOPs
1Warp Prototype 8 x 8 array | Warp cell minus on-chip memory
CMU expandable to 1024 cells

Computer for Experimental Prototype Four 8 x 16 | Bit-serial cellular I/O; 32-bit f.p.
Synthetic Aperture Radar arrays multipliers in each cell

Norwegian Defense Res. Estab, 512 cells 320 MFLOPs

Cellular Array Processor Commercial | 16 x 16 array | Block processing; f.p. maths;

Fujitsu Lab., Japan 256 cells image oriented

Configurable Highly Parallel Comp. Research Programmable cells embedded in switch
Purdue University lattice for programmable topology
Associative String Processor Research Associative concepts; MIMD at high
Brunel University level; SIMD at low level

PICAP3 Prototype 8 x 8 array 16-bit word length;

University of Paris 64 cells image oriented

Table 2.2: Contemporary Systolic Arrays in MIMD Configuration

Machine Cycle Time | Processors Peak Mflops

(ns) Mflops | per Proc
Amdahl 500 7.5 1 133 133
CRAY-1 12.5 | 160 160
CRAY X/MP-1 9.5 1 210 210
IBM 3090/VF-200 18.5 2 216 108
Amdahl 1100 7.5 1 267 267
NEC SX-1E 7 l 325 325
CDC CYBER 205 20 1 400 400
CRAY X/MP-2 9.5 2 420 210
IBM 3090/VF-400 18.5 4 432 108
Amdahl 1200 7.5 1 533 533
NEC SX-1 7 1 650 650
CRAY X-MP-4 9.5 4 840 210
Hitachi S-810/20 14 1 840 840
NEC SX-2 6 1 1300 1300
CRAY 2 4.1 4 2000 500

Table 2.3: Comparison of Vector Computers in the 1980’s

18

Machine Cycle Time | Processors Peak Mflops

(ns) Mflops | per Proc
HITAC S-3800 2 4 32000 8000
NEC SX-3R 4 4 25600 6400
Fujitsu VP2000 3.2 2 10000 5000
CRAY C90 4.2 16 16000 1000
IBM ES/9000 - - 2670 -

Table 2.4: Comparison of Vector Computers in the 1990’s

Machine Architecture Node Processor Peak Node
Mflops (D.P.)
Intel XP/S MIMD 2d mesh Intel 1860 50
Kendell Square Research KSR1 | MIMD rings Custom RISC 40
MasPar MP-1 SIMD 2d mesh 32 4-bit custom 1.2
Meiko Sc. Corp MIMD variable 1860 or SPARC 40 (i860)
nCube 25 MIMD hypercube 64-bit custom 2.4
Parsytec GC MIMD 3d mesh, variable | Transputer T9000 25
Thinking Machines CM-5 MIMD fat tree SPARC 128 ¢
Wayvetracer Data Transport SIMD 3d mesh Custom bit-serial N/A

“with four vector units

Table 2.5: Comparison of Massively Parallel Computers

The matrix engine is aimed at a middle ground of competing technologies. As such, it should
be faster than similar systems, such as those in Table 2.1 & 2.2. It should also compete on speed
with the previous generation of vector machines (in Table 2.3), although the physical size and
power consumption will be lower. It is these machines that many users are currently using, and
making the matrix engine have similar performance will enable these users to get the same level
of performance on the desktop, with lower initial and running costs. The latest vector machines,
such as those in Table 2.4, can be faster than the matrix engine, but will be larger, more
expensive, and consume more power. It is felt that a speed in excess of one GigaFFLOP (1 X 10°
floating point operations per second) is required on a matrix engine with array size of between
800 and 1600 elements to fulfill these conditions. This figure is the sustained or equivalent
‘required’ floating point performance, ie the total number of required floating point operations
using a very efficient (the most efficient) algorithm divided by the total time, including start-up.
Note that the performance figures quoted in Table 2.4 are the peak performances of the listed
supercomputers, and that peak performance on these types of machine are typically three to
ten times higher than the sustained or equivalent required performance [93].

The work undertaken for this thesis was to investigate the ability of algorithms to be modified
to this simplified array, and to design the interface and memory specifications. This included
an analysis of the algorithms to include any ‘special’ or ‘sundry’ functions that must be incor-
porated into the interface ‘data controller’ chips, and also the design specification of a memory
subsystem that would efficiently support the algorithm. Additionally, the feasibility of incorpo-
rating several complete processing arrays, or ‘malrix engines’, into a multiprocessor architecture
was investigated.

To this end, the remaining chapters have been divided largely according to these task re-
quirements, although the actual design work of each part was largely done in parallel.

19

Chapter 3

Algorithms

In this chapter, four algorithms and their implementation on the matrix processing array will
be presented. The algorithms are matrix multiplication, Gauss-Jordan elimination, the discrete
Fourier transform and Kalman filtering, covering fields including numerical computation, signal
processing and control systems. The expected performance of the algorithms when implemented
on the matrix array with memory interface is presented in Chapter 7. A overview of the memory
system, enough to explain the algorithm analysis, is presented here, while the memory subsystem
is described in more detail in Chapter 6.

3.1 Memory Subsystem: An Overview

Most computations are of a form in which two operands are fetched from memory and a solution
is stored to memory for each operation. Therefore, three ports to memory are ideally available
if the matrix processing array (the computational engine) is to maintain its high computation
rate. Unfortunately, several algorithms that will be implemented on the matrix engine have
addressing patterns that cause conflicts when implemented on standard high performance three-
port memories. Therefore, a bank-switched four-port memory was devised that allows two loads
and one store to memory simultaneously. The bank-switching is achieved using a custom 4-1
bidirectional multiplexer, with caches attached to the memory banks that switch between the
memory ports of the matrix engine. Additionally, to cope with data that must be recirculated
from the output back to the inputs very quickly, two dual-ported static RAM chips are included,
one for each of the output to input paths. A block diagram of the memory system is shown in
Figure 3.1.

As shown in the figure, each memory bank has a cache system attached to it, on the memory
side of the bank switches, unlike many other systems which attach the cache to the data port.
This means that cache data will move with the main memory bank, easing the constraints caused
by cache flushing and coherency considerations.

3.2 Matrix Multiplication

The most basic of operations to be run on the matrix engine is matrix multiplication. As
mentioned in Chapter 2, the matrix array is configured to perform an outer product. Thus cach
of the data controllers applics a vector to the edge of the array, and the array produces the outer
product of the two vectors. The outer product can thus be defined as

uv = (viu, vau, ..., 1) (3.1)

20

DC bc Processing DC
1 2 1 Array 3

PG

Tug . Cache Teg . Cache Tag « Cache Tag « Cache
00 Voo 2 | 2 s . 3
Main Memary Main Memary Maln ¥Memary Usin Memory
[} 1 2 3

Figure 3.1: Block Diagram of System

where r is the dimension of the vectors v.
The matrix product in terms of outer products is the in-place sum of the vector outer
products [58, 70, 65], ie

C = AB
b,
b,
= (aj.ag.....a;) :
b,
¢
= Zaibi
=1
L
= Y (baay,bia,. .., bira;) (3.2)

=1

3.2.1 Partitioning

While Equation 3.2 is appropriate to describe the outer product of two matrices that are of a
smaller size than the processing array of the matrix engine, in practice the matrix will generally
be much larger than the processing array. Indeed, if the matrix were smaller, it may be faster
to process such a small problem on a general processor, rather than going to the expense of
configuring the matrix array. What is needed is a way of partitioning the matrix multiplication
into segments that can be implemented on a fixed-size processing array that is smaller than the
matrix multiplication problem.

The partitioning is relatively simple, and can be derived by dividing the vectors a; in Equa-
tion 3.2 into several vectors with at most p non-zero elements, for a processing array size of

21

p X p. The vectors become

Fa, ¥ [0 Y

ay; :
0
a i
Ay = “6” n (”:“’ I (3.3)
0 A(2p)
0
\ 0/)

and each is processed in turn. Of course, the zeros are only included for theoretical explanation,
and in practice, only the non-zero elements are used. One way to consider the partitioning is to
think of the partitioned outer product as an inner product of outer products, ie

C = AB
Alile AI:B:2 ‘e Al:B.‘I—L]
P
AQ:B:I AZ:B:‘Z v A‘Z:B:[L])
= il (3.4)
Ar,nB, Ar.1By ... Ar,1 B,
1 it H Ea HiagH

where the colon (:) is used to indicate a complete matrix dimension, in this case of a submatrix.
Therefore, the notation A, indicates rows 1,...,p and columns 1,...,nof an m X n matrix A,
A,. indicates rows p+1,...,2p and columns 1,...,n, etc., and is referred to as the row matriz
A;. Similarly, the notation B, indicates rows 1,...,m and columns 1,...,pof an m X n matrix
B, B,. indicates rows 1,...,m and columns p + 1,...,2p, etc., and is referred to as the column
matriz B;

Then each block of the matrix C can be calculated as:

Cjj =) _aib] (3.5)
i

where af is the 11" column of the row matrix A;, bf is the t'" row of the column matrix B/, and
C;; is the (i, j)t" partition of the matrix C.

In effect, the partitioning can be viewed as a means of producing p? inner-products simulta-
neously.

Dividing the matrix in the general case without padding produces four regions, as defined in
Figure 3.2.

The subscripts denote the coordinates of the block being calculated, while the superscript
defines the region in which the block falls. This notation follows that defined in [65, 58].

A two dimensional address generator can extract each of the blocks one at a time. The
overhead involved in accessing each partition independently is large, and an automated man-
ner of determining each block in turn is necessary. A four-dimensional address generator will
automatically calculate the partitions in region 1, a three- dimensional generator is needed for
regions 2 and 3, while a two- dimensional generator is required for region 4. Together with
the choice of four ‘base-addresses’, the partitions shown in Figurc 3.2 can be automatically
generated without any external intervention. A C+4+ class to implement this is found in [58].

A consideration to be made is one concerning the fetching of data from main memory into
the cache. The memory architecture proposed in Chapter 6 allows two loads and one store

22

c! o} ... ! C?..
(11 12 [1_)] \

Figure 3.2: Four Regions of a Partitioned Matrix Product

Ciu Cip2 ... Ciy Ain A ... Aw By B2 ... Bin
Cy Gy ... Con Ay Ay ... Agn By By ... Boy
Cni Cn2 ... Cnn Anvi Anz ... Ann Byi Bn2 ... Bawn

Figure 3.3: Memory Access for Matrix Product

simultaneously to memory. The caches improve the average memory access speed significantly
due to the large amount of cache reuse!. However, if one input controller is fetching data from
main memory after a cache ‘miss’, the other must stall and wait if it has a cache ‘hit’. Therefore,
assuming that the complete matrices fit into the cache (up to 1000 x 1000 for a 1 MWord cache),
there is a factor of approximately two introduced into the miss ratio and hence an increased
total miss penalty.

Using the matrix product in Figure 3.3, in which two n X n matrices are multiplied together
on apXparray and ¥ = [%] , the origin of the factor of two can be seen as follows?.

If the first block of the solution to be determined is block Cyq, then blocks (Aq1, Aq2,..., A1n)
and (By1.B31.....Bxy) need to be fetched from memory into the cache. The next logical block
to calculate would be either block C;5 or Cgy. However, whichever of these is chosen, either
the controller accessing matrix A or the controller accessing matrix B respectively will have a
cache hit while the other has a cache miss. This results in a memory access time mismatch
and the data controller that had the hit would have to stall. Therefore, the standard (logi-
cal) access pattern of calculating the solution blocks in rows or columns will result in cache
misses along two of the four edges, ie misses when calculating blocks C11, Ciz,. ..,Cin, and
Cs1,...,Cn1. The remaining blocks will all achieve cache hits. This results in 2N — 1 misses
and (N —1)2 = N2 — 2N + 1 hits for a hit/miss ratio of MQ—R%V% = %[— -3t =

If the pattern of calculating blocks is changed to calculating the diagonal blocks first, both
data controllers will have cache hits and misses at the same times. As the misses all occur when
the diagonal blocks are being fetched, there will be N misses and N(N — 1) = N? — N hits,
for a hit/miss ratio of w =N -1. As 8]\,1—_4 — 0 as N gets large, it is obvious that the
hit /miss ratio for calculating the diagonals first is approximately twice that for calculating by
rows or columns.

For an n X n matrix on a p X p array, the data is used [%] times
2This of course extends to a more general case of two arbitrary matrices being multiplied together. For
convenience, the cache access pattern is considered, without loss of generality, for the given size

23

3.3 Solution of Sets of Linear Equations

With a speed in excess of one Gigaflop for matrix operations, where a FLOP is a Floating point
Operation Per Second, a method of solving large systems of equations on the matrix engine would
be of considerable benefit. Of the several possible algorithms available, it is Gauss-Jordan which
seems to hold the most promise, although others (eg. Gauss elimination, LU decomposition)
can easily be implemented with only relatively minor modifications.

The set of equations is denoted as

Ax=Db (3.6)

where A is an m X n matrix, x is an n X L vector of unknowns and b is an n x 1 coefficient
vector. There can, of course, by several ‘right-hand-side vectors’ bg, b1, ..., b,, in which case
the vectors x and b become n X r matrices, and can be solved simultaneously.

3.4 Gauss-Jordan Elimination

In engineering and mathematics, the solution to a very large number of equations is often sought.
Common methods of solving such a system of equations include Gauss-Jordan elimination, Gauss
elimination and back substitution and LU-decomposition and backsubstitution®

Of the three Gaussian approaches to solution of equations (Gauss elimination and back
substitution, Gauss-Jordan elimination and LU-decomposition and backsubstitution), Gauss-
Jordan elimination is generally not the recommended method due to its increased operation
count [48, 73] and the fact that all the ‘right-hand-sides’ of a set of equations® need to be stored
and manipulated at the same time as the elimination. However, Gauss-Jordan elimination has
advantages which are specific to implementation on a matrix array. These include:

e Fixed-column Size
Gaussian and LU decomposition both ‘triangularise’ the matrix of linear equations, and
then backsubstitute. One consequence of this is that the number of elements operated on
in sequence is continually diminishing until only a single element exists in a row.

e Determination of the Inverse

3.4.1 Block Version

It is now well documented how to obtain a block version of Gaussian based elimination [1, 58],
although a brief overview follows.

Gaussian elimination works due to three premises of elementary row operations that leave
the matrix system unaffected as a whole. These operations are[48]:

e Interchange of two rows
e Multiplication of a row by a non-zero constant
e Addition of a constant multiple of one row to another

Thus, a system of linear equations S is row equivalent to another system S, if $1 can be
transformed into S, using the elementary row operations listed above.

30thers exist, such as QR decomposition, which use more complicated operations than the linear addition and
scaling operations in Gaussian elimination
4There can be many

24

The row-oriented Gauss-Jordan elimination is

fork=1tom
ape = (lekl
fori=k+1ton
dp; = Qkilkk
forj=1tom,j#k
fori=k+1ton
aj; = aj; — UjGk;

Figure 3.4: Row Oriented Gauss-Jordan Elimination

To transform this into a block form, simply let the scalars a;; become block matrices A;j,
where each A;; is of dimensions p X p and p is the size of the matrix array. A premultiplication
of p rows by a p x p block can be shown to be simply p elementary row operations, as shown
below for the first row of just such an operation.

A;. = rowl{BC}
= (bricir +biz2ear + oo+ bipepr, bz + braca + ..o+ bipCp2s - - -
bllclp + blgCgp +...+ blpcpp) (37)

ie row one of A is a linear combination of the rows of C, with the scalar coefficients being
elements from the matrix B.

3.4.2 Determining the Inverse of the Pivot Block

Although we now have an algorithm to calculate the solution of a set of linear equations in block
form using only matrix outer products, there is still the requirement of calculating the inverse of
the pivot blocks. Logically, Gauss-Jordan elimination could again be used for this calculation.
However, as the systolic array would need to be unloaded after each wvector of the matrix is
applied, this would be very inefficient, and an alternative was sought.

Such an alternative is to use an iterative algorithm. One that is well known goes under the
various names of Hotelling's Method and Schultz’s Method and others, although the algorithm
basically reduces to a matrix version of Newton’s method of root finding [73, 70]. Newton’s
method applied to finding the inverse of a scalar is considered in more depth in Section 4.2.1.
Suffice to say that it produces the result

Yot1 =2Y, - Y, AY, (3.8)

which is an iterative matrix equation for forming the matrix inverse Y of the square matrix
A. Note that the precision of convergence n more than doubles at each iteration. In fact, the
convergence is quadratic if Yo is sufficiently close to A~!. One choice of the initial estimate Yo
that satisfies the convergence condition is

Yo = diag(7 20y) (3.9)

az” 'Y ann

Appendix B contains an explanation as to why this choice converges quadratically to the correct
solution of the inverse of A.

25

3.4.3 Implementation on the Proposed Memory Architecture

The memory architecture described in Chapter 6 is a multiport, banked-switched cached system.
The structure is repeated in Figure 3.1 for convenience.

Care must be taken when implementing an algorithm on the matrix engine to ensure that a
minimum of stalls occur while waiting for data to cycle from output to input via the memory
(either cache/main memory or the dual ported loop memories). The load/unload structure of
the processing elements in the array, as defined by Marwood [58], is such that a matrix-matrix
product can be initiated simultaneously with unloading the array. The square array is matched
such that the time to load and apply a p X p matrix to each of the inputs and calculate the outer
products is the same as the time to unload the previous product, assuming memory load/store
times are equal.

The Gauss-Jordan elimination can be run in three parts, namely

e Invert pivot block
e Normalise pivot row

e Apply elementary row operations to zero all blocks on the same column as the pivot block.

Implementing Block Inversion

Inverting a pivot block is a cyclical operation, and takes advantage of the dual-port RAMs that
feed data directly from the output back to either of the inputs. Additionally, use is made of
the fact that the transpose of a matrix can be extracted directly from the array, as described in
Chapter 6. Figures 3.5a) and 3.5b) show the extraction in the standard and transposed forms
respectively.

1M 12 13 1p 11 12 13 \IJ
- T T 13 1
a1z au 2 el ST T :clp aiz an cni c”i ctal !clp
IR ——— + 4 4 . bt . — ¢ -
a2 an o cz‘!uﬂ:_eﬂ' chp az an c2|ic!2' ¢23] cErRLEaS 1u2p
alzx ad - 31| ¢32| ¢33 | capl har an =3 c:nl 60| mEeeeseas cap|
| Ll
| e
ol I I 1
Tk
N - | | R 11
dpx ap o cpt| cp?| opll Teshwees | opi apz apt epl| cp! cp!\: """"" cpH
Figure 3.5: Extracting a) Standard b) Transpose

Initially, the matrix A;; (the pivot block) is applied to the left-hand side (coeflicients a;y
in Figure 3.5) and the matrix Y (the initial estimate of the inverse) applied from the top
(coefficients y;; in Figure 3.5). Recall that the initial estimate Yq is generated ‘on-the-fly’
as the recipricals of the pivot elements of the input block A;. If a negation is included in

26

the calculation of Yo and the transpose extracted from the array, the resulting product that is
extracted is

Output(= Xo) = —(A.By)" (3.10)
Noting the relationship
p'Q" = (qP)’ (3.11)

and as Yy is a diagonal matrix, then Y/ = Yy, so that cycling the initial product Xo back to
the left hand input and applying Yo again from the top input produces the result

(~AY0) Yq = (- YoAY)" (3.12)

If the matrices 21 and Y, are applied to the array while the previous product was being
extracted, and the array is not cleared, the final product that results is the desired

Y = 2Y, — YoAY, (3.13)

Subsequent iterations proceed in a similar manner, except that the current estimate Yy for
the next estimate Y (z,41) may no longer be diagonal, so the relationship Y = Y, may not
hold. However, as the estimate Y, is now stored in the dual ported RAMS, and not calculated
on the fly as it was for the first estimate, then the transposed matrix can be extracted simply
from the RAMS and the same iteration procedure applies. The complete equations for later
iterations become:

Youtyy = (QYZ + ((_AY'n)T YZ))T (3.14)
2Y, — Y,AY, (3.15)

The sequence of *n’s will be
n=0.1.3,7,15,31,63,127,... (3.16)

Therefore. for 32-bit precision and setting n = 0 to start, five iterations are required. Once
the final inverse has been determined. it is kept in the dual ported RAM for the normalisation

phase.

Normalising the Pivot Row

This is a very simple part. Once the inverse of the pivot block is determined, each of the blocks
in the pivot row are multiplied by the inverse of the pivot element. Thus, the pivot element
becomes the identity matrix and does not need to be stored.

The one point that should be noted is the writing of data from the output. In traditional
Gaussian elimination, storage is conserved by overwriting the original matrix with the updated
version. However, as the memory architecture proposed does not allow simultaneous reads and
writes to the same bank of memory, such a scheme would cause intolerable delays due to stalls.
However, as memory is relatively cheap compared to improvements in processor performance,
the updated matrix can be written to a new bank, which can then be swapped with the previous

input bank for successive iterations.

27

Zero All Blocks in Pivot Column

This stage is the update phase, characterized by

Aji = Aji—AjALAL,
= Aji— AjAy (3.17)

Care needs to be taken to ensure that minimal memory conflicts occur during the update
phase. Conflicts are likely in this algorithm and at this particular phase, as a block from the
output must be fed into the input (namely the normalised block A;ﬂ-). Therefore, the output
bank must be available to the input. Bearing in mind that the previously updated block will
be in the process of being written to the output bank when the next update is started, then the
normalised pivot row is not available. Therefore, to fill time, load the available block A;; into
the accumulators using the operation

Matriz Array = Aj;.1 (3.18)

By the time this operation is concluded, the previous write to the output bank should have
concluded. Therefore, block Ay; will be available, and can be applied to the top of the array. If
this block is negated before it is applied, and the array is not cleared before applying the matrix
product, the resulting matrix in the processing array will be

Matriz Array = Aj; — Ajchki (3.19)

which is the desired update.

The ordering of the block update does have some significance, although only minimal losses
occur if the wrong (non-optimal) ordering is used. Consider the row oriented form of Gauss
Jordan elimination provided in Figure 3.4. If the pivot row is completely normalized before
any zeroing is performed, then one of the inputs to the processing array must come from the
memory bank that is being used to store the result, which will require a large amount of bank
switching. This is generally not a problem, although it will result in a number of stalls due to
cache tagging. If, however, the access is by columns of blocks, as shown in Figure 3.6, then the
normalised block from the pivot row will be available in one of the feed-back dual-ported RAMs,
and bank switching will not be required until the second full iteration of the algorithm. Each
iteration will cause a minimum of stalls (only those relating to unmatched memory read/write
times).

for k =1tom
(Al;c;Y = (lljkl
fori=k+1ton
Qi = QgiQkk
forj=1tom,j#k
aji = Q5 — Ayl

Figure 3.6: Column Oriented Gauss-Jordan Elimination

3.4.4 Inverting Rather Than Solving a Set of Matrix Equations

The case may exist where it is desirable to invert the given matrix rather than solve it for a given
set of ‘right hand sides’. This is a simple extension of the Gauss-Jordan elimination technique,
and can be implemented easily on the matrix engine.

28

Instead of performing elementary row operations on the matrix A, instead perform the same
row operations on the augmented matrix A = [AI]. As Gauss-Jordan elimination on AX =T
implies that X = A™'I = A~!, then elimination on the new augmented matrix implies that,
while A reduces to the identity I, the identity in the augmented matrix, I, reduces to the
desired inverse.

Of course, the entire augmented matrix need not he stored, as it can be created as needed.
In the first iteration (on the first row of blocks), the only column of the identity matrix I, that
is affected is the first one. Therefore, as each column is eliminated from A, a new one is added
onto the augmented matrix A.

The actual operations that are required for the normalisation and update phases can be
simplified when operating on the matrix I, due to the inherent ‘ones’ and ‘zeroes’ in this matrix.
When normalising the pivot row ‘i’, the operation for the ‘new’ column (column ‘i’ in I,) is

L, = L Az_zl
= IA;1

which has already be calculated, so no extra work is required for the normalisation phase. The
updating of all the other blocks in the same column is

I =1

ayq ay; AjiIau‘
_ LAl
= 0-AjiAy

= —Aj;Ay

which is a single multiplication.

Thus the creation of the inverse can be achieved with simplicity by some intelligent extra
control in the input and output data controllers that maintains rather than reducing the size of
the applied matrix.

3.4.5 Solving Sets of Equations That Don’t Fit Into the Cache

With 1 Megaword caches, Gauss-Jordan elimination can be used on matrices with up to approx-
imately 1000 x 1000 elements without the need to load data more than once from main memory.
However, systems of up to 10,000 x 10,000 or more can be solved efficiently, main memory size
permitting®. It is important. however. to partition the problem into ‘cache-sized chunks’.

The partitioning of the Gauss-Jordan algorithm to maximize cache reuse is similar to that
used above to convert to block form (Section 3.4.1). Here, we will set the block size to ac-
comodate a single block in a cache instead of in the processing array. Consider a cache size
of ‘C’ Mwords. The maximum size (square) matrix that will fit in the cache is one of order
V/C thousand elements. Therefore, divide the matrix into square blocks, each of size VC (=d)
thousand element on a side. For an M x N matrix ‘E’, the division is as shown in Figure 3.7.

The pivot element FEjyy is initially inverted using Gauss-Jordan elimination as described
previously. This will create a d x d matrix which can be multiplied by each of the other blocks
in the pivot row, (ie VE,).

Once the pivot row has been normalised, the pivot column can be zeroed by subtracting the
matrix product of the normalised pivot row and the matrix in the pivot column from each row

®Storing a matrix of size 10,000 x 10, 000 in main memory requires 100 MWords = 400 Mbtyes of DRAM for
32-bit words. As the array requires a minimum of twice the matrix storage requirements to operate efficiently,
at least 200 MWords of memory would be required. The DRAM densities of the near future make these figures
feasible, especially when considering other similar performance systems. However, matrices of size 5000 x 5000
seems more reasonable. Note, however, that the main limitalion is the slorage, not the computation rate

29

11 Fia El[%]
01 Fa o By

Eryn Eray, - B

Figure 3.7: Dividing Sets of Equations Into Blocks

E;. in turn. These are all large matrix multiplication routines, and the matrix array will run at
close to its peak speed.

3.4.6 Iteratively Improving a Set of Solutions

If a solution vector X is obtained for a set of linear equations, it is possible that it could be
different from the ‘correct’ solution x by the small amount éx, due to numerical error accumula-
tion. What has in fact been solved is the system of linear equations solved not for the vector of
known coefficients b, but rather for a slightly different set of coefficients b = b + éb, as shown
in Equation 3.20.

~

Ax=>b (3.20)
If the set of known coefficients from Equation 3.20 is subtracted, we get Equation 3.21

b—b = b+éb-b
— §6b (3.21)

and also Equation 3.22.

b-b = A(x+x)— Ax
= Adx (3.22)

Substituting leads to Equation 3.23, for which the entire right hand side is known, as x + 0% is
solution that was calculated but incorrect and needs improving, and b is given.

Aéx=A(x+6x)—b (3.23)

Now Aéx can be solved for éx, which can then be subtracted from x + 6x to return the
corrected solution x. The numerical error in éx will be approximately the same as for x in terms
of the number of significant digits that can reliably be considered to be ‘correct’. However, as
the most significant bits of éx (the more ‘correct’ ones) are a very good approximation to the
amount that x + éx is different from x, due to the difference in the orders of magnitudes, the
overall numerical error of the corrected solution will be reduced.

Two important points need to be considered when implementing iterative improvement on
the matrix processing array. Firstly, if only a single solution needs to be improved, ie X is a
vector rather than a matrix, matrix-vector operations will be required, which are inefficient on
the matrix processing array. Therefore, where possible, the improvement should be used on sets
of solutions, such that X is a matrix, preferably of the same dimension as the processing array.

Secondly, as is pointed out by Press et. «l[73], if the solution vector is found using LU
decomposition instead of Gauss-Jordan elimination, the LU-decomposed matrix can be reused
for the solution to the left hand side of Equation 3.23, saving O(n?) operations. The matrix
engine can be programmed to perform LU decomposition by simply saving the intermediate
calculations rather than discarding them.

30

3.5 The Discrete Fourier Transform

The original aim of the matrix processor was to use it to compute fast digital signal processing
algorithms. One of these is the Discrete Fourier Transform (DFT), which is of use when analysing
the frequency spectrum of a given time-dependent signal. A signal defined in the time domain
by the function h(t) has an equivalent function in the frequency domain, denoted H(f). The
Fourier Transform is simply the method of converting from one domain to another. The Fourier
transform equations are :

H(f) = /OO h(t)e~ 2™t (3.24)
Bty = /°° H()™ty (3.25)

Equations 3.24 and 3.25 are often written using angular frequency w instead of f. However,
using the non-angular frequency f, there will be fewer factors of 27 to consider.

For ‘N’ consecutively sampled data points sampled at intervals of ‘A’ time units, the sampled
values ‘h;’ are such that:

he = h(kA) k=0,1,2,...,N—1 (3.26)

This leads to the estimate being at the N discrete frequency points, given by

n
= 3.27
o (3:27)
where A is the time between samples.
Then the Fourier transform integrals of Equations 3.24 and 3.25 can be discretized to the

form:

N-1

X(k) = Ziv(n)e_z’”’k”/N
n=0
1 N-1)
r(n) = — AY(IJ)GQ"”*'”/N
A]

where H(f,) ~ AX (%) Substituting for W = e~27/N then these discretized equations become:

N-1

X(k) = > a(n)War (3.28)
n=0
| N-1

x(n) = & X(kYWE (3.29)
Y k=0

which are the equations describing the Discrete Fourier Transform (DFT).
Marwood derives the following two dimensional mapping of a one dimension DFT (ie Equa-
tions 3.28 & 3.29) [63, 55, 58]. Using the mappings

n = (Afl‘lll + ;Mgn,2>N (330)
= (Liky 4 Loks) y (3.31)

that translate the one dimensional quantities n and & into (n1, ng) and (kq, k2) respectively, with
the constraints 0 < ny, k1 < Ny — 1 & 0 < ny, ky < Ny — 1, for some constants Ly, Ly, M1&M;.

31

Then substituting these mappings into Equation 3.28, the DFT can be expressed in terms of
the (reduced) two dimensional variables.

Ni—1Nyx—1
X(Liki + Laka) = 30 57 a(Myny + Mang) Wi (3.32)

n1=0 ny=0

where
W/m _ W]]\\]/Ingngb wr]]\\[/lngmkz wvl]\thlm k1 W]]\\}I2L1n2kl (333)

If the function Y (ky, k3) is defined to be the mapping of X (Liky + L2k;) to two dimensions,
then Equation 3.32 becomes

Nij—1Np-1

Yk, k)= Y 3 y(ma,na) W' (3.34)

n1=0 no=0

Defining the mapping constants My, My, Ly and L to be

M, = alN,
M, = BN
Ly = 6Ny
Ly = 1M

and for the case where Ny and N, are relatively prime, then the mapping becomes unique and
the second and fourth factors in Equation 3.33 both equal one. Equation 3.34 becomes

Ni—1 | Ny—1
Y (k1, ko) = Z Z y(nl,ni)VVﬁ,;mmzlv2 W‘,‘\)}walkl (3.35)

n1=0 | ny=0

Adding the constraints suggested by Good [33]

a = 1
3 =1
= <l\72_1>)\71
y = <N1‘1>N2 (3.36)
or by Burrus [12]

then Equation 3.35 can be written in terms of matrix operations as
Y =W XW, (3.38)

where W; and W, are conventional Fourier matrices of dimension Ny X Ny and Ny X N3 respec-
tively.

An important point to realize is that the two dimensional mapping can be extended to an
arbitrary dimensioned mapping. In fact, Marwood and A.P.Clark show that it is necessary
to use the higher dimensional mappings as the transform length increases if any performance

32

advantage over conventional FFT algorithms is to be preserved [58, 60, 61]. From [58], the final
result for a four dimensional case is

Ni—1 | Ny—1 [N3—=1 [Ny—1 ,
Y(k,'l’k‘%kg, k‘4) _ Z Z Z Z y(nl’n% na, 714) X W]]\\[]fn4k4 WJI\\[[;LSICS W]]\>’22n2k2 l,il_.-r;"\t'l‘::]kl

3 1

n1=0 | no=0 | n3=0 | n4=0
(3.39)
and the coefficient matrix is again the matrix of Fourier coefficients such that
—:27 Npq
(WaiJpg =€ ™ (3.40)
where
4
N =T~
1=1

From Equations 3.39 & 3.40, the extension to ‘p’ dimensions is obvious. It is shown in Equa-
tion 3.41 for completeness.

g =t gy Nk Nnok Nnik
. n Ny K n
Y(kl,kg,...,k,,)_n?_o 22_0 E Oy(nl,ng,...,np)XWNg”p N§2 € WNfl .
] no— np:
(3.41)

3.5.1 Implementation

Marwood [58] shows the procedure of implementing a four dimensional prime factored DFT.
The procedure is described in terms of the operations

L X =Wn, X 0<i,j< N, N,

where X; (p,q) is derived from z(¢,j.p.q) =i X My +j X My +pXxX M3+ g x Ma.
2. XM =Wy, X/, 0<1,j< Ny N3

where Xi{j(p,q) is derived from z(7,j,p,q) =i X My +j x M3+ p X Mg+ qx My.

3. XM =wpy, xH 0<i,j< N3 Ny

where Xﬁ(p,q) is derived from a(i.j.p.q) =i X M3+ j X My+ p X My 4 g X M.
4.)(z{y = V‘I;’\b ‘XL{jI'I 0 S Ia.] S]V4s 1V1

where XL{JU(p,q) is derived from z(i,j,p.g) =t X Mg+ j X My + p X My + g X Ms.

A graphical representation of a multidimensional prime factor DFT can easily be shown in
up to three dimensions ,as in Figure 3.8. This figure shows three coefficient matrices, Wy, W2
& W, each multiplied by the ‘cube’ of data ‘X’ in turn. Due to matrix associativity, the order
in which the matrix products are calculated is not important.

From the diagram, it can be seen that the number of products and the sizes of such products
are:

1. N iterations of (Ny X N3) X (Ny x N3) & (N3 X N3) X (N3 X N3) products
2. Ny iterations of (N3 x N3) X (N3 X N1) & (N3 X Ni) x (N1 X Ny) products
3. N3 iterations of (N x Ny) X (N1 X Nz) & (N1 X N3) x (N3 x Ny) products

This can be extended to one or more dimensions of two dimensional matrix products, which
can each be executed in turn. Some performance estimates are given in Section 7.3 using this
procedure. These show that the matrix engine performs very creditably on medium and large
sized Fourier transforms problems.

33

w3

N URUTTERIERRERERARE Ahcanashs
i e
(ESEANRERNANRRNNRERD [555
A RRRRARRRRRARAGREEE o0
Wl EREERUSRURRRRERRTS b f5 8 tyd
(ARNRRERESHURRNRRBENE b Gosnstop

RS ENRREUNNEFARRRNE § 55
(REERUPRERUADHURUENRA & 580
IRERRNBHERRHENN AR NS [
Ll NI RSN EA RN NN

X

Figure 3.8: 3 Dimensional Representation of Prime Factor DFT

3.6 The Kalman Filter

Often found in control systems, signal processing and communications, the Kalman filter is a very
efficient method of providing minimum variance estimates from noisy measurements [45, 64, 31].
The Kalman filter is, however, of computational order O(n?®), which provides quite a bottleneck
if the filter is required for real-time broad-band applications.

Approximately ten years ago, the Kalman filter was used to estimate state vectors of size
ten to twenty elements. As computational power has increased and powerful microprocessors
and embedded systems have become cheaper, the number of elements in a state vector have
increasedto approximately 50 to 70, which fully utilises the available power. However, high end
control systems have always demanded computational power one to two orders of magnitude
larger than the norm, capable of calculating the Kalman filter of state vectors three to five
times larger than is common at the time. For example, the Kalman filter implemented on the
Voyager I & II space-craft used 67 state variables with 3500 data points. The computer system
for the filter was designed in 1977[14]. It seems that, no matter how much computational power
is available, an application will be found that consumes the full amount, and possibly asks for
more [88]. The aim of the implementation described here is therefore not to provide a competitor
to existing systems, but to open the scope of the Kalman filter to include systems that were not
implementable in previous systems.

There are several forms of the Kalman filter. The form presented here is that used by Gaston
& Trwin [31]. They describe the Kalman filter in terms of the equations:

x(k+1) = A(k)x(k)+ B(k)u(k) + w(k) (3.42)
y(k) = C(k)x(k)+ v(k) (3.43)

[l

where x(k) is the state vector of the system of dimension (n x 1), y(k) is the (m x 1) vector of
measured output variables such that m > n, and u(k) is the (p x 1) control vector. The (p x 1)
v(k) and (m x 1) w(k) vectors represent white noise with assumed zero mean and covariance.
The matrices A(k), B(k) and C(k) are assumed to be known, and are of dimensions (n X n),
(nx m) & (p X n) respectively.

The aim of the Kalman filter is to estimate the state of a system given a series of measure-
ments, and as such, a prediction vector X(k) is created that differs from the actual vector x(k)

34

such that:

Pk + 1lk)

E [(x(k+1) = %(k + 1}k)) X (x(k + 1) = %(k + 16)"] (3.44)
E [(x(k) — x(k[k)) (x(k) x(k|k)"| (3.45)

P(k[k)

where P is the error covariance matrix and the bracket notation ‘(s|t)’ implies the estimate of
the state at time ‘s’ given measurements up to time ‘¢’, with s > £.

Papadourakis & Taylor [31] derive the filter equations shown in Equations 3.46 & 3.47 for
a rectangular systolic array configured for matrix multiplication.

%(k+1k) = AR)X(klk— 1)+ A(K)K(k) [y(k) — C(k)x(k|k — 1)] (3.46)
P(k+1|k) = A(k)P(k|k— DAT(k) — A()K(k)C(k)P(k|k — l)AT(lc) + W(k) (3.47)
where
K(k) = P(klk — 1)CT (k) x [C(k)P(klk —)CT (k) + V(k)] (3.48)
The covariances W(k) and V(k) may be assumed to be zero, although they are left in for
completeness®.

To implement the Kalman filters of Equations 3.46, 3.47 & 3.48, care must be taken to
arrange the order of multiplications correctly for maximum efficiency. As there are a relatively
large number of matrix multiplications per iteration, and the number of elements in the state
vector will result in a small number of partitions, the ordering of the calculations should be
considered in two separate cases, those of:

1. The number of state variables and measured variables are both smaller than the dimension
of the processing array.

2. Either the number of state variables or the number of measured variables or both are
larger than the dimension of the processing array.

For the first case, the ordering of computation, together with the labelling of intermediate
calculations. is shown in Table 3.1. The table shows the procedure for calculating the Kalman
filter directly, by showing the required inputs, the resultant calculation and a temporary name
for this calculation, and whether to unload the calculation at the completion or to leave it in the
array for accumulation. This ordering, assuming a bank-swapping memory architecture, requires
only two delay slots, one before and one after the calculation of the inverse of C(k)P(k[k —
1)AT(k) + W(k). These are required as the following calculation relies on the result of the
current calculation. While these delays are not strictly necessary, as a future calculation can be
brought forward to fill the delay, they are retained here to maintain coherence of the procedure
by implementing the procedure directly.

If the dimensions of the state or observation vectors are larger than that of the processing
array, the computations can be partitioned, which will help ‘hide’ some of the unload operations
while other partitions are calculated. Table 3.2 shows an example ordering of the partitioned
form. The subscripts following a matrix indicate the partition of the matrix, ie X(k);; implies
the " row partition and the 5% colmmn partition. If a colon is included, either a complete row
or a complete column partition is implied, ie X(k);; is all columns of the ith row partition and
X (k).; is all rows of the j** column partition.

5Their inclusion will not significantly affect the overall computation time

35

Input 1 Input 2 Calculation Result Leave/
Name Unload
Compute K(k)

P(klk—1) CT(k) P(klk — 1)CT(k) L Unload
V (k) I Vi(k) - Leave
C(k) L C(k)P(k|lk — NCT(k) + V(k) U Unload

Invert U U-! Unload
L U-! LU K(k) Unload
Compute P(k + 1|k)

P(k|k - 1) AT(k) P(klk — 1)AT(k) M Unload
A(k) K(k) A(k)K(k) N Unload
C(k) M C(k)P(k|k — 1)AT (k) Q Unload
A(k) M A(K)P(k|k — 1)AT (k) R Leave

N Q A(E)K(k)C(k)P(k|k — 1)AT (k) S Leave

W(k) I W(k) P(k + 1|k) | Unload
Compute x(k + 1|k)

C(k) x(k|k—1) C(k)x(klk - 1) - Leave

y(k) I y(k)+ C(k)x(k|k — 1) Z Unload

A(k) x(klk—1) A(k)x(klk —1) - Leave

N Y/ A(B)K(K)Z %(k + 1]k) | Unload

Table 3.1: Ordering when Number of State Vectors is Small

Calculation Result Leave/
Name Unload
Compute K(k)
V(i,j) P(klk—1).CT(k), L;; Unload
V(i g) V(k)l‘jl + C(/m’)l‘:L;j U Unload
Invert U Ut Unload
v(i,j) LU™! K(k) Unload
Compute P(k + 1|k)
V(i,5) Pklk— 1) A% (k) M;; Unload
V(i,7) A(k).K(k),; N;; Unload
V(i,7) C(k):M; Qi; Unload
Y(i,5) A(k)i:Mj; - N:.Q.; + W(k)ijl Pk + 1|k)¢j Unload
Compute x(k + 1]k)
V(i) — C(k)x(klk—1)+y(k) z Unload
V(i) A(k)ix(klk—1)+ Nz *x(k + 1|k) | Unload

Table 3.2: Ordering when Number of State Vectors is Large

36

The main inefficiency of directly implementing the routine on the matrix engine is Equa-
tion 3.46. Using a constant bandwidth array, all but one of the columns of the array would be
fed with zeros, wasting a great deal of the potential performance.

Example performance estimates for simple systems are derived in Chapter 7. These suggest
that the systolic matrix processing array will be very useful for calculations in large Kalman
filter systems, and even possibly extend the range of applications for which Kalman filters are
used to include hitherto unconsidered problems.

3.7 Conclusion

From the analysis of these few algorithms, it can be seen that a relatively simple processing array
can perform more complex algorithms by using clever interface hardware. This combination will
increase the versatility of the array while decreasing the cost compared to other systems of
similar performance. The range of applications that the array can be used for extends into fields
such as aerodynamics and fluid dynamics, embedded high speed signal processing and control,
even neural networks, to name but a few.

37

Chapter 4

Arithmetic

As will be shown in Chapter 5, the address generator in the data controller is the main bottleneck
of system performance. The address generator is implemented using an Extended Marwood
Difference Engine, which provides modulo arithmetic using only the addition and subtraction
operators [65]. Therefore, any improvement in the speed of addition and subtraction will result
in a faster difference engine/address generator, and ultimately better system performance.

To maximise performance of this critical path without resorting to exotic technologies, fun-
damental arithmetic was reviewed, and some solutions proposed. In this chapter, we will explore
the possibility of using non-conventional number systems to reduce the computational delay of
an addition /subtraction operation. Specifically, a signed-digit arithmetic system, in which digits
may take the values of not only zero and one but also negative one, is presented for use in the
address generator.

In the second part of the chapter, division and multiplication is examined. The previous
chapter on algorithms indicated the need for a divider in the data-input path to the array for
the efficient implementation of Gauss-Jordan elimination. The data controller, which supply
data to the processing array, is the logical position for the divider, as the input data must
pass through the data controllers on its way to the processing array. An iterative divider that
provides a good speed/area trade-off while still performing fast enough to not significantly affect
the overall performance of the system is also presented, together with a signed-digit multiplier
that is used in the divider.

4.1 Signed-Digit, or Carry-Propagation Free, Arithmetic

Although the concepts of signed digit arithmetic are not new [3, 4, 91], it is only more recently
that they have become a viable alternative, due to the availability of VLSI circuits in which
speed and not size is the major concern.

In a ‘conventional’ number system, such as two’s complement binary or IEEE 754 floating
point, each representable number has a unique representation, thus maximising the range of
numbers that can be represented in a given number of bits. The redundant binary representation
allows more than one representation of most numbers in the number set’s range by using the
‘digit set’ of {-1,0,1} (-1 often represented by 1). Therefore, the representable range is not
optimal for the number of bits required, although, as we shall see, there are other benefits.

Figure 4.1 shows an idealised version of a single digit cell in a signed-digit adder. The
figure is idealised because it has been broken into three distinct parts, or stages, to demonstrate
the carry-propagation path, whereas in practice, all the parts are merged to reduce hardware
requirements and cell delay.

38

D1 in DO in
{—1,0,1} {—1.0,1}

'/l ot 2 | l/
+2 out L I A

‘ {1,0,—1} ‘

Dout
{1,0,—1}

Figure 4.1: Sign-Digit Addition Cell.

Consider two numbers, X and Y (say), applied to the two inputs of the ith digit cell. As X
and Y are both signed-digits (ie each in the range {-1,0,1}), the sum of the two is in the range
{-2,-1,0,1,2}. It is obvious that if the answer is ‘2’, then the ‘+2 out’ signal is flagged true.
But what about if the answer is ‘1’? Due to the availability of negative numbers, ‘1’ could be
represented as either ‘42 out’ plus -1’ or ‘1’. This is due to the redundancy in the system.

The idea, then, is to miniinise the set of possible outputs from each part of the digit cell.
Therefore, in the case mentioned above of X + ¥ = 1, the choice would be to flag ‘+2 out’ , as
this reduces the set of possible outputs to the next stage to {-2,-1,0}.

Similarly for the second stage, the input from the first stage in the range {-2,-1,0} and the
“+2 out’ from the previous digit translated to the range {0,1} due to the increase in significance,
results in the output being in the range {-2,-1,0,1}. If the ‘-2 out’ flag is set for the cases of -2
and -1, the output from the second stage will be in the range {0,1}.

The third and final stage must output a number in the range {-1,0,1}, which is obviously
the case. The input to the final stage from the second stage is in the range {0,1}, and the input
from the -2 out’ of the previous digit is either -1' or ‘0. Therefore, the output from the final
stage is in the range {-1,0,1} - another signed-digit number.

4.1.1 Why SD Arithmetic

The obvious question now is - why go to all the trouble of conversion to and from a redundant
system and also pay the penalty of the extra area requirements? As hinted above, the answer
to this is that a redundant system is ‘carry-propagation free’. While each cell is not entirely
independent of other cells, the dependency can be traced back exactly two cells.

To see this, it’s easiest to work back from the output stage. Figure 4.2 shows the propagation
paths for the ‘" cell in an adder.

The final output is dependent on the output from the second stage (in,) and the *-1in’ signal
from the previous cell ((i — 1),,)". The *-1 in’ signal from stage (i — 1) is dependent on the
output from the first stage of cell (i — 1) (ie stage (i — 1);) and the ‘41 in’ signal from stage
(i — 2);. As the ‘+1 in’ for stage (i — 1), is actually ‘4+2 out’ from stage (7 — 2)¢, which is

INote that ‘+2 out’ from one cell becomes ‘+1 in’ to the next cell, due to the increased significance of the
higher order cell.

39

-
~—
\

Propgation
Paths

Figure 4.2: Sign-Digit Propagation Path.

dependent only on the two (signed-digit) inputs, the longest carry propagation path is from the
two inputs of stage (i — 2); to the output of stage i, - ie. two cells in length.
Now the two main advantages of Signed Digit Arithmetic become obvious. These are:

e faster calculation due to the reduced carry-propagation path. This path is now 2 cells
long rather than ‘n’ cells for a carry-propagate adder. Although alternative schemes such
as Carry Look-Ahead and Carry-Select have reduced computation times (log(n) and /n
respectively), they both have a greatly increased area over a standard ripple carry, and a
propagation time still dependent on the size of the data.

e as the calculation time is fixed at the propagation time through two cells (independent of
operand size), it is easier to match stages in a pipelined system with varying adder lengths.
This is the case for a multiplier, in which the second stage adder will be longer than the
first, the third stage longer than the second, etc.

The third advantage is a bit more esoteric. As [EEE floating point expresses the mantissa in
as an unsigned binary number with a sign bit, conversion to signed-digit form is simply a matter
of making the magnitude bits of all digits equal to the magnitude of the corresponding mantissa
bit and the sign bit for each digit equal to the sign bit of the floating point number. Thus no
addition is required as is the case when IEEE floating point is converted to two’s compliment.

4.1.2 Sign Magnitude Specifics

As there are three distinct values in the number set {-1,0,1}, two bits will be required to en-
code the three possibilities for each digit. Generally, there can be held to be two signed-digit
representations of this number set. These are:

e Signed-Bit Form

The name Signed-Digit is often used here instead of Signed-Bit, but can often be confused
with the concept Signed-Digit rather than the implementation Signed-Digit. In this no-
tation, cach bit represents a number of magnitude one or zero, one representing negative
one and the other representing positive one. Thus the name refers to the fact that each
bit represents either a positive or a negative unit. Then the sum of the combination of the
two bits provides a digit in the range required.

40

The combination of the two bits, labelled n and p for negative one and positive one
respectively, can be summarised in a table as shown below {Table 4.1).

BITS | Value

n_p

0 0 0
0 1 +1
1 0 -1
1 1 0

Table 4.1: Table of SD representation

e Sign-Magnitude Form

Similar in concept to the familiar sign magnitude form of the IEEE floating point standard,
this approach provides a sign bit for every bit in a number. The two bits representing each
digit can therefore be individually referred to as the sign bit, s, and the magnitude bit m.
The number range {-1,0,1} is then represented as shown in Table 4.2.

BIT Value
s m

0 0 +0
0 1 +1

1 0 -0

1 1 -1

Table 4.2: Table of SM representation

Note that the sign-magnitude notation implicitly includes a sign for every number, includ-
ing zero. Therefore, there are distinct positive and negative zeros, unlike the signed-digit

form.

4.1.3 Conversion To and From Signed Digit and Two’s Complement

The main disadvantage of any new number format is that converting existing formats to the
new one, and back again, can be complex. The latency of such a conversion done ‘on-the-fly’ is
often too large to make a new format practical?. However, one of the main advantages of the
redundant arithmetic described above is that conventional binary notation is a subset of the
redundant representation, making conversion fast and simple. Note that the description here is
limited to two's complement conversion, although floating point conversion is even simpler?.

2This is generally the case for formats like residue arithmetic [92]

3As the IEEE floating point standard is in sign magnitude form [32], all that is needed to convert to signed-
digit form is to assign the sign bit of the IEEE format number to all the digits in the signed-digit representation.
Conversion the other way requires that the sign of the signed-digit number is determined, and assigned to the

unsigned version of the signed-digit number

41

Converting From Two’s Complement Notation

The conversion to a signed digit number from a positive, two’s complement number is simply
a matter of assigning each of the magnitude bits in the signed digit representation the value of
the corresponding bit in the two’s complement representation. The sign bits of all digits are set
to zero, as shown in Figure 4.3.

Positive 2’s Complement

l ..Il i . “w

|
0 0 0 ; 0 0
s M §S M S M S M S M
Signed Digit

Figure 4.3: Converting Positive 2’s Complement to Signed Digit.

Conversion of a negative two's complement number to signed digit involves converting to a
positive number and setting all the sign bits in each digit to one. To convert a negative two’s
complement number to a positive one, all the bits are inverted, and one is added. The addition
of one is often done ‘on-the-fly’ by applying a one to the ‘carry-in’ of the least significant adder.
However, as the signed digit number is actually a negative number, negative one must be applied
to the carry-in of the least significant adder, via the ‘Neg_In’ input. This is shown in Figure 4.4.

Negative 2's Complement

LI] []

ot \.L A A
pa >‘<
i ~r |N¢g
! | In
i |I i l | |
aNaRON [+ [+]]
S M S M S M S M S M

Signed Digit

Figure 4.4: Converting Negative 2’s Complement to Signed Digit.

Therefore, all that is required for the conversion from two’s complement to signed digit
notation is a series of inverters to complement a negative two’s complement number, and several
multiplexers controlled by the most significant bit of the two’s complement number number to
switch the between the positive and negative numbers.

42

Converting To Two’s Complement Notation

This is a little more tricky than the other way round (Section 4.1.3), as each digit in a signed
digit number can be either negative or positive. One possible approach is to start at the most
significant bit of the signed digit number, and add or subtract each successive lower significant
bit in turn. Another is to convert the signed digit number into a ‘positive’ number and a
‘negative’ number, and then perform a propagate addition. The latter arrangement appears to
hold more promise, as configurations such as Carry-Select and CSA adders can be used to speed
up the propagate addition, whereas the former is an inherently serial operation.

N |
i
1 |

Sel —

Figure 4.5: Converting Signed Digit to 2’s Complement.

4.1.4 Signed Digit Implementation

In the practical implementation, there are many simplifications that are available by combining
all three stages of the adder. The only requirement, then, is to recall that the ‘pos_out’ signal
depends only on the two signed magnitude inputs, the ‘neg_out’ signal depends only on the two
signed digit inputs and the *pos_in’ input (pos_out from the previous stage), and the signed digit
output is dependent on all the inputs. One possible implementation is given in the tables below.

43

Pos_Out SoMg
00|01 [11]10
0w0l[lo|®[OD]O0
Siy [0l |1]D
Hjo[o0 0|0
wjlo|®|@®]o
Neg_Out SoMy SoMg
oo Jor[IT 101011]0L]00
o0f[o[1[@®]|OfOo]O0|@|[O]|O0O0
sy [otf[1 @ [1[1]O]1 [0 |0]01]S5M
nfojo[@o|@®fo]1]0o]o0]1l
wffo|[1[@]ofo]o]|@® |01l
Pos_In 0 1
Pos_In
0 1
S_Out S()MO S()M()
00 Jor[11]10o| 1011 [01 |00
ool xX|[ofo|X]Jo[XxX|X]|0]|o0
siMylotffo [X[X]of[X][0]|0|X][o01]5M
0 imflo|XxX[xJofx]o|o|X]|11
Neg wfxjJojolx||o|XxX|XxX|o0[10
In w1 x[x|t|x]1]1[]X][10
1 nmix|1]1|x X|x|1t]u
Sy (ot [X1 [T [X1 [X][X]|1]0L]SiM
. oo T Xx[Xx[1][x[1]1]X]o00
i
; Pos_In
0 1
M_Out ® Sq Mo SoMy h
oo [or[11]10 10| 11]01 |00
ooffof1[1]Jof1[o]o]| 1]o00
SiMy{ot|f1 oo 1 o1 |1]0]o0L]|S5M
0 iffr]Jofof[rffo]1][1]o0]T1L
Neg wflo|1[t][of1t]ojo]1]10
In wftfojolrfo[1]1]o]1lo
1 trffolr[1]Joflijojojflf11
Sy [orffol T[T]of[1 o]0 1]o0L]|S5M
: ool TJofJo|T]o]t1][1]o0fo00

9All the elements are essentia) for this Karnaugh Map; the surrounding circles are

removed for clarity

Due to the redundancy available, there are several simultaneous degrees of freedom open to
the designer. In the Karnaugh maps above, ‘essential’ combinations are circled, except for the
case of M,y:, for which all combinations are essential. An ‘essential’ combination is one that

44

is essential for maintaining the requirements of Signed Digit (propagation free) arithmetic. For
example, if either (Sy,M;) or (So,Mg) or both equals positive one and neither equals negative
one, then the pos,,; signal must be asserted. Additionally, once pos,,; has been asserted, the
nego,y: can be set to represent the number ‘+1’ as either +2 — 2+ 1 (poSout + Ne€Gous + 1) or
42 — 1 (posout -1). Many other such possibilities exist. The groupings in Equations 4.1 to 4.7
were chosen as they appeared to minimise the logic equations. However, due to so many options
being available, a completely automated process is not possible. The program ‘ESPRESSO™
was used to position the essential combinations, and the groupings made by hand.

POsSows = S1M1+ MySoMo
= (S1.My).(M.50.My) (4.1)
POSou; = S1.Mi+ Mi.So+ M. My
— MO0 50 (0) (4.2
negour = (My® Mo).posi, + M1.50.Mo
— (s ® Mo) posi)(M;.50.Mo) (3)
Negout = ((My & Mo).posin)-(Mi1.50.Mo) 4.4)
Sout = Ne€Gin (4 5)
Mous = (((My@ Mo) @ posin) ® negin) (4.6)
Mouwr = (((M1® Mo) ® posin) ® negin) (4.7)

The logic equations (4.1 to 4.7) above have all been converted from AND/OR form to
NAND/NAND form. Also, as the adders will be used in the address generator which is a critical
bottleneck, each term is calculated with its conjugate, where the conjugate is required. This is
only an inverter in the cases of M,,; and Teggy;, but Posy.; is computed simultaneously with
P0s,y;. The other point to note is the order of evaluation of the term Moyy;. Moys is asserted if an
odd number of the four inputs to a cell are asserted. A more balanced exclusive-or combination
to achieve this function is

A[(,)ut - ((A/[l & IMO) S (P()Sin b ne.gin))

However, the terms M; & My are available initially, pos;, from the previous stage is available
only after two gate delays, and neg;, is only available a further two gate delays after pos;n.
Hence, the ordering in Equation 4.6 uses the terins as they become available, resulting in a
better balance and fewer spikes.

End Conditions

Although a single n—digit adder can be composed of n concatenated single digit adder cells,
there are conditions for the first and last digits of the adders that simplify the requirements of
those cells. For example, the first cell in a signed digit adder does not need the ‘pos_in’ and
‘neg_in’ propagate signals, and so these can be eliminated from the logic equations. In such a
case, one of the several sets of possible Karnaugh maps for the output is:

*ESPRESSO is a Boolean logic minimization programme from the Octools design suite, written at the Uni-
versity of Califoria at Berkeley, at the klectronics Research Laboratory. Version 5.2 was used.

45

Pos_Out SoMay Neg_Qut SoMy
00 [01|11 10 00 [01]11]10
0fo|1]o]o0 00fojo]o]oO
Sy |otffo]1]o]o SiMy [O0L|fo [0][00
iffol1]o]o 11 |[t]1
wlfof1]of]o wjfojo|o]o
Figure 4.6: a) b)
S_()ut S()Mo M_Out SOMO
0001 [11]10 00 [01|11 |10
00fo]1][1]0 00flo|1[1]0
SiMy[o0Lffo]1[1]0 SiMy (o011]0]0[1
tmjfof1r]1]o tffrfofjo]1
wifoljr]1]o wlfoj1r]1]o
Figure 4.6: ¢) d)

Figure 4.6: Karnaugh Maps for First Digit Cell of an Adder

The equations for these maps are:

POSout = So-Mo
So+ Mo (4.8)

neGoyr = S51.M;
= S+ M (4.9)
Sout = Mo (4.10)
Mpw = Mo@ M (4.11)

If the number being applied to a signed-digit adder is a two’s complement number, then the
conversion to signed digit notation requires that there is a ‘neg_in’ signal, but a ‘pos_in’ signal
is not required (see Section 4.1.3). This is the case for the adders in the address generators,
which used two’s complement notation for the ‘delta’s (see Chapter 5). A.second requirement
for the adders in the address generators is that the number ‘zero’ has an exclusive positive
representation, ie the number *+0° must be represented as “4-0’. This constraint, added to the
lack of a ‘pos_in’ signal, produces the following set of possible Karnaugh maps.

The equations for this cell are as shown below in Equations 4.12 to 4.15.

POSout = So.Mo

= So+ My (4.12)
negour = S1.My + MiMo

= 5u.My + MiMo (4.13)
Sout = negin. (My & Mo) (4.14)
Moy = (M;® Mp) D negin (4.15)

Similarly, the last digit cell in the adder is not required to generate the ‘pos_out’ and ‘neg_out’
signals, although these may be of use if overflow detection is required. However, in some cases
such as the multiplier, there may be only one input to an adder cell, plus the propagate signals.
The simplifications thus made are shown in Figure 4.8 and in Equations 4.16 to 4.19.

46

Pos_Out

Sol\/l() Neg_Out SOAMO
00 [01] 11]10 00 |01] 1110
00ffo]1]1]o0 o0ffof1]1]o0
SiMy{o1ffo 1] 170 SiMy |01 ffo[o[0]0O
ifo[1[1]o0 imffrf1]1]1
wflo|l1]1]0] wljof[1[1]o0
Figure 4.7: a) b)
S_Out SOA/[O SoMo
00 |01 [11[10] 10 [11[01]00
o0ffofofofof1]o0o]o|1(o00
SyMy [0L[O O[O0 [0 [0 [1[1]0]o0l|SM
iffofofofoffofr[1]o]ll
wflojJojofJof1]ofo]|1]|1
Neg_In 0
Figure 4.7: ¢)
M_Qut S()A/[O S()M()
00 [0L [11[10 10|11] 0% |00
ooffo [t |t]of1]ojo]1]00
SiMy[orff1JoJo[1]o[1]1]0]|o1]SM
iffrjofof{1ffo[1][1]o]|1
o1 [1t{offr[o]o]1fn
Neg_In 0 1

Figure 4.7: d)

Figure 4.7: Karnaugh Maps for First Digit Cell of an Adder

Pos_Qut SinM;, Neg_Out Sin My,
00 011110 00 [01] 1110
o0l o] 110710 00l 0 | 1 110
pos;,neg;, | 01 0 1 0 0 pos;pneg;, | 01 || 0 1 1 0
11jfo|1]01]0 mmfjfojoflo]|o0
1010|1101 0 101 0)01] 010
Figure 4.8: a) b)
S_Qut SinM;n M_QOut Sin M,
00 [0L 11]10 00|01 [11[10
oojf oo 010 00l 0 | 1 110
posinnedin | 01 1 1 1 1 pos;neg;, |01 1 1 0 | O 1
11 1 1 1 1 117 0|1 110
10100101 01|0O0 w1001
Figure 4.8: ¢) d)

Figure 4.8: Karnaugh Maps for Last Digit Cell of an Adder with Single Input

47

POSout = E;; A'[in

= S+ Mg, (4.16)
N€Jout = POSin-Mip

= posin + Mip, (4.17)
Sout = neéGin (4.18)
Moy = (Min® posin) @ negin (4.19)

Additionally, the final propagated outputs, ‘pos_out’ and‘neg_out’, can be converted from
signed bit form to sign magnitude form, and applied as inputs to another adder. Rather than
generating pos_out and neg_out, the sign magnitude outputs, ‘S2’ and ‘M2’, can be generated
directly. The logic equations for the new outputs are

SQout = PpOoSin (420)
M20ut = (Szn @ posin) A/[zn (421)

with S,u¢ & M,y the same as in Equations 4.18 & 4.19.

4.1.5 VLSI Layout and Implementation

Three separate signed digit adders were ultimately implemented, two of which incorporated
latches into the adder to facilitate cyclical addition/accumulation® and pipelining®, and one
of which incorporated multiplexers after the latches”. The simplest contained no latches or
multiplexers, and is used in a non-pipelined multiplier®.

The unlatched adder, the simplest of all, is shown in Figure 4.9. The input sign bits are
applied to the top of the cell, and do not require a bus line as there are only three connections
between the two inputs. The input magnitude bits occupy the bottom four internal bus lines,
which can be connected to by either running metal2 down through the cell or by the side of
the cell. The ‘pos_in’ and ‘neg_in’ signals are applied at the left hand side, and the generated
‘pos_out’ and ‘neg_out’ signal are output on the right hand side. The signed digit output number
is generated at the bottom of the cell. ;

The overall size of the cell when implemented in 0.7um es2 CMOS is approkximately 0.089mm X
0.103mm = 0.0092mm?. The cell was simulated using HSpice for all possible input combinations
of the propagated and applied signals, with the propagated input signals being delayed by the
same amount as it was determined for the output propagated signals to be generated. The adder
was found to function correctly with a cycle time of just under five nanoseconds. The HSpice
simulation results are shown in Figure 4.10. The es2 process is a double-metal, single polysili-
con process with a 0.7 micron feature size. The simulations were run using ‘typical’ parameters
throughout, with a five volt supply and assumed temperature of twenty-five degrees Celsius.
The es2 process is from European Silicon Structures, which is available to research institutions
from TIMA-CMP, in France.

The latched adder is shown in Figure 4.12. The latches are standard pass-transistor and
two inverter designs, as shown in Figure 4.11. The input data is latched into the adder, and
then applied to internal buses from which the outputs are derived. The data flow is again left

®as needed in Chapter 5 for address generation

for a multiplier

"for selection of the correct address after the modulo operation
8required for the byte divider of Section 4.2

48

B oL
=
[2 8 ;.‘ -

Figure 4.9: Unlatched Signed-Digit Adder Cell

¥ HSPICE FILE CREATED
95/01723

—ree
Zer

-
=
=

—ro=
z—r

—“rox<
Zz—r

—“ro<

/ﬂ‘ﬂ

o l P Neadil 4 Pl
LT 260, M ETRT 00, 32104
g1 i el ! * 330 0N

-ro<
.
= . " : .
b AL L e 2} Rl I "Ny T
vy eaded .
s Lo dr i

Figure 4.10: HSpice Plots for Unlatched Adder Cell

49

to right for the propagate signals (pos_in, pos_out, neg_in, neg_out), and top to bottom for the
generated signals (s_in, s_out, m_in, m_out). For the 0.7um es2 CMOS process, the size of a
latched adder cell is approximately 0.097mm X 0.24mm = 0.023mm?, which is approximately
three times larger than the unlatched version. Note, however, that the latched version contains
much more unused area that would be eliminated during a compaction phase.

Figure 4.12: Latched Signed-Digit Adder Cell

The HSpice simulations of the latched adder indicated that the functionality was correct,
and that a new addition could commence every five nanoseconds. The simulation results are
shown in Figure 4.13.

The third adder cell was one designed specifically for the address generators described in
Chapter 5. These include a pair of multiplexers at one of the inputs after the latch. The reason
for this is to allow the multiplexer control signal to settle before being used, and to reduce the
driving requirements on the output drivers of the adder cell.

The layout of the third adder is shown in Figure 4.14. The adder was also tested using
HSpice, and found to operate correctly.

50

—-To=

¥
b
LN
T
v
01
LN
T
v L
]
LN
1
¥ SM_ADOER_P7!
VL B = NEG_OUT
a1l £
L =
1 o
o SH_AODER_P7
VL L B M_0UT
01 N A—
LN 2.0 S_0uT
T 4 o
ok
200 0N
@an_ON

Figure 4.13: HSpice Simulation for Latched Adder Cell

d

== = =1

o

Figure 4.14: Latched Adder Cell With Multiplexer

51

VLSI Implementation of End Cells

The first cells and final cells described above in Section 4.1.4 were all laid out in 0.7um es2
CMOS. The unlatch beginning cell is shown in Figure 4.15, and the HSpice simulation results
are shown in Figure 4.16.

Figure 4.15: Layout of Unlatched Beginning Cell

CIRCUIT SN_BEG_UL
EER L]

. RLA
7017
20 = T I 5 =1 1 = TGN _BEG_UL.TH
e ' Hi
L . LI
I S ! —
H 2,00 . = S E——
ao- . - 151 B —d_a .. o A
= e —] C SM_BEG_UL.T:
- ‘ BE: o Ro
- T L ——
. 1] _
> = = Le——
- I PN I &
- = | B

11 B
AT

|

—ro<
o

—“ro=

—ro<
zer

“ro<
z=—r

~ra<
zor

(1]
fink

Figure 4.16: HSpice Simulation Results for Unlatched Beginning Cell

The cell is approximately 0.089mm x 0.061mm = 0.0054mm? in area. All the output signals
are available less than two nanoseconds after the inputs are applied.

If the latches are added to the cell, a significant extra area is required. In this case, the
latches consume approximately 31 percent of the total area. However, as the cell will be only
a small part of a complete adder, the excess area is not a major concern. The layout of the
latched beginning cell is shown in Figure 4.17.

When the multiplexers and the facility to apply a two’s complement number are added for
the cells used in the address generator, the area penalty of adding latches is mitigated. The

52

]

qhq
L
.

I
!

Figure 4.17: Layout of Latched Beginning Cell

VLSI layout of this beginning cell is shown in Figure 4.18.

b= .] I—-_q':* i
i — = A |

E" v
giu..

Figure 4.18: Layout of Latch & Multiplexed Input Beginning Cell

The area consumed by the cell is 0.10mm x 0.24mm = 0.024mm?, which is approximately 30
percent more than for the latched beginning cell, and about four times the area of the unlatched
cell.

The end cells, denoted sm_end and sm_end2, depending on whether the propagated outputs
are plus two and minus two ({~2,+2}) or a sign and magnitude bit ({£,2}) are shown in
Figures 4.19a) & b) respectively for the unlatched versions. Both cells consume an area of
0.0892mm X 0.0785mm = 0.00700mm? when implemented in 0.7pm es2 CMOS.

The end cells were both simulated using HSPICE, and were found to operate correctly. The
simulation results are shown in Figures 4.20 a) & b).

As can be seen from these plots, the end cells all settle well before five nanoseconds, even
for a propagated input delay of 1.5 nsec.

Yo pipeline the multiplier, the latched version of the adder was modified to produce a lalched

53

Figure 4.19: a) Unlatched End Cell With Standard Propagated Outputs

Figure 4.19: b) Unlatched End Cell With Sign Magnitude Progopated Outputs

54

& HSPICE FKLE tREﬂ ED ;UR;E!RE\IIT SH_END_UL

02/ 02
R I _9 SH_END_UL_T1
v 10 [P
iy
13 ENES
- I B B
= SH_END_UL . T:
¥ L = MO
bl Ta—
¥ Z,Df o B‘——*
I—‘—'—'— — VI R [QST A H a_a
. s 1 \ . Z GH_END.UL.T1
VL ‘ A ez = M,
01
LW
T
VL
01
LN
T
v L
[}
LN
T
v L
01
LW
T

Figure 4.20: a) Unlatched End Cell With Standard Propagated Outputs Simulation
Results

% sH_Ewpa vl
v L !Il_ kY |} ! b}
01 A—
L 20> i A B L =
ak s
= SH_END2_UL.!
v L |0'_ = = N0
L T
T 2"? =
ey

u U.. g “f
DL MLLE

Figure 4.20: b) Unlatched End Cell With Sign Magnitude Progopated Outputs Sim-
ulation Results

55

end cell. The VLSI layout of the latched end cell with standard propagate output signal is shown
in Figure 4.21a), and with sign magnitude outputs in Figure 4.21b). When implemented
in 0.7um es2 CMOS, they consume 0.0972mm X 0.1196mm = 0.0116mm? and 0.0972mm X
0.1288mm = 0.0125mm? of silicon respectively.

fid=i

Figure 4.21: b) Latched End Cell With Sign Magnitude Progopated Outputs

The HSpice simulations of the latched end cells are shown in Figures 4.22a) & b). These
simulations show that the cycle time between latched operations is less than five nanoseconds,
as desired.

4.2 Byte Divider

As mentioned in Chapter 3 on Algorithms, if Gaussian elimination is to be run on the matrix
engine, some form of divider is required to find the inverse of the pivot elements. The requirement
here is for an area-efficient divider which is relatively fast. In effect, if the matrix engine is to
run at full speed, a divider capable of one division every P loads (where P is the dimension of

56

apL_p ¢

a—

_ENDOL_P *

[
05_0UT

N3
l(ln:A'

EN
uT

SH_ENDOL_P *
-0

Lia
SH_ENDDL.P2

—_—

% SM_ENDUL_P
H

2 SH_ENDODL_P2
M

ST

Ll
-

- SEnEyT

NEG_DUT
SH_|
H

e

———a L

M

[RCUIT SH_ENODL _P
7737
RCYIT SH_ENDDL _P2

i
Bt

—b—a

2|

& HSPICE T1

LU UL

@ —e———
[

)

o=
r0 =
L

Figure 4.22: a) Latched End Cell With Standard Propagated Outputs Simulation

Results

Figure 4.22: b) Latched End Cell With Sign Magnitude Progopated Outputs Simu-
57

lation Results

the matrix array) is required. For a typical system, this may be in the order of 150 to 400 nsec,
depending on array size, technology, etc.

A scheme that produces a divider that is both relatively small and also fast is one based
on higher radix division. This is, in turn, based on the Newton-Raphson division algorithm
that has been well documented [92, 32, 95]. A brief introduction to Newton-Raphson division
is provided in the following Section, including starting and error considerations, followed by the
conversion of this approach to higher radix division.

4.2.1 Newton-Raphson Iterative Divider

The concept behind Newton's iteration for root finding is that a series of iterations of a basic
formula will produce an approximation to the true root of a function at each iteration that was a
better approximation than the last. If the exact solution to the root is at T, such that f(7) = 0,
and the i*" approximation to the root is z;, then the next approximation to the root will be the
old approximation plus a difference term.

i1 = & + Az; (4.22)

The slope of aline draw from the function at the initial estimate to the function at the subsequent
estimate will be:

o S (=i)
m; & —Az‘i (4.23)

where the negative sign is due to the function at the subsequent estimate being much closer to
zero than at the initial estimate.
If the slope, m;, is made to be the tangent of the function at the approximation for such
that
m; = f'(2;) (4.24)

then the equation for the next approximation to z becomes

Sla) (4.25)

Tigr = & — ()
J el

Equation 4.25 is the Newton-Raphson formula for root finding.
To apply Equation 4.25 to the case of division, it is first necessary to formulate the problem
in terms of finding the root of a function. The equation)

f@):%—b (4.26)

z

has a root at the point 2 = 1/b, and so can be used to find the inverse of the number represented
by ‘b’. Noting that f'(z) = —;—2, Equation 4.25 can be formulated as

Tip1 = Ti— (;,((Z:))) (ﬁ)
= I; (2 - :L‘Zb) (4.27)

Then Equation 4.27 successively approximates the inverse of the number ‘b’ to the actual inverse
z.

For the sake of consistency with other texts, it is often the case that the ‘@’ variable in
Equation 4.27 is replaced by ‘¢’ for the specific case of the division formulation of Newlon’s

iteration, and the ezact inverse of b is denoted as ‘Q’. The new representation is:

Giv1 = ¢ (2 — ¢;b) (4.28)

58

Division of Floating Point Numbers

To apply Equation 4.28 to a floating point number, it is necessary to consider the range of the
divisor and the quotient.The number will be composed of a mantissa field, a sign bit, a ‘hidden’
leading one and an exponent field.

As the mantissa is a fractional number, the mantissa and the hidden bit together comprise
a number in the range 1 < 1.f < 2, where the term ‘f’ represents the mantissa. The inverse,
therefore, is in the range % > ll—f > %, ie 0.5 < inv < 1. The new exponent, of course, is simply
the negative of the old exponent.

Self-Correction and Starting of Newton’s Iteration

In the past, a Newton’s Iteration divider often obtained its initial guess at the solution using a
Read Only Memory (ROM) look-up table. However, considering the speed improvement that
has occurred recently in CMOS VLSI, the speed advantage offered by such a table may not
justify the amount of area it consumes. An alternative approach is to guess an approximate
solution, and rely on the self correcting property of the algorithm.

Consider the ‘(i + 1)’ iteration that produces the estimate of the inverse ‘g;y’, for which
the error is ‘e;q’. If the correct value of the inverse of ‘b’ is ‘Q’, then the error after the (7 + 1)t
iteration can be obtained using Equation 4.28.

giv1 = q(2— bg;)
(@ +e)(2-0Q +«))
(Q +€)(2-0Q — bey)
= 20+42¢—Q.1—¢.1—1.¢—be? (Qxb=1)
= Qb (4.29)

Therefore, the precision of each iteration is the square of the precision of the iteration before it.

The important thing to note is that Equation 4.29 always gives the same answer irrespective
of the sign of ¢, and that the be? term is prefaced by a minus sign. Therefore, even after an in-
correct initial guess that estimates the inverse above the true inverse, successive approximations
will approach the true inverse from below.

This important fact can be used to find a ‘good’ starting point.for Newton’s iteration. One
possible starting point for the iteration is the guess 29 = 0.5, as we know that all solutions will
be above this point, and we are trying to approach the solution from below. This approach has
the advantage of simplicity. We know that the first (fractional) bit must be one, so it’s easy just
to set it and let the self correction of Newton’s method look after the relatively poor guess.

Another approach is to recognize that the larger the dividend, the smaller the quotient. Thus,
an estimation scheme that returns the maximum possible quotient for the minimum dividend,
and vice versa, may have some merit. Such a scheme is proposed in the text by Burgess [11],
the choice of starting estimate being:

1—-f if1<b< 1.5
= - 4.30
0 { 1 - % otherwise ()

where ‘ [’ is the fraction part of b.

The error associated with each can be easily calculated, as shown below in Equations 4.31
& 4.32. Here, ‘b’ is the number to be inverted, qo is the initial estimate and Q is the actual
inverse. If the initial estimate is chosen to always be go = 0.5, then the error is a linear function

dependent on the actual quotient, ie

g0 = Q—qo
= @ -0.5 (4.31)

Alternatively, if the initial estimate is chosen to be as defined in Equation 4.30, then the
error is as shown below in Equation 4.32 9.

o = @ —q
_ g {11 is<b<ts
B 1- 1;— otherwise
_ g [y dish<rs
- 1— "_Tl otherwise
2-L if1<b<lb
_ . Q —
= @ { % — % otherwise (4.32)

Comparing the errors between the two starting schemes graphically leads to the plots either
separately in Figure 4.23, or together in Figure 4.24. Note that only the magnitudes of the
errors are plotted, not the signs.

oA ——— - — — 0.5 ——————— ¢ - — T =
1.5-%-1.0/(2.9%) P 8L 8 e
1055 o= 23—
0.16 =0 sr,r’ 0.45 | A
g -
- q -
0,14 P ’ -
- -
0.35
0.12 -
T e
- 0.3 -
b L e -
- r 0.25 o
b 0,08 P -
P 0.4 -
P 2
0,06 - =
- o~ 0.15
-
0.04 - 0,1
/’/ - .
o -
.02 £ 0.05
o /_/ Tl i " =

Figure 4.23: Error graphs for a) 0.5 < Q < 2 b)2<Q<1

As can be seen in these figures, the difference between the schemes is quite large. This is
apparent in Figure 4.25,

Although the initial estimate of gop = 0.5 is very simple, using the other starting estimate
method (Equation 4.30) is not much more complicated, and produces a much better estimate.
The error graphs shown in Figure 4.24 also indicate that the complexity of Equation 4.30 can
be reduced with a minor estimate accuracy penalty by noting that the choice o = 1 — % has
error characteristics over the range 1.0 < b < 1.5 (2 < @ < 1) that are very similar to the choice
go = 1 — f over the same range. Recalling that the error in the initial estimate is

-1 if1< .
6o = O — % Q1 1f1_b'<15
2~ 30 otherwise

9The variables € and 8§ are used for clarity’s sake. They are both the same error variables, but applied to
different functions.

error

'erIo.

L} L] T I'
Xx-2.0+1.0/x =
1.5-%-1.0/(2.0%x}" — |
x-LS

Figure 4.24: Error graph over full range of Q

0.6 T T T T T T T T
1.5-1.0/x —

2.0%x-2.0+1.0/(2.0%x) ——

0.4} // |
==

0.2 T

-r—:"’ﬁ”"‘d
i -~
_—'-"'_F'_'__F’

-
&
_0.4 F -4
0.6 i I i L L 1 L i
0.5 0.55 0.6 0.65 0.7 .75 0.85 0.9 0.95 1
Y

Figure 4.25: Difference in Errors for Two Schemes

61

then the integrals of the errors for the two choices over the range % <@ <1 are:

Lo H(e-2+4)dQ Haw=1-f
/%50(1@ = {fgl(@_lﬁ—l—glg)dQ ifqul—%

1
10> -2 +1Q|, fe=1-7
- ot (4.33)
[Ler-30+m2], ifa=1-4
_ [00166 ifg = —£ (4.34)
~0.0195 ifgo=1— 4
The integral of the error for the range 0.5 < Q < % is
2 2
3 3 3
o= [(0-3+120)d0Q
0.5 0.5 2
2
1, 3. 1. 13
S0P 20+ -1
300 -39+ 3me)
= —0.00894 (4.35)

If the magnitudes of the error integral terms are added, then the total error integral using
Equation 4.30 directly will be 0.0166+0.00894 = 0.0255. If the modified version of Equation 4.30

is used such that ¢y always equals 1 — —12:, then the total error integral will be 0.0166 + 0.00894 =

0.0284. Therefore, using the simplified starting approximation of always assuming go = 1 — %

will result in only an 11% increase in the starting error. Just for comparison sake, if the initial
guess is chosen as go = 0.5, then the total error integral is

1
/ (@ —0.5)dQ =0.125
0.5

which is more than four times larger than using go = 1 — % Thus a good compromise in

minimising error and reducing complexity would be to use the estimate go = | — % always.

Convergence

The convergence of an iterative method of root finding is the rate at which the approximation
converges to the actual solution, if it does at all. As the rate of reduction of error is related
to the rate of convergence, then Equation 4.29, which was used to determine the error between
any estimate and the actual solution, can also be used to determine the rate of convergence and
also if convergence will actually occur. Equation 4.29 is reproduced below for convenience.

Git1 = Q — be?
Also recall that the estimate g; is different form the exact answer by an amount ¢; such that
6 =0 — ¢ (4.36)

were ¢; will in general be positive, except for the cases of either ¢ = 0 (¢; is an initial estimate)
or a numerical error has occurred. It is not a requirement that €; be positive.

62

The error term after each iteration in terms of the previous error is obviously

€G+1 = Q- g
= Q- (@-b)
= be?

1

Therefore, the error reduces quadratically if the estimate to the actual answer is sufficiently close.
If the error reduces quadratically, then the precision increases quadratically at each iteration.
Hence, if the initial estimate is correct to two places of precision, the first correction will be
correct to four places, the next will be correct to eight, etc. If 32 place of precision was required,
then four iterations would be required, while 64 places of precision would require five iterations.

4.2.2 Byte Divider

This is, in effect, division using a higher radix. The term ‘byte divider’ refers to the fact that past
processors by Amdahl and Honeywell used an eight bit (one byte) radix [92]. The algorithm
for division presented here is based on the formulae given by Flynn & Waser [92], although
subsequent to the design of the divider, it was noted that Briggs and Matula presented a similar
design at the Eleventh Symposium on Computer Architecture [10].

Consider Equation 4.28, reproduced below for convenience,

¢iv1 = ¢ (2 — gib)

The impetus for the higher radix division comes when it is considered what the precision of
the intermediate, or early iteration, results will be. If the first iteration has one bit of precision,
the multiplication b X ¢; is an N x 1 product, where N is the precision of b. In the second
iteration, an N x 2 multiplier will be required, in the third an N x 4 multiplier, and so on, until
an N X N multiplier is required. However, as the solution is approached from below, once the
first ‘P’ bits of precision have been obtained, there is no need to recalculate them.

Once the first byte has been obtained, call it dg, then it can effectively be ‘retired’ from the
calculation, as it will not be modified again, with the exception of a possible carry-propagate in.
Similarly, when the second byte, d;, has been obtained, it will remain unchanged except for a
possible carry-propagate in. Therefore, if we rearrange Newton’s equation for division such that
we calculate the difference between successive iterations, then we can arrange that the difference
is, in fact, one byte long. Rearranging the formula is not at all difficult, as it is simply a matter
of shifting a ¢; from the right hand side to the left, ie.

diy1 = ¢~ ¢ = q(2—b.q) —q
= ¢i(1—b.q) (4.37)

so that

¢ = ¢-1+4d;
= (qi—2+di-1)+d;

= do+di+...+d; (do =)

= z': d (4.38)

63

Now consider the difference term on the right hand side of Equation 4.37. Substituting in
the result of Equation 4.38 gives

| —bagi = 1—b(do+di+...+d)
= l—b(d0+d1++dz_1)—bdl

Defining z; = 1 — b.g;, the difference term, then

zz = 1—b.yg
= 1—b.(d0+d1+...—|—(li_1)—b.di
= zi_1—bd; (4.39)

Equation 4.37 now becomes

diy1 = ¢.7 ‘
= qi.(zi_l—b.di) (4.40)

which is an n x 8 product for an n—bit number ‘b’ followed by a sum (2;_1—b.d;), which is stored
for the next iteration, and finished by a product. As only the leading digit (byte) of z; is used
for the final product, then the final product is actually an 8 x 8 multiply. Once the difference
d;y1 is obtained, the approximation to the quotient ¢;4; can be formed. Note that, although
the quotient is the sum of the estimates that are calculated at each iteration, the calculated
d;’s are largely disjoint, and so any previous estimate of the quotient will only be effected if a
‘carry-in’ exists. Therefore, if the summing is achieved using signed digit addition, which has
a maximum carry path of two digits and a constant addition time, then cycle times remain
constant throughout the whole process and hence can be minimized.

Starting Byte Division

The procedure outlined in Section 4.2.2 above assumes an initial starting byte qo to use as a
starting point for future iterations. Although this could be obtained from a look-up table, the
table must contain approximately one thousand locations for eight bits of result (not 2% = 256,
as division is a non-linear operation). This sort of table would consume sigﬁiﬁcant area and so
an alternative method is sought.

The obvious answer is to use Newton-Raphson inversion to obtain the first eight bits, and
then swap to byte division for the remaining n - 32 bits. If Newton-Raphson division is used
to form a quotient estimate eight bits long, the n x 8 multiplier used in byte division will be
sufficient. Using the starting estimation schemes described above, two bits of precision are
available initially. Two iterations of Newton’s method will produce an eight bit result, requiring
two passes through the n x 8 multiplier and a single sum stage for each iteration. After a single
byte of the quotient has been formed, the algorithm is switched to byte division, which requires
two passes through the n X 8 multiplier, and two additions.

Why Byte Division?

The advantage of using byte division is obvious when it is considered that the size of the
multiplications that are required become very large towards the end of a standard Newton-
Raphson type inversion, whereas they are a constant size for byte division. Assuming that a
byte of quotient is available (cither from table look-up or some other method) then full Newton’s

64

iteration will require two iterations to reach a 32-bit solution and three iterations to reach a
64-bit solution.
Again recalling Newton’s iteration,

Giy1 = ¢ (2 — b.g)

and considering the case of ‘b being n—bits of precision, then each iteration requires two n X n
multiplications and one n-bit sum. To obtain the time advantage associated with a full New-
ton’s iteration implementation, a full n X n multiplier would be required for the final iteration.
However, for earlier iterations the multiplier would be under-utilised, performing n X 5, n X %
etc. multiplications on a full » X n array. Therefore, the area penalty of providing a full n X n
multiplier becomes significant.

Not only is the area required for the multiplier reduced by a factor of four for 32-bit division
and by eight for 64-bit division when using byte division, in general the time required for a
32 x 8 or 64 x 8 multiplication is typically three fifths or one half the time required for a full
square multiplication respectively'®. Therefore, each iteration using byte division will generally
run faster, although more iterations will be required.

Assuming that a 32-bit quotient is required, and that a 32 x 8 multiplier array takes 3/5
times the time to complete a product than a 32 x 32 array, that a full multiplier array cannot
supply a solution except for at the final level of adders, and that an adder takes approximately
the same time as a single level of a multiplier array, then a quantitative comparison of byte
division against Newton’s iteration can be made. The comparison is best made in terms of
signed digit adder cell delays. Therefore, a single sum operation takes one adder delay, a 32 x 8
product takes three adder delays, and a 32 x 32 product takes five adder delays.

The first two bits of the quotient are available initially. Therefore, two iterations of Newton’s
method are required to produce an eight bit result. The byte division hardware requires the
following time to produce eight bits of quotient:

TByte Div. § = 2X (Tadd + 2T mult)

= 14T

adder delays (4.41)

whereas the Newton’s iteration requires the same number of operations, but through the larger,
slower multiplier:

Typs = 2x(Tyqq +2Tmu)

= 22T (4.42)

adder delays

To produce a 32-bit quotient, three iterations of byte division are required, using time:

TByte Div. 32End = 3% (QTadd T 2Tmult)

= 24T qder delays (4.43)

for a total of 38 adder delays. Using Newton’s iteration to produce the final 32-bit quotient,
only two iterations are required, using time:

TNR End = 2% (Ta‘dd + 2Tmult)

— 22T

adder delays (1.41)

19Using a signed digit multiplier array, a 32 x 8 array will use three levels of adders as opposed to five for a full
32 % 32 array. Similarly, a 64 x 8 array will still use three levels of adders compared to six for a full 64 x 64 array

Therefore, the time to produce a 32-bit result will be 44 adder delays, which is actually slightly
slower than byte division.

If the quotient is a 64-bit number, then seven iterations of byte division are required after
the initial eight bit result to produce the final answer. This will require time

TByte Div. 6/Fnd — Tx (2T54q + 2Tmult)
56T ydder delays (4.45)

for a total time of 70 adder delays.
Using Newton’s method for the complete division will require five iterations, for a total time

of:

Tng 6 = 5% (Taga +2Tmult)
5% 13

= 65T qder delays

(4.46)

Therefore, on 64-bit division, Newton-Raphson division is marginally faster than byte division
with a much greater area penalty.

4.3 8 x 8 Multiplier

As a multiplier is required as part of the iterative divider, a preliminary design was undertaken.
In Section 3.4 on Gauss-Jordan elimination, it was pointed out that an inverse (%) is required
every (p + 1) loads, where p is the dimension of the matrix array. However, as the divisor is
the i** element in the i** wavefront, there are only (p — ¢) load cycles (p is the matrix array
dimension) available until the wavefront has been completely loaded. Therefore, to prevent the
array from stalling, the multiplier needs to be relatively fast, and so a multiplier tree should be
used.

A tree structure reduces the multiply time from order O(n) to O(log n) for an n—bit multiply.
For a 32—bit number, the reduction is a factor of %, while the factor becomes 66—4 for double
precision (64—bit). One very common multiplier tree that was investigated is the Wallace tree,
shown in Figure 4.26. Here, CSA denotes a Carry-Save Adder and CLA denotes a Carry-
Lookahead Adder. The Carry-Lookahead Adder is needed to convert the solution from CSA
form to standard binary.

The Wallace tree was dropped in favour of a binary tree using signed-digit arithmetic. The
three reasons for this were

o The signed digit adder cells had already been designed, and these provided the small
propagation delays typical of redundant arithmetic systems.

e Although signed-digit notation requires two bits to represent three numbers (1,0,1), the
Carry-Save Adders in Figure 4.26 require more hardware than propagation adders such
as the CLA or Carry-Select, as carry bits must be saved at the outputs of each register.
Therefore, the area for both the Wallace tree and the signed-digit multiplier tree are both
order O(n%logn) [91].

e As the multiplier will be used in an iterative divider, the output will be fed back into the
inputs, after suitable additions. The major disadvantage of signed-digit notation, that of
conversion back to standard binary, can be left to the end of the division process rather
than after each operation.

66

b7A b5A b4A bsA b_A b, A bDA
! } y 1 ! ‘
CSA cSsA
| T 1 ———
| I } =3 | e
cSsA csA
L ! = ——
CcSA
T e
CcCSA
CrLA

Figure 4.26: Wallace-tree Multiplier.

O = Digit Multiplier Cell

|:] = Digit Addition Cell

C.L.A. (Redundant to Binrary Converter)

Figure 4.27: Signed Digit Multiplier.

67

The multiplier implemented is the one by Takagi et al. [91]. This is a high speed binary-tree
using signed digit arithmetic. A block diagram of the implementation is given in Figure 4.27.

The digit addition cells are single bit adders as described in Section 4.1. They take two
input digits and two carry bits, one generated in the previous cell, the other in the next previous
cell, and produce a single output digit and two carry output bits.

The digit multiplier cells simply perform multiplication at the digit level. As the two multi-
plier inputs are each in the range {-1,0,1}, the output of the multiplier cell is the same ({-1,0,1}).
In fact, the multiplier can be considered to act on one digit, according to the value of the other,
were that action is:

e set the output to zero
e change the sign but not the magnitude
e do nothing

In table form, this is

Qutput Input0
101

1] 1]0(-1

Inputl | 0| 0 [0 O
1ff-1]0f1

The individual magnitude and sign bits combine to produce the following Karnaugh maps,
where the essential choices for the sign bit are circled (all other choices for S are optional
groupings).

S_Out SQAIO
00|01]11]10
0000|111
SiMy|otffo|@|OD|1
myftr1o|o|o
wj1r1]0]0
M_Qut SoMy
00011110
0000} O0]O0
SyMy|jortjjp o110
mjjof1r]1|o0
10ffofo0of0]O0
These Karnaugh maps produce the groupings
Souwr = S51.5 + S0.51
= 519 Sy (4.47)
and
Mow = My.Mo (4.48)

Mow = MMy

68

An extract of the full multiplier showing the digit multiply cell is shown in Figure 4.28. The
layout shows the ‘b’ input bus running right to left and the ‘a’ input being applied directly to
the multiplier cell, although in the complete multiplier the ‘a’ input will run top to bottom on
a bus. In this way, the VLSI layout of the multiplier is very similar to the schematic in Figure
4.27, except that the bottom half has been inverted to ease connections.

Figure 4.28: VLSI Layout of Digit Multiply Cell

The complete layout of the signed digit multiplier using unlatched adder cells is shown in
Figure 4.29. A box draw around the multiplier, encompassing the full multlpher top to bottom
and left to right, consumes an approximate area of 0.82mm x 1.58mm = 1. 30mm?, which includes
unused area. The distance between successive cells in the horizontal dlrectlon is 0.1184mm.
Therefore, extending the multiplier array to an 8 X 32 array would consume approximately
0.82mm (1.58 4 0.1184 x 24) = 3.62mm? of silicon in 0.7um es2 CMOS. As a sign digit adder
always takes the same time to perform a calculation irrespective of word length, the cycle time
remains the same for an 8 x 32 as for an 8 x 8 multiplier.

Figure 4.29: VLSI Layout of 8 x 8 Non-pipelined Multiplier
The multiplier is too large to test exhaustively, so a few test vectors were applied. For each

test, the ‘a’ input was incremented from zero to eight and then from 248 to 255. The ‘b’ input
was set for a complete simulation. The following HSpice plots show the relevant outputs for b

69

= 1, 64, 141, 255. All outputs that are not shown have a magnitude bit of zero.

L
Y
LN
T
407

The plots show that the multiply time for an 8 x 8 three level signed digit multiplier is
typically less than ten nanoseconds, with a worst case delay of approximately twelve nanoseconds.
Therefore, allowing fifteen nanoseconds for an 8 X 8 multiply is adequate. The actual output
digits are difficult to read in the plots, so they are included as Tables 4.3 to 4.6. The first two
tables show the non-zero digit values. The third and fourth tables shows the output in terms of

#USPICC FILE CREATCR
73

zr

i AL

—

aros
T

“rea
z—r

—roe o«
z—r

e

o<

“ (T L a1 1 -

HHII

SRR I:!".r S R
LRE (S LB

Figure 4.30: ci) b = 141

[LL,
LT
Ll LILE
BT
B Y

e P, |h‘ e {1 o ke o (15 ﬁl“'.':‘

Ling

.j‘

Wi
i3

||
L

b)b:64

.=._H
22D
E
-
=t

Cii) b = 141

the groups of six digits, in an effort to keep the viewed data to a minimum.

4.3.1 Pipelined Multiplier

Although a pipelined multiplier is not required for the data controllers, the multiplier above was
pipelined to demonstrate the ease with which this can be done and the suitability of a signed-

digit approach to pipelining. In addition, due to the heat dissipation problems in Gallium

_HULT_BL

=

[T SH_MULT_uL

ITOSM_MyLT_uL

RIS R

A0 .@
e
N A
E 3 | . =
S L =" H
: £] 2
==C ~ =5 p!
= - == b
& i
+ S _ 1
3 ! }
: = E _ 1
s 13 B]
g]]
B B !
4 —=s M 4
) . 1 4
1
S
e I Ve R !
255 e
- -y - - N = - = T N =
T . e BW o= o= aex
s BN W W e T Bmn rear sean e
FA R s o2 = W 3 | 3 |
= - N P T e V1
== EEIR=) 32| 3 oB| = EEIR:] o= o
3 A R S T
b, = = - = E R |
LSl | selop esle, sl s=lo) EElS,
- I TR T TR T
Qe S -
JWN —_ 4 -“n
. ¥ Q. il- -4l &
2 : 2 — i
5 s = s - - E
= ! o
o . - 4 s
¥ S & ! | ¥
E] IR = o =
) ! o = A
B - _. g = i S S S | | RS
an o = < = { | - P
. : N i E
~ 4 - -
a2 - b mlu 2s) <1 .. _ ==
=] : £ g = .3l -] 3
. z £ 5 : ==
N . 1
oz = — i 3l . F
= Doy e ===] - B
z = | ot =1 | 1
B w 3 g
B T = e = l. 1
r o] e 1
—_ 1
R e P
+ A = T N = - < - a = * . + -
- —_— -— - —_— =z ST 3 ——= —_— _—=

B e oo o roam S oo >aa-

= 255

diii) b

71

dii) b = 255

Figure 4.30

Do | Dy | Do | D3| Dy | Dg Total
20 | ot | 22| 23 | 2 | 28

0 0 0 0 0 0 0
1 0 0 0 0 0 1
0 -1 -1 1 0 0 2
1 -1 -1 il 0 0 3
0 0 | -1 1 0 0 4
1 0 | -1 1 0 0 5
0 -1 0 1 0 0 6
1 -1 0 1 0 0 7
0 0 0 1 -1 1 248
1 0 0 1] -1 1 249
0 S | 0 0 1 250
1 -1 -1 0 0 1 251
0 0| -1 0 0 1 252
1 0| -1 0 0 1 253
0 -1 0 0 0 1 254
1 -1 0 0 0 1 255
0 0 0 0 0 0 0

Table 4.3: Digit Outputs for Unlatched Multiplier, b=1

D6 D7 Dg Dg D]O D14 Total
96 27 28 99 210 214

0 0 0 0 0 0 0

I 0 0 0 0 0 64
0 1 0 0 0 0 128
1 -1 1 0 0 0 196
0 0 1 0 0 0 256
1 0 1 0 0 0 320
0 1 -1 1 0 0 384
1 -1 10 1 0 0 448
0 0 0 1 -1 1 14336
1 0 0 1 -1 1 14400
0 1 0 1 -1 1 14464
1 -1 1 1 -1 1 14528
0 0 1 -1 0 1 14592
1 0 1 -1 0 1 14656
0 1| -1 0 0 1 14720
1 -1 0 0 0 1 14784
0 0 0 0 0 0 0

Table 4.4: Digit Outputs for Unlatched Multiplier, b=64

72

DO — D5 D6 - Dll D12 — D15 Total
13 128 0 141
26 256 0 282
39 384 0 423
-12 576 0 564
1 704 0 705
14 832 0 846
27 960 0 987
24 2176 32768 34968
37 2304 32768 35109
-14 2496 32768 35250
-1 2624 32768 35391
12 2752 32768 35532
25 2880 32768 35673
38 -1088 36864 35814
-13 -896 36864 359565

Table 4.5: Digit Outputs for Unlatched Multiplier, b=141

Do — D5 [)6 — D11 D12 — D16 Total
63 192 0 255
-2 512 0 510
61 704 0 765
-4 1024 0 1020
59 1216 0 1275
-6 1536 0 1530
57 1728 0 1785
8 1792 61440 63240
7 2048 61440 63495
6 2304 61440 63750
) 2560 61440 64005
4 2816 61440 64260
3 3072 61440 64515
2 3328 61440 64770
1 3584 61440 65025

3

Table 4.6: Digit Outputs for Unlatched Multiplier, b=255

In In in In In
AQ Al A2 A3 Ad

Ll
e

9 MusiF 'r'Fo 7l

— T
o — 3 i i { —
Bo S B I

H H
Multiplier

o N DeMux
et
T
o -
:

. Accumulators

|
C

Ii a al”i_l,
| Vo

Out Qut OQut Out Out
0 1 2 3 4

Figure 4.31: Processing Cell Using Pipelined Multiplier

Arsenide (GaAs) and the fact that the switching speeds of GaAs are not required!!, the lower
power and higher density of CMOS is becoming increasingly attractive, and future generations
of the processing array will probably be constructed, at least in part, in silicon CMOS. If that
is the case, a single high speed pipelined multiplier can be used to ‘simulate’ the presence of
several processing elements, although each element will contain its own accumulator and 1/0
port. The likely configuration would be as shown in Figure 4.31.

The signed-digit multiplier is particularly attractive to use as a pipelined multiplier due to
the constant delay through each adder layer of the multiplier, irrespectively of the length of the
adder. This means that each stage in the pipeline is perfectly matched, and no stage must wait
for any other stage. The latches can be placed before any adder stage, for a varying number of
pipeline stages. For example, if Booth recoding is used, an 8 x 8 multiplier comprises of three
signed digit adders in two levels, so a two stage pipeline can be implemented. However, if no
Booth recoding is used, an 8 x 8 multiplier will contain three levels of signed digit adders, so
a three stage pipeline can be used. Additionally, a two stage pipeline could be used, except
that one stage will have two adders and the other will have one adder, resulting in a pipeline
imbalance. However, if the multiplier array is (say) 64 x 64, there will be six levels of signed
digit adders, so the pipeline could have two, three or six matched pipeline stages. For the sake of
demonstration, the 8 x 8 multiplier was pipelined into three stages, one for each level of adders.

The 8 x 8 multiplier VLSI design is shown in Figure 4.32. The design uses 0.7um es2 CMOS,
and consumes a rectangular area of 0.93mm X 3.2mm = 2.976mm?, although this includes some
unused space. The difference between successive cells horizontally is 0.25mm, so that extending
the multiplier to an 8 x 32 array be approximately 3.2mm + 24 X 0.25mm = 9.2mm in length,
and consume 9.2mm X 0.93mm = 8.56mm? of area.

The multiplier was simultated using HSpice, although again not exhaustively. The input for
the first simulation if shown in Figure 4.33a), which produced the results in Figure 4.33b).

The applied input was the number sequence ‘010325476 981110 13 12 15 14 241 240
243 242 245 244 247 246 249 248 251 250 253 252 255 254’ for the ‘b’ input, which was applied
for an ‘a’ input of ‘0 & 1’. As can be seen in the output plot (Figure 4.33b)), the result of the
simulation is an output of zero for the first half of the simulation, followed by the same sequence

1UThe processing elements themselves need not be very fast. In fact, slower P.E.’s have several advantages

74

Figure 4.32: VLSI Layout of Pipelined 8 x 8 Multiplier

¥ HSPICE FILE CREATED FOR CIRCUIT SM_NULT_PS ¥ HSPICE FILE CRERATED
9471071 10t22:27 94/10/1

FOR CIRCUIT SM_NULT_P§
2 10122127

3 2

= SH_MULT_PS ¢ :
4.0 | GLIT v L 4 nF -------- =
= S a .
2.0 I . 2.0 T s i :
= s PO P PP SRR P
= P s _wuLT_PS
s RS , . -, ISR SRR TRETVON I
- — 01 =
2.0 C i L 2 0= — o——— |
. N i . | P 00 A8 O Wi |
= SH_MULT_P5.: SH_MULT_P5
1)= me2 v 4.0 Qo= MoUTe
- ol gL AL
= T 2'"; =
N = 0 i =]
) > SH_MULT_PS - S SR, 1 # SH_HULT_PS
= %b3 B T R U T TS CETTTEES RIS [OEEa] ST LR = fogts
S A— el - B
= T 2'"E £
" A B PUN I s |
= SM_MULT_P5.: o
1= MB% v L .
e — 0 I :
1= Hes LN PO
G T :
- SM_MULT_P5 !
1~ MB7 VL
S [
<= _MAD LN
R T
—
3440, 0N

Figure 4.33: HSpice Simulation Plots a) Input b) Output

75

as the input. A new output is available every five nanoseconds, after an initial delay of fifteen
nanoseconds (three cycles). Other simulations were run, and the multiplier found to operate

correctly.

4.4 Conclusion

In this chapter, propagation-free signed digit arithmetic was introduced and the conversion
process between signed digit and standard binary notations shown. Basic addition cells were
designed, laid out and simulated in the 0.7um es2 CMOS process, and found to operate correctly
with addition cycle times of less than five nanoseconds. When the word-length independence
of the cycle time of signed-digit arithmetic is recalled, the cells can be used to implement very
high bandwidth computational systems.

Support arithmetic components were also considered, and a high-radix divider proposed that
provided very favourable speed/area trade-offs, while still providing the performance required
by the system. To complete the design of the divider, a signed-digit multiplier architecture was
designed using the cells that were designed earlier in the chapter.

76

Chapter 5

Address Generator

As the computation rates of computers have increased, the ability of a processor to generate
operand addresses at a correspondingly high rate has been severely tested. Specialised hardware
has been described in the literature by Marwood and others [69, 72] that directly generate
fundamental addressing patterns to help alleviate this bottleneck.

The majority of these papers, with the exception of those by Marwood, attempt to optimise
the address generation for vector-type operations, leaving matrix operations as a superset of
vector operations. Unfortunately, there are several matrix algorithms that do not map well onto
vector addressing patterns, such as prime factor mappings, etc. Marwood, however, considers
matrix algorithms separately, and has implemented designs that directly support many matrix
structures. Marwood’s address generation difference engine is used here, due to its versatility of
function and elegance of design.

In fact, the address generator difference engine is the fastest component of the whole system,
and the speed of the generator is the main limit on system performance. The importance of
memory bandwidth for a systolic array was pointed out by Katona in his lattice model for
cellular algorithms [46, 58], which can be translated into operand address generation bandwidth
if the addresses are generated with a slower cycle time than the memory system. Marwood
applied the results to the evaluation of matrix products on a two dimensional systolic array [58].
a brief summary of which follows. ' .

The lattice model involves the concept of two matrices, A & B, moving toward the processing
array with velocities v, & v, respectively, to form the matrix product C within the processing
array. This is shown graphically in Figure 5.1 from [58]. For ease, the processing array is set to
be a square N X N array, whereas Marwood uses the more general rectangular M X N array. He
reaches the conclusion that the bandwidth requirement of the two input arrays (fap) is given
by

Bap=Pa+ BB = gg (5.1)
where 34 and 3pg are the bandwidth requirements of each input, and that the output bandwidth
(B¢) can be matched to those of the input by setting

B¢ = ?Tﬁ (5.2)
where T is a time step.

By dividing the number of processor operations by the time in which they occur, the com-
putational rate can be determined. Bearing in mind that a multiply and accumulate takes place
in a single time step and that there are N2 processors, the computational rate (R) is
_ 2N 2
= —

R (5.3)

77

Substituting Equation 5.1 into 5.3 leads to

OS]

N
6%BT

2
= /jABN (54)

This is a slightly surprising result, as it indicates that not only is the computational power
of the square processing array proportional to the square of the array bandwidth, but also that
it is inversely proportional to the computational speed of the processing elements. The logical
explanation is that the computational rate, R, in Equation 5.4, is determined for the case when
the matrix processor is being supplied with data at its maximum rate. The bandwidth required
for an N x N processing array is the same as for a 2N X 2N array with each element operating at
half the speed. As there are four times the number of systolic elements in the larger array, each
operating at half the speed of the smaller array, the larger array has twice the computational
rate using the same bandwidth.

As Marwood points out, assuming that the problem order is greater than the system hardware
order, there are two possible alternatives for increasing system performance:

1. Increase the bandwidth to the array. This is technologically constrained by the limits on
how fast data can be moved.

2. Increase the execution time of the processing elements to allow a greater number of pro-
cessing elements to operate with the same overall bandwidth. This is not constrained
by technology, as the processing elements can be made arbitrarily slow. Slower PEs often
mean smaller PEs, since serialization of the arithmetic operation can be used to reduce PE
size at the cost of longer execution time. The limit here is due to practical considerations
on the physical size of the array, and the constraints of the problem size (the size of pro-
cessing array needs to smaller than the order of the problem size to increase performance
by increasing array size. Ideally, the problem size should be an integral multiple of the
array size).

This is also of significance if Marwood’s constant bandwidth model is used [58]. Here, rather
than stalling if the entire array is not being used, the array is composed of variable speed
components along bands. The computational speed is selected depending on array utilisation.
A range of technologies can be used, with the faster ‘edge’ components using more expensive
technology (eg. Gallium Arsenide) and the components getting progressively slower further from
the array. Thus, although an N x N array will be N times faster than a single computational
element running at the same speed, if a scalar calculation is required, the single computational
element will be N times faster than the array.

5.0.1 Matrix Addressing

The original system proposed by Marwood [56] describes the mapping algorithm for an ar-
bitrary dimensioned mapping, although the implementation shown is for a two dimensional
mapping. This is shown in Figure 5.2, below. This work was extended [65] to a include up
to four dimensions, which will allow either a four dimensional structure to be mapped on to a
a one dimensional addressing space, or for a two dimensional, arbitrary-sized structure to be
automatically partitioned to fit a fixed size processing array.

78

Y
K4N-1 N
1 [
1
N A == [4 N
Va Vc |
-—
1 ' X
i
|
fu
K+N-1
B
'
N

Figure 5.1: Lattice Representation of a Matrix Product

Adder O

Carry in

Adder 1

N e < Sign 8

v

Address
Ouzr

Figure 5.2: 2D Addr Gen.

79

Marwood’s example mapping is the Alternative Integer Mapping, although he points out
that the Chinese Remainder Theorem and other simple mappings can be implemented on the
proposed architecture.

The Alternative Integer Representation is

n = (niNy+nyNi)y (5.5)
where N; and N, are mutually prime and NyNy = N, and (a), means ‘a modulo N’.
This is very similar to the conventional mapping used to store a two or more dimensional
matrix in a linear memory address space, ie

n=mnNy+ no (5.6)

The Chinese remainder theorem is slightly more complicated, although still implementable
on the proposed hardware.

n= <n1N2 <N2_1>N1 + no Ny <N1_1>N2>N (5.7)

If appropriate constants are chosen and a modulo capability is available, Equations 5.5 to 5.7
can be implemented on a two dimensional difference engine. Additionally, an offset base address
can be included if added after the difference engine. This leads to the following expression:

n = base_address + (n1A1 + n2A2>q (5.8)

It would be desirable to remove the need for the divider that is generally used to perform the
modulo calculation. This can be done by noting that at each address calculation, a difference,
A;, is added to the previous address, ‘prev_addr’, which is already ‘modulo q'. Therefore, if
the difference between ‘q” and the previous address is greater than A;, the sum of the previous
address and A; is correct modulo q. Otherwise, it is required that q be subtracted from the
result of the sum. This can be summarised as:

prev_addr + A if ¢ — prev_addr — A; >0
prev_addr + A; — ¢ otherwise

next _addr = { (5.9)

This is implemented on Marwood’s difference engine serially, with the initial calculation
being prev_addr 4+ A; followed by (prev_addr + A;) — ¢q. The sign of the second calculation is
then used as the control bit for the multiplexers.

5.0.2 Parallelizing and Expanding the Difference Engine

As Equation 5.9 is a loop required for each iteration containing the previous address, it would
be difficult to pipeline this stage. However, parallelizing is a relatively simple matter. Rather
than calculating ‘prev_addr 4+ A;’, and then subtracting the modulo ‘¢’ from this, if A; —q is also
supplied to the address generator, the sum of ‘prev_addr + (A; — ¢)’ can be calculated in parallel
with the original sum (of prev_addr + A;). The required result can just be switched using a
multiplexer, depending on the sign of the result of the sum prev_addr + (A; — q). Figure 5.3
shows a parallel implementation of the difference engine. As is obvious from this figure, the
parallel version of the difference engine requires an extra (dimensions - 1) registers over the
serial version, but no extra adders.

Expansion of the number of dimensions from two to four is also a simple matter. This can
be achieved by adding four additional registers and four additional multiplexers.

80

] | [& = A | A
= T = S
— B e = ey
=] Lo -
i‘:—_l #raer
—]
SNigren ~Adigie Adder I
I
[A —w | [A @ | | A —a | As gy
L—— ™y b Card 7 o Cari ¥
'z —_—
= R TT F N d
Sigee - ddigdiv Acdcdaor 2 ‘
| [
Sign selecd .Q“gn i reeery
‘ - H Ll 1 £ on it
|

Figure 5.3: 4D Addr Gen.

5.0.3 Example Mappings on the Difference Engine

Marwood provides several example address mappings implemented on his address generator,
which can also be implemented on the expanded, four dimensional address generator[56, 58].
The required input data for a selected mapping and the corresponding output sequence of
addresses is presented in Table 5.1.

These same mappings can be calculated on the expanded address generator, as presented in
Table 5.2. Note that these do not use the third and fourth dimensions of the array, as only the
equivalent mappings of the two dimensional version are presented.

5.1 Address Generator Components

5.1.1 Sign Detector

One of the main disadvantages of signed digit arithmetic is that the sign of an integer is not
readily apparent, as it is with two’s complement arithmetic. The sign of a signed digit number
is the sign of the most significant non-zero digit, which may be at any of the 32 positions for a
32-bit number.

If each bit were checked in turn, an order O(n) operation, the advantage of the inherent
parallelism of signed digit arithmetic would be lost. An order O(logn) sign detect unit can
be constructed using a binary tree, with each cell transmitting the sign of the larger of two
adjacent digits to the layer beneath. The cells themselves consist of three multiplexers, which
select whether the more or less significant digit will be propagated to the next layer. The select
signal for the multiplexers is the magnitude bit of the more significant digit. A block diagram
is shown in Figure 5.4.

The equations governing the operation of the cell are:

Sout = M;.51+ M(.So (5.10)
My = M)+ MMy (5.11)
M, = M.Mgy (5.12)

The least significant edge cell can be reduced in size, as the outputs My & Mg are not
required. The full sign detect unit is shown in I'igure 5.5.

81

Type || Normal | Transposed | Prime | Transposed Circulant | Circulant Sub Constant |
Factor | Prime Factor Skew Matrix

Base 0 0 0 0 0 0 6 0
Al 1) 3 5 1 1 1 0
A2 1 -9 8 8 0 2 4 0
nl 5 3 5 3 5 5 2 5
n2 3 5 3 5 3 3 2 3
q 15 15 15 15 5 5 15 1
Addr. 0 0 0 0 0 0 6 0
Out 1 5 3 5 1 1 7 0
2 10 6 10 2 2 11 0
3 1 9 3 3 3 12 0
4 6 12 8 4 4 0
) 11 5 13 4 1 0
6 2 8 6 0 2 0
(i 7 i1 11 1 3 0
8 12 14 1 2 4 0
9 3 2 9 3 0 0
10 8 10 14 3 2 0
11 13 13 4 4 3 0
12 4 1 12 0 4 0
13 9 4 2 1 0 0
14 14 7 7 2 1 0

Table 5.1: 2 Dimensional Mappings on Difference Engine

Sign Detect
Cell

Sign Detect
Cell

Cell

Sign Detect

Sout

Mout

Figure 5.4: Sign Detect Unit Cell

82

Type Normal | Transposed Transposed Circulant Constant
Prime Factor Skew

Base 0 0 0 0 0 0
Al 1 5 5 1 1 0
A2 1 -9 8 0 2 0
A3 0 0 0 0 0 0
A4 0 0 0 0 0 0
Al—-Q@ -14 -10 -10 -4 -4 -1
A2-Q -14 -24 -7 -5 -3 -1
A3—-@Q -15 -15 -15 -5 -5 -1
Ad—-Q -15 -15 -15 -5 -5 -1
nl 5 3 5 3) 5 5
n2 3 5 3 5 3 3 2 3
nJ 0 0 0 0 0 0 0 0
n4 0 0 0 0 0 0 0 0
Addr. 0 0 0 0 0 0 6 0
Out 1 5 3 5 1 1 7 0
2 10 6 10 2 2 11 0
3 L 9 3 3 3 12 0
4 6 12 8 4 4 0
5 11 5 13 4 1 0
6 2 6 0 2 0
7 7 11 1 3 0
8 12 1 2 4 0
9 3 9 3 0 0
10 8 14 3 2 0
11 13 4 4 3 0
12 4 12 0 4 0
13 9 2 L 0 0
14 14 7 2 1 0

Table 5.2: 4 Dimensional Mappings on Difference Engine

83

d d

oo
oo
~Na
>

. va

o
wa
[NY-%
-0
oo

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 4
L N S S S AL S N O S S AR NN IS SN S (NN (SO (N I S U SN I [S I f_—
[} ! 1 i] ! L i A i 1 1 [l] Il L
1 L1 Y __t T
{ (I (-
{
i
Sout

Figure 5.5: Sign Detect Unit

5.1.2 Initialisation

The difference engine must always start with the first output address being zero. Any offset
in this address is included by means of the base address register and adder. In Figure 5.2,
initialisation is achieved by adding the value in register D1 to the negative of itself, with the
result placed in the *Address Qut’ register. As the result of a number added to the negative
of itself is always zero. the Address Out register is effectively initialized to zero. While this
achieves the desired result. there will be a minor speed penalty due to the extra multiplexer in
the critical path (Mux! in Figure 5.2). As the use of redundant coded binary is suggested for
the adders, the delay through a multiplexer may account for approximately ten percent of the
cycle time.

An alternative initialisation option is available depending on the technology used. In the
suggested CMOS design. domino logic was used in the final stage of the calculation of the ~m’
output of the adders. The domino logic multiplexer used is shown in Iigure 5.6, below.

As can be seen seen from the figure. the input to the inverter is held high until the signal
'phi* is brought high. "Phi" is an evaluate signal that is clocked every cycle during operation.
However, "phi’ can also be combined with a ‘run’ signal, so that ‘phi’ follows a clock during
normal operation. or else is held low for initialisation or if a stall occurs. The combination is a
simple AND gate, ie

phi = run.clk!

where clk!is a clock signal. Therefore. if the Address Out register is latched while ‘phi” is low. ie
not in evaluate phase, the data at the input of the Address Out register will be zero. Therefore,
all that is required for initialisation is that the Address Qut register(s) receives the latch signal
before the system starts running.

5.1.3 Dimension Counter

Within the address generator framework, there is a need for as many counters as there are
dimensions. At least one of these counters must be very fast (the one of lowest dimension). as

84

Figure 5.6: Domino Logic Exclusive-OR Gate

there will only be a single cycle to calculate which ‘delta’ to use and switch it in. Therefore, the
speed of signed digit arithmetic is again valuable.

Decrement Cell

Rather than implementing a full adder/latch cell, use can be made of the fact that one input
to the decrementer is already know to be zero in all but the least significant cell. In fact, if
the negative carry input is used to apply the ‘-1’ to the decrementer, all the cells can be made
identical, with only one input and the appropriate carry lines.

Let the inputs to the cell be labelled {S;n,M;.}, and the carry input be Neg_In'. The
requirements of signed digit arithmetic are such that the Neg_Out signal must be independent
of the Neg_In input signal. This is the only restriction on the cell logic. The resulting cell
behaviour is described in Table 5.3. The figure ‘X’ denotes a ‘don’t care’ in the table, and ‘A’
indicates a ‘pseudo don’t care’, in which the table entry in which it is placed can be either a ‘0’
or a ‘1’, but the choice will effect other table entries.

Sm Min Negin Result Sout Mout Negout
0 0 0 0| X 0 0
0 0 il 1 A 1 A
0 1 0 11 0 1 0
0 1 1 0| X 0 0
il 0 0 0| X 0 0
i 0 il A1 A 1 A
1 1 0 10 A 1 A
i 1 1 21 X 0 il

Table 5.3: Decrement Cell Combinations

1 As will be shown later in the analysis, a positive carry signal is not required

85

The position {1,1,1} (corresponding to {Sin, Min, Neg_In}) requires that Neg-Out be set for
this combination of inputs. As Neg_Out can only depend on {Si,, Min}, then position {1,1,0}
must also set Neg_Out. This is the only combination of S, and M;, for which Neg-Out is set.
The resulting Karnaugh maps for the decrement cell are given in Tables 5.4 a) & b).

Souta Mous SinMin, Neg—O“t M;,
00 [01 [11 | 10 0]1
NegIn |0 10|01(01]10 Sin 000
1111]00f00(|11 1101

Table 5.4: a) Sou: & Moy b)Neg_Out

From these Karnaugh maps, the obvious groupings are:
o Sour = W

e My = Neg Ind M,

e Neg Out = S;,.M;,

A further simplification can be made if it is noted that the exclusive-nor operator is just as
easy to implement as the exclusive-or, and that, as an and operator is formed using a nand gate
and an inverter, the nand operator is simpler than the and operator. Therefore, if Neg Out is
propagated between cells instead of Neg Out, then the gate count and propagation delay can
be reduced by one. The new equations are:

U
o Sout = My,

o My = Ney—[n@ M,

(] Neg_Out = Sin-Myy

The flow diagram representing the decrementer is shown in Figure 5.7.

The decrement cell is shown in Figure 5.8. This cell includes the iteration loop latches, the
input multiplexers and the arithmetic logic.

To enable enough time to achieve the zero detection and the appropriate switching of the
‘delta’ multiplexers, the value stored in the ‘zeroth’ counter can be decremented before it is stored
(run once through the decrementer). This requires an extra pair of multiplexers and an extra
pair of latches. The extra latches are required to store the ‘new’ decremented starting value,
while the multiplexers select whether the original value or the decremented value is loaded into
the new lathes. These multiplexers are only used at initilisation. The only other consideration
for constructing a full digit cell is the output. Rather than routing wires from the iteration loop
latches, it was decided that another pair of latches at the output would consume minimal area
and save routing. Therefore, these latches have been included in the full digit cell, although
they could just as easily be left out. The layout of the full digit cell is shown in Figure 5.9,
with the decrement cell outlined.

86

neg_in=0

)

neg_in=0

Figure 5.7: Flow Diagram for Decrement Cell

Figure 5.8: Decrement Cell

87

Figure 5.9: Full Decrement Cell

(RE)Loading the Decrement Counters

The decrementers must be loaded initially with the correct dimension, and then reloaded with the
original dimension minus one every time they reach zero, until all decrementers have counted
down to zero. To control this, a reset signal is used. The only input control signal to the
decrementer is the ‘load’ signal, with the sequencing controlled internally and also using the
Tatch’ signal. When the ‘zero’ signal is asserted, a ‘reset’ signal is asserted, and the starting
value (original value minus one) reloaded into the counters.

Zero Detect Cell

One of the requirements of the redundant set proposed by Avizienis [3] was that there is a
unique representation for the number zero. Although the signed magnitude notation described
here does not have a strictly unique representation for zero, there is a unique combination for
the magnitude bits (they are all zero), and it is only the sign bits that change for various zero
representations. Thus, to determine if a signed digit number is zero it is necessary to determine
if each and every magnitude bit is zero?

The approach taken to detect if the decrementer value was zero was a simple NAND-NOR
tree structure, which is a logical equivalent to an OR-OR structure for zero detection. For
a 32-bit zero detection circuit, log, 32 = 5 levels of binary zero detection are needed, which
corresponds to three NOR-gate levels and two NAND-gate levels. Therefore, a zero at the input
will be indicated by a one at the outpuft.

The VLSI structure of the zero detection cell is shown in Figure 5.10. This is a four input
cell, constructed of two NOR, gates and one NAND gate. The pyramidical structure is clearly
shown, although in practice, a large zero detection cell can be compressed into a single linear
array of NAND and NOR gates. This is shown later for the case of a sixteen bit decrementer.

2This is the same as for a standard binary representation.

88

it

i

Figure 5.10: Four Input Zero Detection Cell

5.1.4 Complete Decrement Units

To test the design of the decrement cells, a four bit and a sixteen bit decrementer were designed
and simulated. The four bit decrementer cell can count down from a maximum of fifteen and the
sixteen bit decrementer can count down from 65535. The VLSI layout of the four bit decrementer
is shown in Figure 5.11. Without compaction, the four bit decrementer consumes an area of
0.277mm X 0.246mm = 0.068mm?.

The testing of the decrementer is very simple, as it only needs to be tested for the case when
the largest possible input is applied, as the decrementer will pass through all other states. The
output from HSpice is shown in Figure 5.12. It can be seen from this that the decrementer
initially decrements the input from fifteen to fourteen, and then proceeds to decrement the
output every clock pulse until the output is zero, at a clock rate of 200MHz. When the zero flag
is asserted, the decrementer is reloaded with the stored value, in this case fourteen. However,
the decrementer has another cycle before the stored value is loaded (the cycle in which zero is
asserted), so the output actually goes to minus one. The next output is the stored value minus
one, in this case thirteen, and then the cycle repeats.

The sixteen bit decrementer is shown in Figure 5.13. The four levels of zero detection
are compressed into a single layer, on the bottom of the cell. The complete cell consumes
0.245mm X 0.886mm = 0.217mm? in 0.7um es2 CMOS. Most of the area is consumed with
initialisation and reset hardware, with the actual decrement cell area consuming approximately
one third of the total.

Full testing of the sixteen bit decrementer is not possible, as a decrement from 65535 at
five nanoseconds per count would require a simulation time of 65535 X 5 X 1079 = 327.68uS,
which, apart from the huge amount of time required for such a simulation, would consume more
storage than we have available. However, a decrement from fifteen was run, which shows the
reset and teload functions, and also the zero detection. As signed digit arithmetic is word length
independent, adding more significant digits will not effect the speed at which the decrementer

89

Figure 5.11: Four-Bit Decrement Unit

LE CREATED _FOR CH:([U DEC

N Tt Ay
AR

1 Wl l {8 ot I
SR iR [_"‘ F”i-’
f “ Al "ML'"_;%F‘

L A-
T
vl "'“F 4
L2
1 2.0 =
0 ILt_ S EHES
YL A ¥ i
S 1 .
T 2.1
0. b a 1

Figure 5.12: Simulation Results of Four Bit Decrement Cell

90

Figure 5.13: Sixteen-Bit Decrement Unit

operates. These results are shown in Figure 5.14. All output magnitudes not shown are zero.
As can be seen from this figure, the decrementer function correctly.

5.1.5 Multiplexer Selection

The multiplexers that are used to choose between the ‘deltas’ must be selected in a hierarchical
manner. The delta that is chosen is the one with the smallest index for which the corresponding
counter output is not zero. Therefore, if ‘SelA’ and ‘SelB’ are the two multiplexer controls as
defined in the Address Generator Section (Section 5.2), zero0 ... zero3 are the outputs of the
four zero detectors, and muz0, muzl, muz?2 are temporary variables denoting

o select delta0/1
o select delta2/3
o select delta(0,1)/(1,2)
respectively, then the multiplexer selection equations become
e muz? = zerol . zerol
o muzl = zero2
o muzl = zero(

The schematic of the multiplexers showing both sets of select signals (muz0 ... 3 and SelA
& SelB) is given in Figure 5.15.

91

» - - & @
2 = <11 = =
1]! i
o o = o [
o o e | o o
Se = e am o
i i i
= = s a3 o
= = I =t | =1 Ja =
S| = | =| =4\ Sija Su =
Cxjw =elal crlw Tz ~
a’n] . f =
I GRRR REk: - R DR REx. 1 -0 L e 1a - MU BE: -0 CIRRELL,
— | | =
—_— !] | |
e e — | o 4 {
1 11 |
@ L |
= g e IL_ Sr——
—— e ST
[{ |
O et e L 1 1
o v—— = B =
——— 4
) ———— — |}
- 7 i | - =
D e VL e
S e S T B G [oot |
Y b |
Y] ——— 1 ql 4
e
i . —
g —_
N e b —— ————— | =
()7, EP——— | 41 e
oo emm—rtm— e § 1 -——
= - - - ! —
[LS | = | = e
o g g s i || R
8% ey F— — | 1 | ——— w
[— | - S — S b
co =
= S T ——— 4 b=
[P ——— =S
ar i
- Sov— E—— 1 $te e
RS = R m—
Y e fr ey e
= — = il | 1
L “Illlnll b — * - | -
L g ———— — e |
et - —— —— 1
O —— |
I 1 | !
2 e [4
e —— } | 3
———— r
L) kil I L & -
o o = = s o s o -
j = = - =
E EY = E "~
-z =z a—z a—z ez
o »om oo >aa- >oo-

Figure 5.14: HSpice Simulation Results for Sixteen Bit Decrementer

/< Mux1

4

)
Mux1

~ Mux0
Mux?2
Figure 5.15: Delta Register Multiplexers

SelA

92

To convert the separate multiplexer control signals to the previously defined SelA and SelB,
it is obvious that SelB is simply equivalent to muz2. SelA is a combination of all the mux
variables, and can be written as

SelA = muz2.zerol + muz2.zero2
= zero0.zerol.zeroQ + zero0.zerol.zero2
= (zero0 4 zerol).zerol + zerol.zerol.zero2
= zero0.zerol + zerol.zero 4+ zero0.zerol.zero2

= zerol.zero0 + zero().zerol.zero2 (5.13)

5.2 Implementation

The Address Generator was implemented in 0.7um es2 CMOS, using two signed digit adders
with multiplexers, one sign detection unit, four dimension counters and four difference-register
pairs. As only initial design investigation and verification was undertaken, an eight bit address
generator was implemented, although extension to 32 bits is a simple matter. The propagation
free properties of sign-digit adders means that a 32-bit adder takes the same computation time
as an eight bit adder, and the sign detection unit will require another two multiplexers. As a
single adder and the sign detection unit comprise the critical path, it is felt that the extension
to 32-bits will require of the order of a single nanosecond extra per cycle.

The VLSI layout is of a similar format to that of the schematic in Figure 5.3. The signed
digit adders with multiplexers are laid out one above the other, with the adder with the ‘delta’
offsets, Adderl, on top and the adder with the ‘delta-Q’ offsets, Adder2, on the bottom. The
sign detection unit in placed below the bottom adder, Adder2. The outputs from both the adder
units are directed upwards towards the output latches, after which they can be multiplexed to
select the correct output. The latches that contain the differences for the address generation
are on the top right of each adder, and are loaded via an input bus that runs from left to right
above the difference latches. The latches feed the adders via three 2-1 multiplexers configured
as 4-1 multiplexers. A series of control buses run between the difference latches and the adders.
These are fed with control signals generated by the dimension counters and the sign detect unit.
The VLSI layout of an eight bit address generator is shown in Figure 5.16

Figure 5.16: VLSI Layout of an Eight-bit Address Generator

93

The eight bit address generator consumes approximately 0.7956mm x 2.11mm = 1.68mm?
of silicon when implemented in 0.7um es2 CMOS, and uses 4383 transistors. The separation
between cells is approximately 0.2569 mm, so a 32-bit implementation would consume approxi-
mately 1.68mm? + 24 x 0.2569mm x 0.7956mm = 6.59mm? of silicon. There are 491 transistors
in each digit cell plus 24 for each output latch set, so the 32-bit implementation would contain
approximately (491 + 24) x 24 4+ 4383 = 16743 transistors.

The eight bit address generator was simulated for speeds up to 100 MHz, using HSpice. The
results of the simulations are shown in Figures 5.17 to 5.19 for a variety of input data. The
input data used demonstrate selected cases of the examples presented in Section 5.0.3 and Table
5.2.

Figures 5.17a) to d) show the case of accessing a matrix in normal form. The input data,
taken directly from Table 5.2, is:

Input Data: Base Al A2 | A3 | Ad| A1 -Q | A2-Q
Value: 0 1 1 0 0 -14 -14
Input Data: | A3—-Q | Ad—¢ | nl | n2 | n3 n4

Value: -15 -15 5 3 0 0

The tabulated results are shown in Table 5.5. This provides the ‘D’ output from Adder! and
the ‘Q’ output from Adder2, as well as the ‘Neg’ output from the sign detector unit.

Figures 5.18a) to d) show the case of accessing a {ransposed two dimensional matrix. The
input data is:

These simulation plots have been tabulated in Table 5.6, showing the output ‘D’ data from

Input Data: Base Al A2 | A3 | A1 | A1-Q | A2-Q
Value: 0 5 -9 0 0 -10 -24
Input Data: | A3 —-Q | Ad—¢ | nl | n2 | n3 n4

Value: -15 -15 3 5 0 0

Adderl, the output *Q" data from Adder? and the Sign Detector output ‘Neg’.

Figures 5.19a) to d) are the HSpice simulation results of a prime factor mapping. The input

data is:

Input Data: Base Al A2 | A3 | A4 | A1 -Q | A2-Q
Value: 0 3 8 0 0 -12 -7
Input Data: | A3 —Q | Ad—Q | nl | n2 | n3 nd

Value: -15 -15 5 3 0 0

These simulation plots have been tabulated in Table 5.7, showing the output ‘D’ data from
Adder1, the output ‘Q" data from Adder? and the Sign Detector output ‘Neg’. Note that output
address is from the ‘D’ digits if ‘Neg’ is high, and from the ‘Q’ digits if ‘Neg is low.

Other mappings such as submatrix extraction and circulant addressing were simulated, and
found to operate correctly. It is felt that, as the arithmetic is propagation free, the address
generator would operate correctly when extended to 32 bits, especially with the move to the
0.54m CMOS process that will soon be available to the Department.

94

IT ADDR_PCEH_8

u
5

O—

¥ HSPICE FILE

RE%IT AD0OR_PCSH_B

¥ HSPICE FILE

ooy o
nnrsw

eruﬁ

- @
- am
o~ - o ~ N
) =
[Tal wn
BT e el e -l
® @
| | (|
x =
wn ‘ w v
o - S| =
ald| 2 a=>i 22
o o ol o
(=2 | =2} 1
oo o a—| =
Bhnﬂh = n%
TE | N IE |
W g | 2
: d 5
_[[|I [E—
T.
—] B
L]
T I |
= f— —
. - —
_ J bo—_——
_ 1t
!|l._ e it e]
{ R
J —_——
| SECE—— F.IIIuII.L
J
f] b X
— . o — .
— = S— :
e e 1

L

(NG -] B
=3
L3
- b
B
4 4
-
— -
M =
d 1o
— |_—.rnJ
- <
2 iE
- 1=
— —_c
. #
1=
- |mq
— =
Jq
] 1
b
L Lod Lo | J
n =4 = Y =4 z
- . = oz . =)
T - < - - o
=1 =)
— I - I
FEE_ W) SO e ==
@ @
) | [!
= b=
w w
Ol = O | =
PU_U a2l 2
ol & o| &
a1 o 1|
Sl o am| m
(=] =) oo| o
Qx| (=020 BV}
TR} =1~ PRI
4 =
| . =
B : e
= f1u11lj i
n
—
J >
7 =
I Al
¥ - .
| | R
| ﬂu
-— -
;ﬁ
._ .
=
T 1 =
1=
—
— i
=
- <=
- —_
=i

a) DO to D3 b) D4 to D7

Figure 5.17

[T ADDR_FCSEM_Q

¥ HSPICE FILE

€ HSPICE FILE

MMkﬂ} MM&;} umru} uwray mﬂf B
R - ; Vi R Ve 5
F ﬂ ! | 2o
1 =]
PP LH
- - P —— e
T B) 1=
| 4 4 r =
=
* 11 1] i
_ i i] § i
]] .=
ﬁ =
_ 1 Y 7 Io\,
i q ., b y —eE
_ + - -~
—_————— 4 Lo
4 L3
==
1 o
4 {] -0
- = e - —=
yrtmect]]) 4 L
ﬁ i 1 4 !
4
o -]
|]
- - - I.‘_rm
!]]] !
Trodd U IR PP Sowe= E=w== S i
= = = =] E=1 x =1 = = = P
= =] =3 =3 o =} -
- -~ Ed [t — — w ~
- -
= b
w o
=z A=l -4 -4 =
>0 - al D A >0 =0
m <
£ | ! =
Z &
o r* a
as|l o a
=3 =] If
[a 1 b ool
3o| o] cx
ool o oo
SRS e
=z
e .6Hm >
P————t ~z=2
| o
e e — ™ ~
———————
|
== 1)
=
= e P J
e |
e &
——
1
e —
Ih ﬁ il =z
| 45 | — _ 1 5
M|I|||. * i 1 -
- - — p— ==
b ZZ
| ‘ :
| E——— /- A | =
i | | = o
[_ 1 H
o= = T _ 1
| | i I |
{ 11

¢) Q0 to Q3 d) Q4 to Q7 & Neg

-
{

Figure 5.1

Figure 5.17: Simulation of Normal Address Generation

95

Out

12
13
14

Neg. Out

D4 | Db | D6 | D7 | Addr.

D3

D2

Q2| Q3| Q4|Q5|Q6|Q7

D0 | D1

Q0 [QI

-1
0

Cycle

10
11

12
13
14
15

Cycle

10
11
12
13
14
15

Table 5.5: Resultant Addresses for Normal Addressing Data
96

1T ADDR_PLSH_B

¥ HSPLICE FILE

RCUIT ADDR_PCSM_B
132

= HSPICE FILE

i

| TR I RS]
WI||A!|I.||. B
—_—

=t T T]
| = —e— 1

MMkM&

2

300 oN . asn o
R 0N

i
N

E

P
50 0N

| r. -
Fi <4
0 [I R P O T
[=1 (=} =1 o = =) n =3 =
e~ om == =3 o
&~ T ny w E at) e s
ps B B s
=
u w — w

EY=INT S 4 >0~ -z

@ @ 3}

_ I ! I) I
= = =

N w v

U | - | = Ok | =
a>| > a>| o asl o
o o ol o o) o
@ || | [N x 1)
co| o o—| — onf
Dol o aa| o co| o
ax | v IX | N x| v

Loylyer

500 0OM |7

>0~ -z

0
503_0UT

TI[|r;|J.

b — -_— g
b |
S S S—— = ==
——] e — _— =
» . - M

Figure 5.18: a) DO to D3 b) D4 to D7

[T ADDR_PCSHM_B

¥ HSPICE FILE

IT ADDR_PCSH_9

¥ HSPICE FILE

n x| ool o] :, a x| bl
==Lk L <= b “h 7 =
ﬂ._.. TR I - IENRARE? -5 ,_..ja
- B = .z
T s =2
=
g —_n
u
— ey e - { .
—_——— —————
_]] ———
— —_ - 4 <
= Y
i W= - - -7
U N
b
SZNULINN| | (B >
ﬁ S
oo] o
e | = - —nZ
P E— ﬁ] 4 . -l
= 1 _z=
=
bt i) | Dot -
by | 7 e
4 - o _o
i .
% | 4 1 e
P.|||I||I||||. ;| ————
- - - — LU
1] i
| |
1 1 i
! |
3 i . 4
- i L |
enlres fed ook =) diaaald Ly barad
- - = = = = = = [= -
I - = £ = = =
> = - = ~ - A\
= <
= =4
[ig w
——z ez — —Z -t
>0 - > (-3 -0 e L= L
@ D =2}
il , [B ! 2 I
s I o
e Ti k- T o= | -
az| 2 =] [Ny) a > o
| a (] [[=} e} o M
@ | | I [s 3 | [« 2 |
ce| o :* anul m oo | =
ooc| o el [} = (==
[= SP_)m av”v \% X S%
1 z
b e By = « p 4l &
— ﬁ. 31 pai———— e S
iSRS | i 91 B SR |
i S — 1=
¥ L] u
Ay _! e gy T e e
_ 11 L]
N it | 1.
=
O e —— W
I . — L1 =
— e e - — P L e L
e | S I (PR
4 _ |
e = (1 CPRSS I) S, N Py
1 [T =
T ﬁl e [
- ==
e s e ..ﬁ vz
L] %
T T — e el .IIIIJ ..|..L
: == =" ——q 1
R LT Im ¥ w
_I.l||-|||.m e - ————— w. e e =X
B — e et _if a _UT
] = =
et
B ¢ -

.

e A
s

Figure 5.18: ¢) QO to Q3 d) Q4 to Q7 and Neg Out

Figure 5.18: Simulation of Transposed Address Generation

97

= -~

Ou =

g () — [} o 40 T -
o = < 1381491g — — = =
= o

< Z.

- I~

D o o o OOOOOOOQ oo O OO OO OO
el <

D < oo OOOOOOOOV o O [se B e B e B e B @n i on]
LD ol

2 cooco cQocoRoo|& ocCPococPocoP oo
Pt o o fie = — o =
[o = — l_Ol_OlQ = oSO O oY
o — —_) — SR | e = — e
] | T T T @ N | (= T T T
N N ~— — — — —
D o O - llollolov - O A T O P
= — — coo o o ~||= o o S —
D 1 1 1 _0_ Q _0_ 1 |] _0
ol X — i — — — —
) < < o~ 0_01010Q =R o T oo
e o — N o[> S~ A D
@) 3r) 1D © fo == i il | (D) WO - 00 o o = —

Table 5.6: Result of Simulation of Addressing for Transposed Access

98

1T ADDR_PCSM_8

]

¥ HSPICE FILE

1T AODR_PCSM_8

¥ HSPICE FILE C

.ﬂm_.w_} A% Lo, a%)

mmrmm mmraw wmrom mmwwm_
h R ey Lhgpansgaiag .”u._:;,:__.ﬂ._: | ﬂﬁ_ VA _.“

T TP

W
g9 N

]2
| |
S
[T
280 ON

_A_A_]_»_I_o »
.y
PR S e i |
PP |
200 ON 25
PgHIT ADOR_PCSM_8
| o
A
R
e R
[
o
f l
W
C U |
oM o0 et

|
|
|

PRI N
1
]

- . |
S] = | [P =
__. P - - lmm o 1 o et e = o ET——=rrmiE
¢] e] s =) e ! RERSSABES
{ =) B _ 2

~—
{ - L
it
inn_oN

T
REATED
S/02/17
U_L

N

]

[
R —
LR]

T

i
E FILE ©
9

N
—

|
]
| I o
4 A i =
. ._ = g W { Hu
| - a < B 1 -1
4 { 4 A i 4 J 1
4 4 1 4 o * 4 ._ 4 - -
d 4 4 - 4 1 d 1 4
wil | oad wal (" 2l salisil # Ahaglagsiy D ’ Uyidd o L i Lesiilieaal s | !
o o < ~ = o =z = = = = = £ = < 2 I~ = = r x = = = = o =
¥ - = 2 o 0o o 2o o o o o o < (== =3 f=1 =T (=1 o =3 =
o = nl o T o = r a4 - " - atl
= o o o o o o o o e = = o = = =
w o e o o o o o o ur =} uw Lo o [Ty
n @ w T o @® w T N 3 r e} I o~ w n
D ez ——z e e -z
WO e o e == EO e e e e - e = e -y - >0 J-
-~
= = 5 % 0 8 «
L T o o Q Pt P
b = b = I =
wn w w w o | o
| O | Q| - O~ — | - (TN
ax| = ad| > a>| 2 as| 2 < az| > ax| 2
io| o =) G io| S io| o in| ot =3R=]
@ ||y a 1| = | 1 x || 1 .. iy a 1|
(=14 rd_ a-=\| - o am| m an| am | m
ax sl XN IE| aTE 40 — ax| v aIET | W
a*k =2"a 4 = i : B
<) a8 5 fF B il L] RS~ i f
!
s l_ — . L= W -
=
P o = 4 F=—=%
T l= = \
11 S i o0 1 e .
—_—— ey 4 E e — d
] A | = ok :
Sm—rwrw) Z e
b — =] e o e — T
j I] B N 11 =
| |‘_ 1= W “ 7 — 11 e
1 —_—— =< N ~—=i 3 b e
1 L Ty b= I a4
* ; i - ——a—e g
R e T — I P e = I ——
o> | 1
_— — = T R g o (e |] | e e — =
L [i =l = L 1 | e
— _ pTo - d b o~ B - o
I 1 o~ we | f 1 |-
= — — —— e u i [L a3
= | - nZ a— ¥ i L o=
& A d . i o=, | -S| T NN Y R N o
1 < L i —
L)| 1 | i
| M S L. ~ N, i1 S — — S |
L . - | | ™ oz T 1T ‘ L
2% LY e ppe—e : {==
L 3 — ao _. —— TSN -/
] I o] [<
- — o S ¥ - - e @
WSS SN R] | S SR]
S k i = L |
10 -
VR U r NN S—— e S—— Rl =S ..A .!.Illll]._ —_——
b 19 ﬁr E w 1 ﬂ Hl |=
o —_— -
= - = - g i .u !ﬁn
e o | [l

c) Q0 to Q3 d) Q4 to Q7 and Neg Out
99

Figure 5.19
Figure 5.19: Simulation of Prime Factored Address Generation

12

11

14

10
13

Neg. Out

D4 | D5 | D6 | D7 | Addr. Out

D3

D2

Q2 QR3] Q4[Q5] Q6 | Q7

DO | D1

Qo0 | Q1

Cycle

10
11

12
13
14
15

Cycle

10
11

12
13
14
15

Table 5.7: Result of Simulation of Addressing for Prime Factored Access
100

5.3 After Calculating the Offset
Once the offset has been calculated, it must be converted to an unsigned binary number, nl}di;’é‘i}_;nﬁ’.ji.‘
have the base address added to it. As the address stream is directed at fetching data and there T
are no instruction fetches during the computation of a matrix producted, there will be no non-
deterministic branches or jumps in the address stream. Therefore, the conversion to unsigned
binary and the addition of a base address can be heavily pipelined operations. However, if a
signed digit adder is used to add the base offset, this will only take a single cycle, and the
conversion to binary form can take place after the base offset has been included.

One more addition to Marwood’s difference engine that is of use is an increase in the number
of base offsets that can be selected to be added. The reason for this is for the direct solution
of Gauss-Jordan elimination. One base register will hold the next pivot block starting (base)
address, one will hold the row normalisation starting address, one will hold the update phase
starting address and the fourth will hold the starting address of the next phase. Fach starting
(base) address is actually calculated in the previous phase, so no storage or extra calculation will
be required, merely a four way base-select multiplexer and feedback path from the base address
to the base offset registers.

The full extended address generator is shown in block form in Figure 5.20.

Address Out

[&h o]

Base Adder

=
i
= QO
Cird | 0

lim
e

R d—y
Adder 1
O] 0o
5
Y ¢;§
Adder 2

t

Sign
Detestor

Figure 5.20: Extended Address Generator

101

5.4 Conclusion

In this chapter, Marwood’s difference engine was extended to four dimensions and implemented
using signed-digit techniques. The inclusion of the third and fourth dimensions allow the differ-
ence engine to directly compute the addresses required for partitioning an arbitrary sized matrix
on a fixed sized array without external intervention. The use of signed-digit arithmetic for this
critical component, together with the new parallel configuration, allows the system to produce
new addresses at a rate of approximately 100 MHz.

102

Chapter 6

Memory Interface

6.1 Introduction

The memory subsystem for the matrix engine must be capable of supplying two operands and
receiving one answer every cycle, which from Chapter 5 was suggested to be approximately ten
nanoseconds. Such a high data request and retirement rate is typical of vector supercomputers,
for which elaborate memory systems have already been designed [89, 77] etc.. These typically
exploit vector and matrix structures by implementing heavily interleaved memory systems that
rely on the assumption that a fetched matrix will have logically adjacent matrix elements in
physically adjacent memory locations. Unfortunately, in many embedded applications, such as
the Discrete Fourier Transform with prime factor mapping, this is not the case, as the applied
matrices will be created from selected data within a larger amount of data. Therefore, a system
that can support both the ‘standard’ access patterns typically used in vector systems and the
‘non-standard’ access patterns used for prime factor mapping, transposed mappings, etc is re-
quired. This chapter will describe such a system, based on a four-bank bank-switching cached
system, using standard components except for a custom bank-switching chip.

6.2 Applying and Extracting the Outer Product

As the only function performed by the array is the outer product, with other functions handled
by the data controllers, a brief discussion of how the outer product is extracted is useful.

6.2.1 Extracting the Outer Product

When the array is unloaded (the outer product is extracted), each accumulator in the array
moves its data into a latch. The data is then shifted serially along a row or column (depending
on whether storage in row- or column- major is required) until it reaches the array boundary,
where it is unloaded in parallel form and then serially retired to memory. An extract from the
processing array showing the unloading hardware is shown in Figure 6.1.

Note that the transpose of a matrix stored in row-major form is the same matrix stored in
column-major form, and vice-versa. Therefore, if the transpose of a matrix is required!, the
matrix can simply be extracted in the opposite form from usual.

! As is noted in Chapter 3, the transpose is often required due to the common use of the matrix relationship
ATBT = (BA)” to achieve the correct ordering.

103

[Wesumuiaios

v
Aaw
I col |
v 5 I
Mux0

A =

Mux!

=
[Larch |

Your

Figure 6.1: Extraction Hardware

6.3 Memory Overview

Although the memory bandwidth requirement for the matrix engine has been reduced by a factor
of Pfor a P x P array compared to a MIMD? architecture with a similar number of processors,
the memory bandwidth required to sustain the high speed possible is still very large.

The sort of memory access bandwidths required for the matrix engine are reminiscent of
those of vector supercomputers such as the CRAY 2, Y-MP, Fujitsu VP200 and the NEC SX-2,
in which data accesses are required at rates of the order of eight to sixteen nanoseconds per word
[81, 80, 9]. These provide the data at the required rate by allowing only load and store accesses
between memory and a number of ‘vector registers’, while the vector computational units operate
only on data from the vector registers. This type of architecture is known as a vector-register
architecture, as distinct from a memory-memory architecture in which all data operands are
loaded from and stored to memory. Additionally, the only major vector architecture that routes
data through a cache is the IBM 3090VF [35].

The memory system that was designed is a combination of vector- register and memory-
memory architectures. The advantages of recycling data through the array indicates that a
large data cache is desirable.

The complete memory system can be considered in one of two ways, either

e a cached memory-memory system, in which the accesses are all to and from a cache which
is supplied from a large main memory, or

e a vector-register system that uses static RAM modules to construct a very large register
bank for which cach vector has only a single place to which it can be allocated.
6.3.1 Difference From Vector Memory Systems

Although the array memory system has many similarities to those commonly found in a vector
memory system, there are some differences. These can be summarised as:

e Non-uniform strides.
The stride of an access is the difference in address of successive accesses. Thus, the access

Multiple-Tustiuction, Multiple-Data

104

pattern
0,1,2,3,...

has a stride of one, or a unit-stride, whereas the pattern
0,5,10,15,...

has a stride of five. The access patterns of a vector architecture are greatly simplified by
the assumption that all of the two loads and one store have the same stride. Therefore, a
large, heavily-interleaved single memory can service all memory pipes, as shown below in
Figure 6.2 for an interleaving factor of eight®.

.

Plpe0
Vector
Pipe1 ALU
M |
Pipe2

BEEE

Figure 6.2: Vector Memory Architecture.

With reference to Figure 6.2, if memory pipe 0 accesses memory bank M0, pipel accesses
bank M2 and pipe2 accesses bank 4, then in the next access cycle, a unit stride access
will cause pipe 0 to access bank M1, pipe 1 will access bank M3 and pipe2 will access
bank M5. If suitable delays are introduced to pipes 1 and 2, then arbitrary offsets in
the access addresses can be included, while non-unit strides require only that the memory
access time combined with the interleaving factor is less than the ALU cycle time. Thus,
a stride of two in the system in Figure 6.2 requires that the ALU cycle time is greater
than or equal to the memory cycle time (every second bank is skipped), whereas a stride
of three requires that the ALU cycle time is greater than or equal to half the memory cycle
time {all banks are accessed).

However. if the accesses have strides that are not all the same (non-uniform strides), then
memory bank conflicts occur. For example, if pipe 0 has a stride of one starting at bank
MO0, and pipe 1 has a stride of two starting at bank M2, the bank access patterns will be
those shown in Figure 6.3

The circled access of bank 6 shows the conflict that occurs when pipe 1 ‘catches up’ to
pipe 0.

Although great care can be taken with numerical computations to ensure that the strides
of all accesses are the same, there are other cases such as the DFT using prime factor
mapping that require the strides to be non-uniform. Therefore, a memory system capable
of two load and one store access to memory with non-uniform strides is desirable.

2 - : :
Most current supercomputurs have at least G4 banks, Eight banks is chosen for convenience

105

Pipe0 [0 1 2 3 4 5@ 7
2 40 0

I
Pipel |2 4 6
Figure 6.3: Non-uniform Stride Conflict.

e Predictable Address Sequences
Although vector memories are typically heavily pipelined [89, 80], they are also subject to
the affects of instruction branch operations. Therefore, if the memory system is too deep,
long delays may result in the event of a branch or jump instruction. However, as the matrix
operation performs a complete matrix operation (multiplication, Gaussian elimination etc)
with one instruction, no branch instructions will occur during the matrix operation, so a
relatively large number of addresses can be precalculated before being sent to memory,
thus preparing the system in advance to select the correct memory bank, check tags, etc.

6.4 Cache

With the decision to use bank swapping to move data quickly between the output and inputs,
another problem presented itself. If the main memory is swapped, the data in the data controller
caches would need to be flushed before either the memory bank or the cache can be read or
written to. The simple solution to this is to attach the cache to the memory bank rather than
the data controller, and move the cache with the memory.

The questions that arose in the design of the cache included:

e How large to build the cache?

e What should the block size of the cache be?

e What associativity should be used?

o How soon after a miss can the next address be accessed?
e How is a ‘write’ dealt with?

These questions can have different answers, depending on the application run. However,
answers to the questions are suggested below.

6.4.1 Cache Size

The answer to this is the same as for any other cache system - as large as possible while still
remaining cost effective. However, a cache that is to small may be more hinderence than use,
as the tagging of cache blocks may cause an additional overhead with no added benefit.

6.4.2 Block Size

Increasing the block size attempts to reduce the block fetch penalty by amortising it over a
larger number of accesses.

If the miss penalty is P, the refill time per word from memory is R, the block contains B
words and the time to read a word from the cache is H, the time to access all words in a block
is:

fielr =P 1T {8~ O R) (6G.1)

106

so the average access time per word is:

P+ (B—1)(H+R)

- (6.2)

av. Timel =

If the block size is increased such that (B — 1)(H + R) >> P then the average access time
per word approaches (H + R). This suggests that a very large block size is used. However, if
not all of the block is used by the processor, the unused accesses from memory represent wasted
cycles. If there are W words in the block that are not required before the block is overwritten,
then the time to access all the required words is:

Time2 = P+(B—-1)R+(B-W-1)H
= P+(B-1)(R+H)-WH (6.3)

and the average access time per used word is:

P+(B-1)R+(B-W—1)H
B-W
_ P+ (B-1)(R+H)-WH (6.4)
B-—W

av. Time2 =

Therefore, if W is close to zero, Equation 6.4 approximates Equation 6.2. However, as W
becomes large (W — B), the average access time in Equation 6.4 becomes

P+ (B-1)R

av. Time2 — — 0

which tends toward infinity*. Additionally, the larger the block size, the fewer blocks can be
kept in a particular sized cache. Therefore, a block size that is too large potentially can reduce
the hit rate of the cache if only parts of each block are required.

Obviously, the idea is to use a block size that is as close as possible to the number of
words used by the processor. The optimum size of a block, therefore, depends not only on the
algorithm being executed, but also on problem specific considerations such as problem size, data
configuration (the access pattern required to extract the data),etc. As the address pipeline can
be quite deep, it is feasible to shift the internal cache tag by an arbitrary amount before tag
comparison. Therefore, the block size can be chosen dynamically from a range of values from
(say) 16 to 1024 at initialisation, depending on the hardware included to support a particular
block size.

6.4.3 Associativity

Cache associativity is the number of positions in a cache that a block can be placed when it is
loaded into the cache. The choices are:

e A single position. Each block from main memory may be present in only one place in
the cache. This is known as a Direct mapped cache. Generally, the block is mapped into
the cache block that is the (memory block address) modulo (the number of blocks in the
cache). The advantage of this scheme is that only a single tag location needs to be checked
to see if a block is present in the cache.

*Of course, the zero on the denominator is only present for the case of B = W, ie none of the words in the
cache block load are nsed - clearly a ridiculous case

107

e Any position, known as Fully Associative. Therefore, a supposedly ‘fair’ block allocation
scheme would fill all empty blocks in the cache before overwriting an existing cache block.
However, as the block may reside in any location in the cache, or not at all, all cache tags
must be simultaneously check for the presence of a block.

e Any of a selected set of positions. Known as Set Associative, this scheme is a mixture of
Direct Mapping and Fully Associative, in that the set of locations in which a block may
be placed is fixed (direct mapped), but any location within the set may be used to store
the block (fully associative).

Generally, set associative cache provide a better hit rates than direct mapped caches, with-
out the massive complexity demanded by fully associative caches [35]. However, as the caches
for our system will generally be addressing matrices with very regular access patterns, set as-
sociative caches lose some of their appeal, as a set associative cache using a least recently used
replacement (LRU) policy is no better than a direct mapped policy for addressing a well stored
partitioned matrix. In fact, simple simulations indicate that, coupled with the added overhead
due to the increased complexity of a set associative cache, a direct mapped cache provides better
performance than a set associative cache. These simulations modelled matrix address patterns
and maintained cache access data to monitor the frequency of cache hits and misses and their
effect on system performance. For this reason, a direct mapped cache is recommended.

6.4.4 Latency After a Miss

The section on block size (Section 6.4.2) assumed that if a cache miss occurred, then the block
in which the missed word belongs was fetched from memory, the missed word was supplied, and
the remainer of the block also written to cache memory. Any subsequent reads to the one that
caused the cache miss were stalled until the block refill had finished. A major saving can be
made here using ‘data streaming’ for accessing data as it arrives during a refill, especially if large
block sizes are used.

The idea of *streaming’ is very simple, and most advanced microprocessors use some form
of instruction streaming. The concept behind instruction streaming is that it is very likely that
instructions subsequent to the instruction that caused the cache miss and refill will also be in
the fetched block, and in fact be in adjacent locations to the instruction fetched. Therefore,
considerable time can be saved by monitoring the addresses within the block as they are loaded
into the cache, and using the data as it is loaded, rather than waiting for the refill to complete
before the next instruction is fetched.

As the matrix engine implements a complete matrix operation such as matrix multiplication
or Gauss-Jordan elimination with a single instruction, the advantage of instruction streaming is
not of much use. However, due to the large amount of data that is moved from main memory
into cache memory in the order used by the matrix engine, some form of data streaming would
provide a great improvement in performance.

As the matrix address access pattern is well defined, and a well ordered matrix extraction will
typically contain accesses to large amounts of data stored in successive locations in memory, the
data written into cache memory during a block refill is typically also required for a future access.
Therefore, data streaming will allow the data to be read directly into the array simultaneously
to the cache refill, thus potentially saving the *block size minus one’ cache accesses that may be
required if streaming is not implemented.

6.4.5 Write Policy

The question of which write policy to use ultimately provides little choice. Of the two main
policies, those of write-through and write-back, the latter is the only suitable approach. It only
remains to explain why this is the case, and to consider details.

To see why a write-through policy is not feasible, it is necessary to consider its place in the
matrix processor system and also the reason why it works in a conventional system.

On a store, a write-through cache writes the data to both the cache and main memory.
Therefore, main memory always has an updated copy of the elements in the cache. Write-
through succeeds because the percentage of time spent performing writes is small, and the cache
acts in many ways like a large buffer as far as writes are concerned. However, if a very large
number of successive writes occur, main memory can not keep up with the cache, and the
processor will ‘write-stall” until sufficient writes have been retired to main memory. This is just
the case with the output data controller for the matrix processor - there are no operations bul
write (store) operations. Therefore, the main memory will continue to write-stall, and thus stall
the entire engine for matched read-write operations.

A write-back cache suffers in part from a similar problem, but to nowhere near the same
extent. However, many out-of-order or scattered operations can be handled in a much better
manner using a write-back cache, and the main memory can support the block writes typical of
write-back caches much more efficiently (see Section 6.5).

6.4.6 Implementation

The complete system is basically comprised of three identical Data Controller/Memory pairs
plus a Memory/(I/Q) pair. A Data Controller /Cache Memory pair is shown in Figure 6.4.

To
From Main
Addr. Gen Mem

Address Registers

00000

Address Registers

To
Data
Regisers

Ta Write Store

Block Comp. Registers

Tag Store
Registers

Tag Comparator

Figure 6.4: Data Controller / Cache Memory pair

The Jatches can be implemented using standard 74ASXX or 74VHCXX components. Octal
latches such as Motorola’s 74AS373 have maximum propagation times of approximately 5.0
nanoseconds, which leaves another 5.0 nanoseconds for propagation between latches in a 100
MHz system, which is ample for a well designed MCM or high speed system.

109

Although not strictly ‘off-the-shelf’, there was still an attempt to use readily available high
speed Static RAM modules. The Static RAM (SRAM) modules are available from manufacturers
such as Integrated Device Technologies (IDT), Electronic Design Inc. (EDI) and Motorola. None
of the SRAM modules available in the data sheets [68, 40] come in a latching version with assess
times of ten nanoseconds or less. Therefore, the cache memory will need to be 2-way interleaved,
although it is only a matter of time until the timing constraints will allow a single bank of memory
with cycle times operating at 100MHz.

The suggested SRAM module is the IDT7M4077, manufactured by Integrated Device Tech-
nologies, or similar. This is a 256k X 32 memory subsystem, with a read and write cycle times
of fifteen nanoseconds. As 2-way interleaving is required, the minimum size of a cache will be
512 x 32bits = 2Mbytes. For a one megaword cache, two interleaved banks will be required.
Therefore, as there are four memory ports, each with approximately four SRAM modules, sixteen
memory modules will be needed in total.

To determine the cache tagging requirements, the cache size, address range and cache block
sizemust be known. For convenience, it can be assumed that each data port can potentially
access 220 &~ 1.07 x 10° locations. The block size is determined at run-time but is in the range
16 to 1024 words, denoted by ‘B’. The cache size is implementation dependent, but will contain
approximately one million locations, denoted by ‘C’. The depth of the tag SRAM is equal to the
maximum number of blocks that can be contained in the cache SRAM. However, is the cache
SRAMs are interleaved and the tag SRAM is not fast enough to be read for every access, then
the tag RAM will need to be duplicated by the cache SRAM interleaving factor, ‘I’. The length
of a tag word is the total number of addressable locations divided by the number of locations
in the cache. Using these criteria, the tag requirements can be calculated, and are presented in
Table 6.1, assuming an interleaving factor of one.

Cache Size | Block Size | Tag Depth | Tag Length
(kbytes) (words) (kbtyes) (bits)
16 16 64 10
16 64 64 8
16 256 64 6
16 1024 64 4
64 16 16 12
64 64 16 10
64 256 16 8
64 1024 16 6
256 16 4 14
256 64 4 12
256 256 4 10
256 1024 4 8
1024 16 1 16
1024 64 1 14
1024 256 1 12
1204 1024 1 10

Table 6.1: Tag Requirements

110

6.5 Main Memory

It is anticipated that the matrix engine will be used on very large problems in the fields of
aerodynamics and fluid flow, among others, which involves the solution of very large, dense
matrices. Typically, none of the matrix elements will be zero. Practical problems require matrix
sizes of the order of hundreds to thousands of elements in a row or column (~ 200 x 200 —
10,000 x 10,000), resulting in storage requirements of 40kWords — 100 MW ords which equates
to 160kbytes — 400 M bytes for single precision or 320kbytes — 800M bytes for double precision.
Added to this the bank-swapping nature of the equation solving routines (Gaussian elimination
- see Section 3.4) which at least doubles the memory requirements, and the need for very large
amounts of main memory becomes apparent.

To keep the cost of the main memory to a reasonable amount, Dynamic Random Access
Memory (DRAMs) should be used. DRAMs have the advantage over Static Random Access
Memory (SRAMs) that they provide a much denser memory system at a cheaper price. This
is paid for by the slower access times for a DRAM system and by the added complexity due to
the multiplexed nature of a DRAM chip.

In an attempt to match cache operations to main memory, it was decided to concentrate
mainly on block data transfers. While this may not be the ideal for embedded systems engaged in
high-speed Digital Signal Processing (DSP) or large control systems (Kalman filtering, Neural
networks), such systems typically will not use a cache/DRAM hierarchy, operating instead
entirely out of the static RAM used for the cache. In such a system, the Tag checking can
simply be turned ‘off’, and the main memory comprising of dynamic RAMs omitted. Thus, the
main memory design is intended only for a numerical system solver type architecture.

The majority of DRAM chips available in the market place today are of an asynchronous
nature. These require that the system place the upper half of the address on the input address
pins, after which an address strobe is asserted. Then the lower half of the address is place on the
address pins and a second address strobe is asserted. The internal structure of a 1M x 4 static
column DRAM chip is shown in Figure 6.5 [68]. The static column refers to the fact that, once a
particular row of the memory array has been selected using the RAS signal and the address pins
A0 ... A9, any column of the selected row can be accessed by changing only the input address
pins; ie no column address strobe (CAS) signal is required.

The data sheets provided by Motorola give the time to read from a UU x 4 static column
DRAM to be 60 nanoseconds for the first read and 35 nanosecond for any successive read
that falls within the same DRAM page. Therefore, for a ten nanosecond cycle time, the main
memory needs to be four words wide, or use an interleaving factor of four. With an interleaving
factor of four, a 32-bit word and four memory banks, the fundamental width of memory will
be 43 = 64 bytes. If these are composed of 1M x 4 DRAM chips, the minimum memory size
will be 64 Mbytes of main memory. Although this may appear to be a large amount, it is small
compared to other systems of comparable performance.

Recalling that the cache SRAM is two way interleaved, the main memory can be considered
to be a 2-way 64-bit wide memory rather than a 4-way 32-bit wide memory. This eases the data
switching requirements at the main memory to cache interface, as less data needs to be pushed
on to a smaller bus.

6.5.1 Implementation

As there is a very large pipeline for the cache memory system, the row address can be ready at
the address inputs of the DRAM when a miss is signalled. Therefore, the row address strobe
(RAS) can be asserted simultaneously with the cache miss flag.

111

W | . Dataln :
| Buffer DQ3
~e ' No.ZICIock | | Data Out :]
€S 1 Gene_ramr [4 Buffer " B
¥ : J]
| Column Ll +| Column
J Address Decader [
AQ | Buffers (10) ‘ I | |
A =) " | 1024 x4 |
A2 |
b | i \
Ad Refresh | | Sense Amp
A5 8 (10) | Contraller/ | | /0 Gating =
A — | Counter 10) " L —
2 3| by | [
A8 | Row _ T ;
A9 r| Address k -1 Memory
j Buﬁers 10)] Array
v 3 8 1024)1((124 x 1024
v [No. 1 Clock l gg
RAS | Generator |

Figure 6.5: Internal Structure of 1M x 4 Static Column DRAM

A block diagram of the DRAM configuration is shown in Figure 6.6. The input address
is partially applied to multiplexer Mux0, and then Joaded into the 4-bit synchronous counters,
which are used as block counters. In this way, an arbitrary sized block starting address can
be created from any address within the block. The starting address is passed to the second
multiplexer, Mux1, which separates the address into row and column addresses, the higher
address bits first. Note that the row address (upper address bits) can be transmitted through
multiplexer Mux1 while the block starting address is being calculated and loaded into the block
counters. The row address is then latched into latches 0 to 3, and applied to all the DRAM
arrays simultaneously. The RASO to RAS3 lines can then all be asserted.

Once the row address has been applied to the DRAM arrays, the column address (lower
address bits) can be applied to latches 0 to 3 via multiplexer Mux1, and then the chip select
signals (C50-3) asserted®. For all successive column addresses (block addresses), the latches and
chip select signals are used in turn.

If the memory operation is a memory read, then the data output from the DRAMs is passed
to latches 6 & 9 via multiplexers Mux2 & Mux3, and then to the SRAMs in the cache. As the
cache SRAMs are 2-way interleaved (Section 6.4), then DRAM banks 0 & 2 feed SRAM bank 0,
and DRAM banks 1 & 3 feed SRAM bank 1. While data is being applied to the output latches,
it is also applied to the 74AS280 parity checking chips, which will flag a parity error in the event
that there has been a data storage error.

If the memory operation is a memory write, the data to be written is applied to DRAM arrays
via latches 4,5,6 & 7. Note that, although the write hold time for the MCM54402A is fifteen
nanoseconds [68] and the chip select pin (CS) could be used to control which DRAM bank data
is written to, the physical connection between the DRAM chips would disrupt memory reads.
Therefore, separate latches are used. While data is held in the input latches, it is also applied
to the 74AS280 parity checking chips to generate a parity bit for each byte.

The initial timing of a burst read is shown in Figure 6.7. A burst write is similar, except
that the data flows in the opposite direction.

5Recall that static column DRAMs require no CAS signal, and instead replace this signal with a chip select

112

,_
.
b - :
Faos ol :
[C
w " 1l " 1 .
= R - C
[1| |
(] |
SR [i) IS S
-
|
= ©
| =3
(5]
) | |
P St [S, S e e
©
N " 2
= m ’
< -
-4 © N
2] « I e e o
o _I
2 2 r
|
.
r - 7 /
| f _._ - s _
| - T 1~ T~ =
S = |2 | 5 13 .,
= € -] & i3 uy = _m 2 H ..
) = 4 | 3 s 3 _
= [|
- _ | L
% N 170
e |
I= s
—] i ° o
= _ |
.M.. T ! S O S e
! H _
) = i o s _
@ oG
oo oo a .
[1 | >
I __ 1 e
__ _ I R SN P I () N
> g < & > 8 < £ | = & < & - 8 _
| 3§ 188 = Il 2 -§ss FRIREEREE R o
z | 3 4 I A3
LBz = ||| B3 =333 ERUIBEER R = || & =333 =
- - o - - a
- r - - = la ™ N ‘@ =
L T E T KK
| I 114 ' T'1
S "SR | O Y O (/RSO I |
i B E - . -
1Bl 18 T.;a &=l Tia
EilE 2R BEE LR _
~ [

N
F318
Lateh
3

113

.7: Initial Timing of Burst Read

gure 6

-

Address In
& L -
P

Figure 6.6: Block Diagram of Four Way Interleaved DRAM Subsystem

¢
dr
idr
S
ut
rr

6.5.2 Synchronous DRAMs

An alternative to using the asynchronous DRAM chips described above is to use the relatively
new synchronous DRAM chips that are just becoming available from manufacturers such as
Samsung Inc. etc. These DRAMs, denoted SDRAM for Synchronous Dynamic Random Access
Memory, are similar to a core DRAM chip with some extra registers added for timing and burst
control. A block diagram of the Samsung KM48SH2000-6 is shown in Figure 6.8 [13].

I= |
19 =
o | LWE
. 5
| Data Input Ragistar | |2 i
L. 5
c DQM
Clock [(22 | X
] " v
3% | ez zol 2
Se] Memory |Z | 8
- = :5 | 3E | Array ?‘E—'E it - L.-
= a | I3 o :
4 | 2 o 2Mx8 @ I8 8
a 3 = | =
5 Il 1 L = | pai
a i 3
Address | 1 | |
— i |
e Lo Column ?""T-Od‘.'."..l [
w
E & 3 | | | L
|5 | Latoncy S‘Burﬂ Langth I
l o3 1
w | LCAS| |
< I
= | P
3 Programming Register
(| Lmas LceR wwe [1]) Loawm
LCKE | $! b lLcas LWCBR i

Timing Register

Clock CKE RAS CAS WE DQM

Figure 6.8: Synchronous DRAM Internal Block Diagram

The Samsung KM48SH2000-6 is a synchronous DRAM design configured as 2M X 8bits that
can burst from the input address at 2-, 4-, or 8-bit, or full-page (512-bit) block sizes. It has a CAS
latency of two cycles, and a maximum clock frequency of 100MHz. After an initial latency, the
SDRAM chip cycles at the clock rate, ie provides a new byte every 10 ns. Once a burst has been
completed, the outputs automatically enter a high impedance state. Additionally, memory chip
precharging can commence two clock cycles before the burst is complete. Therefore, with the
faster versions of the SDRAM that require two cycles of precharge, a new cycle can commence
immediately the previous one has finished.

Using the 2M x 8 chips running at 100MHz, no interleaving is required to support ten
nanosecond accesses. Therefore, the minimum memory increment size per bank is 2M x 32 = 8
Mbytes for a 32-bit word. Then for four memory banks, 4 X 8Mbytes = 32Mbtyes is required,
which is similar to the size required for asynchronous DRAMs. The difference between the
options is the reduction in added complexity as the synchronous chips contain all the necessary
counters, and there is no need for multiplexing. There will also be fewer memory chips using
synchronous DRAMs, as they have a 16Mbit density instead of a 4AMbit density, although this

is only an implementation detail.

control line (CS)

114

6.5.3 Bank Size

The main memory of the system should be large enough to hold a very large matrix without
requiring any access to (slower) Input/Output devices. The main memory can either be com-
posed of one segment of thin DRAM chips, such as 4M x 1bit, or several segments of fewer wide
DRAM chips, such as 1M x 4bit. This is shown graphically in Figure 6.9

TrrT”

p— pe— — g N

Segment

3z

L N I A

| 32

| o
- T T y Lt L .|
| L T [] -

b IIIF[[FI%Fim

32 7

Figure 6.9: Memory Bank Configuration using a) Thin & b) Wide DRAMS

The structure using thin DRAMs (Figure 6.9a) is much simpler to implement as no selection
between bank segments is required. However, the configuration using several segments composed
of wide DRAMs has several advantages, despite the more complex control required. The first,
and most obvious, is the possibility to interleave the segments or use a wide bus to supply data at
a higher bandwidth. As alluded to in Chapter 5, an increase in bandwidth can be accompanied
by the square of the increase in computational rate, depending on implementation. Thus, two
way interleaving can quadruple the computational rate, 4-way interleaving will increase the rate
by a factor of 16, etc.

The second advantage comes in the expansion of system memory. As memory control hard-
ware generally requires equal size banks, the smaller segments will allow a smaller increase in
main memory.

The third advantage is linked to the cache system, in particular the fact that the cache will
be very large and of a similar size to a realistic segment size (eg IMWord). This can be used to
an advantage when cache write-backs are required. Given that the cache will be direct-mapped,
and assuming a cache size equal to a segment size, then if a block in the cache is displaced
and the data in the block needs to be written back to main memory, the incoming data (the
replacement block) must be coming from a different segment. Therefore, the read from one
segment can be initiated while the the write back to another segment is still completing, as in
Figure 6.10.

Typically, the access time from the last write for a 70nsec static column 1Megx4 dynamic
RAM is approximately 65 nsec[68]. If the new block is in a different DRAM page, which is
highly likely with the large block sizes available, then a RAS precharge period of approximately
40nsec will be required. Additional delays in the change from read to write will account for
approximately 15nsec, for a total delay of 120nsec.

Addr. Reg

|:| Memory Segment

0
Cache
Memory Segment
1
Tag "

Figure 6.10: Initiating a Read Simultaneously to Completing a Write

6.6 Bus Exchangers

The requirement in the memory system that large banks of memory be swapped very rapidly
presented a difficulty, in that standard off-the-shelf CMOS and AS-TTL chips were not fast
enough. As we have access to very fast and reasonably priced 0.7 pm and 0.5 pm CMOS
processes via TIMA-CMP in France, it was decided to design our own chips, which we designated
‘Bus Exchangers’, shortened to ‘Bus_X’.

The Bus Exchangers must be able to connect any of the three matrix engine ports or the
external port to any of the four memory subsystems. As there are two input ports and one
output port to the matrix engine, the Bus Exchangers need to be bi-directional, although the
directionality of the switches need only be determined at a memory swap. Additionally, they
must be able to latch the transmitted data, as well as behaving as a transparent switch. A mod-
ification of the latch structure in Figure 6.11a) can be used to implement the latch/transparent
features, which we shall refer to as the ‘driver’ cell (shown in Figure 6.11b)).

L

I | e (L Out
Latch
Figure 6.11: a) Latch Cell b) Driver Cell

The drivers need to push data through four p-type and four n-type pass transistors (config-
ured as four transmission gates) across the chip and through two transmission gates toward the
the outputs, so they need a relatively large driving capacily. To achieve this, three inverters are

116

configured in parallel for each inverter. The transmission gates are paired to provide the two
levels of transmission control while using minimal area. The VLSI layout of the driver cell is
shown in Figure 6.12.

Figure 6.12: VLSI Layout of the Driver/Transmission Cell

If it is assumed that a read is data applied to ‘In’ and a write is data applied to ‘Out’, where
‘In’ comes from an external source and ‘Out’ is from the switches, then there are three possible
modes of operation:

e Latched Read
Data is applied to ‘In’, where upon it is latched as well as being passed through to the
output, ‘Out’. A_Cont is pulsed high, B_Cont is pulsed low and C_Cont is always high.

e Transparent Read
Similar to a Latched Read, except that a change in the input is reflected by a similar
change in the output, ‘Out’, delayed by the propagation delay of the device. A_Cont is
always high, B_Cont is low and C_Cont is high.

o Write
Data passes directly from ‘Qut’ to ‘In’. A_Cont is high, B_Cont is high and C_Cont is low.

6.6.1 Control

The bus exchangers must produce some internal control signals from the input control signals.
The inputs to the BusX units for control are:

o r/w
Read or write control signal. This signal controls the direction of data flow, either from

one of four inputs to the single output (multiplexer) or from one input to one of four
outputs (demultiplexer).

e al,al
Used to determine which of the four banks the memory access is to.

117

t/l
The control signaling whether the mux/demux is operating in the transparent mode or
the latch mode.

Ck

The input clock. The clock must be inhibited in the event that a stall occurs when the
BusX is operating in latched mode. Otherwise, incorrect data may be latched into the
BusX.

The internal control signals can be broken into:

¢ Direction (r/w)

The read/write signal determines the direction of data flow through the Bus Exchanger.
This signal can be a buffered version of the input read/write signal.

o Select (Sel0, Sell, Sel2, Sel3)

These four signals are the decoded ‘select one of four’ signals. They are decoded from the
input select signals and their complements (a0,a0,a1, al). They can be decoded using four
NOR gates, according to the equations:

Sel0 = a1+ao (6.5)
Sell = a1 +ao (6.6)
Sel2 = @ +ag (6.7)
Sel3 = @y +ay (6.8)

Driver Control

The signals a_cont, b_cont and c_cont in Figure 6.11 must be decoded for each of the
drivers. As the connection to the bus must only be made once, the transmission gate
controlled by a_cont must disconnect the driver from the bus unless the correct select
signal (SelX) is present. a_cont is the only control signal that depends on the driver select
signals. The control signals are:

acont = sel(r.(t+1A)+ w)

= sel (r.(t +4)) (6.9)

b_cont = w+IV
= (w+@E+D) (6.10)
cecont = r (6-11)

where ‘sel’ is the appropriately decoded select signal, ¢ & ! are the decoded transparent
and latch mode signals, and A & V are rising and falling pulses respectively.

Note that the control signals above are for data being applied to the drivers from off-chip
for a read. The opposite driver will require a similar set of control signals, except with the ‘¢’
and ‘w’ signals exchanged.

6.6.2 Read/Write Path

For data passing from one of four inputs to a single output, a 4-to-1 multiplexer is needed, while
a 4-to-1 demultiplexer is required for data going the other way. As the Bus Exchangers are

118

In0 _él-l ISJ—'I.

Int —17]

IC
IC
1r
iL

Tin
JF
T
Pl

In2 — | o = "*::.‘F

3 —y | ¢

r Figure 6.13: Four-to-One Multiplexer/Demultiplexer

bidirectional, data must be able to flow both ways through the mux/demux combination, and
so transmission gates were used, rather than combinatorial logic. Such a 4-to-1 bidirectional
mux/demux is shown in Figure 6.13.

The VLSI layout for this configuration is simple, and shown in Figure 6.14. Due to the
regularity of the design, the VLSI section shown is in fact the transmission mux/demux for
two bits, one moving from left to right and the other moving from right to left. The red
vertical lines representing polysilicon are the mux/demux control signals. There are two pairs
of complementary control signals running adjacently, denoted {ao,do} & {@1,@1}. An output
signal from a driver will only appear on the metal2 line (purple) if the appropriate transmission
gates are conducting. Otherwise, the signal will be blocked.

. driver3 driver3

driver3_1 driver3_6

Figure 6.14: VLSI Section of Four-to-One Mux/DeMux

6.6.3 The Complete Bus Exchanger

Fight of the multiplexer/driver units were combined with a single control unit to produce a

byte wide Bus Exchanger unit. The full Bus Exchanger unit is shown in Figure 6.15. The full

_ unit consumes 0.585mm x 0.366mm = 0.214mm? of silicon in 0.7pm es2 CMOS, and uses 1191
t - transistors.

119

-

Figure 6.15: Bus Exchanger VLSI Layout

120

The Bus Exchanger was simulated vsing HSpice for several configurations. As each bit path
is exactly the same as all the others, then simulations of one will produce the same results
as simulations of any of the others. Therefore, although it was checked that each bit worked
correctly, the results of only one bit path are shown except for the cases when the results are
the same for each bit and can be shown simultaneously.

The first test case was when the Bus Exchanger was operating in ‘latch’ and ‘read’ mode,
and the ‘zeroth’ input was always selected (a;&ay both 0 volts). The resulting simulation results
are shown in Figure 6.16. The plots show the outputs a_out to h_out following the inputs af-in
to hO_in approximately six nanoseconds after the rising edge of the clock pulse. The outputs
are uneffected by various zero volt and five volt inputs applied to the other inputs of the Bus
Exchanger.

RCUIT ¥4HUX2

® HSPICE FILE CRCATCD i
95702713 L AR R}
|

’
| i 1 1 1 1 i | | vinuxe TRO
VL e | 1 |] | | cLe
0] | | | . A -
LN 0 | "1 | | | | e
T 1 | a
' bl - 1 TR N A S . i
| 1 f i P ovauuxe TRo
VL 40 | | | | | | L
3 | | e
[l N \ | f BO_IR
T | ! | { o— -
T Y ke o
v L 40 RI-IK
[T
LN 29 AL
T F — -
a
B wynuxe TRO
VL | Re_in
01 -
LN ERL
T o =
o
® yanuxe TR
b A3_IN
[—
LN 231N
7 2 5

Figure 6.16: Latched Read With Constant Select Signals

Next, one of the select signals (a_/) was varied part way through the simulation, so that
the input was changed from the ‘zeroth’ input to the ‘second’ input (eg. a0-in to a2.in). The
results are shown in Figure 6.17. These show the output a_out lagging the input signal a0_in by
approximately six nanoseconds after the clock for the first half of the simulation period, followed
by the output becoming the input signal a2_in for the remainder of the simulation.

With the data flowing in the opposite direction (nominally a data write), the unselected
outputs are blocked from the actual output, and the data flows from the ‘output’ side (eg.
a_out) to the ‘input’ side (eg. a0_in). This case was simulated for data applied to pins a_out to
h out and the select signal a_/ varied from 0 volts to 5 volts half way through the simulation.
The resulting simulation plot is shown in Figure 6.18. The pins that are not used as outputs
(al_in, a3_in, bl_in, etc) are all at approximately two and a half volts, although of course they
can be pulled to whatever logic level is required by another Bus Exchanger driving them. The
signals that are driven (a0_in, a2.in, b0_in, etc.) follow the driving signal (a-out, b_out, etc)
only with the correct select signal.

If the Bus Exchanger is run in ‘transparent’ mode (instead of ‘latched’ mode), then the
simulations shown in Figures 6.19 to 6.20 are produced. These are the equivalent simulations
to those in Figures 6.17 to 6.18 respectively, except for the change in latch/transparent mode.
These plots show the outputs of the Bus Exchangers following the inpuls by approximately three

121

o NSPLCE PILE eMLATED POl #Lull wihga
a0 1N r
. : ; AL t N —
o e L1 ri | IS PP TR (TR ”nuxa TRO
it 3 , | | [
LN =R ' e 1 Ao
L O) .l 7 i i il [—
) SV S R W == £ R N B SN |
1 T) f 1 I 1 ' weMuxa TRO
Ve i i .[| | | | | I Roi
[\ | A
. [.- - }=
. 1 N
W4HUX2 TRO
¥ Al_IN
by ——
L N
- 8 4. i A | 'y 'S L L A i 4 — A
WAHYY2 . TRO
¢l Aa_iN
i B
I[N
" A S V| T I — 3 =
PeHUX2 TRO
VL 031N
0l —
LN
4 T FRRESCHEY VI S PR S W SN S S—T—— " R T |
2 o / - TR wagux2 TR0
VL [= f \ A_00T
ot { | f —
20 \
T
3 .90 80 #N 60 by gt en
0 TIRE TLIN) 99 ON

Figure 6.17: Latched Read With Varying Select Signals

« USPICE FI{LE CREATEQ FOR CIRCUIT wdMux2
95702713 12 3536

B 1 | B i L 17T 779 wenuxa veo
‘L 1= | ! | | % 1
bl = N | | ——
LN 2z Lk A (T B | | 1 cLk
T R | [11 | 1 | l—— -
) TR SNy (SO SO e S TRt % A1 T | i | "}
E = B gauux2 TRO
L L] -1
) -
N 2 0%
) "
’ 2 a5y f
i 2 4p
] 437
! -
Vo2 U
0l 1
LN 2 a0}
T] a
P 'L T [' | ' by il
[1 r 1 T !] T W4HUK2 TRO
‘i | | | | a.0UT
o i | 1 l | | ! Ea —
W . | I | I { | - poout
¥ | | 1 =
a - 1 . & coouT
: Ay &l an Wi N a6 an o —-—
9 TIRE (L1N) 38 oK

Figure 6.18: Latched Write With Varying Select Signals

122

to four nanoseconds in either direction, and independently of the clock signal.

¥ HSPICE FILE {REATED FOR CJRCULT ¥dHUXE
95/02/12 14:19:3)

— 1T T T T wanuxa TR
v oz AT T l'],"f; RIELE B
0l I || | Py
LN 25—) bl i ! |
1y i L | | i i i Ly I L} | | i
| | | | |
VL 4
E'S ! I- | |
¥ | | 1
T 4 I I |
[: '
:
1 1
VL I
ol
) 20C
VoL
0
e
PR L = L
YL 40 {
i [|\ . \I
i E'“\ | I / \
. Y Y T 1o [
b 20 0N i ON GO0.ON 800N
[} INC (L1M) v oN

Figure 6.19: Transparent Read With Varying Select Signals

% HSPICE FILE CREATED FOR CIRCULY w4HUX2
96/02/13 134552

— L e L T T T T T T T T wanuxe tRe
yroowas S 1 BRI [[F] 48
LN 2y ‘ A O A (I I e A I R Lk
| Vo ! | 3t —
' P) W 1 I L | 11 s !J [
/) f 3 S R4MUX2 TRO
uy / \ | \ = AD_IN
| | C A _
N ! ! L]
04 10 .1
1 i+
. N | 9 b
.3 A wynuxa TRO
2 45y ai_IN
["
! ek gi_IN
] 1 S w4HUX2 TRO
VoL EIY Bt \ [T 1]
3 _ I I \ | e
b LR \ T et o
=y (-, . _n
B yqqure TRO
yu o Eew a3_IN
! W3-V
{
LN 1T — B3N
L EELE: = .
B wanuxz TR0
VL | ! | A_ouT
v AA=OUiN S
E ' ' | i g out
T 1 \ §o— -
2] ! & c_ouy
N N N Wb 0N o—-—"
HLOLIND 10 0N

Figure 6.20: Transparent Write With Varying Select Signals

6.7 Loading Double-length Words

If double precision (64-bit) arithmetic is required, either four cells in the processing array can
be merged or data can be cycled through a single cell four times. In either case, the required

123

bandwidth in terms of the number of operands for the processing array will be one quarter of
that when single precision (32-bit) data is being processed. As each operand is fetched with a
single address, and a double precision operand is twice the size of a single precision operand,
the address generator will operate at one quarter of its single precision rate, and one half of the
bandwidth in terms of bytes will be required for double precision.

For a two-way interleaved memory system when fetching 32-bit operands, the memory system
need no longer be interleaved when fetching 64-bit operands. This will reduce the complexity of
the 64-bit operation mode, and remove the possibility of bank conflicts that may occur for an
interleaved memory system.

124

Chapter 7

Performance Estimates

The following performance estimates are based on the memory structures described in Chapter 6.
Some performance figures estimate the operational speed of a ‘cut-down’ system, typically one
without the main dynamic memory, and hence no cache tag checking. Unless otherwise stated,
it is assumed that the array used has a variable bandwidth, ie, the processing elements are all
the same speed. The array is assumed to be of size p x p, with C MWords of cache memory and
M MWords of main memory. The bandwidth of the cache to main memory is B MWords per
second, with 7 ns per load, and a latency for a cache refill of L cycles (= LT).

7.1 Matrix Multiplication

For a matrix multiplication running directly from the cache SRAM, the most fundamental
calculation is based on a partitioned matrix product with no delays due to memory. If the
two matrices, A & B, that are to be multiplied together are of dimensions B x § and § x T’
respectively, then the final product matrix will be of size Rx T, divided into [%] X [%] partitions,
each of size p X p. The input matrices will be divided into [%] & (%] partitions respectively, of
size px S & § X p. The time to perform the product is simply calculated by

R T)
Tsimp._mull = [_1 X [_“ XpXSXT (7.1)

P p
The floating point performance in terms of Mflops (Million Floating Point Operations per

Second) is simply the number of floating point operations done divided by the time taken as
given in Equation 7.1.

2XRxSxT

XLl xpxSxr (7:2)
[x %]

R
P

Perfsimp._mult = [

The performance plot for this simple estimate is shown in Figure 7.1, below. In this plot, the
array size is assumed to be fixed at 1024 processing elements (32 x 32, p = 32), the load/store
time per word (7) is ten nanoseconds, and the matrices multiplied together are assumed to be
square (R =5 =1T).

For comparison purposes, significant benefits are obtained if either the array size is increased
or the memory load/store time is reduced. Figure 7.2 shows the performance if the array
dimension is doubled (p = 64), and Figure 7.2b) is the performance if the load/store time is
halved (7 = 5ns), but with the original array width of 32. Figure 7.3 is the performance if both
the array size is doubled and the load/store time is halved (constant bandwidth).

125

1.4e+10

1.2e+10

letl0

8e+03

6et09

4e+09

2e+09 |-

Te+09 I
Ge+09 |
Se+09 |

de+09 | |l

le+09

Performance (FLOPs)

2e+09 |1

let09

i
200

@

==
400

W”Wm/m;, |

i
600
Matrix Dimension

J i
ndaral —4—

- i N

800 1000 1200

Figure 7.1: Performance Figures for Simple Multiplication Model (MFlops)

i

400

"datafan =—

W

400
Matrix Dimension

BOO 1000 1200

Ferformance (FLOPs)

Figure 7.2: Performance for a)Array Dimension

(MFlops)

126

1l.4e+10
"dataj2_5" 94—

WMM/W i
il .

4e+09 |4

1,20+10 |

8e+09 |

6et09

2e+09

600 800 1000 1200
Matrix Dimension

400

= 64 b) Load/Store Time = 5ns

Je+10 | T r T 1

=

Performance [(FLOPs)

600 600 1000 1200
Matrix Dimension

Figure 7.3: Performance for Array Dimension = 64 and Load/Store Time = 5ns
(MFlops)

The significance of Figure 7.3 is that it shows the squared nature of the performance of the
array for a constant bandwidth. This is an example of the concepts of address bandwidth that
lead to Equation 5.4.

If the data must be loaded from main memory, then cache refill time must be included
in the equations. There are two cases to be considered for a cache refill, the cases with and
without data streaming. As described in Chapter 6, data streaming is when data loaded from
main memory is available directly to the processor simultaneously to the data being written into
the cache. Without data streaming, the complete data block must first be written into cache
memory and then the desired data read from cache memory. If it is assumed that the cache
is of size ' MWords and a cache block is of size D words, then for a direct mapped cache in
which the data is stored in the same order that it is required (ie in partitioned form), then a
few assumptions can be made that will provide a simple estimate for system performance.

It is easiest to break the time required for a calculation into two categories, those when there
is an integral number of array partitions in a matrix (R mod p = 0) and those when a full array
boundary is not filled (R mod p # 0). Consider reading data into the array for the case of an
integral number of partitions (R mod p = 0). Then the time taken to load all the data into the
cache will be the latency plus the fill period. ie

L
TLoad = 1{25+R27

The data that is loaded into the cache will he used immediately, so it will need to be retrieved
from cache memory. This will take another R?7 cycles, after which the diagonal blocks of the

solution (C;;) will have been calculated. This will leave (% — 1) % partitions to be calculated,

each requiring approximately Rp cache loads. Therefore, the time required for computation
after the data has been loaded into cache will be

R R
Te ~ Rir+ (-— - 1) — Rpt
Comp » »

~ R*r+ (E — 1) Rt
n

127

which totals
: R’ . . (R o
Ihfain_Nfem:F(L+2XDXT)+R E—l ir (13)

The second case to consider is for R mod p # 0. Then there will be {%} full partitions,
which will take the same load and diagonal computation time as before, ie

TLoad ™ {%JEDE(L%-QXDXT)—{—Z)R{%J ([gJ _1>7-

Added to this is the time it takes to compute the unfilled edges of the matrix. The edge
width will be the total width minus the width of all the filled partitions, ie R —p {%J. The size

of the data contained in this portion of the matrix will be R (R —-p {%J), which must be loaded

and multiplied by all partitions (filled and unfilled). As there will be edges at two sides, there
will be a factor of two in the computation times. The extra time is

n-»|2]

R
TedgezR(_T —) (L+DxT7)+2R X [;-‘ XpXT

These times are summarised in Equation 7.4.

%2(L+2><D><7')+R2(%—1)7' if Rmodp=0
P | (8135052 x0 8] (8])7+ 4

—pl B
R<R_pDLLJ>(L+DXT)+2Rx[%]xpr otherwise

So the performance of the system without data streaming is

2x R? =
RZ 2(R
L (L+2xDxr)+R2 (E-1) 7

if Rmodp=20

PerfMain_I\Jem ~ A (7

2x R?

R
[%J %(L+2xDxr)+pR[%J (I_%J_I)T+R(R PDI.pJ)(L+DXT)+2RX[%-| XpXT

otherwise

\

For a fixed array size of 1024 processing elements arranged as (32 x 32) with a constant
bandwidth of 100 MWords/sec, then increasing the block size from 4 to 512 results in an im-
provement in the overall speed of the system as the block size increases, especially for matrices
of small order. However, there is improvement in performance as the block size increases above
sixteen is small. Figures 7.4 a) through d) show the performance of the processor as the block
size is increased from 4 to 16 to 64 to 512. The other very noticeable feature is the performance
advantage obtained when the matrix can be divided into an integral number of block of the same
width as the processing array. The latency for a cache miss is assumed to be 80 nanoseconds.

If streaming is added to the functionality of the processor, then data can be used immediately
it is available from main memory, and a separate write to cache phase is not required. In effect,
this removes a factor of D X 7 from the memory load part of the time equations, which will
reduce the effects of memory latency (the penalty will be mitigated across a greater number of
loads). Then Equations 7.4 and 7.5 becomeEquations 7.6 and 7.7 respectively.

128

Performance (FLOPs)

performance (FLOPs)

4e+09 |-

Je+09

2et09

1e+09

7e+09

|
6e+09

59*09‘

4e+09{

Jotdy

le+09

Je+09 | r}

W’WMWM/;M _

400 600 800 1000 1200
Matrix Dimension

Figure 7.4: a) Block Size = 4

"data 2 12 64 10 80" -o— !

| / M////////WM'M 74 1

P T T o

200 400 500 800 1000 1200
Matrix Dimension

Figure 7.4: ¢) Block Size = 64

Performance (FLOPs)

performance (FLOPS)

Te+09

|
Ee+09i
5e+09
4e+09
3e+09

2e+09

le+09

Te+09 T

4e+09

3e+09 © |

|
2e+09 ¥

1e+09|
|

i === ==

400 600 200 1000
Macrix Dimension

b) Block Size = 16

udata_2_32 16_10_BO" —— |

1200

“data_2_32_512_10_ 80" —o—

sevos | | WM//‘MWM’
',?3 WW
f

o 200 400 600 500 1000

Matrix Dimension

d) Block Size = 512

Figure 7.4: Performance Estimates for Matrix Multiplication Without Streaming

129

S Y MY B, S

S

|

R? ¢ 2 (R
—D(L+DXT)+R ('[7—1)7'
if Rmodp=20

TMain Mem = 3 R

P

i otherwise
2x R3

B (L+Dxr)+R2(E-1)r

if Rmod p=20
Perfpain Mem = 4 ax R (77)
ft—p R

2] 2 (L4 Dxr) o | 2 (L%_‘—I)H—R(‘—}}-ﬁi)L+2Rx[%]><pxr

otherwise

.

The plots for the performance with streaming included are shown in Figures 7.5 a) through
d). These show the improvement in performance with increasing block size, with significant
improvements up to a block size of 64, and with more improvement as block size increases
further. This performance improvement relies heavily on proper placement of data in memory
to achieve its full promise. However, if the data is located poorly in memory, the streamed
version will do no worse than the unstreamed version.

7.2 Gauss Jordan Elimination and Inversion

As mentioned previously in Section 3.4, one of the advantages of Gauss-Jordan elimination is
that a matrix inversion uses exactly the same routine, with the column range extended to an
augmented matrix including the identity matrix, I. The important trick to achieving maximum
performance for Gauss-Jordan elimination is to very carefully partition the algorithm to fit both
the array size and the cache memory size. If the inverse is sought, the identity matrix need not
be explicitly included, as the columns of the identity matrix can be included as the inverse grows
and the input matrix reduces. The performance estimates here assume that the data controller
can stream data and that the data is stored in block rows in main memory.

7.2.1 Gaussian Elimination for Matrices Smaller than the Cache Size

If the input matrix (the one that is to be reduced using Gauss Jordan elimination) fits entirely
into the cache, the only load from main memory (cache refill) will be the initial load. The
procedure given in Section 3.4.1 can be implemented directly, with no blocking due to cache
size.

The first step is to determine the inverse of the pivot block Ayy. The block must be loaded
into cache from main memory and then operated on to produce the block inverse. Using the
block inversion algorithm from Section 3.4.1, five iterations are required to produce an inverse,
with each interation requiring three passes through the processing array, for a total of fifteen
passes through the array. Added to this will be a factor due to the final scalar division of the
initial estimate being completed entirely after all the data in the row has been fetched, the
penultimate scalar division will commence with one load still to occur, etc. The time to perform

130

(7.6)

\\BJ%(L%—DXT)%’[)R[%j Q%J —])T—{—I{(R—_%‘}i) L+2RX [%] XPpXT

Performance (FLOPS)

Performance (FLOPS)

7e+09 : ' ¥ v ——r
“data_3_32_4_10_30" %—

W//W”W

be+09 -

5e+09

4e+D9

Jet09

2e+09

1e+09

600 BOO 1000 1200

Matrix Dimension

400

Figure 7.5: a) Block Size = 4

7e+09 T
“data_3_32_64_Ll0_80" o—

”M/M//M/M/ww

6e+09

1e+09 |4

' - i

400

800 200 looo
Matrix Dimension

1200

Figure 7.5: ¢) Block Size = 64

{FLOPS)

Performance

eerformaence (FLOPs)

7et09 | - - : . !
| ndata_3_32_16_10_80% —<— |

M/ WMM/WW’

6e+09
Se+09
4e+09

Je+09

2e+09

1e+09 j
; ’ " % ._ =—2

400 600 800 1000
Matrix Dimension

1200

b) Block Size = 16

Te+09
"data_3_32_512_10_B0" —o—

VWMMW/WW/W//

6e+09

5e+09
1e+a9 |
70409 |

20+09 |-

400 600 B0OO
Matrix Dimension

1000 1200

d) Block Size = 512

Figure 7.5: Performance Estimates for Matrix Multiplication With Streaming

131

the first block inversion will also include the time to load the block from main memory, and can
be characterised by

EﬂxL if R<p

D
7.8
%] x I olherwise (7-8)

T2 ..
— 1E.2 scalar divide
TIStJ)ivot B 15pTT 2 Tt {

where T o100 divide 15 the time it takes to perform a scalar inversion operation, and is in terms
of cycles. Once the first iteration of Gauss-Jordan elimination has completed, then all the data

will be in the data caches, so the time taken for any successive pivot inversions is simply:

T Scalar divid
~ 2 alar_daivide '
Tsyce. pivot = 15p°T + "'20277 (7.9)
If the matrix to be solved is smaller than the size of the processing array, then the pivot
inversion stage is all that is required. In general, this will not be the case, and the pivot row
will need to be normalised and all other rows updated. As a column oriented scheme will make
memory accesses simpler (Section 3.4.3), then the row normalisation and the matrix update can

be performed together. Bearing in mind that there for (n — 1) updates, the ‘k*"’ of which is of

n(n—1

length (n — k), then the average length of an update will be —(-—l and so the time taken for
the complete Gauss-Jordan elimination will be

(%2] x L + 15p*1 + scalar divide ,

if R<p

2
({%1 [D x L+ (33;0 L Tsmlm dwzde) xT
. ifp< R<2p
TGauss-Jordan = ([D] [Rif-p) D x L+ | 15p* + i;Laqur(bm X T4 (7.10)

@51 -1) (152 + 3 ([5]-1) ([5] - 2)) xpPre
(1,-, PAT _ﬂxdcué_duui(; [?]

otherwise

"

The number of required operations is approximately R® — 1.5R% + 0.5R, so the performance
of the array in MegaFLOPs when performing Gauss-Jordan elimination is

R3 - 15R*+0.5R '
o " (7.11)
GJlsolve T Gauss-Jordan

Figure 7.6 shows the performance estimates for solving a matrix of size less than 1025 rows for
various cache block sizes.

If the inverse of the matrix is required, then the same procedure is used, except that the
updated matrix does not reduce in size. Equation 7.10 can be used, except that the factor

% ([%w - 1) ([%} — 2) in the second to bottom line becomes [%1 (H}] — 1), and a factor of

p?7 is added to the case of R < 2p. Then an estimate of the time taken to perform a matrix

132

Performance (FLOPs}

Performance (FLOPs)

3

N

-

w

.5e+09 M

.5e+09

"data_4_32_4_10_RO“

. WMMMWW |

1e+09 |-

Je+09

2e+09

5e+09

5e+08

oo = L
400
Matrix Dimension

i o'
800 1000 1200

Figure 7.6: a) Block Size = 4

WWWWW -

le+09

S5et+08

400

600 300 1000
Marrix Dimension

o 200 1200

Figure 7.6: ¢) Block Size = 64

Performance (FLOPS)

performance (FLOPs)

1.5e409 | T

data 4 533 1o 10 HO

| |
3e+09 + M !
| |
|
1.5e+09 f
|
|
2e+09 1
|
|
1.5e+09 ll
|
le+09 {
5e+08 | 4
|
o i i 2 " i
] 200 400 800 1000 1200
Matrix Dimenslon
-
b) Block Size = 16
350409 | . ———— . — :
el etk ip Eor =— |
| (/[
Je+09 ! g /] <
| |
| {
' 5e+09 ll i
|
2e+09 |
52409 b =9
1
le+D9 4
H i
i
5e+08 § 4|
2 I PE— =" i e
200 100 600 900 1000 1200

Matrix Dimension

d) Block Size = 512

Figure 7.6: Performance for Gauss-Jordan Elimination on Matrices that Fit Into

Cache

133

inversion is

{%21 x L+ 15pT + T;calaré divide ,
if R<p
([%] + {R %_p D x L+ (34])2 + Tzcalar divide) &
i fp<R<2p
Thvert = % ([%W + {R(%—p)]) x L+ [15p% + icctfmi_fﬁw'_ric X T4 (7.12)
(2[5]-1) (1520 + [F1 (15 = 1)) s
gt + Sl e | [2]
\ otherwise

Note that this is actually slightly conservative, as a full update is not required for the added
rows. The given matrix is augmented a column at a time by a column of the identity matrix,
which for the ‘" update is the column vector (0,0,...,0,1,0,.. .,0,0)T, with the ‘1’ in the ith
position. Therefore, rather that requiring two multiply-accumulate pairs for an update (one to
load the array), and one multiply-accumulate pair for the normalise, the result of the normalise
is the inverse of the pivot, which is already calculated, and the update is only a single multiply-
accumulate pair. However, as the order of this saving is small, the difference on the overall
performance estimate is small.

The number of required operations to invert a matrix using Gauss-Jordan elimination is
2R> — 4R? + 5R + 1, and so the performance of the array when inverting a matrix is

2R —4R*+5R+ 1 ,
Perfmpert & Tt (7.13)
nver

Figure 7.7 shows the performance estimates for inverting a matrix of size less than 1025 rows
for various cache block sizes.

7.2.2 Gaussian Elimination for Matrices Larger than the Cache Size

If the matrix to be solved is too large to fit into the cache, then the matrix can be partitioned
into equal sized blocks that do fit into the cache. Ideally, the blocks will be the same size as the
cache. Thus, for a cache size of one Megaword,

e a matrix of size 1500 x 1500 would be partitioned into four blocks each of size 750 x 750
e a matrix of size 2000 x 2000 would be partitioned into four blocks each of size 1000 x 1000
e a matrix of size 3000 x 3000 would be partitioned into nine blocks each of size 1000 x 1000

o a matrix of size 10000 x 10000 would be partitioned into one hundred blocks each of size
1000 x 1000

The procedure is very simple, and is just an extension of the block Gauss-Jordan algorithm
given in Section 3.4.1. The "pivot’ block is inverted using the algorithm described above in
Section 7.2.1. The block thus inverted is multiplied by all the other blocks is the same row,
with the performance estimated by Equation 7.7. All other blocks are updated as for a standard
Gauss-Jordan elimination method, and then the procedure repeats. To estimate the performance
of such a method, use the estimates in Equations 7.12 & 7.7, For a cache size of ‘C"” words; let

134

Performance (FLOPE)

Performance !FLOPs

-

w

I

"

. 5e+09

.5e+09

.5e+09

L5109

Je+09

-5e+09 |-

2e+09

le+09

5e+08

5e+09

3e+09

2e+0%

le+09

5e+08

- T = T T - =

“data 5 32 4_10 BO" —o—

WNWW/MMM

——

o _2:); _430 - 6_(;0- - Eél? lUlﬂ.O 1;00
Matrix Dimension
Figure 7.7: a) Block Size = 4
*aara_5_ 32 od 10 ->-
|
|
Z(-)O 4(-30 ﬁ(l)() 860 1C00 2‘00

Marrix Dimension

Figure 7.7: c¢) Block Size = 64

Performance (FLOPs)

Performance (FLOPs!

3.5e+09 |-

-5e+09

vgdata_5 32 _16_10_80" —-—

WWWWMW

3Je+09

2e+09

le+09

Se+08

i i = ¢

1000

400 800 1200
Matrix Dimension
.
b) Block Size = 16
5e+09 | — |
12_10_#D= —<—
|
Je+09 | M
1.5e+09
.
|]
2e+09 | 4
|
1.5e+09 | 5
i
E i
1e+09 I 3
i
; |
se+08 | 4
i
|
0 e .~ _ \ - L]
o 200 400 800 1000 1200

Matrix Dimension

d) Block Size = 512

Figure 7.7: Performance for Gauss-Jordan Inversion on Matrices that Fit Into Cache

135

f =V, so the block dimension will be the largest number that is less than f while still being
an integral factor of the full matrix dimension. Let the block dimension be denoted by p, and
let there be £2 blocks of size p X p in the matrix (ie R = &p).

Is al i E
le'ge GJ ® e+ (26-1)(€-1) (E) T]Wultpp (7.14)

The number of operations is again R® — 1.5R%* + 0.5R, and so the performance of the system
when solving a matrix that is larger than the cache size is
R*—15R*+05R

PerfLargc GJ & [Gl (7.15)
arge G

R?®— 1.5R?>+ 0.5R
ETpvert + (26 = D(E= 1) ($) Taguts,,

Equation 7.16 is plotted for a range of block sizes in Figure 7.8. An interesting point to
notice is that the performance actually peaks for a matrix a few times larger than the cache
size, before declining to the previous Gauss-Jordan asymptote. The reason for this peak is
linked to the performance difference between matrix multiplication and matrix inversion. As
the method of adding two matrices is to load one matrix into the array (a multiply-accumulate
pair with accumulator reset) and then multiply-accumulate the other matrix without resetting,
Gauss-Jordan elimination can be expected to run at approximately half the speed of an equiv-
alent matrix multiplication. However, the normalisation phase does not require an addition, so
operates at multiplication speed. Therefore, if the normalisation phase is of a similar order to
the update phase, the processing array will be running at the speed of a matrix multiplication
for a significant period. As the update phase is of an order that is the square of the order of the
normalisation phase, the peak speed will be when there are two to four blocks in a dimension.

(7.16)

Q

This is shown clearly in the plots.

7.2.3 Conclusion

The plots given in this section show that the matrix processor configured with modest dimensions
(~ 32) and address generation times (~ 10ns) is capable of speeds in excess of three Gigal'L.OPs
for Gauss-Jordan elimination and inversion. As the plots in Figure 7.8 show, the size of a
problem that can be solved at this speed is largely limited not by the processing array size or
rate, but by the memory size.

An interesting point of reference is the Linpack1000 and Linpack10000 benchmarks [23].
Versions of these benchmarks can be summarised as the number of floating point operations
required divided by the time taken to perform a 1000 x 1000 and 10,000 x 10,000 matrix reduc-
tion using any method. The important point about the required operations is that any extra
operations are not included in the operations count. As this is the case for the plots given in
this chapter, the Linpack1000 and Linpack10000 benchmarks will have ratings in excess of three
GigaFLOPs. It is interesting to note that it would take less than one second to solve a set of
1000 linear equations, while a set of 10,000 linear equations would be solved in approximately
six minutes.

7.3 Discrete Fourier Transform

The procedure outlined in Section 3.5 leads to some very simple estimates for the performance
of an embedded array both with and withoul a multi-level memory system. In general, an

136

Performance (FLOPs)

performance (FLOPs)

w

N

-

-

w

I~

-

.5e+09

.5e+09 |

4e+09 T v 1 T T + T T 1
"data 6 32 4 (0 80" —»— |
NI,
Wi
Je+09
.5e+09
2e+09
.5e+09
1le+09
Se+08
Q neo wWoe 3000 4000 5000 6000 7000 a000 9000 10000
Matrix Dimension
. .
Figure 7.8: a) Block Size = 4
Se+09 T T T T
"data 6 32 64 10 BO* =
4e+09%

Wi1rss,

3e+09

5e+08

o 1000 2000 jco0 4000 50c0 5000 7C00 <000 2000 10000
Matrix Dimension

Figure 7.8: ¢) Block Size = 64

Performance (FLOPS)

(FLOPs)

performance

L

4. 5et09

.5et+09

5e+09 i
4e+09
Se+09

je+09

2e+09 |

let09

Se+08

5e+09 |

4e+03

.5e+09 |

Je+09 I

1.52409 |

L.5e+09

22409

12409 |

5e+08

'ﬁ

1000

1000

“data 6 32_16 10 80" ——

MMM’!"MI’M

2000 1000 4000 5000 K000 7000
Matrix Dimension

b) Block Size = 16

8000

9000

|

10000

"data_6_J12_512_10_80" —— |

11811,

2000 3000 4000 S000 6000 7000
Matrix Dimension

d) Block Size = 512

B00O

Figure 7.8: Performance for Gauss-Jordan Inversion on Matrices that Do Not Fit

Into Cache

137

10000

embedded system will not have a multi-level memory, although this may be necessary if very
large size DFTs are required.

The performance of a two dimensional DI'T is simply the number of floating point operations
divided by the time for two multiply-accumulate operations and one unload operation. The
inclusion of the unload is due to the fact that the second matrix product is dependent on the
result of the first. However, if the size of the matrices is larger than the size of the processing
array, the unloading of each partition can be *hidden’ within successive partition products, and
the calculation time becomes the time for the two matrix products.

If a higher n—dimensional DFT is performed, then the unload operation is again hidden by
successive matrix products, as all premultiplications can be completed before the postmultipli-
cations are started. Therefore if the size of the first dimension to be calculated is Ny, then the
time to complete the first dimensional computation will be

2Ny X Trpatrig product + Tunload

Here, the unload time is due to the very final unload before the output bank can be swapped
back. If the dual ported RAMs in the feedback path are available, then the temporary output
data can be returned to the input without any bank swapping, and no unload delay is required.
The time to complete each dimension is then:

T

per dimension = 2Ni X T (7.17)

matriz product

As the length of a transform is the product of the n dimension lengths which are mutually
prime, the time taken for only selected transform lengths will be estimated, and the performance
in equivalent MegaFLLOPs provided. The equivalent MegaFLOP rating is calculated by dividing
the number of necessary operations as required for a standard FFT algorithm by the time taken
to perform the calculation. The text by Press et. al. [73] was used to determine an approximate
operations count, which was found to be approximately 6.5N log N for a transform of length N.
The processing array is assumed to be square, of dimension p X p. The times are shown in terms
of the cycle time 7., which is the time is takes to load a single data element into the array from
memory, or from the cache in the case of a multi-level memory system. Note that the Fourier
coeflicients will not need to be reloaded into cache memory in a multi-level memory system as
the input data must be, so the load time will always be dependent on the input data and not
on the Fourier coefficients.

7.3.1 Discrete Fourier Transform Without Multi-level Memory System

If only a single level memory system is used, the procedure and estimates are very simple. It
can be assumed that the four banks of memory are still used, but there is not cache tagging to
be checked. The Fourier coefficients reside in one of the memory banks, while the input data
is deposited into another of the banks. A third bank is needed for temporary storage during
processing and for storing the output data, while the input data for the next iteration of the
DFT can be loaded into the fourth bank in preparation.

Two Dimensional Transform

If the length of the transform is less than p?, then the DFT can be completed in one iteration.
All that is required is a matrix product, an unload, and then another matrix product. Due to the
constant bandwidth property of the array, the time to perform the two dimensional transform
is approximately

T?D (-] 3X;J2XTC (7.18)

138

if no consideration is made for matrix products on matrices that are smaller than the processing
array. If such consideration is made, the time reduces to

T’QD ~ 22X N+ Ny)xpxre (7.19)

where Ny and N, are the two dimensions of the transform, and N1 > N2.

A selection of two dimensional transform lengths and their computational time in cycles is
given in Table 7.1 for dimension lengths smaller than the processing array size, which is assumed
to be of size 32 x 32 processing elements. The performance in MegaFLOPs is also given, assuming
a cycle time of ten nanoseconds.

Transform | Ny | No | Time | Performance
length (r¢) | (MFLOPs)
899 31| 29 | 2912 1969
837 31 | 27 | 2848 1855
775 31| 25 | 2784 1737
713 31| 23 | 2720 1615
651 31 | 21 | 2656 1489
589 31| 19 | 2592 1359
783 29 | 27 | 2720 1798
725 29 | 25 | 2656 1685
667 29 | 23 | 2592 1569
609 20 | 21 | 2528 1448
551 29 | 19 | 2464 1323
675 27 | 25 | 2528 1631
621 27 | 23 | 2464 1520
513 27 | 19 | 2336 1285
575 25 | 23 | 2336 1466
525 25 | 21 | 2272 1357
475 25 | 19 | 2208 1243

Table 7.1: 2 Dimensional DFT Performance

The data is plotted in Figure 7.9. This plot shows the performance improvement available by
using two similar sized matrices instead of a larger and a smaller matrix that produce a similar
transform length. The far right hand side shows the peak performance for the array, which is
slightly less than 2000 MFLOPs.

If the transform length is greater than the product of the maximum dimension of the two
matrices allowed by the processing array size (without partitioning), two options are available.

Fither

1. Use a higher dimensional DF'T
This is dealt with in Section 7.3.1

or
2. Partition the two input matrices to fit within the processing array
If the partitioning option is chosen, then all four dimensions of the address generator are re-

quired for automatic partitioning.-The time to calculate a partitioned-two-dimensional transform

139

-t

i}

2a+09
1.9e+09 |-
1.8e+09 | Ly
//-
1.7e+09 | ",’
e 4

1.60+09 |- ;

-’I.

! oA
1.5e+09 2
/
P
1.4e+09 |- -
pd
»
1.3e+09 |-
1.2e+09 - . 4 A * o
450 500 550 600 650 700 750 800 850 900

Figure 7.9: Performance of Two Dimension DFT - FLOPs vs DFT length

is the time to perform the two partitioned multiplies plus the time to unload the last partition
calculated in the first multiplication. Table 7.2 shows the performance details of selected two
dimensional partitioned DFTs with each input matrix being less than four times the size of the
processing array, while the values are shown graphically in Figure 7.10.

1.8e+09 T
PpAft 2, BL" ~+—
1.75e+09 | pdfe 2 5
1.7e+09 |-
1.65e+09 |- P
1.6et09 |- s
1.55e+09 |- ~
1.5e+09 |- v

1.45e+09 |- . Cd

1.4e+09 |-

1.35e+09 . 4 4 a A L
2600 2800 3000 3200 3400 3600 3800 4000

Figure 7.10: Performance of Partitioned Two Dimension DFT - FLOPs vs DFT length

Some performance estimates for selected larger-sized matrices are given in Table 7.3, and
are plotted in Figure 7.11.

Three and Four Dimensional Transform

The alterative to using a partitioned two dimensional transform to perform larger DI'Ts is to use
a higher dimensional Prime Factor Mapping. The decision to use add another dimension must

140

Transform | Ny | Ny | Time | Performance
length (r¢) | (MFLOPs)
3843 63 | 61 | 16864 1763
3717 63 | 59 | 16608 1725
3465 63 | 55 | 16096 1645
3339 63 | 53 | 15840 1603
2961 63 | 47 | 15072 1472
3599 61 | 59 | 16288 1696
3477 61 | 57 | 16032 1658
3233 61 | 53 | 15520 1578
3111 61 | 51 | 15264 1537
2989 61 | 49 | 15008 1494
2867 61 | 47 | 14752 1450
3363 59 | 57 | 15712 1629
3245 59 [55 | 15456 1591
3009 59 | 51 | 14944 1512
2891 59 | 49 | 14688 1470
2655 59 | 45 | 14176 1384
3135 57 | 55 | 15136 1563
2907 57 | 51 | 14624 1486
2793 57 | 49 | 14368 1446
2679 57 | 47 | 14112 1405

Table 7.2: Partitioned 2 Dimensional DFT Performance

Transform | Ny | Ny Time Performance
length (7¢) (MFLOPs)
8835 95 | 93 55136 1365
15875 127 [125 | 130016 1107
24327 159 | 153 | 250592 919
24963 159 | 157 | 253792 934
36099 191 | 189 | 438752 810
101123 319 | 317 | 2036192 537
228483 479 | 477 | 6884192 384
407043 639 | 637 | 16333792 302
614431 799 | 769 | 31360992 245
636803 799 | 797 | 31920992 250

Table 7.3: Partitioned 2 Dimensional DFT Performance

141

1.4e+09

1.2e+09 |-

le+09 = |

Bat08 |-

set+08 |-

4e+08 |-

2e+08 4 s L = :
0 100000 200000 100000 (oo0n0n 500000 00000 T00000

Figure 7.11: Performance of Partitioned Two Dimension DFT - FLOPs vs DFT length

be taken with care, as adding a new dimension of small matrix dimension will result in 2(n — 1)
inefficient product groups for an n-dimensional mapping. To illustrate, consider increasing a
two dimensional mapping to three dimensions, and let the original two sizes be 31 and 29 on a
32 X 32 processing array. Then using a three dimensional mapping with dimension sizes 31,29
& 4 will require 31 (29 x 4) and 29 (31 x 4) matrix products, which would be very inefficient
on the 32 x 32 processing array. However, as the size of the dimensions increases, the efficiency
increases, and a higher dimensional mapping will have a higher performance than a partitioned
lower dimensioned mapping.

The time to perform a multidimensional DFT is similar to the time to perform a two di-
mensional mapping, except that more calculations can be achieved before the the array must
stall for an unload operation. In fact, if proper use is made of the dual ported RAMs, the
unload stall can be avoided altogether. Table 7.4 shows the performance figures for selected
three dimensional DFT's, which are also plotted in Figure 7.12

The time taken for a four dimensional transform can be calculated using the estimate for a
three dimensional transform. The performance estimates are shown in Table 7.5, and graphically
in Figure 7.13

7.4 The Kalman Filter

The Kalman filter described in Section 3.6 can be directly implemented on the matrix processing
array with the bank-switched memary architecture that all previous performance estimates have
used. The important performance measurement for the Kalman filter is the time it takes for a
complete update, as this is in effect the repetition rate.

Two example systems can be estimated, one running entirely from static RAM (effectively
running out of Cache RAM with no tag checking), and the other using a multilevel memory
subsystem. Additionally, the size of the problem for each memory configuration can be varied
such that the problem size is smaller than the processing array (no partitioning required) or
the problem size is larger than the processing array (partitioning is required). Each case is
considered separately. The processing array is assumed to be of size p X p, with an access cycle

time of 7 nanoseconds and a memory latency of L where appropriate. The problem size is

142

Transform | Ny | N2 | N3 | Time | Performance
length (1¢) (MFLOPs)
24273 31|29 | 27 | 161216 1425
22475 31| 29 | 25 | 1563536 1375
20677 31|29 | 23 | 145856 1321
18879 31|29 | 21 | 138176 1261
14725 31 [25| 19 | 117696 1126
13175 31 | 25 | 17 | 110528 1060
19575 29 | 27 | 25 | 139712 1298
15225 29 | 25 | 21 | 118976 1155
9135 29 | 21 | 15 | 86976 898
4959 29 | 19 | 9 | 62912 628
12075 25 | 23 | 21 | 101312 1050
10925 25| 23 | 19 | 95168 1001
9975 25 (21 | 19 | 89536 962
4675 25 | 17 | 11 | 56768 653
2275 25 |13 | 7 | 37824 436

Table 7.4: Three Dimensional DFT Performance

1.5et09

1.4et09 |

1.3e+09 |-

1.2e+09

1.1a+09 |

le+09 |-

9e+0§ |

8a+08 |-

7e+08 |-

6e+08 |-

Se+08

det08
o

Figure 7.12: Performance of Three Dimension DFT - FLOPs vs DFT length

L
5000

10000

143

i
15000

N
20000

25000

Transform | Ny | N | N3 | Ny Time Performance
length (t¢) (MFLOPs)
606825 31| 29 | 27 | 25 | 25485440 297
558279 31|29 | 27 | 23 | 24231808 285
461187 31|29 | 27 | 19 | 21769088 259
471975 31| 29 | 25 | 21 | 21732864 266
382075 31|29 | 25 | 17 | 19390976 237
292175 31 | 29 | 25 | 13 | 17108480 201
365769 31|27 |23 | 19 | 18105728 242
276675 31| 25| 21 | 17 | 14859520 218

96255 31 (23|15 | 9 | 8010880 129
229425 25 | 23 | 21 | 19 | 12370304 214
101745 21|19 | 17 | 15 | 6775680 162

62985 19 | 17 | 15 | 13 | 4757120 137

Table 7.5: Four Dimensional DFT Performance

3e+08 T T T T T)‘
;,-?n\:'.r_ -

ARdploed® +—
2.8e+08 | 7 Mdplatd 1
2.6a+08 |-
2.40108 |
2.2e+08 |
2e+08 |
1.8e+08

1.6e+08

1l.4e+08 |

1.2a+08 I i I L L "
a 100000 200000 300000 400000 500000 600000 700000

Figure 7.13: Performance of Four Dimensional DFT - FLOPs vs DFT length

144

assumed to be of length p.

7.4.1 Small Problem Size Running From SRAM

This is the case of p > p. As the processing array has a constant bandwidth, then the processor
must stall after applying a wavefront until the time for a full width product has been completed,
ie if p — 1 operands are applied as a wavefront to the p x p processing array, the processing
array must stall for one cycle, if p — 2 operands are applied, the processor must stall for two
cycles, etc. This only applies in one dimension of the applied matrices. 1f the matrix product
AB is performed and A is of dimension r x s and B is of dimension s X t, then the application
of both A & B will take ps cycles, and the unloading of the result will take max(pr, pt) cycles.
Therefore, if all matrices are assumed to be square and of dimension g, non-square matrices
use an equivalent time if the larger of the two dimensions is made the dimension of the square
matrix.

Proceeding in the same order as is provided in Table 3.1, the time to compute the matrix
K(k) can be estimated as follows:

Ty =~ poXT (7.20)

Ty = 2XpoXT (7.21)

TDel(zy ~ [)2 XT (7.22)
‘ T2 T

T * 15p2T+ :scala?2 dzmdeT (7.23)

Topd = POXT (7.24)

where the time for inversion is from Equation 7.12. Summing these to determine the time to
calculate K(k) produces Equation 7.25.

Tk =~ Ti+Ty+2Tpelay+ Tinv. + Tend
T2 -

~ |4 92 scalar divide 795
(po+2p° + 5 T (7.25)
Similarly. the determination of P(k 4 1|k) requires five matrix products and one accumulate
which takes the same time as a multiply, which all can take place without stalls. The estimate

for the P(k + 1|k) update is then given by Equation 7.26.
Tp =~ HXpoXrT (7.26)

The final part is the state estimate vector update x(k + 1]k), which requires four matrix-
vector products. As the processing array has a constant bandwidth, the matrix-vector products
effectively consume the same time as a matrix-matrix product. Therefore, the X(k + 1|k) update
consumes time according to Equation 7.27.

T: ~ 4XpoXxT (7.27)

Summing all components provides an estimate of the time the Kalman filter takes in this
simple implementation. The resultant time is given in Equation 7.28.

Tkalmant = T +Tp +1;

X

2
3.2 Tscalar divide
4po + 2p +——-—2 THOXpoXT+A4XpoXT

I .
- (]3!»‘9 +2p* 4 .SC(Ll(L‘T" dwzde) r (7.28)

4

145

time (seconds)

time (seconds)

This result is shown plotted in Figures 7.14a) to d) for array sizes of 32 and 64 and cycle
times of ten and twenty nanoseconds. The plots show the time on the vertical scale and the
number of elements in the state vector x(k|k—1) on the horizontal axis. The plots show the time
increasing linearly with vector size, as the matrix processor multiplies matrices in approximately
linear time. The number of multiplications required simply introduces a constant factor to the
time for computation.

0.00016 I ¥ T T T 0.0006% * T T T T T] e ;
| “sm_kal l0ms_#d= | =sm_kal_ lOus_64" 4-‘
0.00015 | | "
| | 0.0006 |
| A
0.00014 | Py { *4‘
|] 0.00055 | o
0.00013 | d | g
- i -
-
| 0.0005 o
0.00012 | '
i -
[| g o
0.00011 | | & o0.00045 | -
| : -
a o
0.0001 v
o 0.0004 | -
g ”
9e-05 © ”
0.00035 | o
e 05 -
0.0003 | »
7e-05
! . .
= 1T p 0.00025 |
Se-05 s . i L 0.0002 | : L i i i i £
5 10 It 20 25 10 14 20 25 30 35 10 45 50 58 50
state vector size stale vector size
B o i . . .
Figure 7.14: 10ns Cycle Time a) Array Size = 32 b) Array Size = 64
0.00032 | + < ' " 0.0013 : . : + v ' ¥
| =sin_kad apas A% e nsm kal 20nS_ 64" -o—
0.0003 | | 2
J 0.0012 |
0.00028 | . ! 5
" 0.0011 | 4
0.00026 | o | ! e
- 0 0oL | o
0.00024 | (- .
E p
0,00022 | G 0.0009 ¢ ol
g ¥
0.0002 | § . 0.000H b
£ .
000018 | E o
9.9007 - -
0.00016 |
-
5 6.0006 | e
©0.00014 | - "
0.00012 | €42005 |
0.0001 - - L 0.0004 - ‘ ‘ : : i : .
5 10 15 20 25 e 15 20 25 30 35 40 45 50 55 50
Lo BRIk state vector size

Figure 7.14: 20ns Cycle Time c) Array Size = 32 d) Array Size = 64

Figure 7.14: Simple Kalman Filter for State Vector Smaller Than Array Dimension

7.4.2 Large Problem Size Running From SRAM

Now the problem must be partitioned into matrices that fit the processor array size. The time
to perform the multiplication of two matrices that are larger than the size of the processing
array is equivalent to the sum of the time to calculate all the full matrix partitions plus the time
to calculate all the partial matrix partitions.

Calculating the Kalman filter in the same order as provided in ‘Table 3.2, the approximate

146

85

times required for the computation can again be broken into the component calculations of
K(k), P(k + 1|k) & x(k 4 1|k). The time estimation for the computation of K(k) proceedes as
follows.

To calculate the temporary matrix L, each of the partitions L;; must be calculated in turn.
The time for these calculations has been determined in Equation 7.1, and is

R T .
T =|—=|X|=|XpxSxT 7.29
mult {1)1 [1)1 4 (7.29)

The calculation of the temporary matrix U also requires an addition at the start of each
partition calculation, which will add approximately p? cycles to each partition calculation time.

The time to calculate U can then be calculated from Equation 7.30.

LE;‘I X HH X (px S+p2) X T
[E‘ X "f—)-‘ X(S+ppxr (7.30)

Ty

p

The inversion procedure is again similar to that determined earlier, except simplified for the
less complex memory system. The time to invert each p X p block is again

2
T~ 152 Tscalar div. 7.31
inv ¥ P +—72 XT (7.31)

and so the total time for the inversion of each of the pivot blocks is simply the time for one
inversion multiplted by the number of partitions, as shown in Equation 7.32.

T? :
~ 2 lar div. 2
T, piv & (15p + W) X T X [;] (7.32)
In each column, there will be a maximum of [%w partitions, so there will be 2 [ﬂ —1 updates

per column. The total number of updates for the complete inversion process is then the average
number per iteration multiplied by the number of iterations. This is expressed in Equation 7.33.

Trinv = Tall piv ' update
e

- (v) 2] (o[1) B o

2 P P 2

After the inversion, the matrix K(k) can be determined with one extra multiplication, which
takes time according to the previously determined Equation 7.29. Note that no delay slots
are required, as the feedback of one partition can now be hidden by the calculation of another
partition.

The calculation of P(K +1|k) is simply three partitioned multiplies, as for Equation 7.29, and
then two inplace multiplies and an inplace accumulate. The time for the inplace multiplications
are each approximately equal to the time to perform a multiply-accumulate operation, as the
only difference is the ordering of the multiplications of the partitions. The time required for
the inplace accumulate is simply the time required for an ‘array sized’ multiplication, as it is,
in effect, multiplying an ‘array sized’ matrix by the identity matrix I. Therefore, the time to

147

update P(K 4 1|k) can be approximated by the time to perform five partitioned multiplies plus
one array-sized multiplication. This is summarised in Equation 7.34.

Tp update ~ 3Tpart. mult. T 27 part. mult-ace T TPart. acc
R T
(55 4+ p) h—-‘ X [—-‘ XPpXT (7.34)
P

2

When calculating the updated state vector x(k + 1|k), we recall that the matrix-vector
product operation must use the full bandwidth of the array. Therefore, the matrix-vector product
will consume the same time as a matrix-matrix product with the vector replaced by a matrix
of the same width as the processing array. The time to perform each of the three matrix-vector
products involved in the calculation of X(k + 1|k) can therefore be approximated by the time in
Equation 7.35, while the vector accumulate takes the time shown in Equation 7.36.

o
Tyect mult = L_)-I XpoxT (7.35)

Tvect acc ® PXoXT (7.36)

The total time for a large Kalman filter with a simple memory system is then the sum of all
the parts, as shown in Equation 7.37, for the case R = 5 =T = p.

TLarge Kalman = In+Tp+T:

X

2 P

2[]) h}_l)prjt[irxznq;xr +

2

e (O

Pl 39+2p)+([]+l)pg+

2
X (20+plpxT+ (15;0 y Lscalar div.) X T X [q +

Q

(51>
(
(
(7

(5 4 TWJ(; div.) m + (2 LQ)] _ 1) ﬂi];_lypz o (7.37)

Equation 7.37 was evaluated for a range of vector sizes, implemented on processing arrays of
size 32 and 64 processing elements per side and with cycle times of ten and twenty nanoseconds.
The resultant times are plotted in Figures 7.15a) to d).

7.4.3 Kalman Filter With a Multi-level Memory Sub-system

If a multilevel memory subsystem is used, then the time estimates for the various parts of the
Kalman filter can be obtained directly from the equations derived in Sections 7.1 & 7.2. The
ordering of operations in Tables 3.1 & 3.2 still applies, as do assumptions above concerning the
number of equivalent cycles used in the estimates of Sections 7.4.1 & 7.4.2. As the equations
in Sections 7.1 & 7.2 assume data is initially stored in main memory, then no cache reuse is
assumed between successive operations. Therefore, the performance figures estimated here can
_be a lower bound on.the performance. As cache reuse increases (the case where the cache is

148

time (seconds)

time (seconds)

“lg_kal_lOns_32% ——

time (seconds)

50 100 150 200 250 300 350 400

LAY SIOSLOY Gla0

300 400 500
state vector size

- o

“lg_kal_lOns_§4" —o—

s

|

600 700 8

Figure 7.15: 10ns Cycle Time a) Array Size = 32 b) Array Size = 64

"1g_kal_200S_12" <o— ‘

7

~

_—

—
———
— |
— — |

time (seconds)

100 200 300 400 500 600 300 800

srate vector size

L.2 ¢

i)
|

0.8 |

0.6 |

100 400 500
state vector size

. = —

“1g_kal_20nS_64" -o—

il
~

/

600 700 400

Figure 7.15: 20ns Cycle Time c) Array Size = 32 d) Array Size = 64

Figure 7.15: Simple Kalman Filter for State Vector Larger Than Array Dimension

149

00

]
1
|
i
!

large enough to hold more data), the performance will approach the case of the system running
directly from SRAM.

As before, the calculation of ‘K (%)’ will require two matrix products, one in-place accumulate
and one matrix inversion. The matrix products will take time determined by Equation 7.6 for
the full size of the matrices, while the time required per partition for the inplace accumulate uses
the same equation except for the matrix size is the same size as the processing array (= matrix
partition size). The time for the matrix inversion can be obtained directly from Equation 7.12.
The time taken to calculate K(k) can be estimated to be as shown in Equation 7.38.

2
‘ 0 : .
ML K ® ZTQ X ¢ mult i [;.‘ x 1 p X p mult i T,Q X p invert (7.38)

Similarly, the calculation of ‘P(k + 1{k)’ requires five multiplications and one in-place accu-
mulate. Therefore, the time required can be approximately determined using Equation 7.39.

2
~ 0
v p = 5Tg X p mult T [E-‘ X Tp X p mult (7.39)

To calculate the updated state vector ‘%(k -+ 1|k)’, the computation time taken by a matrix-
vector product needs to be estimated. As the matrix in the matrix-vector product will be the
dominant factor for loads, then we can estimate the load & calculation time, assuming streaming,
to be as shown in Equation 7.40.

2
; 4 e
mat./vect. prod ~ (D L+pe [5-‘ i T) (7.40)

Similarly, the time to accumulate a vector with the contents of the processing array is simply
the time required to load a partition of the input vector, as shown in Equation 7.41.

. P
Tyect ace & ’75-‘ L4p?xr (7.41)
Therefore, as the updating of the state vector requires three matrix-vector multiplies and one
vector accumulate, the time required to calculate X(k 4 1]k) is as shown in Equation 7.42.

L x ™ 3Tma‘t./vect. prod T Tyect acc (7.42)

The time to complete a cycle of the Kalman filter is then the sum of all the updates, as
shown in Equation 7.43.

TML eycle = ML kK T TML P+ TML % (7.43)

Equation 7.43 was evaluated for a range of state vector sizes, using block sizes varying
hetween 4 and 512 on a 32 X 32 processing array with a ten nanosecond cycle time and 100
nanosecond main memory latency. The results are shown in Figures 7.16a) to d).

As is block size increases, the time to compute the Kalman filter can be seen to decrease.
However, there is minimal significant difference between block sizes of 64 and 512. It is stressed
again that these estimates are lower bounds. The practical performance should be much better,
as there is a large amount of data reuse and also of data cycling from the output back to an
input.

150

time (seconds)

time (seconds)

0.0045

0.004

©.0035

0.003

0.0025

0.002

0,0015

0.001

0.0005

50

0.0016

0.0014

0.0012

0.001

0.000C8

0.0006 |

0.0004

0.0002 |

S0

time (seconds)

" i i i

100 150 200 250 300 150 400
state vector size

0.0022

0.002

|
0.0018 |

0.0016

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

ol

50

-~
s

200 250
state vector s1ze

Figure 7.16: a) Block Size = 4 b) Block Size = 16

ML_kal 64 —o—

/ |
/_.

(seconds)

time

_
-~

100 150 200 250 100 350 400
state vector size

02,0008 |

0.00006 F

0.0004 |

0.0002

200 250
state vectar size

Figure 7.16: a) Block Size = 64 b) Block Size = 512

Figure 7.16: Lower Bound on Kalman Filter With Multilevel Memory

151

100

300

350

“ML_kal 512" -o—

7.5 Conclusion

The performance estimates shown in this chapter provide a significant insight to the potential
performance that is available using systolic techniques coupled with clever addressing and in-
terface units. Very few computer systems can provide sustained performance in the Gigal'lLOP
range, in fields as varied as numerical systems to digital signal processing and control.

Chapter 8

Future Projects

8.1 A Multi-Processor Teraflop Engine

Although many in engineering see this field as a continual push forward toward an ultimate goal
of infinitely fast processors along the most direct path, some observers liken the process more to
a corkscrew than an arrow. We have seen processor and memory limits leapfrog forward, with
a new topology suggested at each improvement. However, history shows that some ideas keep
resurfacing on a regular basis whenever the relationship of technologies is at the correct point!.
The architecture suggested here is just such a case, nothing new, but a familiar architecture
revisited.

The discussion that follows is not an attempt to define a complete implementation of a full
multiprocessor system. Indeed, the design work required for such a task would require several
man-years. It is meant as an indication of the approximate performance that would be available
given such a system, and also some suggested enhancements that could be used to extract the
most from the base system.

8.1.1 The Hypercube

The interconnection of nodes within a multiprocessor is the subject of much debate at present,
with many different topologies being suggested as the ‘ideal’. Current commercial topologies
include the mesh, fat-tree, torroidal mesh and hypercube from Intel, Thinking Machines, Cray
and nCube, to name a few [29].

Not long ago, the hypercube, or n-cube. was touted as the ultimate interconnect, with com-
mercial machines from Intel, Thinking Machines and nCube and experimental machines being
developed at Caltech, CMU and other establishments. The hypercube is a ‘rich’ structure that
contains many others within it, and as such can fully utilise its own structure or be reconfigured
to simpler topologies such as mesh, ring or tree structures. As such, the hypercube matches or
includes many configurations that naturally occur in mathematical, scientific and engineering
problems. Indeed, Edelman of the University of California, Berkeley, stated recently [25], “The
hypercube with full concurrent communication to every node’s nearest neighbors is the only
mathematically elegant communications network that has ever been devised.”

One of the niceties of hypercubes is that they grow by replication. Given two identical
m—cubes (each with 2™ nodes), an (m + 1)—cube is formed by linking their corresponding
nodes in a one-to-one fashion. This leads to the node numbering concept that, for an m—cube
labelled with the numbers 0 to 2™ — 1, the nodes are connected in such a way that the binary
representation of connected nodes differ in exactly one bit. An example labelling for a 3—cube

'RISC/CISC is an example of this, as is Bipolar/BiCMOS

153

is given in Figure 8.1. Alternative labels allows a ring of arbitrary length [, where 4 <1 < 2™,
or a mesh of size 2* x 2V, where u + v = m, to be mapped onto an m—cube [76].

110 111

010 | ' 011

000 001

Figure 8.1: Node Labelling for a 3-Cube

Why Not Use It?

The move away from the hypercube architecture is generally due to the difficulty in scaling the
hypercube above a dimension of about ten (ie 2!° = 1024 nodes). With a hypercube of size
2", each node has n connections, one to each of its nearest n neighbours. Thus, the number of
interconnections grows rapidly with machine size, posing a dilemma: if the interconnects are all
bit-serial copper links, the speed is often inadequate. On the other hand, if the interconnects
are parallel, byte wide or larger, then a large number of semiconductor pins are required to
drive them, and the system becomes unwieldy and difficult to make reliable. As Michael Meirer
of Thinking Machines said [93]. “Unless you have all the hardware drivers and communication
channels on chip, you cannot implement them. You end up with too much hardware; the
reliability and sheer size become unmanageable.”

The hypercube was viable in the 1980’s because the computational units were simple enough
(eg. Thinking Machines CM-2) or slow enough (eg Intel i/PSC) that a bit-serial or lower-
bandwidth communication strategy could be used. As the number of nodes and the node per-
formance increased, so did the number of interconnections and the communication requirements.
New topologies such as the mesh and fat tree were introduced (actually reintroduced), as local
communication with these topologies is machine-size independent. Therefore, the only way to
reintroduce the hypercube is to make the interconnections sufficiently simple that the gains in
topology greatly outway the connection complexity.

8.1.2 Fibre-Optical Interconnection

Current multiprocessors using metal interconnects increase the node-to-node bandwidth by
transmitting data with widths of bytes (8 bits), words (32-bits) or long words (64-bits). There-
fore, the interconnection is physically large, and the capacitance that must be driven and dis-
charged, proportional to the length of the line and the number of lines, will consume large
quantities of power, increase delays and reduce throughput

154

Fibre optics, on the other hand, typically benefit from:
e much lower attenuation for a similar length of line

e a propagation speed independent of signal length

o lower signal and clock skew

higher immunity to crosstalk, electromagnetic interference and ground loops

flexibility in 3-dimensional space (not constrained largely to two or three perpendicular
directions)

Fibre-optic interconnections used in communication systems achieve speeds between 1 and
1.5 Gigabits per second on a standard serial connection, and 2 Gigabits per second is available.
Therefore, a bidirectional internode connection rate of 320 Mbytes per second is quite feasible
using four strands of optical fibre [79]. As this design is for a moderate number of nodes (16
to 1024), limited by other factors such as power dissipation, problem size, etc., each node will
have at most ten (= log, 1024) connections to other nodes. As each connection contains four
optical strands, the total number of strands leaving a node will be at most 40. It is interesting
to compare that a mesh connected system with four neighbours to each node (North, South,
East, West) using standard copper interconnects would likely have 32 or 64 copper tracks or
strands between nodes, a similar amount to an optically interconnected hypercube.

The interconnection bandwidth and internode latency determine the time required to trans-
mit data from one node to another. However, broadcasting the same data to all nodes in a
hypercube is not a simple matter, and is discussed in Appendix C. Ultimately, the time to
broadcast ‘L’ words over a hypercube with 2™ nodes can be minimised to that in Equation 8.1

2

Lt,
Tpr(fopt) = + Vmp (8.1)

m

where 3 is the node-to-node communication latency and 7, is the time to transmit one word to a
nearest neighbour node. For an optically connected hypercube, both m and /3 are implementation
dependent, while L is problem size dependent and 7. is technology dependert.

8.1.3 Utilising the Hypercube - the Proposed Model

In the proposed architecture, the memory is distributed among the nodes and processors, ie
there is no shared memory, even within the node. However, due to the logical labelling of a
hypercube’s nodes, the memory system can be viewed as physically distributed but globally
and logically shared. A custom VLSI design implementing a directory search engine utilising
an algorithm similar to the Stanford DASH architecture [50] is suggested, as this allows the
scalability of a message-passing machine to be combined with the model of a shared-memory
architecture for ease of programming.

The suggested node configuration is one that is based on a hybrid of the Intel Paragon XP/S
and a higher performance vector supercomputer. The Paragon XP/S contains up to five i860
RISC processors, allocating four processors to the computational task of problem solving and
the fifth dedicated to the task of managing the message passing and node connections [93, 94].
A high end multiprocessor vector supercomputer typically uses a relatively small number of
very powerful vector processors (typically one to sixteen processors, each capable of between 500
Mflops and 8000 Mflops - see Table 2.4), The hybrid system is a combination of a modest number

1585

of matrix engines with attached scalar units (typically three) and the associated communication
hardware (another scalar processor plus custom VLSI directory/coherency manager and node
link hardware) at each node. The nodes are then replicated into a hypercube, to hecome an
MPP? of very high performance nodes.

The advantage of this approach is that the complete system can achieve high performance
with a relatively modest number of nodes. Despite claims by Burkhardt [93], of Kendall Square
Research, and others, that their massively parallel processor machines are only limited by eco-
nomics, the latency that must exist for long communication paths as the system grows will result
in detrimental communication overheads for problems that require a Jarge amount of data move-
ment between nodes. Therefore, by keeping the nuinber of nodes and hence the critical path
between nodes relatively small the communication overheads will be much smaller for similar
performance.

As mentioned above, each node will consist of approximately three matrix engines, each
with attached scalar processor, for computation. A minimum of nine banks of memory will be
required for the matrix processors, so increasing the number of banks to sixteen will allow ample
extra banks for swapping of data between computation processors and between computation-
communication processors. The interface between the memory and the processors can be either
an extension of the memory structure used for a single matrix array, as shown in Figure 8.2a).
or a full cross-connection allowing any mairix array pipe to access any memory, as shown in
Figure 8.2b).

Proe. Proc. Proc. Proc. Proc Proc. Comm.
o 1 2 0 ! 2 proc. |
Memory
0
y
Memory
!
1]
Memary
&
Memary
3
Comm. |
Proe.
Ty

Figure 8.2: a) Extended Simple Memory Structure b) X-Connect Memory Structure

8.1.4 Algorithms
Multiplication on the Hypercube

Several authors have investigated the cfficiency and performance of matrix multiplication on a
hypercube architecture [29. 28, 76. 42. 74. 78]. The act of splitting the problem across several
processors necessitates the partitioning of the problem, which will generally be rectangular. In
fact. it has been found that, for a standard scalar processor architecture at the nodes, square
partitioning (a subset of rectangular partitioning) vields the optimum results. For this case.

“Massively Parallel Processor

various ‘roll and rotate’ algorithms have been developed to exploit the special structure of the
hypercube [29, 28, 74, 86].

Due to the structure of the matrix engines at each node, which perform substantially better
for long ‘strips’ of products, a rectangular structure would be preferable. As such, the matrix
is partitioned to allow large ‘inner products of outer products’. Consider the matrix product
C = AB, where A is a P x @ matrix, B is a Q X R matrix, and so C isa P X R matrix.
Now partition the matrix into ‘processing array’ sized strips, ie A is partitioned into % p X Q
partitions and B is partitioned into ¢ @ X p partitions for processing on arrays of size p X p.
The matrix product can now be determined in terms of the partitioned pioducts as shown in
Equation 8.2.

Cni Ciz oo Cyy Ay
Cy Coy ... C A

:21 :22) :29 = :2 X (B, B, ... Bo) (8.2)
Cyr Cypz .. Cyp Ay

This naturally suggests a ring structure with the partitions of one matrices rotating around the
nodes.

Now distribute the partitions equally among the nodes. Ideally, there should be more parti-
tions than processing arrays. If this is not the case, it may be more efficient to use fewer nodes,
and run another problem on the unused nodes. Assume that there is at least one more partition
at each node than there are processing arrays, ie for a system with three processing arrays per
node, there are four or more partitions at each node. Therefore, one of the partitions can be
transmitted while the others are being operated on. This is shown in Figure 8.3.

éuﬁm 06 EEE

"’:‘ A A3
. Y] Atd
M Af

M A6

Figure 8.3: Processing/transmission Diagram for 1st Partitioning

The choice of matrix that is rotated is arbitrary, but careful selection will yield a better result
than a poor choice due to processor load balancing. If one of the matrices is partitioned such
that the number of processing array width partitions is equal to or just smaller than a multiple
of three (the number of processing arrays at a node), then make this the stable partition. If all
the partitions in the stable matrix are multiplied by a single partition in the rotation matrix, the
processing times for-all processing arrays will-be-approximately equal. Next rotate the second

157

matrix (the rotating matrix) by one partition, and repeat the multiplication step. Repeat the
procedure above until all partitions in one matrix have been multiplied by all partitions in the
other matrix. This is shown graphically in Figure 8.4 for the multiplication of a matrix with ten
partitions (A) with a matrix with twelve partitions (B) on a multiprocessor with two nodes.

T 1] |
] T
| |||
' .
w ® |m ® ® |w ®m o @ w = o
O O L P) Ne fe |22
ERE L
| | 1 ‘ ‘ |
| | | | |
,“?, :
R At greseeiee AB: '““I-_ i .= :
AZ: I AT7: Teiermered _;‘ '7:-"
A3: : ABy e i
Ad: A9:
A5: B R et oy DA PR A10: e :
Figure 8.4: a) First Multiplication Phase
— - : -
| | i i | | |l
| | R
I | |
w ® (® | w|w o w o | ‘m o |m
S e R G e G le fe 25 2
| |° - N
! | |
? |
| |
A10: E it AS:
At: AB:
A2: i A7:
A3: A8:
A4: i Ag: e :

Figure 8.4: b) Second Multiplication Phase After First ‘Roll’

No. of partitions
processing arrays per node
of B are multiplied by each partition of A for each ‘roll’. Table 8.1 shows the cycle at which
each multiplication is completed, with ‘a’ indicating the first multiplication in a cycle and ‘b’
indicating the second, and also the processing array in which the multiplication takes place (in
1)

The bottleneck in the process can be either the computation or the data transmission, de-
pending on factors such as the internode latency, the cache performance and the number of bands
at each node. To estimate the performance of the system, the computation and transmission
times can be calculated, and the maximum of the two used to estimate the cycle time. As the
cycle time is basically the same for all matrix band products calculated simultaneously, the total

As there are six partitions of the B matrix per node, then two partitions (

158

Result Maltrix A partitions |
C ! 2 3 4) 0 i 8 9 10 n

1 | ta[l] | 10a[1] | 9a[1] | 8a[l] | 7a[l] | 6a[l] | 5aft] | 4a[l] | 3a[l] 2a[l1]

5 | 2a[2] | 1a[2] | 10a[2) | 9a[2] | 8af2] | 7a2] | 6a[2] | 5a[2] | 4a[2] | 3a[2]

3 | 3a[3] | 2a[3] | 1af3] | 10a[3) | 9a[3] | 8a[3] | 7af3] | 6a[3] | 5a[3] | 4a[3]

4 | 1b[1] | tob[1] | 9b[1] | 8b[1] | 7b{1] | 6b[1] | 5b[1] | 4b[1] | 3b{1] | 2b[1]

Matrix 5 | 2b[2] | Ib[2] | 10b[2] | 9b[2] | 8b[2] | 7b[2] | 6b[2] | 5b[2] | 4b[2] | 3b[2]

B 6 | 3b[2 | 2b[3] | 1b[3] | 10b[3] | 9b[3] | 8b[3] | 7b[3] | 6b[3] | 5b[3] | 4b[3]

7 | 6af4] | 5al4] | 4a[4] | 3a4] | 2a[4] | 1af4] | 10a[4] | 9a[4] | 8a[4] | 7a[4]

8 | 7a[p] | 6a[5] | 5a[5] | 4a[5] | 3a[5] | 2a[5] | la[5] | 10a[5] | 9a[5] 8a[5]

9 | 8a[6] | 7a[6] | 6a[6] | ba[6] | 4a[6] | 3a[6] | 2a[6] | 1a[6] | 10a[6] 9a[6]

10 | 6b[4] | 5b[4] | 4b[4] | 3b[4] | 2b[4] | 1b[4] | 10b[4] | 9b[4] | 8b[4] | Th[4]

11 | 7b[5] | 6b[5] | 5b[5] | 4b[5] | 3b[5] | 2b[5] | 1b[5] | 10b[5] | 9b[5] | 8b[5]

12 | 8bl6] | 7b[6] | 6b[6] | 5b[6] | 4b[6] | 3b[6] | 2b[6] | 1b[6] | 10b[6] | 9b[6]

Table 8.1: Parallel Multiplication Allocation Table

time will be approximately the number of bands of the rotating matrix at a node multiplied by
the number of stationary bands at a node and by the time it takes to multiply a single band
divided by the number of node processing arrays. This has been summarised for a system with
£ nodes and three p x p processing arrays per node performing the matrix product C = A.B
where A has dimensions ¥p x Q and B has dimensions @ X gp, in Equation 8.3. It is assumed
that there are more matrix band partitions than there are processing arrays, and that matrix B
has closer to, but less than or equal to, a multiple of three partitions per node than matrix A.

. 4 ¥
Tharallel multiply =~ max <7transmit7 Iparallel multiply X [?l) 28 I3 (8.3)

The transmission time is simply the inverse of the internode bandwidth multiplied by the size
of a band partition and then added to the internode latency, 3. The size of the band partition
is the length of the partition. which is @, multiplied by the width of the partition, which is p.
Equation 8.4 summarises this.

Ttrasmit = ba‘n(?“]/)idth i (8.4)

The computation time is derived from the memory load time, and is the cycle time plus any

memory latencies. A full matrix band partition will only fit completely into a cache memory if

the ‘Q" dimension is less than the cache size divided by the band partition width p. For a one

MWord cache and 32 x 32 processing array, the maximum length band partition that will fit
into the cache is

1048576
Qmax cache — 39
= 32768

In general, the matrices that will be multiplied on a multiprocessor will be larger than this, so
cache reuse will be at a minimum. Therefore, cache data streaming is almost essential, as is
careful placement of the data in memory. The computation time for a band partition can be
approximated by Equation 8.5, where ‘D’ is the cache block size and ‘7’ is the load/store cycle
time.

Qxp
Teompute—a=—@-X-pXrst == Tinem latency (8.5)

Equation 8.3 can be expressed in more detail, as shown in Equation 8.6.

Qp Qp . 0
Tharallel multiply =~ max ((m + 5) 5 (QP X T+ 5 X Tnem latency X 3
x% (8.6)

This equation was evaluated for a range of selected matrix sizes on various sized multipro-
cessor configurations. Because there are three degrees of freedom in the sizes of matrices that
can be evaluated, namely the P, Q & R values, the range of matrix sizes that can be simulated
becomes very large. To simplify the simulation process, both the A and B matrices were chosen
to be square, and also to be the same size. However, the performance should be similar in the
event that this is not the case.

The performance in FLOPs (Floating Point Operations Per second) is shown in Figures 8.5a)
through c) for internode latencies of 100 nanoseconds, 1000 nanoseconds and 10000 nanoseconds
respectively. They show that, once the matrix becomes a size large enough to be effectively
handled by the multiprocessor system (minimal idle processors), the processing arrays achieve a
sustained speed that no longer increases with matrix size. Note that the estimate assumes that
a band will always be fetched from main memory, so that it underestimates the performance for
small matrices.

Gauss-Jordan Elimination

The procedure for Gauss-Jordan elimination on a multiprocessor is the same as for a single pro-
cessor, except that the update phase is processed using all the processing nodes. To implement
the algorithm efficiently, the input matrix A must be partitioned and distributed evenly among
the nodes. The most obvious partitioning is to divide the matrix into as many columns as there
are nodes. However, as Gaussian decomposition zeros a column at a time, the node containing
the first column is only used once, the node containing the second column is only used twice, etc.,
which is a very inefficient use of the computational power available due to processor utilisation
mismatch.

Instead, distribute the rows among the nodes, and-then operate on the columns within the
rows stored at a node. (Gauss-Jordan elimination for the multiprocessor becomes the routine
shown in Figure 8.6, which provides good processor utilisation matching. The P x R matrix is
divided into *»* p X R row partitions, which each contain ‘¢’ p X p column partitions.

If the rows are distributed among the nodes in groups the same size as the number of
processing arrays at a node. the number of required nodes will increase only when the efficiency of
doing so justifies the inclusion. Therefore, on a multiprocessor with £ nodes and three processing
arrays at each node, row partitions 1,2,3,36 +1,3£+2,3£+3, ... are placed at node 0, partitions
4,5,6,36 + 4,36 + 5,36 + 6,... at node 1, etc. The node allocation function for the “th row
partition of a matrix will be

alloc(i) = {%| modé 1 <i<m (8.7)

Performance Estimation for Gauss-Jordan Elimination

A simple estimate of the time to complete a Gauss-Jordan elimination on a hypercube can be
made. Like the estimates for matrix multiplication, the example performances are provided only
for selected sizes of problems. However, the sizes are less critical in this case, as there will always
he processor mismatch due to the reduction nature of Gaussian elimination.

160

L 2.5e+i2

1
‘

2e+l2 F

le+l2

Set+ll

]
o

: v E . : 1 2.5e+12 v T . v ' :
"mult_2nodes 100nsS* —o— "mult_2nodea_1000ns" —¢—
wmult_dnodes 100n§" —- umult_dnodes 1000ns" —+-
"mult_8nodes 100nS" -8- #mult_8nodes_1000ns* -8

& -l @ --lonodes -106nS" R > o el --vmultdlbnodes -LO8ONS"
*mult_32nodes_100nS" —& - o n "mult_32nodea_1000nS" 2 -
"mult_édnodes 100ng* —& - | detlz "mult_64nodes_1000nS" -4 -
"mult_l28nodes_100n3" @~ "mult_l29nodes_10Q0ns" -2
F 1.5e+12 |
* s S e b T et
le+l2 |
O T ey Il T B
RKH-H AR
lecizo]
"
A 2 L ' L : i " i A . L
10000 20000 30000 40000 50000 $0000 70000 10000 20000 30000 40000 50000 60000

Figure 8.5: a) 100ns Internode Delay

b) 1000ns Internode Delay

2.5e+12 T v T
"mult_2nodes_10000n§" —o—
wnult_4nodes_10000n8" —-
"mult_8nodes_10000nS" -H--

Mt Bénodes—-L06AGNS" ¥
SaTiIsEk “malt_32nodes_10000ns" - |
€ “mult_é4nodes_10000ns" % -
wmult_128nodes_10000nS" -0
1.5e+12 |
D s . 0
le+ll
S5e+11 | R el e
i
3 i L i i i

Lococ 26600 30000 40000 50000 &0000

Figure 8.5: ¢) 10000ns Internode Delay

70000

Figure 8.5: Performance Estimates for Multiprocessor Multiplication

for k=1 to ¢
A = Ajy
for j=k+41 to p
Arj = AjApk
broadcast pivot row
for each processing array
for each row i in a partition
forj=k+1top
Ay = Ay - AsAkj

Figure 8.6: Distributed Row-wise Gauss-Jordan Elimination

161

70000

The time to perform a Gaussian decomposition such as Gauss-Jordan elimination can be
estimated from the time to complete all the jobs in the serial task list. The jobs within the task
list may be done in parallel, but at several points throughout the procedure, all the processors
must wait on a single processor. Such a case in Gauss-Jordan elimination is when the processors
in the node in which the pivot row is held must wait for the inverse of the pivot block to be
calculated hefore the pivot row can be normalised. Additionally, all other processing nodes must
wait on the pivot row to be normalised before the other rows can be updated. Therefore, the
inherent serial nature of the algorithm constrains the maximum parallel efficiency and hence
performance speed up.

The time estimate is based on the serial procedure:

1. Invert the pivot block Ak
All processors except the one performing the inverse are idle at this stage.

2. Normalize the pivot row
All processors within a node can be active for this operation as the row can be distributed
throughout the node. All processors at other nodes are idle.

3. Broadcast the normalized pivot row

This is a communication phase, the time for completion of which is dependent on the
broadcast parameters in Equation 8.1. The broadcast need not be included in its entirety
as the broadcast can commence as soon as the first pivot Tow element has been calculated,
while the update phase can start as soon as the pivot row has been received at a node.
However, for the sake of argument, the inclusion of the broadcast time in the serial proce-
dure will cause a minimum bound on the expected performance, and hence a more exact
calculation can only get better.

4, Update all blocks in all other rows at each node
This part is the most parallel part of the algorithm, as all processors are in use all the
time. This is the main advantage of Gauss-Jordan elimination for a parallel architecture
over other matrix reduction schemes, as there will always be a constant number of rows
being operated on. In fact, work at Caltech has shown that Gauss-Jordan elimination,
traditionally considered the least efficient algorithin for matrix solution, can solve a system
faster than many other algorithms because of its very good processor usage properties[36).
If there is only a single row in a node, then the row can be divided among the processing
arrays at a node, and all processors operate on the same row partition. If the number
of row partitions at a node is a multiple of the number of processing arrays in a node
(nominally three), then each processing array can exclusively operate on a row partition.

5. Repeat the procedure above until all columns are reduced

The time to invert a block stored in main memory will be the same as Equation 7.8. The
following normalisation phase will be one third the number of column partitions in a row partition
multiplied by the time for a single block size multiply. The time to perform the block size multiply
is the time for the node with the largest number of row partitions (there could be several with
the same number) to update its rows. The update time is twice the multiply accumulate time
for a block sized multiply multiplied by the number of blocks stored at a node divided by three.
The factor of two is present because the original block must be loaded into the array before it is
updated. The factor of three is due to there being three processing arrays at a node. The total
time is the time for all iterations on a decreasing sized matrix.

Because the matrix size is reducing in one dimension only (the number of rows operated on
per column is always constant; only the number of columns reduces), the decreasing matrix size

162

can he replaced by a constant sized matrix with the dimension of the average of the decreasing
matrix dimensions for the sake of time calculations. Ilquation 8.8 summarizes the times for a
P x R matrix on a multiprocessor with £ nodes, each with three processing arrays of size 32 x 32.
The number of row partitions is denoted by ¢ and the number of column partitions is denoted
by o, such that P = 32 and R = 32p.

Tpar, Gauss-Jordan = (Tpivot + Thormalise T Throadcast T Tupda‘te) X (no. of row partitions)

(e—1)
<Tpivot + Thlock muly X —5 /3

Lt.

m

2
-1
+vmp| +2 ’V%} Thlock mult X (0—2—)/3 X 1

2
L,
= | Tpivot T |/ m +tvmp) +

Thlock mult X (9%) (1 +2 VED) X (8.8)

The number of necessary operations is still the same as for a single processing array, ie
ops =~ n® — 1.5n% + 0.5n for an n X n matrix (P = R = n in this case). This leads to an
expression for system performance, which is given in Equation 8.9.

I

n3 — 1.5n2 + 0.5n

Perfpar. Gauss-Jordan = Tpar. ol (8.9)
ar. Gauss-Jordan

Equation 8.9 was evaluated for systems with between four and 128 processing nodes, each
with three processing arrays, with varying internode latencies. The results for internode latencies
of 100ns, 1000ns and 10000ns are shown in Figures 8.7a) to 8.7c) respectively.

8.2 Wavelet Processor

This is a simple description of a systolic array suitable for performing a compact wavelet trans-
formation. The impetus for this came while investigating applications for the matrix engine, due
to the matrix multiplication nature of a wavelet transform. However, although some forms of
the wavelet transform are suitable to implement on the matrix engine [52], the compact wavelet
transforms deserve a more specialised architecture.

Similarly to the Fourier Transform, a Wavelet Transform translates a vector of components in
one domain (eg time) into an equally sized vector in another domain (eg frequency). Unlike the
Fourier Transform, for which the translation operators are sines and cosines, which are localized
in frequency but infinite in time, the operators for the Wavelet Transform are localised in both
time and frequency.

The translation matrix for the compact Danbechies transform is a cyclic, nearly-band matrix.
The dimension of the matrix must be a power of two. Such a matrix is shown in Figure 8.8
(from [73]) for the case of four coefficients. The coefficients are chosen such that the odd rows
of the transform matrix produce a ‘smoothing’ effect on the input vector, while the even rows
attempt to zero, or ‘decimate’, the response [19].

The coefficient matrix can be modified to remove the cyclic wrap-around condition, or rather

163

#11

Figure 8.7: ¢) Latency = 10000ns

Figure 8.7: Performance Estimates for Multiprocessor Gauss-Jordan Elimination

164

U T T T T 1.4e+12 T T T T
"4nodes 100nS" -o— "4nodes_1000nS" —=
"gnodes 100nS" —+- "Bnodes 1000nsh —
e Lo oo o0 .g-- ey o Soconcn [
s “32nodes 100ns* -x - 1.2e+12 | yole "32nodes_1000n&" -+
"é4nodes_100nS" -&-- “64nodes 1000ns" -4
; "128nodes 100nsS" -#% - ;{ »"128nodes_1000ns" -4
- - le+l2 |-
= v 8et+ll |-
—, 1 6e+ll "/——
o -1 de+ll -
B 2e+1l |
ol
= , , . . . _ l , .
o 200000 400000 600000 800000 le+06 1.2e+06] 200000 400000 600000 800000 le+06
Figure 8.7: a) Latency = 100ns b) Latency = 1000ns
1.4e+12 T T T T T
"4nodes 10000nsS" —+—
"8nodes 10000nsS" —+-
L " toooo ch G-
1.2ev12 [~ g "32nodes_10000ng" -*- -
“64nodes_10000nsS" —4--
I’ #128nodes_10000nsS" — -
le+12 | |
3e+ll |- .
ée+l]l ,— -
e+l
2e+1il p E
==
y==a1
. = 1 L 1 A i
2 200000 400000 €00C00 800000 le+06 1.2e+06

(Co i C2 (3 \

g3 —C3 4 —Co
Co (6] (&) C3
¢y —C ¢ —Co
Cp C1 Co C3
Cy3 —Cy (1 Co
cy €3 o
\ 1 —Co c3 —C2

Figure 8.8: Four Coefficient Compact Wavelet Transformation Matrix

by both ends of the data vector. The new matrix becomes the one shown in Equation 8.10.
According to Press et. al. [73], it is possible to eliminate the wrap-around completely, leaving a
purely band-diagonal coefficient matrix without changing the size of the matrix, although they
don’t go into any detail on this point.

($1 \ (cg €1 C3 C3 \ Ty
dy €3 —C; €1 —Cp z3
52 g € Cx €3 T4
dy €3 —C3 € —C

Co (&] (©) C3

3 —C2 €1 (o Tn—1
k Sn/2 o €1 €3 €3 Ty
(ln/2) \ c3 —Cy €1 —Cp) i
i))
(8.10)

One property is that the transforms of the odd rows are stored in the top half of the output
vector and the even rows are stored in the bottom half. Thus the top half contains the ‘smooth’
components and the bottom half contains the "zero'ed components. The ‘smooth’ component
of the output vector are then recirculated again in a pyramidical fashion, smoothing to half the
components and decimating the other half until only one ‘smooth’ component remains. The text
by Press et. al. provides a good graphical description of the transform and permute procedure,
similar to Figure 8.9 below.

Of course, there will be no actual *permute’ stage, as this is simply a storage routine. The
address pattern for loading will be

prev_addr + 1

while the pattern for storing will be

rev_addr 4+ 2 for even rows
2

prev_addr — % 4+ 1 for odd rows

or even more simply, two counters can be used, the first starting at one, the second at 3 + 1.
Although the compact Daubechies transform does not map efficiently onto the systolic matrix
array (due to the large number of zero entries), a diffetent systolic array can exploit the repetitive

165

(=1 [sl [sl [sV [sV [517\

2 dl 52 d1’ 52! d1”
23 52 83 52! dv dl’
x4 transform d2 permute s4 transform d2! pemute d2' transform d2’
— — —_— — —_— e —
2! s3 dl dl dl dl
26 a3 d?2 d2 d2 d2
z7 s4 d3 d3 d3 d3

\ =8 \ d4 \ @4) di) W, \ dd
Figure 8.9: Pyramidical Transform and Permute Procedure

nature of the algorithm, the use of constant matrix coefficients and the sparsity of the matrix. As
the bandwidth of the matrix is always ‘small’ compared to the matrix size, then the dimension
of the array can be reduced by one, ie to a linear array the same length as the number of
coefficients.

If the array is preloaded with the coefficients, then the input vector can move from one end
of the array to the other, with the ‘smoothed’ part of the output vector moving back to the
input end and the ‘decimated’ part of the output vector moving in the same direction as the
input vector. A cell from such an array would have the form shown in Figure 8.10.

\F f §

-1 — ! >

(Multiplier,
Di+1<——- Accululator -'—D,'
+ Delays)

X, 1,

i+ i

Figure 8.10: Cell from a Linear Array for the Wavelet Transform

A block diagram of a cell in the the linear array is given in Figure 8.11, showing the array,
the input and output vectors, and the dual ported RAMs used for recycling the smoothed data.

Then if matrix coefficients are in ascending order from left to right and the input vector is
applied from the right hand side, the inputs propagate to the left and ultimately all end in the
output vector in the correct form. Because of the ordering in the systolic array of the matrix
coeficients, the ‘smooth’ components will all be computed simultaneously. Therefore, coeflicients
1 and 2 can be added, while all the others are delayed by suitable elements. The accumulated
coefficient products are then shifted right, and accumulated with the next coefficient product,
and all elements further to the right are delayed again. This procedure is repeated until the

166

a a a Dual Ported
0 | n RAM
>
I 1 | Linear Systolic .
| | Output Array Input
| Vector Vector

Figure 8.11: Linear Array for n-dimensional Wavelet Transform

‘smooth’ component emerges from the right hand edge of the array?®

The formation of the decimated components also requires delays, but this time because some
products are available before any other products.

Table 8.2 shows the time-step at which each product is calculated for the first ten time-steps,
with four coefficients. The first set of products that are summed to produce the first ‘smooth’
coefficient, s;, are all calculated in step 4. The required sum is

81 = CoX1 +C1 Xy + Co X3+ C3Xy

If the data is moved to the ‘right’, then the temporary sum $; = CoX; + C; X2 can be calculated
immediately. The next temporary sum §; = é; + C3 X3 can be calculated in the next time step,
so the product C3X3 needs one delay slot. The remaining product can be added one time step
later, according to the equation s; = & + ('3.X4, so two delay slots are required. The decimated
components move to the left, in the same direction as the incoming data. The product C3.X;
is calculated in the first time step, and must have the product C; X, subtracted from it. CoX>
is calculated in the third time step, so the result of C3X; must be delayed by two slots. The
temporary sum (il = (53X, — (35X, is available after the fourth time step, and must be added to
the third product C1X3, which is available after the fifth time step, to produce the temporary
product d, = dy + C'1 X5. Therefore, the temporary sum d; must only be delayed by a single
time slot. Similarly, the final ‘decimated’ result dy = dy — Co X4 also requires that the temporary
sum d; only be delayed by a single slot. The reason only the first product term requires two
delay slots instead of one is that it not passed through an accumulator or adder. Therefore, if
all the cells in the array were created exactly alike, and the first product was accumulated with
‘zero’, then only a single delay slot would be required.

With these requirements in mind, it is a simple matter to produce a systolic cell capable of
performing a compact Daubechies wavelet transform. Such a cell is shown in Figure 8.12. An
arbitrary number of these cells can be butted together to form a linear systolic array capable of

3Note that a binary tree would have been a more logical approach to implementing the accumulation of all
the components that are available simultancously. However, the binary tree does not lend itself to a simple,
expandable systolic array (one branch structure will always be wasted) and will lose the compactness of a linear
array.

167

Time | Cell 0 | Cell 1 | Cell 2 | Cell 3
(steps) | (data) | (data) | (data) | (data)
1 - - - C3X1
2 - C2 X, | C3X3
3 - Cle Cy X, 03)(3
4 C()Xl Cng Cy X3 6’3)(4
5 C()X2 Cng Ch X4 03X5
6 Co)(g Ch1 X4 Cng C3Xg
7 CoXq | C1X5 | CoXg | C3X7
8 C()X5 ClX(; C2X7 C3X8
9 C()XG 01X7 C9Xsg C3X9
10 00X7 Cng CQXQ C3X10

Table 8.2: Wavelet Products versus Time

performing a wavelet transform of any degree within the confines of the algorithm (there must
be an even number of coeflicients).

' Call ‘Co
Boundary Baundery

R s e[xou
< |
[X
Phase —] 3
-
|
+ '
D"" / \—-lé'l D out
s.'nﬁ P '_|_‘ | § out

Regiaters lor
Varable Delay

Figure 8.12: Single Cell for Wavelet Implementation

To ‘undo’ the wavelet transform and reproduce the original input vector, &, then the vector
of wavelet values, denoted w, needs to be multiplied by the inverse of the wavelet coefficient
matrix, C.ie

F=Clw
Recalling that the compact Daubechies wavelet transform is a transformation on an orthonormal
basis, ie all the rows and columns in C are orthogonal, then the inverse matrix C~! is simply
the transpose of the same matrix C~' = CT. As the transposed matrix is nearly identical to

the original matrix in form, exactly the same hardware can be used for the inverse transform as
was used for the original transform.

168

8.2.1 Still Picture Compression

Because the Wavelet Transform produces large coefficients for regions of large change, or high
contrast, and small coeflicients for regions of small change, or low contrast, compression by
maintaining only the large components will result in minimal noticeable loss in image quality.

Additionally, as the Wavelet Transform is localised in both space and time, then the effects
of omitting a coefficient are localised as well. This is different to omitting Fourier or cosine
coefficients, which are not localised, and hence produce ‘ringing’ when components are omitted.
For this reason, Fourier based image compression generally uses ‘blocking’, whereby the image
is divided into many small blocks (typically 6 x 6 to 16 x 16 pixels) and the lossy compression
contained within the blocks. This in itself is another cause of poor image compression, as the
blocks themselves become noticeable for large compression ratios.

8.2.2 Moving Picture Compression

The MPEG standard (Moving Pictures Experts Group) includes both inter- and intra-frame
compression. These compressions are between successive images and within an image respec-
tively. Therefore, the amount of computational power required is much greater than for single
image compression. However, as the images will not, in general, be analysed as critically as a
still image, the compression ratios can be much higher, considerably reducing bandwidth [2].

Similarly, by comparing the difference between successive compressed wavelet transformed
images, a system can be constructed that uses wavelet compression on moving pictures with a
highly reduced required bandwidth and a less noticeable loss of quality

Variable Quality Image Compression

As the number of coeflicients used for the Wavelet Transform is an arbitrary even number and
the systolic array for processing the transform is linear, the number of coefficients is dynamically
reconfigurable. Additionally, the threshold of compression can be changed between successive
images. Therefore, it is relatively simple to create a system that transmits a reduced quality
image for the majority of its use, while being capable of transmitting high quality images with
an increased delay if required. Such a system would be of great use in applications such as video
telephones and mobile video communication. where the bandwidth is limited. The standard
image of reduced quality could be tailored to use the full available bandwidth for real time
motion, while a high quality image (such as a photograph or detailed diagram) could be sent
with a delay.

This section on a systolic wavelet processor is intended to demonstrate the ease with which
many algorithms can be converted into systolic arrays, not on the image compression and coding
itself. For more information on compression, see [73, 52, 53] and other authors.

8.3 Conclusion

The ability to parallelize many matrix operations has been used to show that a multiprocessor
version of the matrix engine is possible, with estimated performance figures in the region of
tens to hundreds of GigaFLOPS for Gauss-Jordan elimination and approaching a TeraFLOP for
matrix multiplication on an appropriately sized machine for a large enough problem size. These
figures open a whole realm of modelling in fields such as airflow and fluid-flow that was previously
infeasible, such as the automated optimisation of aircraft, vehicle or ship profiles involving the
repeated solution of matrices of the order of 20,000 x 20,000 to 1,000,000 x 1,000, 000.

169

The systolic process was also extended to the design of a linear systolic array for the com-
putation of the Daubechies Discrete Wavelet Transform (DWT). This transform shows great
potential for use in lossy image compression, and as such a systolic array capable of perform the
computations simply and with a high bandwidth would be of great use. Applications such as
pay-TV (cable-TV) and video conferencing would benefit greatly by a reduction in the amount
of data that is required to be transmitted with minimal loss in quality, and that can be modified
dynamically to match a required image quality.

170

Chapter 9

Summary and Conclusion

In this thesis, the implementation of a systolic processor interface has been introduced and
solutions proposed for the many difficulties encountered in such a task. The design task has
included several separate but related tasks, including

1. The VLSI design of an extended version of Marwood’s Address Generator.
2. The construction and development of algorithms to be implemented on the matrix engine.
3. A discussion of arithmetic components used to optimise the speed of the system.

4. The design of a memory subsystem to support the high computational rate of the process-
ing array.

For comparison purposes, consider the SCAP processor particulars that were presented in
Section 2.2. Although the SCAP system has now been updated and is using a slower technology
than that used here, a point by point comparison is still interesting. This is shown in itemised
form below.

e Not only does the data controller presented here contain a interface to memory from the
array, it includes cache management and tag checking in the interface standard, which
allows the construction of fast multi-level memory systems at a reasonable cost.

e The data controllers are cascadable to an arbitrary size. In fact, if a multichip solution
is used with the address generation and tag checking hardware on one chip and the data
registers and sundry arithmetic on another, only the data chip need be replicated for
expansion, as only one address generator per interface is required.

e The bus interface will allow common or independent memory subsystems. However, unlike
the SCAP system, a common memory system must allow some form of bank switching
or multi-access memory, as the interface depends that each controller can access memory
independently.

e As the address generator is a Marwood Difference Engine that has been extended to four
dimensions, the same zero cost operations available on SCAP are also available, as well as
zero cost partitioning and numerical algorithms.

e There is no direct support for complex matrices, although these can be supported in
software. Sub-matrices and non-square matrices are supported via the difference engine.

171

e Arbitrary sized matrices are directly supported. The four dimensional difference engine
will allow the data controller to automatically partition any applied matrix to fit on the
fixed sized processing array.

o The data controller can be used to either load or store results.

e Allocating a small amount of instruction memory in the Harvard architecture style will
allow the data controllers to execute their own instruction streams independently from
a host system, allowing complicated algorithms to be performed in their entirety by the
matrix processing system.

e Each data controller can fetch or store operands at a rate of 100M floating point words
per second, memory subsystem permitting.

A block diagram of the complete system is shown in Figure 9.1.

Dc Dc Processing DC
1 2 1 Array 7 3
1] 1] T
' !
: | |
| r [ornaw 2} L
I =
¥ [} ¥ ¥
i i $e {
Tag - Ceoha Tag Casche Teg Casshe Tag ' Caohs
L 0 \ 1 7 7 k- I 3
Maln Memory Maln Memory Malin Memory Maln Memory
o 1 2 a

Figure 9.1: Complete System Block Diagram

The system is capable of speeds only currently available using expensive supercomputer
technology, but instead requiring only CMOS technology and a much smaller physical area. A
Multi-Chip Module containing an array capable of three to five sustained GigaFFLOPs would be
hand-holdable, and a system built around the array could fit on a single printed circuit board.
Because of the small size of each processing array, multiprocessors constructed with the order of
one hundred processing arrays are viable, which puts the realm of TeraFLOP computing within
grasp. The possibility of connecting 100 CRAY-2 supercomputers together is minimal, even in
terms of the physical area that would be consumed, whereas one hundred systolic processing
arrays connected together is not infeasible.

Although the range of applications that can be solved on the processing array is limited,
suitable applications typically form the basis for computations that consume a great deal of
available computing power with little user interaction. For example, large air flow and fluid
flow simulations that are well suited to our design may take days to run on current vector
supercomputers. The impact of improvements in this field will be resoundly felt.

172

Appendix A

SCAP Data Sheets

173

Pages 174 to 178

Removed
for reasons of commercial confidentiality

Appendix B

Proof of Convergence for Iterative
Matrix Inversion

B.1 Initialising the Pivot Inverse Iteration

The residual matriz R is defined as the difference between the actual inverse and the initial
approzimate inverse. If it is noted that the product of the actual inverse (call this Y) and the
matrix for which the inverse is sought (ie A) is the identity matrix I, then the residual matrix is
the difference between the identity I and the product of Yo and A. This is shown in Equation
B.1.

R=1I-Y,A (B.1;
This leads to the (infinite) series
A7l = (I-R) 'Yy
= I+R+R*+R*+--).Y (B.2)

From Equation B.2, for convergence, the norm of R must satisfy
IR[| < 1 (B.3)

where the norm is defined to be the largest amplification of length that the matrix is able to
induce on a vector [73], ie

|IR.v|
vl

R|| = ma; ‘B.4
R[] = max (B.4)
Press et al. [73] provides a good analysis on the work of Pan & Reif [71] for choosing a good
initial guess. They point out that a suitable choice is a sufficiently small constant, €, multiplied
by the transpose of the matrix for which the inverse is desired, ie

Y, = AT (B.5)

If Equation B.5 is to satisfy the requirement from Equation B.3, then it can be shown [73]
that R is of the form
R = diag(l — e\, 1 —€Xa ..., 1 — €Ay) (B.6)

where \; are the eigenvalues of AT A,

Pan & Reif [71] point out that the vector norm requirement in Equation B.4 need not be
the Euclidean, or /5, norm, but could be either the [, norm or the /; norm. These lead to the
fwo possible choices for ¢, given below:

179

1
€ < a? or €< - B.7)
B]Xk: d T max; 3 jlaij| X max; Y-, |ag] (

which are much easier to calculate than the eigenvalues.
A further simplification can be made by choosing a different matrix norm from Equation B.4.
Three other common norms include the “Frobenius™ norm

|R||F = JZZ"?J' (B.8)

IRls = max 3 Iri| (B.9)

, the “column-sum” norm

, and the “row-sum” norm
R Il = max 3 | (B.10)
J

any of which may be satisfied to guarantee convergence.

Recalling that Gaussian elimination! is stable only for a diagonally dominant matrix (Jaii| >
Z lai;|), then the row-sum norm of the residue matrix can be made less than one if the initial
J#i
estimate of the inverse (Yy) is set to

Bo = diag(:-,-L-...., 1) . (B.11)

a11’aze”’ Cnn

To see this, consider the row-sum norm of the residue matrix.

IRl = I-YoA

1 0 -+ 0) (ﬁ 0 - 0 [a1 a1z o+ ain
01 -+ 0 0 <L o 0 Q91 Ggg ‘- dgy
— . 22
0 0 = 1) \ 0 0 - _l:IT \anl Gn2 *°° GQng
1 0 [1 2 2,
1 -+ 0 2L] gu gea ,
= L . - 2 o j” (B.12)
0 0 |) uL Guy |
0 22 ... @n
a1 @11
1 (g ... %n
= ik @22 (B.13)

If the row-sum norm from Equation B.10 is used, then the norm of the residue matrix R
becomes

n
IIR|| = mgxz 7351
=1

"which includes Gauss Jordan climination and LU decomposition

180

(VAN

<

Thevefore, an initial estimate of

will converge to the inverse matrix as n — .

n
ay;
max E | Aﬂ.[
; 7

=tz 4
n
mlaxlll laiil = D aij]
J=1j#i
1]
1 ifi=j
('J,'; = T o

0 otherwise

2

(B.14)

(B.15)

? Actually, we hope much sooner than n — . The convergence should take approximately log, prec iteratious,
where prec is the precision in bits of the scalars in the matrix, due to the quadratic nature of the algorithm.

181

Appendix C

Broadcasting Data on a Hypercube

One of the major bottlenecks with multiprocessor systems is the accessing of data residing in
main memory. If the memory is physically distributed throughout the system, data needs to be
sent among the nodes by message passing strategies. Two nearest neighbours can communicate
directly, but two remote processors can only exchange data by routing a message through inter-
mediate nodes. Although this appears to by detrimental to the performance of the system by
interrupting the intermediate node(s), advantage can be made of this mechanism if a broadcast
is required, as the intermediate node can not only pass the message on, but keep a copy for itself.
The broadcast mechanism is very useful in matrix algorithms such as matrix-matrix multiplica-
tion and Gaussian elimination, where complete rows or columns are required simultaneously at
all nodes.

The theoretical limit for the performance of a broadcast on a hypercube with 2™ nodes can
be obtained by realising that it takes at least m(3 + 7.) time units for the first word to reach
the last node (the furthest along the critical path), where 3 is the latency per word and 7, is the
time to send one word over a nearest-neighbour link. This word can arrive simultaneously with
(m — 1) others (one per link). After the first word arrives, the last node can receive at most m
words per cycle for the remaining % cycles, where L is the number of words that are to be
broadcast. Therefore, if the number of packets of length (L/m) is greater than the critical path,
the theoretical minimum time for a broadcast is

(L —m)

Toptimal = m(d+ 1.)+ T'TC

= mJ+r.(m+ M
L
= mﬂ+(;+m—)7, (C.1)

m

C.1 Simple Broadcast

If a broadcast function on a hypercube were to simply broadcast from each node to its nearest
neighbours, which in turn would broadcast to each of their nearest neighbours, a large amount of
redundant data would be transmitted and the control would be difficult. In a system where the
communication bandwidth is a critical factor, such a scheme would result in a serious reduction
in sustained performance. A much hetter way to broadcast data in an m—cube is to generate
a spanning tree with m links, as shown in Figure C.1 for a broadcast from node 0. The tree is
embedded in the topology, so the transfer of data from node 0 flows along the heavier lines in
Figure C.1.

182

10 11

8 & = 9
2 3
ON——— 1
Zs 7\
4 5 .
14/ 15
12 13

Figure C.1: Spanning Tree for a 4 Dimensional Hypercube

The spanning tree uses the same Gray-code that is used in the labelling of the m—cube,
by receiving on the link that corresponds to the first bit becoming a ‘1’ from a sending node
that has the same bit equal to ‘0’. As the critical path is ‘m’ links long, the broadcast takes m
broadcast time units, with communication over the longest length started first. For a broadcast
initiated at node 0, then

1. send data from node 0 to node & (first 0-1 at bit position 3)
2. send data from node 0 to node 4. and from node 8 to node 12 (first 0-1 at bit position 2)

3. send data from node 0 to node 2, from node 4 to node 6, from node 8 to node 10, and
from node 12 to node 14 (first 0-1 at bit position 1)

4. send data from node 0 to node 1, from node 2 to node 3, from node 4 to node 5, from
node 6 to node 7. from node 8 to node 9, from node 10 to node 11, from node 12 to node
13, and from node 14 to node 15 (first 0-1 at bit position 0)

Of course, if the broadcast were to originate from any other node, a bit-wise XOR between
the absolute node label and the label of the originating node will produce the correct broadcast
table. It is obvious from the above procedure and the corresponding spanning tree that, if the
time to transfer ‘L’ words between two nodes is 3 + L7, where 3 is the start-up overhead and
T, is the time to pass one word between nodes, the total broadcast time is given by

Tsp = m(f + Lt.)

C.2 Pipelined Broadcast

A method for improving the throughput of data is to pipeline the data flow [76]. The theory of
pipelining is straight forward, with packets of data progressing in a pipelined manner through
a single spanning tree. Hen(e if a node at distance *j’ from the root node has the first packet

1-from-the-root-node-while=the=j2 packet is-at-the

183

neighbouring nodes of the root node. If the broadcast of length ‘I’ is broken into ‘i’ packets
for pipelining, each of size ‘L/u’, then the total time for a broadcast is simply the time for the
first packet to reach the last node plus the time for the remaining packets to propagate through.
Using the simple broadcast times, the time for the first packet of length ‘L/u’ to reach the last
node is m(3 + 1.L/p). The remaining packets reach the last node every (8 + 7.L/u) units, and
there are (p— 1) such packets, so the remaining packets take (p¢—1)(3+7.L/p) units. Therefore,
the total time is T(p) = (m+p — L)Y B + 7L /).

The only variable that can be manipulated is the packet-size u, as m, 7. and 3 are machine
dependent and L is problem dependent. Therefore, to minimize the time 7),, separate the
components with and without x and then minimize with respect to pu.

(m—1)TCL>
7

Tolp) = ((m—-0p+71.L)+ (/lﬂ + (C.2)

(_.-f _ - :E) (C.3)

MM

~ [tm-1)rL
PN

As Equation C.2 is hyperbolic, then an examination of p end-points (1t = 0 & oo) shows that

{)

Trm()

Equation C.3 is zero when

(m— 1)L
binin = = i
/ E

is a minimum. Therefore, the optimum (minimum) time for a pipelined broadcast is

X
Toulp) = (\/Ln 4 \/M) (C.4)

3

The procedure above assumes that the node to node links can all be activated simultaneously,
and that they are unidirectional. If the links are bidirectional, then only half the possible
bandwidth will be used, so the modification of Section ('.4 should be used.

C.3 Parallel or Rotated Broadcast

The spanning tree in Figure C.1 only uses 2™ — | of the available m.2"™=1) links, which is a
considerable waste of resources. To utilise the resources in a more efficient manner, ‘m’ separate
spanning trees can be created. If these are rotated into the m—dimensions and the data is
split into ‘m’ pieces, ‘m’ concurrent broadcasts can proceed, making use of all the links of the
hypercube. Figure C.2 shows four spanning trees for a 4-cube.

If ‘wormhole’ routing is to be used (packets of data ‘burrow’ through the network in a
wormhole fashion), the act of splitting the data into m pieces is a natural requirement, and can
be used to our benefit. For a broadcast of ‘L’ words, the time to broadcast using the rotating
broadcast scheme is the same as the time to broadcast L/m words using the first (simple)
scheme, as the initial data transfer has been split into m packets of the same length. Therefore,
the total time to transfer ‘L’ words is

m(B8+ 1.L/m)=mp+ L7,

Note that the packet-size independent term L7, is not dependent on the dimension of the
hypercube, due to the use of all links all the time. The only implementation-size dependent
terut is the start-up overlead.

184

C.4 Pipelined and Rotated Broadcast

To pipeline a rotated broadcast strategy! is not a simple matter of combining the two approaches,
as the spanning trees (eg of Figure C.2) are not edge dependent. This is due to the fact
that a pipelined broadcast utilises all links in a spanning tree at an intermediate time (not a
start or finish time), which will cause contention over links if another spanning tree is used
simultaneously. A new tree called the m-Edges disjoint Spanning Binomial Tree (m-ESBT) was
used by Johnson and Ho [42] to fully utilize the links in a hypercube. They constructed an
m-ESBT as follows [42, 76]:

L. start with a standard Spanning Binomial Tree (SBT), rooted at node 0.
2. rotate the binary node number left to obtain (m — 1) new SBT’s%.

3. to make these SBT’s edge-disjoint, negate the (k— 1)t bit of each node on the £** spanning
tree for 1 < k < m — 1, and also negate the most significant bit of the original SBT.

4. node 0 is now the root for all the ‘m’ resulting spanning trees, so the trees can be merged
into a single tree of height m 4 1. This tree is the required m-ESBT, and is shown for a
3—cube in Figure C.3.

Using the expression for the time to broadcast for a pipelined broadcast, the new time to
broadcast data using an m-ESBT can be determined by simply replacing the length I with the
value ;L; (the new length sent via each SBT), and the critical path by the new tree height m + 1.
Then the new expression for the time to broadcast is

, Lz, o _
TPH(,Uopf) = - + \/"“.--i (C.5)
B
i
'Or rotate a pipelined one
2If a node in the cube is represented by the binary number b = (bni—1,bm—2,...,b1,b0), the left rotation
operator, Ri(b), is defined to be R;(b) = (byi—2,bm—a,...,bo,bn—1), while ‘6’ rotations is represented by the
f operator RE(B) = Ri(REVH)), the k™ SBTie the operator Ri() is recursive.,

B 185

14 115

12 13

13

Figure C.2: 4 Rotated Spanning Trees for 4-Dimensional Hypercube

000
001 5
> 0104
011 101 110
e ~ -
111, \ t ! .
010 100 111 100
110 Vior

.. 100
011 T
- <101 ~
v/ 3 1

001 | 111 001 010

tor1

Figure C.3: 3-Dimensional Edge-disjoint Spanning Binary Tree

186

Bibliography

(1]

Anderson E.| Bai Z., Bischof C., Demmel J., Dongarra J., Du Croz J., Greenbauin A., Hammarling
S., McKenney A., Ostriuchov S. & Sorensen D.: “LAPACK User’s Guide™ SIAM Press, Philadelphia,
1992.

Ang P, Ruetz P.A. & Auld D.:“Video Compression Makes Big Gains.” LK. F.E. Spectrum, Vol 28,
No 10, pp 16-19, October 1991.

Avizienis A., “Signed-Digit Number Representations for Fast Parallel Arithmetic.” IRFE Transactions
on Electronic Compulers, pp 389-400, September, 1961.

Balakrishnan W. & Burgess N.: “Very-high-speed VLSI 2s-complement multiplier using signed
binary digits.” [FE Proceedings-F, Vol 139, No 1, pp 29-34, January 1992.

Beaumont-Smith A., Marwood W. & Eshraghian K.: “The Gallium Arsenide Implementation of a
Systolic Floating Point Element.” Proceeding of the 12th IREE Australian Microelectronics Confer-
ence, pp 255-260, October 1993.

Berry M., Gallivan K., Harrod W., Jalby W., Lo S., Meier U., Philippe B. & Sameh A.H.:“Parallel
Algorithms on the Cedar System.”, in Proceedings of the International Conference on Parallel Pro-
cessing and Applications, pp 25-39, 23-25 September, 1987. Published by Elsevier Science Publishing
Co.

Blackley W.S., Lim C.S. & Eshraghian K.: “Architecture for Very High Speed Gallium Arsenide Pro-
cessing Elements for Matrix Based Computations.” IREE 2nd International Electronics Convention

and Ezxhibition 1989.

Bode, Dal Chin (eds.):“Parallel Computer Architectures”. Lecture Notes in Computer Science no.
732. Published by Springer Verlag, 1993.

Bradley D. & Larson J.:“Fine-grain Measurements of Loop Performance on' the Cray Y-MP.” CSRD
Report, Center for Supercomputing Research and Development, University ~f 1llinois at Urbana-
Champaign, 1991. A

Briggs W.S. & Matula D.W.:"A 17 x 69 Bit Multiply and Add Unit with Redundant Binary
Feedback and Single Cycle Latency.” Proceedings of the I.E.E.E. Eleventh Symposium on Compuler
Arithmetic, pp 163-170, June 29-July 2, 1993, Windsor, Ontario.

Burgess N.: Lecture Notes, Department of Electrical & Electronic Engineering, The University of
Adelaide, 1994.

Burrus C.5.:“Index Mappings for Multidimensional Formulation of the DFT and Convolution.”
IEEE Transactions on ASSP, Vol 25, pp 239-242, June 1977.

Bursky D.:“Synchronous DRAMs Clock at 100 MHz.” Electronic Design, pp 45-49, February 18,
1993

Campbell J.K, Synnott S.P. & Bierman G.J.: “Voyager Orbit Determination at Jupiter.” in Kalman
Filtering: Theory and Application, IEEE Press 1985, reprinted from IEEE Trans. Automat. Contr.,
vol AC-28, pp 256-268, Mar. 1983.

Carey G.F. (editor): “Parallel Supercomputing: Methods, Algorithims and Applications.” John Wiley
& Sons, 1989,

Carnevali P., Radicati G., Robert Y. & Sguazzero P.:“Block algorithms for Gauss elimination and
Householder reduction on the IBM 3090 Vector Multiprocessor.” in Proceedings of the inlernational

187

(26]

Conference on Parallel Processing and Applications pp 297-302, 23-25 September. 1987. Published
by Elsevier Science Publishing Co.

Catanzaro B.:“SPARC MBus Overview.” Sun Microsystems, Inc.

Curtis I.A., Clarke R.J., Clarke A.P. & Marwood W. * Data Formatier.” PCT Patent Application,
November 1992.

Daubechies 1.:“Orthonormal Bases of Compactly Supported Wavelets.” Communications on Pure
and Applied Mathematics Vol 41, pp 909-996, 1988.

“DECChip™ 21064-AA RISC Microprocessor Preliminary Data Sheet.” Digital Equipment Cor-
poration, Maynard, Massachuseits, 1992.

“Introduction to Designing a System with the DECChip”™ 21064 Microprocessor.” Revision 1.0.
Digital Equipment Corporation, Maynard, Massachusetts, 1992.

Dolecek Q.E.:“Parallel Processing Systems for VHSIC.” VHSIC' Applications Workshop, 1984.

Dongarra J.J., Bunch J.R., Moler C.B. & Stewart G.W.:“LINPACK Users’ Guide.” SIAM Press,
1979.

Dongarra J.J. (ed.): “Experimental Parallel Computing Architectures.” Elsevier Science Publishers,
New York, USA, 1987.

Edelman A.:“Large Dense Numerical Linear Algebra in 1993 - The Parallel Computing Influence.”
Internal Report, Department of Mathematics, University of California, Berkeley, California, 1992.

Fisher A.L., Kung H.T., Monier L.M., Walker H. & Dohi Y.:“Design of the PSC: A Programmable
Systolic Chip”. Proceeding of the Third Callech Confercnce on Very Large Scale Integration,
Pasadena, California, USA, pp 287-302, 21-23 March 1983.

Foulser D. & Scheiber R.:*The Saxpy Matrix-1: A General-Purpose Systolic Computer”. Computer,
Vol 20, No 7, pp35-43, July 1987.

Fox G. Hey A.J.G. & Otto S.:“Matrix Algorithms on the Hypercube I: Matrix Multiplication”.
Parallel Computing, Vol 17, No 4, 1987.

Fox G., Johnson M., Lyzenga G., Otto S., Salmon J. & Walker D.: “Solving Problems on Concurrent
Processors, Volume 1.” Prentice Hall, 1988.

Gallivan K., Jalby W., Meier U. & Sameh A. H.: “Impact of Hierachical Memory Systems on
Linear Algebra Algorithm Design.” Infernalional Journal of Supercomputer Applications, Vol 2, No
1. pp12-48, 1988.

Gaston F.M.F. & Irwin G.W.:"Systolic Kalian filtering: an overview.” IEE Proccedings, Vol 137,
No 4D, pp 235-244, July 1990.

Goldberg D., “Computer Arithmetic” in “Computer Architecture - A Quantitative Approach.”,
Appendix A. Morgan-Kaufmann Publishers, Inc., San Mateo, Cal., 1990.

"

Good I.J.:"The Relationship Between Two Fast Fourier Transforms.” IEEE Transactions on Com-
puters, Vol C-20, No 3, pp 310-317, March 1971,

Handler W., Haupt D., Jeltsch R., Juling W. & Lange O.:“Compar” Lecture Notes in Computer
Science, No. 237., Springer-Verlag.

Hennessy J.L. & Patterson D.A., “Computer Architecture - A Quantitative Approach.” Morgan-
Kaufmann Publishers, Inc., San Mateo, Cal., 1990.

Hipes P. & Kuppermann A.:“Gauss-Jordan Matrix Inversion With Pivoting on the Hypercube.”
Unpublished Caltech report. C3P-347, 1986.

Hockney R.W. & Jesshope C'.R.: “Parallel Computers: Architecture, Programming and Algo-
rithms”. Hilger, UK, 1981.

Hord, R. Michael:*Parallel Supercomputing in SIMD Architectures™. CRC Press, I'lorida, USA,
1990.

Houstis E.N., Papatheodorou T.S. & Polychronopoulos C.D.:“Supercomputing” Leclure Notes n
Compuler Science, No. 297, Springer-Verlag, 1988,

188

IDT:*Special Memories and Modules.” Published 1992.

Johnson K.T., ITurson A.R. & Shirazi B.:*General Purpose Systolic Arrays.”, I[ELE Computer, Vol
26, No 11, November 1993.

Johnsson S.L. & Ho C.T.:“Optimum Broadcasting and Personalized Communication in Hyper-
cubes.” IEEE Transactions on Computers, Vol 38, No 9, pp 1249-1268, 1989.

Kahaner D.K.:“Japan: a competitive assessment.” [EL] Spectrum, pp42-47, Sept. 1992.

Kahaner D.K.:“Supercomputing - the View from Japan.” IFEE Micro, pp67-70,Feb 1993,

Kalman R.E,:*A New Approach to Linear Filtering and Prediction Problems.” Transactions ASME,
Journal of Basic I'ngineering, Vol 82D, pp34-45, 1960.

Katona E.:“A lattice model for cellular (systolic) algorithins.”, Parallel Computing, Vol 3, pp 251-
258, 1986.

Kitagawa K. M.:“An MBus Tutorial.” Revision 1.0a, Sun Microsystems, SPARC Technical Market-
ing Division, January 25, 1991.

Kreyszig E.:“Advanced Engineering Mathematics, 6th Edition.” John Wiley & Sons, New York,
1988.

Kung S.Y.: “VLSI Array Processors” Prentice Hall Information and System Sciences Serics, En-
glewood Cliffs, New Jersey, 1988.

Lenoski D., Laudon J., Gharachorloo K., Weber W.-D., Gupta A., Hennessy J., Horowitz M. & Lam
M.: “The Standford Dash Processor.” IEEE Computer Vol 25, No 3, March 1992.

Mace M.E.:“Memory Storage Patterns in Parallel Processing.” Klewer Academic Publishers, 1987.

Mallat S.G.: “Theory for Multiresolution Signal Decomposition using the Wavelet Representation.”
IEFEE Transactions on Pattern Analysis and Machine Intelligence, Vol 11, pp 674-693, 1989.

Mallat S.G. & Zhong S.:“Compact Image Coding from Edges with Wavelets”. Procecedings of the
1991 International Conference on Acoustics, Speech and Signal Processing - ICASSP91. Vol 4, pp
2745-2748, 1991,

Marwood W., "A Generalised Systolic Ring Serial Floating Point Multiplier.” Electronic Letters,
Vol. 26 No. 11, pp 753-754, 24th May 1990.

Marwood W., “The Implementation of the Discrete Fourier Transform on a Systolic Configurable
Array Processor.” Internal Report GAAS-89-1, Department of Electrical and Electronic Engineering,
The University of Adelaide, 1989, /

Marwood W., “A Number Theory Mapping Gencrator for Addressing Matrix Structures.” Paten!
Cooperation Treaty Paleni, June 1990. =

Marwood, W.:Discussions and Correspondence at the University of Adelaide. November 1993,

Marwood W.: “An Integrated Multiprocessor for Matrix Algorithms™ Ph D. Thesis, Department of
Electrical and Eleclronic Engineering, The University of Adelaide, June, 1994.

Marwood W. & Beaumont-Smith A., “The Implementation of a Generalised Systolic Serial Floating
Point Multiplier.” APCCAS'92, IEEE, IREE and [EAust Asia-Pacific Conference on Circuils and
Systems, 8-11 Dec. 1992.

Marwood W. & Clarke A.P.:*A Generic Time-Domain Beamformer Architecture.” The Australian
Computer Journal, Vol 20, No 3, August 1988.

Marwood W. & Clarke A.P.:“On Computing Fourier Transforims Using a Matrix Product Machine.”
Proc. 7th Australian Microelectronics Conference, Sydney, May 16-18, 1988.

Marwood W. & Clarke A.P.: “Overhead Penaltics in Dynamically Reconfigurable Arrays of Pro-
cessing Elements.” Journal of Flectrical and lectronics Engineering, Australia, June 1987,
Marwood W. & Clarke A.P., “A Matrix Product Machine and the Fourler Transform.” IEFE pro-
ceedings - (&, Crrcuils, Devices and Systems, Vol 137, No 4, pp 295-301, August 1992.

Marwood W. & Lim C.C.: “A GaAs Systolic Processor for Implementing a Kalman Filter.” Proc.
9th Australian Microelectronics Conference, pp 109-114, July 2-4, 1990.

189

[65]

Marwood, W., Shaw T., Liebelt M. and Eshraghian K.:*A Data Controller for a Systolic Outer
Product Engine.” Proceeding of the [2th IREE Australian Microclectronics Conference, pp 221-226,
October 1993.

Mead C. & Conway L.:“Introduction to VLSI Systems.” Addison-Wesley, Reading Mass., 1980.
Moore W., McCabe A. & Urquhart R.:“Systolic Arrays.” Adam Hilger, 1987.

Motorola: “Memory Device Data DL113, Rev7.” Published 1991, previous edition 1990.
Nwachukwu E.0.:“Address Generation in an Array Processor.” [EEE Transaclions on Computers,
Vol C-34, No 2, pp 170-173, 1985.

Ortega J.M.:“Introduction to Parallel and Vector Solution of Linear Systems.” Plenum Press, New
York, 1989.

Pan V. & Reif J.:“Efficient Parallel Solution of Linear Systems.” in Proceedings of the Seventennth
Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, pp 143-152, 1985.

Petkov N.:“Systolic Arrays for Matrix 1/O Format Conversion.” Electronic Letters, Vol 24, No 13,
23 June 1988.

Press W.H., Teukolsky S.A., Vetterling W.T. & Flannery B.P.:“Numerical Recipes in C.” Second
Edition. Cambridge University Press, 1992.

Quinn M.J .:“Designing Efficient Algorithms for Parallel Computers.” McGraw-Hill, 1987.
Reinhold O. & Marwood W.:*Silicon Hybrids -~ A Technique for ‘Zero Defect’ Wafer-Scale Proces-

sors.”, Journal of Electrical and Electronics Engineering, Australia, IEAust. & IREE Aust., Vol 11,
No. 3, September 1991.

Robert Y.:“The Impact of Vector and Parallel Architectures on the Gaussian Elimination Algo-
rithm.” Manchester University Press/Halstead Press, 1990.

Robbins K.A. & Robbins S.:“The CRAY X-MP/Model 24.” Lecture Noles in Compuler Science, No.
374, Springer-Verlag.

Saad Y. & Schultz M.H.: “Topological Properties of Hypercubes.” IEEE Transactions on Compulers,
Vol 37, No 7, pp 867-872, 1988.

Sarkies K.: Department of Electrical and Electronic Engineering, The University of Adelaide, with
Dr K. Sarkies, specialist in high speed communications systems. Personal Communication, 1994,
Scheck P.B.:*Supercomputer Architecture.” Klewer Academic Publishers, 1987,

Schonauer, Willi: “Scientific Conputing on Vector Computers.” Elsevier Science Publishing Co.,
New York, USA, 1987.

Schwider J., Streibl N. & Zirl K.:"Optoelectronic Interconnections™, in Parallel Compuler Archi-
tectures, Lecture Notes in Computer Science 732. Published by Springer-Verlag, 1993.

Shaw T.J. & Marwood W., "Gauss-Jordan Elimination on a Systolic Outer Product Engine.” Inter-
nal Report, HPCA-DC-93/2, Department of Electrical and Electronic Engineering, The University
of Adelaide, 1993.

Shaw T.J. & Marwood W., “QR decomposition on a Systolic Outer Product Engine.” Internal
Report, HPCA-D(-93/3, The Department of Electrical and Electronic Engineering, The University
of Adelaide, 1993.

Shaw T.J. & Marwood W., “A High Bandwidth, Configurable Memory Interface to a Systolic Array.”
Internal Report, HPCA-D(C-93//, The Department of Electrical and Electronic Engineering, The
University of Adelaide, 1993.

Shaw T.J. & Marwood W., “Towards a TeraFLOP: A Parallel Architecture to Support 1000 GFlops
- Sustained.” Internal Report, HPCA-DC-93/5, The Department of Electrical and Electronic Engi-
neering, The University of Adelaide, 1993.

Snyder L.:“Introduction to the Configurable, Highly Parallel Computer.” IEEE Computer, pp 47-50,
January 1982.

190

[88] Sorenson H.W. ed.:“Kalman Filtering: Theory and Application.” [IEEE Press, 1985.
[89] Stone H.S.:“High Performance Computer Architecture, Second edition.” Addison Wesley, 1990.
[90] “SPARC MBus Interface Specification.” Revision 1.1, Sun Microsystems, March 29, 1990.

[91] Takagi N., Yasuura H. & Yajima S., “High-Speed VLSI Multiply Algorithm with a Redundant
Binary Addition Tree.” IEEE Transactions in Computers, Vol C-34, No 9, September 1985.

[92] Waser S. & Flynn M.J.:“Introduction to Arithmetic for Digital System Designers.” Holt, Rinehart
and Winston CBS College, 1982.

[93] Zorpette G.:“The Power of Parallelism.” IEEE Spectrum, pp 28-33, September 1992.
[94] Zorpette G.:“Large Computers.” IEEE Spectrum, pp 34-37, January 1993.

[95] Zyner G.B.: “Design of arithmetic systems in VLSL.”, PhD. thesis., The Department of Electrical
and Electronic Engineering, The University of Adelaide, 1988.

191

