
ABLNO- EVAL

OVERALL CAPABILITY

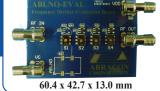
ABLNO-EVAL; Frequency Divider Evaluation Board shown in figure (1) is designed to facilitate engineering evaluation of Abracon's Ultra Low Noise – ABLNO series of fixed clock and voltage controlled crystal oscillators. Further, there is a provision through the RF_IN SMA Connector to supply any other oscillator signal between 10MHz and 200MHz; if ABLNO series is not being characterized.

This Evaluation Board is ideal to conduct the following measurements:

- Phase Noise and rms jitter for ÷1, ÷2, ÷4 and ÷8 frequency outputs
- Frequency Pull Characteristics of the ABLNO by using the Vc port as the control voltage
- Frequency Stability over operating temperature (-40°C to +85°C)

Figure (1)

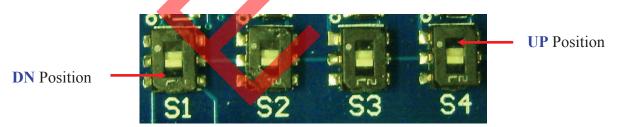
Designers who are interested in using the ABLNO as an Ultra Low Noise platform device to generate additional Low Noise frequencies will find this Evaluation Board to be of exceptional value. Abracon has implemented Ultra Low Noise ÷2, ÷4 and ÷8 circuitry on this board, that can also be incorportated in end-customer solutions; please contact tech-spport@abracon.com for additional details.

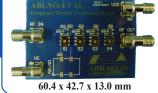

Tpycial Phase Noise and jitter performance in $\div 1$, $\div 2$, $\div 4$ and $\div 8$ modes is depicted in section 2.0.

ABLNO- EVAL

COMPONENT DESCRIPTION

Component	Description	Functionality
RF_IN	External Oscillator	Input a 10MHz to 200MHz oscillator signal into this SMA
	Input	connector for evaluationsee Note #5
Vc	Control Port	When characterizing the ABLNO series of VCXO's, apply
		control voltage to this port to characterize frequency pull
VDD	Supply Voltage	This port simultaneously biases the ABLNO Oscillator
		and the divider scheme (+3.3V ±5%)see Note #4
RF_Out	Evaluation Board	Either ABLNO or RF_IN frequency is divided down by 1,
	Output	2, 4 or 8 and is present at this port
S1	Switch # 1	If the tab is moved to the "up position (UP)", RF_IN
		signal is selected. If the tab is moved to the "down
		position (DN)", ABLNO signal is selected
S2	Switch # 2	If the tab is moved to the "up position (UP)", RF_IN
		signal is divided down by 2 and is present at RF_Out
S3	Switch # 3	If the tab is moved to the "up position (UP)", RF_IN
		signal is divided down by 4 and is present at RF_Out. S2
		should also be in the "up position (UP)" please see truth
		table #1
S4	Switch # 4	If the tab is moved to the "up position (UP)", RF_IN
		signal is divided down by 8 and is present at RF_Out. S2
		& S3 should also be in the "up position (UP)" please
		see truth table #1




Figure (2)

ABLNO- EVAL

> TRUTH TABLE

Table #1

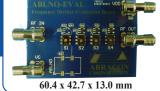
S1	S2	S3	S4	Description				
DN	DN	DN	DN	ABLNO's RF Output = $\div 1$				
DN	UP	DN	DN	ABLNO's RF Output = $\div 2$				
DN	UP	UP	DN	ABLNO's RF Output = ÷4				
DN	UP	UP	UP	ABLNO's RF Output = $\div 8$				

Table # 2

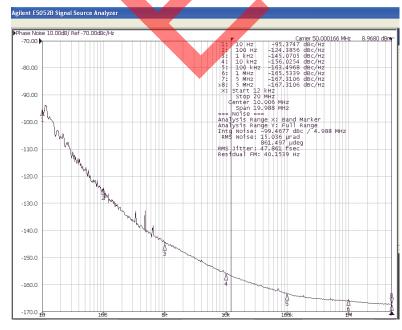
S1	S2	S3	S4	Description					
UP	DN	DN	DN	RF_IN Port's RF Output = ÷1					
UP	UP	DN	DN	RF_IN Port's RF Output = $\div 2$					
UP	UP	UP	DN	RF_IN Port's RF Output = $\div 4$					
UP	UP	UP	UP	RF_{IN} Port's RF Output = ÷8					

- **Note # 1: DN** = Down Position; **UP** = Up Position
- Note # 2: All four switches are shipped with yellow protective tape on top, please remove before use
- Note # 3: To evaluate Abracon's ABLNO Crystal Oscillator, please solder it down in the section outlined with a rectangle and labeled ABLNO. Please follow the orientation shown in figure (3) below.

Figure (3)


- Note # 4: VDD Port biases both the ABLNO device, as well as the divider circuitry. Since ABLNO's VDD range is +3.3V ±5%, the recommended VDD range while evaluating ABLNO oscillators is +3.135V to +3.465V. However, since the divider circuitry can be biased between +1.8V & +5.5V, while evaluating RF_IN external signal; lower or higher biasing voltage can be used, as long as the peak-to-peak signal from the RF_IN port does not exceed the bias voltage (VDD).
- Note # 5: RF_IN port expects a LVCMOS signal. If a clipped Sinewave or Sinewave signal with lower amplitude is used; it might be necessary to square-that-up. There is a provision above (S1) to add a buffer to achieve this. Please contact tech-support@abracon.com.

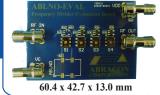
ABLNO- EVAL

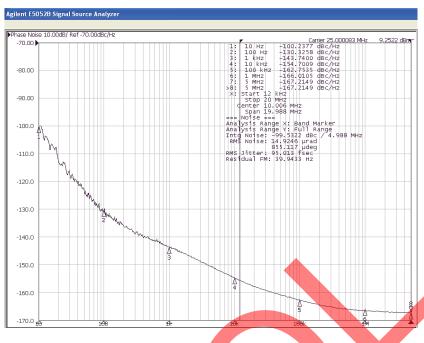

100MHz ABLNO was used to conduct ÷1, ÷2, ÷4 and ÷8 measurements

Typical Phase Noise Performance @ 100.00 MHz Carrier (÷1 Mode) @ Vdd = +3.3V (25°C±3°C)

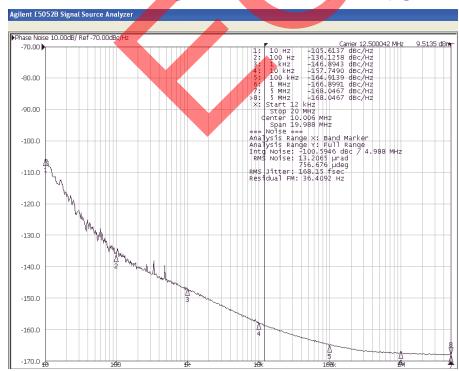
S1	S2	S3	S4	Description	
DN	DN	DN	DN	ABLNO's RF Output = $\div 1$	

Typical Phase Noise Performance @ 50.00 MHz Carrier (÷2 Mode) @ Vdd = +3.3V (25°C±3°C)


S1	S2	S3	S4	Description
DN	UP	DN	DN	ABLNO's RF Output = $\div 2$



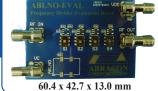
ABLNO- EVAL



Typical Phase Noise Performance @ 25.00 MHz Carrier (÷4 Mode) @ Vdd = +3.3V (25°C±3°C)

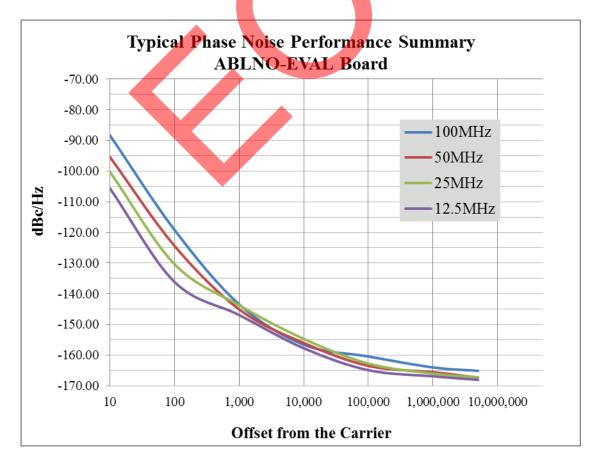
S1	S2	S3	S4		Desc	rip	tion			
DN	UP	UP	DN	A	ABLNO's F	RF (<mark>Du</mark> tpu	ıt = -	÷4	

Typical Phase Noise Performance @ 12.50 MHz Carrier (*8 Mode) @ Vdd = +3.3V (25°C±3°C)



S1	S2	S3	S4	Description
DN	UP	UP	UP	ABLNO's RF Output = \div 8

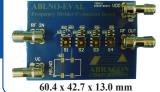
ABLNO- EVAL

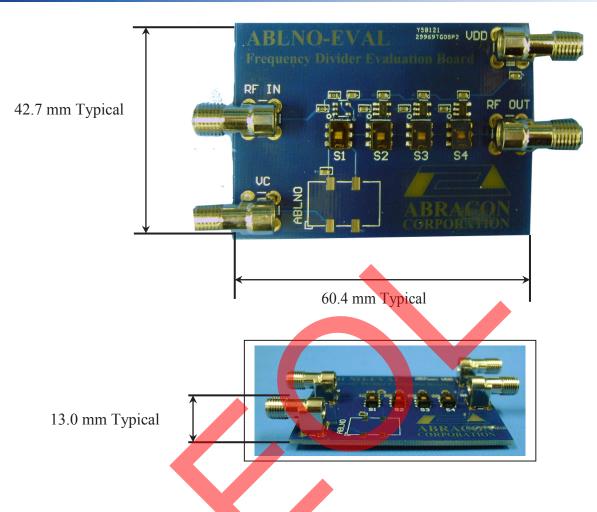


PHASE NOISE & RMS JITTER PERFORMANCE SUMMARY

	Measured Phase Noise (dBc/Hz)								
Offset From the Carrier	100MHz	50MHz	25MHz	12.5MHz					
10Hz	-88.32	-95.38	-100.24	-105.61					
100Hz	-119.16	-124.38	-130.33	-136.13					
1,000Hz	-143.44	-145.07	-143.74	-146.90					
10,000Hz	-156.60	-156.02	-154.70	-157.75					
100,000Hz	-160.44	-163.50	-162.75	-164.90					
1,000,000Hz	-164.00	-165.54	-166.01	-166.90					
5,000,000Hz	-165.11	-167.31	-167.21	-168.04					

Carrier	100MHz	50MHz	25MHz	12.5MHz
Measured Jitter (12kHz to 20MHz) in femto seconds	30.22	47.86	95.01	168.15
Additive rms Jitter (12kHz to 20MHz) in femto seconds		17.64	64.80	137.93





ABLNO-EVAL

OUTLINE DIMENSION:

Packaging: Units are packaged in ESD bags, single unit per bag.

ATTENTION: Abracon Corporation's products are COTS – Commercial-Off-The-Shelf products; suitable for Commercial, Industrial and, where designated, Automotive Applications. Abracon's products are not specifically designed for Military, Aviation, Aerospace, Life-dependant Medical applications or any application requiring high reliability where component failure could result in loss of life and/or property. For applications requiring high reliability and/or presenting an extreme operating environment, written consent and authorization from Abracon Corporation is required. Please contact Abracon Corporation for more information.

