First Order Predicate Logic

Expanding upon Propositional Logic

CIS 32




Functionalia

Project | Deliverables
Demos!?

HW 3 is out on the webpage.

Today:
Proof Systems
Propositional Logic Examples

Predicate Logic




Greek Letters

phi

capital Phi
o

o]

tau

chi




Logical Inference

KB F ¢

(3

is derived from KB by “ or “i derives  from KB”

KB is a haystack, @ is a needle.

Entailment is the needle being in the haystack; Inference is finding it.
Sound Inference Algorithms derive only entailed sentences.

Unsound Inference Algorithms makes things up along the way (finding
non-existent needles).

Complete Inference Algorithms can derive any sentence that is entailed.
Finite KB, it’s simple: systematic examination is complete.

Infinite KB, it’s a bit more problematic.




» Definition: (Soundness) A proof system I is said to be sound with
respect to semantics = iff

D1y Op E O

implies

* Definition: (Completeness) A proof system I is said to be complete
with respect to semantics = iff

implies




Entailment

If the Knowledge Base (KB) is true in the real world, then any
sentence ¢ derived from KB by a sound inference procedure — is also
true in the real world.

KB = ¢

KB ¢

Sentences = Sentence
Entails

Representation

Y Y

Aspects of the ™ Aspect of the
real world Follows real world




A Proof System

* There are many proof systems for propositional logic; we shall look at a
simple one.

* First, we have an unusual rule that allows us to introduce any tautology.

TAUT if ¢ is a tautology
X

* Because a tautology is true there is no problem bringing it into the
proof.




Eliminating Connectives

* Next, rules for eliminating connectives.

AND Elimination

OR Elimination

Fony  A-E
= o

LV -V By
r;-le |_ e’r}

On = @

¢




Modus Ponens

* An alternative V elimination rule is:

F oV,

F¢= v V-E
- ?__-'"J — X

=X

* Next, a rule called modus ponens, which lets us eliminate =.

o= 1:F¢p =-E
= )




Introducing Connectives

* Next, rules for introducing connectives.

O SR Al

- Gy O, V-l

* We have a rule called the deduction theorem.This rule says that if we
can prove %' from ¢, then we can prove that ¢ = .

O —-|

= O = i'__-'"J

* There are a whole range of other rules, which we shall not list here.




Proof Examples

* In this section, we give some examples of proofs in the propositional
calculus.

* Example I:
phghEqghp

. pA g Given
2. p From 1 using A-E
3. g 1./n-E

. ghp 2,3, A




* Example 2:

pAgFEpVg

1. pAg Given
2. p 1, A-E
3. pVag 2, V-




e Example 3:
pANg.p=T1ThHT

. pAg Given
2. p 1, A-E
. p =1 Given
LT 2,3, =-E




* Example 4:
p=q,q=1kFEp=r7

. p= q Given

g = r Given

P Ass

q 1,3 =-E
r 2,4, =-E
.p=r1 3,5 =l

=

5.
6




* Example 5:
(pAhg)=rFp=(qg=r1)

pAg)= 1 Given
Ass
Ass
2, 3, N
1, 4, =-|
T 3-5, =
(g = 1) 2-6, =-

bo =

3.
1.
D.
6.
7.

—
—




e Example 6:
p=lg=r)Fphg =7

. p= (g= 1) Given

2. p/hg Ass

P 2, A-E

. q 2, A-E

L qg=T 1, 3 =-E
o 4,5 =-E
phg) =T 2-6, =-




* Example 7:
p=q,mqk —p

1.
2.
3.
1

= e

p=q Given

—q Given

P Ass

q 1, 3, =-E
gN—q 2,4 N
—p 3,5, =l




* Example 8:
p=qF~(pA—q)

'._I..

- W o

- o Ln




* Example 9:

Jim will party all night and pass Al? That must be wrong. If he works hard he won't
have time to party. [f he doesn't work hard he's not going to pass Al.

Let:




* Example 9:

Jim will party all night and pass Al? That must be wrong. If he works hard he won't
have time to party. [f he doesn't work hard he's not going to pass Al.

Let:

p Jim will party all night
g Jim will pass Al
- Jim works hard

Formalisation of argument:




* Example 9:

Jim will party all night and pass Al? That must be wrong. If he works hard he won't
have time to party. If he doesn't work hard he's not going to pass Al.

Let:

p Jim will party all night
g Jim will pass Al
r Jim works hard

Formalisation of argument:




* Example 9:

Jim will party all night and pass Al? That must be wrong. If he works hard he won't
have time to party. [f he doesn't work hard he's not going to pass Al.

Let:

p Jim will party all night
g Jim will pass Al
- Jim works hard

Formalisation of argument:

r = op,r = g (pAg)




r = —p Given

bo =

—r = —q Given
pAg Ass
T Ass
—p 1, 4, =-E
P 3, A
5, 6, A-l
4,7, —-I
2.9 =-E
3, A-E
9, 10, A-l
—(pAgq) 3,11, —I

!

S O o

8.
9.

— = =
CRSNS




Predicate Logic

* First-order predicate logic
* More expressive than propositional logic.
* Consider the following argument:
— all monitors are ready;
— X1 2 is a monitor;
— therefore X12 is ready.
* Sense of this argument cannot be captured in propositional logic.

* Propositional logic is too coarse grained to allow us to represent and
reason about this kind of statement.




Syntax

* We shall now introduce a generalization of propositional logic called
first-order logic (FOL).This new logic affords us much greater expressive
power.

* Definition:The alphabet of FOPL contains:
|.a set of constants;
2.a set of variables;
3.a set of function symbols;
4.a set of predicates symbols;

5.the connectives Vv, —;
6.the quantifiers V, d, di;

/. the punctuation symbols ), (.




Terms : Constants

* The basic components of FOL are called terms.

* Essentially, a term is an object that denotes some object other than T
or 1.

* The simplest kind of term is a constant.

* A value such as 8 is a constant.

* The denotation of this term is the number 8.

* Note that a constant and the number it denotes are different!

* Aliens don’t write “8” for the number 8, and nor did the Romans.




Terms :Variables

* The second simplest kind of term is a variable.
* A variable can stand for anything in the domain of discourse.

* The domain of discourse (usually abbreviated to domain) is the set of
all objects under consideration.

* Sometimes, we assume the set contains “everything”.

* Sometimes, we explicitly give the set, and state what variables/constants
can stand for.




Terms : Functions

* We can now introduce a more complex class of terms — functions.

* The idea of functional terms in logic is similar to the idea of a function
in programming: recall that in programming, a function is a procedure
that takes some arguments, and returns a value.

In C:

T myfunction( Tl al, ..., Tn an ) {

}

this function takes n arguments; the first is of type T1, the second is of
type T2, and so on.The function returns a value of type T.

* In FOL, we have a set of function symbols; each symbol corresponds to a
particular function. (It denotes some function.)




Function: arity

* Each function symbol is associated with a number called its arity. This is
just the number of arguments it takes.

* A functional term is built up by applying a function symbol to the
appropriate number of terms.

* Formally ...

Definition: Let f be an arbitrary function symbol of arity n. Also, let
, Tn be terms. Then

is a functional term.




Function : arity

* All this sounds complicated, but isn’t. Consider a function plus, which
takes just two arguments, each of which is a number, and returns the first
number added to the second.

Then:

— plus(2, 3) is an acceptable functional term;
— plus(0, 1) is acceptable;

— plus(plus(l, 2), 4) is acceptable;

— plus(plus(plus(0, 1), 2), 4) is acceptable;




Functions

* In maths, we have many functions; the obvious ones are
+ — / % /7 sincos ...
* The fact that we write
2+3
instead of something like

plus(2, 3)

is just convention, and is not relevant from the point of view of logic; all
these are functions in exactly the way we have defined.




Function

* Using functions, constants, and variables, we can build up expressions,
e.g.:
(x + 3) * sin 90

(which might just as well be written
times(plus(x, 3), sin(90))

for all it matters.)




Predicates

* In addition to having terms, FOL has relational operators, which capture
relationships between objects.

* The language of FOL contains predicate symbols.
* These symbols stand for relationships between objects.
* Each predicate symbol has an associated arity (humber of arguments).

* Definition: Let P be a predicate symbol of arity n,and 71
terms.

Then

is a predicate, which will either be T or L under some interpretation.




* EXAMPLE. Let gt be a predicate symbol with the intended
interpretation ‘greater than’. It takes two arguments, each of which is a
natural number.

Then:
— gt(4, 3) is a predicate, which evaluates to T ;

— gt(3,4) is a predicate, which evaluates to L.

* The following are standard mathematical predicate symbols:

>S<=#>< ...

* The fact that we are normally write x > y instead of gt(x, y) is just
convention.




* We can build up more complex predicates using the connectives of
propositional logic:

2>3)A6=7)V (V4=2)

* So a predicate just expresses a relationship between some values.

* What happens if a predicate contains variables: can we tell if it is true or
false?

Not usually; we need to know an interpretation for the variables.

* A predicate that contains no variables is a proposition.




Properties

* Predicates of arity | are called properties.
* EXAMPLE.The following are properties:
Man(x)
Mortal(x)
Malfunctioning(x).
* We interpret P(x) as saying x is in the set P.

* Predicate that have arity O (i.e., take no arguments) are called primitive
propositions.

These are identical to the primitive propositions we saw in propositional
logic.




Quantifiers

* We now come to the central part of first order logic: quantification.
* Consider trying to represent the following statements:

— all men have a mother ;

— every positive integer has a prime factor.

* We can’t represent these using the apparatus we’ve got so far; we need
quantifiers.




Quantifiers

* We use three quantifers:

V' — the universal quantifier ;

® s read forall...’

d — the existential quantifier ;

® js read ‘there exists...’

d1 — the unique quantifier ;

® is read ‘there exists a unique...’




* The simplest form of quantified formula is as follows:

quantifier variable + predicate

where

— quantifier is one of V, d, d1;

— variable is a variable;

— and predicate is a predicate.




Examples

« Vx * Man(x) = Mortal(x)

‘For all x, if x is a man, then x is mortal.
(i.e.all men are mortal)

« Vx * Man(x) = diy * Woman(y) A MotherOf(x, y)

‘For all x, if x is a man, then there exists exactly one y such thatyis a
woman and the mother of x is y.

(i.e., every man has exactly one mother).




Examples

« dm + Monitor(m) A MonitorState(m, ready)

“There exists a monitor that is in a ready state.

« Vr + Reactor(r) = dit + (100 <t < 1000) A temp(r) =t

‘Every reactor will have a temperature in the range 100 to 1000




e dn * posint(n) A n = (n*n)

“Some positive integer is equal to its own square.”

« dc + EUcountry(c) A Borders(c,Albania)

“Some EU country borders Albania.”

*« Vm,n - Person(m) A Person(n) = —Superior(m, n)

“No person is superior to another.”

*« Vm - Person(m) = —dn *+ Person(n) A Superior(m, n)

(same as previous)




Domains & Interpretations

* Suppose we have a formula Vx - P(x).

What does x range over!?
Physical objects, numbers, people, times, .. .?
* Depends on the domain that we intend.

* Often, we name a domain to make our intended interpretation clear.




Example of Domains

* Suppose our intended interpretation is the positive integers.
Suppose >,+, %, ... have the usual mathematical interpretation.

* |s this formula satisfiable under this interpretation!?

dn - n=(n*n)

* Now suppose that our domain is all living people,
and that * means “is the child of”’.

* Is the formula satisfiable under this interpretation?




Conjunctions

* Note that universal quantification is similar to conjunction.

Suppose the domain is the numbers {2, 4, 6}.Then

Vn + Even(n)

is the same as

Even(2) N\ Even(4) A Even(6).

* Existential quantification is similar to disjunction. Thus with the same
domain,

dn - Even(n)

is the same as

Even(2) V Even(4) Vv Even(6)




* The universal and existential quantifiers are in fact duals of each other:

Vx + P(x) & dx - —P(x)

Saying that everything has some property is the same as saying that there is
nothing that does not have the property.

dx + P(x) & TVx + —P(x)

Saying that there is something that has the property is the same as saying that
its not the case that everything doesn’t have the property.




Validity

* In propositional logic, we saw that some formulae were tautologies —
they had the property of being true under all interpretations.

* We also saw that there was a procedure which could be used to tell
whether any formula was a tautology — this procedure was the truth-
table method.

* A formula of FOL that is true under all interpretations is said to be
valid.

* So in theory we could check for validity by writing down all the
possible interpretations and looking to see whether the formula is true
or not.




Decidability and Undecidability

* Unfortuately in general we can’t use this method.

* Consider the formula:

Vn - Even(n) = —0dd(n)

* There are an infinite number of interpretations.

* |s there any other procedure that we can use, that will be guaranteed

to tell us, in a finite amount of time, whether a FOL formula is, or is not,
valid?

* The answer is no.

 FOL is for this reason said to be undecidable.




Proof in FOL

* Proof in FOL is similar to propositional logic (PL); we just need an
extra set of rules, to deal with the quantifiers.

* FOL inherits all the rules of PL.
* To understand FOL proof rules, need to understand substitution.

e The most obvious rule, for V-E.

Tells us that if everything in the domain has some property, then we can
infer that any particular individual has the property.

-vr-olx), V-E
- o(a)

for any a in the domain

Going from general to specific




Example |

Let’s use V-E to get the Socrates example out of the way.

Man(s);Vz - Man(z) = Mortal(x)
= Mortal(s)

. Man(s) Given
. Vo Man(z) = Mortal(z) Given
3. Man(s) = Mortal(s) 2, V-E
4. Mortal(s) 1,3, =-E




* Existential Introduction Rule | (3-I(1)).

* We can also go from the general to the slightly less specific!

= dx - olx)

-V p(z);  3(1)

if domain not empty

Note the side condition.

The d quantifier asserts the existence of at least one object.

The V quantifier does not.




* Existential Introduction Rule 2 (3-1(2)).

* We can also go from the very specific to less specific.

= ola); 3-1(2)
- Jz - ¢(x)

* In other words once we have a concrete example, we can infer there
exists something with the property of that example.




* We often informally make use of arguments along the lines...

|.We know somebody is the murderer.

2. Call this person a.

3....

(Here, a is called a Skolem constant.)

* We have a rule which allows this, but we have to be careful how we use

it!

- dr - olx):  d-E

— ' a doesn’t occur elsewhere
= d(a)




* Here is an invalid use of this rule:

1. dz - Boring(x) Given
2. Lecture(AI)  Given
3. Boring(AI) 1, 3-E

* (The conclusion may be true, the argument isn’t sound.)




Example 2

|. Everybody is either happy or rich.
2. Simon is not rich.
3.Therefore, Simon is happy.
Predicates:

— H(x) means x is happy;

— R(x) means x is rich.

* Formalisation:

V x H(x) V R(x); 7'R(Simon) + H(Simon)



Ve.H(z)V R(x) Given

- R(Simon) Given
H(Simon) \V R(Simon) 1, v-E
—H(Simon) = R(Simon) 3, defn =
- H(Simon) Assumption
R(Simon) 4,5, =-E
R(Simon) A ~R(Simon) 2,6, A
—IﬁH(Si'm-G'ﬁ.) 5 7, —-l
H(Simon) < ——H(Simon) PL axiom
(H(Simon) = ——~H(Simon))

AN——H(Simon) = H(Simon)) 9, defn &

. = H(Stmon) = H(Simon) 10,A-E

2. H(Simon) 8 11, =-E

1.
2.
3.
4.
5.
6.
7.

ln_l.
o o w




Summary

* This lecture looked at predicate (or first order) logic.
* Predicate logic is a generalization of propositional logic.

* The generalization requires the use of quantifiers, and these need
special rules for handling them when doing inference.

* We looked at how the proof rules for propositional logic need to be
extended to handle quantifiers.




