
ADADIO
16-Bit: 8 Ch Analog Input, 4 Ch Analog Output,

8-Bit Digital I/O

Windows 98\NT\2K\XP Driver
User Manual

Manual Revision: July 8, 2003

General Standards Corporation
8302A Whitesburg Drive

Huntsville, AL 35802
Phone: (256) 880-8787

Fax: (256) 880-8788
URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

Preface
Copyright ©2002, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.
Huntsville, Alabama 35802
Phone: (256) 880-8787
FAX: (256) 880-8788
URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing
and reviews are performed before release to ECO control, General Standards Corporation assumes no
responsibility for any errors that may exist in this document. No commitment is made to update or keep current the
information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product
or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve
reliability, performance, function, or design.

ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or
distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in
the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then
they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software
available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this
software without reservation and without notification to its users.

The information in this document is subject to change without notice. This document may be copied or reproduced
provided it is in support of products from General Standards Corporation. For any other use, no part of this
document may be copied or reproduced in any form or by any means without prior written consent of General
Standards Corporation.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (800) 653-9970

Table of Contents
1. Scope…………………………………………………………………..…………….. 4
2. Hardware Overview…………………………………………………..……………. 5
3. Referenced Documents……………………………………………….………….. 6
4. General Standards API…………………………………………….……………… 7

4.1 ADADIO_FindBoards()………………………………………………………... 8
4.2 ADADIO_Get_Handle()………………………………………………………… 9
4.3 ADADIO_Read_Local32()……………………………………………………... 10
4.4 ADADIO_Write_Local32()……………………………………………………... 11
4.5 ADADIO_Close_Handle()……………………………………………………… 12
4.6 Interface Functions…………………………………………………………… 13

4.6.1 ADADIO_Initialize()…………………………………………………… 13
4.6.2 ADADIO_Autocal()……………………………………………………. 14
4.6.3 ADADIO_Set_Input _Mode()……………………..…………………. 15
4.6.4 ADADIO_Set_Output _Mode()………………………………………. 16
4.6.5 ADADIO_Clear_Input_Buffer()……………………………………… 17
4.6.6 ADADIO_Enable_Outputs()………………………………………… 18
4.6.7 ADADIO_EnableInterrupt()………………………………………….. 19
4.6.8 ADADIO_DisableInterrupt()…………………………………………. 20
4.6.9 ADADIO_CheckInterruptStatus()…………………………………… 21
4.6.10 ADADIO_Open_DMA_Channel()……………………………………. 22
4.6.11 ADADIO_DMA_FROM_Buffer()…..…………………………………. 23
4.6.12 ADADIO_Close_DMA_Channel()…………………………………… 24
4.6.13 ADADIO_Attach_Interrupt()……..……..…………………………… 25
4.6.14 ADADIO_Trigger_Burst()……………….…………………………… 26
4.6.15 ADADIO_SetCallback_Event()……………………………………… 27

5. Driver Installation……………………………………………………………..…… 28
6. Example Program……………………………………………………………..…… 29

3
General Standards Corporation, Phone: (800) 653-9970

1. Scope

The Purpose of this document is to describe how to interface with the ADADIO Windows
Driver API developed by General Standards Corporation (GSC). This software provides the
interface between the “Application Software” and the ADADIO board.

The ADADIO Driver API Software executes under control of the Windows Operating System.
The ADADIO is implemented as a standard Windows driver API written in “C” programming
language. The ADADIO Driver API Software is designed to operate on CPU boards
containing x86 processors.

The ADADIO Driver consists of a Windows driver with an interface layer (GSC API) to
simplify the interface to the PLX Driver. While an application may interface directly to the
PLX driver, interfacing to the GSC API layer, will simplify the application software
development.

4
General Standards Corporation, Phone: (800) 653-9970

2. Hardware Overview

The PMC-ADADIO board is a single width PCI mezzanine card (PMC) that provides system
analog input/output capability for the PCI bus. In addition to containing eight analog input
channels and four analog output channels, the board also has a general-purpose byte-wide
digital port. The board is functionally compatible with the IEEE PCI local bus specification
Revision 2.2, is mechanically compatible with the IEEE compact mezzanine card (CMC)
specification, and supports the "plug-nplay" initialization concept.

Selftest networks permit all channels to be calibrated automatically to a single internal voltage
reference. Offset and gain trimming of the output channels are performed by calibration
DAC's that are loaded with channel correction values during initialization. The correction
values are determined during auto calibration, and are stored in nonvolatile EEprom for
subsequent transfer to the calibration DAC's. Either auto calibration or initialization can be
invoked at any time by asserting a single control bit in the board control register.

The board is designed for minimum off-line maintenance, and includes internal monitoring
features that eliminate the need for disconnecting or removing the module from the system for
calibration. All analog input and output system connections are made through a single 68-pin
I/O connector. Power requirements consist of +5 VDC, in compliance with the PCI
specification, and operation over the specified temperature range is achieved with conventional
convection cooling.

5
General Standards Corporation, Phone: (800) 653-9970

3. Referenced Documents

The following documents provide reference material for the 16AO12 board:

• PMC-ADADIO User’s Manual – GSC
• PLX Technology, Inc. PCI 9080 PCI Bus Master Interface Chip data sheet.

6
General Standards Corporation, Phone: (800) 653-9970

4. General Standards API

This section describes the interface to the ADADIO GSC API. The ADADIO GSC API isolates
the user from operating system specific requirements, allowing the API to be used with all
Windows operating systems (98\NT\W2K\XP).

The ADADIO Win Driver provides an interface to an ADADIO card and a Windows
application, which run on a x86 target processor. The driver is installed and devices are
created when the driver is started during boot up. The functions of the driver can then be
used to access the board. Devices are created with the name “board x” where “x” is the
device number. Device numbers start at 1 and for each board found the device number will
increment.

Included in the board driver software is a menu driven board application program. This
program is delivered undocumented and unsupported but may be used to exercise the card
and the device driver. It can also be used as an example for programming the ADADIO
device.

The user interfaces to the GSC API at the basic level with the following functions:

• Find Boards() - Detects all PLX Devices connected via the PCI Bus.
• Get Handle() - Opens a driver interface to one ADADIO card.
• Readlocal32() - Reads local registers from one ADADIO card.
• Writelocal32() - Writes to local Registers of one ADADIO card.
• Close Handle() - Closes a driver interface to one ADADIO card.

The user MUST call Find Boards to determine what PLX devices are installed in the system,
and get the associated board number. The user then calls the Get Handle function with each
board number to be used. This function obtains a handle to the device and initializes the
device parameters within the API / driver. The user is then free (assuming no errors) to write /
read the registers as desired. The user should always call Close Handle when done to free
resources prior to exiting.

The function definitions and parameters are defined in the following paragraphs of this
section.

7
General Standards Corporation, Phone: (800) 653-9970

4.1 ADADIO_FindBoards()

Detects all PLX Devices connected via the PCI Bus.

Prototype:

U32 ADADIO_FindBoards (char *pDeviceInfo,
 U32 *ulError);

Returns – Total number of PLX boards found in the system or –1L if error or no boards found.

Where:

pDeviceInfo – Contains “Board #: Bus: Slot: Type: Ser#” info for PLX boards found.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

8
General Standards Corporation, Phone: (800) 653-9970

4.2 ADADIO_Get_Handle

Initializes Handle for the passed board number IN THE DRIVER.

Prototype:

U32 ADADIO_Get_Handle (U32 *ulError,

 U32 BoardNumber);

Returns – Error code if invalid board number passed (0, >31), else # boards.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

9
General Standards Corporation, Phone: (800) 653-9970

4.3 ADADIO_Read_Local32

Read a value from the board local register.

Prototype:

U32 ADADIO_Read_Local32 (U32 BoardNumber,

 U32 *ulError,
 U16 iRegister);

Returns – Value read from the register.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

iRegister – Register to read. Values defined in ADADIOintface.h
 BCR 0x00
 DIO 0x04
 A_OUT0 0x08
 A_OUT1 0x0C
 A_OUT2 0x10
 A_OUT3 0x14
 A_IN_BUFF 0x18
 SAMP_RATE 0x1C

10
General Standards Corporation, Phone: (800) 653-9970

4.4 ADADIO_Write_Local32

Write a value to the board local register.

Prototype:

void ADADIO_Write_Local32 (U32 BoardNumber,

 U32 *ulError,
U16 iRegister

 U32 uiValue);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

iRegister – Register to write. Values defined in ADADIOintface.h
 BCR 0x00
 DIO 0x04
 A_OUT0 0x08
 A_OUT1 0x0C
 A_OUT2 0x10
 A_OUT3 0x14
 A_IN_BUFF 0x18
 SAMP_RATE 0x1C

uiValue – Value to write to the selected register.

 Refer to the ADADIO user manual for all register / bit definitions.

11
General Standards Corporation, Phone: (800) 653-9970

4.5 ADADIO_Close_Handle

Closes the device handle and frees the resources.

Prototype:

void ADADIO_Close_Handle (U32 BoardNumber,

 U32 *ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

12
General Standards Corporation, Phone: (800) 653-9970

4.6 Interface Functions
These functions allow the user to perform certain operations on the board, without having to keep
track of individual register values and bit definitions.

4.6.1 ADADIO_Initialize

Perform a reset on the board. All register values are set to defaults. This Function does

NOT wait for Initialization to complete, such that multiple boards can be initialized without
waiting for each to finish.

Prototype:

void ADADIO_Initialize (U32 BoardNumber,

 U32 *ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

13
General Standards Corporation, Phone: (800) 653-9970

4.6.2 ADADIO_Autocal

Perform an auto calibration on the board. This operation generates new calibration
correction values which are stored in nonvolatile EEprom. This Function does NOT wait for
Autocal to complete, such that multiple boards can be calibrated without waiting for each to
finish.

Prototype:

void ADADIO_Autocal (U32 BoardNumber,

 U32 *ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

14
General Standards Corporation, Phone: (800) 653-9970

4.6.3 ADADIO_Set_Input_Mode

Sets the input mode of the board: Differential, Single-Ended, Selftest (zero or Vref) or
output channel (0-3) monitor.

Prototype:

void ADADIO_Set_Input_Mode(U32 BoardNumber,

 U32 *ulError
 U32 ulInputMode);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

ulInputMode – Valid values: 0 – 7

0 = Single-Ended Continuous
1 = Single-Ended Burst
2 = Differential Continuous
3 = Differential burst
4 = LoopBack Selftest
5 = +Vref Selftest
6 = Reserved
7 = Zero Selftest

15
General Standards Corporation, Phone: (800) 653-9970

4.6.4 ADADIO_Set_Output_Mode

Sets the output mode of the board, immediate or strobed.

Prototype:

void ADADIO_Set_Output_Mode (U32 BoardNumber,

 U32 *ulError
 U32 ulOutputMode);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

ulOutputMode – Valid values: 0 = immediate, 1 = strobed.

16
General Standards Corporation, Phone: (800) 653-9970

4.6.5 ADADIO_Clear_Input_Buffer

Clears all data from the active input buffer.

Prototype:

void ADADIO_Clear_Input_Buffer (U32 BoardNumber,

 U32 *ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

17
General Standards Corporation, Phone: (800) 653-9970

4.6.6 ADADIO_Enable_Outputs

Enables or disables the analog Outputs.

Prototype:

void ADADIO_Enable_Outputs (U32 BoardNumber,

 U32 *ulError
 U32 ulOutputEnable);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

ulOutputEnable – Valid values: 0 = disable, 1 = enable.

18
General Standards Corporation, Phone: (800) 653-9970

4.6.7 ADADIO_EnableInterrupt

Enables the desired interrupt in the local register, and for the PCI bus. See ADADIO User
manual for interrupt sources.

Prototype:

U32 ADADIO_EnableInterrupt (U32 BoardNumber,

 U32 ulValue,
 U32 *ulError);

Returns – Interrupt value set.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulValue – The desired interrupt value to set, valid for 0 – 7. See Manual for definitions.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

19
General Standards Corporation, Phone: (800) 653-9970

4.6.8 ADADIO_DisableInterrupt

Disables interrupt in the local register, and for the PCI bus.

Prototype:

void ADADIO_DisableInterrupt(U32 BoardNumber,

 U32 ulValue,
 U32 *ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulValue – The desired interrupt value to clear, valid for 0 – 7. See Manual for definitions.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

20
General Standards Corporation, Phone: (800) 653-9970

4.6.9 ADADIO_CheckInterruptStatus

Querys the interrupt status for the device, and clears any flags which are set.

Prototype:

U32 ADADIO_CheckInterruptStatus (U32 BoardNumber,

 U32 *ulError);

Returns – A (1) if interrupt occurred, 0 otherwise

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

21
General Standards Corporation, Phone: (800) 653-9970

4.6.10 ADADIO_Open_DMA_Channel

Opens the desired DMA channel for transferring data from the board to user array.

Prototype:

void ADADIO_Open_DMA_Channel (U32 BoardNumber,

 U32 ulChannel,
 U32 *ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

uiValue – The desired channel to open, currently valid for channel 0, 1.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

22
General Standards Corporation, Phone: (800) 653-9970

4.6.11 ADADIO_DMA_FROM_Buffer

Transfers the desired number of WORDS from the board input FIFO buffer.

Prototype:

U32 ADADIO_DMA_FROM_Buffer (U32 BoardNumber,

 U32 ulChannel,
 U32 ulWords,
 U32* uData,
 U32 *ulError);

Returns – WORDS transferred if no error.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulChannel – The DMA channel previously opened, currently valid for channel 0 .

ulWords – Number of WORDS to transfer. (BYTES = ulWords*4).

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

23
General Standards Corporation, Phone: (800) 653-9970

4.6.12 ADADIO_Close_DMA_Channel

Closes the desired DMA channel.

Prototype:

void ADADIO_Close_DMA_Channel (U32 BoardNumber,

 U32 ulChannel,
 U32 *ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

uiValue – The desired channel to close, currently valid for channel 0,1.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

24
General Standards Corporation, Phone: (800) 653-9970

4.6.13 ADADIO_Attach_Interrupt

Attaches a user supplied handle to an interrupt which can be used in
WaitForSingleObject for notification when the interrupt occurs. A sample use is provided in
the Autocal function of the example program.

The notification is a ‘one-shot’, i.e. single event. To repeatedly receive notification,
reattach to the interrupt upon notification. i.e.

 ADADIO_Attach_Interrupt(ulBdNum, &myHandle, 0x01, &ulErr);
…
… Setup and code to cause interrupt to happen
…
loop begin
 EventStatus = WaitForSingleObject(myHandle,10 * 1000);

…
 switch(EventStatus)
 {
 case WAIT_OBJECT_0:
 … code to perform desired action
 ADADIO_Attach_Interrupt(ulBdNum, &myHandle, 0x01, &ulErr);
 break;
 default:
 cprintf("Interrupt was NOT requested...");
 break;
 }
loop end

Prototype:

void ADADIO_Attach_Interrupt (U32 BoardNumber,

 HANDLE userHandle,
 U32 ulInterrupt,
 U32 *ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

userHandle – User supplied handle for the event.

ulInterrupt – The desired interrupt to attach to.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

25
General Standards Corporation, Phone: (800) 653-9970

4.6.14 ADADIO_Trigger_Burst

Triggers a single conversion of all active analog input channels.

Prototype:

void ADADIO_Close_DMA_Channel (U32 BoardNumber,

 U32 *ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

26
General Standards Corporation, Phone: (800) 653-9970

4.6.15 ADADIO_SetCallback_Event

Sets a user supplied function to be called when an interrupt occurs. The user must take
care to ensure the function can complete before the next interrupt occurs to avoid possible
loss of data (FIFO full) or missing events. A sample use is provided in the Analog Inputs
function of the example program. Pass a NULL pointer to disable callback events.

Prototype:

U32 ADADIO_SetCallback_Event (U32 BoardNumber,

 EVENT_CB pFunction);

Returns – 0 on success, error code otherwise.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

pFunction – User defined function to call.

27
General Standards Corporation, Phone: (800) 653-9970

 5. Driver Installation

This section details driver installation on the target system. Any current driver
previously installed for the ADADIO must be uninstalled prior to this installation to avoid
interference.

To install the driver, API, and associated example files, insert the CD ROM into the
drive and close the bay. The installation should commence automatically and display user
prompts. Follow the onscreen instructions to complete the installation.

Should the installation fail to automatically start, Select Start → Run → Browse on the
Windows toolbar/popup and browse to find Setup.exe on the CD ROM. Click on OK to
commence the installation.

The following files are installed on the target system:
OS dependent\…\PciADADIO.sys
OS dependent\…\PlxApi.dll
Program Files\General Standards\ADADIO C\Example.exe
Program Files\General Standards\ADADIO C \ADADIO C Driver.dll
Program Files\General Standards\ADADIO C \ADADIO C Driver.lib
Program Files\General Standards\ADADIO C \ADADIOintface.h
Program Files\General Standards\ADADIO C \ADADIO Example.c
Program Files\General Standards\ADADIO C \Tools.c
Program Files\General Standards\ADADIO C \Tools.h
Program Files\General Standards\ADADIO C \CioColor.h
Program Files\General Standards\ADADIO C \ReadMe.txt
Program Files\General Standards\ADADIO C \ADADIO C.inf

28
General Standards Corporation, Phone: (800) 653-9970

6. Example Program

This section describes the example program, and the files required to develop an
application.

The complied example program allows the user to exercise the installed device, while
observing the inputs / outputs. To execute, double click on ‘Example.exe’. Refer to the Driver
Installation section for file location.

The source is provided to educate the user with the GSC API function calls and
provide a working example to aid the user with application development. To build the
example program using MS Visual C++, create a project and add the following files:

Source Files → ADADIO Example.c
 → Tools.c

Header Files → ADADIOintface.h
 → CioColor.h
 → Tools.h

Resource Files → ADADIO C Driver.lib

Select Build → [ProjectName].exe on the toolbar.
NOTE: ADADIO C Driver.dll must be in the project directory to run the example.

Contact GSC for example programs (drivers) for other development environments (i.e

LabVIEW™, LabWindows/CVI™, etc.)

29
General Standards Corporation, Phone: (800) 653-9970

