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We used Life Cycle Assessment (LCA) to evaluate some of the environmental implications of using commercial
versus artisanal feeds in Peruvian freshwater aquaculture of trout (Oncorhynchus mykiss), tilapia (Oreochromis
spp.) and black pacu (Colossoma macropomum). Several scenarios believed to be representative of current
Peruvian aquaculture practices were modelled, namely: production of trout in Andean lake cages; and culture
of black pacu and tilapia in Amazonian and coastal lowland ponds, respectively. In general, Peruvian aquaculture
is characterised by low technological intensity practices. Use of commercial aquafeeds iswidespread, but artisanal
feeds are frequently used in certain small-scale farms.
We found that trout feeds feature higher environmental burdens than do black pacu and tilapia feeds. A similar
trend is observed for production of these species. Across species, the substitution of artisanal with commercial
feeds, despite improving feed conversion ratios in all cases, does not always reduce overall environmental
impacts. This is due to the additional energy use and transportation requirements associated with commercial
feed inputs. The substitution of artisanal feeds with commercial ones generally increases environmental impacts
of the fish farming systems for the specific feeds considered, despite enhanced FCRs and economies of scale. This
is due to the higher environmental impacts associated to certain feed inputs used in commercial feeds, in
particular highly refined feed inputs. Consequently, in light of the importance of feeds to overall life cycle impacts
of aquaculture production, the Peruvian aquafeed industry should preferentially source less refined and, in gener-
al, less environmentally burdened feed inputs (e.g. Bolivian soybean products over Brazilian, high quality over
lower quality fishmeal, avoiding protein concentrates, etc.), to the extent that fish farming performance (i.e.
feed conversion efficiency and cost structure) is not strongly affected. Among species, black pacu aquaculture
shows the best environmental performance.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Aquaculture is a globally important food production sector.
Worldwide, 59.9 million tonnes of cultured fish, crustaceans, molluscs
and other aquatic animals for human consumption, representing USD
119 billion in economic value, were produced in 2010 (SOFIA, 2012).
In contrast to stagnation in fisheries landings, aquaculture production
has grown, on average, 8.8% per year since the 1980s (SOFIA, 2010,
2012). Freshwater species, largely carps, account for close to 60% of
production (SOFIA, 2010).
Feed provision is often considered to be a critical constraint in
further expansion of the aquaculture sector (New and Wijkström, 2002)
although this issue is highly debated (Asche and Tveterås, 2004; Tacon
and Metian, 2008a; Tacon et al., 2011). Only 30% of cultured seafood is
currently produced without feed (bivalves) or with limited feed inputs
(extensive aquaculture of herbivorous fish species like cyprinids),
compared to 50% in 1980 (Chiu et al., 2013; SOFIA, 2012). Moreover,
the proportion of fed aquaculture continues to increase as a result of
both consumer preference for higher trophic level species and producer
preference for the higher growth rates achieved in fed aquaculture
systems (SOFIA, 2012).

Availability of fishmeal and oil (FMFO) is of particular concern with
respect to ongoing global expansion of fed aquaculture. Despite that
inclusion rates of FMFO have declined over time for salmonids and
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Fig. 1. Production level of the main aquaculture species in Peru (2000–2011).
Source: (PRODUCE, 2012).
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shrimps due to increasing use of alternative protein sources (Welch
et al., 2010), overall demand has remained relatively constant due to
increased use in the production of omnivorous and herbivorous species
(Chiu et al., 2013; Naylor et al., 2009; SOFIA, 2012).

Previous research has shown that feed provision accounts for a large
fraction of many of the environmental impacts associated with aquacul-
ture supply chains (Henriksson et al., 2012). For instance, several publi-
cations highlight the contribution of feeds to overall impacts and specific
environmental impact categories (Aubin et al., 2009; Boissy et al., 2011;
Cao et al., 2011; Ellingsen and Aanondsen, 2006; Mungkung et al., 2013;
Pelletier et al., 2009).

Peruvian aquaculture has grown at an average rate of 30% over the
past 20 years. As shown in Fig. 1, production is dominated by marine
species (scallops and shrimps, accounting respectively for 50%
and 23% of all production), as well as freshwater species such as trout
(Oncorhynchus mykiss; 22%), red tilapia (Oreochromis spp.; 3%) and,
more recently, black pacu1 (Colossoma macropomum; 1%) (Mendoza,
2013; PRODUCE, 2009). Other than scallops, production of these species
is reliant on exogenous feed inputs. Both artisanal and commercial feeds
are used, but theuse of commercial feeds is preferredwhen economical-
ly viable for cultured fish producers, especially in the case of trout,
mainly because of improved feed conversion ratios (technical feed
conversion ratio — FCR, defined as the total feed distributed divided
by biomass weight gain). In other words, Peruvian fish farmers usually
apply either one or a combination of the following two feeding strate-
gies: one is based on low cost (low value) artisanal feed with limited
rearing performance, and the other is based on higher value industrial
(commercial) feed with expected better rearing performances. These
two strategies and the degree of overlap between them are dependent
on the available operational budget of the farmer and the level of
technical control over the production cycle.

This paper focuses on the environmental performance of aquacul-
ture, with specific attention to the role of feed provision, for rainbow
trout, tilapia and black pacu production in Peru. We developed full Life
Cycle Assessment (LCA; ILCD, 2010) models for trout and black pacu
production systems. In order to complete an overview of the three
main cultured species in the Peruvian freshwater aquaculture sector,
tilapia production was also modelled using a screening-level LCA
1 Colossomamacropomum is knownas gamitana in Peru, tambaqui in Brazil,paco/pacu in
Ecuador and Bolivia, cachama in Venezuela and Colombia, and internationally as pacu or
black pacu.
(Wenzel, 1998). We assessed the environmental performance of
various types of aquaculture systems of the three above-mentioned
species, at farm gate, in order to compare their environmental perfor-
mance. This was achieved by taking into account the use of either
commercial or artisanal feeds and feed formulations. Feeds were also
compared directly, at mill gate, in order to gauge their relative environ-
mental performance without considering feed conversion ratios.

The results of this analysis are intended to inform both aquafeed and
cultured fish producers as to the relative environmental performance of
feed and fish production for alterative species and feeds. A presupposi-
tion of this study was that simpler feeds would perform better than
more complex ones, when compared in isolation, on a per tonne basis.
An a priori supporting argument was that certain feed inputs, especially
those featuring more energy-intensive processing stages would feature
higher environmental impacts than less processed crop-derived feed
inputs. Typical feed inputs of the former type are wet-milling or higher
levels of animal- and fish-derived inputs such as fishmeal, fish oil and
animal meat.
2. Methods

2.1. Goal and scope definition

This study follows the ISO-standardised framework for Life Cycle
Assessment (LCA) studies: 1) goal and scope definition, 2) life cycle
inventories, 3) life cycle impact assessment and 4) interpretation (ISO,
2006a).

We constructed LCA models of scenarios for Peruvian fish aquacul-
ture production systems that represent common practices in terms of
choice of species (trout, black pacu, tilapia), rearing techniques (inten-
sive and semi-intensive), feed origin (artisanal and commercial) and
associated FCRs. In the case of trout and black pacu, only semi-intensive
operations were considered because they represent 98% and 97% of
national production, respectively (Mendoza, 2011a, 2013). In the case
of tilapia, two different methods/operational scales common in Peru
were modelled: semi-intensive and super-intensive. These represent
11% and 88% of total national production, respectively (Baltazar, 2009).
For the three species considered, the rest of Peruvian production is
characterised by small-scale subsistence operations, not included in the
current analysis (Mendoza, 2013). Both artisanal and commercial feeds
were modelled. We define artisanal feeds as those produced with very
simple technology (e.g. extruded cold-pressed and air-dried pellets), at
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Table 1
Peruvian aquaculture scenarios defined for this study. See Table 3 for a key of feeds.

Artisanal feeds Commercial feeds

Trout systems TrArtS1 TrComS2 TrComS3
Rearing system Cages,

semi-intensive
Cages,
semi-intensive

Cages,
semi-intensive

Feed TrArtF1 TrComF2 TrComF3
FCR (average) 1.8 1.4 1.4
Black pacu systems GaArtS1 GaComS2
Rearing system Ponds,

semi-intensive
Ponds,
semi-intensive

Feed GaArtF1 GaComF3
FCR (average) 1.7 1.4
Tilapia systems TiArtS1 TiArtS2 TiComS3
Rearing system Ponds,

semi-intensive
Ponds,
super-intensive

Ponds,
super-intensive

Feed TiArtF1 TiArtF1 TiComF2
FCR (average) 1.7 1.7 1.4

Primary LCI data were collected for scenarios in bold.
Scenarios represent variations of the base scenario for each species/feed (TrArtS1,
GaArtS1, TiArtS1) by replacing artisanal feeds with commercial feeds (expert-provided
Peruvian commercial formulations TrComF2, GaComF3 and TiComF2, as detailed in
Table 3). Peruvian FCRs are based on Peru-specific experience by the fifth author, and
represent national averages.

2 Anchoveta Supply Chains project (ANCHOVETA-SC), http://anchoveta-sc.wikispaces.
com.

3 Fertilised trout eggs, except for aminimumamount, are imported to avoid genetic de-
fects common in the Peruvian broodstock, as well as to improve quality and to decrease
mortality (MAXIMIXE, 2010; PETT, 2011).
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small scale, and relying on rather simple formulations that employmostly
local inputs. It is a common practice among Peruvian fish farmers, even
small-scale producers, to use commercial feeds when feasible. However,
artisanal feed is often used for part of, or over, the whole production
cycles due to cost factors (Peruvian fish farmers, anonymous pers.
comms.).

Overall, eight different scenarioswere analysed in order to determine
the influence of these different factors on environmental performance.
Table 1 summarises the scenarios that were evaluated, including FCR
and feeds used (commercial vs. artisanal). In most tables throughout
the paper, abbreviated names are concatenations of three identifiers:
the species name (two first letters of their name; “Ga” stands for
“gamitana” — black pacu), the type of feed used (three first letters)
and the numbering of the scenario (S1 to S3) or the type of feed
(F1 to F3).

Full LCAs were performed for trout and black pacu production. Due
to lack of access to primary data, a life cycle screening (LCS) – a lighter
version of LCA (Wenzel, 1998) – based on secondary data was applied
to tilapia production. The functional unit (FU) for this study was one
metric tonne (t) of live weight, fresh farmed fish at farm gate; consis-
tent for all species studied. A secondary FU, consisting of 1 t of fresh
farmed fish, edible yield, was also used. Both types of FU have been
used in aquaculture LCAs (Henriksson et al., 2012). Assessment results
using both FUs were compared to isolate the effect of edible yields.
Farm-level capital goods, transportation of key production inputs (e.g.
fertilised eggs,fishmeal), provision of fry and land transformation activ-
ities were included in the analysis. Fig. 2 depicts the system boundaries
for the analysis.

The environmental performances of each scenario were compared
within and between species. Since no previous LCA studies of black
pacu systems were available, our results were benchmarked against
tilapia results (similar nutritional requirements and rearing practices
at the semi-intensive level), as well as previous demonstrations that,
under culture conditions, farming of black pacu and tilapia are similar
in terms of yield (Peralta and Teichert-Coddington, 1989).

2.2. Life Cycle Inventory (LCI)

Data collection was carried out during 2012, in cooperation
with civil servants of the following institutions: Ministerio de la
Producción — Peruvian Ministry of Production, PRODUCE, Instituto
del Mar del Perú — Peruvian Institute of the Sea, IMARPE (2012),
Instituto de Investigaciones de la Amazonía Peruana — Research
Institute of the Peruvian Amazonia, IIAP (2012), and a trout develop-
ment project of the regional Puno government (PETT, 2012). Five
aquaculture farms, three hatcheries and three artisanal aquafeed
plants were visited in Puno and Iquitos, and primary operational
data collected for the purpose of building life cycle inventories.

General data on Peruvian aquaculturewere compiled fromofficial sta-
tistics and reports (Mendoza, 2011b, 2013; PRODUCE, 2009, 2010, 2012;
Ruiz, 2013). Data for the Life Cycle Screening of Peruvian tilapia farming,
including composition of artisanal feeds, were acquired from published
sources, reports, theses and other informal literature (Baltazar, 2009;
Baltazar and Palomino, 2004; Furuya et al., 2004; Gupta and Acosta,
2004; Handal, 2006; Hurtado, 2005a, 2005b; Lochmann et al., 2009;
Luna, 2008; Maradiague et al., 2005; Mendoza, 2011b, 2013; Pelletier
and Tyedmers, 2010; UNALM, 2012). Infrastructure and basic mainte-
nance activities were assumed to be similar to black pacu systems, with
minor adjustments when necessary. For the purpose of quantifying
inputs of capital goods, life spans of black pacu and tilapia production
systems (infrastructure, ponds) were estimated at 20 years, while trout
cage systems were expected to operate for 10 years (with net replace-
ment every two years) before major infrastructure recapitalisation. The
national Peruvian grid energy mix and the local Iquitos grid energy mix
were modelled based on recent, official energy reports (MINEM, 2009,
2012).
Due to the importance of feed provision with respect to potential
environmental impacts, we used country/product-specific inventory
data for key fish (ANCHOVETA-SC project,2 unpublished data) and
agriculture-derived (Pelletier et al., 2009) feed input supply chains, as
well as feed manufacturing subsystems. Filleting and other post-farm
processing were not considered.

2.2.1. Rearing systems
Fig. 3 depicts the geographical distribution of main aquaculture

production areas in Peru.
Most trout culturing operations are artisanal, yet semi-intensive,

especially those in the Puno area (Lake Titicaca and nearby water
bodies) where the bulk of the national production takes place.
Trout farming in the Puno region water bodies consist of artisanal
wood- or metal–nylon floating cages (800 kg to 2 000 kg carrying
capacity according to size and fish density) and larger scale metal–
nylon floating cages (up to 6 t carrying capacity). The production
cycle starts at hatcheries with fertilised eggs imported from the
USA and Denmark.3 Fingerlings (fry) are directly transferred into
water body-based systems. The total local cycle takes seven to
nine months and consumes almost exclusively commercial feeds.
Trout is mainly destined for export, despite increasing consumption
in the producing areas and large Peruvian cities, particularly in the
capital, Lima. Reference literature for the trout LCA, in complement
to directly collected data, were derived from Aubin et al. (2009),
Boissy et al. (2011), Grönroos et al. (2006) and Roque d'Orbcastel
et al. (2009). Water management (i.e. pumping and aeration) is
not required here.

Black pacu farming is carried out mainly in large, semi-intensive
artificial pond systems, yielding ~10 t·ha−1·y−1. The production cycle
takes 12 months and consumes mostly commercial feeds. Water
replenishment is estimated at 200% per cycle; hence associated energy
inputs were included in the model. Fry are provided predominantly by
IIAP (2012). This species is cultured almost exclusively in the Amazon
basin (Loreto and San Martin areas). Black pacu is mostly consumed
locally for three main reasons: the physical isolation of Amazonian
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breeders, the growing local demand that resulted in overexploitation of
wild stock (Anderson et al., 2011) and the lack of a cold transportation/
storage chain for national distribution. No previously published LCA
studies of black pacu production are available, thus only directly collect-
ed data were used to model production-level activities.

Tilapia is produced using a variety of methods and operational
scales, mostly intensive. Most of the farms are located in northern
Peru, in the Piura (N88% of production) and San Martín regions (N10%
of production). They rely either on semi-intensive pond systems with
an annual yield of 15 t·ha−1 or on intensive/super-intensive pond
systems yielding 200 to 500 t·ha−1. Super-intensive production takes
place in geomembrane-filled ponds or in concrete ponds with water
replenishment rates of up to 700% over the production cycle, and pond
aeration (80 HP·ha−1, 3 h of use per day). Semi-intensive production
usually takes place in semi-natural pond systems, with a water replen-
ishment rate of ~200%, by stream derivation. In Peru, most tilapia fry
produced aremono-sexmales, obtainedbyhormone-induced sex rever-
sal (Baltazar, 2009). The whole local production cycle of tilapia takes
seven months, and consumes mostly commercial feeds. Tilapia was
historically destined to the national market, but over the last decade
increasing shares of production have been exported. In complement to
directly collected data, reference data for the LCS of tilapia production
were derived from a study of lake- and pond-based tilapia farming in
Indonesia (Pelletier and Tyedmers, 2010).

Estimated technical FCRs represent Peruvian averages encompassing
small and large producers, using artisanal and commercial feeds (see
Table 1). Transportation activities (i.e. for commercial feeds and feed in-
puts transported from Lima to farm areas, and fertilised trout eggs
importedmainly fromNorthAmerica)weremodelled based on available
ecoinvent (Ecoinvent, 2012) data, surveys and estimations of distances
and routes. The use of fertilisers is very limited in the studied systems.
However, the use of quicklime and organic fertiliser (poultry manure)
in black pacu ponds and in semi-intensive tilapia farms was included in
the models as free inputs, that is to say, without accounting for
substitution of chemical fertilisers. Edible yields were obtained by aver-
aging various reference values from literature.

Table 2 describes key features of the modelled systems.

2.2.2. Artisanal and commercial feeds
For commercial feed production, composition datawere provided by

industrial aquafeed producers (anonymous pers. comms.). A commer-
cial salmonids feed used in Chilean salmon farming (Pelletier et al.,
2009), which is sometimes used by Peruvian trout producers, was also
modelled. Data for energy inputs to feed milling were derived from
published sources (Pelletier and Tyedmers, 2010; Pelletier et al.,
2009). Commercial aquafeeds were assumed to be transported from
Lima (where most of aquafeed production in Peru takes place) to the
farm location by truck.

Fisheries inputs to feeds were modelled using unpublished primary
data (ANCHOVETA-SC project) that were collected in the period
2010–2013 and encompass three different fishmeal plants, as detailed
in the Supplementary Material (SM), Table B.3. According to this
research, fishmeal and fish oil yield rates were 21.3% and 4.3% respec-
tively based on average data for the period 2002–2011. These figures
are lower than other values recently reported for Peruvian and foreign
FMFO industries (Péron et al., 2010; Samuel-fitwi et al., 2013).
Agricultural and animal husbandry inputs to feeds were based on
the aquaculture feed supply chain models reported in Pelletier
et al. (2009). Additional models were developed (for instance,
for Peruvian rice production) where necessary, using equivalent
modelling protocols (SM, Appendix A). Geographical origins of
feed inputs were assumed based onmarket share. Minor feed inputs
such as micronutrients (vitamin and mineral premixes) were not
considered.

For artisanal feed production, composition and operational data
were collected via survey. Transportation of all non-local inputs was
included in the analysis. Input data for local agricultural feed crops
were assumed to be equivalent to national average inputs except

image of Fig.�2


Fig. 3. Department map of Peru, showing main aquaculture-producing regions and main species (PRODUCE data). Labels in bold represent the leading producing region for each species.
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when specific data was available (e.g. for seasonal Amazonian rice).
Table 3 presents detailed feed formulations, plus additional composition
and performance data. Table 4 compares the retained FCRs with other
values presented in literature.

It is worth noticing that fishmeal and oil used in Peru are 100%
sourced in the country. The bulk of reduction produce is exported, but
small amounts are sold for national use (INEI, 2012).
4 The use of 5-year price averagesmay help overcome such divergence in relative prices
for FM and FO, as done by Aubin et al. (2009) and Boissy et al. (2011).
2.2.3. Nutrient emissions
Nitrogen and phosphorus emissions to water from fish farm

operations were modelled using the mass balance approach de-
scribed in Cho and Kaushik (1990) and Kaushik and Cowey (1991).
The method was complemented with an emissions fate analysis,
based on literature addressing nutrient flows in ponds (Gross
et al., 2000; Jiménez-Montealegre et al., 2005). Modelling of emis-
sions to water was based on specific feed and FCR values for each
Peruvian scenario modelled.
2.2.4. Allocation
Allocation of impacts among agricultural (crop and animal husband-

ry) and fisheries inputs and their co-products was based on mass-
weighted gross energy content (GEC) (Ayer et al., 2007). Following
Pelletier and Tyedmers (2011) we understand LCA as a bio-physical
accounting framework, and therefore consider that it should rely on
biophysically-driven relationships, not market ones that fail to account
for the value of ecosystem services. In the case of fisheries products,
for instance, economic allocation (Aubin et al., 2009; Boissy et al.,
2011) was deemed less preferable than GEC based allocation, given
fluctuating relative prices for FM and FO4 (Fréon et al., 2013). Relative
energy content of FM and FO is, despite natural fluctuations in oil
content of fresh anchoveta (Engraulis ringens, the main species used
for reduction in Peru), historically stable, as is the yield of FM and FO
per tonne of fish. For methodological consistency, and in compliance
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Table 2
Main features of studied Peruvian aquaculture systems (PRODUCE data, field data and informal literature: Baltazar, 2009; Luna, 2008; Mendoza, 2013; Rebaza et al., 2008; UNIDO, 2005).

Features Trout (LCA) Black pacu (LCA) Tilapia (LCS)

Species Oncorhynchus mykiss Colossoma macropomum Oreochromis spp.
Edible yield
(raw fillets)a

61% 45% 35%

Location Titicaca lake, Puno Iquitos, Loreto Lancones, Piura and San Martín
Scale Semi-intensive (artisanal) Semi-intensive Intensive
Production 10 t∙cage system−1·y−1 10 t·ha−1·y−1 Semi-intensive: 15 t·ha−1·y−1

Intensive: 200 t·ha−1·y−1

Super-intensive: 500 t·ha−1·y−1

Average intensive: 350 t·ha−1·y−1

Fry origin Imported fertilised eggs,
fry produced in Chichillapi, Puno

Fry produced and
distributed by IIAP

Fry produced locally by private companies

Fry weight 1.4 g 2.0 g 5.0 g
Harvest weight 350 g 1200 g 850 g
Production cycle 9 months 12 months 7 months
Technology Lake floating cages Artificial ponds (soil walls),

with fertilisation
Artificial ponds (geomembrane insulation),
fertilisation when semi-intensive

Mortality 10% 20% 15%
Final density 30 u·m−3 0.5 u·m−3 Semi-intensive: 2–10 u·m−3

Average intensive: 15–20 u·m−3

Representativenessb 98% 97% Semi-intensive: 11%
Average intensive: 88%

Number of farmsc 1581 38 56

Note. Figures used for the life cycle modelling are highlighted in bold.
a Edible yields are averages of various sources, namely Celik et al. (2008) and Bugeon et al. (2010) for trout; Torry Research Station (1989) and Bocanegra and Bucchi (2001) for black

pacu; and Torry Research Station (1989), Mendieta and Medina (1993) and Garduño-Lugo et al. (2003) for tilapia.
b Percentage of the national production represented by the modelled system
c Only small-scale farms, in 2012 (in Peru, those producing less than 50 t per year).
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with the International Organization for Standardization 14044 standard
for LCA (ISO, 2006a,2006b), a consistent allocation criterion was used
for all feed inputs. System expansion, as strictly defined in ISO 14044,
was not appropriate for our analysis since quantification of impacts at
the level of individual co-products was of interest.

2.3. Life Cycle Impact Assessment (LCIA)

This study includes some of the impact categories most commonly
used in aquaculture LCAs (Aubin, 2013; Parker, 2012), as listed in
Table 5. Most of these impact categories are categorised in several Life
Cycle Impact Assessment methods, such as CML 2 baseline 2000 v2.05
(Guinée et al., 2001a) and ReCiPe v1.07 (Goedkoop et al., 2012) and
are available in the LCA software SimaPro v7.3 (PRé, 2012), which was
used in the current analysis. The aggregated ReCiPe single score was
also used for comparison purposes. It is computed by applying an addi-
tional set of characterisation factors to transform midpoints into end-
points, and then a weighting set to calculate a single score (Goedkoop
et al., 2012). The egalitarian perspective was retained for the weighting
set because it considers a precautionary (i.e. conservative) principle that
assumes a set of high and mid risk scenarios for damage assessment
(Goedkoop et al., 2012). Nonetheless, it is worth noting that marine
eutrophication and water depletion are excluded from this conversion
(Goedkoop et al., 2012), which may constitute a limitation in some
aquaculture study cases (thus our conclusions and recommendations
are based on both individual impact categories and the single score;
see the Results and discussion section). The use of a single score
(index) entails both advantages, such as overcoming trade-offs among
individual impact categories by facilitating communication through a
single figure; but also disadvantages, particularly the loss of information
and weighting (which is arbitrary by nature) associated to its computa-
tion (Carvalho et al., 2014).

The CML methods were used for most individual mid-point impact
categories. However, we also included a mid-point land use impact
category that has been recommended for use in aquaculture studies
(Henriksson et al., 2012) and a mid-point water depletion impact
category (total water inputs to ponds, irrigation to crops) from ReCiPe.
In addition, cumulative energy demand (CED), which accounts for all
of the primary energy inputs associated with the provision of a product
over its life cycle (Hischier et al., 2009; VDI, 1997), was quantified, as
was biotic resource use (BRU). BRU represents the primary productivity
that underpins production of the fish, and is a function of the specific
FCR and the primary productivity appropriated by the feed consumed
(Papatryphon et al., 2004). The BRU of crop inputs to feeds is estimat-
ed from its carbon content and dry mater content (Papatryphon
et al., 2004). The BRU of wild caught fish is calculated using
BRU = catch∙9−(Trophic level - 1), a general equation assuming a 9:1
ratio of fishwet weight to carbon and a 10% transfer efficiency between
trophic levels (Pauly and Christensen, 1995). BRU has been included in
many LCAs of fisheries and aquaculture systems (reviews in Avadí and
Fréon, 2013; Henriksson et al., 2012; Parker, 2012). Finally, end-point,
aggregated scores were also calculated using ReCiPe.

Human, soil and freshwater ecotoxicity were included as charac-
terised in CML 2 (Guinée et al., 2001a,2001b), but with reservations due
to the high uncertainty associatedwith these impact assessmentmethods
(Vázquez-Rowe et al., 2010; Ziegler and Valentinsson, 2008).

Finally, interpretation of LCA results was two-fold. First we com-
pared aquafeeds within and among species, and then aquaculture
scenarios within and among species.

3. Results and discussion

3.1. Life cycle inventories

Key LCI data for the modelled systems are summarised in Table 6.
Nutrient emissions to water for each culture system are depicted in

Table 7. Nitrogen and phosphorus budgets (SM, Table B.4) show that
trout systems release more nutrients, in terms of kg of nitrogen and
phosphorus per t of fish produced, than do black pacu and tilapia
systems. These values are not always consistent with previously pub-
lished values (Aubin et al., 2009; Boissy et al., 2011; Grönroos et al.,
2006; Jiménez-Montealegre et al., 2005; Pelletier and Tyedmers,
2010). For trout, nutrient emissions for our scenario using commercial
feed are close to those described in literature. For black pacu, the
observed difference may reflect that the estimates from Jiménez-
Montealegre et al. (2005) are based on data obtained from a laboratory
experiment (working with juveniles) rather than a real, full production
cycle. For tilapia, the difference relates to the differences in FCR assumed



Table 3
Composition of studied aquafeeds.

Trout Black pacu Tilapia

Data source Survey Expertb Pelletier
et al. (2009)

Survey A Expertb UNALM
(2012)c

Expertb

Feed production scale Artisanal Commercial Commercial Artisanal Commercial Generic Commercial

Country and year of use PE 2012 PE 2012 CL 2007 PE 2012 PE 2012 PE 2012 PE 2012

Abbreviation TrArtF1 TrComF2 TrComF3 GaArtF1 GaComF3 TiArtF1 TiComF2

Ingredients
Amino acids by-products 0.7% US 0.5% US 0.5% US
Blood meal (poultry) 5.0% PE 5.0% PE
Calcium carbonate, salt, etc. 0.8% PE 1.5% PE 0.5% PE 2.0% PE
Fish oil 5.0% PE 6.0% PE 17.2% PE

CL
PE

0.3% PE 1.0% PE

Fishmeal 40.0% PE 20.0% PE 25.1% CL
PY

6.0% PE 10.0% PE 4.0% PE

Lupin seed 0.8% CL
Maize 15.0% BO 5.0% BO 49.0% PE 15.0% BO 8.9% PE 24.0% BO
Maize gluten meal 5.0% US 7.3% US

CL
Meat meal (poultry) 15.0% PE 15.1% BR

FR
10.0% PE 10.0% PE

Molasses 5.0% PE
Palm oil 1.0% MY
Monocalcium phosphate 2.5% PE 1.5% PE
Rapeseed meal 2.3% FR
Rapeseed oil 1.0% FR
Rice (broken grains, powder) 10.0% PE 7.0% PE 10.0% PE
Rice bran 35.0% PE 20.0% PE
Soy oil 1.0% BO 4.8% AR 0.5% BO
Soybean meal 15.0% BO 20.0% BO 9.7% AR 34.0% BO 25.0% BO 32.2% US 11.0% BO
Sunflower meal 10.4% AR
Vitamins, minerals (premix) 0.5% PE 4.0% PE 0.5% PE 0.9% PE 0.5% PE
Wheat 20.0% PE 10.0% PE 5.8% CL 36.0% PE
Wheat bran 10.0% US 11.3% PE 10.0% US
Wheat gluten meal 0.6% UK
Number and refinement of main inputs e 6 (4) 11 (8) 12 (10) 5 (2) 6 (4) 6 (4) 10 (8)

Nutritional values and FCRs
Protein 37.6% 42.0% 42.5% 24.5% 24.0% 30.0% 24–28%
Lipid 8.7% 12.0% 27.2% 3.0% 6.0% 5.3% 6.0%
Phosphorus 1.0%a 1.0% 1.0%a 0.8%a 0.8% 0.9% 0.8%
Humidity 15% 11% 12% 15% 11% 15% 11%
Digestible energy (kcal/kg) 3100 3800 4600 2750 2550 2700 2700
FCR declared (fish and feed producers) 1.3 1.2–1.3 1.5 1.5 1.5 1.3–1.8d 1.3
FCR retained (averages) 1.8 1.4 1.4 1.7 1.4 1.7 1.4

ISO country codes. AR: Argentina, BO: Bolivia, BR: Brazil, CL: Chile, FR: France, MY: Malaysia, PE: Peru, US: United States of America, UK: United Kingdom.
a Value adopted from commercial feeds.
b Peruvian commercial formulations and retained FCRs were provided by an expert in aquafeeds and fish nutrition, based on Peru-specific experience and interactions with manufacturers

(fifth author). The sourcing of inputs was based on national trade data and anecdotal accounts.
c Based on unpublished data by the National Agricultural University La Molina (UNALM). UNALM produces aquaculture feeds commercially. 10% inclusion of fishmeal in commercial

tilapia feeds is confirmed in Furuya et al. (2004).
d A feed conversion ratio of 2.2 for super-intensive tilapia farming in Peru has been reported (Baltazar, 2009), but this rate is based on data from the 1990s. Recent data suggests 1.7 for

intensive production in Latin America (third author), while IFFO suggests a range of 1.6–1.8 and UNALM suggests 1.3 for Peruvian production.
e Only fish, animal and crop-derived inputs. Numbers in parenthesis represent inputs featuring more than 4 refining (i.e. energy-consuming) processes.

Table 4
Comparison of average Peruvian FCRs and literature FCRs for the studied species.

Farming systems Retained FCRs Literature FCRs

Country FCR Source

Trout, cage 1.4–1.8 Australia 1.5 Glencross et al. (2002)
Finland 1.3 Grönroos et al. (2006)
Chile 1.4 Tacon and Metian (2008a)
Peru 1.1–1.4 Tacon and Metian (2008a)

Trout, flow-through N/A France 1.1–1.2 Aubin et al. (2009), Boissy et al. (2011)
Tilapia, pond 1.4–1.7 China 1.4–1.9 Chiu et al. (2013)

Indonesia 1.7–2.1 Mungkung et al. (2013)
Indonesia 1.7 Pelletier and Tyedmers (2010)
Jamaica 1.9–2.0 Watanabe et al. (2002)

Black pacu, pond 1.4–1.7 Argentina 1.4–1.7 Bechara et al. (2005)
Brazil 1.7–1.9 Carvalho and Rodrigues (2009)
Brazil 1.7–1.9 Nwannaa et al. (2008)
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Table 5
Impact categories and aggregated scores used in this study.

Impact category Method Typical unit

Acidification potential CML kg SO2-e
Agricultural land occupation ReCiPe m2·yr
Biotic resource use – kg C
Cumulative energy demand CMD MJ
Eutrophication potential CML kg PO4-e
Global warming potential CML kg CO2-e
Water depletion ReCiPe m3

Toxicity kg 1,4-DB-e
Freshwater aquatic ecotoxicity CML kg 1,4-DB-e
Human toxicity CML kg 1,4-DB-e
Terrestrial ecotoxicity CML kg 1,4-DB-e

ReCiPe single score ReCiPe Pt
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in this study compared to those reported in Pelletier and Tyedmers
(2010), which are closer to the Peruvian tilapia scenarios using artisanal
feeds (UNALM, 2012). Mortalities considered by the authors, another
possible source of the differences in calculations, were not reported in
Pelletier and Tyedmers (2010). Pond tilapia is able to fix P from sources
other than feeds, for instance, from inletwater, fromdissolved P emitted
by mud, through plankton production, etc. (Schroeder, 1983). For all
species, systems using artisanal feeds release more nutrients per unit
production than those using commercial feeds.

3.2. Life Cycle Impact Assessment

3.2.1. Relative performance of aquafeeds: artisanal vs. commercial
In an attempt to generalise the initial hypothesis that more refined

(and thus generally more energy-intensive) feed inputs are more
environmentally burdened than less refined inputs, environmental
impacts of various common feed inputs used in Peru were plotted
against their associated CED. CED was considered as an expression of
feed input level of refinement, although CED also includes the energy
demand of fertilisers, etc. Results weakly support the initial hypothesis,
i.e. the trend is indeed positive yet with a very low value of the slope a
(p b 0.05, a = 0.0036), as shown in Fig. 4. Additionally, the relation
between overall environmental impact of feeds and their digestible
energy (Table 3) was tested, and no statistical trend was found for
all studied feeds (p = 0.121) nor for the subset of artisanal feeds
(p = 0.163), as shown in the SM (Fig. B.1).

It should be noted that artisanal feed producers usually use residual
FM (access to high quality FM is limited for small producers, due to
export pressure) while commercial producers have access to high
Table 6
Main inputs to studied aquaculture systems, per tonne of live-weight fish at farm gate.

Inputs Unit Troutc Black
pacud

Tilapia 1e Tilapia 2f

Fry provision Unit 3143 875 1235 1235
Feed provision
(artisanal, commercial)

t 1.8, 1.4 1.7, 1.4 1.7, 1.4 1.7, 1.4

Energy use (electricity, fuels)
per t feed
For artisanal feed productiona MJ 1333 1333 1333 1333
For commercial feed productionb MJ 1119 682 682 682

On-farm fuel use
(water pumping, aeration)

kg 14.0 8.9 – 378

Land occupation (ponds) ha N/A 0.10 0.07 0.003
Water use (ponds) m3 N/A 29,000 3429 514

a Estimated from two Black pacu feed plants and generalised for trout and tilapia due to
similar equipment, processes and scale.

b Based on commercial feedmanufacturingfigures in Pelletier et al. (2009) and Pelletier
and Tyedmers (2010).

c Artisanal/semi-intensive in Puno.
d Semi-intensive in Iquitos.
e Semi-intensive in Piura.
f Super-intensive in Piura.
quality FM(anonymouspers. comms.). Taking into account suchdisparity
in access to high quality FM is relevant, because an almost two-fold differ-
ence (higher for residual FM) in associated impacts is observed (ANCHO-
VETA-SC project, unpublished data; Fig. 4). The main reasons for such
difference between fishmeal qualities are twofold. First, the difference in
the rawmaterial to fishmeal ratio: 4.2 for high quality FM vs 5.5 for resid-
ual FM. This difference is explained by difference in raw material: fresh
anchoveta vs fish residues, respectively. Second, the difference in drying
technology mostly used: indirect steam drying (gas powered vs. direct
flame drying by burning heavy fuel, as is common for residual fishmeal
production).

Impacts were also compared per tonne of each feed modelled, taking
into account only the upstream impacts of the rawmaterial supply chains
(i.e. transportation and feedmilling were excluded) (Fig. 5). This analysis
further supports the hypothesis that feeds composed of less refined in-
puts will, in general, be less impactful per tonne of feed produced.

A contribution analysis of the studied feeds, atmill gate, is presented
in Fig. 6. Trout feeds had the highest overall impacts per tonne of feed
milled. This is largely explained by the higher inclusion rates of FMFO
(26–45% in trout feeds vs. 0–12% in black pacu and tilapia feeds). The
overall impact5 associated with FMFO is higher than that of most
agricultural ingredients (as illustrated in Fig. 4). Feed formulations are
driven fundamentally by requirements of protein, energy and Omega-
3 fatty acid by the cultured fish. This also strongly influences their
environmental performance due to the generally higher environmental
impacts associated with the production of fish and animal protein
inputs to feeds (Pelletier and Tyedmers, 2007). For instance, the
GaComF3 feed features 10% inclusion of animal meat meal in substitute
for FMFO. As expected, the contribution of FMFO to total impacts is very
large in the trout feed, and less contributing than agricultural inputs in
the black pacu and tilapia feeds (where inclusion levels are lower). In
the black pacu feed, feed mill infrastructure contributes an atypically
large share of impacts, due to the unusual isolation of the communities
located in the Loreto province. Indeed most construction materials and
equipment need to be transported at least 500 kmbyboat from the next
Peruvian city served by the national road system (Pucallpa), or flown in
from elsewhere (usually Lima). Transportation of feed ingredients is
relevant in all cases, due to international road, river and sea freight
(e.g. road-transported soybean products from Bolivia). Black pacu and
tilapia feeds generally feature similar environmental performance,
given similar nutritional requirements.

All feeds were also compared per fed species (Fig. 7a, b, c). Among
trout feeds (Fig. 7a), TrComF3 features higher associated BRU and
toxicity due to greater inclusion of animal inputs, particularly N17% FO
(the input with the highest BRU and worse overall environmental
performance, Fig. 4). TrComF2 shows the best overall performance
among trout feeds, because of reduced inclusion of some heavily
environmentally burdened agricultural products such as certain refined
maize, soybean and wheat products such as gluten and concentrates
(Fig. 4). TrArtF1, despite a simpler formulation and lower impacts in
various impact categories (eutrophication potential, global warming
potential and BRU), is the worst environmentally performing feed as a
result of greater embodied energy requirements of inputs and transpor-
tation stages. Among black pacu feeds, the artisanal AmazonianGaArtF1
features better performance in most impact categories than GaComF3
and in total (Fig. 7b), despite the inclusion of FO, which GaComF3
excludes (but it includes an important share of animal meal, rice and
wheat products, which have relatively high associated environmental
impacts) (Fig. 4). Among the tilapia feeds (Fig. 7c), the artisanal TiArtF1
5 From a sustainability perspective, beyond environmental impact categories used in
LCA,many authors consider the sustainability of carnivorousfish aquaculture could be im-
proved by replacing FMFO with inputs of vegetable origin (Bendiksen et al., 2011; Hasan
and Halwart, 2009; Naylor et al., 2009; Tacon andMetian, 2008b), althoughmore detailed
quantitative analysis are still required.



Table 7
Nitrogen and phosphorus releases to water (per tonne of live-weight fish): comparison with other values in literature.

Emissions
(kg/t
fish)

Trout Salmon Black pacu Tilapia

This study
(artisanal
feed)

This study
(commercial
feed)

Grönroos
et al.
(2006)

Aubin
et al.
(2009)

Boissy
et al.
(2011)

Pelletier
et al.
(2009)

This study
(artisanal
feed)

This study
(commercial
feed)

Jiménez-
Montealegre
et al. (2005)

This study
(artisanal
feed)

This study
(commercial
feed)

Pelletier and
Tyedmers
(2010)

Total N 80.3 66.1 52.6 65.0 41.6 71.3 38.7 25.8 12.5 53.6 34.7 64.0
Total P 13.6 9.6 6.6 10.0 4.2 12.6 12.1 9.7 N/A 6.8 3.0 4.6

Feed conversion ratios used are shown in Table 1.
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performs better than the commercial TiComF2, due to lower levels of
fish inputs and highly burdened agricultural inputs.

Despite the fact that commercial feeds feature a better nutrient
balance for all species, as shown in Table 7, they also feature worse eu-
trophication potential. Such performance is due to the composition of
both types of feeds. For instance, for Peru-made artisanal and commer-
cial trout feeds, the main contributors to eutrophication are residual
fishmeal and transportation for the former, and poultry by-products
for the latter (which represents a larger contribution, both in absolute
and relative terms).

3.2.2. Relative performance of alternative aquaculture scenarios
The following highlights were identified when comparing scenarios

featuring different feed inputs (detailed LCIA results for all modelled
scenarios and feeds are presented in SM, Tables B.1 and B.2):

• When using the live weight based FU and artisanal feed, black pacu
and tilapia perform better than trout in the most relevant impact
categories, except for agricultural land occupation (Fig. 8a). This result
is largely due to higher inclusion of FMFO and heavily burdened
agricultural inputs in trout feeds, despite much simpler infrastructure
and lower land transformation for infrastructure in the cultivation of
this species. The same applies when using different feed scenarios
and a single score environmental impact (Fig. 9a). The relatively
poor performance of the super-intensive tilapia systems (TiArtS2
and TiComS3), comparable to the performance of the best trout
scenario (TrComS2) despite less impacting feeds, is due to a high
energy consumption for water pumping and aeration in tilapia rearing.
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Fig. 4.Environmental performance (ReCiPe single score) of commonaquafeed inputs used in Pe
and animal inputs, while diamonds represent agricultural inputs.
Another reason for poor performance in the tilapia scenarios is the
difference in the scale and intensity of farmingpractices (semi-intensive
vs. intensive, artisanal vs. larger scale). For instance, the semi-intensive
tilapia scenario features an overall performance comparable to that of
the black pacu scenarios, which represent semi-intensive systems as
well. The large contribution of the maintenance phase to the perfor-
mance of TiArtS1 is due to the replacement of the geomembrane in
ponds. Across scenarios considered, feed contributed between 54 and
82% of impacts (on an aggregated, single-score basis). Black pacu and
tilapia scenarios show very similar performance, due to similar rearing
techniques (at semi-intensive scale) and feed features – composition
and chemical values (Table 3 and Fig. 8a). The poorer performance of
the tilapia scenario in certain categories (CED, BRU, and land use) is
due to increased on-farm energy use and higher inclusion of fish inputs
in the tilapia feed.

• When using the edible yield based FU, the same general pattern of
midpoint impact categories is observed as above, but a dramatic deteri-
oration in the performance of tilapia and black pacu systems is observed
for several impact categories: global warming potential, eutrophication
potential andCED (Fig. 8b). This is due to lower edible yield of these two
species (35% and 45% respectively), compared to trout (61%). In
contrast, the single score pattern of the three species are altered when
compared to those of live weight based FU, trout aquaculture results
becoming better than tilapia ones (Fig. 9b). This is not only due to the
above-mentioned differences in edible yield between species, but also
to the fact that the single score does not consider water depletion and
eutrophication (and not directly CED) which are higher for trout than
for tilapia cultivation.
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• A comparison of all trout scenarios was performed, per impact category
andusing the liveweight based FU, highlighting the contribution of feed
(SM, Fig. B.2). As expected (Aubin et al., 2009; Boissy et al., 2011;
Pelletier et al., 2009), feed provision contributed with over 50% of the
total for most impact categories with the exception of eutrophication
potential. For BRU, feed provision contributes 100%. The contribution
of feeds to CED represents a larger share in the artisanal Peruvian
scenarios because the direct, on-farm energy inputs are low in those
systems: in Peru it is common for fish farms to either generate
their own electricity with diesel generators and/or use fuel-powered
pumping and aeration systems. Trout farming in cages has minimal
energy requirements, limited to powering a small storage hall and
outboard motor boats.

Performance changes in aquaculture systems occur when replacing
artisanal by commercial feeds. In general terms, such a replacement
improves fish farming performance, mostly because of improved FCRs.
Nonetheless, environmental performance of the aquaculture systems
tends to deteriorate, despite improved FCRs and benefits of scale
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Fig. 6. Contribution analysis of aquafeeds used in Peru (ReCiPe single score). Due to difference
animal inputs” in TrComF3 aggregates the contribution of feed input transportation. Contribut
regarding energy use for feed manufacturing. This is due to the large
contribution of feeds to overall environmental performance, and to
the higher inclusion of more refined (and thus more impacting) inputs
in commercial feeds. A clear exception is the trout scenario TrComS2,
where the overall performance of both the feed and the aquaculture
system is determined by a lower inclusion of FMFO,which compensates
for a more complex feed formulation featuring more refined inputs.
Transportation of feed plays a minor role in the lower environmental
performance, because in artisanal feeds most of the inputs are local
(except for fish inputs and non-locally available agricultural inputs,
such as soybeans).
3.3. Sensitivity and uncertainty

In LCA studies, there is uncertainty associated to input data, to
normative choices and to the underlying mathematical models, or
model uncertainty; as discussed in literature (Heijungs and Huijbregts,
2004; Henriksson et al., 2014; Lloyd and Ries, 2007). Methodological
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6 If the comparison would have been done using original ecoinvent processes, the con-
trast would have been even larger. Ecoinvent models the provision of stubbed land as a
very destructive and impacting process, because transformation of Amazonian rain forest
takes place. In the other hand, an ecoinvent-based Bolivian soybean model would adapt
the original ecoinvent Brazilian soybean by identifying the expansion frontier with other
biomes less sensitive to natural land transformation, namely bush savannah (Dros,
2004; Kaimowitz and Smith, 2001).
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Fig. 8. Relative environmental performance of reference Peruvian aquaculture scenarios, per impact category.
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Fig. 7. Relative environmental performance of aquafeeds used in Peru, per tonne of feed, per species.
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uncertainty is associated to characterisation factors, weighting and
normalisation factors, and other elements of the LCA model, also
discussed in literature (e.g. Hauschild et al., 2012). In this paper we
focused on data uncertainty, mostly associated with assumptions
regarding FCRs, feed compositions and modelling of agricultural feed
input supply chains, including geographical origin. Some of these attri-
butes were subject to sensitivity and uncertainty analyses, as follows.
The protocol for horizontal averaging of unit process data, including
estimates for uncertainty (Henriksson et al., 2014) was published after
the initial submission of this paper and therefore not used.

Water content of feeds is a source of variation regarding FCRs.When
FCRs are recalculated based on dry matter (DM) contents of both fish
and feed, in order to compensate for differences in humidity between
artisanal (~15%) and commercial (11–12%) feeds, the results suggest
that Peruvian commercial black pacu and trout feeds yield more fish
DM per unit of feed DM (SM, Table C.1). This is not surprising given
that commercial feeds are professionally formulated tomatch the nutri-
tional needs and promote rapid growth of the cultured organism.

The sensitivity of the aggregate ReCiPe single score results to chang-
es in FCR (±20%)was also analysed. Trout scenarios show higher sensi-
tivity to FCRs (SM, Fig. C1) due to the larger contribution of feeds to
overall impacts compared with the tilapia and black pacu scenarios.
Regarding emissions to water, results for all species show high sensitiv-
ity to changes in assumed FCRs (SM, Table C.2).

Soybean meal and oil are key components in aquafeeds worldwide
(SOFIA, 2012). Peruvian feeds use soybean products mainly sourced
in Bolivia, but also from Argentina, Brazil and the US. We replaced
Bolivian soybean meal in the Peruvian reference trout feed TrArtF1
used in the reference trout scenario TrArtS1 with US and Brazilian
soybeanmeals, to test the influence on the environmental performance
of the resulting aquafeed (SM, Fig. C.2). It appears that Bolivian and US
products contribute comparably to overall impacts, while Brazilian
soybean meal produces a 14% worsening in environmental perfor-
mance.6 This difference is mainly due to changes in transportation
required and land use demands (i.e. differences in yields). However,
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Fig. 9. Relative environmental performance of Peruvian aquaculture scenarios and relative contribution of aquafeed (ReCiPe single score).

7 Prices of feed inputs, especially of FMFO, are key factors in the aquafeed industry, driv-
ing innovation and feed formulation decisions (Rana et al., 2009; Tacon et al., 2009).
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land use change and indirect land use change emissions were not
considered.

4. Conclusions and recommendations

Peruvian aquaculture is characterised by low levels of technolog-
ical intensity at farm level (except for super-intensive systems) and
the use of both simple artisanal as well as more complex commercial
aquafeeds. The substitution of artisanal feeds with commercial ones
generally increases environmental impacts of the fish farming sys-
tems for the specific feeds considered, despite enhanced FCRs and
economies of scale (which decrease, for instance, energy use for
feed milling). This reflects the higher environmental impacts attrib-
utable to certain feed inputs that are used in commercial feeds — in
particular, highly refined feed inputs subject to energy-intensive
processing, as well as higher levels of inclusion of animal-derived
products. A selection of feed inputs that simultaneously meets the
required nutritional profile for the cultured organisms, minimises
costs for feed manufacturers,7 and lowers environmental burdens is
therefore desirable. This can be achieved by the use of different feeds
according to developmental stages, as shown by ongoing aquaculture,
fish nutrition and environmental assessment research (e.g. Amaya
et al., 2007; Bendiksen et al., 2011; Hardy, 2006; Li, 2004; Machado
and Sgarbieri, 1991; Nguyen et al., 2009; Pelletier and Tyedmers,
2007; Rana et al., 2009; Rust et al., 2011; Samuel-fitwi et al., 2013).

Given the favourable environmental performance of cultured black
pacu compared to trout and even more tilapia, when considering the
edible yield in the FU, we recommend that further development of
black pacu aquaculture (and trout, to a lower extent) be supported in
order to increase its supply to both national and export markets. Black
pacu aquaculture could be supported, for instance, by diversifying

image of Fig.�9
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farming areas to regions with better transportation and cold storage
infrastructure. Trout aquaculture would benefit from the national
production of high quality fertilised eggs which should overcome
existing genetic deficiencies of Peruvian broodstock.

We conclude that, facedwith the pressure of increasing the utilisation
of cheaper and more efficient commercial aquafeeds, Peruvian aquafeed
vendors and aquaculture producers should prefer less environmentally
burdened agricultural inputs and low inclusion of highly refined inputs,
to the extent that FCR is not compromised. For instance, local maize
and rice, Bolivian soybeanmeal should be preferred to Brazilian soybean
meal, whereas gluten meals, protein extracts, vegetable oils with high
natural land transformation burdens should be avoided or limited.
Peruvian agriculture has not previously been studied by means of life
cycle methods, with the exception of a few crops used for bio-fuels
(PUCP, 2010). It is advisable that Peruvian agricultural inputs to feeds
are analysed using LCA, in order to determine with greater certainty
whether local production is environmentally preferable to imported
agricultural inputs. Prime instead of residual fishmeal should be used
for artisanal feeds when possible because of lower associated environ-
mental impacts.

Finally, bestmanagement practices should be developed and applied
to Peruvian aquaculture, especially by artisanal/small-scale producers,
in order to optimise FCRs by means of enhanced feeding management
(e.g. calculation of daily rations; varied feed according to developmental
stages). A global approach combining best farming management and
good quality feeds (which balancenutritional features and environmen-
tal performance) is desirable.
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Supplementary Material 

Appendix A. Additional life cycle inventory details and assumptions 

Certain assumptions and data treatments were made to construct the life cycle inventories, namely: 

 LCIs were collected for the operational phases of aquaculture farming, namely construction, use 

(including fry and feed provision) and maintenance. No end-of-life or site remediation was 

considered. 

 It was assumed that no chemicals were used during the farm phase of fish production.  

 Farm maintenance included water replenishment (when relevant), pond fertilisation only in the 

cases of black pacu and semi-intensive tilapia farming, and materials replacement in the cases of 

trout and tilapia (nylon nets and geomembrane, respectively). 

 The fuel consumption associated with aeration in super-intensive tilapia farming was calculated 

based on HP of air pumps and daily operation times. 

 Commercial aquafeeds were assumed to be always transported from Lima, where most 

aquafeed production takes place in Peru, to the farm location. In the case of artisanal feeds 

produced in the vicinity of the farms, FMFO were assumed to be transported from Lima, while 

transportation of other non-local inputs (e.g. imported soybean meal and wheat, maize from 

other regions, etc) is calculated based on the most likely origin and known transportation 

strategies (e.g. Bolivian soybean meal transported by road, US products transported by freight 

ship, Chilean products transported by freight ship from Puerto Montt to Ilo, Peru, and then by 

road; etc). 

 All agricultural and animal husbandry inputs were modelled with gross energy content 

allocation, following (Pelletier et al., 2009). System processes for all major inputs were created 

or adapted from existing models used in Pelletier et al. (2009). A main difference with the 

system process modelling described in Pelletier et al. (2009) and its Supplementary Material is 

that land use (impact category Agricultural land occupation) was considered in the LCIs. 

Background system data and minor inputs were taken from ecoinvent and adapted when 

necessary (i.e. molasses, monocalcium phosphate, calcium carbonate, and salt) to better 

approximate regional conditions. Marginal inputs accounting for ~1% of aquafeed formulations, 

such as vitamin and mineral pre-mixes, were excluded from the analysis. Peruvian fisheries 

inputs (FMFO) were modelled using gross energy content allocation, based on primary data.  

 Peru imports most of the soybean meal (~100%), wheat (~90%) and maize (~60%) it consumes. 

The main sources of those products are Bolivia, US and Canada, and Argentina, respectively 

(http://www.agrodataperu.com, based on official trade data). System processes of those inputs 

were constructed as described in Pelletier et al. (2009).  

 Peru is almost self-sufficient regarding rice production, importing barely ~7% of its needs. Two 

different types of rice cultivation were identified as relevant for Peruvian aquafeeds: average 

Peruvian rice, extensively produced in the north coastal region (with irrigation and high 

mechanisation), and rice grown in the Amazonas river basin. The latter is produced mostly for 

local consumption (thus it is used by aquafeed producers in Iquitos), and it is seasonally grown, 

taking advantage of the annual flooding of the Amazonas and its tributaries. In that case, CH4 

related to flooding shall not be accounted for because they are not changed (or marginally) by 

http://www.agrodataperu.com/
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rice cultivation. An unallocated US rice farming process from ecoinvent was modified to 

represent both average Peruvian and the special Iquitos conditions (e.g. no irrigation, low 

mechanisation). Allocation between co-products (polished rice, bran and shorts, and husk) was 

carried out according to a mass-weighted GEC criterion. Yield data for Iquitos and Peruvian 

average rice were taken from 5-year averages (2007-2011) by FAOSTAT (FAO, 2013) and the 

Peruvian Ministry of Agriculture (MINAG, 2012). 

 The Peruvian grid’s energy mix was modelled based on the last officially published 

comprehensive energy dataset (MINEM, 2009). Iquitos is isolated from the national grid system, 

and generates most of the electricity locally, by means of public and private thermal stations 

using diesel and heavy (residual) oil. The Iquitos energy mix was modelled using official data 

disaggregated by region (MINEM, 2012). Electricity use for feed production was included, while 

its use at farm level was considered unimportant and thus disregarded. The farming stage of 

both trout in cages and black pacu in ponds has minimal electricity requirements, while data for 

tilapia was not available. It is common in Peru for fish farms to either generate their own 

electricity with diesel generators or use fuel-powered pumping and aeration.  
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Appendix B. Additional results 

Table B.1a LCIA of modelled Peruvian scenarios, per t of live weight fish, allocated by gross energy content (see Table 3 for key of feed origins) 

Aquaculture scenarios --> TrArtS1 TrComS2 TrComS3 GaArtS1 GaComS2 TiArtS1 TiArtS2 TiComS3 

Species   Trout Trout Trout Black pacu Black pacu Tilapia Tilapia Tilapia 

Rearing system   
Cages, semi-

intensive 
Cages, semi-

intensive 
Cages, semi-

intensive 
Ponds, semi-

intensive 
Ponds, semi-

intensive 
Ponds, semi-

intensive 
Ponds, super-

intensive 
Ponds, super-

intensive 

Feed production   artisanal commercial commercial artisanal commercial generic generic commercial 

Feed origin   PE 2012 PE 2012 CL 2007 PE 2012 PE 2012 PE 2012 PE 2012 PE 2012 

FCR   1.8 1.4 1.4 1.7 1.4 1.7 1.7 1.4 

LCIA categories Unit                 

Acidification potential kg SO2-e 48.0      29.1      33.2  21.9   20.6   18.2     28.6    36.2  

Agricultural land occupation m
2
.yr  6 843    4 849    4 882    7 235      3 938   14 256     14 262      2 808  

Biotic resource use kg C 31 023  30 023           52 983    2 796  6 550      5 653  5 653      6 320  

Cumulative energy demand MJ 61 810  42 826           57 060  27 898   33 254   42 164     40 144    52 798  

Eutrophication potential kg PO4-e                 80.7                 64.2                 76.4                  59.8                   48.3                   51.3                     53.7                    36.3  

Global warming potential  kg CO2-e   2 794    3 159    3 433    2 056      2 460      1 937  2 890      4 124  

Water depletion m
3
 15 132  15 241           15 132    5 066      5 561      3 973  1 058      1 444  

Toxicity LCIA categories Unit                 

Freshwater aquatic ecotoxicity kg 1,4-DB-e   472    392    340    172      222      167  151      241  

Human toxicity kg 1,4-DB-e           2 517            1 305           1 403    689      622      548  634      811  

Terrestrial ecotoxicity kg 1,4-DB-e 54.7      28.9      12.1  14.0     7.2     9.1     10.3      9.4  

Total toxicity kg 1,4-DB-e           3 045            1 726           1 755    875      851      725  796   1 061  

LCIA single score Unit                 

ReCiPe single score (fish) Pt   583    506    584    436      439      398  488      566  

Ranking (1 = best)        7       5       8       2   3   1    4   6  

ReCiPe single score (feed) Pt   266    225    259    196      212      156  156      199  

Ranking (1 = best)        8       6       7       3   5   1    1   4  

FCR: Feed Conversion Ratio.                    
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Table B.1b LCIA of modelled Peruvian scenarios, per t of edible portion, allocated by gross energy content (see Table 3 for key of feed origins) 

Aquaculture scenarios --> TrArtS1 TrComS2 TrComS3 GaArtS1 GaComS2 TiArtS1 TiArtS2 TiComS3 

Species   Trout Trout Trout Black pacu Black pacu Tilapia Tilapia Tilapia 

Rearing system   
Cages, semi-

intensive 
Cages, semi-

intensive 
Cages, semi-

intensive 
Ponds, semi-

intensive 
Ponds, semi-

intensive 
Ponds, semi-

intensive 
Ponds, super-

intensive 
Ponds, super-

intensive 

Feed production   artisanal commercial commercial artisanal commercial generic generic commercial 

Feed origin   PE 2012 PE 2012 CL 2007 PE 2012 PE 2012 PE 2012 PE 2012 PE 2012 

FCR   1.8 1.4 1.4 1.7 1.4 1.7 1.7 1.4 

LCIA categories Unit                 

Acidification potential kg SO2-e  83.9   49.2   56.5   52.8   48.9   50.6   79.4   100.7  

Agricultural land occupation m
2
.yr  11 413   8 082   8 137   17 228   9 376   39 601   39 617   7 799  

Biotic resource use kg C  31 023   50 038   52 983   2 796   14 555   5 653   5 653   17 556  

Cumulative energy demand MJ  122 581   71 847   95 752   70 295   79 176   117 164   111 553   146 776  

Eutrophication potential kg PO4-e  135.2   107.0   127.3   142.6   114.9   142.6   149.1   100.9  

Global warming potential  kg CO2-e  5 041   5 290   5 755   4 969   5 856   5 384   8 031   11 463  

Water depletion m
3
  25 221   25 402   25 221   12 063   13 242   11 036   2 938   4 010  

Toxicity LCIA categories Unit 
        

Freshwater aquatic ecotoxicity kg 1,4-DB-e  821.6   655.7   569.6   417.0   527.6   464.5   420.5   668.8  

Human toxicity kg 1,4-DB-e  4 331.5   2 189.6   2 358.5   1663.8   1480.2   1524.6   1762.3   2 257.8  

Terrestrial ecotoxicity kg 1,4-DB-e  92.2   48.5   20.6   33.5   17.1   25.2   28.6   26.1  

Total toxicity kg 1,4-DB-e  5 245.3   2 893.8   2 948.7   2 114.4   2 024.9   2 014.3   2 211.4   2 952.7  

LCIA single score Unit 
        

ReCiPe single score (fish) Pt  1045.3   848.6   979.9   1051.9   1045.3   1105.3   1355.4   1573.2  

Ranking (1 = best)    3   1   2   5   4   6   7   8  

ReCiPe single score (feed) Pt  290.1   227.3   261.8   199.4   211.9   155.7   155.7   198.9  

Ranking (1 = best)    8   6   7   4   5   1   1   3  

FCR: Feed Conversion Ratio.                    
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Table B.2 LCIA of feeds used in the modelled Peruvian scenarios, per t of feed, allocated by gross energy content 

Feed associated to scenarios --> TrArtF1 TrComF2 TrComF3 GaArtF1 GaComF3 TiArtF1 TiComF2 

    artisanal commercial commercial artisanal commercial generic commercial 

LCIA categories Unit PE 2012 PE 2012 CL 2007 PE 2012 PE 2012 PE 2012 PE 2012 

Acidification potential kg SO2-e  27.3   18.4   20.4   12.7   13.4   9.6   15.8  

Agricultural land occupation m
2
∙yr  3 792   3 446   3 469   4 239   2 798   8 369   1979  

Biotic resource use kg C  17 235   21 445   37 845   1864   4 367   3 325   4 514  

Cumulative energy demand MJ  38 015   21 324   29 648   15 705   19 197   10 487   17 412  

Eutrophication potential kg PO4-e  2.9   4.2   4.6   2.6   3.7   2.6   4.4  

Global warming potential  kg CO2-e  1519   1725   1811   1157   1514   835   1645  

Water depletion m
3
  4.8   82.2   4.1   5.4   358.1   3.2   278.4  

Terrestrial ecotoxicity kg 1,4-DB-e  29.2   18.0   5.8   8.1   4.6   4.4   4.1  

ReCiPe single score Pt  290.1   227.3   261.8   199.4   211.9   155.7   198.9  
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Table B.3 Abridged inventory table and overall environmental impacts (ReCiPe single score) of fishmeal production 

in Peru  

Main inventory items 
 

Prime FAQ Residual 

Outputs 
    

 
Fish meal t 1.00 1.00 1.00 

 
Fish oil 

a
 t 0.19 0.19 <0.19 

Inputs 
    

 
Fresh fish t 4.21 4.21 2.11 

 
Fish residues 

a
 t - - 2.75 

 
Fuel use 

b
 MJ 6,389 8,276 11,908 

 
Electricity MJ 312 208 208 

 
Antioxidants kg 0.86 1.06 0.50 

Emissions to water 
    

 
N kg 0.55 0.55 0.55 

 
P kg 0.005 0.005 0.005 

 
BOD5 kg 38.60 75.10 75.10 

ReCiPe single score Pt 92 156 196 
a 

Allocation factor fishmeal:fish oil (gross energy content): 73:27. 
b
 Considering a 50% inclusion of fish residues (range 50-70%, 

affected by illegal landings for reduction). 
c
 Diesel, heavy fuel oil 

(R500) and natural gas. 
 

Table B.4 Nitrogen and phosphorus releases to water: N, P budgets and fate of nitrogen emissions  

      

Trout 
(artisanal 

feed) 

Trout 
(commercial 

feed) 

Black pacu 
(artisanal 

feed) 

Black pacu 
(commercial 

feed) 

Tilapia 
(artisanal 

feed) 

Tilapia 
(commercial 

feed) 

Total N emissions kg/t fish 80.31 66.10 42.15 29.27 56.05 37.17 

  N solid   28.24 24.54 22.92 18.49 28.14 21.63 

  N dissolved   52.07 41.56 19.23 10.78 27.92 15.55 

Total P emissions kg/t fish 13.63 9.63 12.33 9.93 7.50 3.74 

  P solid   9.36 7.28 7.07 5.82 7.78 5.82 
  P dissolved   4.27 2.35 5.25 4.10 (0.28) (2.08) 

Fates kg/t fish 
        N in sediment   30.52 25.12 16.02 11.12 21.30 14.13 

  N in water column 0.08 0.07 0.04 0.03 0.06 0.04 

  N in fish   18.95 17.95 14.77 12.71 16.79 14.48 

  N in seepage   30.76 22.96 11.33 5.41 17.91 8.53 

Digestibility % 
        Protein   92 92 82 82 82 82 

  Fat   95 95 60 60 93 93 

  Carbohydrates   71 71 80 80 70 70 

  Ash   50 50 50 50 50 50 

  Phosphorus   60 60 60 60 60 60 

Calculations are based on the average content of protein, lipids and phosphorus in available feeds and the 
reference production systems as defined in Table 3. 
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Fig. B.1 Digestible energy vs. environmental impacts (ReCiPe single score) of Peruvian feeds 
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Fig. B.2 Detailed impact category analysis of Peruvian trout scenarios, per tonne of live weight fish at farm gate 
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Appendix C. Uncertainty and sensitivity analyses 

Table C.1 Re-calculated FCRs for Peruvian aquaculture scenarios, based on dry matter (DM) of feeds and fish 

Species Scenarios 
DM 
feed 

FCR 
DM 
fish

a
 

Dry FCR 

Trout 

TrArtS1 85% 1.8 

26% 

5.9 

TrComS2 86% 1.4 4.6 

TrComS3 88% 1.4 4.7 

Black pacu 
GaArtS1 85% 1.7 

29% 
5.0 

GaComS2 86% 1.4 4.2 

Tilapia 
TiArtS1/TiArtS2 85% 1.7 

19% 
7.6 

TiComS3 86% 1.4 6.3 
a
 Trout: USDA (2012), Black pacu: Average of values from Bezerra 

(2002), Torry Research Station (1989) and Machado and Sgarbieri 
(1991), tilapia: USDA (2012). 

  

Table C.2 Changes in emissions to water by Peruvian aquaculture systems in response to a ±20% change in FCRs 

FCR Δ FCR 
Emissions  
(kg/t fish) 

Trout Black pacu Tilapia 

FCR +20% 1.7  
N           86.3           37.3              48.2  

P           12.6           12.1                5.4  

FCR 1.4  
N           66.1           25.8              34.7  

P             9.6              9.7                3.0  

FCR-20% 1.1  
N           45.9           14.3              21.3  

P             6.6              7.3                0.6  
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Fig. C.1 Changes in ReCiPe single scores of Peruvian aquaculture scenarios, per tonne of live weight fish, in 

response to a ±20% change in FCRs 
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Fig. C.2 Relative performance of the use phase of the reference Peruvian trout scenario TrArtS1 with alternative 

sourcing for soybean meal in feed (TrArtF1, 15% soybean meal) 
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