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Abstract Starting with Karr’s structural theorem for summation —the dis-
crete version of Liouville’s structural theorem for integration— we work out
crucial properties of the underlying difference fields. This leads to new and
constructive structural theorems for symbolic summation. E.g., these results
can be applied for harmonic sums which arise frequently in particle physics.
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1 Introduction

In [21,22] M. Karr developed a summation algorithm in which indefinite nested
sums and products can be simplified. More precisely, such expressions are
rephrased in a ΠΣ-field F, a very general class of difference fields1, and first
order linear difference equations defined over F are solved by Karr’s algorithm.
In this way, one can decide constructively, if a given indefinite sum or product
with a summand or multiplicand f from F can be expressed in terms of F. For
instance, given F = Q(k)(S1(k), S2(k), S3(k)) where Sr(k) =

∑k
i=1

1
ir denotes

the generalized harmonic numbers of order r ≥ 1 and given

f(k) =

(
S2(k)(k + 1)2 + 1

)
S3(k) + S1(k)((k + 1)S3(k)− S2(k))

S3(k) (S3(k)(k + 1)3 + 1)
∈ F,
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1 Throughout this article all fields contain the rational numbers Q as subfield.
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Karr’s algorithm decides constructively if there is an antidifference g ∈ F for
f , i.e.,

g(k + 1)− g(k) = f(k); (1)

In our concrete example, the algorithm produces the solution g(k) = S1(k)S2(k)
S3(k) .

Then summing the telescoping equation (1) over k leads to the simplification

k∑

i=1

f(i) =
S2(k)(k + 1)2 + S1(k)

(
S2(k)(k + 1)3 + k + 1

)
+ 1

S3(k)(k + 1)3 + 1
− 1 ∈ F.

Karr’s algorithm can be considered as the discrete analogue of Risch’s
algorithm [36,37] for indefinite integration. Here the essential building blocks
of exponentials and logarithms can be expressed in terms of an elementary
differential field F, and Risch’s algorithm can decide constructively, if for a
given f ∈ F there exists an antiderivative g ∈ F, i.e.,

D(g) = f ; (2)

here D denotes the differential operator acting on the elements of F. In this
regard, Liouville’s theorem of integration, see, e.g., [28,31,38], plays an impor-
tant role. In a nutshell, it states that for integration with elementary functions
it suffices to restrict to logarithmic extensions, i.e., one can neglect exponen-
tial and algebraic function extensions; for an explicit formulation we refer to
Section 2.1. In particular, Risch’s algorithm provides a constructive version
of Liouville’s theorem: his algorithm finds such an extension in terms of loga-
rithms for a given input integral, or it outputs that there does not exist such
an extension in which the integral is expressible.

Inspired by Rosenlicht’s algebraic proof [38] of Liouville’s theorem, Karr
could derive a structural theorem for symbolic summation [21,22]. To be more
precise, he refined his ΠΣ-difference field theory to the so-called reduced and
normalized ΠΣ-fields in which a discrete version of Liouville’s theorem is ap-
plicable. For instance, given F from above and given f(k) ∈ Q(k), any solution
g(k) ∈ F of (1) has the form

g(k) = w(k) + c1S1(k) + c2S2(k) + c3S3(k) (3)

for some w(k) ∈ Q(k) and c1, c2, c3 ∈ Q.
In previous work [42–44,23,48,24,45,25] we incorporated and generalized,

e.g., the (q–)hypergeometric algorithms presented in [2,18,54,34,32,35,33,6,
20,4], the summation of (q–)harmonic sums [10,51,29,11,1] arising, e.g, in
particle physics, and parts of the holonomic approach [53,52,15,14] in Karr’s
unified framework of ΠΣ-difference fields [21]. Here we restricted ourself to
ΠΣ∗-extensions and ΠΣ∗-fields being slightly less general than Karr’s ΠΣ-
fields, but covering all sums and products treated explicitly by Karr’s work.

In this article we turn Karr’s theorem to constructive and refined ver-
sions. Based on the algorithm given in [40] we show that any ΠΣ∗-field can
be transformed to a reduced ΠΣ∗-field in which Karr’s structural theorem
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can be applied; see Theorem 23. In addition, we complement Karr’s structural
results by taking into account the nesting depth of the recursively defined
ΠΣ∗-extensions. We show how any ΠΣ∗-field can be transformed to a com-
pletely reduced ordered ΠΣ∗-field in which one can bound the nesting depth
of an indefinite nested sum; see Theorem 39. Finally, we relate these results
with the difference field theory of depth-optimal ΠΣ∗-fields that have been in-
troduced recently [41,47,49]. Comparing Karr’s approach and depth-optimal
ΠΣ∗-extensions we obtain additional insight in ΠΣ-field theory (see Theo-
rems 19,30,54), and we derive new structural theorems that are independent of
the order in which the generating elements are adjoined; see Theorems 48, 50.

We stress that the suggested results and the underlying algorithms imple-
mented in the summation package Sigma [46] play an important role in the
simplification of d’Alembertian solutions [30,3,39], a subclass of Liouvillian
solutions [19] of a given recurrence relation. In this regard, special emphasis is
put on the simplification of harmonic sum expressions that arise frequently in
particle physics; we refer to [7–9] for typical examples in the frame of difference
fields.

The general structure of this article is as follows. In Section 2 we state
Liouville’s structural theorem, and we relate it to Karr’s results in terms of
reduced ΠΣ∗-fields. In Section 3 we work out the crucial properties of re-
duced ΠΣ∗-extensions, and in Section 4 we show that any ΠΣ∗-field can be
transformed algorithmically to a reduced ΠΣ∗-field. In Section 5 reduced ex-
tensions are refined to completely reduced extensions. In Section 6 we focus
on structural theorems that bound the nesting depth of a telescoping solution;
it turns out that this is only possible if the reduced extensions are built up in
a particular ordered way. Finally, in Section 7 we relate depth-optimal ΠΣ∗-
extensions to reduced and completely reduced ΠΣ∗-extensions. We present
structural theorems that are independent of the order of the explicitly given
tower of extensions.

2 Liouville’s and Karr’s structural theorems

We start with a short outline of Liouville’s theorem for differential fields and
relate it to Karr’s achievements for the discrete analogue of difference fields.

2.1 An outline of Liouville’s theorem

Let (F, D) be a differential field, i.e., F is a field with a function D : F → F
such that D(a + b) = D(a) + D(b) and D(a b) = D(a)b + aD(b) for all a, b ∈
F; D is also called differential operator. The set of constants is defined by
constDF = {c ∈ F|D(c) = 0}; note that constDF (also called constant field)
forms a subfield of F which contains Q. A differential field (E, D̃) is called a
differential field extension of a differential field (F, D) if F is a subfield of E
and D̃(a) = D(a) for all a ∈ F; subsequently, we do not distinguish anymore
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between D and D̃. Finally, a differential field extension (F(t), D) of (F, D) is
called elementary, see, e.g., [12, Def. 5.1.3] if t is algebraic over F or if t is
transcendental over F and

(1) D(t) = D(b)/b for some b ∈ F∗ (a logarithm)
(2) D(t)/t = D(b) for some b ∈ F (an exponential).

In addition, an extension (F(t1) . . . (te), σ) of (F, σ) is called elementary, if it is
a tower of elementary extensions. Then Liouvillian’s theorem reads as follows.

Theorem 1 (Liouville’s theorem) Let (E, D) be an elementary extension of
(F, D) with constDE = constDF, and let f ∈ F. If there is a g ∈ E with (2),
then there are w ∈ F, c1, . . . , cn ∈ constDF and f1 . . . , fn ∈ F∗ such that

f = D(w) +
n∑

i=1

ci
D(fi)

fi
.

In other words, it suffices to search for a solution g with (2) in logarithmic
extensions, and one can neglect algebraic or exponential extensions.

Remark 2 Liouville’s theorem has been observed already by Laplace [27, p.7]
— but the first precise formulation together with a proof based on analytic
arguments has been given by Liouville [28]. In particular, the first algebraic
proof in terms of differential fields has been provided by [31]; a complete
proof dealing also with algebraic extensions has been accomplished by Rosen-
licht [38]. For an extensive list of literature and generalizations/refinements,
like, e.g.,[50], we refer to [12].

A constructive version of Liouville’s theorem was given by Risch in [36,
37]. For instance, let (F, D) be a differential field with K = constDF given
by a tower of elementary transcendental extensions over the differential field
(K(x), D) with D(x) = 1. Then Risch’s algorithm can decide in a finite number
of steps, if for a given f ∈ F there exists a tower of elementary transcendental
extensions (F(t1) . . . (te), D) of (F, D) in which we have g with (2); in par-
ticular, if such an extension exists, it computes such w, fi and ci as given in
Theorem 1. For a detailed description of this algorithm see [12].

2.2 Karr’s summation theorems

M. Karr [21,22] developed a theory of ΠΣ-difference fields which can be con-
sidered as the discrete version of elementary transcendental extensions (whose
constant fields remain unchanged). In this context we need the following defini-
tions. Let (F, σ) be a difference field, i.e., F is a field and σ : F→ F is a field au-
tomorphism, and define the set of constants by constσF := {c ∈ F|σ(c) = c};
as in the differential case, constσF forms a subfield of F which contains Q;
constσF is also called the constant field of (F, σ). In such a difference field we
define the forward difference operator as follows: for a ∈ F,

∆(a) := σ(a)− a.
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A difference field (E, σ̃) is a difference field extension of a difference field (F, σ)
if F is a subfield of E and σ̃(a) = σ(a) for all a ∈ F; subsequently, we do not
distinguish between σ and σ̃ anymore.

In the following we introduce ΠΣ∗-extensions being slightly less general
than Karr’s ΠΣ-fields [21], but covering all sums and products treated ex-
plicitly by Karr’s work. A difference field extension (F(t), σ) of (F, σ) is a
ΠΣ∗-extension if t is transcendental over F, constσF(t) = constσF and one of
the following holds:

(1) ∆(t) = b for some b ∈ F∗ (a Σ∗-extension)
(2) σ(t)/t = b for some b ∈ F∗ (a Π-extension).

(F(t1) . . . (te), σ) is a ΠΣ∗-extension (resp. a Σ∗-extension or a Π-extension) of
(F, σ) if it is a tower of such extensions (this implies that constσF(t1) . . . (te) =
constσF). A difference field (K(t1) . . . (te), σ) is a ΠΣ∗-field over K if it is a
ΠΣ∗-extension of (K, σ) and constσK = K.
If it is clear from the context, we identify a ΠΣ∗-extension with the explic-
itly given generating element ti of the corresponding field extension; see, e.g.,
Definition 7.

Example 3 We rephrase Q(k)(S1(k), S2(k), S3(k)) from Section 1 in terms of
a ΠΣ∗-field (F, σ) as follows. Consider the difference field (Q, σ) with σ(q) =
q for all q ∈ Q, i.e., constσQ = Q. Now take the rational function field
Q(k) and extend the field automorphism σ to σ : Q(k) → Q(k) by σ(k) =
k + 1; note that σ is uniquely determined in this way. Since constσQ(k) =
constσQ = Q, (Q(k), σ) forms a Σ∗-extension of (Q, σ). Next, we represent
the harmonic numbers S1(k) with the shift behavior S1(k + 1) = S1(k) + 1

k+1
as follows. Define (uniquely) the difference field extension (Q(k)(s1), σ) of
(Q(k), σ) such that s1 is transcendental and σ(s1) = s1 + 1

k+1 . Again, since
constσQ(k)(s1) = Q, this forms a Σ∗-extension. In this way, S1(k) is rephrased
by the variable s1, and the shift operator in k acting on S1(k) is modeled by the
field automorphism σ. Repeating this approach, we obtain the Σ∗-extension
(F, σ) of (Q, σ) with the rational function field F = Q(k)(s1)(s2)(s3) and with
the field automorphism σ : F→ F uniquely defined by

σ(k) = k+1, σ(s1) = s1 + 1
k+1 , σ(s2) = s2 + 1

(k+1)2 , σ(s3) = s3 + 1
(k+1)3 ;

(4)
since constσF = Q, (F, σ) is a ΠΣ∗-field over Q. In particular, the sums
S1(k), S2(k), S3(k) and the shift operator acting on them are modeled by the
variables s1, s2, s3 and the field automorphism σ.

Remark 4 Note that, e.g., log(x) with D log(x) = 1
x and the harmonic num-

bers S1(k) =
∑k

i=1
1
i with ∆(S1(k)) = 1

k+1 are closely related; in particular
limk→∞(Hk − log(k)) = γ where γ = 0.5772... denotes Euler’s constant. Sim-
ilarities between elementary unimonomial extensions and ΠΣ∗-extensions in
the algebraic setting of difference/differential fields are worked out, e.g., in [13].

As it turns out, the discrete version of Liouville’s structural theorem in the
context of ΠΣ∗-extensions can be stated in the following surprisingly simple
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form: a sum of f ∈ F is either expressible in F or it can be represented by one
Σ∗-extension; in particular, one can neglect Π-extensions. This follows by the
following result.

Theorem 5 ([21]) Let (F(t), σ) be an extension of (F, σ) with σ(t) = t + f
for some f ∈ F. Then this is a Σ∗-extension iff there is no g ∈ F such that
σ(g) = g + f .

Namely, let (F, σ) be a difference field with f ∈ F. Then either there exists a
solution2 g ∈ F of the telescoping equation

∆(g) = f ; (5)

or if not, there is the Σ∗-extension (F(t), σ) of (F, σ) with σ(t) = t + f by
Theorem 5, i.e., t forms a solution of (5).
Similar to Risch, Karr developed an algorithm in [21] which makes these ob-
servations constructive. Given a ΠΣ∗-field (F, σ) over K and given f ∈ F,
decide in finite number of steps if there is a g ∈ F s.t. (5) holds; if yes, output
such a g.

In a nutshell, a sum S(k) =
∑k

i=1 F (i) can be modeled in Karr’s framework
as follows. First, construct a difference field (F, σ) in which one represents the
shifted summand F (i + 1) by an explicitly given f ∈ F. Then either one
finds g ∈ F such that (5) holds and S(k) can be represented by g + c for
some c ∈ constσF; or one constructs the Σ∗-extension (F(s), σ) of (F, σ) with
σ(s) = s + f and one can model S(k) by s.

In all our examples we will stick to harmonic sums which are defined as
follows [10,51]: for positive integers m1, . . . , mr ∈ N \ {0},

Sm1,...,mr (k) =
k∑

i1=1

1
im1
1

i1∑

i2=1

1
im2
2

· · ·
ir−1∑

ir=1

1
imr
r

;

in addition, truncated Euler sums [17] of the form
∑k

i=1
Sm1 (i)...Smr (i)

iu for some
u ∈ N \ {0} will arise.

Example 6 We start with the ΠΣ∗-field (F, σ) from Example 3 in which we
model S1(k), S2(k), S3(k). In order to represent in addition the harmonic sum
S1,3(k) =

∑k
i=1

S3(i)
i with the shift behavior S1,3(k + 1) = S1,3(k) + S3(k+1)

k+1

we proceed as follows. Take f = σ(s3)
k+1 ∈ F. Using, e.g., Karr’s algorithm,

or the simplified version [44] implemented in the summation package Sigma,
one can check that there is no g ∈ F such that (5) holds. Hence we can
construct the Σ∗-extension (F(s1,3), σ) of (F, σ) with σ(s1,3) = s1,3 + f . In
this way, the harmonic sum S1,3(k) is represented by s1,3 where the shift
operator acting on S1,3(k) is reflected by the field automorphism σ acting on
s1,3. Completely analogously, we can represent the harmonic sum S6,1,3(k)

2 Note that the telescoping problem (1) is rephrased in the algebraic setting of difference
fields.
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by s6,1,3 and the truncated Euler sum
∑k

i=1
S2(i)S3(i)

i by x. In summary, we
construct the difference field extension (F(s1,3)(x)(s6,1,3), σ) of (F, σ) with the
rational function field F(s1,3)(x)(s6,1,3) and with

σ(s1,3) = s1,3 +
σ(s3)
k + 1

, σ(x) = x +
σ(s2)σ(s3)

k + 1
, σ(s6,1,3) = s6,1,3 +

σ(s1,3)
(k + 1)6

;

(6)
in particular, we can check algorithmically that this extension forms a tower
of Σ∗-extensions by verifying iteratively the non-existence of solutions of the
corresponding telescoping problems. Note also that one can verify by the same
mechanism that the base field (F, σ) constructed in Ex. 3 forms a ΠΣ∗-field
over Q.

We remark that Karr’s framework covers also q–analogues of harmonic sums [5,
16,11] or generalized harmonic sums [29]; for a package which combines the
ideas of [10,51,29] with the difference field approach see [1].

2.3 Karr’s structural theorem

In [21,22] Karr arrives at the following conclusion: one can predict the struc-
ture of a solution g for (5) in a refined version of ΠΣ-fields; see [22, page 314].
For ΠΣ∗-extensions this refinement reads as follows.

Definition 7 A ΠΣ∗-extension (F(t1) . . . (te), σ) of (F, σ) is called reduced over
F, or in short reduced, if for any Σ∗-extension ti (1 ≤ i ≤ e) with f :=
∆(ti) ∈ F(t1) . . . (ti−1) \ F the following property holds: there do not exist a
g ∈ F(t1) . . . (ti−1) and an f ′ ∈ F such that

∆(g) + f ′ = f. (7)

The following special case is immediate.

Lemma 8 Let (F(t1) . . . (te), σ) be a ΠΣ∗-extension of (F, σ) with σ(ti)−ti ∈
F or σ(ti)/ti ∈ F for 1 ≤ i ≤ e. Then this extension is reduced.

In Section 4 we provide an algorithmic approach which enables one to check
whether a ΠΣ∗-extension is reduced. In particular, if this is not the case,
this machinery automatically transforms the given extension to an isomorphic
difference field which is built by a tower of reduced ΠΣ∗-extensions; see Theo-
rem 23. In other words, one can always apply the following structural theorem
(in a given reduced ΠΣ∗-extension or in an isomorphic extension which is
reduced).

Theorem 9 (Karr’s structural theorem) Let (E, σ) be a reduced ΠΣ∗-exten-
sion of (F, σ) with E = F(t1) . . . (te) and σ(ti) = ai ti +fi (where either ai = 1
or fi = 0), and define3

S := {1 ≤ i ≤ e|∆(ti) ∈ F}; (8)

3 Note that S consists of exactly those i such that ti is a Σ∗-extension, and fi = ∆(ti) ∈ F.
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let f ∈ F. If there is a g ∈ E with (5), there are w ∈ F and ci ∈ constσF s.t.

f = ∆(w) +
∑

i∈S

cifi; (9)

in particular, for any such g there is some c ∈ constσF such that

g = c + w +
∑

i∈S

citi. (10)

For a proof in the context of ΠΣ-fields we refer the reader to [22, Result,
page 315], and for the corresponding proof for reduced ΠΣ∗-extensions as
given in Theorem 9 we refer the reader to [39, Thm 4.2.1]; the proofs follow
Rosenlicht’s proof strategy [38] of Liouville’s theorem.

We emphasize that Karr’s result exceeds Liouville’s theorem in the follow-
ing sense: given a reduced ΠΣ∗-extension (E, σ) of (F, σ) and given f ∈ F
one can forecast to a certain extent how the solution g ∈ E is composed; for a
typical application see, e.g., page 15.

Example 10 Consider the ΠΣ∗-field (F, σ) over Q with F = Q(k)(s1)(s2)(s3)
and (4). Note that (F, σ) is a reduced ΠΣ∗-extension of (Q(k), σ) by Lemma 8.
Hence by Theorem 9 any solution g ∈ F of (5) for a given f ∈ Q(k) is of the
form

g = w + c1 s1 + c2 s2 + c3 s3 for some w ∈ Q(k) and c1, c2, c3 ∈ Q; (11)

for a precise formulation of how (3) and (11) are related, we refer the reader
to [48,49]

Example 11 Start with the ΠΣ∗-field (F, σ) over Q from Example 10, and
consider the Σ∗-extension (F(s1,3)(x)(s6,1,3), σ) of (F, σ) with (6) from Exam-
ple 6; later we can check that this extension is reduced over F; see Example 29.
Hence for any g ∈ F(s1,3)(x)(s6,1,3) with (5) for some f ∈ F it follows that

g = w + c1 s1,3 + c2 x for some c1, c2 ∈ Q and w ∈ F. (12)

Example 12 Again, start with the ΠΣ∗-field (F, σ) over Q from Example 10,
and consider the Σ∗-extension (F(s1,3)(x)(s2,1,3), σ) of (F, σ) with

σ(s1,3) = s1,3 +
σ(s3)
k + 1

, σ(x) = x +
σ(s2)σ(s3)

k + 1
, s2,1,3 = s2,1,3 +

σ(s1,3)
(k + 1)2

.

In this instance, the extension is not reduced. E.g., for f = (k+1)5+1
(k+1)6 there is

g = −s2
3 + 2x + s1 − 2s1,3s2 + 2 s2,1,3 (13)

s.t. (5) holds: if this extension were reduced, g should be free of s2,1,3 and g
should contain s1,3 only in the form c s1,3 for some c ∈ Q by Theorem 9.
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Remark 13 Reinterpreting the variables in f and g of the previous example
as harmonic sums and summing (1) over k lead to the following identity: for
k ≥ 0,

k∑

i=1

i5 + 1
i6

= −S3(k)2 + 2
k∑

i=1

S2(i)S3(i)
i

+ S1(k)− 2S1,3(k)S2(k) + 2 S2,1,3(k).

Obviously, the obtained right hand side is more complicated (i.e., consists of
sums with higher nesting depth) than the given left hand side. In Sections 6
and 7 we work out in details why this is the case in general; for our particular
case see Ex. 35.

2.4 A simple structure theorem for ΠΣ∗-extensions

We conclude this section with the following simple “structural theorem” which
is valid for any ΠΣ∗-extension. Let (E, σ) be a ΠΣ∗-extension of (F, σ) with
the rational function field E := F(t1) . . . (te) and σ(ti) = ai ti or σ(ti) =
ti + ai for 1 ≤ i ≤ e; let f ∈ E. We say that one of the generating ele-
ments ti of the rational function field extension does not occur in f if f ∈
F(t1, . . . , ti−1, ti+1, . . . , te); the latter field is considered as a subfield of E.
Now we define the set of leaf extensions which do not occur in f by

LeavesF≤E(f) := {ti|ti does not occur in f and ai+1, . . . , ae},

and we define the set of inner node extensions or extensions that occur in f
by

InnerNodesF≤E(f) := {t1, . . . , te} \ LeavesF≤E(f);

those extensions which are Σ∗-extensions are denoted by

Σ∗–LeavesF≤E(f) := {t ∈ LeavesF≤E(f)|t is a Σ∗-extension}.
We denote all Σ∗-extensions being leave extensions by Σ∗–LeavesF≤E :=
Σ∗–LeavesF≤E(1).
At this point the following remark is in place. If there is a permutation
τ ∈ Se such that aτ(i) ∈ F(tτ(1)) . . . (tτ(i−1)) for all i with 1 ≤ i ≤ e,
then (F(tτ(1)) . . . (tτ(e)), σ) forms again a ΠΣ∗-extension of (F, σ). In par-
ticular, one can reorder the ΠΣ∗-extension (E, σ) of (F, σ) with f ∈ E to
(F(x1) . . . (xr)(y1) . . . (ys), σ) such that

InnerNodesF≤E(f) = {x1, . . . , xr} (14)

and LeavesF≤E(f) = {y1, . . . , ys}; note that σ(yi)
yi

∈ F(x1) . . . (xr) or σ(yi) −
yi ∈ F(x1) . . . (xr) for 1 ≤ i ≤ s. Hence (F(x1) . . . (xr)(y1) . . . (ys), σ) is a
reduced ΠΣ∗-extension of (F(x1) . . . (xr), σ) by Lemma 8. Thus we can apply
Theorem 9, and we arrive at the following result.
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Theorem 14 Let (E, σ) be a ΠΣ∗-extension of (F, σ) with f ∈ E and define
{x1, . . . , xr} by (14). If there is a g ∈ E such that (5) holds, then

g =
∑

a∈Σ∗–LeavesF≤E(f)

caa+w for some ca ∈ constσF and w ∈ F(x1, . . . , xr).

Example 15 Consider the ΠΣ∗-field (E, σ) over Q from Example 12 with E =
Q(k)(s1)(s2)(s3)(s1,3)(x)(s2,1,3), and have a look at the solution (13) of (5)
for f = (k+1)5+1

(k+1)6 . Then, as predicted in Theorem 14, the solution (13) is given
by a linear combination over Q in terms of the variables Σ∗–LeavesQ≤E(f) =
{s1, x, s2,1,3} plus one expression from Q(k, s2, s3, s1,3).

Combining Theorem 19 with Theorem 14 we arrive at

Theorem 16 (A refinement of Karr’s structural theorem) Let (F, σ) be a
ΠΣ∗-extension of (G, σ), let (F(t1) . . . (te), σ) be a reduced ΠΣ∗-extension of
(F, σ) and let f ∈ F. Define S = {1 ≤ i ≤ e|∆(ti) ∈ F} = {i1, . . . , iu} and
consider the Σ∗-extension (H, σ) of (F, σ) with H = F(ti1) . . . (tiu

); define
{x1, . . . , xr} := InnerNodesG≤H(f). If there is a g ∈ F(t1, . . . , te) such that (5)
holds, then4

g =
∑

a∈Σ∗–LeavesG≤H(f)

caa + w for some ca ∈ constσG and w ∈ G(x1, . . . , xr).

Example 17 Take the ΠΣ∗-field (Q(k)(s1)(s2)(s3)(s1,3)(x)(s6,1,3), σ) over Q
from Example 11, and let

f =
k3 + 3k2 + 3k − s2 − (k + 1)(k(k + 2)(s2 − 4) + s2 − 5)s3 + 5

(k + 1)4
.

We apply Theorem 16 by choosing G = Q, F = Q(k)(s1)(s2)(s3), and
E = F(s1,3)(x)(s6,1,3), namely (F, σ) is a ΠΣ∗-extension of (G, σ) with f ∈
F, and (E, σ) is a reduced ΠΣ∗-extension of (F, σ). In this instance, we
find S = {s1,3, x}, and we get Σ∗–LeavesQ≤F(s1,3)(x)(f) = {s1, s1,3, x} and
InnerNodesQ≤F(s1,3)(x)(f) = {k, s2, s3}. Hence, for any g ∈ F(s1,3)(x)(s6,1,3)
with (5) it follows that g = w+ c1 s1 + c2 s1,3 + c3 x for some c1, c2, c3 ∈ Q and
w ∈ Q(k, s2, s3). Note that our prediction refines the version given in (12).
Indeed, we find g = s2

3 + s1 + 4s1,3 − x.

3 Equivalent characterizations of reduced ΠΣ∗-extensions

We work out alternative characterizations of whether a ΠΣ∗-extension (E, σ)
of (F, σ) is reduced. Here we need the following lemma.

4 Note that S ⊆ Σ∗–LeavesG≤H(f), i.e., Theorem 16 refines Theorem 19.
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Lemma 18 Let (F(t), σ) be a Σ∗-extension of (F, σ) with σ(t) = t + f and
K := constσF, and let f ′ ∈ F. Then there are c ∈ K and g ∈ F such that

∆(g) + c f ′ = f (15)

iff there is a Σ∗-extension (F(s), σ) of (F, σ) with σ(s) = s + f ′ in which we
find h ∈ F(s) such that ∆(h) = f .

Proof Suppose that there are a g ∈ F and c ∈ K such that (15) holds, and
assume in addition that there is a g′ ∈ F such that ∆(g′) = f ′. Then ∆(q) = f
with q := g + c g′ ∈ F, a contradiction with the fact that (F(t), σ) is a Σ∗-
extension of (F, σ) by Theorem 5. Hence (F(s), σ) is a Σ∗-extension of (F, σ)
where s satisfies ∆(s) = f ′ by Thm. 5. Besides this, for h := g + c s we have
∆(h) = ∆(g) + c f ′ = f .
Conversely, suppose that there is a Σ∗-extension (F(s), σ) of (F, σ) with
σ(s) = s + f ′ together with a h ∈ F(s) such that ∆(h) = f . Since (F(s), σ) is
a reduced Σ∗-extension of (F, σ) by Lemma 8, we can apply Theorem 9, and
it follows that g = c s + w for some w ∈ F and c ∈ K. Thus, f = ∆(g) =
∆(w) + c f ′.

Theorem 19 Let (E, σ) be a ΠΣ∗-extension of (F, σ) with E = F(t1) . . . (te)
and define S as in (8). Then the following statements are equivalent.

(1) This extension is reduced.
(2) For any g ∈ E with ∆(g) ∈ F we have (10) for some ci ∈ constσF and

w ∈ F.
(3) For any Σ∗-extension ti with f := ∆(ti) and i /∈ S the following prop-

erty holds: There does not exist a Σ∗-extension (F(t1) . . . (ti−1)(s), σ) of
(F(t1) . . . (ti−1), σ) with ∆(s) ∈ F in which we have g with (5).

Proof (1) ⇒ (2) follows by Theorem 9. Now suppose that (F(t1) . . . (te), σ)
is not a reduced ΠΣ∗-extension of (F, σ). Then there is an i with 1 ≤ i ≤ e
such that f := ∆(ti) ∈ F(t1, . . . , ti−1) \ F and (7) for some f ′ ∈ F and
g ∈ F(t1) . . . (ti−1). Hence, we obtain ∆(g′) = f ′ ∈ F with g′ := ti − g. Since
f = ∆(ti) /∈ F, i /∈ S, and thus (2) does not hold. This proves the equiva-
lence of (1) and (2). Equivalence (1) ⇔ (3) is an immediate consequence of
Lemma 18.

Example 20 Take the ΠΣ∗-extension (Q(k)(s1)(s2)(s3)(s1,3)(x)(s2,1,3), σ) of
(Q(k)(s1)(s2)(s3), σ) from Example 12 which is not reduced. Theorem 19 ex-
plains why we can find, e.g., f = (k+1)5+1

(k+1)6 with (13) such that (5) holds.
Equivalently, we can take the Σ∗-extension (Q(k)(s1)(s2)(s3)(s1,3)(x)(s), σ)
of (Q(k)(s1)(s2)(s3)(s1,3)(x), σ) with σ(s) = s + f such that we get ∆(h) = f
with h = 1

2 (s + s2
3 − 2x− s1 + 2s1,3s2).

In summary, it is precisely the property of being reduced which guarantees
that the conclusion of Theorem 9 holds (equivalence (1)⇔(2) of Theorem 19).
In particular, Theorem 19 relates reduced ΠΣ∗-extensions to certain refined
Σ∗-extensions (equivalence (1)⇔(3)). This observation will be crucial to con-
nect reduced ΠΣ∗-extensions to depth-optimal ΠΣ∗-extensions; see Section 7.
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4 Constructive aspects of reduced ΠΣ∗-extensions

In [21] it has been outlined that any ΠΣ∗-extension (E, σ) of (F, σ) can be
transformed in principle to a reduced version. Subsequently, we make this
more precise in terms of difference field isomorphisms, and we show how such
a transformation can be carried out algorithmically. As a consequence, one can
always apply Karr’s structural theorem 9 constructively in the given extension
or in the corresponding transformed one.

τ : F → F′ is called a σ-isomorphism (resp. σ-monomorphism) between
two difference fields (F, σ) and (F′, σ′) if τ is a field isomorphism (resp.
field monomorphism) and τ(σ(f)) = σ′(τ(f)) for all f ∈ F. In particu-
lar, let (E, σ) and (E′, σ′) be difference field extensions of (F, σ). Then a
σ-isomorphism (resp. σ-monomorphism) τ : E → E′ is a an F-isomorphism
(resp. F-monomorphism) if τ(a) = a for all a ∈ F. We start with the following
two lemmas.

Lemma 21 Let (F(t), σ) be a Σ∗-extension of (F, σ) with σ(t) = t + f , and
let f ′ ∈ F and g ∈ F such that (7) holds. Then for any c ∈ constσF \ {0}
there is a Σ∗-extension (F(s), σ) of (F, σ) with σ(s) = s + c f ′ together with
an F-isomorphism τ : F(t) → F(s) with τ(t) = s

c + g.

Proof By Lemma 18 there is the Σ∗-ext. (F(x), σ) of (F, σ) with σ(x) = x+f ′.
Let c ∈ constσF \ {0}. By Theorem 5 there is no h ∈ F such that ∆(h) =
f ′. Consequently, there is no h ∈ F such that ∆(h) = c f ′, and thus there
is the Σ∗-extension (F(s), σ) of (F, σ) with σ(s) = s + c f ′. Take the field
isomorphism τ : F(t) → F(s) with τ(h) = h for all h ∈ F and τ(t) = s

c + g. By
τ(σ(t)) = τ(t+f) = τ(t)+f = s

c +g +f = s
c +f ′+σ(g) = σ( s

c +g) = σ(τ(t))
it follows that τ is an F-isomorphism.

Lemma 22 [[47, Prop. 18]] Let (F, σ), (F′, σ′) be difference fields with a σ-
isomorphism τ : F → F′; let (F(t), σ) be a ΠΣ∗-ext. of (F, σ) with σ(t) =
α t + β. Then there is a ΠΣ∗-extension (F′(t′), σ) of (F′, σ) with σ(t′) =
τ(α)t′ + τ(β) together with an σ-isomorphism τ ′ : F(t) → F′(t′) such that
τ ′|F = τ and τ ′(t) = t′.

By iterative applications of Lemmas 21 and 22 each ΠΣ∗-extension can be
transformed to an isomorphic reduced ΠΣ∗-extension; see Theorem 23. In par-
ticular, this construction can be given explicitly if one can solve the following
problem.

Problem RS (Reduced Summation): Given a ΠΣ∗-extension (D, σ) of (F, σ)
with D = F(t1) . . . (te), and given f ∈ F; find g ∈ D and f ′ ∈ F(t1) . . . (ti)
as in (7) such that i with 0 ≤ i ≤ e is minimal.

In the following we call a difference field (F, σ) RS-computable, if one can solve
problem RS for any ΠΣ∗-extension (D, σ) of (F, σ) and for any f ∈ F.

Theorem 23 For any ΠΣ∗-extension (H, σ) of (F, σ) there is a reduced ΠΣ∗-
extension (E, σ) of (F, σ) and an F-isomorphism τ : H→ E. Such a ΠΣ∗-ext.
(E, σ) of (F, σ) and τ can be given explicitly, if (F, σ) is RS-computable.
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Algorithm 1 ToReducedField(F(t1) . . . (te), k)
In: A ΠΣ∗-extension (F(t1) . . . (te), σ) of (F, σ) with σ(ti) = ai ti + bi for 1 ≤ i ≤ e;

(F, σ) is RS-computable.
Out: A reduced ΠΣ∗-extension (F(x1) . . . (xe), σ) of (F, σ), and an F-isomorphism

τ : F(t1) . . . (te) → F(x1) . . . (xe).
1 Let τ : F→ F be the identity map.

2 FOR i = 1 to e DO

3 Set a := τ(ai); f := τ(bi); h := xi.

4 IF ti is a Σ∗-extension (ai = a = 1) THEN

5 Let f ′ ∈ F(x1) . . . (xj) \F(x1) . . . (xj−1) and g ∈ F(x1) . . . (xi−1)
be the result of problem RS for f and D = F(x1) . . . (xi−1).

6 IF j = 0, THEN Set f := f ′; h := xi + g FI

7 FI

8 Construct the ΠΣ∗-extension (F(x1) . . . (xi), σ) of (F(x1) . . . (xi−1), σ) with
σ(xi) = a xi + f ; extend τ : F(t1) . . . (ti−1) → F(x1) . . . (xi−1) to the
F-isomorphism τ : F(t1) . . . (ti) → F(x1) . . . (xi) by τ(ti) = h. OD

9 RETURN ((F(x1) . . . (xe), σ), τ).

Proof The induction base is trivial. Suppose that we are given a ΠΣ∗-extension
(H, σ) of (F, σ) with H := F(x1) . . . (xe) and a reduced ΠΣ∗-extension (E, σ)
of (F, σ) with E := F(t1) . . . (te) together with an F-isomorphism τ : H→ E.
Now consider the ΠΣ∗-extension (H(x), σ) of (H, σ) with σ(x) = α x + β,
and take the ΠΣ∗-extension (E(t), σ) of (E, σ) with σ(t) = τ(α) t + τ(β) by
Lemma 22; in particular, we can take the F-isomorphism τ ′ : H(x) → E(t)
with τ ′(x) = t and τ ′(h) = τ(h) for all h ∈ H. If (E(t), σ) is a reduced ΠΣ∗-
extension of (F, σ), we are done. If not, α = 1, and for f := τ(β) ∈ E there
are g ∈ E and f ′ ∈ F such that (7) holds. Note: if (F, σ) is RS-computable, we
can solve problem RS, and we get such f ′ and g explicitly. Then by Lemma 21
there is a Σ∗-extension (E(t′), σ) of (E, σ) with σ(t′) = t′ + f ′ together with
an F-isomorphism τ ′′ : E(t) → E(t′) with τ ′′(t) = t′ + g and τ ′′(h) = τ ′(h) for
all h ∈ E. Since (E, σ) is a reduced ΠΣ∗-extension of (F, σ) by assumption
and since f ′ = ∆(t′) ∈ F, (E(t′), σ) is a reduced ΠΣ∗-extension of (F, σ).
Moreover, ρ := τ ′′ ◦ τ ′ is an F-isomorphism from H(x) to E(t′). In particular,
if τ : H → E and g are given explicitly, also ρ : H(x) → E(t′) can be given
explicitly with ρ(x) = t′ + g and ρ(h) = τ(h) for all h ∈ H.

As a consequence, we obtain Alg. 1; the correctness follows by the proof of
Theorem 23. From the point of view of application we rely on the following
algorithm [40, Algorithm 1]. Namely, due to its generic specification, e.g., the
following classes of difference fields (F, σ) are RS-computable, i.e., Algorithm 1
can be executed in the summation package Sigma [46]: (F, σ) is a ΠΣ∗-field or
it is a ΠΣ∗-extension over a free difference field [23] or over a difference field
containing radicals [24], like

√
k.

Example 24 Consider the ΠΣ∗-field (Q(k)(s1)(s1,1)(s1,1,1), σ) over Q with

k = k +1, σ(s1) = s1 + 1
k+1 , σ(s1,1) = s1,1 + σ(s1)

k+1 , σ(s1,1,1) = s1,1,1 + σ(s1,1)
k+1 .
(16)
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By Thm. 19 the extension is not reduced: we find, e.g., for f = 1
(k+1)3 the

solution
g = s3

1 − 3s1,1 s1 + 3s1,1,1 (17)
of (5). Subsequently, we transform this extension to a reduced one.
(1) We start with the ΠΣ∗-field (Q(k), σ) over Q with σ(k) = k + 1 and take

the Q-isomorphism τ : Q(k) → Q(k) with τ(f) = f for all f ∈ Q(k).
(2) Now we apply our algorithm for problem RS with f = 1

k+1 : since we do not
find f ′ ∈ Q and g ∈ Q(k) (by executing the implementation of Sigma), it
follows that (Q(k)(s1), σ) is a reduced ΠΣ∗-extension of (Q(k), σ). Hence
we keep (Q(k)(s1), σ) and extend the Q-isomorphism from the field Q(k)
to τ : Q(k)(s1) → Q(k)(s1) with τ(s1) = s1, i.e., τ(h) = h for all h ∈
Q(k)(s1).

(3) We apply our algorithm for problem RS to f = σ(s1)
k+1 (with D = Q(k)(s1))

and find f ′ = 1
2(k+1)2 and g = 1

2s2
1. Following the proof of Theorem 23

we could construct the Σ∗-extension (Q(k)(s1)(s), σ) of (Q(k)(s1), σ) with
σ(s) = s + 1

2(k+1)2 which leads to the solution g′ = 1
2s2

1 + s for ∆(g′) =
f . But, to match the harmonic numbers of second order, we normalize
the extension to the Σ∗-extension (Q(k)(s1)(s2), σ) of (Q(k)(s1), σ) with
σ(s2) = s2+ 1

(k+1)2 , and we obtain the solution g′ = 1
2 (s2

1+s2) for ∆(g′) = f .
To be more precise, we apply Lemma 21 with c = 2; as a consequence, we
can extend the isomorphism τ to τ : Q(k)(s1)(s1,1) → Q(k)(s1)(s2) with

τ(s1,1) =
1
2

(
s2
1 + s2

)
. (18)

By construction (Q(k)(s1)(s2), σ) is a reduced extension of (Q(k), σ).
(4) Finally, we solve RS for f = τ(σ(s1,1)

k+1 ) (with D = Q(k)(s1)(s2)) and find
f ′ = 1

3(k+1)3 and g = 1
6

(
s3
1 + 3s2s1

)
. Hence we can define the Σ∗-extension

(Q(k)(s1)(s2)(s3), σ) of (Q(k)(s1)(s2), σ) with σ(s3) = s3 + 1
(k+1)3 (note

again that we normalized the extension by pulling out the constant 1/3); by
construction (Q(k)(s1)(s2)(s3), σ) is a reduced extension of (Q(k), σ). In
addition, we can extend our Q-isomorphism to τ : Q(k)(s1)(s1,1)(s1,1,1) →
Q(k)(s1)(s2)(s3) with

τ(s1,1,1) =
1
6

(
s3
1 + 3s2s1 + 2s3

)
. (19)

Since h = s3 is a solution of ∆(h) = 1
(k+1)3 , τ−1(h) (which is nothing else

than (17)) is a solution of ∆(τ−1(h)) = τ−1( 1
(k+1)3 ) = 1

(k+1)3 .

Remark 25 Reinterpreting s1, s1,1, s1,1,1 in Ex. 24 as harmonic sums leads to
the following identities which are reflected by (18) and (19): for k ∈ N,

S1,1(k) =
1
2

(
S1(k)2 + S2(k)

)
,

S1,1,1(k) =
1
6

(
S1(k)3 + 3S2(k)S1(k) + 2S3(k)

)
;

these occur, e.g., in [10] or in [16, Cor. 3] combined with [26, Prop. 2.1].
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We remark that any F-isomorphism is of this shape due to the following
lemma; note that the product case is analogous, see [43, Prop. 4.4 and 4.8].

Lemma 26 Let (F(t), σ) and (F(s), σ) be Σ∗-extensions of (F, σ) with σ(t) =
t + f and σ(s) = s + f ′, and let K := constσF. If τ : F(t) → F(s) is an F-
isomorphism, there are g ∈ F and c ∈ K∗ as in (15) such that τ(t) = c s + g.

Proof Note: ∆(τ(t)) = τ(∆(t)) = τ(f) = f . By Thm. 9 τ(t) = c s+g for some
g ∈ F and c ∈ K, and thus (15).

Application: Suppose we are given a ΠΣ∗-extension (F(x1) . . . (xe), σ) of a
ΠΣ∗-field (F, σ) over K, and one has to compute solutions g ∈ F(x1) . . . (xe)
of (5) for various instances of f ∈ F. Then the following strategy is straight-
forward. Compute once and for all a reduced ΠΣ∗-extension (F(t1) . . . (te), σ)
of (F, σ) together with an F-isomorphism τ : F(x1) . . . (xe) → F(t1) . . . (te);
define S as in (8) and set fi := ∆(ti) ∈ F for i ∈ S. Then for each summand
f ∈ F we can apply Theorem 9 as follows: it suffices to look for ci with i ∈ S
and w ∈ F such that

∆(w) = f −
∑

i∈S

ci fi;

note that this problem (among others) can be solved with Karr’s algorithm [21]
or our simplified version [44]. Then given such a solution, one gets the solu-
tion (10) for (5). Hence with g′ := τ−1(g) ∈ F(x1) . . . (xr) we get the required
solution ∆(g′) = f , since ∆(g′) = ∆(τ−1(g)) = τ−1(∆(g)) = τ−1(f) = f.

5 Completely reduced ΠΣ∗-extensions

We refine reduced ΠΣ∗-extension to completely reduced ΠΣ∗-extensions.

Definition 27 A ΠΣ∗-extension (F(t1) . . . (te), σ) of (F, σ) is called completely
reduced over F or in short completely reduced if for any Σ∗-extension ti (1 ≤ i ≤
e) with f := ∆(ti) and r with f ∈ F(t1) . . . (tr) \F(t1) . . . (tr−1) the following
property holds: there are no g ∈ F(t1) . . . (ti−1) and f ′ ∈ F(t1) . . . (fr−1) such
that (7) holds.

The proof of the following theorem is analogous to the proof of Theorem 23.
The resulting algorithm is just Alg. 1: the only difference is that one always
executes line (6) independently of whether j is 0 or not.

Theorem 28 For any ΠΣ∗-extension (H, σ) of (F, σ) there is a completely
reduced ΠΣ∗-extension (E, σ) of (F, σ) and an F-isomorphism τ : H → E.
Such a ΠΣ∗-extension (E, σ) of (F, σ) and τ can be given explicitly, if (F, σ)
is RS-computable.

Example 29 (1) In Example 24 we transformed step by step the ΠΣ∗-field
(Q(k)(s1)(s1,1)(s1,1,1), σ) with the automorphism (16) to an isomorphic ΠΣ∗-
field given by (Q(k)(s1)(s2)(s3), σ) with (4). Since in each step we solved
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problem RS, the resulting extension is completely reduced.
(2) Take the ΠΣ∗-field (Q(k)(s1)(s2)(s3)(s1,3)(x)(s6,1,3), σ) with (4) and (6).
Solving problem RS (with F = Q) for each extension shows that the ΠΣ∗-field
is a completely reduced extension of (Q, σ).

Theorem 19 can be carried over to completely reduced extensions as follows.

Theorem 30 Let (E, σ) be a ΠΣ∗-extension of (F, σ) with E := F(t1) . . . (te).
Then the following statements are equivalent.

(1) This extension is completely reduced.
(2) For any i, j with 1 ≤ i ≤ j ≤ e, (F(t1) . . . (tj), σ) is a reduced ΠΣ∗-

extension of (F(t1) . . . (ti), σ).
(3) For any j (1 ≤ j ≤ e) with

S = S(j) = {i|j ≤ i ≤ e and ∆(ti) ∈ F(t1) . . . (tj−1)} (20)

and for any g ∈ E with ∆(g) ∈ F(t1) . . . (tj−1) we have (10) for some
ci ∈ constσF and w ∈ F(t1) . . . (tj−1).

(4) For any Σ∗-extension ti (1 ≤ i ≤ e) with f := ∆(ti) and r such that
f ∈ F(t1) . . . (tr) \ F(t1) . . . (tr−1) the following holds: There is no Σ∗-ext.
(F(t1) . . . (ti−1)(s), σ) of (F(t1) . . . (ti−1), σ) with ∆(s) ∈ F(t1) . . . (tr−1) in
which we have g with (5).

Proof This extension is not completely reduced if and only if there is a j, 1 ≤
j ≤ e, such that for f := ∆(tj) with f ∈ F(t1) . . . (tr)\F(t1) . . . (tr−1) for some
r (1 ≤ r ≤ j) we have the following property: there are f ′ ∈ F(t1) . . . (tr−1)
and g ∈ F(t1) . . . (tj−1) with (7). But this is equivalent to the fact that there
are r, j with 1 ≤ r ≤ j ≤ e such that (F(t1) . . . (tj), σ) is not a reduced
ΠΣ∗-extension of (F(t1) . . . (tr), σ). Hence (1) is equivalent to (2). The other
equivalences are an immediate consequence of Theorem 19.

We emphasize the equivalence (1)⇔(3) of Theorem 30: For any f ∈ E we
can apply Theorem 9. Namely, let j be minimal such that f ∈ F(t1) . . . (tj)
and define S = S(j) by (20). Then for any solution g ∈ E of (5) we have (10)
for some w ∈ F(t1) . . . (tj−1) and ci ∈ constσF.

6 The depth and reordering of completely reduced ΠΣ∗-extensions

As indicated in the introduction, reducing the nesting depth of a given indef-
inite sum expression, like, e.g., d’Alembertian solutions [30,3,39] of a linear
recurrence, is an important issue in the context of ΠΣ∗-fields. In order to
measure the nesting depth, we introduce the following depth function [47].

Let (E, σ) be a ΠΣ∗-extension of (F, σ) with the field E := F(t1) . . . (te)
and with σ(ti) = ai ti or σ(ti) = ti + ai for 1 ≤ i ≤ e. The depth function for
elements of E over F, δF : E→ N, is defined as follows.

(1) For any g ∈ F, δF(g) := 0.
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(2) If δF is defined for (F(t1) . . . (ti−1), σ) with i > 1, we define δF(ti) :=
δF(ai) + 1; for g = g1

g2
∈ F(t1) . . . (ti), with g1, g2 ∈ F[t1, . . . , ti] coprime,

we define

δF(g) := max({δF(tj)|1 ≤ j ≤ i and tj occurs in g1 or g2} ∪ {0}).
The extension depth of a ΠΣ∗-extension (E(x1) . . . (xr), σ) of (E, σ) is defined
by max(0, δF(x1), . . . , δF(xr)).

Example 31 In the ΠΣ∗-field (F, σ) with the rational function field F =
Q(k)(s1)(s2)(s3)(s1,3)(x)(s6,1,3) and with σ defined by (4) and (6) we have
δQ(k) = 1 and

δQ(s1) = δQ(s2) = δQ(s3) = 2, δQ(s1,3) = δQ(x) = 3, δQ(s6,1,3) = 4.

The extension depth of the ΠΣ∗-extension (F, σ) of (Q, σ) is 4.

If one wants to simplify the nesting depth of sums in a ΠΣ∗-extension
(E, σ) of (F, σ), the following property is crucial: for any f, g ∈ E with (5) we
have

δF(f) ≤ δF(g) ≤ δF(f) + 1; (21)

in other words, if we find a sum representation g for a summand f with (5),
the depth of g should be bounded by (21).

Subsequently, we show that property (21) is closely related to reduced
and completely reduced ΠΣ∗-extensions. For this task we assume that the
ΠΣ∗-extension (F(t1) . . . (te), σ) of (F, σ) with σ(ti) = ai ti + fi for all i with
1 ≤ i ≤ e is F-ordered, i.e., the extensions are built in the order of their depths:

δF(t1) ≤ δF(t2) ≤ · · · ≤ δF(te); (22)

we remark that any ΠΣ∗-extension can be reordered in this form.

Theorem 32 Let (E, σ) be an F-ordered ΠΣ∗-extension of (F, σ) with the
tower of ΠΣ∗-extensions

F = F0 ≤ F1 ≤ · · · ≤ Fd = E, (23)

such that for 1 ≤ i ≤ d the following holds: Fi = Fi−1(x
(i)
1 ) . . . (x(i)

ei ) is a
ΠΣ∗-extension of Fi−1 with ei > 0 and δF(x(i)

j ) = i for all 1 ≤ j ≤ ei. Then
the following two statements are equivalent:

(1) For 0 ≤ i ≤ j ≤ d, the ΠΣ∗-extension (Fj , σ) of (Fi, σ) is reduced.
(2) For any f, g ∈ E as in (5) we have (21).

Proof Let (E, σ) be an F-ordered ΠΣ∗-extension of (F, σ) as claimed above
such that statement (1) holds. Let f ∈ E with j := δF(f) and g ∈ E
with (5). If j = d, (21) clearly holds. Otherwise, let j < d. Since the exten-
sion (E, σ) of (Fj , σ) is reduced, we can apply Theorem 9 and it follows that
g =

∑ej+1
i=1 cix

(j+1)
i + w where w ∈ Fj and ci ∈ constσF. Since δF(g) ≤ j + 1,

statement (2) holds.



18

Conversely, let (E, σ) be an F-ordered ΠΣ∗-extension of (F, σ) such that state-
ment (1) does not hold. Then there are l, r ≥ 1 such that (Fr, σ) is not a re-
duced ΠΣ∗-extension of (Fl, σ). In particular, there is a Σ∗-extension x

(v)
u for

some l < v ≤ r and 1 ≤ u ≤ ev with f := ∆(x(v)
u ) /∈ Fl s.t. the following prop-

erty holds: there are f ′ ∈ Fl and g ∈ Fv−1(x
(v)
1 ) . . . (x(v)

u−1) with (7). Note that
δF(f ′) < δF(f). Hence for h := x

(l)
u − g, δF(h) = δF(x(l)

u ) > δF(f) > δF(f ′)
and ∆(h) = f −∆(g) = f ′. Thus, δF(h) > δF(f ′) + 1, and (2) does not hold.

F-ordered completely reduced ΠΣ∗-extensions are covered by F-ordered ΠΣ∗-
extensions of the form (23) for which statement (2) of Theorem 32 holds. Hence
we get

Corollary 33 Let (E, σ) be an F-ordered ΠΣ∗-extension of (F, σ). If the ex-
tension is completely reduced, then for any f, g ∈ E with (5) we have (21).

Example 34 As pointed out in Ex. 29.2 the Q-ordered ΠΣ∗-extension (G, σ)
of (Q, σ) with G = Q(k)(s1)(s2)(s3)(s1,3)(x)(s6,1,3) and with (4) and (6) is
completely reduced. Thus Cor. 33 is applicable: for any f, g ∈ G with (5)
we have (21). E.g., if δF(f) = 2, i.e., f ∈ Q(k)(s1)(s2)(s3), we have (12). If
δF(f) = 1, i.e., f ∈ Q(k), we have (11).

Example 35 The ΠΣ∗-field from Example 12 is not reduced. Hence, as pre-
dicted in Theorem 32 we could find f and g in this field with (5) such that
δF(g) > δF(f) + 1.

In order to exploit Corollary 33 in full generality, it is necessary to trans-
form a ΠΣ∗-extension to an F-ordered completely reduced extension. It turns
out that this task is not straightforward5. We start with the following illus-
trative example.

Example 36 Given (G, σ) as in Example 34, we consider the Σ∗-extension
(G(s2,1,3), σ) of (G, σ) with σ(s2,1,3) = s2,1,3 + σ(s1,3)

(k+1)2 . Subsequently, we try
to transform this extension such that it is again a Q-ordered and completely
reduced extension of (Q, σ). First, we verify that s2,1,3 is not a completely
reduced extension: by solving problem RS (D = G(s2,1,3), F = Q and f =
σ(s1,3)
(k+1)2 ) we arrive at f ′ = 1

2(k+1)6 and g = 1
2

(
s2
3 − 2x + 2s1,3 s2

)
. Hence we can

construct the Σ∗-extension (G(s6), σ) of (G, σ) with σ(s6) = s6 + 1
(k+1)6 . In

particular, we get

∆(
1
2

(
s2
3 − 2x + 2s1,3 s2 + s6

)
) =

σ(s1,3)
(k + 1)2

; (24)

note that we applied Lemma 21 (in particular, we pulled out the constant 1/2
by choosing c = 2 in the lemma). Next, we rearrange the ΠΣ∗-field (G(s6), σ)

5 In Section 7.1 we shall propose another solution by embedding a ΠΣ∗-extension into a
depth-optimal ΠΣ∗-extension; see also Ex. 44 which is related to Ex. 36.
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and obtain the Q-ordered ΠΣ∗-ext. (Q(k)(s1)(s2)(s3)(s6)(s1,3)(x)(s6,1,3), σ)
of (Q, σ). In addition, we find the Q-isomorphism

ρ : Q(k)(s1)(s2)(s3)(s1,3)(x)(s6,1,3)(s2,1,3) → Q(k)(s1)(s2)(s3)(s6)(s1,3)(x)(s6,1,3)

by keeping all variables fixed except

ρ(s2,1,3) =
1
2

(
s2
3 − 2x + 2s1,3 s2 + s6

)
. (25)

Due to this change, we have to check if the extensions s1,3, x, s6,1,3 on top
of s6 are still completely reduced. Solving the corresponding problems RS
shows that s1,3 and x are completely reduced, but s6,1,3 is not completely re-
duced. Namely solving problem RS for D = Q(k)(s1)(s2)(s3)(s1,3)(x), F = Q

and f = σ(s1,3)
(k+1)6 , we get g = s1,3s6 and f ′ = −σ(s3)(σ(s6)(k+1)6−1)

(k+1)7 . Apply-
ing Lemma 21 with c = −1, we find the completely reduced Σ∗-extension
(Q(k)(s1)(s2)(s3)(s6)(s1,3)(x)(y), σ) of (Q(k)(s1)(s2)(s3)(s6)(s1,3)(x), σ) with

σ(y) = y +
σ(s3)(σ(s6)(k+1)6−1)

(k+1)7 ) such that

∆(s1,3s6 − y) =
σ(s1,3)
(k + 1)6

. (26)

In particular, we get the Q-isomorphism

µ : Q(k)(s1)(s2)(s3)(s6)(s1,3)(x)(s6,1,3) → Q(k)(s1)(s2)(s3)(s6)(s1,3)(x)(y)

by keeping all variables fixed except

µ(s6,1,3) = s1,3s6 − y. (27)

To sum up, we managed to transform the ΠΣ∗-field (G, σ) to the Q-ordered
and completely reduced ΠΣ∗-extension (Q(k)(s1)(s2)(s3)(s6)(s1,3)(x)(y), σ)
of (Q, σ) with

σ(k) = k + 1, σ(s1) = s1 + 1
k+1 , σ(s2) = s2 + 1

(k+1)2 ,

σ(s3) = s3 + 1
(k+1)3 , σ(s6) = s6 + 1

(k+1)6 , σ(s1,3) = s1,3 + σ(s3)
k+1 ,

σ(x) = x + σ(s2) σ(s3)
k+1 , σ(y) = y +

σ(s3)(σ(s6)(k+1)6−1)
(k+1)7

(28)
together with the Q-isomorphism τ := µ ◦ ρ with

τ : Q(k)(s1)(s2)(s3)(s1,3)(x)(s6,1,3)(s2,1,3) → Q(k)(s1)(s2)(s3)(s6)(s1,3)(x)(y); (29)

here all variables are fixed except

τ(s2,1,3) =
1
2

(
s2
3 − 2x + 2s1,3 s2 + s6

)
and τ(s6,1,3) = s1,3s6 − y. (30)
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Remark 37 Reinterpreting the variables of the previous example as indefinite
sums yields the following identities (which are reflected by (30)): for all k ∈ N,

S2,1,3(k) =
1
2
S3(k)2 −

k∑

i=1

S2(i)S3(i)
i

+ S1,3(k)S2(k) +
1
2
S6(k),

S6,1,3(k) = S1,3(k)S6(k)−
k∑

i=1

S3(i)
(
S6(i)i6 − 1

)

i7
. (31)

Subsequently, we will make this transformation more precise. In order to
deal with Π-extensions (see case 2 in the proof of Thm. 39), we need the
following lemma.

Lemma 38 Let (E, σ) with E = F(t1) . . . (te) be a ΠΣ∗-extension of (F, σ),
let f ∈ E, and let (E(x), σ) be a Π-extension of (E, σ) with σ(x)

x ∈ F. If there
are f ′ ∈ F(x) and g ∈ E(x) s.t. (7) holds, there are φ′ ∈ F and γ ∈ E s.t.
∆(γ) + φ′ = f .

Proof Let f ∈ E, g ∈ E(x) and f ′ ∈ F(x) as claimed above. For convenience,
denote by E(x)(prop) (resp. by F(x)(prop)) all proper rational functions from
E(x) (resp. from F(x)), i.e., for each element the degree of the numerator
(w.r.t. x) is smaller than the degree of the denominator. By polynomial division
we can write g = p1 + q1 and f ′ = p2 + q2 such that p1 ∈ E[x], q1 ∈ E(x)(prop)

and p2 ∈ F[x], q2 ∈ F(x)(prop). Since σ(x)
x ∈ F, it is immediate that σ(p1) ∈

E[x], and consequently, ∆(p1) ∈ E[x]. Moreover, since σ(q1) ∈ E(x)(prop) (the
degrees of polynomials in x do not change under the action of σ), ∆(q1) ∈
E(x)(prop). Analogously, ∆(p2) ∈ F[x] and ∆(q2) ∈ F(x)(prop). Since E(x) =
E[x] ⊕ E(x)(prop) forms a direct sum (as vector spaces over E) and F <
E, (7) implies ∆(p1) + p2 = f and ∆(q1) + q2 = 0. Consider now p1, p2, f
as polynomials in E[x], and let γ, φ′ ∈ E be the constant terms of p1, p2,
respectively; note that f ∈ E. Then by coefficient comparison in ∆(p1) + p2−
f = 0, ∆(γ) + φ− f = 0; this completes the lemma.

Theorem 39 For any ΠΣ∗-extension (E, σ) of (F, σ) there is a completely
reduced F-ordered ΠΣ∗-extension (E′, σ) of (F, σ) together with an F-iso-
morphism τ : E→ E′; in particular,

δF(τ(h)) ≤ δF(h) (32)

for all h ∈ H. Such (E′, σ) and τ can be given explicitly, if (F, σ) is RS-
computable.

Proof Let (E, σ) with E = F(t1) . . . (te) be a ΠΣ∗-ext. of (F, σ). We show the
theorem by induction on the depth. If δF(t1) = . . . δF(te) = 1, the claim follows
by Lemma 8. Now suppose that we have shown the assumption for any exten-
sion whose extension depth is ≤ d + 1 and r ≥ 0 or less extensions have depth
d+1. Subsequently, assume that the ΠΣ∗-ext. (E, σ) of (F, σ) with extension
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depth d + 1 has exactly r + 1 extensions with depth d + 1. W.l.o.g. assume
that this extension is F-ordered, and thus δF(te) = d + 1. By our assumption
we get an F-ordered completely reduced ΠΣ∗-ext. (G, σ) of (F, σ) with G :=
F(x1) . . . (xe−1) together with an F-isomorphism τ : F(t1) . . . (te−1) → G such
that (32) holds for all h ∈ F(t1) . . . (te−1).
For the ΠΣ∗-extension te on top assume that σ(te) = α te +β (either α = 1 or
β = 0), and define a = τ(α) and f = τ(β) (i.e., either a = 1 or f = 0). Finally,
take the ΠΣ∗-extension (G(xe), σ) of (G, σ) with σ(xe) = a xe+f , and extend
the F-isomorphism τ with τ(te) = xe; this is possible by Lemma 22. Note that
δF(xe) = max(δF(a), δF(f)) + 1 ≤ max(δF(α), δF(β)) + 1 = δF(te) by (32);
hence, (32) for all h ∈ F(x1) . . . (xe).
Case 1: xe is a Π-ext., i.e., f = 0. Case 1.1: If δF(xe) = d + 1, (G(xe), σ) is
an F-ordered completely reduced ΠΣ∗-extension of (F, σ), and we are done.
Case 1.2: Otherwise bring it to an F-ordered form: for some l with 0 ≤
l < e, we obtain6 (F(x1) . . . (xl)(xe)(xl+1) . . . (xe−1), σ). Suppose that one
of the extensions xi with i > l is not completely reduced; let j be mini-
mal s.t. h := ∆(xi) ∈ F(x1) . . . (xl)(xe)(xl+1) . . . (xj). Then there are g ∈
F(x1) . . . (xi−1)(xe) and h′ ∈ F(x1) . . . (xj−1)(xe) s.t. ∆(g)+h′ = h. Hence by
Lemma 38 we find such h′, g which are free of xe, and thus (F(x1) . . . (xj), σ) is
not a completely reduced extension of (F, σ); a contradiction. This completes
this part of the proof.
Case 2: xe is a Σ∗-extension, i.e., a = 1. Let j (j < e) be minimal such
that there are f ′ ∈ F(x1) . . . (xj) and g ∈ G as in (7). Since δF(x1) ≤
· · · ≤ δF(xe−1), δF(f ′) ≤ δF(f). Note: If (F, σ) is RS-computable, such f ′

and g can be computed explicitly. By Lemma 21 there is a Σ∗-extension
(G(s), σ) of (G, σ) and σ(s) = s+f ′; in particular, there is the F-isomorphism
ρ : G(xe) → G(s) with ρ(h) = h for all h ∈ G and ρ(xe) = s + g. Next, we
show that δF(ρ(xe)) ≤ δF(xe). Note that ∆(s + g) = ∆(xe) = f , and hence
∆(g) = f − f ′. Since (G, σ) is an F-ordered completely reduced extension of
(F, σ) and f, f ′, g ∈ G it follows that δF(g) ≤ δF(f−f ′)+1 by Cor. 33. Conse-
quently δF(τ(xe)) = δF(s + g) ≤ max(δF(s), δF(g)) = max(δF(f ′) + 1, δF(g)),
and hence with δF(f ′) ≤ δF(f) it follows that δF(τ(xe)) ≤ δF(f)+1 = δF(xe).
With δF(ρ(h)) ≤ δF(h) for all h ∈ G (see above), we get δF(ρ(h)) ≤ δF(h)
for all h ∈ G(xe). Observe that (G(s), σ) is a completely reduced ΠΣ∗-ext. of
(F, σ) by construction (f ′, g solve problem RS for f in (G, σ)).
Case 2.1: If δF(f ′) = δF(f) = d, then (G(s), σ) is also an F-ordered ΠΣ∗-
extension of (F, σ). Finally, with τ ′ = ρ ◦ τ we get an F-isomorphism from E
to G(s) such that δF(τ ′(h)) ≤ δF(h) for all h ∈ E; this completes this part of
the induction.
Case 2.2: If δF(f ′) < δF(f), rearrange the extension (G(s), σ) to anF-ordered
ΠΣ∗-extension (H, σ) of (F, σ) with H = F(x1) . . . . . . (xl)(s)(xl+1) . . . (xe−1)
for some l > j (see again footnote 6). Note that in this case the number of
extensions with depth d + 1 have been reduced at least by 1. Consequently,

6 Note that the extensions below of xl+1 are F-ordered and completely reduced; this fact
will be exploited in Alg. 2.
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Algorithm 2 ToCompleteReducedOrderedField((E, σ), k)
In: A ΠΣ∗-extension (E, σ) of (F, σ) with E = F(t1) . . . (te) s.t. (F, σ) is RS-computable;

k ∈ N s.t. (F(t1) . . . (tk), σ) is an F-ordered completely reduced extension of (F, σ).
Out: An F-ordered completely reduced ΠΣ∗-extension (E′, σ) of (F, σ) together with an

F-isomorphism τ : E→ E′.
1 IF k ≥ e, THEN RETURN ((E, σ), idE) FI

2 ((F(x1) . . . (xe−1), σ), τ):=ToCompleteReducedOrderedField((F(t1) . . . (te−1), σ), k);

3 IF te is a Π-extension, i.e., a := τ(
σ(te)

te
) ∈ F(x1) . . . (xe−1) THEN

4 Take the Π-ext. (F(x1) . . . (xe), σ) of (F(x1) . . . (xe−1), σ) with σ(xe) = a xe; bring
it to an F-ordered form with E′ := F(x1) . . . (xl)(xe)(xl+1) . . . (xe−1) for some l
with 0 ≤ l < e. Take the F-isomorphism τ ′ : F(t1) . . . (te) → E′ with τ ′(h) = τ(h)
for all h ∈ F(t1) . . . (te−1) and τ ′(te) = xe. RETURN ((E′, σ), τ ′).

5 FI

6 Let f ′ ∈ F(x1) . . . (xj) \ F(x1) . . . (xj−1) and g ∈ F(x1) . . . (xe−1) be the result of
problem RS for f := τ(∆(te)) and D = F(x1) . . . (xe−1).

7 Define the Σ∗-extension (H, σ) of (F(x1) . . . (xe−1), σ) with H := F(x1) . . . (xe−1)(s)
and σ(s) = s+f ′ together with the F-isomorphism ρ : F(x1) . . . (xe) → H with ρ(h) =
h for all h ∈ F(x1) . . . (xe−1) and ρ(xe) = s + g.

8 IF δF(f ′) = δF(f) THEN RETURN ((H, σ), ρ ◦ τ) FI

9 Bring (H, σ) to an F-ordered ext. (H′, σ) with H′ = F(x1) . . . (xl)(s)(xl+1) . . . (xe−1)
for some l > j. As pointed out in Footnote 6 we can execute
((E′, σ), µ):=ToCompleteReducedOrderedField((H′, σ), l + 1).

10 RETURN ((E′, σ), µ ◦ ρ ◦ τ).

we can apply our induction assumption: we transform (H, σ) to an F-ordered
completely reduced extension (E′, σ) of (F, σ) with E′ = F(x′1) . . . (x′e) to-
gether with an F-isomorphism µ : H→ E′ such that δF(µ(h)) ≤ δF(h) for all
h ∈ H. Hence with τ ′ := µ ◦ ρ ◦ τ we get an F-isomorphism τ ′ : E→ E′ with
δF(τ ′(h)) ≤ δF(h) for all h ∈ E. This finishes the induction step.

Extracting the reduction steps of the inductive proof of Theorem 39 and taking
into account Footnote 6 lead to Algorithm 2. For instance, in Example 36
the algorithm is carried out for the input ((F(s2,1,3), σ), 7). In general, given
a ΠΣ∗-extension (E, σ) of (F, σ) one computes with Alg. 2 and the input
((E, σ), 1) an isomorphic F-ordered completely reduced extension.

Remark 40 Note that we could proceed differently. Step 1: Bring a ΠΣ∗-
extension to the form (23) such that statement (2) in Theorem 32 holds; then
we are already in the position to exploit property (1) given in Theorem 32.
Step 2: Now the computation of an F-ordered completely reduced extension
is immediate: just apply the underlying algorithm of Theorem 28 (it is easy
to see that the depth of the extensions cannot be reduced further, and hence
the output is an F-ordered completely reduced extension). However, in order
to perform step 1, our arguments lead to the same algorithm as given in
Algorithm 2; only subproblem RS can be slightly modified/simplified. Since
we could not see that these modifications lead to any substantial improvement,
we just presented Algorithm 2, and we set aside a detailed presentation of the
variation sketched in this remark.
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7 Depth-optimal ΠΣ∗-extensions and refined structural Theorems

In [41] ΠΣ∗-extensions have been elaborated to depth-optimal ΠΣ∗-exten-
sions. As it turns out, such extensions are closely related to reduced and com-
pletely reduced ΠΣ∗-extensions. But, there are also major differences: depth-
optimal ΠΣ∗-extensions satisfy additional properties that are highly relevant
in the field of symbolic summation; see [47,49]. Subsequently, we present in
detail how the derived properties of reduced and completely reduced ΠΣ∗-
extensions can be carried over to depth-optimal ΠΣ∗-extensions. Besides this,
we work out their crucial differences in the context of symbolic summation.
As a spin off we obtain refined structural theorems that are preferable, e.g.,
to Theorems 9 and 16.

In the context of reduced ΠΣ∗-extensions depth-optimal ΠΣ∗-extensions
can be introduced as follows. Let (E, σ) be a ΠΣ∗-extension of (F, σ) with
E = F(x1) . . . (xl). Then by Theorem 19 there is the following alternative
characterization for a reduced ΠΣ∗-extension (E(t1) . . . (te), σ) of (E, σ): for
any Σ∗-extension ti with f := ∆(ti) ∈ E (1 ≤ i ≤ e) there is no Σ∗-extension
(E(s), σ) of (E, σ) in which we have g ∈ E(s) with (5). Now suppose in addition
the following ordering:

max(δF(x1), . . . , δF(xl)) + 1 = δF(t1) = δF(t2) = · · · = δF(te).

Then the above statement can be rephrased as follows. For any Σ∗-exten-
sion f := ∆(ti) there does not exist a single-nested Σ∗-extension E(s) with
δF(s) ≤ δF(f) which provides us with a solution g ∈ E(s) for (5).

Essentially, depth-optimal ΠΣ∗-extension follow up this construction with
the constraint that there does not exist a tower of Σ∗-extensions, say S =
E(s1) . . . (sr) with δF(si) ≤ δF(f) for 1 ≤ i ≤ r, which provides us with a
solution g ∈ S for (5). To be more precise, we introduce depth-optimal ΠΣ∗-
extensions as follows; see [47].

Definition 41 Let (E, σ) be a ΠΣ∗-extension of (F, σ). A difference field exten-
sion (E(s), σ) of (E, σ) with σ(s) = s+f is called depth-optimal Σ∗-extension,
in short Σδ-extension, if there is no Σ∗-extension (S, σ) of (E, σ) with ex-
tension7 depth ≤ δF(f) in which there is a g ∈ S such that (5) holds. A
ΠΣ∗-extension (E(t1) . . . (te), σ) of (E, σ) is depth-optimal, in short a ΠΣδ-
extension, if all Σ∗-extensions8 are depth-optimal. A depth-optimal ΠΣ∗-field
(in short a ΠΣδ-field) over F is a ΠΣ∗-field over F which consists of Π- and
Σδ-extensions.

Then ΠΣδ-extensions can be related to reduced extensions as follows.

Lemma 42 Let (E, σ) be an F-ordered ΠΣδ-extension of (F, σ) with (23) s.t.
for 1 ≤ i ≤ d we have that Fi = Fi−1(x

(i)
1 ) . . . (x(i)

ei ) is a ΠΣ∗-extension of

7 Note that ΠΣδ-extensions are defined relatively to the ground field (F, σ) over which
the depth-function δF is defined. Throughout this section we assume that this ground field
is F.

8 In addition, note that Σδ-extensions belong to the class of Σ∗-extensions by Theorem 5.
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Fi−1 with ei > 0 and δF(x(i)
j ) = i for all 1 ≤ j ≤ ei. Then for 0 ≤ i ≤ j ≤ d,

the ΠΣδ-extension (Fj , σ) of (Fi, σ) is reduced.

Proof Suppose that the lemma holds with depth d ≥ 0 and consider a ΠΣδ-
extension (Fd+1, σ) of (Fd, σ) with Fd+1 = Fd(t1) . . . (te) and δF(ti) = d +
1 for 1 ≤ i ≤ e. Clearly, (Fd+1, σ) is a reduced extension of (Fd, σ) by
Lemma 8. For any j (1 ≤ j ≤ e) with fj := ∆(tj) ∈ Fd and for any r
(0 ≤ r < d) we conclude as follows. Since tj is a Σδ-ext., there is no Σ∗-ext.
(Fd(t1) . . . (tj−1)(s), σ) of (Fd(t1) . . . (tj−1), σ) with ∆(s) ∈ Fr s.t. ∆(g) = fj

for some g ∈ Fd(t1) . . . (tj−1)(s). By the equivalence (1)⇔(3) of Thm. 19,
(Fd(t1) . . . (te), σ) is a reduced extension of (Fr, σ). This completes the induc-
tion step.

7.1 Embeddings of ΠΣ∗-extensions into ΠΣδ-extensions

Similar to reduced and completely reduced ΠΣ∗-extensions, we can apply Lem-
mata 21 and 22 iteratively in order to translate a ΠΣ∗-extension into a ΠΣδ-
extension. In particular, this construction can be given explicitly, if one can
solve the following problem.

Problem DOS (Depth Optimal Summation): Given a ΠΣδ-extension
(E, σ) of (F, σ), and given f ∈ E; find, if possible, a Σδ-extension
(E(x1) . . . (xr), σ) of (E, σ) with extension depth≤ δF(f) together with a
g ∈ E(x1) . . . (xr) for (5).

Namely, assume that the difference field (F, σ) is DOS-computable, i.e., for
any ΠΣδ-extension (E, σ) of (F, σ) and any f ∈ E one can solve problem DOS
algorithmically. E.g., due to [47, Algorithm 1] implemented in Sigma any ΠΣ∗-
field is DOS-computable. In fact, a difference field is DOS-computable if and
only if it is RS-computable; for further difference field examples see page 13.

Then the embedding mechanism works as follows. Suppose we are given
a ΠΣ∗-extension (H, σ) of (F, σ) which we managed to embed into a ΠΣδ-
extension (E, σ) of (F, σ) with τ : H → E. Now consider the Σ∗-extension
(H(t), σ) of (H, σ) with σ(t) = t + f . Then one can either find a Σδ-extension
(E′, σ) of (E, σ) with g ∈ E′ such that ∆(g) = τ(f) (by solving prob-
lem DOS). In this case, one can embed (H(t), σ) into (E′, σ) by extending
the F-monomorphism τ to τ : H(t) → E′ with τ(t) = g; the correctness follow
by σ(τ(t)) = σ(g) = g + τ(f) = τ(t + f) = τ(σ(t)).
Otherwise, if there does not exist such a solution, we can adjoin the Σδ-
extension (E(s), σ) of (E, σ) with σ(s) = s + τ(f) and we can extend the
F-monomorphism τ to τ : H(t) → E(s) by τ(t) = s. Similarly, one can treat a
Π-extension σ(t) = a t for some a ∈ H∗; see [47, Result 5] for further details.
Summarizing, we arrive at

Theorem 43 For any ΠΣ∗-extension (E, σ) of (F, σ) there is a ΠΣδ-exten-
sion (E′, σ) of (F, σ) and an F-monomorphism τ : E→ E′. Such (E′, σ) and
τ can be constructed explicitly if (F, σ) is DOS-computable.
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Example 44 We embed the ΠΣ∗-field Q(k)(s1)(s2)(s3)(s1,3)(x)(s6,1,3)(s2,1,3)
with (4), (6) and σ(s2,1,3) = s2,1,3 + σ(s1,3)

(k+1)2 from Example 36 into a depth-
optimal ΠΣ∗-field. It is easy to see that (F, σ) with F = Q(k)(s1)(s2)(s3) is
already a ΠΣδ-field; see also [47, Prop. 17]. We continue as follows.

(1) We apply our algorithms implemented in Sigma and verify that there is
no Σ∗-extension (E, σ) of (F, σ) with extension depth≤ 2 in which we find
g ∈ E with ∆(g) = σ(s3)

k+1 . Hence the Σ∗-extension (F(s1,3), σ) of (F, σ) is
depth-optimal.

(2) Similarly, we verify that (F(s1,3)(x), σ) is a Σδ-extension of (F(s1,3), σ).
(3) Now, we check the extension s6,1,3 by looking at problem DOS with f =

σ(s1,3)
(k+1)6 : we find the Σδ-extension (F(s1,3)(x)(s6)(y), σ) of (F(s1,3), σ) with

σ(s6) = s6 +
1

(k + 1)6
and σ(y) = y +

σ(s3)
(
σ(s6)(k + 1)6 + 1

)

(k + 1)7

and δF(s6), δF(y) ≤ 3 such that (26) holds; the Q-monomorphism µ from
F(s1,3)(x)(s6,1,3) to F(s1,3)(x)(s6)(y) is defined by µ(h) = h for all h ∈
F(s1,3)(x) and (27).

(4) We treat s2,1,3 by solving problem DOS for f = σ(s1,3)
(k+1)2 . This time no

extension is needed, since we find (24); we can extend theQ-monomorphism
as in (25).

Summarizing, we arrive at the ΠΣδ-field (Q(k)(s1)(s2)(s3)(s1,3)(x)(s6)(y), σ)
over Q with (28) together with the Q-isomorphism (29) given by (30).

Usually, one obtains difference field monomorphisms where the transcendental
degree of the embedding extension is larger than the embedded extension. For
instance, in step 3 of Ex. 44 we embedded a Q-ordered completely reduced
extension with degree 7 into a depth-optimal extension with degree 8.

Remark 45 Note that in Ex. 44 we rediscovered identity (31): we simplified
the sum S6,1,3(k) of depth 4 to a sum expression with depth 3 by introducing
the tower of sum extensions S6(k) and

∑k
i=1 i−7S3(i)

(
S6(i)i6 − 1

)
.

In a nutshell, in ordered completely reduced ΠΣ∗-fields, like for instance
(Q(k)(s1)(s2)(s3)(s1,3)(x)(s6,1,3), σ) from the Ex. 34 and 44, one might fail
to produce sum representations with smallest possible depth. But, transfor-
mations of ΠΣ∗-fields to ΠΣδ-fields lead always to sum representations with
optimal nesting depth; a detailed proof of this observation is carried out in [49].

7.2 Structural theorems

Comparing reduced and completely reduced ΠΣ∗-extensions with depth-op-
timal ΠΣ∗-extensions, the following theorem9 summarizes one of the decisive
differences.

9 The proof of Thm. 46 relies on additional properties of ΠΣδ-extensions elaborated
in [47].
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Theorem 46 ([47, Result 2]) Let (E, σ) be a ΠΣδ-extension of (F, σ). Any
possible reordering (as a ΠΣ∗-extension) is again a ΠΣδ-extension.

Namely, if one adjoins a ΠΣδ-extension t on top of a ΠΣδ-extension (E, σ)
of (F, σ) and if one reorganizes, e.g., this extension to an F-ordered version,
then this F-ordered extension is again depth-optimal. This flexibility is com-
pletely different to reduced and completely reduced ΠΣ∗-extensions: as worked
out in Algorithm 2 and illustrated in Example 36, one has to reorganize the
whole difference field in order to get back an F-ordered completely reduced
ΠΣ∗-extension.

Example 47 The ΠΣδ-extension (Q(k)(s1)(s3)(s1,3)(x)(s6)(y)(s2), σ) of the
constant field (Q, σ) with (28) (see Example 44) can be rearranged, e.g., to
the Q-ordered ΠΣ∗-extension (Q(k)(s1)(s2)(s3)(s1,3)(x)(s6)(y), σ) of (Q, σ),
which we constructed already in Example 36. Then due to Theorem 46 this
extension is again a ΠΣδ-extension.

As an immediate consequence, we end up at structural properties which
do not depend on the order of the extensions; compare, e.g., Corollary 33.

Theorem 48 (ΠΣδ-structural theorem) Let (E, σ) be a ΠΣδ-ext. of (F, σ).
Then for any f, g ∈ E with (5) we have (21). In particular, if E = F(t1) . . . (te)
and

S = {1 ≤ i ≤ e|δF(ti) = δF(f) + 1 and ti is a Σ∗-extension},
then (10) for some c, ci ∈ K and w ∈ E with δF(w) ≤ δF(f).

Proof By Theorem 46 we can bring the ΠΣδ-extension (E, σ) of (F, σ) to an
F-ordered extension as in (23). By Lemma 42 the ΠΣ∗-extension (Fj , σ) of
(Fi, σ) is reduced for any 0 ≤ i ≤ j ≤ d. Hence by Theorem 32 the first part
follows. The second part follows by Theorem 9.

Example 49 Take the depth-optimal ΠΣ∗-field (E, σ) with the rational func-
tion field E = Q(k)(s1)(s3)(s1,3)(x)(s6)(y)(s2) and (28), and let f ∈ E with
δQ(f) = 2. Then for any g ∈ E with (5) we have

g = w+c1 s1,3+c2 x+c3 y for some w ∈ Q(k, s1, s2, s3, s6) and c1, c2, c3 ∈ Q.

Combining this result with Theorem 14 we end up at the following refinement.

Theorem 50 (Refined ΠΣδ-structural theorem) Let (E, σ) be a ΠΣδ-ext. of
(F, σ) with f ∈ E; suppose10 that E = F(s1) . . . (su)(t1) . . . (te) such that
δF(si) ≤ δF(f) + 1 for all 1 ≤ i ≤ u and such that δF(ti) > δF(f) + 1 for all
1 ≤ i ≤ e; let {x1, . . . , xr} = InnerNodesF≤F(s1)...(su)(f). If there is a g ∈ E
with (5), then

g =
∑

a∈Σ∗–LeavesF≤F(s1)...(su)(f)

caa + w for some ca ∈ constσF and w ∈ F(x1, . . . , xr).

10 W.l.o.g. any extension can be brought to this form by Theorem 46.
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Example 51 Take again the ΠΣδ-field (E, σ) as in Example 49, and take on
top the Σδ-extension (E(t), σ) of (E, σ) with σ(t) = t + σ(s1,3)σ(s2)

k+1 ; let

f =
k2

(
k2(s2 + k(s3 + k(s3(s2 + 2s6 + 3) + 1)))− 1

)− 2s3

k7

with δQ(f) = 2. We apply Theorem 50 by choosing F = Q ((F, σ) is trivially
a ΠΣδ-extension of (F, σ)). Following our theorem we reorder the ΠΣδ-field to
the Q-ordered ΠΣδ-field (D(t), σ) with D = Q(k)(s1)(s2)(s3)(s6)(s1,3)(x)(y).
In this instance, InnerNodesQ≤D(f) = {k, s2, s3, s6} and Σ∗–LeavesF≤D(f) =
{s1, s1,3, x, y}. Hence for any g ∈ E(t) such that (5) holds, we have

g = c1 s1 + c2 s1,3 + c3 x + c4 y + w

for some c1, c2, c3, c4 ∈ Q and w ∈ Q(k, s2, s3, s6); note that we could exclude
t from g. Indeed, we find

g = s1 + 3s1,3 + x + 2 y + s2s3k7−(s3(s2+2s6+3)+1)k6−s3k5−s2k4+k2+2s3
k7 .

Note that these results lead to fine-tuned telescoping algorithms that enable
one to handle efficiently a tower of up to 100 Σδ-extensions in the summation
package Sigma; for an example from particle physics see [9]. Besides this, we
emphasize

Theorem 52 ([47, Result 6]) Let (E, σ) be a ΠΣδ-ext. of (F, σ); let f ∈ E.
If there is a ΠΣ∗-extension (H, σ) of (F, σ) with g ∈ H s.t. (5) holds, then
there is a Σδ-extension (E′, σ) of (F, σ) with a solution g′ ∈ E′ of ∆(g′) = f
such that δF(g′) ≤ δF(g).

In short, Π-extensions are not needed to find a telescoping solution with opti-
mal depth. This result is connected to Liouville’s theorem 1 where exponential
extensions can be excluded if one looks for a solution of the integration prob-
lem.

Finally, we work out alternative characterizations as given in Theorems 19
and 30 for reduced and completely reduced ΠΣ∗-extensions. Here we need

Lemma 53 Let (E, σ) be a ΠΣ∗-extension of (F, σ) with f ∈ E. If there is
a Σ∗-extension (S, σ) of (E, σ) with extension depth≤ d such that there is
a g ∈ S \ E with (5), then there is a Σ∗-extension (S′(s), σ) of (E, σ) with
extension depth≤ d and with Σ∗–LeavesE≤S′(s) = {s} such that there is a
w ∈ S′ with ∆(s + w) = f .

Proof We construct the desired extension from the given extension (S, σ) of
(E, σ). Note that we cannot find a g′ ∈ E such that ∆(g′) = f ; otherwise
∆(g − g′) = 0, and hence with g − g′ /∈ E the constants are extended –
a contradiction to the assumption that we adjoined only Σ∗-extensions. Let
Σ∗–LeavesE≤S = {s1, . . . , sr}. Then we can reorder the difference field (S, σ)
to (E(x1) . . . (xl)(s1) . . . (sr), σ) such that this is a Σ∗-extension of (E, σ).
W.l.o.g. we may assume that g /∈ E(x1) . . . (xl): otherwise, we neglect the leaf
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extensions s1, . . . , sr and repeat the construction from above. If r = 1, we
are done. Otherwise, we continue as follows. Since ∆(si) ∈ E(x1) . . . (xl) for
1 ≤ i ≤ r (the xi are leaf extensions), (E(x1) . . . (xl)(s1) . . . (sr), σ) is a reduced
Σ∗-extension of (E(x1) . . . (xl), σ) by Lemma 8. Applying Theorem 9 it follows
that g = w +

∑r
i=1 cisi for ci ∈ constσF and w ∈ E(x1) . . . (xl); w.l.o.g. we

may assume that cr 6= 0, otherwise we reorder the extensions si accordingly.
Define φ :=

∑r
i=1 ci∆(si) ∈ E(x1) . . . (xl); note that δF(φ) < d. Then observe

that there is no γ ∈ E(x1) . . . (xl) such that ∆(γ) = φ. Otherwise, for h :=
(γ − ∑r−1

i=1 cisi)/cr ∈ E(x1) . . . (xl)(s1) . . . (sr−1) we get ∆(h) = ∆(sr), and
thus sr is not a Σ∗-extension by Theorem 5; a contradiction. Consequently,
we can apply Theorem 5 and construct the Σ∗-extension (E(x1) . . . (xl)(s), σ)
of (E(x1) . . . (xl), σ) with σ(s) = s + φ and δF(s) ≤ d. Note that for q := w +
s ∈ E(s1) . . . (sk)(s) we have ∆(q) = ∆(g) = f . If Σ∗–LeavesE≤E(x1)...(xl)(s)

contains only s, we are done. Otherwise we repeat the construction from above.
Since in each such step at least one extension is eliminated, this construction
will lead to the desired result.

Theorem 54 Let (E, σ) be a ΠΣ∗-extension of (F, σ) with E = F(t1) . . . (te).
Then the following statements are equivalent:

(1) This extension is depth-optimal.
(2) For any Σ∗-extension ti (1 ≤ i ≤ e) with f := ∆(ti) ∈ F(t1) . . . (ti−1) there

does not exist a ΠΣ∗-extension (H, σ) of (F(t1) . . . (ti−1), σ) with extension
depth ≤ δF(f) in which we find g ∈ H such that (5) holds.

(3) For any Σ∗-extension (S, σ) of (E, σ) with extension depth d the following
holds:

∀f, g ∈ S : ∆g = f ∧ δF(f) ≥ d ⇒ δF(g) ≤ δF(f) + 1. (33)

Proof (1)⇔(2) follows by Theorem 52. We show the implication (1)⇒(3).
Consider a Σ∗-extension (S, σ) of (E, σ) with S = E(s1) . . . (sr) such that
δF(si) ≤ d for 1 ≤ i ≤ r; let f, g ∈ S with (5) and δF(f) ≥ d. By Theo-
rem 46 we may suppose that the ΠΣδ-extension (E, σ) of (F, σ) is ordered
with E = H(t1) . . . (te) where δF(H) = d and d < δF(t1) ≤ · · · ≤ δF(te);
note that f ∈ H. If e = 0, nothing has to be shown. Otherwise, by reordering
we get the ΠΣ∗-extension (H(s1) . . . (sr)(t1) . . . (te), σ) of (H, σ). Now sup-
pose that a Σ∗-extension tl for some 1 ≤ l ≤ e is not depth-optimal; set φ :=
∆(tl). Then there is a Σ∗-extension (H(s1) . . . (sr)(t1) . . . (tl−1)(x1) . . . (xu), σ)
of H(s1) . . . (sr)(t1) . . . (tl−1) with δF(xi) ≤ δF(φ) for 1 ≤ i ≤ u and γ ∈
H(s1) . . . (sr)(t1) . . . (tl−1)(x1) . . . (xu) such that ∆(γ) = φ. Since δF(t1) > d,
we have δF(φ) ≥ d, and thus (H(t1) . . . (tl−1)(s1) . . . (sr)(x1) . . . (xu), σ) is
a Σ∗-extension of (H(t1) . . . (tl−1), σ) with extension depth ≤ δF(φ). Hence
(H(t1) . . . (tl), σ) is not a Σδ-extension of (H(t1) . . . (tl−1), σ), a contradic-
tion. We conclude that (H(s1) . . . (sr)(t1) . . . (te), σ) is a ΠΣδ-extension of
(H(s1) . . . (sr), σ). Moreover, it is a reduced extension of (H, σ) by Lemma 42.
Hence by Thm. 9, g depends only on those ti with ∆(ti) ∈ H, i.e., δF(ti) ≤ d+1.
Thus δF(g) ≤ d + 1.
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Finally, we show the implication (3)⇒(1). Suppose that the ΠΣ∗-extension
(E, σ) of (F, σ) with E = F(t1) . . . (te) is not depth-optimal. We may sup-
pose that E is ordered, i.e., δF(ti) ≤ δF(ti+1) for all i. Then there is a Σ∗-
extension tu with f := ∆(tu) and d := δF(f) with the following property: there
is a Σ∗-extension (F(t1) . . . (tu−1)(s1) . . . (sr), σ) of (F(t1) . . . (tu−1), σ) with
δF(si) ≤ d and fi := ∆(si) for all i s.t. there is a g ∈ F(t1) . . . (tu−1)(s1) . . . (sr)
with (5); w.l.o.g. we may assume that δF(s1) ≤ · · · ≤ δF(sr). Suppose we
can adjoin all si as a tower of Σ∗-extensions to F(t1) . . . (tu): by reorder-
ing we get the Σ∗-ext. (F(t1) . . . (tu−1)(s1) . . . (sr)(tu), σ) of (F, σ); since g ∈
F(t1) . . . (tu−1)(s1) . . . (sr) with (5), tu is not a Σ∗-extension by Theorem 5;
a contradiction. Consequently there is a j (1 ≤ j ≤ r) s.t. we can construct
the Σ∗-extension (E(s1) . . . (sj−1), σ) of (E, σ) with fi = ∆(si) for all i with
1 ≤ i < j, but we fail to construct the Σ∗-extension sj with fj = ∆(sj) on
top. By Lemma 53 we can assume that there is only one leaf extension on
top; hence δF(s1) ≤ · · · ≤ δF(sj−2) < δF(sj−1) ≤ d. By the choice of j it
follows with Thm. 5 that there is a g′ ∈ E(s1) . . . (sj−1) such that ∆(g′) = fj .
Since (F(t1) . . . (tu−1)(s1) . . . (sj), σ) is a Σ∗-extension of (F(t1) . . . (tu−1), σ),
g′ /∈ F(t1) . . . (tu−1)(s1) . . . (sj−1), i.e., g′ depends on a tλ with λ ≥ u. Thus,
δF(g′) ≥ δF(tλ) ≥ δF(tu) = δF(f) + 1 > d ≥ δF(sj) = δF(fj) + 1. Hence, (33)
does not hold.

To sum up, the structural properties given in Theorems 48 and 50 are valid,
even if one adjoins Σ∗-extensions (up to a certain depth) which are not depth-
optimal (see equivalence (1)⇒(3) of Theorem 54). Conversely, it is precisely
property (3) of Theorem 54 that characterizes ΠΣδ-extensions, and that illu-
minates the difference to reduced and completely reduced extensions (compare
Theorems 19 and 30).

8 Conclusion

Starting with Karr’s structural theorem, we obtained various refined versions
for reduced, completely reduced and depth-optimal ΠΣ∗-extensions. In par-
ticular we worked out one essential draw back of Karr’s version of reduced
ΠΣ∗-extensions if one wants to reduce, e.g., the nesting depth of sum expres-
sions: his optimality depends on the order how the elements are adjoined in
the field. In particular, if one reorders the tower of extensions w.r.t. the nesting
depth given by the shift-operator, Karr’s structural theorem usually cannot be
applied: only if the difference field is reorganized by expensive transformations,
one gets back a reduced ΠΣ∗-extension of the desired ordered shape; compare
Theorem 39. In contrast to that, in the recently defined depth-optimal ΠΣ∗-
fields any possible reordering (as a ΠΣ∗-field) gives again a depth-optimal
ΠΣ∗-field. As a consequence we could show structural properties that are in-
dependent of the extension order.

We emphasize that the presented theorems for telescoping (1) can be im-
mediately carried over to Zeilberger’s creative telescoping paradigm [54] used
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for definite summation; for more details in the setting of ΠΣ∗-fields we refer
to [46]. More generally, we obtain structural results for parameterized tele-
scoping. For illustrative purposes we rephrase Theorems 9 and 56 explicitly.

Theorem 55 (Karr’s structural theorem for parameterized telescoping) Let
(E, σ) be a reduced ΠΣ∗-extension of (F, σ) with E = F(t1) . . . (te) and σ(ti) =
ai ti + fi (where either ai = 1 or fi = 0), and define S by (8); let φ1, . . . , φn ∈
F. If there are κ1, . . . , κn ∈ constσF and g ∈ E such that the parameterized
telescoping equation

∆(g) = κ1 φ1 + · · ·+ κn φn (34)

holds, then there are w ∈ F and ci ∈ constσF such that (9) holds; in particular,
for any such g there is some c ∈ constσF such that (10) holds.

Theorem 56 (ΠΣδ-structural thm. for parameterized telescoping) Let (E, σ)
be a ΠΣδ-ext. of (F, σ); let φ1, . . . , φn with d := max(δF(φ1), . . . , δF(φn)).
Then for g ∈ E and κ1, . . . , κn ∈ constσF with (34) we have δF(g) ≤ d + 1.
In particular, if E = F(t1) . . . (te) and

S = {1 ≤ i ≤ e|δF(ti) = d + 1 and ti is a Σ∗-extension},

then we have (10) for some c, ci ∈ K and w ∈ E with δF(w) ≤ d.

By concluding, we remark once more that Karr’s structural theorem in [21,
22] (Theorem 9) is closely related to Liouville’s theorem (Theorem 1) and
Rosenlicht’s algebraic proof [38] in the language of differential fields. A natural
question is how our new results can be carried over to the differential field
case. A positive answer should throw new light on the differential theory of
elementary extensions.

Acknowledgement. I would like to thank the referee for a very careful read-
ing and for many useful suggestions.
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8. Bierenbaum, I., Blümlein, J., Klein, S., Schneider, C.: Two–Loop Massive Operator
Matrix Elements for Unpolarized Heavy Flavor Production to O(ε). Nucl.Phys. B 803(1-
2), 1–41 (2008). [arXiv:hep-ph/0803.0273]
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