ENVIRONMENTAL IMPACT STUDY FOR THE RUMICHACA - PASTO DUAL CARRIAGEWAY ROAD PROJECT, PEDREGAL – CATAMBUCO SECTION, UF 4 AND UF 5.1 CONCESSION CONTRACT UNDER SCHEME NO APP. 15 2015

Géminis Consultores Ambientales Environmental consultants

Chapter 7. Demand, use, exploitation of and / or effect on natural resources

San Juan de Pasto, March 2017

TABLE OF CONTENTS

7. DEMAND, USE, EXPLOITATION OF AND / OR EFFECT ON NATURAL RESOURCES	9
7.1 Surface water	0
7.1.1 Requested water flow10	0
7.1.2. Uptake systems	
7.1.2 Analysis of current or potential conflicts over water availability and use1	9
7.2. Underground water	7
7.3. Discharges	8
7.3.3 Vactor discharges	8
7.3.4 Discharges to sewage	
7.3.1. Discharges into water bodies	1
7.3.2 Ground discharges	4
7.4. Riverbed occupation	
7.4.1 Frequency Analysis for flows104	
7.4.2. Subsidence calculations	
7.4.3 Preliminary designs of works123	
7.5. Forestry use	
The estimated cartographically areas with presence of grouped trees or woodlands	
and individual trees are:	3
From the area indicated in above table, calculations and estimates of forest	
harvesting on ecosystems where sampling was performed were made 14^4	
Moreover, it should be noted that for the ZODME, 100% inventories and respective	
calculations of the sites with timberline are included. Those located where there is	
presence of forest elements are not included in this logging request	
7.5.1 Type of sampling14	
7.5.2. Total and commercial volume14	
As shown in	
7.5.3. Requested volume	
7.5.4 Forest species in threatened Category: Endangered and Prohibited	
7.5.5 Technical forestry use aspects	
7.5.6 Destination of forest products	
7.6 Atmospheric emissions	
7.6.1 Emission sources	
7.6.2 Dispersion model	õ

7.7 Co	nstruction materials	233
7.7.1	Exploiting materials (quarry and drag)	234
7.7.2	Procurement of materials in existing sources	234
BIBLIOGR	APHY	240

INDEX OF TABLES

Table 7.1 Flow required for industrial use	11
Table 7.2 Sources of water uptake Pedregal - Catambuco section	11
Table 7.3 Sources of water uptake Pedregal - Catambuco section	12
Table 7.4 Water demand, household use per camp	
Table 7.5 Estimated consumption flow for the Project	15
Table 7.6 General characteristics for drinking water and raw water storage tanks	18
Table 7.7 Characteristics of storage tanks	18
Table 7.8 Water uses Pedregal-Catambuco sector	20
Table 7.9 Users and uses uptake points	
Table 7.10 Ecological flow, Pedregal - Catambuco	22
Table 7.11 Frequency analysis Maximum Flow - Casanare Automatic Station	23
Table 7.12 Frequency analysis Minimum Flow - Juanambú Bridge Station	24
Table 7.13 Frequency analysis Maximum Flow - Juanambú Bridge Station	25
Table 7.14 Frequencies analysis Maximum Flows - Bocatoma Centenario Station	
Table 7.15 Camp facilities	38
Table 7.16 Black wastewater characterization	40
Table 7.17 Concrete plant wastewater characterization	40
Table 7.18 Surface water discharges Line Type	51
Table 7.19 Line Type Points monitoring surface water bodies, Pedregal - Catam	buco
section	53
Table 7.20 Water quality analysis results discharge projected points	53
Table 7.21 Areas of infiltration fields	56
Table 7.22 Location of the sampled points	
Table 7.23 Identification test pit points	60
Table 7.24 Depths and humidity	
Table 7.25 Granulometry point Tangua-1	61
Table 7.26 Granulometry point Tangua-2	62
Table 7.27 Granulometry point Cebadal - 1	
Table 7.28 Granulometry point Cebadal - 2	63

Table 7.29 Permeability results 68
Table 7.30 Total metals results 68
Table 7.31 Cation Exchange Capacity Results 75
Table 7.32 TPH Results 77
Table 7.33: Riverbed Occupations
Table 7.38 Riverbed occupation for drains 100
Tabla 7.39 Cruces especiales 104
Table 7.40 Summary of modeling parameters to estimate maximum flow in basins over
2,5 km ² 105
Table 7.42 La Magdalena Stream flows
Table 7.43 Design flow for different return periods for efferent basins to the drainage
waters
Table 7.44 Coefficient β
Table 7.46 Structure outlet geometry
Table 7.47 Sewers subsidence Functional Unit 4
Table 7.48 Sewers subsidence Functional Unit 5
Table 7.49 Box Culvert subsidence 115
Table 7.50 Summary of existing works 119
Table 7.51 Existing works that will be kept in existing lane and will extend in projected
lane
Table 7.52 Existing drainage works that will be kept on the existing lane and will not be
extended to projected UF4 lane 122
Table 7.54 Dissipation structures delivering to UF 4 box 124
Table 7.55 Design flow per lineal meter of side ditch
Tabla 7.57 Maximum length in function of road slope 133
A runoff coefficient of 0.9 was used to calculate the flow and the intensity was taken
from the Imues and Sindagua stations and for a return period of 10 years.
Table 7.58 shows the variables used and the results of the flow estimation per linear
meter
Table 7.59 Design flow rate per central separator linear meter of ditch
Table 7.60 Maximum ditch length in function of road slope
Table 7.61 Hydraulic capacity of crown ditches
Table 7.62 Drainage areas of crown ditches 137
Table 7.63 Dissipation structures delivering to ditch
Table 7.64 Dissipation structures delivering to the outlet 140

Table 7.65 Forestry related infrastructure works
Table 7.66 Areas by ecosystem
Table 7.67. Plots by ecosystem, Rumichaca-Pasto road Project, Pedregal- Catambuco
section intervention area
Table 7.68. Total and commercial forest volume in mosaic grass and crops middle Andes
orobioma ecosystem
Table 7.69. Forest volume by species in grasses and trees planted middle Andes
orobioma (202241) ecosystem 150
Table 7.72 Forest volume by species in the forest plantation middle Andes orobioma
ecosystem 154
Table 7.73 Volume per species in the mosaic pastures and crops high Andes orobioma
ecosystem 155
Table 7.74 Forest volume by species in the pastures and planted trees high Andes
orobioma ecosystem 156
Table 7.75. Total commercial volume in the forest plantation high Andes orobioma
ecosystem 158
Table 7.76. Total and commercial volume in the riparian forest high Andes orobioma
ecosystem 159
Table 7.77. Total volume Pedregal-Catambuco section heterogeneous cover dual
carriageway
Table 7.78. Total volume Pedregal- Catambuco section homogeneous coverage dual
carriageway 161
Table 7.79. Pedregal- Catambuco sector commercial volume heterogeneous cover dual
carriageway 162
Table 7.82. Total and commercial value of ZODME located in the Pedregal-Catambuco
section
Table 7.83. Total and commercial value Camps and plants for the Pedregal-Catambuco
sector
Table 7.84. Forest use volumes for the entire project, Pedregal- Catambuco sector 167
Table 7.83. Species classification by category of threat. 168
Table 7.86. Endangered species identified in the Pedregal-Catambuco sector,
intervention area
Table 7.85 Inventory of mobile sources 171
Table 7.86: Stationary Sources Pedregal - Catambuco section 171
Table 7.89: Fixed emission sources Pedregal Catambuco section

Table 7.92 Location of emission sources Pedregal - Catambuco	
Table 7.93 Location of air quality monitoring stations 188	
Table 7.94 General characteristics of evaluated parameters 207	
Table 7.95 Location of air quality monitoring stations, Pedregal - Catambuco	
section	
Table 7.96 Lab results Rumichaca - Pasto Road Project, Pedregal - Catambuco	
section	
Table 7.97 Crushing plants entry records	
Table 7.97 Asphalt plants entry records	
Table 7.97 Control options fed to the model	
Table 7.102 NO $_2$ calibration results	
Table 7.103 SO ₂ calibration results	
Table 7.104 CO calibration results	
Table 7.105 Estimated rock materials	
Table 7.106 Sources of materials in the Pedregal-Catambuco section project area 234	
Table 7.107 Volume material sources	

LIST OF FIGURES

Figure 7.1 Water uptake points, Pedregal - Catambuco section	13
Figure 7.2 Direct uptake system from tank truck	16
Figure 7.3 Tank catruckr for water transport	17
Figure 7.4 Minimum Flow frequencies - Casanare Automatic station	23
Figure 7.5 Maximum flow frequencies Casanare Automatic Station	24
Figure 7.6 Minimum Flow Frequencies - Juanambú Bridge Station	25
Figure 7.7 Maximum Flow frequencies - Juanambú Bridge Station	26
Figure 7.8 Minimum Flow Frequencies - Bocatoma Centenario Station	27
Figure 7.9 Maximum Flow Frequencies - Bocatoma Centenario Station	28
Figure 7.10: Typical grease trap design	43
Figure 7.11: Basic treatment operation	45
Figure 7.12: FAFA Model	46
Figure 7.13: Portable Sanitary Unit	47
Figure 7.14 Desander tank	49
Figure 7.15 Minimum flow distribution - Casanare Automatic Station(Bobo River).	52
Figure 7.16: Location of discharges	55
Figure 7.17 Percentage of activities	61

	CSH-4-AM-AM-EIA2-GG- 0013-7
ENVIRONMENT EFFECT INVESTIGATION	March 2017
	Page 5

Figure 7.18 Granulometric curve Tangua-2 point	.65
Figure 7.19 Granulometric curve Cebadal-1 point	.66
Figura 7.20 Granulometric curve Cebadal-1 point	.67
Figure 7.21 Total Arsenic Variation	
Figure 7.22 Total Barium Variation	.71
Figure 7.23 Total Calcium Variation	
Figure 7.24 Total Magnesium Variation	
Figure 7.25 Total Cobalt Variation	. 73
Figure 7.26 Total Potassium variation.	.74
Figure 7.27 Sodium Total variation	.74
Figure 7.28 Cation Exchange Capacity Variation	. 76
Figure 7.29 Comparative chromatogram: white sample and standard point Tangua 1.	77
Figure 7.30 Comparative chromatogram: white, sample and standard point Tambor 1	78
Figure 7.31 Comparative chromatogram: white, sample and standard point Tambor 2	
Figure 7.32 Comparative chromatogram: white, sample and standards Tangua 2	
Figure 7.33 Surface runoff from the study area	84
Figure 7.34 General geology of the study area	.85
Figure 7.38 Subsidence calculation by the graphic method	112
Figure 7.36 Sewer type	120
Figure 7.37 Box type	
Figure 7.43 Horizontal drain in hillside cut	129
Figure 7.44 Longitudinal drainage elements	
Figure 7.42 Side ditch	
Figure 7.46 Central separator ditch	134
Figure 7.47 Cut berm ditch	
Figure 7.48 Crown ditches	136
The purpose of such work is to protect cut slopes and embankments against erosion,	, for
this purpose three types of dissipation structures in the cuts were designed; the first	
cases where the delivery is made to sewers inlet (Figure 7.49), the second w	hen
delivery is made directly to the side of the road, as shown in Figure 7.50 and the the	
when the dissipation structure is in the outlet see Figure 3-13.	
Figure 7.51 Dissipation structure delivering to ditch	
Figure 7.52 Dissipation structure to outlet	
Figure 7.50. Total and commercial forest volume in mosaic grass and crops mic	
Andes orobioma ecosystem	149

Figure 7.51. Forest volume by species in grasses and trees planted middle Andes orobioma ecosystem
Figure 7.52. Forest volume by species, in gallery and riparian forests middle Andes
orobioma ecosystem
Figure 7.56 Forest volume by species in the forest and riparian gallery orobioma middle
Andes ecosystem
Figure 7.57. Forest volume by species in the forest plantation middle Andes orobioma
ecosystem
Figure 7.58. Volume per species in the mosaic pastures and crops high Andes orobioma
ecosystem
Figure 7.59. Forest volume by species in the pastures and planted trees high Andes
orobioma ecosystem
Figure 7.63 Crushing Plant Model
Figure 7.64: Asphalt plant continuous production scheme
Figure 7.65: Model type power plant
Figure 7.66: Smooth filter sleeves
Figure 7.67: Folding sleeves filter
Figure 7.68 Filter cycle model
Figure 7.69 AERMOD modeling system scheme
Figure 7.73 Wind direction, Obonuco station IDEAM
Figure 7.74 Wind speed depending on the month and time, Obonuco station IDEAM. 194
Figure 7.75 Ambient temperature, Obonuco station IDEAM 195
Figure 7.76 Cloudiness, Obonuco station IDEAM
Figure 7.77 Relative humidity, Obonuco station IDEAM
Figure 7.86 Calculated mixture height 198
Figure 7.79 Atmospheric stability behavior with the hour
Figure 7.82 Dimensional representation of terrain elevations
Figure 7.83 Contour plot of ground elevations
Figure 7.84 Compartmentalizing the road to determine surface parameters 204
Figure 7.85 Perspective view model 205
Figure 7.86 Air quality monitoring points, Pedregal - Catambuco Section
Figure 7.87 Air quality data for PM10 vs Resolution 610 of 2010 212
Figure 7.88 Maximum PM10 concentrations (ug $/$ m3) vs Standard Daily (Res.
610, 2010)
Figure 7.89 PM10 concentrations, annual period

Figure 7.93 NO2 concentrations, hour period	223
Figure 7.94 SO2 concentrations, annual period	224
Figure 7.95 SO2 concentrations, daily period	225
Figure 7.96 SO2 concentrations, 3 hour period	226
Figure 7.97 CO concentrations, 8 hour period	227
Figure 7.98 CO concentrations, 1 hour period	228
Figure 7.99 Location mining titles	236

LIST OF PHOTOS

Photograph 7.1 Definition sampling point	58
Photograph 7.2: Opening hole soil study	59
Photograph 7.3 Soil sample collection	59
Photograph 7.4: Rustic oven for baking brick Coordinates magna sirga origin	west
(E5982.96- N614821.70)	. 172
Photograph 7.5: Crematorium Cristo Rey Coordinates magna sigma origin	west
(976047.12X - 620671.47)	. 173

	CSH-4-AM-AM-EIA2-GG- 0013-7
ENVIRONMENT EFFECT INVESTIGATION	March 2017
	Page 8

7. DEMAND, USE, **EXPLOITATION OF** AND / OR **EFFECT ON** NATURAL **RESOURCES**

Follows the description of natural resources to be used, exploited or affected by the implementation of the Rumichaca - Pasto dual carriageway road project, Pedregal - Catambuco section, which requires the use and / or intervention of different natural resources due to the interaction of the road project layout with natural resources, the need of supplies and / or construction materials and the importance of properly managing liquid and solid waste generated by the project.

This chapter presents the classification of natural resources that will be demanded by the project, the permits required for their exploitation and in turn the saving and use of water programs developed in Annex 7.a and the savings and energy use program presented in Annex 7.b

The community has been informed in all matters relating to the use and exploitation of resources through impact workshops carried out in the territorial units of the area of influence of the Project, perceiving thereby their expectations and their positive perception towards the road improvement. The following outlines some of the expectations raised by the community related to water sources, discharges and air emissions:

- To highlight that it is necessary to correctly manage watersheds that may be contaminated
- It is suggested to channel some water sources specifically in minor territorial units belonging to the municipality of Pasto
- The community states that polluting water sources (streams, rivers and fountainheads) can harm their crops, their animals and human health.

As for the impact on air quality, communities have a common view when identifying contamination by impurities in the air, by handling building material, material from excavations and machinery polluting gases., They also consider that this contamination will be constant due to increased traffic flow during road operation, reason why noise pollution will also increase from noise during construction and operation of the road.

As for the soil, the communities state potential impacts on soil degradation due to road improvement, also identifying that there will be soil erosion, which can trigger, according to the community, landslides land may become "loose" during construction due to the vibration of heavy vehicles and machinery operation among others, which may also affect houses neighboring the road. The community mentions that the mountains in intervened area may be affected causing landslides.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 9

The community also expressed concern about the effect on sewer systems and in other cases identified road construction as a favorable opportunity to implement sewerage in the county according to the processes advanced by the Community Action Boards.

Considering the aspects raised by the community as well as the impacts identified for the project (See Chapter 8. Impact Assessment), use and resources management will be subject to compliance with provisions of the environmental legislation, which will have control measures will and management plans to prevent and mitigate the impacts.

7.1 Surface water

Activities associated with Project development, the demand and use of water resources are related to the needs of the activities to be developed. The amount of water to be used is described below and is requested by means of the sole uptake formats requesting water concession permission as established in the Natural Resources Code, Decree 1076 of 2015 and Decree 1541 of 1978.

Surface water is required for industrial and domestic use, and for temporary site facilities, such as wetting activities in camps, fronts required work, processing plants, washing, cleaning and irrigation activities.

7.1.1 Requested water flow

Materialization of a second road axis will result in implementing various temporary industrial work fronts, which will have uptake sources and the amount needed to develop industrial and domestic activities.

· Industrial use required flow

To determine the flow required for Project development, the amount of water required for industrial activities such as the process plant (concrete, asphalt and crushing), cleaning and wetting two (2) camps proposed for the Pedregal - Catambuco section activities were taken into account. See Table 7.1

In most cases the activities will be conducted insofar as possible with recirculated water in response to the measures proposed in the savings and efficient use of water program.

The industrial flow calculation use the considered the maximum required for development of the activities in work sites and camps with a loss factor of 25%. On the other hand, otherwise the flow given in concession will be 0.5 to 1.5 l / s that will be

GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 10

available in storage tanks in order to supply the flow required for the various processes of the works that is 6 L / s for aforementioned activities.

UF	CAMP- WORK SITES	ACTIVITY	CONSUMP TION (L / s)	LOSS RATE 25%	FLOW IN CONCESSIO N
4	Tangua camp	Processing plant cleansing and wetting activities	6 L / s	1.5 L / s	0.5 to 1.5 L / s
4	Work sites	Wetting	3 L / s	0.75	0.5 to 1.5 L / s
5	Cebadal camp	Processing plant cleansing and wetting activities	6 L / s	1.5 L / s	0.5 to 1.5 L / s

Table 7.1 Flow required for industrial use

Source: (Gemini SAS Consultants, 2016)

• Industrial uptake sources

Given described needs, a total of five (5) water bodies were selected to supply the needs of all industrial processes such as: process plant (concrete, asphalt and crushing), cleaning and wetting activities for the two (2) camps proposed for the Pedregal – Catambuco section. See Table 7.1 (See Annex GDB/mapping/PDF/EIADCRP_IP_033). Water demand required for camps such as Cebadal and Tangua and work sites, water sources used for water uptake are shown in Table 7.2 and Figure 7.1. (See Annex GDB / mapping / PDF / EIADCRP_IP_033); water quality was monitored by analyzing the physicochemical and microbiological parameters of the uptake source, (See Chapter 5.1 in section 5.1.6)

UF	SOURCE	PROPERTY NAME	OWNER	LOCATION UPTAKE POINT	COUNTY	MUNICIPALI TY
4	Rio Bobo	528885-00- 010008-0087- 000	Sarasty Enriquez Jorge Samuel	E: 960614.499 N: 608230.956	Inantas Bajo	Yacuanquer
4	La Magdalena	52788-00- 0100000001	-	E: 961,218.70 N: 610773.57	Inantas Alto	Yacuanquer
4	La Chaquita	52788-00- 10005050300 0	-	E: 967138.506 N; 614073.608	Chávez	Tangua

Table 7.2 Sources of water uptake Pedregal - Catambuco section

5	La Marquesa	52788-00-01- 0006-0131- 000	Araujo Yandar Tulio	E: 968222.919 N: 617028.3	El Tambor	Tangua
---	-------------	-----------------------------------	------------------------	------------------------------	-----------	--------

Source: Gemini Consultants SAS, 2016

Table 7.3 Sources of water uptake Pedregal - Catambuco section

UF	SOURCE	PROPERTY NAME	OWNER	LOCATION UPTAKE POINT	COUNTY	MUNICIPALI TY
5	La Magdalena	52788-00- 01000503250 00	-	E: 965242.001 N: 615211.1876 E: 965261.292 N: 615216.731	El Cebadal	Tangua

Source: (Gemini Environmental Consultants, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 12

Water concession permits to supply the industrial camps are described according to above information. See Annex 7.1.1.a

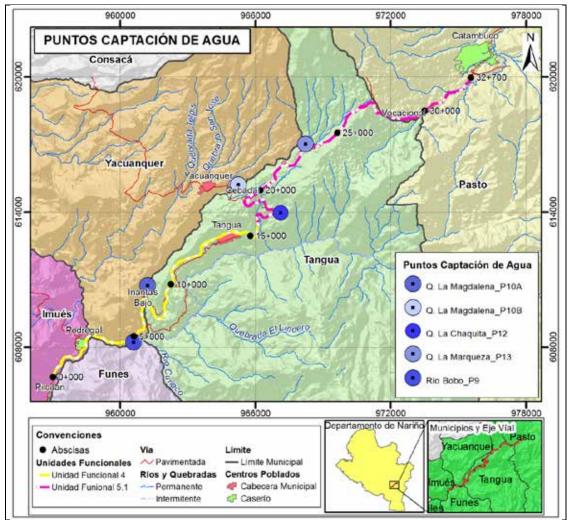


Figure 7.1 Water uptake points, Pedregal - Catambuco section Source (Gemini SAS Consultants, 2016)

Household water requirements

The water used in the project is for meeting basic needs such as toiletries, hygiene and human consumption. To calculate required flow, personnel at each camp was taken into account, and net supply was estimated according to information concerning climate

		CSH-4-AM-AM-EIA2-GG- 0013-7	
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017	
		Page 13	

changes (with a technical loss of 25%, according to Resolution 2320 of 2009), considering that the project area is located over 1,000 meters above sea level, an estimated supply of 90 l / person / day is estimated. Table 7.4 shows the average daily demand of domestic water use for the Project per camp.

It is noteworthy that domestic use requirements are not included in the request for water concession permit, since this water will be provided by a third party (municipal and county aqueducts). For the Pedregal - Catambuco section, the drinking water service was contracted with the Marguesa Bajo, Los Ajos and Empotangue county aqueduct administration board that will supply the Cebadal and Tangua camps respectively; annexed letters evidence service availability of the aqueducts. See Annex 7.1.1.b. The aforesaid to ensure that the bacteriological and physical chemical quality is fit for human consumption according to Decree 1575 of 2007; the service will be transported in water tanker trucks to the storage point.

Table 7.4 water demand, nousenoid use per camp					
ITEM	VALUE	DESCRIPTION			
Supply	90 l / inh * day	As provided for in article one of resolution 2320 of 2009, that establishes that for a low complexity level, cold weather, a maximum net supply of 90 l / inh * day			
Workers	250	Maximum estimate of workers in proposed camp			
Required flow	22500L / day 0,260L / sec	This is the maximum flow required of drinking water for 250 workers.			
Safety factor	0.065 L / sec	The Surplus and Losses Correction Factor in the supply and transportation systems is 25% of the calculated required flow			
Total		0.325 L / sec			

Table 7 1 Water domand household use nor comm

Source: (Gemini SAS Consultants, 2016)

7.1.1.1 Estimated consumption flow construction stage

The amount of water for industrial use in the various processes of the works presents great variability in the availability required for each camp in the Pedregal - Ipiales section as observed in Table 7.5 that shows water demand required for different industrial activities.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 14

UF	САМР	TYPE OF	MATERIAL VOLUME	WATER EMISSIONS	PRODUCTIO N WATER USE	PLACEMENT WATER USE	PLANT MATERIAL PRODUCTIO N	WATER AMOUNT
UT		MATERIAL	(M3)	(M3 / hour)	(M3 water / m3 Material)	(M3 water / m3 Material)	(M3 / hour)	(M3)
		CRUSHING	379035	1,48	-	-	80	7,012
	TANGU	BASE and SUB.BASES	160065	-	-	0.08		12,805
UF4	A	M. ASPHALT	40,665	-	0.01	-		407
		CONCRETE	41062		0.25	-		10,266
								30,490
		CRUSHING	390653	1,48	-	-	80	7,227
	CEBAD	BASE and SUB.BASES	182745	-	-	0.08		14,620
UF5	AL	M. ASPHALT	48367	-	0.01	-		484
		CONCRETE	20,183		0.25	-		5,046
								27,376
				Total				57866

Table 7.5 Estimated consumption flow for the Project

It was estimated that total water consumption for the project, with an estimated construction time of five (5) years, is 57,867 m3 / hour, this equates to 16,074.16 L / s distributed in the above mentioned activities.

7.1.2. Uptake systems

Proposals for water sources uptake are the following alternatives can be by the difference of land level or boost pump; the size and characteristics of the headworks should allow flow uptake necessary for the supply. Chosen option in each source will be reported to the ANLA in the first environmental compliance report ICA.

• Uptake via tank truck motor pump

This scheme consists of a motor pump installed on a tank truck, which will join an up to 6 " hose or suction pipe from the water stream. This pipe will have a fitting on the suction end to prevent ingress of drag material (See Figure 7.2).

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 15

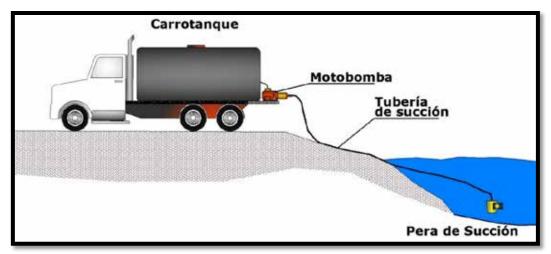


Figure 7.2 Direct uptake system from tank truck Source Gemini Consulting SAS, 2015

Storage and water **distribution tanks** will be installed in each location where the collected water is taken.

The following recommendations must be considered when using tank trucks to uptake water:

- The tank truck cannot enter the water body and must keep a safe distance in meters from the water edge to avoid affecting the slope.
- Uptake is made by means of a suitable hose to pump water from the water source and prevent altering the quality of the water body. This in order to avoid generating instability in the banks and erosion and / scouring thereof.
- The tank truck hose to the water body should be laid using an existing access in order to avoid opening trails.
- The end of the suction hose should not be immersed in the water body to prevent suction of sediment and their impact.
- It is suggested to search existing footprints and grazing areas to avoid an impact on the plant component of the area.

Water transportation

Uptake water will be transported in tank trucks used exclusively for this activity; mobilizing from the uptake point to the point of temporary storage located in camps, workshops, storage areas or plants, depending on the demand for the resource.

-1	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 16

The resource will be used for proposed Project activities. The tank truck must be cleaned before starting the uptake activities. Uptake can begin once the tank truck is clean for transportation to the temporary storage.

Tank trucks used to transport water may not load any other substances (chemicals, domestic and non-domestic waste water, fuel, etc.) that could deteriorate the water quality or contaminate it.

Figure 7.3 Tank catruckr for water transport Source (Gemini SAS Consultants, 2016)

The environmental management plan described in chapter 11.1.1 presents management measures for surface water uptake activities, see Table 11.1.1.8 Uptake Management.

<u>Restitution of surplus water and distribution</u>

Pretreated water will be returned through underground sources; it should be noted that the water that unused is stored for later use. Water is gravitationally distributed through a hydraulic system for powering various distribution points or stipulated hydrants.

• <u>Temporary storage</u>

Temporary water storage for domestic and industrial use must be separated, so that water storage tanks will be installed (clearly marked in permanent housing camps, plants, storage facilities or other areas requiring the supply).

-	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 17

Temporary storage tanks for drinking water and raw water must meet the general characteristics shown in Table 7.6.

CHARACTERISTIC	DESCRIPTION	
Safety	The tank should be located on land not susceptible to landslides or flooding. It must also be stable with respect to soil quality foundation and geotechnical or geological origin faults.	
Serviceability	 The tank should be such that it can be serviced with minimal disruptions, taking into account the following provisions: 1. For the low complexity level it can have a single compartment 3. The tank must be provided with valves for closing inlet pipes and outlet pipes. 4. The inlet and outlet closing devices must be marked according to the color code for piping and valves. 5. The tank should have the shape and serviceability facility. 	
Access restriction	Necessary safety measures must be taken using fences restricted ro	
Tank location	The location of the tanks should consider the following recommendations 1. If the tank is buried or half buried, to be away from any source of contamination, such as septic tanks, garbage dumps, toilets, sinks, etc. and must be covered.	
Materials	The tank material must withstand the forces caused by land and floatation pressures for buried or partially buried tanks when empty.	
WaterproofThe walls and the bottom should be waterproof and the material exp to water should be resistant to chemical attacks and corrosion.		
Ventilation	The tank must have vents allowing the ingress and egress of an air source, with a 5 mm mesh to prevent the entry of insects; if these are PVC, technical standard NTC 1260 should be used.	

Table 7.6 General characteristics for drinking water and raw water storage tank	
ADACTEDISTIC	DESCRIPTION

Source Gemini Consulting SAS, 2015

Storage tanks for drinking and industrial water use, corresponding to a multipurpose tank allowing constant flow of water, easily cleaned, resistant to sun exposure and impacts; the multipurpose polyethylene tank has storage tank specifications shown in Table 7.7.

CHARACTERISTICS	WATER TANK	INDUSTRIAL WATER TANK
Capacity	2500 L	5000 L
Diameter	151 cm	228 cm
Height	165 cm	174 cm

	-1		CSH-4-AM-AM-EIA2-GG- 0013-7
Ge	EMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
			Page 18

-			
F	Weight	46,4Kg	113.6 Kg
	Source: (Gemini SAS Consultants, 2016)		

The water storage tank is white in order to refract sunlight, has an antimicrobial and anti-adhesive layer in order to minimize changes in odor and flavor that could be presented in drinking water.

7.1.2 Analysis of current or potential conflicts over water availability and use

According to the field survey, in the area of influence of the project the main water uses identified were domestic and irrigation where managed pasture and annual crops are the highest water users in the agricultural area and to a lesser extent sheepherding for properties located in the uptake basins used for project water requirements. Industrial and commercial use is associated with car washes, service stations, auto repair shops and dairy processing among others less important.

Water availability is the limiting factor in irrigation development in the basin. An increase in irrigated area could lead to conflict if farmers do not manage their water requests. The current practice is that anyone who wants to use water from a water source just takes it directly. The practice involves a potential future conflict over water.

Beneficiaries downstream of the supply sources suffer water shortages during the dry months. This is caused by the limited capacity of delivery systems. Water shortage problems for users located downstream could be solved greatly if the administration boards of aqueduct and / or communal action boards take corrective measures such as prohibiting the use of water resources for agriculture.

Uses and water conflicts

From fieldwork and according to secondary information, potential conflicts were identified by use of water resources at the sources related to water uptake of uses and users of sources to intervene. After collecting field information in the area of influence it was identified that the main uses of water resources are domestic, agricultural, livestock and industrial for surface water bodies.

According to field information, tributaries located on the high side are the only major sources that supply population centers, counties and provinces, since the quality and quantity conditions is suitable for human and domestic consumption. Government agencies, organizations (community action boards and / or aqueduct administrative boards) and all users should be in charge of preserving the water sources.

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 19

A water conflict found was the relationship of neighbors because those living downstream complain to those living upstream of not letting water move to their boundaries and / or property, of littering or discharging on source. These interests associated with domestic use, agriculture, industry, among others often contradict instead of solving, which makes it even more complicated. See Table 7.8 Water use Pedregal-Catambuco sector.

Table 7.8 Water uses Pedregal-Catambuco sector

SURFACE WATER			
USE	PARTICIPATION		
DOMESTIC	8	0.70	45 %
AGRICULTURAL	4	0.35	35%
INDUSTRIAL	3	0.115	20 %

Source: Gemini Consulting SAS

Communities state that the biggest problem is the decline in the quantity and quality of water assets due to depreciation of plant cover and increased consumptive water uses, lack and absence of solidarity and environmental responsibility, lack of technical assistance and training for the use of solid and liquid waste and waste from industrial and agricultural activities and others.

Reduced water sources for water supply to municipal aqueducts is a general concern among inhabitants. With some exceptions, all municipal county aqueducts are suffering from shortage of water resources. Discomfort and health effects by those reporting increasingly frequent pollution of water resources due to deposits and solid waste accumulation and wastewater discharges without any treatment or management are common in the community.

- Domestic use

Properties located within the AI demand water resources for domestic use activities; generally uptake in the area of influence is from water bodies with surface-type pretreatment to supply county aqueducts and independent type supply.

- Livestock use

In the study area there are mostly poultry sheds followed by extensive cattle and swine artisan breeding, which use water from water surface bodies close to the properties to feed and clean the breeding infrastructure used.

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 20

- Current uptake points Use

In uptake strips requested in this study, uses and users associated therewith were verified. There are uptakes in the Municipality of Tangua and Yacuanquer, which are used for agricultural and livestock purposes. Table 7.9 shows the characteristics of requested deposits.

Tuble 110 05015 und doct uptune points							
FU	SOURCE	APPLICATIONS	USERS	FLOW IN CONCESSION 1 / s			
4	LA MAGDALENA	Domestic	782	1.5			
4	LA CHAQUITA	-	-	-			
		Domestic	24257	47			
4	RIO BOBO	Agricultural		40			
		Livestock		5			
5	MARQUEZA (CUBIJAN)	Domestic	80	1.5			

Table 7.9 Users	and uses uptake points
	and uses uptake points

Source: Gemini Consulting SAS

• Ecological flow

The ecological flow is a management tool that allows agreeing on an integrated and sustainable management of water resources, establishing quality, quantity and water flow rate required to maintain the components, functions, processes and resilience of aquatic ecosystems that provide goods and services to society. Given the economic, social and environmental water demands, it is recognized that goods and services from water basins depend on physical, biological and social processes.

The ecological flow seeks to reproduce to some extent the natural hydrological regime preserving the seasonal patterns of minimum and maximum flows – dry and rainy seasons, respectively, the flood regime and exchange rates of special interest to manage the water infrastructure. See Table 7.10 Ecological flow, Pedregal-Catambuco.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 21

Source	Average Ecological flow (L / flow		Water demand	Available	Flow uptake	Magna Sirgas planar coordinates origin West	
	~ ,	(30%)	source (L flow (L / s) / s)		requested (l / s)	North	East
Rio Bobo	710	213	92	405	1.5	960614.5	608,230.96
Q. The Magdalena	55	16.5	32,29	6.21	1.0	961218.7	610,773.57
Q. The Chaquita	2.2	0,66	0.3	1,24	0.5	967,138.506	614,973.608
Q. The Marquesa	5.4	1,62	2.3	1,48	0, 5	968,222.92	617028.3

Table 7.10 Ecological flow, Pedregal - Catambuco

Source: (Gemini SAS Consultants, 2016)

• Flow frequency analysis

The frequency analysis is a method for estimating the frequency occurrence or likelihood of occurrence of past or future extreme events. Thus, the graphical representation of the likelihood is a frequency analysis method.

The maximum and minimum values in hydrology drain (precipitation or flow) should be treated by probabilistic distribution. Although there are many probabilistic distributions for maximum values, it is very common in hydrology to use the Gumbel (European School) and log-Pearson Type III (American School) probabilistic distribution values.

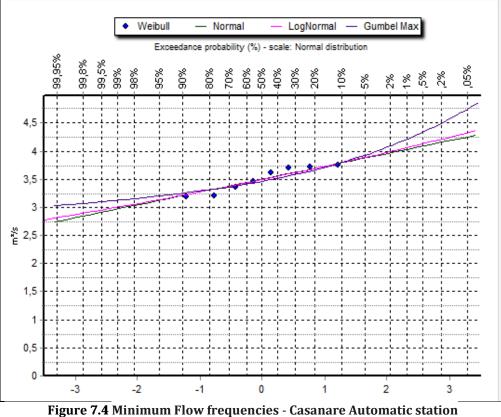
The information on minimum annual flows of each station was processed and adjusted by software to probabilistic functions. Follows the analysis of each one using minimum flows in different frequency periods.

Casanare automatic station

The frequency analysis for maximum and minimum annual flows recorded throughout the recording period of the Casanare Automatic station in the Bobo river, is reported in the following tables and graphs (Table 7.11 Table 7.11 and Figure 7.4 Figure 7.5)

Table 7.11 Frequency analysis Minimum Flow - Casanare Automatic station								
RETURN PERIOD		EXPECTED Tr VALUE PER DISTRIBUTION						
GUMBEL NORMAL PEARSON III LOG PEARSON III					LOG NORMAL			
(years)	m3 / s	m3 / s	m3 / s	m3 / s	m3 / s			
1.33	0.54692	0.56006	0.55434	0.54701	0.55497			
2	0.48705	0.50125	0.49246	0.47817	0.49396			

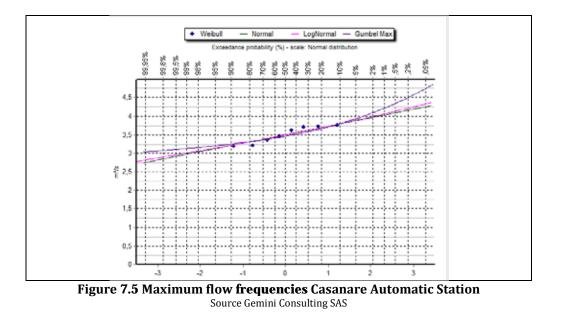
Table 7.11 Frequency analysis Minimum Flow - Casanare Automatic station



RETURN PERIOD		EXPECTED Tr VALUE PER DISTRIBUTION					
KETUKN FERIUD	GUMBEL	LOG NORMAL					
5	0.43026	0.42851	0.42716	0.42231	0.42769		
CHI SQUARE TEST	1.00000	3.00000			1.00000		

Source Gemini Consultores SA, 2016

Source Gemini Consulting SAS


Table 7.11 Frequency anal	ysis Maximum Flow - Casanar	Automatic Station
---------------------------	-----------------------------	-------------------

EXPECTED Tr VALUE PER DISTRIBUTION				
GUMBEL NORMAL		LOG NORMAL		
m3 / s	m3 / s	m3 / s		
3.33959	3.34616	3.34262		
3.46379	3.50125	3.49385		
3.66530	3.69309	3.69041		
1.00000	1.00000	1.00000		
	GUMBEL m3 / s 3.33959 3.46379 3.66530	GUMBEL NORMAL m3 / s m3 / s 3.33959 3.34616 3.46379 3.50125 3.66530 3.69309		

Source: Gemini Consulting SAS

Juanambú Bridge Station

The frequency analysis for maximum and minimum annual flows reported throughout the recording period of the Juanambú Bridge station on the Juanambú river is reported in the following tables and graphs (Table 7.12 Table 7.13 and Figure 7.6 Figure 7.7)

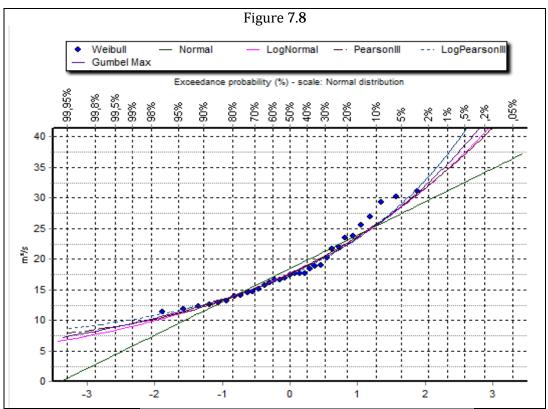

RETURN PERIOD	EXPECTED Tr VALUE PER DISTRIBUTION						
KETUKN PERIOD	GUMBEL	NORMAL	PEARSON III	LOG PEARSON III	LOG NORMAL		
(years)	m3 / s	m3 / s	m3 / s	m3 / s	m3 / s		
1.33	21.3119	22.1405	21.5605	21.1710	21.5239		
2	17.5357	18.4315	17.6116	17.3680	17.6747		
5	13.9540	13.8438	13.7767	13.9522	13.8520		
CHI SQUARE TEST	0.33333	2.75758			1.78788		

Table	7.12 Freq	uency analy	sis Minimum	Flow -	Juanambú 🛛	Bridge Station
-------	-----------	-------------	-------------	--------	------------	----------------

Source Gemini Consultores SA, 2016

RETURN PERIOD	EXPECTED Tr VALUE PER DISTRIBUTION				
KETUKN PERIOD	GUMBEL NORMAL		LOG NORMAL		
(years)	m3 / s	m3 / s	m3 / s		
1.33	82.7644	83.6808	82.4650		
2	100.097	105.325	100.827		
5	128.220	132.097	129.291		
CHI SQUARE TEST	0.31429	0.77143	0.31429		

Table 7.13 Frequency analysis Maximum Flow - Juanambú Bridge Station

Source Gemini Consulting SAS

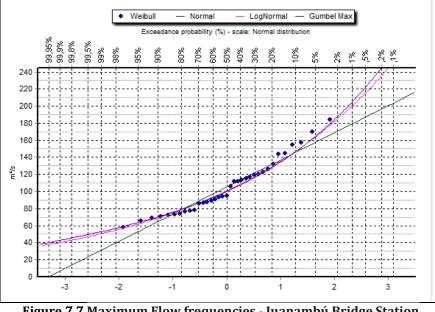


Figure 7.7 Maximum Flow frequencies - Juanambú Bridge Station Source Gemini Consulting SAS

Centenio Bocatoma Station

The frequency analysis for maximum and minimum annual flows reported throughout the recording period of the Centenario Bocatoma station on the Pasto River, is reported in the following tables and graphs (Table 7.15 Table 7.14 and Figure 7.8 Figure 7.9)

RETURN PERIOD	EXPECTED Tr VALUE PER DISTRIBUTION						
RETURN PERIOD	GUMBEL	NORMAL	PEARSON III	LOG PEARSON III	LOG NORMAL		
(years)	m3 / s	m3 / s	m3 / s	m3 / s	m3 / s		
1.33	0.86855	0.89856	0.89856	0.86590	0.87964		
2	0.73179	0.76423	0.76423	0.70480	0.73994		
5	0.60206	0.59807	0.59807	0.57890	0.59744		
CHI SQUARE TEST	1.30769	1.30769	1.30769	4.38462	0.92308		

Table 7.15 Freque	ncies analysis Minimum Flows – Centenario Bocatoma Station

Source Gemini Consultores SA, 2016

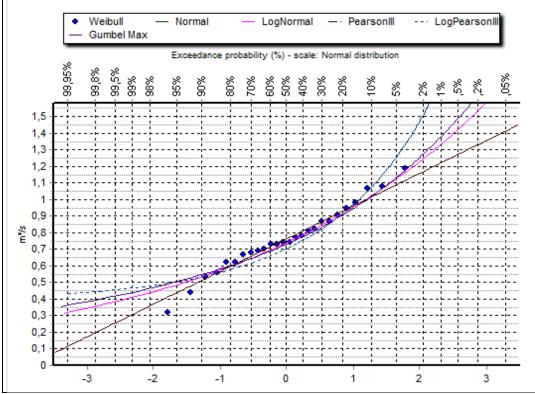
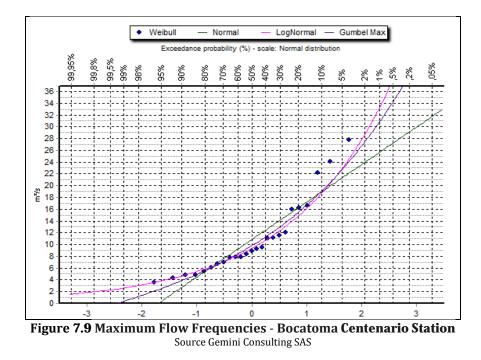


Figure 7.8 Minimum Flow Frequencies - Bocatoma Centenario Station Source Gemini Consulting SAS


Table 7.14 Frequencies analysis Maximum Flows - Bocatoma Centenario Station

RETURN PERIOD	EXPECTED Tr VALUE PER DISTRIBUTION		
KETUKIN PERIOD	GUMBEL	NORMAL	LOG NORMAL
(years)	m3 / s	m3 / s	m3 / s
1.33	6.31677	6.50009	6.44607
2	9.78423	10.8300	9.33738
5	15.4101	16.1857	14.7667
CHI SQUARE TEST	2.04000	2.04000	0.76000

Source Gemini Consulting SAS

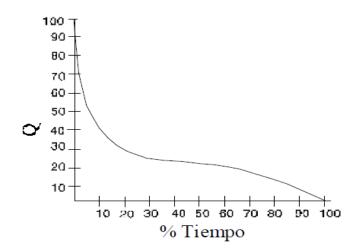
Flow duration curves

The flow duration curve is the frequency analysis of the historical series of average daily flows. It is estimated that if the historical series is good enough, the duration curve is representative of the rate of average current flows and therefore can be used to predict the behavior of future flow regimes, or the regime presented during the life of the project.

As shown in the following figures, the vertical duration curve scale represents average flow (daily, monthly or annually) and the horizontal scale the likelihood that these flows can be matched or exceeded.

It is a graph with flow, Q. as ordinate and the number of days in the year (usually expressed in % of time) in that flow, Q, is exceeded or equaled, as abscissa. The Q ordinate for any likelihood percentage represents the magnitude of the flow in an average year, expected to be exceeded or equaled by a percentage, P, of time.

The average annual, monthly or daily flow data can be used to construct the curve. The flows are arranged in descending order, using class intervals if the


	1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017	
			Page 28

number of values is very large. If N is the number of data, the exceedance likelihood, P, of any discharge (or class value), Q, is:

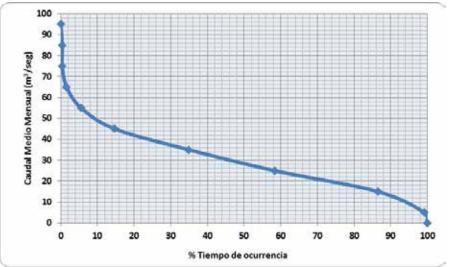
 $P = \frac{m}{N} \times 100$

Where m is the number of times the flow occurs at that time. If the flow rate is drawn against percentage of time when it is exceeded or equaled, a graph is obtained as shown in the following figure.

Duration curves have typical forms depending on the characteristics of the watersheds. In mountain basins i.e. the steep slope in the initial section of the curve indicates that high flows are present for short periods, while in lowland rivers the differences are not very noticeable in the slopes of the different sections of the curve.

The typical flow rates are defined as presented at different likelihood of occurrence in a curve flow duration, this is a Q_{10} , representing maximum flow exceeded 10% of the time, while a Q_{90} corresponds to a minimum flow rate exceeded 90% of the time. The main flow characteristic data are:

- Q₉₀: Characteristic dry flow rate exceeded 355 days a year.
- Q_{80} : Low water flow, to define periods of construction works with direct intervention of the channel.


- Q_{75} : Low water flow, exceeded 275 days a year flow or 75% of the time.
- Q_{50} : Average flow, flow exceeded 50% of the time is used for exploitation water distribution and is recommended not fall below this value.
- Q_{25} : High water flow: flow rate exceeded 355 days a year 55% of the time.
- Q₁₀: Maximum flow characteristic: flow exceeded 10 days a year.

Pilcuán station

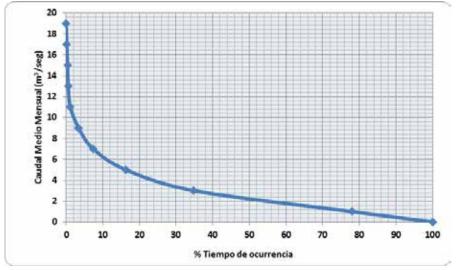
The following figure shows the flow duration curve constructed with the average monthly records from the Pilcuán station. In the Guaitara River case, flow characteristics are presented in the following table.

Character Istic Flows - Flicuali Station		
Characteristic flows	Value (m3 / s)	
Q10	48	
Q25	39	
Q50	28	
Q75	twenty	
Q90	fifteen	

Characteristic Flows - Pilcuán Station

Flow duration curve - Pilcuán Stat

	CSH-4-AM-AM-EIA2-GG- 0013-7
ENVIRONMENT EFFECT INVESTIGATION	March 2017
	Page 30


Carlosama Station

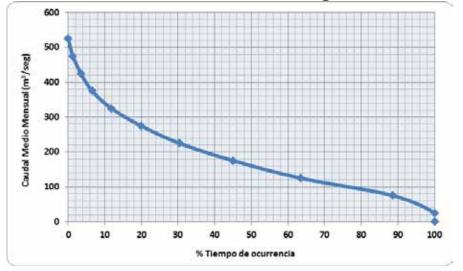
The following figure shows the flow duration curve constructed with the average monthly records from the Carlosama station. The typical flow rates are presented in the following table.

Characteristic Hows Ca	i iosuma station
Characteristic flows	Value (m3 / s)
Q10	6.5
Q25	3.8
Q50	2.4
Q75	1.2
Q90	0.5

Characteristic Flows - Carlosama station

Flow duration curve - Carlosama Station

-		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 31


Guascas Bridge Station

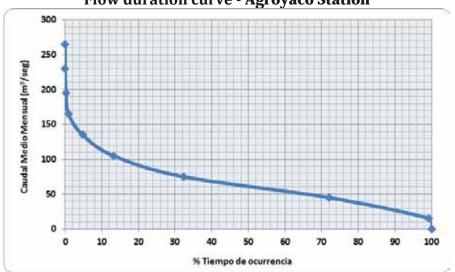
The following figure shows the flow duration curve constructed with the average monthly records from the Guascas Bridge station presents. The typical flow rates on the Patia River are presented in the following table.

characteristic nows duast	as bridge station
Characteristic flows	Value (m3 / s)
Q10	340
Q25	245
Q50	160
Q75	100
Q90	70

Characteristic flows - Guascas Bridge Station

Flow duration curve - Guascas Bridge Station

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 32



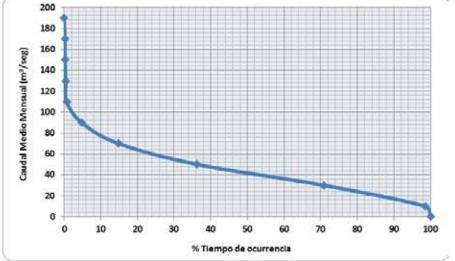
Agroyaco station

The following figure shows the flow duration curve constructed with the average monthly records of the Agroyaco station. The typical flow rates on the river Guaitara are presented in the following table.

Characteristic Hows hg	i byaco Station
Characteristic flows	Value (m3 / s)
Q10	115
Q25	85
Q50	60
Q75	40
Q90	28

Characteristic Flows - Agroyaco Station

GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
		March 2017
		Page 33


San Pedro Station

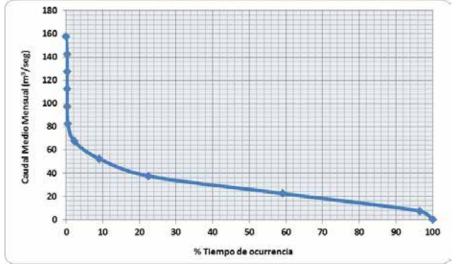
The following figure shows the flow duration curve constructed with the average monthly records of the San Pedro station. The typical flow rates on the river Guaitara are presented in the following table.

The characteristic san rear o station		
Characteristic flows	Value (m3 / s)	
Q10	77	
Q25	60	
Q50	43	
Q75	28	
Q90	18	

Flow Characteristic - San Pedro Station

Flow duration curve - San Pedro Station

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 34


Juanambú Bridge Station

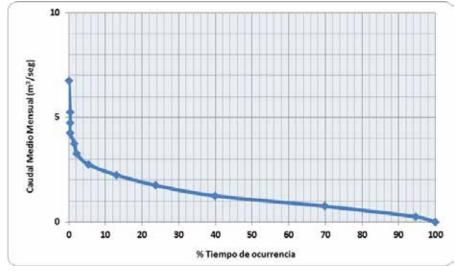
The following figure shows the flow duration curve constructed with the average monthly records of the Juanambú Bridge station. The typical flow rates on the **Guaitara River** are presented in the following table.

Characteristic flows	Value (m3 / s)
Q10	fifty
Q25	38
Q50	27
Q75	17
Q90	10

Characteristic flows - Juanambú Bridge Station

Flow duration curve - Juanambú Bridge Station

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 35


Bocatoma Centenario Station

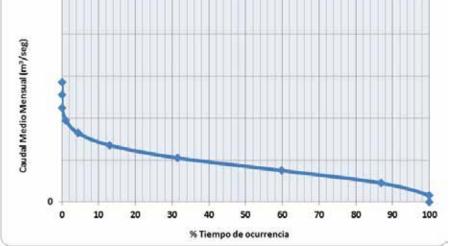
The following figure shows the flow duration curve constructed with the average monthly records of the Bocatoma Centenario station. The typical flow rates on the Pasto River are presented in the following table.

Characteristic flows	Value (m3 / s)
Q10	2.4
Q25	1.7
Q50	1
Q75	0.7
Q90	0.4

Characteristic Flows - Bocatoma Centenario Station

Duration Curve Flows - Bocatoma Centenario Station

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATIO	March 2017
		Page 36


Automatic Casanare Station

The following figure shows the flow duration curve constructed with the average monthly records of the Casanare Automatic station. The typical flow rates on the Bobo River are presented in the following table.

Characteristic flows	Value (m3 / s)
Q10	1.4
Q25	1.1
Q50	0.9
Q75	0.6
Q90	0.4

Characteristic Flows - Automatic Casanare Station

Flow duration curve - Automatic Casanare Station

7.2. Underground water

Execution of the activities foreseen for development of this project does not require using groundwater since the needs of water resources are supplied from surface water uptake and purchase of authorized water resources that provide water with optimal characteristics for human consumption. Therefore a groundwater concession is not requested.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 37

7.3. Discharges

Project discharges is from industrial consumption (processing plant, washing machines and workshop). Wastewater will receive physical and bacteriological treatment before being discharged, this in order to ensure removal of pollutants and improve physicochemical characteristics of the wastewater. Table 7.15 shows the facilities of each of camp.

UF	САМР	PLANAR COORDINATE	РК	ΑCTIVITY
4	Tangua camp	E: 965241.119 N: 613193.624	14 + 300 14 + 500	Processing asphalt, crushing plant, offices and housing
5	Cebadal camp	E: 967254.322 N: 615985.056	21 + 700	Processing asphalt, crushing plant, offices and housing

Table 7.15 Camp facilities

Source: (Gemini SAS Consultants, 2016)

Strategies for disposal of liquid waste from camps are distributed as follows, clarifying that viability and importance will be in line as listed below.

- Vactor discharges
- Surface water discharges
- Municipal sewage discharges
- Ground discharges

7.3.3 Vactor discharges

Discharges generated from developing core project activities will be of an industrial and domestic type. According to the aforesaid and giving compliance with the provisions of current environmental regulations, Decree 3930 of 2010 (provisions relating to the uses of water resources, the water resources and discharges to water resources to soil and drainage systems Planning) and Resolution 631, 2015 (whereby the parameters and maximum allowable limit values for specific discharges to surface body water and sewage systems are established); such discharges will be collected, managed and disposed of by third parties through a suction device known as vactor vacuum.

To clarigy that the third party shall have the respective environmental and operational permits allowing them to provide the service. See Annex 7.3.a

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 38

7.3.4 Discharges to sewage

The camp located in the El Vergel county, municipality of Tangua will generate both industrial and domestic effluents which will be disposed of in the municipal sewer system managed by the Administración Publica Cooperativa de Agua Potable y Saneamiento Básico de Tangua (EMPOTANGUA) who must meet the requirements stipulated by Article 39 (Liability of the provider of home public sewage services). Similarly, the construction group will assume as part of its responsibility provisions of Article 38 (Obligation of subscribers and / or users of public utility companies).

Similarly, the necessary arrangements went ahead with the Metropolitan Sanitation Company and EMAS Pasto and the Pasto Service Company of Sanitary Works EMPOPASTO, for management and disposal of domestic liquid wastes from the camps, see Annex 7.3.b

7.3.3 Characteristics of wastewater composition

In the works comprising the materialization of the new road axis, discharges associated with processes of the concrete, asphalt and crushing plant and temporary facilities (camps) will be generated, reason why a system to treat wastewater whose characterization described below will be installed.

• Domestic wastewater

Two types of black and gray domestic wastewater are generated from camp operations during the different project stages. Household waste will be handled by the company providing the vactor service that will be responsible for collecting domestic wastewater, the company will have due environmental and operational permits.

During the construction stage, a domestic wastewater discharge (ARD) flow rate was calculated according to consumption per day per camp considering that the number of projected camp workers are two hundred fifty (250) and that area climate can be considered as cold, so the daily water demand per inhabitant is ninety (90) L / s, resulting in a discharge flow of approximately:

	CSH-4-AM-AM-EIA2-GG- 0013-7
ENVIRONMENT EFFECT INVESTIGATION	March 2017
	Page 39

$$Q_d = \frac{C * P * R}{86400} = \frac{90\frac{L}{hab} * 250 hab * 0.8}{86400} = 0.21\frac{L}{s}$$

Greywater: coming from the camps (kitchen, bathroom), characterized by having suspended materials and vegetable fats. Their organic pollution index is less than sanitary or black type waters.

Sewage: characterized by a high content of organic load and a high population of total and fecal coliforms; its concentration depends on the flow of wastewater and the number of workers that in this case will be two hundred and fifty (250) employees in each camp. See Table 7.16

Table 7.10 Black wastewater characterization			
PARAMETER	UNITY	REPORTED VALUES	
Color	CPU	> 150	
Chlorides	mg Cl / l	> 150	
DBO	mg 02 / l	> 500	
COD	mg 02 / l	> 600	
Total hardness	mg CaCO3 /	50	
рН	Unit	7-9	
Dissolved solids	mg / l	300-800	
Suspended solids	mg / l	100-200	
Sulfates	SO4 mg / l	40-100	
Total coliforms	NMP /	900,000	
Fecal coliforms	NMP /	80,000	
Fats and oils	mg / l	50-100	

Table 7.16 Black wastewater characterization

Source (Consorcio Vial Helios, 2008)

• Industrial wastewater

These waters originate from activities as concrete plants with a high amount of dissolved and suspended solids and chemical residues as shown in Table 7.17. Metal concentrations vary according to the needs of the mixture and its disposal; the values shown in the table are the allowable discharge limits.

Table 7.17 Concrete plant wastewater characterization			
PARAMETER	UNITS	RESULT	
Chlorides	mg Cl / l	58.8	
pH	Units	11	

Table 7.17 Concrete plant wastewater characterization

PARAMETER	UNITS	RESULT
Total solids	mg / l	499
Sulfates	MgSO4 / l	135
Settled solids	mg / l	332
COD	PPM	216
Turbidity	FTU	50
Hardness	mgCaCO3 / L	4220
Alkalinity	mgCaCO3 / L	3389
Arsenic	mg / l	0.5
Barium	mg / l	1.0
Cadmium	mg / l	0.01
Zinc	mg / l	13
Copper	mg / l	1.0
Mercury	mg / l	0.02
Lead	mg / l	0.05
Selenium	mg / l	0.01

Source (Consorcio Vial Helios, 2008)

To calculate the discharge of non-domestic wastewater (ARnD) during the operation stage, the industrial contribution coefficient considered for an average level of complexity is 0.4 L / sec (Ci) and the calculated water consumption for use in the project's process plants is 1.5 L / sec (Qi), with these data the non-domestic wastewater flow is calculated (*QARnD*) shown in the following equation:

$$QARnD = Ci * Qi$$

$$QARnD = 0.4 \frac{L}{seg} * 1.5 \frac{L}{seg} = 0.6 L/seg$$

Given that concrete plants are equipped with a wastewater recirculation system.

The characteristics of the recirculation system will be presented in the Environmental Compliance Reports - ICA. The following table shows the discharge flow during the construction stage.

The discharge flow rate of industrial water was determined as 0.6 L / s as 85% (0.5 lost by evaporation approximately) of resulting water from the process plants to be recirculated so that only 10% will be disposed of through the vactor.

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 41

Table 7.20Discharge now			
	TYPE OF	Water consumption	Wastewater generation
NAME	WATER	Requested water flow L / sec	Water discharge L / Sec
	ARD	0.28	0,21
Tangua camp	ARnd	1.5	0.6
Cebadal camp	ARD	0.28	0,21
Cebauai camp	ARnd	1.5	0.6

Table 7.20Discharge flow

Source. (Gemini SAS Consultants, 2016)

Treatment Systems

The treatment systems designs obey the characteristics of the waste waters to be treated, which vary depending on their origin. Wastewater treatment systems are not only a measure of environmental management for the possible effects from project development, but is currently also assumed as an activity thereof. Because of this, the Concessionary seeks to propose alternative treatment systems which have greater efficiency in removing pollutants, resulting in greater protection to natural resources and the environment. Discharges will be collected after pretreatment in a septic tank (sewage) and grease trap (gray water), clarifiers, etc., through an authorized third party for collection and treatment.

• Greywater treatment system

From camps (showers, sinks, dishwashers and washing machines), are characterized by suspended materials and vegetable fats. The organic contamination index of these waters is less than sanitary or black type water. These waters will be independently routed to a grease trap whose effluent will join the cesspit with a removal efficiency of 80%, to be disposed of in the infiltration field meeting RAS 2000required standard, which specifies a minimum distance of 50 meters from any water body.

The treatment units foreseen before discharging water in the infiltration field are as follows:

-1	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 42

ü Grease trap

As a first step a grease trap (physical process) for grease retention will be installed, located at the outlet of the camp housing area in order to prevent clogging, adhesion, bad smell problems, among others. The following established designs parameters will be considered. Table 7.21

Table 7.21 Grease trap design parameters			
PARAMETER	CHARACTERISTIC		
Storage capacity (kg)	≥ [design flow (l / min)] / 4		
Area (m2)	= 0.25 m2 per l / s flow		
Width / length	1: 4 - 1:18		
Ascending speed	≥ 4 mm / sec		
Ø input	≥ 50 mm		
Ø output	≥ 100 mm		

Table 7.21 Grease trap design parameters

Source: (Ministry of Economic Development, 2008)

Figure 7.10 and Figure 7.11 respectively show the operation, profile views and a typical grease trap.

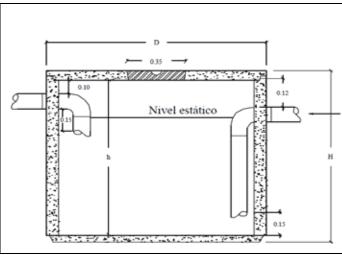


Figure 7.10: Typical grease trap design Source Fatuvisa, 2013

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 43

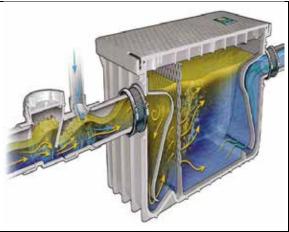
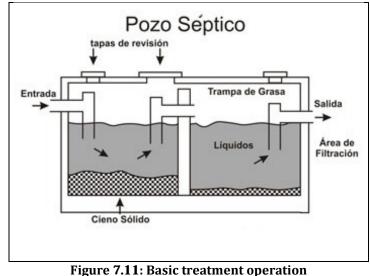


Figure 7.11: Grease trap operation Source Anveplast, 2013

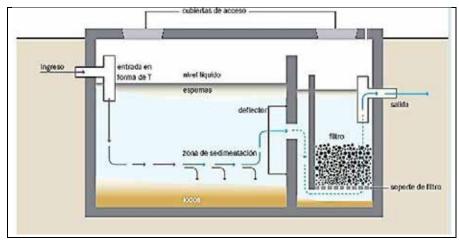

ü Cesspool

The function of the septic tank is to receive and decontaminate generated wastewater product of tasks such as cooking, washing with detergents containing high grease loading and biological waste. When contaminated water enters the tank the solid waste drops to the bottom in a process called sedimentation where organic matter stabilizes and is transformed into sludge with harmless characteristics.

The tank must be airtight, long lasting and with a stable structure since its contents have very high concentrations of organic matter and pathogens that may be responsible for diseases and infections; it must have a cover allowing inspections and maintenance, and must also have an exhaust pipe as venting mechanism. See Figure 7.11

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 44

Source: (Orientation Guide basic sanitation, 2016)


ü Ascendant Flow Anaerobic Filter - FAFA

It is complementary to the septic system achieving a reduction of 50 to 70% of BOD removal on previously achieved. The FAFA system consists of a closed tank or chamber, made up by a bed of gravel and pebbles where the influent from previous treatments passes upward through the interstices, and the biological film formed on the surface of this granular material works as anaerobic digestion and reduction.

FAFA is an anaerobic bioreactor system having an inert filler **material**; the bacterial population grows on the filler material degrading the BOD soluble influent resulting in a clarified effluent with reduced organic load. It is an easy to operate system, reducing the likelihood of having a health emergency in the camp.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 45

Figure 7.12: FAFA Model Source: (Alliance for Water, 2016)

With this last phase of treatment a percentage of total removal of 95% of contaminants are expected, which makes this optimal for this use in industrial processes and wetting pathways.

To ensure proposed treatment, its operation and maintenance measures are part of the environmental management plan. See Section 11.1.1.

• Sewage treatment system

The water from all sanitary units is characterized by a high content of organic load and high population of total coliforms and faecal. Its concentration depends on the flow rate and the number of workers whose maximum production peak is estimated to be 250 inhabitants.

Portable sanitary units will be installed in the work fronts and camps that will be hired and will work by vacuum suction. The respective environmental licenses for such activity must be checked and operating capability of the contractor must be considered due to the conditions of project development. Selected company to operate will be informed in the first Environmental Compliance Report ICA.

-1	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 46

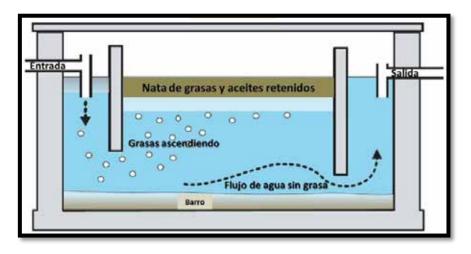
The contactor providing the service is in charge of installing, operating and servicing the sanitary units. Contractor must have all environmental and operating permits, given that it is responsible for the disposal of waste generated therein. These units are constructed of material highly resistant to weathering and with systems allowing waste removal. See Figure 7.13.

Figure 7.13: Portable Sanitary Unit Source: (Sale of portable toilets, 2016)

It is recommended to install a portable sanitary unit for every 10-15 workers by gender difference (American National Standards Institute) and no more than 60 meters away from the workplace.

o Industrial wastewater treatment system

Industrial wastewaters are the product of a material process transformation; this wastewater has a high amount of dissolved (sodium and potassium) and high alkalinity suspended (calcium carbonate) solids with high alkalinity characteristics and residual heat, with the characteristics of concrete waste water plants.


ü Grease trap for oily water

-1	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 47

As a first step for industrial water treatment there are grease traps for oily water retention; with this trap oil and grease retention from washing and maintenance of equipment is expected.

The contribution of fats and oils basically comes from material spills from the concrete plant. The elements to be removed, which usually occur in this type of wastewater, comprise free and emulsified oils, phenols, nitrogen and sulfur compounds from tank dams and cleaning equipment. Therefore, for effective control thereof, a grease trap that allows retaining these materials must be installed. To clarify that minimization of oils and greases depends on the good behavior of personnel who should be trained.

ü Desanders

The purpose of a desander is to separate the sand, coarse particles and sedimentary solids below 1mm and greater than 0.2 mm from the water. The use of the desander prevents deposits in the driveline avoiding overloading in subsequent treatment processes.

The desander unit is a hydraulic structure whose function is to remove particles of a certain size, so a horizontal flow desander was installed to increase the retention time, the longer the retention time the higher the sedimentation of solids.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 48

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

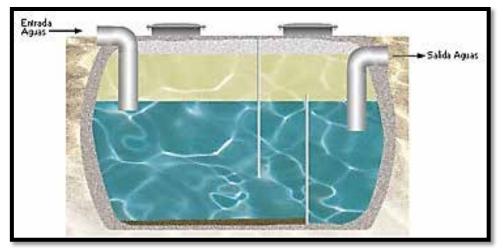


Figure 7.14 Desander tank Source (Hidritec, 2016)

Water passing through the desander is routed to the sedimentary pit which is the end physical industrial water treatment unit.

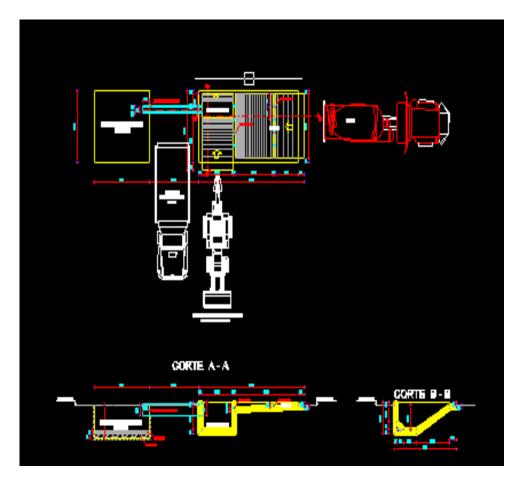
ü Sedimentary pit

The purpose of using a pit to decant suspended solids in wastewater prior removal of sedimentable solids; the pit must have a geomembrane HDPE waterproofing deck that allows protecting the soil, inhibiting liquid filtration and separating particles below 0.2 mm and greater than 0.5 mm by gravity, reducing 15% BOD and 50% suspended solids.

The pool will be located adjacent to the camp where the water resulting from the treatment and highly clarified with a percentage of 80% removal is considered optimal for recirculation in industrial processes and wetting of roads; in the event of bad odors use odor control products.

Generated sludge product of wastewater treatment will be transported by dump trucks to authorized ZODMEs. It should be noted that as with other proposed systems these will be monitored and management conditions specified in the management plan, see section 11.1.1 of this study.

ü Description of pits for recirculation and reuse in the production plant


CONCRETE PLANT PIT

Agencia Nacional de Infraestructura

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

Water has two uses clearly defined in concrete plants, the first is to produce concretes of different resistance required in the project, and the second is to wash the mixer when exiting the plant after required concrete has been loaded. In the first case there is no waste of water and one hundred percent of the water used in the process is used for mixing the stone aggregates with cement. In the second case, however, the water required for washing the mixer must pass through the sedimentation pit to remove all suspended solids deposited in these structures to then take them to the deposit of unusable materials for the works or ZODME,

The process begins with the dispatch of Concrete required for execution of works in mixer trucks; vehicles once downloaded are moved to the equipment washing area, this area is located in the industrial area, with hard floor, minimum slope, perimeter gutters and equipped with grids that carry water only to wash pit. The vehicle is parked so that

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 50

the mixing "pear" will be inside the area intended for washing and is washed with pressure hoses, which are part of the equipment. During the process, to guarantee removal of all adhered materials preventing corrosion of the equipment parts. The wash water passes to a settling pit where the solids are separated by gravity by differences in size, here sedimentable solids are deposited in the bottom of the pit for subsequent removal during maintenance days, and decanted water passes through an open concrete channel to a storage tank for subsequent reuse during project execution in activities such as wetting or artwork construction activities.

Generated sludge is removed with backhoe type equipment and arranged in the ZODME.

7.3.1. Discharges into water bodies

Surface water discharges whether industrial and household type is pretreatment to ensure concentrations of contaminants are within the ranges established by environmental control entities. For Tangua and Cebadal camps the discharge points are distributed to the following water sources: Magdalena Stream as shown in Table 7.18

	Water Magna plane coordinates origin SIRGAS West				
Camp		STAR	ΥT	I	END
	source	EAST	NORTH	EAST	NORTH
Tangua	Magdalena	961066.8191	610,387.1	961,0	610,426.
	Stream		84	89.66	273
				3	
Cebadal	Magdalena	966934.5958	616,232.1	966,9	616,259.
	Stream		33	41.98	754
				3	

Table 7.18 Surface water discharges Line Type

Annex 7.3.1 shows show formats to allow discharges into surface waters.

<u>Low flows</u>

The Bobo River has the Casanare Automatic hydrometric station operated by the IDEAM with a record of 24 years since 1989 to 2012, which allowed direct characterization of the hydrological regime. Figure 7.15 shows the multi-annual temporal distribution of average, maximum and minimum flows. These figures show that flow regime is monomodal type.

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 51

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

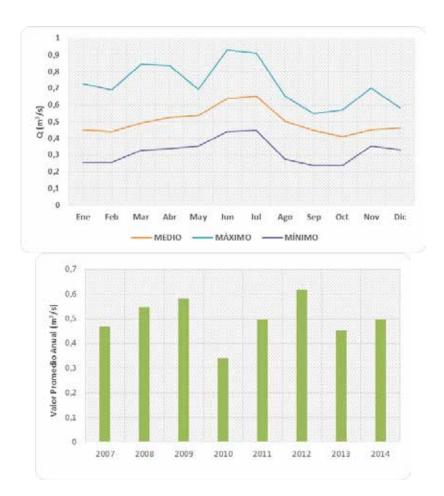


Figure 7.15 Minimum flow distribution - Casanare Automatic Station(Bobo River) Source: (Gemini Environmental Consultants, 2016)

The minimum flow rate is 0.23 m3 / s. The low flow period occurs during the months of September to March, October being the month in which the lowest flows are recorded. Finally, Figure 7.15 presents a graphic summary of the series boxplots using the minimum flow values of the multiyear average monthly records of the Automatic Casanare station (Bobo River), concluding that:

Water quality discharge points

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 52

Monitored points for water quality are presented in Table 7.19 where the source name, coordinates, city and monitored point (upstream and downstream) are specified.

	Catambuco section				
		MAGNA SIRGAS COORDINATE ORIGIN WEST			
MUNICI PALITY	SOURCE NAME	START EAST NORTH		E	ND
				EAST	NORTH
Tangua	Magdalena	961066 .8191	610,387. 184	961,089.6 63	610,426.27 3
Cebadal	Magdalena	966934 .5958	616,232. 133	966,941.9 83	616,259.75 4

Table 7.19 Line Type Points monitoring surface water bodies, Pedregal -Catambuco section

Source: (Gemini Environmental Consultants, 2016)

Physical-chemical and bacteriological characterization

Water quality was determined measuring physicochemical and bacteriological parameters of the Bobo river sources and the Magdalena stream. This procedure is followed to determine whether the values of these parameters are within the range set out in the legislation. Physicochemical analysis was performed taking into account the PO-PSM-45 water sampling and techniques of the Standard Methods 1060 edition 22 guidelines.

Follows the results of measured parameters for characterization of water sources intervened directly by the project, see Table 7.20

Parameters	Bobo River	La Magdalena Stream
pH (units)	7.21	7.04
Temperature ° C	19	10.7
Dissolved Oxygen (mg / L)	4,32	7.9
Conductivity (uS / cm)	451	116.7
BOD mg / L	13.1	5
COD mg / L	24.8	20
Total Suspended Solids mg / L	<20	<10
Fats and Oils mg / L	<9.0	<10
Alkalinity mg / L	20.7	42.82
Total Hardness mg / L	68	52.16
Total Coliforms NMP / mL	11000	3500
Thermotolerant coliforms NPM / ml	4900	330

Table 7.20 Water quality analysis results discharge projected points

E. coli	Presence	Presence
Turbidity NTU	2,22	2.5
UPC True Color	<5.00	38
Total nitrogen mg / L	<3.00	0,68
Total phosphorus mg / L	< 0.062	< 0.06
Total Phenols mg / L	<0,002	-
Zinc mg / L	< 0.014	< 0.05
Barium Total mg / L	< 0.141	< 0.50
Total Cadmium mg / L	< 0.0048	< 0.003
Total Copper mg / L	< 0.0088	< 0.10
Total chromium mg / L	< 0.0046	-
Mercury Total mg / L	0.0007	<1.00
Nickel Total mg / L	< 0.0045	< 0.02
Total silver mg / L	< 0.007	< 0.04
Lead Total mg / L	< 0.0054	< 0.01
Total Selenium mg / L	< 0.0055	< 0.01
Arsenic mg / L	< 0.010	<10

Source: (ASOAMSAS, 2016)

For clarity with respect to water quality monitors that were developed in the Rumichaca – Pasto project, Pedregal - Catambuco Section, refer to Chapter 5.1 of this study and see Annex 5.1.6

7.3.2 Ground discharges

One option for discharging waste water from industrial activities of the camps is through two infiltration fields in the soil located one in each camp area (Tangua and Cebadal). Figure 7.16 shows the location of proposed sites for wastewater discharges.

The respective discharge permit was requested for each infiltration field using the national discharges sole formats (see Annex 7.3.2)

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 54

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

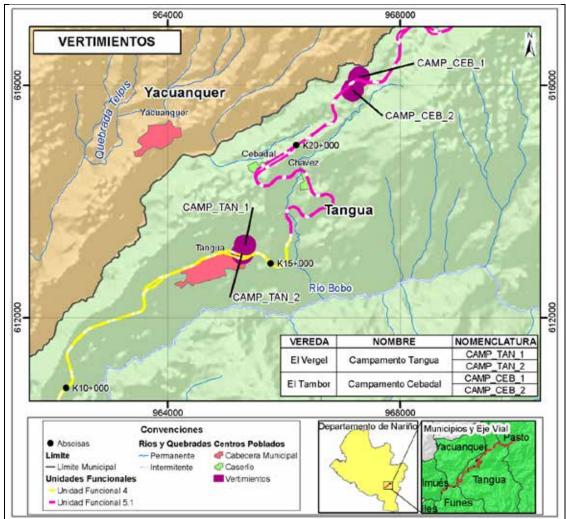


Figure 7.16: Location of discharges Source: (Gemini Consultants SAS)

• Disposal areas of infiltration fields

To determine each possible infiltration field area, ground units and topography were considered resulting in the following areas (See Table 7.21). (See Annex GDB / cartography / pdf / EIADCRP_IP_033)

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 55

	Table 7.21 Areas of infiltration fields			
UF	CAMP	PLANAR	IMAGE	
		COORDINATES		
		(Colombia magna		
		west)		
		E: 965336.87	Leyenda	
		N: 613267.72	A Transf28	
		E: 965355.43	and the second	
		N: 613256.06		
		E: 965339.24		
		N: 613235.35	expansion and a second se	
		E: 965306.41		
		N: 613263.71	A REAL PROPERTY AND A REAL	
		E: 965336.87	and the second second	
		N: 613267.72	E DEN DEN	
4	Tangua			
		E: 965292.35		
		N: 613120.07		
		E: 965302.65		
		N: 613098.18	the second se	
		E: 965269.97		
		N: 613093.1	ALL	
		E: 965258.41		
		N: 613115.88		
		E: 965292.35	cagreen	
		N: 613120.07	Saver for the state of the second second second second	

Table 7.21 Areas of infiltration fields

	CANE	B1 1111B	
UF	CAMP	PLANAR	IMAGE
		COORDINATES	
		(Colombia magna	
		west)	
		E: 967208.99	Lavinda
		N: 615931.12	La Transition De Santa
		E: 967185.7	Aga pay without states career is information
		N: 615893.47	
		E: 967153.08	1 may 1 million and a second
		N: 615915.05	AND AND DRIVE TO BOLL ON AN AND AND AND AND AND AND AND AND AND
		E: 967177.44	
		N: 615952.88	
		E: 967208.99	A suff a suff a suffer a suffer
		N: 615931.12	A CANADA CANADA CANADA CANADA CANADA
5	Cebadal	E: 967316.42	Rental Control Control
		N: 616154.25	
			B A A A A A A A A A A A A A A A A A A A
		E: 967293.84	
		N: 616125.17	
		E: 967271.92	
		N: 616135.05	
		E: 967295.96	
		N: 616164.12	Construction of the second s
		E: 967316.42	
		N: 616154.25	mpt Mallery Control of the State

Source: (Gemini SAS Consultants, 2016)

• <u>Percolation tests</u>

To determine the ability of soil infiltration a hole 40×40 cm and 1 meter deep was opened; integrated samples at different depths (0 – 30; 30 - 70 cm and 70 - 1 meter) were taken. Soil samples collected were taken to the laboratory where the rate of infiltration is determined. Photography 7.1 shows soil survey execution in proposed camp areas.

Given the preliminary analyzes, infiltration capacities average 2.5 cm / hour are expected; 0.5cm / hr to 7 cm / hr range; with good in average capacities observed to process the discharge permit.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 57

Photography 7.1 Definition sampling point Coordinates magna sigma origin west X 967,252.79 - 616,114.11 Y Source (Gemini SAS Consultants, 2016)

Soil sampling

To select the sampling site, a prior area visit to the surface to be sampled was made, in order to know the type of soil, topography, visual assessment, climate, surface soil color, vegetation, soil texture, sample area, amount and size of the grid.

Table 7.22 shows the location of each sample point and the camp to which it belongs. Soil studies are presented in Annex 7.3.2.a

		Magna SIRGAS Planar		
Point Camp Coordinates O		Drigin West		
	-	EAST	NORTH	
1	Tangua-1	965,210.42	613,114.93	
2	Tangua-2	965,340.36	613,251.03	
3	El Tambor-1	967,252.78	616,114.11	
4	El Tambor -2	967,232.37	615,987.56	

Table 7.22 Location of the sampled points

Source: (Gemini SAS Consultants, 2016)

Photograph 7.2 and Photograph 7.3 show the photographic record of the soil sampling in the area of the Tangua camp.

ncia Nacional de

Infraestructura

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

Photograph 7.2: Opening hole soil study Coordinates magna sigma origin west X 965,026.64 - 611,765.93 Y Source (Gemini SAS Consultants, 2016)

Photograph 7.3 Soil sample collection Coordinates magna sigma origin west X 965,026.64 - 611,765.93 Y Source (Gemini SAS Consultants, 2016)

- *General sample description* The table describes sample conditions for the four points of interest

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 59

Point	Depth (M)	Description	
Tangua-1	0.00 to 1.50	Silty sand brown	
Tangua-2	0.00 to 1.50	Brown sandy loam	
El Tambor-1	0.00 to 1.50	Brown sandy loam	
El Tambor-2	0.00 to 1.50	Brown sandy loam	

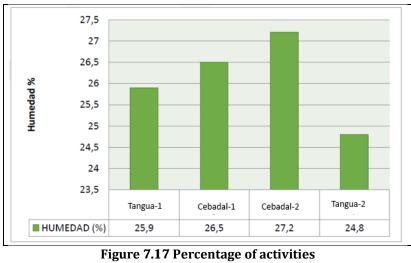
Table 7.23 Identification test pit points

Source: (ASOAM, 2016)

- Field humidity

Humidity is responsible for allowing biological processes, as a result, are presence of water is essential in soils not abundant but sufficiently because hummidity in soils can generate microbial activity resulting in plant fertilizers. The results of sampled points are shown in the following Table 7.24

rubie 1.2 i Deptils una numary				
Point	Depth (M)	Humidity (%)		
Tangua-1	0.00 to 1.50	25.9		
Tangua-2	0.00 to 1.50	24.8		
El Tambor-1	0.00 to 1.50	26.5		
El Tambor-2	0.00 to 1.50	27.2		
	C (1001)(001()			


Table 7.24 Depths and humidity

Source: (ASOAM, 2016)

Data presented in analyzed samples have an average of 26.12% of natural humidity, being a normal value for soils with clay loam characteristics. The maximum humidity value was obtained in El Tambor-2 and the minimum in the point located in Tangua-2.

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 60

Source (ASOAM, 2016)

- Granulometry

Granulometry is the determination of the proportion of sizes in which different sizes of particle are present in the soil.

Tuble Two dranatomeery point rangua r					
P 1 =	303.5		P 2 =	96	5.9
T ai	miz	R eten	%	% R et	%
P ulg.	mm		R eten	A cum	Pass
3	75, 0				
2 1/2	63, 0	0.0	0.0	0.0	100.0
2	50, 0	0.0	0.0	0.0	100.0
1 1⁄2	38, 1	0.0	0.0	0.0	100.0
1	25, 0	0.0	0.0	0.0	100.0
3.4	19, 0	0.0	0.0	0.0	100.0
1/2	12, 5	0.0	0.0	0.0	100.0
3/8	9, 5	2.1	0.7	0.7	99.3
No . 4	4, 75	0.9	0.3	1.0	99.0
No. 10	200	5.5	1.8	2.8	97.2
No. 40	0, 43	33.4	11.0	13.8	86.2
No. 10 0	0, 15	32.1	10.6	24.4	75.6
No. 0.200	0,075	22.9	7.5	31.9	68.1

Table	7.25 Granu	lometry	point Tangua-1
Table	1.wo uranu	ionicu y	point rangua r

BACKGROUND 206.6 68.1 100.0 0.0 Source: (ASOAM, 2016) 68.1 100.0 0.0

P 1 =	241.1	-	P 2 =	52	2.7
T a	miz	R eten	%	% R et	%
P ulg.	mm		R eten	A cum	Pass
3	75, 0				
2 1/2	63, 0	0.0	0.0	0.0	100.0
2	50, 0	0.0	0.0	0.0	100.0
1 1/2	38, 1	0.0	0.0	0.0	100.0
1	25, 0	0.0	0.0	0.0	100.0
3.4	19, 0	0.0	0.0	0.0	100.0
1/2	12, 5	0.0	0.0	0.0	100.0
3/8	9, 5	0.0	0.0	0.0	100.0
No . 4	4, 75	0.3	0.1	0.1	99.9
No. 10	200	1.6	0.7	0.8	99.2
No. 40	0, 43	12.4	5.1	5.9	94.1
No . 10 0	0, 15	21.3	8.8	14.8	85.2
No. 0.200	0, 075	17.1	7.1	21.9	78.1
BA	CKGROUND	188.4	78.1	100.0	0.0

Table 7.26 Granulometry point Tangua-2

Source: (ASOAM, 2016)

Table 7.27 Granulometry point Cebadal - 1

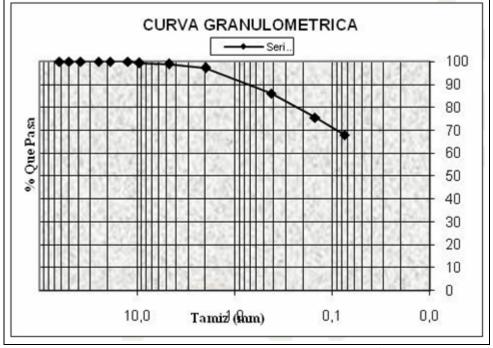
P 1 =	241.1		P 2 =	52	2.7
T ai	miz	R eten	%	% R et	%
P ulg.	mm		R eten	A cum	Pass
3	75, 0				
2 1/2	63, 0	0.0	0.0	0.0	100.0
2	50, 0	0.0	0.0	0.0	100.0
1 1/2	38, 1	0.0	0.0	0.0	100.0
1	25, 0	0.0	0.0	0.0	100.0
3.4	19, 0	0.0	0.0	0.0	100.0
1/2	12, 5	0.0	0.0	0.0	100.0
3/8	9, 5	0.0	0.0	0.0	100.0
No . 4	4, 75	0.3	0.1	0.1	99.9
No. 10	200	1.6	0.7	0.8	99.2
No. 40	0, 43	12.4	5.1	5.9	94.1
No . 10 0	0, 15	21.3	8.8	14.8	85.2

No. 0.200	0, 075	17.1	7.1	21.9	78.1
BA	CKGROUND	188.4	78.1	100.0	0.0

Source: (ASOAM, 2016)

P 1 =	348.0		P 2 =		210.1			
T ai	miz	R eten	%	% R et	%			
P ulg.	mm		R eten	A cum	Pass			
3	75, 0							
2 1/2	63, 0	0.0	0.0	0.0	100.0			
2	50, 0	0.0	0.0	0.0	100.0			
1 1⁄2	38, 1	0.0	0.0	0.0	100.0			
1	25, 0	0.0	0.0	0.0	100.0			
3.4	19, 0	0.0	0.0	0.0	100.0			
1/2	12, 5	0.0	0.0	0.0	100.0			
3/8	9, 5	0.0	0.0	0.0	100.0			
No . 4	4, 75	0.3	0.1	0.1	99.9			
No. 10	200	4.8	1.4	1.5	98.5			
No. 40	0, 43	81.4	23.4	24.9	75.1			
No. 10 0	0, 15	94.6	27.2	52.0	48.0			
No .200	0, 075	29.0	8.3	60.4	39.6			
BA	CKGROUND	137.9	39.6	100.0	0.0			
	Sou	rce: (ASO	AM, 2016)	Source: (ASOAM, 2016)			

Table 7.28 Granulometry point Cebadal - 2


• Granulometry curves

After sieving, the amount that passes through each mesh is determined; this is obtained by plotting on a semilogarithmic scale, the logarithm of the opening of sieve in mm in the abscissa, and the percentage passing through each mesh, in ordinates.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 63

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 64

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

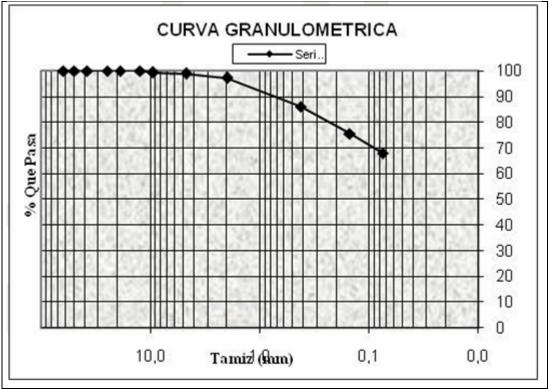


Figure 7.18 Granulometric curve Tangua-2 point Source (ASOAM, 2016)

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 65

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

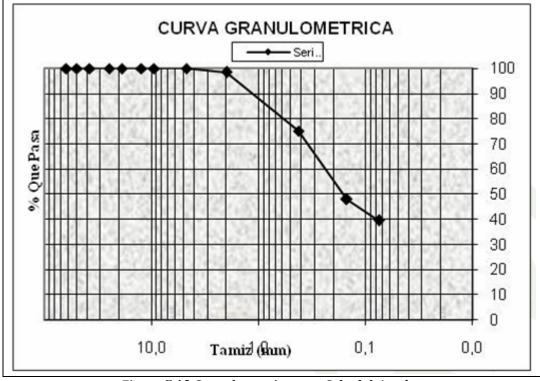
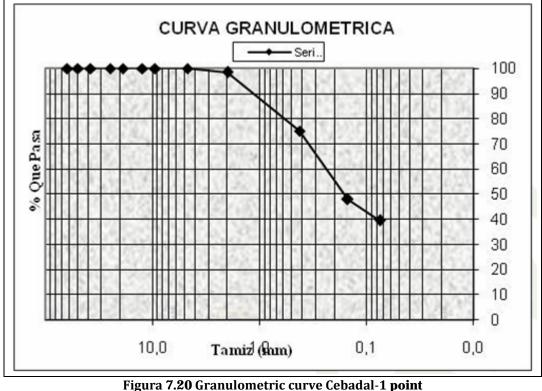



Figure 7.19 Granulometric curve Cebadal-1 point Source (ASOAM, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 66

Source (ASOAM, 2016)

- *Permeability or hydraulic conductivity*

Permeability is a characteristic associated with porosity, defined as the ease with which soil allows penetration by fluids.

Absolute porosity values are sufficient to estimate soil permeability but some other factors like pore system geometry. Thus, a leafy structure leaves a high porosity but considerably hinders the water flow, as happens when there is a good interconnection between macroporosity components.

Permeability or hydraulic conductivity is a property that depends on fluid characteristics and permeability of the porous medium through which it circulates and of the force of gravity (g).

			CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017	
		Page 67	

So some fluid properties such as specific weight, dynamic viscosity and temperature affect the K value, as well as the average size through the open spaces (d), stratification, packing, grain distribution, available sizes considered through the form factor (C) and porosity.

For example, with regard to variations in the physical properties of the water, salt water flows faster than sweet water, being more dense and hot water flows faster than the cold, being less viscous.

Point	Depth (M)	D10 (MM)	PERMEABILITY (M / S)
Tangua-1	0.00 to 1.50	0,021	5.11 x 10 ⁻⁶
Tangua-2	0.00 to 1.50	0,015	2.61 x 10 ⁻⁶
El Tambor-1	0.00 to 1.50	0,001	1,16 x10-8
El Tambor -2	0.00 to 1.50	0,023	6.14 x 10-6

 Table 7.29 Permeability results

Source: (ASOAM, 2016)

The average permeability or hydraulic conductivity values are 2.33 x 10-6 m / sec equivalent to 0.201 m / day respectively, these values show low permeability soils with very high fines content.

• Analysis of metals in soils

Metals considered in the soil characterization analysis in the area of influence, as part of the Environmental Impact Study, refer to arsenic, barium, calcium, cadmium, cobalt, chromium, total, magnesium, mercury, potassium, selenium and sodium, which are in varying proportions but in low concentrations that may be attributed to the characteristics of the soil under study. Values recorded for each metal in the four (4) evaluated points are given below.

Table 7.50 Total metals results					
METALS	UND	Tangua-1	Tangua-2	Drum-1	Drum-1
Total arsenic	mg / kg	2.5	2.8	3.5	1.8
Total barium	mg / kg	230.3	235.5	328.7	236.6

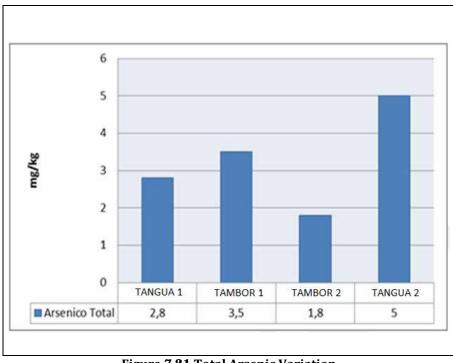
Table 7.30 Total metals results

UND	Tangua-1	Tangua-2	Drum-1	Drum-1
mg / kg	3279.9	1740.9	3287.3	2764.6
mg / kg	<1.8	<1.8	<1.8	<1.8
mg / kg	7.4	5.1	4	2.3
mg / kg	<1.8	<1.8	<1.8	<1.8
mg / kg	586.9	1294	1195.4	1625.9
mg / kg	<0.1	<0.1	<0.1	<0.1
mg / kg	1479.6	2145.9	1778.1	1998.1
mg / kg	<1.8	<1.8	<1.8	<1.8
mg / kg	345.2	233.2	602.7	279.5
	mg / kg mg / kg	mg / kg 3279.9 mg / kg <1.8	mg / kg 3279.9 1740.9 mg / kg <1.8	mg / kg 3279.9 1740.9 3287.3 mg / kg <1.8

Source: (ASOAM, 2016)

Figure 7.21 Total Arsenic Variation shows arsenic variation contained in soil samples taken at four (4) points, presenting a greater concentration at Tangua-1 sampling point with a value of 5 mg / kg, this establishes the reducing soil conditions and is strongly bound to soil minerals, particularly the colloidal metal oxides and hydroxides, by ionic bonds.

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015



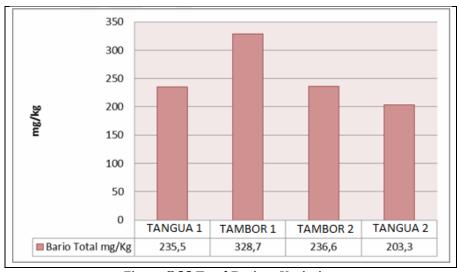


Figure 7.22 shows barium concentration variations recorded in the four (4) sampling points. The highest value was obtained in Tangua 1 point with 328.7 mg / kg and a lower value at the sampling point with a value of 203.3 mg / kg.

-1	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 70

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

Total calcium at sampling points, Figure 7.23 show a positive effect as clay flocculants and widely contributes to the organization of the soil structure and stability thereof with a high value at sampling point Test pit No. 7 with 3880.8 mg / kg and a minimum value of 1740 mg / kg for Tangua -1 point.

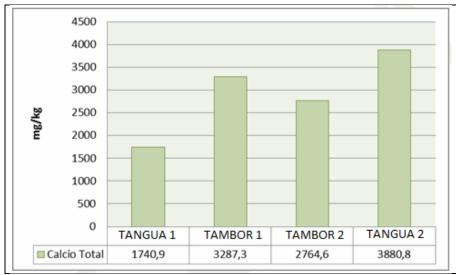
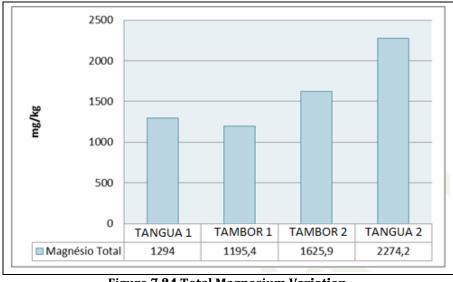


Figure 7.23 Total Calcium Variation.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 71

Source (ASOAM, 2016)

Magnesium variation in the sampling points show high concentrations in Tangua 2 point and low values in El Tambor 1 point, showing heavy and light soils respectively at these two points. However not cause magnesium induced deficiency.



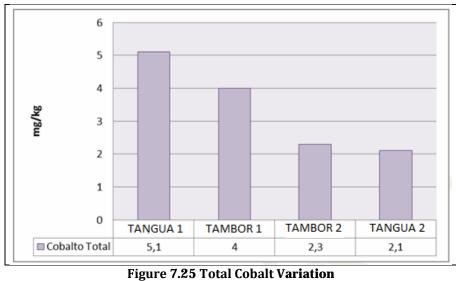
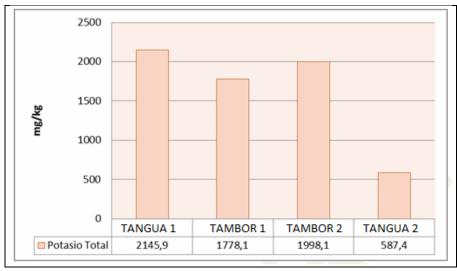

Figure 7.24 Total Magnesium Variation. Source (ASOAM, 2016)

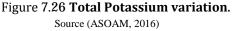
Figure 7.25 shows cobalt variation obtained from the sampling results, observing a reduction in Tangua 1 point respectively to El Tambor 2 point. This variation point is linked mainly to oxides of manganese and iron, so that only a small part of the cobalt remains free and, therefore, mobile, showing sampling sites with low soil acidification.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 72

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

Source (ASOAM, 2016)


Figure 7.26 shows potassium variations with Tangua 2 point a lower value with 587.4 mg / kg, this is possibly due to washing and erosion. It can also be fixed by clay minerals, slowly becoming available.


This loss arising from washing depends on the weather and the nature of the soil: soils with plenty of change have lower losses than sandy soils. In rainy climates and soils with little changing capacity, potassium losses can be large; however, in general, potassium concentration is constant for a depth of 90cm.

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 73

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

At high concentrations sodium directly affects soil properties related to retention and availability of water to existing vegetation. Soil samples taken in Tangua 2 contain the highest concentration values with 1055.3 mg / kg and Tangua 1 the higher concentrations with a range of 233.2 mg / kg.

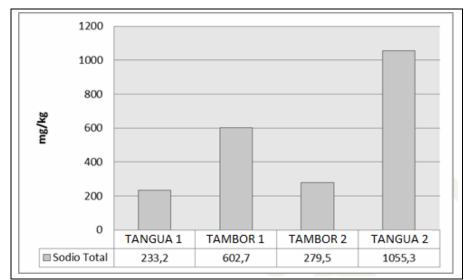


Figure 7.27 Sodium Total variation.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 74

Source (ASOAM, 2016)

- Cation exchange capacity

In the cation exchange capacity, the load of soil particles should be balanced by cations in the adsorbed surface phase. The ion can be exchanged with another to balance the load in the colloidal phase and the reaction is rapid, primarily stoichiometry and of electrostatic nature.

In general the higher the cationic exchange capacity the greater the ability of the soil to fix metals. The adsorption power of various heavy metals depends on their valence and hydrated ionic radius, the higher the value and smaller valence, is less strongly they are retained.

Analysis date	Paramet er	Method	Analytical technique	Method quantificati on limit	UND	Tangua 1	Tambo r 1	Tambo r 2	Tangua 2
28/09 / 2016- 10/14/20 16	CIC	NTC 5268	Ammonium acetate extraction 1N Ph 7.0 Titrimetry	0.1	cmol (+) / kg ss	27.6	28.7	12.1	11.1

 Table 7.31 Cation Exchange Capacity Results

The Cation Exchange Capacity records values of 11.1 cmol (+) / kg ss in Tangua 2 point and 28.7 cmol (+) / kg ss in El Tambor point 2 according to the **aforsaid** one can say that analyzed samples show good retention of **ions** and macronutrients necessary for development of vegetation.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 75

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

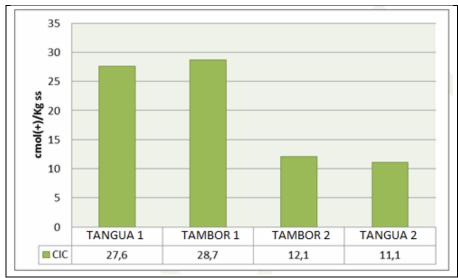


Figure 7.28 Cation Exchange Capacity Variation Source (ASOAM, 2016)

The determination of total petroleum hydrocarbons (TPH) is used to evaluate oilcontaminated sites. The use of maximum TPH concentration to establish cleaning levels of soil samples contaminated with hydrocarbons is a common approach implemented by regulatory authorities.

Gas chromatography (GC) is a technique to observe the profile of sample contamination, and can differentiate those compounds that come from the organic matter of the soil or metabolic products generated during treatment. For methods based on GC, the HTPs are defined as any compound removable by a solvent or purge gas, and detected by gas chromatography / flame ionization detector (GC / FID) with a specific range of carbons. The main advantage of this method is that it provides information about the type of oil in the sample, as well as its quantification, although identifying the type of product is not always easy (Weisman, 1998).

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 76

Parameter	UND	Tangua 1	Tambor 1	Tambor 2	Tangua 2
GRO	mg / kg	<2.5	<2.5	<2.5	<2.5
DRO	mg / kg	<2.5	<2.5	<2.5	<2.5

Table 7.32 TPH Results

Source (ASOAM, 2016)

In the following figures we can see that the chromatograms corresponding to the target process and do not show characteristic DRO and GRO profiles. Also, the chromatographic profiles of the four (4) samples do not match the standard GRO and DRO profiles; the quantification result is reported in Table 14. The chromatograms of the sample shows chromatographic peaks with different tR to the standard, these peaks correspond to compounds which are sensitive to the ionization detector (FID). However, these compounds do not belong to the TPH group of and cannot be identified or quantified because of the extent of the analytical method.

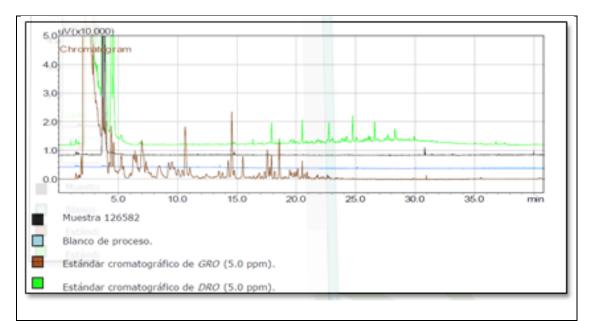


Figure 7.29 Comparative chromatogram: white sample and standard point Tangua 1 Source (ASOAM, 2016)

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 77

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL -CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

ncia Nacional de

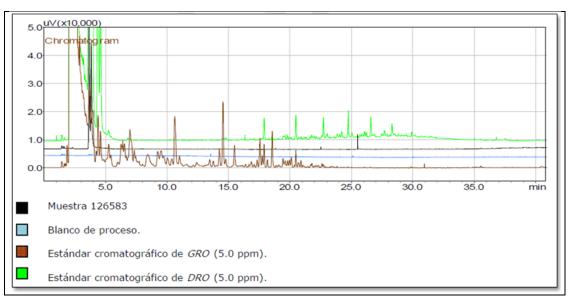


Figure 7.30 Comparative chromatogram: white, sample and standard point Tambor 1 Source (ASOAM, 2016)

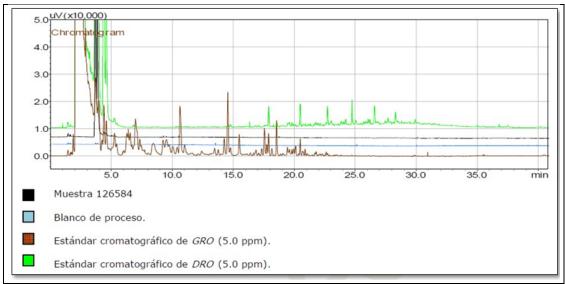


Figure 7.31 Comparative chromatogram: white, sample and standard point Tambor 2 Source (ASOAM, 2016)

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 78

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

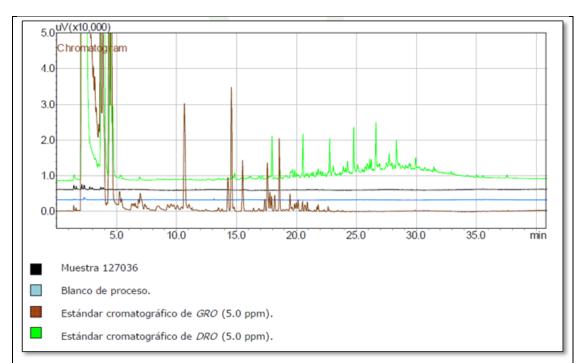


Figure 7.32 Comparative chromatogram: white, sample and standards Tangua 2 Source (ASOAM, 2016)

The results of the physicochemical characterization carried out on soil samples from the project area as part of the Environmental Impact Study on the road Pedregal- Pasto section, support the conclusion that:

Regarding sampling points evaluated in total metals; the different ranges of concentration of each determined element do not have significant variations; i.e. that the physicochemical soil conditions are not factors punctually intervening on the accumulation of these elements.

The Cation Exchange Capacity CIC in samples analyzed shows good retention of ions and macronutrients, inferring from this good condition to sustain vegetation in these soils,

Humidity recorded values associated with the availability and water retention in the soil, describing at all points suitable conditions for sustaining plant species. The highest

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 79

value was recorded in El Tambor 2 and the lowest at Tangua 2 point, behavior given by the physical, chemical and land geographical conditions.

The total petroleum hydrocarbons in the four (4) samples do not match the DRO and GRO standard profiles and could not be identified or quantified because of the extent of the analytical method.

Additionally, Tangua 1 and Tambor 1 report a value in the range of 27 to 29 cmol (+) / kg ss, indicating good exchange of utilizable compounds

• <u>Meteorology</u>

Weather

Given the location and geomorphology characteristics, the municipality of Ipiales has a tropical high mountain climate with a temperature which fluctuates very little, because there is a high relative humidity and precipitation constituting a contribution to vegetation and soils in the area.

Humidity is affected by two dynamics that are: the Amazon landmass that has an incidence in the Easter foothills and slope; and occasionally the El Niño phenomenon influencing the western department of Nariño.

Currently, the development of agriculture and indiscriminate logging is affected by the changes observed in the atmosphere as precipitation, temperature, relative humidity, sunshine and air currents. These phenomena become elements that determine the climate of Ipiales.

- Temperature

Temperature behavior is related to the relief expressed in altitude. The intertropical situation does not generate large variations in monthly mean values throughout the year, whose variation does not exceed 5 $^{\circ}$ C.

Usually the hottest periods are divided into two semesters of the year and correspond to periods of lower rainfall. The annual average is 10.8%, which allows establishing that

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 80

in the months of June, July and August temperatures are low. These climatic aspects are vital to determine the biological cycle of crops. In the month of July 1985 the lowest temperature of 8.3 ° C was recorded and the highest temperature in the months of October 1941 an in May 1995 with 14.4 ° C.

Precipitation

Precipitation originates from the condensation of atmospheric moisture. The study area is of orographic origin because condensation and cooling of warm air masses from the ocean produce the rising of the air up the slope of the mountain range. On the moor, precipitation is higher and decreases in eastern foothills and the Andean highlands.

To have information on precipitation in the area of the municipality of Ipiales, data from the San Luis Airport weather station were used from 1941 to 1995.

Records indicate that during the months of March and April rainfall is heavier, decreasing midyear i.e. during the months of July and August and increasing again towards the months of October, November and December with an average of 970.8 mm, presenting a maximum value of 1230.4 mm in 1970 and a minimum of 211.2 mm in 1946; the monthly average is 72.57 mm. The maximum monthly value reported corresponds to February 1963 with 270.0 mm and 2.0 mm minimum in August of the same year.

The above phenomenon can be explained because the municipality has a bimodal rainfall regime, characterized by registering two periods of increased rainfall (March-April) and (October-December) with a period of less rainfall in the middle of the year (July and August)

Relative humidity

The relative humidity values over the past ten years have been 85% and according to San Luis Station records, the annual average of the period 1941 to 1995 was 83% concluding that there is a large fluctuation between 63% minimum and 91% maximum values.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 81

Brightness and solar radiation

Given situation of Ipiales in the equatorial belt and its altitude, it can almost never be free of clouds, which has been a key development of the landscape especially the cloud forest, however data analyzed from the San Luis station shows a fluctuation ranging from 51.1 to 199 hours per month with an annual average in the period 1941 to 1995 of 1.434.3 hours.

- Evaporation

During the past five years there was less evaporation due to low area temperature equivalent to 892 mm area.

Winds

Air currents acting on the municipality of Ipiales exert great influence in determining the climate. Southeast winds (trade winds) blowing from the Tropic towards the Ecuador come loaded with moisture, which is deposited on the Central Eastern Cordillera thus modifying the rainfall regime during the months of July and August.

Another air stream is the dynamic exerted by the Amazon landmass which give rise to moisture laden currents, which when hitting high mountains, precipitate causing drastic temperature changes in the surrounding slopes of La Victoria, Cultún and the Pun and Cultún valleys.

Local winds also occur because of physical-spatial dynamics, these change the temperature and are perceived more strongly in the afternoon and are called mountain breezes, valley breezes. This phenomenon is explained by the heating experienced by mountainsides during the daytime explained, which produces an air flow from valley towards the mountain, due to existing relationship between temperature and atmospheric pressure. During the night the phenomenon is reversed and is perceived in the highlands of Túquerres and Ipiales and on the slopes of the Central Easter Cordillera.

		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 82

Regarding the wind speed, it is important to note that in 1982 the average wind speed value was 3.23 m / sec, varying between 5.53 m / s (maximum) in August and 2.03 m / sec (minimum) registered in December.

This allows establishing that the wind blows stronger during the months of July and August and slows down at the end of the year, i.e. during the months of November and December.

The presence of mountain ranges act as a modifying radiation factor (insolation and irradiation), pressure and cloud cover, manifested in thermal modifications according to altitudinal levels designated thermal floors.

- Hydrology

Consists of three major watersheds:

- Guaitara River Basin and its tributaries: constituted by the Boqueron River that in the high part is the Doña Juana Stream; Blanco and Carchi Rivers, Morro Stream, Teques or Pulcas, Orejuela, El Rosario, Cutuaquer.
 - The Guaytara or GuaitaraRriver namecome from the Quechua language meaning blue river. It is characterized by its spectacular chasms, its spectacular canyon and beautiful landscapes in its 135 km journey to its mouth in the Patia River.
- Chingual river basin, which in its upper part is called the Pun or Chúnquer creek and its tributaries are the rivers San Francisco, Green, Yamués, El Cultún.
- The San Miguel River basin and its tributaries formed by the Churuyaco, Sapoyaco, Rumiyaco, Kerosén, Lora and Ranchería rivers.

		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 83

incia Nacional de

Infraestructura

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

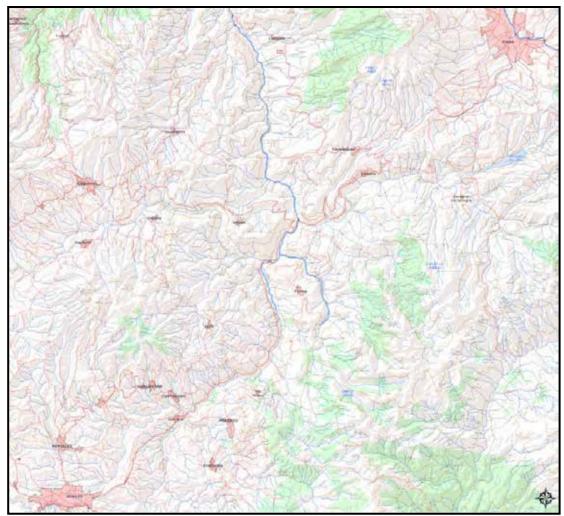


Figure 7.33 Surface runoff from the study area Fuente IGAC

Geology

The geology of the area is comprised of tertiary sedimentary rocks and deposits little or **unconsolidated** from the quaternary.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 84

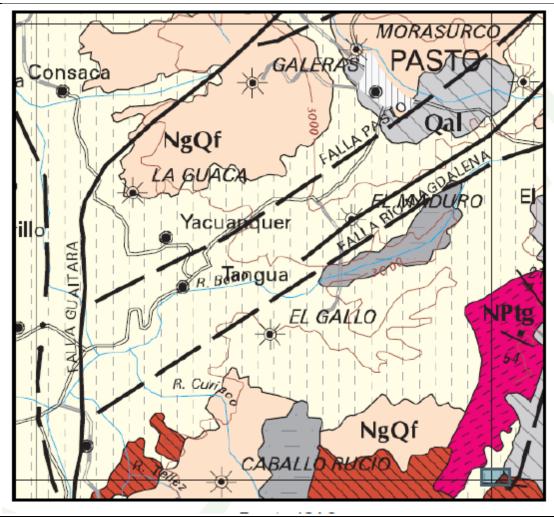


Figure 7.34 General geology of the study area Source IGAC

Description of geological formations present in the study area:

- Qal: alluvial, lacustrine deposits and quaternary glaciers located east and west of the area of interest.
- NgQp: pyroclastic rocks intercalated locally with mudflows and alluvial deposits, are of neotenic age and outcrops along the entire Troncal de Occidente highway.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 85

- NgQf: lavas interbedded with occasional pyroclastic, outcropping in the northern, southeastern and southwestern part of the study area and are of neotenic age.
- Nptg: intrusive Precambrian formations formed by migmatites, granites and syenites and outcropping to the southeast of the area of interest.
- MPtG: metamorphic rocks of Precambrian age, shaped by granulites, migmatites, amphibolites and biotite gneisses and outcropping to the southeast of the area of interest.
- Measures to prevent soil contamination

Proposed measures are part of a physical bacteriological treatment system to allow removing the contaminant load taking into account the estimated discharge composition in order to improve the characteristics of the resulting wastewater from industrial and domestic processes. Annex 7.3.2.b presents the management plan is presented for discharges.

7.4. Riverbed occupation

This section refers to each riverbed intervention needed by the project to enable the structures and operation of the road corridor or any associated infrastructure, as described in Chapter 3 of this EIA.

The necessary structures in riverbed sites can be viaducts, bridges, canals, dikes, culvert and box culverts, among others, which have been discussed in Chapter 3 and also in the annexes as Annex GDB / cartography / PDF / EIADCRP_IP_034.

Crossings of surface water bodies consist of engineering works designed and planned to give way and properly manage runoffs in each sites. Works for a total of (65) bodies of water in UF-4 and UF-5 are foreseen as listed in Table 7.37 (Annex 7.4).

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 86

U	SOURCE		WORK	PLANAR CO	ORDINATES	
F	NAME	TYPE	SPECIFICA TION	EAST	NORTH	PHOTOGRAPHIC RECORDS
4	NAMELESS 1	SEWER 0+993	NOT RECORDE D	957447,30	607459,31	
4	NAMELESS 2	SEWER 1+193	NOT RECORDE D	957656,89	607587,23	
4	NAMELESS 3	SEWER 4+673	NOT RECORDE D	960309,21	608351,84	
4	NAMELESS 4	SEWER 5+300	NOT RECORDE D	960802,12	608702,69	

Table 7.33: Riverbed Occupations

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 87

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
4	NAMELESS 5	SEWER 5+915	NOT RECORDE D	961022,95	609139,77	
4	NAMELESS 6	SEWER 8+212	NOT RECORDE D	961762,85	609272,40	
4	NAMELESS 8	SEWER 8+420	NOT RECORDE D	961925,48	609395,96	
4	NAMELESS 9	SEWER 7+952	NOT RECORDE D	961539.97	609370.06	

CONCESIONARIA VIAL

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
4	NAMELESS 10	SDN-1	NOT RECORDE D	960945,11	609578,11	
4	NAMELESS 11	SEWER 7+593	NOT RECORDE D	961384.18	609687,67	
4	NAMELESS 12	SEWER 7+425	NOT RECORDE D	961266.95	609818.61	
4	NAMELESS 13	SEWER 8+843	NOT RECORDE D	961933,68	609772,62	

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
4	NAMELESS 14	SEWER 6+659	NOT RECORDE D	960962.53	609864,85	
4	NAMELESS 15	SDN-2	NOT RECORDE D	961219,79	609953,13	
4	NAMELESS 16	SDN-3	NOT RECORDE D	960942.03	610060.10	
4	QUEBRAD A LA MAGDALE NA	DRAINAGE 2	NOT RECORDE D	961055,98	610135.72	

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
4	NAMELESS 17	SEWER 9+473	NOT RECORDE D	962041,06	610310.03	
4	NAMELESS 18	SEWER 9+522	NOT RECORDE D	962012.10	610390.13	
4	NAMELESS 19	SEWER 9+647	NOT RECORDE D	962055,15	610503.21	
4	NAMELESS 20	SEWER 13+038	NOT RECORDE D	963995,74	612730.24	

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
4	NAMELESS 21	SEWER 13+421	NOT RECORDE D	964354,29	612873,85	
4	NAMELESS 22	SEWER 13+862	NOT RECORDE D	964746.31	613063,84	
4	NAMELESS 23	SDN-4	NOT RECORDE D	964812,34	613086,11	
4	NAMELESS 24	SEWER 14+026	NOT RECORDE D	964901,36	613116,88	

CONCESIONARIA VIAL

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
4	NAMELESS 25	SEWER 14+234	NOT RECORDE D	965097.95	613119.39	
4	NAMELESS 26	BOX CULVERT - 3	NOT RECORDE D	957048,31	606818,50	
4	NAMELESS 27	SEWER 0+232	NOT RECORDE D	957087.60	606898,26	
4	NAMELESS 28	SEWER 0+518	NOT RECORDE D	957244,55	607135,06	

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 93

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
4	GUAITARA RIVER	VIADUCT	NOT RECORDE D	958736,48	608557,67	
5	NAMELESS 29	BOX CULVERT - 1	NOT RECORDE D	966054,29	613847,89	
5	NAMELESS 30	SEWER 16+948	NOT RECORDE D	966628,23	613872,95	
5	NAMELESS 31	DRAINAGE 3	NOT RECORDE D	966804,19	614104,07	

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
5	NAMELESS 32	BOX CULVERT - 8	NOT RECORDE D	966463,97	614224,22	
5	NAMELESS 33	SEWER 18+873	NOT RECORDE D	965650,28	614271,26	
5	NAMELESS 34	SEWER 19+037	NOT RECORDE D	965523,92	614365,54	
5	NAMELESS 35	SDN 6	NOT RECORDE D	965545,78	614480,87	

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
5	NAMELESS 36	SDN 36	NOT RECORDE D	965512,57	614491,46	
5	EL QUELAL STREAM	BOX CULVERT -2	NOT RECORDE D	966316,92	614532,46	
5	NAMELESS 37	SDN-11	NOT RECORDE D	966391,90	615078,53	
5	NAMELESS 38	SEWER 22+232	NOT RECORDE D	967757,43	616132,46	

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
5	NAMELESS 39	SDN-12	NOT RECORDE D	967956,17	616411,06	
5	NAMELESS 40	SEWER 23+031	NOT RECORDE D	968021,64	616858,83	
5	NAMELESS 41	SDN-8	NOT RECORDE D	967963,74	616866,44	
5	LA MARQUEZ A STREAM	DRENAJE 11	NOT RECORDE D	968447,19	617016,49	

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
5	LOS AJOS STREAM	BOX CULVERT - 4	NOT RECORDE D	968211,90	617051,11	
5	LOS AJOS STREAM	BOX CULVERT - 5	NOT RECORDE D	968401,55	617052,44	
5	PIQUISIQU I STREAM	BOX CULVERT - 6	NOT RECORDE D	971538,78	618399,85	
5	NAMELESS 42	SEWER 27+459	NOT RECORDE D	971265,67	618605,51	

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
5	NAMELESS 43	SDN-9	NOT RECORDE D	970742,94	618707,21	
5	CUBIJAN STREAM	BOX CULVERT - 7	NOT RECORDE D	974562,53	619262,35	
5	NAMELESS 44	SEWER 31+790	NOT RECORDE D	974942,98	619381,41	
5	NAMELESS 45	SDN-10	NOT RECORDE D	968460,03	617023,78	

U	SOURCE	ТҮРЕ	WORK	PLANAR CO	ORDINATES	PHOTOGRAPHIC RECORDS
4	NAMELESS 46	SEWER 14+234	NOT RECORDE D	965070,94	613083,41	

Source Géminis Consultores S.A.S

Riverbed occupation for drains •

Drainage occupations are foreseen in the Project in order to maintain their morphological and physical with respective management measures. Ver Tabla 7.38

U F	SOURCE NAME	ZODME	COOR X	COOR Y	PHOTOGRAPHIC RECORD
4	Nameless 47	ZR4-2	962015,46	609351,57	K8+500 K8+500 K8+406 R 4-2
		Management measur	es are filters, retaii	ning walls, perimeter	r ditches, outlet structure

Table 7.34 Riverbed occupation for drains

5	Nameless 48	Z5- 1A	966922.095 es are filters, retair	614183.361	Z 5-1A Z 5-1A Transformed and the structure
5	El Cebadal Stream	Z5-4	965452,173	614710,126	Z 5-4. itches, outlet structure salida
		anagement measures	ire inters, retaining	s wans, permeter u	itelies, outlet structure sanda
5	El Cebadal Stream	Z5-5	965641,521	614799,297	Z 5-5 A 5-0
		Management measur	es are filters, retair	ning walls, perimete	r ditches, outlet structure
5	El Cebadal Stream	ZR5-1	966192,508	615125,672	r ditches, outlet structure

5	El Cebadal Stream	ZR5-2 Management measur	966457,206 es are filters, retair	615301,222 hing walls, perimete	R 5-2 K201600 R 5-2 K201600 R 5-2 K201700 K2000 K
5	El Quelal Stre	am Z5-6	967153,256	615406,352	25-6
5	Nameless 49	ZR5- 3	967738.808	ning walls, perimete 616222.181 rs, perimeter ditche	r ditches, outlet structure

5	Nameless	Z5-6B Management measure	967940.122 es are filters, outlet	616697.946 structure, and diss	RETORNO - 23,000 RETORNO - 23,000 Z 5-6B K22+800 ipating channel on the side
	El Establo Stream	/5 4	970308,908	618527,763	
5					Z 5-9 4 5-22 x265 A 5-20 + A 5-215 A 5-20 + A 5-215 A 5-20 + A 5-215 A 5-20 + A 5-215
		Management measur	es are filters, retain	ning walls, perimete	er ditches, outlet structure
5	El Establo Stream	Z5-10	970904,009	618856,601	190 A 5:23 K28+280 K28+390 Z 5-10B K28+500 K28+500 K28+500 K28+500 K28+60
		Management measur	es are filters, retain	ning walls, perimete	er ditches, outlet structure

5	Cubijan Stream (Piedra Z5- 13 Pintada Stream)	974878,476	619293,950	2 5-13
5	(Piedra Z5- 13 Pintada	974878,476	619293,950	

Intervening channels for the works described in the above table require environmental authority approval that is requested by riverbed occupancy permits whose forms are in Annex 7. 4.

- Special crossings

There are two special crossings of great hydric importance which are the Guáitara River and the La Magdalena Stream (see Table 7.39). Chapter 3 of this study shows the hydraulic works designs.

UF	SOURCE NAME	ТҮРЕ	TEMPORAL	COOR_X	COOR_Y	
4	Magdalena Stream	Box	Permanente	961059,5957	610155,9585	
4	Magdalena Stream a	Box	Permanente	961059,5957	610155,9585	

 Tabla 7.35 Cruces especiales

7.4.1 Frequency Analysis for flows

Maximum flows for afferent drainage area of each hydraulic work were calculated using the Rational Method for those basins with drainage areas less than 2.5 square kilometers. For larger basins flows were calculated using the unit hydrograph method.

Rational method

This is a methodology commonly used in hydrology to generate peak flows in small or smaller basins with no hydrometric information; this consists of estimating the maximum flow assuming uniform intensity of precipitation during the time of concentration of the basin. The assumption of uniform precipitation during the time of concentration is an approximation done considering that in reality a rainfall event is

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 104

uniform during the time of concentration of the basin. Thus, the flow at a given point of the basin gradually grows to a maximum value when the entire basin is contributing to the runoff at the site of water concentration. The "Rational Method" is expressed by the ratio:

$$Q = \frac{C \cdot I \cdot A}{360}$$

Where: Q: Maximum flow in m³ / s. C: Runoff coefficient, dimensionless. I: Rainfall intensity in mm / h. A: Drainage area in ha.

<u>Runoff coefficient</u>

The runoff coefficient relates the maximum flow generated produced after discounting storage losses, retention and infiltration, with generating precipitation intensity inherent in each basin and mainly depending on the soil type, vegetation cover and the slope of the basin.

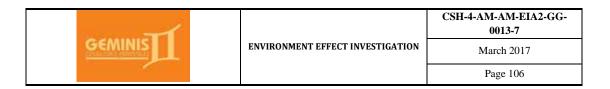
Maximum flows for different return periods were estimated. Table 7.40 shows the summary of parameters used to calculate maximum flows in streams with an area exceeding 2.5 sq km. For the remaining basins the parameters used are summarized in Table 7.41

Table 7.36 Summary of modeling parameters to estimate maximum flow in basins
over 2,5 km ²

Site	Area (km²)	Tc (min)	Tlag (min)	CN	Histogram	Reductio n factor per area	Rainfall duration (hours)
La Magdalena	36,6	154	92	81	SCS tipo II	0,75	2,5

Source: Consorcio SH

Basin	Are a(K m²)	Tc (min)]	ntensity (mm/h)				
	m)	~ /	2,33	5	10	20	25	50	100	
1	0.0557	15	73.05	84.4	96.3	109.	114.	130.	149.	
2	0.6715	17.38	66.33	76.6	87.4	99.7	104.	118.	135.	
3	0.1331	15	73.05	84.4	96.3	109.	114.	130.	149.	
4	0.1331	15	73.05	84.4	96.3	109.	114.	130.	149.	
5	0.7259	18.08	64.69	74.7	85.3	97.3	101.	115.	132.	
6	0.0068	15	73.05	84.4	96.3	109.	114.	130.	149.	
7	0.0247	15	73.05	84.4	96.3	109.	114.	130.	149.	
8	0.1805	15	73.05	84.4	96.3	109.	114.	130.	149.	
9	0.1226	15	73.05	84.4	96.3	109.	114.	130.	149.	
10	0.0466	15	73.05	84.4	96.3	109.	114.	130.	149.	
11	0.0531	15	73.05	84.4	96.3	109.	114.	130.	149.	
12	0.0395	15	73.05	84.4	96.3	109.	114.	130.	149.	
13	0.0382	15	73.05	84.4	96.3	109.	114.	130.	149.	
15	0.0289	15	73.05	84.4	96.3	109.	114.	130.	149.	
17	0.9751	20.06	60.59	70.0	79.9	91.1	95.1	108.	123.	
18	0.0126	15	73.05	84.4	96.3	109.	114.	130.	149.	
19	0.1484	15	73.05	84.4	96.3	109.	114.	130.	149.	
20	0.0044	15	73.05		96.3	109.	114.	130.	149.	
21	0.1458	15	73.05		96.3	109.	114.	130.	149.	
22	0.1474	15	73.05		96.3	109.	114.	130.	149.	
23	0.0678	15	73.05	84.4	96.3	109.	114.	130.	149.	
24	0.0304	15	73.05	84.4	96.3	109.	114.	130.	149.	


Table 7.41 Design intensity for different return periods, right basin banks

Source: Consorcio SH

Determination of design flows considering aforesaid paragraphs are shown in Table 7.38 and Table 7.42

Table 7.57 La Magualena Stream nows										
Tr	Basin	Area (km²)	Tc (min)	C N	Q (m ³ /s)					

Table 7.37 La Magdalena Stream flows

Tr	Basin	Area (km²)	Tc (min)	C N	Q (m³/s)
5					26,2
10	Q. La Magdalena				35,3
20					44,9
25					48,15
50		36,5	154	81	58,4
100					69,3

Source: Consorcio SH

Table 7.38 Design flow for different return periods for efferent basins to the
drainage waters

Basin	Area			ge mate	Q m ³ /s	5		
Dasiii	(Km²)	Q 2	Q 5	Q 10	Q 20	Q 25	Q 50	Q 100
1	0.0557	0.42	0.52	0.63	0.76	0.82	0.99	1.22
2	0.6715	4.65	5.81	6.96	8.50	9.07	11.02	13.60
3	0.0732	0.55	0.69	0.82	1.00	1.07	1.30	1.61
4	0.1643	1.23	1.54	1.85	2.26	2.41	2.92	3.61
5	0.0437	0.33	0.41	0.49	0.60	0.64	0.78	0.96
6	0.6633	4.42	5.53	6.62	8.09	8.63	10.49	12.94
7	0.0068	0.05	0.06	0.08	0.09	0.10	0.12	0.15
8	0.0366	0.28	0.34	0.41	0.50	0.54	0.65	0.80
9	0.2139	1.61	2.01	2.40	2.94	3.13	3.81	4.70
10	0.1226	0.92	1.15	1.38	1.68	1.80	2.18	2.69
11	0.0466	0.35	0.44	0.52	0.64	0.68	0.83	1.02
12	0.0670	0.50	0.63	0.75	0.92	0.98	1.19	1.47
13	0.0251	0.19	0.24	0.28	0.34	0.37	0.45	0.55
14	0.0165	0.12	0.16	0.19	0.23	0.24	0.29	0.36
15	0.0175	0.13	0.16	0.20	0.24	0.26	0.31	0.38
16	0.0923	0.69	0.87	1.04	1.27	1.35	1.64	2.03
17	0.4338	3.00	3.75	4.49	5.49	5.86	7.12	8.78
18	0.1992	1.38	1.72	2.06	2.52	2.69	3.27	4.03
19	0.1484	1.11	1.39	1.67	2.04	2.17	2.64	3.26
20	0.0044	0.03	0.04	0.05	0.06	0.06	0.08	0.10

CSH-4-AM-AM-EIA2-GG-

D a alta	Area				Q m ³ /s	5		
Basin	(Km²)	Q 2	Q 5	Q 10	Q 20	Q 25	Q 50	Q 100
21	0.1458	1.09	1.37	1.64	2.00	2.14	2.60	3.20
22	0.1474	1.11	1.38	1.66	2.03	2.16	2.62	3.24
23	0.0678	0.51	0.64	0.76	0.93	0.99	1.21	1.49
24	0.0304	0.23	0.29	0.34	0.42	0.45	0.54	0.67
25	0.0977	0.73	0.92	1.10	1.34	1.43	1.74	2.15
26	0.0618	0.46	0.58	0.69	0.85	0.91	1.10	1.36
27	0.0189	0.12	0.15	0.18	0.22	0.24	0.29	0.36
28	0.3521	2.02	2.53	3.03	3.70	3.95	4.80	5.92
29	0.1756	1.14	1.43	1.71	2.09	2.23	2.71	3.34
30	0.2076	1.24	1.56	1.86	2.28	2.43	2.95	3.64
31	0.0696	0.45	0.57	0.68	0.83	0.88	1.07	1.32
32	0.4690	2.63	3.29	3.94	4.82	5.14	6.25	7.71
33	0.0607	0.39	0.49	0.59	0.72	0.77	0.94	1.15
34	0.0302	0.20	0.25	0.29	0.36	0.38	0.47	0.58
35	0.0384	0.25	0.31	0.37	0.46	0.49	0.59	0.73
36	0.2830	1.84	2.30	2.76	3.37	3.59	4.36	5.38
37	0.1407	0.91	1.14	1.37	1.67	1.79	2.17	2.68
38	0.1893	1.23	1.54	1.84	2.25	2.40	2.92	3.60
40	0.0548	0.36	0.45	0.53	0.65	0.69	0.84	1.04
41	0.0795	0.52	0.65	0.77	0.95	1.01	1.23	1.51
42	0.0263	0.17	0.21	0.26	0.31	0.33	0.40	0.50
43	0.0170	0.11	0.14	0.17	0.20	0.22	0.26	0.32
44	0.0858	0.56	0.70	0.83	1.02	1.09	1.32	1.63
45	0.0997	0.65	0.81	0.97	1.19	1.26	1.54	1.90
46	0.0169	0.11	0.14	0.16	0.20	0.21	0.26	0.32
47	0.0312	0.20	0.25	0.30	0.37	0.40	0.48	0.59
48	0.0830	0.54	0.67	0.81	0.99	1.05	1.28	1.58
49	0.0295	0.19	0.24	0.29	0.35	0.37	0.45	0.56
50	0.0400	0.26	0.32	0.39	0.48	0.51	0.62	0.76
51	0.0403	0.26	0.33	0.39	0.48	0.51	0.62	0.77
52	0.0231	0.15	0.19	0.23	0.28	0.29	0.36	0.44
53	0.0821	0.53	0.67	0.80	0.98	1.04	1.27	1.56

CSH-4-AM-AM-EIA2-GG-

Basin	Area				Q m ³ /s	5			
Dasiii	(Km²)	Q 2	Q 5	Q 10	Q 20	Q 25	Q 50	Q 100	
54	0.0546	0.35	0.44	0.53	0.65	0.69	0.84	1.04	
55	0.0407	0.26	0.33	0.40	0.48	0.52	0.63	0.77	
56	0.0449	0.29	0.37	0.44	0.53	0.57	0.69	0.85	
57	0.0200	0.13	0.16	0.19	0.24	0.25	0.31	0.38	
58	0.0219	0.14	0.18	0.21	0.26	0.28	0.34	0.42	
59	0.0299	0.19	0.24	0.29	0.36	0.38	0.46	0.57	
60	0.0355	0.23	0.29	0.35	0.42	0.45	0.55	0.68	
61	0.0275	0.18	0.22	0.27	0.33	0.35	0.42	0.52	
62	0.1695	1.10	1.38	1.65	2.02	2.15	2.61	3.23	
63	0.0061	0.04	0.05	0.06	0.07	0.08	0.09	0.12	
64	0.0156	0.10	0.13	0.15	0.19	0.20	0.24	0.30	
65	0.0955	0.62	0.78	0.93	1.14	1.21	1.47	1.82	
66	0.2055	1.34	1.67	2.00	2.45	2.61	3.17	3.91	
67	0.1142	0.74	0.93	1.11	1.36	1.45	1.76	2.17	
68	0.2219	1.44	1.80	2.16	2.64	2.82	3.42	4.22	
69	0.2057	1.34	1.67	2.00	2.45	2.61	3.17	3.91	
70	0.2123	1.27	1.59	1.91	2.33	2.48	3.02	3.72	
71	0.3350	1.93	2.42	2.90	3.54	3.78	4.59	5.66	
72	0.1698	1.10	1.38	1.65	2.02	2.16	2.62	3.23	
73	0.3297	2.14	2.68	3.21	3.92	4.18	5.08	6.27	
74	0.0128	0.08	0.10	0.12	0.15	0.16	0.20	0.24	
75	0.0298	0.19	0.24	0.29	0.36	0.38	0.46	0.57	
76	0.0626	0.41	0.51	0.61	0.75	0.79	0.97	1.19	
	•	Source: Consorcio SH							

7.4.2. Subsidence calculations

Subsidence studies have been conducted in accordance with provisions of Maza Alvarez (Alvarez Maza J, 1970) and Ocampo Monforte (Monforte, 1986) publications.

Rising river water levels lead to changes in the bottom and the banks of the waterway. These changes in channel shape are due to greater current drag, which by transporting a higher number of particles in suspension from the bottom, makes the river level drop.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 109

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

The methodology used to calculate general subsidence corresponds to the proposal by Maza AJA (Maza J Alvarez, 1970). In this methodology, the calculation criteria proposed by Lichtvan - Lebedev and for the implementation thereof it is necessary to distinguish the cohesiveness and homogeneity characteristics of soils present in the riverbed.

The maximum expected subsidence depth expected by the passage of higher water levels is given by the following expressions:

Equation 7-1 Equation 7-1 $H_{s} = \left[\frac{\alpha H_{0}^{5/3}}{0.68 d_{m}^{0.28} \beta}\right]^{\frac{1}{1+x}}$ Equation 7-2 $H_{s} = \left[\frac{\alpha H_{0}^{5/3}}{0.60 \gamma_{s}^{1.18} \beta}\right]^{\frac{1}{1+x}}$

Equation 7-1 is used for granular soils and Equation 7-2 for cohesive soils.

Follows a description of parameters involved in the general subsidence equations:

Hs = is the height between the water surface (when the high water level is passing) and the erosive background (m).

 α = Coefficient of expenditure distribution, calculated by Equation 7-3.

Equation 7-3 $\alpha = \frac{Q_d}{H_0^{5/3} B_e}$

Where,

Qd = design flow rate for the return period considered (m3 / s).

HO = is the depth of the cross section for flow design consideration (m).

Be = is the width of the section for the design flow level (m). It is important to clarify that if the current runs parallel to the axis of the basins, that length will be the section considered less the thickness of the basins that are inside it. When there is a fleet angle of the current, the effective width can be calculated by plotting lines indicating the direction of flow, tangential to the basins and measuring the resulting clearings.

dm = average diameter of bottom particles (mm). This parameter is calculated by Equation 4.4.

Equation 7-4

$$d_m = 0,001 \sum_{i=1}^n d_i p_i$$

Where,

- di = Average diameter of a fraction of the granulometric curve of the total sample being analyzed (mm).
- pi = Percentage of the weight of the same portion, compared to the total weight of the sample.
- β = coefficient related to the return period of the design flow, which is obtained with the values of Table 7.43

Table 7.55 Coefficient p.						
TR	β.	% Likelihood				
1	0,77	100				
2	0,82	50				
5	0,86	20				
10	0,9	10				
20	0,94	5				
50	0,97	2				
100	1	1				
300	1,03	0,3				
500	1,05	0,2				
1000	1,07	0,1				
Source Céminie Conquitores SAS						

Table 7.39 Coefficient β.

Source Géminis Consultores S.A.S

Z= Coefficient used only for granular soils calculated by Equation 7-5

Equation 7-5 $Z = 0,394557 - 0,04136 \log(d_m) - 0,00891 (\log[d_m])^2$

Where,

• d_m = Average diameter of bottom particles (mm). See Equation 7-6

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 111

X= Coefficient used only for cohesive soils, calculated by Equation 4.6.

Ecuación 7-6

 $X = 0,892619 - 0,58073 \gamma_s + 0,136275 \gamma_s^2$

Where,

 Υ_s = Specific soil weight (Ton/m3).

To determine subsidence from the Graphic Method in a P point, as schematically shown in Figure 7.38, the following described variables intervene:

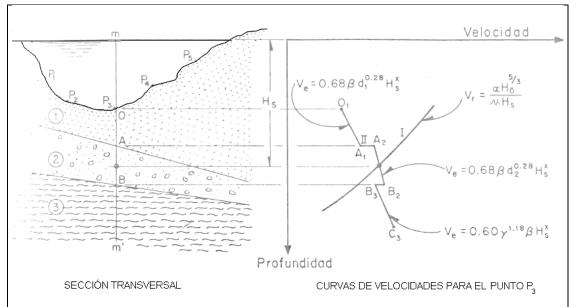


Figure 7.35 Subsidence calculation by the graphic method Source: Consorcio SH

 μ = Contraction coefficient that depends on the distance between the batteries and the average section velocity, calculated by Equation 7-7.

Equation 7-7

$$\mu = 1 - 0,387 \frac{\bar{v}}{r}$$

Where,

- \tilde{v} = Mean velocity of the cross section for design flow (m/s).
- L= Length between two batteries (m).

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 112

 d_s = Subsidence depth, calculated by Equation 7-8

Equation 7-8 $d_s = H_{s-}H_0$

Where

 H_s = the height between the water surface (when the high level of water is passing) and the erosive bottom (m).

 H_0 = is the depth of the cross section for flow design consideration (m).

Given the sizing of the works where water currents intersect the road layout projected on the Pedregal – Pasto section, and considering the density results shown in table 7.45, the general subsidence has been calculated.

Abscissa	Density (KN / m3)
K0 + 000-K2 + 550	13.7
K2 -K5 + 550 + 930	13.4
K 5-K12 + 930 + 620	13.9
K12 + K15 + 750 620	13.7
K15 + 722 - K18 + 876	14.42
K18 + 876 - K24 + 018	8,25
K24 + 018 - K30 + 030	9.14
K30 + 030 - K37 + 948	10.25

Table 7.45 Density of transported material.

Source: Consorcio SH

In order to determine structure **subsidence**, a rectangular geometry section has been designed, with a variable width according to the diameter of the sewer. Table 7.46 shows the width of the outlet structure in relation to the diameter of the sewer.

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 113

Sewer diameter (m)	Structure output base (m)
0.9	4.5
1	5,05
1.2	5.9
1.3	6.3
1.5	7,15
1.6	7.6
1.8	8.5

Table 7.40 Structure outlet geometry

Source: Consorcio SH

For structures Culvert Box type, the outlet section was calculated as the width of the structure plus an additional width of one meter on each side; when there is more than one cell it is estimated as the case of a cell, adding one meter, simulating this as the separation between cells.

Subsidence was calculated from the Lichtvan - Lebedev formula for cohesive soils, whereby the laboratory results by zoning were taken into account. Subsidence results have been grouped according to size and type of work as shown in Table 7.47 for sewers and in Table 7.49 for Box Culverts.

Homogeneous area / Diameter	0.9 m	1.2 m	1.5 m	
K0 + 000 - K2 + 550	0.80	0.80	-	
K2 + 550 - 930 + K5	0,79	-	-	
K5 + 930-12 + 620	0,81	0,82	0,86	
K12 + 620 - 750 + K15	0.80	0,82	0.85	

Table 7.41 Sewers subsidence Functional Unit 4

Source: Consorcio SH

Homogeneous area / Diameter	0.9 m	1.2 m	1.5 m
K15 + 722 - K18 + 876	0.20	0.30	0.45
K18 + 876 - K24 + 018	0.35	0.60	0.75
K24 + 018 - K30 + 030	0.30	0.50	0.60

Table 7.42 Sewers subsidence Functional Unit 5

Source: Consorcio SH

Table 7.45 Dox Curvert subsidence					
Abscissa	Abscissa Base (m)		Subsidence (m)		
K0 + 136.95	2.50	2.50	0.90		
K0 + 602.88	2.50	2.50	0.89		
K16 + 200.46	3.50	3.50	1.0		
K17 + 746	2.00	2.00	0.75		
K18 + 122	2.00	2.00	1.5		
K23 + 309.72	3.00	3.00	1.5		
K23 + 479,90	3.00	3.00	1.5		
K27 + 854.54	3.00	3.00	1.5		
K31 + 403.37	3.50	3.50	1.75		

Table 7.43 Box Culvert subsidence

Source: Consorcio SH

<u>Hydraulic analysis of surface drainage</u>

There are several parameters and criteria used to design and / or analyze the hydraulic capacity of cross drainage works included in document "HYDROLOGY, HYDRAULICS AND SUBSIDENCE DESIGN CRITERIA (PEPA-CDI-HID-UFS-007-R 0); follows a description of each one thereof.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 115

<u>Cross drainage, sewers and Box Culverts works</u>

Location of cross drainage works

Drainage works were located taking into account the natural condition of the various drains, creeks and rivers to be intercepted with the road, preferably looking for intersections to maintain their alignment, however, for topographical reasons there are minor derivations to their alignments, which are corrected with short channeling so as to maintain the natural conditions of drains in the shortest length.

The separation between drainage works obeys to natural topographical conditions of the sector, generation of low points in the project's road geometry, the longitudinal drainage capacity and the continuity of existing drainage. In particular, development of many urban and industrial areas of the project area have had the road as a hub, generating service needs of all types like restaurants, gas stations, parking, etc. that have changed the natural drainage pattern considering new structures and separation of the drainage works.

Two types of inlet structures to the drainage works were considered, depending on the location of the slope with respect to the natural drainage: when the road is in cut the projected inlet structure is box-like in reinforced concrete and when the road is in fill the projected inlet structure is head type with fins. In some cases under the cut condition, energy dissipation structures that allow routing the water down the slopes were projected.

• <u>Hydraulic operation</u>

A sewer flow is not uniform; it has areas with gradually varied flow and areas with rapidly varied flow, so their theoretical analysis is complex. Its capacity and operation depends on where the hydraulic control section of the sewer is located, so that the flow can be controlled at the inlet with control at the outlet. Flow conditions have been classified by different authors as Bodhaine (Chow, 1994).

The design of the project's drainage works was limited to flow conditions corresponding to case A with control at the inlet, and case E with control at the outlet, where the height of the water lamina downstream of the TW work outlet is not greater than diameter "d" or the height of the work, i.e. there is no submergence at the outlet, and the flow discharges freely. The design is based on the analysis for the two hydraulic control conditions, adopting as a design the largest HW.

		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 116

In the ducts with hydraulic control with the inlet, sizing of projected sewer is calculated by the criteria given in the Hydraulic Design Series Number 5 (United States Department of Transportation, 2001), using the following equations:

Where:

D = Pipe diameter in m

Q = Flow in m3 / s

A = Duct section area in m2

Ec Critical energy = Yc + (VC2 / 2g)

Where:

- C = Critical depth
- VC =Critical speed

g = Gravity

k, m = Loss coefficients for Hydraulic Control at the inlet

Z = Correction factor of slope of the power line at the inlet (0.7 * S) for perpendicular inlets, and (0.5 * S) for other types of inlets, where S is the slope of the work in m / m.

If the hydraulic control is located at the outlet, subcritical flow occurs in the sewer and sizing should consider the backwater originated therein as a result of the roughness of the pipe and hydraulic losses at the inlet and outlet of the work, so Manning's formula is used in order to determine the losses in the barrel or channel. The equation used to determine the diameter or height of the work is:

Where:

YT = Inlet, friction and outlet losses

Y0 = Maximum between TW and the value of (D + YC) / 2

TW = Downstream level.

		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 117

S = Slope of the work

L= Length of the work

Taking into account natural terrain conditions, it is evident that for hydraulic structures of the project will have a flow with hydraulic control in the inlet, however, conditions are verified.

Sizing of these drainage works was made by complementing a commercial standardization of pipe diameters, for that reason the design limited the flow to a HW level just before the inlet to a value of the relation between this HW level and the diameter or height of the rectangular section (D) between 0.8 and 1.0 using commercial pipe diameters and greater standardization of heights and widths in Box Culverts.

Minimum diameter

The minimum diameter of all new sewers will be 0.90 m, the existing 0.6 diameter sewers located under the existing roadway will be kept if the following conditions are met:

• No structural damage that could potentially affect the stability of the work.

• With hydraulic capacity required under the design criteria established in the document "HYDROLOGY, HYDRAULICS AND SUBSIDENCE DESIGN CRITERIA (PEPA-CDI-HID-UFS-007-R0) and this design.

• The work is located on the existing road and this road will be kept in the final layout of the new project (with reference to the suggestion of the geometric design manual that states that the existing road will be used as much as possible).

Estimate of drainage areas

The definition of drainage areas or basins contributing to each drainage work was defined considering the existing drainage on the road and its lows points. From the location of these sites, the layout plan of the project and existing mapping, the divisions of basins and drainage areas to the location of implanted drainage work were drawn. Drawings CSH-4-PL-OD-G-7001-0-H1 - CSH-4-PL-OD-G-7001-0-H2 - CSH-4-PL-OD-G-7001-0-H3 show basin delimitations.

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 118

IONARIA VIAI

Existing drainage .

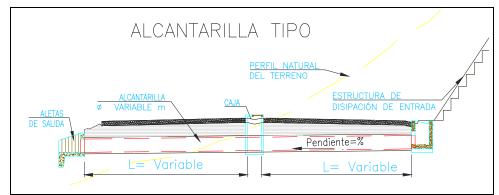
In the initial stage of the project a field inventory of existing roadway was made, identifying the quantity and type of existing works.

From this procedure, it the existence of concrete pipes with diameters of 0.25 m, 0.60 m, 0.70 m and 0.90 m were identified, mainly 0.60 m diameter; Box culvert type sections of up to 3.0 m by 4.0 m base high were identified; Table 7.50 shows the summary of the number of existing works by diameter and type of work.

UF	TYPE OF WORK	DIAMETER / BASE (m)	HEIGHT (m)	# PIPES	AMOUNT
	Sewer	0.25	-	1	1
	Sewer	0,6	-	2	2
	Sewer	0,6	-	1	152
4	Sewer	0,9	-	1	2
	Box Culvert	0,66	0,6	-	1
	Box Culvert	1,3	2,2	-	2
	Box Culvert	3	4	-	1
	Sewer	0,6	-	2	4
	Sewer	0,6	-	1	352
	Sewer	0,7	-	1	3
	Sewer	0,9	-	1	7
	Sewer	0,9	-	2	1
	Box Culvert	0,66	0,6	-	1
5	Box Culvert	0,9	0,95	-	1
	Box Culvert	0,9	0,58	-	1
	Box Culvert	1	1	-	1
	Box Culvert	1,3	2,2	-	1
	Box Culvert	1,6	2	-	1
	Box Culvert	1,7	1,9	-	1
	Box Culvert	1,7	2	-	1

Table 7.44 Summary of existing works

UF	TYPE OF	DIAMETER/	HEIGHT	# PIPES	AMOUNT
	Box Culvert	3	4	-	1
Source: Consorrig SH					


Source: Consorcio SH

<u>Hydraulic Analysis of existing cross drainage works</u>

This stage consisted of analyzing the hydraulic capacity of identified existing sewers and characterized in the inventory of field works in accordance with the parameters set out in the document "HYDROLOGY, HYDRAULICS AND SUBSIDENCE DESIGN CRITERIA (CSH-4-VD-G-G-7000-0, CSH-5-VD-G-G-7000-1).

Based on this modeling, the structures with sufficient hydraulic capacity were identified and that given their location may be retained and the structures that must be replaced, according to the afferent flow associated with established return periods.

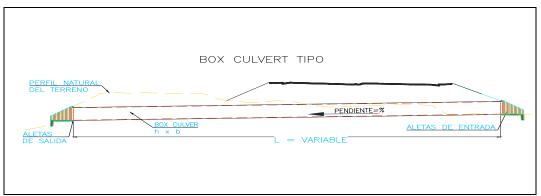

The analysis showed that for functional units 4 and 5, drainage works will be kept on one of the road sides and will be connected to the new ones using a box with drainage works defined for the projected lane as presented in the Table 7.50

Figure 7.36 Sewer type Source (Géminis Consultores Ambientales, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 120

Figure 7.37 Box type Source (Géminis Consultores Ambientales, 2016)

Table 7.451 Existing works that will be kept in existing lane and will extend in
projected lane

		Absciss	Absciss Work		ng lane work)	Projected lane (new work)	
UF	Basin	Basin a	type	Margin	Diamete r (m)	Margin	Diamete r (m)
	30	4+770. 03	Sewer	Left	0.6	Right	0.9
	62	10+844 .28	Sewer	Left	0.6	Right	0.9
	63	10+938 .58	Sewer	Left	0.6	Right	0.9
	64	11+038 .24	Sewer	Left	0.6	Right	0.9
4	65	11+169 .28	Sewer	Left	0.6	Right	0.9
	66	11+274 .59	Sewer	Left	0.6	Right	0.9
	67	11+357 .37	Sewer	Left	0.6	Right	0.9
	68	11+436 .90	Sewer	Left	0.6	Right	0.9
	69	11+516 .07	Sewer	Left	0.6	Right	0.9

UF	Basin	Absciss a	Work type	Existing lane (kept work)		Projected lane (new work)	
	71	11+854 .32	Sewer	Left	0.6	Right	0.9
5	50	22+332 ,47	Sewer	Right	0,6	Right	0,9
5	97	27+991 ,18	Sewer	Left	0,6	Right	0,9

Source: Consorcio SH

In addition, and due to the roadway projected, in the sections between the abscissas 12+630 to 14+200 UF4 and 19+036.20 to 19+864.19 UF 5, is located an encased section, drainage will be handled with crown ditches, the road ditch and the central ditch; to manage the drainage of the lane over the existing road, the drainage works that are presented in Table 7.52 and the Table 7.52 will be kept.

Table 7.462 Existing drainage works that will be kept on the existing lane and will not be extended to projected UF4 lane

Abscissa	Work type	Existing lane (kept work)		
ADSCISSA	Work type	Margin	Diameter (m)	
K12+630	Sewer	Left	0,6	
K12+692	Sewer	Right	0,6	
K12+771	Sewer	Right	0,6	
K14+102	Sewer	Right	0,6	
K14+200	Sewer	Right 0,6		

Source: Consorcio SH

Table 7.53 Existing drainage works that will be kept on the existing lane and will not be extended to projected UF5 lane

Work number per inventory	Work type	Diamete r (m)	Absciss a	Abscissa axis
197	Sewer	0.6	K19+43	Auxiliary
198	Sewer	0.6	K19+52	Auxiliarv
200	Sewer	0.6	K19+67	Auxiliary

201	Sewer	0.6	K19+79	Auxiliary
306	Sewer	0.6	K28+87	Main
307	Sewer	0.6	K28+94	Main
308	Sewer	0.6	K29+07	Main
309	Sewer	0.6	K29+15	Main
310	Sewer	0.6	K29+24	Main
311	Sewer	0.6	K29+32	Main

Source: Consorcio SH

7.4.3 Preliminary designs of works

The designs of the works to build, temporality, construction procedures, hydraulic design of transit and the feasibility stage of the free edges and additional protection works were established for each of the riverbed occupation works, these can be analyzed in Annex 7. 4.2

Projected Drainage

Hydraulic Analysis and sizing of new works

On the basis of the activities presented in the design criteria set out in document "HYDROLOGY, HYDRAULICS AND SUBSIDENCE DESIGN CRITERIA (CSH--VD-G-G-7000-0, CSH--VD-G-G-7000-1) and in the previous paragraphs, the sizing of drainage works was calculated. For the design a spreadsheet was used developed by INGETEC, which contains the recommendations, formulas, parameters and criteria presented in the **Design Series Number 5** technical paper Hydraulic of the "United States Department of Transportation Services", the design is based on the analysis for the 2 of hydraulic control conditions (control at the inlet and control at the outlet), adopting as design diameter or height the highest HW result determine. This was done for sewers of up to 1.80 m.

Hydraulic analysis and sizing of major works

Works with dimension above diameter of 1.5 m and 1.8 m were designed using the free access software HY-8 Culvert hydraulic analysis, program developed by the *Federal Highway Administration of U.S. Department of Transportation*, taking into account that these sections due to flow conditions, may have high speeds inside and outside of the barrel; follows the results obtained for the major works that are projected in the functional units 4 and 5.

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 123

Table 7.53 and **Table 7.54** show the dissipation structures located on the cut slopes that deliver to a drainage work box per functional unit.

Table 7.474 Dissipation structures d				
BASIN	ABSSICISA			
1	K0+035.26			
3	K0+276.46			
6	K0+807.11			
7	K0+932.85			
8	K1+112.92			
9	K1+210.12			
10	K1+334.56			
11	K1+410.40			
12	K1+496.11			
13	K1+863.83			
16	K2+264.10			
17	K2+479.64			
18	K2+680.64			
22	K3+631.60			
23	K3+837.20			
24	K4+054.04			
25	K4+232.90			
27	K4+560.12			
32	K5+189.11			
33	K5+300.41			
34	K5+486.83			
35	K5+731.53			
36	K5+922.81			
42	K7+278.64			
43	K7+417.95			
44	K7+561.71			
	~ ~			

Table 7.474 Dissipation structures delivering to UF 4 box Approx </tr

BASIN	ABSSICISA	
45	K7+794.71	
46	K7+952.26	
47	K8+212.39	
50	K8+843.38	
52	K9+437.34	
53	K9+522.83	
54	K9+644.19	
55	K9+767.18	
56	K9+917.35	
57	K9+967.92	
73	K12+324.77	
74	K12+508.01	
75	K13+040.01	
76	K13+284.01	
77	K13+421.35	
78	K13+862.38	
79	K14+025.87	
80	K14+234.35	
81	K14+545.55	
82	K14+628.45	
83	K14+970.81	
84	K15+132.25	
85	K15+465.07	
86	K15+642.87	
87	K15+736.78	

Source: Consorcio SH

CONCESIONARIA VIAL

Table 7.55 Dissipation st		i uctul es deliver in			
BASIN	ABSSICISA		BASIN	ABSSICISA	
1	K15+862.97		49	K25+017.77	
2	K15+913.26		50	K25+153.57	
3	K16+139.09		51	K25+278.75	
5	K16+512.06		52	K25+374.73	
7	K16+725.41		53	K25+476.87	
9	K16+948.00		54	K25+594.87	
10	K17+013.13		55	K25+738.61	
15	K18+317.79		56	K25+819.02	
16	K18+546.41		57	K25+996.51	
17	K18+636.22		58	K26+078.42	
19	K18+873.57		62	K26+456.45	
23	K20+443.27		65	K27+015.86	
24	K21+036.58		66	K27+255.95	
25	K21+128.16		69	K27+669.79	
26	K21+200.22		70	K27+729.29	
27	K27+279.11		72	K27+989.69	
28	K21+397.91		73	K28+070.41	
29	K21+488.43		76	K28+424.47	
30	K21+573.76		77	K28+559.21	
31	K21+942.08		78	K28+676.63	
32	K22+109.23		79	K28+777.45	
34	K22+577.00		80	K29+683.03	
36	K22+912.16		81	K29+898.39	
40	K23+963.00		82	K30+059.53	
41	K24+043.26		84	K30+304.14	
42	K24+171.12		85	K30+476.40	
43	K24+335.46		86	K30+617.71	
44	K24+490.29		87	K30+685.57	
45	K24+568.74		99	K32+161.33	
46	K24+678.71		101	K32+353.72	

Table 7.55 Dissipation structures delivering to UF 5 Box

CSH-4-AM-AM-EIA2-GG-

B	ASIN	ABSSICISA	BASIN	ABSSICISA
	47	K24+787.47	102	K32+433.45
	48	K24+932.54	103	K32+525.91

· <u>Subdrainage</u>

The objective of the **subdrainage** is to eliminate infiltrated water that could affect the **road**, in order to ensure the stability of the platform, the pavement structure and the slope of the road. The specific objectives are:

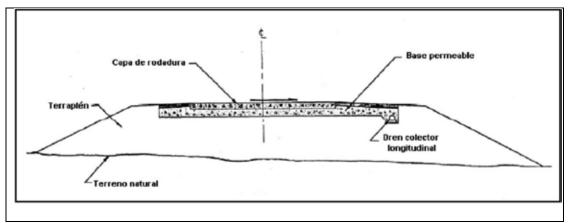
- Facilitate implementing the explanations during the construction phase of the road, since appropriate drainage allows circulation and the work of the machines and favors the possibility of using the excavated soils to construct embankments.
- Prevent saturation of the subgrade and pavement layers, increasing the carrying capacity, improving its response capacity and reducing the required pavement thickness
- Contribute to the stability of the slopes by the favorable orientation of the groundwater flow, the reduction of interstitial pressures and, consequently, the improvement of their geotechnical properties.

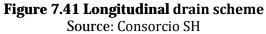
Basic Subdrainge functions

Subdrenaje systems must meet the following basic functions to minimize the impacts of internal water in highway projects:

- Lower the water table in the area of the road, on the slopes of the cuts and fills and in the foundations of the embankments and road structures.
- Intercept underground leaks to prevent water outcrops on the pavement.
- Drain the surface water that infiltrates pavement and containment structures.
- Collect the discharge from the different subdrainage systems.

- Classes of subdrainages


The subdrainage system elements are classified into two categories: 1) those that control infiltration and 2) those that control groundwater. The first are designed and built to intercept and remove water that enters the crown due to precipitation or surface flow, while the second is intended to lower the water table level and reduce the movement of water in the subgrade and pavement layers.


		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 126

Longitudinal

This is placed in an essentially parallel direction to the road axis both horizontal and vertical. Formed by a trench of a certain depth, protection filter and, eventually, a manifold. The installation, specifically, water evacuation infiltrating into the pavement, is called side base drain or longitudinal drains, see Figure 7.38

• <u>Transverse</u>

These subdrains are those that cross the road from one side to the other. Usually the crossing is perpendicular, but it can be done transversally or even in a herringbone shape. The constitution of such drains is similar to the longitudinal drains: trench, manifold and protective filter. Transverse drains are used in pavement joints to drain groundwater infiltration and bases and sub-bases, see Figure 7.39

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 127

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

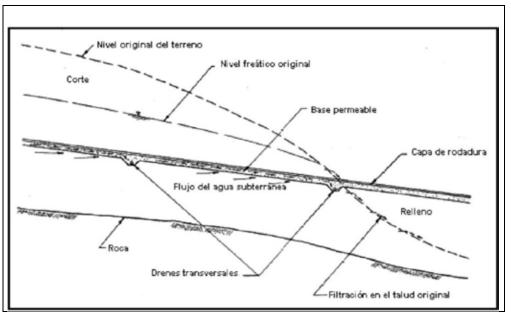
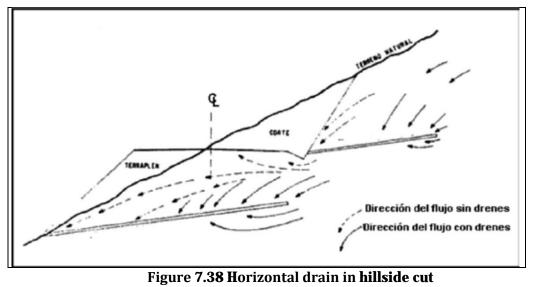


Figure 7.42 Transvers drain on road in cut with perpendicular alignment to existing contour (profile) Source: Consorcio SH


• <u>Horizontal</u>

Horizontal drains consist of small diameter pipes with small holes, which are installed with a slight upward tilt on cut slopes or embankments to drain water and relieve internal pressure from pores, looking for increased stability. One of the advantages of horizontal drains is their ability to drain water and / or abate pore pressures at depths inaccessible for other more conventional underdrain elements, see Figure 7.40

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 128

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

Source: Consorcio SH

Required information for subdrain designs

The data needed for the analysis and design of **subdrains** can be placed into four categories:

- 1. The geometry of the flow domain.
- 2. The properties of existing materials.
- 3. Climatological data.
- 4. Additional Information.

The geometry of the flow domain involves both the geometric design of the road and the prevailing subsurface conditions. She helps define the various problems associated with internal drainage and provides the boundary conditions governing their solution. The fundamental properties of materials allow their classification helps predict their behavior, particularly in relation to their water flow transmission capacity (permeability).

Climatological data offers the designer an idea of possible sources of subsurface water affecting the road. Given the latitude there the Republic of Colombia is, rainfall is the only climate aspect that is of interest when designing subsurface drainage.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 129

The designer must consider other aspects that may have some impact on the subdrainage system design. For example, the impact the system can have on the prevailing groundwater regime and other design aspects, and the influence of the underdrain or lack of it on the sequence of road construction operations, etc.

In order to manage water infiltration and groundwater level in the pavement structure, longitudinal drains are used in road areas that are in box or in areas with mixed geometry on the cut side where needed; filters should be designed at the base of the slopes and the central separator. Proposed longitudinal drains are 0.50×0.70 m, underdrains with geotextile and granular material, covered with a NT2000 PAVCO or equivalent geotextile.

• Longitudinal drainage elements

Crown ditches are presented to handle the longitudinal drainage of the road, ditches located on the cu and, lateral berms and central separator, as shown in the typical section Figure 7.41

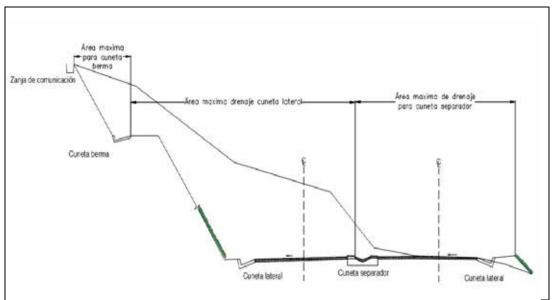


Figure 7.39 Longitudinal drainage elements Source: Consorcio SH

Ditches

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 130

Ditches are drainage structures that capture runoff water from the road platform and cut slopes, leading them longitudinally to ensure proper disposal. Ditches built on embankment areas also protect the edges of the berm and fill slopes from erosion caused by rain water.

For ditches in cut areas, the points are sewer collecting boxes and side exits to the natural terrain in a change of cut to embankment. In embankment ditches, water is disposed on natural ground through downcomers or relieves and in the central separator ditches, the waters are also conducted to the hopper of a sewer.

Ditches should be located in essentially all cuts, in those embankments susceptible to erosion and in all internal margin of a separator receiving rainwater from the roads.

• <u>Crown ditches</u>

Crown ditches are runoff interceptors in the upper cut slope or near the base of the slope, respectively. Crown ditches are used to intercept rainwater, preventing its passage through the slope, and must be located at least 3m from the edge of the cut slope.

It is usually recommended that crown ditches be fully waterproofed to prevent infiltrations that may affect the slope of the road. Crown ditches can be trapezoidal or rectangular and like ditches, the flow rate and size are estimated with the Manning method and rational expression for a section and a selected coating and a given topography.

Hydraulic operation

It is to verify that the hydraulic capacity of the structure, calculated with Manning's equation is higher than the design flow.

Equation 7-8

$$Q = \frac{1}{n} (AR^{2/3}S^{1/2})$$

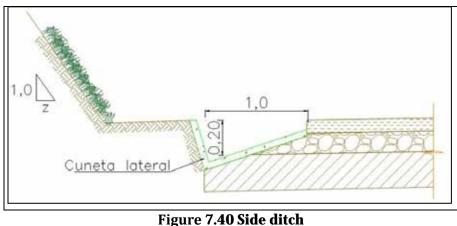
Where:

Q = Design flow rate in cubic meters per second (m3 / s), the design flow is calculated using the rational method.

n = Manning's roughness coefficient.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 131

- A = Wet area in square meters (m2). R: Hydraulic radius, in meters (m).
- S = Slope, in meters per meter (m / m).


From Equation 7-9 the water surface and the speed in the section for the design flow can be obtained. The water layer should be less than or equal to the depth of the ditch and the speed should be, in turn, less than the maximum allowable for the material of the ditch, but greater than the rate that favors sedimentation and plant growth .

The maximum flow rate depends on the type of coating of the channel or ditch, for which the maximum speed recommendations (Chow, 2004) were adopted.

The definition of hydraulic capacity of ditches was performed, taking into account the areas of afferent drain; a design flow was established per meter for each type of structure and then the maximum length of ditch according to the longitudinal slopes defined.

<u>Side ditch</u>

The ditch will be 0.20 m high, a surface width of 1.00 m; 0.9 m wide on the side of the road and a slope of 4.5 H: 1.0 V and o the cut slope the width will be 0.10 m and a slope of 1.0H: 2, 0V.

Source: Consorcio SH

To calculate the flow coefficients for runoffs of 0.9 and for the road and 0.5 for the cut area, the intensity was taken from the Imués and Sindagua stations for a return period

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 132

of 10 years. Table 7.55 shows the variables used and the results of estimating the flow rate per linear meter.

UF	Road C.	Cut C.	I Tr 10 (Mm / h)	Road A (m / m)	Cut A (m / m)	Qroa d (m ³ / s /	Qcut (m ³ / s / m)	Qtotal (m ³ /s /m)
4	0.9	0.5	96.34	12.3	14	0.000296241	0.00018732	0.000483566
	0.9	0.5	72.31	12.3	14	0.00022235	0.00014060	0.00036295

Table 7.48 Design flow per lineal meter of side ditch

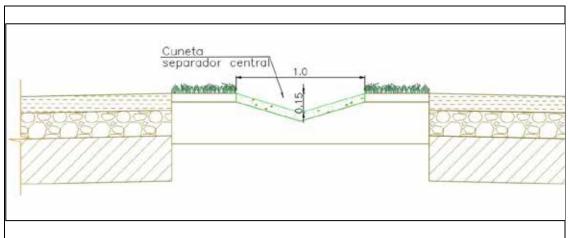
Source: Consorcio SH

After obtaining the contribution flow rate per linear meter, the capacity of the concrete ditch for a range of longitudinal gradients of the road, ranging between 0.5% and 5% was estimated as shown in Table 7.57

UF	Flow (m ³ /s)	Slope (m/m)	Z1 1V :Z1H	Z2 1V :Z2H	n -	Yn (m)	Vel. (m/ s)	Ditch length (m)
	0.0992	0,0050	4,500	0,50	0,014	0,20	0.993	205.16
	0.1400	0,0100	4,500	0,50	0,014	0,20	1.404	289.53
	0.1712	0,0150	4,500	0,50	0,014	0,20	1.719	353.96
4	0.1973	0,0200	4,500	0,50	0,014	0,20	1.984	408.05
	0.2410	0,0300	4,500	0,50	0,014	0,20	2.428	498.38
	0.2776	0,0400	4,500	0,50	0,014	0,20	2.802	574.09
	0.3141	0,0500	4,500	0,50	0,014	0,20	3.143	649.56
	0,0993	0,0050	4,500	0,50	0,014	0,20	0,994	274
	0,1404	0,0100	4,500	0,50	0,014	0,20	1,405	387
	0,1720	0,0150	4,500	0,50	0,014	0,20	1,721	474
5	0,1985	0,0200	4,500	0,50	0,014	0,20	1,987	547
J	0,2431	0,0300	4,500	0,50	0,014	0,20	2,434	670
	0,2808	0,0400	4,500	0,50	0,014	0,20	2,810	774
	0,3139	0,0500	4,500	0,50	0,014	0,20	3,142	865

Tabla 7.49 Maximum length in function of road slope

Source: Consorcio SH



The lengths obtained are more than 200 m, considering therefore that selected ditch is suitable for handling surface waters.

- Central separator and berm ditch

To size the gutters, the central spacer (Figure 7.46) and cut berms, the same analysis performed in the preceding paragraph was carried out, the size of these ditches were standardized with a height of 0.15 m, a surface width of 1.00 m and slope side 1, 0H: 3,33V. For purposes hydraulic verification, the analysis made for the central ditch separator is presented, considering that surface draining thereto is almost impermeable and therefore will have a higher amount of flow contribution.

Figure 7.41 Central separator ditch Source: Consorcio SH

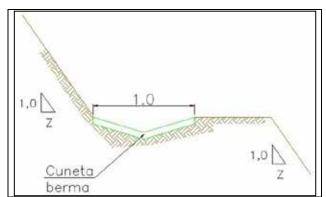


Figure 7.42 Cut berm ditch

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 134

Source: Consorcio SH

A runoff coefficient of 0.9 was used to calculate the flow and the intensity was taken from the Imues and Sindagua stations and for a return period of 10 years. Table 7.50 shows the variables used and the results of the flow estimation per linear meter.

Table 7.51 Design flow rate per central separator linear meter of ditch

UF	C Roa d	l Tr 10 (Mm/h)	Road A (m/m)	Road Q (m³/s)
4	0.9	5.47	12.3	0.000296
5	0.9	72.3	12.3	0.0002224

After obtaining the contribution flow rate per linear meter, the capacity of the ditch was estimated in particular for a range of longitudinal road gradients, which vary between 0.5% and 5% as shown in Table 7.60

U F	Flow (m ³ /s)	Slope (m/m)	Z1 1V: Z1H	Z2 1V : Z2H	N -	Yn (m)	V(m ⁄s)	Ditch length ta (m)
	0,0651	0,0050	3,330	3,33	0,014	0,15	0,86	216.37
	0,0920	0,0100	3,330	3,33	0,014	0,15	1,23	310.22
	0,1127	0,0150	3,330	3,33	0,014	0,15	1,51	379.58
4	0,1302	0,0200	3,330	3,33	0,014	0,15	1,74	437.91
	0,1594	0,0300	3,330	3,33	0,014	0,15	2,13	535.44
	0,1841	0,0400	3,330	3,33	0,014	0,15	2,46	617.37
	0,2058	0,0500	3,330	3,33	0,014	0,15	2,75	689.32
	0,0651	0,0050	3,330	3,33	0,014	0,15	0,87	179
	0,0920	0,0100	3,330	3,33	0,014	0,15	1,23	254
5	0,1127	0,0150	3,330	3,33	0,014	0,15	1,51	311
	0,1302	0,0200	3,330	3,33	0,014	0,15	1,74	359
	0,1594	0,0300	3,330	3,33	0,014	0,15	2,13	439

Table 7.52 Maximum ditch length in function of road slope

U F	Flow (m ³ /s)	Slope (m/m)		Z2 1V : Z2H	N -	Yn (m)	V(m	Ditch length ta (m)
	0,1841	0,0400	3,330	3,33	0,014	0,15	2,46	507
	0,2058	0,0500	3,330	3,33	0,014	0,15	2,75	567

Source: Consorcio SH

The lengths obtained are more than 170 m, which is considered that selected ditch is suitable for handling both the separator's surface water and that of the cut slopes.

3.3.1.1 <u>Crown ditches</u>

Concrete crown ditches will have a base of 0.40 m, a height of 0.50 m and a surface width of 1.00 m; 0 and slopes on the side walls of 0.6H: 1.0V. See Figure 7.48.

Source: Consorcio SH

The function of proposed longitudinal slope (range 0.5 to 5%), material and geometry was estimated the hydraulic capacity of the crown ditch as shown in Table 7.61

UF	Flow (m3 / s)	Slope (m /	Base (m)	Z 1 1V:	Z 2 1V:	n -	Y (m)	V (M
4	.6514	0.0050	0.40	0.60	0.60	0,014	0.50	1,860

Table 7.53 Hydraulic capacity of crown ditches.

IONARIA VIAI

UNIÓN DEL SUR

	.9191	0.0100	0.40	0.60	0.60	0.014	0.50	2,629
	1.1270	0.0150	0.40	0.60	0.60	0,014	0.50	3,221
	1.3014	0.0200	0.40	0.60	0.60	0,014	0.50	3,720
	1.5932	0.0300	0.40	0.60	0.60	0,014	0.50	4,555
	1.8411	0.0400	0.40	0.60	0.60	0,014	0.50	5,261
	2.0567	0.0500	0.40	0.60	0.60	0,014	0.50	5,880
	.6511	0.0050	0,400	0,600	0.60	0,014	0.50	1,860
	.9206	0.0100	0,400	0,600	0.60	0,014	0.50	2,630
	1.1275	0.0150	0,400	0,600	0.60	0,014	0.50	3,222
5	1.3019	0.0200	0,400	0,600	0.60	0,014	0.50	3,720
	1.5945	0.0300	0,400	0,600	0.60	0,014	0.50	4,556
	1.8412	0.0400	0,400	0,600	0.60	0,014	0.50	5,261
	2.0585	0.0500	0,400	0,600	0.60	0,014	0.50	5,882

Source: Consorcio SH

Having obtained the hydraulic capacity for each slope and applied the rational method, the afferent drainage area that the crown ditch can evacuate was estimated, as presented in the drainage areas of crown ditches. See Table 7.62

U F	Slope (m / m)	Runoff coef.	Intensity (mm / h)	Draina ge area (hec)	Flow (m3 / s)
	0.0050	0,42	96.34	5.80	0.65
	0.0100	0,42	96.34	8.18	0,92
	0.0150	0,42	96.34	10.03	1,13
4	0.0200	0,42	96.34	11.58	1.30
	0.0300	0,42	96.34	14.18	1,59
	0.0400	0,42	96.34	16.38	1,84
	0.0500	0,42	96.34	18.30	2,06
F	0.0050	0,42	72.31	7.72	0.65
5	0.0100	0,42	72.31	10.91	0,92

Table 7.54 Drainage areas of crown ditches

0.0150	0,42	72.31	13.36	1,13
0.0200	0,42	72.31	15.43	1.30
0.0300	0,42	72.31	18,90	1,59
0.0400	0,42	72.31	21,82	1,84
0.0500	0,42	72.31	24,40	2,06

Source: Consorcio SH

Additional works

- Dissipation structures

The purpose of such work is to protect cut slopes and embankments against erosion, for this purpose three types of dissipation structures in the cuts were designed; the first in cases where the delivery is made to sewers inlet (Figure 7.44), the second when delivery is made directly to the side of the road, as shown in Figure 7.50 and the third when the dissipation structure is in the outlet see Figure 3-13.

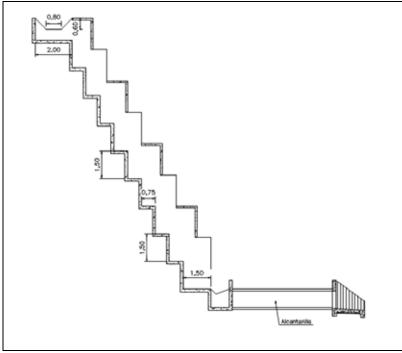
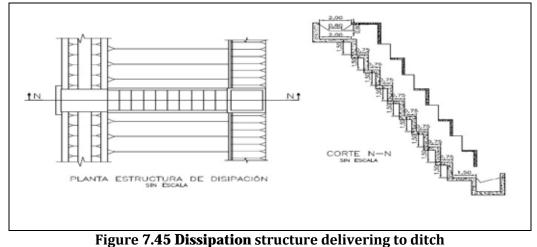



Figure 7.50 Dissipation structure with inlet box culvert Source: Consorcio SH

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 138

Figure 7.51 shows dissipation structures located on cut slopes and delivered to the drainage work box per functional unit.

Source: Consorcio SH

Table 7.63 shows dissipation structures located in cut slopes and delivering to side ditch.

UF	BASIN	ABSCISSA
4	3	K0 + 180.00
	3	K0 + 400.00
	8	K1 + 157.00
	35	K5 + 774.00
	50	K8 + 890.00
	57	K10 + 060.00
	74	K12 + 563.00
5	1	K15 + 800.00
J	81	K29 + 514.00

Table 7.55 Dissipation structures delivering to ditch

Source: Consorcio SH

To protect embankments a dissipation structure similar to that of the cuts was projected but with a different geometry due to the difference in slope. Figure 7.52 shows this type of structure.

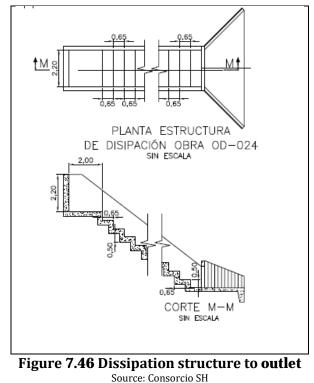


Table 7.64 shows dissipation structures located over the fills.

UF	BASIN	ABSCISS A
4	14	K1 +
		863.83
	20	K3 +
		094.55
	22	K3 +
		416.27

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 140

UF	BASIN	ABSCISS A
		K8 +
	50	651.84
		K8 +
	51	843.38
	50	K9 +
	52	079.36
	53	K9 +
	55	437.34
	54	K9 +
	01	522.67
	55	K9 +
		644.19
	57	K9 +
		917.35
	58	K9 +
		967.92
	70	K11 +
		595.18 K12 +
	75	508.01
		K16 +
	4	237.50
	21	K19 +
		938.92
	0.0	K22 +
~	36	912.16
5	40	K23 +
	40	962.46
	41	K24 +
		043.26
	42	K24 +
	76	171.12

UF	BASIN	ABSCISS A	
	95	K30 +	
	85	476.40	
Source: Consorcio SH			

The geometry and configuration of dissipation structures at the inlet and outlet of the drainage works presented in drawings CSH-4-PL-OD-G-7002 and CSH-5-PL-OD-G-7007 - Typical Drainage Details - Sizing.

7.5. Forestry use

In line with Decree 1791 of 1996 and Decree 1076 of 2015 "Whereby the Single Regulatory Decree of the Environment and Sustainable Development Sector is issued", the environmental authority is the entity that issues the authorization to use a forest isolated or trees located on private land or public property, either planted forest or natural forest by three types of logging: unique, persistent and domestic.

In this order of ideas, the proposed **Rumichaca**-Pasto the dual carriageway construction project, Pedregal-Catambuco section, requires a sole forestry use, which will take place only once for areas where forest type vegetation was identified.

Accordingly, the logging permit is requested for forestry individuals located within the line of chamfers and right of way (which comprises the area forming the roadway, construction sites of bridges, viaducts, returns, separators, ditches, toll, CCO), ZODME locations and their access, camps and plants and surface water uptake points.

Quantity and surface works and / or constructive project activities related to forestry.

The total project intervention area includes 485,48ha related to specific road construction sites, right of way, and associated infrastructure. In this area, 123,69ha correspond to 33 ZODME excavation material storage areas and 6.76 ha to 2 camp **areas**.

As shown in Table 7.65, the highest percentage is occupied by Zodme areas (24 of the 33 have tree vegetation) with 50.42% of the area to be used, followed by road areas

-1	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 142

with 46.82% of the total area and finally the camp areas, which are only two in the Pedregal-Catambuco section. See map EIADCRP_PC_035 (scale 1: 25,000).

Table 7.575 Forestry related min astructure works			
Type of infrastructure	Total area (ha)	Occupied percent (%)	
ZODME areas	123.69	50.42	
* Associated infrastructure	6.76	2.76	
Roads **	114.87	46.82	
Total	245.32	100	

Table 7.575 Forestry related infrastructure works

* Camps. ** Includes the area inside the chamfers line and punctual infrastructure (occupation of rivers, bridges, viaducts, returns, separators, ditches, toll, CCO) and roads associated with the second road to be built (right of way, access to: Zodmes, camps, uptake points, worksites)

Source: Gemini Environmental Consultants, 2016.

To calculate forest volume to be used, only the area located in ecosystems with total or partial presence of tree stands and / or trees was taken into account. For mosaics, crops and grazing cover areas only the effective area, i.e., only the areas with presence of trees were considered.

The estimated cartographically areas with presence of grouped trees or woodlands and individual trees are:

Ecosystem		Area occupied by woodlands or grouped forest	Area occupied by scattered
Code	Cover (Level 3)	(ha)	trees (ha)
202.4.2	Mosaic of pasture and crops of the high Andes orobioma environment	14.86	0.23
Agroforestry c 202.2.4	Agroforestry crops of the high Andes orobioma	7.23	0.13
	environment	1.27	0.02
	Agroforestry crops of the high Andes orobioma environment	2,51	0.05
212.4.2	Mosaic of pasture and crops of the high Andes orobioma environment	15,99	0.33
203.1.4	Riparian forest of the middle Andes orobioma environment	2.07	-
203.1.5	Plantations of the middle Andes orobioma environment	2,14	-
213.1.4	Riparian forest of the high Andes orobioma	0.11	-

Table 7.58 Areas by ecosystem

	environment		
213.1.5	Plantations of the high Andes orobioma environment	0,34	-
	Total		0,76

Source: Gemini Environmental Consultants, 2016.

From the area indicated in above table, calculations and estimates of forest harvesting on ecosystems where sampling was performed were made.

Moreover, it should be noted that for the ZODME, 100% inventories and respective calculations of the sites with timberline are included. Those located where there is presence of forest elements are not included in this logging request.

7.5.1 Type of sampling

Resolution 0751 of 2015 whereby the terms of reference for preparation of the EIA are adopted, states in paragraph 7.5 logging, when a sole forestry use permit is requested the following information must be submitted:

Forest inventory of individuals present in each vegetation cover, using a statistical sampling to meet a sampling error not exceeding 15% and a likelihood of 95%.

<u>Methodology</u>

The forest use calculation was performed by sampling and a 100% inventory whose scope is shown below. This methodology is detailed in section 2.3.2.2 of Chapter 2 in the section entitled "Methodology for calculating Forest Use".

The number of sample plots was defined based on a pre-sampling that used as a reference a minimum of two plots per cover (Annex 7.5.8).

Given that in the intervention area the forestry component is not only present in natural and planted forests as a unit of cover, but also planted trees that are part of agricultural and livestock areas; the latter was **sampled** in order to characterize the vegetation, the pre-sampling for this particular case was made taking as forest area the sum of the woodlands. This process is carried out within the area of intervention.

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 144

Moreover, scattered trees and grasses in crops were estimated, calculating the area through satellite images (sum of total area occupied by scattered trees and grasses in the Mosaic cover of crops and grasses (2.4.2), grasses and trees planted (2.2.4.1) and crops and trees planted (2.2.4.2) and summing these volumes to the total ecosystem.

The volume obtained was extrapolated to the entire area of the ecosystem in regard the percentage of existing vegetation, taking into account the guidelines of this Corine Land Cover methodology adapted to Colombia.

According to the aforesaid, a stratified random sampling was made with samples taken by vegetation cover susceptible to intervention and their location was randomly selected within the area delimited by chamfers.

Calculation of forest use of accesses to ZODMES, camps, uptakes and occupation of channels, is included within the sampling area evaluated.

Meanwhile, for ZODMES and camp sites, a 100% inventory was made, given that these are smaller areas where the presence of scattered and dispersed forest elements facilitated obtaining the information for all of them. ((See Annex 7.5.1 *Inventory intervention Pedregal-Catambuco*) See Annex 7.5.2 *Inventory Zodme at 100% Pedregal-Catambuco* and 7.5.3 *inventory camps at 100% Pedregal - Catambuco*)

All information gathered in the field was recorded in the flora sampling formats (Annex 7.5.5a and 7.5.5b inventory by plots, 7.5.6 inventory at 100% in ZODMES).

• <u>Results</u>

According to the pre-sampling results included in Annex 7.5.8 (that also includes the sampling error estimate), the information gathering of sample plots was carried out at the sites listed in Table 7.65.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 145

section intervention area						
COVED			PV	Magna Sirgas planar coordinates Origen West		
COVER	ID	Sector	РК	х	Ŷ	
Orobioma medio de los andes						
Mosaic grasses and	4-2.4.2-PP2	Inantas bajo (Yacuanquer)	4+600	960310,763	608304,167	
crops	5-2.4.2-PP1	Chávez (Tangua)	18+200	966212,29	614562,16	
Grasses and	4-2.2.4.1-PP1	El tablón (Tangua)	7+700	961401,68	609630,965	
planted trees	4-2.2.4.1-PP2	San Pedro (Tangua)	10+500	962282,377	611288,299	
Crops and	4-2.2.4.2-PP1	El Pedregal (Imués)	0+800	957403,1945	607415,582	
planted trees	4-2.2.4.2-PP2	Inantas bajo (Yacuanquer)	3+800	959464,8592	608293,2075	
Riparian	4-3.1.4-PP3	Inantas bajo (Yacuanquer)	6+300	961012,108	609509,374	
Forest	4-3.1.4-PP4	Inantas bajo (Yacuanquer)	6+500	961012,131	609708,412	
Forest	4-3.1.5-PP1	El Vergel (Tangua)	12+700	963639,1673	612527,8236	
plantation	4-3.1.5-PP2	El Cebadal	15+600	966065,6034	613235,2568	
		5	Andes Orobiom	a		
	5-2.4.2-PP4	Vocational (Grass)	29+300	972933,8695	618176,75	
Mosaic of grasses and	5- 2.4.2-PP5	Vocational (Grass)	29+600	973193,5797	618318,02	
crops	5-2.4.2-PP6	La Merced (Grass)	30+970	974334,445	618886,1457	
	5-2.4.2-PP7	La Merced (Grass)	31+150	974417,9201	619042,8001	
	2.2.4.1-PP2	El Tambor (Tangua)	22+100	967606,7802	616088,5799	
Grasses and planted trees	2.2.4.1-PP3	La Palizada (Tangua)	27+200	970961,4328	618809,6963	
	2.2.4.1-PP4	Catambuco (Grass)	31+800	974968,2494	619359,13	
Forest	3.1.5-PP1	El Páramo (Tangua)	26+700	969393,8648	617226,73	
plantation	3.1.5-PP2	El Páramo (Tangua)	24+800	969371,6071	617248,83	

Table 7.59. Plots by ecosystem, Rumichaca-Pasto road Project, Pedregal- Catambuco
section intervention area

			Sector PK	Magna Sirgas planar coordinates Origen West	
COVER	ID	Sector		х	Y
Riparian Forest	5-323-PP1-AI	Vocational (Grass)	29+500	973200,816	618257,906
	5-323-PP2-AI	Vocational (Grass)	29+600	973212,553	618268,822
	5-323-PP3-AI	Vocational (Grass)	29+700	973279,825	618314,391

Source: Géminis Consultores Ambientales, 2016.

Follows the list of the sampling results by vegetation and ecosystem, according to the data obtained in aforementioned plots (See Annex 7.5.5b 7.5.5a and field formats medium and high Andes orobioma).

7.5.2. Total and commercial volume

The formula used to determine the total and commercial volume of established plots, corresponds to the following: $V = AB (m^2) * H (m) * Ff * N$

Where: $AB = \pi / 4 * (DAP) ^ 2$ H = Total height or commercial Height Ff = Form Factor (0.7)N = Number of stemwood

Applying this parameter is very important to obtain the forest use volume requested, where the diameter, height and form factor (0.7 in this case) values determine the results.

7.5.2.1 Inventory by cover and ecosystem in the intervention area.

To obtain the volume of wood to be requested for forest use, only the individuals recognized as timber were recognized, i.e., fruit trees were excluded.

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 147

This in accordance with Article 72 of Decree 1791 of 1996 (Forestry use request), which quotes verbatim: "*agricultural crops or fruit trees with woody characteristics may be used to obtain forest products, in which case only a safe conduct is required to mobilize* them."

Fruit tree species not included in the inventory are Persea americana Mill. (Avocado), Citrus sinensis (L.) Osbeck (orange), Citrus reticulata Blanco (Mandarin), Psidium guajava L. (guava), Citrus limon (L.) Osbeck (Lemon), Inga spectabilis (Vahl) Willd. (Guabo), loquat (Thunb.) Lindl. (Loquat), Annona cherimola (Chirimoya) and Spondias mombin L. (Ovo).

In the area of project intervention, nine (9) ecosystems were identified that have the tree component, five of which correspond to mosaics or agroforestry crops for the latter two, the calculation was performed taking into account only the area of the patches occupied by timberline, as mentioned above in the pre-sampling and sampling calculation procedure.

In the sum of the volumes of the area called "Roads" used to calculate total and commercial volume, the grassland woodlands medium Andes orobioma ecosystem was not considered since this was only found in the Zodme (area Z4- 4) whose volume is listed in separate document of these areas. (See Annex 7.5.2. Zodme 100% Inventory)

• Mosaic of grasses and crops middle Andes orobioma (20242)

The species representing the highest volume in comparison is the Eucalyptus globulus Labill (Eucalyptus) with 6,70m3 (Total volume) because this is the most abundant species in fustal state in the ecosystem. In most cases it was observed that this species is located mainly in live fences to delimit land and pastures.

Table 7.66 and its figure show the volumes for the fustal stratum of the mosaic grasses and crops ecosystem middle Andes orobioma for a total of 7,512m3, of which 5,087m3 correspond to the commercial volume in the sampled area.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 148

Table 7.608. Total and commercial forest volume in mosaic grass and crops middle Andesorobioma ecosystem

No.	Common name	Scientific name	Total volume (m3)	Commercial volume (m3)
1	Eucalyptus	Eucalyptus globulusLabill.	6,699	4,453
2	Масо	oblongifoliola CabraleaC.DC.	0.419	0.350
3	Quillotocto	Tecoma stans (L.) Juss. ex Kunth	0.248	0.163
4	Urapan	Fraxinus chinensisRoxb.	0.147	0.120
	Total			5,087

^{8,00} 6,70 6,00 4,45 4,00 2,00 0,42 0,35 0,25 0,16 0,15 0,12 0,00 Eucalipto Urapán Maco Quillotocto Volumen total (m3) Volumen comercial (m3)

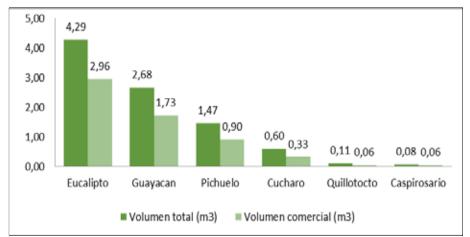
Source: Gemini Environmental Consultants, 2016.

Given the above, an average total volume of 37,561m3 per hectare and an average commercial volume of 25,434 m3 per hectare were estimated.

• Grasses and trees planted from the middle Andes orobioma (202241)

The total sample volume for each species for the grasses and trees planted of the middle Andes orobioma ecosystem was determined as shown in Table 7.67; the species with the highest total and commercial volume was globulus Labill Eucalyptus (Eucalyptus) with 4,289m3 (Total) and 2,962m3 (commercial), other species found showed volumes below 1 m3.

Source: Gemini Environmental Consultants, 2016.


Figure 7.47. Total and commercial forest volume in mosaic grass and crops middle Andes orobioma ecosystem

For the total species, a total volume of 9,224m3 was determined, of which 6,040m3 correspond to leverage trade volume. As observed, the values of volume in these mosaics are not very high, this is because the tree species found in pastures and planted trees in the middle Andes orobioma ecosystem, are mostly planted not for commercial purposes but to be used as living fences, ornamental and domestic use, reason why there is no proper forestry management that allows optimal development of forest species for forestry use.

Table 7.61. Forest volume by species in grasses and trees planted middle Andes orobioma(202241) ecosystem

No.	Common name	Scientific name	Total volume (m3)	Commercial volume (m3)
1	Eucalyptus	Eucalyptus globulus	4,289	2,962
2	Guayacán	Lafoensia speciosa	2,676	1,731
3	Caspirosario	Llagunoa nitidaRuiz & Pav	0.079	0.056
4	Cucharo	Myrsine guianensis	0.603	0.331
6	Pichuelo	Senna spectabilis	1,465	0.904
7	Quillotocto	Tecoma stans	0.111	0.056
	Total			6,040

Source: Gemini Environmental Consultants, 2016.

Figure 7.48. Forest volume by species in grasses and trees planted middle Andes orobioma ecosystem

Source. Gemini Environmental Consultants, 2016

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 150

Given the above an average total volume of 46.120 m3 per hectare and an average commercial volume per hectare of 30,2199m3 were estimated.

• Crops and trees planted of the middle Andes orobioma (202,242)

Sampled fustals in the crops and trees planted of the middle Andes orobioma ecosystem, add up to a total of 1,107m3 of harvestable timber and 2,632m3 of total volume (Table 7.70), this low volume is because this cover has crops as productive activity, growth of the species is controlled and there is also a number of fruit species, which do not add to requested volume use.

ecosystem					
No.	Common name	Scientific name	Total volume (m3)	Trade volume (m3)	
1	Carbonero	Albizia carbonaria Britton	0.103	0.039	
2	Casco de vaca	Bauhinia Pictish(Kunth) DC	0.040	0.011	
3	Cedar	Cedrela odorata L.	0.541	0.203	
4	Gualanday	Jacaranda cuspidifoliaMart.	0.239	0.106	
5	Guayacan	Lafoensia acuminata (Ruiz & Pav.) DC.	0.939	0.262	
6	Higuerilla	Ricinus communis L.	0.035	0,005	
7	Pichuelo	<i>Senna spectabilis</i> (DC.) H.S.Irwin & Barneby	0.040	0.010	
8	Urapan	Fraxinus chinensisRoxb.	0.696	0.471	
		2,632	1,107		

Table 7.70. Forest volume by species in crops and trees planted middle Andes orobioma
ecosystem

Source. Gemini Environmental Consultants, 2016

	CSH-4-AM-AM-EIA2-GG- 0013-7
ENVIRONMENT EFFECT INVESTIGATION	March 2017
	Page 151

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

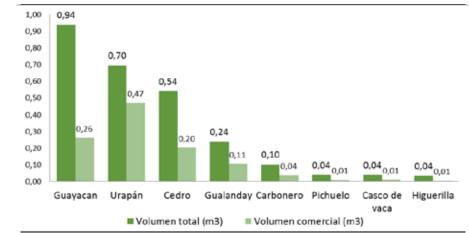


Figure 7.49. Forest volume by species, in gallery and riparian forests middle Andes orobioma ecosystem

Source: Gemini Environmental Consultants, 2016.

Given the above an average total volume of 13,160 m3 per hectare and an average commercial volume per hectare of 5,535m3 were estimated.

• **Riparian and gallery forest from the middle Andes orobioma (20314)**

As shown in Table 7.69, the only species with input volume for the sample taken in the gallery or riparian forest ecosystem of the middle Andes orobioma, is the *Fraxinus chinensis*Roxb (Urapan) with 24,34m3 total volume and 10,76m3 of commercial volume, reflecting a possible enrichment of the forest with planted species, since this is an introduced species that is not representative of natural forests in the area.

The species listed in forest use of this ecosystem differ from those found in area of influence characterization, this is because the characterization sampling was carried out taking into account the characteristic vegetation of this ecosystem in the area, therefore samples were taken in places that explain the natural ecosystem associated with water bodies located in the area of influence of the project. However, by placing the samples to calculate logging inside the intervention area, the predominance of sectors encompassed by orchards and foreign timber and / or introduced from farms neighboring the road was found.

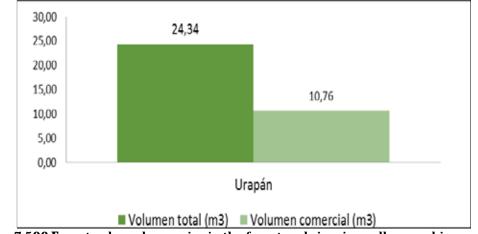

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
		March 2017
		Page 152

 Table 7.71. Forest volume by species in the forest and riparian gallery middle orobioma

 Andes ecosystem

No.	Common name	Scientific name	Total volume (m3)	Commercial volume (m3)
1	Urapan	Fraxinus chinensisRoxb.	24.34	10.76
	Total		24.34	10.76

Source. Gemini Environmental Consultants, 2016.

Figure 7.506 Forest volume by species in the forest and riparian gallery orobioma middle Andes ecosystem

Source: Gemini Environmental Consultants, 2016.

Given the above, the average total volume per hectare of 121,70m3 and an average commercial volume per hectare it 53,80m3 were estimated.

• Forest plantation of the middle Andes orobioma (20315)

It was determined that the highest volume timber in the sample taken was contributed by *Eucalyptus globulus* Labill (Eucalyptus) with a total volume of 23,24m3 and a commercial volume of 14,89m3 and Pinus patula Schiede ex Schltdl. & Cham (Pino) with a total volume of 1,29m3 and 0,82m3 commercial.

For the study a total volume of 24,529m3 and a commercial volume of 15,716m3 were obtained. The potentially useful net volume of roundwood, with respect to the total volume, shows a wide difference, mainly because in the intervention area most trees

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 153

found they did not have proper forestry management making them harvestable timber, but are mostly in unproductive land without great care by the farmer. (See Table 7.72)

 Table 7.622 Forest volume by species in the forest plantation middle Andes orobioma

 ecosystem

No	Common name	Scientific name	Total volume (m3)	Commercial volume (m3)	
1	Eucalyptus	Eucalyptus globulusLabill.	23,238	14,893	
2	Pine tree	<i>Pinus patula</i> Schiede ex Schltdl. & Cham.	1,291	0.823	
	Total 24.53 15.71				
	Source: Gemini Environmental Consultants, 2016.				

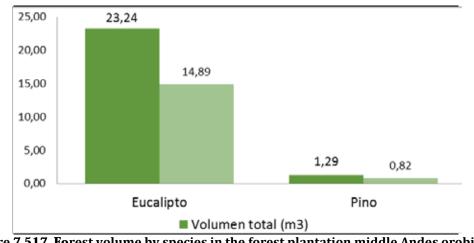


Figure 7.517. Forest volume by species in the forest plantation middle Andes orobioma ecosystem

Source: Gemini Environmental Consultants, 2016.

Given the above the average total volume per hectare of 122,647m3 and an average commercial volume of 78.582 m3 per hectare were estimated.

• Mosaic grasses and crops high Andes orobioma (21242)

As indicated by Figure 7.58 the species with the greatest volume contribution in this ecosystem is the Eucalyptus globulus Labil. (Eucalyptus) with 5,622m3 of harvestable timber, and the species with the lowest value is *Baccharis latifolia (Ruiz & Pav.)*

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 154

Pers.(Chilca) with 0,092m3, that, although not a timber species, individuals with CAP established for fustals were found, this high contrast is because the first is an introduced species of rapid growth and characteristics of timber, while the second is a smaller size kind.

Table 7.71 shows for the sample taken in the intervention area mosaic grasses and crops ecosystem from the high Andes orobioma; the commercial volume corresponds to 9,19m3, being a low value compared to the total volume of 19.68m3. This is presumably because most fustals found in the study area have been planted for dendrological harvesting, hedgerows, or have grown by natural propagation; and therefore they have not undergone technical management to avoid growth, inclined, without low and / or bifurcated branches.

No,	Common name	Scientific name	Total volume (m3)	Commercial volume (m3)
1	Japanese Acacia	Acacia melanoxylonR.Br.	3,088	1,487
2	Chilca	Baccharis latifolia(Ruiz & Pav.) Pers.	0.186	0.092
3	Cipré	Cupressus lusitanicaMill.	0.261	0.145
4	Eucalyptus	Eucalyptus globulusLabill.	10,841	5,622
5	Jazmin huesito	Pittosporum undulatumVent.	0.239	0.107
6	Moquillo	Saurauia ursinaTriana & Planch.	0.284	0.118
7	Mote	Saurauia bullosaWawra	0.243	0.096
8	Pino	Pinus patulaSchiede ex Schltdl. & Cham.	4,539	1,525
		Total	19.681	9,192

 Table 7.63 Volume per species in the mosaic pastures and crops high Andes orobioma

 ecosystem

Source: Gemini Environmental Consultants, 2016.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 155

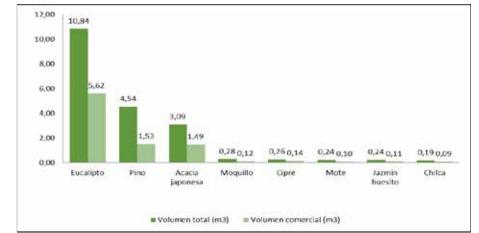


Figure 7.528. Volume per species in the mosaic pastures and crops high Andes orobioma ecosystem

Source: Gemini Environmental Consultants, 2016.

Given the above an average total volume of 49,202m3 per hectare and an average commercial volume per hectare of 22,980m3 were estimated

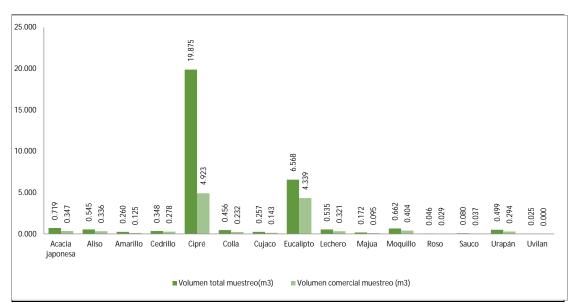
• Grasses and trees planted from the high Andes orobioma (212241)

The total volume for each species for Pastures and trees planted from the high Andes orobioma ecosystem was determined, as shown in Figure 7.56 the species *Cupressus lusitanica* (Cipro) is the species with the larges exploitable volume with a total volume of 19,875m3 and a trade volume of 4,923m3.

For the study a total volume of 19,68m3 and a commercial volume of 9,19m3 were obtained (Table 7.72). The net volume potentially useful of round wood, with commercial volume, with respect to the total volume shows a wide difference, mainly because in the intervention area most trees found did not have proper forestry management to make them harvestable timber but are found mostly in live fences and around houses.

Table 7.64 Forest volume by species in the pastures and planted trees high Andes orobioma ecosystem

No.	Common name	Scientific name	Total volume (m3)	Commercial volume (m3)
1	Japanese Acacia	Acacia melanoxylon	0.719	0.347



No.	Common name	Scientific name	Total volume (m3)	Commercial volume (m3)
2	Alder	Alnus acuminata	0.545	0.336
3	Yellow	Miconia nodosa	0260	0.125
4	Cedrillo	Phyllanthus salviifolius	0.348	0.278
5	Cipré	Cupressus lusitanica	19,875	4,923
6	Colla	dendrophorbium lloense	0.456	0.232
7	Cujaco	Solanum ovalifolium	0.257	0.143
8	Eucalyptus	Eucalyptus globulus	6,568	4,339
9	Lechero	Euphorbia laurifolia	0.535	0.321
10	Majua	<i>Palicourea</i> sp	0.172	0.095
11	Moquillo	Saurauia ursinaTriana & Planch.	0.662	0.404
12	Roso	Miconia thaezans	0.046	0.029
13	Elder	Sambucus nigra	0.080	0.037
14	Urapan	Fraxinus chinensis	0.499	0.294
15	Uvilan	Monnina aestuans	0,025	0,000
		Total	31.047	11,902

Source: Gemini Environmental Consultants, 2016.

Figure 7.53. Forest volume by species in the pastures and planted trees high Andes orobioma ecosystem

Source: Gemini Environmental Consultants, 2016.

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 157

Given the above the average total volume per hectare of 103,489m3 and an average commercial volume per hectare 39,674m3 were estimated.

• Forest plantation of the high Andes orobioma (21315)

Sampling of this ecosystem presents a commercial volume of timber 14,005m3 corresponding to a 19,293m3 total volume. (Table 7.73 and Figure 7.57)

 Table 7.65. Total commercial volume in the forest plantation high Andes orobioma

 ecosystem

NoCommon nameScientific namevolume (m3)volume (m3)		ccosystem								
	No Scientific name		volume							
I Eucalyptus Eucalyptus globulusLabill. 19,293 14,005	1	Eucalyptus	Eucalyptus globulusLabill.	19,293	14,005					
Total 19,293 14,005			Total	19,293	14,005					

Source: Gemini Environmental Consultants, 2016.

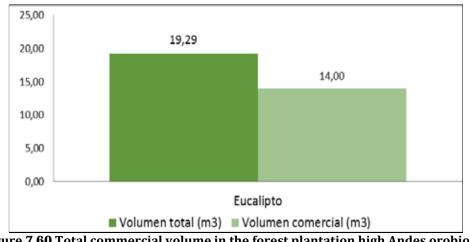


Figure 7.60 Total commercial volume in the forest plantation high Andes orobioma ecosystem

Source: Gemini Environmental Consultants, 2016.

Given the above an average total volume of 96,465 m3 per hectare and an average commercial volume of 70.023 m3 per hectare were estimated.

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 158

• Riparian forest from the High Andes orobioma (2.1.3.1.4)

Sampling of this ecosystem shows a commercial timber volume of 24,862m3 corresponding to 38,122m3 total volume. (and Figure 7.58)

Table 7.666. Total and commercial volume in the riparian forest high Andes orobioma ecosystem

Common Scientific name		Total volume (m3)	Commercial volume (m3)				
Alder	Alnus acuminata	1,465	1,001				
Cipré	Cupressus lusitanica	0.148	0.098				
Eucalyptus	Eucalyptus globulus Labill.	34,329	22619				
Amarillo	Miconia nodosa	0.280	0.118				
Pine tree	Pinus patula	1,240	0.681				
Moquillo	<i>Saurauia</i> sp.	0.599	0.303				
Cujaco	Solanum hazeniiBritton	0.030	0.020				
Encino	Weinmannia tomentosa	0.032	0.021				
	Total	38.122	24.862				
	nameAlderCipréEucalyptusAmarilloPine treeMoquilloCujacoEncino	nameScientific nameAlderAlnus acuminataCipréCupressus lusitanicaEucalyptusEucalyptus globulus Labill.AmarilloMiconia nodosaPine treePinus patulaMoquilloSaurauiasp.CujacoSolanum hazeniiBrittonEncinoWeinmannia tomentosaTotal	Common nameScientific namevolume (m3)AlderAlnus acuminata1,465CipréCupressus lusitanica0.148EucalyptusEucalyptus globulus Labill.34,329AmarilloMiconia nodosa0.280Pine treePinus patula1,240MoquilloSaurauiasp.0.599CujacoSolanum hazeniiBritton0.030EncinoWeinmannia tomentosa0.032				

Source: Gemini Environmental Consultants, 2016.

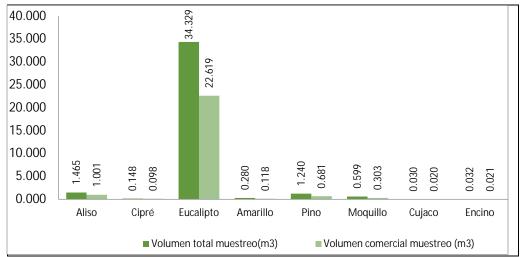


Figure 7.61. Total and commercial volume in the riparian forest high Andes orobioma ecosystem

Source: Gemini Environmental Consultants, 2016.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 159

Given the above an average total volume of 127.075 m3 per hectare and an average commercial volume of 82.874 m3 per hectare were estimated.

7.5.2.2. Calculation of total and commercial volume per vegetal cover to be intervene in road areas - Sampling Results

The estimate of the total timber volume is obtained from distributing natural areas inventoried inside different ecosystems; considering the fact that in covers associated with mosaics, land occupation for the tree component is less than the surface occupied by pasture or crops because species planted predominantly with foreign or introduced wood were found. While in wooded areas there is an occupation of total coverage space where introduced species not native to the area were also found.

The percentage of natural areas is listed in the heterogeneous coverage tables are equivalent to land occupation by natural areas with respect to the total area of each ecosystem.

This process was done with the help of satellite imagery, where, after obtaining the value and the average volume per hectare, the total area values of the ecosystem were extrapolated.

This determination was made taking into account the Corine Land Cover methodology adapted for Colombia that establishes (for this case) that the heterogeneous agricultural areas are occupied by natural spaces between 30 and 70% of total coverage.

Total volume

As shown in Table 7.75 the calculations for mosaic areas (Heterogeneous agricultural areas) with woody vegetation areas, results in total volume of 1991.062m3, including woody patches between crops and pastures and dispersed in the same areas.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 160

Table 7.677. Total volume Pedregal-Catambuco section heterogeneous cover dual carriageway

Wooded patches							ttered tre	ees	
Ecosystem	X Vol Tot/ha (m ³ /ha)	Cover area (ha)*	Percentage forest occupation **	Forest occupied area (ha)	Estimated cover volume (m3)	% occupation disperse trees	Natural spaces area (ha)	Estimated cover volume (m3)	Sum by ecosystem (m3)
1	2	3	4	5 (3x4) /100	6 (5x2)	7	8	9 (8x2)	10 (6+9)
202.4.2	37.561	33.373	44.531	14.861	558.213	0.69	0.23	8.689	566.902
202.2.4.1	46.120	19.248	37.551	7.228	333.338	0.69	0.13	6.153	339.492
202.2.4.2	13.160	2.990	42.351	1.266	16.667	0.69	0.02	0.273	16.940
212.4.2	49.202	47.885	33.400	15.994	786.920	0.69	0.33	16.332	803.251
212.2.4.1	103.489	6.707	37.410	2.509	259.665	0.69	0.05	4.811	264.477
Total	249.533	110.204		41.858	1954.803			36.259	1991.062
				Total	(1954.803+36.259) =1991.06			1551.002	

Mosaic pastures and crops middle Andes orobioma [202.4.2] Grasses and trees planted middle Andes orobioma [202.2.4.1],

crops and trees planted middle Andes orobioma [202.2.4.2], Mosaic pastures and crops high Andes orobioma [212.4.2] grasses and trees planted high Andes orobioma [212.2.4.1].

* Area occupied by each cover inside the area of intervention (calculated cartographically)

** Percentage occupied by forest elements in each cartographically cover (calculated)

(3x4) /100: Box 3 multiplied by 4/100; (5x2) Box 5 multiplied by the box 2

Source: Gemini Environmental Consultants, 2016.

The Table 7.78 presents the estimated total volume in ecosystem composed of homogeneous cover, i.e. where trees are continuously present throughout the extent of the cover unit; as explained before, these calculations were performed separately since in the other ecosystems there is only an occupancy percentage of forest areas with respect to the total cover area. Their sum yielded a total volume of 561,32m3.

Table 7.688. Total volume Pedregal- Catambuco section homogeneous coverage dual carriageway

Callageway								
Ecosystem X Vol Tot / ha (m3)		Coverage Area (ha)	Total estimated coverage volume (m3)					
203.1.4	121,700	2.07	251.51					
203.1.5	122647	2.14	262.44					

Total	467.89	4.66	561.32
213.1.5	96465	0.34	32.97
213.1.4	127075	0.11	14.39

Riparian forest middle Andes orobioma, [203.1.4], forest plantation middle Andes orobioma [20.3.1.5], riparian forest high Andes orobioma [213.1.4], forest plantations high Andes orobioma [21.3.1.5]

Source: Gemini Environmental Consultants, 2016.

Commercial volume

Estimated timber volume of heterogeneous vegetation cover in the Pedregal-Catambuco section intervention area is 1089,836m3 (See Table 7.79).

Table 7.699. Pedregal- Catambuco sector commercial volume heterogeneous cover dual
carriageway

	Wooded patches Scattered trees								
Ecosystem	X Vol Tot/ha (m ³ /ha)	Cover area (ha)*	Percentage forest occupation **	Forest occupied area (ha)	Estimated cover volume (m3)	% occupation disperse trees	Natural spaces area (ha)	Estimated cover volume (m3)	Sum by ecosystem (m3)
1	2	3	4	5 (3x4) / 100	6 (5x2)	7	8	9 (8x2)	10 (6 + 9)
202.4.2	25,434	33373	44,531	14,861	377983	0.69	0.23	5,884	383866
202.2.4.1	30199	19.248	37551	7,228	218270	0.69	0.13	4,029	222299
202.2.4.2	5,535	2,990	42351	1,266	7,010	0.69	0.02	0.115	7,125
212.4.2	22,980	47,885	33,400	15,994	367527	0.69	0.33	7,628	375155
212.2.4.1	39674	6,707	37,410	2,509	99546	0.69	0.05	1,845	101391
Total	123822	110204		41,858	1070.336		0.76	19,500	1000 000
				Total	(1070.336 + 19,500) = 1089.84			1089.836	

Mosaic pastures and crops middle Andes orobioma [202.4.2] Grasses and trees planted middle Andes orobioma [202.2.4.1],

crops and trees planted middle Andes orobioma [202.2.4.2], Mosaic pastures and crops high Andes orobioma [212.4.2] grasses

and trees planted high Andes orobioma [212.2.4.1].

* Area occupied by each cover inside the area of intervention (calculated cartographically)

** Percentage occupied by forest elements in each cartographically cover (calculated)

(3x4) /100: Box 3 multiplied by 4/100; (5x2) Box 5 multiplied by the box 2

Source: Gemini Environmental Consultants, 2016.

Source: Gemini Environmental Consultants, 2016.

Homogeneous cover found in the Pedregal- Catambuco section intervention area were Riparian forests [3.1.4], forest plantations [3.1.5], middle and high Andes orobioma, which showed a commercial volume of 312,66m3 (Table 7.80):

Table 7.80. Commercial volume Pedregal- Catambuco sector, homogeneous cover dual
carriageway.

carriageway.									
Ecosystem	X Vol Com / ha (m3 / ha)	Cover Area (ha)	Estimated commercial volume per cover (m3)						
203.1.4	53,800	2.07	111.19						
203.1.5	78,582	2.14	168.15						
213.1.4	82874	0.11	9.38						
213.1.5	70023	0.34	23.94						
Total	285.28	4.66	312.66						

Riparian forest orobioma middle of the Andes [203.1.4], forest plantation middle of the Andes orobioma [203.1.5], riparian forest high Andes orobioma [213.1.4], forest plantation high Andes orobioma [213.1.5] Source: Gemini Environmental Consultants, 2016.

According to Table 7.81 the estimated total volume for the construction area second lane Pedregal-Catambuco section is 2552,38m3 sector, i.e., from the existing vegetation along functional units 4 and 5 this amount corresponds to 1402,49m3 of harvestable timber (commercial volume).

Table 7.81. Sum total and commercial value Pedregal-Catambuco section dual
carriageway

	Calliageway							
Ecosystem	Commercial estimated volume (m3)	Total estimated volume (m3)	Location					
202.4.2	383.87	566.90	0 + 000-0 + 300 4 + 400-5 + 100, 13 + 00-13 + 500, 15 + 100-15 + 400.					
202.2.4.1	222.30	339.49	4 + 850-5 + 100, 100 + 5 + 800-6, 600-7 + 7 + 800, 10 + 200-10 + 850, 12 + 800-13 + 000, 13 + 500-14 + 000,					
202.2.4.2	7.13	16.94	0 + 600-0 + 900, 8 + 500-3 + 850					
203.1.4	111.19	251.51	8 + 820-9 + 050					
203.1.5	168.15	262.44	6 + 050-6 + 150, 6 + 260-6 + 320, 6 + 400-6 + 600, 6 + 700-6 + 750, 6 + 850-7 + 000.					
212.4.2	375.15	803.25	0 + 900-1 + 200					
212.2.4.1	101.39	264.48	16 + 000-16 + 400, 18 + 200-19 + 200, 20 + 200-20 + 400, 21 + 100-21 + 500, 21 + 800-22 + 400, 22 + 650-22 + 900,					

Ecosystem	Commercial estimated volume (m3)	Total estimated volume (m3)	Location
			23+ 280-24 + 050, 24 + 660-25 + 600, 28 + 600-30 + 600, 30 + 750-31 + 200, 32 + 000-32 + 450.
213.1.4	9.38	14.39	32 + 000-32 + 100
213.1.5	23.94	32.97	16 + 300-16 + 650, 18 + 400-18 + 450, 20 + 550-20 + 700, 20 + 850-21 + 000, 21 + 800-22 + 650, 22 + 800-22 + 900, 26 + 700-27 + 600, 27 + 700-27 + 900, 31 + 700-32 + 000, 32 + 450-32 + 780.
Total	1402.49	2552.38	

Mosaic pastures and crops middle Andes orobioma [202.4.2] Grasses and trees planted middle Andes orobioma [202.2.4.1], crops and trees planted middle Andes orobioma [202.2.4.2], Mosaic pastures and crops high Andes orobioma [212.4.2] grasses

and trees planted high Andes orobioma [212.2.4.1].

* Area occupied by each cover inside the area of intervention (calculated cartographically)

** Percentage occupied by forest elements in each cartographically cover (calculated)

(3x4) /100: Box 3 multiplied by 4/100; (5x2) Box 5 multiplied by the box 2

Source: Gemini Environmental Consultants, 2016.

7.5.2.3 Rubble Materials and Excavation Materials Disposal Areas - ZODME

These areas were chosen for disposal according to the environmental zoning criteria for the road project, following the technical survey control specifications for the final road layout.

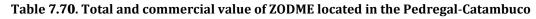
These areas were designed considering surplus material volume, the physical characteristics of each place, the most convenient location for the project, as well as geological, topographic and drainage features; preventing failures from sliding of deposited materials.

An estimated commercial volume of 265,331m3 and a total 476,535m3 volume is estimated for the ZODME areas.

This volume is relatively low given the characteristics of the individuals, i.e. the number of trees existing in fustal sate is low; in some ZODME areas only vegetation bush type can be seen, with no presence of trees with CAP \geq 10 cm.

Table 7.82 lists the number of identified individuals per ZODME inventoried according to the functional unit. (See Annex 7.5.2. 100% Zodme areas inventory)

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 164



ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL -CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

lad	rable 7.70. Fotal and commercial value of ZODME located in the Pedregal-Catambuco section								
				AREA	Number of		olume		
NOMENCLATURE	NAME	COUNTY	MUNICIPALITY	(ha)	individuals	Total Vol.	Commercial Vol.		
Z 4-1	Z 4-1 PK 0 + 000	Pilcuán	Imués	2.68	5	0.382	0.243		
Z 4-2	Z 0 + 400 04.02 PK	Pilcuán	Imués	0.47	8	3,285	1,664		
Z 03/04	Z 03/04 PK 2 + 000	El Pedregal	Imués	0.79	eleven	0.991	0.440		
Z 4-4	Z 4-4 PK 5 + 200	Inantas Bajo	Yacuanquer	6.75	51	23586	13,547		
Z 4-5	Z 4-5 PK 5 + 200	Inantas Bajo	Yacuanquer	5.05	66	7,015	3,392		
Z4-6	PK 4-2 ZR 8 + 600	Cocha Verde	Tangua	6.43	97	64281	35243		
Z 4-7	Z 4-7 PK 10 + 400	San Pedro Obraje	Tangua	10.65	16	5,655	3,236		
Z 4-9	Z 4-9 PK 14 + 560	El Vergel	Tangua	3.74	2	0.206	0.082		
R 4-2	PK 4-2 ZR 8 + 600	Cocha Verde	Tangua	2.67	9	4,589	2,385		
Z 5-1b	Z 5-1b PK 17 + 350	Chávez	Tangua	1.44	2	0.107	0.043		
Z 5-3	Z 5-3 PK 18 + 900	El Cebadal	Tangua	15.76	74	48485	20,626		
Z 5-6	Z 5-6 PK 20 + 900	El Tambor	Tangua	3.26	36	51502	33,021		
Z 5-6B	Z 5-10C PK 29 + 000	El Tambor	Tangua	2.21	64	63,630	36874		
Z 5-7	Z 5-7 PK 24 + 500	El Paramo	Tangua	0.78	3	0.192	0.078		
Z 5-8	Z 5-8 PK 25 + 000	Marqueza Bajo	Tangua	6.59	44	34099	17,224		
Z 5-9	Z 5-9 PK 26 + 280	Marqueza Bajo	Tangua	3.85	13	2,034	1,071		
Z 5-10	Z 5-10 PK 26 + 900	La Palizada	Tangua	0.51	2	0.640	0.169		
Z 5-10B	Z 5-10B PK 28 + 400	Vocacional	Grass	3.24	6	12,474	6,153		

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 165

				AREA	Number of	Volume	
NOMENCLATURE	NAME COUNTY MUNICIPALITY (ha)			individuals	Total Vol.	Commercial Vol.	
Z 11/05	Z 30 + 700 5/12 PK	Vocacional	Grass	1.19	5	1,003	0.446
Z 12/05	Z 12/05 PK 30 + 780	Vocacional	Grass	2.16	37	21,396	11,663
Z 5-13	Z 5-13 PK 31 + 600	Huertecillas	Grass	7.27	1	0.036	0.018
R 5-2	ZR 5-2 PK 20 + 520	El Tambor	Tangua	7.82	4	1,351	0.668
R 5-3	ZR 5-3 PK 22 + 450	El Tambor	Tangua	3.95	46	18,949	11,308
R 5-4	ZR 04/05 PK 30 + 950	La Merced	Grass	4.49	121	110,645	65,740
	Tot	al		103.72	723	476535	265331

Source: Gemini Environmental Consultants, 2016.

The following fruit trees were excluded from the 100% inventory in the ZODME areas: Chilacuan (Carica pubescens), Capulí (Prunus serotina), Chirimoya (Annona cherimola), orange (Citrus sinensis), guava (Psidium guajava) Guabo (Inga spectabilis), Avocado (Persea americana), loquat (Eriobotrya japonica), papaya (Carica papaya); the tree species Yucca (Yucca filifera) was also excluded from the inventory.

7.5.2.4 Camps and plants

These sites are arranged to locate temporary buildings that will serve to meet the needs of the project such as plants, offices, shops, mess hall, shops, housing staff, work fronts, contractors, site supervisors, workers.

In areas projected for the Pedregal-Catambuco sector camps, the forest inventory yielded a total volume of 40,673m3 and a volume of 14,832m3 of usable timber (Table 7.83). (See Annex 7.5.3. 100% camp inventory)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 166

	sector									
		LOCATION							Volume	
Functional unit	DV	Planar coo	rdinates *	Sector	Area	Number of individuals	Total Vol.	Commercial Vol.		
	PK.	РК. х У		(M3)	(M3)					
UF4	14 + 200	965,305.526	613,190.773	Tangua	3,25	63	10,638	3,879		
UF5	21 + 800	967,300.773	616,135.877	El Cebadal	3,51	81	30.035	10,953		
		Total			6.76	144	40.673	14,832		

Table 7.713. Total and commercial value Camps and plants for the Pedregal-Catambuco

* Planar Coordinate Magna SIRGAS origin West

Source: Gemini Environmental Consultants, 2016.

It is noteworthy that in 100% inventory results made in the areas of camps and plants, fruit were excluded, in accordance with provisions of the standard. Excluded Species: Loquat (loquat), Avocado (Persea americana), peach (Prunus persica), Capulí (Prunus serotina) Lemon (Citrus limon). Additionally tree species Yucca (Yucca filifera) was excluded.

7.5.3. Requested volume

As shown in Table 7.82, the estimated use total volume for the entire Pedregal-Catambuco section project is 3069,59m3 and 1682,66m3 for commercial volume, mostly concentrated in the dual carriageway "roads" construction areas. See Annex 7.5.4. Volume estimate calculations reports).

Activity	Sales volume (m3)	Total Volume (m3)	
Roads	1,402.49	2,552.38	
Zodme areas	265.331	476.535	
Associated infrastructure	14,832	40.673	
Total	1,682.66	3,069.59	

Table 7.724. Forest use volumes for the entire project, Pedregal- Catambuco sector

Source: Gemini Environmental Consultants, 2016.

7.5.4 Forest species in threatened Category: Endangered and Prohibited

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 167

In order to identify individuals of species in both Fustal and Brinzal stages in threated categories at a national and regional level inside the area of intervention of the road project, the road corridor was traveled in the areas comprising chamfers and right of way.

Thus, seven individuals from *Juglans neotropica* (Walnut) in fustal state, listed in the category of "endangered" (EN) according to resolution 0192 of 2014 and prohibited under resolution 316 of 1974, were identified whereby some timber forest species are prohibited in Colombia, three (3) individuals in functional unit 5 and four (4) in functional unit 4.

Moreover, in functional unit 4 6 subjects in fustal state Cedrela odorata L. (cedar) were identified in the crops and trees planted medium Andes orobioma ecosystem, classified as vulnerable according to IUCN and endangered as per the resolution 0192 of 2014.

Follows the list of threat categories to forest species listed above.

	Tuble Theorem classification by category of the cat								
No.	Common name	Scientific name	Res. 0192/2014	CITES	IUCN	RED BOOK OF TIMBER PLANTS OF COLOMBIA			
1	Walnut	Juglans neotropica	Endangered (EN)	III	Endangered (EN) *	Endangered (EN)			
2	Cedar	Cedrela odorataL.	Endangered (EN)	III	Vulnerable (VU) **	Endangered (EN)			
	TOTAL								

Table 7.733. Species classification by category of threat.

*http://www.iucnredlist.org/details/32078/0 ** http: //www.iucnredlist.org/details/32292/0 Source: Gemini Environmental Consultants, 2016.

Table 7.86 lists forest species prohibited and endangered identified in forest inventory of functional units 4 and 5.

Table 7.746. Endangered species identified in the Pedregal-Catambuco sector,intervention area

No).	ommon	Scientific Fu	Functional unit	County IUCN threat category	County	threat Type of	J I	Coordinates	DAP		ight n)	Volume (1	m3)
	r	name				category	Coverage	*	(m)	T C	Commercial	Total		
1	W	Walnut	Juglans neotropica	4	El Placer (Tangua)	IN	2.4.2	X 963,717.26	0.07	7	3	0,003	0.01	

No.	Common	Scientific	Functional	County	IUCN threat	Type of	Coordinates	DAP		ight n)	Volume (m3)
110.	name	name	unit	county	category	Coverage	*	(m)	T	C	Commercial	Total
			14 + 500				Y 612,169.88					
2	Walnut	Juglans	4	El Placer	IN	2.4.2	X 963,717.27	0.17	11	3	0.05	0.11
~	wannut	neotropica	14 + 500	(Tangua)	111	2.4.2	Y 612,169.89	0.17	11	5	0.03	0.11
3	Walnut	Juglans	4	El Placer	IN	2.4.2	X 963,717.28	0.32	5	1	0.17	0.61
0	Waniat	neotropica	14 + 500	(Tangua)		<i>w</i> . 1. <i>w</i>	Y 612,169.90	0.02	Ŭ	1	0.17	0,01
4	Walnut	Juglans	4	Pilcuan Viejo	IN	2.4.2	X 954,931.73	0.18	9	3	0,017	0.08
-	Wantat	neotropica	43 + 100	(Imués)		<i>w.</i> 1. <i>w</i>	Y 605,106.37	0.10	3	Ŭ	0,017	0.00
5	Walnut	Juglans	5	Cebadal	IN	2.2.4.1	X 9669445.1 And	0.35	11	4	0.27	0.74
		neotropica	20 + 900	(Tangua)			615,501.98			_		-,
6	Walnut	Juglans neotropica	5 17 + 900	San Antonio (Tangua)	IN	1.1.2	X966390,16 Y614379,91	0,21	9	3	.63	1,89
7	Walnut	Juglans neotropica	5 17 + 900	San Antonio (Tangua)	IN	1.1.2	X966389,60 Y614378,14	0.25	9	2.5	0,625	2.25
8	Cedar	Cedrela odorataL	4 PK. 0 + 800	La Lima (Imués)	VU	2.2.4.2	X 957375.25 Y 607,356.98	0,19	10	3	0.06	0.2
10	Cedar	Cedrela odorataL	4 PK 0 + 800	La Lima (Imués)	VU	2.2.4.2	X 957,368.13 Y 607,348.47	0,19	10	4	0.08	0.2
11	Cedar	Cedrela odorataL	4 PK 0 + 800	La Lima (Imués)	VU	2.2.4.2	X 957,368.80 Y 607,343.16	0.16	10	5	0.07	0.14
12	Cedar	Cedrela odorataL	4 PK 0 + 800	La Lima (Imués)	VU	2.2.4.2	X 957,368.23 Y 607,337.85	0.11	10	3	0.02	0.06
13	Cedar	Cedrela odorataL	4 PK 0 + 800	La Lima (Imués)	VU	2.2.4.2	X 957,369.79 Y 607,338.85	0.13	9	2	0.02	0.08
				TO	ГAL						2,029	6.43

Mosaic of crops and pastures [2.4.2], Crops and trees planted [2.2.4.2], Pastures and planted trees [2.2.4.1], Discontinuous urban fabric [1.1.2] * Planar Coordinates Magna SIRGAS origin West. Source: Gemini Environmental Consultants, 2016.

According to the procedure for requesting the lifting of prohibition in the ministry of environment and sustainable rural development, a document corresponding to identification of prohibited epiphytic, litófita and forest vegetation was filed with the forestry direction in the intervention area of the project, writ of commencement No. 391 of August 9, 2016, file ID ATV 0451.

7.5.5 Technical forestry use aspects

The harvesting works of will be done based on technical procedures, ensuring minimal loss of forest products and avoiding damage to surrounding forest individuals.

This procedure is listed in Chapter 11.1.1 of this study, "wildlife management program", which includes timber harvesting.

7.5.6 Destination of forest products

Timber products generated from logging will be used both in construction tasks related to project development as wells as donated to the community. The latter after signing minutes, where the volume of timber donated is specified and possible uses given thereto, stating that under no circumstances will it be commercialized.

7.6 Atmospheric emissions

The project intends to operate crushing, asphalt and concrete **plants** in the areas of the **camps**; therefore it is necessary to apply for the respective emission permits to develop these activities.

7.6.1 Emission sources

Emission sources found in the area of influence are classified according to the nature of emitting source and how pollutants are emitted; the sources are anthropogenic and classified as fixed and mobile as described below.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 170

• Identification of existing sources

Identification was made from the following classification: fixed, mobile and area.

- Mobile sources

Vehicles traveling in the study area are cars, trucks, tractors trucks, motorcycles and buses designed to operate on public roads. In most urban areas motor vehicles contribute a large amount of CO, NOx, SOx particulates, and air toxics compounds species that reduce visibility.

The inventory of mobile sources traveling on the corridor was extracted from the Traffic, Capacity and Service Levels Corridor 3: Rumichaca- Pasto Study. (See Table 7.85)

	Table 7.75 Inventor	y of mobile sources	
SECTOR	VEHICLES / DAY	VEHICLE TYPE	CATEGORY
Dedregel	177	Buses	Category II
Pedregal - Catambuco	1,526	Cars	Category I
Catalinuco	409	Trucks	Category II
Courses A.	danstad Traffi a Chudra aana aita	- and associate lands Drumin	haan Daata

Table 7.75 Inventory of mobile sources

Source: Adapted Traffic Study capacity and service levels Rumichaca -Pasto

• Fixed sources

Inherent to generation and activities productive found in the study area, which mostly lack of technology and infrastructure, and therefore have no control systems to prevent contamination. See Table 7.86

SOURCE TYPE	INDUSTRIAL	CAMP	PLANAR COORDINATES		
SUURCE I IFE	ACTIVITY	CAMP	Y	X	
	Concrete plant	Tangua	965,219.348	613,254.729	
	Crusher	Tangua	965227.6	613244.2	
Fixed source	Asphalt producer	Tangua	965,263.64	613,169.322	
	Concrete plant	Cebadal	967,335.125	616,017.756	
	Crusher	Cebadal	967202.2	615913.9	
	Asphalt producer	Cebadal	967,284.589	616,036.012	

Table 7.76: Stationary Sources Pedregal - Catambuco section

Source: Gemini Consultants SAS 2016

o Chircales

In the area of influence Chircales or artisan brickworks were identified, as seen in Photograph 7.4.

Follows the description of the brick manufacturing process.

- Storage of raw materials: consists of storing piles of clay for brick making.
- Grinding and mixing: Given that the manufacturing process is artisan, a wet type grinder with rolling mills and rollers is used to be trampled repeatedly by horses. Clay, once ground can be mixed with various additives (sand, barium carbonate etc.) according to quality requirements of the final product.
- Forming: The forming is the brick pattern, the clay passes through a perforated mold pushed by a rotating propeller, and this clay extorts the profile of the incorporated nozzle being able to change depending on the type of piece produced.
- Drying: This is naturally done by storing the shaped brick indoors which reduces the moisture by wind and sun effects.
- Cooking: It is the stage where all the moisture of the brick, which is done in a rustic kiln inn masonry with opencast emissions (see Figure 7.1) The energetic material for cooking is firewood or wood that fires for about 30 hours, until about 1000 ° C temperature is reached producing carbon dioxide (CO2), smoke, ash and particulate matter.

Photograph 7.4: Rustic oven for baking brick Coordinates magna sirga origin west (E5982.96-N614821.70)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 172

Source: (Gemini SAS Consultants, 2016)

o – Cremation furnace

A single oven serving the Nariño department located in the Pedregal Catambuco sector, the crematorium furnace (see Photograph 7.5) has two chambers: a primary loading, combustion and ignition of waste with a minimum temperature of 850 ° C and a secondary post-combustion where the flue gases are burned with a minimum temperature of 1200oC. The waste is fed only when the chambers have reached and maintained these temperatures.

- The residence time of the gases in the afterburner chamber are of minimum two 2 seconds.
- Each of the chambers operates with its own independent burner and automatic temperature control.
- The incinerator must automatically register the operating temperature in both chambers.

Regarding atmospheric emissions emitted by the crematorium, a concentration of carbon monoxide (CO), articulated material (MP), total hydrocarbons (THC) and benzopyrene and Dibenzo are established.

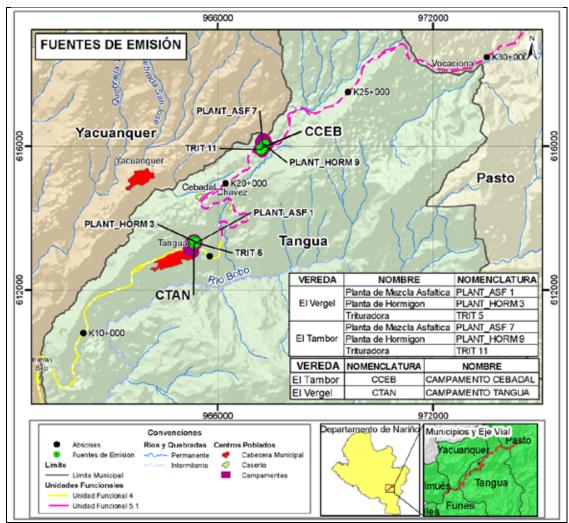
Photograph 7.5: Crematorium Cristo Rey Coordinates magna sigma origin west (976047.12X - 620671.47) Source: (Gemini SAS Consultants, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 173

Location of projected emission sources

Projected emissions sources come from installation of the asphalt plant and crushing plant, located in the two camps to be located in the Pedregal - Catambuco section. See Table 7.89 and Figure 7.72

САМР	ABSCISSA PLANAR COORDINATES MAGNA SIRGAS ORIGIN WEST EAST NORTH		MACHINERY	
		965,263.64	613,169.32	Asphalt Plant
CAMP TANGUA	K 14 + 600	965,219.348	613,254.729	Concrete plant
		965227.6	613244.2	Crushing plant
CAND	K21 + 700	967,284.58	616,036.012	Asphalt Plant
CAMP CEBADAL		967,335.125	616,017.756	Concrete plant
		967202.2	615913.9	Crushing plant


Table 7.77: Fixed emission sources Pedregal Catambuco section

Source: Gemini Consultants SAS 2016

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

Figure 7.62: Atmospheric emissions foreseen for the Pedregal - Catambuco section Fuente (Géminis Consultores S.A.S, 2016)

Estimated air pollutants

To estimate the concentrations of potential contaminants that can contribute to the atmosphere during project implementation, the type of plants used and the pollutants that can generate air emissions were taken into account as well as the asphalt and crushing plants which due to their processes can generate emissions. To note that the machinery to be used has perimeter sprinklers, bag filters and hoods that allow concentration of PM10; see Figure 7.62. It estimated that emissions are minimal

		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 175

because the use of hoods and filters allow the recirculation of such materials in the processes, in addition to ensure the effectiveness of the measures taken, the filters will be regularly serviced.

Application forms allow air emissions for the crushing and asphalt plants are found in Appendix 7. 6. 1

- Asphalt plant

The type of plants that will be used in the project are continuous type which entails generating less waste and are more efficient in their processes, with counterflow drying where aggregates enter the dryer drum at the opposite end to the flame and flow in opposite direction of the gas system, this allows drying at a lower temperature, using less fuel and thus lower emissions.

The emissions from the asphalt plant have two main sources:

- Conducted sources: Those whose fumes exit to the atmosphere through vents, ducts or chimneys.
- Fugitive Sources: Those not channeled in ducts or respirators but are issued directly from the source into the atmosphere.

The main source of conducted emission occurs in the dryer drum where in addition to generating water vapor, combustion products and MP, small amounts of organic compounds are generated which are both incomplete combustion such as heating and mixing asphaltic cement.

The main emissions from asphalt plants are:

- Carbon monoxide CO
- Sulfur S
- Nitrogen oxides (NOX)
- Polycyclic aromatic hydrocarbons
- Phenol
- Toluene
- Xylene
- Naphtha
- Styrene
- Formaldehyde
- Benzene
- Arsenic
- Cadmium

The release of these pollutants into the atmosphere is of the following processes:

- The reaction of nitrogen and oxygen in the dryer generates emissions nitrogen oxide NOx in the combustion zone.
- Emissions of sulfur dioxide SO2 are produced by oxidation of sulfur compounds contained in the fuel.
- Particulate emissions result from volatilization of materials that are then condensed and manipulation thereof.
- Emissions of volatile organic compounds VOC are the byproduct of incomplete combustion.
- The amount of fine material determines the amount of dust emitted into the atmosphere and the amount of asphalt cement consumed per unit volume of asphalt consumed per unit volume of produced asphalt.

Estimated annual emissions continuous plants						
		EMISSIONS I	o / year			
POLLUTANT	Gasoline	Natural	Eemissions			
	dryer	gas dryer	generated in the			
			process			
PM-10	4600	4600	104			
COV	6,400	6,400	780			
CO	26000	26000	270			
SO2	2200	680				
NOX	11000	5200				
	C.	urco (Statos 2000				

Table 7.90: Estimated Emissions from Asphalt Plants

Source: (States, 2000)

-Crusher

4 stages: feeder, crusher, sorter and conveyors.

The main source of contamination of the crushers is PM emissions due to the crushing process and the displacement thereof by the conveyor belts, since these are exposed outdoors. It should also be noted that during the transport and storage of materials previously crushed in batteries, a release of volatile organic compounds and particulate matter occurs; all the aforesaid generate a negative impact on the environment and health.

- Reduce the height of fall of the material during movement thereof (loading and unloading)
- Crusher plant cover with geotextile

- Encapsulation of the conveyor belts reducing by 90% the index of total suspended particles
- Using water irrigators to maintain the material moist in order to prevent dust emissions. To have special care curing established irrigation times and the amount of water used, avoiding excessive wetting of the material.

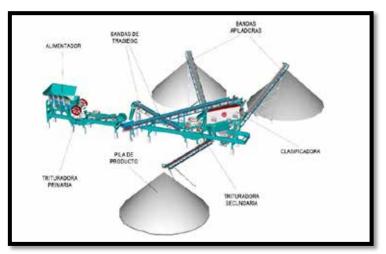


Figure 7.54 Crushing Plant Model Source: (CYBER, sf)

• <u>Description of transmitting equipment</u>

Follows a description of plants to be used for development of project activities:

Asphalt Plant

The process starts in the pre-dosage feed silos, aggregates are conveyed to the dryer. After the moist enters, bucket elevators carries warm and dry materials to the top of the tower. The dosage tower of the, which is the main center of a plant, consists of vibrating shakers (sieves or strainers) with different openings for granulometric classification that sorts and separates the aggregates of different sizes. The plant system, fully computerized, allows the balance of aggregate to control the floodgates to integrate the necessary quantities of materials temporarily stored in hot silos. The silos have a sealing system to prevent dust escaping into the environment and access covers for maintenance, and a sample collector in each compartment. Downloaded into the mixer, aggregates receive the precise amount of gent, as measured by the balance of bitumen. The system controls the mixing time. After the process, the discharge gates release the material directly onto the transport truck.

	CSH-4-AM-AM-EIA2-GG- 0013-7
ENVIRONMENT EFFECT INVESTIGATION	March 2017
	Page 178

The asphalt plant is composed of the aggregates feed system, dryness system, hot aggregates elevator system, vibrating screen, aggregates store, metering and mixing system, bitumen delivery system, powder filter system, finished product warehouse, control system, among others.

The type of plants that will be used in the project are continuous type with a counterflow drying where aggregates enter the dryer drum at the opposite end of the flame and flow countersense of the gas system leading to generate less waste and be more efficient in their processes. (See Figure 7.64)

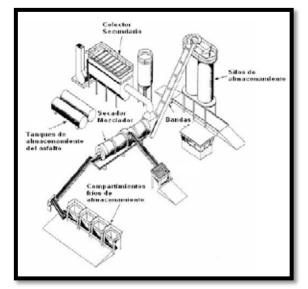


Figure 7.554: Asphalt plant continuous production scheme Source: (States, 2000)

- Crushing plant

The components of the crushing plant and the description of the production process are:

Receiving hopper: tank where the raw material is poured in the exploitation area.

Primary crushing: the first fragmentation is performed, reducing the size of the pieces of ore to a desired size.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 179

Sieve: the products are screened on a shale shaker in order to segregate those particles whose size is fine enough and, with a consequent increase in the capacity of the secondary crusher.

Generally the primary crushing is carried out using a jaw crusher, which consists of two steel plates (jaws), placed one in front of another, one is fixed and the other is mobile and can rotate **around** an axis located in its top or bottom by a suitable device moving back and forth in short stokes. The ore is **loaded** in the space comprised between the jaws and in its forward stroke, crushes the pieces against the fixed plate, when rolling back the movable jaw pushes the crushed ore through the opening formed in the bottom jaws.

Regrind: in the secondary crushing the particle size from the primary crushing is reduced to a range between 3 "and 2 ", leaving it suitable for further milling operations or preliminary concentration considerations.

Conveyors: these collect the material fragmented by primary crushing or from further processing material, it lifts it and transports it to the stockyards or new process steps, the system uses rubber bands and closed canvas rotating cyclically on rollers with electric traction.

Power plants

The type of power plant that needs the project depends on the energy requirements from the asphalt, concrete and crushing plants; on where it will be located and whether it will operate continuously or only when there are power outages. See Figure 7.65

Figure 7.565: Model type power plant

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 180

Source (CATERPILLAR, 2016)

Therefore, for power generation one KAT reference C13 plant with the following specifications is proposed. See Table 7.91

OBSERVATION	CHARACTERISTIC
Minimum rating	320 ekW (350 kVA)
Maximum ranking	400 ekW (450 kVA)
Voltage	380-415 volts
Frequency	50 or 60 Hz
Speed	1,500 or 1,800 RPM

Table 7.91: Power plant technical characteristics

Source: (CATERPILLAR, 2016)

Some of the benefits of the plant is that it has a reliable, rugged, durable design, a diesel four-stroke cycle engine, combines consistent performance and excellent fuel economy with minimum weight. Additionally it is under emission standards Stage IIIA of the European Union for off-road emission standards for off-road III China

Diesel engines are an invaluable contribution in achieving environmental protection objectives. Unlike gasoline engines, thanks to its low fuel consumption they produce approximately 20% less carbon dioxide. However, for many years it has become clear that the soot particles generated by diesel engines contribute to environmental pollution and are a health risk.

It has been found that some of the hazardous gases in Diesel exhausts (for example, nitrogen oxides, benzene, sulfur dioxide and formaldehyde) can cause cancer. According to the World Health Organization, these particles are carcinogenic.

Exhaust gases can be eliminated from the power plant using local exhaust ventilation. Local exhaust ventilation requires both supply and extraction fans to extract gas from the diesel power plant where they occur.

• Devices or emission control systems

The asphalt plant has immersed in its systems baghouse filters, which consist of a filtering textile pipeline where the air stream with particulate product of the grinding process and the production of asphalt enters. The pipeline is closed at the top so that

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 181

the air passes through the duct walls thus having a similar strainer effect. The particles are trapped in the filter and clean air exits the system.

Systems baghouses are constituted by compartments (baghouse or fourth bags) in which a large number of filters are located. To clean the filters, a shaker or counterflow air injection system is used, processes where these materials are reintegrated into the production process thus reducing the negative impacts caused by the generation of PM10. Since it is not possible to service while the system is operations, it is necessary to have parallel compartments for recirculation of particulate matter for systems with continuous flow.

- Smooth filter sleeves

Uses high capacity flat or folded sleeves, enabling the production of asphalt without risk of environmental pollution. The sleeves filter the particles smaller not captured by the static separator, through the passage of the gases through a filter fabric. See Figure 7.66.

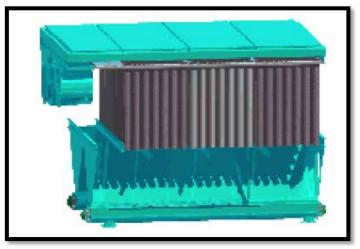


Figure 7.576: Smooth filter sleeves Source (SAS, sf)

- Folding filter sleeves

The folded sleeves use the filtering surface guaranteeing a lower risk of impregnation, better cleaning efficiency and increased life. See Figure 7.67.

Their characteristics are:

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 182

- Surface filtering
- Washable sleeves
- Filtering area 5 times greater than in the smooth sleeves
- Total filtration efficiency
- Fine collector

Figure 7.587: Folding sleeves filter Source: (CYBER, sf)

- Cyclones

Their proper operation is associated to the pressure drop of gas flow through the system; (Figure 7.68) shows their classification.

- High capacity cyclones: They are able to capture large amounts of particles but not the finest.
- High efficiency cyclones: They retain very fine particles but small capacity

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 183

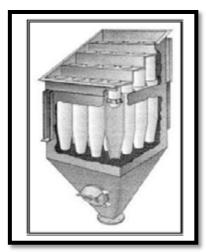


Figure 7.598 Filter cycle model Source: (CYBER, sf)

- Wet scrubbers:

It is a system where the gases, prior to exiting into the atmosphere, are subjected scrubbed so that the atomized water recovers the particles floating in the gases and conveyed them to a sedimentation basin (sludge pit), where heavier particles are decanted and the water and the less dense particles flow.

- The gas filtering process and fine recovery is divided into two stages:

PES ESPs

They are characterized by their high efficiency in PM removal, especially when the volume of exhaust gases is high and it is necessary to recover valuable materials without physical modifications. It uses an electric field to move the particles out of the gas stream and on the collector plates.

Emissions containing MP pass through an electric field where particles are negatively charged and attracted to a collector electrode of opposite charge; through a tapping system the electrode is cleaned and particles are collected in a hopper located at the bottom of the precipitator.

-1	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 184

Pre-particle collector

The high efficiency pre-dust collector retains particles with size up to 75 um and returns them continuously and directly to the hot aggregates elevator.

Control measures established:

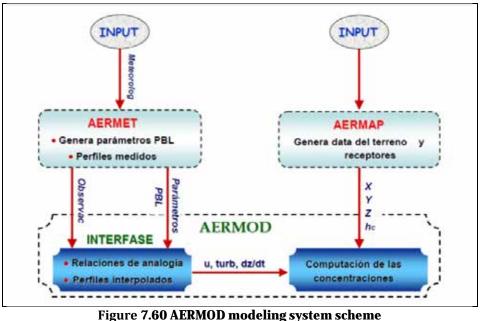
- Plantar curtains of trees around the plant
- Raise the height of chimneys
- Wetting of materials to be crushed to avoid particulate emission

7.6.2 Dispersion model

• Dispersion models applied

AERMOD model, version 15181 30 June 2015, which describes the dispersion of pollutants by parameterizations of the emission sources, weather, terrain, land cover and receivers was **used**.

It is the US regulatory model for situations where there is no predominance of coastal areas and includes the concepts of state of the art in modeling pollutants.


It is applicable to both rural and urban areas, flat and complex terrain, surface and high emissions and multiple types of sources, including point, line, area and volume (US EPA, 2004). A major innovation of AERMOD is the ability to characterize the planetary boundary layer (PBL) from the surface to the mixing height, building vertical profiles of speed and wind direction, turbulence, temperature and thermal gradient, using ratios of similarity from meteorological observations.

For such end, it only requires surface measurements of wind speed and direction, temperature and cloud cover, the latter may be replaced by two temperature observations at different heights (in situ observations) or by solar radiation. Figure 7.69 shows the flowchart for processing information of an AERMOD dispersion model. This consists of a main module (AERMOD) and two preprocessors (AERMET and AERMAP).

-		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 185

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

Source (Vivas, 2008)

The AERMOD system consists of three programs: the main AERMOD program, which is supported on the AERMET and AERMAP preprocessors.

AERMET generates the convective boundary layer parameters. It receives as input the terrain characteristics (surface roughness, albedo and Bowen ratio) and surface weather observations (direction and wind speed, temperature and cloudiness). With these CLP calculated parameters: friction velocity (u *), Monin - Obukhov (L), convective velocity (w *) scale, temperature scale (θ *), mixing height (zi) and surface heat flux (H) and organizes weather data for the main program (USEPA, 2004).

AERMAP receives a defined grid in a digital elevation model (DEM) for computing a height representing the influence of the field, known as scale terrain height (hc). hc is used to calculate the aerodynamic boundary height. It also calculates the height of each receiver over sea level (Zr) and passes the coordinates of each receiver to AERMOD, hc and Zr (USEPA, 2004).

AERMOD receives the parameters calculated by AERMET together with atmospheric measurements and using similarity relationships interpolates vertical profiles of wind speed (u), the vertical and lateral turbulent fluctuations (σv , σw), the potential

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 186

temperature gradient (d θ / dz) and potential temperature (θ). Along with calculates values generated by AERMAP it calculates the concentrations (USEPA, 2004).

- Input data for the model

Follows mentioned data and variables feeding the modeling of the Pedregal- Catambuco section.

• Emission sources inventory

Table 7.92 presents the information with projected emission sources during the execution of construction activities of the road project, where the presence of processing plants located in different additional camps are observed, in addition we found the sources of emissions such as brickworks and crematorium furnace located in the project area.

UF	САМР	PLANAR COORDINATES MAGNA SIRGAS ORIGIN WEST	ΑCTIVITY	
4	TANGUA CAMPAMENTO	E: 965300 N: 613253	Concrete Plant Asphalt Plant Crushing plant	
5	CEBADAL CAMPAMENTO	E: 967268 N: 616101	Asphalt Plant Concrete plant Crushing plant	
5	Fixed source	Jardines Cristo Rey Crematorium furnace	620,671.47	
5	Fixed source	Brickworks	614,741.21	
5	Fixed source	Brickworks	614,821.70	

Table 7.782 Location of emission sources Pedregal - Catambuco

Source: (Gemini SAS Consultants, 2016)

Follows the site where the monitoring station for analysis and data collection required input is placed to feed the selected AERMOD model.

In the area of influence which are fixed, mobile and area. (See annex GDB / mapping / PDF / EIADCRP_IP_021)

-	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 187

	Table 7.979 Location of air quality monitoring stations				
AIR QUALITY	COUNTY	MUNICIPALITY	PLANAR COO MAGNA SIRGAS		
POINT	COUNTI		EAST	NORTH	
1	Pedregal	Imués	958,439.945	608,235.425	
2	County seat	Tangua	964,268.717	612,785.492	
3	Chávez	Tangua	966,837.78	614,411.568	
4	El Tambor	Tangua	967,320.276	616,111.612	
5	Catambuco	Pasto	975,477.928	620,217.086	

Source: Gemini Consultants SAS 2016

Weather information

To select the most representative station, the meteorological behavior of the study area and surface stations with available data obtained from the IDEAM (IDEAM, 2016) list were analyzed. In the study area two stations with sufficient and available information to upload to AERMOD were identified, which are:

- Sindagua station main climatological
- Botana Agro meteorological
- Obonuco Agro meteorological
- **ü** Wind behavior and relief

Considering records of wind behavior at stations available, it appears that the wind direction suffers a turn, passing from winds from the east to south of the project to prevailing winds from the south and southwest north of the project. In turn, the relief marks several different sectors, one to the first southern half of EIA 2, characterized by less pronounced mountain accidents, and another from the middle to the north located along the Guáitara River Valley, a factor that may cause the presence of valley breezes that modify wind behavior. Figure 7.70 shows IDEAM's wind roses and three-dimensional relief representation.

-	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 188

icional d

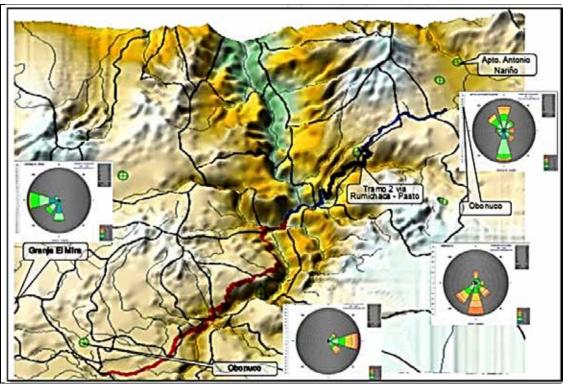


Figure 7.70 Wind behavior and relief in the study area Source (IDEAM, 2015)

Selecting the station surface ü

In consultation with the IDEAM, it was determined that the Sindagua and Botana stations do not contain regular information. However, based on the behavior of the variables described above it is concluded that the Obonuco station in the town of Pasto is sufficient to meet the objectives of the modeling representation.

Data from the surface weather station were purged by preprocessor AERMET, fed with a file SAMSON format (Surface Meteorological Observation Network and Solar US).

Since in the study area there is no elevated station close by that can be considered representative in the simulated zone, the height parameters were calculated using the IDEAM methodology specified in the Protocol for Monitoring and Tracking Air Quality (MAVDT, 2010).

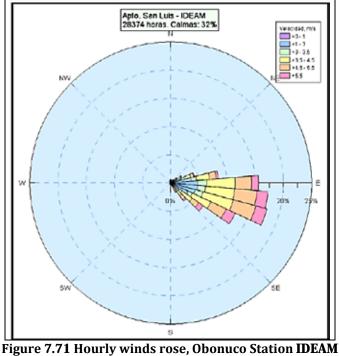
		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 189

The information from 1 January 2011 and 30 June 2015 was used. The AERMET model validated the data and extrapolation was performed according to the specifications established by US EPA.

Obonuco's station hour meteorology for twelve months was used. No weather information calculated by mesoscale models like WRF was used as the USEPA recommends its application to modeling scales exceeding 50 km, which is higher than that used in this project.

- Behavior of meteorological variables

With meteorological records monthly and hourly averages of analyzed variables were obtained, which are presented below.


ü Annual wind rose

The wind rose shown in Figure 7.71 for the Obonuco station show a strongly directional behavior with predominating south wind, with speeds over 3 m / s during most of the time. This behavior is explained by the presence of trade winds from the south.

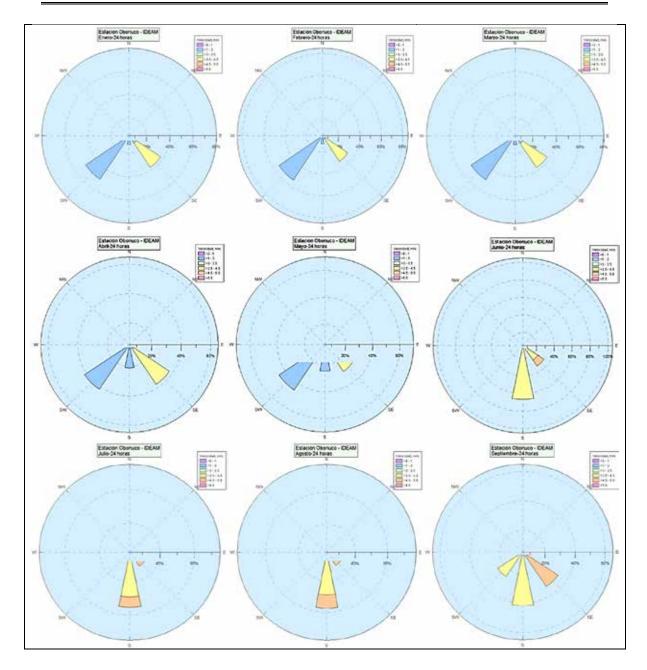
Comparing this rose wind that reported by IDEAM shown in Figure 7.70 for the same station, a great similarity is observed, confirming the representativeness of data used.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 190

Source (IDEAM, 2015)

ü Monthly rose wind

Figure 7.69 shows monthly roses, characterized by the same dynamics of air currents with moderate variations in wind speed. During the months of June to August higher velocities are obtained, due to the remoteness of the intertropical convergence zone (ITCZ), which is the region where the north and south trade winds meet.


-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 191

Agencia Nacional de Infraestructura

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

-		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 192

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

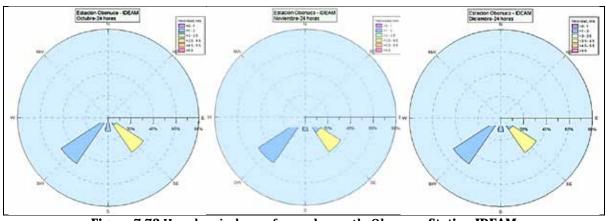


Figure 7.72 Hourly wind rose for each month, Obonuco Station IDEAM Fuente (IDEAM, 2015)

ü Wind Direction

Figure 7.73 shows wind direction behavior depending on the month and the hour, characterized by predominance of the wind from the south throughout the year and throughout the day, with a difference in the direction between October and April when during the night the wind blows from the northwest. This behavior is due to, as explained above, the marked influence of the south trade winds.

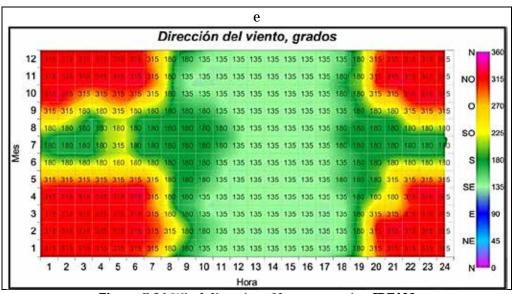


Figure 7.61 Wind direction, Obonuco station IDEAM Fuente (IDEAM, 2015)

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 193

ü Wind speed

Figure 7.74 shows the behavior of the wind speed depending on the month and time. In shows that the increased speed occurs between June and September when reaching up to 5 m / s between 8 am and 4 pm, while the rest of the time the rate is between 3 and 5 m / s except November and December when the velocity is below 2 m / s.

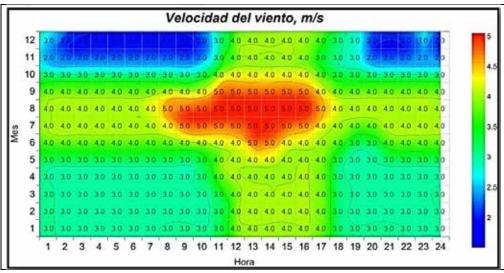
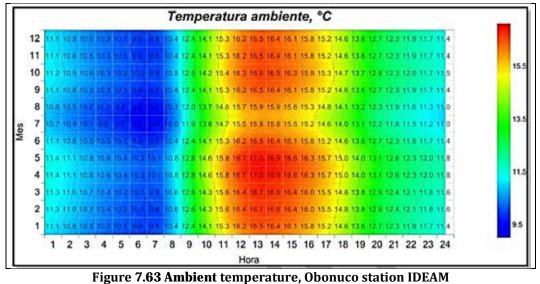


Figure 7.62 Wind speed depending on the month and time, Obonuco station IDEAM Source (IDEAM, 2015)

ü Ambient temperature

Figure 7.75 shows the behavior of the ambient temperature depending on the time of day and year. The average hour temperature is 12.9 ° C, the minimum 9.4 ° C and maximum 17.0 ° C. Throughout the year the temperature remains stable with a 1.2 ° C difference between the coldest month (August) and the warmest (May), which is explained by the intertropical situation.


Higher temperatures are recorded between 12 noon and 3 pm, time after which it starts to drop until 6am then goes up again with increasing solar radiation.

Noon high temperatures favor the updrafts and thus the dispersion of pollutants, while at night the opposite phenomenon contributes to increasing the concentration of pollutants.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 194

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

Source (IDEAM, 2015)

ü Cloudiness

Figure 7.76 shows cloudiness behavior, which always corresponds to a partly cloudy sky and between 3 and 8 oktas. Lower cloudiness occurs between 5am and 12 m, time after which it starts to increase until midnight. The months with higher cloudiness are June and July.

This cloudiness is related to precipitation, which is determined by the topography of this area, which produces the condensation of moisture from the Amazon front.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 195

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

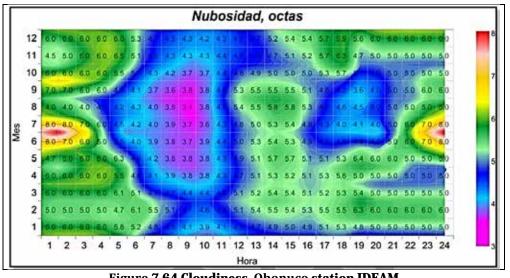


Figure 7.64 Cloudiness, Obonuco station IDEAM Source (IDEAM, 2015)

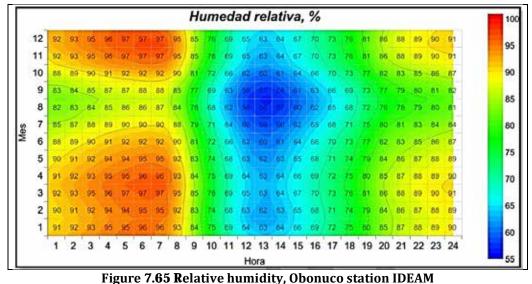

ü RH

Figure 7.77 shows the relative humidity behavior. This evidences that humidity remains approximately constant throughout the year, varying by 6% at noon from the period of maximum humidity in March and April, to the minimum between July and September.

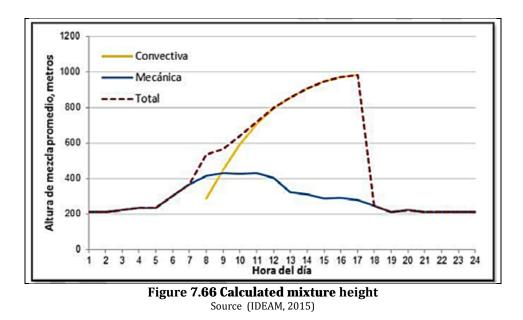
During the day humidity varies significantly from 57% - 62% to 97% at noon at 7 am. The highest humidity during the night is evidenced of the mixture layer and thereby increasing contamination during this period of the day.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 196

Source (IDEAM, 2015)

ü Mixture height

The mixture height can be interpreted as the available vertical space of contaminants to disperse. At higher mixture height less pollution. The mixture height was calculated with the procedure included in the Protocol for Monitoring and Monitoring Air Quality (MAVDT, 2010).


Figure 7.78 shows the average hourly mixture height. Overnight the mixture drops height, close to 200 due to the absence of solar radiation and circulation wind, but from 5 hours it gradually increases with wind speed. From 7 am it rises faster because the incidence of solar radiation.

From 9 am the contribution of mechanical height associated with wind speed is reduced while the convective processes promoted by solar radiation dominates, reaching its peak at 5 pm to almost 1000 meters, when it abruptly drops with sunset reaching a height close to 0 during the night.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 197

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

ü Atmospheric stability

This indicates the degree of air turbulence. An unstable atmosphere promotes mixing of pollutants. The following is the stability category according to Pasquill - Gifford:

- A: Very unstable conditions
- B: Moderately unstable conditions
- C: Slightly Unstable conditions
- **D:** Neutral conditions
- E: Slightly stable conditions
- F: Moderately stable conditions

This parameter was calculated as indicated in annex 7.6.2. According to the results shown in Figure 7.79, during the day neutral conditions predominate whereas at night the highest frequency occurs for moderately stable conditions. This behavior leads to greater difficulty in the dispersion of pollutants.

	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
		March 2017
		Page 198

Categoría de estabilidad Pasquill Gifford				Gifford
Hora	D	Е	F	Total
0		3,8%	0.3%	4,2%
1		3,5%	0,7%	4,2%
2		3,5%	0,7%	4,2%
3		3,5%	0,7%	4,2%
4		3,5%	0,7%	4.2%
5		3,5%	0,7%	4,2%
6	4,2%			4,2%
7	4,2%			4,2%
8	4,2%			4,2%
9	4,2%			4,2%
10	4,2%			4,2%
11	4,2%			4,2%
12	4,2%			4,2%
13	4,2%			4,2%
14	4,2%			4,2%
15	4,2%			4,2%
16	4,2%			4,2%
17	4,2%			4,2%
18		4,2%		4,2%
19		3,5%	0,7%	4,2%
20		3,5%	0,7%	4,2%
21		3,5%	0,7%	4,2%
22		3,8%	0,3%	4,2%
23		3,5%	0,7%	4,2%
Fotal Resultad	50,0%	43,1%	6,9%	100,0%

Figure 7.679 Atmospheric stability behavior with the hour Source (ASOAM SAS, 2016)

Figure 7.80 shows that atmospheric stability behaves evenly throughout the year, being slightly more stable in the months of December and January.

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 199

Hora	Ene	Feb	Mar	Abr	Мау	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Promedio
0	E	Ε	E	Ε	E	E	E	E	E	Ε	F	E	E
1	E	Ε	E	Ε	E	E	Е	Ε	Ε	Ε	F	F	E
2	Ε	Ε	Ε	Ε	E	Ε	Ε	Ε	Ε	Ε	F	F	E
3	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	F	F	Ε
4	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	F	F	E
5	Ε	Ε	E	Ε	E	E	Е	Ε	Ε	Е	F	F	E
6	D	D	D	D	D	D	D	D	D	D	D	D	D
7	D	D	D	D	D	D	D	D	D	D	D	D	D
8	D	D	D	D	D	D	D	D	D	D	D	D	D
9	D	D	D	D	D	D	D	D	D	D	D	D	D
10	D	D	D	D	D	D	D	D	D	D	D	D	D
11	D	D	D	D	D	D	D	D	D	D	D	D	D
12	D	D	D	D	D	D	D	D	D	D	D	D	D
13	D	D	D	D	D	D	D	D	D	D	D	D	D
14	D	D	D	D	D	D	D	D	D	D	D	D	D
15	D	D	D	D	D	D	D	D	D	D	D	D	D
16	D	D	D	D	D	D	D	D	D	D	D	D	D
17	D	D	D	D	D	D	D	D	D	D	D	D	D
18	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	E
19	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	F	F	E
20	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	F	F	E
21	Е	Е	Е	Ε	Е	Е	Е	Ε	Е	Ε	F	F	E
22	Ε	Ε	Ε	Ε	Ε	Ε	Е	Ε	Ε	Ε	F	Е	E
23	Ε	Ε	Е	Ε	Е	Е	Ε	Ε	Ε	Ε	F	F	E

Figure 7.80 Average atmospheric stability depending on the month and hour Source

Characteristics of the station

In consultation with the IDEAM, it was determined that the Sindagua and Botana stations do not have enough regular information. However, based on the behavior of the variables above described it is concluded that the Obonuco station in the town of Pasto is sufficient to meet the objectives of the modeling representation. Based on available information, average hours and monthly averages of the station were obtained.

Data from the surface weather station were purged by the preprocessor AERMET, fed with a SAMSON file format (Surface Meteorological Observation Network and US Solar).

ü High station

As noted in the study area there is no high station that can be considered representative of the simulated zone. Therefore, the height parameters were calculated using the

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 200

IDEAM methodology specified in the Monitoring and Monitoring Air Quality Protocol (MAVDT, 2010).

Figure 7.81 Location of available high stations Source NOAA Satellite Image information

o Period of data used

The information for the period from 1 January 2011 and 30 June 2015 was used. The AERMET model validated the data and extrapolation was performed according to the specifications established by US EPA.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 201

Obonuco's station hour meteorology for twelve months was used. No weather information calculated by mesoscale models like WRF was used as the USEPA recommends its application to modeling scales exceeding 50 km, which is higher than that used in this project,

o Topography

The project area is characterized by the presence of mountain formations that modify air flow and thus the dispersion of pollutants.

The AERMOD model takes this effect into account and to that end elevations are introduced by a file containing, for each grid point of receptors, terrain elevation and scale of terrain height, hc, i.e. the greater height of the point within the area of interest for which the slope with respect to the receiver exceeds 10%.

This file is generated by the AERMAP program, which reads topographic files produced by the "Geological Compendium of the United States." However, in Colombia no files are generated with these formats so it was necessary to convert the files available in Colombia to the appropriate format.

Terrain elevations were obtained from satellite soundings with three arc-seconds resolution (90 meters) provided by the IGAC from the Endeavor spacecraft mission of February 2000.

This information was converted to a digital elevation model (DEM) and fed to the AERMAP program. Figure 14 shows a three-dimensional representation of the information in the file, while Figure 15 shows a detail of the topography of the project.

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 202

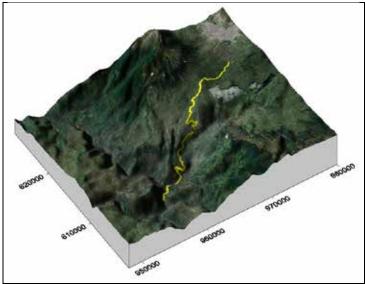


Figure 7.68 Dimensional representation of terrain elevations. Source (ASOAM SAS, 2016)

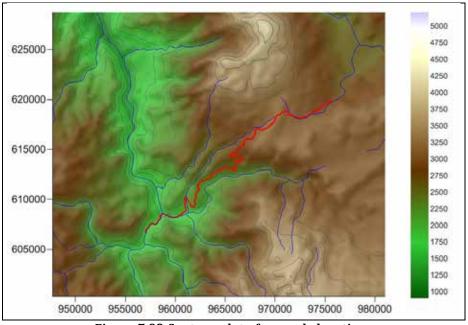


Figure 7.69 Contour plot of ground elevations Source (ASOAM SAS, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 203

o Surface parameters

The ground surface characteristics affect the dispersion of pollutants. The model was fed by dividing the road into several sections which were compartmentalized into 12 sectors 30 degrees divisions, covering a distance of three kilometers around as shown in Figure 16 and 17. The model was fed albedo values, surface roughness and averaged Bowen ratio for each sector.

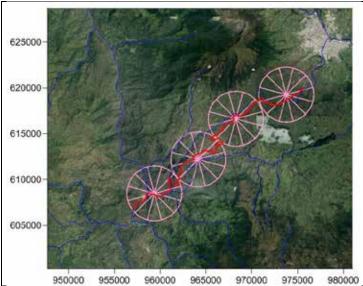


Figure 7.70 Compartmentalizing the road to determine surface parameters. Source (ASOAM, 2016)

-		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 204

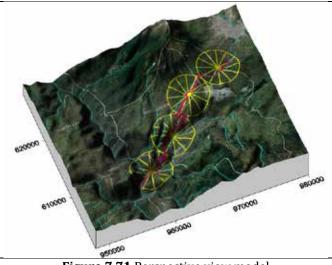


Figure 7.71 Perspective view model Fuente (ASOAM, 2016)

o Albeldo

Albedo is a measure of the amount of radiation reflected by the Earth's surface. It reaches values from 0.1 for dense forests to 0.9 for fresh snow. It depends on the time of day, cloud cover and the soil surface.

The predominant land for the albedo is the corresponding area with vegetation and crops, urban area is also found.

• Superficial roughness

The length of surface roughness is related to the height of obstacles to the passage of wind and in principle is the height at which the wind speed is zero. The surface roughness was determined for each sector and the average was fed

o Bowen ratio

This value is an indicator of surface soil moisture and is defined as the sensible heat (which is used to heat the air) and latent heat (the time spent evaporating the water) ratio. The US EP-A1 values were used for tabulation, taking into account the type of surface of each sector, the rainy and dry seasons and monthly precipitation. The sectors were classified as vegetation area and urban area, in accordance with area characteristics.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 205

o Buildings

The AERMOD model calculates the effect of buildings for punctual sources when the stack height exceeds 2.5 times the height of the surrounding buildings. For such end, the preprocessor BPIPRM was fed area construction obtained from satellite photography.

o Affected population

Annex GDB / mapping / PDF / EIADCRP_IP_002 shows fixed emission sources that will be present in the project as well as the densest population centers in the area of influence.

o Air Quality

To determine the air quality in the study area monitoring was conducted, where the concentration levels of air pollutants Particles less than 10 micrometers (PM10), sulfur oxides (SOx), nitrogen oxides (Nox) and carbon monoxide (CO) were determined. The results allow us to know the current conditions and characteristics of air quality and major sources of emissions that contribute pollutants to the atmosphere.

PM10 monitoring were obtained from high volume equipment for Particulate Matter (Hi-Vol) using the gravimetric analysis method and the NOx and SOx results were obtained from RAC three gases equipment spectrophotometric analysis method.

Based on current regulations and in accordance with the Tracking and Air Quality Monitoring Protocol, five monitoring stations for particulate matter and gases were installed, taking into account the following considerations:

- Installation of industrial camps where the asphalt plant and crushing plant will be located.

- Population centers (listed as potential recipients) that could be affected by development of project activities.

Parameters were evaluated in accordance with the Tracking and Air Quality Monitoring Protocol. Table 7.94 describes the general characteristics of air quality monitoring evaluated parameters.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 206

Table 7.80 General characteristics of evaluated parameters

PARAMETER	DEFINITION	SOURCES	EFFECTS	VARIOUS
Particulates	Any solid or liquid material finely divided other than uncombined water, as measured by federal reference methods (40 CFR 53	Furnaces, crushers, mills, grinders, stoves, calciners, boilers, incinerators, conveyor belts, textile finishing, mixers and hoppers, cupolas, processor, spray booths, digesters, forest fires, among other equipment.	Effects on respiration and respiratory system, aggravation of existing respiratory and cardiovascular disease, lung tissue damage, carcinogenesis and premature mortality.	Examples: dust, smoke, oil droplets, asbestos beryllium
Carbon monoxide	Colorless, odorless, poisonous gas, lighter than air, produced by incomplete combustion of carbon present in the fuel.	Stationary and mobile sources that burn fuels (internal combustion engines, primarily gasoline engines). It is produced in much smaller quantities in domestic sources, volcanic gases emanating swamp gases, coal mines, thunderstorms, photo dissociation of CO2 in the upper atmosphere, fires and aquatic and terrestrial animals, among others.	They can be fatal in a short time in enclosed areas. Reacts with hemoglobin in the blood, preventing the transfer of oxygen.	It is in the atmosphere in concentrations of 0.1 ppm average
Nitrogen oxides	NO, NO2, N2O, N2O3, N2O4, N2O5: six kinds of nitrogen oxides are identified. A level of air pollution referred only to NO and NO2 (colorless	Produced by burning fuel at very high temperatures from nitrogen in the air. They are also produced from coal and nitrogen heavy oils: large electric generators, large industrial boilers, internal combustion	Reduced visibility, irritation of nose and eyes, pulmonary edema, bronchitis and pneumonia; VOCs react under the influence of light to form ozone. Nitrogen oxides are important potential	Excessive concentrations of NO and NO2 in the lower atmosphere causing a brownish color due to light absorption in the blue-green spectrum

PARAMETER	DEFINITION	SOURCES	EFFECTS	VARIOUS
	gases) and are typically reported as Nox.	engines, nitric acid plants.	contributors of harmful phenomena such as acid rain and eutrophication in coastal areas.	band.
Sulfur oxides	Acre, corrosive, toxic gases when sulfur- containing fuel is burned.	Electrical, industrial boilers, smelters, oil refineries, power automobiles, residential and commercial water heaters.	Difficulty breathing when dissolved in nose and upper airway; chronic cough and mucus secretion. It contributes to acid rain and reduced visibility phenomena (according to its concentration).	Sulfur oxides (SOX), generally formed by the combustion of sulfur- containing substances (coal and oil), particularly for steelmaking. It is perceived by smell in concentrations of 3 ppm (0.003%) to 5 ppm (0.005%). When at levels of 1 to 10 ppm induces increased respiratory rate and blood pulse.

Source: Resolution 2154 Tracking and Air Quality Monitoring Protocol.

Air quality for the Pedregal - Catambuco section was monitored by placing five stations in the area of influence of the project for a period of 18 calendar days 24 hours a day.

During this time parameters PM10, nitrogen dioxides and sulfur dioxides were evaluated. The location of the monitoring stations established for the project are shown in the Table 7.95 where the name of the county and the municipality are identified and their respective coordinates are specified; the general location of the points of the stations in the study area are also shown. (See Figure 7.86).

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 208

Table 7.815 Location of air quality monitoring stations, Pedregal - Catambuco section

SECTOR	AIR QUALITY	COUNTY	MUNICIPALIT	PLANAR COORDINATES MAGNA SIRGAS ORIGIN WEST			
	POINT	coonii	Y	EAST	EAST		
Pedregal -	6	Pedregal	Imués	958,439.945	608,235.425		
	7	County seat	Tangua	964,268.717	612,785.492		
Catambuc o	8	Chávez	Tangua	966,837.780	614,411.568		
	9	El Tambor	Tangua	967,320.276	616,111.612		
	10	Catambuco	Pasto	975,477.928	620,217.086		

Source: (Gemini Environmental Consultants, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 209

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

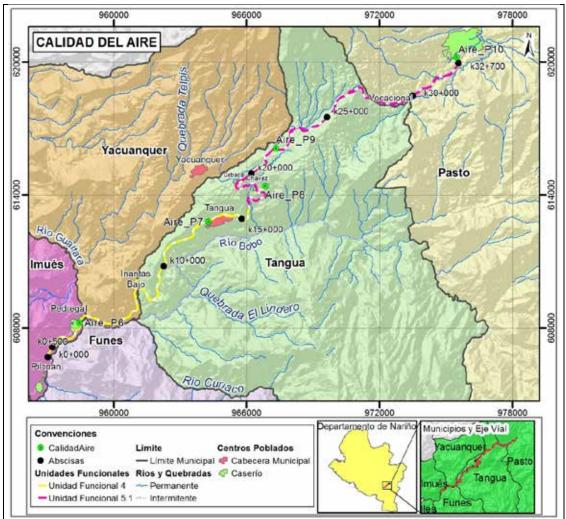


Figure 7.726 Air quality monitoring points, Pedregal - Catambuco Section Source (Gemini Environmental Consultants, 2016)

Follows the results of air quality concentrations (PM10, SOx and NOx) obtained for each of the evaluated contaminants.

- Monitoring results

The daily results of laboratory tests (PM10) for five (5) monitoring stations are shown. As observed, the maximum values obtained are below the ceiling set by Resolution 610 of 2010 of the Ministry of Environment, Housing and Territorial Development

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 210

Table 7.82 Lab results Rumichaca - Pasto Road Project, Pedregal - Catambuco
section

	DATE	POINT 6	POINT 7	POINT 8	POINT 9	POINT 10
PARAMETER	DATE	g / m3				
	Maximum	27.26	27.13	22,99	18.56	87.54
DM10	PM10 Minimum		4	2.37	0,92	9.93
PMIU	Average	10.22	13.17	9.7	7.34	40.73
	Range	25.11	23.13	20.62	17.64	77.61
	Maximum	16.72	20,65	15.68	17,11	30.22
SOX	Minimum	2.96	2,21	2,98	2,98	2,99
	Average	7.83	8.85	7.33	6.53	9.87
	Average	13.76	18.44	12.7	14.13	27.23
	Maximum	2,61	15.91	2,18	4.30	4,29
	Minimum	1.94	1,97	1.94	2.00	1,98
NOx	Average	2,09	2.95	2,03	2,29	2,45
	Maximum	2,61	15.91	2,18	4.30	4,29
	Maximum	1,54	1,46	1,67	1,69	1,68
CO	Minimum	0.6	0,62	0,59	0,59	0,58
	Average	0.95	1	1.3	1.01	1,17
	Rank	0,94	0,84	1.08	1.1	1.1

Source: (ASOAM, 2016)

o Maximum concentrations of particulate matter

Figure 7.87 shows individual data per day obtained in each of the five (5) stations for PM10. According to this information we can see that the stations did not exceed the legal limit daily (100 ug / m3).

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 211

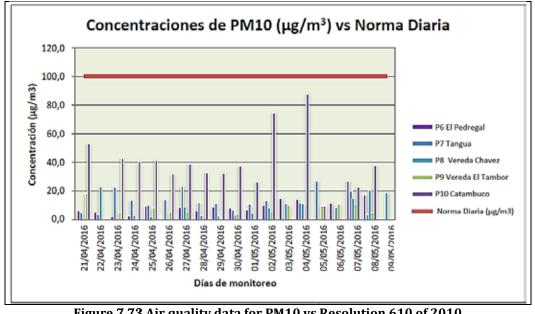


Figure 7.73 Air quality data for PM10 vs Resolution 610 of 2010 Source (ASOAM, 2016)

Figure 7.88 shows maximum concentration values of particles smaller than 10 microns (PM10) obtained for each station and comparison with standard (Resolution 610, 2010); data analysis shows that the highest P10 concentration was in the Catambuco station with a maximum value of 87.54 g / m3, while the lowest concentration was recorded for station P9 El Tambor with a minimum value of 18.56 g / m3.

	CSH-4-AM-AM-EIA2-GG- 0013-7
ENVIRONMENT EFFECT INVESTIGATION	March 2017
	Page 212

ESTUDIO DE IMPACTO AMBIENTAL PARA EL PROYECTO VIAL RUMICHACA - PASTO, TRAMO PEDREGAL –CATAMBUCO, CONTRATO DE CONCESIÓN BAJO EL ESQUEMA APP NO. 15 DE 2015

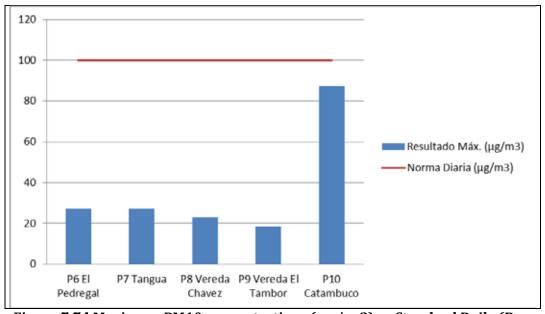


Figure 7.74 Maximum PM10 concentrations (ug / m3) vs Standard Daily (Res. 610, 2010) Source: (ASOAM, 2016)

Concentrations of particles smaller than 10 microns (PM10) for five (5) monitoring stations located in the Pedragal - Catambuco section are below reference values established in Resolution 610 2010 for daily exposure time (100 g/m3).

Suspended particles cover a broad spectrum of organic or inorganic substances, dispersed in the air that can come from natural and artificial sources (artisanal brickworks, vehicles, crematorium, etc.). Combustion of fossil fuels from traffic (heavy and light vehicles) is a major source of particulate contamination along the corridor and area of influence, it can produce various kinds of particles: large particles, by releasing unburned materials (fly ash), fine particles formed by the condensation of vaporized materials during combustion, and secondary particles, through atmospheric reactions of removed contaminants such as gases. PM10 ("thoracic") particles below 10 μ m could enter the airways affecting health

o Contamination contributions

Atmospheric contamination contributions are presented in the following table including the processing plant to be located in proposed Cebadal and Tangua camps.

			CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		ENVIRONMENT EFFECT INVESTIGATION	March 2017
			Page 213

	CAMPAMENTOS										
DESCRIPCION OPERACIÓN	31+100	PICAPIEDRA	MIKEL	TANGUA	CEBADAL						
Equipo de combustión	ver anexo 4	ver anexo 4	ver anexo 4	ver anexo 4	ver anexo 4						
Sistema de salida de gases	militiple de escape seco • constiones fiembles de acero inocidable con cosestón de boquilla dividida • salida de brida del escape	múltiple de escape seco • conesiones flexibles de acero inoxidable con conessón de boquílle dividade • salida de brida del escape	militiple de encape seco • consesiones Besibles de acero locosidable con consenio de boquille dividuda • saluda de brida del socape	militiple de escape seco • conexiones: flexibles de acero isocidable con conexión de boquila dividuía • salida de brida del escape	militipie de escape seco • consciones flexibles de acero inoxiciable con consentón de boquilla dividida • zalída de brida del escape						
Combustible empleado	diesel	diesel	diesel	diesel	diesel						
Consumo de combustible (kg/hr)y/o (g.p.m)	69120 gal/mes	69120 gal/mes	69120 gal/mes	69120 gal/mes	69120 gal/mes						
Flujo másico (kg/hr) gas de combustión	No se reporta	No se reporta	No se reporta	No se reporta	No se reporta						
Tiempo de operación	24 horas 7 dias a la semana	25 horas 7 dias a la semana	26 horas 7 dias a la semana	27 horas 7 dias a la semana	28 horas 7 dias a la semana						
Producción (kg/hr)/(m3/hr)	73-109 TPH	73-109 TPH	73-109 TPH	73-109 TPH	73-109 TPH						
%perdida estimada por finos	7%	7%	756	7%	7%						
Potencia, (BHP) y/o (HP)	15 HP	15 HP	15 HP	15 HP	15 HP						
			CAMPAMENTOS								
	31+100	PKAREDRA	MX	71 74	NGEA CEBADAL						

Table 7.83 Crushing plants entry records

		CAMPANELTOS												
	н	+100	PKA	PICAPIEDRA		MIKEL			CEBADAL					
Iquya			5						1					
Altura de la chimetrea (Cono)		16	1	in .	ên (- 10		ên.					
Temperatura promedio de salida de gases de rismenea	Ne aplica		No aplica		No aplica		Ne aplica		No aplica					
Caudal de gazes de subda (m3/hr)	約75	8.85%	8375.5 m3/h		#575.# m3/h		8575.8 m3/h		#575.9 m3/h					
Velocidad de gasec de chimenea	6.1	\$m/s	6.19m/s		6.1%m/s		£39m/4		永均m/ (z					
Dümetra itizienea	6	In	. 8	7m	67 m		67 ±		67 m					
Coordenadas pueto de emisión	600153,471	ACCUS 435	604370.648	054004.050	494375.446	000000000	965376,984	413330.000		-				
Enzives	9/0123/4/1	956663.927	004370,040	954904,158	606173,169	957180,975	2003/8,304	\$13320,089	967202,353	\$13713,74				
Naterial particulado	4972城市		4.972 340/8	4.972 kb/b		0.972 kg/h		30.972 kg/h						
	0.14kg/5		644g/h			0.14kg/h		0.14kg/h		03972 kg/h 03 6kg/h				
10,	\$145kg/h		0.165kg/h		d165kg/h		0.145kg/b		0.163kg/h					
79110*	0.010 kg/h		6.008 kg/b	6.028 kp/h		Quint kg/h		0.013 kg/h		0.0103g/h				

DESCRIPCION OPERACIÓN	PEAJE 11+200	SAN JUAN	31+100	PICAPIEDRA	MIKEL	TANGUA	CEBADAL
Equipo de combustión	40 Mbtu						
Sistema de salida de gases	ventilador						
Combustible empleado	Diesel y Fuel Oil.	Diesel y Fuel Oil.	Diesel y Fuel Oil	Diesel y Fuel Oil.			
Consumo de combustible (kg/hr)y/o (g.p.m)	6 gal /h	6 gal <i>i</i> h	6 gal <i>i</i> h	6 gal <i>i</i> h	6 gal ih	6 gal <i>i</i> h	6 gal <i>i</i> h
Flujo másico (kg/hr) gas de combustión	No se reporta						
Tiempo de operación	11 horas 7 dias a la semana	11 horas 7 dias a la semana	11 horas 7 dias a la semana	11 horas 7 dias a la semana	11 horas 7 dias a la semana	11 horas 7 dias a la semana	11 horas 7 dias a la semana
Producción de asfalto (kg/hr)/(m3/hr)	146 TPH	147 TPH	148 TPH	149 TPH	150 TPH	151 TPH	152 TPH
Potencia (BHP) y/o (HP)	1800000 BTU/h	1800000 BTU/h	1800000 BTU/h	1000000 BTU/h	1800000 BTU/h	1800000 BTU/h	1800000 BTU/h

Table 7.84 Asphalt plants entry records

		CAMPAMENTOS												
	PEAJE	11+200	SAN	JUAN	31	100	PICA	PIEDRA	MD	31	TAN	KUA.	CDEA	DAL
Equipo														
Altura de la chimenea	17.5m		17.5m		17.5m		17.5m		17.5m		17.5m		17.5m	
Temperatura promedio de salida de gases de chimenea	110%e		110 ^o c		110°c		110ªc		110°c		110%e		110°c	
Caudal de gases de salida (m3/hr)	24.5 m3/min		24.5 m3/min		24.5 m3/min		24.5 m3/min		24.5 m3/mi	5	24.5 m3/mi	8	24.5 m3/mi	n
Velocidad de gases de chimenea	6.2 m/s		6.2 m/s		6.2 m/s		6.2 m/s		6.2 m/s		6.2 m/s		6.2 m/s	
Diámetro chimenea	0.310/0.40 m	(rectangular)	0.310/040 m	(rectangular)	0.310/0.40 m	(rectangular)	0.310/0.40 m ((rectangular)	0.310/0.40	m	0.310/0.40	8	0.310/0.40	n
Coordenadas punto de emisión Emisiones	586267,806	943819,788	590846,528	948345,161	600228,612	956133,8	604504,112	954920,981	604484,04	956408,81	965344,59	613286,37	967254,03	615945,47
Material particulado	346.0 mi/m3		345.0 min4		346.0 milm5		346.0 m/m8		346.0 milm7		346.0 milm8		346.0 milm3	
N0x	17.9 mile3		87.9 mlin4		87.9 miles		87.9 mile6		87.8 mlin7		87.9 mile8		87.9 mile 3	
\$0,	337.2 niln3		337.2 nlin4		337.2 niln5		337.2 nin6		337.2 mlm7		337.2 niln8		337.2 mile3	
PM10*	0.320 mi/m3		0.320 min4		0.320 mile5		0.320 min6		0.320 mlin7		0.320 milm8		0.320 mlin3	

Modeling configuration

Input data were uploaded to the model in the form of a file in text format with information divided into five sections namely:

-

CO: Control Parameters SO: Emission sources ME: Meteorology RE: Data of receptors OU: Control parameters data output

- Control section

Table 7.99 shows model input control data.

-		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 215

Table 7.85 Control options fed to the model				
Option	Value	Explanation		
Title 1	RUMICHACA – PASTO ROAD	Identification		
Title 2	PST dispersion model	Identification		
Pollutant	PST	Total suspended particles, or appropriate		
Elevated terrain	Elev	Flat land		
Elevated terrain	Meters	Units of introduced elevations		
Run or not	Run	Performs complete run		
Averaging	Aual, 24hr	Produces an output table with maximum annual and daily averages		
Dispersion	Concentration	Produces concentration data.		

Table 7.85 Control options fed to the model

Source (ASOAM SAS, 2016)

Contaminant concentrations were calculated for averaging periods defined in Resolution 610 of 2010 MAVDT, which are annual and daily for both PST and PM10.

o Section source

The characteristics of the emission sources are specified here, including the variability of emission over time. In total 416 punctual sources and of area and three roads were fed. The location of these sources are shown in Annex 1.

• Section receptors

Three types of receptors were defined:

- Discrete receptors located in the five monitoring air quality points of the section.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 216

- Cartesian mesh originating in 932.000mE, 578.000mN, 33 grid coordinates in the X axis 32 in the Y axis spaced every 1,000 meters, for a total of 1056 receptors.
- A group of receptors distributed every 500 meters of the road corridor, at distances in meters of 20, 50, 100, 200, 500, 1000, 1500, 2000, 2500, 3000 on either side of the road, for a total of 6920 receptors.
- Output section

The following aspects were defined:

- Name of the output file format data in X, Y, Z: with XYZ extension.
- Write table of maximum in the output file
- Not write table per receptor in the output file.
- Dispersion modeling results

Follows the numbers for the dispersion models for the sampling parameter, having considered the activities and work fronts of asphalt and crushing plants. In addition, mass balances used to generate said models are presented.

CAMP	GENERATOR	FUEL	MP GR / S	NOX GR / S	SOX GR / S	PM 10 GR / S
TANGUA	asphalt plant	Diesel	0.257424	0.0653976	0.2508768	0.00023808
CEBADAL	asphalt plant	Diesel	0.257424	0.0653976	0.2508768	0.00023808
TANGUA	crusher	Diesel	0.26999244	0.0388878	0.04583205	0.00499986
CEBADAL	crusher	Diesel	0.26999244	0.0388878	0.04583205	0.00499986

Annex 7.6.2.6 shows the modelling output files with drawings obtained; and below obtained results are analyzed.

• Isopleth diagram

Figure 7.89 to Figure 7.97 show concentration diagrams for modeled contaminants and Table 7.100 shows maximum permissible levels for contaminants.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 217

Contaminante	Nivel Máximo Permisible (μg/m³)	Tiempo de Exposición
PST	100	Anual
For	300	24 horas
PM10	50	Anual
FINITO	100	24 horas
PM2.5	25	Anual
FM2.5	50	24 horas
	80	Anual
SO ₂	250	24 horas
	750	3 horas
	100	Anual
NO ₂	150	24 horas
	200	1 hora
0	80	8 horas
O ₃	120	1 hora
со	10.000	8 horas
0	40.000	1 hora

Table 7.100 Maximum permissible levels for contaminants

These images highlight the line from which the ceiling is exceeded according to the standard and in yellow the area of influence of the project.

Outside the area of indirect influence of the project the concentrations are below the standard for all pollutants.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 218

Agencia Nacional de Infraestructura

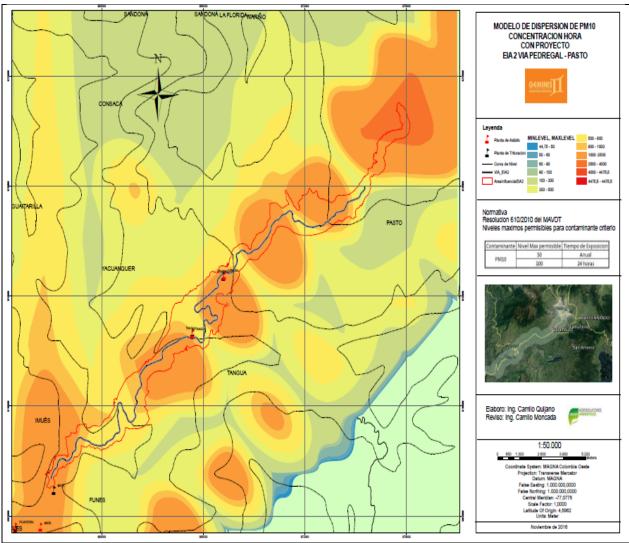
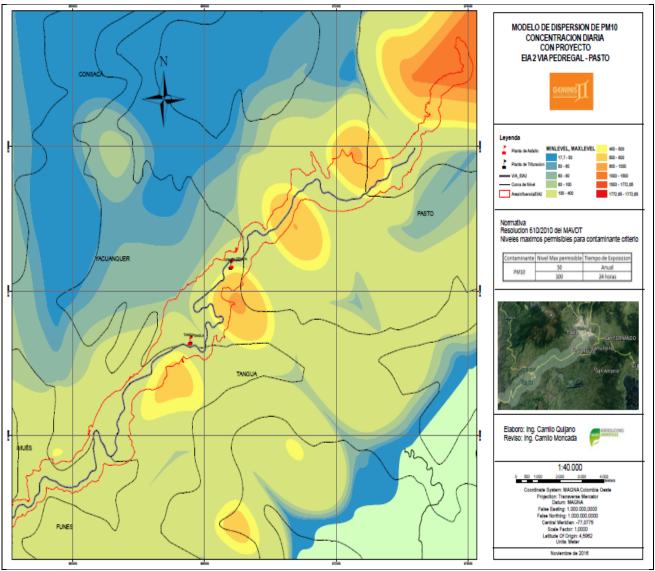
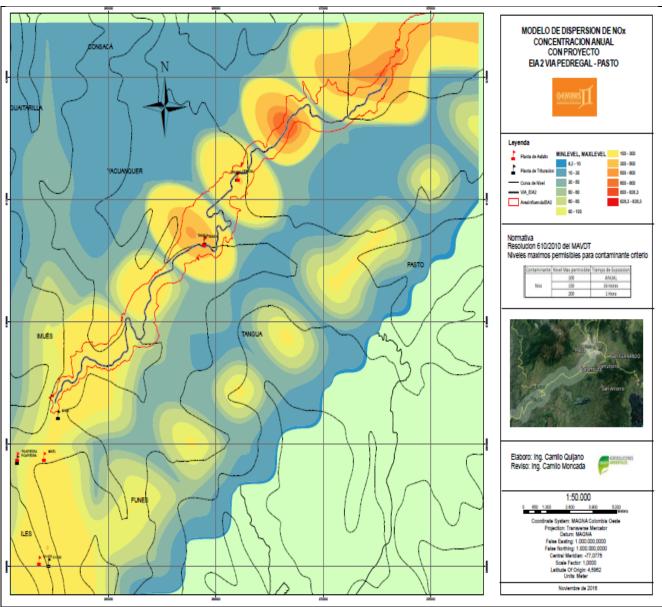


Figure 7.75 PM10 concentrations, annual period Source (ASOAM SAS, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 219

Agencia Nacional de Infraestructura




Figure 7.90 PM10 concentraciones, daily periodo Source (ASOAM S.A.S, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 220

Photograph 7.91 NO2 concentrations, annual period Source (ASOAM S.A.S, 2016)

-1	ENVIRONMENT EFFECT INVESTIGATION	CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS		March 2017
		Page 221

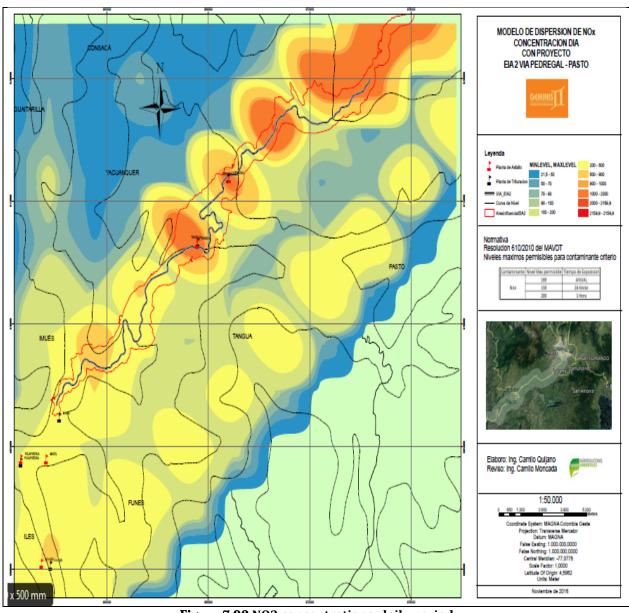


Figure 7.92 NO2 concentrations, daily period Fuente (ASOAM S.A.S, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 222

Agencia Nacional de Infraestructura

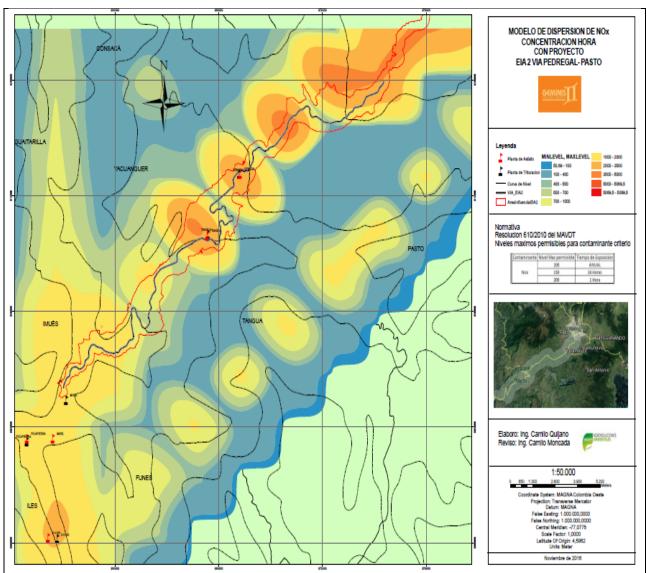


Figure 7.76 NO2 concentrations, hour period Source (ASOAM S.A.S, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 223

Agencia Nacional de Infraestructura

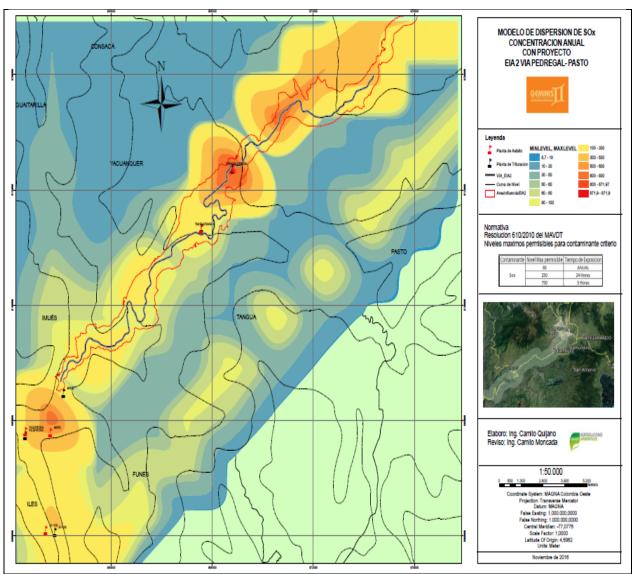


Figure 7.774 SO2 concentrations, annual period

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 224

Aciencia Nacional de

Infraestructura

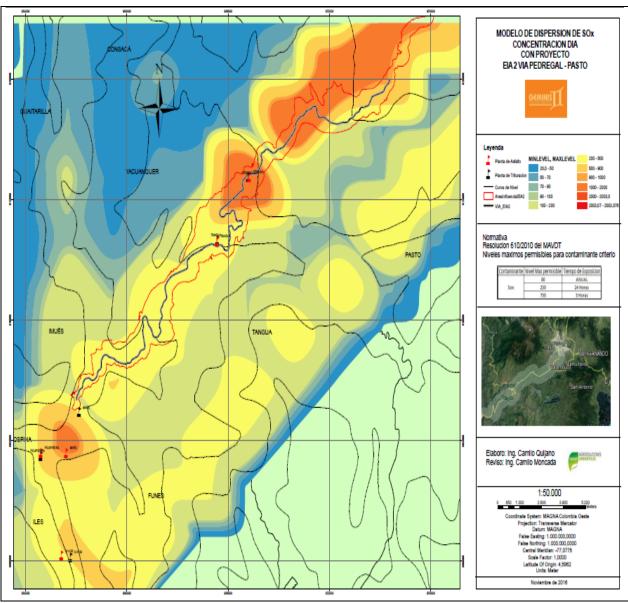


Figure 7.785 SO2 concentrations, daily period Source (ASOAM S.A.S, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 225

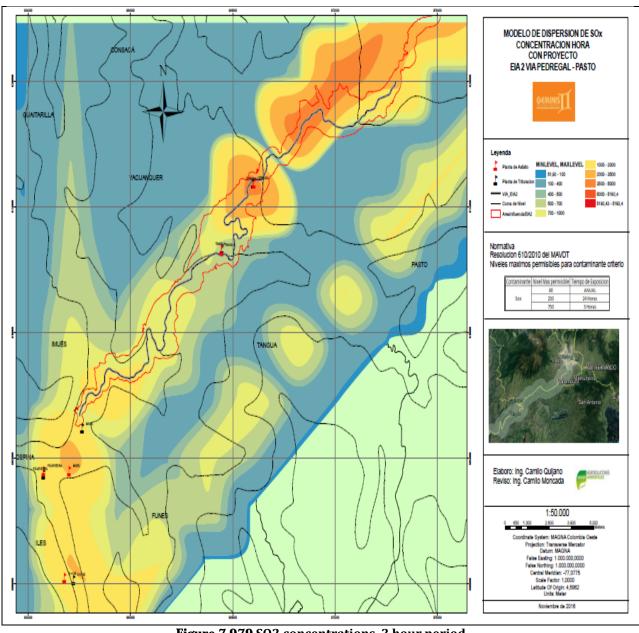


Figure 7.979 SO2 concentrations, 3 hour period Source (ASOAM S.A.S, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 226

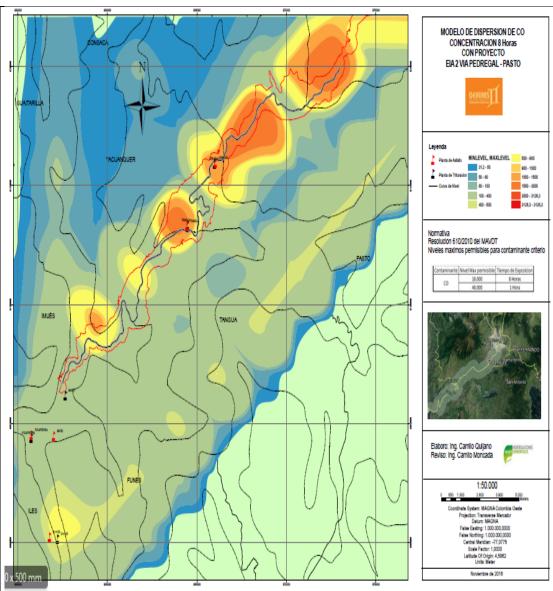


Figure 7.807 CO concentrations, 8 hour period Source (ASOAM S.A.S, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 227

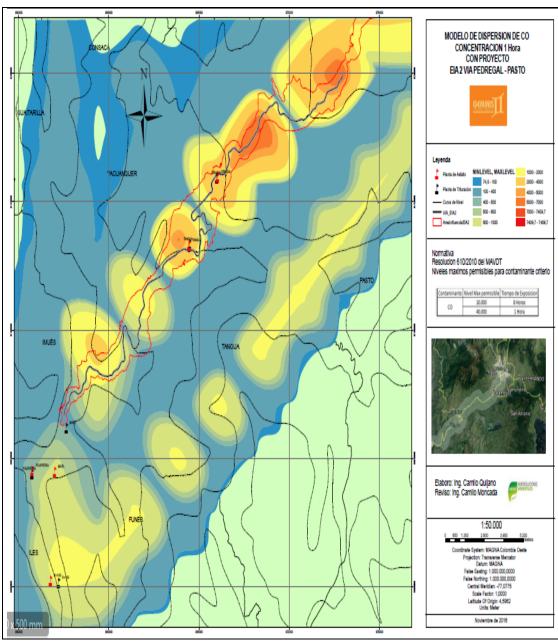


Figure 7.81 CO concentrations, 1 hour period Source (ASOAM S.A.S, 2016)

	CSH-4-AM-AM-EIA2-GG- 0013-7
ENVIRONMENT EFFECT INVESTIGATION	March 2017
	Page 228

	ATMOSPHERIC EMISSION SOURCE INFORMATION			Volumetric	flow emissions	3
	CAMP Flow m3 / s		mp g / m3	NOx mg / m3	SOx g / m3	PM10 ug / m3
Asphalt	Tangua	0.744	346000	87900	337200	320
plants	CEBADAL	0.744	346000	87900	337200	320
Crushing	Tangua	2.3769	113,587.288	16360.309	19281.7927	2103.468296
plants	CEBADAL	2.3769	113,587.288	16360.309	19281.7927	2103.468296

Follows the volumetric flow in the following table; information used to run the models:

Based on the above, control measures leading to reducing emission values generated by plants (asphalt and crushers) must be implemented; information to be corroborated in detail during implementation and selection of the final equipment; based on which the efficiencies and type of control systems to implement will be calculated in order to ensure compliance with the permissible maximums of Resolution 610 of 2010.

To estimate the models with project with control, the basis are emissions from asphalt and crushing plants located at the works fronts, taking into account the mass balance calculated values; dispersion and / concentration levels not in compliance with established environmental regulations. Therefore, the implementation of control systems with a minimum emission efficiency of 85% was considered desirable, so as to not exceed the maximum allowable established in Resolution 0610 of 2010.

Based on modeling with project and once evidenced exceedances of concentrations established by Resolution 610 of 2010, implementing control actions and / or mitigation at the source measures were considered, which should be reviewed during the detailed engineering phase, project phase where replacing emission generating equipment or implementing emission control systems will be considered, for a minimum removal of 85% to comply with the standard and as analyzed in the dispersion models of numeral 8.3 of Annex 7.6.2, which evidences compliance with the standard.

In addition to the aforesaid, to clarify that a detailed analysis of generation sources and therefore emissions due to their future operation is being prepared. Given the aforementioned, less uncertainty in modeling with project is expected resulting in greater control engineering detail validation required in order to comply with the national air quality standard, Resolution 610 of 2010.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 229

o 7.6.2.5 Calibration

The model was calibrated using the results of air quality monitoring conducted for the baseline.

Road emission was iteratively adjusted for calibration, and successive model runs were made until n the monitoring points had concentrations close to those obtained by measurement, which is determined by a percentage error indicator given by:

$$E = 100 rac{\sum_{i}^{n} |Cmodelada, i - Cmedida|}{\sum_{i}^{n} Cmedida}$$

For calibration purposes, the baseline scenario was used as a basis by reference only five (5) sampling points: the following tables show the results obtained which show an error between 2% to 9%, i.e., a confidence level of the baseline modeling exercises on the order of 91% on average.

The following tables show obtained results:

			Tuble		vi 10 callu		courto			
Site	Point	Modeled Concentration, mg / m3	Emission g / s	Modeled Concentration, mg / m ²	Emission g / s	Modeled Concentration, mg / m3	Emission g / s	Modeled Concentration, mg / m3	Emission g / s	Modeled Concentration, mg / m3
El Pedregal	6	27.26	1.00E- 05	3.88	7.03E- 05	21.82	8.78E- 05	21.91	1.09E- 04	27.32
Tangua	7	27.13	1.00E- 05	7.30	3.71E- 05	71.74	1.40E- 05	40.03	1.90E- 06	27.14
Chavez	8	22.99	1.00E- 05	1.86	1.24E- 04	4.21	6.76E- 04	2.76	5.63E- 03	23.05
El Tambor	9	18.59	1.00E- 05	7.65	2.43E- 04	30.72	1.73E- 05	18.72	1.73E- 05	8,55
Catambuco	10	87.54	1.00E- 05	1.74	5.04E- 04	4.65	9.49E- 03	151.39	5.49E- 03	86,32
Error indicator				85%		87%		53%		9 %

Table 7.101 PM₁₀ calibration results

Source (ASOAM SAS, 2016)

Site	Point	Modeled Concentration, mg / m3	Emission g / s	Modeled Concentration, mg / m3	Emission g / s	Modeled Concentration, mg / m3	Emission g / s	Modeled Concentration, mg / m3
El Pedregal	6	2,61	9,00E- 06	2,53	9,28E- 06	2.6	9,0 3E-06	2.6
Tangua	7	15.91	3,00E- 05	14.4	3,31E- 05	15.89	3,0 0E-05	15.89
Chávez county	8	2,18	2.00E- 05	2,06	2,12E- 05	2,18	2.0 0E-05	2,18
El Tambor countv	9	4.3	8,00E- 06	4.3	8,00E- 06	4.3	8,0 0E-06	4.3
Catambuco	10	4,29	5,00E- 05	4,18	5,13E- 05	4.28	5,0 1E-05	4.28
Error indicator			Source (A	13%		7%		7%

Table 7.86 NO₂ calibration results

Source (ASOAM SAS, 2016)

		2 cumbrat		
Site	Point	Modeled Concentration, mg / m3	Emission g / s	Modeled Concentration, mg / m3
El Pedregal	6	16.72	5,95E- 05	16.7
Tangua	7	20,65	4,30E- 05	20.64
Chávez county	8	15.68	1,52E- 04	15,65
El Tambor county	9	17,11	3,18E- 05	17.1
Catambuco	10	30.22	3,61E- 04	30,15
Error indicator				2%

Table 7.87 SO₂ calibration results

Source (ASOAM SAS, 2016)

Site	Point	Modeled Concentration, mg / m3	Emission g / s	Modeled Concentration, mg / m3
El Pedregal	6	0.95	3,38E- 06	0.948
Tangua	7	1	2,08E- 06	0,998
Chávez county	8	1.3	1,26E- 05	1,32
El Tambor county	9	1.01	1,88E- 06	1.01
Catambuco	10	1,17	1,40E- 05	1,17
Error indicator		SUVW EVE		6%

Table 7.88 CO calibration results

Source (ASOAM SAS, 2016)

- Conclusions and recommendations

The areas with higher PM10, SOx, NOx, CO concentrations are at the end of the section, in the municipality of Pasto, which makes perfect sense considering population density of the area, in addition to the presence of industrial processes developed in the city of Pasto, so probably by dispersion city activities contribute to the dispersion modeling conducted for this study. Other areas of lesser magnitude are located in the municipalities of Yacuanquer and Tangua, in this case their contribution is smaller since their activities generate, to a lesser extent, the pollutants of interest.

Outside the area of project influence, concentrations are lower than the norm for all pollutants except for a limited area in the urban area of the municipality of San Juan de Pasto, in the north end of the area of influence; this is consistent with what was discussed in the previous paragraph.

Overall, apart from identified sources, other environmental factors that most affect the results of the dispersion are human settlements and all human activities related to the socioeconomic development of the area.

There is a relationship between relief and Isopleths configuration seen in the movement of contaminants towards the foothills, especially in the Galeras volcano.

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 232

The maximum contribution to the concentration was obtained for November.

It is recommended to evaluate the possibility of installing a permanent weather station to support future dispersion models mid-span. A station can help sustain the impact on modeled population.

For future monitoring, monitoring stations should be located according to the modeling results, taking into account the maximum and low concentration areas, according to the Tracking and Monitoring Air Quality Protocol (MAVDT, 2010).

The results obtained from the modeling in this scenario, having considered the commissioning of asphalt and crushing plants, show a minimal increase in concentrations relative to those presented for modeling without the project taking into account the allowable maximum levels for contaminants criteria set out in Resolution 0610 of 2010.

Based on the aforesaid, it is necessary to implement control measures leading to reducing emission values generated by plants (asphalt and crushers), information that should be corroborated in detail during implementation and selection of the final equipment; based on which the efficiencies and type of control systems should be calculated in order to ensure compliance with the maximum permissible of Resolution 610 of 2010; management measures the environmental license amendment of the PMA should consider.

7.7 **Construction materials**

Required raw material for construction and execution of road works are extracted from river stone aggregates as drag material or rock mass as selected aggregates usually processed.

The required amounts are usually quite important and this Pedregal - Catambuco project is no exception. The estimated amount of stone materials is shown in the following Table 7.105.

Table 700 Fatiments days also we at an in a

Table 7.89 Estimated Fock materials						
stone material	Estimated amount (m3)					
TERRAPLAIN ROCKS	320807					
CUT ROCK	18,058					
SUB BASE	204005					

		CSH-4-AM	I-AM-EL 0013-7
SUB BASE	204	005	1
CUT ROCK		058	
TERRAPLAIN ROCKS	320	807	

	CSH-4-AM-AM-EIA2-GG- 0013-7
ENVIRONMENT EFFECT INVESTIGATION	March 2017
	Page 233

BASE	137547
ROCKY MATERIAL FOR ASPHALT	124836
SELECTED MATERIAL	67563
CRUSHED	166354
SAND	69075
Approximate Total:	1108245

7.7.1 Exploiting materials (quarry and drag)

This involves making a new resource exploitation in the area, but considering the needs of the project and existing quarries it was determined that these cater the needs of materials required for execution of project works, reason why it is not necessary to apply for quarry material or exploitation of drag stream materials permit.

7.7.2 Procurement of materials in existing sources

The need to obtain material to develop the project refers to construction of the road and other concrete works like plates, pilots, sewers, box culvert, bridges and ditches among others.

This material will be obtained from sources legally established and recognized under environmental license by the Regional Autonomous Corporation CORPONARIÑO and the National Mining Agency (ANM). Table 7.106 and Figure 7.98 show extraction sites and marketing of building materials legally established near the area of project development where the project can purchase from. To note that before project commencement, the validity certificates and authorization of the sources of material must be requested from the Regional Autonomous Corporation.

Planar Coordinates				CORPONARIÑO	APPROVING -
EAST	NORTH	NAME	ANM CODE	FILE No.	LICENSE RESOLUTION
975244	621115	EL HUECO	GLC - 111 of January 4, 2007	2442	Res. No. 934 of December 4, 2008
974261	628415	LA VICTORIA	GTRC - 0105-9 of July 3, 2009	163	Res. No. 226 of July 2, 1996

Table 7.90 Sources of materials in the Pedregal-Catambuco section project area

Planar Co	ordinates	NAME	ANM CODE	CORPONARIÑO	APPROVING -
972886	629680	SAN JAVIER QUARRY	IFK - 08251 of July 6, 2009	LSC-004-12	Res. No. 584 of September 18, 2012
943149	624620	LA CONCEPCIÓN	JB7-14351 October 16, 2009	LSC-009-10	Res. No. 662 of August 9, 2010
976172	621466	LAS TERRAZAS	GTRC - 0081- 08 of April 11, 2008,		Res. No.180 July 1, 2003
973085	632598	LA VEGA	HJN - 11331X; July 10, 2008	735	No. 075 Res March 17, 1998
974715	6298881	LA ROCA	HHA - 15551: January - 04 2007	LSC-005-09	No. 551 Res July 31, 2009
977846.7	623101.5	CHAPALITO QUARRY	ICR - 08291 - June 5, 2009	LSC-001-10	No. 341 Res November 23, 2009
977840	623090	ARMENIA	Res. 003 354 December 4, 2015	170	Res No. 154 April 29, 1997
974039	629322	OCCIDENTE	GTRC - 0079- 08 April 11, 2008	2329	No. 353 Res September 30, 2002
973600	620925	BRISEÑO BAJO	Res. 002616 July 3, 2014	224	Res No. 181 May 22, 1997
973922	629280	BRISEÑO ALTO	Res. 002992 November 11, 2015	956	Res No. 200 June 10, 1998
974337	622150	LOS PALMOS	GBN-101 - June 1, 2006	2410	Res No. 0021 January 8, 2008
981970	624059	CALIDAD	IFM-16061 November 2, 2007	2429	No. 649 Res September 19, 2008

Planar Coordinates		NAME	ANM CODE	CORPONARIÑO	APPROVING -
977293	623791	LA LORIANA	WGLR-0194-08 November 7, 2008	821	Res No. 179 June 1, 1998

Source: Adapted from CORPONARIÑO, 2016.

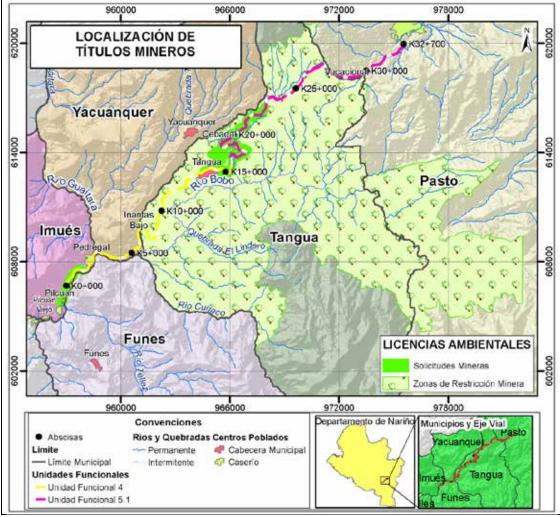


Figure 7.82 Location mining titles Source (Gemini SAS Consultants, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 236

• Mining permits and environmental authorizations

Each related source has the proper operation permits such as the mining title issued by ANM and the environmental permit whose information is annexed to this study. See Annex 7.7.2

The Concesionaria Vial Unión del Sur S.A.S may work with other mining and marketing companies of different materials to those discussed above, provided that they submit the relevant environmental and operational documentation required by the environmental authority. This information shall be attached to the environmental compliance reports - ICA

Volumes of required material for the work

Volumes of material that the main region quarries could supply are listed in Table 7.107, amounts that together add up to almost 6 times the initially estimated need for the road project.

MATERIAL SOURCE	ESTIMATED VOLUME m3
La Vega	750000
La Victoria	2942730
El Hueco	37000
San Javier	2000000
Briceño Bajo	1230000

Table 7.91 Volume material sources

The materials will be used for the different construction requirements among which the causeways, ripraps, sub-bases, bases, special paving, selected fillers, filters, prepare hydraulic concrete and asphaltic concrete.

- Type of material in some sources in the region

San Javier:

The quarry has andesitic lavas outcropping of the Lavas (TQvl) unit, are light gray in color, have plagioclase up to 1 mm (Photo 8.7). Lavas are jointed, the thickness of the outcropping is 15m and the corresponding to stripping of 1m to 2m topsoil and

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 237

pyroclastic flow. These rocks are being exploited and crushed for different uses: base, subbase, asphalt and concrete

La Vega:

The outcropping lithology in the La Vega mine is columnar lavas from the Lavas (TQvl) unit; these lavas are dark and show sporadic plagioclase phenocrysts. They are generally very hard rocks and are being exploited and crushed for base, subbase, paving, concrete, asphalt, filter and rockfill. The outcropping is 20m high and 40m long.

Briceño Bajo:

The outcropping lithology in the Briceño Bajo mine is andesite lavas from the Lavas (TQvl) unit; lavas are light gray and present plagioclase phenocrysts of up to 1 mm. They are generally very hard rocks and are being exploited and crushed for base, subbase, paving, concrete, asphalt, filter and rockfill. The outcropping is 15m high and 35m long.

La Victoria

In the mine the Lavas (TQvl) unit outcrops, composed of light gray andesite and present plagioclase phenocrysts up to 1 mm in diameter, they are hard rocks and are covered by 1m organic soil. Currently the mine exploits these for base, subbase, asphalt, filter and rockfill. The outcrop 15m high and 30m long.

El Hueco

It has ash deposits which will be used for specific concretes.

<u>Access roads</u>

Heavy vehicles will be used to obtain and transport the material; they will access through existing unpaved roads to each material source. See Figure 7.99.

-		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 238

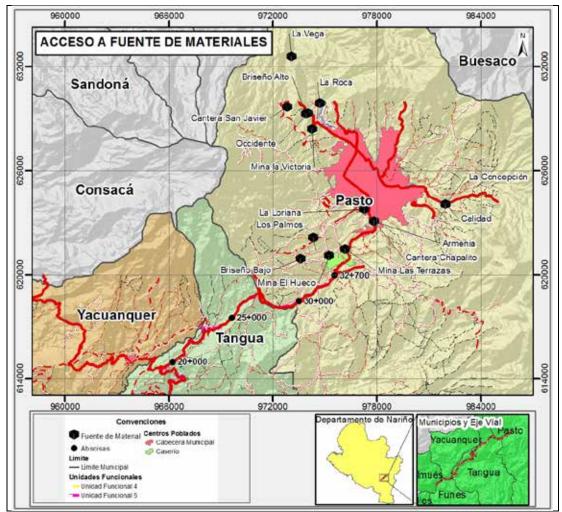


Figure 7.100: Access to sources of materials Source (Gemini SAS Consultants, 2016)

		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 239

BIBLIOGRAPHY

- *Alianza por el agua* . (18 de Julio de 2016). Obtenido de http://www.alianzaporelagua.org/Compendio/images/tecnologias/tec_s/tec_s 11.jpg
- *Alianza por el agua.* (07 de 2016). Obtenido de http://www.alianzaporelagua.org/Compendio/images/tecnologias/tec_s/tec_s 11.jpg
- ÁLVAREZ, M. U. (2006). *Manual de métodos para el desarrollo de inventarios de biodiversidad.* Bogota,Colombia: Instituto de Investigación de Recursos Biológicos, Alexander Von Humbolt.
- ALZATE, G. &. (2000). Patrones de distribución de Epífitas Vasculares. *Revista Facultad Nacional de Agronomía Medelliín*, 969-**983**.
- Angulo., A. A. (2006). *Técnicas de Inventario y Monitoreo para los anfibios de la región Tropical Andina.* Bogotá: Colombia.
- ANI. (2015). *ftp://ftp.ani.gov.co/Segunda%200la/Rumichaca%20Pasto/.*
- ASOAM. (2016). SERAMBIENTE S.A.S.
- (2016). ASOAM S.A.S.
- ASOAMSAS. (2016).
- Briones, M. (2000). Lista anotada de los mamíferos de la Región de la Cañada, en el Valle de Tehuacán-Cuicatlan, Oaxaca, Mexico. *Acta Zoológica Mexicana*, 83-103.
- Canter, L. (1998). *Manual de Evaluacion de Impacto Ambiental.Tecnicas para la elaboración de los estudios de impacto.* Madrid: McGraw Hill.
- CATERPILLAR. (07 de 2016). *CATERPILLAR*. Obtenido de http://www.cat.com/es_MX/products/new/power-systems/electric-power-generation/diesel-generator-sets/18489720.html
- CIBER. (s.f.). *CIBER*. Recuperado el 07 de 2016, de http://www.ciber.com.br/es/tecnologias/plantas-de-asfalto-tipo-discontinua/principales-componentes/
- Claudia E. Moreno. (2000). *Metodos para medir la biodiversidad*. Zaragosa: Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo.
- Conservancy, T. N. (1992). Evaluacion Ecologica Rápida. Programa de Ciencias para América Latina. Arlington, USA: 232.
- Crump, M. S. (1994). Measuring and monitoring biological diversity, standard methods for amphibians. *Smithsonian Institution Press*, 354-352.

- CRUZ, O. A.-m. (2003). Evaluación ecológica y silvicultural de ecosistemas boscosos. *Universidad del Tolima*.
- Cuentas, D. B. (2002). Anuros del departamento del Atlántico y norte de Bolívar.C.R.A. 23.
- *Drenaje urbano sostenible* . (18 de Julio de 2016). Obtenido de http://drenajeurbanosostenible.org/tecnicas-de-drenaje-sostenible/tipologia-de-las-tecnicas/medidas-estructurales/pozos-y-zanjas-de-infiltracion/

ENVIROMENTAL SYSTEMS RESEARCH INSTITUTE (ESRI). (s.f.). ArcGIS. California.

- Facilconcreto. (2015). Planta dosificadora de hormigón.
- *Firme Constructii*. (16 de Julio de 2016). Obtenido de Firme Constructii: http://www.companieconstructii.ro/prod.php?id_firma=84
- Géminis Consultores Ambientales. (2016).
- Géminis Consultores Ambientales. (2016).
- Géminis Consultores Ambientales. (2016).
- Géminis Consultores S.A.S. (2016).
- Geminis consultores S.A.S. (2016). *Propuesta Técnica para muestreo de flora epífita y saxícola que crece sobre muros de roca, en la vía Pasto Rumichaca*. PASTO.
- Géminis Consultores S.A.S. (s.f.).
- Géminis Consultores S.A.S. (2016).
- Géminis Consultores S.A.S. (2016).
- Géminis Consultores S.A.S. (2016).
- GENTRY, A. (1995). Patterns of diversity and floristic composition in Neotropical Montane Forests. En A. GENTRY. Nueva York: Biodiversity and Conservation of Neotropical Montane.
- *Guía de orientación de saneamiento básico*. (Julio de 2016). Obtenido de http://www.bvsde.paho.org/bvsacg/guialcalde/2sas/2-4sas.htm
- *Guia de orientacion en saneamiento basico* . (18 de julio de 2016). Obtenido de http://www.bvsde.paho.org/bvsacg/guialcalde/2sas/2-4sas.htm
- Helios Consorcio Vial. (Ambril de 2008). Estudio de Impacto Ambiental del Proyecto Vial Ruta del Sol -Sector I: Villeta- El Koran. Bogota.
- Helios Consorcio Vial. (2008). Estudio de Impactos Ambiental del Proyecto Vial Ruta del Sol Sector I: Villeta El Koran. Bogotá.

Hernandez Sampieri, C. F.-C. (2006). Metodologia de la investigación . Mexico .

Hidritec. (18 de Julio de 2016). Obtenido de http://www.hidritec.com/hidritec/desarenadores-desengrasadores

-1		CSH-4-AM-AM-EIA2-GG- 0013-7
GEMINIS	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 241

- IDEAM & DANE. (2009). Diseño del marco conceptual y metodológico del Inventario Forestal Nacional. Bogotá, Colombia.
- IDEAM. (2015).
- INVIAS. (2011). Guía de Manejo Ambiental de Proyectos de Infraestructura.
- INVIAS. (2011). Guía de Manejo Ambiental de Proyectos de Infraestructura Subsector Vial.
- INVIAS. (s.f.). Manual de drenaje para carreta. Sección 6.2.1.1 Fígura 6.1. En *Socavación general Definición de variables de referencia.*
- JOHANSON, D. (1974). Ecology of Vascular epiphytes in West Africa Forest. *Acta Phytogeografa*, (pág. 136). Suecia.
- LOPÉZ-RÍOS, D. G.-G.-G. (2003). Ecología de las plantas Epífitas. Chapingo, 1001-111.
- MAVDT. (2010). *Metodologia general para la presentación de Estudios Ambientales*. Bogotá: Ministerio de Ambiente, Vivienda y Desarrllo Territorial.
- MAVDT, M. d. (2010). *Metodología general para la presentación de Estudios Ambientales.* Bogotá.
- MINISTERIO DE AMBIENTE, V. Y. (2006). Resolución 627. Bogotá.
- MINISTERIO DE AMBIENTE, V. Y. (2010). *Protocolo para el seguimiento y monitoreo de la calidad del aire.* Bogota D.C.
- Ministerio de Ambiente, Vivienda y Desarrollo Territorial. (27 de Noviembre de 2009). Resolucion 2320 de 2009. Bogota, Colombia.
- Ministerio de Desarrollo Economico. (2008). RAS.
- Naranjo, E. J. (2000). Estimación de abundancia y densidad en poblaciones de fauna silvestre tropical. En E. M. Cabrera, *Manejo de fauna silvestre en Amazonia y Latinoamérica* (págs. 37-46). Paraguay: Fund. Moises.
- O.A MELO. (1997). *Evaluación de la estructura y la diversidad floral en un bosque.* Ibague: Universidad del Tolima.
- *Opepa*. (1983). Obtenido de http://www.opepa.org/index.php?option=com_content&task=view&id=285&It emid=30
- Organización Panamericana de la Salud, CEPIS/OPS, & OMS. (2013). *Guía de orientación de Saneamiento Básico*. Obtenido de http://www.bvsde.ops-oms.org/bvsacg/guialcalde/2sas/2-4sas.htm
- Painter, L. (1999). Tecnicas de investigación para el manejo de fauna silvestre. Santa Cruz de la Sierra, Bolivia.
- Peraza., C. C. (2004). Adiciones a la avifauna de un cafetal con sombrio en la mesa de los santos (santander Colombia). *Universitas Scientarum*, 19-32.

GEMINIST		CSH-4-AM-AM-EIA2-GG- 0013-7
	ENVIRONMENT EFFECT INVESTIGATION	March 2017
		Page 242

REPUBLICA, P. D. (2005). DECRETO 4741. BOGOTA.

- Roldan, G. (2003). Bioindicaciín de la calidad del agua en Colombia. *Ciencia y Tecnología*, 175.
- SAP. (2015). *SAP*. Obtenido de Universidad de Chile: www.sap.uchile.cl/descargas/suelos/029Textura.pdf

SAS, A. I. (s.f.). ABL Internacional SA. Obtenido de www.ablsa.com

Sostoa, A. G. (2005). *Metodologia para el establecimiento del Estado Ecológico según la directiva Marco del agua. Protocolo y muestreo de análisis para Ictiofauna.* Barcelona: Confederación hidrografica del Hebro.

States, E. U. (2000). Hot mix asphalt production and testing.

- *Universidad nacional* . (18 de Julio de 2016). Obtenido de http://datateca.unad.edu.co/contenidos/358039/ContenidoLinea/leccion_31_t ratamientos_minimos_requeridos_para_los_vertidos_industriales.html
- *Venta de baños portatiles.* (18 de Julio de 2016). Obtenido de http://www.ventadebanosportatiles.com/
- *Venta de Baños portatiles.* (07 de 2016). Obtenido de http://www.ventadebanosportatiles.com/
- vial, H. C. (06 de Julio de 2016). *ESTUDIO DE IMPACTO AMBIENTAL DEL PROYECTO VIAL RUTA DEL SOL – SECTOR I: VILLETA – EL KORÁN.* Obtenido de http://docplayer.es/14050829-Capitulo-4-demanda-uso-y-aprovechamientode-recursos-naturales.html
- Villareal H., M. Á. (2006). *Manual de métodos para el desarrllo de Inventarios de biodiversidad.Programa de Inventarios de Biodiversidad.* Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Vivas, F. C. (2008).

- Voss, R. E. (1996). Mammalian diversity in Neotropical lowland rainforests : a preliminary assessment. *Bulletin of the AMNH*, 1-115.
- WOLF, J. H. (2009). *A protocol for sampling vasculare epiphyte richness and abundance.* Journal of Tropical Ecology.
- ZOTZ, G. B. (2011). Sampling vascular epiphyte diversity Species richness and community stucture. *Ecotropica*, 103-112.

