A Quantum Phase Transition of the Distorted Kagome Lattice Antiferromagnet in Magnetic Field

Toru SAKAI^{A,B}, Hiroki NAKANO^B ^AJAEA SPring-8, ^BUniversity of Hyogo

H. Nakano and TS: JPSJ 79 (2010) 053707 (arXiv:1004.2528)
TS and H. Nakano: PRB 83 (2011) 100405(R) (arXiv:1102.3486)
H. Nakano and TS: JPSJ 80 (2011) 053704 (arXiv: 1103.5829)
TS and H. Nakano: physica status solidi B 250 (2013) 579
H. Nakano and TS: JPSJ 82 (2013) 083709
H. Nakano and TS: JPSJ 83 (2014) 104710

2D frustrated systems

• Heisenberg antiferromagnets

Triangular lattice

Classical ground state 120 degree structure

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

Kagome lattice

Macroscopic degeneracy (a global plane is not fixed)

Kagome lattice

Itiro Syôzi: Statistics of Kagomé Lattice, PTP 6 (1951)306

Corner sharing triangles

S=1/2 Kagome Lattice AF

- Herbertsmithite ZnCu₃(OH)₆Cl₂ impurities Shores et al. J. Am. Chem. Soc. 127 (2005) 13426
- Volborthite CuV2O7(OH)2·2H2O lattice distortion
 Hiroi et al. J. Phys. Soc. Jpn. 70 (2001) 3377
- Vesignieite BaCu₃V₂O₈(OH)₂ ideal?

Okamoto et al. J. Phys. Soc. Jpn. 78 (2009) 033701

Triangular lattice

Pyrochlore lattice

Numerical approach

Numerical diagonalization

Quantum Monte Carlo (negative sign problem) Density Matrix Renormalization Group (not good for dimensions larger than one)

Magnetization process of S=1/2 kagome lattice AF

Hida: JPSJ 70 (2001) 3673

Honecker et al: JPCM 16(2004)S749

1/3 plateau ?

Reexamination

from the viewpoint of Field derivative of magnetization

$$\chi \propto \frac{\partial M}{\partial H}$$

as a function of
$$m = \frac{M}{M_{\rm s}}$$

HN and T.Sakai: JPSJ **79** (2010) 053707 (Letter) T.Sakai and HN: PRB **83** (2011) 100405(Rapid comm.)

S=1/2 Kagome lattice AF

H. Nakano and TS: JPSJ **79** (2010) 053707 Reexamination from the viewpoint of

Magnetization ramp

Jump ramp

Magnetization curve of Kagome lattice AF

M/Ms

Results for Rhombic Clusters

Characteristics of the ramp appear clearly for N=39.

Triangular lattice

N=39, 36, and 27

Rhombus

Typical magnetization plateau at *M*/*M*_{sat}=1/3

Features of Magnetization Ramp

Critical exponent

 $|m-mc| = |H-Hc|^{1/\delta}$

 $\delta=2$ 1D Affleck 1990, Tsvelik 1990, TS-Takahashi 1991 $\delta=1$ 2D Katoh-Imada 1994

1/3 magnetization plateau $m - \frac{1}{3} \sim (H - H_{c2})^{1/\delta_{+}},$ $H_{c1} = H_{c2}?$

m H_{c1} H_{c2} H

Estimation of
$$\delta$$

cf. TS and M. Takahashi: PRB 57 (1998) R8091
 $f_{\pm}(N) \equiv \pm [E(N, \frac{N}{3} \pm 2) + E(N, \frac{N}{3}) - 2E(N, \frac{N}{3} \pm 1)],$
 $f_{\pm}(N) \sim \frac{1}{N^{\delta_{\pm}}}$

Numerical diagonalization of rhombic clusters for N=12, 21, 27, 36, 39

log(/)

Kagome lattice

H_{c1}=H_{c2}? (Plateau vs Ramp)

Triangular lattice

 $H_{c2} - H_{c1} = 0.3 \pm 0.2$ $H_{c1} \neq H_{c2}$ 1/3 plateau

Kagome lattice

 $H_{c2} - H_{c1} = -0.3 \pm 0.5$

 $H_{c1} = H_{c2}$ No plateau

$$\Delta \sim k \Rightarrow \Delta \rightarrow 1/N^{1/2} (N \rightarrow \infty)$$

if gapless

Magnetization ramp?

Grand Canonical Analysis

Plateaux at 1/3, 5/9, 7/9

Purpose of this study

to know the true behavior around 1/3 height of the magnetization process of the S=1/2 Heisenberg kagome-lattice antiferromagnet from an unbiased meth Lanczos diagonalization

We treat system sizes as large as possible.

N_s=42 (WR within the S=1/2 systems) Parallel calculation in K computer ⇒ anomalous critical exponents

We observe the behavior when a distortion is switched on.

The √3×√3-Type

⇒ boundary between two different phases

Width of the state at 1/3 height

Up to N_s =33 (Hida: JPSJ **70** (2001) 3673)

Weak size dependence for $N_{\rm s} \ge 21$

No clear evidence for the formation of state with 9-site structure

$\sqrt{3} \times \sqrt{3}$ -Type Distortion

MH Curves with Distortion

HN, Y.Hasegawa and T.Sakai: JPSJ 83 (2014) 084709

m=1/3 plateau

Spin-flop phenomenon even in a spin-isotropic system

Local Magnetization at m=1/3

 $J_2=J_1$ is only at a boundary between two different state:

also suggests clearly that $J_2=J_1$ is a bounc

Summary

We study the magnetization process of kagomelattice AF with and without the distortion.

N_s=42 ⇒ anomalous exponents
 Kagome point is just a boundary during the √3×√3 distortion change.

References

HN and T.Sakai: JPSJ **79** (2010) 053707 (Letter) T.Sakai and HN: PRB **83** (2011) 100405(Rapid comm.) HN and T.Sakai: JPSJ **80** (2011) 053704 (Letter) HN, M.Isoda, and T.Sakai: JPSJ 83 (2014) 053702 HN, Y.Hasegawa and T.Sakai: JPSJ **83** (2014) 084709 HN and T.Sakai: JPSJ 83 (2014) 104710 arXiv.1408.4538

cf. Cairo pentagon lattice

J : α - α bond J': α - β bond

 $\eta = J'/J$

Magnetization jump

Higher side of 1/3 plateau

Critical point $\eta \sim 0.8$

lower side of 1/3 plateau

Jump ⇔ Classical long-range order

Quantum phase transition

Cairo pentagon lattice AF

Critical ration J'/J ~ 0.8 quantum phase transition Spin flop after 1/3 plateau for J'/J < 0.8 Spin flop before 1/3 plateau for J'/J > 0.8

Spin gap up to N=42

Analysis of our finite-size gaps

Two extrapolated results disagree from odd N_s and even N_s sequences.

Feature of a **Gapless** system (U(1) Dirac SL)

H. Nakano and TS: JPSJ 80 (2011) 053704 (arXiv: 1103.5829)