A Quantum Phase Transition of the Distorted Kagome Lattice Antiferromagnet in Magnetic Field

Toru SAKAI ${ }^{\text {A,B }}$, Hiroki NAKANO ${ }^{\text {B }}$ ${ }^{\text {A }}$ JAEA SPring-8, ${ }^{\text {B }}$ University of Hyogo

H. Nakano and TS: JPSJ 79 (2010) 053707 (arXiv:1004.2528)

TS and H. Nakano: PRB 83 (2011) 100405(R) (arXiv:1102.3486)
H. Nakano and TS: JPSJ 80 (2011) 053704 (arXiv: 1103.5829)

TS and H. Nakano: physica status solidi B 250 (2013) 579
H. Nakano and TS: JPSJ 82 (2013) 083709
H. Nakano and TS: JPSJ 83 (2014) 104710

2D frustrated systems

- Heisenberg antiferromagnets

Triangular lattice

Classical ground state 120 degree structure

$$
H=J \sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}
$$

Kagome lattice

Macroscopic degeneracy (a global plane is not fixed)

Kagome lattice

Itiro Syôzi: Statistics of Kagomé Lattice, PTP 6 (1951)306

kagome

Corner sharing triangles

S=1/2 Kagome Lattice AF

- Herbertsmithite $\mathrm{ZnCu}_{3}(\mathrm{OH})_{6} \mathrm{Cl}_{2}$ impurities

Shores et al. J. Am. Chem. Soc. 127 (2005) 13426

- Volborthite $\mathrm{CuV}_{2} \mathrm{O}_{7}(\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ lattice distortion Hiroi et al. J. Phys. Soc. Jpn. 70 (2001) 3377
- Vesignieite $\mathrm{BaCu}_{3} \mathrm{~V}_{2} \mathrm{O} 8(\mathrm{OH})_{2} \quad$ ideal ?

Okamoto et al. J. Phys. Soc. Jpn. 78 (2009) 033701

Methods

Frustration \square Exotic phenomena
Kagome lattice
Triangular lattice

Pyrochlore lattice

Numerical approach
Numerical diagonalization
Quantum Monte Carlo (negative sign problem)
Density Matrix Renormalization Group
(not good for dimensions larger than one)

Magnetization process of $\mathrm{S}=1 / 2$ kagome lattice AF

Hida: JPSJ 70 (2001) 3673
Honecker et al: JPCM 16(2004)S749

Reexamination

from the viewpoint of
Field derivative of magnetization

Interacting S=1 Dimer Systems

S=1/2 Kagome lattice AF

H. Nakano and TS: JPSJ 79 (2010) 053707 Reexamination from the viewpoint of

Field derivative of magnetization ∂M

M
$\chi \propto \overline{\partial H}$
as a function of $m=$ M_{s}

Magnetization ramp

Jump ramp

Magnetization curve of Kagome lattice AF

Results for Rhombic Clusters

Characteristics of the ramp appear clearly for $\mathrm{N}=39$.

Triangular lattice

$\mathrm{N}=39,36$, and 27 Rhombus

Typical magnetization plateau at $M / M_{\text {sat }}=1 / 3$

Comparison of χ

Kagome

Triangular

Clear difference at $M / M_{\text {sat }}=1 / 3$
Ramp
Plateau

Features of Magnetization Ramp

Kagome lattice

Critical exponent

$|m-m c|=|H-H c|^{1 / \delta}$
$\delta=2 \quad 1 D$
Affleck 1990, Tsvelik 1990, TS-Takahashi 1991
$\delta=1 \quad 2 D$
Katoh-Imada 1994

1/3 magnetization plateau

$$
\begin{align*}
m-\frac{1}{3} & \sim\left(H-H_{c 2}\right)^{1 / \delta_{+}}, \\
\frac{1}{3}-m & \sim\left(H_{c 1}-H\right)^{1 / \delta_{-}} . \tag{cl}
\end{align*}
$$

Estimation of δ

cf. TS and M. Takahashi: PRB 57 (1998) R8091

$$
f_{ \pm}(N) \equiv \pm\left[E\left(N, \frac{N}{3} \pm 2\right)+E\left(N, \frac{N}{3}\right)-2 E\left(N, \frac{N}{3} \pm 1\right)\right],
$$

$$
f_{ \pm}(N) \sim \frac{1}{N^{\delta_{ \pm}}}
$$

Numerical diagonalization of rhombic clusters for $\mathrm{N}=12,21,27,36,39$

$\delta_{-}=\delta_{+}=1 \quad$ Conventional (2D)

Kagome lattice

$$
\begin{gathered}
\delta_{-}=1.9 \pm 1.0, \quad \delta_{+}=0.5 \pm 0.2, \\
\delta_{-}=2 \quad \chi \rightarrow \infty \quad(1 \mathrm{D} \text { like }) \\
\delta_{+}=1 / 2 \quad \chi=0
\end{gathered}
$$

$\mathrm{H}_{\mathrm{cl}}=\mathrm{H}_{\mathrm{c} 2}$? (Plateau vs Ramp)

Triangular lattice

$$
\begin{aligned}
& H_{c 2}-H_{c 1}=0.3 \pm 0.2 \\
& H_{c l} \neq H_{c 2} \\
& 1 / 3 \text { plateau }
\end{aligned}
$$

Kagome lattice

$$
H_{c 2}-H_{c 1}=-0.3 \pm 0.5
$$

$H_{c l}=H_{c 2}$
No plateau
$\Delta \sim \mathrm{k} \Rightarrow \Delta \rightarrow 1 / \mathrm{N}^{1 / 2}(\mathrm{~N} \rightarrow \infty)$ if gapless

Magnetization ramp ?

Grand Canonical Analysis

Nishimoto, Shibata, Hotta: Nature Comm. 4 (2013) 2287

Deformation technique

cf. Diagonalization up to 63 spins
Capponi et al. PRB 88 (2013) 144416
Plateaux at $1 / 3,5 / 9,7 / 9$

Purpose of this study

to know the true behavior around $1 / 3$ height of the magnetization process of the $S=1 / 2$ Heisenberg kagome-lattice antiferromagnet from an unbiased meth

Lanczos diagonalization

- We treat system sizes as large as possible.

$$
\begin{aligned}
& N_{\mathrm{s}}=42(\mathrm{WR} \text { within the } \mathrm{S}=1 / 2 \text { systems) } \\
& \text { Parallel calculation in } \mathrm{K} \text { computer }
\end{aligned}
$$

\Rightarrow anomalous critical exponents
We observe the behavior when a distortion is switched on.

$$
\begin{aligned}
& \text { The } \sqrt{ } 3 \times \sqrt{3-T y p e ~} \\
& \quad \Rightarrow \text { boundary between two different phases }
\end{aligned}
$$

Magnetization Process of $N_{\mathrm{s}}=42$

Width of the state at $1 / 3$ height

Up to $N_{\mathrm{s}}=33$ (Hida: JPSJ 70 (2001) 3673)

Weak size dependence for $N_{s} \geqq 21$
No clear evidence for the formation of state with 9-site structure

Differential Susceptibility

Exponent δ

critical behavior $\left|m-\mathrm{m}_{\mathrm{c}}\right| \propto\left|\mathrm{H}-\mathrm{H}_{\mathrm{c}}\right|^{1 / \delta}$

$f_{ \pm}\left(N_{\mathrm{s}}\right)=E\left(N_{\mathrm{s}}, M=\frac{M_{\mathrm{s}}}{3} \pm 2\right)+E\left(N_{\mathrm{s}}, M=\frac{M_{\mathrm{s}}}{3}\right)-2 E\left(N_{\mathrm{s}}, M=\frac{M_{\mathrm{s}}}{3} \pm 1\right)$

$$
f_{ \pm}\left(N_{\mathrm{s}}\right) \sim \frac{1}{N_{\mathrm{s}}^{\delta_{ \pm}}}
$$

$$
\delta_{+}=0.54 \pm 0.36
$$

Different from $\delta=1$
$\delta_{-}=2.13 \pm 1.10$

Comparison is necessa with other estimates.

$\sqrt{3} \times \sqrt{3}$-Type Distortion

MH Curves with Distortion

Local Magnetization at $m=1 / 3$

$J_{2}=J_{1}$ is only at a boundary between two different state:

Behavior around $m=1 / 3$

$$
f_{ \pm}\left(N_{\mathrm{s}}\right)=E\left(N_{\mathrm{s}}, M=\frac{M_{\mathrm{s}}}{3} \pm 2\right)+E\left(N_{\mathrm{s}}, M=\frac{M_{\mathrm{s}}}{3}\right)-2 E\left(N_{\mathrm{s}}, M=\frac{M_{\mathrm{s}}}{3} \pm 1\right)
$$

also suggests clearly that $J_{2}=J_{1}$ is a bounc

Summary

We study the magnetization process of kagomelattice AF with and without the distortion.
$N_{\mathrm{s}}=42 \Rightarrow$ anomalous exponents
Kagome point is just a boundary during the $\sqrt{ } 3 \times \sqrt{3}$ distortion change.

References

```
HN and T.Sakai: JPSJ 79 (2010) }053707\mathrm{ (Letter)
T.Sakai and HN: PRB }83\mathrm{ (2011) 100405(Rapid comm.)
HN and T.Sakai: JPSJ 80 (2011) }053704\mathrm{ (Letter)
HN, M.Isoda, and T.Sakai: JPSJ 83 (2014) 053702
HN, Y.Hasegawa and T.Sakai: JPSJ }83\mathrm{ (2014) 084709
HN and T.Sakai: JPSJ 83 (2014) 104710 arXiv.1408.4538
```


cf. Cairo pentagon lattice

$\mathrm{J}: \alpha-\alpha$ bond
$\mathrm{J}^{\prime}: \alpha-\beta$ bond
$\eta=J^{\prime} / J$

Magnetization jump

Higher side of $1 / 3$ plateau

Critical point $\quad \eta \sim 0.8$

lower side of $1 / 3$ plateau

Jump \Leftrightarrow Classical long-range order

Quantum phase transition

Cairo pentagon lattice AF Critical ration J'/J ~ 0.8 quantum phase transition Spin flop after $1 / 3$ plateau for $\mathrm{J}^{\prime} / \mathrm{J}<0.8$ Spin flop before $1 / 3$ plateau for $\mathrm{J}^{\prime} / \mathrm{J}>0.8$

Spin gap up to $\mathrm{N}=42$

Analysis of our finite-size gaps

Two extrapolated results disagree from odd N_{s} and even N_{s} sequences.

Feature of a gapleSS system (U(1) Dirac SL)

