
1st International Workshop

on Organizational Modeling

»ORGMOD 2009«

A satellite event of the

30th International Conference on
Application and Theory of Petri Nets and

Other Models of Concurrency

and

the 20th IEEE/IFIP

International Symposium on

Rapid System Prototyping

Paris, France, June, 2009

Preface by the Organisers

This volume consists of the contributions to the first international work-

shop on organizational modeling (OrgMod’09). The workshop took place as a
satelite event of the 30th International Conference on Application and Theory
of Petri Nets and Other Models of Concurrency (ICATPN’09) and the 20th
IEEE/IFIP International Symposium on Rapid System Prototyping (RSP’09)
in Paris, France.

Enterprises and any kind of public bodies are supported by information sys-
tems. An important question is, how to align the enterprise with the supporting
software and IT systems. Modeling the essential organizational structures, be-
haviors, concepts and entities is a prerequisite for a thorough understanding of
this alignment. Numerous techniques such as Petri nets, Event-Process Chains
(EPC), Unified Modeling Language (UML), BPEL, WSDL provide some means
to build models in general. The supporting tools, methods and conceptual frame-
works are also important factors for the provision of good models.

The workshops aimed to allow practitioners and researchers discuss the use
of Petri nets, other formal and semi-formal techniques and their supporting
frameworks and approaches for organizational modeling.

Topics of interest included modeling techniques (formal or semi-formal); dif-
ferent paradigms for modeling (object-oriented, process-oriented, agent-oriented,
organization-oriented); technical frameworks and tools to support organizational
modeling, verification, validation, simulation, and code generation for organiza-
tional modeling; middle-ware for organization-centred software; technologies for
the Corporate Web; organizational case studies; evaluation methods and met-
rics for the Business/IT-alignment; organizational theories; E-Government; and
organizational modeling problems from the perspective of other disciplines than
computer science.

We like to thank all authors who have submitted papers. Each paper was
reviewed by at least fourreferees. During the reviewing process the program
comittee selected seven out of twelf contributions for publication. We wish to
thank all members of the program comittee for their effort.

Finally we like to thank our invited speaker, Jacques Ferber, for his lecture:
From AGR to MASQ: Understanding organizations from a multi-agent point of

view.

June 2009 Michael Köhler-Bußmeier
Daniel Moldt

Olivier Boissier

i

Conference Organization

Programme Chairs

Michael Köhler-Bußmeier

Olivier Boissier

Daniel Moldt

Programme Committee

Didier Buchs

Christine Choppy

Virginia Dignum

Marlon Dumas

Marc Esteva

Berndt Farwer

Jacques Ferber

Giuliana Franceschinis

Paolo Giorgini

Emmanuelle Grislin-le Strugeon

Vincent Hilaire

Thomas Hildebrandt

Jomi Fred Hübner

Catholijn Jonker

Eric Matson

Markus Nüttgens

James Odell

Andrea Omicini

Pascal Poizat

Oana Prisecaru

Costa Antonio Carlos da Rocha

Heiko Rölke

Amal El Fallah Seghrouchni

Alexei Sharpanskykh

Christophe Sibertin-Blanc

Natalia Sidorova

Jaime Simão Sichmann

Harald Störrle

Catherine Tessier

Wamberto Vasconcelos

Danny Weyns

Karsten Wolf

Secq Yann

Christian Zirpins

ii

Table of Contents

An Approach for Building Holonic Models of Design Processes for Knowl-
edge Management . 1

Achraf Ben Miled, Vincent Hilaire, Davy Monticolo, Abderrafiaa Koukam

Support for Modeling Roles and Dependencies in Multi-Agent Systems . . . 15
Lawrence Cabac, Daniel Moldt

Multi Agent Organisation for Coevolutionary Optimization 34
Gregoire Danoy, Pascal Bouvry, Olivier Boissier

A Tool for Creation and Deployment of Organization Models 50
Endri Deliu, Michael Köhler-Bußmeier

Service oriented email for organisation modeling and process execution . . . 64
Petteri Kaskenpalo

Reorganisation and Self-organisation in Multi-Agent Systems 66
Picard Gauthier , Jomi Hübner, Olivier Boissier, Marie-Pierre Gleizes

Modeling an Open and Controlled System Unit as a Modular Component
of Systems of Systems . 81

Matthias Wester-Ebbinghaus, Daniel Moldt

From AGR to MASQ: Understanding organizations from a multi-agent
point of view (Invited Talk) . 101

Jacques Ferber

iii

iv

An Approach for Building Holonic
Organizational Models of Design Processes for

Knowledge Management

Achraf Ben Miled1, Davy Monticolo1, Vincent Hilaire1, and Abderrafiaa
Koukam1

1Systems and Transports laboratory
Université de Technologie de Belfort Montbéliard.

90010 Belfort Cedex, France
vincent.hilaire@utbm.fr

(33) 384 583 009

Abstract. To survive in an increasingly competitive business environ-
ment, manufacturing enterprises are under unprecedented pressure to be-
come leaner and more agile. Product leadership companies must continue
to enter new market with innovative products. This requires optimising
process and methodologies used by engineering departments. The design
process has to be rationalized in capitalizing knowledge, know-how and
technological patrimony. A solution in order to capitalize knowledge is
to model the design process used and use this model as a context of
reference. A first experiment was done to model a real enterprise design
process. The model issued from this work was the result of the immersion
in the enterprise and of the observation of professional workers. This em-
piric approach is error prone, time consuming and not easily repeatable.
In this paper an approach based on goal oriented analysis is proposed
in order to build such organizational models of design processes. These
models ease the capitalization and reuse of knowledge. Indeed, the knowl-
edge is capitalized according to a context defined by the design process
model. Specifically the use of holons allows to define several levels of
abstractions and to take into account knowledge at different levels of
granularity.

1 Introduction

Nowadays, in a financial crisis and high business competition context, enterprises
have to innovate in order to improve their business value. The product range
must be updated permanently and production costs the lowest possible. Product
leadership companies must continue to enter new market with innovative prod-
ucts. This requires optimising process and methodologies used by engineering
department. The design process has to be rationalised in capitalising knowledge,
know-how and technological patrimony. A solution to this problem consists in
using Knowledge Management techniques. Several works have introduced the

1

corporate memory as a support for Knowledge Management. A corporate mem-
ory is an explicit representation of pertinent knowledge of an organisation [16].
This memory, explaining the organizational knowledge (called equally collec-
tive Knowledge), may be considered as a knowledge base of the organisation.
Such knowledge base can be specific to a project and so be called project mem-
ory. Project memories are memories of knowledge and information acquired and
produced during the realisation of projects [3, 16]. Moreover a complementary
approach in knowledge engineering claims that knowledge is a personal interpre-
tation of information. This theory is defended in works which consist in searching
for pertinent information instead of explanation. One can distinguish for example
the works of M. Grundstein with Gameth [13]. For these authors, the knowledge
is strongly dependant to a personal interpretation linked to a specific context.
Knowledge Management is then meaningless without dealing with the context
of this knowledge. We have proposed in an earlier work an organizational model
based upon the concepts of role, interactions and organisations for the modelling
of products design processes [22]. This model allow the capitalisation of knowl-
edge during design projects according to interactions between project actors.
The context for the capitalised knowledge is then defined by the different or-
ganisations. However this approach suffer from two drawbacks. The first is that
it is a tedious work to produce organisations that model design processes from
observing human actors at work. The second drawback is that the organizational
models produced are flat models in the sense that they do not enable several
levels of granularity in the design process.
In this paper we propose a methodological approach to build holonic models
of collaborative design activities. Holons introduced in [15] are defined as self-
similar structure composed of holons as substructures. The organizational struc-
ture defined by holons, called holarchy, allows the modelling at several granular-
ity levels. These granularity levels in our case would be helpful to distinguish dif-
ferent levels of knowledge and take into account multi-enterprise or multi-group
collaborations. In order to build such models for collaborative design activities
we propose to reuse the ideas underlying the ASPECS methodology [9]. We inte-
grate within this methodology concepts taken from a goal oriented requirements
approach [28]. As stated in [25] Goals are useful for knowledge management
systems as they enable to focus on strategic knowledge. They represent actor’s
strategic interests. Actors model dual entities that have strategic goals and in-
tentionality in the system. In our case, goals will be used for model interest of
all actors involved in a collaborative design project. Actors will represent all
entities, single human or group, that have a stake in the project.
This paper is organised as follows: section 2 introduces the concepts underly-
ing our approach: the *-design approach which was our first experiment for
knowledge capitalization, the holonic concepts and the goal oriented analysis
approach. Section 3 presents our approach and illustrate it on an example. Sec-
tion 4 presents some related works. Eventually section 5 concludes.

2

2 Concepts

2.1 *-Design approach

Our knowledge management approach, called *-Design, aims to capitalize and
reuse knowledge in taking into account the social and cooperative aspect of the
engineering projects. This approach leads the definition of three models which
will guide a Multi-Agent System (MAS from now on), called KATRAS which
stands for Knowledge Acquisition Traceability by Agent System, to carry out
the knowledge management process. In order to identify and reuse the knowl-
edge which the professional actors need, the MAS has to possess a description of
knowledge used for each professional activities. We consider these activities like
organizations where professional actors have one or several roles and for each role
they create, share and use knowledge. In studying the professional actors’ roles
and their interactions, describing the knowledge exchange in the professional
activities, we obtain a model leading the knowledge capitalization and reuse
all along the design projects. We call this organizational model ”OrgaDesign”.
It describes the professional actors’ roles, their interactions, competences and
knowledge, updates throughout the projects. This analysis makes it possible to
obtain a cartography of the knowledge created, used and shared in the objective
to be capitalized and reused. In a second way, the agents have to know how to
organize the knowledge identified in the organizational model. Thus we propose
a knowledge typology based on the characteristics of the cooperative activities
(roles of the actors in the activity, objectives of the activity, etc). This work
allows defining a project memory model we have called ”MemoDesign”. This
model leads to organize information and knowledge in order to present them to
the professional actors. MemoDesign is used by the agents to store the knowl-
edge created by a project team. The project memory model with the knowledge
taxonomy not allow to the agents to handle information and knowledge. In or-
der to achieve this task, we have completed the approach by a definition of the
concepts used in MemoDesign, their relations and attributes constituting a me-
chanical design project ontology called OntoDesign. Thus the semantic and the
vocabulary described in the ontology allow to the agents to organize the infor-
mation capitalized according to the project memory model and to handle the
knowledge elements in order to reuse them.

Consequently the MAS dedicated to the knowledge management at the time
of project memory has to consider the three following models (figure 1) ; the
organizational model of the design process OrgaDesign, the project memory
model MemoDesign and the domain ontology OntoDesign.

As the organizational models produced by this approach are ”flat” we use of
the holonic paradigm in order to consider several granularity levels. The concepts
underlying the holonic paradigm are presented in the next section.

2.2 Holons

The concept of holon is central to our discussion and therefore a definition of
what is a holon should be helpful before proceeding. In multi-agent systems,

3

Fig. 1. Overview of the *-design approach

the vision of holons is much closer to the one that MAS researchers have of
Recursive or Composed agents. A holon constitutes a way to gather local and
global, individual and collective points of view. An holon is thus a self-similar
structure composed of holons as sub-structures and the hierarchical structure
composed of holons is called an holarchy. An holon can be seen, depending
on the level of observation, either as an autonomous “atomic” entity or as an
organisation of holons (this is often called the Janus effect).

Two overlapping aspects have to be distinguished in holons: the first is di-
rectly related to the holonic nature of the entity (a holon, called super-holon,
is composed of other holons, called sub-holons or members) and deals with the
government and the administration of a super-holon. This aspect is common to
every holon and thus called the holonic aspect. The second aspect is related to
the problem to solve and the work to be done. and depends on the application
or application domain. It is therefore called the production aspect.

Holonic Systems have been applied to a wide range of applications, Manu-
facturing systems [6, 17], Health organisations [27], Transportation [7], Adaptive
Mesh Problem [24] to mention a few. Thus it is not surprising that a number
of models and frameworks have been proposed for these systems, for example
PROSA [6], MetaMorph [17]. However, most of them are strongly attached to
their domain of application and use specific agent architectures. In order to al-
low a modular and reusable modelling phase that minimises the impact on the
underlying architecture, a meta-model based on an organizational approach is

4

proposed. The adopted definition of role comes from [12]: “Roles identify the ac-
tivities and services necessary to achieve social objectives and enable to abstract
from the specific individuals that will eventually perform them. From a society
design perspective, roles provide the building blocks for agent systems that can
perform the role, and from the agent design perspective, roles specify the expecta-
tions of the society with respect to the agent’s activity in the society”. The figure

Fig. 2. The two different holon perspectives.

2 illustrates the two perspectives of a holon. On the left part, the horizontal per-
specive, a single holon is presented as an entity which plays roles within different
groups. Namely, this holon plays Role1 in Group1, Role2 in Group2 and Role3
in Group3. On the right part of the figure, the vertical perspective, an holarchy
is represented with two levels. The holon named 1 at level n is composed of sev-
eral holons named from 2 to 6 at level n− 1. Each of these holons play different
roles in different groups.

2.3 Goal oriented analysis

The i∗ framework [28] has been chosen to support goal oriented analysis in our
approach. This framework provides an intuitive diagrammatic representation of
goal oriented analysis through the use of goals, dependencies, roles, actors and
positions. An actor abstracts an active entity. A goal is a condition or a state of
affairs in the world that the actors would like to achieve and that has a criteria
to determine if it is achieved or not. A softgoal is a state of affair such as a
goal but with no clear achievement criteria. A resource is an entity physical or
informational.
The i∗ framework proposes two types of diagram: the Strategic dependency dia-
gram and the Strategic rationale diagram. The former focus on the identification

5

of dependency between actors. Indeed, one actor may depend on another for the
realization of a goal or the availability of a resource. The actor which depends
on another is called the depender while the other is called the dependee. The
object (goal, resource) around which the dependency is defined is called the de-
pendum. The figure 3 presents an example of abstract dependency diagram. In
this figure there are two actors, Actor1 and Actor2, represented by circles. The
first actor, Actor1, depends on the second, Actor2, for the realization of the goal
named Goal1. The second type of diagram, the Strategic rationale diagram, is

Goal1

SoftGoal1

Actor2

Actor1

Fig. 3. Strategic dependency diagram

a refinement of the first and consists in an analysis of goals according to the
point of view of actors. It means that goals are refined by using goal analysis
techniques such as means-end analysis or AND/OR decompositions to define
decompose a goal. An example of such a diagram is presented in figure 4. This
figure details the analysis of the goal Goal1 assigned to Actor1. The analysis
presented is realized with an AND/OR decomposition which results in a tree of
goals. AND decomposition is represnted by linked arrows. It is the case for the
decompostion of Goal1 in Goal2, Goal3 and Goal4. OR decompositions are rep-
resented by simple arrows as it is the case for decomposition of Goal3 in Goal5
and Goal6.

3 Methodological approach for building holonic models

3.1 Principles

The approach presented in this paper relies on the holonic modelling of de-
sign process. The resulting holarchy is used to support knowledge management.
Indeed, this holarchy enables the definition of a context of activities and knowl-
edge exchange between professional actors. This section presents a structured
approach which allows the construction of the holarchy.

The holarchy represents a design process. As mechanical design process are
often represented by IDEF0 diagrams [1] we base our methodological approach

6

Actor1

Goal1

Goal2 Goal3 Goal4

Goal5 Goal6

Fig. 4. Strategic rationale diagram

on them. An IDEF0 diagram presents activities with inputs, outputs, controls
and supporting mechanism (in our case professional actors) involved.

The first step consists in defining a strategic dependency diagram to model
the system-under-consideration. The goal of this model is to identify the involved
actors and the top-level goals and softgoals and their dependencies. These top-
level goals and the corresponding actor in charge of their realization is the holon
root of the holarchy.

The second step consists in defining a strategic rationale diagram that
refines the goals and actors by using one of the goal analysis technique and the
IDEF0 diagrams that specify the design process. Each activity output of the
IDEF0 diagrams is a contribution to the upper-level goal. The activity is the
mean by which this goal is achieved. The upper-level goal is then decomposed
using a specific goal oriented analysis technique. Each activity output of the
IDEF0 diagram is a sub-goal.

The third step aims to define the organizational part of the holarchy. The
root of the holarchy is the top-level actor in charge of the top-level goals. It
represents the Project team. This top-level holon is composed of several organi-
zations. Each organization is in charge of goals achievement. The principle for
defining the organizations composing this level is to assign the goals identified
in the strategic rationale diagram to activities able to fullfil them. These activi-
ties are extracted from the IDEF0 diagram. An organization thus represents an
activity through the roles that will carry it. For the Project team holon, only
the goals of the immediate level below the top-level goals are taken into consid-
eration. This step is iterated while there are goal levels which are not assigned
to organizations.

The fourth step insert specific roles in the holarchy, their respective con-
straints and the interactions which fullfil the organization goal. Indeed, each
organization is composed of a set of interacting roles. Each role represents an
abstract behavior, such as project leader or market analyst, with specific re-

7

sponsibilities, skills and knowledge. Each role may be part of a single or several
activities and thus be part of a single or of several organizations at different
levels of the holarchy. In order to define these roles scenarios may be helpful.
Indeed, recurrent practices of the enterprise, formalized with sequence diagrams
for example or textual description, should provide the different roles and their
required knowledge and competences.

3.2 Example

Fig. 5. IDEF0 diagram

An example of strategic dependency diagram is given in figure 6. This sim-
ple example introduces two actors, namely the client who wants a product to
be realised and a provider who will realise the product. The goal ”product re-
alisation” introduces a dependance of the client to the provider. We have also
defined two soft-goals ”Increase benefits” and ”Happy customer” which make
the provider dependant on the client.

This Strategic dependency analysis enables to describe with a high level point
of view the requirements of the model-to-be. Indeed, we do not want to design a
system but an holonic model of collaborating humans engaged in a joint project.
This diagram is the first step of our approach.

This model is enriched by goal modelling. The goal modelling consists in the
analysis of an actor by either means-end analysis, AND/OR decomposition or
contribution analysis. This modelling, represented as a strategic rationale dia-
gram, is illustrated in figure 7. It is the second step of our approach. In this figure
the provider actor is refined and some internal goals are elicited. The analysis
relies on the IDEF0 diagram presented in figure 5. The product realisation goal
of actor provider is decomposed in four sub-goals by an AND decomposition.

8

Realize product

Provider

Happy customer

Increase benefits

Client

Fig. 6. Strategic dependency diagram for a collaborative design project

Prototype done

Provider

Realize product

Specifications written Concepts identified Pre−series

TeamRequirements
analysis definition

Write specifications

Fig. 7. Strategic rationale diagram

9

It means that in order to fulfil the Product realisation goal the four sub-goals
need to be achieved. These four sub-goals are: Specifications written, Concepts
identified, Prototype done and Pre-series. Each of these goals may in turn be
refined and decomposed in sub-goals as illustrated for the Specifications written
goal which is decomposed, again with an AND decomposition, in three sub-goals.
These sub-goals are: Requirements analysis, Team definition and Write specifi-
cations. The goal modelling may continue until a fine level of detail is reached.
In our example, for the sake of clarity we have omitted a large part of the goal
analysis.

The next step of our approach consists in organizations identification accord-
ing to the goal analysis and the IDEF0 diagram that describes the activities that
can achieve goals. In our example, the Project team holon is at the root of the
holarchy. The second level is composed of four organizations which correspond
to the four activities of the IDEF0 diagram of figure 5. The feasibility study
activity is in turn decomposed as this activity is decomposed in sub-activities.

Fig. 8. Organizations identification

The fourth and last step of the methodology is dedicated to the refinement
of organizations with roles, interactions and constraints. This step is illustrated
by the organization detailed in figure 9. This figure details the Writting spec-
ifications organization. It is composed of three roles: the technical commercial
assistant, the responsible for study and the project leader roles. The result of

10

Fig. 9. Writting specifications organization

the roles interactions is the specifications document. The project leader role of
this organization must be played by the same holon who plays the project leader
role of the Project team holon. This constraint aims to ensure the coherence of
the project since it beginnings.

4 Related works

Several works were realized in this domain: Belkadhi [4] proposes a meta-model
to model the design process which is a graphic representation of the key con-
cepts (situation, entity and specific roles) and proposes a method of knowledge
capitalization by basing itself on this model. The proposed method integrates
the various present aspects into a design project context. It consists in repre-
senting a design situation in the form of a set of interactions of various natures
by clarifying the participation of every element in each of the interactions and
consequently in the global progress of the project. In this sense, the passage of
a given situation (at the moment t) to another situation (moment t +1) is the
result of this set of interactions. . This result can be observed by the creation of
new elements, the deletion or the modification of some or still on the evolution
of the existing links between the various elements. It is what Bekhti and Matta
[2] defines as the mutual influences of the elements of the project. Some adopted
the organizational approach during the modelling of design process and knowl-
edge management. By presenting the concept of the learner company Nonaka
[23], takes into account the knowledge in the company, and brings to light the

11

mechanisms of transmission and evolution of the knowledge in organizations.
Organizational approach takes into account the social character in the knowl-
edge management which has as aim, rather than to try to formalize, to model
knowledge and know how, allowing the various holders and the experts to share
them and to pass on them [10]. The organizational approaches focus essentially
on design process creatures of habit. It leads to rethink the organization of the
company. Several works were interested in the capitalization and the re-use of
the knowledge in design to facilitate the decision-making during the projects.
The main part of the identified contributions integrates a representation of the
decision-makings and leans on the models of design logic [11]. We can quote the
most known models such as QOC [26], DRCS [14], IBIS [8] and DRAMA [5].

5 Conclusion

The approach presented in this paper aims at building holonic organizational
models of design processes in order to assist knowledge management. This ap-
proach is based upon the description of design processes activities with IDEF0
diagrams, which are a commonly used representation in enterprises, and a goal
oriented analysis based upon the i∗ framework. A four steps methodology en-
ables to identify the organizations and roles composing a holarchy representing
the design process.

The holarchy resulting from the application of the presented methodology
constitutes a context of reference for knowledge management approaches. In-
deed, in the *-design approach, an organizational model, namely OrgaDesign,
was used to identify the knowledge to capitalize [20], build the structure of a
project memory [19] and define a conceptualization origin of an ontology of enter-
prise knowledge [21]. In this paper, the contribution versus the existing *-design
approach is twofold. On the one hand a methodology is proposed to build the
organizational model. In the previous *-design works the organizational models
were the result of the monitoring and interviews of the professional actors. It
was a tedious and error prone work. On the other hand, the original ”flat” or-
ganizational models are now replaced by an holonic organizational model which
allows the representation of different granularity levels.

Future works will consist in establishing an approach to validate the models
produced by the methodology. This validation process will be based on simula-
tions of the roles behaviors. We will also adapt and enrich the knowledge reuse,
transfer and sharing approach, already defined for the original ”flat” organiza-
tions [18] to the holonic organizational model.

References

1. Dr Ang and Cheng Leong. Idef* : a comprehensive modelling methodology for
the development of manufacturing enterprise systems. International Journal of
Production Research, 37:3839–3858, 1999.

12

2. S. Bekhti and N. Matta. A formal approach to model and reuse the project memory.
In K. Tochtermann and H. Maurer, editors, Proceedings of I-Know ’01, Interna-
tional Conference on Knowledge Management. Springer, 2003.

3. S. Bekhti and N. Matta. Project memory: An approach of modelling and reusing
the context and the design rationale. In Proceedings of IJCAI’03 (International
joint of conferences of Artificial Intelligence) Workshop on knowledge management
and organisational memory, 2003.

4. Farouk Belkadi, Eric Bonjour, and Maryvonne Dulmet. Modelling framework of
a traceability system to improve knowledge sharing and collaborative design. In
Weiming Shen, Kuo-Ming Chao, Zongkai Lin, Jean-Paul A. Barthès, and Anne E.
James, editors, CSCWD (Selected papers), volume 3865 of Lecture Notes in Com-
puter Science, pages 355–364. Springer, 2005.

5. A. Brice. Design rationale management (drama).
http://www.quantisci.co.uk/drama.

6. H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters. Reference
architecture for holonic manufacturing systems: Prosa. Computers in Industry,
37:255–274, 1998.

7. Hans-Jürgen Bürckert, Klaus Fischer, and Gero Vierke. Holonic transport schedul-
ing with teletruck. Applied Artificial Intelligence, 14(7):697–725, 2000.

8. J. Conklin and L. Begemann. gIBIS: A hypertext tool for exploratory policy
discussion. ACM Transactions on Office Information Systems, 6(4), October 1988.

9. Massimo Cossentino, Nicolas Gaud, Stéphane Galland, Vincent Hilaire, and Ab-
derrafiâa Koukam. A holonic metamodel for agent-oriented analysis and design.
In HoloMAS’07, 2007.

10. W.L. Currie. A knowledge-based risk assessment framework for evaluation of web-
enabled application outsourcing project. In International conference of project
management, 2003.

11. Rose Dieng, Olivier Corby, Alain Giboin, and Myriam Ribière. Methods and tools
for corporate knowledge management. Int. J. Hum.-Comput. Stud, 51(3):567–598,
1999.

12. Virginia Dignum, Javier Vázquez-Salceda, and Frank Dignum. OMNI: Introducing
social structure, norms and ontologies into agent organizations. In PROMAS,
volume 3346. Springer, 2004.

13. Michel Grundstein. From capitalizing on Company Knowledge to Knowledge Man-
agement, chapter 12, pages 261–287. The MIT Press, 2000.

14. Mark Klein. Capturing geometry rationale for collaborative design. In WETICE,
pages 24–28. IEEE Computer Society, 1997.

15. Arthur Koestler. The Ghost in the Machine. Hutchinson, 1967.
16. N. Matta, M. Ribiere, O. Corby, M. Lewkowicz, and M. Zaclad. Project Memory in

Design, Industrial Knowledge Management - A Micro Level Approach. Springer-
Verlag, 2000.

17. F. Maturana, W. Shen, and D. Norrie. Metamorph: An adaptive agent-based
architecture for intelligent manufacturing, 1999.

18. Achraf Ben Miled, Vincent Hilaire, Davy Monticolo, and Abderrfiaa Koukam.
Reusing knowledge by multi agent system and ontology. In fourth IEEE Interna-
tional Conference on Signal-Image Technology and Internet Based Systems, work-
shop Knowledge Acquisition Reuse and Evaluation, 2008.

19. D. Monticolo, V. Hilaire, S. Gomes, and A. Koukam. A multi-agent system for
building project memories to facilitate design process. Integrated Computer-Aided
Engineering, 15(1):3–20, 2008.

13

20. Davy Monticolo, Samuel Gomes, Vincent Hilaire, and Patrick Serrafero. A multi-
agent architecture to synthesize industrial knowledge from a plm system. In
PLEDM’06, 2006.

21. Davy Monticolo, Vincent Hilaire, Abder Koukam, and Samuel Gomes. Ontodesign;
a domain ontology for building and exploiting project memories in mechanical
design projects. In Knowledge Management in Organizations, 2007.

22. Davy Monticolo, Vincent Hilaire, Patrick Serrafero, and Samuel Gomes. Knowledge
capitalization process linked to the design process. In KMOM’07, 2007.

23. Ikujiro Nonaka and Hirotaka Takeuchi. The Knowledge-Creating Company. Oxford
University Press, 1995.

24. Sebastian Rodriguez, Vincent Hilaire, and Abderrafiaa Koukam. Towards a
methodological framework for holonic multi-agent systems. In Proceedings of the
ESAW’03 workshop, pages 179–185, 2003.

25. Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos. Simple and minimum-
cost satisfiability for goal models. In Anne Persson and Janis Stirna, editors,
CAiSE, volume 3084 of Lecture Notes in Computer Science, pages 20–35. Springer,
2004.

26. Shum, Simon J. Buckingham, Allan MacLean, Bellotti, Victoria M. E., Hammond,
and Nick V. Graphical argumentation and design cognition. Human-Computer
Interaction, 12(3):267–300, 1997.

27. M. Ulieru and A. Geras. Emergent holarchies for e-health applications: a case in
glaucoma diagnosis. In IECON 02 [Industrial Electronics Society, IEEE 2002 28th
Annual Conference of the], volume 4, pages 2957– 2961, 2002.

28. E. Yu. Towards modelling and reasoning support for early-phase requirements
engineering. In 3rd IEEE Int. Symp. on Requirements Engineering, pages 226–
235, 1997.

14

Support for Modeling Roles and Dependenies inMulti-Agent SystemsLawrene Caba, Daniel MoldtUniversity of Hamburg, Department of Computer Siene,Vogt-Kölln-Str. 30, D-22527 Hamburghttp://www.informatik.uni-hamburg.de/TGIAbstrat This paper desribes the usage of omponent diagram modelsfor the analysis and design of dependenies in multi-agent systems. Inall software paradigms there exist dependenies between ompositionalsystem artifats. In agent orientation, agents that require servies to ful-�ll their goals, depend on other agents (or other entities, e.g. platforms)that o�er those servies. Even in simple settings the expliit modelingof these relationships is useful for analysis and onstrution. In omplexsettings, however, these models beome ruial. Espeially in large devel-opment groups with independent development, dependeny relationshipsan be onfusing, leading to yli or other unwanted dependenies in thesystem.Here we present two tools whih illustrate the enhanement for multi-agent systems development. The �rst tool introdues roundtrip engineer-ing for modeling of dependenies. The seond tool introdues new fea-tures to agent modeling. It introdues the Roles/Dependenies Diagram(R/D Diagram). This tehnique allows for the expliit representation ofservies and their relations to the roles of agents. In addition, the editingand validation of the ontent of the initial knowledge bases (Servies,State Desription, Protools and Messages) as well as a speializationhierarhy of roles is overed by the tool. This introdues, in ombinationwith other tools from our Paose tool set, an improved overview andinsight into agent systems and their spei�ation.Keywords: nets-within-nets, net omponents,Renew, modeling, agents,multi-agent systems, Roles/Dependenies Diagram1 IntrodutionOne key fator for the suessful operation of multi-agent systems is the smoothommuniation between agents. Usually, interations are modeled in detail us-ing interation diagrams and agent protools [1,13,16℄. Besides the de�nition ofsound interations also strutural aspets are of major importane for the un-derstanding of the arhiteture of a multi-agent system. One example of suh astrutural aspet is the dependeny relation that exists between agents (oftenalso referred to as aquaintane). In order to attain a goal, most agents have torely on other agents. Thus, there exist dependenies between agents in almostevery multi-agent system.
15

Espeially in multi-agent-based appliations, where the global struture (marolevel) emerges from loal information (miro level) the analytial modeling of re-sulting dependenies beomes ruial. Here we fous on the dependenies thatare related to the servies o�ered and required by the agents in the system. Theserelationships are often modeled in agent-oriented methodologies in aquaintanemodels (Prometheus) or servie models (Gaia). For the multi-agent arhitetureMulan we provide tool integration for the presented tehniques as plugins forRenew [15℄, the Dependenies Plugin and the Knowledge Base Editor (KBE).InMulan [18℄, o�ered and required servies are expliitly de�ned in the agents'on�guration �les (the agents' initial knowledge bases).We start this paper by pointing out that during the design of agent serviesthe right level of abstration and its variation is of great importane for theresulting system design. The distintion between soft and hard dependenies isintrodued in Setion 2. We propose the dependeny diagram for the modelingof hard servie dependenies, whih resembles a omposite struture diagramin UML 2.0. Setion 3 presents the dependeny diagram that learly shows thedependeny hierarhy of agents. With the Dependenies Plugin it is possible toreate dependeny diagrams from existing soures, from srath (Setion 4) orfrom other soures of information of dependeny. The enhanement of the De-pendeny Diagram the Roles/Dependenies Diagrams is presented in Setion 6.We present the tools that support the Dependeny Diagram and the R/D Dia-gram and their apabilities in Setion 4. As an example of the latter we presentthe model of the plugin struture extrated from the real dependenies of theRenew plugins.2 Servie DependeniesIn the ontext of multi-agent systems we understand servies as olletions ofagent ations that serve a ommon purpose. A servie is realized through oneor more agent protools and through the apabilities of the serving agent. Ournotion of a servie �ts very well with the notion given by Zambonelli et. al. [23,p. 21℄:The [. . . ℄ servies model [. . . ℄ identi�es the main servies � intended asoherent bloks of ativity in whih agents will engage � that are requiredto realize the agent's roles, and their properties.In general, the ation to perform a servie may be requested by any agent. Thisimplies an interation of (at least) one agent with (at least) one other agent. Asa onsequene, to be able to aess a servie, the interfae (protool desription)and address of the provider has to be published. The user of the servie expetsthat the servie will be performed under ertain onditions (e.g. payment, qualityof servie, availability). The reative behavior of an agent is initiated by triggers(sometimes also alled events). For this a mapping from (reeived) message typesto prede�ned behavior exists.
16

During the design phase of the multi-agent system the developers have todeide on the level of abstration of the servies and their published interfae.As an example we onsider an agent that wants to play a board game. To be ableto play the game he has to be able to aess the board game servie. This may in-lude in its interfae desription all neessary interation protools for the wholegame. However, this does not take into aount omposability or salability. Inopposition, the game servies an be implemented as several smaller servies,whih an be o�ered by di�erent agents. Thus, in a �ner level of abstration, thedevelopers an deide to design following servies for the board game: board on-trol, aounting, game ontrol, trading. Now, several distint parts of the systemare identi�ed, with ertain responsibilities and apabilities.The orresponding design artifats for the (early) strutural design in thedevelopment of multi-agent system are roles. They are typially de�ned as roledesriptions. In a �exible way the developers may deide that all roles an beexeuted by one agent or eah role is implemented by one single agent.The hallenge for the developers is to �nd the right level of abstration, i.e.abstrat enough to get an idea of the o�ered servies as a whole and detailedenough to reognize if two agents perform similar tasks. Through their �exibilityin regard to the hoie of the level of abstration the servies are suitable formodeling the overall struture of big as well as small systems without designingtoo omplex or too trivial representations in the models. Most agents use serviesof other agents to aomplish their goals or even to provide their own servies(by delegation). Thus, if an agent requires a servie from another agent, wereognize a dependeny between agent role (whih is responsible for the agentsbehavior) and o�ered servie. This we all hard dependeny beause this isde�ned during design time and is thus of a stati nature.1 Hard dependeniesdesribe a minimum set of servies that are required by an agent to �ll out arole.Another dependeny exists between agents that are not in a servie provider-/requester relationship but ommuniate with eah other on a di�erent basis.These agents are on a personal aquaintane level between the two identitiesof agents. We all these dependenies soft dependenies (sometimes dynamidependenies).While soft dependenies are dynami and thus not modeled a priori, hard de-pendenies are expliitly spei�ed by the developer. However, information aboutsoft dependenies an easily be gathered during runtime of the multi-agent sys-tem and may result in an aquaintane model desribing the ommuniationstruture and an be presented as a soial network.21 Note that this is a stati dependeny between agent roles and servies and notbetween agents or roles. The requester an always hoose from a number of servieproviders.2 This is done within our tool set by another tool (MulanSni�er, see[6℄) and not thetopi of this paper.
17

In Mulan/Capa appliations, hard dependenies (required servies) are de-�ned in the initial knowledge base �le as FIPA3-ompliant servie desriptions.These servie desriptions are published by the providers at the diretory fail-itator (DF) and this data an be queried by the requester.4 Thus the servieprovider an be found by the servie requester. To request the servie the agenthas to abide by well-de�ned protools. A typial means to trigger servie is tosend an ation request, whih tells the reeiver to perform a task.We apprehend protools as implementations of a omplex agent ations thatare assigned to one or more servies. In many methodologies, as also in Mu-lan/Capa, onversation patterns are typially de�ned as interation proto-ols [5℄.

Figure 1. FIPA Request protool and a representation of dependenies.In this paper we propose a modeling tehnique for hard dependenies. Wereognize a dependeny between an agent and a servie that is o�ered by anotheragent, if one agent requests another agent to perform a task or an ation.In many ases � but not always � the interations between requester andprovider follow the FIPA Request protool or a similar one and use an ationrequest as a performative. To illustrate the tehnique we use the FIPA Requestprotool [14℄ as a prototypial protool presented in Figure 1. The Partiipantin the Request protool o�ers a servie to perform a ertain task � let's say theservie partiipate. The Requester wishes a task task to be performed by the3 Foundation for Intelligent Physial Agents, [13℄4 Note that the diretory failitator o�ers the servie of registering and querying in-formation about servies in the multi-agent system. However, this is a mandatoryservie that is always aessible on FIPA-ompliant platforms.
18

Partiipant. This implies that the Requester sends a message (ation request)to the Partiipant and waits for an answer if neessary.The servie o�ered by the Partiipant is ompleted with an answer to theinitial request. Thus a hard dependeny exists, whih is modeled in the rightpart of the �gure as a fragment of a dependeny diagram. Servies an be re-quired by several agents and they an also be o�ered by multiple agents. Thus,the dependeny does not exist diretly between the two agents (or their roles),instead � as pointed out above � the dependeny exist between an agent and ano�ered servie.In general, we seek for a hierarhial struture in a dependeny diagram.This allows for ode reuse in the system, omposability and easy reon�guration.Interdependenies (yli dependenies) between agents are undesirable, �rstlybeause they an ause deadloks in the systems on�guration and seondlybeause they ompliate the substitution of agents. Also unmet dependeniesusually ause trouble in the system on�guration. We believe that through ex-pliit modeling suh problemati aspets in a system design an be found anddevelopers an be supported in the proess of eliminating them. Figure 2 shows

Figure 2. Meta model of dependeies diagrams.the elements of the diagram as a lass diagram. A dependeny diagram on-sists of role �gures, servie �gures and dependeny onnetions. They own thestereotypes �role�,�servie�, �o�ers� and �requiredBy�.
19

3 Modeling Servie DependeniesFor the modeling of servie dependenies we employ UML omponent diagrams.However, we exlusively use the detailed version, so that the servie is representedexpliitly in the model and we modify the syntax slightly.Usually, omponent diagrams are used to model the onstitution of replae-able software onstruts and their relationships. Besides the omponents andthe interfaes also lasses and objets are used in omponent diagrams [20, p.139-171℄. In the agent ontext, where we deal with agents, servies and the de-pendeny relations, we use the elements of the omponent diagram adapted tothose needs.A servie is an abstration of a set of (omplex) agent ations that serve aommon purpose. Several servies may be provided by one agent and severalagents may o�er the same servies. Our notion of a servie (see Setion 2) isvery similar to the onept of an interfae in the UML superstruture [20, p.82℄:An interfae is a kind of lassi�er that represents a delaration of aset of oherent publi features and obligations. An interfae spei�es aontrat; any instane of a lassi�er that realizes the interfae must ful�llthat ontrat.Thus, it seems straightforward to model servies in a way that is similar tothe modeling of interfaes. We add the stereotype �servie� to the elements inour models. The stereotype is meant to express the di�erenes. First, we modelin a ompletely di�erent ontext. Seond, in ontrast to an objet, an agent hasthe ability to break ontrats, so servies are indeed also an obligation to ful�ll aspei�ed task but there is no de�nitive ertainty that this will (or an) be done.Third, we like to use lasses and interfaes together with agents and servieswithin one model. The introdution of a new stereotype gives us the ability todo so without introduing onfusion into the models.From the software engineering viewpoint agents are often regarded as speialomponents. If one is to take this position, again it seems straightforward tomodel agent roles as omponents together with the o�ered and required servies.We introdue the stereotype �role� for the depited agent roles.In the detailed version of the omponent diagram the relationship of agentsto implemented interfaes are depited as dashed ars with a triangle arrow tip.We follow this notation and draw a dashed ar from the agent that o�ers theservie to the servie itself. Again, we expliitly distinguish between ars andprovide the stereotype �o�ers�.Required interfaes are modeled in the omponent diagram by a dashed arwith an open line arrow tip (stereotype �use�). This ar points at the interfaeused. In ontrast, in Dependeny Diagrams we draw the ars in the oppositediretion and � aordingly � o�er the stereotype �requiredBy�5. By doing sowe get a relation hain from o�ering role to o�ered servie and from the servie5 Note that we sometimes omit the stereotypes on the ars, if the ontext is lear.
20

to the role that requires the servie. At �rst glane this hange seems odd but weahieve the possibility to model hierarhial strutures. In Setion 2 we pointedout the bene�ts of hierarhial dependenies.Figure 3 shows an example dependeny diagram as desribed above. To betterdistinguish between agents and servies the roles possess a olored bakground.The �gure shows a snapshot of a work�ow management system in development,

Figure 3. Dependenies of a work�ow management system in development.giving an overview of the agent roles in the system.In the model, a developer an easily identify potentially problemati areas.Usually, this is a hard task beause the information resides distributed in severalloal property �les, the initial knowledge bases, whih an be distributed. In thisvery simple example we are able to identify two problems: First, there exists ayli dependeny between the roles Administration and ClientInteration.A yli dependeny may indiate that the agent roles ould be fused to onerole sine they are so tightly oupled and an only at as pair or, as in this ase,that the developers of one of the roles have a misoneption of the tasks of thedesigned role. Seond, the agent Wfenat is not onneted to the other agents.
21

An isolated agent that o�ers a servie means that this role does not interatwith other roles within the servie relationship.6Here, sine the diagram has been taken during the development phase, thedepited on�guration is not �nal. During analytial examination of the designedstruture of the servie dependenies this means that still some work has to bedone by the developers. Both situations are undesirable and should be hangedin the further development proess. The developers may be supported in �ndingsuh strutural anomalies automatially by the modeling tool that is desribedin the next setion.We employ for the purposes of �nding anomalies two simple heks (ayliproperty hek and onnetedness property hek) from another plugin of Renew,the NetAnalysis Plugin. For this means we have implemented a onversion of thediagram into a net struture, whih an diretly be analyzed by the NetAnalysisPlugin. Another possibility � yet to be implemented � is a diret feeding of thegraph struture into the heking algorithms.4 Desription of ToolsThe tool that handles Dependeny Diagrams is the Dependenies Plugin for Re-new [15℄. The plugin has two main funtionalities. It generates the dependenydiagram from existingMulan knowledge base �les and it o�ers tools for reatingand editing Dependeny Diagrams.

Figure 4. Sreenshot of the development with the dependeny diagram tool6 Maybe it interats on a di�erent basis, e.g. in negotiations or as user.
22

Figure 4 shows a sreen shot of the development of the work�ow managementsystem with the dependeny diagram tool. In the upper left orner is the Re-new menu bar with the standard palettes and the dependeny diagram palette.Beneath, the dependeny diagram is shown. In the diagram the role �gure Useris seleted. On the right hand side of the �gure the KBE with the knowledgebase of the agent User is depited.For the generation of a diagram the tool searhes (reursively) for knowledgebase �les in a user-de�ned diretory. For eah knowledge base found a role �gureis reated. A knowledge base ontains a list of o�ered servies and a list of theagent's required servies. For eah servie in the lists the orresponding servie�gure and the role �gure are onneted. A new servie �gure is reated, if theservie is not already present in the drawing. For the user's onveniene the toolprovides a simple automati layout mehanism.In addition to the possibility to use all standard drawing tools of Renew, theplugin o�ers new editing funtions. These are o�ered as three tools for editingdependeny diagrams: a role �gure tool, a servie �gure tool and a dependenyonnetion tool (see the last three items in the lower Renew tool bar in Fig-ure 4). The dependeny onnetion tool is used for drawing the ars betweenagent role and servie �gures. The arrow type and the insription depend onthe diretion of the ar � see Setion 3. Arrows are adapted automatially whilethey are drawn so that the two ar types an be drawn with the same tool.A speial funtion of the dependeny diagram is the KBE handle, whih ispart of the role �gure. It onnets the Dependeny Diagram to the KBE. Witha lik on the handle (a blue ar in the bottom right orner of the �gure thatis visible when the �gure is seleted), the knowledge base of the agent role isopened in the KBE for further inspetion or editing. This is espeially useful fordebugging purposes and during the design of new knowledge base �les.By �rst generating a dependeny diagram and then editing it, one faes an in-onsisteny between the diagram and the ode it is generated from. To minimizesuh on�its between diagrams and knowledge bases the tool realizes a round-trip engineering system. It preserves the onsisteny of knowledge bases and de-pendeny diagram by automatially transferring hanges in the dependeny dia-gram to the knowledge bases. For example, when the servie administration isonneted to the agent role User via a dependeny ar, a new servie-desriptionis inserted in the list of the required servies in the knowledge base. This alsoworks in the other diretion. However, hanges in the knowledge base are nottransferred immediately to the dependeny diagram, but as soon as the knowl-edge base is saved. A detailed desription of the dependeny diagram tool andthe round-trip engineering system an be found in [10℄.R/D Diagrams are drawn diretly in the enhaned version of the KBE. TheKBE started out as a simple but onvenient editor for the original propertiesknowledge base �les. It inluded syntax heking for ontology onepts repre-sented in the Semanti Language (SL) by employing the parser as validator.The enhaned version of the KBE was grounded on three aspets. First, therede�nition of the knowledge base format and by that the possibility to allow
23

speialization/generalization of roles. Seond, the implementation of the editor asdiagram re�eting the hierarhy of roles (i.e. a lass diagram-like model). Third,the integration of the representation of the maro level, i.e. the dependeniesbetween agent roles.The enhaned version features interative drawing of R/D Diagrams (inlud-ing role de�nitions, servie de�nitions, dependenies relations), diret inspetionof the XML ode, generation of agent role desriptors and initial knowledge basesand the validation of the graphs and entries.5 Dependeny Diagrams for Plugin SystemsThe Dependenies Plugin is not bound to agent role dependenies but an alsobe used to model other omponent-based, hierarhially strutured systems thatown inter-dependenies. Another example of suh a hierarhial system in ourontext is the plugin struture of Renew. Similar to the agents in the Mu-lan-system every plugin ontains a on�guration �le in whih the required ando�ered servies (besides other things) of the plugins are delared. Therefore thedependeny diagram tool an be used to generate a dependeny diagram of theplugin struture without muh additional e�ort. A funtion to remove thesetransitive ars in the diagram is therefore very useful but has not been realizedyet, sine this is not the main fous of the Dependenies Plugin.The example in Figure 5 shows a fragment of the Renew plugin struturewithout transitive ars (manually beauti�ed).The model shows the onnetion between the plugins GUI and Simulator aswell as several other related extensions. Renew Util is a plugin that enapsu-lates basi libraries used throughout the system. The GUI itself is divided intotwo parts one is an adaption of the graphial framework JHotDraw (RenewJHotDraw) the other (Renew Gui) o�ers Petri net spei� drawing features.We an identify some oddities from the diagram. First, Renew Ant is notonneted. This is perfetly all right beause this plugin provides build supportof whih no funtionality is used by any other plugin at runtime. Seond, RenewPrompt and Renew Gui Prompt implement the same servie (whih is atuallynot used by any other plugin but o�ers a user interfae for the user (developer)of Renew, the only di�erene is that one provides a ommand line promptonvenient for remote aess and the other is implemented as Swing GUI.Third, the Simulator/Formalism and the JHotDraw plugin are independentof eah other, meaning one an run the system and use the ommon drawingfeatures of Renew JHotDraw without the Simulator plugin loaded and it isalso possible to run a simulation without the GUI.7 However, if the Renew Guiplugin is loaded, both sides of the system (Simulator and JHotDraw Gui) haveto be loaded.7 It is atually possible to attah or detah the GUI, while the simulation is running.
24

Figure 5. Fragment of the Renew plugin dependenies.6 Roles and DependeniesDependenies of agent roles an be modeled niely with the Dependenies Pluginas a Dependeny Diagram. Through the round-trip integration together with theKnowledge Base Editor we ahieve a onvenient way to model onstrutively(during design tasks) and analytially (during evaluation, testing).The main disadvantage in this approah does not arise from the tehniques. Itlies in the artifats that are used to represent the initial knowledge bases. Theseare simple property �les, whih are transformed into knowledge base instanes byan assisting proess during initialization. This proess makes use of the re�etionmehanism to instantiate runtime objets.This is a �exible and simple tehnique to realize instanes of knowledge bases.However, sine property �les are not extensible there is no ground to support themodeling of role hierarhies or even multiple knowledge base �les per agent type,whih leads to ode dupliation for agent types that share roles. The relationshipof one knowledge base �le (agent role desriptors) for one agent type is notfeasible for an e�ient and salable implementation. Instead, we prefer to useextensible artifats, whih an be modeled in an inheritane hierarhy similar
25

to lass inheritane. The tehnique of hoie for suh extensible artifats is theExtensible Mark-up Language (XML). Thus we are able to make use of omposedas well as speialized role types for the agents.Being able to implement the ode for a role hierarhy, we are able to model notonly the dependenies of agent roles, but also the hierarhy of roles. Moreover, weare able to model both hierarhy and dependenies in one diagram. This leadsto the Roles and Dependenies Diagram (R/D Diagram). Here the di�erentroles appear in a hierarhy of (speialized) role types together with servies andthe dependenies of the role types. To model these two aspets in one diagrammakes sense, sine dependenies are also inherited, thus in the ombination ofboth aspets the inherited dependeny is easily found and the struture of thedependenies bene�ts from the lustering of roles through generalization.A prototypial implementation of a Knowledge Base Editor (Version 2) existsthat supports the XML knowledge base format. It inorporates the model in itsuser interfae. The tehnique is designed to show the dependenies as explainedin Setion 3 as well as the hierarhies of roles.Role desriptors (initial knowledge base �les in XML notation) an be reatedand edited diretly in the tool, whih also validates entries on the �y. Modelsan be entralized as well as fragmented. If fragmented the joining (distributed)elements of the diagrams are the servies and the abstrat roles. Beause of thegenerality these an be in several models and if the models are distributed thoseartifat have to be present in all a�eted models.From the initial models (R/D Diagram), whih are the main design artifats,agent role desriptors (ARD in XML notation) an be generated. These artifatsare su�ient to initialize agent types de�ned with the same tool in a simpleagent model, whih maps agents to roles (ompare with the agent models ofGaia [23℄). Alternatively, also the merged ARD desriptions an be reated forthe onvenient use of agent knowledge bases (KB) in other ontexts.We return to the example of a work�ow management system to illustrate thepower and the usage of the R/D Diagram. Figure 6 shows the dependenies ofthe reimplementation of the WFMS done with the enhaned tools. The systemfeatures several agent roles to form the WFMS, an agent role for the work�owsand an agent role as a plaeholder (proxy) for the user of the system. The useran be in di�erent user roles (administrator, exeutor, initiator, et.), whih isre�eted by the fat that user agents also own user roles.The WFMS ore is represented by an agent that owns the role WFMS (theWFMSAgent, whih an be regarded as a singleton agent). This agent delegatesseveral tasks of the WFMS to its partiipants: e.g. agents that own the roleWFEngine or WFES (work�ow enatment servie).8The dependenies in the model re�et the domain spei� onstraints. Forinstane the AountManager is apable to authentiate the permissions of thepartiipants of the WFMS and it o�ers this as a servie. The WFES an thusdelegate the task of authentiation to the AountManager.8 All notions and quali�ers are diretly taken from the de�nition of a WFMS given bythe Work�ow Management Coalition (WfMC [22,21℄).
26

Figure 6. Dependenies in the WFMS (version 2).Note that the agent roles WFES and WFEngine are in a yli dependenymeaning that they are tightly oupled. One annot perform the tasks in theWFMS ontext without the other. However, this yle is not resolvable andalso those agent roles annot (normally) be inluded within one agent as theWFES takes up a manager role for the WFEngine agents, whih exeute thework�ows. Also the WFES ould reate new agents for the exeution of work�owson demand.Figure 7 shows a possibility for generalization of agent roles. Basially allagents that perform a task within the WFMS (and o�er servies to other WFMSagents) have to able to use the authentiation. Here a generalization is obvious.Also all agents are CapaAgents beause we are running a Capa engine solelywith standard agents.Figure 8 integrates both into one R/D Diagram. Through the generalizationof agent roles we are able to redue the number of dependeny relations onsid-erably. However, muh of this improvement is again taken bak sine we have toadd generalization ars to the diagram. Also the fat that we ombine (ideally)two hierarhies in one diagram does not make the layout easier, sine sometimesthe resulting graph is not even planar. Nevertheless, the diagram shows a nu-merous aspets of a omplex system and we are also able to swith to one or theother perspetive (hierarhy of roles, or dependenies).So far we have only disussed the maro struture of the R/D Diagram. Toinspet an edit the miro struture the elements an be expanded (the �+� atthe top of the �gure ats as handle). The expanded role desriptor in Figure 9reveals several setions (suh as RequiredServies, StateDesription, Protools
27

Figure 7. Role hierarhy of the model.

Figure 8. R/D Diagram of the WFMS (version 2).
28

and InommingMessages) and in eah setion several entries. Setions and entriesan be added or removed or edited diretly within the tool.

Figure 9. Fragment of the R/D Diagram showing the WFEngine role expandedto show details.This the R/D Diagram o�ers for the developer of multi-agent system the pos-sibility to inspet the system roles and dependenies an a broad level (maro, seeFigure 8) and on a detailed level as well (miro level, see Figure 9). Additionally,the other views (role hierarhy view and dependenies view) are also present inthe models.7 Related WorkOur de�nition of hard dependenies is omparable with the de�nition of serviedependenies in [3℄. A de�nition of soft dependenies an be found in the PASSImethod. There a soft dependeny exists if a servie is not required, but �helpfulor desirable� [9, p. 6℄. This notion on�its with ours where soft dependeniessubsume the hard dependenies.Most software developing methodologies ontain a tehnique for modelingsome kind of dependenies between their omponents. In the following paragraphwe will onsider several examples from the agent oriented ontext, TROPOS andAGR (Agent/Group/Role), and have a look how the dependeny diagram anbe used in other omponent based domains.
29

The TROPOS methodology distinguishes four kinds of dependenies betweenagents, from hard dependenies (resoure) to soft ones (soft-goal). [19℄ shows howTROPOS dependeny relations an be expressed in UML for real time systems.A hard dependeny in our de�nition ould be a resoure dependeny, a goaldependeny or a task dependeny in TROPOS, depending on the kind of servie.We want to abstrat as muh as possible from the agent internals to get a learimage of the system struture, so the distintion between di�erent kind of serviesin terms of the underlying ation is not useful for our needs.Another agent oriented modeling tehnique, that desribes dependenies be-tween agents is AGR (Agent/Group/Role). Ferber et. al. [12℄ show how the or-ganizational struture of an agent-based system an be modeled using the AGRtehnique. One of the proposed diagrams, the organizational struture diagram,shows roles, interations and the relations between roles and interations. Thisdiagram is omparable to the Dependeny Diagram. In both diagrams an arfrom an agent (or from the agent role) means that the agent starts an inter-ation. Di�erenes between the diagrams ome from additional elements in theorganizational struture diagram. First also the groups to whih the roles belongare modeled. Seond, the situation that every agent in a spei� role must bemember in another role is modeled as a diret relation between the two roles.In Mulan/Capa-systems there are (for now) no elements like groups or roles,so the advaned modeling possibilities of an organizational struture diagram isnot suitable in this ontext.As well as in the agent ontext, also in other omponent based systems it isimportant to model the dependenies between omponents. One example of awell known omponent system is the Elipse framework with its numerous plu-gins. The visualization of the dependenies between di�erent plugins is omplexand no su�ient ommerial tools exist that an visualize the struture of thewhole system appropriately.Gaia fouses strongly on the organizational modeling [23℄. One of the impor-tant models is the servie model. Our Dependeny Diagram an be regarded asan implementation of the Gaia servie model. However, Gaia does not reognizehierarhial roles.In Prometheus [17℄ aquaintanes are modeled but they do not result inagent (role) dependenies. Roles are not modeled here, instead the fous lies onagents. The system model in Prometheus gives a good overview of the systemomparable with the overview of the R/D Diagram. It is muh more detailed andbut does not expliitly show any dependenies exept the interation protoolsor messages that onnet agents. The struture of the system model re�ets theone of the aquaintanes model.8 Conlusion and OutlookIn this work we present tehniques to expliitly model the dependenies betweenagent roles and servies. The bene�t of these tehniques are intuitive diagrams,whih are lose to UML standard diagrams, derived from omponent and lass
30

diagrams and at the same time suitable for expressive modeling in the ontext ofagent-oriented methodologies. The use of the proposed diagrams helps softwaredevelopers of multi-agent systems to get an overview of the overall strutureof a system and to identify desired or undesired dependenies hidden in the(possibly distributed) soure ode. The presented tehniques an be applied inonstrutive as well as analytial modeling. Furthermore, the diagrams an alsobe valuable during presentation and doumentation purposes.Mainly, we have shown that ommon standard methods of modeling an besuessfully applied to system modeling in the agent-oriented ontext. Moreover,even for this area, where the standard notions, onepts and perspetives fail tobe e�etive, the ommonly known tehniques an be applied, if they are adaptedto the needs apparent in the paradigm of multi-agent system. With the R/DDiagram one perspetive that is often addressed in agent-oriented methodologiesis overed in a suitable way whih is not alien to objet-oriented developers either.With the Dependenies Plugin for Dependeny Diagrams, inluding the round-trip engineering system apabilities, developers an generate and use dependenydiagrams without additional e�ort. The Dependeny Diagram always shows anup-to-date doumentation of the system due to its round-trip engineering inte-gration. The appliation of the Dependeny Diagram tehnique an be extendedto other domains suh as omponent-based, plugin-based or servie-based soft-ware systems. The urrent version of the Dependenies Plugin, for example,an generate diagrams that show the Renew plugin dependenies. Beause theRenew plugins and the plugin system were oneptually based on agent teh-nology, this additional funtionality was ahieved with only little e�ort (omparewith [8℄).Standard validation tehniques an be applied to the generated diagramsdiretly within our tool set. Thus an analysis of the struture of the diagramis possible, easily applied and o�ers valuable additional information about thesystem. As a presented example Net Analysis Plugin allows to hek for simpleproperties in graphs, properties suh as the absene of yles or onnetedness.With the Roles/Dependenies Diagram (R/D Diagram) it is possible to in-tegrate the advantages of dependenies modeling together with the struturalmodeling of speialization hierarhies of agent roles.In parts the hanging of the implementation language for the design artifatsto XML, whih is mergeable, played a major role in this improvement. Theenhaned version of the Knowledge Base Editor (KBE) inludes the diagram inits interfae, allows to edit knowledge base entries diretly within the diagramand o�ers on-the-�y syntax heking and validation. However, the analytialmodeling, i.e. the round-trip engineering apabilities, of the Dependenies Pluginare not yet integrated into the KBE. While the tools have been suessfullyapplied in some experimental projets, we urrently aim for an integration ofthe round-trip engineering system of the Dependenies Plugin into the KBEPlugin, whih already o�ers �exible editing and veri�ation power.Future work aims at an integration of tehniques within our tool set. Aonnetion between servies as used in the R/D Diagrams with the interation
31

diagrams ould �ll the gap between servie desriptions and servie / role imple-mentations, i.e. triggers for ertain ations. We would like to apply our tehniquesto other domains and evaluate them against other agent-oriented methods, forinstane Jadex [4,2℄. The work on dependeny modeling and roles and depen-denies modeling presented in this paper are examples of the blok of a broaderapproah on agent-oriented software engineering based on Petri nets and othergraphial modeling formalisms Paose (Petri net-based Agent-Oriented SoftwareEngineering). Inluded in this �eld of researh are the frameworks Mulan andCapa as well as e�orts of multi-agent appliation development (see [7,11,18℄).Referenes1. AUML. Agent UML. Webpage, 2004. http://www.auml.org/.2. Lars Braubah and Alexander Pokahr. Jadex. website, July 2008.http://vsis-www.informatik.uni-hamburg.de/projets/jadex/.3. Lars Braubah, Alexander Pokahr, Dirk Bade, Karl-Heinz Krempels, and WinfriedLamersdorf. Deployment of distributed multi-agent systems. In Frano ZambonelliMarie-Pierre Gleizes, Andrea Omiini, editor, 5th International Workshop on En-gineering Soieties in the Agents World, pages 261�276. Springer-Verlag, Berlin,2005.4. Lars Braubah, Alexander Pokahr, and Winfried Lamersdorf. Software Agent-Based Appliations, Platforms and Development Kits, hapter Jadex: A BDI AgentSystem Combining Middleware and Reasoning. Birkhäuser Book, 2005.5. Lawrene Caba. Modeling agent interation protools with AUML diagrams andPetri nets. Diploma thesis, University of Hamburg, Department of Computer Si-ene, Vogt-Kölln Str. 30, D-22527 Hamburg, Deember 2003.6. Lawrene Caba, Till Dörges, and Heiko Rölke. A monitoring toolset for Petri net-based agent-oriented software engineering. In Rüdiger Valk and Kees M. van Hee,editors, 29th International Conferene on Appliation and Theory of Petri Nets,Xi'an, China, volume 5062 of Leture Notes in Computer Siene, pages 399�408.Springer-Verlag, June 2008.7. Lawrene Caba, Mihael Duvigneau, Mihael Köhler, Kolja Lehmann, DanielMoldt, Sven O�ermann, Jan Ortmann, Christine Reese, Heiko Rölke, and VolkerTell. PAOSE Settler demo. In First Workshop on High-Level Petri Nets andDistributed Systems (PNDS) 2005, Vogt-Kölln Str. 30, D-22527 Hamburg, Marh2005. University of Hamburg, Department of Computer Siene.8. Lawrene Caba, Mihael Duvigneau, Daniel Moldt, and Heiko Rölke. Apply-ing multi-agent onepts to dynami plug-in arhitetures. In Joerg Mueller andFrano Zambonelli, editors, Agent-Oriented Software Engineering VI: 6th Inter-national Workshop, AOSE 2005, Utreht, Netherlands, July 21, 2005. Revised Se-leted Papers, volume 3950 of Leture Notes in Computer Siene, pages 190�204.Springer-Verlag, June 2006.9. M. Cossentino and C. Potts. PASSI: a proess for speifying and implementingmulti-agent systems using UML.http://www-stati..gateh.edu/lasses/AY2002/s6300_fall/ICSE.pdf.10. Ragna Dirkner. Roundtrip-Engineering im PAOSE-Ansatz. Diploma-thesis, Uni-versity of Hamburg, Department of Informatis, 2006.
32

11. Mihael Duvigneau, Daniel Moldt, and Heiko Rölke. Conurrent arhiteture fora multi-agent platform. In Fausto Giunhiglia, James Odell, and Gerhard Weiÿ,editors, Agent-Oriented Software Engineering III. Third International Workshop,Agent-oriented Software Engineering (AOSE) 2002, Bologna, Italy, July 2002. Re-vised Papers and Invited Contributions, volume 2585 of Leture Notes in ComputerSiene, pages 59�72. Springer-Verlag, 2003.12. Jaques Ferber, Olivier Gutkneht, and Fabien Mihel. From agents to organi-zational view of multi-agent systems. In Paolo Giorgini, Jörg Müller, and JamesOdell, editors, Agent-Oriented Software Engineering IV, pages 214�230, 7 2003.13. FIPA. Foundation for Intelligent Physial Agents, 2007.http://www.fipa.org.14. Foundation for Intelligent Physial Agents. FIPA Request Protool Spei�ation,version 2002/12/06 edition, 2002.15. Olaf Kummer, Frank Wienberg, and Mihael Duvigneau. Renew � the RefereneNet Workshop. Available at: http://www.renew.de/, July 2008. Release 2.1.1.16. James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Extending UML foragents. In Gerd Wagner, Yves Lesperane, and Eri Yu, editors, Pro. of theAgent-Oriented Information Systems Workshop at the 17th National onferene onArti�ial Intelligene, pages 3�17, 2000.17. Lin Padgham and Mihael Winiko�. Developing Intelligent Agent Systems : APratial Guide. Wiley Series in Agent Tehnology. Chihester [u.a.℄ : Wiley, 2004.isbn:0-470-86120-7, Pages 225.18. Heiko Rölke. Modellierung von Agenten und Multiagentensystemen � Grundlagenund Anwendungen, volume 2 of Agent Tehnology � Theory and Appliations. LogosVerlag, Berlin, 2004.19. Carla T. L. L. Silva and Jaelson Castro. Modeling organizational arhiteturalstyles in UML: The Tropos ase. In Osar Pastor and Juan Sánhez Díaz, editors,Anais do WER02 - Workshop em Engenharia de Requisitos, pages 162�176, 112002.20. Uni�ed modeling language: Superstruture.http://www.omg.org/dos/formal/05-07-04.pdf, July 2005.21. WfMC. Work�ow Management Coalition (WfMC). http://www.wfm.org/, 2005.22. WfMC. Work�ow referene model. http://www.wfm.org/standards/model.htm,2005.23. Frano Zambonelli, Niholas R. Jennings, and Mihael Wooldridge. Developingmultiagent systems: The Gaia methodology. ACM Transations on Software En-gineering and Methodology, 12(3):317�370, July 2003.

33

Multi Agent Organisation for Coevolutionary
Optimization

Grégoire Danoy1, Pascal Bouvry1, and Olivier Boissier2

1 FSTC/CSC/ILIAS, University of Luxembourg
6 Rue R. Coudenhove Kalergi, L-1359 Luxembourg

gregoire.danoy@uni.lu pascal.bouvry@uni.lu
2 SMA/G2I/ENSM.SE, 158 Cours Fauriel

42023 Saint-Etienne Cedex, France
olivier.boissier@emse.fr

Abstract. Coevolutionary Genetic Algorithms (CGAs) focus on the coevolution
of competing or cooperating populations of individuals that represent specific
parts of the global solution. In the current existing platforms, the use of such algo-
rithms for evolutionary optimization suffers from the lack of expressiveness in the
definition of the interaction structure between the populations. In order to over-
come this problem and to allow an easy management of the interaction patterns
of such algorithms, we propose a Distributed Agent Framework for Optimization
(DAFO) in which the modelling of the interaction structure of CGAs is realized
with a multiagent organisation modelling language. We show how this explicit
modelling makes it possible to define multiple CGAs cooperation patterns.

1 Introduction

Coevolutionary Genetic Algorithms (CGAs) have been introduced as an extension of
Genetic Algorithms (GAs) by focusing on the coevolution of competing or cooperating
populations of individuals. In such an approach, instead of having one homogeneous
population of individuals that represents a global solution, there are several populations
that represent specific parts of the global solution.

Few of the existing libraries and frameworks that are proposed [1] allow the use
of CGAs. Even if subpopulations are described as agents in the related literature, the
model that is used in such frameworks is mainly based on an object-oriented approach.
We consider that basing our approach on multi-agent system (MAS) technologies could
help in making explicit the structure of the CGAs (e.g. the interactions and cooperation
patterns between agents) and in adapting this structure according to the dynamics of the
optimisation problem (i.e. the MAS environment) and the local computations realized
in each GA .

In this paper we propose a Distributed Agent Framework for Optimization (DAFO)
that consists in a multi-agent system specialized and dedicated to evolutionary opti-
mization. A key element of this framework resides in its multiagent organisation model,
extension of the Moise+ model [11]. We chose the Moise+ organisation model since it
is well adapted to declare the coordination patterns that govern cooperation between
different autonomous agents in terms of structure and collective plans. We extended

34

it to specify the interaction patterns governing the information exchanges between the
different algorithms of the CGAs. As we show, the use of such a model overcomes the
lack of explicitness at the level of the algorithms of the structure and interactions. It has
been used to build an hybrid variant [5] and a dynamic one [6] of a competitive CGA.

The paper is organized as follows. In section 2, we introduce first coevolutionary ge-
netic algorithms. We present then the foundations and basic components of the DAFO
framework in section 3, focusing on its organisation model and illustrating its usage for
modelling a simple genetic algorithm (SGA). Section 4 demonstrates its use for mod-
elling two existing CGAs and two novel ones (one hybrid and one dynamic). In section
5, we compare our approach to other existing agent frameworks for optimisation. Fi-
nally, section 6 presents our conclusions and future works.

2 Coevolutionary Genetic Algorithms

Genetic Algorithms (GAs) are heuristic methods based on Darwin’s principle of evo-
lution [7] (survival of the fittest) among candidate solutions (known as “individuals”)
with the stochastic processes of selection, recombination and mutation. Unfortunately,
“classical” GAs tend to perform poorly or are difficult to apply on some problems espe-
cially when they have very large search spaces like many real-world problems such as
inventory management [5] or topology control in mobile ad hoc networks [4] . In order
to address these kinds of problems, researchers referred again to a nature inspired pro-
cess so as to extend evolutionary algorithms: coevolution (i.e. the coexistence of several
species [9]).

The main differences between Coevolutionary Genetic Algorithms (CGAs) [15] and
GAs come from the adaptive nature of fitness evaluation in coevolutionary systems: the
fitness of an individual is based on its interaction with other individuals from other
so-called subpopulations. Thus, instead of evolving a population of similar individuals
representing a global solution like in classical GAs, CGAs consider the coevolution
of subpopulations of individuals representing specific parts of the global solution and
evolving independently with a genetic algorithm. Individuals are evaluated based on
their direct interactions with other individuals. These interactions can be either positive
or negative depending on the consequences that such interaction produces on the pop-
ulation: (i) if positive (case of cooperative coevolution), the presence of each species
stimulates the growth of the other species, (ii) if negative (case of competitive coevo-
lution), the presence of each species implies the limitation of the growth of another
species.

In the following we describe two CGAs, a cooperative one called Cooperative Co-
evolutionary GA (CCGA) and a competitive one based on non-cooperative models of
game theory called Loosely Coupled GA (LCGA).

2.1 Cooperative Coevolutionary Genetic Algorithm

In [17], Potter and De Jong proposed a general framework for cooperative coevolu-
tion that they applied to test problems of function optimization (De Jong’s test suite).

35

In this approach, multiple instances of GAs are run in parallel. Each population con-
tains individuals that represent a component of a larger solution. Complete solutions
are obtained by assembling representatives from each of the species (populations). The
fitness of each individual depends on the quality of some/complete solutions the indi-
vidual participated in. In some sense, it measures how well the individual cooperates
to solve the problem. In the initial generation (t=0) individuals from a given subpop-
ulation are matched with randomly chosen individuals from all other subpopulations.
The best individual in each subpopulation is then retrieved based on its fitness value.
The process of cooperative coevolution starts at the next generation (t=1). For this pur-
pose, in each generation the operations follow a round-robin schedule. Only one current
subpopulation is active in one cycle, while the other subpopulations are frozen. All in-
dividuals from the active subpopulation are matched with the best values of the frozen
subpopulations. When the evolutionary process is completed, the solution of the prob-
lem consists in the composition of the best individuals from each subpopulation. Co-
operative coevolution showed to be efficient on different problems like static function
optimization [16], rule learning [18] [20], neural network learning [19], and multiagent
learning problems [21].

2.2 Loosely Coupled Genetic Algorithm

The Loosely Coupled Genetic Algorithm (LCGA) [25] is a medium-level parallel and
distributed coevolutionary algorithm. It explores the paradigm of competitive coevolu-
tion algorithms motivated by non-cooperative models of game theory. For an optimiza-
tion problem described by some function (a global criterion) of N variables, local chro-
mosome structures are defined for each variable and local subpopulations are created
for each of them. A problem to be solved is thus firstly analyzed in terms of possible
decomposition and relations between subcomponents. They are expressed by a commu-
nication graph Gcom, known as graph of interaction. The function decomposition and
the definition of the interaction graph aim at minimizing communications while still
ensuring that the fact of reaching local optima for all different players (being a Nash
equilibrium point) still leads to a global optimum of the initial function. LCGA was
applied to dynamic mapping and scheduling problems [23], a distributed scheduling
problem [24] and to test functions [25]. However, the interaction graph is hard-coded
and this process has still to be done manually by taking into account information on the
internal structure of the cost function, i.e. of the problem.

In the CGAs literature, the term Agent is very redundant when referring to the dif-
ferent players (subpopulations) of these metaheuristics. However, none of the available
platforms dedicated to evolutionary computation use the agent paradigm, but the object
paradigm, which prevents them from providing high level and explicit models allowing
an easy development of new generations of CGAs (e.g. hybrid or dynamic CGAs). In-
deed, subpopulations composing a CGA can be modelled as autonomous agents. The
topology and content of their interactions are driven by the cooperative or competi-
tive nature of the CGA. Therefore modelling the interaction structure of CGAs with a

36

multiagent organisation modelling language would allow bringing simplicity and self-
expresiveness. It would consequently ease the definition and adaptation of the algo-
rithms. We present our approach in the following section.

3 Multi-Agent Organisation Model for Optimisation

Solver Agents

ObservationAgentFabric Agent

solutionsParam-
eters

1160

1165

1170

1175

1180

1185

0 50 100 150 200 250 300

C
os
t(
in
$)

3 Items, 360 Transactions (zoom)

SGA
LCGA
CCGA

LCGA DYN = 2
LCGA DYN = 5
LCGA DYN = 10
LCGA DYN = 20
LCGA DYN = 50

Designer

Environnement

Provides

MAS4EVO

Agent Environnement Interaction Organization

Key

Perceive

Organization Specification (OS)

1..1 1..1

1..1

3..3

1..1

1..1

1..1

Functiona l
Scheme

gCompute

gDafo

Optimization
Scheme

Observation
Scheme

Fabric
Scheme

Group

Inform(content1)

Inform(content2)

Agree(content3)

pTime(Group, Sender, Receiver, Content1, Content2, Content3, n)

{n seconds}

ReceiverSender

SS FS

NS

DiS

SS F S
n ϕ opop bearbear erer m p s

N01N01 — oblobl role1role1 m1m1 parameter1parameter1 parameter2parameter2 scscheme1heme1
N02N02 — oblobl role3role3 m2m2 parameter2parameter2 scscheme1heme1
N03N03 — perer role2,role2, role3role3 m4m4 parameter3parameter3 scscheme2heme2
N04N04 — oblobl role4role4 m5m5 parameter4parameter4 scscheme3heme3

Tableable 1

Fig. 1. MAS4EVO Overview with its organisation model

A general view of DAFO’s underlying model is provided in Fig. 1. It is composed of
three types of agents interacting together and able to perceive and react to the environ-
ment in which they are situated. The environment represents the optimisation problem
which is provided and specified by the user. Given the considered problem, it can be
either static or dynamic. The considered types of agents are: (i) problem solving agents
in charge of optimizing a fitness function using a metaheuristic (i.e. executing the algo-
rithms considered in GA or in CGAs), (ii) fabric agents which instantiate and configure
the running application and (iii) observation agents which observe the problem solving
agents and provide output interfaces to the end user(s).

The interactions between the agents use the FIPA ACL restricted to the inform and
agree performatives. They also use FIPA-SL propositions to express the content of the
messages. This content is either composed of organisational information or of com-
putational information (i.e. individual(s)). Interaction protocols structure and express
the sequences of messages according to the strategy of solution exchanges between the
different GAs embedded in the agents (best, random, etc).

Finally, the coevolutionary strategies are represented by defining a multiagent or-
ganisation that is used to impose global patterns of cooperation on the behaviours of
the agents. Thanks to its explicit representation, agents are able to change and reorgan-
ise the global functioning of the system. We focus here on this last model since it is
the core of the DAFO Framework. The organisation model is based onMOISE+ [11]
and dedicated to evolutionary optimization by the set of roles, groups and goals that are
used. The abstract definition of cooperation patterns of the MAS builds what we call the
Organisation Specification (OS). When a set of agents adopts an OS, they form an Or-

37

ganisation Entity (OE). The OS is defined using four different specifications: structural,
functional, dialogic and normative.

The following sections provide a detailed description of those four specifications.
The example of the usage of this model to represent a simple GA (SGA) will be used
along these descriptions in order to illustrate the different concepts those specifications
are based on.

3.1 Structural Specification

Solver

Observer EvoBuilderEvoMember

Main Group

1..1 1..1Group
min..max

Role

Abstract
Role

Key

Inheritance:
Composition :

Links
acq
com
aut
compat

Intra-group Inter-group

min..max

1..1

3..3

1..1

SGA
1..1

1..1

Fig. 2. Graphical Representation of the Structural Specification of the SGA Example

The Structural Specification (SS) expresses the structure of an organisation in terms
of roles, links between roles and groups. A role is a label which allows attaching a set
of constraints described in the other specifications ofMOISE+. An agent is expected to
respect these constraints as soon as it accepts to play that role. A group is defined by a
composition of non-abstract roles (composition link), a set of intra-group links, a set of
inter-group links, roles and groups cardinalities and agent cardinality (i.e. the number
of agents which can play a role in the group). Links are the relations which have a direct
influence on the agents’ interactions. They can be of three types: (acq) for constraining
the agent acquaintances graph, (com) for the interaction graph between the agents and
(aut) for the authority and control structure bearing on the agents. A set of constraints
is defined and used when the OS is enacted when the agents adopt roles in the created
groups. These constraints express inter-roles compatibilities, links scope (intra-group
and inter-group) and maximum/minimum number of adopted roles and created groups
that could exist in the OE.

In Fig. 2 is shown the example of the SS of a simple GA. The root group is the
Main Group group. It is composed of a single group SGA (cardinality “1..1”). The
Main Group group is composed of three agents (cardinality “3..3”): one playing the
EvoBuilder role, another one the Observer role and another one the EvoMember role.
Each of these roles can only be adopted once (cardinality “1..1”). The SGA group is
composed of one agent (cardinality “1..1”) playing the role Solver. The Solver role
inherits its constraints from the EvoMember role. The EvoBuilder role possesses an au-
thority link on the EvoMember role since it will control the lifecycle of the EvoMember
(e.g. instantiation). The EvoMember possesses a communication link with the EvoBuilder

38

role. This link will be used to provide information concerning the EvoMember lifecycle
(e.g. ready to compute). The Solver role also has a communication link but with the
Observer role so as to send results of its computation process (e.g. the best individual
per generation). Finally the EvoMember role and the Solver role have a compatibility
link. This means that the same agent can play both roles in the same instance of the
Main Group (we do not mention the SGA group since it is a subgroup of Main Group).

3.2 Functional Specification

Functional
Scheme

gCompute

gDafo

Key

Goal
Choice Parallelism

missions

Optimization
Scheme

Observation
Scheme
gOutput

gLog gGraphAndLogm9 m10

Observation
Scheme

Fabric
Scheme

* [*=r | t]

* [*=r | t]Goal repetition: Sequence

Fig. 3. Graphical Representation of the Functional Specification of the SGA Example

The Functional Specification (FS) describes a set of social schemes corresponding
to the collective plans to be executed by the OE. These goals are grouped into mis-
sions which are attached to the roles in the normative specification. There missions are
assigned to the agents as soon as they adopt the corresponding roles. Different types
of goals and social schemes have been introduced. They can be functional ones as in
MOISE+ but also interactional, organisational or regulatory. We have also added to the
initial version ofMOISE+ the possibility to associate a repetition constraint on a goal:
guard condition that will stop the iterated achievement of the goal according to some
repetitions number or time constraint. Interactional goals use one generic interaction
protocol specified in the dialogic specification. It must mention the source and destina-
tion roles as well as the information exchanged if necessary. The organisational goals
imply an action on the organisation entity (e.g. instantiation of new agents). Therefore
they provide reorganisation capabilities. Regulatory goals imply a monitoring of the or-
ganisation so as to start a plan once a predefined criterion is reached. They can be used
for instance to trigger a reorganisation process. Finally, artificial goals are goals that
can not be reached. They are only used for specification purposes.

In Fig. 3 two out of the four social schemes of the FS of the SGA are presented. The
functional scheme (left side) is considered as the main scheme of the FS. Its root goal,
gDafo, is to run the DAFO framework. It is satisfied when the Fabric Scheme and the
artificial goal gCompute are satisfied in sequence. The goal gCompute is itself achieved
once its repetition condition is satisfied. An iteration of the gCompute goal will be

39

achieved when goals Optimization Scheme and the Observation Scheme are achieved in
parallel.

Concerning the Observation Scheme (right side of Fig. 3), its artificial root goal
gOutput is satisfied if one of the two functional goals gLog or gGraphAndLog are
achieved, i.e. an output of the results is obtained by the GA. The gLog goal saves the
received best individual of one generation and the calculated average in each generation
in log files. The gGraphAndLog additionally draws the corresponding graphs.

3.3 Dialogic Specification

Group

Inform(content1)

Inform(content2)

Agree(content3)

pTime(Group, Sender , Receiver , Content1, Content2, Content3, n)

{n seconds}

ReceiverSender

Fig. 4. Graphical Representation of the Dialogic Specification of the SGA Example

The Dialogic Specification (DiS) is an extension to the initialMOISE+ model. It is
used to specify parameterizable generic interaction protocols in an independent manner
of the roles and groups specified in the structural specification (SS). These interaction
protocols are a variant of both AUML sequence diagrams [2] and AGR organisational
sequence diagrams [10]. In Fig. 4, is presented a protocol defined using the DiS. This
protocol requires seven parameters, a group name, a sender role, a receiver role, three
different message contents and a time constraint. The n value represents a timing con-
straint, i.e. the number of seconds between the first Inform message containing the pa-
rameter content1 sent from the sender to the receiver and the second one containing
the parameter content2. Finally, the receiver has to send back an Agree message to the
sender containing the parameter content3.

The graphical representation of the DiS has two dimensions: (i) the vertical dimen-
sion represents the time ordering and (ii) the horizontal dimension represents generic
groups and roles that will be specified as parameters. Messages in sequence diagrams
are ordered according to a time axis. This time axis is usually not rendered on diagrams
but it goes according to the vertical dimension from top to bottom. Message ordering is
expressed by the time axis.

40

3.4 Normative Specification

During the execution of the organisation, the agents will have: (i) to play roles within
groups as specified in the structural specification (SS), (ii) to commit to missions and
to achieve the corresponding goals defined in the functional specification (FS) and,
(iii) finally to communicate following the interaction protocols depicted in the dialogic
specification (DiS). In order to connect and glue these three specifications, we define
the Normative Specification (NS) adapted from the one introduced inMOISEInst [3].
This specification is composed of a set of normative expressions involving a deontic
operator (permission, obligation or interdiction) with terms from the SS, FS and DiS.

A norm n is defined as:

n : ϕ→ op(bearer, m, p, s)

where ϕ is the norm validity condition, op is the deontic operator defining an obligation,
a permission or an interdiction, bearer refers to an entity of the SS (role or group) on
which the deontic operator is applied, m refers to a mission defined in the FS, p is an
optional set of parameters used for the instantiation of the mission m, s is the functional
scheme of the FS to which the mission m belongs.

For instance, the following norm:

N04 : true→ obl(EvoMemeber,m4,−, Fabric)

is an obligation for every agent playing the EvoMember role to perform the mission
m4 of the Fabric social scheme. According to the mission m4 definition, the agent
playing the EvoMember role is endorsed of the obligation to achieve two organisa-
tional goals (creation of the subgroup SGA and adoption of the Solver role in this new
group). Given the validity condition of this norm N04, the norm is valid.

4 Multi-Agent Organisation modelling of existing and new CGAs

In the preceding section we have described the different specifications provided by the
organisation modelling language of DAFO. We have illustrated their use to model a
simple GA. We show in this section how it is possible to model different CGAs by using
a unique generic agent (i.e. the Problem Solving Agent) and a library of organisational
models. This section presents the simple changes needed in the structural specification
to switch from the CCGA to the LCGA (cf. Sec. 2). It additionally introduces the novel
hybrid LCGA and the changes in the structural specification compared to the LCGA
and the novel dynamic LCGA and the changes necessary in the functional specification
to provide reorganisation capabilities to the LCGA.

4.1 CCGA MultiAgent Organisation Model

CCGA is a cooperative CGA using a complete graph as topology of communicaiton
between the different subpopulations. It is therefore necessary to have at least three
Problem Solving Agents (PSAs) to represent and compute these subpopulations. Since
all PSAs interact with each other, we only use one group to manage them.

41

A specific feature of CCGA is the round-robin process realized in each generation
of the algorithm. In this process only one subpopulation after the other is active at one
time, receiving individual(s) from all the other subpopulations to evaluate its own indi-
viduals. This is modelled first at the structural level by adding two new roles, Consumer
and Producer, and, second, at the functional level by introducing a regulatory goal. With
this goal, each PSA can monitor if it is its turn to become active (i.e. playing role Con-
sumer). organisational goals permit the PSAs to change role (i.e. switch from Producer
to Consumer and the opposite).

Solver

ObserverEvoBuilder
solutions

Maingroup
CCGA

Solver

SolverSolver

Consumer

Solver

Producer

Observer EvoBuilderEvoMember

Main Group

CCGA

All - 1

1..1 1..1

1..1

1..1

All

All

Role Name
Interaction

Group

Key

Group Name

Solver Agent

Fabric Agent

Observation Agent

Fig. 5. Example of Organisation Entity and Graphical representation of the Structural Specifica-
tion for the CCGA

In order to model the complete graph topology of the CCGA in terms of an organi-
sational structure, new roles Consumer and Producer (compared to the SGA) inheriting
from the Solver role have been added: (see highlighted roles on the right side of Fig. 5).
The Consumer role can only be played by a single PSA (cardinality 1..1). It represents
the active subpopulation while the Producer role is played by all the other PSAs partic-
ipating to the system (cardinality All-1). Agents playing the Producer role are able to
send some information (generally individuals) to the agent playing the Consumer role.
Let us notice that an agent playing the Solver role can also play the Consumer or the
Producer role (compatibility link).

4.2 LCGA Model

LCGA is a competitive CGA. It has no restriction concerning the topology of communi-
cation between the different subpopulations. Due to the optimization problems features
we tackled, i.e. Inventory Management [5] and Injection Networks [4], we modelled a
LCGAs using ring or complete graph topologies. We therefore chose to use topologies
based on a ring, in which it is possible to augment the number of neighbours, from 1 to
n-1 (n being the number of PSAs) as illustrated in the Fig. 6.

As for the CCGA, it is necessary to have at least three PSAs to represent the sub-
populations. Since in these possible topologies one PSA will communicate with one or

42

several neighbours, a new type of group is introduced: Solving Unit. This group con-
tains one Producer role (cardinility 1..1) and one to several Consumer roles (cardinality
1..N). In order to create a ring (see left side of Fig. 6), the same PSA will play the Con-
sumer role in one Solving Unit group and the Producer role in the next Solving Unit
group. This Solving Unit group is a subgroup of LCGA. These two new groups are
highlighted on the right side of Fig. 6. An inter-group compatibility link between the
Producer and Consumer roles has also been added so as to express the possibility for
an agent to play both roles in two different Solving Unit groups.

Contrary to CCGA, in LCGA there is no synchronous exchange of individuals be-
tween the subpopulations and thus no monitoring of the organisation and no modifica-
tion of the OE (i.e. no swapping from Producer to Consumer roles and vice versa). The
individuals exchanged between subpopulations are also different since in LCGA ran-
dom individuals are sent contrary to the best or best and random of the CCGA. This is
taken into consideration with a new parameter in the pInform interaction protocol (i.e.
random).

Another difference is the collaborative process introduced in LCGA. Once one sub-
population has calculated the fitness values of its individuals, based on the individuals
of its neighbour, these fitness values are sent to the same neighbour population which
will use these fitness values to re-evaluate its own individuals (typically the average
between the fitness it calculated and the fitness it received). This will be tackled in
the functional specification as a new functional goal (gReEvaluate) and new possible
parameters in the pInform interaction protocol (i.e. fitnesses).

ObserverEvoBuilder
solutions

Main group
LCGA

Solving Unit

Solving Unit

S
ol

vi
ng

U
ni

t S
olving

U
nit

Consumer

Solver

Producer

Observer EvoBuilderEvoMembe r

Main Group

Solving Unit

LCGA

All 1..n 1..1

1..1 1..1

1..1

All

All

All

All

Role Name
Interaction

Group

Key

Group Name

Solver Agent

Fabric Agent

Observation Agent

Fig. 6. Example of Organisation Entity and Graphical representation of the Structural Specifica-
tion for the LCGA

4.3 hLCGA Model

Hybridization of GAs has been a very active research area. However, hybrid coevolu-
tionary genetic algorithms have been rarely tackled, except in [26] where a CCGA has

43

been hybridized with a hill-climbing algorithm. Due to the few existing researches in
this area and taking profit from our multiagent organisation approach, we decided to
investigate the hybridization of the LCGA with different local search algorithms.

Although it is possible to make a GA hybrid in different ways, latest published ar-
ticles [26] have shown that combining GAs with local search algorithms are one of the
best approaches for improving the results. The model of this hybrid LCGA is therefore
based on the LCGA’s presented in the previous section. To hybridize this LCGA, each
PSA running a SGA and representing one subpopulations of the LCGA will communi-
cate with another new PSA running one local search algorithm (LS). This topology is
represented on the left side of Fig. 7.

As for the LCGA, it is necessary to have at least three PSAs to represent the sub-
populations. In our hybrid approach, we therefore have to add three PSAs to run the
local search algorithm. In order to allow a communication between these PSAs, a new
type of group has been added in the SS, LocalSearchUnit. In this group, the PSA
running a SGA will play the Solver role and the PSA running the LS algorithm will
play a new LocalSearcher role (see right side of Fig. 7). These new LocalSearchU-
nit groups will have to be created and these new LocalSearcher roles will have to
be adopted by the additional PSAs. This will be considered in the FS with the addi-
tion of the organisational goals CreateSubGroup(LocalSearch, DAFO) and the gAdop-
tRole(LocalSearcher, SolvingUnit).

Once the OE is instantiated, it is necessary to run the LS algorithm. This is also
achieved in the FS by adding the exchange of individual(s) (best individual or popula-
tion rate defined by the parameter alpha) from the Solver role to the LocalSearcher with
the interactional goal pInform(alpha). Then the LS algorithm is run with the functional
goal gRunLS and finally the optimized individual(s) are sent back using the same inter-
actional goal pInform(alpha). These new goals will be part of new missions which will
be attached to roles in new norms of the NS.

The SS of the hLCGA presented in Figure 7 is thus similar to the LCGA’s SS plus
the addition of the new group LocalSearchUnit which is a subgroup of the DAFO group
and of the new role LocalSearcher. All the instances of the LocalSearchUnit subgroup
are contained in the DAFO group (cardinality “All”). The LocalSearch Unit group con-
tains exactly one Solver role and one LocalSearcher role (cardinality “1..1”). They both
inherit from the EvoMember role. Those two roles have to be played by two different
agents due to the cardinality “2” on the group. The LocalSearcher role and the EvoMem-
ber role have a new compatibility link which means that the same agent can play both
roles in the same instance of the DAFO group (we do not mention the LCGA group
since it is a subgroup of the DAFO group). Finally, a new intra-group communication
link between the LocalSearcher and the Solver roles and vice versa is added. This will
allow the exchange of individual(s) necessary for the LS algorithm.

4.4 dLCGA Model

Few previous researches have considered the adaptive CGAs, also known as dynamic
CGAs. The related works focused either on the adaptation of the number of popula-
tions [19] or on the adaptation of the parameters [12]. Our contribution consists in

44

hLCGA

Solving Unit

Solving Unit

S
ol

vi
ng

U
nit

S
olvingU

nit

LocalSearch
Unit

Local Search
Unit

LocalSearch
Unit

Local Search
Unit

Consumer

Solver

Producer

Observer EvoBuilderEvoMember

Main Group

Solving Unit

LCGA

All

All 1..n 1..1

1..1 1..1

1..1

All

LocalSearcher

LocalSearch
Unit

2

1..1

1..1

All

All

All

All

Local
Searcher

Local
Searcher

Local
Searcher

Local
Searcher

Solver Solver

Solver Solver

Fig. 7. Example of Organisation Entity and graphical representation of the Structural Specifica-
tion for the hLCGA

building a dynamic LCGA, in which the topology of communication between the pop-
ulations evolves during runtime. Indeed, contrary to CCGA where the topology is fixed
(i.e. fully connected graph), using LCGA makes no restriction on the communication
graph, since it fully depends on the decomposition of the optimized problem.

dLCGA is a new dynamic version of LCGA. Its interaction structure is modified
each n generations of the algorithm. The modification is achieved through a cooperative
process starting with the first player who randomly chooses a new position in the graph
of interaction and informs all the other players of his local decision. The next player
in the graph will then randomly choose a new position among the remaining available
ones and inform the other players. This process is iteratively executed by all players.
Once finished, each player goes to its new position and the algorithm runs again for
n generations. Through this random process, each population exchanges information
with different populations during runtime, and thus has to evaluate its individuals using
different parts of the solution.

Left side of Fig. 8 shows an example of a dLCGA with a ring topology using a
simplified view of an organisational entity (OE). After n generations of the algorithm,
all PSAs leave the roles they play in the Solving Unit groups. Consequently, they only
play a role in the “base” group Main Group and this way they communicate all to-
gether in order to define the groups in which each of them will play a role. Once they
all know their new location, they take their roles in the newly defined groups. Since
the topology changes consist in moving the PSAs on the ring, this only affects the or-
ganisational entity (OE) and not the organisational specification (OS). Therefore, the
structural specification of the dLCGA is similar to the LCGA’s.

We therefore only describe the changes needed in the FS. The functional scheme is
presented on the right side of Fig. 8. A single social scheme has been added to the FS
of the LCGA in order to manage the three steps of the reorganisation describe herein-
before (monitoring, negotiation and reorganisation). The following details the content
of this new reorganisation scheme. Each PSA will have to monitor its computation in

45

order to verify if the condition is met or not. This is achieved by a new regulatory goal
gMonitoring. Once this condition is met, each PSA leaves its Consumer and Producer
roles in its SolvingUnit groups. This is achieved with two new organisational goals
gLeaveRole(Producer, SolvingUnit) and gLeaveRole(Consumer, SolvingUnit). Then the
PSAs will have to negotiate with each other to find their new groups. This negotiation
is achieved with a new interactional goal pNegotiate. This goal implies the definition
of a new interaction protocol in the dialogic specification. Finally the PSAs will adopt
their Consumer and Producer roles in their newly defined SolvingUnit groups using the
gAdoptRole(Producer, SolvingUnit) and gAdoptRole(Consumer, SolvingUnit) organisa-
tional goals. All these new goals are grouped in the Reorganisation Scheme.

LCGA

Solving Unit

Solving Unit

S
o
lv

in
g

U
n
it

S
o
lv

in
g

U
n
it

LCGA LCGA

Solving Unit

Solving Unit

S
o
lv

in
g

U
n
it

S
o
lv

in
g

U
n
it

Functional

Scheme

gCompute

gDafo

gDynamic Observation

Scheme

Optimization

Scheme

Reorganization

Scheme

Fabric

Scheme

* [*=r | t]

Monitoring Negociation Reorganization

Fig. 8. Example of organisation entity evolution and graphical representation of the Functional
Specification for the dLCGA

This section has demonstrated the usage of our approach to model two existing
CGAs, the CCGA and the LCGA. Through these first two examples it was shown that
with few changes in the organisation specifications it is possible to switch from one
CGA to the other. We also introduced two new competitive coevolutionary genetic al-
gorithms, hLCGA and dLCGA, respectively hybrid and dynamic variants of the LCGA.
Their detailed model using MAS4EVO has been presented, demonstrating the capacity
of this new organisational model to describe such new coevolutionary genetic algo-
rithms. Indeed, for the hLCGA it was proved that by adding a new group and a new role
in the SS and a few new goals in the FS to the LCGAs (and adapting the NS accord-
ingly) it is possible to create a new hybrid variant. Similarly, by keeping the same SS
as the LCGA and adding a reorganisation scheme in its FS it is possible to create a new
dynamic variant of LCGA.

5 Related Work

In order to facilitate the use and comparison of EAs, many different libraries and frame-
works have been proposed in the literature. Only a few of these platforms allows the use

46

of some CGAs, but none of them implements “standard” CGAs like the CCGA [17] or
the LCGA introduced in section 2. The vast majority is based on the object oriented
paradigm. They consequently can neither provide the expressiveness of high-level or-
ganisational specifications of the algorithms, nor the autonomy of computational agents
and the distribution inherent to multiagent systems. According to the literature, only
three frameworks use a multi-agent architecture for metaheuristics algorithms.

MAGMA (MultiAGgent Architecture for Metaheuristics), introduced in Roli’s PhD
thesis [22] and later in [13], consists in a multi-level architecture where each level con-
tains one or several specialized agents implementing an algorithm. This architecture
provides a high modularity but does not use any organisational model which would
for instance allow to specify in an explicit way the interactions. In MAS-DGA (Multi-
Agent System for Distributed Genetic Algorithms) [14], each basic GA is encapsulated
into an agent that must keeps knowledge of the search, learning, or optimization prob-
lem it operates on. Agents are coordinated by a set of rules stipulating the topological
and communication (migration) aspects These rules can be fixed a priori or set during
run-time. MAS-DGA therefore includes a simple organisational and reorganisational
model based on a structural specification. However, no detail concerning this model or
its implementation are given in the single paper mentioning MAS-DGA. Finally, AMF
(Agent Metaheuristic Framework) presented in [8] proposes a framework based on an
organisational model which describes a metaheuristic in terms of roles. These roles
correspond to the main components or tasks in a metaheuristic: intensification, diversi-
fication, memory and adaptation or self-adaptation. AMF is the only framework based
on a specific organisational model, however it is limited to its structural specification
(i.e. roles and interactions between roles).

To conclude, only three EAs platforms use the agent paradigm, among which only
AMF introduced a first approach of using an organisational MAS for representing meta-
heuristics, taking into consideration their flexibility, robustness and modularity. How-
ever its organisational model is limited to a structural specification (definition of roles
and interactions between roles). Only little information is available concerning the im-
plementation and the configuration/usage of these platforms. In addition, none of them
allow the use of CGAs. Finally there is no available version of these implementations.

6 Conclusion and Future Works

We have proposed in this paper a multi-agent approach dedicated to evolutionary opti-
mization. The resulting DAFO (Distributed Agent Framework for Optimization) frame-
work provides a novel way of modelling CGAs as a multi-agent organisation using
the MAS4EVO model where agents correspond to CGAs and organisation explicitly
defines their cooperation structure. We have shown how it is possible to define multi-
ple CGAs, existing ones but also novel ones, as different organisation specifications.
Thanks to it, the understanding and the manipulation of CGAs structures are facilitated.

In our future work we plan to develop a more adaptive dLCGA by increasing the au-
tonomy of the Problem Solving Agents, allowing them to adapt their parameters and/or
their organisation according to the problem and/or to their neighbours in the organisa-
tion.

47

References

1. Enrique Alba and Marco Tomassini. Parallelism and evolutionary algorithms. IEEE Trans.
Evolutionary Computation, 6(5):443–462, 2002.

2. B. Bauer, J. Muller, and J. Odell. Agent UML: A formalism for specifying multiagent
interaction. International Journal on Software Engineering and Knowledge Engineering,
11(3):1–24, 2001.

3. Olivier Boissier and Benjamin Gâteau. Normative multi-agent organizations: Modeling,
support and control, draft version. In Guido Boella, Leon van der Torre, and Harko Verha-
gen, editors, Normative Multi-agent Systems, number 07122 in Dagstuhl Seminar Proceed-
ings. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007. <http://drops.dagstuhl.de/opus/volltexte/2007/902> [date of ci-
tation: 2007-01-01].

4. Grégoire Danoy, Pascal Bouvry, and Luc Hogie. Coevolutionary genetic algorithms for ad
hoc injection networks design optimization. In IEEE Congress on Evolutionary Computa-
tion, pages 4273–4280. IEEE, 2007.

5. Grégoire Danoy, Pascal Bouvry, and Tomy Martins. hlcga: A hybrid competitive coevolu-
tionary genetic algorithm. In HIS, page 48. IEEE Computer Society, 2006.

6. Grégoire Danoy, Pascal Bouvry, and Franciszek Seredynski. Evaluation of strategies for co-
evolutionary genetic algorithms: Dlcga case study. In Proceedings of the 16th international
conference on Artificial Neural Networks In Engineering - ANNIE, Saint-Louis, USA, 2006.
ASME Press.

7. C. Darwin. The Origin of Species by Means of Natural Selection. Mentor Reprint, 1958, NY,
1859.

8. Jean-Charles Créput David Meignan and Abderrafiaa Koukam. An organizational view of
metaheuristics. In AAMAS’08: Proceedings of First International Workshop on Optimisation
in Multi-Agent Systems,, pages 77–85, 2008.

9. Paul R. Ehrlich and Peter H. Raven. Butterflies and plants: A study in coevolution. Evolution,
18(4):586–608, 1964.

10. Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From agents to organizations: An
organizational view of multi-agent systems. In Paolo Giorgini, Jörg P. Müller, and James
Odell, editors, AOSE, volume 2935 of Lecture Notes in Computer Science, pages 214–230.
Springer, 2003.

11. Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. A model for the structural,
functional, and deontic specification of organizations in multiagent systems. pages 118–128.

12. Antony Iorio and Xiaodong Li. Parameter control within a co-operative co-evolutionary
genetic algorithm. In PPSN VII: Proceedings of the 7th International Conference on Parallel
Problem Solving from Nature, pages 247–256, London, UK, 2002. Springer-Verlag.

13. M. Milano and A. Roli. Magma: A multiagent architecture for metaheuristics. IEEE Trans.
on Systems, Man and Cybernetics – Part B, 34(2):925–941, April 2004.

14. E. Noda, A. L. V. Coelho, I. L. M. Ricarte, A. Yamakami, and A. A. Freitas. Devising
adaptive migration policies for cooperative distributed genetic algorithms. In Proc. 2002
IEEE Int. Conf. on Systems, Man and Cybernetics. IEEE Press, 2002.

15. Jan Paredis. Coevolutionary life-time learning. In Parallel Problem Solving from Nature –
PPSN IV, pages 72–80, Berlin, 1996. Springer.

16. Mitchell A. Potter. The design and analysis of a computational model of cooperative coevo-
lution. PhD thesis, 1997.

17. Mitchell A. Potter and Kenneth De Jong. A cooperative coevolutionary approach to function
optimization. In Parallel Problem Solving from Nature – PPSN III, pages 249–257, Berlin,
1994. Springer.

48

18. Mitchell A. Potter and Kenneth A. De Jong. The coevolution of antibodies for concept
learning. In PPSN V: Proceedings of the 5th International Conference on Parallel Problem
Solving from Nature, pages 530–539, London, UK, 1998. Springer-Verlag.

19. Mitchell A. Potter and Kenneth A. De Jong. Cooperative coevolution: An architecture for
evolving coadapted subcomponents. Evolutionary Computation, 8(1):1–29, 2000.

20. Mitchell A. Potter, Kenneth A. De Jong, and John J. Grefenstette. A coevolutionary approach
to learning sequential decision rules. In Proceedings of the 6th International Conference on
Genetic Algorithms, pages 366–372, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc.

21. Mitchell A. Potter, Lisa Meeden, and Alan C. Schultz. Heterogeneity in the coevolved be-
haviors of mobile robots: The emergence of specialists. In IJCAI, pages 1337–1343, 2001.

22. A. Roli. Metaheuristics and structure in satisfiability problems. Technical Report DEIS-
LIA-03-005, University of Bologna (Italy), May 2003. PhD Thesis - LIA Series no. 66.

23. Franciszek Seredynski. Competitive coevolutionary multi-agent systems: the application to
mapping and scheduling problems. J. Parallel Distrib. Comput., 47(1):39–57, 1997.

24. Franciszek Seredynski, Jacek Koronacki, and Cezary Z. Janikow. Distributed scheduling
with decomposed optimization criterion: Genetic programming approach. In Proceedings of
the 11 IPPS/SPDP’99 Workshops Held in Conjunction with the 13th International Parallel
Processing Symposium and 10th Symposium on Parallel and Distributed Processing, pages
192–200, London, UK, 1999. Springer-Verlag.

25. Franciszek Seredynski, Albert Y. Zomaya, and Pascal Bouvry. Function optimization with
coevolutionary algorithms. In Proc. of the International Intelligent Information Processing
and Web Mining Conference, Poland, 2003. Springer.

26. You Seok Son and Ross Baldick. Hybrid coevolutionary programming for nash equilibrium
search in games with local optima. IEEE Trans. Evolutionary Computation, 8(4):305–315,
2004.

49

A Tool for Creation and Deployment of
Organization Models

Endri Deliu1 and Michael Köhler-Bußmeier2

1 Otto Group, Wandsbeker Str. 3-7, 22172 Hamburg, Germany
endri.deliu@ottogroup.com

2 University of Hamburg, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
koehler@informatik.uni-hamburg.de

Abstract. The need for handling the increasing complexity in software
systems has allowed the introduction and establishment of an organi-
zational paradigm as an alternative in software modeling and develop-
ment. Especially within the multi-agent systems community, organiza-
tional concepts are enjoying increasing popularity for efficiently structur-
ing multi-agent behavior. Organizational specifications and their imple-
mentation as multi-agent systems lack however a streamlined transition
between each other. In this paper we address this problem by introducing
a software tool capable of creating and editing organization models as
well as deploying such models as multi-agent systems. The tool is built
on SONAR [1], a formal organizational specification based on Petri nets.
By unifying in one tool the organizational specification and deployment
process quick reaction cycles to incremental changes of system design
become possible.

1 Introduction

Important influxes from sociology and organization theory have begun delineat-
ing what may dissolve the trade-off between agent autonomy and multi-agent
system reliability and predictability. Between the system and the agents com-
posing it, other levels of control have been introduced which are mainly derived
from sociological concepts. The concept of organization is used as an umbrella
term for groups of agents and their dependencies, interaction channels or re-
lationships. As a result, an organizational perspective on multi-agent systems
has gradually emerged which focuses on organizational concepts such as groups,
communities, organizations, etc., in contrast to the former focus of multi-agent
systems on the agent’s state and its relationship to the agent’s behavior [2].

Modeling agent organizations requires a modeling language that is able to
express most (possibly all) of the notions that the concept of organization encom-
passes in an intuitive and easily understandable way. Petri nets are well suited
for use in modeling systems and simultaneously offer a complete formal frame.
In this context, a framework for the development of concurrent and distributed
software systems has been built as a multi-agent system basing on reference nets3

3 Reference nets are high level Petri nets.

50

2

[3]. Mulan (Multi Agent Nets) [4] provides the framework’s reference architec-
ture used for the the multi-agent system. Mulan is built on Java and reference
nets and can be executed in Renew [5], a Petri net editor and simulator.

In this work, OREDI, a Petri net based tool will be presented. It enables edit-
ing organization models as well as deploying such models as multi-agent systems.
OREDI is built on top of Renew and relies on SONAR, a formal organizational
specification based on Petri nets. Section 2 will shortly introduce the main con-
cepts of SONAR which are used in OREDI. In Sect. 3, the main workflow of
creating organization models with OREDI is described. In Sect. 4 and Sect. 5,
the deployment of SONAR organization models into agent organizations with
OREDI is presented.

2 SONAR, a Formal Model of Organizations

SONAR [1] is a Petri net model which is used to define formal organizations. A
formal organization in SONAR is the name for the combination of organization
structure and organizational services in a multi-agent system [1]. Members of the
multi-agent systems are not included in a formal organization. Organizational
services are represented in SONAR through service nets [1] while the organiza-
tion structure is represented by formal concepts such as organization nets and
R/D nets. Each one of these formal concepts will be shortly presented in this
section.

2.1 Service Nets

Service nets are Petri net models that specify how agents interact with each
other. Nevertheless, service nets abstract from agents and describe interaction
between roles. Roles describe the agents behavior in a multi-agent system. All
agents that acquire a specific role have to comply to the role’s constraints and
fulfill the role’s requirements. Defining interaction protocols between roles makes
such protocols independent of the agents that are assigned to the role. In the
example service net given in [1] (Fig. 1a) the roles producer and consumer inter-
act with each other. In [1], R := 2Rol is defined as the role universe where Rol is
a set of roles. Every R ∈ R is called a role profile. The set operation ⊆ defines
for R a partial ordering. If R1, R2 ∈ R and R1 ⊆ R2 then R1 is said to be more
specialized than R2. Besides, roles in a service net are assumed to be different
from roles in other service nets. Formally, service nets are defined as a tuple
D = (N, r) where N = (P, T, F) is a Petri net and r is a function r : T → Rol.
The function r assigns a role r(t) ∈ Rol to every transition t of the net D. This
means that the task t is executed only by the agents that implement the role
r(t). A role function for the whole service net is defined as R(D) := r(T). For a
service net D and a role profile R ⊆ R(D), D can be restricted to D[R] which is
a subnet of D defined as a tuple D[R] = (PR, TR, FR). The subnet is determined
by the nodes TR := r−1(R) and PR := (•TR ∪ T •R) and the arcs linking these
nodes. In Figure 1a, the subnet PC[producer] is shown by the filled nodes.

51

3

Producer Consumer

start

produce

send

receive
acknowledge

stop

consume

receive

start

item

acknowledgment

stop

acknowledge

[]

[]

(a) Simple service net, PC.

Producer

Consumer1start

produce

send

receive
acknowledge

consume

start

item

acknowledgment

stop

[]

[]

Decision Maker

acknowledge

consume

stop

start

receive

start

Consumer2

[]

[]

Consumer

stopstop

(b) Refined service net, PC2.

Fig. 1: Simple and refined service nets of producer-consumer ([1]).

Refinement of Service Nets. For the service nets D1, D2 and the role profiles
R1 ⊆ R(D1) and R2 ⊆ R(D2) the relation

〈〈D1; R1, D2; R2〉〉

is defined if D1[R1] and D2[R2] can replace each other in D1 or D2 without
changing the behavior. That means that D1[R1] and D2[R2] are the same in
terms of the input and output. In [1], an example net named PC2 is given where
the role consumer is refined (Fig. 1b) when compared to the consumer of the
net PC (Fig. 1a).

2.2 R/D Nets and Organization Nets

R/D nets are Petri nets (P, T, F) in which the role profiles are modeled by places
and the tasks by transitions. The preset of a transition should contain exactly
one place (|•t| = 1). A transition t ∈ T is said to be executive if t• = ∅ and
delegative if t• 6= ∅. Every place is labeled by a role profile and the transitions
are labeled by service nets. Formally, a R/D net is a tuple (R,N,D) where:

– N = (P, T, F) is a Petri net with |•t| = 1 for all t ∈ T and p• 6= ∅ for all
p ∈ P .

– R : P → R\{∅} where ∀t ∈ T : ∀p, p′ ∈ t• : p 6= p′ ⇒ R(p) ∩R(p′) = ∅.
– D : T → D.

Well-formed R/D nets are defined as R/D nets with additional formal prop-
erties which allow some kind of type checking. In well-formed R/D nets, the
service net labeled to a transition as well as the role profiles labeled to places

52

4

are consistently related to the structure of the R/D net. The formal definition
of well-formedness can be found in [1].

Organization nets [1] represent the organizational structure. Central to this
formalism is the notion of organizational positions which represent positions in
real organizations. Organization nets involve organizational positions. Organiza-
tional positions are responsible for several tasks and can also delegate tasks to
other organizational positions. Formally, an organization net is a tuple (N,O)
where N is a Petri net N = (P, T, F) and O is a partition on the set P ∪ T
where for all O ∈ O the following is true:

∀p ∈ O ∩ P : •p ⊆ O ∧ p• ⊆ O (with O = (P ∪ T) \O)

and ∀t ∈ O ∩ T : •t ⊆ O ∧ t• ⊆ O .

The elements O ∈ O describe the organizational positions. Organization nets
combined with R/D nets form formal organizations. Formal organizations are
defined as tuples Org = (N,O, R, D) where (N, R,D) is a R/D net and (N,O)
is an organization net. An example of a formal organization is shown in Fig. 2.
The gray boxes represent the organizational positions.

Prod,Cons

Prod Cons

Cons1 DM Cons2

PC

PC PC PC2

PC PC2

PC2 PC2

O0

O1: Prod,Cons

O2: Prod O3: Cons

O4: Cons,Cons1

O6: Cons2O5: DM

t1

t2

t3

t4 t5

t6

t7 t8

p1
p2

p3 p4

p5

Fig. 2: The organization net of producer-consumer ([1]).

3 Creating Organization Models with OREDI

OREDI contains an editing tool for SONAR formal organizations. It is built as
a set of Renew plugins. OREDI users can create SONAR formal organizations
without being directly aware of their underlying rules. The process of creating
formal organizations involves two steps. The first step being the creation of
service definition nets and of refinement relationship nets. Service definitions
nets represent service nets while refinement definition nets represent refinement

53

5

relationships between role profiles as described in the previous subsections. The
second step being the creation of organization nets and the assignment of service
nets and role profiles to respectively transitions and places. The completion of
both steps leads users to formal organizations. Each step is handled in separate
editors. Thus, an editor for modeling service and refinement definition nets is
used first. Then the results of the first step are loaded in a second editor where
the organization and R/D nets are modeled.

Service definition nets can specify one or more service definitions. Service
definitions displayed in service definition nets are basically an abstraction over
service nets. Hence, service definition nets can provide an overview of many ser-
vice nets. Service definition nets specify service definitions which contain services
and the roles involved in these services. The service is represented by a transition
and the roles involved in the service are represented by places connected to the
transition. The transition of a service definition corresponds to a service net.
The places of a service definition correspond to the roles involved in the service
net. In Fig. 3a and Fig. 3b, a service definition net with one service definition
and the corresponding service net producer-consumer (PC) are shown.

PC

Producer Consumer

(a) Service definition
net with one service.

Producer Consumer

start

produce

send

receive
acknowledge

stop

consume

receive

start

item

acknowledgment

stop

acknowledge

[]

[]

(b) Service net, PC.

Fig. 3: Service definition net and service net.

Refinement definition nets model the refinement relationships between sets
of roles involved in service nets. Refinement relationships are used in well-formed
R/D nets. They describe the equality of input and output behavior of sets of roles

54

6

involved in different service nets. Formally, a refinement definition net over the
refinement 〈〈D1; R1, R2; D2〉〉 is a tuple (N, r) where N is a Petri net N = (•t ∪
t•, {t}, F) and additionally r is a function which assigns places to role inscriptions
where ∀p ∈ •t ∪ t• it is true that r(p) ∈ R1 ∪R2 and r(•t) = R1, r(t•) = R2. In
Fig. 4, a refinement net is displayed showing the refinement relationship between
the sets of roles:

〈〈PC; {Cons}, {Cons1, DM, Cons2}; PC2〉〉

Cons1

Cons

DM Cons2

Fig. 4: Refinement definition net.

After completing the creation of service and refinement definition nets OREDI
users can start modeling SONAR formal organizations based on the service nets
and the refinement relationships previously modeled. The formal rules during
the creation of organization nets are enforced through an interaction policy of
allowing only manipulations such as deleting, moving or creating elements that
do not violate the SONAR rules for organization nets. During modeling of (well-
formed) R/D nets the correct assignment of service nets and roles is enforced by
OREDI through serving context based assignment suggestions the selection of
which can only lead to formal organizations. Assignment suggestions are served
in a top-down fashion where the preset of a net element has to be already as-
signed for OREDI to make suggestions for the element itself. In Fig. 5 a list of
assignment suggestion for a transition is shown. The inscriptions at the top of
Fig. 5 are imported service and refinement definition nets which are used for the
generation of the assignment suggestions.

At the end of the modeling process, OREDI supports the deployment of the
user created formal organizations as agent organizations consisting of Organiza-
tion Position Agents (OPA) and Organization Member Agents (OMA).

4 Agent Organizations as OPA/OMA Networks

Deploying SONAR formal organizations as multi-agent organizations requires
the selection of a multi-agent organization design of choice. The design used by
OREDI is specified in [6] where a decoupling of the parts of the multi-agent

55

7

Fig. 5: Suggestion list for a transition.

system that specify the organizational structure from those that act as members
of the organization is proposed. Such a design is consistent with the implicit de-
tachment of organization structure and implementation in SONAR. In [6] there
is a separation between Organization Position Agent (OPA) and Organization
Member Agent (OMA). OPA-s derive from the structure of the organization and
are owned by the organization. OMA-s are external agents that actually do the
work. They carry out actions and make decisions. However, they must use the
OPA-s as a gateway to the organization. OMA-s take part in the organizational
processes only through their OPA-s. Fig. 6 displays an example.

OMA-s can be any kind of agents, including agents from different multi-
agent platforms. The decisive point is that an interface to the OPA-s is offered.
OMA-s can also occupy multiple positions. In the example in Fig. 6 the same
agent occupies the “coordinator” and “firm A”. OPA-s are connected through
formal channels which correspond to the delegation relationships of SONAR
organization nets. Also, informal channels may emerge between OMA-s due to
interactions that were not foreseen by the formal specification.

5 Deploying SONAR Formal Organizations as
OPA/OMA Networks

OREDI supports the deployment of SONAR formal organizations as OPA/OMA
networks. After modeling a formal organization net it is exported in an XML
format. The XML file generated from the formal organization net is parsed and
the deployment process begins. The generation of the XML and its subsequent

56

8

Fig. 6: A multi-agent design derived from an organization net ([6]).

parsing was conceived to provide a platform and application independent solu-
tion to deploying SONAR formal organizations. As such, the generated XML
file contains all relevant formal information of the models and can be used for
deployment in any multi-agent platform. We opted for an implementation of
the deployment steps in Mulan as it supports building multi-agent systems with
reference nets. This allowed using Petri nets both as a modeling as well as a pro-
gramming technology thus easing and streamlining the gap between modeling
and development.

Deploying a SONAR formal organization as OPA/OMA networks involves
the generation of OPA-s and the assignment of OMA-s to OPA-s. After these
two phases team processes such as team formation, team plan formation, and
team plan execution can follow as specified in [6] and [7]. In this work, only the
generation of OPA-s and the assignment of OMA-s is handled.

Organizational positions of the formal organization net are deployed as OPA-
s. The generated OPA-s know the identity of their neighbor OPA-s and com-
municate with them through a set of encrypted messages. The assignment of
OMA-s to OPA-s is made in a market based fashion with OPA-s making open
position announcements and interested OMA-s competing for the employment
for the open positions. The communication between OPA-s and OMA-s is also
encrypted with a public key mechanism.

5.1 Deployment of OPA-s in Mulan

OREDI deploys formal organization as Mulan OPA-s. Mulan is a FIPA [8] com-
pliant architecture. At first, a Mulan platform is generated where one or more
agent organizations can be embedded. The position agents generated for each
position in the SONAR organization net are placed inside the created platform.
Additionally, suitable Mulan protocols handle agent conversations. Mulan agents
can use protocols proactively or reactively as a response to specific messages.

57

9

The decision which protocol to use for a specific received message is made in the
knowledge base where a mapping between message templates and protocols is
consulted.

OPA-s have the same information of their corresponding positions in the
SONAR organization net specified in the XML file. This information includes
the position’s relative place in the organization (knowledge about neighbor po-
sitions), the roles they are implementing/delegating and their tasks. Generating
OPA-s out of an organization net specification is accomplished in agent-oriented
fashion by an initial agent. The initial agent is responsible for the generation of
the OPA-s and their initialization with informations extracted from the formal
organization net specification. The initial agent is called the organization agent
as it has a global view on all positions.

The information needed from an OPA includes which other OPA-s are its
neighbors. This requires the identity of the neighbors. At least in Mulan, the
identity of agents and their location can only be known after the creation of
these agents. This means that information about the neighbor positions has to
be provided for a OPA only after, not during its creation. Thus, the information
about the place of a position agent in an organization is conveyed through a
conversation with the organization agent. During the conversation, in order to
make sure that the messages come from the right parties they are signed with a
public key mechanism which requires that parties know their respective public
keys. In Fig. 7, an AUML sequence diagram displays the conversation between
OPA-s and the organization agent during which the organization agent commu-
nicates to the positions all relevant informations extracted from the organization
net specification. In FIPA terminology, conversations between agents are called
protocols. Mulan protocols describe the behavior of agents during conversations.
The AUML diagram in Fig. 7 also serves as an overall sketch of the used Mulan
protocols.

The conversation displayed in Fig. 7 is based on the assumption that the
OPA-s already know the identity of their organization agent. However, the orga-
nization agent does not know the identities of its OPA-s. OPA-s send a message
with their identifiers to their organization agent requesting their local structure
which should include all the relevant information extracted from the respective
positions in the SONAR organization net such as the neighbors, the implement-
ing and delegating roles, the tasks, etc. After receiving the requests for the local
structure and the identifiers from all the position agents, the organization agent
proceeds and sends the respective local structure to each position agent. The
conversation partners know their respective public keys so all the messages of
the conversation are signed with the private keys of the sending parties. However,
the aspect of authentication has been left out from Fig. 7 for simplicity.

5.2 Assignment of OMA-s to OPA-s

After the generation of the OPA-s and the communication of the local structures
to them, the assignment of OMA-s to OPA-s is started. The approach for the
assignment process is leaned on [7]. As the organization agent represents some

58

10

.........
Organization Position 1 Position 2 Position n

request local structure

request local structure

request local structure

local structure

local structure

local structure

Fig. 7: The organization agent communicating to the generated positions the
informations extracted from the respective positions in the SONAR organization
net.

59

11

kind of a service provider and logical platform to the OPA-s and the potential
OMA-s, it assumes at this point the management of the assignment of OMA-s
to OPA-s. If an OPA has an open position either because its OMA resigned or
it has been fired, the OPA sends a request to the organization agent to start
the procedure for the occupation of the open position. The organization agent
publishes a job description for the open position to a central registry component
named DF4 (Directory Facilitator). A DF is a mandatory component of an
agent platform in FIPA that provides a yellow pages directory service to agents.
Agents can advertise their services through the DF. In Mulan the DF is also an
agent with which the organization agent can communicate.

The external agents that are interested in occupying open positions in the
organization can search through the DF and apply to the organization agent for
a specific open position. The initial assignment of OPA-s with OMA-s is a special
case where all OPA-s have open positions. In Fig. 8a, an AUML sequence diagram
displays the procedure of occupying a vacant position during the initialization
process, while in Fig. 8b, the diagram displays the case when the resignation of
a member triggers the start of the procedure to assign a new member for the
position. The organization agent sends a description for a new job to the DF.
The job description contains the identifier of the vacant OPA, the requirements
that applicants have to fulfill, and a time period during which applications for
the job are accepted. Agents that find that job description interesting after a
search in the DF, apply to the organization agent. Their application includes the
description of the job for which they are applying, their public key, their personal
abilities as a response to the requirements specified in the job description, and
the costs for their service. The applications are received from the organization
agent.

After the application period for a vacant position expires, the organization
agent sends all received applications to the respective position agent, the OPA
selects the new member and lets it know the public key for the authentication
during their future communication as well as the fact that it has been hired. In
the case of resignation from a member, the member is dismissed only after fin-
ishing its ongoing activities on behalf of the organization. Even if a new member
may have been hired since the resignation request of the old member, the old
member is dismissed only after finishing all its ongoing activities. This means
that a position can have more than one member agents for limited time periods.
An alternative way for an agent to get the list of open positions within an orga-
nization is to send a message to the organization agent itself with a request for
the open positions that the organization has. In Fig. 9 this case is displayed as
an AUML diagram.

For handling the communication for both the generation of the OPA-s and
the assignment of OMA-s to OPA-s an ontology was developed. The ontology
was developed with Protégé5 and was employed as a domain specific shared

4 See FIPA Agent Management Specification.
5 Freely available from http://protege.stanford.edu

60

12

Position Organization DF Agent 1 Agent n
......

open position
new job description search for job

search result

applications

sorry

hire(key)

apply(position, abilities, cost, key)

apply(position, abilities, cost, key)

(a) During initialization.

Member Position Organization DF Agent 1 Agent n
......

resign

finish ongoing
activities

finished

dismissed

open position
new job description search for job

search result

applications

sorry

hire(key)

apply(position, abilities, cost, key)

apply(position, abilities, cost, key)

(b) After the resignation of the member.

Fig. 8: The assignment of an agent as a member to a position agent.

61

13

Position Organization Agent 1 Agent n
......

open position

applications

sorry

hire(key)

apply(position, abilities, cost, key)

apply(position, abilities, cost, key)

ask open positions

open positions

Fig. 9: Agents searching the organization directly for open positions.

vocabulary throughout the conversations between the agents involved in the two
phases.

6 Conclusion and Outlook

OREDI, the tool presented in this paper, is a Petri net based software tool for
modeling SONAR formal organizations as well as for deploying these models to
agent organizations. By providing a tool that carries out specification as well
as deployment of formal organizations a close link between these two phases of
system development has been provided. With OREDI users can build SONAR
organization and R/D nets through a combination of graphical interfaces, a set
of interaction constraints and context based suggestions without being required
to possess active knowledge of the formal rules underlying the models’ specifi-
cations. The deployment of formal organization models is based on the decou-
pling of the elements of the multi-agent system that specify the organizational
structure from those that act as members of the organization. Positions in the
formal organization are deployed as Mulan agents (OPA-s) and are embedded
in a Mulan platform. OREDI provides the specification and implementation of
the assignment of OMA-s to OPA-s. Provided the necessary capabilities, any
agent can be assigned to an OPA as its OMA and take over the execution of the
necessary tasks.

62

14

In the future extensions of OREDI both the modeling and the deployment
phases will be subject to further development. A special focus should be laid
on the modularization of the OREDI models as it can allow the distribution
of the modeling process. Formal organizations can be partitioned into modules
which can be developed and maintained in separate files. Modules can be linked
to each other by delegation relationships. Linking modules can be achieved by
adding extra graphical components to OREDI that represent the link to other
modules of the organization. Besides, the deployment of formal organization nets
as agent organizations can also be extended to include the team formation, team
plan formation and team plan execution phases as the corresponding theoretical
foundations have already been provided in [6].

References

1. Köhler, M.: Formalising Multi-Agent Organisations. Proc. of Concurrency,
Specification, and Programming CS&P’2006 (2006)

2. Ferber, J., Gutknecht, O. and Michel, F.: From Agents to Organizations: An
Organizational View of Multi-agent Systems. AOSE, 214-230 (2003)

3. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
4. Köhler, M., Moldt, D. and Rölke, H.: Modelling the Structure and Behaviour

of Petri Net Agents. Proc. of the 22nd Conf. on Application and Theory of
Petri Nets 2001, 224–241 (2001)

5. Kummer, O., Wienberg, F. and Duvigneau, M.: Renew — The Reference Net
Workshop. Tool Demonstrations — 22nd Int. Conf. on Application and Theory
of Petri Nets (2001)

6. Köhler, M. and Wester-Ebbinghaus, M.: Petri Net-Based Specification and
Deployment of Organizational Models. 67–81 (2007)

7. Köhler, M.: Koordinierte Selbstorganisation und selbstorganisierte Koordina-
tion. Universität Hamburg (2007)

8. FIPA: Foundation for Intelligent Physical Agents. (2003)

63

Extended abstract: Service oriented email for
organisation modeling and process execution

Petteri Kaskenpalo

AUT University

Introduction We describe motivation for and outline technical aspects of a
demonstrator system, that enables end users to collaboratively model organi-
sations and processes, and execute these on top of the modeled organisation’s
overlay networks. While work to date has focused on technical aspects, we are
also interested in user level issues relating to the individuals publishing their work
interfaces as services, and enabling them to link services from other users into
complex organisation-wide collaborative activities. Organisational structures are
built and maintained dynamically by participants in a peer-to-peer manner.

We have chosen to implement the system on top of email in order to keep the
users working in a familiar environment, to emphasise the asynchronous nature
of the service interfaces, and to solve email related problems by providing tools
for automating and managing email exchanges. This also enables capturing of
tacit knowledge embedded in the exchanges. The prototype system models ac-
tivities with Event-Driven Process Chains (EPC), organisations with HR-XML
Consortium formats, and services with WSDL-like definitions. All functional-
ity is implemented in a context-aware agent application, which automates the
background message exchange and emails the user when their input is required.

Motivation Email is the most used communication tool in business today and
its use has been extended far beyond its original purpose of simple information
exchange [1].One reason for this success is the asynchronous and distributed
nature of the email message exchange, which by definition retains control over
the communication, contents and time of interaction with the end-users.

Examples of email uses include information management, task and time man-
agement, multi-party activity co-ordination, distributed decision making, nego-
tiations, and voting as a discussion facilitator to name a few. Considering the
relatively long development record of messaging tools, it is striking how its very
success has led to its many problems; difficulties in dealing with overflow, unso-
licited messages, and message linking, archiving and recovery. Inefficiencies can
be considerable as people do not have enough time to manage message flows.

We consider Service Oriented Email to address organisational workflow chal-
lenges in a structured and controlled manner, and at the same provide an or-
ganisational approach for solving email related problems. Our research advances
the notion of semantic email introduced by McDowell et al. [2], and proposes a
scalable distributed semantic email platform for automating complex multiparty
update, query, resolution and process activities without exposing individuals be-
yond customary expectations for email privacy and control.

64

Architecture Agent nodes and the email infrastructure form the system. The
agent accesses the user’s email server and retrieves relevant messages for pro-
cessing and communicates with other agents or users. The agent’s graphical tool
provides for the modeling of EPCs, associated data items, viewing of organisa-
tion structures, and making links between the activities and their performers.
Standard email client is sufficient in participating in the activity execution.

In terms of the Service-Oriented Computing research planes [3], our Service
Foundations (SF) layer include the basic messaging, process execution control,
and security primitives. The SF layer helps in service binding by evaluating the
availability of resources and event timings by qualitative simulation graphs [4].
We also use this technique in evaluating the availability of the required data
items, and their security attributes. We divide the Composition layer into Plat-
form Semantics layer and User Semantics layer. The platform semantics layer
defines composite services building on the SF primitives. These include process
definitions for organisational structure management, shared notice board service,
and composite security services such as group key generation and distribution
and voting protocols. These are locked from modifications by the end user. The
User Semantics layer builds on these composite services and SF primitives. The
semantics layers implement their process step logic by embedding Java code in
the EPC definitions. Scripting for the JavaTMPlatform is used for evaluating
the embedded code dynamically at runtime in an isolated and controlled execu-
tion environment. Only the data items that are accessible at each process step
are made available. The Management and Monitoring layer maintains the status
of processes that the agent is involved in, and participation in organisational
structure management tasks.

We are further defining the required services by implementing test scenar-
ios. Some of these include the 360 Review personal development process, which
involves a number of stages and stakeholders, and provides a number of test
scenarios for information confidentiality and disclosure. The Austrian govern-
ment has introduced an eLaw-process, which reveals requirements for document
integrity and non-repudiation as well as voting, electronic signing, and version
control. The bank loan approval process highlights the principles and require-
ments for separation of duty, and supervisory review and control.

References

1. Edward J. Lusk. Email: Its decision support systems inroads–an update. Decision
Support Systems, 42(1):328–332, October 2006.

2. Luke McDowell, Oren Etzioni, Alon Halevy, and Henry Levy. Semantic email. In
WWW ’04: Proceedings of the 13th international conference on World Wide Web,
pages 244–254, New York, NY, USA, 2004. ACM Press.

3. Michael P Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann.
Service-oriented computing: A research roadmap. International Journal of Cooper-
ative Information Systems, 17:223–255, 2008.

4. Ricki G. Ingalls, Douglas J. Morrice, and Andrew B. Whinston. The implementation
of temporal intervals in qualitative simulation graphs. ACM Trans. Model. Comput.
Simul., 10(3):215–240, 2000.

65

Reorganisation and Self-organisation
in Multi-Agent Systems

Gauthier Picard1, Jomi Fred Hübner1?, Olivier Boissier1, and Marie-Pierre Gleizes2

1 SMA/G2I/ENSM.SE, 158 Cours Fauriel
42023 Saint-Etienne Cedex, France

{picard,hubner,boissier}@emse.fr
2 IRIT, Université de Toulouse, 118 route de Narbonne

31062 Toulouse Cedex 9, France
gleizes@irit.fr

Abstract. In the last years, social and organisational aspects of agency have
become a major issue in multi-agent systems’ research. The conducted works
may be structured along two main points of view: an agent-centred point of view
(ACPV) and an organisation-centred point of view (OCPV). In both approaches
the central notion of multi-agent organisation dynamic is considered. In ACPV,
this notion leads to a kind of informal, bottom-up, emergent phenomena that we
regroup under the general term of self-organisation. In OCPV, this notion gives
birth to a huge set of works related to the reorganisation of the formal, top-down,
pre-existent organisations that are installed in the MAS. In this paper, we propose
to position these two approaches to build a comprehensive picture of organisation
dynamic in multi-agent systems.

1 Introduction

Our aim in this paper is to study and propose a comprehensive view of how one could
make multi-agent organisations adapted to dynamics, openness and large-scale environ-
ment. In the multi-agent domain, the SASO and the COIN communities are the two that
are mainly considering such topics.

SASO (Self-Adaptive and Self-Organizing systems) community3 studies organisa-
tion from the point of view of emergent phenomena in complex systems. In multi-agent
systems context, we can characterise this point of view as agent-centred (ACPV). In
fact, designers of such systems first focus on parts of the system-to-be, namely the
agents. By designing proper local behaviours and peer-to-peer interactions, the global
function of the system is the result of complex interactions and dynamics within the
agent society. However, such an engineering approach often inject unpredictability or
uncheckability, since the global behaviour is more than the juxtaposition of agents’ be-
haviours. COIN (Coordination, Organisation, Institutions and Norms in agent systems)
community4 aims at engineering effective coordination or regulatory mechanisms as a

? Supported by French ANR Project ForTrust ANR-06-SETI-006.
3 see the SASO Conferences at http://www.saso-conference.org/
4 see the COIN International Workshop Series at http://www.pcs.usp.br/˜coin/

66

key problem for the design of open complex multi-agent systems. Contrary to the SASO
approach, COIN focuses on an organisation-centred point of view (OCPV), in which
the designer designs the entire organisation and coordination patterns on the one hand,
and the agents’ local behaviours on the other hand. At runtime, the agents may consider
the constraints imposed by the defined organisation as compulsory or possible guide-
lines for the coordination of their local behaviours. Systems designed using OCPV can
therefore ensure some invariants stemming from the organisation specification.

As we can see, organisation is at the intersection of both approaches. This paper
mainly aims at clarifying the differences and the common points between these two
views focusing on the dynamic dimension. Since there is no universally accepted defi-
nition of MAS reorganisation, in this paper, we use reorganisation to denote the adap-
tation of the organisation as promoted in the OCPV, top-down approaches. We use the
term of self-organisation to denote the ACPV, bottom up approaches where, de facto,
an adaptation and modification of the emergent organisation is installed. We propose
different possibilities of convergence and complementarity between these processes.
The remainder of the paper is structured as follows. In Section 2, we first provide a
comprehensive view of the concept of organisation in MAS. Section 2.4 dresses up
a comparison of the two points of views with respect to the adaptability and check-
ability properties. Section 3 analyses the adaptation of organisations in ACPV (self-
organisation) and OCPV (re-organisation), so as to propose in Section 4 definitions of
self-organisation and reorganisation concepts. Finally, Section 5 concludes this paper
with some perspectives for future works and roadmap.

2 Comprehensive View of Organisations in MAS

There is still no unanimously accepted definition of what is called “organisation” in
MAS. Its meaning often varies between two basic views [30]: (i) a collective entity
with an identity that is represented by (but not identical to) a group of agents exhibiting
relatively highly formalised social structures [39], (ii) a stable pattern/structure of joint
activity that may constrain or affect the actions and interactions of agents towards some
purpose [6]. As we can see, organisation refers, in a general sense, to a cooperation
pattern that can be more or less formalised. As in Sociology [2], it may concern the
expression of a division of tasks, a distribution of roles, an authority system, a com-
munication system, or also a contribution-retribution system. According to [18], this
range of topics may also be extended to knowledge, culture, memory or history. This
is what Parunak et al. express in different terms when they propose a definition of or-
ganisation, relatively to self-organisation, at three levels [35]: (i) an order (measure) on
organisations, i.e. mapping from the set of organisations to the set of real numbers; (ii) a
process in a single system in which the previous measure increases with time (from less
organised to more organised); (iii) the structure resulting from the previous evolution.

Both views are generally not mutually exclusive and have led to different approaches
in the domain. As in [3], we focus on a few features in order to build a comprehensive
view of them. First, we will take into account the “definition process” of the agents’ or-
ganisation (Sections 2.1) and then consider its “representation” within the agents’ minds
(Section 2.2). As what happens with every classification attempt, the one proposed here

67

has its limits and must be considered as an analysis grid of the different works and not
as a definitive view on multi-agent organisations in MAS. The two dimensions of this
grid are continuous, and it is completely possible to identify approaches that are at the
boundary of two categories.

2.1 Agent-Centred View vs Organisation-Centred View

The first axis of the grid is an extension of the agent-centred and organisation-centred
points of view initially proposed in [31].

The agent-centred point of view takes the agents as the “engine” for the organisa-
tion. Organisations only exist as observable emergent phenomena which state a unified
bottom-up and objective global view of the pattern of cooperation between agents (see
first row in Fig. 1-a-b). For instance (case (a)), in an ant colony [14], no organisational
behaviour constraints are explicitly and directly defined inside the ants. The organi-
sation is the result of the collective emergent behaviour due to how agents act their
individual behaviours and interact in a common shared and dynamic environment. A
similar point of view may be considered in the different reactive self-organisation ap-
proaches that exist in the literature [38]. In a more cognitive way (case (b)), the studies
on coalition formation define mechanisms (within agents, e.g. social reasoning [40]),
to build patterns of cooperation in a bottom-up process. In this view, the pattern of
cooperation both structures and helps the agents in their collaborative activities.

The organisation-centred point of view sees the opposite direction: the organisation
exists as an explicit entity of the system (see second row in Fig. 1-c-d). It stresses
the importance of a supra-individual dimension [18] and the use of primitives that are
different from the agents’ ones. The pattern of cooperation is settled by designers (or by
agents themselves) and is installed in a top-down manner in order to constrain or define
the agent’s behaviours. Note that the observer of the system can obtain a description
of the system’s organisation. For instance, in a school we have documents that state
how it is organised. Of course, besides the explicit description of the organisation, the
beholder can also observe the real school’s organisation which is, possibly, different
from the formal one.

2.2 Organisation Awareness vs Organisation Unawareness

From an agent architecture perspective, we can further refine these two points of view
by considering an orthogonal axis regarding the agents’ capabilities to represent and
reason about its organisation.

In the first column of Fig. 1, the agents don’t know anything about the organisation.
In case (a) the agents don’t represent the organisation, although the observer can see an
emergent organisation. In some sense, they are not aware that they are part of an organ-
isation. In case (c), the organisation exists as a specified and formalised schema, made
by a designer but agents don’t know anything about it and do not reason about it. They
simply comply to it as if the organisational constraints were hard coded inside them (e.g.
the MAS resulting from some AOSE, Agent-Oriented Software Engineering) method-
ologies where the agent’s code is generated from an organisational specification [27,
1]).

68

Bottom-up Top-down

Organisation awareness Organisation unawareness

Organisation Specification

Observed Organisation

Local Representation Designer / Observer

Organisation Entity

Agent

Centred

Organisation

Centred

(a) (b)

(d) (c)

Fig. 1. Comprehensive view on organisations in MAS: (a) Emergent Organisation MAS; (b)
Coalition Oriented MAS; (c) Agent Oriented Software Engineering; (d) Organisation Oriented
MAS. The Designer/Observer may be the Developer/User (exogenous case) or a set of agents
(endogenous case).

In the second column, we consider the cases where agents have some representation
of the organisation in which they are executing. In case (b), each agent has an internal
and local representation of cooperation patterns which it follows when deciding what to
do (e.g. social networks for coalition formations [40]). This local representation is ob-
tained either by perception, communication or explicit reasoning (e.g. social reasoning
as in [40]) since, in an agent-centred view, there isn’t, a-priori, any explicit global repre-
sentation of the organisation which is available to the agents. In case (d), agents have an
explicit representation of the organisation which has been defined (organisation-centred
view). The agents are able to reason about it and to use it in order to initiate cooperation
with other agents in the system.

In the literature, some agents’ organisation approaches fit to a specific case shown
in Fig. 1, others are based on multiple cases. For instance, proposals concerning reor-
ganisation approaches for formal organisations may combine cases (b) and (d) in the
sense that agents are using their internal mechanisms to adapt the organisation that was
imposed on the system. The bottom-up or top-down manipulation of the organisation
may be realised either endogenously (i.e. realised by the agents belonging to the or-
ganisation themselves) or exogenously (i.e. by an external designer, a human or agents
outside of the organisation).

69

2.3 Applying this Comprehensive View to MAS

To be clearer, we can position some concrete existing systems and approaches within
the grid.

1. Emergent Organisation MAS (top-left): Here agents are unable to reason on the
organisation since it is not modelled. Agents self-organise in a peer-to-peer fash-
ion or using indirect communication via the environment. As example, we can cite
swarms-based systems, adaptive multi-agent systems (AMAS) [20] and more gen-
erally all the works coming from the SASO community.

2. Coalition Oriented MAS (top-right): Here agents are still unable to reason about the
global organisation but can build inner models of the interactions/dependence rela-
tions with their neighbourhood with respect to predefined social rules and patterns.
Common examples of such approaches are multi-agent coalitions [40] or more sim-
ply systems based on the contract net protocol [41].

3. Agent-oriented software engineering (bottom-left): This category of approaches
consider organisation at the design-time. Organisations are specified before encod-
ing the agents. Agents can reason on the organisation at run-time but cannot be
able of modifying it. Examples of such approaches are mainly found in the AOSE
community which proposes several multi-agent oriented methodologies that focus
on the organisational model such as MASE [11] and INGENIAS [36].

4. Organisation Oriented MAS (bottom-right): These approaches are influenced by
both AOSE and social reasoning, in the sense that organisation are used by designer
to specify the system-to-be and by the agents that can perform organisational acts
and possibly modify the organisation. Example of such approaches are AGR [16],
TAEMS [32], STEAM [44],M+ [25] or ISLANDER[15].

2.4 Checkable vs Adaptive Organisations

Previous sections expounded the two dimensions of our comprehensive view grid, and
some examples. Let us now come back to the main motivations of the existence of the
two proposed points of view. On the one hand, SASO community aims at providing
adaptive systems inspired by natural, biological and physical systems that display real
adaptation and autonomy capabilities. However such properties also raise some design
problems: how can we ensure that the system will converge towards a specified state
and not continuously adapt and change? On the other hand, AOSE community, and to
a lesser extent COIN community, firstly aimed at providing engineering tools to design
systems using organisational concepts rather than classical object- or agent-oriented
concepts. Such concepts and models enable a designer to check whether the system
behaves as specified by the organisation specification. Thus, the specified cooperation
patterns ensure certain properties on the system such as sanction triggering using formal
commitments [17], or global states using Object-Z framework [23]. Nevertheless, such
an a priori model of the organisation represents a limitation in terms of adaptation: how
can we model all the possible organisation changes at design-time? Even if some works
proposed reorganisation approaches to tackle this problem, it is not surprising that these
two views often collide since they focus on two opposite extrema of the same spectrum
from full adaptation to full checkability.

70

As we can see, these two points of view focus on two different extrema of the same
spectrum, from complete adaptation to complete checking. Between these, midterms
can be reached: systems in which partial checking and verification can be processed,
and systems in which total checking is feasible under certain hypothesis. We will further
aim at identifying complementarity in order to dress up perspectives for unifying self-
and reorganisation approaches.

3 Where are Self- and Re- in the Adaptation of Organisations?

In this section we analyse several aspects regarding the two main approaches related
to the organisation modification process –reorganisation and self-organisation– through
the following questions: what, when, why, who and how.

3.1 What is Changed?

Changing the organisation may imply changes within the system at different levels
and at different extents. These changes strongly depend on the chosen view (ACPV
or OCVP) and on the organisational capabilities of agents (being or not aware of the
organisation).

Considering the emergence-based MAS, the observed organisation of the agents
may be changed along different dimensions: spatial configuration, neighbourhoods, dif-
ferentiation/specialisation of the agents. In many approaches, the spatial configuration
of the system strongly constrains the capabilities and the potential that the system can
exhibit. Therefore, system adaptation expresses as changing this spatial configuration
such that it can behave in a more adapted way to the new environmental pressure. For
instance, in a self-constructed mechanical system [4], mechanical parts (agents) change
by themselves their attachment to other parts as to optimise a trajectory function, which
may change at runtime, without being aware of the global organisation (i.e. the whole
mechanism configuration). The same kind of adaptation is also found in collective
robotics [10] where the spatial position of all the agents is strongly related to the plans
that they have to execute. The observed organisation may also be changed by changing
the partners with which the agents of the system interact or the way they interact which
each other. Several other self-organising mechanisms are also presented in [12, 22]. In
other systems, adapting a system is visible as changes in the tasks and/or goals that
agents achieve. For instance, in bio-inspired approaches the self-differentiation installs
a bottom-up kind of implicit role allocation [14]. To conclude, such approaches often
propose systems able to explore the space of possible organisations.

In the coalition-oriented MAS, the topology of the organisation is expressed in terms
of local social configurations: agents belong to neighbourhoods, coalitions (agents know
each other and cooperate together) expressed in terms of power relations, dependence
relations or social commitments. For instance in [7], agents change their interactions de-
pending on a trust evaluation, which is calculated using past experiences and opinions
from other trusted agents. This represents a regulatory local mechanism that leads the
system to a social order. Coalitions are also built and deleted using such mechanisms, in
market places [9]. In distributed problem solvers like [34] coalition is defined/changed

71

from the election depending on the current state of the neighbourhood (e.g. the most
constrained agent is elected to propose a solution) or the advance in the solving pro-
cess.

Considering the organisation-oriented MAS approach, since there exists some ex-
plicit specification, the change of organisation may be considered at two levels: (i)
change of the definition of the organisation itself and (ii) change of the allocation of
roles to the agents, i.e. the way the multi-agent organisation itself is built. An exam-
ple of the former is the work of Hübner et al. [26], in this work the agents are able to
evaluate their organisation, identify that the problem is caused by the current defini-
tion (or specification) of the organisation, and then decide to change the specification.
This kind of change usually implies changes in the role allocation, since the very set of
available roles can be changed. Examples of the latter case of reorganisation include,
for instance, the work of Kamboj et al. [28] where the reorganisation consists in the
spawning and composition of agents in the system in order to reassign the roles the
agents play. The reasons for changing the organisation consist in the wish to have a
structure adapted to the environment and the task structure that has to be processed by
the agents. Another example is the work of Glaser et al. [21] where the organisation is
changed by the entrance of new agents in the system playing a particular role. The new
agent is accepted only when it increases the utility of the overall system. Organisational
structure generation has also been proposed as arising from local [19], global [8], and
hybrid perspectives.

Concerning the methodological viewpoint (bottom-left), the designer may change
the model of the system at several levels. At a low level, the agentification (i.e. the way
model entities are specified as agents) may be changed, and therefore the organisation
too. At an upper level, the organisation model may be changed by adding new roles,
groups, tasks, etc.

3.2 When and Who Changes the Organisation?

Depending on the approach, the organisation can be changed at different times during
the system life cycle. It can be initiated by different actors. The decision when to start
the process can be either static or dynamic. In the first case the process is started ac-
cording to a predefined criterion fixed within the definition of the organisation. In the
second case, the reorganisation process is a consequence of the functioning of the sys-
tem. It means that if agents do not meet one or several criteria (goal, performance etc.)
the organisation is changed. In [13], Dignum defines the “when” to reorganise as linked
to the utility of the organisation (interaction success, role success and structure success)
and to the utility of the agent (different for each agent, depends on its goals, resource
production and consumption).

The process is static when the adaptation of the system is performed by the designer,
during the development of the system. Only designers (seen as Oracles) can detect, by
using appropriate model checking, fast prototyping, or simulation tools like in IODA
[29], which exhibit global undesired behaviours. Agents are not actors of the organi-
sation adaptation process, but are only an implementation of the organisational model
specified by the designer.

72

The process is dynamic when the organisation is modified at runtime. This modifi-
cation can be performed by an external entity (designer, other systems, etc.) that acts on
living agents, or autonomously by agents themselves. For instance, agents within a self-
organising system change indirectly the organisation as a reaction to an environmental
change detected at the agent level. So, in the example of self-constructed mechanics,
mechanical components can change their weights (length, pressure, etc.) when they
receive an external positive or negative feedback (by propagation), concerning the dis-
tance to the objective trajectory [4]. A coalition reacts also to changes detected at the
coalition level, by social pressure (e.g. a coalition received a negative opinion concern-
ing its leader), and therefore changes the organisation (e.g. by changing its leader) [33].

3.3 Why and How does the Organisation Change?

While we can identify different kinds of changing objects according to the organisa-
tion model being used, we can also identify some types of changing processes that
will be detailed in the remainder of this section: (i) predefined changes, (ii) controlled
changes and (iii) emergent changes. The general reason to trigger the change is that the
organisation does not help in achieving the social purpose. In other words, the current
organisation constrains the agents’ behaviours to those which do not fit the behaviours
that draw the social purpose. Such situations may happen, for instance, when the envi-
ronment has changed, the MAS purpose has changed, the performance requirements are
not satisfied, the agents are not capable of well playing their roles, a new task request
arrives and the current organisation is not appropriate, etc.

Generic Organisation Process. Generally, in order to modify an organisation, we can
identify a generic organisation process (or adaptation process) which will be differently
implemented depending on the chosen adaptation approach. This process is usually
composed of two main phases –monitoring and reparation. This last one, depending on
the MAS type, can be decomposed into design, selection and execution phases [42] or
selection and execution phases only. This adaptation process can be part of a more gen-
eral environment-system life-cycle: perception, adaptation process, action, perception,
and so on. Inherent problems of this process and the chosen approach are detailed in the
remainder of this section.

1. The monitoring phase aims at detecting inadequacy problems between the sys-
tem, the organisation or the agents, and the environment. Whatever is the entity
responsible for the monitoring, and therefore whatever is the abstraction level of
this detection (macro or micro), it is advisable to define the set of situations of non
adaptation.

2. Once a need to adapt is detected, the reparation phase performs a process in order
to find back an function as optimal as possible, at runtime.
(a) For this, the design phase aims at defining and developing a set of possible

alternatives for the current organisation, in a top-down or a bottom-up manner.
(b) The selection phase determines one alternative to modify the organisation. The

main problem is therefore the definition of evaluation criteria for evaluating
the different alternatives.

73

(c) The execution corresponds to the implementation of the previously chosen al-
ternative.

Predefined Change of Organisation. In this case we consider that changes are already
planned and expressed by the designer to be performed at a precise moment [5]. For in-
stance, a soccer team has previously accorded to change its formation at the 30 minutes
of the match [43]. In this approach, the execution of the adaptation process is quite
straightforward. Monitoring is performed by agents themselves or an external entity
(e.g. the coach of the soccer team which consults a timer to know when to trigger the
team change). The design phase, which determines all these trigger conditions, is not
performed at runtime, but at design time. Selection and execution phase are immediate
since trigger conditions are coupled with predefined actions, performed on the fly.

Controlled Change of Organisation. In this case, the system does not know when the
organisation will change, but knows what are the conditions to trigger a change process,
that will be implemented following a known procedure (e.g. a team has an expert that
controls the reorganisation process). The main difference with the previous approach is
that the designer des not know a priori when and how the organisation has to be changed.
However he is able to define strategies for monitoring and repairing the organisation.
These strategies can be used by agents to control and drive the organisation process.
This process can be performed in two ways: either (i) an endogenous approach where
a particular agent (centralisation) or agents themselves (coordinated decentralisation)
will manage the reorganisation; or (ii) an exogenous approach where the user of the
system, or an external system, controls the process. During the execution of an instance
of the specified system, the entity responsible for the change (designer or agent) can
detect the organisation is not adapted because of inadequate performances, and can
therefore modify the model and the specification for improving the performances by
programming a more adapted organisation.

The monitoring phase identifies a situation where the current organisation is not
adapted and does not satisfy the needs of the MAS. The main problem this phase is
how to identify whether the social purpose is not being achieved because the current
organisation does not allow it. Many other reasons may cause the unaccomplishment of
the MAS purpose (e.g. the social purpose is impossible to be achieved). In some cases
to change the organisation is not helpful. Even in the case we know the problem can be
solved by the reorganisation process, the new problem is to identify which part of the
organisation is causing the problem in order to set the correct reorganisation level. The
part of the organisation that is responsible for the problem can be either its specification
(e.g. set of possible roles) or the current instantiation of that specification (e.g. who
plays which role). The reparation phase requires then to execute the design, selection
and execution phases. The design phase intends to develop a set of possible alternatives
for the current organisation. The design of this set of alternatives can be based on (i) a
search in a library of predefined organisations or (ii) their creation on demand. In the
first case, the problem is to identify which predefined organisation is appropriate for the
failure caught by the monitoring phase. In the second case, we have to deal with yet
another problem: the hugeness of the search space for new organisational specifications

74

(this search space is defined by the organisational model). During the execution, means
to change the current organisation must be defined without causing any failure. For
example, how an agent will deal with the fact that the role it is playing was removed
in the new organisation? What it will do with the commitments adopted under this
extinguished role?

An example of controlled change of organisation isM+ [26]. This work consid-
ers the organisational structure and functioning. They explicitly focus on controlling the
reorganisation process for which they consider the four phases discussed above. In their
view reorganisation is a cooperative process itself which is performed in an endogenous
and decentralised way. This process may itself be the subject of a dedicated organisation
composed of a hierarchy of roles specialised in the management of the reorganisation.
Another example is [24], where a centralised reorganisation process is used, based on
TAEMS (Task Analysis, Environment Modeling, and Simulation) modelling language
and a diagnosis expert subsystem in charge of detecting deficiencies in the organisation
and assisting in the creation of a solution. Its monitoring phase identifies failures when
the system does not behave as expected by its functional model. Examples of controlled
self-organisation can be found in some agent-based problem solvers, like [34] or [37],
in which predefined roles are taken by agents depending on the state of the solving pro-
cess. In a nominal situation, agents try to find a value by checking constraints shared
with neighbours, but without knowing their values. If an agent detects that its neigh-
bouring agents (sharing constraints) are blocked or over-constrained, it will take the
mediator role [34] or will launch an election process [37] so as to force them to share
their value as to set a new value minimising conflicts, for instance. Therefore, agents
can play two different roles, predefined by the designer, at different times of the solving
process.

Emergent Change of Organisation. In this last case, as for the controlled change
of the organisation, the time to trigger the process is not predefined by the designer.
The reasons to change are equivalent to the previous cases: the system behaviour is not
adequate in its environment. The main characteristic of the process is that it is not led by
an entity external from the system. Difference with other approaches is that the designer
does not have global knowledge of strategies to monitor and repair the organisation. All
the knowledge he has is local knowledge that is manipulated at the agent level, at a local
level. Thus, the organisation which is defined comes from the interactions between the
agents from their local perception and actions.

The monitoring phase is performed endogenously, by one or more agents. The de-
signer equips them with capabilities to detect at local level that the organisation is no
more globally adapted. For this, agents are able to know they are not adapted. Next,
the agent that detects the problem will perform the reparation phase. It consists in the
selection of one or more actions among the set of all possible actions, followed by
the execution of this chosen action. In [38], the agent chooses and performs the ac-
tion it judges as being the most appropriate with respect to a local evaluation criterion
called cooperativeness. This action can be defined and implemented, or learned at run-
time [14]. This phase is also realised during runtime. An agent reacts to change its
position within the organisation/topology in order to adapt the system as a whole, or

75

to change its own behavioural specialisation [14]. An agent is able to autonomously
decide the action that will change the organisation, by removing itself from the system
for instance. An agent can also decide to act cooperatively, i.e. by taking into account
its neighbours’ states [38]. For instance, in a self-constructed mechanics, a component
receiving a negative feedback from the environment must change its weights in order
to change its function and its interactions with its neighbourhood as cooperatively as
possible and therefore it reduces the negative feedback. Coalitions modify their organ-
isation when relations between agents are not adapted. Such changes are the result of
a reasoning process based on social concepts such as powers and dependencies. For in-
stance, in a coalition of surveillance drones, agents change their leader after the current
one has displayed some lack of computation or communication capabilities, in order to
maintain the group adapted to the collective mission [33].

4 Discussion and Definitions

Organisation Unawareness Organisation Awareness

What?
ACPV

Topology Dependencies
Weights, Influence Commitments
Differentiation Powers
Neighbourhood

OCPV Design model Organisation specification
Agentification Role assignment

When?
ACPV At runtime At runtime
OCPV At design time At runtime

Why?
ACPV Agents are not adapted Relations between agents are not adapted
OCPV Performances are not adequate Organisation is not adapted

Who?
ACPV Agents (environmental pressure) Agents (social pressure)
OCPV Designer Designer & Agents

How?

ACPV
Reacting Reasoning
indirectly on the organisation indirectly on the organisation
directly on the environment directly on cooperation patterns

OCPV
Programming Organising
directly the organisation directly the organisation
directly the environment directly the cooperation patterns

Table 1. Aspects of organisation adaptation

Table 1 provides a synthetic view of the different points we analysed above. We can
thus propose definitions of reorganisation and self-organisation concepts, in the context
of Figure 1 and Table 1.

Definition 1. Reorganisation is a process, endogenous or exogenous, concerning sys-
tems in which organisation is explicitly manipulated through specifications, constraints

76

or other means, in order to ensure an adequate global behaviour, when the organisation
is not adapted. Agents being aware of the organisation state and structure, they are ca-
pable of manipulating primitives to modify their social environment. This process can
be both initiated by an external entity or by agents themselves, by reasoning directly
on the organisation (roles, organisational specification) and the cooperation patterns
(dependencies, commitments, powers).

This process thus appears on the right side of the grid, and mainly concerns organi-
sation-oriented systems and, to a lesser extent, coalition-based systems.

Definition 2. Self-organisation is an endogenous and bottom-up process concerning
systems in which only local information and representations are manipulated by agents
unaware of the organisation as a whole, in order to adapt the system to the environmen-
tal pressure by modifying indirectly the organisation, therefore by changing directly the
system configuration (topology, neighbourhoods, influences, differentiation), or the en-
vironment of the system, by local interactions and propagation, by avoiding predefined
model biases.

This process appears on the top row of the grid, and therefore concerns emergent
organisations and, to a lesser extent, coalition-based-systems. So, we can identify a
continuum between self-organising systems and reorganising ones, via coalition-based
systems. Reorganisation and self-organisation are also two different implementations
of the same generic process of adaptation of organisations: detection and reparation. In
a self-organising system, this process is decentralised, implicit and endogenous, giving
the responsibility to agents and often initiated by an environmental change. In a reorgan-
ising system, this process can be decentralised or not, but always explicit and directly
performed by entities (designer or agents) manipulating organisational primitives.

5 Conclusion

In this paper we presented a comprehensive view of the organisational aspects in multi-
agents systems from agent-centred and organisation-centred points of view. We also
underlined the main differences between the reorganisation and self-organisation pro-
cesses by analysing the reasons and scope of organisation changes (what, when, who,
why, how). Following this analysis, we proposed definitions of reorganisation and self-
organisation, with respect to the organisation-centred and agent-centred points of view.
However, these two points of view are not incompatible if we consider them at differ-
ent moments of the life time: for instance, emergence at the beginning, capitalisation
and injection of the capitalised organisation in the functioning of the system, change of
this organisation (reorganisation), and self-organisation once the set of known possible
organisations is no more sufficient.

Once we have dressed up a comprehensive view of the organisation adaptation con-
text, in future works we will aim at defining a formal framework capturing the notions
of both views as to make them cooperate. We can imagine using self-organising mech-
anisms at the organisation model level to explore the space of possible organisations,
and to propose more adequate organisations and norms. From the opposite viewpoint,

77

we can imagine using organisational specification to set boundaries for the emergent
behaviours of self-organising systems, by defining, for instance, regimented constraints
that agents cannot violate and enforced constraints that agents may violate to explore
new organisational configurations.

References

1. F. Bergenti, M.P. Gleizes, and F. Zambonelli. Methodologies and Software Engineering for
Agent Systems. Kluwer, 2004.

2. P. Bernoux. La sociologie des organisations. Seuil, 3ème edition, October 1985.
3. O. Boissier, J. F. Hübner, and J. S. Sichman. Organization oriented programming from

closed to open organizations. In Gregory O’Hare, Michael O’Grady, Oguz Dikenelli, and
Alessandro Ricci, editors, Engineering Societies in the Agents World VII (ESAW 06), volume
4457 of LNCS, pages 86–105. Springer-Verlag, 2007.

4. D. Capera, M.-P. Gleizes, and P. Glize. Mechanism Type Synthesis based on Self-
Assembling Agents. Journal of Applied Artificial Intelligence, 18(9-10):921–936, 2004.

5. T. Carron and O. Boissier. Towards a temporal organizational structure language for dy-
namic multi-agent systems. In Pre-Proceeding of the 10th European Workshop on Modeling
Autonomous Agents in a Multi-Agent World (MAAMAW’2001), 2001.

6. C. Castelfranchi. Modeling social action for AI agents. Artificial Intelligence, (103):157–
182, 1998.

7. C. Castelfranchi. Engineering Social Order. In ESAW ’00: Proceedings of the First Interna-
tional Workshop on Engineering Societies in the Agent World, pages 1–18. Springer-Verlag,
2000.

8. D. D. Corkill and V. R. Lesser. The use of meta-level control for coordination in distributed
problem solving network. In Alan Bundy, editor, Proceedings of the 8th International
Joint Conference on Artificial Intelligence (IJCAI’83), pages 748–756, Los Altos, CA, 1983.
William Kaufmann.

9. D. Cornforth, M. Kirley, and T. Bossomaier. Agent Heterogeneity and Coalition Formation:
Investigating Market-Based Cooperative Problem Solving. Autonomous Agents and Multia-
gent Systems, International Joint Conference on, 2:556–563, 2004.

10. M. M. de Weerdt and B. J. Clement. Introduction to planning in multiagent systems. Multi-
agent and Grid Systems An International Journal, 5(4), 2009.

11. S.A. DeLoach. Methodologies and Software Engineering for Agent Systems. The Agent-
Oriented Software Engineering Handbook Series : Multiagent Systems, Artificial Societies,
and Simulated Organizations, volume 11, chapter The MaSE Methodology. Kluwer Aca-
demic Publishing (available via Springer), 2004.

12. G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos. Self-Organisation and Emer-
gence in Multi-Agent Systems: An Overview. Informatica, 30(1):45–54, 2006.

13. V. Dignum, F. Dignum, and L. Sonenberg. Towards dynamic organization of agent societies.
In G. Vouros, editor, Workshop on Coordination in Emergent Agent Societies, pages 70–78,
2004.

14. A. Drogoul, B. Corbara, and S. Lalande. MANTA: New experimental results on the emer-
gence of (artificial) ant societies. In Nigel Gilbert and Rosaria Conte, editors, Artificial So-
cieties: the Computer Simulation of Social Life, pages 119–221. UCL Press, London, 1995.

15. M. Esteva, J.A. Rodriguez-Aguiar, C. Sierra, P. Garcia, and J.L Arcos. On the formal spec-
ification of electronic institutions. In Frank Dignum and Carles Sierra, editors, Proceed-
ings of the Agent-mediated Electronic Commerce, LNAI 1191, pages 126–147, Berlin, 2001.
Springer.

78

16. Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and design of orga-
nizations in multi-agents systems. In Yves Demazeau, editor, Proceedings of the 3rd In-
ternational Conference on Multi-Agent Systems (ICMAS’98), pages 128–135. IEEE Press,
1998.

17. N. Fornara and M Colombetti. Specifying and enforcing norms in artificial institutions. In
7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2008), Estoril, Portugal, May 12-16, 2008, Volume 3, pages 1481–1484, 2008.

18. L. Gasser. Organizations in multi-agent systems. In Pre-Proceeding of the 10th European
Worshop on Modeling Autonomous Agents in a Multi-Agent World (MAAMAW’2001), An-
necy, 2001.

19. L. Gasser and T. Ishida. A dynamic organization architecture for adaptive problem solving.
In Proceedings Ninth National Conference on Artificial Intelligence (AAAI’91), pages 185–
90. The MIT Press & AAAI Press, 1991.

20. J.-P. Georgé, B. Edmonds, and P. Glize. Making Self-Organizing Adaptive Multi-Agent
Systems Work - Towards the engineering of emergent multi-agent systems (chapter 8). In
Methodologies and Software Engineering for Agent Systems, pages 319–338. Kluwer, 2004.

21. N. Glaser and P. Morignot. The reorganization of societies of autonomous agents. In Magnus
Boman and Walter Van de Velde, editors, Multi-Agent Rationality, LNAI 1237, pages 98–
111, Berlin, 1997. Springer.

22. S. Hassas, G. Di Marzo-Serugendo, A. Karageorgos, and C. Castelfranchi. On self-
organising mechanisms from social, business and economic domains. Informatica, 30(1):63–
71, 2006.

23. V. Hilaire, P. Gruer, A. Koukam, and O. Simonin. Formal driven prototyping approach
for multiagent systems. International Journal of Agent-Oriented Software Engineering,
2(2):246–266, 2008.

24. Bryan Horling, Brett Benyo, and Victor Lesser. Using self-diagnosis to adapt organiza-
tional structures. In Proceedings of the 5th International Conference on Autonomous Agentes
(Agents’ 01), 2001.

25. J.F. Hübner, J.S. Sichman, and O. Boissier. M+: Towards a structural, functional, and
deontic model for MAS organization. In Cristiano Castelfranchi and W. Lewis Johnson,
editors, Proceedings of the First International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’2002), pages 501–502. ACM Press, 2002.

26. Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Using the M+ for a
cooperative framework of MAS reorganisation. In Ana L. C. Bazzan and Sofiane Labidi,
editors, Proceedings of the 17th Brazilian Symposium on Artificial Intelligence (SBIA’04),
volume 3171 of LNAI, pages 506–515, Berlin, 2004. Springer.

27. C. Iglesias, M. Garrijo, and J. Gonzalez. A survey of agent-oriented methodologies. In
Proceedings of the 5th International Workshop on Intelligent Agents V : Agent Theories,
pages 317–330, Heidelberg, 1999. Springer-Verlag.

28. S. Kamboj and K.S. Decker. Organizational self-design in semi-dynamic environments. In
AAMAS ’07: Proceedings of the 6th international joint conference on Autonomous agents
and multiagent systems, pages 1–8, New York, NY, USA, 2007. ACM.

29. Y. Kubera, P. Mathieu, and S. Picault. Interaction-oriented agent simulations : From theory to
implementation. In Proceedings of the 18th European Conference on Artificial Intelligence
(ECAI’08), pages 383–387. IOS Press, 2008.

30. O. Boissier L. Coutinho, J.S. Sichman. Modeling dimensions for multi-agent systems orga-
nizations. In V. Dignum, F. Dignum, B. Edmonds, and E. Matson, editors, Agent Organiza-
tions: Models and Simulations (AOMS), Workshop held at IJCAI 07, 2007.

31. C. Lemaı̂tre and C.B. Excelente. Multi-agent organization approach. In Francisco J. Gar-
ijo and Christian Lemaı̂tre, editors, Proceedings of II Iberoamerican Workshop on DAI and
MAS, 1998.

79

32. V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R. Podor-
ozhny, M. NagendraPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q.. Zhang. Evolution of the
gpgp/taems domain-independent coordination framework. Autonomous Agents and Multi-
Agent Systems, 9(1):87–143, July 2004. Kluwer Academic Publishers.

33. M. T. Long, R. R. Murphy, and J. Hicinbothom. Social roles for taskability in robot teams.
In International Conference on Intelligent Robots and Systems (IROS’07), pages 2338–2344.
IEEE, 2007.

34. R. Mailler and V. Lesser. Solving Distributed Constraint Optimization Problems Using Co-
operative Mediation. In Proceedings of Third International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’04), pages 438–445. IEEE Computer Society, 2004.

35. H. V. D. Parunak and S. A. Brueckner. Engineering swarming systems. In Methodologies
and Software Engineering for Agent Systems, pages 341–376. Kluwer, 2004.

36. Juan Pavón and Jorge J. Gómez-Sanz. Agent oriented software engineering with ingenias.
In Vladimı́r Marı́k, Jörg P. Müller, and Michal Pechoucek, editors, CEEMAS, volume 2691
of Lecture Notes in Computer Science, pages 394–403. Springer, 2003.

37. G. Picard, M.-P. Gleizes, and P. Glize. Distributed Frequency Assignment Using Cooperative
Self-Organization. In Self-Adaptive and Self-Organizing Systems, 2007. SASO ’07. First
International Conference on, pages 183–192. ACM Press, 2007.

38. G. Picard and P. Glize. Model and Analysis of Local Decision Based on Cooperative Self-
Organization for Problem Solving . Multiagent and Grid Systems, 2(3):253–265, septembre
2006.

39. W. R. Scott. Organizations: rational, natural and open systems. Prentice Hall, 4 edition,
1998.

40. J.S. Sichman, R. Conte, Y. Demazeau, and C. Castelfranchi. A social reasoning mechanism
based on dependence networks. In Tony Cohn, editor, Proceedings of the 11th European
Conference on Artificial Intelligence, pages 188–192, 1994.

41. R.G. Smith. The contract net protocol: High-level communication and control in a distributed
problem solver. IEEE Transaction on Computers, 29(12):1104–1113, 1980.

42. Y. So and E.H. Durfee. An organizational self-design model for organizational change. In
Proceedings of AAAI93 Workshop on AI and Theories of Groups and Organizations, 1993.

43. P. Stone and M.M. Veloso. Task decomposition and dynamic role assignment for real-time
strategic teamwork. In Jörg P. Müller, Munindar P. Singh, and Anand S. Rao, editors, Pro-
ceedings of the 5th International Workshop Agent Theories, Architectures, and Languages
(ATAL-98), LNCS 1555, pages 293–308, Berlin, 1999. Springer.

44. M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Reseearch, 7:83–
124, 1997.

80

Modeling an Open and Controlled System Unit

as a Modular Component of Systems of Systems

Matthias Wester-Ebbinghaus, Daniel Moldt

University of Hamburg, Department of Informatics
Vogt-Kölln-Straße 30, D–22527 Hamburg

{wester,moldt}@informatik.uni-hamburg.de

Abstract. Modern software systems are frequently characterized as sys-
tems of systems. Agent-orientation as a software engineering paradigm
exhibits a high degree of qualification for addressing many of the accom-
panying challenges. However, systems of systems demand for means of
hierarchical/recursive decomposition that are not inherently rooted in
the agent-oriented paradigm. We present a model of a system unit that
both embeds system actors and is itself embedded as a collective sys-
tem actor in surrounding system units. We supply generic concepts and
mechanisms for combining the system unit’s control structures and its
openness. This allows the system unit to be applied at arbitrary levels
of a system of systems in a recursive fashion.

1 Motivation

Today’s software systems are frequently characterized as inherently distributed
and heterogeneous systems of systems [1] whose parts potentially exhibit a great
deal of operational and managerial independence [2–4]. Agent-orientation has
emerged as a software engineering paradigm that is in many respects ideally
suited to deal with these kinds of systems. It advocates flexible, high-level in-
teractions between system parts that exhibit a great deal of local freedom and
initiative (agents). Organization-oriented stances have proven as effective means
to combine local agent autonomy and heterogeneity with controllability and pre-
dictability at the system level. Various approaches have developed where agents
are integrated (taking on roles / occupying positions) into an organizational
framework that constrains and imprints organizational behavior [5].

However, it is the system of systems aspect that (at least in the first instance)
poses problems for agent-orientation. A system of systems perspective inherently
demands a hierarchic treatment of different levels of abstractions, where level
of abstraction relates to the granularity of system parts studied at each level.
Agent-orientation on the other hand features a rather flat decomposition, namely
“decomposing problems in terms of autonomous agents” [6]. As analyzed in [7]
the component view of objects (objects may be composed of other objects in a
recursive fashion) was lost with the transition from object- to agent-orientation.

But it should be noted that multi-agent system (MAS) research has already
made substantial efforts to overcome this gap (see the related work section for

81

more details). There exist approaches that view collectivities of agents (holons,
teams, organizations, etc.) as first class abstractions that can collectively act on
their own. We interpret these efforts as a gradual transition from classical agent-
oriented concepts to rather organization-oriented or systemic ones that might
ultimately result in a new paradigm of its own.

However, the treatment of recursive nesting of collectivities deserves further
investigation. Existing approaches mainly focus on how to implement collective
agency, for example via federative mechanisms (mediators represent a collectiv-
ity to the outside) or by providing the possibility to let collectivities play roles.
We consider these as technical means to realize collective agency. To provide
conceptual frameworks/”thinking models” is equally important. By conceptual,
we mean qualitative guidelines and distinctions of what analytical components
a collectivity has to exhibit and how they have to be arranged in order to allow
a systematic transition from individual to collective agency. Research in this
context has to rely on system and organization theoretical results as these dis-
ciplines have a long tradition in dealing with nested collectivities of more or less
loosely coupled (individual or corporate) actors.

In this paper, we approach this research challenge by proposing an intention-
ally basic and generic model for collective agency. It has relevance to any system
of systems engineering approach. Nevertheless, we stress the actor metaphor and
thus build a particularly close link to agent-orientation. We present a model of
a system unit that is to be applied recursively at arbitrary levels in a system
of systems. A system unit is an environment for system actors and can at the
same time act as a system actor in surrounding system units. In Section 2, we
begin with a very abstract model that focusses on the analytical components of
a system unit in terms of how it relates to its embedded system actors, manages
its own configuration and relates to surrounding system units.1 In Section 3 we
model operational aspects of the former abstract model and thus derive a techni-
cal understanding of how the system unit actually functions. We discuss related
work in Section 4. Section 5 summarizes our results.

As our modeling technique, we choose Petri nets [9] and especially the high-
level Petri net formalism of reference nets [10]. Petri nets offer a restricted set
of modeling elements, from which expressive models can be build. Reference
nets additionally offer the nets in nets concept that allows for nested net hier-
archies. Given systems of systems according to Figure 1 as our object of study,
we consider nets in nets as a an inherently fitting modeling technique.

2 Open and Controlled System Unit: Analytical Model

We address software systems that are composed of various subsystems. At the
heart of our approach lies the concept of a system unit that is illustrated in Fig-

1The model that we present in Section 2 has initially been developed in [8] for
the AAMAS’2008 conference. Here, we summarize the results and present some fur-
ther issues that were not covered back then (this basically concerns bridging issues in
Section 2.3).

82

ure 1 in UML notation. A system unit is an environment for system actors. At
the same time, a system unit can be a system actor of its own that has surround-
ing system units as environments. By recursively applying this understanding,
we arrive at a hierarchy of system units, each of which is both an embedding
environment and environmentally embedded.

Fig. 1. Basic System Unit Concept

We propagate three conceptual directions that are to be investigated from
the viewpoint of every system unit: “looking downwards/inwards” at embedded
system units (internal system actors), “looking upwards/outwards” at embed-
ding system units (surrounding environments) and “looking at ones own level”
at local configurations that imprint the other two directions.

2.1 Open and Controlled System Unit as a Structure in Threes

We derive our model of an open and controlled system unit that is applied at
all system levels in Figure 2. It features three different types of internal system
actors that participate in three different types of system activities. Each system
activity is composed of three different kinds of basic operations (addition of
system units, usage/modification of system actors, removal of system actors).

The model from Figure 2 has an underlying reference net semantics whose
operational peculiarities will be elaborated on in Section 3. In this Section, we
focus on the analytical characteristics of the system unit model and are satisfied
with the rather abstract model from Figure 2. It basically can be interpreted
as a Petri net, but we apply some modeling short forms and assume additional
semantics. (1) Activity participation of system actors is modelled by arcs. Arcs
connecting to the outer circle can be associated with any type of system actor.
(2) An arc labelled with a + describes a necessary activity participation of at
least one (but possibly multiple) representatives of the associated type of system
actors. An unlabeled arc describes a contingent participation (depending on
particular instances of the associated type of system activities). (3) An arc with
triangles as arrow tips indicates that the associated type of system actors enables
and controls the corresponding type of system activities.

In the following, we describe the analytical aspects behind this model in more
detail and demonstrate how the three types of system activities from Figure 2
exactly match with the three conceptual directions mentioned at the beginning
of this section.

83

Fig. 2. Open and Controlled System Unit as a Structure in Threes

2.2 System Control

We distinguish the analytical aspects of operation, integration and governance
for each system unit and classify system actors accordingly. As the three aspects
are intrinsically interwoven and interdependent we do not require the three sets of
system actors to be disjoint. In Section 3, we will present a concrete operational
model of the interplay between the three types of actors. In this section, we
focus on the intended conceptual relationships between operation, integration
and governance as illustrated in Figure 3 (a) in UML notation.

Governance and integration together embody the system’s control. The com-
bination of integration and operation on the other hand represent the system’s
(day to day) business. The governance actors develop overall system goals and
strategies and derive high-level rules that the system’s business has to follow.
The integration actors interpret and apply these rules to the operation of the
system. They develop subgoals, plans and performance standards according to
which they enable, coordinate and regulate the system’s operation. Within this
context, the operational actors carry out the system’s primary activities and pro-
vide (low-level) operational feedback. In addition, the integration actors provide
(high-level) strategic feedback to the governance actors.

With these explanations, we obtain a clearer picture of the governance and
integration activities from Figure 2 and can relate them to the conceptual direc-
tions mentioned at the beginning of Section 2. Governance activities target at
negotiating and transmitting system rules as well as for receiving feedback of how
these rules work out. We interpret this as the direction of “looking at ones own
level” as the system unit’s overall configuration is under question. Integration

84

Fig. 3. (a) System Control Concepts, (b) Applied to the M-Form (Adapted From [11])

activities target at running the system’s business in conformance to the system
rules while monitoring the performance. We interpret this as the direction of
“looking downwards/inwards” as here the promotion and application of the sys-
tem rules to the system unit’s internal functioning is addressed. Consequently,
integration sits between governance and operation. While the governance actors
set and are responsible for system rules, they do not implement them. This sep-
aration of concerns targets at attenuating oscillation between high-level control
decisions and their effects on the system’s operation.

Figure 3 (b) shows an exemplification for the case of the classical multi-
divisional form (M-Form) from organizational literature (cf. [11]). We can iden-
tify the corporate office as one of the purest forms of governance actors. It is a
distinguishing feature of the M-Form to free selected officials from the “tyranny”
of daily operational decisions and thus allowing them to concentrate on position-
ing the firm, determining the proper mix of product lines and allocating resources
among divisions. Strategic decisions and rules made by the general corporate of-
fice apply for the whole firm and constitute the core of its organizing principles.
One of the most important and determinant directives imposed by the gover-
nance is which actors (integration) are responsible for implementing which kinds
of system rules towards which other actors (operation) in which contexts. This
basically determines the overall structure of the system unit.

The product line offices fulfil two analytical roles. Firstly, they are incorpo-
rated in specific governance decisions. But secondly and more important, they
oversee and integrate their respective functional divisions (marketing, research,
manufacturing, finance and possibly more) according to the firm’s global di-
rectives. The headquarters of the functional divisions again fulfill two analytical
roles. Towards their respective product line offices they act simply as operational
actors, fulfilling specific functional purposes. But in addition, they oversee fur-
ther units themselves and thus also act as integrators. Finally, the low-level work
units of the M-Form are clearly operational actors.

85

So even in a strict hierarchy like the M-Form, we encounter actors with
more than one analytical role. Things get even more complicated in the case of
structures with additional horizontal ties.

2.3 Openness and Boundary Management

So far we have addressed the two conceptual directions of “looking at ones own
level” and “looking inwards/downwards”. Here, we look at the third direction,
namely “looking upwards/upwards”. Just as we have done with the other two
directions, we relate the third one to one of the three type of system activities
from Figure 2. In this case, we focus on peripheral activities. A system unit
according to our model is a Janus-faced entity, embedding system actors and
acting as a system actor itself in surrounding system units. Peripheral activities
allow a system unit in focus to relate to system activities of surrounding system
units. How these activities look like is imposed by the surrounding system units.

However, the conception of peripheral activities from Figure 2 is a simplifi-
cation. As one might expect, things (at least potentially) get more complicated
at the borders of a system. First of all, it is quite unlikely for most cases that
a system unit exhibits control structures that only address internal functioning.
Instead, boundary management is subject to careful control considerations. Con-
sequently, in addition to having to conform to guidelines supplied by surrounding
system units, peripheral activities are typically (co-) controlled by control actors
of a system unit in focus as illustrated in Figure 4 (a).

This immediately leads to the distinction that was already made earlier,
namely whether an activity has a governance / strategic character or an integra-
tion / daily business character. Depending on this distinction, it is governance
or integration actors that enable and control a peripheral activity as illustrated
in Figure 4 (b).

An further issue arises orthogonal to the one just mentioned. Analytical inter-
pretations of actions often differ from system level to system level. For example,
governance aspects from the perspective of a system unit in focus may appear
as operational aspects from the perspective of a surrounding system unit. Fig-
ure 4 (c) illustrates this circumstance that arises when we apply our model of
a system unit in a recursive fashion: Peripheral activities from a system unit in
focus may potentially correspond / map to all kinds of activities of surrounding
system units (the dashed lines model this mapping).2

Figure 4 (d) displays an example of different analytical interpretations. Ne-
gotiations between multiple enterprises to form a strategic alliance have a gov-
ernance character from the perspective of the enterprises. From the perspec-
tive of the surrounding market however, these negotiations appear as ordinary

2We do not necessarily require that our model of a system unit is applied at all levels
of a system of systems in a recursive fashion (especially in systems with a high degree
of legacy structures it might not be possible in the first instance). Instead, one might
apply our model selectively where it seems appropriate. In these cases, the interface to
environmental system parts of course looks different from Figure 4 (c).

86

Fig. 4. Open and Controlled System Unit: Bridging

business-to-business interactions between operational actors that just have to be
monitored by a market regulator as an integration unit.

3 Open and Controlled System Unit: Operational Model

The system unit model from the previous section was quite abstract and many
additional (textual) explanations were necessary to clarify its intended func-
tioning. In this section, we propose a concrete operationalization that provides
(computer scientists) a technical understanding of how an open and controlled
system unit according to our understanding functions. This lays the groundwork
to actually realize/implement systems according to our philosophy.

87

Due to space limitations, we will not be able to cover all aspects of our
operational model. For instance, we will not address the addition or removal
of system actors. Instead, we focus on how existing system actors invoke and
participate in system activities.

As our modeling technique, we choose reference nets [10]. They provide an
elegant way to transition from rather abstract to more and more detailed models
and in addition allow an effective way to model dynamic multi-level composition
of components. We give a short introduction into reference net modeling.

3.1 Reference Net Modeling

We assume that the reader is at least vaguely familiar with Petri nets in gen-
eral as well as “ordinary” colored Petri nets (see e.g. [9]). We will give a brief
overview of the specific extensions that reference nets [10] exhibit. Reference
nets implement the nets within nets concept [12] where a surrounding net - the
system net - can have nets as tokens - the object nets. As hierarchies of net
within net relationships are allowed, the denomination of system or object net
depends on the beholder’s viewpoint. Reference semantics is applied, thus net
tokens are references to net instances. Figure 5 shows a simple example. We have
an assembly line as a system net. Boxes as object nets are moved along the line
in order to be filled with items according to some description.

Fig. 5. Operational Semantics of Reference Nets

To facilitate communication between net instances, synchronous channels
permit a fusion of two transitions at a time for the duration of one firing oc-
currence. A channel is identified by its name and its arguments. Channels are
directed, exactly one of the two transitions (the one with a downlink) indicates
the net instance in which the counterpart of the channel (a transition with the
corresponding uplink) is located. However, information flow between the fused
transitions is bi-directional and achieved by unification. In our example, we have
the channel :pack() which is directed from the assembly line (downlink) down
to the box (uplink). Information flow is bi-directional. The :pack() channel has

88

two parameters and a unifying binding for corresponding parameter positions on
both sides of the channel has to be found. The product description (productDesc)
is supplied by the box while the product itself (product) is supplied by the as-
sembly line (it is looked up from a mapping between product descriptions and
products).

As for most other net formalisms there exist tools for the simulation of refer-
ence nets. The Renew tool [13] additionally allows for (mostly) arbitrary JAVA
inscriptions to transitions. This allows for a powerful approach of “implementa-
tion through specification”. In order to transform an abstract net model into a
specific prototype it is in most cases sufficient to add combined channel/JAVA
inscriptions to transitions and to add certain auxiliary net elements.

3.2 Embedding

We begin by operationalizing the open Janus-faced character of our system unit
model from Section 2.

Abstract Operational Model A system unit according to our understanding
embeds internal system actors and can at the same time act as a system actor
at higher system levels. Figure 6 shows a simple reference net operationalization
of this understanding. According to the terminology introduced in the previous
subsection, the figure features a system unit as a system net and system actors
as well as system activities as embedded object nets.

Fig. 6. Open System Unit: Operational Model

89

Consequently, we can identify the two concepts of system actors and system
activities from the analytical model of Figure 2. The figure illustrates the recur-
sive character of our model as system actor nets are of the same structure as the
system unit in focus. For the case of activities, we apply a modeling approach in
conformance with the UML [14]: An activity models part of a system’s behavior
by describing how elementary behavioral elements (i.e. actions) are combined to
more complex behaviors by means of control and data flows (see below for a more
detailed example of activity modeling).

Actions have to carried out by system actors. Consequently, actor and activity
nets have to be synchronized for action execution (transitions internal operation
and peripheral action). In addition, system actors can invoke new system activities
(transition invoke).

By peripheral actions, system actors act on behalf of a system unit in focus
and thus allow it to appear as a system actor in surrounding system units. Thus,
depending on action parameters, the peripheral action transition of a system
unit in focus can be synchronized with any of the three action transitions (for
invocation, internal actions and peripheral actions) of surrounding system units.

Figure 6 lacks operationalization details in order to make it fully executable.
We will not cover the details comprehensively but focus on the two action tran-
sitions for internal operations and peripheral actions in the following paragraph.

Operational Details At this point, the model from Figure 6 lacks most of the
analytical distinctions from Section 2. But we can distinguish internal activities
that consist only of internal actions from peripheral activities that also include
peripheral actions. Operationalization of internal as well as peripheral actions
deserves further investigation, so Figure 7 provides additional details.

Fig. 7. Operationalization Details for Internal and Peripheral Actions

For each internal action, the system unit net synchronizes an actor net with
an activity net. Synchronization takes place via the channels :act() and :iStep().
The underlying semantics is of course that an actor carries out an action in order
to realize an activity step. As there exist typically multiple actors and activities
at the same time, we have to make sure that the right actors and activities come
together for an action execution. For this reason, actors and activities denote
each other mutually via identifiers. If these match, synchronization is possible.

90

In addition, the action parameters of both channels have to unify. Note that
the action parameter is actually a complex data structure itself that includes
an action type, an action description and action data. Which of these parts are
supplied by actor or activity net (or both) for unification depends on the action’s
context.

The peripheral action type allows a system unit to appear as a system actor
of its own that is embedded in a surrounding system unit. For a system unit in
focus, a peripheral action is carried out by an internal system actor, via an :act()
channel between the system unit in focus and the internal actor. But from the
perspective of a surrounding system unit, the action is carried out by the system
unit in focus as a whole, via an :act() channel between the system unit in focus
and the surrounding system unit. Thus, we arrive at a technical understanding
of collective/corporate action. As an additional aspect, peripheral actions are not
only associated with an internal system activity (via the identifier iActivityID)
but also with a system activity of the surrounding system unit (via the identifier
pActivityID). So the channel pStep:() has three arguments instead of the two ones
for the :iStep() channel.

Example Figure 8 shows a simple sample scenario with three system levels.
We have two system units (market and prod firm) according to our model. For
the system units that represent the “leaves” in this scenario we make no further
assumptions other than that they offer :act() channels as interfaces.

Activities are composed of net components for invocation and stopping (di-
amonds), internal actions (downward-pointing triangles) and peripheral actions
(upwards-pointing triangles). In this paper, we will not deepen on how to model
activities. We just assume a close connection to UML (AUML) interaction dia-
grams (c.f. [15]). Transitions model actions and places connect actions in order
to form life lines for activity roles and message exchanges between activity roles.
Whenever a place connects two transitions whose associated actions are to be
carried out by the same actor in the context of the activity, the transitions are
drawn vertically on the life line of the corresponding role. Whenever a place
connects transitions whose associated actions are to be carried out by different
actors, the place models a message exchange between the corresponding roles
which is drawn horizontally. In this respect, one might model activities as dis-
tributed workflow nets / inter-organizational workflows [16, 17].

The system unit prod firm embeds internal system actors and acts itself as
a system actor on the market. The market activity deliver-receive (including the
roles prod-firm and receiver) is an internal activity as it only consists of internal
actions. The activity produce-ship (including the roles producer and shipper) of
the producer firm on the other hand is a peripheral one as it includes peripheral
actions. 3 In the figure, we have just denoted the :iStep()/:pStep() channels for
activity steps and left out the associated parameters. We have highlighted the
involved transitions of two actions respectively. For once, we have the production

3One might apply a constraint that only allows peripheral actions in peripheral
activities. Additional internal actions that are required would have to be sourced out
to supplementary internal activities.

91

Fig. 8. Sample Scenario

action that is internal to the producer firm. Then we have the ship action that
is a peripheral action from the perspective of the producer firm and an internal
action from the perspective of the market. It draws a connection between the
two associated activities.

3.3 System Control

So far we have imposed no restrictions on which system actors may initiate which
kinds of system activities and which additional system actors may participate
in those activities. In this section, we extend the Janus-faced model from the
previous section in order to better account for the analytical distinctions from
Section 2.

Abstract Operational Model Figure 9 shows the model of an open system
unit with a two-level control structure. We make the same distinctions concerning
system actors (operation, integration, governance) and system activities (inte-
gration, governance) that were already made in Section 2. We illustrate this by
indicating a coloring of the places for system actors and activities using the same

92

colors as in Figure 2. Besides coloring the places for system actors and activi-
ties, we have colored transitions according to the interpretation, which kinds of
system actors carry out the corresponding actions. We also explicitly model the
concept of system rules that were already referred to in Section 2. This supports
developing an operational model for the analytical descriptions from Section 2.

Fig. 9. Open and Controlled System Unit: Operational Model

In order to deal with the topic of system rules comprehensively one would
have to deal with several subtle aspects. In particular, there exist various kinds
of rules with quite different characteristics concerning their genesis, their effects
and possibilities of being enforced (c.f. e.g. Scott’s characterization [18] of regu-
lative, normative and cultural-cognitive rules in institutions/organizations). For
our current purpose, we take a less sophisticated approach and apply a rather
plain handling and usage of system rules. We refer to rules that are explicitly
formulated (so to say “written down”) and can be consulted.4 Basically, we re-
quire a consistent, unambiguous ruleset that can be consulted to check whether

4These are the kind of rules we deal with explicitly. We do not prohibit that there
exist further kinds of rules, perhaps less formal ones that only take effect when inter-
preted and backed up by certain system actors. But for the moment we do not address
them systematically.

93

the invocation of a given system activity is admissible. This simple approach still
allows for quite expressive system specifications. In particular, it is three main
types of rules that can be formulated.

1. Who is allowed to invoke and individually shape (within given boundaries)
which kinds of activities?

2. Who is allowed/required to participate into which kinds of activities?
3. What form/characteristics do certain kinds of activities have to take on?

The first two points might give rise to sophisticated role/position/(group)
models that are for example quite common in MAS engineering. (Organization-
oriented) MAS specifications often take on a form where rights and responsi-
bilities of agents are formulated depending on which roles/positions (in which
groups) they occupy. The first and the third point give rise to more or less stan-
dardization concerning system activities. Constraints on form/characteristics of
activities might for example be a requirement that they have to be well-formed
workflows according to [19] or a declaration of interaction landmarks that an
activity has to pass like applied in [20]. System rules that grant system actors a
high level of freedom in shaping activities individually lead to rather organic sys-
tem behavior. A high level of standardization on the other hand leads to rather
bureaucratic system behavior. At one extreme, we might for example only have
a set of fixed activity patterns from which to choose.

As can be seen in Figure 9, only integration and governance actors may in-
voke system activities, either pro-actively or reactively in response to a request
by other system actors. The model exhibits separation of concerns with respect
to setting and applying system rules as it was already propagated in Section 2.
System rules are set and modified by governance actors in the course of gover-
nance activities. Any access to system rules other than that is restricted to be
read-only. Integration actors may invoke integration activities only if they are in
adherence to system rules. Governance actors on the other hand are allowed to
invoke governance activities without reference to system rules.5 Consequently,
we have the desired effect of integration as an intermediary between governance
and operation of a system unit.

We still deal with an open system model and recursive system of systems
structures. Both controlling and operational system actors can carry out periph-
eral actions. We obtain a modular comprehension of overall system control. Each
system unit is autonomous and may establish its own control mechanisms and
principles. However, (most) system units are not autarch, they depend on being
able/allowed to participate in activities of surrounding system units. Conse-
quently, control aspects have to be coordinated/negotiated among system units.
We encounter a mechanism of mutual constitution at each system level: Each

5However, for many systems such a bypass around system rules might never be
acceptable. In these cases, the model would have to be extended so that governance
and integration activity invocation are treated the same way. This basically means that
different governance activities offer different levels of authority when it comes to rule
amendment.

94

system unit as a whole imprints its embedded system actors and is at the same
time reconstructed by them.

Operational Details It is worth to have a second look at the operational details
of internal as well as peripheral actions in Figure 10 now that more analytical
distinctions have been introduced.

Fig. 10. Operationalization Details for Internal and Peripheral Actions

System actors are no longer only associated with an identifier but in addition
with an explicit actor type (although we pointed out in Section 2 that an actor
might have multiple types). The same holds for system activities.

In Section 3.2 we had already mentioned that the action parameter was actu-
ally a complex one. Here, we make use of this fact. In our reference net notation,
an action is a tuple [actionType, actionDesc, data] consisting of an action type, an
action description and additional data. The action type may take on the values
“operation”, “integration” or “governance” and in the case for internal actions in
Figure 10 (a), we see that it has to match the type of the actor that carries out
the action. For the case of peripheral actions in Figure 10 (b), things get a bit
more complicated. In Section 2, we described that the attachment of analytical
interpretations to actions differs from system level to system level. So the action
type of a peripheral action is itself a tuple, consisting of its analytical interpreta-
tion from the system unit in focus (which has to match the type of the internal
system actor that carries out the action) and its analytical interpretation at the
level of the surrounding system unit.

According to our modeling philosophy, the system rules again are represented
by a reference net and Figure 11 shows the channel interface. The channels
:query(), :approve() and :modify() are used for ruleset queries, for requesting the
approval of system activity invocations by integration actors and for rule amend-
ments by governance actors respectively. We leave out further operationalization
details as especially activity invocation encompasses several technical aspects
that we do not want to cover in this paper.

Although we demand the system rules to be represented as a reference net,
this is no heavy restriction on how to actually formulate rules and apply rea-
soning mechanisms on them. For example, it is typically preferred to formulate
rules in a declarative way. With reference nets it is easily possible to use the
ruleset net just as a wrapper for any kind of (JAVA-supported) declarative rule
engine (e.g. Prolog or JESS).

95

Fig. 11. Operationalization Details for System Rules

4 Related Work

As our modelling approach rests on quite basic ideas and provides concepts as
well as mechanisms that are neutral to specific technologies, the range of related
work is very wide. In some way, any modelling/engineering approach for complex
systems might be considered related and we have provided several references
throughout the paper. In this section, we restrict ourselves to address two fields
of related research explicitly. The first one is general system and organization
theory as it provided much inspirational input. The second one is MAS research
as it basically was the starting point of our research and we view our results as
a conceptual extension to classical agent-orientation.

General System and Organization Theory General system and organiza-
tion theory have a long tradition in studying openness and control of systems.

Concerning open systems, we have first of all adopted the common view
from [18] (among others): An open systems (like for instance an organization)
relies on services and resources of other systems but at the same time constructs
and continuously reconstructs its boundaries across which it relates to its envi-
ronment. Because of the importance of the environment for the studying of open
systems, it is not enough to characterize it as simply “everything else”. Instead,
our approach is consistent with the systemic perspective that the environment
does not only consist of other systems (that in turn view the first system as a part
of their respective environments) but is itself a system (c.f. e.g. [21, 22]). Each
open system has an environment exactly because of its participation in a greater
whole and its characteristics are a function of its fit into this greater context.
For sufficiently complex systems, we obtain a hierarchy of systems embedding
other systems. Simon [23] points out that hierarchy in this sense of clustering
is a fundamental feature of all complex systems. Each particular system is lo-
calized both in terms of its embedded systems and in terms of the systems by
whom it itself is embedded. As in our case, this perspective has frequently been

96

applied in a recursive manner, with similar systems at each level (c.f. the concept
a Holon [24] or the Viable System Model [25]).

In the case of system control, we have basically drawn on inspiration from
cybernetics [26] as a sub-field of general systems theory. It propagates the an-
alytical separation of a controlled part and a controlling part of a system. The
variant to carry out a further separation of the controlling part in two that we
have applied is quite popular (c.f. [27, 28]). Ashby [29] characterizes this distinc-
tion as separating the handling of disturbances “in degree” (applying existing
decision rules to the operation of a system) from the handling of disturbances
“in kind” (determining whether it is necessary to redefine the rules) and it is
closely related to what Argyris [30] labels double-loop learning. According to
Scott [18], this principle provides a very powerful and general model of control
that is widely employed in organizational settings.

The rationale behind the deep rooting of our approach in system and or-
ganization theory is to learn from the adaptivity, robustness, scalability and
reflexiveness of their respective objects of study (especially social systems) and
to translate their building principles in effective information technology. Thus,
we have not only combined and integrated the inspirations concerning openness
and system control into our model of a system unit. We have also proposed
an operational model that provides a technical understanding of the theoretical
concepts.

Multi-Agent System Engineering We have already stressed the relation to
MAS research as the starting point of our research in the introduction of this
paper. MAS technology already provides numerous technical realization means
for recursive nesting and collective agency in agent-based systems.

For example, organization-oriented approaches often advocate the concept of
groups as a further decomposition means. While groups are mostly just consid-
ered as contexts for individual agent behavior, several approaches (e.g. holons [31],
JACKTeams [32], socially-constructed agents [7], meta model for MAS with or-
ganizations as specialized agents [33]) go further and regard the grouping concept
as a potential basis for a recursive decomposition means, resembling the object-
oriented one. Our approach can be considered as orthogonal to these efforts. We
provide a conceptual model for collective agency. It consists of both an analytical
and operational part, but does not prescribe any particular realization means.

In addition, we have intentionally chosen a restricted set of basic concepts
(operation, integration, governance) that we relate horizontally as well as ver-
tically in a generic way. To account for these concepts while using current
agent-oriented technology (modelling approaches, methodologies, middleware)
is straightforward. For example, in Section 3.3 we have already drawn the con-
nection between our model and common MAS engineering approaches that rely
on specifications in terms of roles, positions and groups. Even our concept of uti-
lizing system rules/specifications that are “written down” and can be consulted
at run time is very common in MAS engineering, for example in the context of
organization-oriented middleware approaches [5].

97

To put it differently, while we see our model not necessarily coupled to agent-
orientation, we ascribe agent-oriented technology the potential of providing an
ideal vehicle for the deployment of systems of systems according to our approach.
In the opposite direction, we see our model as contributing to agent-oriented
efforts that seek to close the gap between classical agent-oriented thinking (flat
decomposition) and the need for hierarchic decomposition mechanisms that still
respect the actor perspective.

5 Conclusion

In this paper, we have presented a modular approach to comprehend systems of
systems by means of composing modular system units. Each system unit may
be regarded under a platform perspective, where it offers technical and strategic
frames for its inhabitants. Furthermore the same unit may be regarded under a
corporate agency perspective, where it collectively acts as a holistic entity in the
context of a higher-level system unit. Specifically, we have set collective agency
in relation to the control structures at each level. This provides a conceptual
basis to systematically study and implement different modes of coupling, both
horizontally and vertically.

In [8] we have applied this model to study different levels of what we termed
a reference architecture for multi-organization system. We have qualitatively
distinguished departments, organizations, organizational fields and the society as
iteratively embedded specific types of system units according to the model from
Figure 2. In [34] we have pursued this research by studying the fit between the
different levels of the reference architecture and different engineering approaches
from MAS field.

In this paper, we chose another focus instead of applying our model in an
analytical way. We have provided a concrete operational basis for the formerly
abstract concepts. The underlying purpose is somewhat twofold. The main pur-
pose is still to provide a reference model for the comprehension of and thinking
about complex systems. Here, we have supplied a technical understanding of our
former abstract concepts. This helps to get a clearer picture of how systems of
systems according to our thinking model function. In addition, such a technical
understanding is necessary in order to get a grasp of how to actually build soft-
ware systems according to our approach. As for concrete implementation means,
we assume no strong restrictions. But we have pointed out our belief that agent-
oriented technology has the potential to provide an ideally suited deployment
vehicle.

Besides such conceptual guidelines for comprehending and building systems
of systems, our reference net-based notation opens up another possibility. Ref-
erence nets allow for an “implementation through specification” approach as
explained in Subsection 3.1. For example, this approach has been proven suc-
cessful in the case of the conceptual multi-agent system model Mulan [35] that
has been refined/extended into a full-fledged FIPA-compliant multi-agent frame-
work (Capa [36]) based on reference nets. For the time being, our operational

98

model presented in this paper has not yet reached such a mature state. It is fully
functional as a prototype and can be considered as a proof of concepts. But for
specific usage, a reference model like ours has to be complemented by modeling
languages, tools and methodologies that really make it applicable in the first
place. For the time being, we have basically just a developed a reference model.
In future work, we plan to extend it into a comprehensive software engineering
approach.

References

1. Maier, M.: Architecturing principles for systems-of-systems. Systems Engineering
1(4) (1999) 267–284

2. Lankes, J., Matthes, F., Wittenburg, A.: Softwarekartographie: Systematische
Darstellung von Anwendungslandschaften. Wirtschaftsinformatik 2005 (2005)

3. Northrop, L.: Ultra-Large-Scale Systems: The Software Challenge of the Future.
Software Engineering Institute, Carnegie Mellon (2006)

4. Hess, A., Humm, B., Voss, M., Engels, G.: Structuring software cities - a multi-
dimensional approach. In: Proceedings of the 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2007). (2007) 122–129

5. Boissier, O., Hübner, J., Sichman, J.S.: Organization oriented programming: From
closed to open organizations. In O’Hare, G., Ricci, A., O’Grady, M., Dikenelli,
O., eds.: Engineering Societies in the Agents World VII. Volume 4457 of LNCS.,
Springer, Heidelberg (2007) 86–105

6. Jennings, N.: On agent-based software engineering. Artificial Intelligence 177(2)
(2000) 277–296

7. Boella, G., van der Torre, L.: Organizations as socially-constructed agents in
the agent-oriented paradigm. In Gleizes, M.P., Omicini, A., Zambonelli, F., eds.:
Engineering Societies in the Agents World V. Volume 3451 of Lecture Notes in
Computer Science., Springer Verlag (2005) 1–13

8. Wester-Ebbinghaus, M., Moldt, D.: Structure in threes: Modelling organization-
oriented software architectures built upon multi-agent systems. In: Proceedings of
the 7th International Conference an Autonomous Agents and Multi-Agent Systems
(AAMAS’2008). (2008) 1307–1311

9. Girault, C., Valk, R.: Petri nets for systems engineering: a guide to modelling,
verification and applications. Springer Verlag (2003)

10. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
11. Chandler, A.: Strategy and Structure: Chapters in the History of the American

Industrial Enterprise, publisher=Cambridge, MA: MIT Press, year=1962
12. Valk, R.: Petri nets as token objects: An introduction to elementary object nets.

In Desel, J., Silva, M., eds.: Application and Theory of Petri Nets. Volume 2001.
Springer Verlag (1998)

13. Kummer, O., Wienberg, F., Duvigneau, M.: Renew – the Reference Net Workshop.
Available at: http://www.renew.de/ (2006) Release 2.1.

14. Bock, C.: UML 2 activity and action models. Journal of Object Technology 2(5)
(2003) 43–53

15. Cabac, L., Moldt, D., Rölke, H.: A proposal for structuring Petri net-based agent
interaction protocols. In v. d. Aalst, W., Best, E., eds.: International Conference
on Application and Theory of Petri Nets 2003. Volume 2679 of Lecture Notes in
Computer Science., Springer-Verlag (2003) 102–120

99

16. Köhler-Bußmeier, M., Moldt, D., Wester-Ebbinghaus, M.: A formal model for
organisational structures behind process-aware information systems. Special issue
of ToPNoC on Concurrency in Process-Aware Information Systems, to appear
March 2009 (2009)

17. van der Aalst, W.: Interorganizational workflows. Systems Analysis - Modelling -
Simulation 34(3) (1999) 335–367

18. Scott, W.R.: Organizations: Rational, Natural and Open Systems. Prentice Hall
(2003)

19. van der Aalst, W.: Verification of workflow nets. In: Application and Theory of
Petri Nets 1997. Volume 1248 of Lecture Notes in Computer Science., Springer
Verlag (1997) 407–426

20. Vasquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems.
Autonomous Agents and Multi-Agent Systems 11 (2005) 307–360

21. Parsons, T.: Structure and Process in Modern Societies. Glencoe, IL.: Free Press
(1960)

22. Luhmann, N.: Soziale Systeme. Frankfurt a. M.: Suhrkamp (1984)
23. Simon, H.: The architecture of complexity. In: Proceedings of the American Philo-

sophical Society. Volume 106. (1962) 467–482
24. Koestler, A.: The Ghost in the Machine. Henry Regnery Co. (1967)
25. Beer, S.: The Heart of the Enterprise. New York: Wiley and Sons (1979)
26. Wiener, N.: Cybernetics. New York: Wiley and Sons (1948)
27. Swinth, R.: Organizational Systems for Management: Designing, Planning and

Implementation. Columbus, OH.: Grid (1974)
28. Herring, C.: Viable software: The intelligent control paradigm for adaptable and

adaptive architectures. Dissertation, Uiversity of Queensland, Department of In-
formation Technology and Electrical Engineering (2002)

29. Ashby, R.: Design for a Brain. Ney York: Wiley and Sons (1960)
30. Argyris, C., Schön, D.: Organizational Learning: A Theory of Action Perspective.

Reading, Mass.: Addison Wesley (1978)
31. Fischer, K., Schillo, M., Siekmann, J.: Holonic multiagent systems: A foundation

for the organization of multiagent systems. In: Holonic and Multi-Agent Systems
for Manufacturing, First International Conference on Industrial Applications of
Holonic and Multi-Agent Systems (HoloMAS). Volume 2744 of Lecture Notes in
Computer Science., Springer Verlag (2003) 71–80

32. AOS-Group: Jack intelligent agents team manual. Available at:
http://www.aosgrp.com/
documentation/jack/JACK Teams Manual WEB/index.html (2009)

33. Hahn, C., Madrigal-Mora, C., Fischer, K.: A platform-independent metamodel for
multiagent systems. Autonomous Agents and Multi-Agent Systems 18(2) (2008)

34. Wester-Ebbinghaus, M., Köhler-Bußmeier, M., Moldt, D.: From multi-agent to
multi-organization systems: Utilizing middleware approaches. In Artikis, A., Pi-
card, G., Vercouter, L., eds.: International Workshop Engineering Societies in the
Agents World (ESAW 08). (2008)

35. Köhler, M., Moldt, D., Rölke, H.: Modelling the structure and behaviour of Petri
net agents. In Colom, J., Koutny, M., eds.: Application and Theory of Petri Nets
2001. Volume 2075 of LNCS., Springer Verlag (2001) 224–241

36. Duvigneau, M., Moldt, D., Rölke, H.: Concurrent architecture for a multi-agent
platform. In Giunchiglia, F., Odell, J., Weiß, G., eds.: Agent-Oriented Software
Engineering III. Third International Workshop, AOSE 2002, Bologna, Italy, July
2002. Revised Papers and Invited Contributions. Volume 2585 of Lecture Notes in
Computer Science. Springer-Verlag, Heidelberg (2003) 59–72

100

From AGR to MASQ:

Understanding organizations
from a multi-agent point of view (Invited Talk)

Jacques Ferber

ferber@lirmm.fr

LIRMM – University of Montpellier II, 161 rue Ada,

34592 Cedex 5, Montpellier, France

Multi-agent systems (MAS) have taken their main ideas from human and animal
societies. One of the last concept that has unfolded in the MAS domain is the
concept of organiza-tion, from which OCMAS or (Organization Centered Multi-
Agent Systems) have been built. The AGR family (Ferber & Gutknecht, 1998;
Ferber, Gutknecht & Michel, 2004) has been one of the first to give a simple and
detailed account of what an OCMAS should be, and has belle the conceptual
basis for the MadKit platform (MadKit 2004). The Moise+ has also shown its
importance in the field by providing a general framework for groups, roles, goal-
driven agents and norms (Hbner, Sichman & Boissier, 2002). In this talk, we will
present several models (AGR, AGRE, MOISE+, etc..) and compare their way
of addressing the complexity of organizations in an operational and tractable
way from a computer science point of view. We will also explore the work on
institutions using Searle theory (Searle, 1995) and show how this can help the
understanding of organizations (Dastani et al. 2009). Then, we will present an
integrated model of MAS, using the MASQ generic model (Ferber et al. 2009,
Stratulat et al. 2009), which constitute an abstraction of the various aspects
of a MAS, generalizing the AGR and AGRE approach and incorporating the
institutional work of Searle. This model is based on a 4-quadrant conceptual
framework, where the analysis and design of a system is performed along two
axes: an interior/exterior dimension and an individual/collective dimension. We
will give a conceptual definition of this approach and we will show that it is
possible of applying it to practical problems in the computer science fields. We
will give some ideas about its use as a methodological tool and also how this
model could be used to represent human organizations, through the various
diagrams and notations that are proposed.

101

References

Dastani M, Tinnemeier N. A.M, J.-J. Ch. Meyer, A Programming Language for
Normative Multi-Agent Systems in Virginia Dignum (Ed), Multi-agent Systems:
Semantics and Dynamics of Organiza-tional Models. IGI.

Ferber, J. & Gutknecht, O. (1998). A Meta-Model for the Analysis and Design
of Organizations in Multi-Agent Systems. Proceedings of the 3rd International
Conference on Multi Agent Systems (ICMAS?98) (pp. 128-135). IEEE Computer
Society.

Ferber, J. (1999). Multi-Agent System: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley.

Ferber, J., Gutknecht, O., & Michel, F. (2004). From Agents to Organizations:
An Organizational View of Multi-Agent Systems. In P. Giorgini, J. Mller, J.Odell
(Eds.), Agent-Oriented Software Engineering (AOSE) IV (pp. 214-230). LNCS
2935, Springer.

Ferber, J., Michel, F., & Baez, J. (2005). AGRE: Integrating Environments with
Organizations. In D. Weyns, V. D. Parunak, F. Michel (Eds). Environments for
Multi-Agent Systems (pp. 48-56). LNAI 3374, Springer.

Ferber J., Stratulat T., and Tranier J. (2009) Towards an Integral Approach of
Organizations: the MASQ approach, inMulti-Agent Systems in Virginia Dignum
(Ed), Multi-agent Systems: Semantics and Dynamics of Organizational Models.
IGI.

FIPA (2005). The Foundation of Intelligent Physical Agents. www.fipa.org

Hbner, J., Sichman, J. & Boissier, O. (2002). A model for the structural, func-
tional, and deontic speci- fication of organizations in multiagent systems. In
Bittencourt, G. & Ramalho, G. L. (Eds.), Advances in Artificial Intelligence,
16th Brazilian Symposium on AI, SBIA’02, LNAI 2507 (pp. 118-128). Berlin,
Springer.

MadKit (2004). A Multi-Agent Development Kit. www.madkit.net

Searle, J.R. (1995). The Construction of Social Reality. Free Press.

Stratulat T., Ferber J., Tranier J. MASQ - Towards an Integral Approach of
Agent-Based Interaction. AAMAS 2009.

102

