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Chapter 1

Introduction

1.1 Objective

Prototyping a system is often the only way to test for correctness and to optimize
its behavior with respect to the initial specifications. System prototyping has traditionally
been an extremely tedious operation, ofte: requiring the use of commodity components
such as microprocessors and memories combined with random glue logic implemented in
TTL parts.

Recent advances in technology have yielded various types of programmable de-
vices that could reduce the prototyping time dramatically. Although these devices often
use different processes and differ in architectural configurations, they typically have the
equivalence of five to ten thousand gates [10] [7].

The objective of PLDS, or Prototyping in Lager using Decomposition and Syn-
thesis, is to provide a solution to map efficiently a given high-level design description of
arbitrary size and hierarchy into a set of programmable devices. This solution should op-
timize the logic and minimize the interconnect between the devices, and it should also be
flexible, expandable, and automated both in algorithms incorporated and the targets cho-
sen. So far, these implementation targets include field programmable gate-arrays (FPGA)
from Actel, SRAM-based gate-arrays from Xilinx, electrically programmable logic de-
vices (EPLD) from Altera, and full-custom integrated circuits using standard cells from
Mississippi State University [1] (8] [11].
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1.2 Solution

PLDS provides an interface between the Lager/Oct [6) environment and commer-
cially available tools supplied by the target manufacturers. In the case of mapping to
standard cells, PLDS generates the layout. With PLDS, high-level design descriptions are
mapped into structural gate instances using misII and espresso. Typically, the input de-
scriptions are written in bds, a Pascal-like behavioral language. But other input formats,
including blif, pla, and eqn, are also acceptable as design entries into PLDS.

A fast clustering algorithm can next be used to partition the entire design into
several groups while minimizing the connections between the groups. The clustering is
performed under three constraints: The maximum number of groups allowed, the maximum
number of elements within a group, and the maximum number of connections to a group.
These constraints reflect the limits associated with the target device. The entire design is
restructured into a new hierarchy according to the clustering results.

To map the final design into a set of devices, PLDS then generates a set of files
in the netlist file format required by the tools provided by the target manufacturer. PLDS
automatically inserts I/O buffers at the cluster boundaries and performs simple pin assign-

ments.



Chapter 2
Overview of Design Method

This section provides an overview of the three programs that make up PLDS. The
details of these tools will be discussed in Chapter 4.

Figure 2.1 shows the design strategy behind the PLDS system. PLDS consists of
three separate programs integrated in the Lager/Oct environment: the structure-processor
z2oct, the structure-processor partition, and the layout-generator prototype. X2oct, specified
at the macrocell level, is used first to generate a structural mapping of a design described in
bds. Once all behavioral descriptions in the design have been completely mapped, partition,
specified at the topcell level, is used to perform physical partitioning of the entire design
with the objective of minimizing interconnects between partitions. Lastly, prototypé is used
to generate the files in the netlist file format specified by the target manufacturer. These
programs are typically invoked automatically by DMoct but may also be run stand-alone.

Since these three programs are modular, not all three need to be used for all
applications. For example, r20ct may be skipped when the user instantiates cells directly
from the target library and does not have any behavioral descriptions. Also, partition may
be skipped altogether when the user wants to map the entire design into a single cluster.
In addition, partition may be used by itself to obtain a minimal cut of edges to a graph, or

to partition a full custom design into only a few packages.

2.1 Design Mapping

The design mapping from a behavioral description to a structural one is performed

by the structure-processor z2oct. In Lager/Oct terminology, z2oct generates a structure-
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Figure 2.1: PLDS design strategy using two structure-processors and one layout-generator.
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instance facet that contains only instances from a target library.

To achieve this end, z20ct takes as inputs the user’s description either in bds, blif,
Pla, or eqn formats, the target device, and any optional constraints placed on the mapping.
‘These parameters are specified as formal parameters in the .sdl file. X2oct then creates a
misll script based on the target library and any constraints, and invokes mislI to perform
the mapping. The output of z20ct is an Oct facet representing the implementation of the
description.

X2oct provides two main strategies to mapping designs, which I shall loosely refer
to as “decomposition” and “synthesis”. Decomposition is the technology mapping to find
an implementation of a design given a target library. This is analogous to finding trees in
a forest, given a set of particular trees to look for. Synthesis, on the other hand, does not
require a library and makes use of hard-coded pattern graph routines in misII specifically
written for the target device. (Currently, hard-coded routines for only Actel, Xilinx,
Altera are supported.) It typically uses a tree-mapping approach to cover the subject
graph with the pattern graph. This is also analogous to finding trees in a forest, but

without using a set of particular tree templates.

2.2 Partitioning

Structural partitioning is performed by the structure-processor partition. Partition
takes as input a design in Oct of arbitrary size and hierarchy, creates new structure-masters
and structure-instances representing the newly formed clusters based on the given con-
straints, and outputs the design represented by two levels of hierarchy: the topmost level
which interconnects the various clusters, and the cluster themselves which contains only
leafcell instances.

A quick clustering algorithm performs the partitioning under three constraints: the
maximum number of partitions allowed, the maximum number of nets cut by any partition
(or the maximum number of I/O terminals), and the maximum number of elements within
the partition. These constraints are specified as formal parameters in the .sdl file.

Here, the definition of “element” refers to some measure of logic capacity of the
target devices, and differs from one manufacturer to another, depending of the equivalent
logic granularity. For example, in the case of Actel, an “element” consists of three recon-
figurable two-inputs multiplexers (BASIC BLOCK). In the case of Xilinx, an “element”
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is a set of combinatorial logic, multiplexers, and registers (“Configurable Logic Block” or
CLB). And in the case of Altera, an “element” contains a 30-input, 8-output PAL, a
reconfigurable register, and an output buffer (Macrocell).

2.3 Design Targeting

The layout-generator prototype provides a design entry point into the various tools
provided by the target manufacturers. Prototype automatically inserts the appropriate I/0
buffers at the partition boundaries and generates files in a netlist format suitable for the
target manufacturer’s design environment. For example, in the case of Actel, prototype
generates the required .adl, .pin, and .crt files. In the case of standard cell, prototype

invokes the standard cell place and route program Stdcell to generate the layout.

2.4 Functional Verification

Functional verification in the Lager/Oct environment is performed by THOR, an
event-driven simulator developed at Stanford University. PLDS also uses this approach.
Associated with each primitive leafcell is a THOR model, which is a description of the
leafcell’s functionality encoded in the C language. A functional model of the user’s entire
design is obtained by combining the design’s connectivity with the leafcell’s functional

models.



Chapter 3
Details of Organization

Files related to the PLDS package reside under the conventional subdirectories
src, man, examples, bin, and lib. Figure 3.1 shows a diagram of the file structure. The
lib directory, which contains the target libraries, default files, and misIIscripts, are essential
to PLDS operation and are discussed in detail here. Details of the PLDS Oct facet policy,
consistent with the Oct symbolic policy, are provided in the Appendix A.

3.1 Abstraction Through Translation Libraries

Although misII will map directly to the particular target library, some designs
may not use the misII approach and make direct use of library cells instead. Also, some
targets lend themselves to more efficient implementations than other targets. These two
reasons suggest the importance of supporting portable designs that may be retargetted.

To allow these designs to be easily retargetted from one manufacturer to another,
the target libraries are organized with an added layer of hierarchy. This added layer of
abstraction hides the different naming and structural details of the target manufacturer
and also provides a translation from a generic library convention to the target library. That
is, this translation layer provides a “wrapper” such that the target library appears identical
to other libraries. Changing from one target to another requires the simple change of one
formal parameter and the search order in the lager file before running DMoct. Figure 3.2
shows a design of a VME address decoder targetted towards Actel. This same design
is shown in figure 3.3 but targetted towards Xilinx. The only difference between the

two designs is the specification of the target manufacturer. For example, in the case of
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I examplesl l src |

| THOR. xlatllbl | actetxiatsib | -+ | defautts | [scripts| [ xzoctun |
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Figure 3.1: Structural orga,nizatidn of files used by PLDS.
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Actel, the translation macros reside under directory lib/actel.xlat.lib, and the particular
actel primitive leafcells reside under the directory lib/actel.xlat.lib/actel.lib. Another
potential advantage to using the translation library is that the same THOR models can
be used across different targets, since the macros have the same terminal definition and
functionality. But to allow for functional verification of designs that instantiate leafcells
within the manufacturer’s primitive library directly, THOR models should also exist for the
primitive library as well.

To successfully hide the details of the different manufacturers’ libraries, the trans-
lation library should be comprehensive enough to allow for the sole change of the target
implementation without the need for modifying the design description. The trade-off for
this design flexibility may be the efficiency of primitive usage in a particular library. But
in typical applications, users will instantiate registers, buffers, and a few logic gates from
the translation library, with the majority of complex logic functions described behaviorally
rather than structurally. Since behavioral descriptions are mapped directly to the manufac-
turer’s library and not the translation library, these designs will not suffer from inefficient
primitive usage. Thus, the translation library should be made as comprehensive as possible
to allow for design flexibility.

The libraries include both the structure-masters as well as the structure-instances
since it is not necessary for the user to create local versions of the structure-instances,
thereby saving disk space. The reason structure-instances need not be created locally is

that the terminals within each library cell are always fixed in name and number.

3.2 MisII Scripts and Libraries

Under the directory lib/scripts is a set of misII template scripts used by z2oct
and mislL Since misII does not currently support parametrized scripts, z2oct creates custom
scripts by simple substituting of key string parameter names by parameter values into these
templates. These parameter values are obtained through the formal parameters specified
in the .sdl file. X2oct provides default parameter values if they are not specified. The set
of template scripts provide different mapping strategies for the various targets. The details
of these scripts are provided in the Appendix C.

The libraries used by misII to perform the technology mapping reside under the

translation library. For example, in the case of Actel, the misII library resided under



CHAPTER 3. DETAILS OF ORGANIZATION 12

lib/actel.xlat.lib/mis.lib. The primitives in the misII library are the same as the primi-
tive leafcell library.

One other library used by zZ2oct deserves special mention. The directory name
lib/x20ct.lib contains “generic” leafcells. These leafcells all have one output, a varying
number of inputs, and no logic function associated with them. This library is needed by
misI] in some cases of mapping to Xilinx or Altera. MislI attaches logic functions to

these generic cell instances when writing mapped oct facets.

3.3 Defaults

Under the directory lib/defaults are files used by partition and prototype. These

default files are included in Appendix B as well.

Partname

The file partname specifies the default device to which to map the given target
manufacturer name. The structure- processor partition uses this default to obtain the
partitioning constraints. (Note that the structure- processor z2oct only needs the name of
the manufacturer and not the partname in order to perform the technology mapping.) This
file consists of two columns. The first column is the name of the manufacturer, and the

second is the default part name.

Partitioning Constraints

The file limits specifies the default partitioning constraints to which to map given
the part name. This file is also required by the structure-processor partition. The file
limits consists of four columns: The first is the manufacturer’s name. The second is the
key partname. The third is a number representing the maximum number of elements that
this part can implement. The fourth, also a number, represents the maximum number of
signal pins on the part. This number represents the maximum number of nets that can be
cut by any particular partition.

Another number used by the structure-processor partition is the maximum number

of parts allowed to implement the design. The default number is set within partition itself.
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Pin Allocation

In addition to the files partname and limits under directory lib/defaults are a
set of files that specify the signal pins available on a particular part. The layout-generator
prototype uses these files to make simple one-to-one pin assignments. Prototype assumes

that each pin listed can be used as either input or output.
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Chapter 4

Details of Tools

The previous sections discussed in general terms the PLDS design method and
the organizational background. This section shall present in detail features and algorithms
used in the programs z2oct, partition, and prototype. Further details of individual programs

developed for these processors are provided in Appendices D, E, and F.

4.1 X22oct

Design Flow

Figure 4.1 shows a detailed design flow of the z20ct. Under the Lager environment,
this structure processor is invoked after the structure has already been created. Here,
the structure created by DMoct is a “footprint” Oct facet. That is, the facet does not
contain any structural information relating to the implementation of the design. It is z20ct
that orchestrates the various tools to replace this “footprint” facet with one that contains
implementation details.

To do this, z20ct extracts all the formal parameters from the facet and creates a
misll script based on their values. If the user is starting from a bds description, any bds
parameters are replaced by their values. X2oct converts design inputs, specified in bds,
blif, or pla formats, into the eqn format. During the translation process, details such as
handling DONT_.CARES and conforming to Lager/Oct policy naming conventions are
performed.

Misll is then invoked with the design description, now in eqn format, and the
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Figure 4.1: Design flow for structure-processor z2oct.
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customized misl] script as inputs. Depending on the type of mapping, some patchwork
tasks are performed after mislI is finished. For example, in the case of mapping to Actel,
misll writes out a “bdnet-like” file. In order to create an Oct facet out of this file, this file
is corrected before it is sent to “bdnet”. In the case of Xilinx and Altera, if the mapping
has been performed without the use of a particular library, the output from misIIis a set of
functionless blocks. Associated with each output terminal of a block is a LOGICFUNC-
TION property, which is a logic equation that expresses the block’s output as a function of
its inputs. XZoct replaces each functionless block by an equivalent generic block from the
x2oct.lib and retains the LOGICFUNCTION as an instance property.

After the new oct facet has been created, z2oct checks for terminal consistency
with the “footprint” facet. If any terminal present on the “footprint” facet but not present
on the new facet is found, a warning message is issued and this missing terminal is created
in the new facet. This occurs in the case where Vdd and GND terminals are required to
generate the logic “0” and “1” within the facet. Also, properties and formal parameters
from the “footprint” facet are copied over to the new facet. This new facet then replaces

the “footprint” facet.

Input Styles

X2oct supports twoinput styles. One approach is similar to the structure-processor
plagen and the other is similar to the structure-processor Bds2stdcell. In the plagen ap-
proach, a special cell master called xpld serves as a template and is instantiated for each
.bds description. Xpld is nothing more than a cell that calls the structure-processor z2oct
and that adds another layer of hierarchy into the design. The template is included in Ap-
pendix G. In the Bds2stdcell approach, the xpld template is not used, and users must
create their own. Figure 4.2 show a design using the xpld template. Figure 4.3 shows the
same design without using the template. Both styles are supported for compatibility with
existing designs that use these different approaches. There are no real advantages to using
one or the other, except that in the plagen approach, the terminal names are renamed
IN[i] and OUT[j] due to the extra layer of hierarchy imposed. The user may, however,
find this renaming undesirable especially when the number of inputs and outputs become

large.
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Figure 4.2: Example of design using xpld template.
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Figure 4.3: Example of design without using xpld template.
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Formal Parameters

Table 4.1 shows the formal parameters used by z20ct. There are a total of 21 formal
parameters supported by z2oct, two of which are required, and the other 19 optional. First,
the user must indicate the target manufacturer to which to map. Valid manufacturer
values are ACTEL, XILINX, ALTERA, and STDCELL. Second, the user must specify
the type of input description and the file name which contains the description. The user
specifies this by supplying the file name as the value to parameters bds, blif, pla, or eqn.

If the xpld template subcell is used, then the user must supply values to the
parameters inwidth and outwidth. Otherwise, these may be omitted.

The rest of the optional formal parameters deal with the technology mapping
performed by misIl. The mapping strategy is specified as DECOMP, SYNTHESIS,
CUSTOM, or INTERACTIVE.

In the case of DECOMP, where the mapping is performed using the manufac-
turer’s primitive library, the user may further specify whether to minimize for DELAY or
AREA. If DELAY is specified, then the design is collapsed into two levels of logic before
mapping is performed. If AREA is specified, then the design is also factored before map-
ping is performed. A map-factor value between zero to one may be specified to control
the minimization of area or delay, respectively. The speed-up factor specifies the number
of levels of logic to equalize.

In the case of SYNTHESIS, the technology mapping is performed without the
use of libraries, but with hard-coded routines within misII. Currently, only targets ACTEL,
XILINX, and ALTERA are supported with this technique.

Under SYNTHESIS, if the target manufacturer is ALTERA, then there are
two additional optional parameters. The or-fanin specifies the maximum number of fanins
to the OR-gates, and the and-fanin specifies the maximum number of fanins to the AND-
gates. If the target manufacturer is ACTEL, then there are five additional optional pa-
rameters. The heuristic-num specifies the subject graph selection, the nume-iterations
specifies the number of iterative improvements to make, the collapse-fanin specifies to
collapse nodes with no more than this number of fanin, the gain-factor specifies to iterate
only ‘if the product of cost x gain_factor is less than the gain, and the decomp-fanin
specifies to perform a decomposition for nodes with greater than this value. If the manufac-
turer is XILINX, then there are two additional optional formal parameters supported. The
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————————
[N [Fomal Porsmeter | Urage ] Defout Value | Dscipion ]

manufacturer required none target manufacturer
(ACTEL, XILINX,
ALTERA, STDCELL)
2 bds one required none .bds file name
3 blif one required none .blif file name
4 pla one required none .pla file name
| ] eqn one required none .eqn file name
6 inwidth required with xpld none number of inputs
7 outwidth required with xpld none number of outputs
8 mapping optional DECOMP | mapping method
(DECOMP, SYNTHESIS,
CUSTOM, INTERACTIVE)
9 script required if CUSTOM none custom script file name
10 minimize optional DELAY type of minimization
with DECOMP specified
(DELAY, AREA)
11 map_factor optional 0 area/delay weight
0 = minimize area
1 = minimize delay
12 speed_up optional 4 number of levels to equalize
13 orfanin optional 8 maximum OR-gate fanin
14 and_fanin optional 30 maximum AND-gate fanin
15 heuristic.num optional 2 subject graph selection
16 num_iterations optional 0 iterative improvements
17 collapse_fanin optional 3 collapse nodes with
this or less
18 gain_ factor optional 0.01 iterate if
gain > cost X gain.factor
19 decomp_fanin optional 4 good_decomp nodes
with this or greater
20 xl_fanin optional 5 limit on fanins to a node
21 xl_cover optional 3 heuristic number to solve
cover problem
—_—_——————

Table 4.1: Formal Parameters Used by X2oct.
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xlfanin specifies the limit to the fanin per node, and the xl_cover is a heuristic number
used to solve the cover problem.

In the case of CUSTOM, z20ct will invoke misII with the script specified by the
user. The user must provide the filename of the custom script.

In the case of INTERACTIVE, z20ct will invoke misIT interactively. The user
will be given a misII prompt.

Parametrized MisII Scripts

Since misII does not support parametrized scripts currently, z2oct gets around this
problem by simple string substitution of key values into key words within template scripts.
These scripts are provided in Appendix C. The keywords, shown in capitals, are replaced

by the formal parameter value specified in the users’ .sdl file.

Parametrized BDS Files

To allow for more flexibility, z2oct also supports the parametrization of key words
in .bds files. Key words in the .bds file are specified by prepending the “@” character
to the parameter name. This parameter is replaced by the valued specified as a formal

parameter in the .sdl file.

Vdd, GND Details

Since z2oct replaces the oct facet created by DMoct by one created by misII, the
terminals in both facets must match both in name and in number. In some cases, the oct
facet created by mislI contains Vdd and GND formal terminals. This occurs specifically in
the case of mapping to ACTEL through the SYNTHESIS approach. Recall that in the
case, all logic is implemented through reconfiguring the BASIC_BLOCK by tying certain
inputs to Vdd or GND. In any event, the Vdd and GND terminals must be available for
correct facet replacement. If users are using the xpld template subcell, then these terminals
are created automatically for the cases that need them. Users must provide these terminals

when they are not using the xpld template subcell.



CHAPTER 4. DETAILS OF TOOLS 22

4.2 Partition

Detail Flow

Figure 4.4 shows the flow for the structure-processor partition, which is typically
run at the top-most level. Partition takes as input an oct structure of any size and hierarchy.
The input is usually an oct structure that includes the results generated by z2oct, but any
input is acceptable.

Given this oct structure, partition performs a physically partitioning under three
constraints: The maximum number of groups allowed (pldlimit), the maximum number
of elements (or nodes) within a group (modulelimit), and the maximum number of con-
nections (edges cut) to a group (pinlimit). Currently, partition employs a fast-clustering
algorithm to perform the partitioning, but future approaches can be easily integrated. The
output of partition is a restructured oct facet of two levels of hierarchy functionally equiv-
alent to the original facet.

Partition accomplishes the task of structural partitioning as follows. First, the
entire oct structure is flattened down to the leafcell level. Associated with each leafcell
in the primitive library is a property called CELLCOUNT, which specifies the number
of elements required in the given target manufacturer’s device to implement the given
leafcell. After assigning node and net id’s to the flattened structure, a simple pinlist is
created representing the network. A clustering algorithm takes this pinlist and generates
the partition. The intermediate pinlist input and partitioned output are simple text files
that can be viewed and edited for more flexibility. In most cases, these files can be ignored,
but are provided for experimentation. The results of the clustering algorithm are included
in the DMoct log file.

Partition takes the cluster results and creates new oct facets called “cluster-i”,
where “i” is the cluster id. Partition also inserts the appropriate layout-generator in prepa-

ration for the generation of files for the manufacturer.

Formal Parameters

Table 4.2 shows the formal parameters used by partition. Partition supports six
formal parameters, only one of which is required. The user must supply either the name

of the target manufacturer or the name of the particular partname to which to map, or
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N T
[No. | Formal Parameter | Usage | Default Value

1 manufacturer required none target manufacturer
(ACTEL, XILINX,
ALTERA, STDCELL, NONE)
2 partname optional | depends on | target device
| manufacturer
3 partition optional [ CLUSTER | partitioning algorithm
(CLUSTER, INTERACTIVE)
4 modulelimit optional | depends on | maximum elements
partname per cluster
5 pinlimit optional | depends on | maximum nets
partname cut per cluster
6 pldlimit optional 10000 maximum clusters allowed

Table 4.2: Formal Parameters Used by Partition.

both. Given only the name of the manufacturer, “partition” will assume default partname
devices.

The formal parameter partition, which specifies the partitioning approach, can
take values CLUSTER, INTERACTIVE, or FLATTEN. If CLUSTER, the default,
is specified, then a quick clustering algorithm is used. If INTERACTIVE is specified,
then users is given a csh prompt, allowing them to manipulate the partitioning by modifying
the pinlist file manually or with some other approach. If FLATTEN is specified, then the
entire structure is flattened and left as one large cluster.

The other optional formal parameters are the constraints modulelimit, pinlimit,
and pldlimit, as discussed previously. If these constraints are not given, then partition will
assume default constraints based on the partname.

Clustering Algorithm

The quick clustering algorithm used is based on the simple principle that the larger
the number of nets exist between a pair of nodes, the more these nodes should be placed
into the same cluster [3] [2] [4]. The algorithm looks at all node pairs with net(s) between
them, and assigns a clustering value with each of these candidate pairs. The clustering

value takes into account the conjunctivity and disjunctivity between these pairs. That is,
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the cluster value CV between nodes i and j is:

P (%) IR (CF)]
CV(i,j) = 30) + EG) (4.1)

where I(3, j) is the total number “internal” nets between nodes i and J»and E(7) is the total

“external” number of nets on node i3, including I(,5). From equation 4.1, the clustering
value takes on a maximum value of 2 when two nodes have nets that go only from one to
another, and values less than 2 when nets on either node i or J or both go to other nodes.
Note that the clustering value is 0 when two nodes do not share any nets. However, the
algorithm does not even consider these nodes.

After clustering values have been assigned to every candidate pair, these pairs
are placed greedily into the same clusters according to their clustering values. After all
pairs have been considered and merged, the process is repeated until the desired number
of clusters remain. During each merger, the total number of nets external to the cluster
is checked against the constraint on the maximum number of external nets allowed, or the
pinlimit. Merger is not allowed if this maximum is exceeded with the merger.

A simple bin-packing algorithm is also used to prevent merging of pairs that would
violate the constraint on the maximum number of clusters allowed. Let N (modulelimit)
be the maximum number of nodes allowed in each cluster, and C (pldlimit) be the max-
imum number of clusters allowed. To ensure that these constraints N and C are followed,
some packing rules are checked before a candidate-pair is merged. That is, to ensure that
no modules become larger than some size N, each candidate in the pair must therefore be
of size N/2 or less. By similar reasoning, these candidates of size N /2 must be merged from
other candidates of size N/4 or less, and so forth. To keep track of the size of the clusters,

each cluster is assigned to one of B buckets, where B is found by:
B =1+ [log,N| (4.2)

Each bucket contains a number of clusters, all of which have a certain size S. The

value of § associated with the ith bucket is found by:

N . N
EE‘_‘ 2 S(C) > 2—BT+1 (43)

Given the bucket structure to keep track of the cluster sizes, the constraint C can

be checked by calculating the total number of clusters that would form should each cluster
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in a given bucket be merged with another in the same bucket and be assigned to the next

larger bucket size. That is, clustering into C clusters is feasible if:

T%*(B) < C (4.4)
T (i+1) = T'i+1)+[T)/2],

fori=1,...,B (4.5)

TH1) = 0 (4.6)

where T*(4) is defined as the number of clusters in bucket i before merging, and TH1(i) is
defined as the number of clusters in bucket i after merging. Note that feasibility can be
established by a single pass through the bucket structure from equation 4.4. Note also that
equation 4.4 is an approximation, since it does not take into account that some mergers
may not be performed because of pinlimit restriction.

In the actual check for feasibilility, the “slack” or the difference between S (1) and
the size of a cluster in the ith bucket in equation 4.3 is taken into account, since the “slack”

would allow for the merger of a large cluster with a small cluster.

Clustering File Format

As mentioned earlier, the clustering program called by the structure-processor
partition reads and writes in a simple pinﬁst format. This offers the advantages of allowing
users to make quick changes to the constraints to obtain quick results, allowing users to
make manual changes including initial conditions, and providing a file format for future
partitioning tools.

This pinlist, which is generated by partition and found under the directory PAR-
TITION, represents the user’s design after it has been flattened and assigned node and
net id numbers.

There may be six sections to the pinlist file. The first section of the pinlist lists the
node id number and the instance name associated with it. Node 0 represents the external
world. The second section of the pinlist lists the net id number and the net name associated
with it. Net 0 represents GND, and net 1 represents Vdd. Both sections one and two exist
as comments.

The CONSTRAINT section contains the constraints modulelimit, pldlimit,

and pinlimit, and is obtained from the formal parameters or from the defaults file. The
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SIZE section indicates the initial size of each cluster. (Note that node 0 is assigned the
modulelimit so that no node will become merged with the external world.) The PINLIST
section is a list relating each node to each net attached to them. And lastly, the CLUSTER
section indicates that certains nodes should be placed into the same cluster. The user may
specify this section to ensure that certain nodes will occur within the same cluster. It is this
section that is generated by the cluster algorithm, which in turn controls the restructuring
of the oct database.

Restructured Facet

Given the cluster results, partition creates new masters and instances of these
clusters within the oct database. The restructured facet, functionally the same as the users
original design, has at most three levels of hierarchy: The leafcell level, the cluster level

which contain leafcell instances, and the topmost level which connects up the clusters.

Automatic Layout-Generator Property

Partition also inserts the appropriate layout generator prototype into each of these
clusters to facilitate the generation of target design files. If the layout-generator is speci-
fied at the topmost facet, then the clusters will inherit the same generator as the parent.

Otherwise, the default generator prototype is used for each cluster.

4.3 Prototype

Design Flow

Figure 4.5 shows the flow for the layout-generator prototype. Prototype generates
files representing the user’s design entry into the target manufacturer’s mapping tools. The
oct facet should contain only instances from the target manufacturer’s library. The files
generated by prototype are placed under directory PROTOTYPE.

Formal Parameters

Table 4.3 shows the formal parameters used by prototype. Prototype supports two

formal parameters, both of which are required. If the user had used the structure-processor
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Figure 4.5: Design flow for layout-generatorprototype.

[No. | Formal Parameter | Usage | Default Value | Doscription ]
1 manufacturer required none target manufacturer
(ACTEL, XILINX,
ALTERA, STDCELL, NONE)

2 partname required none | target device "

Table 4.3: Formal Parameters Used by Prototype.
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partition beforehand, then default formal parameters values would have been automatically
introduced in the design.
The formal parameter manufacturer specifies the file format for the generated

files. The formal parameter partname specifies which of the manufacturer’s part to use.

Design Targets
Actel

In the case of Actel, prototype generates three files per cluster. The .adl file
contains the netlist information, the .pin file contains the pin assignment, and the .crt file
contains net criticality specifications. The .adl file is generated from the oct structure, and
-pin file is generated using a simple pin assignment described below, and the .crt file is left

empty.
Xilinx

In the case of Xilinx, prototype generates one or two files per clusters, depending on
the mapping strategy used in z2oct. The .xnf file contains the netlist information, and the
-pal file, in PALASM format, is also generated if the synthesis approach was used. The
equations found in the .pal file comes from the LOGICFUNCTION property associated
with the generic instances in the design. The pin assignment is also performed as described

below.

Altera

In the case of Altera, prototype generates only one type of file per cluster. The
-adf file contains the netlist information as well as any equations generated through the
synthesis mapping approach in z2oct. Pin assignment is not done here since it is done

automatically bye the Altera software.

Standard Cell

In the case of standard cell, prototype calls the layout-generator Stdcell to generate
the layout.
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Automatic I/O Buffer Insertion

Before any files are generated, prototype inserts any necessary I/O buffer cells at
the boundaries of the newly created clusters. Prototype makes use of the DIRECTION
and TERMTYPE properties associated with each terminal of the leafcells to determine
the type of buffer to use. In general, users should include I/O buffers only at the toplevel of
their designs or leave them out altogether and allow prototype to insert them automatically.

Automatic Pin Allocation

Associated with each part in the PLDS library is a list of pins available for use as
either input or output. This allocation is performed starting from the top of the list. If the
user wants to make particular pin assignment, then the file containing these assignments is
used instead of the default.
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Chapter 5

Evaluation

5.1 Examples

To examine the design flow of PLDS, I used a simple design example of an address
decoder for a VME interface. (This decoder is an actual design for a speech recognition
system.) The constraints were set to small values to check the performance of the clustering
algorithm. Currently, the clustering algorithm will go as far as it can, given the constraints.
In some cases, not all the clusters ended up the last bucket (the largest size) indicating that
either the constraints were too stringent or that the resulting clusters were truly disjoint.
In the case of disjoint clusters, the user may add a CLUSTER section in the pinlist to

force the grouping.

5.2 Future Work

The PLDS system may be improved in the following areas. These improvements

require only a minor amount of programming.

Partitioning Algorithms

The structure-processor partition was written so that it may support future parti-
tioning algorithms. The pinlist format allows for developers to work with simple text files
instead of with the oct database. Other approaches to the partitioning problem, including

approaches using linear programming and simulated annealing, are certainly possible [5] [9].
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Timing Constraints

Currently, circuit timing has not been considered in PLDS. Future improvements
can be done through more accurate timing characterization of primitive cells in the misIl
library, leading to timing numbers of greater accuracy. A constraint on the critical path
may be incorporated into the structure-processor partition, although this is not easily done

with the current clustering algorithm.

Standard Cell Pads

Pads are not added to the clusters when the target implementation is full-custom
standard cells.
Expand libraries

Although the primitive libraries are complete, the translation libraries may be
expanded to include more commonly used macros.
PCB Interface

The netlist information at the topmost level after partitioning has been performed
is useful for PCB (printed circuit board) tools such as that provided by Racal-Redac. This

netlist shows how the clusters, now implemented in a PLDS, should be interconnected.

Backannotation Considerations

After a cluster has been successfully mapped into a target device, the pin assign-
ment and part selected need to be back-annotated into the oct database so that future

revisions, if any, can target the same device and footprint.

Target Comparisons

Some study into the mapping of different designs into different targets may be
performed to determine the effectiveness and appropriateness of each target. Intuitively,
PLA-like devices like those provided by Altera are appropriate for implementing controllers,

logic arrays, and glue logic, whereas gate-array type devices like those provided by Actel
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and Xilinx are appropriate for standard-cell and perhaps even datapath applications. This

intuition requires further investigation.
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Chapter 6

Conclusion

Prototypingin the Lager/Oct environment is possible through PLDS. This package
consists of three structure-processors integrated with the Lager design methodology. PLDS
maps and partitions designs using misII and a quick-clustering algorithm. PLDS was de-
veloped in an expandable and modular fashion, and makes use of translation libraries that
hide many details from the user, allowing for simple retargetting. Future manufacturers
can be supported by creating a library to represent their primitive gates and another to
represent the translation from the particular library to a common library. Other partition-
ing algorithms can be easily included by adhering to the simple pinlist format. Given the
PLDS framework, prototyping may become truly rapid.
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Appendix A

PLDS Policy

The three oct policies used by the PLDS system are based on the Lager/Oct
Symbolic Policy and differ in additional properties and bags. The details of these differences
are presented here. They are the Top Cell Policy, the Cluster Cell Policy, and the Leaf Cell
Policy.

A.1 Top Cell Policy

The Top Cell Policy introduces three additional properties and two additional bags
to the & ‘mbolic Policy. These additions are related to the partitioning of the topcell. The
NODEID and NETID properties are integer-valued properties attached to the instances
and nets, respectively. They are used to generate the pinlist for the clustering program.
The NODEID and NETID bags contain these properties as well. The CUT property is a

single property that is contained by all the nets that are cut as a result of the partitioning.

A.2 Cluster Cell Policy

The Cluster Cell Policy, used by the cluster facets one level below the topcell,
introduces five new properties and two new bags to the Symbolic Policy. These additions
are related to the generation of design files after the partitioning has completed. The INPUT
and OUTPUT properties are contained by all the formal terminals that are either inputs or
outputs to the cluster facet. There are only one of each property contained by the terminals.

Each formal terminal and net may also have an name alias property called NEWTERM and
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NEWNET, respectively. These properties are also contained by the NEW_TERM_NAME
and NEW_NET_NAME bags, respectively.

In the case of a technology mapping using the SYNTHESIS approach towards Xil-
inx and Altera, the mapped instances contained by the facet are from the "generic” library.
The logic function associated with each generic instance is found by the LOGICFUNCTION
property attached to the instance. This string-valued property is a logic equation in pre-fix

notation relating the generic output to the generic input(s).

A.3 Leaf Level Policy

The Leaf Cell Policy adds four new properties to the Symbolic Policy. In addition
to the usual DIRECTION and TERMPLACE properties attached to the formal terminals,
PLDS also requires a PINNUMBER. property. This integer- valued property is used to
determine the order of formal terminals in the file format used by the target manufacturer.

The FORMAL_PARAMETES bag has added CELLNAME, CELLCOUNT, and
CELLTYPE to the usual CELLCLASS property. The CELLNAME is needed in the cases
where the facet name cannot be the same as the name of the primitive it represents. (This
occurs when the primitive name begins with a numeric character.) The CELLCOUNT
property indicates the number of elements required to implement the leafcell using the tar-
get manufacturer’s devices. The CELLTYPE property is required only by Altera. This
property takes on the values "MACRO”, "LOGIC”, "OBUFFER?”, or "IBUFFER” to in-
dicate that the leafcell represents a macrocell, a logic primitive, an output structure, or an

input structure, respectively.
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Defaults

B.1 Partname

; Default partname to use for each manufacturer.

; Search is done using grep on manufacturer to get
i partname. Manufacturer must therefore be unique.
; Format:

; manufacturer partname

-
’

ACTEL ACT1020-PL84
XILINX XC3090
ALTERA EP1810
STDCELL STDCELL
NONE NONE

B.2 Limits

; Default modulelimit and pinlimit for each partname.

; Search is done using grep for partname to get associated

39
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; modulelimit and pinlimit. The partname entries must therefore
; be unique.
; Format:

; manufacture partname modulelimit pinlimit

ACTEL ACT1010-PL44 295 34
ACTEL ACT1010-JQ44 295 34
ACTEL ACT1010-PL68 295 57
ACTEL ACT1010-JQ68 295 57
ACTEL ACT1010-PG84 295 57

ACTEL ACT1020-PL44 546 34
ACTEL ACT1020-JQ44 546 34
ACTEL ACT1020-PL68 546 57
ACTEL ACT1020-JQ68 546 57
ACTEL ACT1020-PL84 546 69
ACTEL ACT1020-JQ84 546 69
ACTEL ACT1020-PG84 546 69

XILINX XC3020 64 64
XILINX XC3030 100 80
XILINX XC3042 144 96
XILINX XC3064 224 120
XILINX XC3090 320 144

ALTERA EPM5016 16 20
ALTERA EPM5024 24 24
ALTERA EPM5032 -32 28
ALTERA EPM5064 64 44
ALTERA EPM5127 128 44
ALTERA EPM5128 128 68
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ALTERA EPMS130 128 100
ALTERA EPM5192 192 84

ALTERA EP1800 48 64
ALTERA EP1810 48 64
ALTERA EPS00 24 36
ALTERA EP910 24 36
ALTERA EP600 16 20
ALTERA EP610 16 20
ALTERA EP320 8 18
ALTERA EP310 8 18
ALTERA AUTO 48 64

STDCELL STDCELL 1000 1000

NONE NONE 1000 1000

B.3 Pinlists

Associated with each target device is a file referred to by the “device-package”
name which lists all the pins available for use as inputs or outputs. For example, the file
ACT1010-JQ44 contains:

BIPUTS

1 2 45 6 7 8 91112
13 15 17 18 19 20 22 23 24 26
27 28 29 30 31 33 36 37 38 39
40 41 42 44
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Appendix C

MislII Scripts

C.1 Actel

ACTEL.DECOMP.AREA
Note: Mapping using decomposition while minimizing area.

set autoexec ps

set OCT-CELL-VIEW structure_instance

set OCT-CELL-PATH LIBPATH/actel.xlat.lib/actel.lib
set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read_library LIBPATH/actel.xlat.lib/mis.lib/actel.lib.mis
collapse

source LIBPATH/scripts/script

map -m MAP_FACTOR -s

phase -g

write_bdnet

ACTEL.DECOMP.DELAY

Note: Mapping using decomposition while minimizing delay. This is done by

collapsing the network before mapping.
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set autoexec ps

set OCT-CELL-VIEW structure_instance

set OCT-CELL-PATH LIBPATH/actel.xlat.lib/actel.lib
set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read_library LIBPATH/actel.xlat.lib/mis.lib/actel.lib.mis
collapse

speed_up -d SPEED_UP

map -m MAP_FACTOR -s

phase -g

write_bdnet

ACTEL.SYNTHESIS
Note: Mapping using synthesis (hard-coded misII) routines.

set autoexec ps

collapse

source LIBPATH/scripts/script

act_map -h HEURISTIC_NUM -n NUM_ITERATIONS -f COLLAPSE_FANIN \
-g GAIN_FACTOR -d DECOMP_FANIN

act_map -h HEURISTIC_NUM -r BDNET_FILE

C.2 Altera

ALTERA.DECOMP.AREA
Note: Mapping using decomposition while minimizing area.

set autoexec ps

set OCT-CELL-VIEW structure_instance

set OCT-CELL-PATH LIBPATH/altera.xlat.lib/altera.lib
set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC
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set OCT-VIEWTYPE SYMBOLIC

read_library LIBPATH/altera.xlat.lib/mis.lib/altera.lib.mis
collapse

source LIBPATH/scripts/script

map -m MAP_FACTOR -s

phase -g

write_bdnet

ALTERA.DECOMP.DELAY

set autoexec ps

set O0CT-CELL-VIEW structure_instance

set OCT-CELL-PATH LIBPATH/altera.xlat.lib/altera.lib
set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read_library LIBPATH/altera.xlat.lib/mis.lib/altera.lib.mis
collapse

speed_up -d SPEED_UP

map -m MAP_FACTOR -s

phase -g

write_bdnet

ALTERA.SYNTHESIS

Note: Mapping using synthesis while minimizing delay. This is done by collapsing
the network, followed by tech_decomp into AND and OR gates with constraints on the

fanins. eqn2oct used to store equations with generic instances.

set autoexec ps

set OCT-CELL-VIEW structure_instance

set OCT-CELL-PATH LIBPATH/altera.xlat.lib/altera.lib
set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set 0CT-VIEWTYPE SYMBOLIC



APPENDIX C. MISII SCRIPTS 45

read_library LIBPATH/altera.xlat.lib/mis.lib/altera.lib.mis
collapse

source LIBPATH/scripts/script

tech_decomp -a AND_FANIN -o OR_FANIN

write_eqn EQN_FILE

C.3 Xilinx

XILINX.DECOMP.AREA

set autoexec ps

set OCT-CELL-VIEW structure_instance

set OCT-CELL-PATH LIBPATH/xilinx.xlat.lib/xilinx.lib
set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read_library LIBPATH/xilinx.xlat.lib/mis.lib/xilinx.lib.mis
collapse

source LIBPATH/scripts/script

map -m MAP_FACTOR -s

phase -g

write_bdnet

XILINX.DECOMP.DELAY

set autoexec ps

set OCT-CELL-VIEW structure_instance

set OCT-CELL-PATH LIBPATH/xilinx.xlat.lib/xilinx.lib

set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read_library LIBPATH/xilinx.xlat.lib/mis.lib/xilinx.lib.mis
collapse

speed_up -d SPEED_UP
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map -m MAP_FACTOR -s
phase -g
write_bdnet

XILINX.SYNTHESIS

Note: Mapping using synthesis (hard-coded misII) routines.

set autoexec ps
set OCT-CELL-VIEW structure_instance
set OCT-CELL-PATH LIBPATH/xilinx.xlat.lib/xilinx.lib
set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

collapse

source LIBPATH/scripts/script
xl_split -n XL_FANIN

sweep

simplify

xl_partition -n XL_FANIN

sweep

simplify

xl_partition -n XL_FANIN

sweep

x1_k_decomp -n XL_FANIN

sweep

xl_cover -h XL_COVER -n XL_FANIN
time

xl_cover -h XL_COVER -n XL_FANIN
time

Xl_merge

time

" write_eqn EQN_FILE

46
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C.4 Stdcell

Standard script for mapping into MSU Stdcell library.

script.msu

set autoexec ps
set OCT-CELL-VIEW structure_instance

set OCT-CELL-PATH LIBPATH/stdcell.xlat.lib/stdcell.lib
set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read_library LIBPATH/stdcell.xlat.lib/mis.lib/stdcell2_2.genlib
collapse

source LIBPATH/scripts/script

map -m MAP_FACTOR -s

phase -g

write_bdnet

C.5 General

Note: Standard script for multilevel logic optimization.

script

sweep; eliminate -1
simplify

eliminate -1
simplify

resub -a

gkx -abt 30

resub -a; sweep
gex -bt 30

resub -a; sweep
gkx -abt 10
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resub -a; sweep
gex -bt 10
resub -a; sweep
gkx -ab

resub ~a; sweep
gex -b

resub -a; sweep
eliminate O
decomp -g *

eliminate -1; sweep

48
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Appendix D

X2oct

Usage: x2oct [-v] [-L logfile] [~T tempdir] celll[:view]

-v: verbose
-L: logfile
(default: x2oct.log)
-T: temp directory
(default: /usr/tmp)
cell: input facet

(default: structure_instance)

X2oct is a csh script that makes use of several custom programs. These programs

are described below.

D.1 x2octparam

Usage: x2octparam [-c char] [-a] [-L logfile] -o sed_outfile cell[:view]

-c: char delimiting parameter name
(default: ’@’)
-a: get parameters from parent
smv ACTUAL_PARAMETERS bag instead
-L: logfile name

(default: stderr)

-o: sed output filename
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cell[:view]: input facet to extract

(default view: "structure_instance")

X2octparam extracts parameters from either the FORMAL_PARAMETERS
bag or the ACTUAL_PARAMETERS bag, depending on whether the template zpld
subcell is used or not. X2octparam uses the leading “@” character of a parameter to denote
a variable in the .bds file, and creates a file for the string editor utility sed to perform the
actual string substitution in the .bds file.

D.2 myMisII and fixbdnet

The current version of misII contained a few errors in the bdnet file generated in
the case of mapping to Actel. MyMisIIis a modified verion which fixes some of these errors.
Other errors which I was not able to fix within myMisII were corrected by using an awk
script fizbdnet.

D.3 myNle

The current verion of the nle package provided with the octtools distribution used
the “.’ character in some of the net and instance names generated. This character often
causes problems for some of the tools provided by the manufacturers. To overcome this

problem, myNle simply uses the “_” character instead.

D.4 fixpla

Usage: fixpla [-g] -i pla_input -o sed_output [-L logfile] cell[:view]
-g: specifies generic ’xpld’ used

(default: not used)

-i: source pla filename
-H sed command filename
-L: . logfile name
(default: stderr)
celll:view]: reference facet

(default view: "structure_instance")
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The Lager/Oct Symbolic policy expects brackets “[“ and “|”to denote indexed
signals within a bus. Fizpla changes any angle brackets “;” and “;” found in the .pla
description before the description is sent to misII for mapping. Also, the .pla description
is compared to the reference facet for terminal name consistency. If the template xpld is
used, then the signals are mapped to “IN[i]” and “OUT][j]".

D.5 postSynthesis

Usage: postSynthesis [-L logfile] cell[:view]
-L: logfile name
(default: stderr)
cell[:view]: input facet name

(default view: "structure_instance")

Postsynthesis is used in the cases of mapping towards Altera and Xilinx using the
SYNTHESIS method. Postsynthesis attaches a property LOGICFUNCTION to each
of the generic instances specified by misII after it has mapped the design. Also, each generic

instance in the design is replaced by a generic cell from the x2oct.lib.

D.6 mis2siv

Usage: mis2siv -1 lager_cell[:view] [-L logfile] mis_cell[:view]
-1: source lager facet name
(default view: "structure_instance")
-L: logfile name
(default: stderr)
mis_cell[:view]: mis facet to modify

(default view: "structure_instance")

Mis2siv checks the newly created facet generated by misII with the original facet
it is to replace. Mis2siv creates any terminals not found in the newly created facet, connects
up Vdd and GND nets to the Vdd and GND terminals, if any, and attaches the NETTYPE
property to these nets, if found.
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Appendix E

Partition

Usage: partition [-v] [-d directory] [-L logfile] cell[:view]

-v: verbose

-d: directory to store output design files
(default: PARTITION)

-L: logfile name

(default: partition.log)
cell: input facet name

(default view: structure_instance)

The structure-processor partition is a csh script which makes use of several custom

programs. These programs are described below.

E.1 makePinlist

Usage: makePinlist [-f cell[:view]] [-L logfile] [-o outfile] cell[:view]
~f: flattened output facet name
(default: "cell:flat")

-L: logfile name
(default: stderr)
-0: output pinlist file name

(default: “"cell.pinlist")
cell[:view]: input facet name

(default view: "structure_instance")
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MakePinlist is the pre-processor for the partitioning program cluster and performs
three functions. First, makePinlist flattens the design to the leafcell level. Second, makePin-
list assigns NODEID and NETID numbers to each instance and net found in the flattened
design. Third, makePinlist creates a pinlist file from the design using the assigned instance

and net numbers.

E.2 cluster

Usage: cluster [-clstvw] [-L logfile] [-o output] input

-c: cleanup disjoint clusters at end
-1: print internal lists

~s: summary

-t: traverse clusters showing tree
-v: verbose

-w: turn ON any warnings

-L: logfile name

(default: stderr)
-o: output pinlist filename
(default: input.cluster)

input: input pinlist filename

Cluster is a partitioning program based on a quick-clustering algorithm. The input
is a pinlist generated by makePinlist, and the output is a pinlist which shows the resultant

partitioning. See section 4 for details of the algorithm.

E.3 makePartition

Usage: makePartition [-r cell[:view]] [-L logfile] -p pinlist celll:view]
-r: restructured output facet name

(default view: restructure)

-L: ' logfile name
(default: stderr)
-p: input pinlist file name

cell[:view]: input facet name
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(default view: "flat")

MakePartition is the post-processor to the partitioning program. It takes the
resultant pinlist and the flattened Oct facet, and restructures the design by grouping each
cluster into a new.cell (or master). Each newly created cell is named icell; cluster.i,
where i refers to the cluster ID number assigned by the clustering program. MakePartition
then creates a CUT property in the Oct cell and attaches all the nets cut to this property.
MakePartition also copies over the manufacturer and partname properties from the

topcell to the newly created cells.

E.4 insertLayGen

Usage: insertLayGen [-f] [-L logfile] cell[:view]
-f: insert layout gemerator at parent only
(default: layout generator inserted
at level below)
-L: logfile name
(default: stderr)
cell[:view]: input facet name

(default view: "structure_instance")

InsertLayGenis a simple program that inserts the layout-generator property into
the Oct design database. If the design is flat, then the default layout-generator inserted is
“prototype”. However, if the design is not flat (i.e. some partitioning has been performed),
then the topcell is given the layout-generator “NONE”, and the cluster cells are given
the layout-generator “prototype”.
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Appendix F

Prototype

Usage: prototype [-v] [-m] [-p pinfile] [-d directory] [-L logfile] cell[:view]

F.1

Usage:

-V
-m:

-P:

cell:

verbose

generate magic files, where applicable
pin assignment file

(default: depends on partname)
directory to store output design files
(default: PROTOTYPE)

logfile name

(default: prototype.log)

input facet name

(default view: structure_instance)

The layout-generator prototype is another csh script that makes use of custrom

programs. These programs are described here.

processActel

processActel [-h] [-p pinfile] [-d directory]l [-L logfile] cell[:view]

-h:

-p:

generate files for hierarchical cell
(default: input cell is flat)
input file to read allowed pin numbers

(default: ordered assignment)
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-d: directory to put output files
(default: "ACTEL")
-L: logfile name

(default: stderr)
cell[:view]: input facet name

(default view: "structure_instance")

ProcessActel generates the .adl, .crt, and .pin files needed by the Actel software.
ProcessActel uses the pin any number assignment specified and inserts the input and output

buffers at the cluster boundaries. The INPUT and OUTPUT properties are also attached
to the corresponding nets.

F.2 processXilinx

Usage: processXilinx [-h] [-p pinfile] [-d directory] [-L logfile] cell[:view]
~h: generate files for hierarchical cell
(default: input cell is flat)
-p: input file to read allowed pin numbers

(default: ordered assignment)

-d: directory to put output files
(default: XILINX")
-L: logfile name

(default: stderr)
cell[:view]: input facet name

(default view: "structure_instance")

ProcessXilinz is similar to processActel except it generates the .xnf ar;d -pal files
needed by the Xilinx software. ProcessXilinz generates the equations in the .pal file using
the LOGICFUNCTION properties attached to the generic cells.

F.3 processAltera

Usage: processAltera [-h] [-d directoryl [-L logfile] cell[:view]

=h: generate files for hierarchical cell
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(default: input cell is flat)

-d: directory to put output files
(default: "ALTERA")
-L: logfile name

(default: stderr)
cell[:view]: input facet name

(default view: "structure_instance")

ProcessAltera is similar to processXilinz except it generates the .adf file needed by
the Altera software. ProcessAltera generates the equations using the LOGICFUNCTION
properties attached to the generic cells, but these equations are placed in the same .adf file
under the EQUATIONS section. ProcessAltera also assigns new net and terminal names

since the Altera has a limit of eight characters in each name.
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Xpld Template

; leafcell for pld prototyping
(parent-cell xpld)

(parameters

inwidth

outwidth

(generic "")

(bds "")

(blif ")

(pla "")

(eqn "")
(manufacturer "")
(mapping "")
(script "")

(minimize "")
(map_factor ")
(speed_up "")
(or_fanin "")
(and_fanin "")
(heuristic_num "")

(num_iterations "")
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(collapse_fanin "")

(gain_factor "")

(decomp_fanin "")

)

(structure-processor x2oct)

(instance parent (
((terminal IN ) IN (width inwidth ))
((terminal OUT) OUT (width outwidth))

; add Vdd and GND terminals only for ACTEL SYNTHESIS approach
; to allow for Vdd, GND ties within the BASIC_BLOCK to parent cell
((terminal Vdd) Vdd ‘
(conditional (and (equal mapping "SYNTHESIS")
(equal manufacturer "ACTEL"))))
((terminal GND) GND
(conditional (and (equal mapping "SYNTHESIS")
(equal manufacturer "ACTEL"))))
))
(net Vdd (NETTYPE SUPPLY))
(net GND (NETTYPE GROUND))

(end-sdl)



