
Copyright© 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PLDS: PROTOTYPING IN LAGER USING

DECOMPOSITION AND SYNTHESIS

by

Robert K.Yu

Memorandum No. UCB/ERL M91/53

11 May 1991

Contents

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Objective 1
1.2 Solution 2

2 Overview of Design Method 3
2.1 Design Mapping 3
2.2 Partitioning 5
2.3 Design Targeting q
2.4 Functional Verification 6

3 Details of Organization 7
3.1 Abstraction Through Translation Libraries . 7
3.2 MisII Scripts and Libraries 11
3.3 Defaults 12

4 Details of Tools 14.
4.1 X2oct 14
4.2 Partition 22
4.3 Prototype 27

5 Evaluation 31
5.1 Examples 31
5.2 Future Work 31

6 Conclusion 34

Bibliography 35

A PLDS Policy 37
A.l Top Cell Policy 37
A.2 Cluster Cell Policy 37

PLDS: PROTOTYPING IN LAGER USING

DECOMPOSITION AND SYNTHESIS

by

Robert K. Yu

Memorandum No. UCB/ERL M91/53

11 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

College of Engineering
University of California, Berkeley

94720

Contents

List of Figures [{{

List of Tables jv

1 Introduction j
1.1 Objective 1
1.2 Solution 2

2 Overview of Design Method 3
2.1 Design Mapping 3
2.2 Partitioning g
2.3 Design Targeting g
2.4 Functional Verification q

3 Details of Organization 7
3.1 Abstraction Through Translation Libraries . 7
3.2 MisII Scripts and Libraries n
3.3 Defaults 22

4 Details of Tools 14
4.1 X2oct 14
4.2 Partition 22
4.3 Prototype 27

5 Evaluation 32
5.1 Examples 01
5.2 Future Work 32

6 Conclusion 34

Bibliography 3g

A PLDS Policy 37
A.l Top Cell Policy 37
A.2 Cluster Cell Policy 37

PLDS: PROTOTYPING IN LAGER USING

DECOMPOSITION AND SYNTHESIS

by

Robert K. Yu

Memorandum No. UCB/ERL M91/53

11 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PLDS: PROTOTYPING IN LAGER USING

DECOMPOSITION AND SYNTHESIS

by

Robert K. Yu

Memorandum No. UCB/ERL M91/53

11 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Contents

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Objective 1
1.2 Solution 2

2 Overview of Design Method 3
2.1 Design Mapping 3
2.2 Partitioning 5
2.3 Design Targeting 6
2.4 Functional Verification q

3 Details of Organization 7
3.1 Abstraction Through Translation Libraries .' . 7
3.2 MisII Scripts and Libraries H
3.3 Defaults 12

4 Details of Tools 14.
4.1 X2oct 14
4.2 Partition 22
4.3 Prototype 27

5 Evaluation 31
5.1 Examples 31
5.2 Future Work 31

6 Conclusion 34

Bibliography 35

A PLDS Policy 37
A.l Top Cell Policy 37
A.2 Cluster Cell Policy]]] 37

11

A.3 Leaf Level Policy 38

B Defaults 39
B.l Partname 39
B.2 Limits 39
B.3 Pinlists 41

C MisII Scripts 42
C.l Actel 42
C.2 Altera 43
C.3 Xilinx 45
C.4 Stdcell 47
C.5 General 47

D X2oct 49

D.l x2octparam 49
D.2 myMisII and fixbdnet 50
D.3 myNle 50
D.4 fixpla 50
D.5 postSynthesis 51
D.6 mis2siv 51

E Partition 52
E.l makePinlist 52
E.2 cluster 53
E.3 makePartition 53
E.4 insertLayGen 54

F Prototype 55
F.l processActel 55
F.2 processXilinx 56
F.3 processAltera 56

G Xpld Template 58

in

List of Figures

2.1 PLDS design strategy using two structure-processors and onelayout-generator. 4

3.1 Structural organization of files used by PLDS. 8
3.2 Design example using Actel target 9
3.3 Design example using Xilinx target 10

4.1 Design flow for structure-processor x2oct 15
4.2 Example of design using xpld template 17
4.3 Example of design without using xpld template 18
4.4 Design flow for structure-processor partition 23
4.5 Design flow for layout-generatorprotoij/pe 28

IV

List of Tables

4.1 Formal Parameters Used by X2oct 20
4.2 Formal Parameters Used by Partition 24
4.3 Formal Parameters Used by Prototype 28

Chapter 1

Introduction

1.1 Objective

Prototypinga system is often the only way to test for correctness and to optimize

its behavior with respect to the initial specifications. System prototyping has traditionally
been an extremely tedious operation, ofte: requiring the use of commodity components
such as microprocessors and memories combined with random glue logic implemented in
TTL parts.

Recent advances in technology have yielded various types of programmable de

vices that could reduce the prototyping time dramatically. Although these devices often

use different processes and differ in architectural configurations, they typically have the
equivalence of five to ten thousand gates [10] [7].

The objective of PLDS, or Prototyping in Lager using Decomposition and Syn
thesis, is to provide a solution to map efficiently a given high-level design description of
arbitrary size and hierarchy into a set ofprogrammable devices. This solution should op
timize the logic and minimize the interconnect between the devices, and it should also be

flexible, expandable, and automated both in algorithms incorporated and the targets cho
sen. So far, these implementation targets include field programmable gate-arrays (FPGA)
from Actel, SRAM-based gate-arrays from Xilinx, electrically programmable logic de
vices (EPLD) from Altera, and full-custom integrated circuits using standard cells from
Mississippi State University [1] [8] [11].

CHAPTER 1. INTRODUCTION 2

1.2 Solution

PLDSprovides an interface between the Lager/Oct [6] environment and commer

cially available tools supplied by the target manufacturers. In the case of mapping to

standard cells, PLDS generates the layout. With PLDS, high-level design descriptions are

mapped into structural gate instances using misll and espresso. Typically, the input de

scriptions are written in bds, a Pascal-like behavioral language. But other input formats,

including blif, pla, and eqn, are also acceptable as design entries into PLDS.

A fast clustering algorithm can next be used to partition the entire design into

several groups while minimizing the connections between the groups. The clustering is

performed under three constraints: The maximum number of groups allowed, the maximum

number of elements within a group, and the maximum number of connections to a group.

These constraints reflect the limits associated with the target device. The entire design is

restructured into a new hierarchy according to the clustering results.

To map the final design into a set of devices, PLDS then generates a set of files

in the netlist file format required by the tools provided by the target manufacturer. PLDS

automatically inserts I/O buffers at the cluster boundaries and performs simple pin assign

ments.

Chapter 2

Overview of Design Method

This section provides an overview of the three programs that makeup PLDS. The
details of these tools will be discussed in Chapter 4.

Figure 2.1 shows the design strategy behind the PLDSsystem. PLDS consists of

three separate programs integrated in the Lager/Oct environment: the structure-processor
x2oct, thestructure-processor partition, and the layout-generator prototype. X2oct, specified
at the macrocell level, is used first to generate a structural mapping ofa design described in
bds. Once all behavioral descriptions in the design have been completely mapped, partition,
specified at the topcell level, is used to perform physical partitioning of the entire design
with the objective ofminimizing interconnects between partitions. Lastly, prototype is used
to generate the files in the netlist file format specified by the target manufacturer. These

programs are typically invoked automatically by DMoct but may also be run stand-alone.

Since these three programs are modular, not all three need to be used for all

applications. For example, x2oct may be skipped when the user instantiates cells directly
from the target library and does not have any behavioral descriptions. Also, partition may
be skipped altogether when the user wants to map the entire design into a single cluster.
In addition, partition may be used byitself toobtain a minimal cut ofedges to a graph, or
to partition a full custom design into only a few packages.

2.1 Design Mapping

The design mapping from a behavioral description to a structural one is performed

by the structure-processor x2oct. In Lager/Oct terminology, x2oct generates a structure-

CHAPTER 2. OVERVIEW OF DESIGN METHOD

Behavorial

Description

4

X2oct

4
Structural

Description

4

Partition

4
Re-Structured

Description

4

Prototype

4
Physical

Description

(structure-processor)

(structure-processor)

(layout-generator)

Figure 2.1: PLDS design strategy using two structure-processors and one layout-generator.

CHAPTER 2. OVERVIEW OF DESIGN METHOD 5

instance facet that contains only instances from a target library.

To achieve this end, x2oct takes as inputs the user's description either in bds, blif,

pla, or eqn formats, the target device, and any optional constraints placed on the mapping.

These parameters are specified as formal parameters in the .sdl file. X2oct then creates a

misll script based on the target library and any constraints, and invokes misll to perform

the mapping. The output of x2oct is an Oct facet representing the implementation of the

description.

X2oct provides two main strategies to mapping designs, which I shall loosely refer

to as "decomposition" and "synthesis". Decomposition is the technology mapping to find

an implementation of a design given a target library. This is analogous to finding trees in

a forest, given a set of particular trees to look for. Synthesis, on the other hand, does not

require a library and makes use of hard-coded pattern graph routines in misll specifically

written for the target device. (Currently, hard-coded routines for only Actel, Xilinx,

Altera are supported.) It typically uses a tree-mapping approach to cover the subject

graph with the pattern graph. This is also analogous to finding trees in a forest, but

without using a set of particular tree templates.

2.2 Partitioning

Structural partitioningis performed bythe structure-processor partition. Partition

takes as input a design in Oct of arbitrary size and hierarchy, creates new structure-masters

and structure-instances representing the newly formed clusters based on the given con

straints, and outputs the design represented by two levels of hierarchy: the topmost level

which interconnects the various clusters, and the cluster themselves which contains only
leafcell instances.

A quickclustering algorithm performs the partitioning under three constraints: the

maximum number of partitions allowed, the maximum number of nets cut by any partition

(or the maximum number of I/O terminals), and the maximum number of elements within

the partition. These constraints are specified as formal parameters in the .sdl file.

Here, the definition of "element" refers to some measure of logic capacity of the

target devices, and differs from one manufacturer to another, depending of the equivalent

logic granularity. For example, in the case of Actel, an "element" consists of three recon-

figurable two-inputs multiplexers (BASIC BLOCK). In the caseof Xilinx, an "element"

CHAPTER 2. OVERVIEW OF DESIGN METHOD 6

is a set of combinatorial logic, multiplexers, and registers ("Configurable Logic Block" or

CLB). And in the case of Altera, an "element" contains a 30-input, 8-output PAL, a
reconfigurable register, and an output buffer (Macrocell).

2.3 Design Targeting

The layout-generator prototype provides a design entry point into the various tools

provided by the target manufacturers. Prototype automatically inserts the appropriate I/O

buffers at the partition boundaries and generates files in a netlist format suitable for the

target manufacturer's design environment. For example, in the case of Actel, prototype

generates the required .adl, .pin, and .crt files. In the case of standard cell, prototype

invokes the standard cell place and route program Stdcell to generate the layout.

2.4 Functional Verification

Functional verification in the Lager/Oct environment is performed by THOR, an

event-driven simulator developed at Stanford University. PLDS also uses this approach.

Associated with each primitive leafcell is a THOR model, which is a description of the

leafcell's functionality encoded in the C language. A functional model of the user's entire

design is obtained by combining the design's connectivity with the leafcell's functional

models.

Chapter 3

Details of Organization

Files related to the PLDS package reside under the conventional subdirectories

src, man, examples, bin, and lib. Figure 3.1 shows a diagram of the file structure. The

lib directory, which contains the target libraries, default files, and mtsi/scripts, are essential

to PLDS operation and are discussed in detail here. Details of the PLDS Oct facet policy,

consistent with the Oct symbolic policy, are provided in the Appendix A.

3.1 Abstraction Through Translation Libraries

Although misll will map directly to the particular target library, some designs

may not use the misll approach and make direct use of library cells instead. Also, some

targets lend themselves to more efficient implementations than other targets. These two

reasons suggest the importance of supporting portable designs that may be retargetted. .

To allow these designs to be easily retargetted from one manufacturer to another,

the target libraries are organized with an added layer of hierarchy. This added layer of

abstraction hides the different naming and structural details of the target manufacturer

and alsoprovides a translation from a generic library convention to the target library. That

is, this translation layerprovides a "wrapper" suchthat the target library appears identical

to other libraries. Changing from one target to another requires the simple change of one

formal parameter and the search order in the lager file before running DMoct. Figure 3.2

shows a design of a VME address decoder targetted towards Actel. This same design
is shown in figure 3.3 but targetted towards Xilinx. The only difference between the

two designs is the specification of the target manufacturer. For example, in the case of

CHAPTER 3. DETAILS OF ORGANIZATION

PLDS

bin I man lib examples] I src

THOR.xlat.llb actal.xlat.llb defaults scripts x2oct.llb

THOR

models

macros | actalJIb mls.llb limits partnamo pinfiies generic

leafcells THOR

models

Figure 3.1: Structural organization of files used by PLDS.

C -
i

C
O 3

O
Q

(p
a

r
a

a
t-

c
a

ll
d

a
c
o

d
a

)
I
P

W
W

M
U

I
(a

a
a

u
fa

c
tu

ra
r

•A
C

T
r.

f)
(p

a
rt

a
a

a
a

-A
C

T
lO

IO
-r

ca
iM

(p
a

c
t
It

Io
n

•C
U

>
*

rt
*

*
t

(a
o

d
a

la
ll

a
lt

1
1

)
tp

la
ll

a
lt

|0
0

|
I
p

ld
ll

a
lt

1
0

)

1
f

a
jm

ll
in

*
0

C
0

C
p

V
*

|

(
n

b
c
.I

l
*

(a
p

ld
•
tr

e
y

H
la

a
ld

ta
)}

)
(o

u
tu

ld
tn

I0
|

(s
d

a
*

d
a

c
o

d
a

.b
d

a
*

)
(a

a
a

u
fa

ct
u

ra
r

a
a

a
u

fa
ct

u
ra

r)
(s

a
p

p
in

g
n

a
p

p
in

g
)

(a
la

la
lt

a
•*

*
!*

•)
Im

p
fa

c
to

r
*

0
*

|
1

(o
b

u
f

1 1 r
a

a
a

tb
u

f
p

r
o

b
a

u
f

v
q

b
u

f
d

b
a

a
a

b
u

f
U

H
M

t
a

l

la
o

M
s
u

C
•
c
t

I
v
a

a
b

u
f

o
u

tp
r
o

b
a

d
d

r
b

u
f

a
u

tp
r
a

b
d

a
ta

b
a

f
g

a
a

h
a

a
d

b
u

f
•
a

ta
a

b
u

fi

(d
b

u
f

Id
*

M
)
|

(
la

*
|M

)
(a

a
d

i
•
a

d
l)

(a
tr

u
ct

u
ra

-p
ro

cM
a

sr
p

a
rt

lt
lo

a
01

I I
A

c
tl

v
a

A
a

lg
a

a
la

(
M

t
0

(M
t

D
a

(
M

t
U

A
c
ta

(
M

t
a

c
ta

a
i

(M
t

a
c
t
M

l
I I

A
U

M
O

u
T

rO
T

S
I (M

t
p

ro
b

l
(M

t
»

Q
l

(
M

t
d

b
a

a
a

l

iM
t

a
b

a
u

l
I
m

i
ln

d
.i

l
(
M

t
a

c
tl

v
a

a
l

(M
t

e
u

tp
ro

to
a

d
d

rl
(M

t
e
u

tp
to

b
d

a
ta

l
(M

t
g

o
a

h
a

a
d

l
(
M

t
a

d
a

n
a

l
I i

•
u

r
n

.!
o

o
r
r
u

T
*

i (
M

t
r
r
o

b
s
i

I
m

i
v
g

s
i

(I
p

a
ra

n
t

D
0

)(
d

a
In

)(
In

.
In

))
)

I(
In

*
O

u
t)

Id
*

la
))

)
((

pa
ra

at
td

a
ct

a
l

Id
*

C
lk

)
(d

a
C

U
)I

)
((

p
a

ra
a

t
a

c
ta

a
i)

(d
a

O
u

t)
))

((
p

a
ra

n
t

A
ct

M
l)

(d
a

O
u

t)
))

K
p

ro
b

su
f

la
)

(a
rr

a
y

O
U

T
»

))
)

ll
v
g

b
u

f
In

)
la

rr
a

y
o

u
t

•)
))

K
dM

M
B

uC
In

)
(a

rr
ay

o
u

t
7

))
)

((
•b

a
a

a
su

f
In

)
(a

rr
ay

OU
T

•)
))

ll
ln

d
a

a
b

u
f

In
)

la
rr

a
y

O
U

T
M

il
(l

a
c
tl

.a
a

b
u

f
ln

|l
a

rr
a

y
o

u
r

II
I)

ll
ou

tp
ro

ba
oa

rb
uf

In
)(

a
rr

a
y

o
u

t
))

))
((

o
u

tp
te

&
a

a
ta

b
u

f
In

)
la

rr
a

y
OU

T
1

))
)

((
O

oa
ka

ad
bu

f
In

)
(a

rr
a

y
O

U
T

l|
|)

ll
a

d
a

n
n

b
u

f
in

)
(a

rr
a

y
O

U
T

0
))

)

((
p

ra
b

b
u

f
O

u
t)

II
.Q

D
u

f
O

u
t)

(p
a

ra
n

t
r
-r

o
M

ll
))

(p
a

re
n

t
V

0
S

1
))

)

d
ec

o
d

cs
d

!
(
M

t
C

K
lt

.S
l

ln
*

t
ta

a
M

*
l

In
a

t
I
n

d
n

S
I

(
n

n
A

c
tA

ll
(M

t
O

u
lf

M
S

I
(
M

t
O

u
t
r
o

t
s
i

(M
t

c
o

>
i»

..
a

(
M

t
a

o
t
n

; t
r
io

i
»

v
r
i

IM
ti

H
te

f
O

ut
)

(p
ar

an
t

D
lt

n
ll

ll
l

H
a

M
M

b
u

f
O

ut
)

lU
IW

IB
a

M
S

I)
))

{(
IM

M
b

tt
f

O
ut

|
Ip

tH
M

In
M

a
ll

))
)

((
•c

tl
vM

b
u

f
O

ut
)
Ip

u
m

a
e
ta

si
in

ll
ou

tp
to

ba
dd

rb
ur

O
ut

)
Ip

ar
an

t
O

u
tr

a
d

S
l)

))
M

ou
tp

ro
D

da
ta

bu
f

O
ut

)(
pa

ra
at

O
u

tr
o

tt
D

I)
((

O
M

M
tO

M
f

O
ut

)
(p

ar
aa

t
C

O
W

lM
d)

))
((

ad
aa

ab
uf

O
ut

)
(p

tt
u

t
a

fi
ta

a
))

)

(M
t

a
(B

fW
ID

T
H

•)
(
M

t
a

m
|M

I
A

M
I

(
M

t
A

M
)

(
M

t
a

m

(
M

t
M

M
(
M

t
L

M
C

tM
(
M

t
a

m
! I

r
a

a
a

t
a

lg
n

a
l

t (
M

t
M

h
i
i
i

(
M

t
H

M
t
l
l

(
M

t
B

.M
IK

O

(
M

t
H

W
I

(
(
•
r
e
v

la
?>

I(
a

rr
a

y
I*

t)
(l

a
r
r
a

y
in

II
(l

a
r
r
a

y
la

«|
((

a
rr

a
y

la
I)

((
a

rr
a

y
la

J)
((

a
rr

a
y

la
I)

((
a

rr
a

y
la

0)

(p
a

ra
n

t
a

j
i
h

)
(p

a
r
.a

t
M

in
i

Ip
a

ra
n

t
M

ll
ll

(p
a

ra
n

t
a

m
i)

)
(p

a
ra

n
t

A
R

ID
)

Ip
a

ra
n

t
A

M
D

))
)

(p
a

ra
n

t
u

n
to

a
}
))

(p
a

r
.a

t
a

«
a

>
l|

t
tl

a
a

(
a
n
d
-
a
d
l
)

I(
a

n
d

!
In

ll
H

a
n

d
}

ln
l|

(p
a

ra
n

t
a

a
a

a
ta

il
))

(p
a

ra
a

t
a

a
a

a
ta

il
))

I(
a

n
d

)
o

u
t)

(r
a

a
a

tb
u

f
la

))
)

((
ra

a
a

tb
u

f
O

ut
)

(p
ar

aa
t

B
M

a
tB

)|
)

la
tm

r
c

su
r-

ru
i

I
Ip

a
ra

n
t

V
d

d
)

lr
.a

.t
b

u
f

O
a)

Ip
r
o

b
b

u
f

0
a

(
tt

q
b

u
f

0
a

)
Id

b
a

M
b

u
f

O
a)

la
b

a
M

b
u

f
0

.1
(I

n
d

a
sb

u
f

O
a)

(a
c
tl

v
a

a
b

u
f

0
a

)
lo

u
tp

ro
b

a
d

d
rb

u
f

0
.1

(o
u

tp
ro

b
o

a
ta

lw
f

O
a)

(
e
o
a
h
a
a
d
b
u
f
O
a
)

(
a
d
a
n
n
b
u
f

0
a
)

I
d
A

0
a
)

(
d
*

0
.
1

(a
rr

ay
Vd

d
(c

on
di

ti
on

al
(a

oj
ua

l
na

pp
in

g
•i

ra
rw

il
f)

))

la
tm

r
c

ca
o

u
a

o
i

((
p

a
r
a

n
t

C
M

C
)

(d
*

r»
(d

A
C

)
(d

a
p)

(d
a

o

(a
rr
ay

ea
o

(c
on
di
ti
on
al

(a
ou
al

na
pp
in
g
•
n
a
m
s
i
f
)
)
)

>
V

C
O

O O I <
©

9
0

/0
7

/2
9

J9
;0

8
:

I
p

a
r
a

n
t-

c
a

ll
d

a
c
o

d
a

)

(p
a

r
a

a
a

ta
r
a

la
a

n
u

fa
c
tu

r
a

r
•K

lL
ia

x
*

(p
a

r
ti

ti
o

n
•C

U
lS

T
t*

a
|

la
o

d
u

la
ll

a
lt

1
»

)
(
p

la
ll

a
lt

1
0

0
)

I
p

ld
ll

a
lt

1
0

)

ta
a

p
p

la
g

•0
C

0
O

W
)

la
u

b
c
a

ll
a

U
p

ld
a

r
r
a

y
ll

lm
tl

d
th

lt
|

(o
o

tu
ld

tn
1

0
)

Ib
d

a
-d

a
c
o

d
a

.b
d

a
*

)
ta

a
n

o
fa

c
tu

ra
r

a
a

M
fa

c
c
a

ra
r)

p
u

p
p

in
g

n
a

p
p

in
g

!
ta

ln
la

li
.

•*
*

!*
•)

(a
a

p
fa

c
to

r
*

0
*

|
)

to
b

u
f

) 1 r
a

a
a

tb
u

f

p
r
o

b
b

o
f

v
q

jb
u

f
d

b
a

a
a

o
a

f

•
b

a
a

a
ta

tf

I
n

d
a

s
b

u
f

a
c
tl

v
a

a
b

u
f

o
u

tp
r
o

b
a

d
d

r
b

u
f

o
u

tp
r
o

b
d

a
ta

b
u

f
g

o
a

b
a

a
d

b
u

f
a

d
a

n
a

b
u

f)

Id
b

o
f

Id
a

d
»

)
ll

a
«

In
*

)
(
•
a

d
l

a
n

d
1

|

It
tt

a
c
t«

ra
-p

ro
o

M
M

r
p

a
r
ti

ti
o

n
01

f I
a

c
tt

v
a

*
a

lg
M

la

l«
a

t
o

I
M

t
0

a
I
M

t
U

a
c
t*

{
M

t
a

c
ta

a
i

I
M

t
a

c
ta

a
i

i i
m

u
u

t
o

e
r
r
o

T
i

(I
p

a
ra

a
t

D
0

)(
4

A
la

)l
is

*
In

))
)

Il
ia

*
o

a
t)

Id
*

la
))

|
I

Ip
a

ra
a

t
b

d
A

ct
a

)
|d

*
C

lk
l

Id
a

C
U

D
)

(i
p

a
ra

a
t

A
c
tA

M
I)

|«
*

O
a

t)
))

((
p

a
ra

a
t

a
c
ta

a
i)

(d
a

O
a

tl
lI

(M
t

p
r
o

b
l

IM
t

«
q

t
(
M

t
d

b
a

a
a

l
(M

t
a

tx
a

a
.l

(
M

t
la

d
a

a
l

(
M

t
a

c
tl

v
a

a
l

(M
l

o
u

lp
rc

b
a

d
d

rl
(M

t
o

u
tp

r
o

b
d

a
ta

l
|M

t
g

o
a

h
a

a
d

l
In

a
t

a
d

a
n

n
l

I t
a

o
m

a
o

u
tp

u
ti

i (
M

t
tr

e
b

S
I

(
M

t
V

0
S

I
(
M

t
O

a
a

a
a

S
I

ll
p

r
o

b
b

s
f

ta
l

|(
*

r
jb

u
f

la
)

I
Id

b
a

M
b

u
f

la
)

H
a

b
a

M
b

u
f

In
)

ll
ln

d
a

a
b

o
f

In
)

(a
rr

a
y

o
u

t
f)

)|
la

r
r
a

y
O

U
T

•)
>

)
la

rr
a

y
O

U
T

1
)1

)
la

rr
a

y
o

u
t

a
m

la
rr

a
y

O
U

T
»

)|
|

((
a

c
tl

v
a

a
b

u
f

In
)(

a
rr

a
y

O
U

T
I)

)I
((

o
u

tp
ro

b
a

d
d

rb
u

f
In

)l
a

rr
a

y
OU

T
1

))
)

((
o

u
tp

ro
b

d
a

ta
b

u
f

la
)(

a
rr

a
y

OU
T

1
))

|
((

g
o

a
b

a
a

d
b

u
f

la
)

la
rr

a
y

O
U

T
ll

)|
ll

a
d

a
n

n
su

f
In

)
(a

rr
a

y
o

u
r

0
))

)

((
p

re
b

b
u

f
O

at
)

(p
a

ra
a

t
rr

o
M

I)
))

((
v
q

b
u

f
O

at
)

(p
a

ra
n

t
v
e
il

))
)

(I
d

b
a

a
a

b
u

f
O

ut
)

(p
a

ra
n

t
D

m
m

I)
))

)

d
e
c
o

d
e
.s

d
l

(
m

i
s
a

a
a

a
tl

(
M

t
la

d
a

a
S

I
(
M

t
A

c
t
A

S
I

(M
l

O
u

tt
A

d
l)

(
M

t
O

u
t
r
o

t
S

I
(
M

t
C

o
A

a
a

a
d

(
M

t
A

s
o

r
a

: >
fl

D
la

P
U

T
f

J (M
t

*
n

rt
T

M
io

ra
(
m

i
*

m

(
M

t
A

M
I

(n
o

t
A

M
I

(
M

t
A

M
I

(
M

t
A

M
0

(
M

t
u

r
o

a
a

a

I
n

a
t

A
l
l

r I
r
a

a
a

t
a

lg
a

a
l

(|
M

t
M

M
ta

i
In

a
t

a
*

M
ta

i
I
M

t
•
•
M

ta
o

I
M

t
M

M
ta

I I
t
l
a

a

K
a

b
a

a
a

o
u

f
O

u
t)

(p
a

ra
a

t
Im

m
II

I)
)

(t
ln

d
a

ib
u

l
o

u
tl

Ip
a

ra
a

t
la

d
a

a
ll

ll
l

ll
a

c
tl

*
M

b
u

f
O

u
t)

(p
a

rM
t

A
c
tA

S
ID

)
(o

u
tp

ro
b

a
d

sr
b

u
l

O
u

t)
(p

a
ra

n
t

0
u

t»
A

d
S

I|
l|

(o
u

tp
ro

b
d

a
ta

b
u

f
O

u
t)

Ip
a

ra
n

t
O

u
tr

o
ts

ll
l)

I(
g

o
a

h
a

a
d

b
u

f
O

ut
)

(p
a

ra
n

t
C

o
a

a
M

d
))

)
((

a
d

a
n

a
b

u
f

O
a

tI
Ip

a
ra

n
t

A
D

C
a

a
i)

)

I
la

rr
a

y
la

I)
Il

a
rr

a
y

la
II

Il
a

r
r
a

y
la

»)
Il

a
r
r
a

y
IB

«)
Il

a
r
r
a

y
la

1)
Il

a
r
r
a

y
la

II
Il

a
rr

a
y

la
1)

Il
a

r
r
a

y
IB

0
)

Ip
a

ra
a

t
*

I
I
)
)
)

Ip
a

ra
n

t
*

M
)
||

Ip
a

ra
a

t
A

M
II

II
Ip

a
ra

a
t

A
N

II
II

Ip
a

ra
n

t
A

M
I)

))
Ip

a
ra

n
t

A
M

))
)

Ip
a

ra
a

t
U

K
N

M
))

)
Ip

a
ra

a
t

*
ja

)
|)

H
a

n
d

)
ln

l|
(p

a
ra

a
t

B
a

a
a

tB
l)

))
(l

a
n

d
?

ln
l|

(p
a

ra
n

t
B

a
a

a
tB

l)
))

K
a

n
d

l
O

u
t)

(r
a

a
a

tb
u

f
la

))
)

((
ra

a
a

tb
u

f
O

u
t)

(p
a

ra
n

t
M

M
ia

tl
)

(B
tT

T
T

ft
S

U
ff

L
T

I
((

p
a

r
a

n
t

V
d

d
)

(r
a

a
a

tb
u

f
O

a
)

Ip
r
o

b
b

u
f

O
a

)
(v

q
b

u
f

O
a

)
Id

b
a

M
b

a
f

O
a

)
la

b
a

a
a

b
a

f
O

a
)

ll
n

d
a

a
b

u
f

O
a)

(a
c
tl

v
a

a
b

u
f

O
a

)
(o

a
tp

ro
b

a
d

d
rb

u
f

O
a)

(o
u

tp
ro

b
d

a
ta

b
u

f
O

a)
{g

o
a

h
a

a
d

b
u

f
O

a)
(a

d
a

n
a

b
u

f
O

n)
Id

*
O

.)
Id

a
O

a
|

la
rr

a
y

V
dd

Ic
o

n
d

lt
lo

M
l

(a
ga

al
M

p
p

la
g

•t
T

B
T

B
U

lf
II

)

(K
T

T
iy

i
ca

o
o

B
o

)
({

p
a

ra
n

t
e
«

0
)

Id
*

•>
(d

*
C

)
Id

a
r
i

w
a

c
i

la
rr

a
y

CM
S

(c
o

n
d

it
io

n
a

l
(a

ga
al

aa
pp

la
g

•S
T

B
T

K
S

ir
-l

l)

C
o ft C

O O O P
a

O

CHAPTER 3. DETAILS OF ORGANIZATION U

Actel, the translation macros reside underdirectory lib/actel.xlat.lib, and the particular

actel primitive leafcells reside under the directory lib/actel.xlat.lib/actel.lib. Another

potential advantage to using the translation library is that the same THOR models can

be used across different targets, since the macros have the same terminal definition and

functionality. But to allow for functional verification of designs that instantiate leafcells

within the manufacturer's primitive library directly, THOR models should also exist for the

primitive library as well.

To successfully hide the details of the different manufacturers' libraries, the trans

lation library should be comprehensive enough to allow for the sole change of the target

implementation without the need for modifying the design description. The trade-off for

this design flexibility may be the efficiency of primitive usage in a particular library. But

in typical applications, users will instantiate registers, buffers, and a few logic gates from

the translation library, with the majority of complex logic functions described behaviorally

rather than structurally. Since behavioral descriptions are mapped directly to the manufac

turer's library and not the translation library, these designs will not suffer from inefficient

primitive usage. Thus, the translation library should be made as comprehensive as possible
to allow for design flexibility.

The libraries include both the structure-masters as well as the structure-instances

since it is not necessary for the user to create local versions of the structure-instances,

thereby saving disk space. The reason structure-instances need not be created locally is
that the terminals within each library cell are always fixed in name and number.

3.2 MisII Scripts and Libraries

Under the directory lib/scripts is a set of misll template scripts used by x2oct
and misll.Since mislldoes not currently supportparametrized scripts, x2oct creates custom

scripts by simplesubstituting of keystring parameter names by parameter values into these

templates. These parameter values are obtained through the formal parameters specified
in the .sdl file. X2oct provides default parameter values if they are not specified. The set

of template scripts provide different mapping strategies for the various targets. The details
of these scripts are provided in the Appendix C.

The libraries used by misll to perform the technology mapping reside under the

translation library. For example, in the case of Actel, the misll library resided under

CHAPTER 3. DETAILS OF ORGANIZATION 12

lib/actel.xlat.lib/mis.lib. The primitives in the misll library are the same as the primi
tive leafcell library.

One other library used by x2oct deserves special mention. The directory name

lib/x2oct.lib contains "generic" leafcells. These leafcells all have one output, a varying
number of inputs, and no logic function associated with them. This library is needed by

misll in some cases of mapping to Xilinx or Altera. MisII attaches logic functions to

these generic cell instances when writing mapped oct facets.

3.3 Defaults

Under the directory lib/defaults are files used by partition and prototype. These

default files are included in Appendix B as well.

Partname

The file partname specifies the default device to which to map the given target
manufacturer name. The structure- processor partition uses this default to obtain the

partitioning constraints. (Note that the structure- processor xBoct only needs the name of

themanufacturer and not the partname inorder to perform the technology mapping.) This
file consists of two columns. The first column is the name of the manufacturer, and the
second is the default part name.

Partitioning Constraints

Thefile limits specifies the default partitioning constraints to which to map given
the part name. This file is also required by the structure-processor partition. The file

limits consists of four columns: The first is the manufacturer's name. The second is the

key partname. The third is a number representing the maximum number of elements that

this part can implement. The fourth, also a number, represents the maximum number of

signal pins on the part. This number represents the maximum number of nets that can be

cut by any particular partition.

Another number used by the structure-processor partition is the maximum number

of parts allowed to implement the design. The default number is set within partition itself.

CHAPTER 3. DETAILS OF ORGANIZATION 13

Pin Allocation

In addition to the files partname and limits under directory lib/defaults are a

set of files that specify the signal pins available on a particular part. The layout-generator

prototype uses these files to make simple one-to-one pin assignments. Prototype assumes

that each pin listed can be used as either input or output.

14

Chapter 4

Details of Tools

The previous sections discussed in general terms the PLDS design method and
the organizational background. This section shall present in detail features and algorithms
used in the programs x2oct, partition, and prototype. Further details of individual programs
developed for these processors are provided in Appendices D, E, and F.

4.1 X2oct

Design Flow

Figure 4.1 shows a detailed design flow of the x2oct. Under the Lager environment,
this structure processor is invoked after the structure has already been created. Here,
the structure created by DMoct is a "footprint" Oct facet. That is, the facet does not
contain any structural information relating to the implementation of the design. It is x2oct
that orchestrates the various tools to replace this "footprint" facet with one that contains
implementation details.

To do this, x2oct extracts all the formal parameters from the facet and creates a

misll script based on their values. If the user is starting from a bds description, any bds
parameters are replaced by their values. X2oct converts design inputs, specified in bds,
blif, or pla formats, into the eqn format. During the translation process, details such as
handling DONT.CARES and conforming to Lager/Oct policy naming conventions are
performed.

MisII is then invoked with the design description, now in eqn format, and the

CHAPTER 4. DETAILS OF TOOLS

.eqn

i, 1

.pla

h 1

.blif

h 1

.bds

h 1

Subcells misll

OCT

Database

Scripts

Figure 4.1: Design flow for structure-processor x2oct.

15

CHAPTER 4. DETAILS OF TOOLS 16

customized misllscript as inputs. Depending on the type of mapping, some patchwork
tasks are performed after misllis finished. For example, in the case ofmapping to Actel,
misll writes out a "bdnet-like" file. In order to create an Oct facet out of this file, this file
is corrected before it is sent to "bdnet". In the case ofXilinx and Altera, if the mapping
has been performed without the use ofa particular library, the output from misll is a set of

functionless blocks. Associated with each output terminal of a block is a LOGICFUNC-

TION property, which is a logic equation that expresses the block's output as a function of

its inputs. X2oct replaces each functionless block by an equivalent generic block from the
x2oct.lib and retains the LOGICFUNCTION as an instance property.

After the new oct facet has been created, x2oct checks for terminal consistency
with the "footprint" facet. Ifany terminal present on the "footprint" facet but not present
on the new facet is found, a warning message is issued and this missing terminal is created

in the new facet. This occurs in the case where Vdd and GND terminals are required to
generate the logic "0" and "1" within the facet. Also, properties and formal parameters
from the "footprint" facet are copied over to the new facet. This new facet then replaces
the "footprint" facet.

Input Styles

X2oct supports two input styles. One approach issimilar to thestructure-processor
plagen and the other is similar to the structure-processor Bds2stdcell In the plagen ap
proach, a special cell master called xpld serves as a template and is instantiated for each

.bds description. Xpld is nothing more than a cell that calls the structure-processor x2oct
and that adds another layer of hierarchy into the design. The template is included in Ap
pendix G. In the Bds2stdcell approach, the xpld template is not used, and users must

create their own. Figure 4.2 show a design using the xpld template. Figure 4.3 shows the
same design without using the template. Both styles are supported for compatibility with
existing designs that use these different approaches. There are no real advantages to using
one or the other, except that in the plagen approach, the terminal names are renamed

IN[i] and OUT[j] due to the extra layer of hierarchy imposed. The user may, however,
find this renaming undesirable especially when the number of inputs and outputs become
large.

e t
o W x p» 3 0
.

(t
>

a S3 0
0 X s p> c
+

9
0

/0
7

/2
9

J9
;1

0:
41

Ip
a

r
a

n
t-

c
a

ll
d

a
c
o

d
a

)
(p

a
ra

o
a

ta
ra

(
a

u
b

c
.l

l.

(a
p

ld

lo
b

a
f

Id
b

u
f

ll
n

*
la

a
d

l

(n
a

p
p

in
g

•S
T

B
T

B
Z

S
IS

*
)

(a
a

a
u

fa
c
tu

ra
r

*
*

c
m

*
l

(p
a

r
tn

a
a

a
•
A

C
T

)0
1

0
-K

8
f

{
p

a
r
ti

ti
o

n
"
C

L
O

IT
W

I
(
a

o
d

u
l.

lt
a

lt
1

4
)

I
p

ln
ll

a
lt

1
0

0
1

(
p

ld
ll

n
lt

1
0

)

a
r
r
a

y
U

ln
u

ld
tk

IS
)

(o
u

ta
ld

tb
10

1

I I r
a

a
a

tb
u

f

p
r
o

b
b

u
f

*
g

b
u

f
d

e
a

a
a

b
u

f
a

b
a

a
a

b
u

f

la
d

a
a

b
a

f
•
c
t
l
t
M

b
a

f
o

u
tp

r
o

b
a

d
d

r
b

u
f

o
u

tp
r
o

b
d

a
ta

b
u

f
g

o
a

h
a

a
d

b
u

f

(I
V

O
M

C
•O

lO
O

IO
O

O
tf

l
II

O
B

A
Sf

O
tC

-O
lO

O
IO

O
II

f)
(f

S
B

A
S

tO
fC

-O
lO

S
IO

lO
tf

'l
(a

a
n

u
fa

c
tu

r
a

r
•

A
C

T
U

M
la

a
p

p
ln

g
M

p
p

ln
g

)
(n

u
n

I
ta

r
a

tl
a

u
"
1

"
)

I

I ld
»

d
t)

>
ln

»
|

•
a

d
l)

(a
tr

u
c
ta

ra
-p

ro
o

a
a

o
r

p
a

rt
it

io
n

01
I I

A
c
tl

v
a

*
a

lg
u

la

I
n

a
t

0

I
M

t
O

n

I
M

t
L

d
a

c
tA

(
M

t
a

c
ta

a
i

(
M

t
a

c
ta

a
i

I i
a

m
a

t
o

u
tp

u
ts

i (n
a

t
p

ro
b

l
(M

t
*

q
l

I
M

t
d

b
a

a
a

l
I
M

t
r
»

h
I

(
M

t
ln

o
.i

l
I
M

t
a

c
tl

v
a

a
l

IM
t

o
u

tp
to

b
a

d
d

rl
IM

t
o

u
tp

ro
b

d
a

ta
l

IM
t

g
o

a
h

a
a

d
l

I
M

t
a

d
a

n
n

l
> i

a
u

r
r
ta

o
u

r
tu

r
s

I(
p

a
ra

n
t

0
0

)(
<

A
la

)(
la

*
la

))
)

(l
la

*
O

u
t)

(d
B

la
))

)
(I

p
a

ra
a

t
td

*
c
t*

||
d

*
C

Ik
I

(d
a

C
U

D
)

(I
p

a
ra

a
t

A
c
ta

a
i)

Id
*

O
u

t)
))

(I
p

a
ra

a
t

A
c
ta

B
ll

ld
S

O
a

t)
))

((
p

ro
b

b
u

f
la

)
(a

rr
a

y
O

U
T

•)
))

ll
v
o

b
u

f
la

l
(a

rr
a

y
O

U
T

•)
))

ll
d

b
a

a
a

b
u

f
In

)
la

rr
a

y
O

U
T

1
)1

)
I(

a
b

a
a

a
b

u
f

In
)

la
rr

a
y

O
U

T
ti

ll
M

la
d

a
a

b
u

f
la

)
(a

rr
a

y
O

U
T

})
))

((
•c

tl
v
a

a
b

a
f

In
)l

a
rr

a
y

O
U

T
4

1
))

{(
o

u
tp

ro
b

a
d

d
rb

u
f

In
ll

a
rr

a
y

O
U

T
1

))
)

I{
o

u
tp

ro
b

d
a

ta
b

u
f

In
)l

a
rr

a
y

O
U

T
1

))
)

ll
g

o
a

n
a

a
d

b
u

f
In

)l
a

rr
a

y
O

U
T

I)
))

ll
a

d
a

n
n

b
u

f
In

)
la

rr
a

y
O

U
T

0
))

)

d
e
c
o

d
c
sd

l

(
M

t
r
r
o

b
S

I
In

a
t

V
Q

J
I

I
M

t
D

B
a

a
o

ll

(
M

t
S

B
a

a
.l

l
(
M

t
l
n

d
t
.l

l
I
m

i
A

c
ia

ii

|M
t

O
u

tr
A

d
ll

I
M

t
o

u
t
r
o

t
s
i

(
M

t
C

O
M

M
d

(
M

t
A

D
ta

a

i i
r
u

t
is

r
u

r
s

ll
p

to
b

b
u

f
O

ut
|

(p
ar

an
t

rr
o

b
S

I)
))

l(
*

q
b

u
f

O
ut

|
(p

ar
an

t
V

0
S

II
))

((
db

aa
ab

uf
O

ut
)

(p
ar

aa
t

B
a

»
a

S
))

)|
{(

ab
aa

ab
uf

O
ut

)
(p

ar
an

t
1

b
.m

1
I)

))
(d

n
d

a
a

b
u

f
O

ut
)

(p
ar

aa
t

In
da

aS
II

))
K

a
ct

lv
a

a
b

u
f

O
ut

)
(p

ar
M

t
A

ct
A

ll
ID

((
ou

tp
ro

ba
dd

rb
uf

O
ut

I
(p

ar
aa

t
O

ut
M

dS
I)

))
((

ou
tp

ro
bd

at
ab

uf
O

ut
!

(p
a

rM
t

O
u

tt
o

ts
n

i)
({

go
ah

aa
db

uf
O

ut
)

(p
a

rM
t

O
aA

ha
ad

))
)

ll
a

d
a

n
n

b
u

f
O

ut
)

(p
ar

an
t

af
aM

B
))

)

(M
t

*
(B

tT
B

IO
T

B
SI

I
M

t
A

M

(
M

l
A

M
(
M

t
A

H
)

I
M

t
A

M
I

I
M

t
A

M
0

i
M

t
u

w
a

o
a

I
m

i
a

s
b

1 :
ra

a
a

t
a

lg
n

a
l

I I
M

t
M

M
tB

I
I
m

i
a

*
M

ta
i

(
M

t
M

M
tB

O

(
M

t
M

M
tB

I I
t
l
a

a

Il
a

r
r
a

y
la

I)
I(

a
rr

a
y

IB
«)

I(
a

r
r
a

y
la

SI
((

a
r
r
a

y
la

<
)

((
a

r
r
a

y
IB

))
I(

a
r
r
a

y
IB

1)
((

a
rr

a
y

IB
II

((
a

rr
a

y
la

0)

Ip
a

ra
n

t
*

1
«

))
)

Ip
a

ra
n

t
A

M
))

)
Ip

a
ra

n
t

A
M

D
)

Ip
a

ra
n

t
A

M
D

)
Ip

a
ra

n
t

A
M

))
)

(p
a

ra
n

t
A

M
))

)
Ip

a
ra

a
t

L
H

O
ft

M
))

)
Ip

a
ra

a
t

A
U

D
I

K
a

n
d

l
In

l)
H

in
d

i
In

ll
Ip

a
ra

n
t

B
a

a
a

tB
l)

))
Ip

a
ra

a
t

a
a

a
a

ta
il

))
K

a
n

d
l

O
u

t)
(r

a
a

a
tb

u
f

la
))

)
((

ra
a

a
tb

u
f

O
ut

)
(p

ar
aa

t
B

a
a

a
tB

))
)

(B
Z

T
T

tr
c

s
u

r
r
iT

)
I
(p

a
r
a

a
t

V
d

d
)

(r
a

a
a

tb
u

f
O

a)
(p

ro
b

b
u

f
O

a)
(v

o
b

u
f

0
a

|
(d

b
a

a
r
tu

f
O

a
)

la
b

a
M

b
u

f
O

a
)

(I
n

d
a

a
b

u
f

O
a

l
la

c
tl

v
u

b
u

f
O

a)
{o

u
tp

ro
b

a
d

d
rb

u
f

O
a)

(o
u

tp
ro

b
d

a
ta

b
u

f
O

a)
Ig

o
a

n
a

a
d

b
tt

f
O

a)
la

d
a

n
a

b
u

f
O

a
)

Id
*

O
a)

(d
a

o
a

l

la
rr

ay
V

dd
(c

o
n

d
lt

lo
M

l
(a

ga
al

na
pp

in
g

-S
T

B
T

B
tS

IS
-)

)!

l«
tT

T
T

»
i

c
a

o
u

a
o

)
((

p
a

r
a

n
t

C
B

O
)

(d
a

r
l

(d
*

C
)

(d
a

»
i(

d
a

o

la
rr

ay
CB

O
(c

o
n

d
lt

lo
M

l
(a

ga
al

aa
pp

in
g

•S
T

B
T

tt
fJ

IS
*)

))

i P
9

at
*. b C
o

O *
i

O O tn C
o

C
O

w X B I
—

*

(t
>

e
n < «•
*•

e
r § V

) B
' § c

-
r
-

(0

Ip
a

r
a

n
t-

c
a

ll
d

a
c
o

d
a

)
Ip

a
r
a

a
a

ta
r
a

(n
a

p
p

in
g

•
IT

B
T

tt
tS

IS
*

)
(m

a
n

u
fa

c
tu

r
a

r
*

*
C

T
U

*
l

{
p

a
r
ti

ti
o

n
•M

U
S

T
C

B
')

la
o

d
u

la
ll

a
lt

IS
)

I
p

ln
ll

n
lt

1
0

0
)

Ip
ld

ll
a

lt
1

0
)

1 (a
a

b
c
a

ll
a

to
r
p

id
a

r
r
a

y
((

a
a

p
p

ln
t

lo
b

u
f

1 r
a

a
a

tb
u

f
p

r
o

b
b

u
f

v
g

b
u

f
d

b
a

.a
b

u
f

a
b

a
a

a
b

u
f

In
d

a
a

b
u

f
a

c
tl

.a
a

b
u

f
o

a
tp

ro
b

a
d

d
rb

a
f

o
u

tp
r
o

b
d

a
ta

b
u

f
g

o
a

b
a

a
d

b
u

f
•
d

a
a

n
b

u
fl

Id
b

u
f

Id
*

d
*

D
It

n
*

ln
«

)
la

a
d

l
a

n
d

!)

la
tr

u
c
tu

r
a

-p
r
o

c
a

M
r

p
a

r
ti

ti
o

n
)

I I
k
c
tl

v
a

n
a

lg
a

a
la

In
a

t
o

In
a

t
O

n
(
M

t
la

tt
c
t*

I
M

t
a

c
tu

a
l

In
a

t
a

c
ta

a
i

« t
a

ju
w

T
o

u
tp

u
ts

((
p

a
r
a

a
t

D
0

)|
d

A
la

)
(
la

*
In

))
)

ll
ln

*
O

a
t)

(d
B

In
))

I
(I

p
a

r
a

a
t

M
A

c
ta

l
Id

*
C

li
l

(d
B

C
U

D
)

((
p

a
r
M

t
A

c
t*

B
!|

Id
*

O
u

t)
))

((
p

a
r
a

a
t

a
c
ta

a
i)

Id
*

O
a

t)
))

(a
a

t
p

ro
b

l
In

a
t

*
g

l
In

a
t

d
b

a
M

l
In

a
t

a
b

a
a

a
l

Ir
a

n
tn

o
.i

l
In

a
t

a
c
tl

v
a

a
l

(n
a

t
o

u
tp

r
o

b
a

d
d

r
l

In
a

t
o

u
tp

r
o

b
d

a
ta

l
In

a
t

g
o

a
h

a
a

d
l

(n
a

t
a

d
a

n
a

l

{{
p

ro
b

b
u

f
la

)
(a

rr
a

y
P

r
o

b
fa

lD
)

K
v
q

b
a

f
In

)
(a

rr
a

y
V

O
S

a
ll

))
K

d
M

M
b

a
f

la
)

la
r
r
a

y
D

B
A

M
a

M
S

a
l)

))
({

a
b

a
a

a
b

u
f

la
)

la
rr

a
y

S
*

*
M

a
a

M
S

a
l|

l)
I
(I

n
d

a
sb

u
f

In
)

la
rr

a
y

la
o

.i
S

.D
D

((
a

c
tl

.a
a

b
u

f
In

)l
a

r
r
a

y
A

c
tl

*
a

*
S

a
l|

))
I(

o
u

tp
r
o

b
a

d
d

r
b

u
f

la
l(

a
r
r
a

y
O

u
tP

ro
c
A

d
d

rS
a

lI
))

I(
o

u
tp

ro
b

d
a

ta
b

u
f

la
)

la
rr

a
y

O
o

tP
ro

b
O

a
ta

S
.I

ID
I

(g
o

a
h

a
a

d
b

u
f

la
)

(a
rr

a
y

C
o

A
b

M
d

D
)

I
(a

d
a

n
a

b
u

f
In

)
(a

r
r
a

y
A

C
fj

e
j)

))

i
a

v
r
r
c
a

o
u

tp
u

ts
i (
M

t
P

r
o

b
S

I

In
a

t
V

0
1

I
I
M

t
O

B
a

a
a

tl
|
M

t
S

B
a

a
a

S
I

I
n

a
t

In
d

a
a

S
I

|
M

t
A

c
tA

ll
In

a
t

O
u

tP
A

d
S

I

|M
t

O
u

tP
O

tS
I

|
M

t
C

o
A

h
M

d
I
M

t
A

fi
ta

a

((
p

ro
b

b
u

f
O

u
t)

(p
a

ra
a

t
P

ro
b

S
I)

D
ll

v
o

b
u

f
O

u
t)

Ip
a

ra
n

t
"
0

1
1

)1
1

K
d

b
a

a
a

b
u

f
O

a
t)

(p
a

ra
a

t
O

m
m

S
II

I)
((

a
b

a
a

a
b

u
f

O
u

t)
(p

a
ra

a
t

S
m

m
I
I
D

I
K

ln
d

a
ib

a
f

O
u

t)
(p

a
r
.a

t
la

d
a

a
S

ID
)

K
a

c
tl

r
a

a
b

a
f

O
u

t)
Ip

a
ra

a
t

A
c
tA

ID
)

I
I(

o
a

tp
r
o

b
a

d
d

r
b

a
f

O
u

t)
(p

a
r
a

a
t

O
u

tP
A

d
s
ll

))
((

o
u

tp
r
o

b
d

a
ta

b
u

f
O

u
t)

(p
a

r
a

a
t

O
u

tP
M

S
ll

ll
I

(g
o

a
h

a
a

d
b

u
f

O
u

t)
(p

a
ra

n
t

C
o

A
b

M
d

))
)

((
a

d
o

M
b

u
f

O
u

t)
(p

a
ra

n
t

A
D

C
a

B
))

)

d
e
c
o

d
e
.s

d
l

I
P

U
>

IB
P

U
T

S

I I
M

t
*

IB
tT

H
ID

T
B

•
)

(
M

t
A

H
»

|M
t

A
M

I
(
M

t
A

M
I

(
M

t
A

M
I

(
M

t
A

H
O

(
M

t
u

r
o

a
o

a
I
M

t
*

s
a

I
ra

a
a

t
s
ig

n
a

l
> |
M

t
A

a
M

ta
i

|M
t

B
a

M
tB

l
|M

t
M

H
tl

o
I
M

t
B

a
M

tB

< I
tl

a
a

Il
a

r
r
a

y
*

1<
)

Ip
a

ra
n

t
«

I
t)

)
)

I
(a

r
r
a

y
A

M
I

(p
a

ra
n

t
A

M
))

)
(l

a
r
r
a

y
A

M
)

Ip
a

ra
n

t
A

M
D

)
I

la
r
r
a

y
A

M
))

(p
a

ra
n

t
A

H
J
D

I
((

a
r
r
a

y
A

M
I)

(p
a

ra
n

t
A

M
D

))
((

a
rr

a
y

A
M

0)
(p

a
ra

n
t

A
M

))
)

(l
a

r
r
a

y
IA

K
M

D
B

1
(p

a
r
a

a
t

tB
O

B
D

B
))

)
{
(a

r
r
a

y
A

S
B

)
(p

a
ra

a
t

A
S

8
D

)

((
a

n
d

!
In

ll
Ip

a
ra

n
t

B
a

a
a

tB
l)

))
K

a
n

d
l

In
l)

Ip
a

ra
a

t
B

a
a

a
tB

l)
))

K
a

n
d

l
O

u
t)

(r
a

a
a

tb
u

f
la

)
)
)

((
ra

a
a

tb
u

f
O

u
t)

(p
a

r
M

t
B

a
a

a
tB

))
)

(B
C

T
T

T
P

B
S

U
P

P
tT

I

II
p

a
r
a

a
t

V
d

d
)

(
r
a

a
a

tb
u

f
O

a
l

(p
r
o

b
b

u
f

O
a

)
(*

g
b

o
f

o
*

|
Id

b
a

a
a

b
u

f
O

a
)

(a
b

a
a

a
b

u
f

O
a

)
O

n
a

a
a

b
u

f
O

a
)

(
a

c
tl

v
M

b
u

f
O

a
)

(o
u

tp
r
o

b
a

d
d

r
b

u
f

O
a

)
(o

u
tp

r
o

b
d

a
ta

b
u

f
O

a
)

{g
o

a
h

a
a

d
b

u
f

O
a

l
la

a
a

n
n

b
a

f
O

a
l

Id
*

O
a

)
l*

a
O

a
)

(a
rr

a
y

V
dd

(c
o

a
d

lt
lo

M
l

(a
g

a
a

l
a

a
p

p
ln

g
•a

T
B

T
ta

u
iS

*
)I

)
))

(M
T

f
IP

C
C

B
O

O
B

D
)

{
(p

a
r
M

t
C

B
D

)
(d

*
P

)
(d

*
o

(d
a

p
i(

d
a

o

(a
rr

a
y

C
B

O
(c

o
n

d
lt

lo
M

l
(a

g
a

a
l

a
a

p
p

ln
g

•S
T

B
T

B
IS

1
S

-D
)

I
)

C
O

O O O t
i

c
o

J
s

CHAPTER 4. DETAILS OF TOOLS 19

Formal Parameters

Table 4.1 shows the formal parameters used by x2oct. There are a total of 21 formal

parameters supported by x2oct, two of which are required, and the other 19optional. First,

the user must indicate the target manufacturer to which to map. Valid manufacturer

values are ACTEL, XILINX, ALTERA, and STDCELL. Second, the user must specify
the type of input description and the file name which contains the description. The user
specifies this by supplying the file name as the value to parameters bds, blif, pla, or eqn.

If the xpld template subcell is used, then the user must supply values to the
parameters inwidth and outwidth. Otherwise, these may be omitted.

The rest of the optional formal parameters deal with the technology mapping
performed by misll The mapping strategy is specified as DECOMP, SYNTHESIS,
CUSTOM, or INTERACTIVE.

In the case of DECOMP, where the mapping is performed using the manufac
turer's primitive library, the user mayfurther specify whether to minimize for DELAY or

AREA. If DELAY is specified, then the design is collapsed into two levels oflogic before
mapping is performed. IfAREA is specified, then the design is also factored before map
ping is performed. A map-factor value between zero to one may be specified to control
the minimization of area or delay, respectively. The speed-up factor specifies the number
of levels of logic to equalize.

In the case of SYNTHESIS, the technology mapping is performed without the
use of libraries, but with hard-coded routines within misll. Currently, only targets ACTEL,
XILINX, and ALTERA are supported with this technique.

Under SYNTHESIS, if the target manufacturer is ALTERA, then there are
two additional optional parameters. Theor-fanin specifies the maximum number offanins

to the OR-gates, and the and-fanin specifies the maximum number of fanins to the AND-
gates. If the target manufacturer is ACTEL, then there are five additional optional pa
rameters. The heuristic-num specifies the subject graph selection, the num-iterations
specifies the number of iterative improvements to make, the collapse-fanin specifies to
collapse nodes with no more than this number of fanin, the gain-factor specifies toiterate
only if the product of cost x gain./actor is less than the gain, and the decomp-fanin
specifies to perform a decomposition for nodes with greater than this value. If the manufac
turer is XILINX, then there are two additional optional formal parameters supported. The

CHAPTER 4. DETAILS OF TOOLS

No. Formal Parameter Usage
manufacturer required

bds one required
blif one required
pla one required
eqn one required

inwidth

outwidth

required with xpld
required with xpld

mapping optional

script required if CUSTOM
10 minimize optional

11 mapJactor optional

12 speed.up optional
13 orJanin optional
14

15

andJanin

heuristic_num

optional
optional

16 numJterations optional
17 collapsejfanin optional

18 gainJactor optional

19 decompJanin optional

20 xlJanin optional
21 xLcover optional

Default Value

none

none

none

none

none

none

none

DECOMP

none

DELAY

30

0.01

20

Description

target manufacturer
(ACTEL, XILINX,
ALTERA, STDCELL)
.bds file name

.blif file name

.pla file name

.eqn file name
number of inputs
number of outputs
mapping method
(DECOMP, SYNTHESIS,
CUSTOM, INTERACTIVE)
custom script file name
type of minimization
with DECOMP specified
(DELAY, AREA)
area/delay weight
0 = minimize area

1 = minimize delay
number of levels to equalize
maximum OR-gate fanin
maximum AND-gate fanin
subject graph selection
iterative improvements
collapse nodes with
this or less

iterate if

gain > cost x gainJactor
goodjdecomp nodes
with this or greater
limit on fanins to a node

heuristic number to solve
cover problem

Table 4.1: Formal Parameters Used by X2oct.

CHAPTER 4. DETAILS OF TOOLS 21

xlJanin specifies the limit to the fanin per node, and the xljcover is a heuristic number
used to solve the cover problem.

In the case of CUSTOM, x2oct will invoke misll with the script specified by the
user. The user must provide the filename of the custom script.

In the case of INTERACTIVE, x2oct will invoke misll interactively. The user
will be given a misll prompt.

Parametrized MisII Scripts

Since mislldoes not support parametrized scripts currently, x2oct gets around this
problem by simple string substitution of key values into key words within template scripts.
These scripts are provided in Appendix C. The keywords, shown in capitals, are replaced
by the formal parameter value specified in the users' .sdl file.

Parametrized BDS Files

To allow for more flexibility, x2oct also supports the parametrization ofkey words
in .bds files. Key words in the .bds file are specified by prepending the "@" character
to the parameter name. This parameter is replaced by the valued specified as a formal
parameter in the .sdl file.

Vdd, GND Details

Since x2oct replaces the oct facet created by DMoct by one created by misll, the
terminals in both facets must match both in name and in number. In some cases, the oct
facet created by misll contains Vdd and GND formal terminals. This occurs specifically in
the case of mapping to ACTEL through the SYNTHESIS approach. Recall that in the
case, all logic is implemented through reconfiguring the BASIC_BLOCK by tying certain
inputs to Vdd or GND. In any event, the Vdd and GND terminals must be available for
correct facet replacement. Ifusers are using the xpld template subcell, then these terminals
are created automatically for the cases that need them. Users must provide these terminals
when they are not using the xpld template subcell.

CHAPTER 4. DETAILS OF TOOLS 22

4.2 Partition

Detail Flow

Figure 4.4 shows the flow for the structure-processor partition, which is typically
run at the top-most level. Partition takes as input an oct structure ofany size and hierarchy.
The input is usually an oct structure that includes the results generated by x2oct, but any
input is acceptable.

Given this oct structure, partition performs a physically partitioning under three
constraints: The maximum number of groups allowed (pldlimit), the maximum number
of elements (or nodes) within a group (modulelimit), and the maximum number of con
nections (edges cut) to a group (pinlimit). Currently, partition employs a fast-clustering
algorithm toperform the partitioning, but future approaches can be easily integrated. The
output of partition is a restructured oct facet of two levels of hierarchy functionally equiv
alent to the original facet.

Partition accomplishes the task of structural partitioning as follows. First, the
entire oct structure is flattened down to the leafcell level. Associated with each leafcell

in the primitive library is a property called CELLCOUNT, which specifies the number
of elements required in the given target manufacturer's device to implement the given
leafcell. After assigning node and net id's to the flattened structure, a simple pinlist is
created representing the network. Aclustering algorithm takes this pinlist and generates
the partition. The intermediate pinlist input and partitioned output are simple text files
that can be viewed and edited for more flexibility. In most cases, these files can be ignored,
but are provided for experimentation. The results of the clustering algorithm are included
in the DMoctlog file.

Partition takes the cluster results and creates new oct facets called "cluster-i",
where "i" is the cluster id. Partition also inserts the appropriate layout-generator in prepa
ration for the generation of files for the manufacturer.

Formal Parameters

Table 4.2 shows the formal parameters used by partition. Partition supports six
formal parameters, only one of which is required. The user must supply either the name
of the target manufacturer or the name of the particular partname to which to map, or

CHAPTER 4. DETAILS OF TOOLS

pinlist

OCT

Database

lis

^v „ ;—-^.„.

makePinlist

Cluster I I Interactive

,\J>

Flattened 1

OCT

Database

^Q^MMM^®.

pinlist

(makePartition

Restructured

OCT

Database

Figure 4.4: Design flow for structure-processor partition.

23

CHAPTER 4. DETAILS OF TOOLS 24

No. Formal Parameter Usage Default Value Description
1 manufacturer required none target manufacturer

(ACTEL, XILINX,
ALTERA, STDCELL, NONE)

2 partname optional depends on
manufacturer

target device

3 partition optional CLUSTER partitioning algorithm
(CLUSTER, INTERACTIVE)

4 modulelimit optional depends on
partname

maximum elements

per cluster
5 pinlimit optional depends on

partname

maximum nets

cut per cluster
6 pldlimit optional 10000 maximum clusters allowed

Table 4.2: Formal Parameters Used by Partition.

both. Given only the name ofthe manufacturer, "partition" will assume default partname
devices.

The formal parameter partition, which specifies the partitioning approach, can
take values CLUSTER, INTERACTIVE, or FLATTEN. If CLUSTER, the default,
is specified, then a quick clustering algorithm is used. If INTERACTIVE is specified,
then users is given acsh prompt, allowing them to manipulate the partitioning by modifying
the pinlist file manually or with some other approach. IfFLATTEN is specified, then the
entire structure is flattened and left as one large cluster.

The other optional formal parameters are the constraints modulelimit, pinlimit,
and pldlimit, as discussed previously. Ifthese constraints are not given, then partition will
assume default constraints based on the partname.

Clustering Algorithm

The quick clustering algorithm used is based on the simple principle that the larger
the number of nets exist between a pair of nodes, the more these nodes should be placed
into the same cluster [3] [2] [4]. The algorithm looks at all node pairs with net(s) between
them, and assigns a clustering value with each of these candidate pairs. The clustering
value takes into account the conjunctivity and disjunctivity between these pairs. That is,

CHAPTER 4. DETAILS OF TOOLS 25

the cluster value CV between nodes i and ,;' is:

where I(i,j) is the total number "internal" nets between nodes i and j, and E(i) is the total
"external" number of nets on node i, including I(i,j). From equation 4.1, the clustering
value takes on a maximum value of 2 when two nodes have nets that go only from one to
another, and values less than 2 when nets on either node i or j or both go to other nodes.
Note that the clustering value is 0 when two nodes do not share any nets. However, the
algorithm does not even consider these nodes.

After clustering values have been assigned to every candidate pair, these pairs
are placed greedily into the same clusters according to their clustering values. After all
pairs have been considered and merged, the process is repeated until the desired number
of clusters remain. During each merger, the total number of nets external to the cluster
is checked against the constraint on the maximum number of external nets allowed, or the
pinlimit. Merger is not allowed if this maximum is exceeded with the merger.

Asimple bin-packing algorithm is also used toprevent merging ofpairs thatwould
violate the constraint on the maximum number of clusters allowed. Let N(modulelimit)
be the maximum number of nodes allowed in each cluster, and C(pldlimit) be the max
imum number of clusters allowed. To ensure that these constraints N and Care followed,
some packing rules are checked before a candidate-pair is merged. That is, to ensure that
no modules become larger than some size N, each candidate in the pair must therefore be
of size N/2 or less. By similar reasoning, these candidates of size N/2 must be merged from
other candidates of size N/4 or less, and so forth. To keep track of the size of the clusters,
each cluster is assigned to one of B buckets, where B is found by:

B = l+ [log2N\ (4.2)

Each bucket contains a number ofclusters, allofwhich have a certain size S. The
value ofS associated with the tth bucket is found by:

w^ - 5W >w^ (4-3)

Given the bucket structure to keep track of the cluster sizes, the constraint C can
be checked by calculating the total number ofclusters that would form should each cluster

CHAPTER 4. DETAILS OF TOOLS 26

in a given bucket be merged with another in the same bucket and be assigned to the next
larger bucketsize. That is, clustering into C clusters is feasible if:

T«\B) < C (4.4)
T'+1(t + l) = T*(i+i)+rr*(t)/2i,

for i= 1,...,B (4.5)

r'U) = 0 (4.6)

where T*(i) is defined as the number of clusters in bucket i before merging, and T<+1(t) is
defined as the number ofclusters in bucket t after merging. Note that feasibility can be
established by a single pass through the bucket structure from equation 4.4. Note also that
equation 4.4 is an approximation, since it does not take into account that some mergers
may not be performed because of pinlimit restriction.

In the actual check for feasibilility, the "slack" or the difference between S(i) and
thesize ofa cluster in the tth bucket inequation 4.3 is taken intoaccount, since the "slack"
would allow for the merger of a large cluster with a small cluster.

Clustering File Format

As mentioned earlier, the clustering program called by the structure-processor
partition reads and writes in a simple pinlist format. This offers the advantages of allowing
users to make quick changes to the constraints to obtain quick results, allowing users to
make manual changes including initial conditions, and providing a file format for future
partitioning tools.

This pinlist, which is generated by partition and found under the directory PAR
TITION, represents the user's design after it has been flattened and assigned node and
net id numbers.

There may be six sections to the pinlist file. The first section ofthe pinlist lists the
node id number and the instance name associated with it. Node 0 represents the external
world. Thesecond section ofthe pinlist lists the net id number and the net name associated
with it. Net 0 represents GND, and net 1 represents Vdd. Both sections one and twoexist
as comments.

The CONSTRAINT section contains the constraints modulelimit, pldlimit,
and pinlimit, and is obtained from the formal parameters or from the defaults file. The

CHAPTER 4. DETAILS OF TOOLS 27

SIZE section indicates the initial size ofeach cluster. (Note that node 0 is assigned the
modulelimit so that no node will become merged with the external world.) The PINLIST
section is a list relatingeachnodeto eachnet attached to them. Andlastly, the CLUSTER

section indicates that certains nodes should be placed into the same cluster. The user may
specify this section to ensure that certain nodes will occur within the same cluster. It is this

section that is generated by the cluster algorithm, which in turn controls the restructuring
of the oct database.

Restructured Facet

Given the cluster results, partition creates new masters and instances of these

clusters within the oct database. The restructured facet, functionally the same as the users

original design, has at most three levels of hierarchy: The leafcell level, the cluster level

which contain leafcell instances, and the topmost level which connects up the clusters.

Automatic Layout-Generator Property

Partition also inserts the appropriate layout generator prototype intoeach ofthese
clusters to facilitate the generation of target design files. If the layout-generator is speci
fied at the topmost facet, then the clusters will inherit the same generator as the parent.
Otherwise, the default generator prototype is used for each cluster.

4.3 Prototype

Design Flow

Figure 4.5 shows the flow for the layout-generator prototype. Prototype generates
files representing the user's design entry into the target manufacturer's mapping tools. The
oct facet should contain only instances from the target manufacturer's library. The files
generated by prototype are placed under directory PROTOTYPE.

Formal Parameters

Table 4.3 shows the formal parameters used by prototype. Prototype supports two
formal parameters, both of which are required. Ifthe user had used the structure-processor

CHAPTER 4. DETAILS OF TOOLS

No.

processActel

.adl

.pin
.crt

.xnf

.pal

OCT

Database

Stdcell

.adf
Layout

Figure 4.5: Design flow for layout-generatorprototype.

Formal Parameter Usage

manufacturer required

partname required

Default Value

none

none

Description

target manufacturer
(ACTEL, XILINX,
ALTERA, STDCELL, NONE)
target device

Table 4.3: Formal Parameters Used by Prototype.

28

CHAPTER 4. DETAILS OF TOOLS 29

partition beforehand, then default formal parameters values would have been automatically
introduced in the design.

The formal parameter manufacturer specifies the file format for the generated
files. The formal parameter partname specifies which of the manufacturer's part to use.

Design Targets

Actel

In the case of Actel, prototype generates three files per cluster. The .adl file

contains the netlist information, the .pin file contains the pin assignment, and the .crt file

contains net criticality specifications. The .adl file is generated from the oct structure, and

.pin file isgenerated using a simple pin assignment described below, and the .crt file is left
empty.

Xilinx

In the case ofXilinx, prototype generates one or two files perclusters, depending on
the mapping strategy used in x2oct. The .xnf file contains the netlist information, and the
.pal file, in PALASM format, is also generated if the synthesis approach was used. The
equations found in the .pal file comes from the LOGICFUNCTION property associated
with the generic instances in thedesign. The pin assignment is also performed as described
below.

Altera

In the case of Altera, prototype generates only one type of file per cluster. The
.adf file contains the netlist information as well as any equations generated through the
synthesis mapping approach in x2oct. Pin assignment is not done here since it is done
automatically bye the Altera software.

Standard Cell

In thecase ofstandard cell, prototype calls thelayout-generator Stdcell to generate
the layout.

CHAPTER 4. DETAILS OF TOOLS 30

Automatic I/O Buffer Insertion

Before any files are generated, prototype inserts any necessary I/O buffer cells at
the boundaries of the newly created clusters. Prototype makes use of the DIRECTION

and TERMTYPE properties associated with each terminal of the leafcells to determine

the type ofbuffer touse. In general, users should include I/O buffers only at the toplevel of
their designs or leave them out altogether and allow prototype toinsert them automatically.

Automatic Pin Allocation

Associated with each part in the PLDS library is a list of pins available for use as

either input or output. This allocation is performed starting from the top of the list. If the
user wants to make particular pin assignment, then the file containing these assignments is
used instead of the default.

31

Chapter 5

Evaluation

5.1 Examples

Toexamine the design flow ofPLDS, I used a simple design example ofan address

decoder for a VME interface. (This decoder is an actual design for a speech recognition
system.) The constraints were set to small values to check the performance ofthe clustering
algorithm. Currently, the clustering algorithm will go as far as it can, given the constraints.
In some cases, not all the clusters ended up the last bucket (the largest size) indicating that
either the constraints were too stringent or that the resulting clusters were truly disjoint.
In the case ofdisjoint clusters, the user may add a CLUSTER section in the pinlist to
force the grouping.

5.2 Future Work

The PLDS system may be improved in the following areas. These improvements
require only a minor amount of programming.

Partitioning Algorithms

The structure-processor partition was written so that it may support future parti
tioning algorithms. The pinlist format allows for developers to work with simple text files
instead of with the oct database. Other approaches to the partitioning problem, including
approaches using linear programming and simulated annealing, are certainly possible [5] [9].

CHAPTER 5. EVALUATION 32

Timing Constraints

Currently, circuit timing has not been considered in PLDS. Future improvements

can be done through more accurate timing characterization of primitive cells in the misll

library, leading to timing numbers of greater accuracy. A constraint on the critical path
may be incorporated into the structure-processor partition, although this is not easily done
with the current clustering algorithm.

Standard Cell Pads

Pads are not added to the clusters when the target implementation is full-custom

standard cells.

Expand libraries

Although the primitive libraries are complete, the translation libraries may be

expanded to include more commonly used macros.

PCB Interface

The netlist information at the topmost level after partitioninghas been performed

is useful for PCB (printed circuit board) tools suchas that provided by Racal-Redac. This

netlist shows how the clusters, now implemented in a PLDS, should be interconnected.

Backannotation Considerations

After a cluster has been successfully mapped intoa target device, the pin assign
ment and part selected need to be back-annotated into the oct database so that future

revisions, if any, can target the same deviceand footprint.

Target Comparisons

Some study into the mapping of different designs into different targets may be
performed to determine the effectiveness and appropriateness of each target. Intuitively,

PLA-like devices like those provided byAltera areappropriate for implementing controllers,

logic arrays, and glue logic, whereas gate-array type devices like those provided by Actel

CHAPTER 5. EVALUATION 33

and Xilinx are appropriate for standard-cell and perhaps even datapath applications. This
intuition requires further investigation.

34

Chapter 6

Conclusion

Prototyping in the Lager/Oct environment is possible through PLDS. This package
consists of three structure-processors integrated with the Lager design methodology. PLDS
maps and partitions designs using misll and a quick-clustering algorithm. PLDS was de
veloped in an expandable and modular fashion, and makes use of translation libraries that
hide many details from the user, allowing for simple retargetting. Future manufacturers
can be supported by creating a library to represent their primitive gates and another to
represent the translation from the particular library to acommon library. Other partition
ing algorithms can be easily included by adhering to the simple pinlist format. Given the
PLDS framework, prototyping may become truly rapid.

35

Bibliography

[1] A. E. Gamal et al. "An Architecture For Electrically Configurable Gate Array,". JSSC,
24(2):394-398, 1989.

[2] S. B. Akers. "Clustering Technique For VLSI,". In Design Automation Conference,
1982.

[3] B. W. Kernighan, S. Lin. "An Efficient Heuristic Procedure For Partitioning Graphs,".
Bell Sys. Tech. J., 49:291-307, 1970.

[4] D. M. Schuler, E. G. Ulrich. "Clustering and Linear Placement,". In Design Automation
Conference, 1975.

[5] E. R. Barnes. "An Algorithm For Partitioning The Nodes Of A Graph,". SIAM J.
Alg. Disc. Meth., 3(4), 1982.

[6] Electronic Research Laboratory, University of California, Berkeley. LagerlV Silicon
Assembly System Manual, Distribution 1.0 edition, October 1985.

[7] H. C. Hsieh et al. "A 9000-gate User-Programmable Gate Array,". In CICC, pages
15.3.1-15.3.7, 1988.

[8] K. A. El-Ayat et al. "A CMOS Electrically Configurable Gate Array,". JSSC,
24(3):752-762, 1989.

[9] M. Beardslee et. al. "SLIP: A Software Environment For System Level Interactive
Partitioning,". In ICCAD, pages 280-283, 1989.

[10] S. C. Wong et al. "A 5000-gate CMOS EPLD With Multiple Logic and Interconnect
Arrays,". In CICC, pages 5.8.1-5.8.4, 1989.

BIBLIOGRAPHY 36

[11] W. S. Carter et al. "A User-Programmable Reconfigurable Logic Array,". In CICC,
pages 233-235, 1986.

37

Appendix A

PLDS Policy

The three oct policies used by the PLDS system are based on the Lager/Oct
Symbolic Policy and differ in additional properties and bags. The details of these differences
are presented here. They are the Top CeU Policy, the Cluster Cell Policy, and the LeafCell
Policy.

A.l Top Cell Policy

The Top Cell Policy introduces three additional properties and two additional bags
to the S mbolic Policy. These additions are related to the partitioning of the topceU. The
NODEID and NETID properties are integer-valued properties attached to the instances
and nets, respectively. They are used to generate the pinlist for the clustering program.
The NODEID and NETED bags contain these properties as weU. The CUT property is a
single property that is contained by all the nets that are cut as a result ofthe partitioning.

A.2 Cluster Cell Policy

The Cluster Cell Policy, used by the cluster facets one level below the topceU,
introduces five new properties and two new bags to the Symbolic PoUcy. These additions
are related to thegeneration ofdesign files after the partitioning has completed. The INPUT
and OUTPUT properties are contained by all the formal terminals that are either inputs or
outputs to thecluster facet. There are only one ofeach property contained by theterminals.
Each formal terminal and net may also have an name alias property caUed NEWTERM and

APPENDIX A. PLDS POLICY 38

NEWNET, respectively. These properties are also contained by the NEW.TERM.NAME
and NEW_NET_NAME bags, respectively.

In the case of a technology mapping using the SYNTHESIS approach towards Xil
inx and Altera, the mapped instances contained by the facet are from the "generic" library.
The logic function associated witheach generic instance is found by the LOGICFUNCTION

property attached to the instance. This string-valued property is a logic equation in pre-fix
notation relating the generic output to the generic input(s).

A.3 Leaf Level Policy

The Leaf CeU Policy adds four new properties to the Symbolic Policy. In addition
to the usual DIRECTION and TERMPLACE properties attached to the formal terminals,
PLDS also requires a PINNUMBER property. This integer- valued property is used to
determine the order of formal terminals in the file format used bythe target manufacturer.

The FORMALJ>ARAMETES bag has added CELLNAME, CELLCOUNT, and
CELLTYPE to the usual CELLCLASS property. The CELLNAME is needed in the cases

where the facet name cannot be the same as the name ofthe primitive it represents. (This
occurs when the primitive name begins with a numeric character.) The CELLCOUNT
property indicates the number ofelements required to implement the leafceU using the tar
get manufacturer's devices. The CELLTYPE property is required only by Altera. This
property takes on the values "MACRO", "LOGIC", "OBUFFER", or "IBUFFER" to in
dicate that the leafcell represents a macrocell, a logic primitive, an output structure, or an
input structure, respectively.

Appendix B

Defaults

B.l Partname

Default partname to use for each manufacturer.

Search is done using grep on manufacturer to get

partname. Manufacturer must therefore be unique,

Format:

manufacturer partname

ACTEL ACT1020-PL84

XILINX XC3090

ALTERA EP1810

STDCELL STDCELL

NONE NONE

B.2 Limits

Default modulelimit and pinlimit for each partname.

Search is done using grep for partname to get associated

39

APPENDIX B. DEFAULTS 40

modulelimit and pinlimit. The partname entries must therefore

be unique.

Format:

manufacture partname modulelimit pinlimit

ACTEL ACT1010-PL44 295 34

ACTEL ACTIO10-JQ44 295 34

ACTEL ACT1010-PL68 295 57

ACTEL ACT10iO-JQ68 295 57

ACTEL ACT1010-PG84 295 57

ACTEL ACT1020-PL44 546 34

ACTEL ACT1020-JQ44 546 34

ACTEL ACT1020-PL68 546 57

ACTEL ACT1020-JQ68 546 57

ACTEL ACT1020-PL84 546 69

ACTEL ACT1020-JQ84 546 69

ACTEL ACT1020-PG84 546 69

XILINX XC3020 64 64

XILINX XC3030 100 80

XILINX XC3042 144 96

XILINX XC3064 224 120

XILINX XC3090 320 144

ALTERA EPM5016 16 20

ALTERA EPM5024 24 24

ALTERA EPM5032 32 28

ALTERA EPH5064 64 44

ALTERA EPM5127 128 44

ALTERA EPM5128 128 68

APPENDIX B. DEFAULTS 41

ALTERA EPM5130 128 100

ALTERA EPM5192 192 84

ALTERA EP1800 48 64

ALTERA EP1810 48 64

ALTERA EP900 24 36

ALTERA EP910 24 36

ALTERA EP600 16 20

ALTERA EP610 16 20

ALTERA EP320 8 18

ALTERA EP310 8 18

ALTERA AUTO 48 64

STDCELL STDCELL 1000 1000

NONE NONE 1000 1000

B.3 Pinlists

Associated with each target device is a file referred to by the "device-package"
name which lists aU the pins available for use as inputs or outputs. For example, the file
ACT1010-JQ44 contains:

BIPUTS

12456789 11 12

13 15 17 18 19 20 22 23 24 26

27 28 29 30 31 33 36 37 38 39

40 41 42 44

42

Appendix C

MisII Scripts

C.l Actel

ACTEL.DECOMP.AREA

Note: Mapping using decomposition wlule minimizing area.

set autoexec ps

set OCT-CELL-VIEW structure.instance

set OCT-CELL-PATH LIBPATH/actel.xlat.lib/actel.lib

set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read.library LIBPATH/actel.xlat.lib/mis.lib/actel.lib. mis

collapse

source LIBPATH/scripts/script

map -m MAP.FACTOR -s

phase -g

write.bdnet

ACTEL.DECOMP.DELAY

Note: Mapping using decomposition whUe minimizing delay. This is done by
coUapsing the network before mapping.

APPENDIX C. MISII SCRIPTS 43

set autoexec ps

set OCT-CELL-VIEW structure.instance

set OCT-CELL-PATH LIBPATH/actel.xlat.lib/actel.lib

set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read.library LIBPATH/actel.xlat.lib/mis.lib/actel.lib.mis

collapse

speed.up -d SPEED.UP

map -m MAP.FACTOR -s

phase -g

write.bdnet

ACTEL.SYNTHESIS

Note: Mapping using synthesis (hard-coded misll) routines.

set autoexec ps

collapse

source LIBPATH/scripts/script

act.map -h HEURISTIC.NUM -n NUM.ITERATIONS -f COLLAPSE.FANIN \

-g GAIN.FACTOR -d DECOMP.FANIN

act.map -h HEURISTIC.NUM -r BDNET.FILE

C.2 Altera

ALTERA.DECOMP.AREA

Note: Mapping using decomposition whUe minimizing area.

set autoexec ps

set OCT-CELL-VIEW structure.instance

set OCT-CELL-PATH LIBPATH/altera.xlat.lib/altera.lib

set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

APPENDIX C. MISII SCRIPTS 44

set OCT-VIEWTYPE SYMBOLIC

read.library LIBPATH/altera.xlat.lib/mis.lib/altera.lib.mis

collapse

source LIBPATH/scripts/script

map -m MAP.FACTOR -s

phase -g

write.bdnet

ALTERA.DECOMP.DELAY

set autoexec ps

set OCT-CELL-VIEW structure.instance

set OCT-CELL-PATH LIBPATH/altera.xlat.lib/altera.lib

set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read.library LIBPATH/altera.xlat.lib/mis.lib/altera.lib.mis

collapse

speed.up -d SPEED.UP

map -m MAP.FACTOR -s

phase -g

write.bdnet

ALTERA.SYNTHESIS

Note: Mapping using synthesis while minimizing delay. This is done by coUapsing
the network, foUowed by techjdecomp into AND and OR gates with constraints on the
fanins. eqn2oct used to storeequations with generic instances.

set autoexec ps

set OCT-CELL-VIEW structure.instance

set OCT-CELL-PATH LIBPATH/altera.xlat.lib/altera.lib

set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

APPENDIX C. MISII SCRIPTS 45

read.library LIBPATH/altera.xlat.lib/mis.lib/altera.lib.mis

collapse

source LIBPATH/scripts/script

tech.decomp -a AND.FANIN -o OR.FANIN

write.eqn EQN.FILE

C.3 Xilinx

XILINX.DECOMP.AREA

set autoexec ps

set OCT-CELL-VIEW structure.instance

set OCT-CELL-PATH LIBPATH/xilinx.xlat.lib/xilinx.lib

set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read.library LIBPATH/xilinx.xlat.lib/mis.lib/xilinx.lib.mis

collapse

source LIBPATH/scripts/script

map -m MAP.FACTOR -s

phase -g

write.bdnet

XILINX.DECOMP.DELAY

set autoexec ps

set OCT-CELL-VIEW structure.instance

set OCT-CELL-PATH LIBPATH/xilinx.xlat.lib/xilinx.lib

set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read.library LIBPATH/xilinx.xlat.lib/mis.lib/xilinx.lib.mis

collapse

speed.up -d SPEED.UP

APPENDIX C. MISII SCRIPTS 46

map -m MAP.FACTOR -s

phase -g

write.bdnet

XILINX.SYNTHESIS

Note: Mapping using synthesis (hard-coded misll) routines.

set autoexec ps

set OCT-CELL-VIEW structure.instance

set OCT-CELL-PATH LIBPATH/xilinx.xlat.lib/xilinx.lib

set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

collapse

source LIBPATH/scripts/script

xl.split -n XL.FANIN

sweep

simplify

xl.partition -n XL.FANIN

sweep

simplify

xl.partition -n XL.FANIN

sweep

xl_k_decomp -n XL.FANIN

sweep

xl.cover -h XL.COVER -n XL.FANIN

time

xl.cover -h XL.COVER -n XL.FANIN

time

xl.merge

time

write.eqn EQN.FILE

APPENDIX C. MISII SCRIPTS 47

C.4 Stdcell

Standard script for mapping into MSU StdceU Ubrary.

script.msu

set autoexec ps

set OCT-CELL-VIEW structure.instance

set OCT-CELL-PATH LIBPATH/stdcell.xlat.lib/stdcell.lib

set OCT-TECHNOLOGY scmos

set OCT-EDITSTYLE SYMBOLIC

set OCT-VIEWTYPE SYMBOLIC

read.library LIBPATH/stdcell.xlat.lib/mis.Iib/stdcell2.2.genlib
collapse

source LIBPATH/scripts/script

map -m MAP.FACTOR -s

phase -g

write.bdnet

C.5 General

Note: Standard script for multilevel logic optimization.

script

sweep; eliminate -1

simplify

eliminate -1

simplify

resub -a

gkx -abt 30

resub -a; sweep

gcx -bt 30

resub -a; sweep

gkx -abt 10

APPENDIX C. MISII SCRIPTS 48

resub -a; sweep

gcx -bt 10

resub -a; sweep

gkx -ab

resub -a; sweep

gcx -b

resub -a; sweep

eliminate 0

decomp -g *

eliminate -1; sweep

49

Appendix D

X2oct

Usage: x2oct [-v] [-L logfile] [-T tempdir] cell[:view]

-v: verbose

"L: logfile

(default: x2oct.log)

-T: temp directory

(default: /usr/tmp)

cell: input facet

(default: structure.instance)

X2oct is a csh script that makes use of several custom programs. These programs
are described below.

D.l x2octparam

Usage: x2octparam C-c char] [-a] [-L logfile] -o sed.outfile cell[:view]

~c: char delimiting parameter name

(default: '(D*)

~a: get parameters from parent

smv ACTUAL.PARAMETERS bag instead

-L: logfile name

(default: stderr)

"o: sed output filename

APPENDIX D. X20CT 50

cell[:view]: input facet to extract

(default view: "structure.instance")

X2octparam extracts parameters from either the FORMALPARAMETERS
bag or the ACTUAL.PARAMETERS bag, depending on whether the template xpld
subceU is used ornot. X2octparam uses the leading "@" character ofa parameter todenote
a variable in the .bds file, and creates a file for the string editor utUity sed to perform the
actual string substitution in the .bds file.

D.2 myMisII and fixbdnet

The current version of misll contained a few errors in the bdnet file generated in
the case ofmapping to Actel. MyMisII is a modified verion which fixes some ofthese errors.
Other errors which I was not able to fix within myMisII were corrected by using an awk
script fixbdnet.

D.3 myNle

The current verion ofthe nle package provided with the octtools distribution used
the ".' character in some of the net and instance names generated. This character often
causes problems for some of the tools provided by the manufacturers. To overcome this
problem, myNle simply uses the "_" character instead.

D.4 fixpla

Usage: fixpla [-g] -i pla.input -o sed.output [-L logfile] cell[:view]
~g: specifies generic 'xpld* used

(default: not used)

"i« source pla filename

"o: sed command filename

-L: logfile name

(default: stderr)

cell[:view]: reference facet

(default view: "structure.instance")

APPENDIX D. X20CT 51

The Lager/Oct Symbolic poUcy expects brackets "[" and "]"to denote indexed
signals within a bus. Fixpla changes any angle brackets "j" and "<," found in the .pla

description before the description is sent to misll for mapping. Also, the .pla description
is compared to the reference facet for terminal name consistency. If the template xpld is
used, then the signals are mapped to "IN[i]" and "OUT[j]".

D.5 postSynthesis

Usage: postSynthesis [-L logfile] cell[:view]

-L: logfile name

(default: stderr)

cell[:view]: input facet name

(default view: "structure.instance")

Postsynthesis is used in the cases of mapping towards Altera and XiUnx using the
SYNTHESIS method. Postsynthesis attaches a property LOGICFUNCTION to each

ofthegeneric instances specified by misllafter it has mapped the design. Also, each generic
instance in the design is replaced by a generic ceU from the x2oct.lib.

D.6 mis2siv

Usage: mis2siv -1 lager_cell[:view] [-L logfile] mis.cell[:view]

"1: source lager facet name

(default view: "structure.instance")

-L: logfile name

(default: stderr)

mis_cell[:view]: mis facet to modify

(default view: "structure.instance")

Mis2siv checks the newly created facet generated by misll with the original facet
it is to replace. Mis2siv creates any terminals not found in the newly created facet, connects

up Vdd and GND nets to the Vdd and GND terminals, if any, and attaches the NETTYPE
property to these nets, if found.

52

Appendix E

Partition

Usage: partition [-v] [-d directory] [-L logfile] cell[:view]

-v: verbose

-d: directory to store output design files

(default: PARTITION)

-L: logfile name

(default: partition.log)

cell: input facet name

(default view: structure.instance)

The structure-processor partition is a csh script which makes use of severalcustom

programs. These programs are described below.

E.l makePinlist

Usage: makePinlist [-f cell[:view]] [-L logfile] [-o outfile] cell[:view]

-f: flattened output facet name

(default: "cellrflat")

-L: logfile name

(default: stderr)

-o: output pinlist file name

(default: "cell.pinlist")

cell[:view]: input facet name

(default view: "structure.instance")

APPENDIX E. PARTITION 53

MakePinlist is the pre-processor for the partitioning program cluster and performs
threefunctions. First, makePinlist flattens the design to the leafcell level. Second, makePin
list assigns NODEID and NETID numbers to each instance and net found in the flattened

design. Third, makePinlist creates a pinUst file from the design using the assigned instance
and net numbers.

E.2 cluster

Usage: cluster [-clstvw] [-L logfile] [-o output] input

-c: cleanup disjoint clusters at end

-1: print internal lists

-s: summary

-t: traverse clusters showing tree

-v: verbose

-w: turn ON any warnings

-L: logfile name

(default: stderr)

-o: output pinlist filename

(default: input.cluster)

input: input pinlist filename

Cluster is a partitioning program based on aquick-clustering algorithm. The input
is a pinlist generated by makePinlist, and the output is a pinUst which shows the resultant
partitioning. See section 4 for detaUs of the algorithm.

E.3 makePartition

Usage: makePartition C-r cell[:view]] [-L logfile] -p pinlist cell[:view]

•r: restructured output facet name

(default view: restructure)

-L: logfile name

(default: stderr)

~p: input pinlist file name

cell[:view]: input facet name

APPENDIX E. PARTITION 54

(default view: "flat")

MakePartition is the post-processor to the partitioning program. It takes the
resultant pinUst and the flattened Oct facet, and restructures the design by grouping each
cluster into a new ceU (or master). Each newly created ceU is named icell£_cluster.i,
where i refers to thecluster ID number assigned by the clustering program. MakePartition
then creates a CUT property in the Oct ceU and attaches all the nets cut to this property.
MakePartition also copies over the manufacturer and partname properties from the
topceU to the newly created cells.

E.4 insertLayGen

Usage: insertLayGen [-f] [-L logfile] cell[:view]

~f: insert layout generator at parent only

(default: layout generator inserted

at level below)

-L: logfile name

(default: stderr)

cell[:view]: input facet name

(default view: "structure.instance")

InsertLayGen is asimple program that inserts the layout-generator property into
the Oct design database. If the design is flat, then the default layout-generator inserted is
"prototype". However, if the design is not flat (i.e. some partitioning has been performed),
then the topceU is given the layout-generator "NONE", and the cluster ceUs are given
the layout-generator "prototype".

55

Appendix F

Prototype

Usage: prototype [-v] [-m] [-p pinfile] [-d directory] [-L logfile] cell[:view]

"v: verbose

-m* generate magic files, where applicable

*p: pin assignment file

(default: depends on partname)

~d: directory to store output design files

(default: PROTOTYPE)

-L: logfile name

(default: prototype.log)

cell: input facet name

(default view: structure.instance)

The layout-generator prototype is another csh script that makes use of custrom
programs. These programs are described here.

F.l processActel

Usage: processActel [-h] [-p pinfile] [-d directory] [-L logfile] cell[:view]

-h: generate files for hierarchical cell

(default: input cell is flat)

~p: input file to read allowed pin numbers

(default: ordered assignment)

APPENDIX F. PROTOTYPE 56

~d: directory to put output files

(default: "ACTEL")

-L: logfile name

(default: stderr)

cell[:view]: input facet name

(default view: "structure.instance")

ProcessActel generates the .adl, .crt, and .pin files needed by the Actel software.

ProcessActel uses the pin any number assignment specified and inserts theinput and output
buffers at the cluster boundaries. The INPUT and OUTPUT properties are also attached
to the corresponding nets.

F.2 processXilinx

Usage: processXilinx [-h] C-p pinfile] [-d directory] [-L logfile] cell[:view]
-h: generate files for hierarchical cell

(default: input cell is flat)

-p: input file to read allowed pin numbers

(default: ordered assignment)

"d: directory to put output files

(default: XILINX")

-L: logfile name

(default: stderr)

cell[:view]: input facet name

(default view: "structure.instance")

ProcessXilinx is similar to processActel except it generates the .xnf and .pal files
needed by the XUinx software. ProcessXilinx generates the equations in the .pal file using
the LOGICFUNCTION properties attached to the generic ceUs.

F.3 processAltera

Usage: processAltera [-h] [-d directory] [-L logfile] cell[:view]

"h: generate files for hierarchical cell

APPENDIX F. PROTOTYPE 57

(default: input cell is flat)

"d: directory to put output files

(default: "ALTERA")

-L: logfile name

(default: stderr)

cell[:view]: input facet name

(default view: "structure.instance")

ProcessAltera is similar to processXilinx except it generates the .adf file needed by
the Altera software. ProcessAltera generates the equations using the LOGICFUNCTION

properties attached to the generic cells, but these equations are placed in the same .adffile

under the EQUATIONS section. ProcessAltera also assigns new net and terminal names

since the Altera has a limit of eight characters in each name.

Appendix G

Xpld Template

leafcell for pld prototyping

(parent-cell xpld)

(parameters

inwidth

outwidth

(generic "")

(bds "")

(blif "")

(pla "")

(eqn "")

(manufacturer "")

(mapping "")

(script "")

(minimize "")

(map.factor "")

(speed.up "")

(or.fanin "")

(and.fanin "")

(heuristic.num "")

(num.iterations "")

58

APPENDIX G. XPLD TEMPLATE

(collapse.fanin "")

(gain.factor "")

(decomp.fanin "")

)

»

(structure-processor x2oct)

»

(instance parent (

((terminal IN) IN (width inwidth))

((terminal OUT) OUT (width outwidth))

; add Vdd and GND terminals only for ACTEL SYNTHESIS approach

; to allow for Vdd, GND ties within the BASIC.BLOCK to parent cell

((terminal Vdd) Vdd

(conditional (and (equal mapping "SYNTHESIS")

(equal manufacturer "ACTEL"))))

((terminal GND) GND

(conditional (and (equal mapping "SYNTHESIS")

(equal manufacturer "ACTEL"))))

))

»

(net Vdd (NETTYPE SUPPLY))

(net GND (NETTYPE GROUND))

»

(end-sdl)

59

