17.12.2012 Views

Chalkbrood - Status Today and Hopes for Control' - Golden Rule Honey

Chalkbrood - Status Today and Hopes for Control' - Golden Rule Honey

Chalkbrood - Status Today and Hopes for Control' - Golden Rule Honey

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction<br />

fIHALKBROOD is a disease that af-<br />

U fects bee lrrood <strong>and</strong> is caused by<br />

the fungus, Ascosphaera apis. Diseased<br />

larv'ae becorne mummified (Figure 1),<br />

<strong>and</strong> the mummies appear rvhite because<br />

of the mycelium of the fungus (Figule<br />

2). Horvever, if n'rycelia of opposite<br />

sex ( * <strong>and</strong> -) have rnated, spores are<br />

<strong>for</strong>rned u'ithin fruiting bodies (Figure<br />

3 ), <strong>and</strong> the murnmies become dark<br />

gray ol black (Figure 4). Mummies<br />

are found at the hive entrancc, on the<br />

l)ottom board, <strong>and</strong> in cells of infected<br />

colonies.<br />

Maassen (1913) in Germany published<br />

the first observations on chalkbrood<br />

disease. In 1916, he described<br />

thc associated fungus <strong>and</strong> named it<br />

Pericl,stis apis. Later, in the United<br />

Statgs, Spiltoir (1955) studied thc life<br />

cycle, <strong>and</strong> Sp.iltoir <strong>and</strong> Olive ( 1955 )<br />

rcclassified the fungus <strong>and</strong> established<br />

a new gcnus, ,4scosphaera, stnce the<br />

narttc Pericyslis had been prcviously<br />

uscd as a gcneric name in the red<br />

algae.<br />

Distribution<br />

<strong>Chalkbrood</strong> has been reported from<br />

Er.rrope, including the British Isles, <strong>for</strong><br />

rnany ycars. In 1957, Seal reported<br />

chalkbrood florn Neu' Zeal<strong>and</strong>.<br />

Baker <strong>and</strong> Torchio (1968) published<br />

the first record of A. apis from the<br />

United States. Their isolates f r o m<br />

Utah H'erc associated u'ith the leaf cutter<br />

bee, Megachile inermis, <strong>and</strong> the<br />

soil nesting bee, Anthophora pacilicia.<br />

Latel Thomas <strong>and</strong> Luce (1972) repolted<br />

chalkbrood fronr honey bees in<br />

Cali<strong>for</strong>nia, <strong>and</strong> llitchcock <strong>and</strong> Christensen<br />

(1972) found the disease in<br />

honey bee larvae in Nebraska <strong>and</strong> Wyon'ring<br />

<strong>and</strong> noted that other occurrences<br />

l Presented at the Midwest Bee Diseases<br />

<strong>and</strong> Pests Clinic, Springfield, Illinois,<br />

March 29, 19?8.<br />

468<br />

<strong>Chalkbrood</strong> - <strong>Status</strong> <strong>Today</strong> <strong>and</strong><br />

<strong>Hopes</strong> <strong>for</strong> <strong>Control'</strong><br />

by MARTHA GlttlAlr<br />

USDA, SEA Bee Reseqrch Loborotory<br />

200 Eqst Allen Roqd, Tucson, Arizono 85719<br />

of the disease in Cali<strong>for</strong>nia, Minnesota,<br />

North Dakota, <strong>and</strong> Montana had<br />

recently come to their attention. Gilliam<br />

<strong>and</strong> Taber (1973) reported chalkbrood<br />

in Arizona, <strong>and</strong> Conner (1974)<br />

iound chalkbrood in Ohio.<br />

Gochnauer et al. (1972) reportcd<br />

the first record of chalkbrood in Canada<br />

in honey bees from British Columbia<br />

<strong>and</strong> Saskatcheu'an. Nelson et al.<br />

(1976) surveyed 5,374 colonies in five<br />

provinces of Canada in 1975 <strong>and</strong> found<br />

that 32/6 of these colonies had mummies<br />

in the combs. However, 75/6 ot<br />

the infected colonies had less than 10<br />

cells rvith chalkbrood. In a similar<br />

survey conducted in w€-tern Canada<br />

in 1976, 33% oI the package colonies<br />

<strong>and</strong> 20Vo of the wintered colonies had<br />

chalkbrood disease (Nelson et al.,<br />

1977). Thc disease is norv n'idespread<br />

in the U. S. <strong>and</strong> Canada. By 1976,<br />

chalkbrood had becn detected in 33 of<br />

the 48 mainl<strong>and</strong> states <strong>and</strong> Hau'aii <strong>and</strong><br />

in 6 of B Canadian provinces (Menapace<br />

<strong>and</strong> Wilson, 1976).<br />

Etiology<br />

Un<strong>for</strong>tunately, little is knou,n of<br />

the epidemiology <strong>and</strong> pathogenesis of<br />

chalkbrood disease. According to Bailey<br />

(1967), honey bee larvae are most<br />

susccptible to chalkbrood disease iI they<br />

ingest spores of A. apis when they are<br />

3-4 days old <strong>and</strong> are then chilled 2<br />

days later after they are sealed in their<br />

cells to pupate. The spores then gern-rinate<br />

in the gut of the larvac. Initia11y<br />

the dead lar-vae are covered rvith<br />

a u'hite fluffy grorvth of mycelia <strong>and</strong><br />

are slvollcn to the size of the cell.<br />

Later they dry into a hard, shrunken<br />

chalk-like lump which may bccome<br />

gray to black if fruiting bodies are<br />

<strong>for</strong>rned. The remains of larvae can be<br />

found in sealed or unsealed cells. Most<br />

larvae die in the upright stage. Adult<br />

bees generally remove the nrurnmies<br />

after rvhich they can be found at the<br />

colony entrance <strong>and</strong> on the bottom<br />

board.<br />

There has been controversy concerning<br />

whether natural infection of. A. apis<br />

occurs by ingestion of spores rvith food<br />

or via the body surface from spores on<br />

combs <strong>and</strong> cell walls. Gochnauer et<br />

ai. (1975) postulated that once a colony<br />

was infected, the spores could remain<br />

viable on the combs, eventually<br />

germinate w'hen conditions became favorable,<br />

<strong>and</strong> the disease could then<br />

reappear. They aiso suggested that A.<br />

aprs rnight sunrive in soil, find its way<br />

into the food chain of honey bees, <strong>and</strong><br />

be transmitted to larvae via contaminated<br />

brood food.<br />

Although the ability of infection to<br />

spread has been considered to be low<br />

(Bailey, 1963,7, the spores are quite<br />

resistant <strong>and</strong> remain infective f or at<br />

least 15 years ( Toumanoff, 195 1 ) .<br />

Maurizio (1934) <strong>and</strong> Betts (1951)<br />

thought that the disease was probably<br />

carried by honey, <strong>and</strong> there<strong>for</strong>e one<br />

should avoid feeding honey from infected<br />

colonies. Maurizio (1934) found<br />

the fungus in the intestines of bees<br />

from an infected colony <strong>and</strong> stated that<br />

the organisrn rvintercd in bees <strong>and</strong> in<br />

honey. Dc Jong <strong>and</strong> N,Iorse (1976)<br />

found ,4. apis in the honey sac contents<br />

of adult u'orker bees from infected<br />

colonies <strong>and</strong> shou,ed that spores<br />

n'ere passed from bee to bee in food<br />

exchange.<br />

Further spread of the disease occurs<br />

rnostly through drifting of bees from<br />

infected colonies. Horvever, transfer of<br />

spores by the beekeeper also occurs<br />

when contaminated tools <strong>and</strong> combs<br />

are interchanged in infected <strong>and</strong><br />

healthy colonies (Barthel, 1971).<br />

Other possible sources of infection include<br />

contaminated pollen (Mehr et<br />

al., 1976), wind, water, queen bees<br />

(De Jong <strong>and</strong> Morse, 1976; Moeller<br />

<strong>and</strong> Williams, i976), <strong>and</strong> package bees<br />

(Nelson et al., 1977 ) .<br />

American Bee Journal<br />

'ft


Many factors have been postulated<br />

to contribute to the development of<br />

chalkbrood disease in bee colonies (see<br />

Gilliam, 1978). These include chilling<br />

of larvae, poor ventilation of colonies,<br />

partially occupied wintering colonies,<br />

cool moist weather, high humidity <strong>and</strong><br />

temperatures, excessive hive moisture,<br />

weak colonies, air pollution, the use of<br />

antiblotics favoring the growth of fungi,<br />

colonies suffering from other diseases,<br />

injured brood, genetic factors,<br />

watery food, <strong>and</strong> excessive colony<br />

manipulation.<br />

It has been suggested that other insects,<br />

primarily solitary or wild bees,<br />

play a part in spreading chalkbrood<br />

disease. Ascosphaera apis has been<br />

found in or associated with ieaf cutter<br />

bees, mason bees, soil nesting bees,<br />

<strong>and</strong> alkali bees (Baker <strong>and</strong> Torchio,<br />

1968; Batra et al., 1973; Clout, 1956;<br />

Stephen <strong>and</strong> Undurraga, 1965). Batra<br />

et al. ( 1973 ) noted the importance<br />

of the reservoir of inoculum in the<br />

nests of wild bees. Some individuals<br />

of most bee species in an area <strong>for</strong>age<br />

on the same crops <strong>and</strong> thus permit an<br />

exchange of inoculum via the flowers.<br />

Moreover, they recovered the same<br />

Figure<br />

slrqin of<br />

ffi<br />

l. filummified honcy bee loruoc infected with unmsted<br />

Ascosphoero opis.<br />

7<br />

Mummies ore white.<br />

fungi from the honey stomachs of several<br />

species of bees.<br />

Treatment<br />

No chemotherapeutic agent is registered<br />

<strong>for</strong> use against chalkbrood disease<br />

in the United States. Previously<br />

the losses caused by the disease were<br />

not considered serious enough to justify<br />

research on treatment. Since the adult<br />

bees generally carry the dead brood<br />

out of the hive, the disease often disappears<br />

without intervention from the<br />

beekeeper.<br />

Destruction of affected combs or<br />

sections of combs in severe cases has<br />

been recommended (Betts, 1951; Gochnauer<br />

et al., 1975 ). Giauffret et al.<br />

(1969) <strong>and</strong> Thomas <strong>and</strong> Luce (1972)<br />

found that fumigation with ethylene<br />

oxide killed A. apis in infected combs.<br />

Moisture accumulation <strong>and</strong> poor ventilation<br />

in hives should probably be<br />

avoided since cold <strong>and</strong> damp weather<br />

has been thought to encourage the<br />

development of chalkbrood, Z<strong>and</strong>,er<br />

(1919) emphasized the importance of<br />

wrapping colonies during the winter<br />

<strong>and</strong> keeping them dry. Seal (1957)<br />

stated that serious spread of the dis-<br />

tgffi#i<br />

W*<br />

i:ee.{<br />

hffiffi,<br />

#-wi<br />

Figure 3. Motcd slroin of Ascosphoerp opis showing sporus<br />

within fruiling bodier.<br />

July 1978<br />

ease could be avoided by closing the<br />

hives <strong>for</strong> winter <strong>and</strong> keeping the hives<br />

clear of long grass to prevent dampness<br />

<strong>and</strong> to allow adequate ventilation.<br />

One also can enlarge the entrance to<br />

a colony to aid ventilation (Gochnauer<br />

et al., 1975).<br />

Seal (1957) recommended strengthening<br />

badly diseased colonies by adding<br />

young adult bees <strong>and</strong> hatching<br />

brood <strong>and</strong> feeding sugar syrup. He<br />

also stated that chalkbrood could be<br />

avoided by not allowing the bees to<br />

winter in too large a brood chamber.<br />

Lunder (1972) suggested the use of<br />

resistant queens, <strong>and</strong> Mraz (1973) recommended<br />

requeening with non-susceptible<br />

strains. Recently Nelson<br />

( 1975 ) made crosses between New<br />

Zeal<strong>and</strong> <strong>and</strong> Cali<strong>for</strong>nia stocks of bees<br />

<strong>and</strong> found that the resulting stock was<br />

less affected by chalkbrood than the<br />

Cali<strong>for</strong>nia stock.<br />

Several authors have conducted experiments<br />

on the use of chemicals to<br />

control chalkbrood. Generally, these<br />

attempts have not been successful because<br />

of toxicity of the chemicals to<br />

the bees, the fact that many of the<br />

chemicals were not acceptable to the<br />

Figure 2. Unmqled stroin of Ascosphoero opis. Mycelio only,<br />

#@'&&*<br />

Figure 4. Mummificd honey bee lowqc inlectcd with moted<br />

strsin of Ascosphoero opis. Mummicr ore dork groy to block<br />

469<br />

bee:<br />

lo(<br />

F.-.fo,:<br />

rh:<br />

fec:'<br />

Hi.'<br />

rhe<br />

.l --<br />

!;lr^<br />

sla:(<br />

ir.. t:<br />

lr -<br />

.\<br />

bee:<br />

I re3'<br />

T_<br />

I J-_<br />

ter;(<br />

of:<br />

H,,.<br />

se?'!<br />

\\'g:{<br />

anli:<br />

mrl<br />

aP<br />

cor:1<br />

fecti<br />

T<br />

that<br />

dro:r<br />

culrr<br />

sorb<br />

pollr<br />

bee<br />

sevel<br />

The<br />

in tl<br />

broo<br />

T<br />

tion<br />

resis<br />

pror<br />

disei<br />

tol<br />

oxid<br />

<strong>and</strong><br />

470


ees, <strong>and</strong> the time <strong>and</strong> ef<strong>for</strong>t required<br />

to disinfect all the parts of the hive.<br />

For exarnple, Elbe <strong>and</strong> Weide (1961)<br />

found that 0.7/e thymol prevented the<br />

growth of A. apis in culture. When<br />

the thymol solution \{'as sprayed on infected<br />

combs, the disease disappeared.<br />

Horvever, it was necessary to spray<br />

every comb <strong>and</strong> the inner walls of<br />

the brood chamber. The bees would<br />

rot accept 0.7/6 thymol in syrup. Barthel<br />

( 197 1 ) found that thymol in a<br />

2/6 solution had a fungistatic effect<br />

in 20 minutes on ,4. apis in uitro. He<br />

stated that stimulation of the cleaning<br />

instinct of bees is the principal control<br />

measure.<br />

Dallman (1966) tested the disinfectant<br />

"Fesia-Form" (<strong>for</strong>maldehyde base)<br />

on bee colonies infected with chalkbrood.<br />

He sprayed the solution on<br />

brood cornbs, the inside parts of the<br />

hive, <strong>and</strong> the flight board. Within a<br />

u'eek after spraying, the aduit bees<br />

from severely infected colonies had removed<br />

the mummies, <strong>and</strong> no reinfection<br />

was observed throughout the year.<br />

He found that a 4Vo solution of "Fesia-<br />

Form" killed the fungus. Barthel<br />

(1971) per<strong>for</strong>med ln uilro tests on the<br />

activity of fungicides agatnst A. apis<br />

<strong>and</strong> reported that 4/6 "Fesia-Form"<br />

killed the spores after 30 minutes.<br />

Antimycotics <strong>and</strong> antiseplics have<br />

been tested <strong>for</strong> possible use in the<br />

treatment of chalkbrood. Giauffret <strong>and</strong><br />

Taliercio (1967) reported that arnphotericin<br />

B \r'as the most effective agent<br />

of those they tested against A. apis.<br />

How'ever, it rvas not stable. The antiseptics<br />

tested $'ere quite stable but<br />

were more toxic <strong>for</strong> bees than the<br />

antimycotics. Moeller <strong>and</strong> Williams<br />

( 1976) found that 250 ppm of benom;'l<br />

in sugar s)'rup appeared to have<br />

a positive effect in reducing but not<br />

cornpletely eliminating chalkbrood infection.<br />

Thomas <strong>and</strong> Luce (1972) rePorted<br />

that sorbic acid <strong>and</strong> methyl parahydroxybenzoate<br />

inhibited A. apis in<br />

culture. Later Taber et al. (1975) fed<br />

sorbic acid <strong>and</strong> sodium propionate in<br />

pollen-sugar patties to badly infected<br />

bee colonies. <strong>Chalkbrood</strong> disappeared<br />

seven days after the treatment started.<br />

There were no symPtoms of toxicitY<br />

in the bees, <strong>and</strong> no reduction in sealed<br />

brood occurred.<br />

The use of ethylene oxide fumigation<br />

<strong>and</strong> the selection of chalkbroodresistant<br />

bees seem to be the two most<br />

promising means of controlling the<br />

disease, although research is required<br />

to test the effectiveness of ethylene<br />

oxide against A. apis in bee colonies<br />

<strong>and</strong> to select <strong>and</strong> breed resistant bees.<br />

470<br />

Speculation<br />

The origin of chalkbrood disease in<br />

the United States is a mystery. At<br />

least two possibilities exist. One opinion<br />

is that chalkbrood disease has been<br />

in this country <strong>for</strong> many years, but it<br />

was considered unimportant. Since<br />

rnany competent microbiologists have<br />

examined diseased bees in this country<br />

<strong>for</strong> many years, it seems unlikely that<br />

they rvould not have observed chalkbrood<br />

if it were present. I suspect<br />

that beekeepers were seeing another<br />

fungal disease, stonebrood, which also<br />

produces mummies. Some of the people<br />

who believe that the disease has<br />

been present <strong>for</strong> years also think that<br />

it recently has become more widespread<br />

<strong>and</strong> has increased in severity.<br />

If this is true, the fungus may have<br />

mutated or strains of bees may have<br />

become more susceptible. Indeed,<br />

strains of A. apis in the United States<br />

may differ from those found in other<br />

parts of the world.<br />

The fungus may have been present<br />

in solitary or wild bees in this country<br />

<strong>for</strong> many years. There is no way<br />

of knorving this since little work has<br />

been done on the microflora of these<br />

bees, which may have served as a reservoir<br />

of inoculum <strong>for</strong> honey bees.<br />

Another vierv is that the fungus lvas<br />

only recently introduced, perhaps on<br />

imported pollen. Then the rvidespread<br />

use of antibiotics to control bee diseases<br />

may have increased the incidence<br />

of chalkbrood disease by upsetting the<br />

normal intestinal micloflora of bees.<br />

<strong>Chalkbrood</strong> may be a stress-related<br />

disease of honey bees since abnormal,<br />

starved, <strong>and</strong> confined bees seem more<br />

susceptible. Also, some bee colonies<br />

are rnore adept at removing the diseased<br />

larvae (Nelson et al., 1975; Gilliarn<br />

et al., 1978).<br />

These conjectures demonstrate that<br />

there are many interesting avenues of<br />

research on chalkbrood disease that<br />

should be investigated. Particularly,<br />

the taxonomy <strong>and</strong> infectivity of strains<br />

of A. apis <strong>and</strong> the susceptibility of<br />

strains of honey bees under various<br />

nranagement procedures need to be<br />

examined.<br />

Research Report<br />

One of the major obstacles in conducting<br />

research on chalkbrood disease<br />

has been the difficulty of inducing infections<br />

in bees <strong>for</strong> study. Such infections<br />

would give in<strong>for</strong>mation on<br />

how, when, <strong>and</strong> why bees succumb to<br />

chalkbrood <strong>and</strong> also would allow researchers<br />

to per<strong>for</strong>m controlled experiments<br />

on methods of treatment. Thus,<br />

we have conducted experiments to in-<br />

fect brood in full-size colonies in the<br />

apiary <strong>and</strong> brood maintained in an incubator.<br />

Details of the experiments<br />

are in the recent paper by Gilliam<br />

et al. ( 1978).<br />

Many attempts, most of which were<br />

unsuccessful or not reproducible, were<br />

made to infect brood in apiary colonies<br />

with ,{. a/is under a variety of conditions<br />

affecting both the pathogen <strong>and</strong><br />

the host colonies. These included the<br />

use of inocula prepared from artificial<br />

cultures of. A. apis vs. suspensions from<br />

naturally infected larvae, application<br />

of the inocula in syrup sprays <strong>and</strong>/or<br />

in pollen cakes, use of mummies with<br />

sporulated vs. vegetative growth of the<br />

pathogen, alteration of the ratio of<br />

adult worker bees to brood by removal<br />

of adult bees or frames of brood prior<br />

to application of the inoculum, <strong>and</strong><br />

appiication of ground mummies in<br />

dusts or in pollen.<br />

The most severe infections were produced<br />

in colonies that had been fed<br />

uncontaminated pollen to promote<br />

brood rearing <strong>and</strong> from which varying<br />

numbers of adult bees were removed<br />

be<strong>for</strong>e the brood u'as sprayed with a<br />

suspension of 3 black (sporulated)<br />

rnummies in 90 ml of 5/p sucrose in<br />

water. When this treatment was applied<br />

3 times a day on the first, third,<br />

<strong>and</strong> f if th day of the experiment, it<br />

yielded heavy infections (10/p of the<br />

brood) by the sixth day. However,<br />

even this treatment r.l'as less ef fective<br />

in other colonies that u'ere treated at<br />

later periods. Thus variation in sus-<br />

ceptibility of bee colonies may be an<br />

factor in expression of dis-<br />

:T::rr"",<br />

Because of the difficulty of inducing<br />

infections in apiary colonies, we<br />

devised techniques <strong>for</strong> removal of<br />

brood from combs, surface sterilization<br />

of brood, maintenance of brood in an<br />

incubator, <strong>and</strong> inoculation of brood<br />

wrth A. apis.<br />

First we sought to determine whether<br />

A. apis causes chalkbrood disease or<br />

is simply a secondary invader of larvae<br />

killed or injured by other events. Evi<br />

dence <strong>for</strong> the latter might be supported<br />

by mummification of dead larvae. We<br />

also wished to determine whether<br />

mummification arises from infection by<br />

both vegetative <strong>and</strong> sporulated strains<br />

<strong>and</strong> whether A. apis can invade larvae<br />

through the cuticle <strong>and</strong>,<strong>for</strong> through the<br />

mouth. In addition, we wished to determine<br />

whether young <strong>and</strong> old larvae<br />

are equally susceptible to infection.<br />

Larvae from uncapped cells were<br />

collected <strong>and</strong> divided into two age<br />

groups, small <strong>and</strong> large, on the basis<br />

of size. The small larvae were 3-4<br />

days old, <strong>and</strong> the large larvae were<br />

American Elee Journal


4.5-5.5 days old. Half of the larvae<br />

were killed by freezing with dry ice.<br />

Groups of larvae were then inoculated<br />

rrith mated or unmated strains of l.<br />

apiJ on the dorsal surface of the segments<br />

(back) or on the mouthparts.<br />

No mummies were <strong>for</strong>med as a result<br />

of the inoculation of dead larvae<br />

rtith A. apis. However, A. apis did<br />

grow on many of these larvae. Thus,<br />

it appears that A. apis can grow <strong>and</strong><br />

in some instances sporulate on dead<br />

lan'ae but will not mummify them.<br />

\fummies were produced by inoculation<br />

of mouthparts <strong>and</strong> by inocularion<br />

on the back. Thus, infection may<br />

occur through the mouth <strong>and</strong> through<br />

the cuticle. We observed the fungus<br />

grorving from the mouth, the anus, <strong>and</strong><br />

through the cuticle of larvae inocuiated<br />

on the mouthparts. The fungus appeared<br />

to grow first aerially at the<br />

poinr of inoculation on larvae inocu-<br />

Iared on the back. It t h e n grew<br />

rhroughout the entire body, <strong>and</strong> the<br />

lan'ae became mummified. Both mated<br />

;rrd unrrated strains of A. apis caused<br />

mummy <strong>for</strong>mation. Three - 4-day-old<br />

<strong>and</strong> 4.5-5.5-day-old larvae u'ere equally<br />

susceptible to chalkbrood disease.<br />

Sorne rnummies n ere produced in<br />

the control (live larvae receiving dead<br />

-1. apis). These larvae may have had<br />

nJrural infections nhich r,r'ere inappar'rnt<br />

until the larvae were incubated.<br />

Hosever, none of the colonies from<br />

r'hich these larvae u'ere obtained conraincd<br />

any larvae that n'ere visibly<br />

infected tlith A. apis.<br />

\ext, n'e conducted a similar experirrrent<br />

to dctermine whether A. apis<br />

rr.ould grolv on or cause mummificarion<br />

of eggs; small (3 days old), mediurn<br />

(4-6 days old), <strong>and</strong> large larvae<br />

3-10 days old); prepupae (11 days<br />

, ,ld, ; pupae n,ith no eye color; <strong>and</strong><br />

pupae u'ith eye color.<br />

Our results shorved that eggs <strong>and</strong><br />

lupae of the honey bee do not supr),rrt<br />

thc glouth of the fungus <strong>and</strong> are<br />

:rot sr.lsceptible to laboratory infection<br />

'.rirh A. apis. Larvae <strong>and</strong> prepupae<br />

:rre susce ptible, <strong>and</strong> older lar"vae are<br />

the nrost susceptible. Also, all threc<br />

,'f thcsc age grolrps are susceptible to<br />

t)atural infections. Since the colony<br />

irorn uhich these insects r.r'ere obtained<br />

had no visible signs of chalkbrood dist'a,.e,<br />

,4. a|tis may leside in bee colonies<br />

r'ithout causing the overt signs of disease<br />

until the proper conditions exist.<br />

If chilling is a necessary prerequisite<br />

<strong>for</strong> infection u'ith our strain(s) of ,4.<br />

apis as with European strains, this<br />

condition should be rnet by our procedures<br />

<strong>for</strong> removal of brood from the<br />

comb <strong>and</strong> surface sterilization. However,<br />

in Arizona heavy year-round infections<br />

of chalkbrood disease have<br />

been seen in colonies, even when the<br />

average monthly temperature is 29'C.<br />

Strains of A. apis found in Arizona<br />

may thus differ from those reported<br />

from Europe. This question is now<br />

being investigated.<br />

In conclusion, A. apis infection occurs<br />

through the mouth <strong>and</strong> through<br />

the cuticle. Mated <strong>and</strong> unmated strains<br />

are infective. Ascosphaera apir grows<br />

on dead larvae but does not mummify<br />

them so it is pathogenic to honey bee<br />

larvae. The fungus also can grow as<br />

a saprophyte on dead larvae, but as<br />

a saprophyte, the fungus does not produce<br />

a mummy.<br />

N,I!PEEEITCTg<br />

Ba.iley, Ir. 1963, fnfectious Diseases of<br />

the <strong>Honey</strong>-Bee. L<strong>and</strong> Books, London.<br />

Batley, L, 1967. The effect of temp€rature<br />

on the pathogenicity of the fungus,<br />

Ascosphaera apis, <strong>for</strong> larvae of the honey<br />

bee, Apis mellif6ra, In Insect Pathology<br />

<strong>and</strong> Microbial Control, ed. P. A.<br />

van der Laan, pp. 162-167. North IIoll<strong>and</strong>,<br />

Amsterdam.<br />

Baker, G. M. antl P. F. Torchlo. 1968,<br />

New records of Asco€phaera, apls from<br />

North America. Mycologla 00: 189-190.<br />

Ba,rthel, B. 19?I. Der Kalkbrut auf der<br />

Spur. Ga,rten tlelntlerzucht. C. Imker<br />

1O: 12-13.<br />

Batrar IJ. 8., S. W. f. Batra, atral C. t.<br />

Bohart. 1973. The mycoflora of domestica.ted<br />

<strong>and</strong> wild bees (Apoidea). Uycopathol.<br />

Mycol. appl, 49: 13-44.<br />

3etts, A. D. 1951, The Diseases of Bees:<br />

Their Signs, Causes <strong>and</strong> Treatment.<br />

Hickmott, Camberley, Engl<strong>and</strong>.<br />

Clout, G, A. 1956. Chalk brood <strong>and</strong> hunchback<br />

flies. Bee Craft 38: 135.<br />

Connor, L. J. 197/t. Chalk brood is noq/<br />

in Ohio. Amer. Be€ J. 114: 460.<br />

De Jotlg', D. atrcl B. A. Morse. 19?6. Chalk<br />

brood: a new disease of honey bees in<br />

the U. S. N. Y. Fooat Ltfe Scl. 9: 72-14.<br />

Da,llmana, E, 1966. Neue Wege bei der<br />

Bek?impfung der Kalkbrut in Bienenwiilkern.<br />

Ga"rten trleirtlerzucht. C. fmker<br />

5: 10.<br />

Elbe, E, <strong>and</strong>l .w, Welale. 1961. Die Bekampfung<br />

von Pericystls apls Maassen<br />

in Labor und Praxis. 'Wlss. Z. Unlv.<br />

E&ilo, Dlath. - Na.turwlsB. 10: 83-86 (Aptc.<br />

Abstr. 15: 72, lgil).<br />

Giauffret, A, antl Y. P. fallerclo. 1967.<br />

Les mycoses de I'abpille (Apis-meutftca<br />

L,): 6tude de quelques antimycosiques.<br />

BuU, Apicole 10: 163-174.<br />

Glauffret, A., 1l[. J. TostaiL-Cauca.t, anal<br />

Y, Ialiercio. 1969. Possibilities de desinfection<br />

par I'oxyde d'ethylene en pathologie<br />

apicole. BuU. Apicole 12: 45-52.<br />

Gilliam, M. 1978. Fungi. fn Pests, Prealatols<br />

<strong>and</strong> Diseases of <strong>Honey</strong> Bees, ed.<br />

R. A. Morse. Cornell University Press,<br />

Ithaca, Ne\v York. In press.<br />

Gillian, M. antl S. Taber III. 1973, Microorganisms<br />

<strong>and</strong> diseases encountered in<br />

continuous bee production. Amen Be€<br />

tr. LL1: 2N-223.<br />

Gillia.m, M., S. faber lfl, a"att J. B. Bose,<br />

1978. <strong>Chalkbrood</strong> disease of honey bees,<br />

Apis meUifda L.: a progress report.<br />

ApialoloEie. In press.<br />

Aocb'!3rrr8, l!. A., B. Plrrgbl+ urd E.<br />

$lltrnnH 19115. Diseases ancl enemies<br />

of the honey bee. In The Hive <strong>and</strong> the<br />

<strong>Honey</strong> Bee, ed. Dadent <strong>and</strong>Sons, pp,616-<br />

655. Dadsnt ancl Sons, Ifamilton, Illinois.<br />

Gocblruer, l. !, 8. J. Erg'her, rri J.<br />

Concr. 1972. <strong>Chalkbrood</strong> disease of<br />

honey bee la,rvae a threat to Canatlian<br />

beekeeping? CeJrr,it. AgElo. 17:<br />

36-37.<br />

Eltchcoct, J. D. eadl U. Cbr&teDrerL l9'1I2.<br />

<strong>Chalkbrood</strong> disease of honey bees in the<br />

Uniteal States. ADer. Bo€ J, l'lat ?A8-<br />

249, 254.<br />

lultler, B f972. . Unclerdkelse ev kslkyngel<br />

i 1971. Btraltercll, 88: 56-6O.<br />

Maasser\ A. 1913. W'eitere Mitteilungen<br />

iiber der seuchenhaften Brutkrankheiten<br />

der Bienen. UltteU. aug der toL. Btol.<br />

anstalt LaJtal- FoEtwlrtscbaft 14: 48-58.<br />

Uaasson, A, 1916. Uber Bienenkrankheiten.<br />

ultteU. aug tler trals. Blol. AJrsta,lt<br />

Laral- For€trrlrtachaft 16: 51-58.<br />

Maurlzto, A. lg0l1. iiber die l(atkbrut (Perlcystis-Mykose)<br />

der Bienen. Arcb. Blenen&.<br />

15: 165-193.<br />

Uebr, 2., D. U. uenapace, W. T. 'Wlleon,<br />

anfl B. B. Sackett. 1976. Studies on<br />

the initiation <strong>and</strong> spread of chalkbrood<br />

within an apiary. Amer. Be€ J. 116:<br />

26&268.<br />

Menapace, D. U. anal W, T. Wllson 19?6.<br />

The spread of chalkbrood in the North<br />

American honey bee, Apls melllfsra-<br />

Amer. Be€ J. 116: 570-573.<br />

Moeller, F, E, a.nal ?. E. w[Uamr, 1976.<br />

<strong>Chalkbrood</strong> research at Madison, Wisconsin.<br />

Amer. Beo J. U6: 484, 486, 495.<br />

Mra.z, G, 1973. Chalk brood, CIea!!. 8ee<br />

Cult, l0l: 115, 126.<br />

NelsoD, It. Ir, 1975, An evaluation: a<br />

cross between Nes/ Zeal<strong>and</strong> <strong>and</strong> Cali<strong>for</strong>nia<br />

honey bee stocks. Amer. Bee J.<br />

LLi: 223-229, 234.<br />

![elsoD, D. L., n, G, 8a"rker, S. E. Blanil,<br />

U, Soehngen, a.nal J. CorEsr. 19?7. Western<br />

Canada chalk brood dis€ase survey<br />

of honey bees, 19?6. Aner. Be€ J. ll?:<br />

494-496, 505.<br />

llelson, D. Ir., B. Batker, E. Blatral, J,<br />

Corret, U. Soehngell, anal J. L. Vluoreuve.<br />

1976, Chalk brood disease suroey<br />

of honey bees in Canada, 1975. Auer.<br />

Bes J. 116: 108-109.<br />

Sea.l, D, .w. & 1957, Chalk brood disease<br />

of bees. lv. z, J. Agrlc. 95: 562.<br />

Sptltol!, C. F. 1955. Life cycle of Asco!phaera<br />

apls (Perlcystls apls). Amer. it,<br />

Bota,ry 'gl: 501-508.<br />

Spittoir, C. F. alal Ir. S, OUve, 1955. A<br />

reclassification of the genus Pericyltls<br />

Betts. Dlycologla 47: 238-244.<br />

Stephetr, \lI. P. a,nal J. U. Unaturraga. 1976.<br />

X-radiography, an analytical tool in<br />

population studies of the lea{cutter bee<br />

Megachlle paclflca. J. Aplc. Be€. 15:<br />

81-87.<br />

Taber, S. III, B. Sackett, aJlal J. UUlr.<br />

1975, A possible control <strong>for</strong> chalk brood<br />

disease. Amer, Eee J, U5: m.<br />

fhomas, G, M. aral A, Luce. 1972. An<br />

epizootic of chalk brood, Aseosphaera<br />

elds (Maassen ex Claussen) Olive <strong>and</strong><br />

Spiltoir in the honey bee, AplB melluera<br />

L. in Cali<strong>for</strong>nia. ADer. Be€ J, Ul: 88-<br />

90.<br />

Tounanoff, C, 1951. Les Maladies des<br />

Abeilles. [,evue Erancalse Aplc. Nurrt,<br />

Spec, 68.<br />

Za,naler, E. 1919, Die Brutkrankheiten und<br />

Ihre Bekempfung. H<strong>and</strong>buch der Bienenkunde<br />

in Einzeldarstellungen. Vol. 1,<br />

second edition. Ei, Ulmer, Stuttgart.<br />

July 1978 Reprinted from July, 1978, American Bee Journal<br />

47L<br />

VoI. 118 (7): 468-47L


.behaviour, the crops being grown' the pests ,that affect them <strong>and</strong> the<br />

pesticides'useC in their control. But above all they must be expelt in<br />

'dealing rvith people. They must be unbiased <strong>and</strong> respect the intelest's of<br />

all the parties concerned.<br />

REFERENCLS<br />

PAI-\IER-JON,E-S. T., FONSTER, I. w'. GRTFFECS, L. A. M. l95i EHect on honeli bees ol<br />

It'letasyslox applied lrom the ai.r as a spray to chou moeUer- - NetD Zeal<strong>and</strong> Journcl<br />

o, Sclence <strong>and</strong> Technology 38'.7 (June 19i?).<br />

PALNIER-JONFS, T.. FORSTER, I. w. 1963 - E{fect on honey-bees -of<br />

Pbosdrin 'appU"O as s.prays to ivhite clover. Nero Zeal<strong>and</strong><br />

Rese4rch 6.:3 (June-Augusl 1963).<br />

E<br />

RESEARCH ON CHALI(BROOD DISEASE OF<br />

HONEY BEF^S<br />

Dipterex, Thiodan, <strong>and</strong><br />

Journal of Agricultura.l<br />

' I$artha GILLIAI\I<br />

S. TTIBER III<br />

'<br />

J. BR.{Y ROSE<br />

u.s'A'<br />

fntroduction<br />

chalkbrood disease of honey bees, Apis nzelliiera L, il thought to<br />

be caused by the heterothalic fungus, Ascosphoero (Nlaass-en<br />

-iaur.ett; -api! -ex'<br />

Ol'ive & Spiltoir- Spores-are <strong>for</strong>med irithiq fruiting bodies<br />

only tvhln myeelia oi opposite sex come together. Diseased larvae be-<br />

*r*miiied-'The niummies are rvhite due to the mycelium of the<br />

"oiriu<br />

fungus. Horvever, if fruiting ,bodies are <strong>for</strong>rned, the murnnies are dark<br />

gray or ,black.<br />

" -<br />

Un<strong>for</strong>tunately, little is knorvn of the epideTiology_ <strong>and</strong> pathogenesis<br />

of chalkbiood diseasz. According (1967), honey bee<br />

-Io-.BAILEY<br />

Iarvae are most susceptible to challibrood diseasa if they ingest<br />

^spores<br />

ot g. cpis $,hen they- are 3--4 days old <strong>and</strong> are then chilled 2 d-ays<br />

later after they are- sealed in their cells to pupate- The spores then<br />

l*.*i""t" in the gut of the lar:vae. Initiaily-the dead larvae are covered<br />

ivith a white fiuify grorvth of mycelia <strong>and</strong> ar:e srvollen to the size of<br />

the cell. Later they dry into a hard, shrunken chalklike lurnp rvhich tnal'<br />

U*"or"u gray to ,6t"cti if fruiting bodies are <strong>for</strong>rned. The remains of<br />

larvae cJn be found in sealed ,or unseal'eC cells'<br />

- BARTHEL (1971) <strong>and</strong> MATUS <strong>and</strong> SARBAK (i974) stated that<br />

natural irrfection of A. apis could occur either by ingestion o! spor-es<br />

iuiifr io"i or via the bodl; surface from spores on c-ornbs <strong>and</strong> cell rvalls.<br />

iCjUSSff ,(1962) found that the spores germinated on the surface of<br />

iu..*u, rvhLreas MAURIZIO (1931t thought- that infection rvas through<br />

the mouth <strong>and</strong> not through the 'cutiele or spiracles'<br />

chalkbrood disease has been reported from Europe <strong>for</strong> man)'years-<br />

Horvever, it rvas not reported from fhe UniteC States until BAKER <strong>and</strong><br />

fOnCgfb (ig66) fognd-A. opis'associated rvith a leaf cutter bez, Meg.achile<br />

inernzis Piovaneher ut d o soil nesting 'bee, Anthophora pacifica<br />

Cresson, Late THONIT\S <strong>and</strong> LUCE (L972) reported chalkbrood from honey<br />

451<br />

w


,i<br />

beef in cali<strong>for</strong>nia. ancl IitrcHCoCI( anc CIIRISTENSLN (19?2) found tlre<br />

disease - in honey bee lan.ae fronr Nebr.aska anc \v)-oming. $ri, firsi<br />

founcl the clisease in bees from Arizona iu rlay, lgzi lctillalt ana-<br />

TAB_!R. 1.97-3). The cisease r)or\: appears to be ivides?reacl in b:es in<br />

the Unitecl States.<br />

De JONG <strong>and</strong> IiOR.SE (19?6) noted the clifficultl, that resear-chers<br />

!1r'e 91t;:r'ienced in. inducing' chailtbrood infections iir bees fo5i;J;.:<br />

.Since 1972. s'e have been corilucting experinrents on ffr" transrnission of<br />

4. gPt"- Specificall)'. l'e have been attempting to infect brooC artificiattJ-.<br />

Such infccticns s'ould gir-e infomratio.t on ttft transmission anC path;genesis<br />

of the disease.anc rvoulc provide a leprocucible .bioassay.'They<br />

rvould also allorv us to per<strong>for</strong>m ControlleC expeliments .o1 methoCs df<br />

treat:rrent such 'as the use of nrolc inhibitors (TABER et al.,lg7i).In this<br />

Papgr. lrre report the $'ork that rve have conducted on full-size-colonies<br />

in the apiary <strong>and</strong> on brood rnaintaineC in an ineubator.<br />

Attempts to infect apiary ctllonies rvith A. apis<br />

il{any at,ternpts rvere made to infeot brood in apiary colonies rvith<br />

Ascosphaera . -<br />

-apis uncer a r-ariety of conditions itrelting both the<br />

pathogen <strong>and</strong> the host colonies. These included the use-of inocula<br />

prepareC frorn altificial cultures of A. opis vs. suspensions frorn naturally<br />

infected larvae, ap1:lication of the inocula in syrup sprays ana/or ii<br />

pollen cakes, use of mummies rvith sporulatec vi. vegeiative g.o."tt, ot<br />

the pathogen, -alteration of the ratio bf adult rvorkuibe"r to iroocl by<br />

i'emoval of acult bees or frames of brood prior to application of thl<br />

inoculurn. <strong>and</strong> application- of grounc mu,nmies in duifs or in pollen.<br />

The rncst severe infections were produced in colonies thit had<br />

been fed uncontaminated pollen to promote ,brood rearing <strong>and</strong> from<br />

."-hi"lr-.q.f ing nun'rbers of adult bees ivere removed be<strong>for</strong>-e i suspension<br />

of 3 black (sporulated) ,mum,mies in 90 ml of 5olo sucrose in rvatei When<br />

this treatment rvas applied 3 times a day on the first, thirc. anc fifth<br />

9oy._of the.experiment, it yieldec heavy infections lttioTo of the broo-1<br />

by' the sixth day. Hrvever, even this ireatment ruas less effective in<br />

other colonies that rvere treated et later periods. Thus ryariation in susceptibilit.v<br />

may be an important factor in'expression of disease.<br />

Attempts to infect brood in an incubator rvith A. apis<br />

Beeause of the 'difficulty of inducing infections in apiary colonies.<br />

rve cleviseC teehniques fol reirovat of broid fr.orn coilbs, iurflce sterilization<br />

of brooc, maintenance ,of brood in an incubator, anc inoculation<br />

of brooC n'ith A. apis. No differences in survival rvere noted in larvae<br />

in the incubator f.ed 25oio sucrose solution. royal jelly, or nothing. Thus.<br />

suspensions of A. apis <strong>for</strong> inocula were ,prepared by homogenizing i<br />

black or spore-bearing rnummies (mated- stiain) oi s rvhite cha'iky<br />

mtrnrmies (unmatec strain) in 5 .rnt of sterile distilled rvater. ThesL<br />

susp-ensio;rs rvere qlatec to confinn viability <strong>and</strong> n'ere also sprayec or:<br />

conrbs, in apiary colonies. Sorne murnmies rv-ere found in spral'ec cornbs<br />

after 5 days. The dead A. apfs suspensions used <strong>for</strong> controls s'ere'obtaiped<br />

by autoclaving the homogenate.<br />

452


Attempts to infect small <strong>and</strong> large larvae from uncapped cells rvitft<br />

;1. aPis<br />

Firsl rve soLrght .to determine rvhether A. opis causes chall


Table I<br />

TRE,.\TIlEN'T CROUPS OF S}IALL AND LARGE. LARI:I'E FROM UNCAPI'I:D CELLS<br />

uslrD To D!:T}]RfrlNE rro-"iitto"ENIC AND sAPRoPl{YTic PRoPEIlrrEs oF<br />

ASCOSPHAERA API*C<br />

Trettlnent<br />

Large lart'ae a<br />

"Alive" lalvae <strong>and</strong> live A' olris<br />

-do-<br />

-do-<br />

-do- ".rtiie" lrrvae <strong>and</strong> dead l' apis<br />

._ do -:-<br />

-do-<br />

-do-<br />

"D;i'' larvae <strong>and</strong> live A' oPis<br />

-do-<br />

-do-<br />

-do-<br />

'PJaa" larvae <strong>and</strong> dead A' oPis<br />

-do-<br />

-do-<br />

-do-<br />

Snroll larroe b<br />

"Alive" larvae <strong>and</strong> live J' aPis<br />

-do-<br />

-do-<br />

-do-<br />

"Alirle" larva': <strong>and</strong> dead '1' aPis<br />

-do-<br />

-Co-.<br />

-Co- "O"aa" larvae arrd live A' aPis<br />

*do-<br />

-do-<br />

-do- "Da;" larvae <strong>and</strong> dead oPis<br />

'1'<br />

-do-<br />

-do-<br />

-do-<br />

a .:C )rr\'le P3r t35t<br />

tr l0 lf:'\'ae Psr test<br />

.1t dr)is, stfain<br />

1\{ated<br />

Unnlated<br />

IIated<br />

Unmated<br />

Mated<br />

Unnrated<br />

Il1ated<br />

Unmated<br />

tr{ated<br />

Unmated<br />

Itlated<br />

Unnrated<br />

Mated<br />

Unmated<br />

Nlated<br />

Unmated<br />

NIated<br />

Unmated<br />

Ir{ated<br />

Unmated<br />

IIated<br />

Unnrated<br />

Mated<br />

Unrnated<br />

Ivlated<br />

Unmated<br />

Iv{ated<br />

Unmated<br />

Nfated<br />

Unn.rated<br />

Ir{ated<br />

Unmated<br />

Slte of infculittton<br />

Ir{otrtlrParts<br />

-do--<br />

B:rck<br />

-do-<br />

Iloutl'rParts<br />

-do*<br />

Back<br />

-do-<br />

I\Ioutlrlla rts<br />

-do-<br />

Back<br />

-do-<br />

MouthParts<br />

-do-<br />

Back<br />

-do-<br />

IlouthParts<br />

Brck -do-<br />

-do- NlouthParts<br />

-do- Back<br />

-do- MouthParts<br />

-do- Back<br />

-do- NlouthParts<br />

.- do<br />

Back -<br />

-do-<br />

mulntnieslvereprocuce(lbyinoculatiorrof'rrrouthl)arts.<strong>and</strong>lTby<br />

murntnies lvere proCucecl bv . inoculatiol -ot^^1::t;l-l]':t:'"ild*n11,,1<br />

inoculation oI1 the f"a"n-irtt'1 ini'-*ttio"<br />

"t"l''::1tt,3^":o^:.ri:ur'iltfl'ql<br />

',f,:" :i'1[?3 i'i" "if, . i'i.T,'' # ii'u;' e;:xlq,t' :T -'l: TiY,i'i;ii:; "+i';<br />

:tl? ",T,:';;h'";r':':;li"r" ;i. r"'.'?u-, ii;,"9:t1:*^ ":,T,'<br />

?llr,ll'.:;3:J"';;"t:;y";$,+I'{Y.3.1.'-i""*f"',,i1#"""i1?:?,i'l "'li::lt"illi;,,"3i<br />

illi:', ; 5ff'?,'$ :: fi :'ilt: i ; il;^;, ;; ; h;"-"s h<br />

: *. :l i,:."' 'j: l:3J;<br />

lTJ"",;:"'ilil:"il.'.';:'";r#:!id-l'^1.";:0,":l,T:"*itll:.1:",::f l<br />

ili*, :?:' #-^,:"?" fi ' ill, ; ;'; inF ; *<br />

"'1 ff : lt# ":* #,:.::i:13 1f:j<br />

B:i"'H::.f :'i t' lLi iil t a-'t'" i "' ;i A o p'-'- .:il:',"1-.::l::::1t'l::;<br />

"<br />

,,,u,ioll'3r'-lil'.'on,1i',1'*::';:;:;;;;,'ri?;1.1: .:ll::t"l;ll.:'::::0",t'i'l'l<br />

black tnutntnies, ri--it:"t" btacti anC l1 u'ere rvhiia' iia. Florvever, of the<br />

454


Small-alive<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

Small dead<br />

Large-alive<br />

-do-<br />

-do-<br />

-_do-<br />

-do-<br />

-do-<br />

Large-dead<br />

-do-<br />

IJ.IIR VA E EX P ER T ill F4{T A LLY L\T'E CT ED IV I'IH<br />

InoculaLion<br />

Site<br />

l\lorrthParts<br />

-do-<br />

Back<br />

-do-<br />

MouthParts<br />

Back<br />

-do-<br />

MouthParts<br />

-do-<br />

Back<br />

-do-<br />

MouthParts<br />

Back<br />

MouthParts<br />

Back<br />

A. cpis slrai'n<br />

Live-mated<br />

Live-untnated<br />

Live-mated<br />

Live-unmated<br />

Dead-nrated<br />

-do-<br />

Live-unnrated<br />

Live-mated<br />

Lise-unmated<br />

Live-mated<br />

Live-unmated<br />

Dead-unmated<br />

Dead-mated<br />

Live-unmated<br />

-do-<br />

d ?a-..^ar. tr.rl:r,v-$ ri.;\. >r* .af! rr'teHr4 *+ s<br />

i.e*!t*;frE'iEi+;xlg*:,e+*<br />

ASCOSP''AERA 4PIS<br />

I,I!rn:Trie5<br />

ProCuced<br />

Table 2<br />

Llrv'a e<br />

\r'itrr<br />

A- opis<br />

GrO\uth<br />

Bia.k w[ite !11ry.,tr!- snoto<br />

mummies produeed by inoculation material prepared from lvhite<br />

^of<br />

mummies, .l.B were',Uii"f.'l"J';;f g"ir"r" itnite.' Thu-s- bv selecting 5<br />

mummies <strong>for</strong> produflL" or the inoculu;' ;;;bt'i"till nrixec * <strong>and</strong><br />

- strains to prodti-e'ttr* mateC .trui"r ltttut infected the larvae' Horvever,<br />

it is interestiiftt'^Jiil n1al^1"*l"t of black <strong>and</strong> rvhite nlurnmies<br />

\r,ere <strong>for</strong>med frcm riaterial rpreparec l;; black mummies' A separation<br />

of */-. material could harie occutt;;-;;'-perhaps' spomlation lvas in<br />

solne' rvaY inhibiteC' ^:Lr ^ +.<br />

SmaII ancl lalge lan'ae were equalll'-suscepttllq l" infection since<br />

we usecl ,trvice ;H;i;;". i;;; ;t iniail ones' Thi.tv murrln'Iies l\'ere<br />

orocluced amons ", fi'il:;;; ii;;;J imalt laivae' rhus' 3--l<br />

iav_ord <strong>and</strong> 4.5- "ilJ 5.b day-ord larvae io be sus-ceotible to chalk-<br />

"pp"u.<br />

br-ood disease. This conjecture is ,"ili|#a'u>'-irt. i""i tnut 5 of the<br />

small <strong>and</strong> 6 of the large lan'u" upputl"tfi n;a a natural infection of<br />

chalkbrooC - :!---.^+ir<br />

1<br />

e<br />

I<br />

3<br />

2<br />

2<br />

y't<br />

/i 21<br />

4<br />

ll{<br />

67<br />

Nextlr,edevelopedanrethoc]ofsurfacesterilizatiorroflarvaervith<br />

;;-rrb -g""t"I1.lj"""tt (Jspersillrrs spp' <strong>and</strong><br />

a germicic. t"<br />

b"lftilirr* spp.)'rvithout ";;1";; harming the larvae' J<br />

Afterthelarvaelvere\l-ashecl.frorna.combo.ntoasterileltTassjlinR<br />

torvel, they u'ere'itlait'iaitufrr; pi"ft"J up 'rvith the suction apparatus'<br />

\\,ashed rvith a r,#;;'=;l"ti;; b1..n"i""r; tior" a prastic squeeze bottle'<br />

ancl rinsec ,trvice ;itl"r;;til-Jirt1r"a'."ater fro.r a-squ"e'e bottle' They<br />

rver.e placea or, ,i",.'if""ilg; to Ufoi'th;;" Cry <strong>and</strong> ivere then put into<br />

sterile vial caps i" p"lt'i'Jiihes 'by t'eleasing the suction'<br />

I<br />

6<br />

2<br />

4<br />

2<br />

3<br />

I<br />

3<br />

3<br />

2<br />

455<br />

{,<br />

T-:<br />

L.<br />

t:<br />

3,<br />

t<br />

J<br />

i I,t<br />

E<br />

{<br />

T<br />

t-<br />

)t.<br />

11.<br />

tt,<br />

I t,<br />

ti-<br />

li<br />

tt<br />

t,<br />

ti t\<br />

ll<br />

II<br />

t,<br />

'I I<br />

:li<br />

.r i<br />

:.1<br />

'ii :l t<br />

tf i<br />

.rl<br />

.r I<br />

.:F<br />

.t I<br />

,:i !<br />

i:i:,<br />

:.!i.<br />

!i<br />

tl<br />

t. I<br />

'-j


. Attcrrrlrts to infect cggs, lal'\'ac <strong>and</strong> pupae rvith rl' 0pis<br />

,lhen rre desi.qned an exper.im"Ii tJ aeterinit're ivhether 'rl' cpis<br />

rvould grow otr o.""o.,r" mummifica,i""'"t""g!s; snrall. nredintn' <strong>and</strong><br />

large tartuu , pr",rffiI ;;;;;"i;ith';" -"1'"'-"oio. ; <strong>and</strong> 1>upae rvith<br />

"'" "l.TI-rree,tment<br />

fJilili,#,",;:ili','",.J;:.h:{ff.i: ll?:,1ltti{i:ii{<br />

f;'::;;:u"ll,?'.".,11fi1;u' ;,;""'*tri- ster' J iis t * lecl rvater. rr,6i' thev rvere<br />

bloueci ar"rrl placecl*";;;;; ir,e siae. "f " ;1;;iie vial cap to simulate the<br />

rrosition occupied ri-iit" ""iri "i-irr"^;;b- S'rali <strong>and</strong> medium larvae<br />

i*.ere rvashed frorn uncappcd -combs. Large larvae, plepupas, arrc prrpae<br />

\\'ere rvashed fro"l -"oni6s af ter l"'"iooTtte the cells' All larvae lvere<br />

sterilizec u. a"r..iilJ'6uior". erpuu-iu""r""t"uttt"a rvith Roccal on the<br />

sterile to*,et or, .uiilt i*t^*:"Jioliected. Thel' rvere.then individually<br />

he*l rvith ro.""p.^'ulri'riir"a trvice'liiin'ttuiir" distilled rvater' Each<br />

insect rvas placed'i;^;.i"ril" "i"r "up'""J ii""i"a as shorvn in Table 3'<br />

'i.:. ?obte 3<br />

T3E:\Tf1ENT GROUPS OF EGGS' LAR'VAE' "\iiD PUPAE INOCULATED<br />

ASCOSPI'AEIIA APJS<br />

Treatmelt<br />

i?f': r. opis-nrated<br />

Live A. nPis-unmat-eo<br />

Dea,i -4. oPis-mateo ,<br />

;;;e;: oiris-unmated<br />

Srnoll loruse -<br />

Live A. opi's-nratecl<br />

Live A. oPis-nrated<br />

Live A. opis-unnrated<br />

Live 11. aPi's-unmat-eo<br />

Dead -'1. oPis-maied<br />

Deal J. aPis-mateo<br />

;;;e ;' oPi's-unmated<br />

5;;e ;. oPis-unnrated<br />

j\fediunr larz'ae<br />

Live A. oPis-mateo<br />

l,ive -'1. oPi's-mated<br />

ili;'; ;. 0pi)--unmated<br />

;ii; t. oPis-unmated<br />

Dead A. oPi's-mated<br />

DeaC A. aPi's-nrated<br />

"D;;a ;. crPis-unmated<br />

;;;J A. opi.s-unmated<br />

Lorge larxae<br />

Live A. opis-mateq<br />

Live 4. opis-matecl<br />

;i;;;. aPi's-unmated<br />

;i;; ;. oPis-unrrrat-ed<br />

Deai A. aPis-rnat€d<br />

" 5 iotto,a Per lre3tment<br />

456<br />

BodY<br />

tsodY<br />

BodY<br />

Body<br />

Site of<br />

trocrt:aCon<br />

Back<br />

IUouthParts<br />

Back<br />

1\louthParts<br />

Back<br />

I\IouthParts<br />

Back<br />

IlouthParts<br />

Back<br />

.:."ttotrthParts<br />

Back<br />

!{outhParts<br />

Back<br />

MoutbParts '<br />

Back<br />

IlouthParts<br />

Back<br />

NlouthParts<br />

Back<br />

l'toutl'lParts<br />

tlack<br />

Treatme:rt<br />

DeaC --1. aPis-mated -<br />

Dead ,1. aPis-utrmated<br />

Dead .rl. aPis-unmated<br />

PrepuPae<br />

Live A. oPis-mat€d<br />

Live J. opis-nrated -<br />

Live 11. oPis-unmated<br />

Lir-e A. cPis-unrnated<br />

Deal l. oPis-mated<br />

Deal -{' opis-nratecl<br />

b""a ;. cPis-unmated<br />

o"ia -e. oPis-unmated<br />

Pupae-l\-o Ege Color<br />

Lii'e A. oPis-mated<br />

Live -1. oPis-mated<br />

lii'u a- aPis-unmated<br />

r-i'*'" .r. oPis-trnmated<br />

Deal A. aPis-ma"ed<br />

DeaC A. cPis-nrated<br />

-oiie .1. oPis-unnrated<br />

6"iJ a. oPis-unnrirted<br />

PuPae-EUe Color -<br />

Lii'e '1. oPi's-mated<br />

Live A. oPis-mated<br />

;ii';;" opis-unmated<br />

Lii-; A- aPis-unmated<br />

Dead A- oPis-tna'ted<br />

DeaC ,'l' cPis-mated<br />

"D;;a ;. airis-trnmated<br />

i."a .'r. oPi's-unrnated<br />

WITH<br />

Site of<br />

I,nocugation<br />

MouthParts<br />

Back<br />

MoutlrPalts<br />

Back<br />

IloutlrParts<br />

Back<br />

I\lotrthParts .<br />

Bcck<br />

IllouthParts<br />

Eack<br />

IUouthParts<br />

Back<br />

llotlthParts<br />

Elack<br />

IlIouthParts<br />

Back<br />

IlouthPirrts<br />

Back<br />

tr{outhParts<br />

Bask<br />

Moutl'rParts<br />

Back<br />

I\IouthParts<br />

Back<br />

llfouthParts<br />

Back<br />

'IlouthParts<br />

i-l-*iie: I<br />

r:'rlt+i_ I<br />

rr.a:u;l


Since rve noted that the mediurn ancl large larvae. prepupae, arnd pupae<br />

requirel less humidity in the petri clishes than the eggs ancl srn-all<br />

larvae, rve aCclecl lesi rvater to the filter papers in -clishes containing<br />

these 'stages- The mummifiecl larvae <strong>and</strong> prepupae luoked more like<br />

those f roin natural hive inf ections. possibly b:cause of the lou'er<br />

hurniditl'.<br />

All broocl \vas incubated at 25oC ancl obserred <strong>for</strong> 15 days <strong>for</strong><br />

growth of A. apis <strong>and</strong> mummification. No grorvth-occurrecl on any-eggs<br />

6. p.,po". Altei incubation <strong>for</strong> 7 da1's, several rvith e1'e color had developed<br />

rvings, legs, antennae. <strong>and</strong> hair-<br />

As shorvn on Table 4, 26 mummies were <strong>for</strong>med. llorvever, 12 pf<br />

these rvere apparently the result of natural infections of A. apis since<br />

they rvere in'fne control gr:oups inoculated lvith dead A. rrpis' Of these<br />

12, 5 rvet'e medilm-sized la1.ae, 5 l-e're large lari-ae' <strong>and</strong> 2 rvere pre-<br />

pupae. There<strong>for</strong>e, by experimental inoculation, or\e rnummlr was produci.,<br />

the meclium-sized lattae, 8 in the large larvae, <strong>and</strong> 5 in the<br />

"a- prepllpae. Thus, more ,mummies .rvere produceC from large larvae though<br />

few murnrnies rvere produced in any lan'ae on preffil De JONG <strong>and</strong><br />

MORSE (1976) also observed rvide variation in infection rates of larvae<br />

Table 4<br />

MUNL\ITESI AND GRO\{TH OF .ASCOSPHAERA .APi.s PRODUCED BY INOCUL-A'TION OF<br />

EGGS, LARVAE AND PUPA-E WITFI ASCOSF}IAERA APT.S<br />

Stage<br />

Small lan'ae<br />

Iv{editrm la|va<br />

lledium larva<br />

Medium larva<br />

Irfedium larva<br />

Ir{edium larva<br />

Itledium larva<br />

Large larva<br />

Large larva<br />

Large larva<br />

Large larva<br />

Large lan'a<br />

Large larva<br />

Large larv;r<br />

Prepupae<br />

Prepnpae<br />

Preprrpae<br />

Prepupae<br />

Preprrp:re<br />

Preprrpae<br />

Site o!<br />

fnoculation<br />

I\louthparts<br />

1!Iouthp:rrLs<br />

Back<br />

lvlouthparts<br />

lvtouthparts<br />

Back<br />

Back<br />

I\Iouthparts<br />

Ir[outhparts<br />

Back<br />

Brck<br />

1\{outhparts<br />

Back<br />

Beck<br />

Blck<br />

Ilouthparts<br />

B:.,:k<br />

Illouthparts<br />

I\loutlrparts<br />

Back<br />

e. dpls strain<br />

Live-mated<br />

Live-nrated<br />

Live-trnmated<br />

Dead-m:rted<br />

Dead-unmated<br />

Dead-mated<br />

Dead-unmated<br />

Live-mated<br />

Live-unmated<br />

Live-mated<br />

Live-unmated<br />

Dead-mr,ted<br />

Dead-n'rateC<br />

Dead-unrnated<br />

Live-mated<br />

l,ive-mated<br />

Live-urrmated<br />

Dead-mated<br />

Dead-unmated<br />

Dead-unnrated<br />

G:o\vth of<br />

iltum- A. cpis<br />

inues<br />

Ju!?u {1;,-too.*<br />

I -<br />

N2-<br />

/t<br />

I<br />

I<br />

I<br />

I I<br />

5<br />

lr<br />

3<br />

I I2<br />

,<br />

I<br />

I<br />

-157<br />

ril<br />

i:!<br />

it<br />

ti<br />

r'i<br />

ti<br />

I !t'<br />

i I<br />

{ !t!<br />

:.-.t


fed,-l.cpis.Irrthepresenttest.alltllutntniesfouncrverervhite(unnrated)<br />

to gray (p'obablyi ;",rrliiil""t-"i"i"i "na uttn',ut"d strains)' Othe. than<br />

the :l]uurtuies. onl| i';;;11 <strong>and</strong> 1-;;t;;;ized.larva inoculated u'ith<br />

" live A. apis ,r-o.i.'JO;;:^;;";if-r a. In thcse 2 lar'ae, A' cpfs<br />

"r "pis.<br />

grerv fronr tt," n,o'itri'ltt'i=' anC th.r;;gh'tho cuticle' None of the other<br />

inoculated insects-fieiCed at'ty grorvth of A' apis'<br />

Eggs, ptpuu,'anC the- snrallest larvae of the honey bee are not<br />

-i,rfection<br />

susceptible to tarJritoi-y r'-ittt ,r- apis- Ilteciurn <strong>and</strong> larrge larvae<br />

ancl prel:uoo" il;" i;ftu<br />

"'i"t'!"J&'ibl;;';;A<br />

'3f" :h" tnost susceptible'<br />

Also, all three of these age groups *t*ptible natural infections'<br />

"t:" 'to<br />

the colony f.or,.'.uti"t, tfiuri inr'u"tJ'*ete obtained had no visible signs<br />

ofchalkbrooeai*ur"."e"rtupr,a.apisresidesrvithinbeecolonies<br />

withour causing;;;;J.ii.,,<br />

oi disease until the prope. conditions<br />

exist.Itchil}ingisanecessaryprerequisite-fo-rinfectionrvithour<br />

strain(s)ofA-op;sus*'ithEuropeanstrains(BAILEY'1967)'this'conclition<br />

should be rnet b,v our p'ot"J*"t <strong>for</strong> removal of brood fr:om the<br />

co:t-rb <strong>and</strong> surface sterillation. Horvever, itt Arizona-rve have noted heavy<br />

year-round infections of larvae' even rvhen the average monthly<br />

tetnperaturu, u'J'z!;C' Strains of a' apis found in Arizona may thus<br />

difter from those ,"p".tJ irom Europe. w" ut. norv investigating this<br />

question'<br />

'- Acknorvledgernent<br />

We thank Dinorah DUNHAI\{ anC Leslie CAPIN <strong>for</strong> their excellent<br />

technical assistance rvith brooC in the incubator'<br />

REFERENCES<br />

'.'*"L""!;.onlnii; *,fn?".i'ii*1eo'o,:lTg'lfi:i--"??r^::i'::i11i$;tt1it.,ii+#*t'i,+i1";<br />

logy ancl rliccoolat^"'co'itrol;' -;a'- P' A' van der LaarL p' rui<br />

Amsterdan)<br />

records or Ascosphoera aPis rrom North<br />

B-\KER. G. M.'ni;"rT;n,TlFftl?-rl3ot"<br />

- :*"<br />

B.{RT.i{EL, 8., 19lr' auf der spur' c.arten u' ]Kileinllerzucl" c' lmker' t'<br />

-'Jtt-*t'*orut<br />

t'2-13<br />

DE JONG D.' R" A' IIORSE' l9i6' Cha'lk brbo't : a nelv disease' N' Y' Food Lite Sci"<br />

-<br />

9, 12-11<br />

G'{RY''r\.'*aT;'}T'^fi!f;1"1"?.':;' ,'TjX- t161' - Honev be3 (Apis merriterd r''}<br />

'rarvae<br />

ln con-<br />

c,r""*.. -, l.-:*jn":it"ii;'.U; r:."r',?'i9.i5l':s<br />

tinous be3 P':'cou(<br />

r,tcrco"x. {, p,. y;:tigtth{:f ,,1% -<br />

United Statei' Ar<br />

}r.\Tusr, F.. l. ?tF,?,"fr:<br />

an'r diserscs<br />

.encountered<br />

cn"'x brood disease or honev bees in the<br />

d'isease jJl Hungar!')' rrasvat Aua'<br />

t*,"::""-oithalkbrood'<br />

uber die *"':o"". (Poric)'stis-ltvhose) der Bienen' Arch' Btenen'<br />

"";L;<br />

""ntofrl?a"l;i,'r?'r:rr?<br />

RoussY, L., 1962 * Nouvette contributisn a l'€tude du Pericystis apis (Ir'\)' Gaz' Aplcole'<br />

63, r0r-105<br />

T-{*BER. s. III' 196r - Fcrceps design <strong>for</strong> trsrLsferring honey bee eggs' J' Eeon' Entotnol"<br />

51' 21i-258<br />

T-{BERAS'eII';"1<br />

J' MrI-Ls' tt:t' A possible coitrol lor chalk brood di-se3se'<br />

,:,^ifi"ff'<br />

:<br />

rHNAs.<br />

S;,,*;",i jk:1.ll";J,Sl ,:otif;:uiJ;r:"i::' T"iS'#"":3""?1""J: tli''t"1lii$ff<br />

-in'tir. see i.' rrz' ge-90<br />

458


INTERI{ATIONAL FEDERATION OF BEEKEEPERS' ASSOCIATIONS<br />

APITIONDI,I\<br />

THE XXVIth INTTRNATIONAL<br />

CONGRESS OF APICULTURE<br />

ADELAIDE, AUSTRALIA<br />

October 13-19' 1977<br />

APIIVIONDIA PUBLISITING IIOUSE<br />

BUCHAREST' RO}:.C.}{L.1'


RIISEARC]II ON CHAI,I(I}R0OD I)IST]ASN ON }IONII}: BIiTiS<br />

Intloduction<br />

Nlrrr'tlrt GILLIr\l\t<br />

^S. T.\BER III<br />

J. Bt.t,\v ROSB<br />

u.s.A.<br />

Clralkbrood ,ciisease of hopey bees, ;lpis rrtelliJetu L.. is tirought to<br />

be c'atrsecl b1' the heterothulic fungus, ilscc.nphoet'n npis (i\'Iaassen ex<br />

Claussen) Olive & Spiltoir. Spores are <strong>for</strong>nleti t'ithin fruiting bodies<br />

onll' rvhen m,vce,lia o,f opposite sex cotlte together. Diseased larvae beconte<br />

ntunlrriifiecl. The unuurmies are rr,hite due to the r-n1-celiutn of the]<br />

fungus. HowerreL, if fluiting bodies arc folnrcd, tlte nruurrnies are clark<br />

grav or blac!.:.<br />

Unfoltunately, Iittle is knorvn o{ the epiderliolog3' <strong>and</strong> pathogenesis<br />

of chalkbrood diseas'^. Accolcling to B,\ILEY (1967), honel' bec<br />

lar-r'ae are rnost .susceptible to challibrood disease if the,v ingest spores<br />

of. A. apis rvhen they are 3-4 da1's old :rncl are then chilled 2 days<br />

later after they are sealed in their cells to pupate. 'I'he .spores then<br />

ger,rninate in lhe gut of the larvae. Initially the 'dead larvae are coYered<br />

rvith a u'hite fluffy growth of m1'celia ancl ar'e ss'olleu to the size of<br />

the ,celi. Late.r' they dry' into a hard, shrunlien chalklike lrtn-ip u'hich tnay<br />

becorne gra1.' to blaCli if fruiting bodies are <strong>for</strong>nred. llhe leuains of<br />

larvae can be <strong>for</strong>tnd ,in sealed or unsealed cells.<br />

BARTI{EL (1971) <strong>and</strong> l\IAi[tlS <strong>and</strong> SARI]'\K (197+) statcd t]rat<br />

natural infection of A. opis coulci occur eitlter bf ingestion of spores<br />

u'ith foocl or via the body sulface fronr spore's ot-t cotnbs allcl cell u'al.ls.<br />

ROUSSY (1962) found that the spores gennirlated on the sut'face of<br />

la5,ae, \vhereas MAURIZIO (1934) thought that inferctiou rt'as thloug'h<br />

the .rnoulh ancl not thlough the cutic'le or spilat:lc's.<br />

Chalhbloorl ,clisease has been repoltecl fl'om Ettrope lol lnany )'ears.<br />

]Iou,er,e.r'. it'rr.as not reportecl frclnr thr: t-initecl States r"rntil Br\KER ancl<br />

TOItCillO (l96tl) lor.rnci rt. opis associatccl ri'ith a lcal'c'uttcl llc,:, i\feortt'ltilc<br />

hternri.s I)r'clvanc:hel arrcl a soil rrestirrg ltet-, ,btlhoTthrtro p


ll<br />

Sirtce 1972, rr-e har-e been conriucting ex1:o'iments on the trau-rsmission r-rl<br />

'1. npis. S1:elificalil', u'e have been attelnpting to inlect broor.l altif icialll'.<br />

Sur'h infectior.rs u'ouki give irrl'cllrnation on the tlansurission arrci pathoger.icsis<br />

of th.: ilisrilst anrl u'ou1d prortide a relll'odu(:ible bioassa-v. Tltel'<br />

u'or-rlcl also allou' lrs to perfoml controlled experimcnls on nlcthod,s of<br />

tleatlrent such as the r-rse of rrrolcl inhibitors (T.\RDR et al., 1975). Iu ti-lis<br />

llallcr'. u'e repolt the rvor'k that s-e har-e concluctecl or-r luli-size colonies<br />

in the &pialr. <strong>and</strong> on blood meriutainecl in au irtcubator.<br />

Attcmpts to infect apiary colonies rvith A. rr1:is<br />

\Iany altentpts u,ele urade to infect blood in apiary colonies u'ith<br />

'lscosphcrerc<br />

opis uncler a variety of conditions aliiecting bot,h the<br />

pathogen <strong>and</strong> ihe host colonies. These included the use of inocula<br />

preitared from altilicial cultures of rl. cpis \is. suspensions from naturally<br />

infected lar-vae, application of the inocula in s5'rup sprays <strong>and</strong>/or in<br />

pollen cakes, use of rliummies uzi,th sporulaterl vs. vegetative growth of<br />

the pathogen, alteration of the ratio of adult tl'orker bees to brood by<br />

irerroval of adult bees or frames of broocl priol to application of the<br />

inoculurn, <strong>and</strong> application of ground tnumtnies in dusts or in pollen.<br />

The most se\:ere infections u.ere produced in colonies that had<br />

been fed uncontatniuated pollen to pt'omote blood rearing <strong>and</strong> froul<br />

u']rich \.ar)'ing numbers of aduit bees t'ere retloved befot'e a suspension<br />

of ll ;black (sporulated) mumrnies in 90 nl of 5o7o suc,fose in $'ater. When<br />

this treatment rvas applied 3 times a day on the first, third. <strong>and</strong> fifth<br />

da1's of the experirrent, it 3'ietded hear-y infections (100/o of ihe brood)<br />

by' the sixth day. Hrvever, er,en this treatment rvas less effective in<br />

other colonies that rvere treated at later periods. Thus variation in susceptibility<br />

rnay be an impor-tant factor in ,exprcssion of disease.<br />

Attempts to infect brood in an incubator rvith A. apis<br />

Because of the difficulty of ir-rducing infections in apiary ,colouies,<br />

u,e dcvise.d techniques <strong>for</strong> removal of blood from combs, surface sterilization<br />

of brood, tnaintenance of brood in an incubator, ancl inoculatiotl<br />

of brood u'ith A. opis. No differences in sun'irral rvere noted in larvae<br />

in the iucr,rbator ted 25010 sucrose solution, ro1'al jelly, or nothirrg. Thus,<br />

suspensions of zl. npis <strong>for</strong> inocula \\'ere ipr'epared by homogenizing 5<br />

black or spore-bearing mutntnies (mated strain) or 5 rvhite chalhy<br />

rnumnries (unmatcd strain) in 5 ,rnl of sterile ,clistilled rvater. These<br />

suspeltsiolts l\Iel'e plated to ,conlit'tn viability <strong>and</strong> rvere also sprayed otl<br />

conrbs in apiaiS colonies. Some rnurnrries \vere found in sprayed courbs<br />

after 5 days. The dead zl. opis suspensions used <strong>for</strong> contt'ols rvere obtained<br />

by autoclaving the homogenate.<br />

6B


i<br />

{<br />

Attempts to infect small <strong>and</strong> large larvae from uncapped cells rvith<br />

A. apis<br />

First rve sought ,to determine rvhether A. apis causes chalkbroocl<br />

discrase or is simply a secondar.y invader oI lanrae killecl or irriur:e,cl bl'<br />

other errents. Evidence <strong>for</strong> thc latter might be supportecl by grot'th of<br />

the fungus on dead larwae. We also s'ished to deterrnine rl'hether munrmification<br />

arises from infection b-v both vegetative <strong>and</strong> sporulatecl strains<br />

ancl rvhether A. opis can invade larr.ae through the cuticle ancl/or. per os.<br />

In acldition, u,e rvished to deternrine g'hetlicr vourlg an,cl olcl lan'ae are<br />

equally susceptible to infection.<br />

The u'ater removal technique of ClATl.Y et al. (1.961) u'as ernplol'ed<br />

rvithout removing any cappings from l,he cells. Thus, the larr.ae rvere<br />

rvashed from a cornb onto sterile a,bsorbent paller. T'hen each lan-ae<br />

rvas individlrally picked up on the polished end of a glass tube attachecl<br />

to a $rater suction devi,ce. while held 'to the glass tube, each sras u.ashed<br />

3 times u'ith sterile clistilled lvater from a plastic sqlleeze bottle.<br />

The larva,e rvere ,divicled into trvo age groups. srnall <strong>and</strong> large, on<br />

the basis of size. The small }ar.r.ae were 3--4 davs old (average u'eight<br />

54 mg). ancl the large iar-r,-ae were 4.5-b.5 dal's old (average u.eight<br />

134 rrng). The treatmen,t groups of larvae are ,shorvn in Table 1.<br />

Lan'ae in the ((alive" treat'ment groups u,ere indir.idualh' pracecl<br />

in sterile vial caps in sterile glass petri dishes that contained a piece of<br />

filter paper kept rnoist u'ith sterile distilled rrater. Eight-l0 larvae<br />

leceiving the same treatment ,ll'ere placed in the same petri clish. Larvae<br />

in the ((dead" treatment groups u'ere placed in sterile r,'ierl caps <strong>and</strong><br />

petri dishes <strong>and</strong> ,were killed r,vitJr dly ice.<br />

A drop of the approp'iate homogenate \\:as place.d eithe. on the<br />

mouthparts or ,on the dolsal side of the larr.ae. We confirmeC consulrption<br />

of the homogenate by direct observation. The clishes rvere placec<br />

in a 25rC inc,ubator. Letrr.ae u'ere o,bservecl clail1" <strong>for</strong> 10 da1-s tvith a<br />

clissecting rni'closcope fol moveurent, fungal grou'th, discoloratiorr, <strong>and</strong><br />

nrunrrnif icaticn.<br />

'I'he lesults are shon'n in Table 2. Eler-en urLrrnnties u'ere <strong>for</strong>nrecl<br />

in control tleatment grollps leceiving cleacl ..1. c7ri.s. These Iarvae rnaliravc<br />

httcl trtttut'al itrfec'tions u'hich r,r":re inarJ'liralent lrnl.il thc lan'ac t'(:r.e<br />

inc'r.rbaterl. Iloq'cver'. trorre of the colclnies frou'r ri-hic'h lalr.uc rr-ct'e obtained<br />

r:ontainec anv larvae thiit u'cre r-isibl.r' iulectecl l-ith ;1. rrpi.s. Nol<br />

wet-e altv rntturntics <strong>for</strong>:nil at. the err.rtltrncc or on the bottciurs of these<br />

colonies. T'hr:r'e<strong>for</strong>e. sorne l>ec r'olonics or lalvae rlav harbor'-1. cpis<br />

$'ithor.tt sltorving sigrts cll cliscitsc. Snr:rll larviie tirat u'err: natur-allf ilfcctecl<br />

recluilecl 5'*7 da1's of incubation to lnunrntifr- : tire large l;u.r-ae<br />

requ irccl 6-B da1's.<br />

69<br />

d<br />

!t<br />

lj<br />

ii<br />

ta<br />

i1<br />

1i<br />

ll<br />

II<br />

I<br />

t!<br />

I<br />

lt<br />

lli<br />

H<br />

ll<br />

it<br />

It<br />

It


TRIJ,.\'T\1EN'T CRoLIPS O}' S11,\LI. AND I-.{IIGE LANVAE }'ROXI<br />

LISED 'TO DE]-I;R]'!\-E TI]E I"\THOGENIC ,.\ND SAPI]OPIIYTIC<br />

TISCOSP/I4EIt A ApJ.S<br />

Large lorxae a<br />

UNCA,I'PED CELLS<br />

I'JioPtiR'rtiis ()l'<br />

1'realnr ent /1 (.pis..st.min Sile of inocrrlatiot]<br />

"A1ite" Iarvae <strong>and</strong> live A. apis<br />

*-do*<br />

-clo-<br />

-do-<br />

".-\li'r'e" larrrae <strong>and</strong> dead A. apis<br />

-do-<br />

-do-<br />

-do-<br />

"Dead" larvae <strong>and</strong> live A. apis<br />

-do-<br />

-do_.<br />

-do-<br />

"Dead" lan'ae <strong>and</strong> dead A. apis<br />

*do_ -do-<br />

*do-<br />

Small larcae b<br />

"r\live" larvae <strong>and</strong> live A. apis<br />

-do*<br />

-do*<br />

-do-<br />

"llivc"<br />

ku'vac <strong>and</strong> dead -1. opis<br />

-do-<br />

-do-<br />

-do*<br />

''I)eltd" lln'ae <strong>and</strong> live ,4. opis<br />

-do-<br />

-do-<br />

-do-<br />

"Dead" larr.ac <strong>and</strong> dcad r{. clris<br />

*do-<br />

-do-<br />

-clo-<br />

at :10 ]arva o pel' tost<br />

b l0 larvae pcr le\t<br />

NIated<br />

Unmated<br />

NIatcd<br />

I-Trrnlated<br />

llated<br />

Ljnmated<br />

tr{ated<br />

IJr"rmilted<br />

N{ated<br />

Unr-nated<br />

n{ated<br />

llnmated<br />

Mated<br />

Unmated<br />

1\{ated<br />

Unmated<br />

NIated<br />

Unrnated<br />

I,Iated<br />

Unmated<br />

NIated<br />

tinrnated<br />

IVIated<br />

Unr-rrated<br />

llatcd<br />

flnnriited<br />

NIated<br />

LInnr:rted<br />

llated<br />

Iir-rmatccl<br />

\{atc.d<br />

IJn nratt:d<br />

l{outlrparts<br />

-do-<br />

Back<br />

-do-<br />

IVlorrthpalts<br />

-do-<br />

Rack<br />

-do-<br />

Mouthparts<br />

-do-<br />

Back<br />

-do-<br />

Morrthparts<br />

-do-<br />

Back<br />

-do-<br />

llor-rUl-rparts<br />

-do-<br />

Back<br />

-do-<br />

1\'loutl'rparts<br />

-do-<br />

Back<br />

-donlotrthparts<br />

-do*<br />

Back<br />

-don{outhparts-dollack<br />

-do*<br />

'1'abIc 1<br />

No urutrturies "tr:ere <strong>for</strong>mecl as a rcsult of the inoculation of dearl<br />

lan'ae l'ith ;1. (rJii.r. IIo\\,e\:€r, :1. opi.s did grolv oll 3ll of these larvae.<br />

Thus. it arlrpears that ..1. opi.s can grow <strong>and</strong> in sorne instan,cas sporulate<br />

on dead larvae but rvill uo,t ututnulify them.<br />

Forty-three {nurnn'ries \vere <strong>for</strong>med as a result of inocuration oI<br />

Irrlvae rr,ilh Iir,'e tl. apis. Both the srnall <strong>and</strong> large larvae requireds-Z<br />

70<br />

:yl


da1.s after inoculation <strong>for</strong> mummy <strong>for</strong>mation. Tr.ventl'-six of the<br />

murnmies were prod'uced by inoculation of mouthparts. <strong>and</strong> 17 by<br />

inoculation on the ,back. Thus, infe'c'tion n-Iay occur per os <strong>and</strong> 'through<br />

the outicle. lVe observed the fungus gr'ou'ing frorn the mouth' the anus,<br />

ancl through the cuticle of larvae inoculatecl on the rnouthparts. The<br />

fungus appeared to gro'nr.' first aerially at the point of inoculation on<br />

Iarvae inoculated on ,the baok. It tllen grew throughout the entire body.<br />

<strong>and</strong> the larvae rbecame mumrnified. A11 experimentalll- produced<br />

mummies were much flatter than those gener-nlly found in bee colonies.<br />

Both matecl <strong>and</strong> unmated strains of A. o.pis caused mumtny <strong>for</strong>mation.<br />

Of the nlunt.lnies prod,ucecl from the material prepared fro;n<br />

blaol< mumpries, 11 rvere blaok <strong>and</strong> lL rvere white. Ho$'et'er, of the<br />

mumrmies produced by inoculation of matel'ial prepared frotrr n'hite<br />

mummies, 18 g'ere ,blaak <strong>and</strong> only 3 rvere rvhite. Thus, by selecting 5<br />

mummies <strong>for</strong> production of the inoculu,m, we obr.iously mixed * <strong>and</strong><br />

- strains to produce the' matEd strains that infected the lalrrae. I{ou'ever,<br />

it is interesting that an ,eQllol nul]lher of black <strong>and</strong> rvhite ntummies<br />

tvere <strong>for</strong>lxed from 'material iprepare,d from black lnumll'Iies. r\ separation<br />

of. * l- ,material could have occurred or, perhaps, sporulation $'as in<br />

some \vay inhibite'd.<br />

Small-alive<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

Sn.rall dead<br />

Large-alive<br />

-do-<br />

-do-<br />

-do- *do-<br />

-do-*<br />

Large-dead<br />

-do-<br />

Inocub'tion<br />

Site<br />

Mouthparts<br />

-do-<br />

Ilrtr:k<br />

-do-<br />

1\{outlrparts<br />

Ilack<br />

-do*<br />

I\Iorrthpitrts<br />

-do-<br />

Back<br />

-clo-<br />

Nlottthparts<br />

Il aclt<br />

1\{outhparts<br />

Back<br />

A, opis StIJain<br />

Live-mated<br />

Live-unmated<br />

Live-nrated<br />

Live-unmated<br />

Dead-mated<br />

-do-<br />

I-ive-unmated<br />

Live-mated<br />

L,ive-unmated<br />

Live-mated<br />

Live-ttnmitted<br />

De:rd-unmated<br />

Dcad-mated<br />

Live-unmated<br />

-do-<br />

Table 2<br />

[art'€"e<br />

truummles With<br />

Prodnccd A; apjs<br />

Gro\\'th<br />

Black wrrite sljr!- spor.t<br />

Sr"nall <strong>and</strong> Iarge larvae \vere equall1' susc'eptible to infection since<br />

\ve used ,tu'ice as malty large lan.ae as srllall ones. Thirtl, urtllnlnies \t:el-e<br />

producecl among lar"gc lat'vae <strong>and</strong> 12 alrtoug small lalYae. flhns. 3-.-4<br />

1<br />

5<br />

1<br />

3<br />

2<br />

7<br />

6<br />

,<br />

4<br />

,<br />

221<br />

34<br />

7<br />

J<br />

3<br />

1<br />

1<br />

6<br />

1-l<br />

7<br />

7I


clal'-old ancl -1.5-5.5 day-olcl larr,ae iri)pcar.to be susceptible to chalkbrood<br />

rlisease. This conjecture is leinfolcccl b)'the fact that 5 of 1hc<br />

smarll ancl {j oI thc large lan'ae altltalt:nt])'harl a rrutural infct:tion of<br />

challibrooll.<br />

Next rr,e tler,'clr>1ted a rnelhoci oi snlface stelilization ol lat'r,ae n:ith<br />

ir gerrnicicle 1o elinrinate comb conlanrinants (;lspcrgillu.s sPp. <strong>and</strong><br />

Paricillium sltlt,) n'ithout harrrring the lur.r'ae.<br />

:\ftel tltc.lat'r'ae tt'ere tl'asl-ted fi'onr a conrit onto n slelile NtrassilinR<br />

{ou-el, thcv t:elc irTclir;irluall-r- picked up n'i1h the suction apparatus.<br />

n-ttshed t'ith a 1: I250 solution of llr'lccalri from a ltlastic sclllceze bottle.<br />

arlci I'irlsel tri'ice u'ith sterilc clislillcd rvater flonr a squeeze,bott.le. 1'he1r|c't'e<br />

lllacecl on stet'ile ilaper to bklt thern clr'f anrl n'ere t,hen put into<br />

stelile vial caps in petri. dishes ,by leleasing the suction.<br />

Attcrnpts to infect eggs, Iarvac <strong>and</strong> pupae rvitlt ;1. apts<br />

Then r.rre designed an experiment to de,tern-rine rvhether ,zl. cpis<br />

rvoulcl grow on or cause mumrnificatiou of eggs ; snall, medium, <strong>and</strong><br />

Iarge lan'ae ; prepupae ; pupae n'ith no eye color ; <strong>and</strong> pupae rvith<br />

eye 'color.<br />

ifhe treatment groups are shotn in Table 3. Eggs rvere inclivid,uall5,<br />

retnoved frorn their ,cells u'ith special <strong>for</strong>ceps (TABER, 1961), rinsed rvith<br />

Roccal, <strong>and</strong> lt'ashed trvice rvith sterile distilled rvater. Then they rr'ele<br />

blotted <strong>and</strong> placed again.s,t th'e side of a sterjle vial cap to simulate the<br />

position occupied in the cell of the comb. small <strong>and</strong> nediu,m larvae<br />

l-eLe rl'ashed from uncapped combs. Large iarvae, ,prepupae, <strong>and</strong> pupae<br />

tl.eLc lvashed from combs ,after uncapping the cells. All larvae rvere<br />

sterilized as desclibed 'be<strong>for</strong>e. Pupae u'ere washed rvith Roccal on the<br />

sterile tou'el on t'hicir they u'ere ,colle,cted, They t'ere then individualillrelcl<br />

rl'ith <strong>for</strong>ceps aud rin'sed trvice urith sterile distilled triiter. Each<br />

insecL rvas placed in a sterile vial cap <strong>and</strong> treated as shorvn in Table 3.<br />

Since u'e notecl that 1he rnedium ancl large lalvae, prepupae, <strong>and</strong> pupae<br />

required less humidity in the petri dishes than the eggs <strong>and</strong> small<br />

larr;ae, rve added less trater to the filter papers in clishes ,containing<br />

these stages. The nrumrlified lan'ae <strong>and</strong> prepupae looked more like<br />

those f rom natural hive infections. possibly because of the lorver<br />

humidity.<br />

All bloocl rvas incubaled at 25"C <strong>and</strong> observed lor 15 da1'5 1ot'<br />

grorvth of A. apis <strong>and</strong> .nurnrnification. No grorvth occurred on any eggs<br />

or llupae. r\lter irlcubation <strong>for</strong> 7 dal's, sel.eral rvith eye color had devek:pecl<br />

rvings, Iegs, antenrrae, <strong>and</strong> hair.<br />

As shorvn otr Table {, 26 munrrnies rvere <strong>for</strong>rned. I{orvever, 12 of<br />

these rvere apparently the result of natural infections of A. opis since<br />

they rvere in the control groups inoculated rvith .dead A. apis. Of these<br />

72


TR}}.\'I}II]NT' GROUIJS OF EGGS, L.{R,1/AE, AND PUPAE<br />

ASCOSPTIAER-A APISA<br />

Treatlnent<br />

Eggs<br />

Live A. apis-m:rted<br />

l,ive,4. opis-trnnr;rted<br />

Dead ;1. ripis-mrted<br />

De:rd 11. npis-unrnated<br />

Sntoll lcrt'ae<br />

Live ;1. npis-ntated<br />

LiYe ll. apis-nrated<br />

Live,4. npis-rrnmatecl<br />

Live zt. npis-unnrated<br />

Dea'd A. opis-mated<br />

Dea'C ;1. apis-ntated<br />

Dead ,4. cpis-unmated<br />

Dead .r1. cpis-unntatecl<br />

Medium lartae<br />

Live ;L. apis-mated<br />

Live A. apis-mated<br />

Live ,4. apis-unmated<br />

Lit'e,4. opis-unrnated<br />

Dead ;l. cpis-rnated<br />

Dead rl. crpi.s-nrated<br />

Dead -4. crpis-unrnated<br />

Dead A. cpis-unnr:rted<br />

Large lort:ae<br />

Live A. opis-nratecl<br />

Live ;1. cpis-matecl<br />

Live zt. cpis-trnmated<br />

Live A. opis-r:nmated<br />

DeaC ,4. npis-rnated<br />

a 5 insect.s per tt*rtment<br />

Bociy<br />

ISody<br />

Ilody<br />

Body<br />

INOCUL.{'TED l\'I'rH<br />

Table<br />

Site of<br />

I.nocu lation Treatment Site of<br />

Inocu,lation<br />

Rack<br />

Xloutlrparts<br />

Ilack<br />

Moutlrltarts<br />

Back<br />

Mouthparts<br />

Ilack<br />

Mouthpalts<br />

tslck<br />

Mouthparts<br />

Back<br />

l{outlrparts<br />

Back<br />

Mouthparts<br />

Back<br />

Mouthl;:u.ts<br />

B:rck<br />

IVIoUtlrpar.ts<br />

Ilack<br />

l,{oullrparts<br />

Back<br />

De;r'd l. opis-nratecl<br />

Deircl -,1. cpi.s-unnt:rted<br />

Dead,4. apis-unnr:rted<br />

Prepultae<br />

Live ;1. opis-materd<br />

Lir-e .1. apis-mated<br />

Lite' ;1. cpis-lrnm;rted<br />

Live ;1. cpi;-unntatecl<br />

I)ea:l rl. opis-matecl<br />

Dea,C -.1. apis-nrated<br />

De:rd,4. opis-unn-rated<br />

Dead ,zl. apis-unmated<br />

Pupce-No Eqe Color<br />

Live ,,1. apis-mated<br />

Live -;1. apis-mated<br />

Live .21. cpis-unmated<br />

Live ,4. apis-unntated<br />

I)eacl rI. opis-mated<br />

f)ead -.1. cpis-n-rated<br />

Dead ;1. cpis-unntatecl<br />

f)e:rd A. opis-unrnatecl<br />

Pupae-Eye Color<br />

Live .1. opis-rnated<br />

Live .1. cpis-mated<br />

Live ;1. cpis-unmatecl<br />

Live :1. apis-rrnntatecl<br />

De:rd rl. cpis-mated<br />

Dead .,I. apis-muted<br />

Dead ,4. apis-unmated<br />

De'ad A. cpis-unmated<br />

Motrtlrltarts<br />

llack<br />

Mouthparts<br />

Iiacli<br />

Moutlrlr;rr-ts<br />

llacli<br />

I\{or,r tlrpirrts<br />

Llack<br />

Moutlrparts<br />

tlack<br />

lUoutltparts<br />

Back<br />

1!Ioutl'rparts<br />

Back<br />

N{outhlrarts<br />

Back<br />

l\{outl-rptrrts<br />

Back<br />

Mouthpar.ts<br />

Bacli<br />

Mouthirarts<br />

Back<br />

l\{outhparts<br />

Ba,ck<br />

nlontlrparts<br />

B:l,ck<br />

Mou.tl-rparts<br />

12, 5 $'e|e mecliLur.l-sizeci larvae, 5 u,ere lalge larvae. alrcl 2 1,e1e irle_<br />

puPae. 'lhe|e<strong>for</strong>e, b1' exllerimental inoculation, olle nrunpl)' was lll'ocluced<br />

in the mecliur.n-sizecl larvae, B in the iarge lan.zre. <strong>and</strong> 5 in the<br />

ill'ePlU)iie. Thlts. n-iore lrulltllies were llrodLlceal fronl lar.ge larvae though<br />

fe*r 'u'r.-ries rvere l)rodll(:ed in any ltrr.r-ae on l)rer)aLle. I)e .IoNG a'cl<br />

MORSE (1976) also observecl rvicle val'iation ir-i infec.tion rirlcs oI lar.\-ae<br />

lcd "1. api.s. In.the llresent test. all nrunrr.nies loun(l \\'ere \\.llite (r-rqprtricrl)<br />

to gra)'(pt'obablf il l'ltixtLtre of ,matecl eln(l unn-rirteil strtrins). Othel tlarr<br />

the trrutntrlies, onlr' l srnall ancl l nterliunr-size(i lar'\.lt inocr,rlatcd u.ith<br />

li'e 11.. opis siro\\'ed an' g.o1\'t,h of .1. .pis. ln tlrese 2 la.r,ae. .1. 'pi,s<br />

/i)


gre\\: fror-rl the moutir. anus. <strong>and</strong> through the cuticle. None of the otirer<br />

inoculateci insects f ielded an1' grorvth of .,1. apis.<br />

'I'ahle 4<br />

}IL"\IfIIF:S .C.\T] CROWTH OF ..1.SCOSPHAEFIA APIS PRODUCEIJ T]V TNOCIJI,ATION OF<br />

EGGS. L,\R\:AE. AND PUP,\E WITH ,ISCOSPIJAERA APIS<br />

Slage<br />

,Snrirll lan'ae<br />

Xledirrm .l:rn'rr<br />

llediunr lalr-a<br />

lleriiunr lan-a<br />

\Iedium lar.r'a<br />

lledium larva<br />

lledium i;irva<br />

Large Iarta<br />

I-arge lan'a<br />

Large larva<br />

Large lalva<br />

Large larr-a<br />

Lalge larva<br />

Large larva<br />

Prepupae<br />

Prepu;rae<br />

Preptrl:ae<br />

Prepupae<br />

I)re1tu1:ae<br />

Prcpul-lae<br />

Sitc of<br />

Inocrr lrt i ()rl<br />

llouthparts<br />

1\louthltitlts<br />

Llack<br />

Nloutlrparts<br />

I{outlrptrrts<br />

B:rtk<br />

Back<br />

N{outhparts<br />

l{outhparts<br />

Back<br />

Back<br />

Mor.rthparts<br />

B:ltk<br />

tleck<br />

Back<br />

Xlouthpar"ts<br />

B:;ck<br />

trIorrthltarts<br />

X'Ior-rtlrparts<br />

Ba


differ frorn those repor-te,d ft.om Europe.<br />

question.<br />

Acknorvledgement<br />

We are norv inl.estigating this<br />

we thanli Dinorah DUNTFIAM <strong>and</strong> Leslie cApI,N <strong>for</strong> their excellent<br />

technical ,assistance with br.ood in the incuibator.<br />

REFEIiENCES<br />

B"\rLEY. L.' 196?. - The effect of temperature on the pathogenicity of the fungus,<br />

AscosphQera (rpis, ror .larvae of tlre h()ne). bec. rrpis melliJera. tn: ",Insect I,athology<br />

<strong>and</strong> Microbial <strong>Control'</strong>., ed. f,.,q.. \.an der Laan, p. 162*167, Norr.h-Holl<strong>and</strong>,<br />

Amsterclarn<br />

B-AKER. c. M.' p. F. TORcHto. 1968. - Ne$. records oi t\scosphdeta apis frorn North<br />

America. MVcologia, 60, tB9_I90<br />

BARTHEL, ''., I9?1. - Der Kalkbrut aut der spllr. carten u. r.reintierzuchr c. rmker, 4,<br />

12-13<br />

DE JONG D., tl. A. MORSE, 1926. - Chalk broocl: a ne\\, disease, A. y. Fo.d Life Sci-, g,<br />

12-14<br />

GARY' N. E., R' \v. FIcKEri. R. c. sttEIN, 1$6r. - Hone}' bee lar'ae (Apis nleililera L.,<br />

<strong>for</strong> bird food. Auicult. Mdg., 67, 27-Bz<br />

GILLI.{M' .l\4.' S' TABER lII, 1973. * ]\{icroor'Banisms ancl diseases encounterect in continous<br />

bee production. Amer. Bee J., 715, 222-2ZJ<br />

t{ITCIICOCK, J. D., M. CHRIS?.ENS.EN, tg72. - Chalk broocl ciisease of honcy bees in the<br />

United States. Amer, Bee J,, 112, ZlB-Ztg<br />

MAafUS, F.' I' SAIiB.{K, r9?{.<br />

toruosA Lapia,<br />

-<br />

29, 250-233<br />

(OccLirence o-t chalkbrood clisease in llungary). MagVar AtIa-<br />

MAURrzro. A., 193{.<br />

-<br />

Auncle, t;,105-1tB<br />

uber cle Kalkbrut (},eric}'stis-M}'kose) der Bienen. Arch. Bie.nen-<br />

ROUSSY' L., 1902. - NoLlvetle contribution a I'dttrde du Pericystis apts (MN). Gaz, Apicote,<br />

6ll, 101-10;<br />

TAIJER, s. rII, r96t. - Fol'ceps design <strong>for</strong> transferring honey bee eegs. J. Ecoil. Entontot.,<br />

51, 247-250<br />

TABEtt S. ttr. R. SACKETT, J. NIIt,t,S, 1175. - A possiblc control tor chalk brood di.sease,<br />

Atner. tlee J.,7ti, Z0<br />

THOMAS, G. NI., A. LUCE, 19?2. - An epizootic ol chalk brood.Ascosphaeru (tpis ltaassen<br />

ex Ctalrsson) Olive atlct Spiltoir in the honey llce. Apis ntelliJera L. in Cdlilornia,<br />

Anter. Bea J., tt2. 'n'i-Cl.<br />

I<br />

i<br />

I<br />

I<br />

i<br />

i<br />

J<br />

I


y" *<br />

-rrJ<br />

2' tgrs


t'<br />

JoURNAL OF TNVL.RTEBRATE pATHoLocy 32,222-223 (1978)<br />

Recent lsolations of Bacillus pulvifaciens from Powdery Scales of <strong>Honey</strong><br />

Bee, Apis mellifera, Larvael<br />

Bacillus pulvifaciens was originally described<br />

by H. Katznelson (J. Bacteriol. 59,<br />

153-155, 1950). The organism was isolated<br />

from larval scales of honey bees, Apls<br />

mellifera, that were dry, powdery, <strong>and</strong> light<br />

brown. Limited attempts to infect bee<br />

colonies with material from the powdery<br />

scales <strong>and</strong> culture material did not definitely<br />

establish whether the organism was a pathogen<br />

or a saprophyte. Later H. Katznelson<br />

<strong>and</strong> C. A. Jamieson (Sci. Agr.32,219-255.<br />

1952) concluded after more extensive work<br />

that the bacillus was not pathogenic to the<br />

honey bee, although J. D. Hitchcock (cited<br />

by R. E. Gordon, W. C. Haynes, <strong>and</strong> C.<br />

Hor-Nay Pang, U. S. Dept. Agr. H<strong>and</strong>b.<br />

427, l-283,1973) isolated additional strains<br />

of B. pulvifaciens frompowdery scales <strong>and</strong><br />

has evidence that the organism is pathogenic<br />

to honey bees.<br />

R. E. Gordon et al. (loc. cit.) examined<br />

seven strain s of B. pulvifaciens , all from one<br />

source (H. Katznelson), <strong>and</strong> postulated that<br />

B. pulvifaciens may <strong>for</strong>m a connection between<br />

B. larvae <strong>and</strong> B. laterosporus, organisms<br />

also associated with honey bees.<br />

Recently, we isolated B. pulvifaciens<br />

from larval remains. Thus, the purpose of<br />

this paper is to describe the larvae from<br />

which the organisms were isolated <strong>and</strong> to<br />

compare the morphological <strong>and</strong> physiological<br />

properties of our strains with those<br />

previously described.<br />

A brood comb from a moribund colony in<br />

the apiary of an Arizona beekeeper was<br />

supplied by Dr. Gordon Waller. Examination<br />

of the contents of this comb revealed<br />

many powdery scales that were dry <strong>and</strong><br />

chalky white rather than light brown as de-<br />

I Mention of a proprietary product or company name<br />

does not constitute an endorsement of this product by<br />

the U. S. Department of Agriculture.<br />

0022-201v78t0322-0222$01.00t0 222<br />

Copyright O 1978 by Academic hess, Inc.<br />

All rights of reproduction in any fom reserved.<br />

scribed by H. Katznelson (loc. cit.). Some<br />

scales were positioned on the sides of the<br />

cells, <strong>and</strong> others were on the bottoms extending<br />

up one side. All were similar in appearance.<br />

Another brood sample was received<br />

from Mrs. Diana Menapace of the<br />

USDA Bee Laboratory in Laramie, Wyoming.<br />

This material was from a bee colony<br />

in Iowa <strong>and</strong> contained a yellow crumbling<br />

larva that had been removed from its cell.<br />

Scales from both sources were streaked<br />

directly onto plates of nutrient agar (Difco),<br />

<strong>and</strong> the plates were incubated at37"C under<br />

aerobic conditions <strong>for</strong> 10 days. At that time,<br />

pure cultures of bacterial colonies that were<br />

bright orange were obtained. Twenty strains<br />

from the Arizona sample <strong>and</strong> one from the<br />

Iowa sample were maintained on slants of<br />

nutrient agar <strong>for</strong> further study.<br />

Gram-stained slides of the isolates revealed<br />

ellipsoidal central spores that swelled<br />

the sporangia. Many spores had stained<br />

remnants of the sporangia adhering to them,<br />

which gave the spores a pointed appearance.<br />

The isolates were then subjected<br />

to the morphological <strong>and</strong> biochemical tests<br />

<strong>for</strong> the genus Bacillrzs described by R. E.<br />

Gordon et al. (loc. cit.) except that motility<br />

was determined in motility test medium<br />

(BBL) rather than microscopically.<br />

The results of our tests agree with those<br />

listed <strong>for</strong> B. pulvifaciens by R. E. Gordon<br />

et al. (loc. cit.). All strains were Grampositive;<br />

<strong>for</strong>med acid from glucose, mannitol,<br />

<strong>and</strong> trehalose; reduced nitrate to nitrite;<br />

liquified gelatin; <strong>and</strong> decomposed<br />

casein. Seven of the strains were motile.<br />

Also, all but five strains were catalasenegative.<br />

These five strains gave a delayed<br />

weak-positive reaction by producing a few<br />

tiny gas bubbles on a small part of the<br />

periphery of the streak after lUVo HrO, was<br />

added to growth on plates of nutrient<br />

./.<br />

,<br />

i.) $;,ti i:$<br />

!:i',1. 11;4


agar. The bubbles arose from the creamy<br />

whitish growth at the periphery that was<br />

noted first by H. Katznelson (loc. cit.).<br />

Cultures giving the delayed weak-positive<br />

reactions were rechecked <strong>for</strong> purity <strong>and</strong><br />

found to be pure B. pulvifaciens. R. E.<br />

Gordon et al. (loc. cit.) observed this reaction<br />

with their strains <strong>and</strong> stated that it rein<strong>for</strong>ced<br />

their idea th at B . pulvifociens may be<br />

a connecting link between catalase-positive<br />

<strong>and</strong> catalase-negative species.<br />

Thus, powdery scales having different appearances<br />

seem to yield B. pulvifaciens<br />

strains that have morphological <strong>and</strong> biochemical<br />

reactions consistent with those of<br />

NOTES<br />

223<br />

the strains originally isolated by H. Katznelson.<br />

This does not, however, rule out the<br />

possibility that strain differences might<br />

contribute to the variations in color or consistency<br />

of powdery scales.<br />

Key Wonos: Bqcillus pulvifaciens; honey<br />

bee; powdery scale disease.<br />

U. S. Department of Agriculture<br />

Agricultural Research Service<br />

Bee Research Laboratory<br />

2000 E. Allen Road<br />

Tucson, Arizona 857ii9<br />

Received November 16, 1977<br />

Menrne Grlueu<br />

DrNones R. DuNHeu


Fungi<br />

Marthn Gillinm<br />

Introduction<br />

<strong>Chalkbrood</strong><br />

History<br />

Distribution<br />

Etiology<br />

Treatment<br />

Bettsin alaei, the Pollen Mold<br />

History<br />

Distribution<br />

Etiology<br />

Treatment<br />

Stonebrood<br />

History<br />

Distribution<br />

Etiology<br />

Treatment<br />

Other Diseases<br />

Melanosis<br />

Other Molds<br />

Yeasts<br />

CHAPTER 5<br />

ls<br />

i<br />

Intrc<br />

Fu<br />

centi<br />

State<br />

I{or"u<br />

crca.!<br />

if th.;<br />

ChaI<br />

cl-<br />

It is<br />

Spilt<br />

rvher<br />

are tl<br />

Dir<br />

orvin<br />

are fr<br />

Th<br />

thou,<br />

7e63)<br />

7968<br />

Hi:<br />

lr{:<br />

chalk<br />

<strong>and</strong> r<br />

horre<br />

rvhet<br />

a det<br />

the n<br />

In


Introduction<br />

Fungi are common saprophytes of bees <strong>and</strong> combs' Until re-<br />

."^tlyf fungal diseases of hott"y bees were rare in the United<br />

States. Stonebrood is still considered to be of minor importance.<br />

However, the incidence <strong>and</strong> severity of chalkbrood disease is increasing,<br />

<strong>and</strong> this disease may become a major economic problem<br />

if the trend continues.<br />

<strong>Chalkbrood</strong><br />

<strong>Chalkbrood</strong> is a fungal disease that affects onlyhoney bee brood.<br />

It is caused by Ascoiphaera apis Maassen ex Claussen (Olive et<br />

Spiltoir), a heterothallic organism in which spores are <strong>for</strong>med only<br />

*ih"r, .ny""lia of opposite sex (* <strong>and</strong> -) come together' Spores<br />

are theniormed within dark brownish-green fruiting bodies.<br />

Diseased larvae become mummified' The mummies are white<br />

orving to the mycelium of the fungus. However, if fruiting bodies<br />

are fo"rmed, the mummies become dark gray or black (Figure 5'1)'<br />

The disease is usually transient <strong>and</strong> not considered serious, although<br />

endemic infectiron can be persistent <strong>and</strong> damaging (Bailey<br />

1963i This disease was not reported in the United States until<br />

1968 (Baker <strong>and</strong> Torchio 1'968).<br />

History<br />

Maassen (1913) in Germany published the first observations otr<br />

chalkbrood disease. He later $t1,6) described the associated fungus<br />

ancl named it Pericystis apis.ln 1912, Priess gave Claussen a moldy<br />

honey comli <strong>and</strong> a sla.,i culture of a fungus' He wanted to.know<br />

rvhetirer the fungus was a pathogen. Claussen (1921) published<br />

.r detailed pup", on the morphology of the fungus <strong>and</strong> retained<br />

the name Pericystis apis.<br />

In Engl<strong>and</strong>,'Betts (1912a) describecl a hive fungus, Pericystis<br />

79


F tbai<br />

trn<br />

:: lr"<br />

ii+,.<br />

i6i<br />

iq*,<br />

iE<br />

s?"<br />

rtA'<br />

kllt<br />

:.F.<br />

-l?;<br />

*<br />

., *:t<br />

:i=lii .$i<br />

-.]*d<br />

;ir<br />

.:ei.<br />

.''ri<br />

.;g!.<br />

ii<br />

:,f<br />

;i::'<br />

.:-.)<br />

, ji:.<br />

.it:<br />

:,"tr;:!'<br />

. lti;:<br />

..i:i;<br />

'lii't<br />

'iirl<br />

":l-]<br />

]]e,<br />

I r,iir,<br />

.i:-r<br />

, ,:iil<br />

;j:,<br />

, j;.1<br />

.,- ." ,:t' i: --<br />

rt.:r:j i:.-: ;ri.'- - _ .:--::,:r: ::;;<br />

Figure 5.1 . <strong>Chalkbrood</strong> in rvorker brood ' (Photo b1' M' V' Snrith)<br />

hktci. Later in 1919 she examined the chalkbrood funSus <strong>and</strong> noted<br />

that it rvas not identicai to Pericqstis aluei'<br />

subsequently, detailecl mycological observations on Pcricyslis<br />

npis rvere repo;ted by Varitchak (1933) in France, Maurizio (7934,<br />

1g35) in s$,itzerl<strong>and</strong>, <strong>and</strong> Prokschl (1953) in Austria. Moreover,<br />

N4aurizio (7934,1935) demonstrated that there lYere t1\ro morPhologically<br />

different types of Perinlstis apls. Each lvas heterothallic<br />

<strong>and</strong> capable of causing chalkbrood disease. The trvo varieties \\,ere<br />

not capable of beir-rg crossed with olle another' One varicty, the<br />

usual one in primary cases of chalkbrood (cases of actual outbreaks<br />

of the clisease in the bee colony), had small cysts. Thc other, more<br />

commonly found in secondary cases (rvhere the fungtls developed<br />

on coml.)s th.-rt had been kept outside the hive), had much larger<br />

c1.sts arrd rvas stalked. This large-fruitecl variety preferred lorv<br />

tcnrpett-rttrres, especialll' during c\'si <strong>for</strong>nlation' The optimum tenrpurnt,-,r"<br />

<strong>for</strong> cysi <strong>for</strong>mation in the large'-fruitc'd varicty \vas 20"<br />

-elsius, <strong>and</strong> irr the small-fruitecl r'ariet;', 30'Celsirrs'<br />

Prirkschl (1953) clesigrrated the snrall-frr,ritercl <strong>for</strong>m, originally<br />

narrred Prrioptis apis, as Pericy-slis c;ris variety 'tlrtor (Maasst-n)<br />

lLt<br />

!:-.;,,&g*r ri'}-u<br />

T'<br />

Proks<br />

(1-e34<br />

Zobl.<br />

<strong>and</strong> I<br />

lisher<br />

since<br />

namt<br />

ety u<br />

rial.<br />

varie<br />

SK,<br />

ceae<br />

phae<br />

For 1<br />

gro\ /<br />

sepal<br />

<strong>for</strong> tl<br />

<strong>for</strong> tt<br />

bee,<br />

mold<br />

phae<br />

In<br />

ber c<br />

bees<br />

Di;<br />

Ch<br />

ish Ir<br />

Bartl<br />

Giar;<br />

<strong>and</strong><br />

1.94!,<br />

1957.<br />

Bl<br />

opis<br />

cia ti:<br />

the r<br />

<strong>and</strong><br />

<strong>for</strong>ni<br />

in h,<br />

othc<br />

Dakt


Prcikschl etzobl <strong>and</strong> the large-fruited <strong>for</strong>m described by Maurizio<br />

(\g34, 1935) as Pericystis npi- variety maior (Maurizio) Prcikschl et<br />

iobl. in the United States, Spiltoir (1955) studied the life cycle,<br />

<strong>and</strong> spiltoir <strong>and</strong> olive (1955) reclassified the'fungus <strong>and</strong> establisheci<br />

a new genus <strong>and</strong> family, Ascosphaern <strong>and</strong> Ascosphaeraceae'<br />

since the naie Pericysfis had been previously used as -a -generic<br />

name in the red algae. spiltoir <strong>and</strong> olive (1955) valiclated the variety<br />

under Ascosphnern npis vaiety major without seeing any materiat.<br />

rney also establishecl the type I'ariety as Ascosphaern apis<br />

variety apis.<br />

Skou (fgZZ) compared cultures of members of the Ascosphaeraceae<br />

<strong>and</strong> designated Ascosphaeraceae as the only family in Ascosphaerales<br />

.,.de. the series Plectomycetes in the class Ascomycetes.<br />

For the first time, all members of the Ascosphaeraceae were<br />

grown side by side. He raised Ascosphaera npis variety mnior .to a<br />

Ieparate ,p".i*, as Ascosytlnera rnaior; Ascosphnera npis was retained<br />

foi the small-fruited <strong>for</strong>m; <strong>and</strong> Ascosplnera prolilterda was erected<br />

<strong>for</strong> the new /scosphaera species found associated with the solitary<br />

bee, Megaclile cetituncttlctiis t. Bettsia alaei, the saprophytic pollen<br />

mold, is-the sole member of the only other genus in the Ascosphaeraceae.<br />

ln'1.974, Stejskal described Arrhenosphaers crsnei as a new member<br />

of the Asiosphaeraceae. This organism causes chalkbrood in<br />

bees in Vcnczucla.<br />

Distribution<br />

<strong>Chalkbrood</strong> has been reported from Europe, including the British<br />

Isles, <strong>for</strong> many years (Anderson 1934, 1938, Bailey 1963,1968'<br />

Barthcl 1971, Betts 1919, 1932, 1951, Deans 7940, Dreher 1938'<br />

Giatrffret <strong>and</strong> Taliercio 1'967, Lunder 1972, Maassen 1913, Matus<br />

ancl sarbak, 1974, Maurizio 1934, Mclellan 1.964, N{orgenthaler<br />

1944, Roussy 1'962, Taberly <strong>and</strong> Monteita 1967, Z<strong>and</strong>er 1919)' In<br />

1957, Seal reported chalkbrood in Nerv Zealancl'<br />

Ilaker ancl Torchio (1968) reported the first record of Ascosphaera<br />

a;ris from the United states. Their isolates from utah rvere associatecl<br />

r,r,ith the leafcutter bee, Megncltile inertttis Provancher, <strong>and</strong><br />

tlre soil-nesting bee, Anthophora Ttacifica<br />

Cresson. Later Thomas<br />

<strong>and</strong> Luce (1g7r) reported chalkbroocl from honey bees in Cali<strong>for</strong>nia,<br />

ancl Hitchcock <strong>and</strong> Christensen (1972) fotind the disease<br />

in honey bee larYae in Nebraska <strong>and</strong> \Vyoming <strong>and</strong> noted that<br />

' other occrtrrences of the disease in Cali<strong>for</strong>nia, Minnes0ta, North<br />

Dakota, ancl Montana had recently corne to their attention' Giliiam


i:'<br />

':,<br />

82 PESTS, PREDATORS, AND DISEASES<br />

<strong>and</strong> Taber (7973) reported chalkbrood in Ariz'na, <strong>and</strong> Co.nor<br />

(1974a) found chalkbroocl in ohio. By 1974, the disease had been<br />

found in at least 35 states (De jong 1976).<br />

.Gochnauer, Hugh6s, <strong>and</strong> Conner (1972) reported the first record<br />

of chalkbrood in Ca.ada in honey bees from British Columbia<br />

<strong>and</strong> Saskatchewan. Nelson, Barker, Blancl, Corner, Soehngen, <strong>and</strong><br />

vilieneuve (1976) surveyed 5,374 coronies in five prorlinces of<br />

Canada <strong>and</strong> found that 32 per cent of these colonies hid mummies<br />

in the frames. Ilorvever, is per cent of the infected colonies had<br />

less than ten cells rvith charkbrood. Ii is possible that the disease<br />

rvas Llnreported <strong>for</strong> some years in Canacla ancl the u'ited states<br />

(Gochna'er, Furgala, ancr shimanuki1975), since cornmercial beekeepers<br />

indicated that trre discase had been prese.t <strong>for</strong> decacies<br />

but rvas considered insignificant in comparison to American foul_<br />

brood (Connor 1974b).<br />

Etiology'<br />

According to Bailey honey bee larvae<br />

!!9-67),<br />

are most susceptibie<br />

to chalkbrood disease if they i.gesi spores of Ascosprtnern aTtis i"h"r-,<br />

they are threc to four clal'5 ord anci then are crriileci briefly trvo<br />

clays latcr imrnediatell, after they are sealeci in their cells to pirpatc.<br />

Because of the chilling factor, the affectecr rarvae are usualri iJr'a<br />

on.the peripherl. of the broocl area. For this reasorr, it rr.as once<br />

believed that only drone ra^'ac *'ere affectecr since tire' are frequerrtly<br />

on the periphery of the brood nest.<br />

spores<br />

. the^ th" germin ate in t,iro in trre gui of the larvae n hich<br />

is alm'st anaerobic. Horvever, the mycelitim is aerobic <strong>and</strong>, there,<br />

<strong>for</strong>e, survi'es in three to four-day,-olcr larvae better thai, in<br />

younger brood because of the shortei time it is deFrrived of oxygen<br />

(lt"y 1967). The spores germi'ate p;rrticurarry ln the hi.d encl<br />

of the gut. When the larva becomes sealecl in its ce.ll to<br />

the mycelium<br />

f,rpate,<br />

breaks out of the hincl end of the bor1r. (Bailey t'0621.<br />

since Ascosphaera apis is a heterothalric orga'ism, the iarva is<br />

trans<strong>for</strong>med into a rvhite chalklike munlnlr,, rvilen the rtrvcelium of<br />

only o.e strain (+ or --) infects a rarva. hihen the myceiia of both<br />

strains grorv in a larva, fruiting bocries are <strong>for</strong>'retl ,r., th" outsicre<br />

of the dead larva, <strong>and</strong> tl-re r,r**1, becomes gr.a1, 1o black (Figure<br />

5.2).<br />

At first the clead larvae are covered u,ith a flulfi, rvhite gro.rvth of<br />

myceli.r <strong>and</strong> are srvollen to thc size of the ccll. Latcr, the clead<br />

larvae dry irrto harcl, shrunken, chalklike lrrinps, rvhich nav be-<br />

Figu<br />

Snri<br />

con<br />

of t.<br />

mul<br />

of li<br />

in tl<br />

mie<br />

boa'<br />

Bi<br />

infe,<br />

u'itl<br />

ancl<br />

took<br />

ck-s;<br />

tire.:<br />

post<br />

mair<br />

tion-.


or<br />

?n<br />

rd<br />

ria<br />

1d<br />

of<br />

3S<br />

ad<br />

SC<br />

:ES<br />

ies<br />

tl-<br />

ble<br />

en<br />

["o<br />

+5<br />

;;<br />

[."<br />

l"-<br />

i.hreln<br />

;en<br />

:nd<br />

rte,<br />

t7\.<br />

rls<br />

iof<br />

Ith<br />

ide<br />

i's-<br />

I<br />

!of<br />

lad<br />

rDe -<br />

.<br />

:<br />

i<br />

i<br />

t<br />

i<br />

:k'<br />

h-. *"'t-t<br />

1 :f' ^:<br />

;.i: ;<br />

L:;", ':' ''i'<br />

FiFnfi<br />

vd<br />

Figne 5.2. <strong>Chalkbrood</strong>; close-up of mummies in worker comb' (Photo by M' V'<br />

Smith)<br />

come gray to black if fruiting bodies are <strong>for</strong>med (Figure 5'3)' Many<br />

of the*celis in heavily infected colonies may remain sealed, <strong>and</strong> the<br />

mummies will rattle if the comb is shaken. However, the remains<br />

of larvae can be found in sealed or unsealed cells. Most larvae die<br />

in the upright stage. Also, adult bees generally remove the mummies,<br />

whici can be found at the colony entrance <strong>and</strong> on the bottom<br />

board.<br />

Barthel (1971) <strong>and</strong> Matus <strong>and</strong> sarbak (1974) stated that natural<br />

infection could occur in two ways, either by ingestion of spores<br />

rvith food or via the body surface from spores adhering to combs<br />

ancl cell walls. Howevei, N{aurizio (1934) thought that infection<br />

took place through the mouth <strong>and</strong> not through the cuticle or spiracles;<br />

whereas Ro-ussy (1962) found that the sPores germinated on<br />

the surface of larvae. Gochnauer, Furgala, <strong>and</strong> Shimanuki (1975)<br />

postulated that once a colony rvas infected, the sPores could remain<br />

viable on the combs <strong>and</strong> eventually germinate when conditions<br />

became favorable, <strong>and</strong> the disease could then reappear. They<br />

!i*<br />

i.::.. t. . . la''- i: i'::;.;."<br />

.:., . .- , ::rtl:,,-.r.i.:.'ii::,.;:,1..:,,i:. -:.,,,:.1"r;j",1.,::t.-,.


'#i:,'.<br />

f{d:,<br />

-L=*:<br />

". i<br />

Figure 5,3. <strong>Chalkbrood</strong> mummie_s.. Initiaily thedead rarvae remain white; they are<br />

entirely permeated by the vegetative hyphae of Ascosphneya apii- s."u"i'roorurition<br />

occurs later <strong>and</strong> causes the larvae to take a characteristic dari or black colcr. (photo<br />

by D. M. Menapace)<br />

also suggested that Ascasphoera npis might survive in soir, find<br />

its way into the food chain of honey bees, <strong>and</strong> be transrnitted to<br />

larvae via contaminated brood food.<br />

,A'lthough the ability of infection to spread is probably low (Bailey<br />

1963), the spores are quite resistantlnd remain inflctive <strong>for</strong> at<br />

least 15 years (Toumanoff 1951). Maurizio (1994) <strong>and</strong> Betts (1951)<br />

thought that the disease was probably carriecl by honey, <strong>and</strong> there<strong>for</strong>e,<br />

one should avoid feeding honey from infected colonies.<br />

Maurizio (1934) found the fungus in the intestines of bees from an<br />

infected colony <strong>and</strong> stated that the organism winterecl in bees <strong>and</strong><br />

in honey. De Jong <strong>and</strong> Morse (7926) found Ascosplwern apis in the<br />

honey sac contents of adult worker bees from infected colonies<br />

<strong>and</strong> shorl'ed that spores were passed from bee to bee in food<br />

exchange. They also repoited that queen bees could transmit the<br />

disease. The results of Mehr, Menapace, Wilson, <strong>and</strong> Sackett<br />

(1976) suggested that the disease mighi be carried by pollen. How_<br />

.e'<br />

P<br />

r(<br />

sl<br />

fe<br />

br<br />

'be<br />

in<br />

br<br />

(1<br />

tir<br />

tt'<br />

P':<br />

br,<br />

c(l<br />

be<br />

dir<br />

tir<br />

Ce<br />

1<br />

on<br />

pl;<br />

exl<br />

bo:<br />

th;<br />

mc<br />

bee<br />

car<br />

tict<br />

T<br />

dur<br />

pla<br />

apI<br />

(1e.<br />

por<br />

hiv,<br />

virc<br />

cha<br />

A<br />

hacl


y ar(<br />

ii.r li,:'n<br />

, ['hr;ttt<br />

iind<br />

.'d to<br />

iailey<br />

itlr at<br />

: r e51)<br />

:hcre-<br />

..rnies.<br />

')lll an<br />

s aird<br />

in tlie<br />

li.rnics<br />

iood<br />

rit thc<br />

r,:kett<br />

llon,-<br />

i.i<br />

I<br />

(<br />

I<br />

F l<br />

I<br />

FUNGI<br />

ever, infections rvere obtainecl by feeding colonies spores with<br />

pollen only during a pollen dearth (De Jong 1976). Stejskal (1974)<br />

reported that honey bee larvae could be infected with Arrhenosphaera<br />

cranei Stejskal rvhen fed nectar containing spores or when<br />

fed by worker bees that had cleaned infected cornbs.<br />

Further spread of the disease occurs mostly through drifting of<br />

bees from infected colonies. However, transfer of spores by the<br />

beekeeper also occurs when contaminated tools <strong>and</strong> combs are<br />

interchanged in infected <strong>and</strong> healthy colonies (Barthel 1971).<br />

Several factors seem to contribute to the development of chalkbrood<br />

disease in bee colonies. As mentioned previorisly, Bailey<br />

(7967) found that honey bee larvae are most susceptible to infection<br />

when they are three to four days old <strong>and</strong> are chilled briefly<br />

tn'o dayg later immediately after they are sealed in their cells to<br />

pupate. Thcrc<strong>for</strong>e, hc notcd that the brood secnrs morc likely to<br />

be-chillecl in spring rvhen chalkbrood is rnost evident because<br />

colonies are then gron'ing rapiclly <strong>and</strong> the ratio of brood to adult<br />

bees is the largest. He postulatecl that chilling enables oxygen to<br />

diffuse into the gut <strong>and</strong> reactivate the myceliurn, which then continues<br />

to grorv when the brood temperature is restored to 35o<br />

Celsirrs.<br />

Seal (1957) found that a colony whicl-r is badly ventilated <strong>and</strong><br />

only partly occupicd during 'ivinter provided an excellent restirrg<br />

place. <strong>for</strong> spores of Ascosphaerc apis. Then rvhen tl're brood nest<br />

exp<strong>and</strong>ed in spring or early sulnmer <strong>and</strong> covered the combs harboring<br />

the spores, the larvae coulci becorne infected. FIe suggested<br />

that races of bees r'vith a tendcncy to excessive srvarndr-rg are the<br />

mbst strsceptible to chalkbrood since the departure of srvarming<br />

bees leavc-s too large a brood charnber <strong>for</strong> the remaining bees to<br />

care <strong>for</strong> properly. Also, inbred lines of honey bees seem to be partictrlarly<br />

susceptible to infection (Moeller <strong>and</strong> Williams 1976).<br />

Dallrnann (1966) found that chalkbrood occurs particularly<br />

during rainy summers in apiaries that are located in moist cool<br />

placcs. Gochr-rauer (1963) stated that fungus infections of bees<br />

appear in colonies lvith excessive hive moisture. Also, Lunder<br />

(L972) attribr.rted the occurrence of chalkbrood to rvet rveather,<br />

Lroor <strong>for</strong>.rging conditions <strong>for</strong> long pr:riods, rveak bee colollies, open<br />

hivcs, <strong>and</strong> genetic factors. He questioned rt'hethe-r the acid environment<br />

resultirrg from grovving air pollution might promote<br />

clr alkbrclocl developrnent.<br />

A possible connection betn'een chalkbrood <strong>and</strong> heather locations<br />

h.rcl been suggestecl, but Deans (19-10) stated that this did not<br />

.; ::,<br />

.{.'.r:,.;:<br />

:r 't.:' l<br />

;.*<br />

:. '.<br />

::. #<br />

'l:'rl .h<br />

, irl rl:-<br />

:;' il.<br />

. ::.',.<br />

'. rit.:<br />

,1- .i<br />

. ..i...1:;:<br />

-':..:<br />

i ': .i<br />

4-,<br />

;: ria. ,"i<br />

'*,;<br />

't: ,, :<br />

.tr<br />

ii.::<br />

.i1j!<br />

.: ll-:li<br />

r:l,l<br />

'.,:,,,jr


, -,. r: r!r1::;,i!;"::L.:,.,:i,.:i:<br />

PESTS, PREDATORS, AND DISEASES<br />

appear to be tl're'case in Scotlarrd. Hou'el'er, Dreher (1938) thouS;ht<br />

the frequent <strong>and</strong> persistent occurrence of chalkbroocl in l'reathc'r<br />

regiorrs in Germany lvas due priniarily to the predclminarrt prr.'rctice<br />

of skep beekeeping errrd the'darnp occarLic climate.<br />

Barthel (1.971) thought tlrat cl"raikbrood had becomc partially<br />

epidenric in the German Der.rrocratic Republic becansc' of the high<br />

relative humiditl. <strong>and</strong> high temperatures. Cury (1951) believed that<br />

chalkbrood occurrecl rnairrll, in hot months only in poorly aired<br />

hives. I{iglily hydratecl horrel' rvas found to create dampness <strong>and</strong><br />

permit dcvekrpment of chalkbrood, <strong>and</strong> the administration of antibiotics<br />

in svrup seenls to favor the grou'th of fnngi (Taltarly 1962).<br />

Chalktrroc,ci also seems to occur in colonics that are first rveakened<br />

by another disease. Deans (19.10) in Scotlar-rcl .found that ir-r<br />

aln'rost every serioLls casc of chalkbroocl, there u'ere '"'er)' felv<br />

<strong>for</strong>aging bees because of an attack of acarinc disease. Once weakened<br />

b1' otl-rer causes, the beres did not seem to clean or-rt tl"rc' cells<br />

to kcep the disc,rse irr cht'ck or to eradicatc it. He strggcsted that<br />

in scvcre cases of chalkbrood, sorne other circumstance had first<br />

rveakcned the stock.<br />

Mattrs <strong>and</strong> Sarbak (1974) four-rd tl-rat chalkbrood occurrecl in apiaries<br />

rvhere secollLlar)' faclors such as unsaLisfactorl' beekeeping<br />

or another disease had occurrc'c1. \{aurizio (1934) found seconclarv<br />

cases of chalkbrood on coml,s affeciecl u'ith European <strong>for</strong>rlbrood.<br />

\{illc (1954) noted that chalkbrr.rod seemecl to occur jointll' rvith<br />

noscrna disease, bactcrial sr.pticen.rias, <strong>and</strong> rickettsioses rather than<br />

alone; ancl a possiblc relatior-rship betu'een sacbrood disease ancl<br />

chalkblood has bcen srrggested (N4chr, Menapace, \\rilson, arrd<br />

Sacke'tt 1976; Moellcr <strong>and</strong> lVilliarns 1976). Also, I)reher (1938)<br />

observed that the furrgus seerned to grou' first in injurcd brood.<br />

Ciarrffret <strong>and</strong> Taliercia (7967) attribr-rtec'l the' sprc.ad of fungal<br />

discas': of bees to thc use of antibiotics that upset the equilitrrium<br />

of the intestinal flora of bees aird there<strong>for</strong>e allorve'd the fungi to<br />

flourisli. Flumiclity, lack of verrtilatjon, lvatery fcxld, <strong>and</strong> genetic<br />

factors \vere suggested as other aids in tl're spread of infection.<br />

Gilli;rm <strong>and</strong> Taber (7973) reported chalkbrood in colonies that<br />

had been fed excessive anrounts of pollern ancl extensivcly n-ranipulated.<br />

Sorr-re of the.se color-ries also hacl other cliscases such as<br />

Anrericau foulbrood. Also, Ilitchcock arrtl Christenserr (1972)<br />

found clrrll


#,<br />

ffi,<br />

,11o. ',- L*rl-r-b<br />

)ught<br />

rrtiler<br />

actice<br />

r tirllY<br />

r hicir<br />

il lirat<br />

aired<br />

is <strong>and</strong><br />

i antile62).iv,:akir,,rt<br />

in<br />

\ feu'<br />

,,veak-<br />

,r cells<br />

.,1 that<br />

r-l first<br />

cs tlrat<br />

:.rnipu-<br />

;trch as<br />

(11)72)<br />

trcrican<br />

rc.-,clult<br />

il.rr1,or<br />

T<br />

FUNGI<br />

rvilcl bees, play a part in spreacling chalkbrbod disease (Bailey<br />

1963). In Engl<strong>and</strong>, Ascosphoern n;ris was found in a dead pupa of a<br />

leafcutter bee (Melville <strong>and</strong> Dade 1944) <strong>and</strong> in the cell of a masor-t<br />

bee. (Clout 1956). In the United States, Baker <strong>and</strong> Torchio (1968)<br />

reported that Ascosphaera altis rvas associated rvith the feces of both<br />

a ieafcutter bee, L4egnchile inernis, <strong>and</strong> a soil-nesting bee, Antln-<br />

7tlrcrn pacifica, <strong>and</strong> also with the cell lining adjacent to the feces of<br />

Antlrciphoira pttcit'icn. The cells of bcrth bee species contained living<br />

noninfected prepupae. The fungus rvars also isolated from the feces<br />

of another soil-ncsting bee, Anthophorn peritomnc Cockerell, in Utah<br />

(Tcrrclricr 1971) a^d fiom Megachile rottndnta (: Megachile pacit'ica)<br />

Fabricius (Thomas <strong>and</strong> Poinar 1973).<br />

Batra, Baha, <strong>and</strong> Bohart (1973) also found Ascosplnera apls associated.<br />

with Atttttophora pncifica, sPecies of Megachile, <strong>and</strong> the alkali<br />

bee Noiilia melcnderi Cockerell. They noted the importance of the<br />

leservoir of inoculum in the nests of lvild bees. some individuals<br />

of most bee species in an area <strong>for</strong>age on the same croPs <strong>and</strong> thus<br />

permit ut-t ""Cha.tge of inoculum via the flolr'ers. Moreover, they<br />

iecovered the same fungi from the honey stomachs of several<br />

species of bees.<br />

In Denmark, Skou (7972) reported Ascosphaera proliperdn .Skou<br />

causing chalkbrood in Megachile centunculLris L. Ascosplraera nnitr<br />

(I'roksihl et Zobl) Skou n'as also found to cause chalkbrood in<br />

thcse bees, although it seemed to be only a facultative parasite<br />

(Norgaarcl F{olm <strong>and</strong> Skou 1972). Thev concluded that the ascospot"s<br />

of the fungus stick to the bodies of the bees as they pass<br />

through one cell after another when emergirrg. There<strong>for</strong>e, this is<br />

or-rc mlthod of transfer of the organism from one generation to the<br />

next.<br />

Treatn'rent<br />

No chernotherapeutic agent is registered <strong>for</strong> usc against chalkbrood<br />

clisease in the United States (Cochnauer, Furgala, <strong>and</strong><br />

shimanuki 1975). Usually the losses caused by the disease have not<br />

been consiclered serious enorrgh to justify research on treatment<br />

(Bailey 1963). Since the adult bees l5enerally carry the dead brood<br />

out oi the hive, the clisease often disappears rn"'ithout intervention<br />

from the beekeeper. Dreher (1938) emphasized the imprortancc of<br />

br-rilring ,r'r.r,-t-tr-t i*s <strong>and</strong> not allolving them to accumulate' Also,<br />

Dcarrs (1940) stated that the disease $'as not a probiem in strong<br />

colonies.<br />

i)estruction of affectecl combs or sect;.ons of combs in severe<br />

i<br />

I<br />

I<br />

i<br />

I<br />

J<br />

I<br />

F.<br />

i<br />

i t<br />

l<br />

I<br />

I<br />

!'<br />

I<br />

(<br />

i<br />

i<br />

I<br />

I<br />

i<br />

i.<br />

ii t.<br />

I * hrrj<br />

-'-3 h<br />

r,i *: *a'<br />

:;r .:l Hi<br />

:'ij: lr ,*t::<br />

... t 1l<br />

;.,'i &"":<br />

i.i { F'<br />

'i.l r<br />

ili<br />

:q,1.<br />

t.:.Y/.J<br />

i-.1<br />

'i*.:,.<br />

a*-<br />

lr<br />

-4il + ,f!<br />

{*.c' .#<br />

^l: '; 'e#<br />

i-, "'. i -#t'<br />

'.:;,..:. irEi<br />

:. -r ltr .<br />

: -i'i4<br />

'dJr..<br />

:,::r ':l ,i*:-<br />

,.ri::' .tt6;,<br />

i:i;,.', F.*f<br />

.i &:,<br />

!::i<br />

;.t:.-'<br />

!t<br />

. -*"<br />

'i ? ltii\rj.<br />

. r'j, ri 11i,<br />

- , '-<br />

, .<br />

.' l:: !;<br />

i&,-t !<br />

-r't.<br />

.as::<br />

'"i u".<br />

' : :i r,rt:<br />

!j.1 ..<br />

,.' . t:1.<br />

's' ..4<br />

'-j;<br />

.:i, f ;:ii:'<br />

' . ;.,:i i,. :. ,<br />

i,;- ': -all 'r i i.,<br />

..t'i :.1:.-<br />

| 'r '':i<br />

';i, 1: '11L<br />

'r':. ii:: . t.L. i:n: .:<br />

;,.:f,- '.::<br />

'. li !a


:ts<br />

PESTS, PREDATOIIS, AND DISEASES<br />

cases has been recomnrended (Betts 1951, Gochnauer, Furgala,<br />

<strong>and</strong> Shimanuki 7975, Kenn'ard i932). Kenrvard (1932) suggested<br />

rendering good-combs safe, after removal of shrunken larvae, by<br />

exposurL' to sun rays or by' fumigating rvith sulfur fumes or 40 per<br />

cent <strong>for</strong>malir-r. Giauffret, Tostain-Caucat, arrd Taliercio (1969) <strong>and</strong><br />

Thornas <strong>and</strong> Luce (7972) found that fumigation *"ith ethy.lene oxide<br />

killed Asc-osTshnertt npis in infected combs.<br />

Moisture accumulalion <strong>and</strong> poor ventilation in hit'es shor.rld be<br />

preventcd since cold <strong>and</strong> damp rt'eather encourages the development<br />

of chalkbrood. Z<strong>and</strong>er (7919) em1-rhasized the importance of<br />

rrvrapping coloiries during ninter <strong>and</strong> kecping them dry. Seal<br />

(7957) stated that serious spread of the disease could be prevented<br />

by' closirrg the l-rives <strong>for</strong> rvirrti:r ancl keeping the hives clear of long<br />

grass to prevent darnpness <strong>and</strong> to alion'ac-lecluate verrtilation. One<br />

can also enlarge the entrance to a colony to aid vcrrtilatiorr (Gochnauer,<br />

Furgala, <strong>and</strong> Shimanuki 1975).<br />

Seal (1957) recomment-led strengthening b.rdly diseased colonies<br />

by atlclirrg young adult bees <strong>and</strong> hatchir-rg broocl <strong>and</strong> feeding sugar<br />

synrp. He also stated that chalkbrood could be pre.r'ented by not<br />

allorving the- bees to rvinter irr too large a brood c}-ranrbcr.<br />

Lunder (7972) suggestecl the use of resistant qlleens, <strong>and</strong> Mraz<br />

(7973) recourmeuded requeening u'itir nonsuscei)iible strains. Recerrth'<br />

Nelson (1975) nrade crosses hetween Nerv Zeal<strong>and</strong> <strong>and</strong><br />

Califclr-r-ria slocks of bees <strong>and</strong> <strong>for</strong>.rncl that the resuiting stock tvas<br />

lcss affcctcd by chalkbrood than the Califomia stock.<br />

Tabarly (7962) reportcd that chalkbrood disease dtcreases in<br />

affecLecl colclnies lvl-rerr l-roney rvith a rvater corrtr-nt above 19 per<br />

ccnt is replaced u'ith a more concentrated horrer containing less<br />

tharr 17 per cent r.t'ater.<br />

Several authors havet condtrcted experiments on tire use of<br />

chemicals to control chalklrrood. Elbe <strong>and</strong> \4/eide (19(.1) founcl that<br />

0.7 per cent thl,rnol prr.vented thc gron'th of Asrrrspllacra apis in<br />

culture. When the th1'mol solrrtiorr rvas sprayed on infected combs,<br />

the' disearsc disappearcd. lf c>rvever, it n.as necessctrv to spray evcry<br />

courb ancl thc inrrer n'alls of the brotld chambcr. The bc.es n.or-rld<br />

not accept 0.7 per ce-nt thymol in s1'rup. Thet'also reported tl-rat<br />

cl-rloridcs of potassiunr, calcirrm, <strong>and</strong> soditrnr <strong>and</strong> iumts of various<br />

chcnrical substances shon'ecl no inhikriting effect orr lhe grorvth of<br />

the fungus.<br />

Barthel (7971) folrntl that thvniol in a 2 per cent soltrtion l.racl<br />

a fungi:,t;:tic cffect irr 2tl minutes c.r.r,{scojir/rn,'i',i rtirii in i'itro. IJe<br />

,:-,1-ii*,or r*:l.\


g.1la,<br />

costr'd<br />

.._<br />

'.1c, by<br />

'ii! per<br />

9) <strong>and</strong><br />

: oriclc'<br />

iuld be<br />

:"eloPir'ice<br />

of<br />

'. Seal<br />

*rnted<br />

'f long<br />

.,. Onc<br />

r i-'ocl-r-<br />

,lonies<br />

: sugar<br />

i;y,not<br />

tl I4raz<br />

:rs. Rer.,ii<br />

arrd<br />

",-k u'as<br />

r.lscs in<br />

: l9 pr.'r<br />

ing lcss<br />

use of<br />

rnd that<br />

npis iri<br />

r ct)tnbS,<br />

iV cver)/<br />

,'.\'t,Uid<br />

['cl t]rilt<br />

\(r!!\;U5<br />

.,tr'il, (rf<br />

.iun had<br />

'lllr. l{tr<br />

L*' '-1.;.r<br />

FUNGI 89<br />

stated that stimulation of the cleaning instinct of bees is the principal<br />

control rneasure.<br />

Dallmann (7966) tested the disinfectant "Fesia-Form" (<strong>for</strong>maldehycle<br />

base) on bee colonies infected rvith chalkbrood. He<br />

spriyed the solution on brood combs, the inside Parts of the hive,<br />

aird ihe liight board. Within a week after spraying, the adult bees<br />

from severely infected colonies had removed the mummies, <strong>and</strong><br />

no reinfection rvas observecl throughout the year. He found that a<br />

4 per cent solution of "Fesia-Form" killed the fungus. Barthel<br />

(1971) per<strong>for</strong>med in aitro tests on the activity of fungicides against<br />

Ascosphae rn npis <strong>and</strong> reported that 4 Per cent "Fesia-Forn'r" killed<br />

the spores after 30 minutes.<br />

Antimycotics <strong>and</strong> antiseptics have been tested <strong>for</strong> possible use in<br />

the treatment of chalkbrood. Giauffret <strong>and</strong> Taliercio (1967) reported<br />

that amphotericin B lvas the most effective agent of those<br />

they tested against AscosTthnera apis. However, it was not stable.<br />

Acticlione exhibited a high toxicity <strong>for</strong> bees, <strong>and</strong> griseofulvin did<br />

not inhibit the grorvth of Ascosphnern apis. The antiseptics tested<br />

rvere quite stable but were more toxic <strong>for</strong> bees than the antimycotics.<br />

For example, cetyl-trirnethyi amnronium rvas toxic at levels<br />

of about 0.5 grams per hive.<br />

Thomas <strong>and</strong> Luce (1'972) reported that sorbic acid <strong>and</strong> methyl<br />

parahydroxybenzoate inhibited Ascos1thnera apis in ctrlture' Later<br />

T'aber, Sackett, <strong>and</strong> Mills (7975) fed sorbic acid <strong>and</strong> sodium propionate<br />

in pollen-sugar patties to badly infected bee colonies.<br />

Chalkbroocl disappeared seven days after the treatment started.<br />

There were no symptorns of toxicity in the beles, <strong>and</strong> no reduction<br />

in sealed brood occurred. N4oeller ancl lVilliams ('1976) found that<br />

feeding infected colorries 250 parts per million benomyl in sugar<br />

sy'rup reduced infection.<br />

Author's Opinions<br />

The origin of chalkbrood disease in the United States is a mystery.<br />

At least trvo possibilities exist. one view is that chalkbrood<br />

diseasc has been in this country <strong>for</strong> many years but lvas considered<br />

lrnimportant. Arrother vierv is that the fung,us n'as only recentll'<br />

introducecl . Some of the peoplg rvho believe that the disease has<br />

bee.n present <strong>for</strong> years also thirrk that it recently has becorne more<br />

rvideipreacl <strong>and</strong> has increased in severity. If this is true, tire fungus<br />

nrav have mutate'd or strains of bees may have become nlore susi:eptible.<br />

Tl-re. first possibility seL.ms rnore reason.rble since n'Iir:ro-<br />

.s<br />

Iti<br />

$<br />

t:<br />

4<br />

c:<br />

'{<br />

I<br />

f<br />

.55<br />

t<br />

;<br />

:*<br />

{<br />

'{<br />

;.<br />

i<br />

i<br />

1i<br />

-3<br />

i.<br />

f<br />

# ,a<br />

I *$,<br />

fr<br />

t<br />

E<br />

*<br />

$<br />

.t<br />

sf,<br />

* *.<br />

5{+<br />

€ t<br />

4 E'*<br />

t<br />

! *,f.'<br />

E,<br />

* s<br />

*. ta,<br />

# sd* .gsfi<br />

'{<br />

E<br />

t'l<br />

Jf<br />

I'<br />

@<br />

;]<br />

w:<br />

"!A{,<br />

' r.:<br />

d,<br />

gr<br />

**:!<br />

lii<br />

t'<br />

. -E)l<br />

ltr<br />

,,i:<br />

'*+-',<br />

i+i..,<br />

ii.i;t<br />

4l:;i'<br />

?:1J ':<br />

fsi:<br />

' , ":ii:<br />

a:rri'<br />

t]'::"<br />

:{}t"::.'l


90 PESTS, PREDATOI{S, AND DISEASES<br />

organisms mutate readily <strong>and</strong> multiply quickly. The possibility<br />

exists that strains of Ascosphtrerrt tlllis ir-r the United states cliffc'r<br />

from those found in othcr parts of the rvorld.<br />

The fungus may have been present in solitary or wild bees in this<br />

conntry <strong>for</strong> manv years. There is no rvay of knorving this since<br />

little n'ork has been done on the microflora of these bees. These<br />

bees ma1' have sen'ed as a reservoir of inoculun <strong>for</strong> honey bees.<br />

The fungus may have entered on imported polletr. Also, the<br />

lvide-spread use of antibiotics to control bee diseases may have<br />

increase.d the incidence of chalkbrood clisease by upsetting the<br />

normal intestinal microflota of bees.<br />

<strong>Chalkbrood</strong> may be a st.css-related disease of ho.ey bees since<br />

abnormal, starved, a^d co.fi.et1 bees see.r nlore susceptible.<br />

Also, some bee colonies are more adept at re'roving the diieasecl<br />

lar'ae (sec Nelso', Barker, Bl.rnd, Corner, Soeh.g;en, ancl Ville_<br />

ncuve 1976, Gilliam, T;rber, a.d Itose unpublished observations).<br />

These corrjectures den'ronstrate that thcrr- ale rnany interesting<br />

avenues of research on ch.rlkbror.d clisease that neecl [o be investigated.<br />

Particularly, the taxo'omy <strong>and</strong> infe.ctivity of straii.rs of<br />

Ascos7tl711gv11 apis <strong>and</strong> the susceptibilitr, of strains of honey' bees<br />

under various management proceclures ncecl tc be examineci.<br />

Bettsia aluei, the Pollen Mold<br />

Bettsin nii'ri (tsetis) skou, <strong>for</strong>merll' Ascosplncra slut:i <strong>and</strong>, periaptis<br />

sh,ci, is a fungus that is saprophvtic on pollen stored by honey<br />

bees i. cells of the conrb. 'fhere<strong>for</strong>e, it is commonly referied to as<br />

pollen mold. lt does not attack brc-roc-l (Betts 1932).<br />

Pollcn that is mold1, x'ith l)eftsirr ali,ei mat, be n'ristaken <strong>for</strong> clralkbrclclcl.<br />

Ho\r'eVer, it breaks up easilt, into fragments representing<br />

the origirral pollen loads (Betts 1951).<br />

Although Ascosphst:ro cPls <strong>and</strong> Bettsiit oluei are sinrilar, the latter<br />

has a lorr,' opti'ru'r ter.perature <strong>for</strong> spore germination <strong>and</strong> gro*'th,<br />

<strong>and</strong> there<strong>for</strong>e usualll' occurs in earlv spri.g after a *'ei'rvinter<br />

(Bailey 1963). Chaiktrrood gerrerall' occurs later. Also, the fruiting<br />

bodies of Bcttsitt aluei are small compared ri.ith those of Ascosythae ra<br />

npis, <strong>and</strong> the. spores rvithin are single.<br />

Ilistorr.<br />

Be'tts (1912.r) first de.scribed the Frollen mold anel namecl iL perialstis<br />

ali'ci. Shc obsen'ed that sonte combs on n'hich the fungus<br />

\vas present contained celis that r\-ere no longer rvhite but had be-<br />

1<br />

(<br />

(<br />

(<br />

(<br />

i<br />

f' t<br />

c<br />

e<br />

f' r<br />

i<br />

a<br />

r<br />

p<br />

f<br />

a<br />

o<br />

a<br />

(<br />

d<br />

t<br />

I<br />

n<br />

C<br />

5<br />

c<br />

ir<br />

l;<br />

B<br />

t


it ilitl,<br />

rliffer<br />

rir this<br />

sitlce<br />

l-itese<br />

,ce5.<br />

1r, thc<br />

have<br />

r,' ihe<br />

'o<br />

; since<br />

rrtitrie.<br />

-\?ased<br />

Villetions).<br />

icsting<br />

NVCSti-<br />

'ins of<br />

'i bees<br />

c.<br />

'r illslis<br />

hcnc1,<br />

.1 to as<br />

'chalkrr'nting<br />

r'l.ttier<br />

"iorvth,<br />

rv inter<br />

iruiting<br />

',;rrtii0C f il<br />

it P./ifunp;lrs<br />

h.rti be-<br />

i*'.s;tr<br />

FUNGI 91<br />

collle gra)'l due to the <strong>for</strong>mation of cysts' She also gave a detailed<br />

,llo.ptiotogical description of the organism<br />

In 1919, Betts coniiarecl Bcflsin n/t'r'i n'ith the chalkbroocl fungus<br />

ancl noted that the two organisms, although similar' were.distinct'<br />

Bettsia ali,ei clid not gro!v ft brood nest temPelature' <strong>and</strong> the. cysts<br />

contained simple spherical transparent spores' In contrast" the<br />

chalkbroocl fungus gretv u'ell at brood. rrest temPeratule' <strong>and</strong> the<br />

.iiut, .o,-rtui.eaipnJrical bodies each of rvhich cont'rined a number<br />

(1919) <strong>and</strong> Ctaussen (1921) confirmed<br />

.i";;';;","r.'Z".acr<br />

Betts's observations.<br />

Burnside (1927) clescribed a pollen fungus <strong>and</strong> named it Oaulnria<br />

lni,rnrrutu' Betts callecl his attention to the similarity between this<br />

'it^g.,, <strong>and</strong> Belfsin a/uel' Subsequently' Burnside (11:a; compared<br />

.r.rf,".r.", received frorrr Matlrizio in dn'itzerl<strong>and</strong> <strong>and</strong> Betts in En-<br />

;;;:i<br />

with isolates frot.u the Unitecl States <strong>and</strong> agreed that Ouularis<br />

Tnritraecoln was indeed Rettsia nlt'ei' There<strong>for</strong>e' he withdrew the<br />

'r''on," hc g,avc to thc fungus in1927'<br />

- Mur.irio (7929) pointJd out that as early as .1919 Morgenthaler<br />

inSrr,itzerl<strong>and</strong>haclsuspectedthatBcff.sinnlt-,eiwasheterotlrallic,<br />

<strong>and</strong> she confirmecl that the cysts arise only when- the two opposite<br />

mating t1'pes corne together' In 1934' she found that both Ascospiirrruiriii<br />

<strong>and</strong> Betfsia aluei exist in two <strong>for</strong>ms based on the dif-<br />

ference ^- in the size of the cvsts'<br />

Spiftoi, (1955) established that Ascrlsplnert npis <strong>and</strong> Ascos1thaera<br />

t-luei were ascolnycetes' Spiltoir <strong>and</strong> Olive (1955) reclassificd the<br />

genus Pericqstis onJgut'" beriqlstis aluei .the name Ascoslthaern alaei<br />

without examining f"ertile culiures of the organism' Then Skou<br />

(tgZZ) scparated Arcorpl"c'o alaei .from the genus Ascosplnera<br />

<strong>and</strong> founde.l u ,,"* j"'ius Bcrfsia n'ith the genus typeBet.tsia aluei'<br />

H" utro reported thal Betrsia aluei grel poorly or not at all on ordinary<br />

media but grerv rvell <strong>and</strong>' produced spore cysts on a m.edium<br />

containing honey, y'east extract' <strong>and</strong> pollen' The organism-did not<br />

start growt}t ot rJonl tenrperature but grevn' fairly well at 18"<br />

Ceisius.<br />

Distribution<br />

Bcttsitt n/uri has been found on pollen in hives of honey bees<br />

in Great Britain (Betts 1912a, 1g7ib, 1979' 1'932' 1951)' switzerlancl<br />

(Mauti zJo7()29), the Unitecl States-(I3urnride1'977 '19,3^4;Batra'<br />

Batra, <strong>and</strong> Rohart tdril, France (Giauffret arrcl Taliercio 1967), <strong>and</strong><br />

!)elrmark (Skou 7972)' I)ettsin rtluei was also identified as the cause<br />

-^,.4*.r .rq . ,\ j_tl.<br />

l';<br />

'.lt*.!<br />

s<br />

*..:<br />

*.+l<br />

€s'.<br />

:!d.<br />

i$'l<br />

iir<br />

'51-<br />

Jig<br />

:;i*F<br />

:nii;<br />

ff,ll<br />

:n<br />

:.*<br />

iii3r:<br />

l.-l<br />

{,ts.<br />

4L<br />

!.qF. ' .#.,<br />

sr".<br />

i:ii:.<br />

i-rcl<br />

,f:, .il<br />

trrl.:-<br />

n_I<br />

is--<br />

,:r;:l.,<br />

:l|. t.<br />

qFi;<br />

1r.$*:<br />

' lrlrl


E<br />

I<br />

fr r<br />

f,<br />

*<br />

s-<br />

ru<br />

s*<br />

#F<br />

f6 H<br />

m<br />

ffi<br />

H<br />

& mw#.&&.q&<br />

-is, .<br />

&l1<br />

;3<br />

r!{:<br />

'tE5<br />

'#<br />

.*u<br />

#.&i<br />

,&<br />

s-w;<br />

_g<br />

,,#r<br />

;sr<br />

j#;<br />

;Sts<br />

tffi<br />

!':3S<br />

'li:<br />

s--<br />

,]a<br />

t:<br />

t..5:<br />

;ii<br />

,,}:<br />

;*:.<br />

.:-{1-<br />

.s.,<br />

,-o-]j<br />

t ''iRi<br />

'i.ii!i-;<br />

i.6$ I<br />

-;e<br />

,:a&:.:<br />

r.#E:<br />

,,li:,.<br />

:s<br />

-';.<br />

'f:ii.<br />

,:L<br />

' ,ir.*.<br />

.r -l:;l<br />

;:?{ai<br />

;..:-diu<br />

,.t$:i<br />

, ili!<br />

.!'d<br />

:-.<br />

..j:.:,;<br />

.::::t<br />

. {,i_':.<br />

.;#a:<br />

') li<br />

'rirrli<br />

t.i:,1"<br />

:"::n<br />

'<br />

1:.{<br />

{j1<br />

., nl:,,1<br />

''!: ,<br />

'i{j<br />

92 PESTS, PREDATORS, AND DISEASES<br />

of a m1'cosis in a pup.r of au unitlentified<br />

I<strong>and</strong> (l'honras <strong>and</strong> poinar 1923).<br />

Etiology<br />

ir.ild bee from Nerv Zea_<br />

Bcttsin alttci is colntnon in hives during \\,in{cr ilhcl earlrr<br />

<strong>and</strong> sro'vs on polten stored i" .r*tr'i;?,,r'ibir'ii,'',;#1rtffI:<br />

renro\red from the hive (Skou 7972). Th,e pollen ,;;;*; ;; rvhich<br />

it develops are rende'ed us.iess (iiuun.et o,-,a ruri"'..io isozl.<br />

The organism does not gro*'in ce,s that are fi'ect rvith pollen<br />

arrd finished rvith a lay,er of hor,*y on top be<strong>for</strong>e they are sealed<br />

r'ith n'ax' Flowerrer, it gro*'s rver'in ."r;'";;;;;"0 ,rlt'in"i""^", ..<br />

where tire honey on top l.ras been remor,r.d (Skou 1922).<br />

since the spores clo-not die duri.g the heat of ,.,r_r.,rr.,"r, the1,<br />

are taken to the .e*'hive b;' sr'a.mi.,! bees <strong>and</strong> g";i.,u," * i,ni.,<br />

one to five days at 1.5"r. 1b" celsius i2u,la", rgi'gr. e.."iAi,lg to<br />

Giauffret <strong>and</strong> Taiierci o (1967), B et tsi a,riaci aevelc,p. ;,; ;;i;; *.r"<br />

readill'at a te'peratr-rre belo*, 30'Celsius ancl is f.uncl particr,rlarll,<br />

in tlre coki season in rvr,akenea trives.<br />

The cor.rtents of the cells att;icked b1. the fungus dr1, into hartl<br />

plugs that often split i.t. layers. rr,"r" p;.€, :;; p"i_""i". oy<br />

myceliurn. Combs,on rvhich the fungus ^i, i."r".i,..,o1,-l;n,o,,_,<br />

cells in which the fungus is gray o*if; to the <strong>for</strong>matiori of c.sts.<br />

Treatn-rcnt<br />

Bettsitr cruei is undoubtcdry a norm.-rr inhabitant .f trre hearthy<br />

bee hive (Betts 1912b). ,Evidentiy p;ir;; morcr has n,t rreen con-<br />

sidcred a scrir)us problem, n"i ,n"r"i,rre tir control<br />

tlcerrrcd<br />

measLlrcs<br />

* n'''".*.r., are<br />

11'. Hor'e'er, n"tir s;r ) rectrur'rcnrrec., soa k-<br />

ini; molcly co.rrbs in l'atc.r <strong>for</strong> 24 ho,r* ancr the'proppirrg the,r.<br />

ui) <strong>and</strong> s;'ringing tht,rn to rr..rsh otrt the nrold; I)ollcn. Tfie crllnLrs<br />

shourcl trren bc alrorvc.r to clrl' ona, ir.desirccl, s1'rirrgctr agairr.<br />

Aftenvards the cells containing ver;, 1lu.0 Iunrpls of ;rlrllL_11 m'st be<br />

ilil."."t leaving the micirib in which the Lrees .1,.' rr,.riJ-.,.,or"<br />

Za.der (7919) reported that *.ith trre arrir..rr o{ r,u,arnrer lvc;rt}rer,<br />

thc spoilcd nrnrr", "f 1-ffl.'.,.- "frr:..,:., rcnrt,r.etl fr.onr t6c hi'r,.<br />

I I(r\\'0\,('r., this clc,rr'<br />

r, a,. a p r u g r i t ; "i;: ;l is.,',:.lii ; i nl;:: ::in:,; ll:.,ft :ffi :,j., l;<br />

the poilen. Therc.<strong>for</strong>e,.the,b_ecs gnorr,A; ccll> io renrove thc pollcn<br />

masses from the c()urbs. He r.,'c,'rnrnre.cJt l k,,"pi;;'.",,r,..r.1r' 0.',<br />

a.d. r.r'raplrir.rg tirem cluri.c *,intt_r to aioicl the gror'th ,rf B.l;.;;<br />

rili't'i or.r l'rolierr.<br />

t<br />

---.lo- r-t-!-l<br />

o<br />

ST<br />

8r<br />

fr<br />

el<br />

AC<br />

h;<br />

AC<br />

H{<br />

n(!<br />

ha<br />

I<br />

oc(<br />

im<br />

scr<br />

Irr<br />

(7c)<br />

Tie<br />

T<br />

sult<br />

intr<br />

(1ephl<br />

ltl)'(<br />

Bur'<br />

of ..<br />

add<br />

bur'p<br />

IAhi<br />

lltlt tl:<br />

rlspg<br />

itt-s ,<br />

rg/: i rr r<br />

1rr.s il<br />

..i.ik,


'r.'Zt'a-<br />

sPrlng<br />

"' those<br />

i n'hich<br />

h7).<br />

r pollcn<br />

r s.taled<br />

olleY or<br />

: r, they'<br />

r r'' ithin<br />

,.ling to<br />

ln ll1Ore<br />

.icularly<br />

Jo hard<br />

a led b1'<br />

ctr rr t.r i tt<br />

rf cysts.<br />

healthy<br />

eir coltlres<br />

are<br />

.l soakrg<br />

thern<br />

-' comt"rs<br />

I again.<br />

must be<br />

.cl nrore<br />

r'r': tir er,<br />

i,., hive.<br />

c of tl're<br />

iirrou;;1'r<br />

" irollen<br />

rits dry<br />

f fi,'llsir<br />

L-" t<br />

,<br />

Stonebrood<br />

FUNGI<br />

Stonebrood disease of honey bees is rare <strong>and</strong> is considered to be<br />

of minor importance to beekeepers. Both brood <strong>and</strong> adult bees are<br />

susceptible io attack by several species of fungi belonging to the<br />

g".,.ri As:rtergilltLs. As'tergillus flnurs Link causes stonebrood most<br />

irecluently, ittnougtr Asltergilltt: funignt us Fresenius is occasionally<br />

encounterecl.<br />

Infection of larvae is more often recognized than infection in<br />

aclult bees, <strong>and</strong> infecied lan'ae <strong>and</strong> pupae are trans<strong>for</strong>rned into<br />

hard stonelike mummies after death. The abdomens of infected<br />

adult bees also become n-rumrnified.<br />

History<br />

Stonel'rood lvas first elescrilred by Maassen in 1906 in Germany'<br />

He isolatecl <strong>and</strong> identifi ed Aspergillus flnous from the dead bees <strong>and</strong><br />

noted that affected larvae <strong>and</strong> pupae had been trans<strong>for</strong>med into<br />

hard leatl'rery mummies.<br />

Bahr (1916) in Denmark reported finding stonebrood on rare<br />

occasions. Betts (1919) speculated that the disease might have been<br />

imported to Britain from continental Europe. Z<strong>and</strong>er (1919) described<br />

stonebrood as appearing suddenly <strong>and</strong> disappearing again'<br />

\n 7923, Vincerrs reported stonebrood in France. N{orgenthaler<br />

(7927) clcscribed stonelrrood caused by Aspergilltrs tttgcr Van<br />

Tieghem.<br />

Tournanoff (1928) cor-icluded that mortality in some cases resultecl<br />

from toxic products elaborated by the fungus in the bee's<br />

ir-rtestine <strong>and</strong> liberited bv the digestive juices of the gut. Burnside<br />

(i930) founcl that the actitrn of the pathogenic funS;i on bees is both<br />

phi,sical ancl chcmical in t-rature" Tissues are pe'netrated by the<br />

inrlcelium <strong>and</strong> are digested by enzymes produced by the fungus'<br />

Burrrside clemonstrated that a transient toxic substance in a strain<br />

of Aspergillus flauus n'as the cause of fatal poisoning ir-r bee-s. In<br />

aclclition, he found that Aspe13illus fltn,us, Asryrgillus orqzae (fthlt''trrg)<br />

Cohn , Asytcrgilltts eflustts Tiraboschi (: Asl'ergillus otyzne<br />

IAhiburgl Cohn viriet,t effusus [Tiraboschi] Ohara), As1tergillus<br />

;,ariisiiicr,s S1'reare, Aspcrgilltrs (: flnwLs-ttryztte AspcrSiIIus oryznc?),<br />

rls;rg1'qi/111-e fi ntigt tus, AsTte rgilltrs nitltilttr ts (Eidan) Winter, Aspe rgil-<br />

Irts ocltrnceus Wilhelm, atrcl tnemL.'ers of the grotrpr Aspergilltrs<br />

il/rnri.ls Lirrk killecl bees n-hen inoculatcd experimentalll'. Aspcrgil'<br />

'ltts<br />

flnttus attacks bt-es more frequentll' than other Aspergilli, but<br />

rlslrcr.qil/rrq ftnrigntus u'as highly pathogcnic. Also, lspcr;gi/lrrs<br />

. ,ri I :':<br />

r:ri'ri;<br />

I j.{t :.:,<br />

;. . ;'<br />

::;; r.'<br />

' i: :?: . .t:11\ n.<br />

':.:1<br />

r:;.'1<br />

;{i ;<br />

.:.:.4]:<br />

: 'j:+ i""<br />

:.;it:ri !<br />

.r,,j;;,1<br />

, ':.:t.. ',<br />

..' ,t:"'1<br />

-i?,; in<br />

:: ::a;.<br />

,:.f,."<br />

#"<br />

rFr<br />

s<br />

#.<br />

ffi<br />

:i:<br />

t&a:<br />

+:<br />

i{,


94 PESTS, PREDATORS, AND DISEASES<br />

rtidulcuts, Aspcrgilrus rtigtr, members of the Asytcrgiilus grnucus<br />

group, <strong>and</strong> ,4spcrgillus oclirscctrs attack bees in natr_rrc_.'<br />

Dreher (1953) obse^'ecr several spontaneous outbreaks of stonebroocl<br />

in.G-ermany...He, stated that a spontaneous rL.covery \.\,as<br />

impossible because the bc-es c.urcl not remove tl,re mummies fron.r<br />

the cells since thcy rvere connectecl to the cell rvall by nrvcelia.<br />

He obsen'ed no toxic effect of AsTtergilllle flnt,us <strong>and</strong>.lo.r.i,rJJ,n tnut<br />

an epidemic clutbreak clf sto.ebrood probabr), ()ccurs rvhcn a<br />

highli'virulcnt strain of the fungus att.rcks coronies that have a<br />

lon'rt'sist;nce.<br />

Bailey (196s) stated there is no experirnental e'iclence tu shor'<br />

that Aspergillus flnuu5 <strong>and</strong> Aslteryilltts t'unignttLs a." p.irmry p"rf-,n_<br />

gens even though trrese organisrr,s occasionally multiply'ii be,es.<br />

Mcl-eila. (1964) fotrnd an outbreak of st''ebruoJ '1ir1o ,gittu,<br />

flauus) i. scotlanr-l that 'r,r'as the first rcportccr occ''.ence of the<br />

disease in thc Ur-ritecl Kingdorn in 13 1.ears.<br />

- Mitroiu, Popa, Serba., ancl To*a jt966) a.d Giauffret ancl Ta_<br />

liercir (1967) tested ar-rti.rycotic crren-ricars agai.st the causative<br />

agents of stoncbrood. Hoivc'er, these chc'riials ru"." .,o, iested<br />

against the fungal cliseascs itt zriuo.<br />

Distribution<br />

Stoncbrood has been re.portecl fronr Europe (N{aassen 1906,<br />

Bahr 1916, Zancler 1919, virric'rts'J.923, Touman.ff 792g, Dadc 1949,<br />

Bailey 1963,<br />

P:-"1:"11953, Mcleltan 7964, Giauffret a.ct Taliercio<br />

1967), North America (Bur'sicre 1930, steirrhaus 19-19, Bailel. igall,<br />

<strong>and</strong> Verrczuela (Stejskal 1959).<br />

Etiol()E),<br />

Aspcrgillus<br />

flartus anrl occasionallrt Asll{rtilllts t'urrtigntus <strong>and</strong> otl.rer<br />

of AspergitltL-s i^fect<br />

,speci11. ana kllr both larval u,-,,r u.l,rlt ho.rev<br />

Lrees. 'l'hcse fungi are ubiqr-rit.us a.d are commoni,r, fon.cl ir", .#<br />

They are. pathogenic <strong>for</strong> other insect_s ancl can cause resp.,i-irr1,<br />

dise.ases in man <strong>and</strong> other ar.rimals.<br />

Lar'ae in sealed arrd unsealcd celrs may.be affcciecl as,*.elr as<br />

pupae. - Capped pupae are less strsceptitle (Curv 1951). Most<br />

infected lar'ae die iri the searecl stage L.e<strong>for</strong>e puptrti'', a.cr adult<br />

sunlmcr bee's secnr pa.ticularly susceptiblc-, altiroirgir they ,'n1,-,1;g<br />

at any age' (Drche r 1953).<br />

Ilecs are attacked 'vherr ilrc. fu'g;rr sp(rres are ir.,gestecr (Bur.side<br />

1930). After the i;pclr.es ger.niinate r"ithin the alintc.',nta.r, .,n,,oi,-rtl*<br />

. ...,,. -.--."tbr r-rrl\<br />

..-- - - -r<br />

't<br />

l<br />

r<br />

a<br />

f<br />

a<br />

\,<br />

S<br />

J<br />

LJ<br />

p<br />

It<br />

b<br />

S<br />

tl<br />

n-<br />

d,<br />

(t<br />

lc<br />

at<br />

gr<br />

ti.<br />

m<br />

dt<br />

6'<br />

or<br />

pr<br />

n..:<br />

al1<br />

be<br />

(-tn<br />

cal<br />

Pr'<br />

bc<br />

-,i<br />

(lt


tiri llalll;<br />

:stoner\'<br />

\,\'as<br />

3:: from<br />

l\'celia.<br />

r.r'il that<br />

". hen a<br />

li.rvc a<br />

,-r sholr'<br />

.iratho-<br />

,n bees.<br />

;r'r;qi/l rts<br />

: of the<br />

alrcl Ta-<br />

:. riiative<br />

. icsted<br />

rr 1906,<br />

.ie 1i)49,<br />

l'rlie rcio<br />

rr, 1963),<br />

nr.l other<br />

li honey'<br />

J irr soil.<br />

r.p11;1[g1yr<br />

;',r'rll a,s<br />

i). Niost<br />

ld atlrrlt<br />

nray die<br />

8r-rn.rsidc<br />

.rn.rl, thc<br />

,L*' r:-1r<br />

FUNGI<br />

resulting m1'celia may attack all the softer tissttes' Spores can'<br />

ho*'eve-r, glrminate on the cuticle, <strong>and</strong> the mycelia rvill then<br />

penetrate the tissues.<br />

As the fungus invacles the tissues, the body of the larva <strong>and</strong> the<br />

abclorrrenoftheaclultbeebecomeharclened'Ininfectedlarvae,tlre<br />

fungus clevelops rapidly, passing,through the cuticle <strong>and</strong> <strong>for</strong>nring<br />

a cira.acteristic wltitish-1'ellorv tittg ot: collar behind the head'<br />

Withirr one to three days, it envelopes the rt'hcle larva as a false<br />

,t ir't. fn" fungus then produc"s 'pot"s on the external part of the<br />

cleucl larvn, ind the color changes to green' This grorvth is<br />

f "* a"ty. AsTt e r gilltts fl nu t r s has u-y"lloot- gtee n color' antl .Asp.e rgil -<br />

iu,s ftttri.gatur'1, g.uy-g,een' The tiisease, tittt"t a murnmification of<br />

brood, arrcl the *u*"*i". are solid <strong>and</strong> hard' At times' the fungal<br />

;p;;"; are <strong>for</strong>mecl in such large numbers that they completclv fill<br />

the comb celis that coutain n'rummified larvae'<br />

Adtrltbeesusuallyallowanybroodkilledbystonebroodtorenrain<br />

itr combs fo. some tirne, or they only partially renlove it since<br />

destruction of the cell rvalls is often necessarll <strong>for</strong> complete removal<br />

(Br.rrnside 1930). Dreher (1953) found that the mumtnies rverc not<br />

ioor" in the cells but *,ere atiached to the cell *'all by aerial mycelia'<br />

Thc first noticeable s)'mPtoms of stonebrood in adult becs are<br />

abnormal restlessness, i""bi"t'"tt, ancl paralysis' The abdomen is<br />

generally dilated. Spores <strong>for</strong>m-earlies.t <strong>and</strong> most abundantly near<br />

in* n"ui. Ihe abdomen of dead adult bees frequently shows mumrnification<br />

similar to the entire body of the larvae' It does not<br />

deca1., <strong>and</strong> the intcrior often becomei hard as a result of the fungal<br />

g.c,r.ith. I'he fungus <strong>for</strong>rns spores on clead adult bees' especially<br />

i,n the transition parts of the thorax <strong>and</strong> abdornen'<br />

Usually the coiony is not seriousll' affected since only a small<br />

percentage of adult t"., ot larvac is infected' Hon'ever' death of<br />

i',atrrrullyinfected colorries has bcetr observed (Dreher 1953)' Cases<br />

are knorvn u'here scarcely any brood clisease occurred' yet adult<br />

becs clied in large numbers (Betts 1919)'<br />

Bailey (1963) iuggested that because of the raritv of the disease<br />

und tt-r" fact that tir"e causatir.e fungi are comnlon, the sporcs ma1'<br />

c.ruse ciiseast' only lvherr they are prescnt in subnormal larvae or<br />

prcpupae. If muih of the bioocl dies, then the coiony may die<br />

bcc:rust' it rvill be rveakenecl <strong>and</strong> the remirining brood <strong>and</strong> agirrg<br />

aclults may Lre susceptible to aitack by the fungus'<br />

l.he methocl of naiural spread of the disease is not knolvn. Betts<br />

(1919) stated that stoncbroocl *as undoubtedly disserninated by<br />

I<br />

'ii<br />

I<br />

ll<br />

fi<br />

(<br />

$<br />

I<br />

I<br />

&,<br />

*,<br />

t<br />

\,<br />

.; i:i<br />

-JE,=:<br />

:li?!1.<br />

:iij:<br />

:i{<br />

+ _]:-<br />

',];t<br />

. :,:,.<br />

'ri.&'.<br />

;$<br />

i'..It<br />

ii.ri i{<br />

.'.;4i<br />

. r:,i<br />

e;r<br />

t:'- L<br />

.' .:i<br />

'a,<br />

.: -'ir:<br />

' ..',;<br />

':li.l,i<br />

:ti;<br />

. "!1'<br />

..::i,:.rr<br />

.t ,.,;r-. '<br />

.1..:<br />

!;,'<br />

i ::i<br />

,i'4 1:<br />

,{ $:2<br />

ii'<br />

:k ,,<br />

.{<br />

* x<br />

?:<br />

$<br />

b;<br />

'f,r<br />

:<br />

t<br />

i<br />

9:<br />

:,<br />

:!<br />

:l<br />

-i<br />

;<br />

!<br />

.t:<br />

:jr;<br />

i!<br />

'a:<br />

,i<br />

*..<br />

a.;<br />

?<br />

dr:<br />

pt4<br />

-s..<br />

ffi<br />

.4J<br />

3!q<br />

tr.<br />

W,<br />

s!:<br />

g$.<br />

*.,1r<br />

ti-<br />

4.:<br />

:$i.:<br />

Ye.t-<br />

;*r<br />

.4,<br />

;*'t<br />

,i;'.<br />

,;::.:<br />

':$)"<br />

f-':'<br />

'**<br />

4:];,<br />

:rihi<br />

jalr.i<br />

&q1.<br />

.:rii1_<br />

'l,ill<br />

h:<br />

i-, ,


PESTS, PREDATORS, AND DISEASES<br />

beekeepe'rs bv the interchange of combs fro'r diseased to healthy<br />

colonies. she als. believed that hone;' fr.m i.fectecl conrbs fed to<br />

bees u'ould cause the disease.<br />

ciauffret <strong>and</strong> raliercio (7967) stated trrat the spread of fungar<br />

diseases was probably related to the use of antibioiics rvhich upset<br />

the equilibrium of the .rormal intestinal flora of bees. They also<br />

listecl l-rumidity, lack of ve.tilation, food or supplies containing<br />

too much rvater, <strong>and</strong> genetic factors as possibre iiat i., the development<br />

of fungal diseases. Also, Maassen (1906) suggcsted that<br />

it rvas probable that conrb cells fillect ivith polren ari"the places<br />

n'here the' fungus first de'elops; he noted that this had noi been<br />

proven. cur1. (1951) believed that lan'ae ancl adult bees are attacked<br />

more freque-ntly *'hen the humiditf is high <strong>and</strong> that stonebro'd<br />

is transmitted by.pollen- or hone1, iontairiing fungal spores<br />

lflf:f are ingested.with the food. Grigortsovskaia u,.,i go.odui<br />

(7972) fed spores of Aspergiiltrs funtigatis <strong>and</strong> Aspcrginus ttiger in<br />

sugar syrup to bees of 'arious ages. Aftcr three io flur clayi, the<br />

bees became hairless a.cl unable to fl1,. The yourrge, beJs died<br />

fi rst.<br />

Attempts to infect colonies artificiailv have been unsuccessful<br />

(Bailey 1963). There<strong>for</strong>e, stressecl or abnor.ral bees may Lre rnore<br />

susceptible, <strong>and</strong> tc'rxins (Toumarroff 192g, Burnsider 1930j, perhaps<br />

a-flatoxins, produced by the fungi might be responsiblc'<strong>for</strong> the<br />

disease. B,'rside (1930) co'clucrecl that the pathogerricity oi the<br />

fungi that attack bees,thr'up;h the gut ivall ippeais t' be cletcrmi'ed<br />

by' the ability of the spores <strong>and</strong> m'celia to resist the actio'<br />

of the intestinal fluids.<br />

Trt'atrne nt<br />

fhcrc is 'o krror'r'n treatnrcnt ftrr sttr^ehrood (Bailcy. r963, ciauffret<br />

<strong>and</strong> Taliercio 1967). Hol'ever, in se'ere cur"r, Betts (1919,<br />

1951) recornmcnded burning trre bees, combs, a.cl alr contents of<br />

the hi','e <strong>and</strong> then disinfecting the hi'e. To sa'u,e a mircily diseasecr<br />

c'lony, she suggested shaki.g the. bees onto ne*, equipnre't, clis_<br />

infecti'g tlie old hi'e, ancl burning all cor-.bs. white^ doirrg this<br />

rvork, one slrould protect the c1'es, m.trth, <strong>and</strong> nose- *'ith a ,ii"ta<br />

<strong>and</strong> a v'et ha.dkerchief to re'tluce thc risk of i.fecti.n. Betts enrphasized<br />

tl'r.at the honev from c.lonies infectecl rvith sto.ebrood is<br />

rrot s.rfe <strong>for</strong> htrnran consunrption since As,tt ygi!!1,, /rri,rr-s has been<br />

knorvn to gr


healthl'<br />

rs fed to<br />

f fungal<br />

:h upset<br />

rey also<br />

:rtaining<br />

,: devell:ed<br />

that<br />

.: places<br />

rot been<br />

r are atrt<br />

stone-<br />

.i spores<br />

Borodai<br />

rrrger in<br />

.r1's, the<br />

:es died<br />

: ccc'ssf ul<br />

're-. more<br />

ucrhaprs<br />

<strong>for</strong> the<br />

of the<br />

rl'eter-<br />

' .-rction<br />

j, Giarifi:.<br />

(1919,<br />

', ,.'nts of<br />

, .eased<br />

. rt, clis-<br />

.;rg this<br />

e shield<br />

ir'tts em-<br />

:t rclod is<br />

ras be.en<br />

.rlful <strong>and</strong><br />

in ivhich<br />

^ti<br />

;*--!r-. rr*,,t<br />

r-'*<br />

FUNGI<br />

only the brood was affected rvere treated by brushing the bees<br />

into artificial swarm boxes <strong>and</strong> feeding the bees in these boxes <strong>for</strong><br />

two days in a cool darkened room. Hives <strong>and</strong> accessories were<br />

sterilized <strong>and</strong> the frames provided with foundation. The bees rvere<br />

then returned to the old hives <strong>and</strong> regularly fed urrtil comb was<br />

built. He noted no relapse.<br />

Giauffret, Tostain-Caucat, <strong>and</strong> Taliercio (7969) found that fumigating<br />

combs with ethylene oxide <strong>for</strong> 1,5 hours at 22o Celsius killed<br />

Aspergillus flaaus. Also, Giauffret <strong>and</strong> Taliercio (1967) studied the<br />

possibility of treating fungal diseases with antimycotics <strong>and</strong> antiseptics.<br />

They determined the in aitro sensitivity of trvo strains of<br />

Aspergillus flaaus to antimycotics <strong>and</strong> compared the toxicity of these<br />

products <strong>for</strong> adult bees <strong>and</strong> brood. They found that nystatin ancl<br />

thiabendazole rvere most effective against Aspergillus flauus. Actidione<br />

was the most toxic test substance to adult bees <strong>and</strong> larvae.<br />

Horvever, they noted that studies on the activity of these antimycotics<br />

against fungal diseases should be done in aiao.lr{itroiu,<br />

Popa, Serban, <strong>and</strong> Toma (1966) found that stamycin, a mycostatic<br />

agerrt, inhibited development of cultures of Aspergillus niger <strong>and</strong><br />

Aspergillus funigatus.<br />

Gochnauer, Furgala, <strong>and</strong> Shimanuki (1975) stated that no treatment<br />

<strong>for</strong> stonebrood is required since bees remove diseased brood,<br />

ancl the colony appears to recover spontaneously. Ho'wever,<br />

Z<strong>and</strong>er (1919) found that rvhen bees attempted to remove larvae<br />

affected by stonebrood, they gnawed au'ay the celi walls <strong>and</strong><br />

reached the mummies only nith difficulty. There<strong>for</strong>e, they lvere<br />

onll' partly successful in their attempts. Those larvae that could<br />

not be removed were covered with propolis so that only the heads<br />

remained visible.<br />

Maassen (1906) observed that bees were not very suscePtibie to<br />

the disease. The susceptibility increased if the hive temperature<br />

rvas high, if the hive was poorly ventilated, or if the bees rvere<br />

corrfined <strong>for</strong> a long time.<br />

Other Diseases<br />

Mel.rnosis<br />

F,vg (193a) discovered in sterile queell bees a disease that affected<br />

tl-re reproductive sy'stem. The disease n'as designated H-mel;rnosis<br />

(frorn the German "Hefe" mearriug yeast) to distinguish it from<br />

another melanosis (B-rnelanosis) caused by a bacteriurn. The s1'str'matic<br />

position of the yeast-like microorganism c.rusinS; H-melarrosis<br />

is still undetermined.


PISTS, PREDATORS, AND DISEASES<br />

According to Fyg (1961\, the organism probabll' errters the re.productive<br />

organs through the sting chamber <strong>and</strong> vaginal orifice. It<br />

produces in the oviducts <strong>and</strong> ovaries a melanosis or black coloration.<br />

J'he poison sac ancl poison.gl<strong>and</strong> of the queen are also affected<br />

<strong>and</strong> contain large black srvellings. These sn'ellings exert<br />

pressure on the oviduct, <strong>and</strong> egg laving ceases. Since infected<br />

queens become sterile, Ctrry. (1951) recomnrended that tl-rey be<br />

replaced, althougl'r such queens are superseded by a nerv queen<br />

(Bailcy'1963).<br />

Healthy r-luc.ens can tre infected bv vagirral inoculations in the<br />

laboratory (Fyg,796q, <strong>and</strong> adult rvorkers <strong>and</strong> drones have been<br />

infected n,ith cultures injected into the thorax (Fy'g 1936). However,<br />

direct feeding of the pathogen to be.es has uot produce.d<br />

infection. Un<strong>for</strong>tunatelv, nothing is kno'rvn about ihe incidence of<br />

the disease (Bailey 7968).<br />

The pathogen Frroduces lvhite., smooth, sl'riny colc,rnies on beerlvort<br />

agar at 30' Celsius. These colonies never darken even in old<br />

cultures (F1'g 196a). Fvg (i964) contends tl-rat this organism is not<br />

idcntical rrith the org;.rnism Mclunscllrt nrors npis described by<br />

Orosi-P6l (1936, 1,939).<br />

Orcjsi-Pal (1936) found a livir-rg matecl queen that had ceascrl to<br />

Iav eggs. The genital orifice was plugged rvith a brown substance<br />

in n'hich the sting n'as embeddecl. This "anal rvacl" rvas lodged<br />

soliclll'betn'een the last tr.vo abdominal segments aird the stirrger.<br />

He cultivated spores from the 'rvad <strong>and</strong> or.aries of this queerr a'cl<br />

also fourrd tl-re organisnr in hind guts of infected worker bee.s. T'he<br />

n'rost strikir-rg sign of the disease in rvorker bees was an evagination<br />

of the hiridgut. He gave the name of Melnnosella nrttrs npis to the<br />

pathogenic agent <strong>and</strong> n'as able to cause mortality in worker bees<br />

within 24 hours after feeding them pr-rre culturts of the organism.<br />

Corrtarski (7937138) found a fungi<strong>for</strong>m organism betrveen the<br />

ovarioles of a queen suffering from ovarian atrophy. I{orvever, Fyg<br />

(1964) examined 224 cases of ovarian atroplrl' of queens ancl clid<br />

not encounter this condition.<br />

Polte' <strong>and</strong> Neshatave'a (1969) stated that the agent Meranoseiln<br />

urLlrs opis corresponds morpl-rologicallv <strong>and</strong> culturally to AurettltnsidiLtrtt<br />

pullultris (Del3aly) Arnaud \: Pullulnrin Ttullularrs [DeBary]<br />

Llerkl-rout). They' injccted 'r'orker bees in the thorax <strong>and</strong> abclome.n<br />

rr'ith Arrrcirbttsitihrm Ttullulans fronr cultule collectiorrs <strong>and</strong> from<br />

qucens nitir nrelanosis. Infection began in the regions injected;<br />

<strong>and</strong> no pathological differences \\'ere observed i. strains from<br />

:.;!:&nt r<br />

'{-<br />

qu<br />

ol'i<br />

I<br />

ab,<br />

th(<br />

h1,<br />

lec<br />

Po<br />

(<br />

T<br />

an(<br />

spr<br />

u'it<br />

dea<br />

soft<br />

rvit,<br />

B<br />

fun,<br />

r€-aI<br />

too<br />

ture<br />

Dan<br />

nies<br />

tion<br />

ther<br />

Br<br />

gror<br />

at tir<br />

gro\.<br />

acce<br />

not I<br />

occu<br />

not 1<br />

Fie<br />

.\ I uct<br />

ttr br<br />

broo,<br />

tha t<br />

tirc f<br />

(\icl


e reProrifice.<br />

It<br />

. coloraaisoafgs<br />

exert<br />

infectcd<br />

they be<br />

^, qUe€fl<br />

rs in the<br />

rve been<br />

i). Horvtroeluced<br />

dence of<br />

on beer-<br />

:rr in old<br />

"m<br />

is not<br />

r-iL''erl by<br />

:easecl to<br />

rubstauce<br />

; lodged<br />

r stinget'.<br />

,r-en <strong>and</strong><br />

.,tes. The<br />

,rgirration<br />

rris to thc<br />

rker bees<br />

rrr;.ruism.<br />

u'ceu the<br />

errcr, Fyg<br />

s ;rnd did<br />

.l tlnnttsclln<br />

Atrrtobttsi-<br />

IDeBary]<br />

lLrdomen<br />

arrd fronr<br />

,, injected,<br />

,rirrs from<br />

i4<br />

i:<br />

a<br />

Ix1 3<br />

t j<br />

t<br />

:,<br />

t!<br />

!<br />

b<br />

a;<br />

FUNGI<br />

queens <strong>and</strong> culture collections. They postulated that the melanosis<br />

organism is introduced into the hive lvith honeyder,r' honey.<br />

Gontarski (1950) found n-relanized hypopharyngeal gl<strong>and</strong>s in<br />

about 15 per cent of the pollen-collecting bees'from a colony. He<br />

thought that queens became infected when they rvere fed the<br />

hypopharyngeal gl<strong>and</strong> secretion by diseased rvorkers. Nectar-collecting<br />

bees from the same colony rvere not infected. There<strong>for</strong>e,<br />

pollen \vas suggested as the source of infection.<br />

Other Molds<br />

Fungi are commonly found as saprophytes on <strong>and</strong> inside bees<br />

ancl on brood combs. Most of the fungi collected by the rvidespread<br />

<strong>for</strong>aging of bees are probably unable to become established<br />

within the bee or the beehive (Burnside 1927). Horever, after the<br />

death of the bee, sorne of the fungi germinate <strong>and</strong> mummify the<br />

softer tissues inside the exoskeleton. Othcrs do not germinate<br />

n'ithin the bee either be<strong>for</strong>e or after death.<br />

Betts (1912b), Rurnside (7927), <strong>and</strong> Maurizio (1931) described<br />

fungi associated with hives. Combs that have been used <strong>for</strong> broocl<br />

rearing <strong>and</strong> <strong>for</strong> the storage of honey <strong>and</strong> pollen are susceptible<br />

to overgrowtl'r by fungi if sufficient moisture <strong>and</strong> proper temperatures<br />

<strong>for</strong> the growth of the fungi are present (Burnside 7927).<br />

Damage is generally limited to poorly ventilated hives, rveak colonies,<br />

<strong>and</strong> cornbs in unoccupied hives. Through the proper regulation<br />

of humidity within the hive, the bees are able to protect<br />

thc-mse-lves <strong>and</strong> their stores from attack by fungi.<br />

Br.rrnside (7927) noted that the Penicillia are the most common<br />

group within the beehive. He frequently fourrd entire combs, <strong>and</strong><br />

at times after the death of the bees, all the combs of a hive overgrorvn<br />

with these organisms. Badly infected combs are not readily<br />

accepted by the bees. He added that actual parasitism of bees has<br />

rrrrt been established <strong>for</strong> any species of Penicillitnrr. T'he Aspergilli<br />

occur far less abundantly in the hive, <strong>and</strong> species of Mucor do<br />

lroi grotr, u'ell on brood combs.<br />

Ficlitz (1925) reported that Triclndernn lignortrrr (Tocle) FIarz arrd<br />

,\lrrror ntucctict Brefelcl found on mummified bees $'ere pathogcnic<br />

to brood ancl adult bees n'hen intrclduced into healthv colonies on<br />

L,rtrtrrl combs. Nicholls (1,934) <strong>and</strong> Chorvdhury (1953) also found<br />

tlr.rt liiclrodtntta lignorurn causecl disease in bees. In Tasn-rania,<br />

ilrt' furrgrrs appeared tcl be associated lvith No,serrrr apis Z<strong>and</strong>er<br />

(\iclrolls i934). Becs fed Trichod(rml lignonlnr spores in sug;rr


lOO PESTS, PREDATORS, AND DISEASES<br />

syrup died (Grigortsovskaya <strong>and</strong> Boroclai 7972). Myceliunr was<br />

found in the epithelium of the miclgut <strong>and</strong> in muscles, <strong>and</strong> the<br />

gut contained many fungal spores.<br />

Mucor hiennlis Wehmer rvas reported to be virulent <strong>for</strong> young<br />

adrrlt bees rvhen tl'rey \vere exposed to a temperature of 20' Celsius<br />

(Burnside 1935). Hon'ever, the normal temperature of the brood<br />

nest is abor.'e the tolerance of lvhrcor liennlis. Moreove'r, when bees<br />

are old enough to leave the hive, they are no longer susceptible.<br />

There<strong>for</strong>e, this disease is of little importance.<br />

Queen larl,ae in sealed cells have beerr reported to be attacked<br />

by AsTtergillus niger (Burnside 1939, Prest, Gilliam, Taber, <strong>and</strong><br />

Mills 1974). In the latter paper, the fungus r,r'as also isolated from<br />

discolored rvorker <strong>and</strong> drone larvae.<br />

In f)enrnark, a case of a disease similar to stonebrood rvas described<br />

<strong>and</strong> attributed to a fungus of the €ienus Clauiceps (Cor,r,an<br />

188i/82). Drone t.'rood n'as attacked first, then rvorker brood, <strong>and</strong><br />

finalll'adult bees.<br />

Cury (1951) described a disease of iarvae arrd adult bees caused<br />

by Rhizopus equinus Costatin ar-rd Lucet rvhich was obtained via<br />

the pollen of florvers contaminated rvith horse manure. In addition,<br />

he stated that in cold countries Sco|rttlcrioltsis brqticnulis (Saccardo)<br />

Bainier caused a disease called yellorv brood <strong>and</strong> black<br />

brood. The affectcd larvae died <strong>and</strong> turned yellow or black accorclirrg<br />

to the age of the fungus <strong>and</strong> strongly adhered to the walls<br />

of the ce.il. The disease does not affect protected broocl <strong>and</strong> generalll'<br />

disappears rvhen the temperature riscs.<br />

Yeasts<br />

Yeasts have been fourrd in nectar (tsetts 1920, Lochhead <strong>and</strong><br />

Heron 1.929, Batra, Batra, <strong>and</strong> Bohart 7973), honey (Falrian <strong>and</strong><br />

Quinet 1928, l.ochhead <strong>and</strong> Farrell 1931, l.ochheacl <strong>and</strong> lvlclr{aster<br />

1931, Tvsset <strong>and</strong> Rautiin De l-a Ror, 1974), bee bread or stored<br />

pollerr (lVilson <strong>and</strong> Man'irr 1929, Pain ancl Maugerrct7966, Egorova<br />

arrd Bab'eva 7967, Egnrova 1971), hives (Betts 7928a,1928b,1928c,<br />

1929), apiarv soils (Lochhe.rd ancl Farrell1930), <strong>and</strong> bees (see Batra,<br />

Batra, <strong>and</strong> Bohart 1973 arrcl Gilliam, \{ickerham, Morton, <strong>and</strong><br />

N4artin 1974).<br />

Yeasts are not considercd to be pathogL'l1s of honey trees, although<br />

soltlc osmophilic species ciiuse fermentation of honey.<br />

How'ever, Giordani (1952) isol.-rted a veast belonging to thc genus<br />

Torulopsis from the digestir,e tract of bce.s suffe'ri.g from a tiisease<br />

of unkrrorvrr nature. \{hen this yeast n'.rs fe'd to healthl.bee colo-<br />

..*i*-. L\F@.!<br />

t-<br />

ni<br />

dr<br />

(B<br />

m<br />

19<br />

ad<br />

ln<br />

Pa<br />

8r(<br />

cla<br />

ber<br />

COI<br />

val<br />

bet<br />

res<br />

larr<br />

ASS<br />

tior<br />

\<br />

col<<br />

m)/l<br />

Ton<br />

197,<br />

<strong>and</strong><br />

Cc'l S(<br />

<strong>and</strong><br />

(Gil<br />

bee:<br />

be ir<br />

A,<br />

It<br />

L-ibr,<br />

ihc r


:lium n'as<br />

i, <strong>and</strong> the<br />

ior t'oung<br />

0" Celsius<br />

the brood<br />

then bees<br />

r:;ci-'ptible'<br />

c attacked<br />

aLrer, <strong>and</strong><br />

lated from<br />

tl rvas ders<br />

(Con'alr<br />

,rood, <strong>and</strong><br />

ees causcd<br />

'tained via<br />

:. In addi-<br />

.nrr/is (Sacr<br />

ricl black<br />

r nCCordihe<br />

u'alls<br />

'rud gener-<br />

irhead <strong>and</strong><br />

:.rL.rian <strong>and</strong><br />

lr{c}vlaster<br />

i or stored<br />

,6, Lgorova<br />

2,Sb, 1928c,<br />

; (see Batra,<br />

itr tr-rn, <strong>and</strong><br />

v bees, aloi<br />

honey.<br />

r the gerrus<br />

l .r disease<br />

iv bee colo-<br />

iJi$slu-.-<br />

FUNGI<br />

nies, it developed in the digestive tract of the bees <strong>and</strong> caused<br />

death. Injection of some species of yeasts into bees causes death<br />

(Burnside 1930, Batra, Batra, <strong>and</strong> Bohart 1923). Also, some yeasts<br />

rnay ferme.rt the provisions of honey bees (Betts 1920, Moreaux<br />

1949, vecchi 1959) <strong>and</strong> cause sickness or death of the larvae or<br />

adult bees that ingest these provisions.<br />

. In fact, yeasts may be beneficial to honey bees by playing a role<br />

in the production <strong>and</strong> preservatio. bee bread (Ego'roia 7977,<br />

Pain <strong>and</strong> Maugenet 1966) <strong>and</strong> by supplying 'f vitamins <strong>and</strong> other<br />

gron'th factors (Egorova 1977,Batra, Batra, <strong>and</strong> Bohart 1923). Gior_<br />

dani (1957) fed caged bees s,ccharorrrr/ccs species, Torula species, or<br />

bee-collected pollen in sugar syrup. From these experiments, she<br />

concluded that the yeasts had approximately the same nutritional<br />

value <strong>for</strong> young bees as pollen. Moreover, the Torula species gave<br />

better results than pollen. Hajsig (19s9) cites the r"r,-,ir, of oiher<br />

researchers to point out that yeasts have a favorable effect on the<br />

larval development of bees. Much nlore research is needed to<br />

assess the effect of yeasts (<strong>and</strong> other microorganisnrs) on the nutrition<br />

<strong>and</strong> physiology of honey bees.<br />

Yeasts are more readily isolated from adult honey bees from<br />

colonies that have been (1) treated with antibiotics such as terram1'cin<br />

(Toma5ec 1957, Hajsig 1959, Mitroiu, popa, Serban, ancl<br />

Toma 1966, Gilliarn 1973, Gilliam, Wickerham, Morton, ancl Marti.<br />

7974), (2) treated rvith herbicides (Gillian-r, Wickerham, Morton,<br />

<strong>and</strong> Martin 1974), (3) caged (Gilliam 1973), (4) suffering from dis_<br />

cases not caused.by yeasts (Betts 1928c, Lavie 1951, Kamburov<br />

<strong>and</strong> l{ajsig 1963, Gilliam 7973), or (5) receiving cleficient diets<br />

(Giliiam 7973). since ferv yeasts are founcl in the intestines of aclult<br />

b.es from healthy free-flyi.g colonies, tl-reir presence in bees n-ray<br />

tre indicative of stress conditions (Gilliam lgfu).<br />

Acknon.lcdgmcnt<br />

I thturk Alfred D. straughan of the usDA National A5;ricultural<br />

Librarl', Beltsville, Mar14<strong>and</strong>, <strong>for</strong> translatinp; into Engtish man1, of<br />

the citcd references.<br />

i.lt<br />

,d<br />

i "rl<br />

'_.4:1.1,: +<br />

!L: ,:<br />

n."!-ri<br />

.l'.1'.;<br />

iq'rt<br />

i"- : iz<br />

.:,,i e<br />

r:a .t<br />

:. ': :;<br />

::,-:. a ':t<br />

,, rt l*<br />

::f<br />

..-*,*<br />

i *,;<br />

.*.-$<br />

.&',K<br />

I'lF-"9<br />

il';-4<br />

.* I<br />

.,:j, .l<br />

;' ".t<br />

;'t t<br />

..i; &<br />

:;t s<br />

:-!.i i*<br />

:':n1 *<br />

L! {l<br />

r1p i.f<br />

il '3:-d<br />

";: tr.<br />

'--:t?.q<br />

.;j:.<br />

a"<br />

#.


Apidologie, 1978, 9 (3),213-222.<br />

;rJlfi [i /,<br />

iili Ti,Jti?,,11,,T'<br />

BACTERIA BELONGING TG THE GENUS BACILZUS ISOLATED<br />

FROM HONEY BEES, APIS MELLII7ERA, FED 2,4-D AND<br />

ANTTBTOTTCS (l)<br />

Martha GILLIAM<br />

U. S. Department of Agriculture, Science <strong>and</strong> Education Administration, Bee Research Laboratory<br />

2000 E. Allen Road, Tucson, Arizona 85719<br />

<strong>and</strong><br />

Howard L. MORTON<br />

U. S. Department of Agriculture, Science <strong>and</strong> Education Administration,<br />

Rangel<strong>and</strong>s Weed <strong>and</strong> Brush Control<br />

2000 E. A llen Road, Tucson, Arizona 8 57 I9<br />

SUMMARY<br />

The guts of388 adult worker honey bees.,4pls melli,fera, lrom caged control colonies. from colonies<br />

fed (2.4 dichlorophenoxy) acetic acid (2,4 D), <strong>and</strong> from colonies fed a combination oloxytetracvcline <strong>and</strong><br />

fumagillin were examined over a period of l3 months lor organisms olthe genus Bacillus. One hundred<br />

<strong>and</strong> ten organisms belonging to 13 species were identified. Bacillus megaterium, B. subti!is, <strong>and</strong> B. pumilus<br />

were the most frequently isolated organisms <strong>and</strong> were found in bees in all three treatment<br />

groups. The antibiotics <strong>and</strong> 2.4-D reduced the number of bee guts containing Eacll11s. No Bacll1ts organisms<br />

were isolated during the hot summer months of June Septembcr. Thus. weather may also influence<br />

the composition of the gut microflora.<br />

INTRODUCTION<br />

For several years, we have been examining the intestinal microflora ol honey<br />

bees, Apis melli,fera, with the ultimate goal ol determining the role of microorganisms<br />

, in the nutrition <strong>and</strong> physiology of these insects. One aspect ol this investigation has<br />

concerned the effects of antibiotics used to ccntrol bee diseases <strong>and</strong> of pesticides on<br />

the gut microflora of bees. Thus, we isolated <strong>and</strong> identified enteric bacteria<br />

i (Gtt-uau <strong>and</strong> MonroN, 1974), molCs (GlllrAM et al., 1974 a), <strong>and</strong> yeasts (Grr-r-rAM et<br />

(l) Mentionofaproprietaryproductorcompan)'namedoesnotconstituteanendorsementbvtheU.S.Depart<br />

ment of Agriculture.


214 M. GILLIAM AND H. L. MORTON<br />

al,,1974 b) from the guts ofadult worker bees from control colonies, from colonies fed<br />

a combination of the antibiotics oxytetracycline (TM-25) <strong>and</strong> fumagillin (Fumidil B),<br />

<strong>and</strong> from colonies fed the herbicide (2,4-dichlorophenoxy) acetic acid (2,4-D). From<br />

this work, we concluded that the antibiotics depressed the growth of<br />

Enterobacteriaceae, molds, <strong>and</strong> yeasts <strong>and</strong> that 2,4-D caused a proliferation of<br />

intestinal yeasts but had little effect on the molds or Enterobacteriaceae.<br />

Recently we reviewed the literature concerning bacteria of the genus Bacillus that<br />

have been isolated from honey bees <strong>and</strong> reported the isolation of 14 species from<br />

the guts of <strong>for</strong>aging worker bees (Gllrtau <strong>and</strong> VaI-ENuNr, 1976). Since in<strong>for</strong>mation<br />

about the incidence of these spore<strong>for</strong>ming rods in honey bees is scant <strong>and</strong> since we<br />

wished to assess the effects of 2,4-D <strong>and</strong> the antibiotics on these organisms, we report<br />

here the results of examination of the guts of adult worker bees from control colonies,<br />

from colonies fed 2,4-D, <strong>and</strong> from colonies fed a combination of oxytetracycline <strong>and</strong><br />

fumagillin.<br />

MATERIAL AND METHODS<br />

The procedures <strong>for</strong> establishing, caging, maintaining, <strong>and</strong> feeding bee colonies were described in<br />

detail by Grlrrenr <strong>and</strong> MonroN (1974). Two tests were conducted to obtain data throughout the<br />

year. In the first test, each of the three hives receiving a different treatment (control, herbidide-fed, <strong>and</strong><br />

antibiotic-fed) was placed in a separate 12x l2x 9-ft Saran mesh cage. In the second test, nine hives<br />

were used, <strong>and</strong> the three colonies receiving the same treatment were placed in the same cage. Thus, in<br />

the two tests, bees were examined from a total of 12 colonies : four control colonies. four colonies fed 2.4<br />

D, <strong>and</strong> four colonies fed the antibiotics.<br />

Briefly, the procedure was to feed all colonies l-lb pollen patties (maintenance diet), which were replenished<br />

weekly. Colonies receiving the herbicide were fed the dimethylamine salt of 2,4-D at a concentration<br />

of I 000 ppm active ingredient by weight in 60 o/o sucrose-water solution from a jar placed directly<br />

above the frames containing brood (MonroN <strong>and</strong> Morprrr, 1972). The mixture of herbicide<br />

<strong>and</strong> syrup was replenished twice a week. Colonies fed antibiotics were given the maintenance diet plus<br />

0.5 g TM-25 <strong>and</strong> 0.5 g Fumidil B in addition @ 60o/o sucrose-water solution. Control colonies received<br />

the maintenance diet <strong>and</strong> 60 o/o sucrose-water solution. Fresh water was available to all colonies.<br />

In the hrst test, three adult worker bees lrom each colony were examined weekly. The intestinal<br />

tracts (esophagus to rectum) were aseptically removed <strong>and</strong> individually homogenized in 2.5 ml of sterile<br />

0.85 o/o NaCl as previously described (Gtr-ru.u <strong>and</strong> PnEsr, 1972). A loopful of the homogenate<br />

from each bee was streaked in duplicate on trypticase soy agar (BBL) <strong>and</strong> nutrient agar (Difco) in petri<br />

dishes. All plates were incubated under aerobic conditions at 37 oC <strong>for</strong> 14 days.<br />

In the second test, every three weeks the intestines oftwo bees from each ofthe nine colonies were individually<br />

homogenized in 2.5 ml of sterile thioglycollate l3 5 C medium (BBL). Each homogenate was<br />

streaked in duplicate on trypticase soy agar. nutrient agar. <strong>and</strong> eugonagar (BBL). One plate was incubated<br />

at 25 oC <strong>and</strong> one at 37 oC under aerobic conditions lor 14 days.<br />

All resulting bacterial colonies were stained by the Gram method <strong>and</strong>, il necessary. were restreaked<br />

on plates of the same medium used <strong>for</strong> initial isolation to obtain pure cultures. Gram-stained slides of<br />

the cultures were examined <strong>for</strong> spores. The size. shape. <strong>and</strong> location of the spores within the sporangia<br />

<strong>and</strong> the morphology of the vegetative cells were noted. Bacteria belonging to the genus Bacillus were<br />

maintained on slants of nutrient agar. They were then tested <strong>and</strong> identified according to GonooN et<br />

al. (1973).


BACILLUS IN BEES 2t5<br />

In the first test, bees were sampled from July l97l to January 1972. In the second test, they were<br />

sampled from September 1971 to August 1972 though all the herbicide-fed colonies had died by April<br />

19'12, a control colony died inMay 1972, <strong>and</strong> an antibiotic-fed colony died in June 1972. We attribute<br />

the death of the herbicide-fed colonies to the ovicidal <strong>and</strong> larvicidal effects of 2,4-D (MonroN <strong>and</strong><br />

Morrrrr, 1972).<br />

RESULTS AND DISCUSSION<br />

One hundred <strong>and</strong> twelve Bqcillus organisms were isolated, <strong>and</strong> 110 belonging to<br />

l3 species were identified from the 388 bees that we examined (Table l). We were<br />

unable to identify two isolates, one resembling B. alvei <strong>and</strong> the other resembling B.<br />

sphaericus. Since we were interested in determining the number of bee guts containing<br />

Bacillus organisms but not the total number of Bacillus cells per bee gut, more<br />

isolates were identified than are shown in the tables to estimate adequately the number<br />

of species present. B acillus megaterium, B . subtilis, <strong>and</strong> B . pumihls were found in the<br />

bee guts most frequently. These organisms were isolated from bees in all three treatment<br />

groups.<br />

Organism<br />

Bacillus megaterium<br />

B. subtilis<br />

B. pumilus<br />

B, licheni<strong>for</strong>mis<br />

B. circulans<br />

B. alt,ei<br />

B. coagulans<br />

B. brevis<br />

B. cereus<br />

B. sphaericus<br />

B. Jirmus<br />

B. laterosporus<br />

B. polymyxa<br />

Unidentified<br />

u388 bee guts examined<br />

TasL. l. - Bacillus Isolated From Control Bees, Bees Fed 2,4-D,<br />

<strong>and</strong> Bees Fed Oxytetracycline <strong>and</strong> Fumagillin"<br />

Number of bee guts<br />

containing the organism<br />

Table 2 gives the results of isolations in the first test. Bacillus licheni<strong>for</strong>mis <strong>and</strong><br />

B , subtilis were found most frequently, in 10 <strong>and</strong> eight bee guts, respectively. Filteen<br />

of the isolates (in l4 bees) were found in control bees, nine were found in bees fed2,4-<br />

D <strong>and</strong> only three were found in bees fed antibiotics. Thus, in this test, the antibiotics<br />

greatly reduced the number of bee guts containing Bacillus. ln fact, the three guts<br />

z1<br />

2l<br />

21<br />

l0<br />

l0<br />

8<br />

3<br />

3<br />

)<br />

2<br />

1<br />

I<br />

I<br />

2


216 M. GILLIAM AND H. L. MORTON<br />

from bees fed antibiotics that contained the organisms were collected the same<br />

day. No guts of bees fed antibi


Organism<br />

Bacillus subtilis<br />

B. subtilis<br />

B. coagulans<br />

B. coagulans<br />

B. pumilus<br />

B. coagulans<br />

B. subtilis<br />

B. subtilis<br />

B. subtilis<br />

B. megaterium<br />

Unidentified<br />

B. Jirmus<br />

B. megaterium<br />

B. megaterium<br />

B. rnegaterium<br />

B. pumilus<br />

B. rnegaterium<br />

B. brevis<br />

B. circulans<br />

B. megaterium<br />

B. sphaericus<br />

B. subtilis<br />

B. circulans<br />

B. subtilis<br />

B. tnegaterium<br />

B. tnegaterium<br />

B. pumilus<br />

B. subtilis<br />

B. tneg\terium<br />

B. tnegalerium<br />

B. rnegaterium<br />

B. pumilus<br />

B. pumilus<br />

B. subtilis<br />

B. circulans<br />

B. ah,ei<br />

B. circulans<br />

B. circulans<br />

B. brevis<br />

B. circulans<br />

B. subtilis<br />

B. alvei<br />

BACILLUS IN BEES<br />

TasL. 3. - Bacillus Isolated From <strong>Honey</strong> Bees - Second Test<br />

) rrom<br />

) same<br />

I u..<br />

1 from<br />

\ same<br />

I u..<br />

1 from<br />

) same<br />

) u..<br />

) lrom<br />

) same<br />

\ u..<br />

I i'u.n<br />

/ same<br />

) u..<br />

) r,o'<br />

) same<br />

) u..<br />

) to.<br />

) same<br />

) u..<br />

A<br />

H<br />

H<br />

H<br />

H<br />

A<br />

c<br />

C<br />

A<br />

A<br />

c<br />

C<br />

H<br />

H<br />

H<br />

H<br />

H<br />

A<br />

A<br />

A<br />

c<br />

C<br />

c<br />

c<br />

C<br />

C<br />

H<br />

A<br />

C<br />

C<br />

C<br />

H<br />

tOl19/'11<br />

t0/19/7 |<br />

t0/t9 7 |<br />

tt/ 9/7t<br />

tt/ 9/1\<br />

t1/ 9/'7 |<br />

t1/ 9/11<br />

111 9/7 |<br />

ltl 9/7t<br />

tt/ e/71<br />

tt/ e/71<br />

1t/30/7 1<br />

tt/3017 t<br />

tt/3017 t<br />

t2/2t/7 t<br />

t2/2t/7 t<br />

tl t t/72<br />

1l tt/72<br />

1/ tt/72<br />

t/ tt/72<br />

2/ t/72<br />

2/ t/72<br />

2/ t172<br />

2/ t172<br />

2/ t/72<br />

2/ t/72<br />

2l t/72<br />

2/ t/72<br />

2/ tl72<br />

2/ r/72<br />

2123/72<br />

) /)1/1''<br />

2/23172<br />

2/23172<br />

) /)7/1)<br />

)/)2,/1)<br />

2l23l72<br />

1/)1/1')<br />

3l t4/72<br />

3lt4172<br />

3l t4/72<br />

3l t4/72<br />

Number of bee guts<br />

containing the organism<br />

I<br />

2<br />

I<br />

I<br />

2<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

2<br />

I<br />

I<br />

I<br />

2<br />

I<br />

I<br />

I<br />

I<br />

2<br />

I<br />

I<br />

I<br />

I<br />

I<br />

-l<br />

2t'7


2t8 M. GILLIAM AND H. L. MORTON<br />

Organism<br />

B. laterosporus<br />

Unidentified<br />

B. tnegaterium<br />

B. subtilis<br />

B. putnilus<br />

B. trtegateriwn<br />

B. pwnilus<br />

B. circulans<br />

B, circulans<br />

B. subtilis<br />

B, cereus<br />

B. pwnilus<br />

B. subtilis<br />

B. ntegaterium<br />

B. pumilus<br />

B. pumilus<br />

B. pwnilus<br />

B. alyei<br />

B. alvei<br />

B. megaterium<br />

B. ntegateriurn<br />

B. purnilus<br />

B. purnilus<br />

B. rnegaterium<br />

I t'u'<br />

/ same<br />

) u..<br />

)<br />

'i<br />

I<br />

from<br />

same<br />

bee<br />

from<br />

same<br />

bee<br />

from<br />

same<br />

bee<br />

lrom<br />

same<br />

bee<br />

from<br />

same<br />

bee<br />

aC - control; H : 2,4-DtA : antibiotics<br />

I<br />

Treatmenta<br />

Date<br />

isolated<br />

3/ 14/72<br />

3l 14172<br />

3l 14172<br />

3l 14172<br />

3l t4,12<br />

3l t4112<br />

4l 4112<br />

4l 4172<br />

4l 4112<br />

4l 4112<br />

4t 4112<br />

4l 4112<br />

4t 4172<br />

41 4112<br />

4l2sl12<br />

4125t12<br />

5l t6112<br />

sl t6172<br />

5l t6112<br />

5l t6l12<br />

sl t6t12<br />

5l t6112<br />

5l t6112<br />

5l t6llZ<br />

sl t6112<br />

Number of bee guts<br />

containing the organism<br />

second test but were not isolated in the hrst test. All isolations of B. alvei <strong>and</strong> all but<br />

two of B. pumilus were made after the first test was terminated. Perhaps, if the first<br />

test had extended beyond January 1972, these organisms would have been isolated.<br />

However, Bacillus licheni<strong>for</strong>mis was isolated lrom October l97l through December<br />

1971. There<strong>for</strong>e, it is surprising that it was not found in bees in the second<br />

test.<br />

Of special interest is the fact that no Bacillus organisms were isolated lrom bee<br />

guts during the hot summer months of June, July, August, <strong>and</strong> September. Tysssr<br />

<strong>and</strong> DURAND (1968) examined the midgut <strong>and</strong> hindgut of adult worker bees in<br />

France from October to March <strong>and</strong> reported that 29 o/o of the microorganisms isolated<br />

I<br />

I<br />

2<br />

6<br />

2<br />

I


BACILLUS IN BEES 2r9<br />

were Gram positive. Similarly, Froonove <strong>and</strong> GusevA, (1964) concluded that<br />

intestines of adult worker bees always contain spore <strong>for</strong>mers in winter. In contrast,<br />

EL-LsnHy <strong>and</strong> Er-SIsnu (1912) examined microorganisms from the surfaces, crops,<br />

<strong>and</strong> intestines of adult worker bees in Egypt during the flowering of citrus (March to<br />

May) <strong>and</strong> of cotton (June to August) <strong>and</strong> concluded that aerobic spore<strong>for</strong>ming bacilli<br />

were the most frequently encountered organisms representing 61-83 7o of the<br />

flora. We also examined <strong>for</strong>aging worker bees from free-flying colonies in December<br />

(GIrrIeu <strong>and</strong> VaLENIINE, 1916) <strong>and</strong> found Bacillus organisms in all bee<br />

guts. There<strong>for</strong>e, climate, weather, <strong>and</strong> vegetation-may influence the composition of<br />

the gut microflora.<br />

Tysssr <strong>and</strong> DunaNo (1968) reported that the low population of spore <strong>for</strong>mers<br />

in the intestinal contents of bees indicated that these bacilli are there in transit<br />

since sporogenous bacteria are present in soils <strong>and</strong> are found only accidentally <strong>and</strong> in<br />

limited numbers on the floral organs ol plants. Thus they postulated that bees do not<br />

have much chance of being heavily contaminated. Moreover, they thought that the<br />

high osmotic pressure <strong>and</strong> relatively low pH of the intestinal content of bees would<br />

also limit the population of bacilli. El-LErrHv <strong>and</strong> Er--Srnlct (1972), in contrast,<br />

postulated that the predominance of spore-<strong>for</strong>ming bacilli on the surface of bees as<br />

well as in the crop <strong>and</strong> gut may indicate that bacteria normally present on flowers continuously<br />

enter the alimentary canal. They reported that conditions in the gut were<br />

favorable <strong>for</strong> these bacteria <strong>and</strong> that the source of food influences the composition of<br />

the microflora of the gut.<br />

The bees that we used in our tests were obtained from caged colonies <strong>and</strong> thus<br />

were not <strong>for</strong>aging on flowers. There<strong>for</strong>e, only soil, wind, <strong>and</strong> food, <strong>and</strong> water could<br />

have served as sources of inocula. In fact, as shown in Table-4, more bee guts contained<br />

organisms belonging to the gents Bacillas than contained Enterobacteriaceae<br />

(Grr-rnvr <strong>and</strong> MonroN 1974) or molds (Grlrrl.u et al., 1974 a). Only the yeasts that<br />

appear to be indicative of stressed bees (Grr-rtAv' et al., 1974 b) were found in more bee<br />

guts from colonies treated with 2,4-D <strong>and</strong> untreated colonies.<br />

T,q.nL. 4. - Number of Bee Guts Containing Bacteria, Yeasts, <strong>and</strong> Molds<br />

Microorganism<br />

Bacillus spp.<br />

Enterobacteriaceae<br />

Yeasts<br />

Molds<br />

aC : control; H : 2,4-Dt A = antibiotics<br />

Treatment groupu<br />

c H A<br />

44<br />

l3<br />

20<br />

25<br />

l5<br />

95<br />

15<br />

)5<br />

t2<br />

t2<br />

8


224 M, GILLIAM AND H. L. MORTON<br />

Almost allthe Bacillzs organisms isolated in the present study have been previously<br />

isolated from honey bees (see Grluelr <strong>and</strong> Va.r-rNrrNr, 1976). The exception was<br />

B. sphaericus which is a new record of an organism associated with honey<br />

bees. Bacillus megaterium was found most frequently in bee guts in the present study<br />

but was not isolated from <strong>for</strong>agers (GIllIalt <strong>and</strong> Ver.eNrrNn, 1976); Bacillus polymyxa<br />

was isolated most frequently from <strong>for</strong>aging bees.<br />

Thus, differences exist in the intestinal microflora of honey bees from caged colonies<br />

<strong>and</strong> from free-flying colonies. Also, feeding 2,4-D or a combination ol oxytetra,<br />

cycline <strong>and</strong> fumagillin to bees causes shifts in the microflora.<br />

ACKNOWLEDGEMENTS<br />

Received in March 1978.<br />

We thank Mr. Richard MARTIN. Mr. R<strong>and</strong>all JETER. <strong>and</strong> Mrs. Dinorah DUNHAM lor their ex<br />

cellent technical assistance.<br />

ZUSAMMENFASSUNG<br />

ZUM GENUS BACILLUS GEHIiRENDE BAKTERIEN. DIE AUS MIT 2.4 T)<br />

uND ANTIBlorlra cErUrttnrEN BIENEN. Aprs vELLtFER.4. ISoLtERT wuRDEN<br />

Der Darminhalt von 388 erwachsenen Honigbienenarbeiterinnen wurde auf sporenbildende Bakterien<br />

des Genus Bocl1lls untersucht. Die Bienen wurden vier Kontrollvolkern entnommen, die Pollenteig<br />

und Zuckerlijsung erhielten, von vier weiteren Volkern, die Pollenteig und in Zuckerlosung I 000 ppm des<br />

Herbizids (2,4-Dichlorphenoxy) - essigsbure (- 2,4-D), und noch von vier weiteren Volkern, die TM-25<br />

(Oxytetrazyklin) enthaltenden Pollenteig und Fumidil B (Fumagillin) in Zuckerlosung erhielten. Alle Volker<br />

wurden in Kifigen gehalten. Fiir die Untersuchungen wurden das ganze Jahr hindurch Bienen entnommen.<br />

Der Darmtrakt (Speisercihre bis Enddarm) wurde homogenisiert und auf geeigneten mikrobiologischen<br />

Medien ausgebreitet, tm Bacillus zu isolieren. Es wurden 110 zum Genus Bociilrls gehrirende Bakterien<br />

aus den untersuchten Bienen identifiziert. Bacillus megaterium, B. subtilis wd B. pumilus wurden<br />

am hduhgsten bei allen drei Versuchsgruppen isoliert. Das Herbizid und die Antibiotika verminderten die<br />

Anzahl der Bienendhrme. die Bacillus enthielten. und wdhrend der heissen Sommermonate von Juni-<br />

September wurden keine Bacillus-Organismen isoliert. Ein Vergleich dieser Ergebnisse mit unserer lriiher<br />

veroffentlichten Arbeit iiber die Mikroflora des Darms bei Sammelbienen zeigt. dass Unterschiede bestehen<br />

in der Darmmikroflora von Honigbienen aus gekdfigten und aus frei fliegenden Vtjlkern. Eine Fiitterung<br />

der Bienenvrilker mit 2,4-D oder Kombination von Oxytetrazyklin und Fumagillin verursacht Verdnderungen<br />

in der Darmmikroflora der erwachsenen Arbeiterinnen. Zusetzlich mcigen Klima, Wetter<br />

und Vegetation die Zusammensetzung der Mikroflora im Darm beeinflussen.<br />

RESUM€<br />

BACTERIES DU GENRE BACILLUS ISOLEES A PARTIR D'ABEILLES,<br />

APIS MELLIFER,4, APRES ADMINISTRATION DE 2,4 D ET D'ANTItsIOTIQUES<br />

On a examin6 le contenu intestinal de 388 ouvriires adultes du point de vue des bacteries appartenant<br />

au genre Bacillus. Les abeilles provenaient de 4 colonies t6moins qui recevaient de la pite de pollen et du


BACILLUS IN BEES<br />

sirop; de 4 autres colonies qui recevaient de la pdte de pollen et du sirop renfermant 1 000 ppm de l'herbicide<br />

acide 2,4-dichlorophenoxyac6tique Q,a-D); et de 4 autres colonies qui recevaient de Ia pAte de pollen<br />

renfermant du TM-25 (oxyt6tracycline) et du sirop additionn6 de Fumidil B (fumagilline). Toutes les colonies<br />

etaient maintenues en cages.<br />

Les abeilles 6taient pr6levees pour analyses tout au long de l'annee. Le tractus intestinal (de l'asophage<br />

au rectum) 6tait homog6n6is6 et 6tal6 sur un milieu microbiologique appropri6 pour isoler Bacillus.<br />

A partir des abeilles examin6es on a pu identifier 1 I I bact€ries du genre Bacillus. Dans Ies 3 groupes 8ocillus<br />

megaterium, B, subtilis et B. pumilus furent les plus frequents. L'herbicide et les antibiotiques ont reduit<br />

le nombre d'intestins d'abeilles renfermant Bacillus et aucun Bacillus n'a pu €tre isol6 durant les mois<br />

chauds de juin a septembre. Si I'on compare ces r6sultats avec notre travail prec6demment publi6 sur ia<br />

microflore intestinale des abeilles butineuses. on s'apergoit que des differences existent entre la microflore<br />

intestinale des abeilles encag6es et celle des abeilles volant librement. L'administration de 2.4-D ou d'une<br />

association d'oxyt6tracycline et de lumagilline provoque des changements dans la microflore intestinale<br />

des ouvridres adultes. En outre le climat, ie temps et la v6g6tation peuvent influencer sa composition.<br />

REFERENCES<br />

Er--Lrrrny. M. A., Er-Srg.q.Br, K. B., 1972. - External <strong>and</strong> internal microflora of the honey bees (Apis<br />

mellifera L.). EUpt. J. Microbiol., 7, 79-87.<br />

Froonova, G. N., Gusrvl, N. V., 1964. - [Spore-<strong>for</strong>ming microorganisms of the intestines of adult<br />

honey bees.i. Leningrad. Vet. (nst.,26,94 100.<br />

Grrrreu, M., MonroN, H. L.. 1974. - Enterobacteriaceae isolated from honey bees, ,4pls mellifera,<br />

treated with 2,4-D <strong>and</strong> antibiotics. J. Invertebr. Pathol., 23, 42-45.<br />

Grruru, M., Pnesr, D.8., 1972. - Fungi isolated from the intestinal contents of <strong>for</strong>aging worker honey<br />

bees. ,4pls mellifera. J. Invertebr. Pathol.,20, 101-103.<br />

Grllrllr, M., VerrNrrNr D. K., 1976. - Bacteria isolated from the intestinal contents of <strong>for</strong>aging worker<br />

honey bees, Apis mellifera.'the genus Bacillus. J. Invertebr. Pathol.,28,275-216.<br />

Grrrreu, M., Pnssr, D. B., MonroN , H. L, 1974 a. - Fungi isolated lrom honey bees, Apis mellifera, fed<br />

2.4 D <strong>and</strong> antibiotics. J. Invertebr. Pathol., 24, 213-217.<br />

Gnulu, M.. WrcrBnHelr, L. J., Monror.r. H. L., MenrrN, R. D., 1974 b. - Yeasts isolated from honey<br />

bees, ,4pis mellifera, fed 2,4-D <strong>and</strong> antibiotics. J. Invertebr. Pathol.,24,349-356.<br />

GonooN, R. E., HevNrs, W. C.. Hon-Nlv PnNc, C.. 19i3. - The genus Bacillus. USDA H<strong>and</strong>-book,<br />

427, t-283.<br />

MonroN, H. L., Morrnrr, J. O.. 1972. - Ovicidal <strong>and</strong> larvicidal effects of certain herbicides on honey<br />

bees. Environ. Entomol., l. 611-614.<br />

TBssrr, C., Dun.qNn, C., 1968. - Contribution a l'6tude du microbisme intestinal des abeilles butineuses<br />

saines (1pis mellifica L.) : d6nombrement et 6tude des groupements constitutifs (premier m6moire).<br />

Bull. Apicole, I l, 107- 118.<br />

22r


Apidolo gie, 197 9, l0 (l), 43-53.<br />

MICROBIOLOGY OF POLLEN AND BEE BREAD :<br />

THE YEASTS<br />

Martha GILLIAM<br />

U.S. Departmettt of Agriculture<br />

Science <strong>and</strong> Education Adminislratiott<br />

Bee Researeh Laboratory<br />

2000 East Allen Road<br />

Tucson, Arizona 85719<br />

SUMMARY<br />

PI.IRCHASED BY ME UITITPD STNI S<br />

DEPIRTTETTT OF TGRICULTURE FOR<br />

0frrclAr us€<br />

One-hundred <strong>and</strong> thirteen yeasts belonging to seven genera were isolated from almond (Prunus<br />

communis) pollen from the flower, from pollen pellets from traps placed onbee (Apis mellifera) hives in<br />

the orchard, <strong>and</strong> from pollen stored in comb cells of the hive (bee bread) <strong>for</strong> one, three, <strong>and</strong> six weeks.<br />

Torulopsis magnoliae was the most common isolate <strong>and</strong> was found in all pollen samples except pollen<br />

from the flower. Thus, the bees may have added it to the pollen. The number of isolates <strong>and</strong> species<br />

decreased with time <strong>and</strong> storage. In general, most of the yeast species from pollen from the flower <strong>and</strong><br />

the trap were not found in bee bread. AIso, yeast isolates from pollen from the flower <strong>and</strong> the trap<br />

fermented more sugars <strong>and</strong> assimilated more carbon compounds than those from bee bread.<br />

INTRODUCTION<br />

The nutritional requirements of honey bees, Apis mellifera, are met by the<br />

collection of pollen, nectar, <strong>and</strong> water. Nectar is the primary source of<br />

carbohydrates; pollen provides proteins, lipids, vitamins, <strong>and</strong> minerals. Foraging<br />

worker bees collect pollen that is then packed into cells of the brood comb by other,<br />

generally younger, bees, <strong>and</strong> a small cover of honey is deposited on the pollen to<br />

prevent spoilage. This store of pollen, which has undergone chemical changes, is<br />

called bee bread. Bee bread is consumed by adult bees <strong>and</strong> is fed to larvae.<br />

Pollen <strong>and</strong> bee bread,differ biochemically. For example, bee bread contains<br />

more reducing sugars than pollen from the same plant species (Cesrerl, 19 l2). Also,<br />

bee bread contains vitamin K (Hevolx <strong>and</strong> VIvINo, 1950) <strong>and</strong> a milk-digesting


44<br />

M. GILLIAM<br />

enzyme (HIrcHcocr, 1956); pollen collected from the legs of <strong>for</strong>aging bees does<br />

not. AvprrsLAN (1935) found that bee bread made from birch pollen contained six<br />

times as much lactic acid as h<strong>and</strong>-collected birch pollen.<br />

The conversion of pollen to bee bread <strong>and</strong> the accompanying biochemical changes<br />

have often been postulated to be the result of microbial action, principally a lactic acid<br />

fermentation caused by bacteria <strong>and</strong> yeasts (Foorn, 195i; Heyoar,<br />

1958)' CnEvrcnrn (1950) conducted microbiological analyses of fresh pollen <strong>and</strong><br />

pollen stored in comb cells <strong>and</strong> reported four phases ol microbial development in<br />

fermenting pollen that occurred during seven days from the time of the appearance of<br />

lactic acid bacteria, yeasts, indole-producing bacteria (Escherichia), <strong>and</strong> sporulating<br />

aerobic bacteria. The first phase lasted 12 hours <strong>and</strong> was characterized by the<br />

development of a heterogenous group of microorganisms including yeasts. In the<br />

second phase, anaerobic lactic acid bacteria (Streptococcus) utilized growth factors<br />

produced by the yeasts <strong>and</strong> putrefactive bacteria <strong>and</strong> lowered the pH ol the<br />

pollen. The third phase was characterized by the disappearance of Streptococcus <strong>and</strong>,<br />

the development of Lactobacillus that produce more acid than Streptococcus. The<br />

fourth phase, which began at the end of the sevenin aay, was characterized by the<br />

disappearance of the lactic acid bacteria <strong>and</strong> certain yeasts due to the large quantity of<br />

lactic acid produced. The pollen became microbially sterile, <strong>and</strong> the pH was<br />

approximately 4. During the course of this study, CnevrcHrr isolated from lresh <strong>and</strong><br />

fermented pollen 77 groups ol yeasts that he considered to be sources of proteins,<br />

lipids, <strong>and</strong> necessary growth factors.<br />

Pen <strong>and</strong> MAUGENET (1966) reported that three microbial genera (Lactobacillus,<br />

Pseudomonas, <strong>and</strong> Saccharomyces) were important in the modification of pollen during<br />

storage. Lactobacillus caused a lactic acid fermentation that stabilized the pollen by<br />

increasing the acidity, but the roles of Pseudomonas <strong>and</strong>, Saccharom).ces were not well<br />

understood. They thought that pseudomonads probably contributed to the<br />

anaerobiosis required by Lactobacillus <strong>and</strong> to the degradation of the walls ol pollen<br />

grains since they developed rapidly as soon as the pollen was packed by bees into comb<br />

cells but disappeared almost totally after two to three days. Then lactic acid was<br />

produced by Lactobacillus. This lactic acid fermentation was completed by the end ol<br />

about l5 days though the responsible organisms maintained a stationary population lor<br />

several months. The yeasts, which were present in small numbers initially, increased<br />

after fermentation <strong>and</strong> subsisted in stored pollen longer than other organisms. These<br />

researchers seeded pollen sterilized by gamma irradiation with Lactobacillus <strong>and</strong>,<br />

concluded that a pure lactic acid fermentation produced an unappetizing product of<br />

poor nutritive value <strong>for</strong> bees. Thus, they thought that the yeasts played the most<br />

important role from the nutritional st<strong>and</strong>point. It has also been rcported that the<br />

enzyme systems involved in the lermentation of pollen are similar to yeast enzyme<br />

systems (Oruuuru, 1943).


YEASTS IN POLLEN AND BEE BREAD<br />

Econova (1971) isolated a bacterium that she named Lactobacteriurn pollirtis<br />

from bee bread samples collected in the spring <strong>and</strong> summer. This organism occurred<br />

either in pure culture or in mixed cultures with yeasts. In a mixed culture with the<br />

yeasts the bacterium survived <strong>for</strong> up to six months without subculturing. However<br />

pure culture Lactobacterium pollinis had to be subcultured every 30 days. Thus, it<br />

would seem that the yeasts were either using the lactic acid produced by the bacterium<br />

or were providing necessary growth factors.<br />

Table I summarizes the available literature on yeasts isolated from pollen <strong>and</strong> bee<br />

bread. Yeasts belonging to l2 genera have been identified. Other researchers noted<br />

yeasts in pollen <strong>and</strong> bee bread, but the organisms were not identified (BErrs, 1928;<br />

Lruos <strong>and</strong> MecH.loo, 1975; WnsoN <strong>and</strong> MARvIN, 1929).<br />

Since relatively little is known about the microbiology of pollen <strong>and</strong> bee bread <strong>and</strong><br />

since the yeasts seem to be important in the elaboration of bce brcad. I examined pollen<br />

<strong>and</strong> bee bread <strong>for</strong> these organisms. In this paper, bec brcad is defined as poilen<br />

packed by bees in comb cells of the hive.<br />

MATERIALS AND METHODS<br />

Fifteen colonies of bees were placed in an almond, Prunus communis, orchard in February 1976 in<br />

the vicinity ol Davis, Cali<strong>for</strong>nia; almond pollen was collected hourly from pollen traps placed on these<br />

hives. The pollen was frozen in liquid nitrogen within 15-30 minutes after collection <strong>and</strong> was stored in a<br />

freezer until used. On the basis of uni<strong>for</strong>m color <strong>and</strong> size of the pellets, the pollen collected was at least<br />

99.8 o,/o almond pollen.<br />

Also. four colonies of honey bees were established in September 1976 on new equipment <strong>and</strong> were<br />

maintained in a polyethylene green house. Each hive contained nine frames, one with sealed <strong>and</strong> unsealed<br />

brood <strong>and</strong> the others containing only newly drawn combs. At lour hour intervals two almond pollen pel<br />

lets were placed into each cell on both sides of three newly drawn combs from each hive. During the<br />

four-hour intervals, the bees packed the pollen into the cells. After two three days. most ofthe comb cells<br />

were at least 112-314 filled with packed pollen. The bees had access only to water <strong>and</strong> the almond<br />

pollen. Then three combs from each colony containing the packed pollen were placed in a clean room<br />

maintained al34 oC <strong>and</strong> 55-60 % R.H. to s\imulate storage in the hive <strong>and</strong> to avoid possible overgrowth of<br />

the pollen by molds.<br />

The following samples of almond pollen were collected <strong>for</strong> analyses : fresh pollen collected by h<strong>and</strong><br />

from the flower in March 1977; pollen pellets removed from the bees' legs by traps placed on hives in the<br />

almond orchard; <strong>and</strong> bee bread stored in comb cells <strong>for</strong> one, three. <strong>and</strong> six weeks. Each bee bread sample<br />

was a composite collection from all the combs that contained pollen pellets.<br />

Each pollen or bee bread sample was divided into four sub-samples of approximately 0.75 g<br />

each. Then each of the lour sub-samples was homogenized by h<strong>and</strong> in 2.5 ml of sterile 0.85 o/o NaCl in a<br />

glass tissue grinder. The homogenates were plated (0.1 ml) in duplicate on acidified yeast extract-malt<br />

extract agar containing I o/o glucose, pH 3.7-3.8 (YMA) (MInBn et al., 1976). One plate from each subsample<br />

was incubated at 26oC <strong>and</strong> one al 37oC under aerobic conditions. When yeast colonies<br />

appeared, they were checked <strong>for</strong> purity <strong>and</strong> transferred to slants ol YMA <strong>and</strong> yeast extract-malt extract<br />

agar with l7o glucose (YM-l) (WrcrnnHerr,r, 195 1). Morphological <strong>and</strong> physiological tests were<br />

conducted according to WIcKERHAM (1951), <strong>and</strong> isolates were identified according to BARNETT <strong>and</strong><br />

PANKHURST (1974) <strong>and</strong> Looorn (1970).<br />

45


46<br />

M. GILLIAM<br />

Tenl. 1. - Yeasts previously isolated from pollen <strong>and</strong> bee bread<br />

Yeast<br />

C<strong>and</strong>ida paraosilosis<br />

C<strong>and</strong>ida reukaufii<br />

(: M e t s c h ni ko w i a r eukaufi)<br />

C<strong>and</strong>ida tenuis<br />

Cry ptoc o ccu s neo<strong>for</strong> mans<br />

Debaryomyces disporus<br />

(-- Pichia dispora)<br />

Endomycopsis bultonii<br />

Hansenula anomala<br />

Met s c hni ko wia reukaufi<br />

Rhodotorulaflava<br />

(: Cryptococcus flavus)<br />

Rhodotorula glutinis<br />

Rhodotorula glutinis var. glutinis<br />

R h o d o t or ul a muc i la gi no s a<br />

(: Rhodotorula rubra)<br />

Sac c haro my ce s cerevisiae<br />

S ac charo my ce s hetero genicus<br />

Saccharomyces mellis<br />

(: Saccharomyces bisporus var. mellis<br />

Saccharomvces rosei<br />

Saccharomyces rouxii<br />

Sac c haro my co de s ludwigii<br />

Sp oro bo Io my c e s albo-rubscens<br />

Torula chartaruzr (identity not known)<br />

Torulopsis c<strong>and</strong>ida<br />

Torulopsis etchellsii<br />

Torulopsis famata<br />

(: Torulopsis cdndida)<br />

Torulopsis globosa<br />

(: Citeromyces matritensis)<br />

Torulop si s inc onspicua<br />

Torulopsis magnoliae<br />

Torulopsis sake<br />

(: C<strong>and</strong>ida sake)<br />

Torulopsis stellata<br />

Zy gosac c haro my c e s b ailii<br />

(- Saccharomyces bailii var. bailii)<br />

Bee bread<br />

)<br />

)<br />

)<br />

D<br />

Pollen carried by<br />

wild bees<br />

Bee bread<br />

Provisions<br />

Indian corn pollen<br />

)<br />

Provisions<br />

Indian corn pollen<br />

Provisions<br />

Bee bread<br />

Stored pollen<br />

)<br />

)<br />

)<br />

Provisions<br />

Indian corn pollen<br />

Bee bread<br />

Indian corn pollen<br />

Bee bread<br />

Indian corn pollen<br />

Bee bread<br />

RESULTS<br />

D<br />

)<br />

)<br />

D<br />

Reference<br />

Econovn <strong>and</strong> Bag'pvn, 1967<br />

))<br />

)<br />

D<br />

Knrcan-vnr Rrr, 1970<br />

Econove <strong>and</strong> Ben'pv.q, 1967<br />

Bnrnr er al.,1973<br />

AnrzeN et al., 1967<br />

t)<br />

Bnrna et al.,1973<br />

AnrzeN et al., 1967<br />

Brrne et a1.,1973<br />

Econova <strong>and</strong> Bls'sv.{, 1967<br />

PerN <strong>and</strong> MlucrNrr. 1966<br />

)t<br />

Barnr el al.,1973<br />

D<br />

AruzaN et al., 1967<br />

Econov,q, 1971<br />

AnrznN et al., 1967<br />

Econovn <strong>and</strong> Brs'evn. 1967<br />

)<br />

AnrznN e/ al.. 1967<br />

Econovn <strong>and</strong> Ban'nvl, 1967<br />

One-hundred <strong>and</strong> thirteen yeasts were isolated by the sampling procedure used,<br />

<strong>and</strong> 110 were identified (Tabl. 2). The three yeasts that I was unable to identify were<br />

different species. The unidentified isolate from bee bread stored in the comb <strong>for</strong> three<br />

weeks was a pink mucoid yeast that did not grow in the medium used <strong>for</strong> assimilation<br />

))<br />

D<br />

D<br />

))<br />

D


YEASTS IN POLLEN AND BEE BREAD<br />

Tenl.2. - Yeasts isolated from almond pollen <strong>and</strong> bee bread.<br />

C/yptococcus albidus var. albidus<br />

Kloeckera apiculata<br />

Cryptococcus albidus var. dffiuens<br />

C <strong>and</strong>ida guilliermondii var. guilliermondii<br />

Rhodotorula pilimanae<br />

Torulopsis norvegica<br />

C<strong>and</strong>ida parapsilosis<br />

C ry p tococ cus laure ntii v ar. laurentii<br />

Hansenula anomala vat. anomala<br />

R ho do t orula gluti ni s v ar. glutini s<br />

Rhodotorula rubra<br />

Unidentified<br />

C an dida gui lli e r mo ndii v ar. gui llier mon dii<br />

Torulopsis magnoliae<br />

M e t s c hni ko w i a p ulc herri ma<br />

R ho dot orula glutini s v ar. glutini s<br />

Rhodotorula pallida<br />

Torulopsis magnoliae<br />

Cryptococcus flavus<br />

Cry p lo co ccus laurentii var. magnus<br />

R ho do torula glutini s v ar. glutini s<br />

Torulopsis magnoliae<br />

Cryptococcus albidus var. albidus<br />

Unidentified<br />

Torulopsis magnoliae<br />

Cryptococcus dlbidus var. dffiuens<br />

Cryptococcus albidus var. albidus<br />

Yeasts<br />

Isolates from pollen from the flower<br />

Isolates from pollen from the bees' Iegs<br />

Isolates from bee bread stored in the comb <strong>for</strong> 1 week<br />

Isolates from bee bread stored in the comb <strong>for</strong> 3 weeks<br />

Isolates from bee bread stored in the comb <strong>for</strong> 6 weeks<br />

tests; it produced acid without gas in the fermentation tubes containing glucose,<br />

galactose, maltose, sucrose, melibiose, <strong>and</strong> raffinose. Neither of the two unidentified<br />

isolates from pollen from the flower fermented any of the sugars that were tested, but<br />

both assimilated a large number of carbon compounds.<br />

8<br />

5<br />

4<br />

4<br />

2<br />

2<br />

l9<br />

t0<br />

I<br />

I<br />

I<br />

2l I<br />

I<br />

1<br />

9<br />

)<br />

I<br />

9<br />

3<br />

1<br />

47


48 M. GILLIAM<br />

Torulopsis magnoliae was the most common isolate <strong>and</strong> was found in all pollen<br />

samples except pollen from the flower. C<strong>and</strong>ida guilliermondii var. guilliermondii<br />

was the second most common isolate but was found only in pollen from the flower <strong>and</strong><br />

pollen from the trap. Cryptococcus albidus was isolated a total of 18 times from<br />

pollen from the flower <strong>and</strong> from bee bread stored <strong>for</strong> 3 weeks <strong>and</strong> 6 weeks. Most of<br />

the other isolates were obtained from pollen from the flower.<br />

The number of isolates <strong>and</strong> species decreased with time <strong>and</strong> storage<br />

(Tabl. 3). Pollen from the flower contained the most species though this sample <strong>and</strong><br />

pollen from the trap yielded an equal number of isolates. Thus, almond pollen from<br />

the flower contained a diverse yeast flora that diminished upon collection by bees <strong>and</strong><br />

storage in the hive. Torulopsis magnoliae was the predominant isolate from bee<br />

bread.<br />

TasL' 3. - Numbers of yeast species <strong>and</strong> isolates from almond pollen <strong>and</strong> bee bread.<br />

Flower<br />

Pollen trap<br />

Comb cells alter 1 week<br />

Comb cells after 3 weeks<br />

Comb cells after 6 weeks<br />

Source of pollen Total species isolated<br />

Total isolates<br />

DISCUSSION<br />

Yeasts belonging to seven genera were isolated from almond pollen <strong>and</strong> bee<br />

bread. organisms belonging to Torulopsis, c<strong>and</strong>ida, <strong>and</strong> cryptococcys comprised<br />

85 o/o of the isolates. Torulopsis magnoliae was the most common isolate representing<br />

43 o/o of the yeasts. This organism was also the most common yeast isolate from the<br />

guts of adult worker honey bees in Arizona (Grllrllr et al., 1974 Gu-rtav et al.,<br />

19'17). Since z. magnoliae was not found in pollen from the flower but first appeared<br />

in trapped pollen <strong>and</strong> was then found in all bee bread samples, the bees may have added<br />

it to the pollen. Also, biochemical changes that occurred in trapped pollen <strong>and</strong> bee<br />

bread obviously allowed the organism to flourish.<br />

New records of yeasts from pollen <strong>and</strong> bee bread are C<strong>and</strong>ida guilliermondii var.<br />

guilliermondii, Cryptococcus albidus var. albidus, cr. albidus var. dffiuens, cr.<br />

laurentii var. laurentii, Cr. laurentii var. magnus, Kloeckera apiculata, Metschnikowia<br />

pulcherrima, Rhodotorula pallida, Rh. pilimanae, <strong>and</strong> Torulopsis norvegica. of these,<br />

c. guilliermondii, cr. albidus, Kl. apiculata, <strong>and</strong> M. pulcherrima have been isolated<br />

lrom honey bees (see Grr-r-ranr et at., 1974).<br />

t2<br />

5<br />

4<br />

3<br />

1<br />

32<br />

32<br />

24<br />

12<br />

l3


YEASTS IN POLLEN AND BEE BREAD<br />

All the isolates but two (Hansenula anomala var. anomala <strong>and</strong> M. pulcherrima)<br />

were asporogenous. Sporulating yeasts are not often found in bees (Econova <strong>and</strong><br />

BAB'EVA, 1967;Glr,rtnl,retal., l974;Gnul.Metal.,L977)or beebread(Econova<strong>and</strong><br />

BAB'EVA, 1967). C<strong>and</strong>ida guilliermondii contains strains that are incapable of<br />

mating; mating strains of C. guilliermondii are classified in the heterothallic species<br />

Pichia guilliermondii. Thus, P. guilliermondii is the perfect <strong>for</strong>m of C. guilliermondii<br />

var. guilliermondii. Microscopic observations of cultured mixtures of my strains of C.<br />

guilliermondii var. guilliermondii did not reveal any indication of conjugation or<br />

sporulation. This is not surprising since most strains of the organism have been found<br />

to be sexually unreactive (WtcrEnnan <strong>and</strong> BunroN, 1954).<br />

C<strong>and</strong>ida guilliermondii var. guilliermondii was the second most common isolate<br />

but was found only in pollen from the flower <strong>and</strong> from the pollen trap. Thus, bee<br />

bread was not a suitable environment <strong>for</strong> this organism. In general, most of the yeasts<br />

from pollen from the flower <strong>and</strong> trap were not found in bee bread, although Cr. albidus<br />

<strong>and</strong> Rh. glutinis var. glutinis were found in both. Thus, the physical <strong>and</strong> chemical<br />

properties of pollen <strong>and</strong> bee bread may influence the composition of the yeast flora.<br />

CnsvrcHlr (1950) observed that most of the yeasts isolated from fresh <strong>and</strong><br />

fermented pollen did not ferment any sugars. However, Econova <strong>and</strong> BAB'EVA<br />

(1967) found that the majority of species they isolated fermented those sugars found in<br />

the bee colony or nectar, specifically glucose, sucrose, <strong>and</strong> maltose. Some of the<br />

isolates fermented galactose, but the enzyme splitting lactose was absent in almost all<br />

the yeasts isolated. They concluded that the yeast flora of the honey bee colony<br />

consists of species adapted to live in the medium <strong>and</strong> that the epiphytic yeast species of<br />

insect-pollinated plants enter the yeast flora of bee intestines <strong>and</strong> are also found in bee<br />

bread. Similarly, Wtr-soN <strong>and</strong> MnRvrN (1929) had also reported that none of the<br />

yeasts they isolated from pollen <strong>and</strong> bee bread fermented lactose, although glucose <strong>and</strong><br />

sucrose were fermented. A few of the isolates fermented raffinose. maltose <strong>and</strong><br />

galactose.<br />

My results on the fermentative properties of yeasts from pollen <strong>and</strong> bee bread are<br />

in agreement with those previously reported. None of the isolates fermented<br />

lactose. Only one yeast, 11. anomala var. anomala, from pollen from the flower,<br />

fermented maltose. Isolates from pollen from the flower <strong>and</strong> the trap fermented more<br />

sugars that those from bee bread. Over half of these isolates fermented glucose <strong>and</strong><br />

sucrose. Some also fermented galactose, melibiose, <strong>and</strong> raffinose. However, if gas is<br />

produced in the tube containing raffinose, the yeast may be fermenting the raffinose<br />

molecule 113,2/3, or completely (vlN oln Wer-r, 1970). Eighty percent of the<br />

isolates from bee fermented glucose <strong>and</strong> sucrose; no other sugars tested were<br />

fermented. Of the total isolates from all sources, 72o/o fermented glucose, <strong>and</strong> 65 o/o<br />

fermented sucrose.<br />

Eighty-three percent of the isolates grew in the osmotic pressure medium. Only<br />

two isolates, both from the flower, grew at 5 oC, but 66 o/o of the isolates grew at<br />

49


50<br />

M. crLLrAM<br />

37 oC. However, the ability to grow at this higher temperature was most evident in<br />

yeasts isolated from pollen from the trap <strong>and</strong> bee bread stored <strong>for</strong> one week.<br />

Carbon assimilation tests used in yeast taxonomy are more sensitive than<br />

fermentation tests <strong>for</strong> detecting the presence of yeast enzyme systems (wrcrnnnl,lr,<br />

195 l). These tests employ a chemically defined medium to which a single organic<br />

compound is added as the sole source of carbon. A st<strong>and</strong>ardized suspension of the<br />

yeast to be tested is then added to the medium. Assimilation reactions test the ability<br />

or inability of a yeast to use a specific carbon compound oxidatively. I routinely use<br />

the 38 carbon compounds listed by WrcrsRrreNa (1951).<br />

Although fewer yeasts were isolated from bee bread (49 minus one that did not<br />

grow in the assimilation medium) than pollen (64), 50 o/o more of the isolates from<br />

pollen than from bee bread assimilated maltose, cellibiose, trehalose, melezitose, Dxylose,<br />

D-arabinose, D-ribose, L-rhamnose, ethyl alcohol, <strong>and</strong> adonitol. Forty<br />

percent more of the pollen isolates than bee bread isolates assimilated melibiose, L-<br />

arabinose, D-glucosamine hydrochloride, alpha-methyl-D-glucoside, pyruvic acid, <strong>and</strong><br />

DLlactic acid. In fact, none of the isolates from bee bread assimilated lactic acid,<br />

although 42o/o of those from pollen did. Inulin,.soluble starch, dulcitol, calcium 2keto-D-gluconate,<br />

<strong>and</strong> citric acid were also assimilated by a larger percentage of<br />

isolates from pollen than bee bread. Percentages of the other compounds assimilated<br />

by isolates from pollen <strong>and</strong> from bee bread differed by less than 25 7o, <strong>and</strong> most<br />

differed by lO o/o or less.<br />

Thus, a larger percentage of yeasts from pollen from the trap <strong>and</strong> from the flower<br />

assimilated more carbon compounds <strong>and</strong> fermented more sugars than did those from<br />

bee bread. More of these compounds may be available in pollen than bee bread. The<br />

number of yeast species also decreased in bee bread. There<strong>for</strong>e, the biochemical<br />

changes that have occurred in bee bread may limit the species of yeasts that are able to<br />

survive. If the yeasts are responsible <strong>for</strong> biochemical changes in pollen as it converted<br />

to bee bread, then these changes may start to occur'as soon as the bees touch the pollen<br />

to pack it in the pollen baskets on the legs. FoorE (1957) speculated that stored<br />

pollen could be inoculated with microorganisms by the bees as it is mixed with nectar<br />

or regurgitated honey both while the <strong>for</strong>aging bee moistened the grains to make a<br />

suitable mass to carry to the hive <strong>and</strong> during packing of the pollen into a comb cell by<br />

other bees in the hive.<br />

EcoRov.q, (1971) noted that yeasts <strong>for</strong>m vitamins, mainly those of the B group, in<br />

bee bread <strong>and</strong> were there<strong>for</strong>e necessary <strong>for</strong> honey bees. She also thought that lactic<br />

acid bacteria obtain vitamins <strong>and</strong> amino acids from yeasts. Cnlvrcurr (1950)<br />

examined eight groups of yeasts from pollen <strong>and</strong> bee bread <strong>and</strong> found that seven grew<br />

without vitamins, <strong>and</strong> one did not. The vitamin deficiency test revealed that 13 % of<br />

my isolates grew in the absence of vitamins. Thus, they were capable of synthesizing<br />

all the vitamins required <strong>for</strong> growth. Most of these yeasts were isolated from pollen<br />

from the flower <strong>and</strong> the trap.


YEASTS IN POLLEN AND BEE BREAD<br />

Starch was synthesized by l7 o/o of the isolates, although no yeasts from pollen<br />

from the trap or from bee bread stored <strong>for</strong> one week possessed this ability. Gelatin<br />

was liquified by 15 o/o of the isolates indicating that proteases were produced by some<br />

isolates from all samples.<br />

Because the pH of the pollen <strong>and</strong> bee bread samples was 4.2-4.5, a favorable<br />

environment <strong>for</strong> the growth of fungi existed. Lavte (1960) reported that pollen<br />

collected by bees contains an active antibiotic factor that is derived both from the plant<br />

<strong>and</strong> from the bee. However, pollens do not contain any anti-fungal substances. There<strong>for</strong>e,<br />

the years <strong>and</strong> molds are not affected.<br />

When reporting the results of microbiological analyses of pollen, one should<br />

always give the pollen species <strong>and</strong> source. For example, PRIN <strong>and</strong> MauceNnr (1966)<br />

emphasized that their results on microflora of pollen <strong>and</strong> bee bread were probably valid<br />

only <strong>for</strong> their region or <strong>for</strong> a region of similar climate. Thus, my results revealed a<br />

more diverse yeast flora than reported by other workers. However, the role of yeasts<br />

in biochemical modifications of pollen <strong>and</strong> in bee nutrition are not defined (Pan <strong>and</strong><br />

MaucrNnr, 1966). Hopefully the present paper will encourage other researchers<br />

from other regions to examine the yeast flora of bees, pollen, <strong>and</strong> bee bread. Only<br />

after thorough microbiological analyses have been completed can work begin on the<br />

contribution of specific groups of microorganisms to bee nutrition.<br />

ACKNOWLEDGMENTS<br />

Received <strong>for</strong> publication in August 1978.<br />

I thank Mrs. Dinorah DL.NHAM <strong>for</strong> her excellent technical assistance; Dr. L. N. SrlNorrrn,<br />

Mr. Harold DoN, <strong>and</strong> Mr. John MIlt-s lor the pollen samples; Dr. L. J. WtcrsnHeN4 <strong>for</strong> microscopic<br />

examination of the yeasts; <strong>and</strong> Mrs. Rachael AtcazB <strong>for</strong> translating into English the paper by PltN <strong>and</strong><br />

MAUGENET.<br />

ZUSAMMENFASSUNG<br />

DIE MIKROBIOLOGIE VON POLLEN UND BIENENBROT : DIE HEFEN<br />

Die folgenden Proben von M<strong>and</strong>elpollen (Prunus communis) wurden auf das Vorkommen von Hefen<br />

untersucht : H<strong>and</strong>gesammelter Pollen aus den Bhiten; Pollenhdschen, mittels Pollenfallen an den<br />

Bienenkdsten in der lr{<strong>and</strong>elkultur unmittelbar von den Beinen der Bienen abgestreilt; und Bienenbrot, in<br />

den Wabenzellen liir eine, drei und sechs Wochen gelagert. Homogenate von jeder Probe wurden auf<br />

angesduerten Hefeextrakt-Malzextrak-Agar mil I o/o Glukose ausgebracht.<br />

Es wurden I 13 verschiedene Hefen isoliert, und I 10 von ihnen wurden identifiziert. M<strong>and</strong>elpollen aus<br />

den Bhiten enthielt eine vielfiiltige Hefenflora, die sich nach der Einsammlung durch die Bienen und<br />

Einlagerung im Volk verringerte. Organismen aus den Genera Torulopsis, C<strong>and</strong>ida lund Cryptococcus<br />

stellten 85 o/o der Isolate. Am hdufigsten war Torulopsis magnoliae mit 43 o/o sdmtlicher Hefen. Da diese<br />

Art im Pollen aus den Bhiten nicht gefunden wurde, sondern erstmals im Pollen aus der Pollenfalle und<br />

dann in sdmtlichen Proben von Bienenbrot, kdnnte es sein, dass sie von den Bienen in den Pollen gebracht<br />

worden war.<br />

51


52 M. GILLIAI\4<br />

C<strong>and</strong>ida guilliermondii var. guilliermondii war das zweithdLufigste Isolat, aber es wurde nur im Pollen<br />

aus der Bhite und aus der Falle gefunden. Bienenbrot war also kein geeignetes Milieu ftir diesen<br />

Organismus. Ganz allgemein kann gesagt werden, dass die meisten Helen aus dem aus Bh.iten oder aus der<br />

Falle stammenden Pollen im Bienenbrot nicht gefunden wurden.<br />

Aus Bhiten oder aus der Pollenlalle stammende Pollenhefen fermentierten eine grcissere Anzahl von<br />

Zuckern und assimilierten mehr Kohlenstoffverbindungen als Hefen aus Bienenbrot. Keine der Hefen<br />

fermentierte Laktose und nur ein einziges Isolat fermentierte Maltose. Die biochemischen Verdnderungen,<br />

die im Bienenbrot erfolgen, scheinen also die Zahl der Hefearten, die imst<strong>and</strong>e sind zu iiberleben, zu<br />

beschriinken.<br />

RESUME<br />

MICROBIOLOGIE DU POLLEN ET DU PAIN D'ABEILLES : LES LEVURES<br />

On a recherch6 les levures dans les 6chantillons suivants de pollen d'am<strong>and</strong>ier (prunus communis):<br />

pollen r6colt6 i la main sur les fleurs, pelotes de pollen pr6lev6es sur les pattes des abeilles par des trappes<br />

placees sur les ruches dans le verger d'am<strong>and</strong>iers, pain d'abeilles stock6 dans les cellules des rayons pendant<br />

une semaine, trois semaines ou six semaines. Des homog6nats de chacun de ces 6chantillon, oni 6t6<br />

d6pos6s sur agar d l'extrait de levures acidifi6 et d I'extrait de malt, renfermant 1 % de glucose.<br />

Cent trente levures ont 6t6 isol6es et cent dix d6termin6es. Le pollen d'am<strong>and</strong>ier pr6leve sur les fleurs<br />

renfermait une flore diversifi6e de levures, qui diminuait suite ir la r6colte par les abeilles et au stockage<br />

dans la ruche. l,es organismes appartenant aux genres Torulopsis, C<strong>and</strong>ida et Cryptococcus constituaient<br />

85 % des isolat's. Torulopsis magnoliae, I'isolat le plus commun, repr6sentait 43 7o des levures. puisqu'on<br />

ne l'a pas trouv6 dans le pollen pr6lev6 sur les fleurs, mais qu'il est apparu pour la premidre fois dans le pollen<br />

r6colte par trappes et a 6t6 retrouve ensuite dans tous les 6chantillons de pain d'abeilles, ce sont les<br />

abeilles qui ont dri I'ajouter au pollen.<br />

C<strong>and</strong>ida guilliermondii var. guilliermondii vienten seconde position, mais n'a 6t6 trouv6 que dans le pol<br />

len pr6lev6 sur les fleurs et dans celui r6colt6 par trappes. Le pain d'abeilles est donc un milieu qui ne convient<br />

pas d cet organisme. En g6n6ral la plupart des ievures pi6r.nt., dans le pollen de fleurs et le pollen de<br />

trappes n'ont pas 6t6 retrouv6es dans le pain d'abeilles.<br />

['es levures provenant du pollen de fleurs et du pollen de trappes ont fait fermenter plus de sucres et ont<br />

assimil6 plus de compos6s carbon6s que celles provenant du paind'abeilles. Aucune des levures n,a fait fermenter<br />

le lactose et un seul isolat a fait fermenter le maltose. Il se peut donc que les changements biochimiques<br />

qui surviennent dans le pain d'abeilles limitent les espdces de levures capables de survivre.<br />

REFERENCES<br />

AnrzaN D., Poe.l A. Mnnoru p., Toua C., SnnnlN M., CnrseN I., Donne V., 1967. _ Conservation du<br />

pollen par des radiations ionisantes. Buil. Apicote,10, 43_50.<br />

AvrlstrN G. A.' 1935' - Recent work on the chemical composition of pollen. Bee World, 16, 92.<br />

BnnNnrr J. A., PlNrHunsr R. J., 1974. - ( A New Key to the Yeasts r, North Holl<strong>and</strong>. Amsterdam.<br />

BerRA L. R., Barn.l s. w. T., BoHART G. E., 1973. - The mycoflora of domesticated <strong>and</strong> wild bees<br />

(Apoidea). Mycopathol. Mycol. appt., 49, 13-44.<br />

Brrrs A. D., 1928. - Hive yeasts. - IIt. Bee World,9, 154-155.<br />

CnsrBu-D.B., 1912.-Thebehaviorofthehoneybeeinpollencollecting. U.S.Dept.Agr.Bull., l2I.


YEASTS IN POLLEN AND BEE BREAD<br />

CnsvrcH6 V., 1950. - Mikrobiologie pylov6ho kva(eni. Publ. Fac. Sci. Univ. Masaryk,323, 103-130.<br />

Econove A. I., 1971. - [Preservative microflora in stored pollen]. Veterinariya, S' 40-41.<br />

EcoRovA A. I.. Bnn'rvr I. P., 196?. - [ Yeast flora of the honey bee (Apis mellifcaL.)]. Akad' Nauk<br />

,4rnr. SS,!R (Ser. Biol. - Med. Nauk),2, 127-132.<br />

Foorr H. L., lg57 . - Possible use of microorganisms in synthetic bee bread production. Amer. Bee J. ,97,<br />

4'.76-4'.t8.<br />

Grr-rr.cN4 M., WrcrEnnlM L. J., MoRroN H. L., ManrIN R. D., 1974. - Yeasts isolated from honey bees,<br />

Apis mellfera, fed 2, 4-D <strong>and</strong> antibiotics. J. Invertebr. Pathol., 24, 349-356'<br />

Grrrrnrrl M.. MoRroN H. L., Pnrsr D. B., MlnrtN R. D., Wtcrrnuelr.r L. J., 1977. - The mycoflgra of<br />

adult worker honeybees, Apis mellfera.'effects of 2,4, 5-T <strong>and</strong> caging of bee colonies' J. Invertebr.<br />

Pathol.,30' 50-54.<br />

KRE6ER,VAN RrJ N.J. W., 1970. - Genus 5. Endomycopsis Dekker. In < The Yeasts: A Taxonomic<br />

Study, r ed. J. Lodder, 166-208, North-Holl<strong>and</strong>, Amsterdam.<br />

Hevoer M. H., 1958. - Pollen - pollen substitutes - beebread. Amer. Bee J., 98' 145-146.<br />

Hayo.qr M. H., Vrvnqo A.8., 1950. - The changes in the thiamine, riboflavin, niacin <strong>and</strong> pantothenic<br />

acid content in the food of female honeybees during growth with a note on the vitamin K activity of<br />

royal jetly <strong>and</strong> beebread. Ann. Entomol. Soc. Amer', 43' 361-367.<br />

HrrcHcocK J. D., 1956. - A milk-digesting enzyme in pollen stored by honey bees. Amer. Bee J.,96,487-<br />

489.<br />

LAvrE P., 1960. - Les substances antibact6riennes dans la colonie d'abeilles (Apis mellifca L.). Ann.<br />

Abeille, 3, 103-183, 201-305.<br />

Lsr,.ros M.V.F., Mncneoo J. O., 1975. - Caracterizacio da microflora bacteriana normal de gel6ia real,<br />

larvas, pr6-pupas, imagos, mel e p6len da adelha Apis melliftra adansonii. Anais Congr. Brasil. Apicult.,3,191-198.<br />

Loooen J.(ed.), 1970. - rThe Yeasts: A Taxonomic study,t North-Holl<strong>and</strong>, Amsterdam.<br />

Mrr-rBn M. W., PH.lrr H. J., MrneNol M., HEro W. B., Srlnr*.rEn W. T., 1976. - Torulopsis sonorensis, a<br />

new species of the genus Torulopsis. Int. J. Syst' Bacteriol., 26' 88-91'<br />

OruNuxr K., 1943. - Uber den Gaswechsel der Pollen. Y. Acta Phytochim. Japan, 13,93-98.<br />

pArN J., MeucrNer J., 1966. - Recherches biochimiques et physiologiques sur le pollen emmagasin6 par<br />

les abeilles. Ann. Abeille, 9' 209-236.<br />

vAN DER War-r, J. F., 1970. - Criteria <strong>and</strong> methods used in classification. In < The Years : A Taxonomic<br />

Study, r ed. J. Lodder, 34-113, North-Holl<strong>and</strong>, Amsterdam.<br />

WtcrBnnrll, L.J., 195 1. - Taxonomy of yeasts. U.S. Dept. Agric. Tech. Bull.' 1029.<br />

Wrcrrnnau, L. J., BunroN, K. A., 1954. - A clarification of the relationship of C<strong>and</strong>ida guilliermondii to<br />

other yeasts by a study of their mating types. "/. Bacteriol.,68, 594'597.<br />

WrLsoN, H. F., MenvrN, G. 8., 1929. - On the occurence of the yeasts which may cause the spoilage of<br />

honey. J. Econ. Entomol.' 22' 513-517.<br />

53


Degradation of<br />

Terramycin in <strong>Honey</strong>'<br />

by MARTHA GILLIAM, STEPHEN TABER, lll<br />

Agriculturol Reseorch, Science qnd Educqtion Adminislrolion, U. S. Deportmenl of Agriculture<br />

Corl Hoyden Bee Reseqrch Cenler, 20OO Eqst Allen Rood, Tucson, Arizono 85719<br />

qnd ROBERT J. ARGAUER<br />

Agriculturol Reseorch, Science qnd Educotion Administrotion, U. S. Deportment of Agriculture<br />

Agricuhurol Environmenlq! Quqlity lnslilule, Beltsville, Morylond 2O7Os<br />

NIMAL soluble powder Terramy-<br />

1<br />

fl cin (oxyterracycline) is used by<br />

beekeepers to control American foulbrood<br />

<strong>and</strong> European foulbrood diseases<br />

of honey bees, Apis mellifera. For treatment,<br />

the antibiotic is incorporated into<br />

various diet <strong>for</strong>mulations including sugar<br />

dusts, sugar syrup feedings, sugar<br />

syrup sprays, antibiotic extender patties<br />

(Wilson et al., 1971 ), pollen patties<br />

(Gilliam <strong>and</strong> Argauer, 1975), <strong>and</strong><br />

honey.<br />

<strong>Honey</strong> <strong>for</strong> human consumption must<br />

not contain Terramycin. Thus, we have<br />

conducted experiments to determine<br />

the time required <strong>for</strong> degradation of<br />

'Ierramycin in medicated sugar syrup<br />

<strong>and</strong> medicated honey stored by caged<br />

bees <strong>and</strong> by bee colonies. Details of<br />

these experiments are reported in the<br />

recent papers by Gilliam et al. (1978,<br />

1979). The present paper is a briefer<br />

sunmary of this work.<br />

In the experiments with caged bees,<br />

we wished to determine whether Terranrycin<br />

in the medicated syrup <strong>and</strong><br />

honey fed to the bees became rnore<br />

concentrated after it was stored by<br />

thern in comb cells. Eckert ( 1953 )<br />

found that this happened with sulfathiazole.<br />

In addition, we wished to<br />

follou' the rate of degradation of Terramycin<br />

in both the worker bees <strong>and</strong><br />

in the cells packed with medicated syrup<br />

<strong>and</strong> honey after short-term (one<br />

rveek ) <strong>and</strong> long-term ( two weeks )<br />

rnedication.<br />

First, we obtained bees from seven<br />

colonies that had not been treated with<br />

Terramycin <strong>and</strong> had no apparent disease.<br />

Then groups of these bees were<br />

placed in wire-screen cages with a side<br />

that could be opened to remove bees<br />

<strong>for</strong> analyses. In one test, each cage<br />

contained 600-700 bees, <strong>and</strong> in the<br />

1 Mention of a proprietary product or<br />

company name does not constitute an endorsement<br />

of this product by the U. S.<br />

Departrnent of A8riculture.<br />

720<br />

other test, 1 100-1400 bees were placed<br />

in each cage. Each cage contained a<br />

top bar with a strip of foundation on<br />

u'hich the bees built comb, <strong>and</strong> a caged<br />

mated queen was suspended from the<br />

side of this bar. Distilled water <strong>and</strong><br />

test honey or syrup were available to<br />

the bees from capped bottles with holes<br />

drilled through the lid. The bottles<br />

were inverted over wire-screen holes<br />

on the top of the cage. The cages<br />

were maintained at 29oC <strong>and</strong> 50-60%<br />

RH without lights except when solutions<br />

were changed or samples collected.<br />

For each test, there were 18 cages,<br />

three each given one of the following<br />

six treatments: (1 ) nonmedicated sy-<br />

rup (control ) ; (2 ) medicated syrup,<br />

one-week treatment; (3) medicated syrup,<br />

two-week treatment; (4) nonmedicated<br />

honey (control); (5) medicated<br />

honey, one-week treatment; (6) medicated<br />

honey, two-week treatment.<br />

The syrup was a 50/6 (w/v) sucrose<br />

solution. The medicated syrup contained<br />

0.3 g of animal-soluble powder<br />

Terramycin (contains 25 g of oxytetracycline<br />

hydrochloride/lb of <strong>for</strong>mulation;<br />

Pfizer) per 100 g of sucrose. Both<br />

the nonmedicated <strong>and</strong> medicated syrups<br />

were prepared fresh daily.<br />

The honey was collected from colonies<br />

that had not received Terramycin.<br />

Nonmedicated honey was prepared<br />

by adding enough distilled water to the<br />

honey to produce .the same refractive<br />

index as the 5O/6 syrup; this was a<br />

48-49% (v/v) solution. The nonmedicated<br />

honey was prepared once a week<br />

<strong>and</strong> was stored in the refrigerator. The<br />

rnedicated honey was prepared each<br />

day be<strong>for</strong>e use by adding an amount<br />

of Terramycin to give approximately<br />

the same amount present in the medicated<br />

syrup.<br />

Food coloring was added to the diets<br />

so we could determine the type of sugar<br />

or honey present (treated or un-<br />

1/= //)<br />

treated) <strong>and</strong> the approximate time that<br />

it was packed into the cells. Seventyfive<br />

milliliters of the honey or sucrose<br />

solution were provided to each cage of<br />

bees each day. Each bee consumed<br />

approximately 3 pg of. Terramycin/day.<br />

'Ihe distilled water was changed as<br />

needed. After the one- <strong>and</strong> two-week<br />

feedings of medicated honey or syrup,<br />

nonmedicated honey or syrup was supplied<br />

<strong>for</strong> the remainder of the test.<br />

Samples (2 ml) of stored honey or<br />

syrup <strong>for</strong> analyses were collected by<br />

placing a small capillary tube attached<br />

to a vacuum apparatus through the<br />

rvire screen of the cage into the comb<br />

cells. The cells from which the honey<br />

or syrup were removed were indicated<br />

by a n-rark on the wire screen in front<br />

of them so subsequent samples would<br />

not be collected from the same cells.<br />

Samples of bees taken <strong>for</strong> analyses consisted<br />

of 10 live bees collected from<br />

each treatment group of three cages.<br />

Syrup, honey, <strong>and</strong> extracts of homogenized<br />

bees were analyzed <strong>for</strong> Terramycin<br />

by a fluorometric method (Argauer<br />

<strong>and</strong> Gilliam, 1974).<br />

In both tests, the highest levels of<br />

.ferramycin in bees <strong>and</strong> stores were<br />

recorded at the end of the period during<br />

which the medication was fed.<br />

Subsequently, the Terramycin degraded<br />

at a rapid rate. We were not able to<br />

find any appreciable increase in concentration<br />

in the stores except at the<br />

end of the medication period when the<br />

amount of Terramycin was sometimes<br />

about double that supplied in the food.<br />

In stored syrup, the Terramycin had<br />

completely degraded by three to five<br />

weeks after the start of the one-week<br />

feeding, <strong>and</strong> in stored honey, it had<br />

completely degraded by five to six<br />

weeks after the start of both the one<strong>and</strong><br />

two-week feedings. The Terramycin<br />

concentration in stored honey was<br />

higher than in stored syrup, although<br />

degradation of Terramycin in both<br />

American Bee Journal


kinds of stores occurred at approxirnatcly<br />

the same rate.<br />

The Terramycin in the bees also degladed<br />

in five to six t'ceks after treatrnent<br />

\\'as begun. In a little more than<br />

half the cages, rnorc Terramycin found<br />

its r'r'ay into the storcs than into the<br />

bees. 'I'he bees leceiving syrup lived<br />

Iongcr than those receiving honey, although<br />

periodic examinations of bees<br />

<strong>for</strong> nosema disease <strong>and</strong> septicemia \rere<br />

negative.<br />

In experiments n'ith bee colonies, lve<br />

follolr'ed the deeradation of tlvo concentrations<br />

of Terramycin in stored<br />

rnedicated syrup <strong>and</strong> honey. Fourteen<br />

bee colonies u'ere maintained <strong>and</strong> fed<br />

pollen in a grecnhouse. These colonies<br />

s'ere divided into groups of three colonies<br />

each <strong>and</strong> gir,en the follou'ing<br />

treatments: nredicated honev (1X conccntration<br />

of Ter|arnycin): medicatcd<br />

honel l2X concentration of Terrarnycin):<br />

rncdicated syrup (1X concentration<br />

of Terrarnl'cin ) ; rnedicated syrup<br />

2X concentration of Terramycin).<br />

'l'*o colonies sclvcd as controls.<br />

Thr' 1X solutiorrs of rrredicated honey<br />

<strong>and</strong> s1'rup \\'erc prepared as described<br />

<strong>for</strong> the experirnents *'ith caged bees.<br />

The 2X solutions contained tivice that<br />

arnount of Telrarnycin (0.6 g per 100<br />

rnl of honey or syrup). Each colony<br />

rcceived 200 nrl of the appropriate<br />

solution each da,v. Gleen food coloring<br />

n'as added to all rnedicated diets to<br />

rnark the stores. The medicated diets<br />

\\'ere fed until suf ficient comb was<br />

built <strong>and</strong> adequate stores rvere available<br />

<strong>for</strong> sarnpling. This required nvo<br />

to ser.'cn n eeks. Thereafter, nonrnedicated<br />

solutions l'ithout dye rvere given<br />

to thc colonies, <strong>and</strong> the frames containing<br />

the dyed stores t'ere placed in the<br />

box above the brood ncst.<br />

Sarnples of stored honey or syrup<br />

gele collected one u'eek after the experinrent<br />

lr'as begun <strong>and</strong> then each<br />

week thereafter <strong>for</strong> 1B n'eeks. All sarnples<br />

n'ere analyzed <strong>for</strong> Terramycin by<br />

the f luororrrctric rnethod.<br />

In thc tcst \r'ith bee colonies, the<br />

concontrations of Terrarnycin increased<br />

only in one kind of storc, honey containing<br />

a lX concentration of Terrarnycin,<br />

<strong>and</strong> that occurred only after<br />

the first 'n'eek of feeding. The rate of<br />

degradation u'as similar in honcy <strong>and</strong><br />

syrup. In general, a r-apid loss of Terlanrycin<br />

nas cvident <strong>for</strong> eight rvceks<br />

after the beeinning of the medication.<br />

'Ihereafter, degradation proceeded slorvly.<br />

In rnost cases, the Tcrrarr.rycin degraded<br />

by six to nine rvecks after the<br />

rnedication ended. A srnall residual<br />

fluorcscence was found in stored rnedi<br />

cated honey <strong>and</strong> syrup <strong>for</strong> as long as<br />

1B rvceks after the start of the treatrnent.<br />

This was probably not due to<br />

Terramycin since the drug is known<br />

to <strong>for</strong>m nonactive degradation products<br />

rvhich are fluorescent (Day et al.,<br />

l978). This small residual fluorescencc<br />

in honey u.hich has contained Terramycin<br />

nright be used as an indicator of<br />

previous medication with Terramycin.<br />

Although Terramycin in medicated<br />

solutions stored by caged worker bees<br />

completely degradcd by three to five<br />

\\'eeks after the start of treatment, a<br />

loiv level of fluorescence \r'as still detectable<br />

in rriedicatcd stores in bee col.<br />

onies <strong>for</strong> as long as 16 rreeks after<br />

medication had ceased. The differenccs<br />

in caeed adult bees <strong>and</strong> in bee<br />

colorries t'ould be both nutritional <strong>and</strong><br />

physiological since the bec colonies<br />

*'ele fed pollcn, u'ere rearing brood,<br />

<strong>and</strong> thc bccs rvcre f lying. Horvever,<br />

rhe reasons <strong>for</strong> the differenccs in fluorescence<br />

are not clear. It is possible<br />

that Terlamvcin in stores in bee colonies<br />

binds to sor)rethins supplied by<br />

the bces during collection <strong>and</strong> inversion<br />

that is not added by caged adult<br />

bees. The acid pH, hypertonicity, viscosity,<br />

<strong>and</strong> buffering pou'er of the organic<br />

acids protect Terrarnycin in honev<br />

(Ciharnbonnaud, 1968). As mentioned,<br />

the low level of fluorescence<br />

probably rcprescnts a degradation product<br />

with no antibacterial activity.<br />

In colonies not confined to a greenhouse,<br />

thc Terramycin content of stores<br />

would bc diminished by dilution rvith<br />

nectar. Also, pasteurization of honey<br />

<strong>for</strong> consur.nption u ould further reduce<br />

the activity of the antibiotic. Since in<br />

our greenhouse colonies the combs containing<br />

the medicated stores werc<br />

rnoved to the box above thc brood nest,<br />

the stores g'ere ntaintained at a lower<br />

ternperature that would tend not to<br />

cause the Terramycin to degrade as<br />

quickly.<br />

Wilson (1974) emphasizcd that alnrost<br />

alu'ays u'hen residues of antibiotics<br />

are detected in honey, the arnount<br />

of treated sylup fed .rvas large enough<br />

so that the s'orliel bees stored the liquid<br />

in combs in the brood nest as honey.<br />

Surplus honey stored by the bees<br />

above the brood nest was alu'ays free<br />

of Terrarnycin regardless of the method<br />

of application iantibiotic extender patties,<br />

dusting), duration of treatment,<br />

ul season rr'hen applied.<br />

Thus, rnost of the Terramycin fed<br />

to bees degrade s w'ithin six weeks or<br />

so, although small amounts of the antibiotic<br />

may be detected in stores f or<br />

longer peliods depending on factors<br />

such as temperature, availability of.<br />

nectar, <strong>and</strong> abundance of stores in the<br />

hivc whcn medication is begun. At<br />

least six w,eeks should be allorved betwecn<br />

the last fceding of Terramycin<br />

in syrup or honey <strong>and</strong> extraction of<br />

honey. It is also rvise never to extract<br />

brood nest honey if Terramycin has<br />

been fed, especially if it has been fed<br />

in dusts or antibiotic extender patties.<br />

In future work, n.e hope to analyze<br />

brood nest honey <strong>and</strong> surplus honey<br />

fronr apiary colonies that have been<br />

fed Terrarnycin in dusts, syrup feedings,<br />

syrup sprays, antibiot.ic extender<br />

prttios, <strong>and</strong> pollen palties.<br />

BEFEBENCES<br />

Argauer, B. J, aJlat U. Glrrlar[. 1974. A<br />

fluorometric method <strong>for</strong> determining<br />

oxytetracycline in treated colonies of<br />

the honey bee, Apls mellifen. J, hvert€br.<br />

Pathol., ?,3.5L-54.<br />

Chambouaud. J. P. 1968. Contribution<br />

ra la rpcherchc des antibiotiquos dans le<br />

miel. Bu]l Aplc. Inf. Docm. Sclent.<br />

Tech., 11:133-198.<br />

Day, S, T., ltr/. G. Crouthamel, I,. C, uartlnelli,<br />

aral J. t. E. Ma. 1978. Mechanism<br />

of fluorometric analysis of tetracycline<br />

involving metal complexation.<br />

J. Pbarmaceut. Scl., 67;1518.1523.<br />

Ecksrt, J. E, 1953. The use of sulfathiazole<br />

in relation to American foulbrood<br />

disease of honey bees. J, Ecorr, E!tomol.,<br />

46 :382-383<br />

eIUIarn, M. artl B. J. Arg'auer. 1975. How<br />

long is Terraml-cin stable in diets fed<br />

to honey bee coLonies <strong>for</strong> disease control?<br />

Amer, Beo J. U5:230 <strong>and</strong> 234.<br />

Gilliam, u,, S. taber IfI, anal 4,, J. &gauer.<br />

1978, Degradation of ox]'tetrac,'cline<br />

in medicated sucrose <strong>and</strong> hone]'<br />

stored by caged honey bees, Apls melUfera.<br />

J. Ilvertebr. Pathol., 31:123-130.<br />

Gllllm, U,, S. Taber IEI, ancl B. J, Atgauer.<br />

1979, Degradation of oxytetrac)'cline<br />

in syrup <strong>and</strong> honey stored by<br />

honeybee colonies. J. Aplc, Bs., in<br />

press,<br />

Wilsor, .w. f. 197{. Residues of oxytetrac]-cline<br />

in hotrel' stored by Apls<br />

mellijera, Envlron. EutotDol., 3:674-6?6.<br />

Wllson, fP, T,, J. B. EUlott, anat J. D.<br />

Ilitchcock. 19?1. Antibiotic extender<br />

patties <strong>for</strong> control of American foul<br />

brood. J, Aplc. Bes., 10:143-147.<br />

Reprinted from October, 1979, American Bee Journal<br />

October 1979 Vol. 119 (10): 720, 722, 723<br />

723


A p idolo gie, 197 9, lO (3), 269 -27 4'<br />

MICROBIOLOGY OF POLLEN AND BEE BREAD :<br />

THE GENUS BACILLUS<br />

Martha GILLIAM<br />

U,S. Department of Agriculture, Science <strong>and</strong> Education Administalion<br />

Carl Hayden Bee Research Center<br />

2000 East Allen Road, Tucson, Arizona 857 19<br />

SUMMARY<br />

PROPERTY OF USDA<br />

FOR OFFICIAL USE ONLT<br />

Forty-one bacteria belonging to the genus Bacillus were isolated from almond, Prunus dulcis (- P.<br />

amygdalus - P. communis), pollen from the flower; from pollen pellets from traps placed on hives of<br />

honeybees, Apismellifera,inthealmondorchard;<strong>and</strong>frompollenstoredinthecombcellsof thehive(bee<br />

bread) <strong>for</strong> one, three, <strong>and</strong> six weeks. Thirty-three ofthe 4t isolates were B. subtilis, the only species<br />

associated with all pollen <strong>and</strong> bee bread samples. Bacillus megaterium, B. licheni,fnrmis, B. pumilus, <strong>and</strong><br />

B. circulans were also isolated. Since the greatest number of Bacillus isolates <strong>and</strong> species were found in<br />

pollen from the trap, the <strong>for</strong>aging bees may have added the organisms to the pollen.<br />

INTRODUCTION<br />

Recently, as the first ef<strong>for</strong>t in an attempt to define the microflora olpollen <strong>and</strong> bee<br />

bread, I isolated <strong>and</strong> identified ,l l3 yeasts from almond, Prunus communis, pollen ffom<br />

the flower; from pollen pellets removed from the bees' legs by traps placed on hives of<br />

honey bees, Apis mellifera, in the orchard; <strong>and</strong> from pollen stored in comb cells of the<br />

hive (bee bread) <strong>for</strong> one, three, <strong>and</strong> six weeks (Grllralt, 1979). Torulopsis magnoliae<br />

was the most common isolate <strong>and</strong> was apparently added to pollen by the bees since it<br />

was found in all samples except from the flower. The number of isolates <strong>and</strong> species<br />

decreased with time <strong>and</strong> storage, <strong>and</strong> most of the yeast species lrom pollen from the<br />

flower <strong>and</strong> the trap were not found in bee bread. In addition, yeast isolates lrom<br />

pollen from the flower <strong>and</strong> the trap fermented more sugars <strong>and</strong> assimilated more carbon<br />

compounds than those from bee bread.<br />

I / -t


214<br />

N{. GILLIA]t,I<br />

The second ef<strong>for</strong>t was ccncerned with Bacilltts organisms associated rvith pollen<br />

<strong>and</strong> bee bread. Members of the genus Bncil/rs are rod-shaped bacteria that are<br />

capable of <strong>for</strong>ming endospores aerobically. These organisms are commonly<br />

associated rvith worker honey bees (El-Lrnuv <strong>and</strong> Er Srsenr. 1972: Grllrana <strong>and</strong><br />

v^q.r-rNrrNE. 1976; Gnual,a <strong>and</strong> MonroN, l97g). Also, Econova (1971) lound that<br />

species of Bacillus accounted <strong>for</strong> 17 oto of the microorganisms that she isolated lionr<br />

bee bread" However, though these isoiates had proteolytic enzymes. they did not<br />

participate in the lactic fermentation that has been reported to be responsible lor the<br />

conversion of pollen to bee bread (CnrvlcHrK, 1950: parx <strong>and</strong> MaucrNi,r.<br />

1966). Otherwise. little work has been conducted on members of the genus Baci/lus<br />

found in pollen <strong>and</strong> bee bread. WHIrr (1906) lound that pollen stored in the cells of<br />

combs containing European foulbrood contains manv B.alt,ei<br />

organisms' CHsvrcrrlx (1950) reported that sporulating aerobic bacteria. lactic acid<br />

bacteria, ,'easts. <strong>and</strong> indole-producing bacreria were present in pollen at the time the<br />

fermentation began. Also, Macnloo (1971) reported an interesting association<br />

between the pollen of Melipona quaclrifasciata <strong>and</strong> a Bacillus organism. The Bacillus<br />

appeared to predigest the pollen. <strong>and</strong> elimination of the organisrn caused destruction oi<br />

the comb cells by the workers <strong>and</strong> the eventual death of the colon1,.<br />

Reported here are the results of the examination of pollen <strong>and</strong> bee bread fur<br />

organisms belonging to the genus Bacillus, These organisms are known <strong>for</strong> their<br />

ability to produce antibiotics (Karz <strong>and</strong> Dnuarn , l97]'): terminally methyl_branchecl<br />

fatty acids (KeNnna, 1977); <strong>and</strong> numerous enzymes (Barrrs.r et at., l97g) including<br />

pectinases (Luuur <strong>and</strong> Duurxorn. l9T6), cellulases (sEnzrorr.ro <strong>and</strong> rrur. l9T4)"<br />

<strong>and</strong> commerciaily significant efizymes such as amylases. proteases" j-glucanases, <strong>and</strong><br />

isomerases (Focenrv et al., 1974 a. 1914 b). Because of the wide range ol metaLrolic<br />

activities of these organisms, they may be important in the production <strong>and</strong> preseryation<br />

of bee bread.<br />

M.{TERIALS AND METHODS<br />

f)etails ofmethods used to coilect anti preserve aimond pollen <strong>and</strong> to establish anci maintain the bee<br />

c.ololies that receired tht packed almond peliets are given by Grr-r_rlrrr (1979). Samples were pollen lrom<br />

the flcwer <strong>and</strong> tiom the bees'Iegs <strong>and</strong> bee bread stored in comb celis tbr i.lne. rhree. ancl six rveeks. Each<br />

polien anci bee bread sample rvas divided rnro four sul;-samples of approximarely 0.75 g each- 'rheri each<br />

ol the four srrb'sampies was homogenize


tsACILLUS IN POLL.EN 271<br />

All colonies rvere stained by the Gram method <strong>and</strong> examtneci <strong>for</strong> spores' The size' shape' <strong>and</strong><br />

Iocation of the spores within the sporangia were noted, <strong>and</strong> the morphology of ttre Vegetati!'e cells was<br />

determined. Although most cultures contained sporangia <strong>and</strong> free spores after incubation ltrr 48 hours. a<br />

few had to be incubaied lor as long as 12


272 M. GILLIAM<br />

TABL. 1. - Bacillus isolated from almond pollen <strong>and</strong> bee bread.<br />

Organism Number of<br />

Bacillus subtilis<br />

B. subtilis<br />

B. subtilis (atypical)<br />

B, megaterium<br />

B.lichenifurmis<br />

B, circulans<br />

B. subtilis<br />

B. subtilis<br />

B. pumilus<br />

B. subtilis<br />

S.lichenifurmis<br />

Isolates from pollen from the flower<br />

lsolates from pollen from the bees' legs (pollen trap)<br />

Isolates from bee bread stored in the comb <strong>for</strong> I week<br />

Isolates from bee bread stored in the comb <strong>for</strong> 3 weeks<br />

lsolates from bee bread stored in the comb <strong>for</strong> 6 weeks<br />

o From a total of 80 plates in the experiment.<br />

isolateso<br />

antibiotic factor that is derived both from the bee <strong>and</strong> the plant, <strong>and</strong> this factor was<br />

active against B. alvei <strong>and</strong> 8. larvaebut had no anti-fungal properties. Thus, it may<br />

limit the numbers <strong>and</strong> species of Bacillus without affecting the yeasts. In any case, it<br />

appears that a specific microflora does occur in pollen <strong>and</strong> bee bread. <strong>and</strong> it is<br />

particularly noticeable in regard to Bacillus spp. Moreover, 66 different peptide<br />

antibiotics are produced by strains of B. subtilis, <strong>and</strong> most of these are active against<br />

gram-positive bacteria though some are active against yeasts <strong>and</strong> molds (Brnov,<br />

1974). Thus, the picture becomes quite complicated.<br />

If lactic acid preserves stored pollen by the same process that occurs in green food<br />

materials stored in silos (HavneK, 1958), some analogies may be drawn from what is<br />

known of the role of Bacillus in silage. For example, bacteria of the genus Bacillus,<br />

yeasts, <strong>and</strong> molds affect the stability of silage on its removal from the silo <strong>for</strong> leeding<br />

(woor-rono, 1978). Also, Bacillr.rs organisms apparently have the ability to<br />

contribute to the lactic acid <strong>and</strong> acetic acid content of silage. However, they do not<br />

contribute to the same extent as the lactic acid bacteria, <strong>and</strong> they are less efficient than<br />

lactic acid bacteria in the production of lactic acid from water-soluble carbohvdrates<br />

2<br />

ll<br />

I<br />

I<br />

7<br />

3<br />

I<br />

I<br />

8<br />

4<br />

2


BACILLUS IN POLLEN<br />

(woorrono , lg'17). However, at this time the role of these organisms in pollen <strong>and</strong><br />

bee bread is unknown. Only additional experimental work will elucidate the<br />

contributions of micro-organisms to the nutrition of honey bees'<br />

ACKNOWLEDGEMENT<br />

I thank Dr. L. N. SreNorrsn <strong>for</strong> the pollen samples'<br />

ZUSAMMENFASSUNG<br />

2'.13<br />

Received.[or publication in April 1979'<br />

MIKROBIOLOGIE VON POLLEN UND BIENENBROT:<br />

DAS GENUS.B,4CILLUS<br />

Die lolgenden Proben von M<strong>and</strong>elpollen (Prunus dulcis - P. amygdalus : P. communis) wurden auf<br />

das vorkommen von aerobischen, sporenbildenden Bakterien aus dem Genus Bacllfus untersucht:<br />

- h<strong>and</strong>gesammelter Pollen aus den Bliiten;<br />

- Pollen, der mittels Pollenfallen an vtilkern in M<strong>and</strong>elpflanzungen von den Beinen der Bienen<br />

abgestreift worden war;<br />

- Pollen in Wabenzellen (Bienenbrot), der dort eine' drei oder sechs Wochen lang gelagert war'<br />

Homogenate von jeder Probe wurden auf Platten mit saurem Niihragar (pH 5) und Eugon-Agar<br />

(pH 7) ausgebracht.<br />

41 Bakterien aus dem Gents Bacillus wurden isoliert und bestimmt' 33 von den Isolaten waren<br />

B.subtilis, die einzige Art, die in allen Proben von Pollen und Bienenbrot vorkam' Ausserdem wurde<br />

Bacillus megaterium, B. lichenifurmis, B. pumilus und B. circulans isoliert. Da die grcisste Zahl von<br />

Bacillus-lsolaten und -Arten in pollen aus der Falle gefunden wurde, krinnte es sein, dass diese Organismen<br />

durch die Sammelbienen in den Pollen gelangten'<br />

Obwohl Bacillus-Organismen im Pollen wesentlich weniger hdufig waren als Hefen, ktinnen sie doch<br />

wegen der Breite ihrer Stoffwechselaktiviteten - z.B. in der Produktion von Antibiotika und Enzymen -<br />

von Bedeutung sein.<br />

RESUMF<br />

MICROBIOLOGIE DU POLLEN ET DU PAIN D'ABEILLES :<br />

LEGENRE BACILLUS<br />

On a recherch6 les bact6ries a6robies sporulantes appartenant au genre Bacillus dans les 6chantillons<br />

suivants de pollen d'am<strong>and</strong>ier, Prunus dulcis (: P' amygdalus: P' communisl ; pollen r6colt6 ir la main<br />

sur les fleurs; pollen pr6lev6 sur les pattes d'abeilles, Apis mellifera; des trappes plac6es sur les ruches<br />

situ6es dans le verger d'am<strong>and</strong>iers; et pollen stock6 dans les cellules des rayons de la ruche (pain d'abeilles)<br />

pendant I semaine, 3 ou 6 semaines. Des homog6nats de chacun des 6chantillons ont 6t6 d6poses sur agar<br />

nutritif acidifi6 (pH 5) et sur agar eugon (pH 7)'<br />

euarante et une bact6ries du genre Bacillus ont 6t6 isol6es et identifi6es. Trente-trois d'entre elles<br />

€ta\eni Bacillus subtilis, seule espdce associ6e ir tous les 6chantillons de pollen et de pain d'abeilles' On a


274<br />

M. GILLIAM<br />

6galement isol6 B. megaterium, B.licheni<strong>for</strong>mis, B. pumilis et B. circulans. puisque le plus gr<strong>and</strong> nombre<br />

de bact6ries isol6es et d'espdces a 6t6 trouv6 dans le pollen provenant de trappes. on peut supposer que ce<br />

sont les abeilles butineuses qui ont ajout6 ces organismes au pollen.<br />

Bien que les organismes de type Bacittus soient bien moins nombreux dans le pollen que les levures,<br />

ils peuvent avoir un r6le important d cause du large domaine de leurs actilitd's mdtaboliques. telles que la<br />

production d'antibiotiques et d'enzymes.<br />

REFERENCES<br />

BAPrIsr J. N.. Mervoel- M.. GtIrp-Na R. L.. 1978. - Comparative zone eieetrophoresis of enzvmes in the<br />

genus Bacilias. Int. J. St,st. Bacteriol.,28.229 ?44.<br />

Bnnnv J.. 1914. - Recent developments of antibiotic research <strong>and</strong> classification of antibiotics according<br />

to chemical structure. Adv. Apttl. lVicrohicl., I8. .109,406.<br />

CnrvrcHtr v" 1950. - Mikrobiologie pylov6ho kvaieni. Pubt. Fctc..!r:i. L'rrr., trIasar1 k,323, 103,130.<br />

Econova A. L. 1971. - lPreservative microflora in stored pollen.l tr;prsrj11qri1'a,8, 40 41.<br />

Er--LrtrHv M. A.. Er--Sreael K. B". 1972. - External anci inlernal microflora of the hone1, bees {,,lpls<br />

melli,fera L.). Eg1,pt. J. tr[icrobiol.,7.79 8'7.<br />

Focenrv W. M., GntrrrN P. J.. Jovcn A. I\4.. 19?4. - Enzymes of Bacillus species-part l" process<br />

Biochem.,9, 11-18. 24.<br />

Focrnrv W. M.. GntrrrN P. J.. JclYCr A. M., 1974. - Enzymes of Bacitius species,part 2. process<br />

Biochem., 9, 2,1.29. 31. 33. 35"<br />

Gtu-rav lvr.. 1979. I\licrobiologv of pollen <strong>and</strong> bee bread : the i'easts. 4pitlotugie,l0,43 5_1.<br />

Gtirtnlr M., Monrox H. L.. l9i8. - Bacteria belonging to the genus Bacillus isolated from honev bees,<br />

Apis mellifera, fed 2.4-D <strong>and</strong> antibiotics. Apidologie, 9, 213-221.<br />

Grtrtav M.. V.{nN'rtNe n- K., 1976. - Bacteria isnlated from the intestinal contents ol<strong>for</strong>aging worker<br />

honey bees. Apis melli"fera I the genus Bacillus. J. Intertebt. pathol.,2g, Z,'t5 276.<br />

GonocrN R. 8.. HavNns w. c.. Hon NAy PANG c.. 19?3. - The genus Bacillus. usDA Hantlbook,<br />

42:.<br />

Havoar: N4. I{.. 1958. - Pollen pollen substitutes bee breacl. Amer. Bee J., gg, 145 116.<br />

K'rNe nn T., 1977. - Fatty acids of the genus Bacillus.' an e-xample of branchecl chain<br />

preference. Bacteriol. Reu., 41, 391-418.<br />

Kerz E', DEMAIN A.L", 197'1. - The peptide antibiotics of Bacillus.'chernistry. biogenesis. <strong>and</strong> possible<br />

functions. Bacteriol. Rev., 41, 449-414.<br />

La;uuE J., DultaNoln V. C.. 1976. - Recherche de l'activit6 pectinolytique chez le genre Bociltus" ,4nn.<br />

Micrabiol. Inst. Pasteur, 127 A,423-427.<br />

Lavrr P.. 1960. - Les s,bstances antibact6riennes dans Ia colonie d'abeilles (Apis nrelli-fert L.). .4nn.<br />

Abeille.3. 103 183. 201-305.<br />

I\'[.qcHaoo J' O', 1971. - Simbiose entre as abelhas sociais brasileiras (Meliponinae. Apidae) e uma<br />

especie de bacteria. Ciencia e Cultura (Sao paulo),23,625-633.<br />

PAIN J., Mrucplnr J., 1966. - Recherches biochimiques et phvsioiogiques sur le pollen emmagasin6 par<br />

les abeilles. Ann. Abeilte" 9, 209-2-76.<br />

SpnznorlLo A., Taur S. M., 1974. - Cellulase de bacterias isoladas de " ninhos D de Ata laet,igata,<br />

Smith. Ciencia e Cultura (Sao Paulo), 26, 957-960.<br />

Wstrr G. F., 1906. - The bacteria of the apiary. L:SDA Tech..!e,ies, 14, I 50.<br />

WoorpoRo M. K.. 1977. - Studies on the significance of three Bacillus species to thc ensiling prLrcess.<br />

J. Appl. Bacreriol., 4t, 447-452.<br />

Woorrono M. K., 1978' - Antimicrobial effects of mineral acids. organic acids. salts <strong>and</strong> sterilizing<br />

agents in relation to their potential as silage additives. J. Brir. Grasslantl ioc.,33, l-ll 136.


La santJ ae ltabeiJ-le, #54, L979<br />

179-183<br />

. une colonie spdciale-<br />

,es sont sorties avant<br />

rses et, dans les ruches<br />

irarque aucune atteinte<br />

'. rvain-<br />

Photo Regard.<br />

,nt 0tre <strong>for</strong>t prdjudicia-<br />

'rcole lorsqu'elles s6visr,<br />

effet, beaucoup de lar-<br />

, pure perte puisqu'une<br />

sans donner les ouvrie-<br />

.lu'ayant exige soins et<br />

,ic nonrbreus:s bi,'.r-<br />

,a rdcolte s ajoutant aux<br />

: pour obtenrr des cada-<br />

', jt')rD€nt les possibilitds<br />

'-, sur le profit escornptd<br />

ians certains cas, consi-<br />

,:olitique d'6limination<br />

's et le repeuplement<br />

;sid6rdes comme rdsis-<br />

)rtement nettoyeuses<br />

.i mycoses et ceci ne<br />

:1u'd partir de lignees<br />

d'une race pure adap-<br />

''rmatologiques du lieu<br />

Andr€ FEGARD.<br />

))<br />

lui donnerez<br />

complete.<br />

N. 54 - 1979<br />

J<br />

lE COUVAIN PLATn€<br />

Etat actuel de nos connaissances<br />

et de nos recherches en vue d'une maitrise de cette maladie<br />

(American Bee Journal, Traduction lsabclle VAlI-LANT]<br />

Martha Gi l-I.i"am<br />

INTROI}UCTIOFJ ;<br />

Le ccuvain platre est une maladie qui<br />

touche le cotrvain d'abeilles et qui est<br />

caus6e par le e:lrampignon : AscosFiraeta<br />

Apis. Les larves malades se nlomiiienl<br />

fig, l), et les momies deviennent blarr<br />

ches b cause du mycelium dr,r champignon<br />

{Fig. 2). Pourtent, si des mycelia de<br />

Sexes opposds (+ et --) se regror.rpent. il<br />

se <strong>for</strong>me des spores i I'intdrieur des corps<br />

f iuctil:r',::; :: 'L;. lJl cl les tlonlil:s du-viennr:nt<br />

iortcee.', glises ou itoires (i:ii;. 'i1. g,t<br />

t:-ouve ces nrotnies a I'enlrtie ries ruches,<br />

sur le plancher et dans les cellules de colo'<br />

nies infest6es.<br />

Maasson (1913J, en Allemagne, publia les<br />

premi6res observaticns concernailt Ie couvain<br />

piit16. En 1916, il d6crivit le chanrpi'<br />

qnon ct I'appela Pericystis apis. ['!rrs tarcl.<br />

aux Etats-Un;s, Spiltar (1955) a itudi6 le<br />

cycle de vie et Spiltar et Olive (1955) ont<br />

rdclassifi6 le champignon et ont 6tabli une<br />

nouvelle espdce, Ascophaera, puisque le<br />

nom Pericystis avait d6ja 6t6 employ6 pour<br />

!'algue rouge.<br />

HEP,tRTITION GEOGRAPHIOUE :<br />

L6 couvain pl?rtrd a 6t6 signal6 depuis<br />

plusieurs anndes en Europe, les lles Britan'<br />

'niques<br />

incluses. En 1957. Seal signala le<br />

'couvain pl6tr6 en Nouvelle 26l<strong>and</strong>e.<br />

Baker et Torchio (1968) publierent leur<br />

premier rapport sur A. apis aux Etats-Unis.<br />

Les cas isol6s qu'ils signalbrent iurent associ6s<br />

b l'abeille coupeuse de feuilles,<br />

tulergachile inermis, et ir I'abeille qui nidifie<br />

dans le sol, Antophora pacificia Plus tard,<br />

Thomas et Luce (1972) signalOi'ent la maladie<br />

chez des abeilles productrices de miel<br />

en Cali<strong>for</strong>nie ; Hitchcock et Christenserr<br />

(1972) trouvdrent la maladie clrez des lar'<br />

ves d'abeilles au Nebraska et en Wyonring<br />

et notbrent que d'autres cas de maladie<br />

avaient atti16 leur attention en Cali<strong>for</strong>nie,<br />

Minnesota, Dakota du Nord et Montana.<br />

Gilliam et Taber (1973) signaldrent la mala.<br />

die en Arizona et Conner (1974) en Ohio.<br />

Nelson (1976) visita 5.374 colonies dans<br />

cinq provinces du Canada en 1975 et d6couvrit<br />

que 32 orb de ces colonies avaient<br />

N" 54 - 1979<br />

,d'.:s nrorriics sur ieurs cadres. Celrendent,<br />

ii oo des coloriics touchdes avaient moins<br />

d': ifi ccllules atteintes. Une visite sinti'<br />

laire a dti cffc.;tudr: en 1976 dans; I'Ouost<br />

Canadien, qrri rr';vilait que 33 u,o des p;rquets<br />

d'abeilles et 20 o,a des colonies sddentaires<br />

avaicnt le couvain pl5trd.<br />

La maladic est maintenant largernent ddvetoppie<br />

aux Etats-Unis et au Canada. Err<br />

1976, on avait d6tectd le couvain pl5tr6 dans<br />

33 des 48 i.lets dt: cotttineni {avec l-la''vatl)<br />

c'; iJarrs C des [t provinr.iT'1 falt,..iiclrt.rt,:" iiJl'<br />

n:ipJCe ct Vvilscrr. 1!7C).<br />

L'ETIOLOGIE :<br />

Malheureusement, on connait peu de choses<br />

sur I'dpicldmiologie et la pathog6ndse<br />

dc la nralaciie. Selon Bai!ey (1967). lcs lrrves<br />

r.J abeilles sont plus sensiblers i Iir ;rralac.lic.<br />

Si elles ingereni des spores de A. aprs<br />

qu<strong>and</strong> elles ont 3 ou 4 jours, elles meurent<br />

alors 2 jor-rrs aprbs leur operculation. Ensuite,<br />

les spores germent dans l'intestin<br />

des larves. D'abord, les larves mortes sont<br />

recouvertes d'un duvet blanc de mycelia et<br />

sont gonflees ,1 la taille de la celluie. Plus<br />

lard, elles se dessdchent et deviennent des<br />

morceaux durs et ratatinds, comme de la<br />

craie, qui peuvent devenir grls oLr noirs si<br />

Ies corps {rrrciifiies se <strong>for</strong>nrent. On pu'trt<br />

troLvcr lcs restes des larves dans dcs.ccilules<br />

opercul6es ou pas. La plupart des<br />

larves nreurent au stade d6roul6. l-es abeilles<br />

arJultes retircrrt g;6n6ralement les nromies<br />

que l'on peut retrouver i I'entrde des<br />

ruches ou sur le plancher.<br />

ll y a eu des contreverses en ce qui<br />

concerne I'origine de I'iniection de A. Apis,<br />

) savoir si elle provient C une ingestion<br />

de spores par la nourriture, ou par le corps<br />

lui-nrcrne .1 parlir de s;rores se l.rout,ant sur<br />

les cadres ou sur Ies parois des cellules.<br />

Gochnauer (1975) affirmait qu'une fois que<br />

la colonie dtait infest6e, les spores pou-<br />

'/aient rester actifs, et ainsi la nraladie<br />

pouvait riapparaitre. ll suggrdra aussi que<br />

I'A. Apis pouvait survivre dans le sol, s'introduire<br />

dans la chaine alimentaire ce I'a-<br />

[:eillr: et ainsi contaminer les larves par<br />

la nourriture.<br />

175<br />

sfi i',<br />

Ft-i '<br />

fi'i:<br />

t(...<br />

HE<br />

ffi-iffiffi:i;iiffi<br />

!::.1..-: 1.:. a': . 'l- - irI<br />

i i..":.., .; , -.-': i '<br />

FF"<br />

i'{ '<br />

F:<br />

[,i<br />

f-"<br />

f. ,,<br />

L:,<br />

i<br />

l:.'<br />

1..<br />

Fl<br />

h..<br />

I.<br />

b.<br />

F<br />

F}<br />

t<br />

ir ,.!<br />

ffi<br />

t-r,<br />

F,:<br />

f,.:<br />

F:'r':<br />

[l3<br />

H'<br />

El.<br />

K;i<br />

F r':.<br />

Fi-:<br />

til<br />

I;-.<br />

Eri.<br />

F}i,,:,<br />

El':<br />

lrr;r*i';iffi $*:11.';f :#,li*ffi<br />

1J.1,'::.":i;, ::'---," ;-.',..1', l: r:i.].- ., .'^". - . i, l-,;l;.i" 1i<br />

iilii:,',i1i:,i":ii;fli,i ;1-,:-: f.i; 1r'1*<br />

*i*,*ri;itlffi lr$il$r*ilitii g$g$$.r*1**f$*$ffiffii*f*-*lt**iti+i*ii i5;;1i+t*#,1iii*i'ffi t,<br />

-',<br />

iiff:it-1ft1i1;1i:i1ii;ii,;;a;1igg*i$*ffiu<br />

Fff fr#$Iiiiiiiiff Tiiliiffi iil;,,'ii;ili*iiffi iffi i*ff<br />

ffi-.€ffi*igtiiiffgi+isd$t*#_t g**:i;ri;ir*iiqffi*;i#iiij*l${ffi<br />

i * *if# $ #f **# 1i$$ffitiffi<br />

**Hsiriiti,*i*{a';;li&*,i<br />

.,'..<br />

Fil;


Bren que I'on considdre comrne peu importante<br />

la propacation de I'infection (Bailey,<br />

1963) les spores sont trAs 16sistantes<br />

et restent infectieuses pendant 15 ans (Toumanoff<br />

, 1951 ).<br />

l',laurizio (1934) et Betts [1951) pensaient<br />

que la maladie 6tait probablement transportde<br />

par le miel et. par consdqr-rent, l'on<br />

devait iviter de nourrir avec du miel provenant<br />

de colcnies irifect6cs fr,{aurizio (1934)<br />

trouva le ciranrpignon daris les intestins<br />

d'abeilles et d6clara quc I'organisnre hibernait<br />

dans les abeilles et dans le miel<br />

De Jong et Morse (1976) trouvdrent I'A.<br />

Apis dans le contenu des jabots des abeilles<br />

adultes et montrdrent que les spores<br />

passaient d'abeille en abeille par l'6change<br />

de nourriture.<br />

Une arrtre extension arrive surtout par<br />

les C6p!acemenis ii'abeille: i,;i.ovenant de<br />

cr,!,rnies rc;cs: irs. C::p.:idi::;. l,r ce ll.;tr;tinaticn<br />

peut arrivcr aLrssi a ceuse cle l'apiculteur,<br />

qu<strong>and</strong> celui-ci interchange des cadres<br />

et des outils de colonies infest6es<br />

avec des colonies saines (Barthet, 1971J.<br />

Parmi les autres sources possibles de<br />

contamination, il y a le pollen (fulehr, 1976),<br />

le vent, I'eau, les reines (De Jong et Morse,<br />

1976 - l\4oeller et Williams, 1976) et<br />

les paquets d'abeilles (Nelson, 1977).<br />

On a 6tabli que beaucoup de facteurs<br />

contribuaient au d6veloppement de cette<br />

maladie (voir Gillian, 1978). lls comprennent<br />

un refroidissement des larves, une<br />

faible ventilation des ruches, un temps frais<br />

et humide, des tempdratures et une humiditd<br />

6lev6es, des colonies faibles pour I'hi"<br />

vernage, une humidjt6 trop <strong>for</strong>te dans la<br />

ruche, la pollution de l'air, l'utilisation d'antibiotiques<br />

favorisant le ddveloppement de<br />

champignons, des colonies souffrant d'autres<br />

maladies, du cou,rain endomma96, des facteurs<br />

g6netiques, une nourriture aqueuse,<br />

ei d;s nranipi.ilatir:rrs trop fresqr-ientes des<br />

colonies.<br />

ll a 6td suggijrci que d'autres insectes,<br />

principalement les abeilles sauvages ou<br />

solitaires, contribuaient A la propagation<br />

de ia nraladie. Ascosphaera apis a 6t6 associ6e<br />

ou a 6t6 trouvde chez les abeilles<br />

coupeuses de feuilles, les abeilles . magoos<br />

r, celles qui nidifient dans le sol, et<br />

les abeilles alkali (Baker et Torchio, 1968;<br />

Batra (1973; Chout, 156; Stephen et Undurraga,<br />

1965). Batra (1973) remarqua I'importance<br />

de la capacit6 de contamination<br />

par les colonies d'abeilles sauvages. Certaines<br />

butineuses de la plupart des espdces<br />

d'abeilles d'une m6me zone, se retrouvent<br />

sur les m6mes cultures et ainsi<br />

180<br />

i,rlrnlettent une contar.nirrati(,n par les fleurs.<br />

l)e plus, elles rdcupcrent les mdmes cham.<br />

pignons provenant des jabots d'abeilles<br />

d'ar.rtres espdces.<br />

Traitement :<br />

ll n'existe aucun agent chirniothdrapeutique<br />

pour lutter contre le couvain platrd aux<br />

Etrrts-Unis. Auparavant, lcs pertes occasionnies<br />

par la inaladie n'dlaient pas assez<br />

s6rieuses pour jLrstifier une rccherche sur<br />

Lin traitenrent. Pt.risqtre les alreilles adr.rltes<br />

gydtilr-alenrent entportent le r;orrvairr rnort<br />

hors de la ruclre. la rrralcdie disparait souvent<br />

sans I'intervention de l'apicuiteur. Dans<br />

des cas qraves, la deslrrrction de cadres<br />

touchds, ou de scctions de cadres, a 6td<br />

recomm<strong>and</strong>de IBetts, 195l : Gochnauer et<br />

al, 1S751. Giauffret et al f1969) et Thontas<br />

et i-ir,.rc (l!112) lrouvuitlt qll.i llr lun-rigati,tn<br />

i I'o;.)rde ci'ithyl..;rc lrr.rii l'A. ltpis.<br />

ll far.rdrait probablerrerrl eviter I'accurlulation<br />

d'hunridit6 et une verrtilation suifisante,<br />

puisqu'il parait que le tentps froid et humide<br />

encourage le ddveloppernent de la maladie.<br />

Z<strong>and</strong>er (1919) insista sur I'importance<br />

d'envelopper les colonies pendant I'hiver<br />

et de les tenir au sec. Seal (1957) disait<br />

qL'on pouvait 6viter Une extension s6rieuse<br />

de la maladie en. fernrant les ruches pour<br />

l'hiver et en nettoyant I'herbe autour des<br />

ruches pour 6viter I'humiditd et permettre<br />

une bonne ventilation. On peut aussi 6larqir<br />

I'entr6e de la ruche pour favoriser la<br />

ventilation (Goclrrrauer et al. t9751.<br />

Seal (1957) reccmrnancla de renf orcer les<br />

ruches <strong>for</strong>tenrent nralades en ajoutant de<br />

;eunes abeilles adultes et du couvain opercr,rld<br />

et en les nourrissant de sirop de<br />

sucre. ll dit aussi que la nraladie poirvait<br />

etre 6vitde en ne laissant pas les abeilles<br />

hiverner dans un corps de ruche trop grarrd.<br />

Lunder (19'/2) sug96ra I'enrploi de reines<br />

r6sistantes, et Mraz (1973) recolnm<strong>and</strong>a de<br />

remplacer les reines par des souches noll<br />

sensibles aux maladies. R6cernrnent, Nelson<br />

{'19751 fit des croisemerlts entre des<br />

souches de Nouvelle-Zel<strong>and</strong>e et des sou.<br />

ches de Cali<strong>for</strong>nie et trouva que la souche<br />

obtenue 6tait moins atteirrte de couvain<br />

pl6t16 que la souche de Cali<strong>for</strong>nie.<br />

Plr,rsieurs auteurs ont nrene des expdriences<br />

au sujet de I'utilisation de mtidicaments<br />

pour contr0ler la maladie. D'une<br />

nranidre gtin6rale, ces tentativcs n'ont pas<br />

renrport6 de succds, ) cause de la toxicit6<br />

des mddicaments pour les abeilles, du fait<br />

que beaucoup de medicaments n'dtarent pas<br />

acceptables pour les abeilles, et b cause<br />

du terrips et du travail exig6s pour ddsin-<br />

N" 54 - 1979<br />

lectcl iorrt.<br />

W'ide {1${'<br />

mol empi:'<br />

Apis en ctrl<br />

6tait vapor<br />

maladie di'<br />

saire de ,<br />

parois intt.<br />

abeilles n',<br />

mol dans<br />

que le tl'<br />

avait un u<br />

dans les 2'<br />

ll affirnra .<br />

nettoyaqe ,<br />

vention.<br />

Dallrnrar'<br />

. Fcsia.l'o.<br />

des ccrloni<br />

ll a vapor,<br />

coul,airr,:'<br />

clte t-'t sLl<br />

api'Bs l:i<br />

de colonr.<br />

retird les<br />

d'inf ectior:<br />

solution i<br />

le chanrpi<br />

expdriencr<br />

cides ( r ,<br />

4 o'o de.<br />

aprds 30 r<br />

Des ar.:<br />

6td expdr:<br />

ble d;ns<br />

Giaulf rer<br />

I'anrpl, ':<br />

Pourtar<br />

septiqu l<br />

plus toxr(.<br />

tinrycos ictr<br />

trouvdret"<br />

du sirop r,<br />

positif por<br />

compldrci<br />

Thomas<br />

I'acide sc'<br />

benzoate<br />

tard, Tab'.<br />

sorbique t<br />

petites h,<br />

donndes<br />

teintes. t<br />

le d6but<br />

symptorrl<br />

aucune .t<br />

L'utilisa'<br />

(l) funt<br />

No54-<br />

*d*ifffi3*<br />

ff1i$t *r*ilffi,**+lt#*r#ffi#<br />

.Ct'*jr:-:j*lk;i*,.,r;*'j.' j;;- r.;rr*", ,l-' ',j,.,r.,.,i;,;.*,^i-n;*i'. 'n:'..;'''Ji.i$*;;. - .- ''*i'''


trininaticr par lcs lleurs<br />

i,ire:rt les ii.,ren'"i .nnr.<br />

dcs . jabr ts d'abeilles<br />

i:gent chimiothcrapeuti.<br />

:a- le couvain platrd aux<br />

r|it, les peries occasion.<br />

l;e n'6taient pas assez<br />

.fier une recherche sur<br />

,, te les abeilles adultes<br />

,i ient le couvain mort<br />

maladie disparait soucn<br />

de l'apiculteur. Dans<br />

destruction de cadres<br />

.iions de cadres, a 6td<br />

. 1951 ; Gochnauer et<br />

ri al. (1969) et Thomas<br />

.rent que la fumigation<br />

r .r,l lA r\n:;<br />

r1leiri dvitar i lr,;c;irn.]..il;t.<br />

,,r ventilatit,;, suif isanie,<br />

l'' temps froid et humi-<br />

,.Sppernent de la nrala-<br />

,:,ista sur i'rnrportance<br />

,ries pendant I'hiver<br />

;. Seal [1957j cjisait<br />

,,re eXtens,^rr StirieUSe<br />

, rrrant les rr.tches pour<br />

.I'herbe autour des<br />

, humidit6 et permettre<br />

,i On peut aussi 6lar-<br />

,'he pour favoriser la<br />

'r et al, '1975).<br />

'' <strong>and</strong>a de ren<strong>for</strong>cer les<br />

,:;lades en ajor,itant de<br />

.r;s et du couvain oper-<br />

'rrrissant de sirop de<br />

.rr: la maladie pouvait<br />

,:,sant pas les abeilies<br />

irs de ruche trop gr<strong>and</strong>.<br />

',',rr I'enrploi de reines<br />

:3) ieco,;t;i,<strong>and</strong>a dc<br />

par des souches non<br />

', .s Bticemment, Neii<br />

.)isements entre des<br />

,-Z6.l<strong>and</strong>e et des sorl-<br />

: trouva que la souche<br />

, atteinte de couvain<br />

. te Cali<strong>for</strong>nie<br />

ont mene des exp6-<br />

:'uiilisation de rn6dica-<br />

,;r la maladie. D'une<br />

3 tentatives n'ont pas<br />

i cause de la toxicitd<br />

,- les abeilles, du fait<br />

rrran rents n'6taient pas<br />

. abeilles, et a cause<br />

,,1 exig6s pour ddsin-<br />

N-, 54 - 1979<br />

tectcr toutc la ruche. filrr a*s1r_r,lc, Elbe et<br />

Weide {'liit;i) trouvircnt QLre Cr ' 'ti de thy'<br />

nrol enrpechait le devclopperrrJrrt cie l'A.<br />

Apis en culture. Ou<strong>and</strong> la solution de thymol<br />

dtait vaporis6e sur les cadres infestdes, la<br />

nr:;lirdie disparaissait. Pourtani, il fut neccs"<br />

saire de vaporiser chaqLre cacjre et lcs<br />

parois intdrieures du corps clc ruche. Les<br />

abeilles n'accepteraient pas il.'i lo de thy.<br />

nrol rlairs du sirop, Barthei ii971), trouva<br />

c;ile le thymol ciair: une srl.jt;on A 2 o,'o<br />

avait un e{fet destructeur du charnpignorr<br />

dans lcs 20 nrinutes (sur I'A. apis in vitro),<br />

ll affirnra qtre la stirnulation de Iirrstinct dt:<br />

nettoyage Stait ia prlnciprlle nresur"e de pro'<br />

ven tion.<br />

Dalhman (1936) a test6 le desinfectant<br />

. Fesia-Forrn " (base <strong>for</strong>mol dehydel sur<br />

des colonjes rrrlest6rs de couvain platri.<br />

ll a vaporis6 la solutiorr sur les cadres de<br />

couvuirr, st-rr les parois rnicrnes clc ii ru-<br />

:ir.: 3t Sr.;; llr pltnche {j r::;:li. Lil.: :.1-rrr',r,|,,<br />

:,p;-Js la v.til,-)iis0tion, ir:s abeilies aOiiitl:;<br />

de colorrics sirieusenrent inlesl6es. ava;en',<br />

retird les nronries et on ne pouvaii revoir<br />

d'infection cette ann6e-la. ll trouva qu'une<br />

solution:l 4 qo de. Fcsia Form " tuait<br />

le champignon. Barthel (1971) a f ait des<br />

expiriences in vitro sur l';:clion ties fun(li.<br />

cides Il) contre I'A. apis et rapporta qUc<br />

4 o, Ce "<br />

Fesia Form, tuair ies spores<br />

aprds 30 minutes.<br />

Des antimycosiques et antiseptiques ont<br />

dt6 exp6riment6s en vue d'un usage possible<br />

dans le traitement du couvain plitri.<br />

Ciauff ret et Taliercio (t 967) rapportent rlLrc<br />

!':rnphetericine B dtaii la plus efficacc.<br />

Poii.riani, elle n'titait pas stable. l-es arrtiseptiques<br />

test6s 6taient plr.rs stables, nlais<br />

plus toxiques pour les abeilles que les ant<br />

jmycosiqrres. Moeller €.t Williai-;r (f !r76)<br />

trou','erent que 25 P ppr-n de berromyl rlans<br />

du sirop de sucre semblaient avoir un eftet<br />

positif pour rddirire, mais norr pas alinriner<br />

ci'ii,platai;:ent l'infci:i;on c.lu couva;;i pi;itre.<br />

Thomas et Luce ('1972) rapporteient que<br />

I'acide sorbique et le nrdthyl parahydroxybenzoate<br />

inhibaient I'A. apis en ctrlture. Plus<br />

tarcl, Taber et al. {1975) ont nris d.: i'acidc<br />

sorbique et du sodiurl prepionate dans des<br />

petites boulettes de pollen et de sucre,<br />

dorrrrdes b des colonies s6rieusenreni atteintes.<br />

La maladie disparut 7 jours aprds<br />

le debLrt du traiter;rent. ll n'y eut aucun<br />

synrpt0me de toxicit6 chez les abeilles et<br />

aLrcrJr)e rdduction cle c:otrvain opercult!.<br />

L'utilisation de la turnigation d'oxyde d'e-<br />

[1) fungi : clranrpignons<br />

N. s4 - 1979<br />

thylirre et la silection d'abcitles resistanics<br />

arr ccitvairr plltrc, parilisserrt lr:s moyens<br />

lcs plus pronrettcurs cle controlcr la mirladie,<br />

trien qu'une recherche soit a faire pour<br />

tester l'efficacite de l'oxyde d'cthylcne<br />

corrtrc I'A. epis, ot Jrorrr sclcctionncr e1<br />

6lever des abcillt:s risislantes.<br />

Fig. 1 : larves d'abeilles nronrifi6es par rlne<br />

infcctirir cl'A. lrli: ;tc:'.j..(,t)'.ilt,;ic.<br />

I a;s it,trinres soni itl.rlrciii.,;.<br />

Fig. 2 : Espbce norr accoiipl6e d'Ascosl;hae<br />

ra apis. fJycelia seir!enr€:nl.<br />

F'; j<br />

Fig. 3 : Espdce d'A. apis accoupl6e, montrant<br />

dus spores dans les corps<br />

{rr.rct if eres.<br />

-.1.<br />

j'- -" '. r-, !<br />

!i<br />

';.<br />

1 _,j<br />

.,1::..'j1 f, -:i<br />

t i...,'<br />

j<br />

A.tr:' -.-1" ^.\<br />

i;.j'lr<br />

181<br />

:<br />

h;,<br />

tr,<br />

F.,i


Hypolhescs :<br />

L'oriqine cJe la inalaclic atrx'Itats-Uttil r:s;<br />

un mystore. ll exisic au nroins delrx possibilitds-<br />

Certains pensent que cette rnalrdie<br />

dtaient prisente rians le prys depLris lorr5t"<br />

teillps, mai:i .rir: i):i !r ) arccorriait t)3:t d i;ii<br />

portance. Fr,rsilr;g bcaucotip de nricrc'biologistes<br />

compdtents ont exanrine les rnaladies<br />

d'aheilles depuis Ionr.;tcnrps, il sr:rnble intprobable<br />

qu'ils n'aient pas exar-ninti le cor.rvain<br />

pliird s'il exist;rit. Je strspeci.t: les<br />

apiculteurs d'avoir crir a une autre inaladie<br />

de champignon, le couvain p6trifi6. qtri elle;<br />

aussi donne des ntomies. Ceux qui pL'irsent<br />

que la nialadie existait deprris des atrirules<br />

pensent aussi nle, rticeintrtettt, e!le s'es't<br />

propa96e et 1;'r-'st aggravee. Si cela es:<br />

vrai, c'est quc ie chanrpicuron s'esi trans<br />

{or:rtti oti bien igire les aociiic,s sc}tli iirl\/enues<br />

plus sensibles. En effet. les espcces<br />

6lr:.'r. ;1;1i5 clrt.; Itats'lJrriS D:1ilvcllt 0lrr: difttrr,.c:;li<br />

ii ili: cCli*s 11|e I'i,:'t irllve :|,t,:t.[-s<br />

ciarr.g le trrlrt,ie.<br />

Lc chanrpignon peut a,,'oir'exist6 chez des<br />

abeilles solitaires ou sarivages dans le pay's<br />

depuis longiemps. Ceci ne peut 6tre v6rifi6,<br />

puisque peu de choses ont 6t6 faites sur<br />

la microflore de ces abeilles, laquelle a pr,r<br />

servir de foyer de contamination pour les<br />

abeilles productives de miei.<br />

D'autres pensent que le champignon ne<br />

fut introduit que 16cemment, peut-itre sur<br />

du pollen import6. Puis, l'usage de plirs en<br />

plus gr<strong>and</strong> d'antibiotiques dans le traitement<br />

des nraladies d'aceilles peut avoir aug'<br />

nrent6 l'!nciderrce de la rnaiadie, en botrle'<br />

versant la nricroflore intest!nale norntale;<br />

des abeilles.'<br />

Le couvain platrd pert 6tre une maladie<br />

due b un sr.ress puisqrie des abeilles artornrales,<br />

affam6es et elfernrees, sernblent<br />

plus sensibles. ll y a aussi des colonies<br />

nroins aptes que d'auires ?r retirer les iarrres<br />

malades.<br />

Ces conjectlrres nrontrent qu'i! y a Ce<br />

nombreuses pistes ini6ressantes de recherche<br />

sur la maladie, clLri devraient 6tre examindes.<br />

Plus partict:iierenrertl, il faLrdrl:it<br />

6tudier la classification et la virLtlence dcs<br />

espdces de A. apis, ainsi que la sensibrlrt6<br />

des souches d'ahellles.<br />

Rapport de recherche :<br />

L'un des obstacles majeurs dans la conduite<br />

d'une recherche sur Ie couvain pl6tre<br />

a 6t6 la difficult6 de provoquer des in[ections<br />

chez les abeilles ir 6tudier. Ces infections<br />

nous in<strong>for</strong>nreraient sur les,. contment<br />

D, " qu<strong>and</strong> " et " pourquoi " les<br />

182<br />

- -n .<br />

"i<br />

i-; l,';.'<br />

,.i ' ',r.,..1<br />

":<br />

. :l<br />

. . .,- i *+nt.1:-ir{d:}!.<br />

alreillcs r;Lrccclrrrbcnt ir ccttt: nrala,lrc ct ellcs<br />

t)ornrr:llrilicrlt dclalcrrrcrrt arrx cherclrirurs de<br />

iairc dc:; cxpi:ricnces :;rrr les nrctlroclr:s dc<br />

traitcnrent. Donc, rrou:; avons nrcnei des<br />

experietrces polrr infcctel-du couvain de<br />

colorrics d'rrrr rur;hcr ct cirr couvairt rlaintcnll<br />

cn irrr:ul.ratcrrr'. Lcs :pcrierrce<br />

sont dans li: r api)ort 16ccrrt dc<br />

Gillianr et al {1978).<br />

Llcaucoul.r cl'essiri:;, la 1;lupart ayant etd<br />

Sirrrs sr.rcCas ou norr rc;:rociuctifs, ont 6tc<br />

j:.;tir pour infecter lc coirvairr dans des<br />

colorries cle rucher avec de I'A. A.pis dans<br />

des conditions varices. affectarrt ?r la fois<br />

l'agcrrt ;ratlroqorre et lcs r;olonies. Ccs es,<br />

sais inclucnt:<br />

ir,nrploi cl'inocrrlats priparr)s a partir'<br />

cle cultrrre artificielles d'lt. apis, orr i<br />

I'inversr-', des supcnsions a partir de<br />

larves naturellenrent infest6es,<br />

- l'introcluction dc l'inocrrlat en v;rDori,<br />

SiiliOil dt:rirOIt r;t.iIit, en (jaillltrX Ljr:j<br />

1lollcr,,<br />

-- I'r.,iit1tloi rle rnoilir-'s avec d jverlopyrenrent.<br />

soit v6g6tatif, soit sporLrl€ de<br />

- I'altciration du rapport abeilles adLrl-<br />

- et l'introduction de nlomies moulues<br />

l'agent pathogdne,<br />

tes et couvain, par enldvement d'abeilles<br />

adultes orr de cacires oe couvain<br />

avant I'intro(iuction dc l'inoculat.<br />

dans du pollen.<br />

. !ji. ' :<br />

..: r'/. ,..<br />

..- '1:.<br />

,...<br />

, - t:l<br />

L':<br />

' \ ,iT.i<br />

. . ,l 1.. .. 'i l? . .i,.^<br />

krig ;j i. ':i<br />

r,J '. ';t l'n'<br />

r:'lr' i i' ,?rl t ,lr<br />

: . :{:r: .,1<br />

.,. i :<br />

' ",.,'<br />

' ' l':l<br />

t,':t'...l<br />

i.-..ii<br />

!:. i.r' ' :<br />

...: ,'r<br />

Fiq.4 : l-arves nrornifices p;rr urre irrfection<br />

d'A. apis accoupi6e. Les rnomies<br />

sont gris fonci orr noires.<br />

Lt,:, inicciiorrs les plt;s stivcreg frrrr,,1<br />

plovorlLr6es rlans des colonies qi,i avaicn,r<br />

dte nourries Ce pollen non contamine, afin<br />

de faire de l'dlevagre rJe couvain. De celles-ci<br />

on avait retiri rrn ccrlain nonrbre<br />

d'abeilles rclultcs avant d'avoir vapoiisti le<br />

couvain d'une suspension de trois rlomies<br />

noires (sporul6es) dans 9C nrl de 5 o,a cje<br />

sucrose darrs de I'eau. Ce traitelnent fut<br />

appliqui trois fois par jour, le 1", le 3'et<br />

le 5' .jour de I'experience et il provoqua de<br />

lourdes infections (10 9o du courrainJ :,u<br />

6' jour. Pourlant, ntOr.nc ce traitentent fut<br />

N, 54 - 1g7g<br />

filo I i<br />

furcri<br />

Ainsr<br />

colo:'<br />

int 1;L;;<br />

la d iLr<br />

/-\ '<br />

i nfec l<br />

nfJt[;<br />

relirr<br />

rilisat<br />

tenir<br />

in oct,'<br />

D",<br />

st l;.<br />

plStr-r<br />

:a it<br />

d'a Lrt r<br />

Pou rr '<br />

mific.<br />

aill:l:,i<br />

rl irf ,<br />

/et;'<br />

atia(i.<br />

par I<br />

savo i<br />

sont<br />

De<br />

ren (<br />

r)'ar'<br />

leu r..;<br />

jours<br />

Lan<br />

f ro, i:<br />

Des<br />

l6s<br />

la<br />

Sur<br />

t,j<br />

api s<br />

I'A. a<br />

la rv e.<br />

pous:<br />

cies i,<br />

Dc<br />

tion'<br />

sur l,<br />

ri i, i rr.<br />

avoil -<br />

la bc,<br />

des l.<br />

les.;<br />

POUS S<br />

tion:<br />

E nsr.<br />

e ntit<br />

Les<br />

pas,<br />

ves c<br />

N":


'lt A ceite nraladie et elles<br />

.'lemei,rt aux chercheurs de<br />

rnces sur les nrdthodes de<br />

'. nous avon: men6 des<br />

; infe'eter du couvain de<br />

.;lrer et dtr couvain nrain-<br />

'ir. Les d6tails de I'exp6-<br />

,.i le rapport rdcent de<br />

i$.1.<br />

::tis, la plupart ayant dt6<br />

,rrn reproductifs, ont 6td<br />

ier le couvain dans des<br />

)r avec de I'A. Apis dans<br />

rriees. affectant i la fois<br />

' et les colc'nies. Ces es-<br />

,,,:ulats prepards b partir<br />

,.tificielles d'A. apis, ou i<br />

:; supensions ir partir de<br />

'. f ement infest6es,<br />

Je linoculat crr '.,eporir:rp<br />

et7/otr, en gate;u:< de<br />

. ronries avec d6veloppeegdtatif,<br />

soit sporul6 de<br />

.rleO€.<br />

. r rapport abeilles adul-<br />

,n, par enlevement d'abeil-<br />

,'tr de caores de couvain<br />

..::ion de I'inoculat,<br />

,ron de momies moulues<br />

;rn-<br />

rrtrifiies pai une infectiln<br />

.i(.coupl6e. Les morrries<br />

lC)rrCd oU noires.<br />

ir:s plus sdvdres furent<br />

rr:s colonies qui avaient<br />

. llen non contamin6, afin<br />

.rge de couvain. De cel-<br />

.!iird un certain nornbre<br />

avant d'avoir vaporis6 le<br />

nension de trois momies<br />

dans 90 ml de 5 ortr de<br />

i'eau. Ce t.aitement f ut<br />

par jour, le 1", le 3' et<br />

..i-ier ce et il provoqua de<br />

it 0 o/o du couvain) au<br />

rn6me ce traitement fut<br />

N. 54 - 1979<br />

nloins e{ficace dans d'autre:. iolonies qui<br />

furent traitdes a des p6riodes ,-,lus tardives.<br />

Ainsi, les diff drences de sensibilitd des<br />

colonies d'abeilles peuvent etre un facteur<br />

important dans la nranifestation de la rnaladie.<br />

A cause de la difficultd i introduire des<br />

infections dans des colonies dc rucher,<br />

nous avons in,/ent6 des techniqUes pour<br />

retirer lc cor-rvain des cadr"es, pour la ste.<br />

rilisalion en surface du couvain, pour ntain<br />

tenir le couvain dans un incubair:lrr., et porrr<br />

inoculer du couvain avec l'A. aprs.<br />

D'abord, nous avons cherche ir diterrnincr<br />

si I'A. apis causail la nralaclie du couvairr<br />

plafrd, ou bien si simplelrent, elle envahil:<br />

sait lr:s larves dr:;i tuics orr blessdes pc<br />

d'autrcs choses. {;r:t1s dgrl';arc hypofhes,<br />

pourrait 6tre appuyde par le fait de la momifieation<br />

des lan'sl ntortes. ItJols espirorr:,<br />

; irsr.:i tiiitrr,rinlr .li l,r n:r;r]l;lrcaiiitt viijitl<br />

cj'rnfeclions par C.lvelcp;re;irr:lrl i lr Irri,;<br />

vcq6tatif ct sporule, et si l'A. a;)is peui<br />

attaquer dcs larves par Ia cuticLtle ct<strong>for</strong>t<br />

par la bouche. De plus, nous espdrons<br />

savoir si les jeunes et les vieilles larves<br />

sont 6galenrent sensibles ) l'infection.<br />

Des larves de bellules desoperculies {urent<br />

16unies et divis6es en deux groupes<br />

C i;r:e, lcs petites et lcs Erondcs, -d'aprds<br />

leurs tailles. Les petites larves avaieni 3.4<br />

jours, et les gr<strong>and</strong>es avaient 4,5 b 5,5 jours.<br />

La moitid des larves furent tu6es par rcfroidissement<br />

avec de la neige carbonique.<br />

Des qroupes rle larves furent cnsuitr inocu.<br />

lds ave

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!