30.04.2013 Views

Vol. 15 - Deutsches Primatenzentrum

Vol. 15 - Deutsches Primatenzentrum

Vol. 15 - Deutsches Primatenzentrum

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

LEMUR NEWS<br />

The Newsletter of the Madagascar Section of the IUCN/SSC Primate Specialist Group<br />

<strong>Vol</strong>. <strong>15</strong>, 2010 ISSN 1608-1439<br />

Editors<br />

Christoph Schwitzer (Editor-in-chief)<br />

Bristol Conservation and Science Foundation, Bristol Zoo Gardens, UK; cschwitzer@bcsf.org.uk<br />

Claudia Fichtel<br />

German Primate Center, Göttingen, Germany; claudia.fichtel@gwdg.de<br />

Jörg U. Ganzhorn<br />

University of Hamburg, Germany; ganzhorn@biologie.uni-hamburg.de<br />

Rodin M. Rasoloarison<br />

German Primate Center, Göttingen, Germany; kirindy@simicro.mg<br />

Jonah Ratsimbazafy<br />

GERP, Antananarivo, Madagascar; gerp@wanadoo.mg<br />

Anne D. Yoder<br />

Duke University Lemur Center, Durham, USA; anne.yoder@duke.edu<br />

IUCN/SSC Primate Specialist Group<br />

Chairman Russell A. Mittermeier, Conservation International, Arlington, VA, USA<br />

Deputy Chair Anthony B. Rylands, Conservation International, Arlington, VA, USA<br />

Coordinator – Section on Great Apes Liz Williamson, Stirling University, Stirling, Scotland, UK<br />

Regional Coordinators – Neotropics<br />

Mesoamerica – Liliana Cortés-Ortiz, Museum of Zoology & Department of Ecology and Evolutionary<br />

Biology, University of Michigan, Ann Arbor, MI, USA<br />

Andean Countries – Erwin Palacios, Conservation International Colombia, Bogotá, Colombia and<br />

Eckhard W. Heymann, <strong>Deutsches</strong> <strong>Primatenzentrum</strong>, Göttingen, Germany<br />

Brazil and the Guianas – M. Cecília M. Kierulff, Instituto para a Conservação dos Carnívoros<br />

Neotropicais – Pró-Carnívoros, Atibaia, São Paulo, Brazil, Fabiano Rodrigues de Melo, Universidade<br />

Federal de Goiás, Jataí, Goiás, Brazil, and Maurício Talebi, Universidade Federal de São Paulo, Diadema,<br />

São Paulo, Brazil<br />

Regional Coordinators – Africa<br />

West Africa – W. Scott McGraw, The Ohio State University, Columbus, OH, USA<br />

Regional Coordinators – Madagascar<br />

Jörg U. Ganzhorn, Hamburg University, Hamburg, Germany, and Christoph Schwitzer, Bristol Conservation<br />

and Science Foundation, Bristol Zoo Gardens, Bristol, UK<br />

Regional Coordinators – Asia<br />

China – Long Yongcheng, The Nature Conservancy, China<br />

Southeast Asia – Jatna Supriatna, Conservation International Indonesia Program, Jakarta, Indonesia, and<br />

Christian Roos, <strong>Deutsches</strong> <strong>Primatenzentrum</strong>, Göttingen, Germany<br />

IndoBurma – Ben Rawson, Conservation International, Hanoi, Vietnam<br />

South Asia – Sally Walker, Zoo Outreach Organization, Coimbatore, Tamil Nadu, India, and Sanjay Molur,<br />

Wildlife Information Liaison Development, Coimbatore, Tamil Nadu, India<br />

Editorial assistants<br />

Nicola Davies, Rose Marie Randrianarison<br />

Layout<br />

Heike Klensang, Anna Francis<br />

Front cover: The Endangered golden-crowned sifaka (Propithecus tattersalli) at the edge of an area devastated<br />

by gold mining activities in the Daraina region of north-eastern Madagascar. © Pete Oxford/naturepl.com<br />

Addresses for contributions<br />

Christoph Schwitzer<br />

Bristol Conservation and Science Foundation<br />

Bristol Zoo Gardens<br />

Clifton, Bristol BS8 3HA<br />

United Kingdom<br />

Fax: +44 (0)117 973 6814<br />

Email: cschwitzer@bristolzoo.org.uk<br />

Lemur News online<br />

All <strong>15</strong> volumes are available online at www.primate-sg.org, www.aeecl.org and www.dpz.eu<br />

This volume of Lemur News was kindly supported by the Margot Marsh Biodiversity Foundation<br />

(through Conservation International’s Primate Action Fund) and by WWF Madagascar.<br />

Printed by Goltze GmbH & Co. KG, Göttingen, Germany<br />

Jonah Ratsimbazafy<br />

GERP<br />

34, Cité des Professeurs<br />

Antananarivo 101<br />

Madagascar<br />

Email: gerp@wanadoo.mg


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 1<br />

Editorial<br />

I am writing this Editorial only a couple of days after another<br />

attempted (and failed) Coup d’Etat in Madagascar,in which a<br />

faction of the army tried to topple the Transition Government.<br />

For nearly two years now, since the start of the political<br />

crisis in early 2009,the country has not seen a week without<br />

demonstrations, tensions between different political<br />

parties and attempts from international mediators to get<br />

power-sharing agreements signed by all sides. Most donors,<br />

governments and multinational organisations alike, have<br />

frozen all non-humanitarian aid for Madagascar,which has led<br />

to severe funding shortages in the environmental and conservation<br />

sector. The political crisis has thus quickly turned<br />

into a full-blown environmental crisis, with large-scale illegal<br />

logging taking place mainly in eastern Madagascar (Marojejy,<br />

Masoala, Makira), and unseen levels of lemur poaching all<br />

across the island.To keep people aware of the seriousness of<br />

the situation we have decided to run another feature on<br />

Madagascar’s environmental crisis in this issue of Lemur News,<br />

with an excellent update on illegal logging by Erik Patel as<br />

well as a case study of ongoing threats to lemurs and their<br />

habitat in Sahamalaza National Park by Melanie Seiler and<br />

colleagues.<br />

The conservation situation of lemurs has also been a big concern<br />

in several presentations given at the most recent 23rd<br />

Congress of the International Primatological Society in<br />

Kyoto, Japan. The talk that I remember best was by Lemur<br />

News co-editor Jonah Ratsimbazafy, who reminded the audience<br />

in a very emotional way that scientists and conservationists<br />

working in Madagascar had a moral responsibility to<br />

respond to the "cries of the lemurs", as otherwise these<br />

would remain unheard by the Malagasy and international<br />

community.In the biennial discussion session of "Primates in<br />

Peril", the list of the world’s top 25 most endangered primates,<br />

issued jointly by the IUCN/SSC Primate Specialist<br />

Group and IPS,lemurs remained a very high priority and will<br />

again make up 20% of the 25 listed species in the next biennium.Sadly,Madagascar<br />

thus retains its first place (along with<br />

Vietnam) as the country harbouring the highest number of<br />

the top 25. It can only be hoped that the political classes of<br />

Madagascar come to agree a way out of the current crisis<br />

sooner rather than later, as otherwise we run the very serious<br />

risk,during the UN Decade of Biodiversity 2011-2020,of<br />

losing a substantial proportion of the endemic biodiversity of<br />

this amazing megadiversity country.<br />

Alison Jolly with Russ Mittermeier at the IPS Lifetime Achievement<br />

Award 2010 ceremony in Kyoto. (Photo: R. Mittermeier)<br />

For a change,on a very positive note,I am thrilled to say that<br />

Alison Jolly was awarded the IPS Lifetime Achievement<br />

Award for her long-term commitment to lemur conservation<br />

and environmental education in Madagascar (see News<br />

and Announcements). My two daughters (now 4 and 2 years<br />

old) and I particularly enjoy reading Alison’s children’s book<br />

on Bitika,the mouse lemur,as,I am sure,do lots of children in<br />

Madagascar and elsewhere in the world.<br />

It is encouraging to see that this volume of Lemur News is<br />

again full of articles and short reports not only on lemur species<br />

red-listed in one of the Threatened categories (VU, EN<br />

or CR),but also on Data Deficient nocturnal species such as<br />

Mirza zaza,Lepilemur leucopus and the recently rediscovered<br />

Cheirogaleus sibreei (see the articles by Rode et al., Fish, and<br />

Blanco, respectively). As Johanna Rode and colleagues point<br />

out in their short report on Mirza zaza,Madagascar is in the<br />

unusual situation that 45 % of its primate species are redlisted<br />

as Data Deficient,which is a far higher percentage than<br />

in any other primate habitat country and mainly derived<br />

from the discovery of dozens of cryptic species in the genera<br />

Lepilemur and Microcebus over the last couple of years. Many<br />

of those species are only known from their type localities<br />

and may in fact be highly endangered. The more research is<br />

conducted and published on them, the easier it will become<br />

to assign them a conservation status and target them with<br />

conservation measures. It will require a concerted effort of<br />

the lemur research and conservation community over the<br />

next decade or so to to reduce the number of Data Deficient<br />

species to a level comparable to other regions (or, ideally, to<br />

zero).<br />

Another encouraging development is the frenzy of research<br />

and conservation activities now under way for Prolemur simus<br />

at various locations both south and north of the Mangoro<br />

River,reported by Dolch et al.as well as Rajaonson et al.in this<br />

volume. The greater bamboo lemur undoubtedly remains<br />

one of the most endangered of Madagascar’s lemurs. However,<br />

with several additional populations having been discovered<br />

over the last two years, workshops having been conducted<br />

that have led to a joint-up approach to this species’<br />

conservation,and the ex situ population having been included<br />

as an integral part of conservation efforts, I now think that<br />

we stand a real chance of saving Prolemur simus from extinction.<br />

As Jörg Ganzhorn announced in his editorial to Lemur News<br />

14, I have taken over the coordination of this newsletter<br />

from him after the 2009 volume, hence this is now the first<br />

volume that I have helped produce (which is my humble excuse<br />

for its slightly late publication). Jörg has been involved<br />

with Lemur News since its inception in 1993,first as a member<br />

of its Editorial Board and from volume 3 (1998) as its Editor.I<br />

am thus pleased to say that we will not lose his experience<br />

and backing,as he has kindly agreed to remain part of the editorial<br />

team. Likewise, Jonah Ratsimbazafy and Rodin Rasoloarison,who<br />

have been the newsletter’s Malagasy coordinators<br />

since 2006, and Anne Yoder, who represents the Duke<br />

Lemur Center, will carry on as editorial team members, for<br />

which I am grateful.I am indebted to Heike Klensang,who has<br />

been doing the layout for Lemur News now for more than a<br />

decade and is still not tired of it,and to Anna Francis,who has<br />

designed the beautiful new logo and front cover. Very many<br />

thanks also to Stephen D. Nash for the wonderful lemur silhouettes<br />

that we printed on the inside back cover.<br />

This volume of Lemur News was kindly supported by the<br />

Margot Marsh Biodiversity Foundation through Conservation<br />

International’s Primate Action Fund, and by the WWF<br />

Madagascar and West Indian Ocean Programme Office.


Page 2 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

I very much look forward to helping to take Lemur News into<br />

the UN Decade of Biodiversity together with the editorial<br />

team and with its base of loyal contributors and readers,and I<br />

will do my best to ensure that the newsletter will continue to<br />

help promote the conservation of lemurs as it has done for<br />

the last 17 years.<br />

Christoph Schwitzer<br />

Feature: Madagascar’s<br />

Environmental Crisis<br />

Madagascar’s illegal logging crisis: an update<br />

and discussion of possible solutions<br />

Erik R. Patel<br />

Cornell University, 211 Uris Hall, Ithaca, NY 14850, USA,<br />

patel.erik@gmail.com<br />

How sure are you that your favorite rosewood or ebony<br />

acoustic guitar was not made from rare,illegally logged trees<br />

in Madagascar;an exceptional biodiversity hotspot with desperately<br />

little original forest remaining? What is the origin of<br />

the wood in the expensive oriental-style rosewood furniture<br />

which is heavily advertised for sale on the internet? Unfinished<br />

rosewood boards from Madagascar are openly sold<br />

even in the United States (www.gilmerwood.com/boards_<br />

rosewood-exotic_unique.htm) and the United Kingdom (www.<br />

exotichardwoods.co.uk/Woods_List/Madagascar_Rosewood.asp).<br />

Can such vendors prove that the rosewood was legally (and<br />

ethically) obtained? The answer is usually "no".These can be<br />

difficult questions for consumers to answer, but purchasing<br />

these products can prolong the ongoing logging crisis in<br />

northeastern Madagascar in some of the most unique and biologically<br />

diverse forests in the world.<br />

Consumers should be suspicious since none of these rapidly<br />

disappearing Madagascan rosewood and ebony species are<br />

yet protected under CITES,the Convention on International<br />

Trade in Endangered Species. In November of last year, Gibson<br />

Guitars, one of the two largest U.S. stringed-instrument<br />

companies,came under federal investigation for violating the<br />

Lacey Act by allegedly using illegal rosewood from Madagascar<br />

which had first been shipped to Germany and then the<br />

United States (Michaels, 2009). Most of the illegally logged<br />

rosewood in Madagascar is used for the manufacture of furniture<br />

in China. Some of this is known to be sold in China as<br />

luxurious "Ming Dynasty style" furniture (Global Witness<br />

and Environmental Investigation Agency, 2009). Some may<br />

well be exported to western countries. China is the world’s<br />

leading exporter of furniture.According to the Office of the<br />

United States Trade Representative, the United States imported<br />

16 billion dollars of Chinese furniture in 2009,making<br />

it the USA’s fifth largest import from China.<br />

Illegal logging of rosewood (Dalbergia spp.) and ebony (Diospyros<br />

spp.) has emerged as the most severe threat to Madagascar’s<br />

dwindling northeastern rainforests. In 2009, a year<br />

of political upheaval in Madagascar due to an undemocratic<br />

change of power,approximately 100,000 of these trees were<br />

illegally cut in the UNESCO World Heritage Sites of Masoala<br />

National Park,Marojejy National Park,the Makira Conservation<br />

Site, and Mananara Biosphere Reserve (also a national<br />

park).Needless to say,the wood is extremely valuable.Rosewood<br />

can sell for US$5,000 per cubic meter,more than double<br />

the price of mahogany.Several hundred million dollars of<br />

these precious hardwoods were cut in 2009 in protected<br />

areas. The overwhelming majority of these profits are taken<br />

by a rosewood mafia of a few dozen organizing individuals,<br />

many of whose identities are well known.Few others benefit.<br />

Harvesting these extremely heavy hardwoods is a labor intensive<br />

activity requiring coordination between local residents<br />

who manually cut the trees, but receive little profit<br />

(about US$5/day), and a criminal network of exporters, domestic<br />

transporters, and corrupt officials who initiate the<br />

process and reap most of the enormous profits. This is a<br />

"tragedy with villains" unlike habitat disturbance from subsistence<br />

slash-and-burn agriculture which has been well described<br />

as a "tragedy without villains" (Barrett et al., 2010;<br />

Débois, 2009; Global Witness and Environmental Investigation<br />

Agency,2009;Patel,2007,2009;Randriamalala and Liu,in<br />

press;Schuurman and Lowry,2009;Schuurman,2009;Wilme<br />

et al., 2009; Wilme et al., in press).<br />

Globally, illegal logging results in an estimated US$10 billion<br />

lost per year to the economies of timber producing countries<br />

(Furones, 2006). In addition to depriving the government<br />

of Madagascar of millions of dollars of taxable revenue,<br />

illegal logging of this precious wood has decimated tourism<br />

in northeastern Madagascar, which had become a growing<br />

source of local income. Although selective logging results in<br />

less absolute forest loss than clear-cutting, it is often<br />

accompanied by substantial peripheral damage such as decreases<br />

in genetic diversity and increases in the susceptibility<br />

of the impacted areas to burning and bushmeat hunting.<br />

Documented long-term ecological consequences of selective<br />

logging in Madagascar include invasion of persistent,<br />

dominant non-native plant species, impaired faunal habitat,<br />

and a diminution of endemic mammalian species richness<br />

(Gillies, 1999; Cochrane and Schultze, 1998; Brown and<br />

Gurevitch, 2004; Stephenson, 1993). In actual practice, rosewood<br />

logging has turned out to be far less "selective" than<br />

originally believed. Often rafts made of a lighter species of<br />

wood (Dombeya spp.) are constructed to float the much<br />

more dense rosewood logs down rivers. Approximately five<br />

Dombeya trees are cut as "raft wood" for every one rosewood<br />

tree (Randriamalala and Liu,in press).Tall adult trees of<br />

a variety of species, that simply happen to be very close to<br />

rosewood trees, must often be cut simply to gain access to<br />

cut down a rosewood tree. This has been observed in<br />

Marojejy (pers. obs.).<br />

Red ruffed lemurs (Varecia rubra) are probably the most negatively<br />

impacted lemur since many were hunted by these loggers<br />

and this species is known to feed on ebony trees<br />

(Diospyros spp.) as well as pallisandre (Dalbergia spp.) in<br />

Masoala (Vasey, pers. comm.). Varecia rubra probably also<br />

feeds on the fruits and leaves of the logged "raft wood"<br />

Dombeya spp. trees like Varecia v. editorium in Manombo Forest<br />

in southeastern Madagascar (Ratsimbazafy, 2007). In<br />

Mantadia National Park, Indri indri and Propithecus diadema<br />

consume young leaves of one species of actual rosewood<br />

(Dalbergai baronii) which is also consumed by Milne-Edwards’<br />

sifakas (Propithecus edwardsi) in Ranomafana National Park<br />

(Powzyk and Mowry,2003;Arrigo-Nelson,2007).Propithecus<br />

diadema at Tsinjoarivo consume the unripe fruit of ebony<br />

trees (Irwin, 2006). In Marojejy, silky sifakas (Propithecus<br />

candidus) not uncommonly feed on the young leaves of pallisandre<br />

(Dalbergia chapelieri) which is also a preferred sleeping<br />

tree (pers. obs.).<br />

When discussing the impacts of precious wood logging, it is<br />

important not to forget how damaging all this has been to local<br />

communities as well.Local residents have suffered as foreign<br />

and domestic elites have corrupted the forest service,<br />

leading to losses of sustainable employment in tourism, re-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 3<br />

search, and conservation. In some cases, community life has<br />

suddenly changed as gambling, prostitution, and crime have<br />

increased in rural communities. Moreover, the risks of local<br />

food shortages and nutritional deficiencies mount when<br />

farmers abandon subsistence agriculture for temporary,physically<br />

dangerous illegal logging work (Global Witness and<br />

Environmental Investigation Agency,2009;Patel,2007,2009).<br />

Moreover,illegal loggers trample on the beliefs and taboos of<br />

local people.In traditional Sakalava culture,ebony is a sacred<br />

wood only cut by priests who conduct traditional ceremonies<br />

with ebony staffs. The chief of Ankalontany, a Sakalava<br />

Malagasy village in the northeast, explained that "Some<br />

strangers from outside our village came here. They started<br />

cutting ebony and they clearly had no right. We asked for<br />

their authorization but they said they didn’t have to show us<br />

papers.They said they had police clearance and we can’t stop<br />

them." Laurent Tutu, president of the forest association of<br />

Ankalontany, remarked "It hurts us to see our trees cut like<br />

this. The forest loses its personality" (Cocks, 2005).<br />

Although illegal logging in Madagascar has received some media<br />

attention recently, confusion still remains regarding a<br />

number of key facts. The aim of this report is to provide an<br />

update (at the time of writing: May 25, 2010), dispel a few<br />

myths,discuss some of the possible solutions to this ongoing<br />

crisis, and present a comprehensive bibliography of articles,<br />

photos, films, and videos related to this topic.<br />

Four myths about illegal logging in Madagascar<br />

Myth #1: "Plenty of Madagascar rosewood is harvested legally…"<br />

says Bob Taylor, founder of Taylor Guitars. Quote<br />

from Gill, C. (2010). Log Jam. Guitar Aficionado. Spring Issue.<br />

P. 68<br />

This is simply not true. A vast amount of published evidence<br />

clearly shows that very very little,if any,of the rosewood logging<br />

in Madagascar is legal.The overwhelming majority of exported<br />

Madagascar rosewood is illegally logged within Masoala<br />

National Park and Marojejy National Park (which are part<br />

of a UNESCO World Heritage Site) as well as Mananara Biosphere<br />

Reserve (also a national park) and the vast Makria<br />

Conservation Site (Barrett et al., 2010; Débois, 2009; Global<br />

Witness and Environmental Investigation Agency,2009;Patel,<br />

2007, 2009; Randriamalala and Liu, in press; Schuurman and<br />

Lowry, 2009; Schuurman, 2009; Wilme et al., 2009; Wilme et<br />

al., in press).<br />

Myth #2: The current ban has stopped illegal logging.<br />

In late March, the government of Madagascar announced a<br />

new two to five year ban on export and cutting of ebony and<br />

rosewood. The decree #2010-141 officially passed on April<br />

14, 2010. Clearly this was an important and large step forward.<br />

However, the decree does not apparently include<br />

pallisandre, a precious hardwood in the same genus (Dalbergia)<br />

as rosewood. Illegal logging of pallisandre has heavily<br />

impacted some reserves such as Betampona Natural Reserve<br />

(Kett, 2005; Bollen, 2009). At the time of writing (May<br />

25, 2010), there have been no new exports since the recent<br />

ban.However,illegal rosewood and ebony logging still continues<br />

inside Mananara Biosphere Reserve and the Makira Conservation<br />

Site according to reliable anonymous informants.<br />

The clearest information has come from Mananara where at<br />

least several hundred, recently cut, rosewood logs were observed.<br />

Myth #3: Illegal logging was never a big problem in Madagascar<br />

until the recent political crisis.<br />

Illegal logging in Madagascar of rosewood (Dalbergia spp.) and<br />

ebony (Diospyros spp.) did not begin with the culmination of<br />

the political crisis in March 2009.A major illegal logging crisis<br />

in World Heritage Sites (Masoala National Park and Marojejy<br />

National Park) took place during 2004-2005,a time of political<br />

stability. The earliest documented case of rosewood logging<br />

in Madagascar and foreign export dates to 1902.Foreign<br />

exports of Madagascar rosewood occurred at "low" levels<br />

(1000 to 5000 tonnes) between 1998 and 2007. In 2008, exports<br />

jumped to 13,000 tonnes,and jumped again in 2009 to<br />

more than 35,000 tonnes (Botokely,1902;Randriamalala and<br />

Liu,in press;Global Witness and Environmental Investigation<br />

Agency, 2009).<br />

Myth #4: There are 43 species of rosewood trees in Madagascar.<br />

Some recent reports had mistakenly made this statement. It<br />

is not entirely clear exactly how many rosewood species are<br />

found in Madagascar. More botanical research is needed.<br />

However, currently, there are believed to be 10 species of<br />

rosewood in Madagascar in the genus Dalbergia which contains<br />

48 total species. The rosewood species are presumed<br />

to be Dalbergia baronii [VU], D. bathiei [EN], D. davidii [EN],D.<br />

louvelii [EN], D. mollis [NT], D. monticola [VU], D. normandii<br />

[EN], D. purpurascens [VU], D. tsiandalana [EN], and D. viguieri<br />

[VU] (Barrett et al., 2010).<br />

Rosewood stockpile solutions?<br />

Approximately 10,280 tonnes of illegally logged rosewood<br />

remain stockpiled in numerous locations in northeastern<br />

Madagascar, such as the ports of Vohemar and Antalaha as<br />

well as private residences in those cities and Sambava,<br />

Ampanifena,Ambohitralalana,and others.Each <strong>15</strong>0 kg log has<br />

an approximate market value of US$1,300 usd.As unfinished<br />

logs, the value of the current stockpile is therefore approximately<br />

US$90 million.Value increases dramatically,of course,<br />

after being constructed, for example, into high-end Ming<br />

Dynasty style furniture in China.A single armoire composed<br />

of only a few logs can sell for US$20,000 or more.It’s a horrid<br />

contrast to the annual income in Madagascar (about<br />

US$400) or the daily wage provided to loggers (US$5) for<br />

the dangerous and physically debilitating work (Randriamalala<br />

and Liu, in press; Global Witness and Environmental<br />

Investigation Agency, 2009; anonymous local informants).<br />

If the export ban holds (numerous other bans did not),what<br />

should be done with these stockpiles? Several ideas have<br />

been suggested.<br />

1. The "Forest Counterpart Fund" (Wilme et al., 2009) aims<br />

to create a conservation and charitable works fund to assist<br />

local communities and forests damaged by the illegal logging.<br />

The logs are not sold on the open market as in the second<br />

proposal below.Rather,philanthropists,conservation organizations,<br />

and international aid agencies pay to "adopt" a log.<br />

Each log can be "adopted" for its market value (about<br />

US$1,300). The logs themselves are given to (carefully selected)<br />

local residents who are victims of the illegal logging.<br />

The logs would then be carved,engraved,and customized for<br />

public display as symbols. If sufficient donors can be found,<br />

this proposal offers a win-win solution for Madagascar’s forests<br />

as well as people.<br />

2. The Moratorium-Conservation-Amnesty-Reforestation<br />

(MCAR) program (Butler, 2009). This is essentially a one-off<br />

actual sale with conservation benefits. Logs would be auctioned<br />

via a transparent market system in which the price<br />

and the log code would be recorded, publicly available, and<br />

digitally traceable.Funds generated would mainly go towards


Page 4 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

conservation programs such as reforestation and forest<br />

monitoring. Criminal traders would receive amnesty from<br />

prosecution as well as a very small percentage of the funds.<br />

An export moratorium would be required.There is always a<br />

danger that one-off sales can encourage further logging; a<br />

topic which has been extensively debated with respect to<br />

confiscated elephant ivory stockpiles. An impressive recent<br />

review paper in Science (Wasser et al., 2010):<br />

www.sciencemag.org/cgi/content/short/327/5971/1331)<br />

argued that no one-off ivory sales should be approved even if<br />

the funds go towards conservation.<br />

3. Destroy the stockpile. This was recently reiterated by<br />

Global Witness (GW) and Environmental Investigation<br />

Agency (EIA). Andrea Johnson, Director of Forest Campaigns<br />

at EIA explained that "To end the cycle of illegal harvest<br />

and corruption, the government should take the step of<br />

destroying all stocks that are not contained in the latest official<br />

inventories…Traders, who are currently stockpiling illegal<br />

timber, hoping for another ‘exceptional’ export authorization,must<br />

receive a clear signal that it will be impossible to<br />

profit from the illegal trade in the future." Numerous examples<br />

can be found from around the world of simple and effective<br />

destruction of stockpiles of contraband such as small<br />

arms,drugs,and ivory.Destruction also eliminates the not insignificant<br />

expense of storing and guarding the items.Burning<br />

the rosewood stockpiles would create a lot of pollution, it<br />

has been argued, and might be dangerous given the high volume.<br />

Other ways of destroying the wood are possible however.<br />

The wood could be hacked into tiny unusable pieces.<br />

This is already done sometimes by park rangers in Madagascar.<br />

This would take a very long time, but would be a fitting<br />

punishment of hard labor for members of the rich rosewood<br />

mafia! Of course, destruction of the wood, whatever the<br />

method,would contribute no money for any conservation or<br />

community development funds.<br />

Any of these possibilities are better than what has happened<br />

in the past:seized wood was auctioned off to the highest bidder.Foreign<br />

export remains a possibility too,despite the ban.<br />

French shipping company CMA-CGM Delmas exported<br />

rosewood from Madagascar several times in 2009 and 2010.<br />

Long-term solutions?<br />

Thinking long-term, what can be done to prevent another illegal<br />

logging crisis in Madagascar?<br />

Some may argue that so little rosewood and ebony remains,<br />

logging on this scale could never happen again.However,this<br />

had been claimed before 2009 too. More surveys are clearly<br />

needed. One hopes that some of the more impenetrable regions<br />

of mountainous Marojejy National Park may still have<br />

rosewood. But because rosewood tends to be harvested at<br />

lower elevations, near rivers (where the largest individuals<br />

are found), it is less protected by the physical challenges of<br />

the massif than some other tree species. It is encouraging<br />

that some Dalbergia and Diospyros species can form stump<br />

sprouts which can grow into a new tree over many many<br />

years. Unfortunately, some entire rosewood stumps are removed<br />

either to hide evidence of logging or for wood for<br />

small, locally made rosewood vases. Rosewood trees are<br />

known to be some of the oldest trees in the eastern Malagasy<br />

humid forests. They can live to be more than 400 years old,<br />

according to local guides. Traders explain that they can be<br />

harvested after 50 years (Patel 2007, 2009).<br />

1. CITES<br />

The surest way to reduce the likelihood of another illegal<br />

logging crisis in Madagascar, is to list all species in the genera<br />

of Dalbergia and Diospyros on CITES Appendix 1. Currently<br />

none of Madagascar’s ebony or rosewood species are protected<br />

under any appendices within the Convention on International<br />

Trade in Endangered Species (CITES). Globally,<br />

only one species of rosewood,Brazilian rosewood (Dalbergia<br />

nigra), is listed under CITES Appendix 1. This is the most<br />

stringent category,and prohibits all commercial trade of that<br />

wood from the date of listing. This has generally been effective.Guitars<br />

in the United States made of Brazilian rosewood<br />

are known to have risen in price and are harder to find since<br />

Appendix 1 listing. Similarly, Appendix 1 listing of Alerce<br />

(Fitzroya cupressoides),a heavily logged South American conifer,<br />

has significantly reduced logging and trade (Barrett et al.,<br />

2010; Keong, 2006).<br />

A few other Brazilian and Central American rosewood species<br />

are listed under CITES Appendix 2 and 3. These lower<br />

appendices aim to regulate trade,not prohibit it.Just this year,<br />

another species of Brazilian rosewood (Aniba rosaeodora),exported<br />

extensively as fragrant oil, was listed under CITES<br />

Appendix 2. Two additional species of Central American<br />

rosewood (D. retusa and D. stevensonii) are listed under Appendix<br />

3. Appendix 2, unlike Appendix 3, does require that<br />

the CITES authorities in the export nation determine that<br />

the species were legally obtained and that their export will<br />

not be detrimental to species survival.There seem to be few<br />

cases where Appendix 3 listing was sufficient, except as a<br />

means to Appendix 2 or higher listing. The well examined<br />

case-studies of big-leaf mahogany (Swietenia macrophylla) and<br />

ramin (Gonystylus spp.) both began as Appendix 3 species<br />

(which only requires unilateral listing by a habitat country)<br />

and were later voted in as Appendix 2 species by the CITES<br />

parties (Keong, 2006).<br />

To what degree can CITES regulations be implemented and<br />

enforced? The need for more officially trained import inspectors<br />

has been suggested numerous times. The agency<br />

chosen as the CITES management authority should be free<br />

of corruption and have experience in forest management.<br />

Insufficient trained staff has also hindered the ability of export<br />

authorities to determine whether an Appendix 2 species<br />

was legally obtained and non-detrimental to species survival.Range<br />

countries often require assistance in this respect.<br />

An unusually good example comes from Indonesia where biological<br />

data for ramin has been used in non-detriment findings<br />

to examine sustainability. Missing "certificates of origin"<br />

have been a problem for some Appendix 3 species. While<br />

ramin and big-leaf mahogany were listed on Appendix 3, the<br />

required ‘certificates of origin’ were not consistently issued<br />

by exporting nations;while importing countries were not always<br />

diligent about confirming that shipments arrived with<br />

such certificates (Blundell, 2007; Keong, 2006).<br />

2. Independent forest monitoring (IFM)<br />

In addition to CITES,actual improvements in forest monitoring<br />

on the ground are needed. A new system called independent<br />

forest monitoring (IFM) may be needed in order<br />

stop illegal logging, monitor implementation of REDD (Reducing<br />

Emissions from Deforestation and Forest Destruction)<br />

programs, restore the confidence of international donors,<br />

and ultimately to save Madagascar’s precious forests as<br />

well as attain social justice for Madagascar’s impoverished<br />

population. IFM has been defined as "the use of an independent<br />

third party that,by agreement with state authorities,provides<br />

an assessment of legal compliance, and observation of<br />

and guidance on official forest law enforcement systems"<br />

p. 18 (Global Witness,2005). IFM is similar in principle to unbiased<br />

international election observers. Local and international<br />

expertise is utilized, and monitoring teams operate


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 5<br />

independently but with the consent of the host government.<br />

Independent forest monitors are strictly observers, law enforcement<br />

remains the responsibility of local officials and<br />

governments.<br />

Of course other nations have been faced with similar forest<br />

monitoring problems.IFM has already been used successfully<br />

in several African and Central American nations seeking to<br />

improve the effectiveness of their forest monitoring. Since it<br />

was first introduced in 1999, IFM has been established in<br />

Cameroon, Cambodia, and Honduras. Smaller scale feasibility<br />

and pilot studies have been conducted in Ghana, Peru,<br />

Mozambique, Republic of Congo, Tanzania, and Democratic<br />

Republic of Congo. In Cambodia and Cameroon, donor<br />

countries have been the impetus behind IFM.Though in Honduras,the<br />

incentive for IFM was domestic,and hosted by the<br />

Honduran Commission for Human Rights (CONADEH).<br />

Furones (2006) and Young (2007) review the results of IFM in<br />

these nations, and consider them to be "broadly positive".<br />

Specific examples of the impact of IFM in these nations include:documentation<br />

of hundreds of forest crimes,cancellation<br />

of logging concessions,moratoriums on logging and timber<br />

transport,and creation of new "forest crimes monitoring<br />

units" in the forestry administrations. In some cases,IFM has<br />

earned money for these governments by identifying violations<br />

which led to large fines against logging companies and<br />

individuals breaching the law and forest management regulations.<br />

3. Update IUCN Red List assessments<br />

The approximately 10 Madagascar rosewood species listed<br />

above have not had their official conservation status evaluated<br />

by the IUCN since 1998. At that time, all were threatened<br />

except for D. mollis.Five of the ten were already classified<br />

as ‘endangered’ then. Given the extreme logging since<br />

that time, it is likely that their Red List categories should be<br />

reassessed (IUCN, 2010).<br />

4. UNESCO World Heritage Sites "in danger"<br />

The majority of the illegally logged rosewood in Madagascar<br />

comes from two UNESCO World Heritage Sites: Masoala<br />

National Park and Marojejy National Park.Why have Masoala<br />

and Marojejy not been placed on the World Heritage Sites<br />

"In Danger" List? After all,2010 is the United Nations "International<br />

Year of Biodiversity". Nine national parks and seven<br />

other protected natural areas are currently on this danger<br />

list, mainly for extensive anthropogenic disturbance such as<br />

poaching, logging, and war. The extent of the logging damage<br />

in Masoala National Park, in particular, over the past 5 years,<br />

must rival that of some of the other national parks "in danger".<br />

Placing a site on the UNESCO "danger list" is not utter<br />

de-listing. It is a reversible process meant to draw attention<br />

to and attract possible resources which can alleviate the crisis.There<br />

are specific funds that can become available if a site<br />

is placed on the danger list. One can only speculate that the<br />

reasons for no change in status may well be political and<br />

practical. Perhaps it complicates matters that eight national<br />

parks (which include these two) comprise the single Atsinanana<br />

World Heritage Site Complex. Perhaps there are<br />

fears of triggering an even greater loss of tourism.Whatever<br />

the reasons may be, it is odd that UNESCO has not been<br />

more vocal or active in its support of these two national<br />

parks which are the biodiversity jewels of the Atsinanana<br />

World Heritage Site Complex (IUCN, 2007).<br />

5. DNA fingerprinting<br />

DNA fingerprinting has recently been used on confiscated<br />

ivory to determine which populations of African elephants<br />

were slaughtered. Similar genetic techniques would be of<br />

great assistance in determining which populations of Madagascar<br />

rosewood are being logged the most,and in identifying<br />

species. DNA testing has already been used to track timber,<br />

but not yet in Madagascar.One of the biggest methodological<br />

challenges is extracting DNA from the heartwood of dead<br />

tree trunks (e.g., rosewood stockpiles), which consist of<br />

dead cells with partly degraded DNA. In living trees, it is a<br />

routine process to obtain DNA from the cambium just beneath<br />

the bark or leaves or buds. Nevertheless, several new<br />

techniques have successfully extracted DNA from dry wood<br />

of ramin (Gonystylus spp.) and other woods including 1000<br />

year old beech (Fagus spp.) (Nielson and Kjaer, 2008).<br />

References and rosewood logging resources<br />

Barrett, M.A.; Brown, J.L.; Morikawa, M.K.; Labat, J-N.; Yoder,<br />

A.D. In press. CITES designation for endangered rosewood<br />

in Madagascar. Science.<br />

Blundell,A.G.2007.Implementing CITES regulations for timber.<br />

Ecological Applications 17: 323-330.<br />

Bohannon, J. 2010. Madagascar’s forests get a reprieve – But<br />

for how long? Science 328: 23-25.<br />

Bollen, A. 2009. Eighth continent quarterly. The Newsletter<br />

of the Madagascar Fauna Group.Autumn Issue.<br />

Bosser, J.; Rabevohitra, R. 1996. Taxa et noms nouveaux dans<br />

le genre Dalbergia (Papilionaceae) à Madagascar et aux<br />

Comores. Bulletin du Museum national d'Histoire Naturelle,<br />

4e sér., 18: 171-212.<br />

Bosser,J.;Rabevohitra,R.2005.espèces nouvelles dans le genre<br />

Dalbergia (Fabaceae, Papilionoideae) à Madagascar.<br />

Adansonia, Sér. 3, 27, 2: 209-216.<br />

Botokely (Marc Clique).1902.Chronique commerciale,industrielle<br />

et agricole. Revue de Madagascar 4: 356-365.<br />

Braun, D. 2009. Lemurs, rare forests, threatened by Madagascar<br />

strife. NatGeo News Watch.<br />

blogs.nationalgeographic.com/blogs/news/chiefeditor/<br />

2009/03/lemurs-threatened-by-madagascar-strife.html.<br />

Downloaded on 23 March 2009.<br />

Braun, D. 2010. Conservationists applaud renewed ban on<br />

Madagascar rosewood. NatGeo News Watch.<br />

blogs.nationalgeographic.com/blogs/news/chiefeditor/2010/<br />

03/madagascar-rosewood-ban-reaction.html. Downloaded on<br />

31 March 2010.<br />

Brown,K.A.;Gurevitch,J.2004.Long-term impacts of logging<br />

on forest diversity in Madagascar. Proceedings of the National<br />

Academy of Sciences 101: 6045-6049.<br />

Butler, R. A. 2010. How to end Madagascar’s logging crisis.<br />

news.mongabay.com/2010/0211-madagascar.html. Downloaded<br />

on 10 February 2010.<br />

Cochrane,M.A.;Schulze,M.D.1998.Forest fires in the Brazilian<br />

Amazon. Conservation Biology 12: 948-950.<br />

Cocks, T. 2005. Loggers cut madagascan rainforest with impunity.<br />

Reuters. July 4.<br />

Débois, R.2009. La fièvre de l’or rouge saigne la forêt malgache.<br />

Univers Maoré 13: 8-<strong>15</strong>.<br />

Du Puy, D. J.; Labat, J.-N.; Rabevohitra, R.;Villiers, J.-F.;Bosser,<br />

J.; Moat, J. 2002. The Leguminosae of Madagascar. Royal<br />

Botanic Gardens, Kew, U.K.<br />

Furones, L. 2006. Independent forest monitoring: Improving<br />

forest governance and tackling illegal logging and corruption.<br />

Trócaire Development Review 135-148.<br />

Gerety, R.M. 2010. Major international banks, shipping companies,<br />

and consumers play key role in Madagascar’s logging<br />

crisis.<br />

news.mongabay.com/2009/12<strong>15</strong>-rowan_madagascar.html.<br />

Downloaded on 16 December 2010.<br />

Gill, C. 2010. Log Jam. Guitar Aficionado. Spring Issue.<br />

Gillies, A.C.M. 1999. Genetic diversity in Mesoamerican populations<br />

of mahogany (Swietenia macrophylla), assessed<br />

using RAPDs. Heredity 83: 722-732.<br />

Global Witness and Environmental Investigation Agency.<br />

2009.Investigation into the illegal felling,transport and export<br />

of precious wood in SAVA Region Madagascar. Unpublished<br />

report to the Government of Madagascar.


Page 6 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

www.illegal-logging.info/uploads/madagascarreportrevi<br />

sedfinalen.pdf. Downloaded on 20 November 2010.<br />

Irwin, M. T. 2006. Ecological impacts of forest fragmentation<br />

on diademed sifakas (Propithecus diadema) at Tsinjoarivo,<br />

Eastern Madagascar:Implications for conservation in fragmented<br />

landscapes. Ph.D. thesis, Stony Brook University,<br />

New York, USA.<br />

IUCN. 2007. World heritage nomination. IUCN technical<br />

evaluation. Rainforests of the Atsinanana (Madagascar).<br />

IUCN Evaluation Report. ID No. 1257.<br />

IUCN. 2010. IUCN Red List of Threatened Species. Version<br />

3.1. www.iucnredlist.org. Downloaded on 25 May 2010.<br />

Keong,C.H.2006.The role of CITES in combating illegal logging:<br />

Current and Potential. Traffic Online Report Series,<br />

No. 13. www.illegal-logging.info/item_single. php? it_id=<br />

504&it=document. Downloaded on 20 November 2010.<br />

Kett, G. 2005. Checking the reserve. Monthly from Madagascar.<br />

March. Madagascar Fauna Group.<br />

Labat, J.N.; Moat, J. 2003. Leguminosae (Fabaceae). Pp. 346-<br />

373. In: S.M. Goodman; J.P. Benstead (eds.) The Natural<br />

History of Madagascar. University of Chicago Press, Chicago,<br />

USA.<br />

Michaels, S. 2009. Gibson guitars raided for alleged use of<br />

smuggled wood. www.guardian.co.uk/music/2009/nov/<br />

20/gibson-guitars-raided. Downloaded on 20 November<br />

2009.<br />

Nielsen, L.R.; KjFr, E.D. 2008. Tracing timber from forest to<br />

consumer with DNA markers. Danish Ministry of the<br />

Environment, Forest and Nature Agency.<br />

www.skovognatur.dk/udgivelser. Electronic Publication.<br />

Office of the United States Trade Representative. 2010. US-<br />

China trade facts. www.ustr.gov/countries-regions/china.<br />

Downloaded on 23 May 23 2010.<br />

Patel, E.R. 2007. Logging of rare rosewood and pallisandre<br />

(Dalbergia spp.) within Marojejy National Park, Madagascar.<br />

Madagascar Conservation and Development 2(1):<br />

11-16.<br />

www.erikpatel.com/Logging_of_Rosewood_Patel_2007.pdf.<br />

Electronic Publication.<br />

Patel, E.R. In press. A tragedy with villains: Severe resurgence<br />

of selective rosewood logging in Marojejy National Park<br />

leads to temporary park closure. Lemur News.<br />

Patel,E.R.;Rasarely,E.;Tegtmeter,R.;Furones,N.;Fritz-Vietta,<br />

N.; Malan, S.; Waeber, P. In Prep. Beyond Ecological Monitoring:<br />

A proposal for "Independent Forest Monitoring"<br />

in Madagascar. Madagascar Conservation and Development.<br />

Randriamalala,H.;Liu,Z.In press.Bois de rose de Madagascar:<br />

Entre democratie et protection. Madagascar Conservation<br />

and Development.<br />

Ratsimbazafy, J. 2006. Diet composition, foraging, and feeding<br />

behavior in relation to habitat disturbance: Implications<br />

for the adaptability of ruffed lemurs (Varecia v.editorium)<br />

in Manombo forest, Madagascar. Pp. 403-422. In L. Gould;<br />

M.L.Sauther,(eds.) Lemurs:ecology and adaptation.Springer,<br />

New York.<br />

Rubel, A.; Hatchwell, M.; Mackinnon, J.; Ketterer, P. 2003. Masoala–L’oeil<br />

de la Forêt. Zoo Zurich.<br />

Schuurman, D.; Lowry, P.L. 2009. The Madagascar rosewood<br />

massacre. Madagascar Conservation and Development<br />

4(2): 98-102. www.mwc-info.net. Electronic Publication.<br />

Schuurman,D.2009.Illegal logging of rosewood in the rainforests<br />

of northeast Madagascar. TRAFFIC Bulletin 22(2):<br />

49.<br />

Stasse, A. 2002. La Filière Bois de Rose. Région d’Antalaha –<br />

Nord-est de Madagascar. Thèse de mastère non publiée,<br />

Université de Montpellier, France.<br />

Stephenson, P.J. 1993. The small mammal fauna of Reserve<br />

Speciale d’Analamazaotra, Madagascar: The effects of<br />

human disturbance on endemic species diversity. Biodiversity<br />

and Conservation 2: 603-6<strong>15</strong>.<br />

Wasser, S.; Poole, J.; Lee, P.; Lindsay, K.; Dobson, A.; Hart, J.;<br />

Douglas-Hamilton, I.; Wittemyer, G.; Granli, P.; Morgan, B.;<br />

Gunn,J.;Alberts,S.;Beyers,R.;Chiyo,P.;Croze,H.;Estes,R.;<br />

Gobush,K.;Joram,P.;Kikoti,A.;Kingdon,J.;King,L.;Macdonald,<br />

D.; Moss, C.; Mutayoba, B.; Njumbi, S.; Omondi, P.;<br />

Nowak, K. 2010. Elephants, ivory, and trade. Science 327<br />

(5971): 1331-1332.<br />

Wilmé,L.;Schuurman,D.;Lowry II,P.P.In Press.A forest counterpart<br />

fund:Madagascar’s wounded forests can erase the<br />

debt owed to them while securing their future, with support<br />

from the citizens of Madagascar. Lemur News.<br />

Wilmé, L.;Schuurman,D.; Lowry II, P.P.; Raven, P.H. 2009. Precious<br />

trees pay off – but who pays? Poster prepared for<br />

the World Forestry Congress in Buenos Aires,Argentina.<br />

www.mwc-info.net/en/services/Journal_PDF%27s/<br />

Issue4-2/MCD_2009_vol4_iss2_rosewood_massacre_<br />

Supplementary_Material.pdf. Downloaded on 23 October<br />

2009.<br />

Young, D. 2007. Independent forest monitoring: Seven years<br />

on. International Forestry Review 9(1): 563-574.<br />

Rosewood logging photos<br />

Photographer Toby Smith:<br />

www.telegraph.co.uk/culture/photography/7625511/<br />

Madagascar-undercover-slideshow.html<br />

Photographer Chris Maluszynsk:<br />

www.photoshelter.com/c/moment/gallery/ Rosewood-loggingin-Madagasar-by-Chris-<br />

Maluszynski/ G0000JWMAJa78LJ0/<br />

Rosewood logging films<br />

Dan Rather Reports:Treasure Island.Episode 437.A detailed<br />

investigation of the impact of the recent political crisis in<br />

Madagascar on the unique biodiversity of this island continent.<br />

Filmed in high-definition, active rosewood logging<br />

camps are shown. The impact of such habitat disturbance on<br />

the silky sifaka and the World Heritage Sites of Marojejy NP<br />

and Masoala NP are discussed. The debates surrounding the<br />

Ambatovy nickel mine adjacent to Andasibe-Mantadia NP<br />

are also discussed. The mine may be endangering one of the<br />

rarest animals on earth,the greater bamboo lemur (Prolemur<br />

simus) which is being protected there by the NGO Mitsinjo.<br />

Aired on HD-NET cable television November 2009. Purchasable<br />

and downloadable on I-Tunes in the United States.<br />

DVDs can be purchased online:<br />

hdnet-store.stores.yahoo.net/danrare437.html<br />

Sample Clip 1:<br />

www.facebook.com/video/video.php?v= 600388589544<br />

Sample Clip 2: www.youtube.com/watch?v= dEi-yRlJ-mk<br />

Carte Blanche: Madagascar (Part 1 and Part 2). Two short<br />

films examining illegal rosewood logging in Madagascar and<br />

the impact on the critically endangered silky sifaka. They<br />

were produced by Neil Shaw and commissioned and funded<br />

by Carte Blanche which is one of the most respected television<br />

news programs in the Southern Hemisphere. Aired on<br />

South African Television in April,2010,and streams freely online<br />

here:<br />

Carte Blanche: Madagascar Part 1:<br />

beta.mnet.co.za/carteblanche/Article.aspx?Id= 3919&ShowId=1<br />

Carte Blanche: Madagascar Part 2:<br />

beta.mnet.co.za/mnetvideo/browseVideo.aspx?vid=25570<br />

506: Bois de Rose. A Documentary Film by Joseph Areddy.<br />

2003. RSI, Comano/Signe, Genve/GAP, Antananarivo.<br />

Rosewood logging videos<br />

Madagascar Rainforest Massacre (English):<br />

www.youtube.com/watch?v=FzWNPHBRrAc<br />

Madagascar Rainforest Massacre (French):<br />

www.youtube.com/watch?v=KtjmFWpGNKs&feature=related<br />

Madagascar Rainforest Massacre (Malagasy):<br />

www.youtube.com/watch?v=rHYYhhLHeQw&feature=related


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 7<br />

Global Witness – Environmental Investigation Agency - Illegal<br />

logging in Madagascar – Part 1<br />

www.youtube.com/watch?v=T1hPviSbRcU<br />

Global Witness – Environmental Investigation Agency - Illegal<br />

logging in Madagascar – Part 2<br />

www.youtube.com/watch?v=LBtsNBpWW0E<br />

Global Witness – Environmental Investigation Agency - Illegal<br />

logging in Madagascar – Part 3<br />

www.youtube.com/watch?v=payUUJed0dc<br />

Global Witness – Environmental Investigation Agency - Illegal<br />

logging in Madagascar – Part 4<br />

www.youtube.com/watch?v=lm6a6Hrat3o<br />

Rosewood logging radio programs<br />

BBC World Service – Africa. September 17, 2009.<br />

www.bbc.co.uk/worldservice/africa/2009/09/090917_<br />

madge_rosewood2.shtml<br />

Ongoing threats to lemurs and their habitat<br />

inside the Sahamalaza - Iles Radama<br />

National Park<br />

Melanie Seiler 1,2, Guy H. Randriatahina 3, Christoph<br />

Schwitzer 1*<br />

1Bristol Conservation and Science Foundation, Bristol Zoo<br />

Gardens, Clifton, Bristol BS8 3HA, UK<br />

2University of Bristol, School of Biological Sciences, Woodland<br />

Road, Bristol BS8 1UG, UK<br />

3Association Européenne pour l’Etude et la Conservation<br />

des Lémuriens (AEECL), Lot: IVH 169 N Ambohimanandray,<br />

Ambohimanarina, Antananarivo 101, Madagascar<br />

*Corresponding author: cschwitzer@bcsf.org.uk<br />

The Sahamalaza - Iles Radama National Park,officially inaugurated<br />

in July 2007 and managed by Madagascar National<br />

Parks (MNP), includes both marine and terrestrial ecosystems<br />

and is the first park that was created under the<br />

"Programme Environnemental III" of the Malagasy government<br />

and the World Bank. In addition to the few remaining<br />

forest fragments of the Southern Sambirano ecoregion, the<br />

park is home to extensive mangrove forests, which harbour<br />

their own highly endangered fauna, and also includes offshore<br />

coral reefs. In 2003, researchers from the Cologne<br />

Zoo, funded by AEECL, undertook an expedition to Sahamalaza<br />

to explore the opportunities for the establishment of<br />

a permanent field station in order to study and protect the<br />

Critically Endangered blue-eyed black lemur (Eulemur flavifrons)<br />

and its habitat.In 2004 and 2005,the field station in the<br />

Ankarafa Forest became reality (Schwitzer et al.,2006),and it<br />

has since been used by both European and Malagasy scientists<br />

as a basis for research on E. flavifrons and other lemur<br />

species, especially the Sahamalaza sportive lemur (Lepilemur<br />

sahamalazensis) and the northern giant mouse lemur (Mirza<br />

zaza),occurring on the Sahamalaza Peninsula (Schwitzer and<br />

Randriatahina, 2009).<br />

Sahamalaza - Iles Radama National Park lies within a transition<br />

zone between the Sambirano region in the north and<br />

the western dry deciduous forest region in the south, harbouring<br />

semi-humid forests with tree heights of up to 30m<br />

(Schwitzer et al.,2006).The forests include a mixture of plant<br />

species typical of both domains (Birkinshaw, 2004), and the<br />

remaining primary and secondary forest fragments vary in<br />

their degree of degradation. There are no larger connected<br />

areas of intact primary forest left on the Sahamalaza Penin-<br />

sula, and the remaining fragments all show some degree of<br />

anthropogenic disturbance and/or edge effects (Schwitzer et<br />

al., 2007). The forests and forest fragments are separated by<br />

grass savannah and shrubs. Sahamalaza is the only protected<br />

area that harbours the blue-eyed black lemur,the Sahamalaza<br />

sportive lemur and the northern giant mouse lemur. Other<br />

lemur species in the park include the aye-aye (Daubentonia<br />

madagascariensis), the western bamboo lemur (Hapalemur<br />

occidentalis),and an as yet unidentified species of dwarf lemur<br />

(Cheirogaleus spec.).<br />

The remaining forest of the Sahamalaza Peninsula and its<br />

unique fauna are in grave danger of disappearing.The habitat<br />

is already extremely degraded, nonetheless bush fires and<br />

tree-felling are activities that are routinely pursued and accepted<br />

within the local society (Ruperti et al., 2008). During<br />

the first field season of a study on the impact of habitat degradation<br />

and fragmentation on the ecology and behaviour of<br />

the Sahamalaza Peninsula sportive lemur (Lepilemur sahamalazensis),<br />

conducted by MS in 2009, local people from the<br />

villages surrounding the protected area were found logging<br />

trees in the already small forest fragments almost on a daily<br />

basis. Logging activities mainly occurred in forest fragments<br />

where no researchers had been present in previous years.<br />

During walks through different forest fragments, in addition<br />

to large numbers of logged trees, two places where trees<br />

were processed for further use were found. Trees were<br />

felled mainly in the early morning hours,on the one hand because<br />

of the high temperatures later in the day, on the other<br />

hand probably because of the assumption that the researchers<br />

started observing animals later in the day and therefore<br />

would not realise the illegal logging activities. Nonetheless,<br />

trees were sometimes also felled in the afternoons. Because<br />

locals immediately fled when becoming aware of researchers’<br />

presence, we believe that the presence of researchers<br />

and/or field guides, park authorities or park rangers is a crucial<br />

factor in stopping illegal logging in the remaining fragments.For<br />

the next field season (2010) we therefore plan to<br />

expand the observations of Lepilemur to other, not yet used<br />

forest fragments to help prevent their destruction. Of<br />

course this cannot be a long-term solution to this problem.<br />

The presence of park rangers and further environmental education<br />

of the local people will thus be extremely important<br />

to save the Sahamalaza forests from further degradation.<br />

About five times between August and October 2009, fires<br />

occurred near the Ankarafa field station, three times in the<br />

savannah and twice in the forest itself. After having extin-<br />

Fig. 1: Lepilemur sahamalazensis<br />

poached<br />

and roasted by locals in<br />

Sahamalaza - Iles Radama<br />

National Park“.


Page 8 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

guished these fires it became obvious that they had all<br />

started right beside the fire breaks that are frequently used<br />

as paths by people on their way between villages. The Ankarafa<br />

field guides, all of them locals from the surrounding villages,<br />

assumed that the fires were set by villagers to show<br />

their dissatisfaction with the recently established national<br />

park that prohibits the use of the forests for collecting building<br />

material for their dwellings. As we followed the smoke<br />

that was coming from another fire, we found an area inside<br />

one of the core zones of the national park that was inhabited<br />

by a young couple. They harvested a rice field and regularly<br />

burned undergrowth around it. Additionally, they kept cattle<br />

and goats and had built 2 houses at this site,one for the cattle<br />

and one for themselves. As we talked to them, they claimed<br />

that they were allowed to stay on this site and that MNP had<br />

sold this part of the forest to them.They affirmed that,if they<br />

set fire on this site, they would keep an eye on it and would<br />

prevent the fire from expanding into the forest. Unfortunately<br />

this was not the case,however,as we later observed a<br />

fire around this site without anyone near it. Overall, it<br />

seemed that there were various people living inside the national<br />

park on permits given to them by what they claimed to<br />

have been MNP agents;we were told that there was a map of<br />

the park showing all the "excluded" areas available for housing<br />

and agriculture, which could be seen in the village of<br />

Marovato. If that was indeed the case (we did not have the<br />

opportunity to verify the information),it would be a massive<br />

problem for protecting Sahamalaza’s unique wildlife and forests.<br />

If people claiming to be MNP staff illegally sold permits<br />

for activities inside the national park, the destruction of the<br />

small forest fragments will continue rapidly.<br />

Another big problem comes with cattle; every day zebu cattle<br />

were observed in all forest fragments and on the savannah<br />

in Ankarafa, as people from nearby villages let their cattle<br />

roam freely.The abundance of zebu themselves and their excrements<br />

indicated that they frequently used the forest fragments<br />

as grazing grounds, especially those with remaining<br />

primary forest parts. When zebu were grazing in the forest<br />

rather than on the savannah, their movements were accompanied<br />

by crashing and breaking sounds;they were undoubtedly<br />

hindering the growth of many saplings,if not eating them.<br />

This is an additional threat to the forest fragments, and furthermore,<br />

the abundance of the excrements of local zebu<br />

has been found to negatively correlate with the density of L.<br />

sahamalazensis (Ruperti, 2007). Additionally, the introduced<br />

bush pig is responsible for considerable habitat destruction<br />

due to digging up large areas, thus hindering the growth of<br />

saplings. Unfortunately, the bush pig is reproducing wildly as<br />

it is regarded as fady (taboo) by the local people and therefore<br />

not hunted.<br />

Not only the activities of local people seem to be a threat to<br />

the endangered wildlife on the Sahamalaza Peninsula.One of<br />

the Ankarafa field guides encountered a foreigner,probably a<br />

resident living in Madagascar (since he spoke Malagasy fluently),<br />

with a 4x4 car and two local guides about 1 km from<br />

the researchers’ camp. These people had set up a tent and<br />

told the Ankarafa field guide that they were visiting all villages<br />

on the Sahamalaza Peninsula to look for fish. As we checked<br />

their camp site the next day, the three men were gone, but<br />

signs of a fire,logged branches and feathers of a harrier hawk<br />

were found,indicating that they had caught and killed this endangered<br />

bird of prey. We wrote a report about this event<br />

and handed it over, together with feathers of the bird, to<br />

MNP in Maromandia. However, as long as there are no signs,<br />

borders or fences indicating the national park area and its<br />

restrictions, these problems will continue.<br />

The ongoing political crisis is a further big concern that hinders<br />

the effective protection not only of the biodiversity of<br />

the Sahamalaza Peninsula, but of Madagascar and its national<br />

parks system as a whole. Only 10 years ago, Madagascar was<br />

notorious for its environmental degradation and deforestation,<br />

but that began to change in 2003 when then President<br />

Marc Ravalomanana, working with international conservation<br />

organizations and local groups, set aside 10 % of the<br />

country’s surface area as national parks and started supporting<br />

ecotourism, which slowed deforestation and helped to<br />

safeguard biodiversity.After the political events in early 2009<br />

that saw the ousting of the President and the installation of a<br />

transitional government, the majority of donor funds, which<br />

provided half the government’s annual budget, have been<br />

withdrawn, leading to major funding gaps that have affected<br />

protected areas and their management. There currently is<br />

almost no money to employ park rangers or to implement<br />

other measures to protect the forests inside Madagascar’s<br />

national parks, and forest degradation is going on without<br />

noticeable resistance from the relevant authorities. Despite<br />

the political crisis that affects most of the social and environmental<br />

activities of numerous NGOs, AEECL is still carrying<br />

out its research activities and support to the villagers surrounding<br />

the Sahamalaza - Iles Radama National Park. Since<br />

the establishment of the protected area in 2007, AEECL has<br />

been conducting, besides its research programme, different<br />

projects that aim to reduce the excessive environmental exploitation<br />

inside and around the park.As the major activity of<br />

the local population surrounding the Sahamalaza Peninsula<br />

National Park is rice-growing,every year AEECL organizes a<br />

rice-growing training course and rice-growing competition,<br />

using modern techniques in order to increase yield per ha<br />

and to decrease the use of slash and burn agriculture.To stop<br />

the ongoing overexploitation of the environment, environmental<br />

education is another important part of AEECL´s<br />

work.As many villages in Sahamalaza are unable to pay teachers,<br />

AEECL subsidizes teachers’ salaries to ensure the primary<br />

education of the local children. Additionally, leaflets<br />

about the Sahamalaza biodiversity and its importance are<br />

distributed. They inform and educate villagers about the importance<br />

of lemurs and other species for their forest ecosystem.<br />

To minimise bush fires and to protect the forest against<br />

uncontrolled fires, AEECL organizes firebreak programs<br />

around the Ankarafa Forest, close to the research camp,<br />

where during three days, hundreds of local people remove<br />

the grasses on a 7m wide strip around the forest fragments.<br />

Furthermore, several reforestation campaigns have been<br />

conducted, where villagers, including many teachers and<br />

their pupils,have planted trees around their villages with the<br />

help of AEECL.<br />

Because of all the factors described here, the protection of<br />

Sahamalaza’s unique flora and fauna continues to be a major<br />

challenge that has to be faced by the local human population<br />

with the help of Madagascar National Parks and foreign partners.<br />

Two essential parts of AEECL’s efforts to help meeting<br />

this challenge are to stimulate further scientific study of<br />

endangered lemurs and other wildlife at its research station<br />

in the Ankarafa Forest, especially by Malagasy students, and<br />

to enable the local human population around the Sahamalaza<br />

- Iles Radama National Park to sustainably use their natural<br />

resources.<br />

Acknowledgements<br />

We would like to thank Madagascar National Parks (MNP),<br />

especially the director of Sahamalaza - Iles Radama National<br />

Park, M. ISAIA Raymond, for their continuing collaboration.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 9<br />

Thank you also to the DGEF and CAFF/CORE for granting<br />

us research permits for our work in Sahamalaza,and to Prof.<br />

RABARIVOLA Clément for his ongoing help. Tantely Ralantoharijaona<br />

and Bronwen Daniel,along with all Ankarafa field<br />

guides, contributed substantially to fighting forest fires and<br />

other environmental threats in Ankarafa in 2009. MS was<br />

funded by Bristol Conservation and Science Foundation,<br />

AEECL, Conservation International Primate Action Fund,<br />

Margot Marsh Biodiversity Foundation, Mohamed bin Zayed<br />

Species Conservation Fund,International Primatological Society<br />

and Christian-Vogel-Fonds.<br />

References<br />

Birkinshaw, C.R. 2004. Priority areas for plant conservation.<br />

Ravintsara 2(1): 14-<strong>15</strong>.<br />

Ruperti, F. 2007. Population density and habitat preferences<br />

of the Sahamalaza sportive lemur (Lepilemur sahamalazensis)<br />

at the Ankarafa research site, NW Madagascar.<br />

Unpublished MSc thesis, Oxford Brookes University, UK.<br />

82 p.<br />

Ruperti,F.;Smith,J.;Ratovonasy,L.;Thorn,J.2008.Sahamalaza<br />

Conservation Action Plan (SCAP).Unpublished report to<br />

the Association Européenne pour l’Etude et la Conservation<br />

des Lémuriens (AEECL). 17 p.<br />

Schwitzer, C.; Randriatahina, G.H. 2009. AEECL: Update on<br />

activities. Lemur News 14: 11-12.<br />

Schwitzer, N.; Randriatahina, G.H.; Kaumanns, W.; Hoffmeister,<br />

D.; Schwitzer, C. 2007. Habitat utilization of blue-eyed<br />

black lemurs,Eulemur macaco flavifrons (Gray,1867),in primary<br />

and altered forest fragments.Primate Conservation<br />

22: 79-87.<br />

Schwitzer, C.; Schwitzer, N.; Randriatahina, G.H.; Rabarivola,<br />

C.; Kaumanns, W. 2006. "Programme Sahamalaza": New<br />

perspectives for the in situ and ex situ study and conservation<br />

of the blue-eyed black lemur (Eulemur macaco flavifrons)<br />

in a fragmented habitat.Pp.135-149.In:C.Schwitzer;<br />

S.Brandt;O.Ramilijaona;M.Rakotomalala Razanahoera;D.<br />

Ackermand; T. Razakamanana; J. U. Ganzhorn (eds.). Proceedings<br />

of the German-Malagasy Research Cooperation<br />

in Life and Earth Sciences. Berlin: Concept Verlag.<br />

News and Announcements<br />

Madagascar conservationist wins international<br />

environmental prize<br />

Mr Rabary Desiré has been awarded the 2010 Seacology<br />

Prize (www.seacology.org/prize/index.htm) for his his tireless<br />

efforts to further forest conservation in northeastern Madagascar.Mr<br />

Desiré will receive the US$10,000 Prize on October<br />

7, 2010 at a ceremony in Berkeley, California.<br />

Rabary Desiré is recognized by many as a major conservation<br />

leader in northeastern Madagascar, and is a highlysought-after<br />

research and eco-tourism guide. With the money<br />

he makes from guiding,he buys forested land in order to<br />

protect it.Years of work have finally culminated in the establishment<br />

of his own small private nature reserve called<br />

Antanetiambo (antanetiambo.marojejy.com/Intro_e.htm),<br />

which means "on the high hill". It is perhaps the only reserve<br />

in northern Madagascar that has been entirely created from<br />

start to finish by a single local resident.<br />

According to Mr Desiré, "I am very happy to receive this<br />

award and I feel very lucky for myself and Madagascar. After<br />

many years of hard work and political instability,finally we are<br />

having some local conservation success. I plan to use these<br />

funds for such projects as reforestation, developing tourist<br />

Fig. 1: Rabary Desiré next to the sign for the Antanetiambo<br />

Nature Reserve he created.<br />

infrastructure and purchasing the land around Antanetiambo<br />

Nature Reserve to increase the size of the reserve and the<br />

amount of protected land in this region. This award will help<br />

preserve the precious biodiversity and high endemism of<br />

Madagascar,as well as fight the ongoing battle against massive<br />

deforestation and possible extinction of many beloved species...<br />

Thanks Seacology for giving me this prize. The whole<br />

region will never forget it."<br />

Read the full press release:<br />

www.seacology.org/news/display.cfm?id=4238<br />

Célébration du quinzième anniversaire<br />

du GERP (1994-2009)<br />

Jonah Ratsimbazafy*, Rose Marie Randrianarison,<br />

Muriel Nirina Maeder<br />

GERP, 34, Cité des Professeurs, Antananarivo 101,<br />

Madagascar<br />

*Corresponding author: gerp@wanadoo.mg<br />

Quinze ans se sont écoulés depuis la création, en 1994, de la<br />

Société de Primatologie malgache ou Groupe d’Etude et de<br />

Recherche sur les Primates de Madagascar (GERP). Elle fut<br />

fondée par dix Primatologues dont le Professeur Berthe<br />

Rakotosamimanana qui occupait à la fois le poste de Secrétaire<br />

Général du GERP et le Co-éditeur de la revue Lemur<br />

News jusqu’à sa disparition en 2005. De son vivant, elle<br />

désirait ardemment passer le flambeau au Docteur Jonah<br />

Ratsimbazafy pour le poste de Secrétaire Général du GERP<br />

qui, en 2006, a été mandaté à l’unanimité par les membres<br />

nationaux et internationaux du GERP au titre de Leader du<br />

GERP.<br />

L’Association compte aujourd’hui 169 membres et 20 d’entre<br />

eux sont de nationalité étrangère. La multidisciplinarité<br />

des membres du groupe (Primatologues, Anthropologues,<br />

Paléontologues, Ornithologues, Herpétologues, Spécialistes<br />

de Micromammifères et Mammifères, Parasitologistes, Botanistes,<br />

Géographes, Vétérinaires, Agro-forestiers, Biochimis-


Page 10 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

tes, Dessinateur, Financiers) apporte une importante potentialité<br />

dans l’accomplissement de la mission du GERP: transférer<br />

les compétences nécessaires à la préservation de la<br />

biodiversité pour les générations futures. Par ailleurs, les actions<br />

du GERP comprennent également la formation des<br />

pépinières de Primatologues, la mise en œuvre du plan de<br />

conservation des lémuriens, la contribution à l’amélioration<br />

des activités génératrices de revenu des communautés de<br />

base liées à la conservation,sans oublier l’éducation environnementale<br />

de la population cible.<br />

En 2007,l’attribution par le GERP du nom de Microcebus macarthurii<br />

à une nouvelle espèce découverte dans la forêt de<br />

Makira représentait un témoignage de reconnaissance au<br />

dévouement de la Fondation MacArthur. De plus, le GERP a<br />

depuis 2008 officiellement été mandaté par le MEFT/DGEF/<br />

DSAP comme Gestionnaire de la forêt de Maromizaha,pour<br />

que cette dernière devienne une Nouvelle Aire Protégée<br />

(NAP).Plus récemment encore,en février 2010,le prix "lifetime"<br />

décerné par l’IPS a été attribué à un membre scientifique<br />

du GERP en la personne du Docteur Alison Jolly.<br />

A l’occasion de son quinzième anniversaire, le GERP aura<br />

l’honneur d’organiser une conférence scientifique sur les<br />

lémuriens, à Antananarivo en novembre 2010.<br />

Conservation International’s Primate<br />

Action Fund:Projects funded March 2009<br />

to March 2010<br />

Anthony Rylands<br />

Conservation International, 2011 Crystal Drive, Suite 500,<br />

Arlington, VA 22202, USA, a.rylands@conservation.org<br />

Conservation International’s Primate Action Fund awards<br />

small grants (up to $5,000) to support projects and initiatives<br />

promoting the conservation of primates worldwide,focusing<br />

on Critically Endangered and Endangered species in their<br />

natural habitats (and most especially those included in the biennial<br />

listing of the World’s 25 Most Endangered Primates).<br />

Projects should contribute to at least one of the following<br />

themes: (1) enhancement of scientific understanding/knowledge<br />

of the target species/ecosystem; (2) improved protection<br />

of a key species, habitat, or a reserved area; (3) demonstration<br />

of economic benefits achieved through conservation<br />

of a species and its habitat,as compared to its loss;(4) increased<br />

public awareness or educational impact resulting<br />

from the project in question; (5) improved local capacity to<br />

carry out future conservation efforts through training or<br />

practical experience obtained through project participation;<br />

and (6) modification of inappropriate policies or legislation<br />

that previously led to species or habitat decline. Awards are<br />

given most frequently for population and distribution surveys,and<br />

ecological and behavioral studies pertinent to conservation<br />

initiatives for threatened species. Grants are also<br />

given that support genetic and taxonomic studies, publications,<br />

workshops for action plans and suchlike, and primate<br />

field courses. Some awards are given to help primate habitat-country<br />

primatologists attend the biennial congresses of<br />

the International Primatological Society. The fund does not<br />

support participation in academic courses.<br />

The Primate Action Fund comes from an annual award to<br />

Conservation International, Arlington, Virginia, USA, made<br />

by the Margot Marsh Biodiversity Foundation. It is managed<br />

jointly by Ms Ella Outlaw and Dr Anthony B.Rylands,both of<br />

CI’s Office of the President. Guidelines for application can be<br />

obtained by writing to Anthony Rylands (see Funding and<br />

Training section in this issue).<br />

Five grants were awarded to benefit lemur conservation in<br />

the March 2009 – March 2010 funding cycle. They were as<br />

follows: (1) Halting politically-induced deforestation in the<br />

short term to preserve the unique primate community of<br />

Tsinjoarivo, eastern central Madagascar–Mitchell T. Irwin,<br />

Fanomezantsoa, Jean-Luc Raharison and Marina Blanco; (2)<br />

Rapid survey and assessment of the northern sportive lemur,<br />

Lepilemur septentrionalis, in the Sahafary Region, Madagascar–Edward<br />

Louis Jr, Jean<br />

Ranaivoarisoa, John Zaonarivelo and Steig Johnson; (3) Support<br />

for the publication of the IUCN/SSC Primate Specialist<br />

Group newsletter and journal Lemur News, volume 14–Jörg<br />

U. Ganzhorn and Christoph Schwitzer; (4) Student training<br />

course “Field Methods in the Study of Primate Behavior and<br />

Ecology”,Kirindy forest,2010–Melanie Dammhahn,Peter M.<br />

Kappeler, Claudia Fichtel, Cornelia Kraus and Rodin Rasoloarison;<br />

and (5) Comparison of habitat requirements of the<br />

Data Deficient northern giant mouse lemur (Mirza zaza) in<br />

two differently degraded habitats, in Sahamalaza,northwestern<br />

Madagascar–Johanna Rode and Christoph Schwitzer.<br />

International Technical Meeting on Prolemur<br />

simus, 26-28 January 2010, Antananarivo,<br />

Madagascar<br />

The greater bamboo lemur Prolemur simus has long been considered<br />

to be one of the rarest primate species in the world.<br />

Up to 2007 only 60 individuals were known from the wild,<br />

and another 22 were in captivity (Wright et al.,2008;Primate<br />

Conservation 23: 5-17). Once widespread across Madagascar,<br />

more recent confirmed sightings were exclusively from<br />

south-eastern Madagascar, which led to the assumption that<br />

the species was extinct on the rest of the island. In 2008,<br />

Dolch et al. (Lemur News 13: 14-17) rediscovered P. simus in<br />

the Torotorofotsy wetlands, north of the Mangoro River.<br />

Since then, several extensive surveys have been conducted<br />

north and south of the Mangoro, and evidence of greater<br />

bamboo lemurs was found at several sites in the Ankeniheny-Zahamena<br />

Corridor, in the central region of the eastern<br />

rainforest (King and Chamberlan, 2010; Oryx 44: 167).<br />

In the context of developing a conservation action plan for<br />

the greater bamboo lemur, the Madagascar Fauna group organised,<br />

from 26-28 January 2010 at the motel d’Antananarivo,<br />

Anosy, an international technical meeting with the<br />

theme "Conservation of the critically endangered greater<br />

bamboo lemur Prolemur simus:What we know now,what we<br />

need to know and potential conservation strategies".Several<br />

members of the PSG contributed to this.<br />

The objectives of the meeting were 1) to share information<br />

about the current situation of the various groups/populations<br />

of Prolemur simus in the wild and in captivity; 2) to discuss<br />

the threats, the solutions and the conservation strategies<br />

for three groups - north of the Mangoro River (Torotorofotsy<br />

and the Ankeniheny-Zahamena corridor CAZ),<br />

south of the Mangoro River (south-east and the Fandriana-<br />

Vondrozo corridor COFFAV), and in captivity (Madagascar<br />

and Europe); and 3) to make a plan, short to long term, to<br />

move towards a conservation action plan for the species.<br />

With 28 participants,the meeting was well attended.Presentations<br />

were given by researchers studying P. simus in the wild<br />

and in captivity, representatives from the Ambatovy, Madagascar<br />

National Parks, the University of Antananarivo and


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 11<br />

conservation NGOs.While other potential P.simus sites still<br />

need to be explored, results from the most recent surveys<br />

suggest the total estimated size of the known population is<br />

between 221-346 individuals. Another 20 individuals are<br />

housed in one Malagasy (Parc Ivoloina Zoo) and several European<br />

zoos and and managed under the umbrella of an EEP.<br />

The following recommendations for the conservation of P.<br />

simus came out of the meeting:<br />

We need to achieve official/formal protection for all currently<br />

known P. simus habitat (using whatever status is appropriate<br />

to the site);<br />

Animals of the northern and southern populations (wild<br />

or captive) should not be mixed until the taxonomic situation<br />

is clarified;<br />

Faecal samples should be collected from all sites using a<br />

standard protocol (meeting participants agree to collaborate<br />

to achieve this);<br />

When animals are caught/immobilised the opportunity<br />

should be used to maximise the collection of samples;<br />

Bamboo plot data should be collected from all sites using<br />

a standard protocol (meeting participants agree to collaborate<br />

to achieve this);<br />

A health screening protocol should be applied whenever<br />

the opportunity arises;<br />

Sites in the Ankeniheny-Zahamena Corridor (CAZ) recently<br />

shown to harbour P. simus should be evaluated by<br />

2011 at the latest to assess population size;<br />

Maromiza and Lakato need to be evaluated for the presence<br />

of P. simus, and protected to ensure connectivity;<br />

We agree that assuring connectivity between Torotorofotsy<br />

and CAZ is a high priority,and that the area needs an<br />

integrated conservation plan involving all stakeholders –<br />

CI to drive the process under supervision of the Alaotra-<br />

Mangoro Forestry Commission;<br />

It is important to make P. simus a priority (conservation<br />

target) for the CAZ;<br />

Improved communication using a mailing list will be established,<br />

the "Prolemur Conservation Working Group";<br />

There are other sites that need to be surveyed for P.simus<br />

(a list of sites has already been identified);<br />

Maximising connectivity between P. simus sites is important;<br />

Local communities should be directly involved in P. simus<br />

conservation wherever possible;<br />

In case of a crisis scenario involving potential translocation,<br />

a technical strategy is needed consistent with IUCN<br />

guidelines;<br />

The EEP-Ivoloina exchange of P. simus is important to<br />

strengthen the global captive population;<br />

For the time being,it is not recommended that additional<br />

wild P. simus be added to the global captive programme,<br />

except in emergency;<br />

In the case of emergency, we recommend that animals go<br />

to PBZT if upgraded facilities have been installed; if not<br />

then they should go to Ivoloina;<br />

Based on the development of the global captive programme,<br />

integrated (metapopulation) management of P. simus<br />

should be considered;<br />

Another technical meeting should be held in January<br />

2011.<br />

The workshop was financially and technically supported by<br />

the Madagascar Fauna Group with additional contributions<br />

from Conservation International Madagascar.<br />

Lemur presentations at the 23rd Congress<br />

of the International Primatological<br />

Society, Kyoto, Japan<br />

Jonah Ratsimbazafy<br />

GERP, 34, Cité des Professeurs, Antananarivo 101, Madagascar,<br />

gerp@wanadoo.mg<br />

The 23rd Congress of the International Primatological Society<br />

(IPS) was held in Kyoto (Yoshida Main Campus),Japan on<br />

12th-18th September, 2010. This congress brought together<br />

more than 1,000 delegates from 56 countries. Twenty-eight<br />

talks and three posters were presented on lemur studies<br />

during that congress.<br />

I am also pleased to share with you the good news that the<br />

winner of the 2010 IPS Lifetime Award is Professor Alison<br />

Jolly who is an active member of GERP (Groupe d’Etude et<br />

de Recherche sur les Primates de Madagascar). The lemur<br />

lady,Prof.Jolly,has devoted her life to the conservation of the<br />

world’s primates. Education is one of the main activities that<br />

she never stops to discuss,as she found that the only chance<br />

to save the endangered lemurs of Madagascar is to provide<br />

the Malagasy children with tools enabling them to learn and<br />

love the creatures that exist in their backyards.<br />

I hope that even more lemur researchers will present the<br />

results of their work at the 24th IPS Congress in Mexico.<br />

Short Communications<br />

Preliminary conservation status assessment<br />

for the Data Deficient northern<br />

giant mouse lemur Mirza zaza<br />

Eva Johanna Rode 1,2, K. Anne-Isola Nekaris 2, Christoph<br />

Schwitzer 1*<br />

1Bristol Conservation and Science Foundation, c/o Bristol<br />

Zoo Gardens, Clifton, Bristol BS8 3HA, UK<br />

2Nocturnal Primate Research Group, School of Social Sciences<br />

and Law, Oxford Brookes University, OX3 0BP, UK<br />

*Corresponding author: cschwitzer@bcsf.org.uk<br />

Madagascar is one of the world’s most important biodiversity<br />

hotspots, underpinned by its large proportion of endemic<br />

species and high rates of deforestation.During the last<br />

decade, species diversity of Madagascar’s endemic lemurs<br />

has increased dramatically due to new discoveries and taxonomic<br />

revisions. This has resulted in the unusual situation of<br />

45 % of all Malagasy primate species being Red-Listed as Data<br />

Deficient (DD) by the IUCN. This is by far the highest such<br />

figure for any primate habitat country (by comparison, 13 %<br />

of all primates and <strong>15</strong> % of all mammals are Red-Listed as<br />

DD).The lack of species-specific knowledge makes it impossible<br />

to design effective conservation measures targeting<br />

these taxa. To help assign a conservation status to the DD<br />

northern giant mouse lemur Mirza zaza, described in 2005<br />

due to distinctive features in morphology, behaviour and<br />

genetics (Kappeler et al., 2005; Primate Report, 71, 3-26), we<br />

examined space requirements and group size of this small<br />

nocturnal lemur species during a three-month study (May-<br />

July 2010) and extrapolated our results to the taxon’s area of


Page 12 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

occupancy in order to estimate the size of its remaining<br />

population.<br />

Mirza zaza lives in dry forests of north-western Madagascar,<br />

one of the fastest declining habitats of the island, with a decrease<br />

in forest cover of 40 % from 1975 to 2000.The area of<br />

occurrence of the species is limited by the Maeverano River<br />

in the south and the Mahavavy River in the north.Combining<br />

forest cover data collected by the Madagascar Vegetation<br />

Mapping Project (www.vegmad.org) with data on group home<br />

range size and group size calculated from our study and additional<br />

literature, we calculated minimum and maximum estimates<br />

of total remaining population size. Since data for the<br />

Madagascar Vegetation Mapping Project were collected several<br />

years ago,we lowered the estimate of total available habitat<br />

according to the estimated annual rate of decline.Habitat<br />

decline may have accelerated since the onset of the political<br />

crisis in Madagascar in early 2009, which is not yet reflected<br />

in our estimates.Since a previous survey failed to detect Mirza<br />

zaza in several regions within the species’ area of occurrence,<br />

we applied different estimates of the percentage of<br />

suitable habitat actually inhabited by the species.Our calculations<br />

yielded the following estimates:<br />

Maximum estimate: The total area covered in dry forest<br />

within the area of occupancy of M. zaza is approximately<br />

1,650 km 2 . Assuming an occupancy of 80 %, group home<br />

ranges of 2 ha and group size of 4 individuals there would<br />

be max. 177,500 animals left in total.<br />

Minimum estimate: In order to reflect the long-term survival<br />

of the species in a very fragmented area, only fragments<br />

< 1km 2 and smaller fragments closer than 500 m to<br />

other, larger fragments (total area: 955 km 2 ) were considered.We<br />

chose 1 km 2 to allow a minimum viable population<br />

of 250 animals.If only 30 % of the habitat is inhabited,<br />

animals use group home ranges of 4 ha and live in groups<br />

of on average 2.3 animals, this leads to an estimate of<br />

16,500 individuals left.<br />

Mirza zaza should be assessed as Vulnerable (VU B2ab) since<br />

its area of occupancy in both estimates is lower than 2,000<br />

km 2. With several sites within the species’ distribution area<br />

found to be unoccupied, the remaining habitat being extremely<br />

fragmented with the smallest fragments unsuitable<br />

to support a viable population, and habitat vanishing quickly,<br />

M. zaza may become Endangered (EN B2ab) in the near<br />

future if its area of occupancy shrinks below 500 km 2.<br />

Our preliminary conservation status assessment used the<br />

best available data for Mirza zaza. More accurate estimates<br />

will be possible if more data become available, especially on<br />

percentage of occupancy. This method might be applied to<br />

other DD lemur species in order to gain initial assessments<br />

of their conservation status.<br />

An observation of the hairy-eared dwarf<br />

lemur, Allocebus trichotis, in the Lakato<br />

region, eastern Madagascar<br />

Erwan Lagadec 1, Steven M. Goodman 2*<br />

1Centre de Recherche et de Veille sur les maladies émergentes<br />

dans l’Océan Indien (CRVOI),GIP Cyclotron Réunion<br />

Océan Indien, 2 rue Maxime Rivière, 97492 Sainte Clotilde,<br />

Ile de la Réunion, France, and Centre National de la Recherche<br />

Scientifique, UMR5557 Ecologie Microbienne, Bât A.<br />

Forel, 43 bd du 11 novembre 1918, 69622 Villeurbanne<br />

CEDEX, France<br />

2Field Museum of Natural History, 1400 South Lake Shore<br />

Drive, Chicago, Illinois 60605, USA, and Association Vahatra,<br />

BP 3972, Antananarivo 101, Madagascar<br />

*Corresponding author: sgoodman@vahatra.mg<br />

Although a few decades ago the hairy-eared dwarf lemur<br />

(Allocebus trichotis) was considered "unquestionably the rarest<br />

of surviving lemurs" (Tattersall,1982,p.131),more recent<br />

field work has found this species to be widely distributed<br />

across portions of the eastern humid forests of Madagascar<br />

(e.g., Meier and Albignac, 1991; Rakotoarison, 1998; Schütz<br />

and Goodman, 1998; Goodman and Raselimanana, 2002).<br />

Since more than a decade, there have been numerous records<br />

of this species from the central portion of the eastern<br />

humid forests,and information is now available on aspects of<br />

its ecology and natural history (e.g.Rakotoarison et al.,1997;<br />

Garbutt,2000;Biebouw,2009;Ralison,2010).Here we add an<br />

additional record from the region of Lakato, an area from<br />

where this species had not been previously recorded.<br />

From 22-28 October 2010 we were part of a research group<br />

that conducted a biological inventory of a forest block in the<br />

Lakato area and in the southern portion of the Zahamena-<br />

Ankeniheny forest corridor. The specific study site was centered<br />

at the following locality,which served as the base camp<br />

for all inventory activities: Province de Toamasina, Alaotra-<br />

Mangoro Region, 14.5 km SW of Andasibe (Périnet) village,<br />

Ampasipotsy-Anivonimaro/Ambalafary Forest, 19°02’38"S,<br />

48°20’55"E, 995 m elevation.<br />

During a nocturnal survey on 28 October 2010, the first author<br />

observed and photographed an individual of A. trichotis.<br />

The animal appeared not to be accompanied by any conspecifics.<br />

The distinctive ear-tufts, characteristic of Allocebus,<br />

were clearly visible (Fig.1).The lemur was observed at 21h58<br />

and for about five minutes.The site was in partially disturbed<br />

lower montane forest, about 200 m away from the research<br />

camp and within a few meters of the dirt road connecting the<br />

RN 2 (connecting Antananarivo-Toamasina) and the village<br />

of Lakato. The animal was not particularly active and rested<br />

in the upper portion of a 4 m tall tree. As it was photographed,<br />

including the use of flash, the individual remained<br />

largely stationary, until it finally turned and moved off into<br />

another tree and into dense vegetation.<br />

During the course of nocturnal observations of forest animals<br />

within the study site,this was the only observation of A.<br />

trichotis. Each night numerous individuals of Microcebus cf.<br />

Fig. 1: Photo of Allocebus trichotis taken during the night of 28<br />

October 2010 in a forest block approximately halfway between<br />

the turn-off of RN 2 and the village of Lakato. The<br />

ear-tufts of this animal, diagnostic of this species, are readily<br />

visible in the photo.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 13<br />

lehilahytsara were observed in close proximity. Although A.<br />

trichotis is now known to have a broad distribution across a<br />

good portion of the eastern humid forests, from lowland to<br />

montane forests (up to about 1,000 m),it occurs in low densities<br />

(Mittermeier et al., 2006).This factor might account for<br />

its absence in other forested sites surveyed within the<br />

Zahamena-Ankeniheny forest corridor (e.g., Schmid et al.,<br />

1999; Randrianabinina and Rasoloharijaona, 2006). However,<br />

continued surveying efforts at these sites will probably result<br />

in the finding that it occurs across the forest corridor.<br />

Acknowledgements<br />

The survey of the Lakato region was financed by a grant from<br />

the <strong>Vol</strong>kswagen Foundation.We are grateful to the Département<br />

de Biologie Animale, Université d’Antananarivo and<br />

the Direction du Système des Aires Protégées, Direction<br />

Générale de l’Environnement et des Forêts for permits to<br />

conduct this research.<br />

References<br />

Biebouw,K.2009.Home range size and use in Allocebus trichotis<br />

in Analamazaotra Special Reserve, central eastern Madagascar.<br />

Int. J. Primatol. 30: 367-386.<br />

Garbutt,N.2000.Brief observations of hairy-eared dwarf lemur<br />

(Allocebus trichotis) in Analamazaotra Special Reserve,<br />

eastern Madagascar. Lemur News 6: 37.<br />

Goodman, S.M.; Raselimanana, A.P. 2002. The occurrence of<br />

Allocebus trichotis in the Parc National de Marojejy. Lemur<br />

News 7: 21-22.<br />

Meier, B.; Albignac, R. 1991. Rediscovery of Allocebus trichotis<br />

Günther 1875 (Primates) in northeast Madagascar. Folia<br />

Primatol. 56: 57-63.<br />

Mittermeier,R.A.;Konstant,W.R.;Hawkins,A.F.A.;Louis,E.E.;<br />

Langrand, O.; Ratsimbazafy, J.; Rasoloarison, R.M.; Ganzhorn,<br />

J.U.; Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006.<br />

Lemurs of Madagascar. Second edition. Conservation International,<br />

Washington, D.C.<br />

Rakotoarison,N.1998.Recent discoveries of the hairy-eared<br />

dwarf lemur (Allocebus trichotis). Lemur News 3: 21.<br />

Rakotoarison, N.; Zimmermann, H.; Zimmermann, E. 1997.<br />

First discovery of the hairy-eared dwarf lemur (Allocebus<br />

trichotis) in a highland rain forest of Eastern Madagascar.<br />

Folia Primatol. 68: 86-94.<br />

Ralison,J.M.2010.The lemurs of the Ambatovy-Analamay region.<br />

Malagasy Nature 3: 178-191.<br />

Randrianambinina, B.; Rasoloharijaona, S. 2006. Inventaires<br />

des lémuriens nocturnes dans la forêt pluviale de Maromizaha<br />

(Est de Madagascar). Lemur News 11: 9-11.<br />

Schmid,J.;Fietz,J.;Rakotobe,Z.L.R.1999.Lémuriens du corridor<br />

Mantadia-Zahamena, Madagascar. In: J. Schmid, L.E.<br />

Alonso (eds.). Une évaluation biologique rapide du corridor<br />

Mantadia-Zahamena, Madagascar. Bulletin of Biological<br />

Assessment 32: 61-72.<br />

Schütz, H; Goodman, S.M. 1998. Photographic evidence of -<br />

Allocebus trichotis in the Reserve Speciale d’Anjanaharibe-<br />

Sud. Lemur News 3: 21-22.<br />

Tattersall,I.1982.The primates of Madagascar.Columbia University<br />

Press, New York.<br />

When big lemurs swallow up small ones:<br />

Coquerel’s dwarf lemur as a predator of<br />

grey mouse lemurs and endemic rodents<br />

Susanne Schliehe-Diecks 1, Matthias Markolf 2, Elise<br />

Huchard 2*<br />

1Courant Research Center "Evolution of Social Behavior",<br />

Georg-August-University of Göttingen,Kellnerweg 6,37077<br />

Göttingen, Germany<br />

2Abteilung Verhaltensökologie and Soziobiologie,<strong>Deutsches</strong><br />

<strong>Primatenzentrum</strong>,Kellnerweg 4,37077 Göttingen,Germany<br />

*Corresponding author: ehuchard@gmail.com<br />

Predation has probably played a major role in the evolutionary<br />

history of lemurs, and specifically affects small nocturnal<br />

lemurs, which are heavily predated upon by a wide range of<br />

vertebrates, including carnivores (e.g., viverrid or domestic<br />

carnivores), birds (e.g. raptors, owls) or reptiles (e.g. Boidae)<br />

(Goodman, 2003). In contrast, lemur predation by other lemur<br />

species appears exceptional and highly opportunistic,<br />

with one observed case of predation of an infant Lemur catta<br />

by Eulemur fulvus (Pitts, 1995). However, such events might<br />

occur more regularly in other lemur species. Two indirect<br />

lines of evidence suggest that Coquerel’s dwarf lemur (Mirza<br />

coquereli) predates on closely related smaller mouse lemurs<br />

(Microcebus sp.) (Kappeler and Rasoloarison,2003).The first<br />

report is based on events where the partially eaten carcass of<br />

a gray mouse lemur (M. murinus) was found together with a<br />

live M. coquereli in a trap (Goodman, 2003). The second observation<br />

consists of an experimental confrontation of M.<br />

murinus with M. coquereli, both being kept in separate cages<br />

that were temporarily placed next to each other. In most<br />

experiments, mouse lemurs started alarm-calling at the<br />

Coquerel’s dwarf lemur and moved around in their cage in an<br />

agitated fashion (Fichtel,2009).Here,we present the first direct<br />

evidence of predation by wild M. coquereli upon gray<br />

mouse lemurs and endemic rodents (western tuft-tailed rats,<br />

Elliurus myoxinus).<br />

Study animals, study site and methods<br />

Coquerel’s dwarf lemurs (300 g;mean home range size:4 ha)<br />

occur in the western lowland forests and gray mouse lemurs<br />

(60 g;mean home range size:1.5 ha) can be found in most remaining<br />

forests in southern and western Madagascar (Kappeler<br />

and Rasoloarison,2003;Rasoloarison et al.,2000).Both<br />

species share several features.Both are nocturnal and omnivorous<br />

solitary foragers. They mainly feed on primary resources<br />

(fruits,gum,flowers,young leaves),insect secretions,<br />

small invertebrates and occasionally vertebrates (chameleons<br />

and lizards). Their diet displays seasonal fluctuation, as<br />

well as interspecific variation (Goodman, 1993, 2003), and<br />

the Coquerel’s dwarf lemur is reported to be slightly more<br />

carnivorous than the gray mouse lemur (Petter et al., 1977).<br />

In captivity, both species have been observed eating young<br />

rodents (Petter et al., 1977) although this has never been reported<br />

in the wild. Both species occur sympatrically in central<br />

western Madagascar with western tuft-tailed rats,a nocturnal,<br />

frugi- and granivorous and partially arboreal rodent<br />

(average body mass: 66 g) (Carleton, 2003).<br />

All following observations were made in the Forêt de<br />

Kirindy,a 12,500 ha forestry concession of the C.N.F.E.R.E.F.<br />

(formerly C.F.P.F.) Morondava. This dry deciduous forest is<br />

situated 60 km northeast of Morondava (44°39´E, 20°03´S).<br />

The predation of the western tufted-tail rat was witnessed<br />

during a focal observation of a Coquerel’s dwarf lemur which<br />

was equipped with a radio collar (Biotrack TW3). The observed<br />

mouse lemurs were similarly equipped with radio<br />

collars (Holohil Systems Ltd., BD-2C, 1.8 g), permitting behavioural<br />

observations of focal animals.<br />

Results and discussion<br />

The first observation reports the predation of a western<br />

tuft-tailed rat by an adult male M.coquereli in November 2006<br />

(Fig.1).The Coquerel’s dwarf lemur was found sitting on the<br />

ground at 20h17, feeding on a tufted-tail rat, and changed its<br />

position only to climb-up the vegetation from 1-3 m height<br />

and to recover the carcass when it fell to the ground. It devoured<br />

the whole carcass, including (cracked) bones. After<br />

finishing eating,the M.coquereli groomed its face and hands.


Page 14 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Fig. 1: An adult Coquerel’s<br />

dwarf lemur (Mirza coquereli)<br />

in the Foret de Kirindy, Madagascar.<br />

The second observation<br />

reports an unsuccessful<br />

attack on an adult female<br />

gray mouse lemur (55 g,<br />

approx. age: 1 year and 9<br />

months) by a Coquerel’s<br />

dwarf lemur in October<br />

2009.At 21h24,the mouse<br />

lemur had been foraging<br />

high up in the vegetation<br />

(between 6 and <strong>15</strong> m) for<br />

at least 10 minutes, licking<br />

sugary insect secretions<br />

off leaves,when a M.coquereli,<br />

adult size, was spotted<br />

at the same height, about<br />

10m from the focal subject,<br />

slowly and silently<br />

moving towards the<br />

mouse lemur. Marking<br />

brief and frequent pauses<br />

in an apparently easy pro-<br />

gression into the canopy, its whole attitude strongly recalled<br />

the hunting cat, with a low head and a flexible body, apparently<br />

entirely focused on its prey.In less than 30 seconds,the<br />

Mirza was within 5 m of the mouse lemur,who kept feeding in<br />

the same location. While the Mirza approached within 2 m,<br />

the mouse lemur suddenly disappeared in an eclipse, quickly<br />

fleeing among the top and tiniest branches,and jumping from<br />

one slim branch to the next.The Coquerel’s dwarf lemur did<br />

not try to chase it.After 2 minutes out of sight,the mouse lemur<br />

was retrieved quietly feeding on tree exudates, 25 m<br />

away from its previous localization in its fleeing direction,and<br />

<strong>15</strong> m away from a frequently used sleeping site. Less than 10<br />

minutes later, the female was joined by a related female and<br />

both entered the tree hole together (21h37).<br />

Finally, an adult Coquerel’s dwarf lemur was observed feeding<br />

on a young male gray mouse lemur (body mass: 37 g;<br />

approx.age:2-3 months) in June 2010.The predation was recorded<br />

at 22h10,about two hours after behavioural data had<br />

been collected from the predated mouse lemur,which at the<br />

time showed no signs of injuries and displayed normal behaviour.The<br />

body of the gray mouse lemur was almost complete<br />

when the observer spotted the M. coquereli feeding on<br />

it,suggesting that the mouse lemur was killed shortly before.<br />

The Coquerel’s dwarf lemur was sitting with its prey in a tree<br />

of about 10m height, which stood 25 m away from the position<br />

where the grey mouse lemur was last spotted alive. It<br />

took about one hour to finish the entire carcass,interrupted<br />

by occasional vigilance scans of the surroundings.<br />

The frequency of such events is probably relatively low, and<br />

all reported observations happened during, or at the end of,<br />

the dry season in Kirindy. It is thus possible that predation<br />

pressure by M. coquereli increases at times of food scarcity,<br />

when alternative resources like fruits and invertebrates are<br />

rare or absent. However, it is also important to note that<br />

most observations took place during the dry season, when<br />

vegetation density is low in this dry, deciduous forest. This<br />

means that the timing of events reported here might simply<br />

reflect study methods. Nevertheless, this suit of anecdotal<br />

observations represents the first direct and unambiguous<br />

evidence for predation by the Coquerel’s dwarf lemur upon<br />

small nocturnal lemurs, as well as other mammals. Predation<br />

among other primate species is relatively rare. So far, only<br />

chimpanzees, orangutans, baboons, blue monkeys and capuchins<br />

have been observed preying upon other primates<br />

(Fichtel, in press). Our report provides evidence for the first<br />

case where a lemur species might commonly predate upon<br />

other lemurs.<br />

References<br />

Carleton,M.D.2003.Eliurus,Tufted-tailed rats.Pp.1373-1380.<br />

In:S.M.Goodman;J.Benstead (eds.). The Natural History<br />

of Madagascar.The University of Chicago Press,Chicago.<br />

Fichtel, C. 2009. Costs of alarm calling: lemur alarm calls<br />

attract fossas. Lemur News 14: 53-54.<br />

Fichtel,C.in press.Predation.In:J.Mitani:J.Call;P.M,Kappeler;<br />

R.Palombit;J.B.Silk;(eds.) The Evolution of Primate Societies.<br />

The University of Chicago Press, Chicago.<br />

Goodman,S.M.;O’Connor,S.;Langrand,O.1993.A review of<br />

predation on lemurs: implications for the evolution of<br />

social behavior in small, nocturnal primates. Pp. 51-66. In:<br />

P.M.Kappeler;J.U.Ganzhorn (eds.).Lemur social systems and<br />

their ecological basis. Plenum Press, New York.<br />

Goodman,S.M.2003.Predation on Lemurs.Pp 1221-1228.In:<br />

S. M. Goodman: J. Benstead (eds.). The Natural History of<br />

Madagascar. The University of Chicago Press, Chicago.<br />

Kappeler,P.M.;Rasoloarison,R.M.2003.Microcebus,mouse lemurs,<br />

tsidy. Pp 1310-13<strong>15</strong>. In: S. M. Goodman: J. Benstead<br />

(eds.).The Natural History of Madagascar.The University<br />

of Chicago Press, Chicago.<br />

Petter, J-J.; Albignac, R.; Rumpler, Y. 1977. Mammifères lémuriens<br />

(primates prosimiens). In: Faune de Madagascar,<br />

Paris.<br />

Pitts, A. 1995. Predation by Eulemur fulvus on an infant Lemur<br />

Catta at Berenty, Madagascar. Folia Primatol. 65: 169-71.<br />

Rasoloarison, R.M.; Goodman, S.; Ganzhorn, J.U. 2000. Taxonomic<br />

revision of mouse lemur (Microcebus) in the western<br />

portions of Madagascar.Int.J.Primatol.21:963-1019.<br />

Collective mobbing of a boa by a group of<br />

red-fronted lemurs (Eulemur fulvus rufus)<br />

Lennart Pyritz 1,2*, Tianasoa Andrianjanahary 1<br />

1Behavioral Ecology & Sociobiology Unit, German Primate<br />

Center, Kellnerweg 4, 37077 Göttingen, Germany<br />

2CRC "Evolution of Social Behavior", University of Göttingen,<br />

Germany<br />

*Corresponding author: LennartPyritz@gmx.net<br />

Key words: red-fronted lemurs, boa, predation, mobbing,<br />

anti-predator behaviour<br />

Introduction<br />

Collective anti-predator behaviour is one of the principal advantages<br />

of group-living (for mammals, e.g., Janzen, 1970; van<br />

Schaik, 1983). It can be broadly divided into two strategies<br />

and tactics employed before and after predator encounters<br />

(Caro,2005;Rahlfs and Fichtel, 2010;Fichtel, in press). While<br />

the former include predator-sensitive foraging and increased<br />

vigilance, mobbing occurs in several mammal species after<br />

detecting a predator (e.g., Tamura, 1989). Why animals<br />

engage in mobbing and who benefits from it in which way<br />

remains an unresolved question in animal behaviour (for<br />

reviews see Curio et al., 1978; Shields, 1984). Until today,<br />

published field observations of group-living lemurs mobbing<br />

a predator are rare (summarised in Scheumann et al., 2007).<br />

Regarding snakes, only three interactions have been described<br />

so far (Colquhoun,1993;Rakotondravony,1998;Burney,<br />

2002). Here, we report a prolonged mobbing display<br />

against a Madagascar ground boa (Acrantophis madagascariensis)<br />

by a group of red-fronted lemurs (Eulemur fulvus rufus)<br />

in Kirindy Forest. Observations like this may help to elucidate<br />

fundamental mechanisms of collective anti-predator behaviour<br />

by contributing to a pool of data on mobbing by particular<br />

pairs of prey and predators.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page <strong>15</strong><br />

Observations<br />

The event was observed during regular behavioural observations<br />

of red-fronted lemurs in Kirindy Forest,60 km north of<br />

Morondava. It was the only snake-lemur interaction observed<br />

during the entire study period from November 2007<br />

to April 2010, in which four lemur groups were followed<br />

daily by one or two observers,respectively (> 4,000 h of observation<br />

data).Red-fronted lemurs live in multi-male,multifemale<br />

groups of 5-12 individuals (Pereira and Kappeler,<br />

1997;Wimmer and Kappeler,2002).The study group (B) that<br />

encountered the boa included 9 individually marked animals<br />

at the time (2 adult females, 5 adult males, 1 juvenile male, 1<br />

male infant).<br />

On March 1,2010,at 7.19 h,sudden alarm calls of several redfronted<br />

lemurs were heard in the study area known as CS7.<br />

Six individuals (2 adult females,2 adult males,1 juvenile male,<br />

1 male infant) could be identified after approaching the group<br />

to within 10 m.Three of them (2 adult females,1 adult male)<br />

emitted "Woofs" and "Huvvs",vocalisations typically uttered<br />

during predator encounters (Fichtel and Kappeler, 2002).<br />

The 5 individuals surrounded an approximately 2 m long<br />

Madagascar ground boa (Fig. 1) that was lying motionless on<br />

the ground. The lemurs sat at a height of 1-2 m, each about<br />

3 m away from the snake, wagging their tails vigorously, ex-<br />

Fig. 1: Madagascar ground boa in Kirindy. (Photo: Lennart<br />

Pyritz)<br />

cept the infant that kept a distance of 5 m during the entire<br />

event and did not display any vocalisations or tail-wagging.<br />

During the next 4 min,one of the adult males approached the<br />

front end of the boa twice, getting as close as 1-2 m. After 5<br />

min, he left the scene. During this time, one of the adult females<br />

also approached the snake up to within 2 m.When the<br />

male left,the second female started to quickly circuit the boa<br />

for 4 min,maintaining a distance of 2-3 m.After 14 min of several<br />

approaches and continuous alarm calls by 3-5 individuals,<br />

the boa moved for the first time,heading slowly away.The remaining<br />

adult male approached the moving snake also within<br />

2 m; also at its front end. About 1 min later, the boa had<br />

moved <strong>15</strong> m away, and the lemurs left in the opposite direction,still<br />

uttering grunts continuously.Once the boa was out<br />

of sight, the mobbing stopped and the lemurs` behaviour returned<br />

to baseline levels.<br />

Discussion<br />

The mobbing reaction of the group was strong and prolonged<br />

and included most of the group members.This is similar<br />

to the behaviour of a black lemur (Eulemur macaco<br />

macaco) group encountering a Madagascar boa at Ambato<br />

Massif, where the group mobbed the snake for <strong>15</strong>-20 min,<br />

and some individuals approached it as close as 1 m before<br />

finally leaving the location (Colquhoun, 1993). It is also noteworthy<br />

that females and males mobbed and approached the<br />

snake in equal measure as observed in a number of other<br />

species (e.g., Tamura, 1989; Ferrari and Ferrari, 1990; Tello et<br />

al., 2002). The infant maintained a larger distance to the boa<br />

and did not engage in the mobbing displays, however. Similar<br />

infant behaviour has also been reported for other primates<br />

(e.g., Ferrari and Ferrari, 1990) and might be due to a higher<br />

susceptibility to an attack due to smaller body size or a lack<br />

of innate experience regarding predator encounters and<br />

mobbing strategies (Curio et al., 1978; Fichtel, in press).<br />

The strong mobbing reaction of the lemurs might be explained<br />

by the hunting strategy of the snake.Boas are ambush<br />

hunters that usually abandon an attack as soon as they have<br />

been detected (Montgomery and Rand, 1978; Slip and Shine,<br />

1988). Therefore, it seems beneficial for prey animals to signal<br />

the ambush hunter quickly and distinctly that it has been<br />

detected. As boas do not pursue their prey after an unsuccessful<br />

attack, it is also unsurprising that the lemurs’ behaviour<br />

returned to baseline levels of anxiety shortly after departing<br />

the site of the predator encounter. In contrast,<br />

groups of red-fronted lemurs showed increased vigilance behaviour<br />

for at least 30-60 min after encountering a fossa<br />

(Cryptoprocta ferox;pers.comm.Jean-Pierre Tolojanahary and<br />

pers.observation by LP),which is probably due to the higher<br />

agility and climbing abilities of the largest mammalian carnivore.Furthermore,fossas<br />

have been observed to hunt cooperatively<br />

and pursue prey up to 45 min (Lührs and Dammhahn,<br />

2009).<br />

There are no quantitative data on predation rates of lemurs<br />

by snakes in Kirindy, only opportunistic observations (e.g.,<br />

Schülke, 2001; Eberle and Kappeler, 2008) that are biased by<br />

several factors, however. The low observation rate of boalemur<br />

interactions could be due to the reptiles` nocturnal<br />

lifestyle (Raxworthy,2003),so that most of the attacks would<br />

occur at night when no or only few observers are working in<br />

the forest. Furthermore, boas at Kirindy are only active during<br />

the rainy season from January to April, when observations<br />

are often limited by dense foliage and frequent rainfalls.<br />

Five of the six individuals taking part in the mobbing were related<br />

(1 adult female and her 4 offspring from the last 4<br />

years), while it is currently unknown whether the second<br />

adult male sired one of the two youngest group members.<br />

However, due to the small number of detailed observations<br />

of predator encounters it remains impossible to identify the<br />

ultimate causes of collective mobbing (kin defence/parental<br />

care, self-/group defence or cultural transmission of enemy<br />

recognition; Curio et al., 1978) in this species for the time<br />

being.<br />

Acknowledgements<br />

LP was supported financially by the Deutsche Forschungsgemeinschaft<br />

(DFG; KA 1082/16-1, FuE). We thank field assistant<br />

Jean-Pierre Tolojanahary for sharing his long-term observation<br />

experiences with us. We are also grateful to Peter<br />

Kappeler, Claudia Fichtel and Moritz Rahlfs for constructive<br />

and helpful comments on earlier drafts of the manuscript.<br />

References<br />

Burney, D.A. 2002. Sifaka predation by a large boa. Folia Primatologica<br />

73: 144-145.<br />

Caro, T. 2005. Antipredator defenses in birds and mammals.<br />

The University of Chicago Press, Chicago, London.<br />

Colquhoun, I.C. 1993. The socioecology of Eulemur macaco:<br />

A preliminary report. Pp. 11-23. In: P.M. Kappeler; J.U.<br />

Ganzhorn (eds.). Lemur social systems and their ecological<br />

basis. Plenum Press, New York and London.


Page 16 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Curio, E.; Ernst, U.; Vieth, W. 1978. Cultural transmission of<br />

enemy recognition:one function of mobbing.Science 202:<br />

899-901.<br />

Eberle, M.; Kappeler, P.M. 2008. Mutualism, reciprocity, or kin<br />

selection? Cooperative rescue of a conspecific from a boa<br />

in a nocturnal solitary forager the gray mouse lemur.<br />

American Journal of Primatology 70: 410-414.<br />

Ferrari, S.F.; Ferrari, M.A.L. 1990. Predator avoidance behaviour<br />

in the buffy-headed marmoset, Callithrix flaviceps.<br />

Primates 31: 323-338.<br />

Fichtel, C. In press. Predation on primates. In: J.C. Mitani; J.<br />

Call;P.Kappeler;R.Palombit;J.Silk (eds.).The evolution of<br />

primate societies. University of Chicago Press, Chicago.<br />

Fichtel, C.; Kappeler, P.M. 2002. Anti-predator behaviour of<br />

group-living Malagasy primates: mixed evidence for a<br />

referential alarm call system. Behavioral Ecology and<br />

Sociobiology 51: 262-275.<br />

Janzen,D.1970.Altruism by coatis in the face of predation by<br />

boa constrictor. Journal of Mammalogy 51: 387-389.<br />

Lührs,M.L.;Dammhahn,M.2009.An unusual case of cooperative<br />

hunting in a solitary carnivore. Journal of Ethology<br />

DOI: 10.1007/s10164-009-0190-8.<br />

Montgomery, G.G.; Rand, A.S. 1978. Movements, body temperature<br />

and hunting strategy of a Boa constrictor. Copeia<br />

3: 532-533.<br />

Pereira, M.E.; Kappeler, P.M. 1997. Divergent system of agonistic<br />

behaviour in lemurid primates.Behavior 34:225-74.<br />

Rahlfs,M.;Fichtel,C.2010.Anti-predator behaviour in a nocturnal<br />

primate, the grey mouse lemur (Microcebus murinus).<br />

Ethology 116: 429-439.<br />

Rakotondravony, D.; Goodman, S.M.; Soarimalala, V. 1998.<br />

Predation on Hapalemur griseus griseus by Boa manditra<br />

(Boidae) in the Littoral Forest of Eastern Madagascar.<br />

Folia Primatologica 69: 405-408.<br />

Raxworthy, C.J. 2003. Boidae, Boas. Pp. 993–997. In: S.M.<br />

Goodman; J.P. Benstead (eds.). The Natural History of<br />

Madagascar. University of Chicago Press, Chicago.<br />

Scheumann, M.; Rabesandratana, A.; Zimmermann, E. 2007.<br />

Predation, communication, and cognition in lemurs. Pp.<br />

100-126. In: S. Gursky; K.A.I. Nekaris (eds.). Primate antipredator<br />

strategies. Springer, New York.<br />

Schülke, O. 2001. Social anti-predator behaviour in a nocturnal<br />

lemur. Folia Primatologica 72: 332-334.<br />

Shields,W.1984.Barn swallow mobbing:self-defence,collateral<br />

kin defence, group defence, or parental care? Animal<br />

Behaviour 32: 132-148.<br />

Slip, D.; Shine, R.1988. Feeding habits of the diamond python,<br />

Morelia s. spilota: ambush predation by a Boid snake. Journal<br />

of Herpetology 22: 323-330.<br />

Tamura, N. 1989. Snake-directed mobbing by the Formosan<br />

squirrel Callosciurus erythraeus thaiwanensis. Behavioral<br />

Ecology and Sociobiology 24: 175-180.<br />

Tello, N.S.; Huck, M.; Heymann, E.W. 2002. Boa constrictor attack<br />

and successful group defence in moustached tamarins,<br />

Saguinus mystax. Folia Primatologica 73: 146-148.<br />

Van Schaik, C. 1983. Why are diurnal primates living in<br />

groups? Behaviour 88: 120-143.<br />

Wimmer,B.;Kappeler,P.M.2002.The effects of sexual selection<br />

and life history on the genetic structure of redfronted<br />

lemur, Eulemur fulvus rufus, groups. Animal Behaviour 64:<br />

557-68.<br />

Response of two nocturnal lemurs (Microcebus<br />

murinus and Lepilemur leucopus)<br />

to a potential boiidae (Sanzinia madagascariensis)<br />

predator<br />

Krista Fish<br />

Department of Anthropology, The Colorado College, 14 E<br />

Cache La Poudre, Colorado Springs, CO 80903, USA,<br />

krista.fish@coloradocollege.edu<br />

Primates display an array of responses to predators, and<br />

differences in these responses were once thought to exist<br />

based on activity pattern. Solitary foraging, cryptic color-<br />

ation, and cryptic movements to remain hidden from predators<br />

were considered anti-predator adaptations among<br />

nocturnal primates while diurnal primates used large group<br />

size to enhance their ability to detect and defend against<br />

predators, give alarm calls to warn conspecifics of the presence<br />

of a predator,and flee from predators (Hill and Dunbar,<br />

1998;Isbell,1994;Stanford,2002).As research into nocturnal<br />

primate behavior expanded,results revealed that,like diurnal<br />

primates,nocturnal primates display a range of anti-predator<br />

behaviors upon encountering a predator (Fichtel, 2007).<br />

Nocturnal primates vary in the type of response (mobbing,<br />

alarm calling), height in the canopy, proximity to other<br />

individuals, and vigilance levels in the presence of different<br />

predators (Fichtel, 2007; Gursky, 2002, 2003, 2005, 2006;<br />

Schuemann et al.,2007;Schulke,2001).In particular,mobbing<br />

behaviors are well- documented in tarsiers (Tarsius sp.),<br />

mouse lemurs (Microcebus spp.), and fork-marked lemurs<br />

(Phaner furcifer) (Gursky, 2007; Eberle and Kappeler, 2008;<br />

Schulke, 2001). Mobbing includes close approach, touching,<br />

sniffing, and pouncing on the predator (Gursky, 2007). Interspecies<br />

mobbing of a predator occurs as well. Fork-marked<br />

lemurs and coquerel’s dwarf lemurs (Mirza coquereli) together<br />

mobbed a snake (Boa manditra) (Schulke, 2001).<br />

Several hypotheses have been put forth to explain the evolution<br />

of mobbing behavior (Eberle and Kappeler,2008):1) byproduct<br />

mutualism in which individuals defend others in the<br />

process of defending themselves, 2) reciprocity where animals<br />

obtain higher fitness by cooperating with others,and 3)<br />

kin selection whereby animals cooperate when they share<br />

common genes. A fourth hypothesis known as perception<br />

advertisement was developed as an explanation for the<br />

evolution of alarm calling and other mobbing behaviors in<br />

birds (Curio et al., 1978; Zuberbuhler et al., 1999) but has<br />

been extended to account for the presence of mobbing behaviors<br />

in primates (Gursky,2005).According to this hypothesis,<br />

alarm calling and mobbing are signals to the predator<br />

that the element of surprise has been lost. Snakes, leopards,<br />

and other animals that hunt by crypticity and rely on the element<br />

of surprise to capture prey are common recipients of<br />

alarm calling and mobbing.Research on both diurnal and nocturnal<br />

primates suggests that alarm calling and mobbing by<br />

these primates results in predators leaving an area (Zuberbuhler<br />

et al.,1999;Gursky,2006).Here I report the divergent<br />

responses of two species of nocturnal primates (Microcebus<br />

murinus and Lepilemur leucopus) to the same potential predator-<br />

a nocturnal boiidae snake (Sanzinia madagascariensis)<br />

and discuss implications for the above hypotheses based on<br />

these observations.<br />

Methods<br />

The observations reported here were made in the Ankoba<br />

gallery forest of Berenty Private Reserve in southern Madagascar.<br />

The encounters between the snake and primates<br />

were observed in the course of a six month study investigating<br />

the ecology of Microcebus murinus. During this study,<br />

trails within the reserve were walked to locate unhabituated<br />

mouse lemurs.When encountered,the time at which the encounter<br />

began, height, location, and activity of the mouse lemur<br />

were recorded continuously until the mouse lemur was<br />

out of sight for more than five minutes. The time, height, and<br />

activity of potential predators were also noted when they<br />

were encountered, but predators were not followed unless<br />

they were within proximity to a primate.<br />

Results<br />

While conducting walks to locate mouse lemurs in May 2009,<br />

a sportive lemur alarm call at 20:52 alerted me to the pres-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 17<br />

ence of a boiidae snake later identified as Sanzinia madagascariensis.<br />

I saw two white-footed sportive lemurs (Lepilemur<br />

leucopus),one located at 4m height and the other at 5m<br />

height in a tree over the trail.The sportive lemurs were barking<br />

and looking at the snake. The snake was moving at<br />

approximately 4 m high in a tree and was attempting to cross<br />

a gap and move into a tree nearer to the tree in which the<br />

sportive lemurs were located.The attempt was unsuccessful<br />

as the snake slipped and almost fell out of the thin, terminal<br />

branches. The snake then moved down to 3.5 m height and<br />

began crossing the canopy gap along thicker branches. The<br />

sportive lemurs continued to alarm bark at the snake until<br />

21:02 when the snake turned away from the gap in the<br />

canopy and began moving lower down in the tree and away<br />

from the sportive lemurs. The sportive lemur alarm calling<br />

ended by 21:04 when the snake had traveled down the tree<br />

trunk to 3m in height. The sportive lemur lowest in the tree<br />

continued to watch the snake while the other sportive lemur<br />

moved to 8m height in its tree and began feeding.<br />

At 21:<strong>15</strong>, I was preparing to leave the area when I noticed a<br />

mouse lemur at 0.5 m in the same tree as the snake. The<br />

snake was at 3 m height in the tree and moving down the<br />

main trunk of the tree. The mouse lemur looked at me as it<br />

walked up the main trunk of the tree in the direction of the<br />

snake. The snake faced the mouse lemur, but the mouse<br />

lemur did not appear to notice the snake as it alternated<br />

looking in my direction with looking around its immediate<br />

area while foraging for insects. The mouse lemur continued<br />

to move up the tree until it was within 0.25 m of the snake<br />

where it paused and looked intently at the spot where the<br />

snake was located and then jumped backwards away from<br />

the snake. The mouse lemur then began moving around the<br />

tree at the same height (3 m) as the snake,jumping to terminal<br />

branches,and running along main branches while pausing<br />

to look at the snake. The mouse lemur’s movements took it<br />

from 1m to only a few cms in distance from the snake. The<br />

mouse lemur continued this pattern of running and pausing<br />

to examine the snake for 7 mins. The mouse lemur then began<br />

foraging for insects in a neighboring tree at 3-4 m height<br />

and within 1-2 m of the snake. While foraging, the mouse<br />

lemur would pause to look in the direction of the snake<br />

which remained motionless.The mouse lemur foraged in this<br />

manner for 4 mins until a sportive lemur alarm called. Prior<br />

to the alarm call, the mouse lemur was foraging approximately<br />

1m from the snake and the snake began moving down<br />

the tree trunk.At the sound of the sportive lemur alarm call,<br />

the mouse lemur jumped to 2 m distance from the snake and<br />

paused in its foraging to watch the snake. The snake remained<br />

motionless.A minute later the sportive lemurs alarm<br />

called again. The snake began moving down the trunk of the<br />

tree again and the mouse lemur moved to forage insects in<br />

trees that were approximately 3-5 m from the snake and at<br />

5m height.After 5 mins of foraging at this increased distance<br />

from the snake, the mouse lemur moved back into the tree<br />

where it was initially observed and foraged within 1m of the<br />

snake for 2 mins. The mouse lemur then moved close to the<br />

snake coming within less than 1m of the boa and running and<br />

jumping around the snake while pausing to watch it while<br />

standing bipedally. After 3 mins of remaining motionless<br />

while the mouse lemur ran, jumped and watched the snake,<br />

the snake began moving back up into the dense crown of the<br />

tree. The mouse lemur continued running and jumping<br />

around the snake and watching it at a distance of 0,5-1 m<br />

away as the snake moved into the crown of the tree. 8 mins<br />

later,the mouse lemur began foraging insects at 3-4 m height<br />

in the canopy and within 0,5-1 m from the snake with occasional<br />

glances in the direction of the snake.The mouse lemur<br />

then moved further away from the snake and foraged insects<br />

at 5m in height and approximately 5 m distance from the<br />

snake.At 21:46 the mouse lemur was out of sight and did not<br />

return by 21:51 when I left and continued the mouse lemur<br />

walk.A return visit to the location at 10:05 for species identification<br />

of the species revealed the presence of no mouse lemurs<br />

or Lepilemur in the vicinity.<br />

Discussion<br />

Eberle and Kappeler (2008) describe the successful mobbing<br />

of a Sanzinia madagascariensis by two female and one male<br />

mouse lemur (Microcebus murinus). The mobbing caused the<br />

snake to release a captured male mouse lemur. Subsequent<br />

genetic analysis revealed that the mobbing females were related<br />

to the attempted victim (Eberle and Kappeler, 2008).<br />

Additional encounters between mouse lemurs and snakes<br />

without captured prey did not elicit mobbing behaviors from<br />

the mouse lemurs (Eberle and Kappeler, 2008). Instead, the<br />

mouse lemurs sat approximately 2 m from the snake and<br />

watched it. (Eberle and Kappeler, 2008). The mobbing of the<br />

snake by relatives of a captured mouse lemur and the lack of<br />

mobbing behaviors by solitary mouse lemurs in Eberle and<br />

Kappeler’s study support the kin selection hypothesis for the<br />

evolution of mobbing behaviors. However, the solitary<br />

mouse lemur observed in this study displayed mobbing-like<br />

behaviors in the absence of kin or other individuals. Additionally,<br />

under experimental conditions, solitary mouse lemurs<br />

monitored model snakes and even locomoted towards<br />

the model predators (Rahlfs and Fichtel,2010).The presence<br />

of mobbing-like behaviors in solitary animals lends support<br />

to the by-product mutualism hypothesis. Mouse lemurs may<br />

display mobbing-like behaviors as an individual strategy and<br />

then when larger numbers of mouse lemurs contact a predator,<br />

the appearance of a group-defense strategy may result<br />

from multiple individuals pursuing the same strategy.<br />

The observations here also lend support to the perception<br />

advertisement hypothesis.The mouse lemur may have benefited<br />

by displaying mobbing behaviors toward the snake to let<br />

the snake know that it was being monitored and would not<br />

surprise the lone mouse lemur as it foraged.However,a prediction<br />

of the perception-advertisement hypothesis is that<br />

cryptic predators should flee when faced with alarm calls and<br />

mobbing as they cannot surprise prey in their vicinity. The<br />

alarm calling by the sportive lemurs and the mobbing-like<br />

behaviors of the mouse lemur observed in this study did not<br />

cause the snake to flee. Instead, the snake remained in the<br />

area while both the sportive lemurs and mouse lemur left<br />

the area.Size of the mobbing and alarm-calling group may be<br />

important. Tarsiers were more likely to retreat first if their<br />

mobbing group consisted of four or fewer individuals (Gursky,2007).The<br />

small group sizes here may have not caused the<br />

predator to flee,but may have served as an adequate warning<br />

that it had lost the element of surprise and should not<br />

expend energy in an attack.<br />

Of particular interest in these observations was the opportunity<br />

to view the responses of two different nocturnal primate<br />

species to the same predator. Such observations are<br />

infrequent in the literature. Schulke (2001) observed Phaner<br />

and dwarf lemur (Mirza coquereli) together mobbed Boa<br />

manditra. In the case of the sportive and mouse lemurs,<br />

neither showed the same behavioral response to the Sanzinia<br />

madagascariensis. The pair of Lepilemurs maintained a<br />

larger distance between themselves and the snake than did<br />

the mouse lemur. The mouse lemur did not vocalize in the<br />

vicinity of the snake, however, the sportive lemurs vocalized<br />

during their encounter with the snake.Mouse lemurs seldom<br />

respond to predator models with alarm calls in experimental


Page 18 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

conditions (Rahlfs and Fichtel,2010).Nocturnal primates and<br />

other mammals may not rely on alarm calls as an anti-predator<br />

strategy (Rahlfs and Fichtel, 2010) because early detection<br />

of predators at night is more difficult and solitary foraging<br />

may limit the usefulness of this strategy. The sportive<br />

lemurs however did alarm call in the presence of the snake.<br />

Alarm calls in nocturnal primates may function as a deterrent<br />

to the predator or to recruit conspecifics in defense against<br />

the predator (Rahlfs and Fichtel,2010).The exact function of<br />

the sportive lemur alarm calls in this study cannot be determined,<br />

but they do reveal a need for future studies to examine<br />

potential variation in alarm call behaviors between nocturnal<br />

species.Given variation in body size,diet,and sociality<br />

in nocturnal primates, we might expect variation in antipredator<br />

behaviors such as alarm calling among nocturnal<br />

species.<br />

The possibility exists that the mouse lemur may have recognized<br />

the alarm calls of the sportive lemur because it increased<br />

its distance from the snake, ceased foraging, and<br />

monitored the snake following an alarm call. Recognition of<br />

the alarm calls of other species has been documented for<br />

birds, small mammals, and primates including diurnal lemurs<br />

(Fichtel,2004;Rainey et al.,2004;Shriner,1998).However,the<br />

suggestion that mouse lemurs recognize sportive lemur<br />

alarm calls needs to be further investigated with field experiments.<br />

The ability of nocturnal primate species to recognize<br />

the alarm calls of other sympatric species would be beneficial<br />

to animals that frequently forage away from conspecifics.<br />

The few encounters documented between nocturnal primates<br />

and their predators describe a range of anti-predator<br />

responses that vary depending on the type of predator,proximity<br />

of conspecifics,and available vegetative cover.Such flexibility<br />

is interesting because nocturnal primates- especially<br />

mouse lemurs- are often used as living models for the ancestral<br />

primate. The anti-predator behaviors of nocturnal primates<br />

such as mouse lemurs may reflect the primitive<br />

primate or even primitive mammal condition (Stanford,<br />

2002). The range of anti-predator behavior described for<br />

nocturnal primates in this and other studies implies that the<br />

flexibility in anti-predator behaviors observed in primates<br />

have a more ancient origin than originally suspected or that<br />

mouse lemurs and sportive lemurs have developed divergent<br />

anti-predator behaviors that may not have been present in<br />

early mammals and primates. Wider use of experiments to<br />

explore the differing conditions which elicit variable responses<br />

to predators within and between nocturnal species<br />

will be necessary to develop a more complete understanding<br />

of ancestral versus derived anti-predator behaviors. Additionally,<br />

comparative research exploring variation in antipredator<br />

behaviors in other nocturnal mammal species will<br />

be needed.<br />

Acknowledgements<br />

I would like to thank Dr.Alison Jolly for her facilitation of this<br />

research project and the de Heaulme family for their permission<br />

to work at Berenty and their support of the project.I am<br />

grateful also to the staff of MICET (Madagascar Institut pour<br />

la Conservations des Ecosystèmes Tropicaux) for their assistance<br />

in travel and obtaining research permits and visas.<br />

Funding for this project was provided by Sigma Xi, The University<br />

of Colorado Museum, the University of Colorado<br />

Graduate Student Grants, and the American Society of<br />

Primatologists.<br />

References<br />

Curio,E.;Ernst,U.;Vieth,W.1978.The adaptive significance of<br />

avian mobbing.II.Cultural transmission of enemy recogni-<br />

tion in blackbirds: effectiveness and some constraints. Z.<br />

Tierpsychol. 48: 184-202.<br />

Eberle, M.; Kappeler, P.M. 2008. Mutualism, reciprocity, or kin<br />

selection? Cooperative rescue of a conspecific from a boa<br />

in a nocturnal solitary forager the gray mouse lemur.Am.J.<br />

Primatol. 70: 410-414.<br />

Fichtel, C. 2004. Reciprocal recognition of sifaka (Propithecus<br />

verreauxi verreauxi) and redfronted lemur (Eulemur fulvus<br />

rufus) alarm calls. Anim. Cogn. 7: 45-52.<br />

Fichtel, C. 2007. Avoiding predators at night: antipredator<br />

strategies in red-tailed sportive lemurs (Lepilemur ruficaudatus).<br />

Am. J. Primatol. 69: 611-624.<br />

Gursky, S. 2002. The behavioral ecology of the spectral tarsier,<br />

Tarsius specturn. Evol. Anth. 11: 226-234.<br />

Gursky, S. 2003. Predation experiments on infant spectral<br />

tarsiers (Tarsius spectrum) Folia. Primatol. 74: 272-284.<br />

Gursky, S. 2005. Predator mobbing in Tarsius spectrum. Internat.<br />

J. Primatol. 26(1): 207-221.<br />

Gursky, S. 2006. Function of snake mobbing in spectral tarsiers.<br />

Am. J. Phys. Anth. 129:601-608.<br />

Gursky, S. 2007. The Spectral Tarsier. Upper Saddle River, NJ:<br />

Pearson/Prentice Hall.<br />

Hill, R.A.; Dunbar, R.I.M. 1998. An evaluation of the roles of<br />

predation rate and predation risk as selective pressures<br />

on primate grouping behavior.Behaviour 135(4):411-430.<br />

Isbell, L.A. 1994. Predation in primates: ecological patterns<br />

and evolutionary consequences. Evol. Anth. 3(2): 61-71.<br />

Rahlfs, M.; Fichtel, C. 2010. Anti-predator behavior in a nocturnal<br />

primate, the grey mouse lemur (Microcebus murinus).<br />

Ethology 116: 429-439.<br />

Rainey HJ,Zuberbuhler K,Slater PJB.2004.Hornbills can distinguish<br />

between primate alarm calls. Proc R Soc Lond B<br />

271: 755-759.<br />

Scheumann, M.; Rabesandratana, A.; Zimmermann, E. 2007.<br />

Predation, communication, and cognition in lemurs. Pp.<br />

100-126. In: S. Gursky; K.A.I Nekaris (eds.). Primate Anti-<br />

Predator Strategies. Springer.<br />

Schulke, O. 2001. Social anti-predator behaviour in a nocturnal<br />

lemur. Folia Primatol. 72: 332-334.<br />

Shriner,W.M.1998.Yellow-bellied marmot and golden-mantled<br />

ground squirrel responses to heterospecific alarm<br />

calls. Anim. Behav. 55: 529-536.<br />

Stanford, C.B. 2002. Avoiding predators: expectations and<br />

evidence in primate antipredator behavior. Int J Primatol<br />

23(4): 741-757.<br />

Zuberbuhler, K.; Jenny, D.; Bshary, R. 1999. The predator deterrence<br />

function of primate alarm calls. Ethology105:<br />

477-490.<br />

Effective predation defence in Cheirogaleus<br />

medius<br />

Kathrin H. Dausmann<br />

Animal Ecology & Conservation, Biocentre Grindel, University<br />

Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg,<br />

Germany, kathrin.dausmann@uni-hamburg.de<br />

Besides one’s own death, the predation of offspring is the<br />

most severe loss of fitness possible.In species that invest significantly<br />

in their offspring it is therefore natural that this "expensive"<br />

offspring should be guarded to avoid predation.<br />

Nonetheless, and particularly in small animals, it is uncertain<br />

whether an adult can effectively defend its offspring when it<br />

is attacked by a larger predator.<br />

The fat-tailed dwarf lemur (Cheirogaleus medius) is a small<br />

(130 g), strictly nocturnal primate that occurs in the dry,<br />

deciduous woodlands of western Madagascar, and lives in<br />

social monogamous small family groups consisting of a reproductive<br />

male-female pair and their offspring from one or<br />

more breeding seasons. Males and females maintain lifelong<br />

pair bonds and usually separate only when one partner dies<br />

(Fietz, 1999; Müller, 1999; Fietz and Dausmann, 2003). The


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 19<br />

diet of C.medius consists mainly of fruits and varying proportions<br />

of arthropods depending on the season (Fietz and<br />

Ganzhorn, 1999). C. medius is unique among primates because<br />

it spends seven months hibernating during the cooler<br />

dry-season of the southern winter (April to October),when<br />

food and water availability are low (Petter,1978;Hladik et al.,<br />

1980; Dausmann et al., 2004). When resting during the day<br />

and when hibernating,the dwarf lemurs occupy tree hollows<br />

either alone or with members of the family group (Dausmann<br />

et al., 2005). In the wild, female C. medius usually give<br />

birth to twins and in most cases reproduction only takes<br />

place every second year (Fietz and Dausmann, 2006). C.<br />

medius only reproduce after delayed emigration from their<br />

family and successful occupation of their own territory (thus<br />

in their third year at the earliest;Fietz et al.,2000).In addition,<br />

their life span is restricted by their size and is usually<br />

between 4 and 11 years for territory holders, and so opportunities<br />

to reproduce are limited (for most animals between<br />

one and three). Therefore, every young is a costly and valuable<br />

investment. Avoiding predation of their young should<br />

therefore be a critical part of parental care.<br />

Predators of C. medius include raptors (Madagascar harrier<br />

hawk Polyboroides radiatus, Madagascar buzzard Buteo brachypterus,<br />

Madagascar long-eared owl Asio madagascariensis),<br />

mammals (Fossa Cryptoprocta ferox, Narrow-striped mongooses<br />

Mungodictis decemlineata), and snakes (Madagascar<br />

Ground Boa Acrantophis madagascariensis, Madagascar Tree<br />

Boa Sanzinia madagascariensis, Malagasy Cat-eyed Snake Madagascarophis<br />

colubrinus) (Dausmann,submitted). The choice<br />

of an appropriately sized tree hollow in which to give birth<br />

can reduce attacks from many of these predators with the<br />

exception of snakes which are able to enter any hollow that<br />

can be used by C. medius.<br />

C. medius leave their tree hollows at sunset to forage alone<br />

but both sexes defend their shared territory. After the birth<br />

of their offspring, both parents take turns in guarding the<br />

young in the tree hollow throughout the night, while the<br />

other one forages.As the young get older, the proportion of<br />

time that parents spend guarding them gradually declines<br />

(Fietz and Dausmann, 2003). At the age of about two weeks,<br />

both parents leave the hollow and return only occasionally.<br />

During this time, the young are particularly vulnerable to<br />

predation,since they are unguarded.Later,the young accompany<br />

the parents during their nightly excursions.<br />

In this note, I want to describe evidence that adult C. medius<br />

can repel larger predators and therefore guarding or at least<br />

remaining within hearing range of the tree hollow is an effective<br />

measure against predation of their offspring. I report an<br />

observation in which a snake (Madagascarophis colubrinus)<br />

tried to attack two C. medius young within a tree hollow but<br />

was successfully repelled by the mother.<br />

Our observation occurred in the Kirindy C.F.P.F.forest,a dry<br />

deciduous forest near the west coast of Madagascar (60 km<br />

north east of Morondava) during a focal animal survey of a<br />

female C. medius on January 31st. For a more detailed description<br />

of the area see Ganzhorn and Sorg (1996).<br />

The female was a mother of two young aged two weeks.The<br />

male of the pair was also being observed.The female left the<br />

tree hollow after sunset at 18:57 hours and the male<br />

followed at 19:01 hours.The two young were left alone in the<br />

hollow within a dead tree (Malagasy name: Mapingo). The<br />

entrance of the hollow was 3 m above ground. The female<br />

started her regular patrol of the territory border, but suddenly<br />

abandoned the patrol at 19:29 hours when about 80 m<br />

from the hollow. She returned quickly to the hollow in<br />

almost a straight line.On approach to the hollow,it was clear<br />

that the two young who had been left alone within the<br />

hollow were making loud and constant distress calls. On a<br />

branch of the same tree at a height of about 1.5 m above<br />

ground was a large M. colubrinus (> 1 m length) eying the<br />

hollow. Even though this crepuscular or nocturnal snake is<br />

mainly terrestrial, scansorial behaviour is possible. The female<br />

approached the snake to within a few centimetres and<br />

actively attacked it, and the snake responded by striking<br />

towards the female.Both the adult female and the juvenile C.<br />

medius were loudly vocalizing constantly.After three min,the<br />

female seized the tail of the snake with both hands and bit it<br />

about 10 cm from the end. The snake tried to drop to the<br />

ground, but remained dangling in the female’s teeth. After<br />

10 s of wriggling and repeated attempts to strike the female<br />

the snake fell to the ground and moved away quickly. The<br />

female descended to about 1 m, observed the ground for a<br />

few minutes and then spent <strong>15</strong> min agitatedly observing the<br />

surroundings at a height of about 3 m and inspecting the tree<br />

hollow containing the young,who were still loudly vocalizing.<br />

For the next 3.5 hours the female was moving rapidly around<br />

within the territory, which is very unusual for a C. medius,<br />

frequently returning and checking the tree hollow with the<br />

young.She finally carried leaves into a new tree hollow about<br />

50 m away and separately carried both young to the new tree<br />

hollow. She did not return to sleep in the original tree hole<br />

for the next two months, even though it had been used<br />

frequently prior to this encounter.It seems puzzling that the<br />

male of the pair did not come to help during the attack.Since<br />

the male was followed simultaneously we know that at the<br />

time of the attack he was less than 20 m from the tree hollow,<br />

and clearly within hearing range of the distress calls. He<br />

returned about 30 min after the attack where he met the<br />

female and groomed her while she and the young continued<br />

making distress calls. Since reproduction in this species is a<br />

fairly rare event even including extra pair copulations, the<br />

possibility of siring offspring is restricted, and the male<br />

should have been highly motivated to defend his young in<br />

order to increase his fitness. Considering the high (obligate)<br />

paternal investment in guarding the young and the life-long<br />

pair bond, C.medius have a surprisingly high rate (ca 40 %) of<br />

extra pair young (Fietz et al.,2000;Schwensow et al.,2007).It<br />

is thought that the male cannot discriminate between intra<br />

pair and extra pair young and therefore cares for any offspring<br />

of his pair-partner,so as not to jeopardize the survival<br />

of his own young. Alternatively, paternal care of extra pair<br />

young could be an indicator for male quality or simply a tactic<br />

to maintain his bond with the female and so securing future<br />

mating possibilities in such a long-lasting relationship (Fietz<br />

and Dausmann, 2003). Genetic analyses showed that the<br />

male ("social father") of our observation was indeed only the<br />

genetic father of one offspring, but not the other (Schwensow<br />

et al., 2007). However, even if he was able to distinguish<br />

kin from non-kin, he should still have defended the tree hollow<br />

in order to protect his one own offspring.Interestingly,in<br />

the weeks before these observations, the male and the<br />

female had always spent the daily resting period together in<br />

the same tree hollow. However, the day after the predation<br />

attempt they slept apart, the male in the old, and the female<br />

together with the offspring in the new tree hollow. We<br />

cannot judge whether the male was unable to find the female<br />

in the new tree hollow, whether he chose to rest in the old<br />

hollow,or was prevented from entering the new tree hollow.<br />

Conclusion<br />

Clearly,the surveillance of offspring either directly within the<br />

tree hollow (additionally offering thermoregulatory advan-


Page 20 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

tages simultaneously; Fietz and Dausmann, 2003), or by staying<br />

within hearing range, does offer protection from attack<br />

by at least some predators even in this small species of primate.<br />

Acknowledgements<br />

This study was carried out under the "Accord de Collaboration"<br />

between Madagascar National Parks (MNP, formerly<br />

ANGAP), the University of Antananarivo and the University<br />

of Hamburg. We thank MNP, Chantal Andrianarivo, Jocelyn<br />

Rakotomala, Domoina Rakotomalala, the late Olga Ramilijaona<br />

and Daniel Rakotondravony for their collaboration and<br />

support. We acknowledge the authorization and support of<br />

this study by the Ministère de l’Environnement, des Eaux et<br />

Forêts et du Tourisme, MNP and the University of Antananarivo.C.Thurner<br />

was an invaluable observation companion.<br />

The study was financed by DFG (Ga 342/14) and DAAD.<br />

References<br />

Dausmann, K.H. submitted. Spoilt for choice – Choice of<br />

hibernacula and its influence on predation and energy expenditure<br />

during hibernation in Cheirogaleus medius. In: J.<br />

Masters; F. Génin (eds.). Leaping Ahead.<br />

Dausmann, K.H.; Glos, J.; Ganzhorn, J.U.; Heldmaier, G. 2004.<br />

Hibernation in a tropical primate. Nature 429: 825-826.<br />

Dausmann, K.H.; Glos, J.; Ganzhorn, J.U.; Heldmaier, G. 2005.<br />

Hibernation in the tropics:lessons from a primate.J Comp<br />

Physiol B 175: 147-<strong>15</strong>5.<br />

Fietz, J. 1999. Monogamy as a rule rather than exception in<br />

nocturnal lemurs: The case of the fat-tailed dwarf lemur,<br />

Cheirogaleus medius. Ethology 105: 259-272.<br />

Fietz,J.;Dausmann,K.H.2003.Costs and potential benefits of<br />

parental care in the nocturnal fat-tailed dwarf lemur (Cheirogaleus<br />

medius). Folia Primatol 74: 246-258.<br />

Fietz, J.;Dausmann,K.H.2006.Big is beautiful: fat storage and<br />

hibernation as a strategy to cope with marked seasonality<br />

in the fat-tailed dwarf lemus (Cheirogaleus medius). Pp.<br />

97-111. In: L. Gould; Sauther, M. L. (eds.). Lemurs: Ecology<br />

and Adaptation. Springer, Berlin Heidelberg New York.<br />

Fietz, J; Ganzhorn, J. U. 1999. Feeding ecology of the hibernating<br />

primate Cheirogaleus medius: how does it get so fat?<br />

Oecologia 121: <strong>15</strong>7-164.<br />

Fietz,J.;Zischler,H.;Schwiegk,C.;Tomiuk,J.;Dausmann,K.H.;<br />

Ganzhorn,J.U.2000.High rates of extra-pair young in the<br />

pair-living fat-tailed dwarf lemur, Cheirogaleus medius.Behav<br />

Ecol Sociobiol 49: 8-17.<br />

Ganzhorn,J.U.;Sorg,J.P.1996.Ecology and economy of a tropical<br />

dry forest in Madagascar. Primate Report 46-1, Göttingen.<br />

Hladik, C.M.; Charles-Dominique, P.; Petter, J. J. 1980. Feeding<br />

strategies of five nocturnal prosimians in the dry forest of<br />

the west coast of Madagascar.Pp.41-73.In:P.Charles-Dominique;H.M.Cooper;A.Hladik;C.M.Hladik;E.Pages;G.F.<br />

Pariente;A.Petter-Rousseaux;J.J.Petter;A.Schilling (eds.).<br />

Nocturnal Malagasy Primates:ecology,physiology and behaviour.<br />

Academic Press, New York.<br />

Müller, A.E. 1999. Social organization of the fat-tailed dwarf<br />

lemur (Cheirogaleus medius) in North-western Madagascar.<br />

Pp. 139-<strong>15</strong>7. In: B. Rakotosamimanana;H.Rasaminanana;<br />

J.U. Ganzhorn; S.M. Goodman (eds.). New Directions<br />

in Lemur Studies. Kluwer Academic/Plenum Publishers,<br />

New York.<br />

Petter, J.J. 1978. Ecological and physiological adaptations of<br />

five sympatric nocturnal lemurs to seasonal variations in<br />

food production. Pp. 211-223. In: D.J. Chivers; J. Herbert<br />

(eds.). Recent Advances in Primatology. Academic Press,<br />

New York.<br />

Schwensow, N.; Fietz, J.; Dausmann, K.H.; Sommer, S. 2007.<br />

Neutral versus adaptive variation in parasite resistance:<br />

importance of MHC-supertypes in a free-ranging primate.<br />

Heredity 99: 265-277.<br />

Lepilemur feeding observations from<br />

Northern Madagascar<br />

Andrew J. Lowin<br />

Society for Environmental Exploration / Frontier, 50-52<br />

Rivington Street, London EC2A 3QP, United Kingdom,<br />

research@frontier.ac.uk<br />

Lepilemur ankaranensis is the most northerly distributed<br />

member of the genus Lepilemur, with a range that extends<br />

south from Montagne d’Ambre National Park (Mittermeier<br />

et al.,2008).The behaviour and ecology of Lepilemur is poorly<br />

understood (Ratsirarson et al.,1987);this report summarises<br />

some preliminary observations of L. ankaranensis.<br />

Observations took place in a forest fragment (09°23.6E,<br />

46°07.3’S) 70km south of Antsiranana (Diego Suarez), near<br />

the town of Anivorano, west of the Route Nationale 6. The<br />

site is situated approximately 4 km south of the Mt.d’Ambre<br />

Park limit (Fig. 1). The area is heavily degraded, with only<br />

pockets of secondary dry deciduous forest remaining.<br />

Fig. 1: Study site in northern Madagascar.<br />

Casual feeding observations of L. ankaranensis took place<br />

from August 2009 to March 2010 (excluding the month of<br />

December). Observations were made in the first hour after<br />

sun set, with animals located using a flashlight. They were<br />

then followed,and any feeding bouts were recorded,with the<br />

plant species and food item noted. During this time, 32 % of<br />

all observations were of L. ankaranensis feeding on fruits,<br />

whereas all other observations were of leaf feeding. Five<br />

plant families were utilized for their fruits during the study:<br />

Moraceae, Verbenaceae, Rubiaceae, Pittosporaceae, and one<br />

that was not identified.<br />

As Lepilemur are thought to be predominantly folivorous<br />

(Ganzhorn et al., 2004; Thalmann and Ganzhorn, 2003), this<br />

proportion of fruit consumption seems to be high as compared<br />

to other Lepilemur species. For example, Thalmann<br />

(2001) found that during their study of L.edwardsi,only 0.3 %<br />

of 229 feeding bouts were feeding on fruits.<br />

Also during this study, L. ankaranensis was observed feeding<br />

on fruits with both Eulemur coronatus and Eulemur sanfordi in<br />

the same tree,also feeding on the same fruit,with no signs of<br />

aggression shown between any of the animals. A second<br />

study took place in June 2010, six dusk-till-dawn follows<br />

were carried out on consecutive nights, for a total of 64.3<br />

hours. Again, animals were located at dusk with a flashlight<br />

and followed until they returned to their sleeping sites in the


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 21<br />

morning.During this time,175 feeding observations were recorded,and<br />

no fruit was consumed.During this second study,<br />

a focal animal was observed to be chased out of a feeding<br />

tree by a female E.coronatus.The female E.coronatus then began<br />

eating the unripe fruits of the tree.It thus seems that during<br />

times of fruit abundance L. ankaranensis utilize fruits as a<br />

food resource along with several other lemur species occurring<br />

in the area. However, when food resources were not<br />

abundant in the dry season, only leaves were eaten and<br />

interspecific competition appears to be higher.<br />

On several occasions during this second study, leaf stems<br />

were snapped from trees and white tree exudates were consumed.<br />

Latex exudates are thought to be a toxic defence<br />

mechanism and therefore usually avoided by primates (Glander,1994),but<br />

latex feeding by Colobus spp.has also been observed<br />

(Mckey, 1978). Other lemur species, such as Phaner<br />

furcifer (Petter et al., 1975;Petter,1978;Thalmann,2006) and<br />

Mirza coquereli (Hladik,1979),are also known to feed on tree<br />

exudates. A review of the literature on exudate feeding in<br />

primates by Coimbra-Filho and Mittermeier (1977) suggested<br />

that tree exudates, in addition to simple sugars, protein,<br />

and minerals,may also provide a source of calcium.However,<br />

the latter authors also suggested that for most primates<br />

exudate feeding was rare and of little nutritional importance.<br />

This short report highlighted some behaviors of Lepilemur<br />

ankaranensis,a relatively poorly studied member of the Lepilemur<br />

genus. Further field work is required to examine in detail<br />

the previously discussed observations and to improve<br />

our knowledge of this species.<br />

References<br />

Coimbra-Filho, A.F.; Mittermeier, R.A. 1977. Tree-gouging,<br />

exudate-eating and the "short-tusked" condition in Callithrix<br />

and Cebuella. Pp. 105-1<strong>15</strong>. In: D.G. Kleiman (ed.). The<br />

Biology and Conservation of the Callitrichidae. Smithsonian<br />

Institution Press, Washington, D. C.<br />

Ganzhorn,J.U.;Pietsch,T.;Fietz,J.;Gross,S.;Schmid,J;Steiner,<br />

N. 2004. Selection of food and ranging behavior in a sexually<br />

monomorphic folivorous lemur: Lepilemur ruficaudatus.<br />

Journal of Zoology 263: 393-399.<br />

Glander, K.E. 1994. Nonhuman primate self-medication with<br />

wild plant foods.Pp.239-256.In:N.L.Etkin (ed.).Eating on<br />

the wild side: The Pharmacologic, Ecologic, and Social Implications<br />

of Using Nncultigens. University of Arizona<br />

Press, Tuscon.<br />

Hladik, C.M. 1979. Diet and ecology of prosimians. Pp. 307-<br />

357. In: A. Doyle; R.D. Martin (eds.). The Study of Prosimian<br />

Behavior. Academic Press, New York and London.<br />

Mckey,D.1978.Plant Chemical Defences and the Ranging Behaviour<br />

of Colobus Monkeys in African Rainforests. Ph.D.<br />

thesis, University of Michigan, Ann Arbor.<br />

Mittermeier,R.A.;Ganzhorn,J.U.;Konstant,W.R.;Glander,K.;<br />

Tattersall, I.;Groves,C.P.;Rylands,A.B.;Hapke,A.;Ratsimbazafy,<br />

J.; Mayor, M.I.; Louis, E.E.; Rumpler, Y.; Schwitzer, C.;<br />

Rasoloarison, R.M. 2008. Lemur diversity in Madagascar.<br />

International Journal of Primatology 29: 1607-1656.<br />

Petter, J.J. 1978. Ecological and physiological adaptations of<br />

five sympatric nocturnal lemurs to seasonal variations in<br />

food production. Pp. 211-223. In: D.J. Chivers; J. Herbert<br />

(eds.). Recent Advances in Primatology, <strong>Vol</strong>. 1: Behavior.<br />

Academic Press, New York and London.<br />

Petter,J.J.;Schilling,A.;Pariente,G.1975.Observations on the<br />

behavior and ecology of Phaner furcifer. Pp. 209-218. In: I.<br />

Tattersall; R.W. Sussman (eds.). Lemur Biology. Plenum<br />

Press, New York.<br />

Ratsirarson, J.; Anderson, J.; Warter, S.; Rumpler, Y. 1987. Notes<br />

on the Distribution of Lepilemur septentrionalis and Lepilemur<br />

mustelinus in Northern Madagascar. Primates 28:<br />

119-122.<br />

Thalmann, U. 2001. Food resource characteristics in two<br />

nocturnal lemurs with different social behavior: Avahi<br />

occidentalis and Lepilemur edwardsi.International Journal of<br />

Primatology 22: 287-324.<br />

Thalmann, U.; Ganzhorn, J.U. 2003. The Sportive Lemurs, genus<br />

Lepilemur.In:S.M.Goodman;J.Benstead (eds.).Natural<br />

History of Madagascar. The University of Chicago Press,<br />

Chicago.<br />

Thalmann, U. 2006. Lemurs - Ambassadors for Madagascar.<br />

Madagascar Conservation and Development 1: 4-8.<br />

Hypotheses on ecological interactions<br />

between the aye-aye (Daubentonia madagascariensis)<br />

and microhylid frogs of the<br />

genus Platypelis in Tsaratanana bamboo<br />

forest<br />

Andolalao Rakotoarison 1*, Solohery A. Rasamison 1,<br />

Emile Rajeriarison 2,David R.Vieites 3,Miguel Vences 4<br />

1Département de Biologie Animale, Université d’Antananarivo,<br />

BP 906, Antananarivo 101, Madagascar<br />

2Research assistant, Ranomafana National Park, BP 2, Fivondronana,<br />

Ifanadiana, Ranomafana 312, Madagascar<br />

3Museo Nacional de Ciencias Naturales-CSIC, C/José Gutiérrez<br />

Abascal 2, 28006 Madrid, Spain<br />

4Zoological Institute, Technische Universität Braunschweig,<br />

Spielmannstr. 8, 38106 Braunschweig, Germany<br />

*Corresponding author: andomailaka@gmail.com<br />

The aye-aye (Daubentonia madagascariensis) is the most distinctive<br />

of all lemurs.It is the only known living species of the<br />

Daubentoniidae (Simon and Meyer, 2001). The hands of the<br />

aye-aye are highly specialised,with long and slender third fingers<br />

that are used for precise grooming, mainly at face level,<br />

to get food into the mouth with rapid movements,and to tap<br />

on the bark of tree trunks to detect insect larvae or other<br />

arthropods (Goix,1993).When an aye-aye locates a cavity,it<br />

will anchor the upper incisors into the wood and then gnaw<br />

away at the wood with the lower incisors to make a pit<br />

(Erickson, 1995a, 1994). This unique manner of foraging for<br />

arthropods leaves traces of biting on the wood cover which<br />

are often used to ascertain the presence of the species even<br />

without an actual sighting (Duckworth,1993 and own observations<br />

of one of us, ER). During a recent herpetological inventory<br />

on the Tsaratanana massif in northern Madagascar,<br />

we noticed bamboo holes that were possibly caused or enlarged<br />

by foraging aye-aye,and we observed frogs living inside<br />

these cavities. Here we report these observations and posit<br />

a number of hypotheses on the possible ecological interactions<br />

among these species, with the goal of stimulating further<br />

studies.<br />

During a herpetological inventory in Tsaratanana (the highest<br />

mountain massif of Madagascar,which rises up to 2876 m<br />

above sea level) one of us (AR) carried out an ecological<br />

study on frogs of the genus Platypelis (Mycrohylidae: Cophylinae),<br />

from the 9th to the 22nd of June 2010. Specifically, we<br />

worked in a mountain forest bordering the temporary pond<br />

locally called Matsabory Maiky (S 14°09’04.09"- E 48°57’<br />

26.06" – 2,066 m elevation) - corresponding to campsite 2 on<br />

the trail from Mangindrano to the Maromokotro peak. The<br />

observed Platypelis occupy a specific microhabitat: the species<br />

live and breed inside the bamboo internodes which contain<br />

water and are accessible through small external holes.<br />

These frogs have endotrophic development: their non-feeding<br />

tadpoles develop inside the water retained in the tree<br />

holes and bamboo internodes. Based on a comparison with<br />

type material and DNA barcoding, we ascertained that the<br />

encountered Platypelis belong to two species described from


Page 22 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

the Tsaratanana massif: P. tsaratananaensis (most common)<br />

and the much larger P. alticola (more rare). Detailed data on<br />

the ecology and reproductive biology of these frogs will be<br />

published elsewhere. Approximately 754 bamboo trunks, at<br />

five different study sites, were inspected around the campsite.<br />

These sites each had four plots of 10 x 10 m areas. Out<br />

of the 754 trunks,we discovered in 162 of them,a total number<br />

of 204 internode segments; small rounded holes that<br />

were most probably made by insects like Dinoderus minutus<br />

(Delobel and Tran, 1993). According to these authors,<br />

Dinoderus minutus deposit eggs in bamboo internodes in<br />

which their larvae develop (Fig. 1d).<br />

At one of the sites (ca. 600 m east of the pond), we discovered<br />

some bamboo stems with remarkably different kinds of<br />

holes which allowed access to the hollow cavity of the<br />

internodes. Parts of the bamboo had been damaged in an irregular<br />

way. This appeared similar to what has already been<br />

described as typical damage caused by the gnawing activity of<br />

the aye-aye, whereby a freshly ripped-back piece is still attached<br />

and solid (Duckworth, 1993) (Fig. 1a-b).<br />

On 20 of the 281 bamboo trunks at this study site,we found<br />

similar damages,with a total of 71 holes which were more or<br />

less oval and measured 5.2-29.7 mm vertically and 1.5-<br />

8.2 mm horizontally. The diameter measurements of the<br />

non-damaged bamboo trunks were 5.3-54.2 mm, and those<br />

with holes were 5.3-48.9 mm.On several bamboo trunks we<br />

observed such holes in various internodes (1-6 m above the<br />

Fig.1:Traces of animals on the trunks of bamboo at the study<br />

site: (a) bamboo internode segment with an upper and a<br />

lower node attributed to the aye-aye; (b) segments of two<br />

bamboo trunks with a hole attributed to the aye-aye on the<br />

right and bite traces on the left; (c) traces attributed to<br />

aye-aye upper and lower incisors on a "virgin" bamboo trunk<br />

segment; (d) typical regular-shaped hole in a bamboo segment<br />

attributed to insects.<br />

Fig. 2: Animals observed within bamboo segments: (a) frogs:<br />

various specimens of Platypelis tsaratananaensis in one segment;<br />

(b) spider; (c) myriapod; (d) insect (cockroach).<br />

ground),and some internodes had an upper and a lower hole.<br />

Most importantly for the hypotheses drawn below, on some<br />

of the trunks without holes, we observed clear traces of<br />

gnawing that probably represent the upper and lower incisors<br />

of the aye-aye (Fig. 1b). According to our observations,<br />

80 % of all the holes found in the study site were caused by<br />

the activity of insects, and 20 % by the aye-aye.<br />

Bamboo internodes accessible by both kinds of holes were<br />

populated by Platypelis frogs as well as a variety of insects,spiders<br />

and centipedes (Fig. 2). At the study site where the bite<br />

traces ascribed to the aye-aye were discovered, the altogether<br />

282 holes (putatively made by insects) contained: 61<br />

Platypelis distributed in 24 different holes, 12 insects in 8 different<br />

holes, and 2 myriapods in 2 holes. In the 71 holes<br />

ascribed to the activity of the aye-aye, we observed 30<br />

Platypelis in 11 holes, 4 insects in 3 holes, and 0 centipedes.<br />

Based on these observations, we posit the following (partly<br />

alternative) hypotheses which require verification and further<br />

study:<br />

(1) We are confident that the observed marks at one of our<br />

study sites, similar to those noted by Duckworth (1993),are<br />

indeed caused by the activity of the aye-aye. Fresh bamboo<br />

stems are externally smooth and very strong, and it seems<br />

unlikely that any other mammal or even a bird could cause<br />

such damage. However, the possibility that these holes may<br />

be made by rats (such as Rattus rattus (which we collected at<br />

Matsobory Maiky), or Brachytarsomys) needs to be excluded<br />

by direct observations.<br />

(2) We assume that the aye-aye will typically search for bamboo<br />

internodes which already have small holes made by insects.This<br />

is because in such internodes there is a high likelihood<br />

of finding prey.In addition to insect larvae and other arthropods,<br />

tree-hole breeding frogs like Platypelis may also be<br />

consumed. In areas with high bamboo density, these frogs<br />

may constitute an import part of the aye-aye diet. If proven,<br />

this fact - that aye-ayes may eat frogs in addition to invertebrates<br />

- would be an interesting discovery in terms of<br />

Primatology.<br />

(3) Alternatively, the aye-aye may also gnaw holes into previously<br />

untouched bamboo segments. The bite traces we en-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 23<br />

countered in such "virgin" internodes support this hypothesis.Reasons<br />

for this might either be a search for drinking water,<br />

or the search and detection of insect larvae which develop<br />

inside these internodes and which have not yet made a<br />

hole to emerge.<br />

(4) As a fourth and highly speculative hypothesis, the aye-aye<br />

may gnaw holes into "virgin" bamboo segments (or increase<br />

the size of pre-existing holes) as part of a long-term feeding<br />

strategy in which such holes are produced to make the bamboo<br />

segment suitable for colonization by arthropods and<br />

frogs. This would enable the aye-aye to "harvest" its food<br />

during a subsequent visit to the site several days later. Obviously,<br />

such a foresighted feeding strategy in a basal primate<br />

would be of extreme interest,but we are aware that alternative<br />

and more probable explanations exist.<br />

Detailed testing of these hypotheses will require long-term<br />

observations in an area of dense growth of large bamboo,<br />

probably including the deployment of a large number of camera<br />

traps and possibly hair traps to obtain evidence of aye-aye<br />

activity. Carrying out such studies at the site in Matsabory<br />

Maiky is difficult. It should be noted that the Tsaratanana<br />

massif is difficult to access. However, alternative sites, e.g. at<br />

Marojejy (Duckworth, 1993) might contain a large population<br />

of Platypelis (albeit other species) as well, and could be<br />

surveyed more systematically.<br />

Acknowledgements<br />

A warm thanks to the Directorate of Waters and Forests<br />

and the Head of the Offices of Madagascar National Parks at<br />

Mangindrano and Ambanja for the research permits on<br />

Tsaratanana. We are also indebted to the many people who<br />

have logistically assisted in our expedition, especially to the<br />

local guides (Faly and Levaovao) from Mangindrano.<br />

References<br />

Delobel, A.; Tran, M. 1993. Les coléoptères des denrées alimentaires<br />

entreposées dans les regions chaudes. Faune<br />

tropical XXXII: 98-99.<br />

Duckworth,J.W.1992.Feeding damage left in bamboos,probably<br />

by aye-ayes (Daubentonia madagascariensis).International<br />

Journal of Primatology 14: 927-931.<br />

Erickson, C.J. 1994. Tap-scanning and extractive foraging in<br />

aye-ayes, Daubentonia madagascariensis. Folia Primatologica<br />

62: 125-135.<br />

Erickson, C.J. 1995a. Feeding sites for extractive foraging by<br />

the aye-aye,Daubentonia madagascariensis.American Journal<br />

of Primatology 35: 235-240.<br />

Goix,E.1993.L’utilisation de la main chez le aye-aye en captivité<br />

(Daubentonia madagascariensis) (Prosimiens, Daubentoniidés).<br />

Mammalia 57: 171-188.<br />

Milliken,G.W.;Ward,J.P.;Erickson,C.J.1991.Independent digit<br />

control in foraging by the aye-aye (Daubentonia madagascariensis).<br />

Folia Primatologica 56: 219-224.<br />

Simon,E.L.;Meyer,D.,2001.Folklore and beliefs about the aye<br />

aye (Daubentonia madagascarienis) Lemur News 6:11-16.<br />

Discovery of crowned sifaka (Propithecus<br />

coronatus) in Dabolava, Miandrivazo, Menabe<br />

Region<br />

Josia Razafindramanana 1*, Rija Rasamimanana 2<br />

1Groupe d’Etude et de Recherche sur les Primates de Madagascar<br />

(GERP), Lot 34 Cité des Professeurs Fort Duchesne,<br />

Ankatso, Antananarivo 101, Madagascar.<br />

2Pan African Mining Madagascar (PAMM), Lot 137 II AN<br />

Analamahitsy, Antananarivo 101, Madagascar.<br />

*Corresponding author: r_josia@hotmail.com<br />

Key words: Propithecus coronatus, Dabolava, distribution,<br />

lemurs, Indridae<br />

The crowned sifaka Propithecus coronatus was until recently<br />

regarded as one of four subspecies of P. verreauxi, family<br />

Indridae, which occur throughout western and southern<br />

Madagascar (Muller et al., 2000; Mittermeier et al., 1994; Tattersall,<br />

1986; Wilmé and Callmander, 2006). Recent taxonomic<br />

revisions (Mittermeier et al., 2008) have promoted all<br />

four subspecies to full species status (Mittermeier et al.,<br />

2006). However, there is considerable debate about the validity<br />

of P. coronatus, and especially its relationship with P.<br />

deckeni (Mittermeier et al.,2008),due to the physical similarities<br />

and close geographical distributions of these taxa,including<br />

apparent sympatry at some sites (e.g. Tattersall, 1986;<br />

Curtis et al.,1998;Muller et al.,2000;Groves,2001;Thalmann<br />

et al., 2002).<br />

P. coronatus was previously assigned to the IUCN conservation<br />

rating "Critically Endangered",but has since been moved<br />

into the "Endangered" category; nevertheless, the distribution<br />

range and the ecology of this species are not yet well<br />

understood (IUCN, 2008). Crowned sifakas are diurnal, and<br />

their habitat is characterised by dry deciduous forests and<br />

mangroves (Petter and Andriatsarafara, 1987). They live in<br />

groups of two to eight individuals, with home ranges from<br />

1.2–1.5 ha.They feed mainly on buds,green fruits and mature<br />

leaves (Muller,1997).It is known that they reproduce seasonally,<br />

with females giving birth every 2-3 years (Curtis et al.,<br />

1998; Mittermeier et al., 2006). Compared to other lemurs,<br />

their reproduction rate is very slow, making recovery of<br />

small populations even more problematic.<br />

The newly discovered crowned sifaka population is situated<br />

at Amboloando (UTM WGS 84,N 7822351 E 580189) in the<br />

Commune of Dabolava in central Madagascar,and is the most<br />

southerly record of the species.Amboloando lies about 4 km<br />

from Dabolava village, and 40 km to the southeast of Miandrivazo.Amboloando<br />

comprises 7 ha of dry semi-deciduous,<br />

secondary forest that exhibits the characteristics of riverine<br />

forests, consisting of deciduous as well as evergreen trees<br />

such as Acacia sp.,Nastus sp.and Macaranga sp.The altitude is<br />

about 600 m above sea level,and the area is characterized by<br />

a clearly defined wet and dry season.The sifaka population is<br />

composed of a single group,which constituted six adults and<br />

one juvenile when first discovered in June 2009 (Razafindramanana,<br />

2009). One of the adult males disappeared later in<br />

the year, presumed dead, leaving six individuals remaining.<br />

The animals appear to be classic P.coronatus (Fig.1),but some<br />

individuals show pelage colour variation, with dark fur on<br />

their back and arms (Fig.2).Behavioural studies of the group<br />

are underway,and a preliminary community-based conservation<br />

program has been established at the site, involving several<br />

organisations including GERP, The Aspinall Foundation,<br />

SAHA and Pan-African Mining Madagascar.Forests in Amboloando<br />

and the surrounding area are heavily degraded. Different<br />

factors threaten the survival of this species in Madagascar:in<br />

contrast to the other sites such as Anjamena (Muller,2000),hunting<br />

does not occur in Amboloando,partly due<br />

to the sifaka being regarded as holy by the local people.<br />

Therefore,other threats such as habitat destruction through<br />

slash-and-burn agriculture to make way for pasture for livestock,charcoal<br />

production,and mining exploitation affect the<br />

sifaka group.<br />

Surveys in the vicinity of Dabolava suggest that this is the<br />

only group of P.coronatus remaining in that area,despite local<br />

people claiming that other groups were present between 5<br />

and 10 years ago. Therefore, it appears that habitat destruc-


Page 24 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Fig.1:Crowned sifaka in the Amboloando<br />

Forest (top).<br />

Fig. 2: Crowned sifaka with dark colour<br />

on its arms (right).<br />

Fig. 3: Map showing the area of discovery and survey in Dabolava.<br />

tion for local livelihoods has resulted in the almost complete<br />

extirpation of crowned sifaka in the area, probably due to a<br />

combination of habitat loss and food scarcity.<br />

Some studies describe the range of P.coronatus as broadly restricted<br />

to the region between the rivers Betsiboka and<br />

Mahavavy (Muller et al., 2000; Wilmé and Callmander, 2006),<br />

with a population density of 173 individuals/km² at Anjamena<br />

(Muller, 2000). In an analysis of the distribution of lemurs in<br />

central western Madagascar, Thalman and Rakotoarison<br />

(1994) suggested that the faunal region bounded by the<br />

Betsiboka,the central highlands,the river Tsiribihina and the<br />

Mozambique Channel can be divided into four sub regions.<br />

These sub regions are separated by the three rivers: Mahavavy,<br />

Manambaho and Manambolo, but are interconnected<br />

with the Bongolava Massif.The discovery of a crowned sifaka<br />

population in Dabolava, which is located in the south of the<br />

central highlands sub region, confirms the hypothesis that<br />

the historical range of this species might spread along the<br />

central highlands of Madagascar. The record of a group of<br />

crowned sifaka in Andranotonga, slightly north of the Mahajilo<br />

River, was cited by Tattersall (1986). The present report<br />

appears to be the first location of P.coronatus to the south of<br />

this river.<br />

The Mahajilo is a tributary of the Tsiribihina<br />

River, which is considered to<br />

represent the north-western limit of P.<br />

verreauxi (Mittermeier et al., 2006). P.<br />

coronatus is therefore unlikely to be<br />

found much further south or southwest<br />

than Dabolava. Only 80 km<br />

south-west of Dabolava, a population<br />

of P. verreauxi is known from Ambatolahy<br />

(SAHA,2009),which lies within<br />

the Ambararata/Londa protected area<br />

complex (Fig. 3). Another tributary of<br />

the Mahajilo, the Mania River, lies between<br />

Ambatolahy and Dabolava and<br />

may therefore represent the distributional<br />

limit of P. coronatus and P. verreauxi<br />

in the south of Madagascar. A<br />

conservation programme and restoration<br />

of the remaining habitat with<br />

the local people are needed to save<br />

this population of P. coronatus.<br />

Acknowledgments<br />

I thank GERP – Groupe d’Etude et de<br />

Recherche sur les Primates de Madagascar,<br />

The Aspinall Foundation, Cotswold<br />

Wildlife Park, SECAS, Belfast<br />

Zoo, Besancon Museum and Parc<br />

Zoologique de Paris for funding this<br />

research. Many thanks to Dr Jonah<br />

Ratsimbazafy and Tony King for discussions<br />

about the project implementation.I<br />

am grateful for permission and<br />

assistance in the field from the Direction<br />

Régionale de l’Environnement et<br />

des Forêts and the Commune of<br />

Dabolava.I also thank Pan African Mining<br />

Madagascar for providing accommodation<br />

in their lovely camp site.<br />

References<br />

Curtis, D.J.; Velo, E.-O.; Raheliarisoa; Zaramody, A.; Muller, P.<br />

1998.Surveys on Propithecus verreauxi deckeni,a melanistic<br />

variant, and P.v. coronatus in Northwest Madagascar. Oryx<br />

32: <strong>15</strong>7-163. Groves, C.P. 2001. Primate taxonomy. Smithsonian<br />

Institution Press, Washington, D.C.<br />

Hawkins,A.F.A.;Durbin,J.C.;Reid,D.B.1998.The primates of<br />

the Baly Bay area,north-western Madagascar.Folia Primatologica<br />

69: 337-345.<br />

IUCN. 2008. 2008 IUCN Red list of threatned species.<br />

www.iucnredlist.org.<br />

Mittermeier, R.A.; Tattersall, I.; Konstant, W.R.; Meyers, D.M.;<br />

Mast,R.1994.Lemurs of Madagascar.1st ed.Conservation<br />

International, Washington, D.C.<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, F.; Louis E.E.;<br />

Langrand, O.; Ratsimbazafy, J.; Rasoloarison, R.; Ganzhorn,<br />

J.U.; Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006.<br />

Lemurs of Madagascar. 2nd ed. Conservation International,<br />

Washington, D.C.<br />

Mittermeier,R.A.;Ganzhorn,J.U.;Konstant,W.R.;Glander,K.;<br />

Tattersall, I.;Groves,C.P.;Rylands,A.B.;Hapke,A.;Ratsimbazafy,<br />

J.; Mayor, M.I.; Louis Jr., E.E.; Rumpler, Y.; Schwitzer,<br />

C.; Rasoloarison, R.M. 2008. Lemur diversity in Madagascar.<br />

International Journal of Primatology 29 (6): 1607-<br />

1656.<br />

Muller,P.1997.The behaviour and ecology of the crowned sifaka<br />

(Propithecus verreauxi coronatus) in north west Madagascar.<br />

Unpublished Ph.D. thesis, University of Zurich.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 25<br />

Muller,P.A.;Velo,E.-O.;Raheliarisoa;Zaramody A.;Curtis.D.J.<br />

2000. Surveys of five sympatric lemurs at Anjamena,<br />

northwest Madagascar. African Journal of Ecology 38:<br />

248-257.<br />

Petter, J.-J.; Andriatsarafara. F. 1987. Conservation Status and<br />

distribution of lemurs in the west and northwest of Madagascar.<br />

Primate Conservation 8: 169-171.<br />

Razafindramanana, J. 2009. Propithecus coronatus on the verge<br />

of extinction:Help to save them:GERP,Antananarivo,Madagascar,<br />

6.<br />

SAHA. 2009. Crèation de Nouvelle Aire Protegee pour le<br />

complexe Ambararata/Londa.<br />

Tattersall,A.I.1986.Notes on the distribution and taxonomic<br />

status of some species of Propithecus in Madagascar. Folia<br />

Primatologica 46: 51-63.<br />

Thalmann, U.; Rakotoarison, N. 1994. Distribution of lemurs<br />

in central western Madagascar, with a regional distribution<br />

hypothesis. Folia Primatologica 63: <strong>15</strong>6-161.<br />

Thalmann, U.; Kümmerli, R.; Zaramody, A. 2002. Why Propithecus<br />

verreauxi deckeni and P. v. coronatus are valid taxa –<br />

quantitative and qualitative arguments. Lemur News 7:<br />

11-16.<br />

Wilme, L.; Callmander M.W. 2006. Les populations reliques<br />

de primates: les Propithèques. Lemur News 11: 24-31.<br />

Inferences about the distant past in Madagascar<br />

Elwyn L. Simons<br />

Duke Lemur Center, Division of Fossil Primates, Dept. Evol.<br />

Anthropology, Duke University, 3705 Erwin Road, Durham,<br />

NC 27705, USA, esimons@duke.edu<br />

From Etienne de Flacourt (1658), the following is an English<br />

translation, from the original French, of an entry in his book<br />

"Histoire de la Grande Isle Madagascar:"<br />

"Tretretretre or Tratratratra. It is a large animal like a calf of<br />

two years old, with a round head and the face of a man: the<br />

fore feet are like those of a monkey (or ape),and the hind feet<br />

also.It has curly (or frizzy) hair,a short tail and ears like those<br />

of a man. It resembles the "Tanacht" described by Ambroise<br />

Paré. It can be seen near the pond of the Lipomami [tribe]<br />

and in that region is where it can be found. It is a highly<br />

solitary animal,the people of that country have a great fear of<br />

it and flee from it as it also does from them." From this context,it<br />

is not clear whether Flacourt actually had seen this animal.<br />

It is well known that in Madagascar village people tend to<br />

name lemurs after the sounds they make, following a sort of<br />

onomatopoeic pattern for animal names such as occurs in<br />

the case of the cuckoo bird in English. For instance, the<br />

ground predator alarm call of species of genus Propithecus is a<br />

loud "si-i-fak!" cry and so the name of this animal in the Malagasy<br />

language is "Sifaka".The mouse lemur makes a chittering<br />

alarm call and has the name "T’sit-sihy".The Avahi,a nocturnal<br />

lemur, has one call that sounds like the word "avahi!" In the<br />

case of Flacourt’s animal the name Tretretretre or Tratratratra<br />

is definitely onomatopoeic and sounds like an alarm<br />

bark–it is not unlike the bark alarm call of the southeastern<br />

Madagascan lemur Propithecus edwardsi,or that of another lemur<br />

related to it, Indri indri, or even the alarm bark of the<br />

chimpanzee.<br />

Hence, I have often considered this term, or name, to be a<br />

"fossil" sound and it seems likely that it would have been a<br />

replication, by members of the Lipomami tribe of the alarm<br />

call of this giant lemur when they told Flacourt about the animal.<br />

The location of the Lipomami region in southeastern<br />

Madagascar is known today (Tattersall,1982).Thus Flacourt’s<br />

name for the animal may be the only known "fossil" sound.<br />

There are frequent references by various scientists all agreeing<br />

that Flacourt must have been describing,in the above passage,<br />

one of the giant extinct lemurs; but which one? All lemurs<br />

have hands and feet like those of monkeys, but wavy<br />

hair is more restricted–mainly to members of the Indriid<br />

group or taxonomic family [this family includes only species<br />

of the extant genera Propithecus,Indri,and Avahi] and incidentally<br />

they all have rounded ears–like those of a man. One<br />

large giant extinct lemur of the south and southwest of the<br />

island is known as Palaeopropithecus ingens and taxonomists<br />

generally agree that genus Palaeopropithecus is related to the<br />

family Indriidae (Orlando et al., 2008), where curly or frizzy<br />

hair occurs. A number of scientists have speculated that<br />

Flacourt’s Tretretretre lemur belonged to the genus Megaladapis<br />

(Tattersall, 1982; Mittermeier et al., 1994), which also<br />

occurs as fossils from the southern part of the island, but<br />

species of this genus have a large snout and could never be<br />

described as having a round head. Moreover, the distal ends<br />

of the nasal bones in species of this genus are elongated and<br />

expanded and, in life, there must have been an expanded or<br />

bulbous nose or even a trunk. Hence, one could never say<br />

that the creature had "a face of a man." Differing from Megaladapis,Palaeopropithecus<br />

ingens does have a rounded humanlike<br />

head with forward directed eyes and a small face.In addition<br />

to all these other features,the living species Indri indri or<br />

babacoot,is the only lemur that has a short tail.In addition to<br />

this,the most complete skeleton of Palaeopropithecus,recovered<br />

by a Duke expedition in 1983, and the only associated<br />

skeleton of this animal ever found includes a sacrum that diminishes<br />

posteriorly and could only hold a very small and<br />

short tail.In opposition to all these conclusions,it can be said<br />

that Palaeopropithecus ingens could not possibly be construed<br />

to have been the size of a calf of two years in age–nor,in fact,<br />

would any of the extinct giant lemurs have been that large.<br />

Nevertheless, it is well known that exaggeration surrounds<br />

stories about such little known animals, and also Malagasy<br />

cattle tend to be small. For these reasons it would appear<br />

that the Tretretretre was a Palaeopropithecus species–a conclusion<br />

also implied by Godfrey and Jungers (2002). A year<br />

later these authors reconfirm the same position (Godfrey<br />

and Jungers, 2003).<br />

Between 1994 and the year 2003 teams from the Duke<br />

Lemur Center excavated fossils at two caves called Akomaka<br />

and Ankilitelo in southwestern Madagascar on the Mikoboka<br />

Plateau north of Tulear. This region is Madagascar’s most<br />

extensive and stratigraphically thickest calcareous plateau.<br />

Discoveries made at both of these caves show that the<br />

southwestern part of the island was inhabited comparatively<br />

recently by several giant lemurs including Palaeopropithecus<br />

ingens and Megaladapis edwardsi. More importantly, these<br />

species lived relatively recently (Godfrey and Jungers, 2002),<br />

as evidenced by radiocarbon dating based on specimens<br />

from Ankilitelo (Megaladapis at 630 ± 50 years B.P. and<br />

Palaeopropithecus, 510 ± 80 years B.P. The latter of these<br />

dates (calculated in 1996) ranged from 1406 to <strong>15</strong>66 years<br />

AD and falls into historic times. These are relatively recent<br />

ages,not so far from the date of Flacourt’s observation of the<br />

Tretretretre which could have been at any time after he was<br />

named Governor of Ft.Dauphin Madagascar in 1648;approximately<br />

350 years ago. A more recent date determined in<br />

2008 on a Cryptoprocta bone from Ankilitelo gives a similar<br />

age to that of the Palaeopropithecus, estimated as between<br />

1408 and 1488 (Simons,1997;Muldoon et al.,2009;Muldoon<br />

and Simons, 2007). This suggests that the small mammals<br />

accumulated more or less contemporaneously with the giant<br />

lemurs. [The cave name, Ankilitelo, means "at the three kili<br />

(tamarind) trees" but no such trees grow there now. Mala-


Page 26 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Fig. 1: Harpagophytum grandidieri burr or "hitchhiker" from<br />

southern Madagascar.These barbs are approximately 9.5 cm<br />

across.<br />

gasy caves can be named for a nearby settlement or village.At<br />

present there is no nearby hamlet with such a name but in<br />

the past there could have been. Kili trees often grow in<br />

villages there.]<br />

At this point another speculation can be introduced.Pastoral<br />

grass burning has reduced present day forests on the Mahafaly<br />

Plateau, north of Tulear, to the ridges of hills and many<br />

present day plant species occurring in them must be the<br />

same as those of 500-1000 years ago. The remaining forests<br />

near Ankilitelo represent both spiny thicket and succulent<br />

woodland regions and examples of the dry deciduous forest<br />

are nearby (Simons, 1997; Muldoon et al., 2009). In general,<br />

grass burning in that region, near the Ankilitelo cave, is arrested<br />

from spreading by outcrops of limestone on the<br />

slopes of hills. In addition, it would appear that surviving forests<br />

on hilltops of the Ankilitelo region remain as they were a<br />

few hundred years ago.The surface finds of small mammals in<br />

Ankilitelo (34 species) do reflect those of a few hundred<br />

years ago–when the giant lemurs existed and when the cave<br />

was serving as a natural trap–these environmental conditions<br />

were similar to those of the present.The fauna suggests<br />

that, perhaps, the region then was slightly more humid, and<br />

definitely the forests of the region have undergone fragmentation<br />

(Simons, 1997; Muldoon and Simons, 2007). Each such<br />

natural trap cave serves as a window in time because, as the<br />

solution cavities open mainly from below,the fauna that fall in<br />

will only begin to collect when there is a surface opening.<br />

More dates are being determined for fossils from Ankilitelo<br />

but the window concerned here did not open long enough<br />

ago that the 34 small mammal species are different from<br />

those now extant in the region or relatively nearby.The commonest<br />

giant lemur at Ankilitelo is the awkwardly constructed<br />

Palaeopropithecus that presumably could not support<br />

itself on all fours on the ground. Once having fallen to<br />

earth it would have been restricted to swimming, sloth-like<br />

motions and this perhaps explains why so many P. ingens fell<br />

into the pit. Also, Godfrey and Jungers (2003) report a Malagasy<br />

tradition (p. 258) that an "ogre with the body of an animal<br />

but the face of a human" could be made helpless on<br />

smooth rock surfaces. Such clumsiness of the sloth-like<br />

Palaeopropithecus would account both for its abundance in<br />

Ankilitelo and its presumed inabilities on the ground. Whatever<br />

the pelage of this animal was like,or indeed that of any of<br />

the giant lemurs, their fur could not have resisted picking up<br />

burrs and other hitchhikers from the southwestern forests<br />

as has been noted with modern lemurs (personal observa-<br />

tions of Michelle Sauther).A present day student of behavior,<br />

Sauther,has observed individual Lemur catta that had become<br />

entangled with the large seeds of what is often called Uncarina<br />

grandidieri–but more properly,because of an earlier date<br />

of description, this species should be assigned to genus Harpagophytum–meaning<br />

"snatcher plant". This plant of southwestern<br />

Madagascar has amazing "hitchhikers" about 2.5 to 3<br />

inches across each of which has 30/35 protruding spines<br />

approximately 1.5 inches long (see Fig.l).Each of these spines<br />

is, in turn, tipped by 4 recurving fishhook-like projections.<br />

This huge seed pod is something that it seems would only<br />

have evolved to be transported by a much larger animal than<br />

any now extant on the Island–presumably a giant lemur like<br />

species of such southern genera as Palaeopropithecus, Megaladapis,<br />

or Archaeolemur or even transportation by the elephant<br />

bird (see below).<br />

Modern botanists report that the pasty pollen of this plant is<br />

spread by pollen-eating beetles, who, after feeding on pollen<br />

from the anthers, get it all over themselves and when covered<br />

by pollen fly from flower to flower where pollen is<br />

transmitted from them to the stigma.This sort of pollination<br />

may be the principal fertilization process, but lemur transport<br />

of these seed burrs does occur today (personal observations<br />

of Michelle Sauther), and must have also done so in<br />

the past. Working at the Beza Mahfaly Special Reserve, in<br />

southwestern Madagascar,Sauther has seen Lemur catta individuals<br />

with Harphagophytum burrs stuck on the face, feet,<br />

and tail. However, she has not seen them attached to Propithecus<br />

verreauxi; a second larger, diurnal lemur species which<br />

occurs at Beza but is more arboreal than L. catta. These dry<br />

seed pods would naturally attach to the skin, not necessarily<br />

fur,of any passing animals and be carried while attached until<br />

its spines were broken enough for the seed to drop off.It was<br />

recently suggested that dispersal of these seed pods might<br />

have been carried out primarily by the extinct elephant birds<br />

of Madagascar (Midgley and Illing, 2009). The authors presenting<br />

this view argue that the mature fruit more often accumulate<br />

on the ground as "trample burrs" and so are more<br />

likely to stick to the feet of these extinct giant ratites than to<br />

fur of arboreal animals. I suspect, however, that the giant lemurs<br />

did not always stay high up in trees but were often on<br />

or near to the ground. The mature terminal hooks of the<br />

Harpagophytum (Uncarina) burr have evolved so as to attach<br />

to any extremity,not necessarily fur.Also it is of interest that<br />

these plants are often called the "Mouse-trap tree" or "Grapple<br />

tree". These species belong in the sesame family (Pedaliaceae)<br />

and typically constitute shrubs or small trees. It is<br />

told that Malagasy people sometimes collect and put together<br />

bunches of these seeds and place cheese or other attractants<br />

at the center of the bunch. They then use this device<br />

to trap rats and mice: Hence, the origin of the common<br />

name.<br />

References<br />

Etienne de Flacourt.1658.Histoire de la grande Isle Madagascar,<br />

2 vols. Chez G. de Lvyne, Paris.<br />

Godfrey, L. R.; Jungers, W. L. 2002. Quaternary fossil lemurs.<br />

Pp. 1-530. In W.C. Hartwig (ed.). The Primate Fossil<br />

Record:Cambridge Studies in Biological and Evolutionary<br />

Anthropology No.33.Cambridge Univ.Press,Cambridge,<br />

UK.<br />

Godfrey,L.R.;Jungers,W.L.2003.The Extinct Sloth Lemurs of<br />

Madagascar. Evol. Anth. 12: 252-263.<br />

Midgley, J. J; Illing, N. 2009. Were Malagasy Uncarina fruits dispersed<br />

by the extinct elephant bird? So. Af. J. Sci. 105<br />

(11/12): 467-499.<br />

Mittermeier, R.A.; Tattersall, I.; Konstant, W.R.; Meyers, D.M.;<br />

Mast, R.B. 1994. Lemurs of Madagascar. Conservation<br />

International, Washington, D.C., USA.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 27<br />

Muldoon, K.M.; de Blieux, D.D.; Simons, E.L.; Chatrath, P.S.<br />

2009.The subfossil occurrence and paleoecological significance<br />

of small mammals at Ankilitelo cave,southwestern<br />

Madagascar. Journ. Mammology 90 (5): 1111-1131.<br />

Muldoon,K.M.;Simons,E.L.2007.Ecogeographic Size Variation<br />

in Small-Bodied Subfossil Primates From Ankilitelo,<br />

Southwestern Madagascar.Am.J.Phys.Anth.134:<strong>15</strong>2-161.<br />

Orlando, L.; Calvignac, S.; Schnebelen, C.; Douady, C.J.; Godfrey,<br />

L.R.; Hänni, C. 2008. DNA from extinct giant lemurs<br />

links archaeolemurids to extant indriids.BMC Evolutionary<br />

Biology 8: 121.<br />

Simons,E.L.1997.Lemurs:Old and New.In S.M.Goodman;B.<br />

D.Patterson (eds.). Natural Change and Human Impact in<br />

Madagascar. Smithsonian Inst. Press, Washington, D.C.<br />

Tattersall, I. M. 1982. The Primates of Madagascar. Columbia<br />

Univ. Press.<br />

Husbandry guidelines for mouse lemurs<br />

at Paris Zoo<br />

Delphine Roullet<br />

Parc Zoologique de Paris, MNHN, 53 avenue de Saint Maurice,<br />

75012 Paris, France, roullet@mnhn.fr<br />

There are two species of mouse lemur in captivity in Europe:<br />

the grey mouse lemur, Microcebus murinus, and the Goodman’s<br />

mouse lemur, Microcebus lehilahytsara (Pes, 2009). The<br />

European captive population of grey mouse lemurs was<br />

established at the end of the 1960s and is now composed of<br />

165 individuals (778.77.10; Pes, 2009),distributed in 29 institutions.<br />

The population of this species is of unknown origin.<br />

According to recent morphological measurements (Pes,<br />

2009) and preliminary results of mtDNA studies (Roos,<br />

2008, in Pes, 2009), this population can be divided into two<br />

pure lineages:one composed of pure breed animals from the<br />

region of Vohimena (SW Madagascar),and the other of pure<br />

breed animals from the region of Mandena (SE Madagascar).<br />

A third lineage is composed of hybrids between the two pure<br />

lineages (Pes, 2009).<br />

The European captive population of Goodman’s mouse lemurs<br />

was established in 2005 and is currently composed of<br />

62 individuals (33.29; Pes, 2009) distributed in two institutions.<br />

The first animals were imported from the area of<br />

Andasibé, Madagascar. They were recognized as a new species<br />

when they arrived in Europe (Rübel, pers. comm.).<br />

The Parc Zoologique de Paris has a success story with the<br />

grey mouse lemurs. The most important group arrived in<br />

December 1990 and was composed of 79 individuals. The<br />

origin of the animals that arrived in the 1980s is unknown.<br />

According to the analysis of the European captive population<br />

(conducted by Tomas Pes for the ESB), the animals coming<br />

from Paris appear to be hybrids between the two pure lineages<br />

described above (Pes, pers. comm.).<br />

The first births occurred in 1991 only a few months after the<br />

arrival of the first animals.During the period of 1991 to 2004,<br />

when the last grey mouse lemurs eventually left the zoo after<br />

the closing of the nocturnal area, there had been a total of<br />

224 successful births (young surviving longer than two<br />

months), with an 86.5 % birth success rate. 1994 was the<br />

most prolific year with 56 successful births. The colony of<br />

grey mouse lemurs in Paris occasionally reached more than<br />

<strong>15</strong>0 individuals.<br />

Before 2001, we didn’t know much about the animals, especially<br />

the composition of the groups.Eleven females were the<br />

founders of the colony in Paris. Since the identity of the fathers<br />

was not recorded, the filiations were only built from<br />

the females. Potentially,28 males could have been the founders<br />

of the colony.<br />

Before 2002, most of the females lived alone in small cages<br />

and were introduced to males (of various group sizes) only<br />

during the few days of oestrus. The females were kept isolated<br />

again afterwards.The young were separated from their<br />

mothers just after their weaning to join a young animals<br />

group.<br />

In 2002 we decided to implement some changes in the management<br />

of the colony in order to improve the wellbeing of<br />

the animals: to increase the space available to them, to rearrange<br />

the enclosures according to the wild habitat of the animals,<br />

to carry out enclosure enrichment, and to re-constitute<br />

the groups to make them more similar to the ones observed<br />

in the wild. The following husbandry guidelines were<br />

established according to the new management of the colony<br />

set up in 2002.<br />

Only single sex groups could be seen by the public.The breeding<br />

groups were kept in a separated building. Moreover,<br />

from 2002 onwards,we limited the number of births (around<br />

10 per year) in order to be able to keep all the animals in<br />

good conditions (and no longer in small cages as had been<br />

done in the past).<br />

Facility standards<br />

1. Enclosure<br />

Size: The enclosure should have a minimum total floor size<br />

of 4 m² with a minimum height of 2 m for both male and female<br />

groups.For a mother with her young,the enclosure can<br />

be smaller during the first month.After this period,the young<br />

start to explore their environment and need more space.<br />

Temperature: 20°C (18-22° C). Not below 18° C. Below<br />

this temperature, the animals enter torpor. Torpor can also<br />

be provoked by intense stress such as prolonged capture of<br />

an animal.<br />

Inside Humidity: 50-70 %.<br />

Lighting and photoperiod:Similar to that found in Madagascar<br />

or Europe but the photoperiod must vary during the<br />

year for breeding.<br />

Furniture: Dense environment with thin branches and<br />

leaves. The animals need to have many places to hide from<br />

people and also from each other when they live in groups,especially<br />

when the animals are unrelated.<br />

Nest box (see Fig. 1):<br />

Size: 12x12x12 cm<br />

Entry diameter: 5 cm<br />

It’s very important to provide one nest box per animal,in<br />

different places, even if they sleep together. This allows<br />

them to be alone if they want to be.<br />

Fig.1:Grey mouse lemurs (Microcebus murinus) in nest box at<br />

Paris Zoo. (Photo: F.-G. Grandin, MNHN)


Page 28 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

2. Feeding and watering<br />

Two feeding spots are needed if there are more than two<br />

adults in the group.Additional feeding spots are required according<br />

to the size of the group.If there are not enough nest<br />

boxes or feeding spots,the animals can be very aggressive towards<br />

one another, sometimes causing serious wounds,<br />

mostly to the tail. One water bottle per enclosure is sufficient.<br />

Diet for 1 animal/day:<br />

Monday: 1 tea-spoon of gruel* +3folivorous pellets<br />

Tuesday: 1/8 of apple + 2 slices of carrot + 3 folivorous pellets<br />

Wednesday:1/8 of apple + 1/8 of pear + 3 folivorous pellets<br />

Thursday: 1 tea-spoon of gruel* +3folivorous pellets<br />

Friday:1/8 of apple + 2 slices of carrot + 3 folivorous pellets<br />

Saturday: 1 tea-spoon of gruel* +3folivorous pellets<br />

Sunday: 1 slice of banana + 1/8 of mango + 5 mealworms + 3<br />

folivorous pellets<br />

*Gruel composition: folivorous pellet powder + milk<br />

powder + baby cereals + yolks + cottage-cheese + juice of<br />

squeezed oranges + vitamins (every Monday).<br />

For overweight animals (weight >100 g):from Tuesday to Saturday<br />

we provide only 2 slices of carrot and 3 folivorous pellets.<br />

No change for Sunday and Monday.<br />

For underweight animals (weight


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 29<br />

females may be more interested in food during the breeding<br />

season than the males which,in turn,may be more interested<br />

in the females (Roullet, 1998).<br />

The enrichment made with a branch covered in fruit juice<br />

was the most used by the animals:This is a branch (diameter<br />

of around 5 cm, length of 30-40 cm) in which two trenches<br />

are dug along its length. The branch is fixed onto the mesh<br />

roof. We apply the fruit juice in the trenches with a brush<br />

(Roullet,1998).The animals spend their time licking the juice<br />

out of the branch as they would do with sap in wild (Martin,<br />

1973).<br />

Mixed-species exhibits<br />

Paris Zoo experienced 2 successful combinations:with ayesayes<br />

(Daubentonia madagascariensis) and greater tenrecs<br />

(Tenrec ecaudatus).We tried to put the mouse lemurs in with<br />

slow lorises (Nycticebus coucang), but without success:<br />

wounds were observed on the mouse lemurs’ tails, so they<br />

were removed from the exhibit.<br />

References<br />

Martin, R.D. 1973. A review of the behaviour and ecology of<br />

the lesser mouse lemur (Microcebus murinus). Pp. 1-68. In:<br />

R.P. Michael; J.H. Crook (eds.). Comparative ecology and<br />

behaviour of primates. Academic Press, London, UK.<br />

Pes, T. 2009. The European Studbook of Grey Mouse Lemur<br />

(Microcebus murinus). Zoo and Botanical Garden Plzen.<br />

Roullet, D. 1998. Effet d’un enrichissement physique sur les<br />

comportements agonistiques et exploratoires de plusieurs<br />

groupes de microcèbes murins (Microcebus murinus)<br />

en captivité. DESS d’Ethologie Appliquée et de Chronobiologie<br />

du Comportement. Université Paris XI.<br />

Articles<br />

Diurnal lemur density in the national<br />

park parcel Ivontaka Nord, UNESCO<br />

Biosphere Reserve of Mananara-Nord<br />

Marta Polasky Lyons<br />

School for International Training, Fort Dauphin, Madagascar;<br />

and Carleton College, Northfield, Minnesota, USA,<br />

marta.lyons@gmail.com<br />

Abstract<br />

Here I present a recent diurnal lemur density study performed<br />

in the Biosphere Reserve of Mananara Nord, conducted<br />

between the dates of November 9 and 22, 2008 in<br />

Ivontaka Nord; part of Mananara-Nord National Park. Densities<br />

were calculated using transect walks, and other information<br />

was gathered through interviews with local people<br />

and national park staff. The density of Eulemur fulvus albifrons<br />

appears to be over twice that recorded in other areas<br />

(Table 1), while the density of Varecia variegata variegata<br />

appears to be low,perhaps due to the latter’s preference for<br />

undisturbed habitat and past problems with overhunting. In<br />

addition, Eulemur rubriventer was found to inhabit the park,<br />

though its range was previously thought not to extend east<br />

into the biosphere. Having been, in the past, under strong<br />

pressures from local inhabitants,Ivontaka Nord represents a<br />

disturbed low altitude rainforest;however this report shows<br />

that the lemur populations within the parcel may be recovering.<br />

Introduction<br />

Background<br />

The Biosphere Reserve of Mananara-Nord was created in<br />

1989. It is one of 533 UNESCO (the United Nations Educational,<br />

Scientific, and Cultural Organization) Biospheres<br />

around the world.The Biosphere Reserve of Mananara Nord<br />

covers 144,000 ha,with 23,000 ha being devoted to a terrestrial<br />

park,and another 1,000 ha to a marine park.The terrestrial<br />

national park is split into three separate parcels. Going<br />

from north to south these parcels are: Ivontaka Nord,<br />

Ivontaka Sud, and Verezanantsoro. The parcel of Ivontaka<br />

Nord covers an area of only 827 ha.This is small compared to<br />

the other two parcels; Ivontaka Sud and Verezanantsoro,<br />

which are 1,300 ha and 20,685 ha respectively (Fig. 1). These<br />

parcels are connected by forest sections that are not protected<br />

by the national park system (ANGAP, 2005).<br />

Fig.1:National Park of Mananara-Nord.Three parcels in dark<br />

shade,going from north to south:Ivontaka Nord (where this<br />

survey was carried out), Ivontaka Sud, Verezanantsoro.<br />

Source: MNP.<br />

Threats<br />

It is estimated that approximately 1.9 to 2.2 % of the primary<br />

forest within the biosphere is cleared every year, usually for<br />

rice cultivation through tavy (slash and burn agriculture)<br />

(ANGAP, 2005). Besides just destroying necessary habitat,<br />

this deforestation further splits already extremely fragmented<br />

sections of primary forest.Another concern is illegal<br />

(and legal) selective extraction. The population within the<br />

biosphere relies on wood for constructing their houses and<br />

fuel for cooking.In the villages most cooking is done over an<br />

open flame using collected wood.The wood does not simply<br />

go to the villages on the periphery of a forest,but is also collected<br />

for sale in urban centers and areas farther away from<br />

the forest.


Page 30 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Another large concern in the biosphere has to do with<br />

poaching. Until recently, hunting was thought to not be of<br />

great concern in Madagascar, being far below the menace<br />

caused by deforestation (Goodman et al., 2003); however,<br />

that is quickly proving incorrect. Unlike in other areas of the<br />

country where eating lemurs is considered fady (taboo), the<br />

Betsimisaraka ethnic group that makes up the majority of inhabitants<br />

within the biosphere reserve is only known to have<br />

fady related to the eating of Indri indri,and even this taboo has<br />

been shown not to be universal (Mittermeier et al., 2006). In<br />

the area people have classically used laly (traditional lemur<br />

traps) and firearms in order to hunt lemurs for consumption<br />

(ANGAP, 2005). Lemurs within the reserve have been a traditional<br />

source of protein for villagers whose diets are based<br />

on the staple rice.<br />

Site<br />

The field camp was situated within the town of Ambodivoandrozana<br />

approximately 17 km south of Mananara Nord. The<br />

village is inaccessible by vehicle but rests less than 2 km from<br />

the national park parcel of Ivontaka Nord.Between the town<br />

and the national park lies another forest managed by the<br />

COBA (communaute de base) for conservation and local subsistence<br />

needs. This forest is split into three zones; Beantohiravina<br />

(21.7 ha), Betsingiala (11.52 ha), and Ambahinkarabo<br />

(41.06 ha). These zones are separated by areas of<br />

agricultural land and secondary forest. A Gestion Contractualisée<br />

des forêts (GCF) in 2005 transferred certain management<br />

and use rights to the local community. It is mostly<br />

low altitude primary growth rainforest, intermixed with<br />

zones of savoka (secondary growth). The parcel of Ivontaka<br />

Nord is made up of both primary forest and disturbed habitat.From<br />

past species inventories,it was believed that two diurnal<br />

lemur species (Eulemur albifrons and Varecia v.variegata)<br />

and multiple nocturnal species, including Microcebus rufus,<br />

Lepilemur mustelinus, Avahi laniger, and Daubentonia madagascariensis<br />

among others inhabited this national park.<br />

Methods<br />

A survey of diurnal lemur species was conducted in the low<br />

altitude (between 250 and 300 m above sea level) rainforest<br />

in the national park of Ivotaka Nord and adjoining community-managed<br />

forest (GCF).The survey was conducted from<br />

November 9-22,2008.Within the national park parcel,a preestablished<br />

2 km transect set up by ANGAP was followed,in<br />

addition to other transects along preexisting paths throughout<br />

the two forests. Additional permanent transects were<br />

not established because of time constraints and the desire to<br />

limit the impact on the habitat. Instead, distance was measured<br />

by walking at a constant pace along preexisting paths<br />

(approximately 900 m per hour). This pace was calculated<br />

using the 2 km transect, and variation in speed was used to<br />

create a range for densities. The total of 17 transects were<br />

walked, ranging from 600-2,500 m in length, with a total distance<br />

walked of approximately 30 km.<br />

For each transect the date, start and end time, weather, and<br />

location were recorded.When a lemur was spotted,the species<br />

was noted along with the group size,time of day,distance<br />

on transect, distance from path, habitat type, and the GPS<br />

coordinates. Density was then calculated by the number of<br />

individual lemurs/area. Area was based on the total length of<br />

transects walked multiplied by double the average perpendicular<br />

distance of lemur from the path (Whitesides et al.,<br />

1988; Norscia et al., 2006). Common methods for this type<br />

of primate study include using a 50 % criterion for falloff<br />

distance based on histograms (Whitesides et al., 1988; John-<br />

son and Overdorff,1999;Erhart and Overdorff,2008) or the<br />

program DISTANCE (Quemere et al., 2010). However, given<br />

time constraints it was not possible to collect an adequate<br />

amount of data to perform these tests.Based on earlier studies<br />

on similar species in similar habitats we used a falloff distance<br />

of 20 m (Irwin, 2001). In addition to transect walks,<br />

interviews were conducted with employees of the ANGAP<br />

office of Mananara Nord and local people of the town of Ambodivoandrozana.<br />

Within the village, the interviews were<br />

done with prominent members of the community including<br />

members of Slow Food (an agriculture movement within the<br />

biosphere) and the COBA.<br />

Results<br />

The observed population density for Eulemur albifrons was<br />

46.13 ± 2.32 individuals/km 2 within the park (Tab.1).The average<br />

group size observed was 7 individuals. Multiple groups<br />

were observed with females carrying babies on their back,<br />

and overall this species was found in a variety of different<br />

habitats, both dense and sparse primary forest, and even on<br />

the edge of secondary growth. Through a combination of<br />

data collected in the forest and interviews with local people,<br />

we found that though Eulemur albifrons frequents multiple<br />

habitats,even leaving the forest to eat crops,they mainly rest<br />

within the National Park.<br />

Two other diurnal lemur species were observed within the<br />

parcel, Varecia variegata variegata and Eulemur rubriventer. V. v.<br />

variegata was observed to have a density of 1.06 ± 0.02 individuals/km<br />

2 (Tab. 1). This species was only observed on one<br />

occasion and only one individual was seen. According to the<br />

local guide and vice president of the COBA,eight individuals<br />

of this species exist within the parcel, a group of five and a<br />

group of three (F. Frejes, personal communication). This implies<br />

a density of 0.97 individuals/km 2.From traces observed<br />

on the ground (eaten fruit) and calls heard,it seems clear that<br />

this lemur spends the majority of its time within the limits of<br />

the parcel as it prefers deep valleys with tall trees; a habitat<br />

not found in the more disrupted community managed forest.<br />

Tab.1:Density of diurnal lemurs within the parcel of Ivontaka<br />

Nord. Densities were calculated of the three species observed<br />

within the parcel, Eulemur albifrons, Eulemur rubriventer,and<br />

Varecia v.variegata.A 50 % falloff distance was used<br />

for perpendicular distances over 20 m (Whitesides et al.,<br />

1988; Irwin et al., 2000) Error bars represent the error in<br />

pace of transect walked and error in observation of animals<br />

from path.<br />

Species Number of<br />

individuals<br />

encountered<br />

Eulemur<br />

albifrons<br />

Eulemur<br />

rubriventer<br />

Varecia v.<br />

variegata<br />

Number of<br />

groups<br />

encountered<br />

Calculated density<br />

(individuals/km2)<br />

31 5 46.13 ± 2.32<br />

3 1 6.40 ± 0.38<br />

1 1 1.06 ± 0.02<br />

Eulemur rubriventer, being a species believed to live west of<br />

the biosphere in higher altitude rainforest, was thus not on<br />

the initial list of lemurs to be found in the area.From the one<br />

sighting of three individuals in a dense part of the primary<br />

forest, the calculated density is 6.40 ± 0.38 individuals/km 2<br />

for the parcel (Tab. 1). No sightings were made of this individual<br />

outside of the parcel,and as its eating habits closely mirror<br />

that of E.albifrons,it was not possible to tell the difference<br />

between traces found on the ground.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 31<br />

Discussion<br />

The parcel of Ivontaka Nord is considered to be an example<br />

of disturbed primary forest.Anthropogenic effects are much<br />

stronger in Ivontaka Nord than in other parcels,because it is<br />

the smallest of the three, and the closest to the town of<br />

Mananara. Before the creation of the national park, the area<br />

of Ivontaka Nord was frequently used as a place to grow<br />

crops through tavy,harvest wood for construction and cooking,and<br />

hunt lemurs.For these reasons,the lemur population<br />

of the parcel was at one time diminished to the point of localized<br />

extinction of the critically endangered Varecia v.variegata,<br />

in addition to the localized extinctions of Indri indri and Hapalemur<br />

griseus (J. Betsiahilika, personal communication). Yet,<br />

because it is connected through a corridor of community<br />

managed forest to the less disturbed parcel of Ivontaka Sud<br />

(Fig.1),in 2002,V.v.variegata migrated into the GCF corridor<br />

between Ivontaka Sud and Ivontaka Nord, and in 2005 these<br />

lemurs could again be found within the parcel. However, the<br />

species of Indri indri and Hapalemur griseus are not believed to<br />

currently inhabit the parcel, though they can be found in the<br />

other two parcels within the biosphere (J. Betsiahilika, personal<br />

communication).<br />

Within the parcel, there was convincing evidence to suggest<br />

that the lemurs might be recovering even more than previously<br />

known. During the two weeks of transects, Eulemur<br />

rubriventer was observed within the parcel, even though its<br />

recorded range ends west of the biosphere reserve. In addition,traces<br />

of the distinct eating habits (shredding the stems<br />

of tall plants whilst stripping off foliage) of Hapalemur griseus<br />

were found within the savoka. Additionally, there were reports<br />

of Indri indri spending time in the corridor between<br />

Ivontaka Sud and Ivontaka Nord (J. Betsiahilika, personal<br />

communication).<br />

Through field observations, E. albifrons was found to have a<br />

population twice that found in other areas such as Masoala<br />

(Mittermeier et al.,2006).They frequent both the parcel and<br />

community forest. During the season in which this study<br />

took place,when most of the fruit within the parcel is not yet<br />

ripe, many Eulemur albifrons were reported by local villagers<br />

to be exiting the parcel in search of other cultivated fruits<br />

like lychee and banana. V. v. variegata on the other hand<br />

appeared to not leave the protected parcel.It is possible that<br />

they adapt their feeding habits based on the season and thus<br />

do not eat cultivated fruits (Ratsimbazafy, 2002).<br />

The observed density of V. v. variegata was not congruent<br />

with the report of the local guide (F.Frejes,personal communication).<br />

This species, like Eulemur rubriventer, was observed<br />

on only one occasion. Because of time constraints, surveys<br />

had to be conducted over a two week period and with only<br />

the use of one field team. For more complete and definitive<br />

findings, a survey needs to be done over a longer period of<br />

time, possibly across different seasons. Also, it would be<br />

beneficial to conduct the same type of study after dark.<br />

Finally, it would be helpful to determine lemur densities in<br />

the other two parcels, and the community managed forests<br />

in-between.<br />

Conclusion<br />

It is currently of the utmost importance to make sure that<br />

the integrity of forested sections outside the realm of the<br />

parcel remains protected.These areas represent a buffer between<br />

the fragile low altitude rainforest and an ever expanding<br />

human population. The corridor formed by these community-managed<br />

forests, between the three national park<br />

parcels, is a priority area. It has already been shown to provide<br />

a bridge to facilitate migration between the three parcels,which<br />

is critical in a country where forest fragmentation<br />

is proving detrimental to the gene flow of lemurs (Louis et al.,<br />

2006).<br />

Through the work of the biosphere reserve,significant steps<br />

have already been taken to encourage conservation. Both<br />

government officials and villagers appear to be working together<br />

to promote a healthy ecosystem. Already with the<br />

promotion of crops such as vanilla,cloves,and coffee,as an alternative<br />

to other more environmentally negative livelihoods,<br />

villagers say they have seen an improvement both in<br />

their lives and the forest health (Desana and Berger,personal<br />

communication). However, people have needs; the agricultural<br />

inhabitants of these rural areas need both to grow their<br />

food and to have wood and other materials for performing<br />

everyday tasks. It is possible to improve both the lives of the<br />

people in the area and decrease their negative impact on<br />

their environment through simple strategies such as rice intensification<br />

and promoting more efficient cooking methods.<br />

Maybe then populations of Indri indri, Hapalemur griseus, and<br />

Propithecus diadema,all species that at one time inhabited the<br />

area, will return to the parcel of Ivontaka Nord.<br />

Acknowledgements<br />

This study was carried out under a Memorandum of Understanding<br />

between SIT and ANGAP Mananara for an internship<br />

for the author in November 2008.SIT thanks the Ministry<br />

of Higher Education and Scientific Research and the University<br />

of Antananarivo for the ongoing collaboration under<br />

which SIT Study abroad operates. This study could not have<br />

been possible without the help of Barry Ferguson and Jim<br />

Hansen of SIT in addition to the staff in the ANGAP office of<br />

Mananara, including Willy Mora, Jocelyn Bezara, Justin Besiahilika,<br />

and Jean Cristophe Josoa.<br />

References<br />

ANGAP. 2005. Plan de Gestion de la Conservation-Parc<br />

National Mananara Nord.<br />

COBA FMAA. 2005. Fifanekena Famindra-Pitantanana ny<br />

Atiala sy ny Harena Voajanahary azo Havaozina ao Ambodivoandrozana.<br />

Erhart, E.M.; Overdorff, D.J. 2008. Population demography<br />

and social structure changes in Eulemur fulvus rufus from<br />

1988 to 2003.American Journal of Physical Anthropology<br />

136: 183-193.<br />

Goodman, S.; Raselimanana, A. 2003. Hunting of wild animals<br />

by Sakalava of the Menabe region: a field report from<br />

Kirindy-Mite. Lemur News 8: 4-6.<br />

Irwin, M.T.; Samonds, K.E.; Raharison, J. 2001. A biological inventory<br />

of the lemur community of Réserve Spéciale de<br />

Kalambatritra, south-central Madagascar. Lemur News 6:<br />

24-28.<br />

Johnson, S.E.; Overdorff, D.J. 1999. Census of brown lemurs<br />

(Eulemur fulvus sspp.) in southeastern Madagascar:<br />

Methods-testing and conservation implications. American<br />

Journal of Primatology 47: 51-60.<br />

Louis, E.E. jr.; Coles, M.S.; Andriantompohavana, R.; Sommer,<br />

J.A.; Engberg, S.E.; Zaonarivelo, J.R.; Mayor, M.I.; Brenneman,<br />

R.A. 2006. Revision of the mouse lemurs (Microcebus)<br />

of Eastern Madagascar. International Journal of<br />

Primatology 27: 347-389.<br />

Mittermeier, R.; Tattersall, I.; Konstant, W.R.; Nash, S.D. 2006.<br />

Lemurs of Madagascar. Conservation International, Washington<br />

D.C.<br />

Norscia,I.;Rahanitriniaina,O.G.;Jolly,A.;Donati G.2006.Preliminary<br />

survey of lemur density in the semimontane rainforest<br />

of Anka,Fort-Dauphin region.Lemur News 11:14-<br />

16.<br />

Quemere, E.; Champeau, J.; Besolo, A.; Rasolondraibe, E.;<br />

Rabarivola,C.;Crouau-Roy,B.;Chikhi,L.2010.Spatial Variation<br />

in Density and Total Size Estimates in Fragmented<br />

Primate Populations: The Golden-Crowned Sifaka (Propithecus<br />

tattersalli). American Journal of Primatology 72:<br />

72-80.


Page 32 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Ratsimbazafy, J.H.; Ramarosandratana, H.V.; Zaonarivelo, R.J.<br />

2002. How do black-and-white ruffed lemurs still survive<br />

in highly disturbed habitat? Lemur News 7: 7-10.<br />

Sur le Commerce International des Especes de Faune et de<br />

Flore Sauvage. 2005. Loi N 2005-018.<br />

Whitesides, G.H.; Oates, J.F.; Green, S.M.; Kluberdanz, R.P.<br />

1988. Estimating primate densities from transects in a<br />

West African rain forest; a comparison of techniques.<br />

Journal of Animal Ecology 57: 345-367.<br />

Distribution of Prolemur simus north of<br />

the Mangoro-Nosivolo River – how far<br />

north do we really have to look?<br />

Rainer Dolch 1*, Erik R. Patel 2, Jonah H. Ratsimbazafy<br />

3,4, Christopher D. Golden 5, Tianasoa Ratolojanahary<br />

1, Jean Rafalimandimby 1, Jonathan L. Fiely 1<br />

1Association MITSINJO, Lot 104 A, Andasibe 514, Madagascar<br />

2Cornell University, 211 Uris Hall, Ithaca, NY 14850, USA<br />

3Durrell Wildlife Conservation Trust,BP 8511,Antananarivo<br />

101, Madagascar<br />

4GERP, 34 Cité des Professeurs, Fort Duchesne, Antananarivo<br />

101, Madagascar<br />

5University of California, Department of Environmental<br />

Science,Policy and Management,Mulford Hall #3114,Berkeley,<br />

CA 94720, USA<br />

*Corresponding author: rdolch@gmx.de<br />

Introduction<br />

While the Mangoro-Nosivolo river system is a recognized<br />

biogeographical divide for several lemur species (Goodman<br />

and Ganzhorn, 2004), this pattern does not hold for the<br />

Greater Bamboo Lemur (Prolemur simus). Findings from<br />

numerous subfossil sites indicate that the historical distribution<br />

of P. simus, now one of the rarest Malagasy primates<br />

(Wright et al.,2008,2009),once encompassed most of Madagascar<br />

(Godfrey and Vuillaume-Randriamanantena, 1986).<br />

During the last <strong>15</strong>0 years, documented sightings of the species<br />

became more and more scarce and by the middle of the<br />

last century it was already feared extinct (e.g. Napier and<br />

Napier, 1967).<br />

More recent discoveries came solely from southeastern<br />

Madagascar (Petter et al., 1977; Meier and Rumpler, 1987),<br />

which led to the unspoken assumption that P.simus had been<br />

extirpated from the rest of the island. Despite the fact that<br />

the last collected specimen of P. simus had come from<br />

Mananara in 1876 (Godfrey and Vuillaume-Randriamanantena,<br />

1986), not a single individual had been found north of<br />

the Mangoro river for more than 130 years, before Dolch et<br />

al.(2004,2008) rediscovered the species in Torotorofotsy,in<br />

the commune of Andasibe.<br />

In order to investigate further into the distribution and abundance<br />

of P. simus north of the Mangoro, several extensive<br />

surveys have recently been, and are currently being, conducted<br />

(King and Chamberlan, 2010). As preliminary results<br />

of these surveys are trickling in, accounts of P. simus from<br />

inhabitants of these regions also multiply rapidly and await<br />

verification.<br />

We do not aspire to anticipate survey results,but we believe<br />

that summarizing our current knowledge of P.simus north of<br />

the Mangoro is crucial for the planning of future surveys and<br />

conservation strategies.<br />

Methods<br />

We gathered and compiled information on P. simus north of<br />

the Mangoro deduced from our own research,from reports<br />

that villagers brought to our attention, and from anecdotal<br />

evidence in existing literature.The ten localities from where<br />

information was available included (from south to north) the<br />

Marolambo area, the Brickaville area, the western parts of<br />

the Ankeniheny-Zahamena Corridor (CAZ), Zahamena, the<br />

Soanierana-Ivongo area, Ambatovaky, Marotandrano, Mananara,<br />

Makira, and Marojejy (Fig. 1).<br />

Fig. 1: Localities from where information on P. simus was collected.<br />

Results<br />

Results of our compilation are summarized in Tab.1.Of all localities<br />

north of the Mangoro examined,two (Brickaville and<br />

western CAZ) have steadfast records of P.simus based on independently<br />

confirmed sightings. One locality (Soanierana-<br />

Ivongo) has a record based on a single observation, whereas<br />

for four others (Marolambo, Zahamena, Ambatovaky, Makira)<br />

evidence is only based on reports of villagers. The final<br />

three (Marotandrano, Mananara, Marojejy) do not have any<br />

records. Details are given below.<br />

Tab. 1: Potential localities for P. simus north of the Nosivolo-<br />

Mangoro.<br />

Region evidence based on<br />

Marolambo area reports by villagers<br />

Brickaville area sightings, confirmed<br />

Western CAZ sightings, confirmed<br />

Zahamena reports by villagers<br />

Soanierana-Ivongo area sightings, unconfirmed<br />

Ambatovaky reports by villagers<br />

Marotandrano (no evidence)<br />

Mananara (mo evidence)<br />

Makira reports by villagers<br />

Marojejy (no evidence)<br />

Marolambo area. A hotspot of endemic fish species richness,<br />

the Nosivolo and lower Mangoro rivers have recently<br />

received increased attention by researchers and conservationists<br />

alike.While working in this area,we received several<br />

accounts of villagers on P. simus from 2006-2009. Reports<br />

claiming the occurrence of P. simus come from 4 communes<br />

along the Nosivolo-Mangoro river, and focus (from west to<br />

east) on Ambohimilanja, Betampona, Marolambo and Ambinanidilana.<br />

In order to verify these accounts, a preliminary<br />

survey is currently being conducted within The Aspinall<br />

Foundation’s "Saving Prolemur simus" project (Ratsimbazafy,<br />

2010).


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 33<br />

Brickaville area. A similar survey has already been conducted<br />

for the Brickaville area. A total of 6 sites in isolated<br />

fragments in the communes (from west to east) of Fanasana,<br />

Anivorano and Fetraomby have been found containing P.<br />

simus. Details are given by Ravaloharimanitra et al. (2010).<br />

Western CAZ.In the course of the same survey,12 sites in<br />

the western parts of the Ankeniheny-Zahamena corridor<br />

have been found containing P. simus (Ravaloharimanitra et al.,<br />

2010). These findings follow earlier reports from villagers<br />

that had claimed its presence (e.g.Schmid and Alonso,2005).<br />

The communes where P. simus has been confirmed include<br />

(from south to north) Andasibe, Morarano-Gare, Fierenana,<br />

and Didy.<br />

Zahamena. Ganzhorn (2004) states that a report of the<br />

presence of P. simus in the PN Zahamena was brought to his<br />

attention in 1995, but that it "was questioned and eventually<br />

withdrawn".Information on a possible occurrence of P.simus<br />

in Zahamena, obviously derived from that report, is mentioned<br />

in Godfrey et al. (1997).<br />

Soanierana-Ivongo area. In their little noticed bulletin,<br />

the Association de Défense de la forêt d’Ambodiriana report<br />

that trainee Coralie Ebert, while studying the woolly<br />

lemurs (Avahi laniger) of this forest, claims to have observed<br />

an individual of Prolemur simus (ADEFA, 2009). An earlier<br />

lemur survey of the area (Beaucent and Fayolle, 2008) has<br />

not yielded evidence of P.simus.The forêt d’Ambodiriana lies<br />

just 30 km to the north of Soanierana-Ivongo,a region where,<br />

according to Mittermeier et al. (2006), halogodro and bokombolobe<br />

are still used as local names for P. simus.<br />

Ambatovaky.Ambatovaky is an area that has received only<br />

little attention due to its difficult accessibility. In the early<br />

1990s, a lemur survey was conducted by Evans et al. (1993-<br />

1994). They did not find tangible evidence for P. simus, but<br />

state that "local people indicated that there existed until recently<br />

a lemur which fed on giant bamboo along the Sandrangato<br />

and/or Marimbona rivers,known as alakoto or halokoto".<br />

Marotandrano.Lying to the northwest of Ambatovaky,Marotandrano<br />

has even received less attention than the former.<br />

A lemur survey by Ralison (2006) did not indicate presence<br />

of P. simus.<br />

Mananara. The last specimen of P. simus to be collected<br />

from north of the Nosivolo-Mangoro river came from an<br />

area close to Mananara (Godfrey and Vuillaume-Randriamanantena,1986).Although<br />

the exact collection locality can not<br />

be traced (due to unsuited transcription of its name by the<br />

collector J.P.Audebert),the assumption that P.simus may still<br />

occur in the forests around Mananara was still put forward<br />

by Nicoll and Langrand (1989). No evidence for P. simus in<br />

Mananara has been produced since.<br />

Makira. Being Madagascar’s largest continuous rainforest<br />

(317,000 ha), lemur surveys in Makira are not easy to conduct.<br />

Two years of intensive surveys by Rasolofoson et al.<br />

(2007) and Ratelolahy and Raivoarisoa (2007) have not uncovered<br />

any evidence of P.simus.Similarly,during seven years<br />

of relying on trusting relationships with hunters, Golden<br />

(2009) has not come across P. simus among the 23 mammal<br />

species hunted for consumption throughout southern,western,<br />

northern, and eastern Makira. However, villagers living<br />

adjacent to the newly discovered Antohaka Lava forest at the<br />

edge of northeastern Makira (20 km south of Andrakata on<br />

Marojejy’s southeastern border) have reported recent sightings<br />

of a large bamboo lemur with ear tufts known locally as<br />

bokombolobe.Unfortunately,several months of systematic lemur<br />

surveying of the Antohaka Lava forest between August<br />

and December 2009 did not confirm these reports, despite<br />

an exceptional primate diversity documented inthat area<br />

(Patel, 2009).<br />

Marojejy. A lemur survey by Sterling and McFadden (2000)<br />

found no evidence of P. simus. Alleged observations of bamboo<br />

lemurs other than Hapalemur griseus by tourists may be<br />

attributed to the possible presence of H. occidentalis, rather<br />

than P. simus (R. Mittermeier, pers. comm.). Moreover, during<br />

nine years of research on Propithecus candidus in Marojejy,no<br />

local reports or sightings of P.simus have been received (Patel,<br />

2009).<br />

Discussion<br />

Despite the scarcity of information, growing evidence supports<br />

that P. simus may still be widespread in Madagascar<br />

north of the Mangoro river. Since the species occupies large<br />

home ranges (Dolch et al., unpubl. data), appears to travel at<br />

night due to possible cathemerality (Santini-Palka, 1994), is<br />

cryptic, and often silent when unhabituated, it is conceivable<br />

that it has been overlooked in the past.However,because the<br />

P.simus vocal repertoire is distinct and extensive (Bergey and<br />

Patel,2008) and its feeding traces on giant bamboo (Cathariostachys<br />

madagascariensis) are unmistakable,attention to such<br />

indirect evidence of P. simus presence should be focused<br />

upon in all surveys.<br />

The report from Makira, if confirmed, is especially interesting,<br />

since the northernmost former record for the species<br />

(other than from subfossils) comes from Antongil Bay<br />

(Schwarz, 1931).<br />

Our experience shows that accounts of villagers are mostly<br />

reliable, and that people usually have a good sense of what<br />

animal species do or do not occur in their vicinity.Therefore,<br />

integrating local people is crucial for further studies into<br />

Prolemur distribution. Logically, collaboration with local people<br />

is one conservation recommendation given by the Prolemur<br />

Conservation Working Group (Madagascar Fauna<br />

Group, 2010).<br />

Based on information compiled,we tentatively conclude that<br />

P. simus is still more widespread than previously thought.<br />

Without sufficient data, given persisting threats to the habitats<br />

in which it occurs and our incomplete understanding of<br />

habitat requirements for the species,we do not dare say that<br />

a larger distribution area contributes in any way to relieving<br />

the species from extinction pressure. Unfortunately, P. simus<br />

still has to be considered one of the most threatened primates<br />

in the world.<br />

Acknowledgements<br />

We thank Tokiniaina Hobinjatovo for helping with literature<br />

research and Coralie Ebert for additional information. We<br />

thank all individuals that have shared their observations and<br />

made available the information presented here. We would<br />

also like to thank the Margot Marsh Biodiversity Fund, and<br />

the National Geographic Society Conservation Trust Award<br />

#C135-08.<br />

References<br />

ADEFA. 2009. Stages. Bulletin d’Information de l’Association<br />

de Défense de la forêt d’Ambodiriana 25: 1-2.<br />

Beaucent,S.;Fayolle,M.2008.Etude de la communauté de lémuriens<br />

de la forêt d’Ambodiriana,NE Madagascar.Lemur<br />

News 13: 28-32.<br />

Bergey,C.;Patel. E.R.2008.A preliminary vocal repertoire of<br />

the Greater Bamboo Lemur (Prolemur simus): classification<br />

and contexts. Nexus 1: 69-84.<br />

Dolch, R.; Fiely, J.L.; Ndriamiary, J.N.; Rafalimandimby, J.; Randriamampionona,R.;Engberg,S.E.;Louis,E.E.Jr.2008.Confirmation<br />

of the greater bamboo lemur, Prolemur simus,<br />

north of the Torotorofotsy wetlands,eastern Madagascar.<br />

Lemur News 13: 14-17.<br />

Dolch, R.; Hilgartner, R.D.; Ndriamiary, J.N.; Randriamahazo,<br />

H.2004.The grandmother of all bamboo lemurs:evidence


Page 34 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

for the occurrence of Hapalemur simus in fragmented<br />

rainforest surrounding the Torotorofotsy marshes, central<br />

eastern Madagascar. Lemur News 9: 24-26.<br />

Evans, M.I.; Thompson, P.M.; Wilson, A. 1993-1994. A survey<br />

of the lemurs of Ambatovaky special reserve,Madagascar.<br />

Primate Conservation 14/<strong>15</strong>: 13-21.<br />

Ganzhorn, J. U. 2004. Editorial. Lemur News 9: 1.<br />

Godfrey, L. R.; Vuillaume-Randriamanantena, M. 1986. Hapalemur<br />

simus: endangered lemur once widespread. Primate<br />

Conservation 7: 92-96.<br />

Godfrey,L.R.;Jungers,W.L.;Reed,K.E.;Simons,E.L.;Chatrath,<br />

P.S. 1997. Subfossil lemurs: Inferences about past and present<br />

primate communities.Pp.218-256.In:S.M.Goodman;<br />

B.Patterson (eds.). Natural Change and Human Impact in<br />

Madagascar. Smithsonian Institution Press, Washington<br />

D.C.<br />

Golden, C. D. 2009. Bushmeat hunting and use in the Makira<br />

Forest, north-eastern Madagascar: a conservation and<br />

livelihoods issue. Oryx 43: 386-392.<br />

Goodman,S.M.;Ganzhorn,J.U.2004.Biogeography of lemurs<br />

in the humid forests of Madagascar:the role of elevational<br />

distribution and rivers. J. Biogeography 31: 47-55.<br />

King, T., Chamberlan, C. 2010. Conserving the critically endangered<br />

Greater Bamboo Lemur. Oryx 44: 165-170.<br />

Madagascar Fauna Group.2010.Conservation of the critically<br />

endangered greater bamboo lemur Prolemur simus:<br />

What we know now,what we need to know and potential<br />

conservation strategies. International Technical Meeting<br />

Final Report, Antananarivo 26-28 January 2010. Madagascar<br />

Fauna Group.<br />

Meier, B.; Rumpler, Y. 1987. Preliminary survey of Hapalemur<br />

simus and of a new species of Hapalemur in eastern Betsileo,<br />

Madagascar. Primate Conservation 8: 40-43.<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, F.; Louis, E. E.;<br />

Langrand, O.; Ratsimbazafy, J.; Rasoloarison, R.; Ganzhorn,<br />

J.U.; Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006. Lemurs<br />

of Madagascar.Tropical Field Guide Series.Washington<br />

DC, Conservation International.<br />

Napier, J. R.; Napier, P. H. 1967. A Handbook of Living Primates.<br />

Academic Press, New York.<br />

Patel, E.R. 2009. Silky Sifaka, Propithecus candidus. Pp. 84. In:<br />

R.A.Mittermeier;J.Wallis;A.B.Rylands;J.U.Ganzhorn; J.F.<br />

Oates;E.A.Williamson;E.Palacios;E.W.Heymann;M.C.M.<br />

Kierulff;Y.Long;J.Supriatna;C.Roos;S.Walker;L.Cortés-<br />

Ortiz;C.Schwitzer (eds.).Primates in peril:the world’s 25<br />

most endangered primates, 2008-2010. IUCN/SSC<br />

Primate Specialist Group (PSG), International Primatological<br />

Society (IPS), and Conservation International (CI),<br />

Arlington, VA.<br />

Petter, J.J.; Albignac, R.; Rumpler, Y. 1977. Mammiferes Lémuriens<br />

(Primates Prosimiens). Faune de Madagascar 44.<br />

Paris: Office de la Recherche Scientifique et Technique<br />

d’Outre-Mer (ORSTOM)/Centre National de la Recherche<br />

Scientifique (CNRS).<br />

Ralison,J.M.2006.A lemur survey of the Réserve Spéciale de<br />

Marotandrano, Madagascar. Lemur News 11: 35-37.<br />

Rasolofoson, D.; Rakotondratsimba, G.; Rakotonirainy, O.;<br />

Rasolofoharivelo, T.; Rakotozafy, L.; Ratsimbazafy, J.; Ratelolahy,<br />

F.; Andriamaholy, V.; Sarovy, A. 2007. Le bloc forestier<br />

de Makira charnière de Lémuriens. Lemur News 12:<br />

49-53.<br />

Ratelolahy, F.J.; Raivoarisoa, F.M.J. 2007. Distribution et statut<br />

de population de Propithèque Soyeux (Propithecus candidus)<br />

dans la forêt de Makira, région d’Anjanaharibe, Nord<br />

Est de Madagascar.Report,Wildlife Conservation Society,<br />

Antananarivo.<br />

Ratsimbazafy,J.2010.Identification des sites prioritaires pour<br />

la conservation de Prolemur simus dans le Bassin versant<br />

de Nosivolo/Marolambo. Proposition de recherche, Projet<br />

Varibolomavo, The Aspinall Foundation.<br />

Ravaloharimanitra, M.; Ratolojanahary, T.; Rafalimandimby, J.;<br />

Rajaonson,A.; Rakotonirina, L.; Rasolofoharivelo, T.; Ndriamiary,<br />

J.N.; Andriambololona, J.; Nasoavina, C.; Fanomezantsoa,<br />

P.; Rakotoarisoa, J.C.; Youssouf, M.; Ratsimbazafy,<br />

J.; Dolch, R.; King, T. 2010. Gathering indigenous knowledge<br />

in Madagascar results in a major increase in the<br />

known range and number of sites for the critically endangered<br />

Greater Bamboo Lemur (Prolemur simus). Int. J. Primat.<br />

(in review).<br />

Santini-Palka, M.E. 1994. Feeding behaviour and activity patterns<br />

of two Malagasy bamboo lemurs, Hapalemur simus<br />

and Hapalemur griseus, in captivity. Folia Primatologica 63:<br />

44-49.<br />

Schmid, J.; Alonso, L.E. 2005. A rapid biological assessment of<br />

the Mantadia-Zahamena Corridor, Madagascar. RAP Bulletin<br />

of Biological Assessment No. 32. Washington DC,<br />

Conservation International.<br />

Schwarz, E. 1931. A revision of the genera and species of<br />

Madagascar Lemuridae. Proceedings of the Zoological<br />

Society of London 1931: 399-428.<br />

Sterling,E.;McFadden,K.2000.Rapid census of lemur populations<br />

in the Parc National de Marojejy, Madagascar. Fieldiana<br />

Zoology 97: 265-274.<br />

Wright,P.C.;Johnson,S.E.;Irwin,M.T.;Jacobs,R.;Schlichting,P.;<br />

Lehman, S.; Louis, E.E. Jr.; Arrigo-Nelson, S.J.; Raharison, J.<br />

L.; Rafalirarison, R.R.; Razafindratsita, V.; Ratsimbazafy, J.;<br />

Ratelolahy,F.J.;Dolch,R.;Tan,C.2008.The crisis of the critically<br />

endangered Greater Bamboo Lemur (Prolemur<br />

simus). Primate Conservation 23: 5-17.<br />

Wright, P.C.; Larney, E.; Louis, E.E. Jr., Dolch, R.; Rafaliarison,<br />

R.R. 2009. Greater bamboo lemur, Prolemur simus (Gray,<br />

1871). In: R.A. Mittermeier; J. Wallis; A.B. Rylands; J.U.<br />

Ganzhorn; J.F. Oates; E.A. Williamson; E. Palacios; E.W.<br />

Heymann; M.C.M. Kierulff; Y. Long; J. Supriatna; C. Roos; S.<br />

Walker; L. Cortés-Ortiz; C. Schwitzer (eds.). Primates in<br />

peril: the world’s 25 most endangered primates, 2008-<br />

2010. IUCN/SSC Primate Specialist Group (PSG), International<br />

Primatological Society (IPS), and Conservation<br />

International (CI), Arlington, VA.<br />

Enquête préliminaire de la distribution<br />

des lémuriens de bambou dans et autour<br />

du Corridor forestier Fandriana-Vondrozo,<br />

Madagascar<br />

Andry Rajaonson 1,2, Maherisoa Ratolojanahary 2,<br />

Jonah Ratsimbazafy 1, Anna Feistner 3, Tony King 2*<br />

1Groupe d’Etude sur les Primates de Madagascar (GERP),<br />

Lot 34 Cité des Professeurs, Fort Duchesne, Ankatso, Antananarivo<br />

101, Madagascar<br />

2The Aspinall Foundation, BP 7170 Andravoahangy, Antananarivo<br />

101, Madagascar<br />

3Centre ValBio, BP 33 Ranomafana, Ifanadiana 312, Madagascar<br />

(present address: anna@feistner.com)<br />

*Corresponding author: tonyk@aspinallfoundation.org<br />

Mots-clés: Prolemur simus, Hapalemur aureus, Varecia variegata<br />

editorum, bambou<br />

Introduction<br />

Le Grand Hapalémur (Prolemur simus) mangeur de bambou,<br />

est classé comme étant "gravement menacé CR" sur la liste<br />

rouge de l’Union Internationale pour la Conservation de la<br />

Nature (UICN,2009).Il est aussi l’une des quatre espèces de<br />

Madagascar faisant partie des 25 primates considérés<br />

comme les plus menacés au monde (Mittermeier et al.,2007,<br />

2009). Des individus capturés dans les années 1800 venaient<br />

d’une région plus étendue, ce qui laisse supposer que son<br />

habitat a diminué.Les sites de subfossiles avec des squelettes<br />

identiques à celui de P. simus sont nombreux, impliquant une<br />

distribution encore plus vaste à une époque très ancienne<br />

(Godfrey et Vuillaume-Randriamanantena, 1986; Godfrey et<br />

al., 2004).<br />

Actuellement, la distribution géographique de l’espèce semble<br />

très étroite.On pense que P.simus est seulement présent<br />

dans quelques fragments de forêt tropicale humide près de la<br />

côte Est de Madagascar (Mittermeier et al.,2006 ;Dolch et al.,<br />

2008;Wright et al.,2008).Wright et al.(2008) résume la crise


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 35<br />

actuelle de l’espèce: sur les 70 localités étudiées, la présence<br />

de P.simus est confirmée seulement sur 11 d’entre elles,à une<br />

altitude comprise entre 121 et 1600 m.<br />

La plupart des sites connus abritant P.simus se trouvent dans<br />

ou autour du Corridor Fandriana-Vondrozo, dans le Sud-Est<br />

du pays (Andriaholinirina et al.,2003;Meier et Rumpler,1987;<br />

Sterling et Ramaroson, 1996; Wright et al., 1987, 2008; Mittermeier<br />

et al., 2009). Deux autres espèces de lémuriens de<br />

bambou vivant dans le corridor, Hapalemur aureus et H.<br />

griseus, sont aussi menacées (Mittermeier et al., 2006; IUCN,<br />

2009).Notons que P. simus est le plus grand des lémuriens de<br />

bambou,avec un pelage gris brun (comme H. griseus).Il se distingue<br />

facilement des deux autres espèces par des touffes de<br />

poils blancs sur les oreilles. Sa face est aussi plus allongée, et<br />

on le trouve souvent au sol, alors que les autres espèces y<br />

sont rarement (Wright et al., 1987). Selon l’étude de Tan<br />

(1999) à Ranomafana, le régime alimentaire de P. simus est<br />

constitué à 95 % d’une seule espèce de bambou Cathariostachys<br />

sp. (ou volohosy dans le dialecte local malgache), 3 %<br />

d’autres espèces de bambous et de graminées,0,5 % de fruits<br />

et 1,5 % d’autres éléments (principalement de la terre et des<br />

champignons).<br />

La présente étude a été organisée dans le cadre du Projet<br />

Varibolomavo proposé par The Aspinall Foundation (TAF).<br />

Ce projet veut mettre en place des actions rapides, efficaces<br />

et collaboratives pour sauver Prolemur simus. Plus précisément,<br />

le deuxième objectif du projet est d’organiser une<br />

étude de la distribution et de l’abondance de P. simus (TAF,<br />

2008, 2009; King and Chamberlan, 2010). Par conséquent, le<br />

but de cette étude était de contribuer à réaliser ces objectifs,<br />

dans et autour du corridor Fandriana-Vondrozo, par a) la<br />

récolte des connaissances indigènes locales sur les distributions<br />

des lémuriens; et b) la recherche des signes de présence<br />

des lémuriens de bambou. Nous présentons ici un<br />

résumé des résultats de l’étude, exposés de façon plus<br />

détaillée par Ratolojanahary et al. (2009).<br />

Méthodes<br />

Entre les 27 novembre 2008 et 25 mai 2009, nous avons enquêté<br />

dans 14 zones situées dans et autour du Corridor<br />

Fandriana-Vondrozo (Tab. 1, Fig. 1). Pour chaque commune,<br />

des entretiens avec les autorités locales ont eu lieu.Des collaborations<br />

avec ces personnes ont permis d’organiser les<br />

réunions villageoises pour mener les enquêtes participatives,<br />

à l’aide de photos des espèces de lémuriens supposées<br />

coexister dans ce couloir forestier (Prolemur simus, Hapalemur<br />

aureus, H. griseus, Eulemur rufus, E. rubriventer, Propithecus<br />

edwardsi, Varecia variegata editorum, Microcebus rufus,<br />

Cheirogaleus major, Avahi laniger, Lepilemur microdon, Daubentonia<br />

madagascariensis). Les appellations locales des différentes<br />

espèces connues par les communautés villageoises<br />

ont été relevées lors de chaque enquête.De plus,nous avons<br />

utilisé la méthode de cartographie participative (Jones et al.,<br />

2005) durant la réunion dans les communes de Mahazoarivo,<br />

Iandraina, Sahamadio et Evato. Suite aux résultats des enquêtes<br />

villageoises, nous avons visité des forêts et sites<br />

intéressants dans la région, toujours accompagnés par un<br />

guide local et des agents de recherche du Centre ValBio de<br />

Ranomafana. Nous nous arrêtions tous les 25 mètres pour<br />

relever la localisation des bambous et des espèces de lémuriens,<br />

ainsi que les signes de présence de ces dernières.<br />

La présence des espèces de lémuriens était révélée soit par<br />

l’observation directe (animal vu), soit par l’observation indirecte<br />

(signes de nourrissage,excréments ou vocalisation).La<br />

recherche des signes de nourrissage des lémuriens de bambou<br />

était faite dans les zones de bambous, et les signes<br />

Tab. 1: Les zones visitées pendant l’enquête.<br />

Zone Sites visités Dates<br />

Zones situées dans le corridor forestier<br />

Ambendrana 1 27-28 nov 2008<br />

Amindrabe 1 29 nov - 1 déc 2008<br />

Ambodiara 1 11-13 déc 2008<br />

Antarehimamy 1 14-16 déc 2008<br />

Antaranjaha 4<br />

29 jan - 6 fév 2009 (dont Tsianivoho<br />

et Ambolomadinika)<br />

Manambolo 1 9-11 mai 2009<br />

Zones situées autour du corridor forestier<br />

Mananjary 4 14-16 jan 2009<br />

Sahalanona 9 17-23 jan 2009<br />

Manakara 1 25 jan 2009<br />

Mahazoarivo 2 18-19 mai 2009 (dont Ifasy)<br />

Iandraina 1 21 mai 2009<br />

Sahamadio 1 22-23 mai 2009<br />

Evato 0 24-25 mai 2009<br />

Mahafasa 0 25 mai 2009<br />

14 zones 27 sites 27 nov 2008 - 25 mai 2009<br />

Fig. 1: Les sites visités lors de l’enquête dans et autour du<br />

Corridor forestier Fandriana-Vondrozo.<br />

étaient examinés précautionneusement afin d’identifier l’espèce<br />

qui en était responsable.Prolemur simus préfère surtout<br />

les bambous de grand diamètre, et les parties de bambou<br />

privilégiées varient avec les saisons.Entre juillet et novembre,<br />

P. simus consomme principalement la moelle tendre de<br />

bambou géant (Tan,1999),après avoir ouvert la tige en deux<br />

et l’avoir déchirée en petits morceaux (Wright et al., 1987).<br />

Ainsi, l’échantillon à rechercher devrait être des tiges déchirées<br />

sans ou avec peu de moelle.Par contre,entre novembre<br />

et avril, il se concentre sur les jeunes pousses (Tan, 1999),<br />

donc les échantillons devraient être des bouts de jeunes<br />

pousses de bambou géant. Avec de l’expérience, il est égale-


Page 36 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

ment possible de distinguer les signes laissés sur les feuilles<br />

de bambou. P. simus se nourrit des jeunes feuilles matures et<br />

ne consomme pas la partie tranchante de la feuille. Par<br />

contre, Hapalemur aureus et H. griseus consomment uniquement<br />

la base de la feuille, H. aureus déchirant la gaine de<br />

chaume à l’aide de ses dents avant de manger les branches.<br />

Résultats et Interprétations<br />

Espèces de lémuriens recensées<br />

Les populations locales ont souvent des noms vernaculaires<br />

distincts pour les différentes espèces de lémuriens.En outre,<br />

nous avons remarqué qu’ils ne pouvaient pas toujours identifier<br />

les espèces sur les photos, alors qu’ils pouvaient les reconnaître<br />

dans la nature.Les informations récoltées lors des<br />

enquêtes villageoises doivent donc être utilisées avec précaution<br />

et sont toujours à vérifier sur le terrain. Durant les<br />

vérifications, nous n’avons trouvé qu’un seul site présentant<br />

des signes de nourrissage de Prolemur simus (Tab. 2). Par<br />

contre, nous avons effectué 39 observations (directes et<br />

indirectes) de Hapalemur griseus, dans 10 des 12 zones visitées<br />

(Tab. 2), et huit observations (indirectes) de H. aureus<br />

(Tab.3).Toutes ces observations ont été faites dans les zones<br />

situées au sein du corridor forestier, mais aucune dans ses<br />

alentours (Tab. 2). Cette espèce a laissé des signes de nour-<br />

Tab. 2: Espèces de lémuriens rencontrées dans chaque zone.<br />

Zone Hapalemur Hapalemur Prolemur Autres espèces<br />

griseus aureus simus<br />

Zones situées dans le corridor forestier<br />

Ambendrana vu & signes signe<br />

E rubriventer (vu)<br />

Microcebus sp. (nid)<br />

Amindrabe vu & signes signe<br />

signe P. edwardsi (vu et entendu)<br />

(environ 1 an) D. madagascariensis (signes)<br />

Ambodiara signes signes V. variegata (entendu)<br />

Antarehimamy signes signes V. variegata (entendu)<br />

Antaranjaha signes<br />

signes &<br />

entendus<br />

V. variegata (entendu)<br />

E. rufus (vu)<br />

Manambolo signes E. rufus (vu) E. rubriventer (vu)<br />

Zones situées autour du corridor forestier<br />

Sahalanona vus & signes M. rufus et A. laniger à vendre<br />

Mananjary vus & signes<br />

Microcebus sp. (nid)<br />

Cheirogaleus sp. (signes)<br />

Manakara E. rufus (vu) A. laniger (vu)<br />

Mahazoarivo vus<br />

Iandraina signes<br />

Sahamadio signes<br />

Tab. 3: Observations de Hapalemur aureus faites pendant l’étude.<br />

Zone Remarque Latitude Longitude Altitude (m)<br />

Ambendrana signe de nourrissage S 21º 22’ 22.7" E 047º 20’ 46.5" 1182<br />

Amindrabe signe de nourrissage S 21º 24’ 13.1" E 047º 22’ 47.7" 1070<br />

Ambodiara signe de nourrissage S 21º 53’ 27.0" E 047º 21’ 18.9" 825<br />

Antarehimamy signe de nourrissage S 21º 54’ 47.5" E 047º 20’ 38.4" 1074<br />

Antaranjaha signe de nourrissage S 21º 58’ 20.3" E 047º 20’ 16.7" 828<br />

Antaranjaha entendu des cris S 21º 58’ 25.3" E 047º 20’ 17.7" 783<br />

Antaranjaha signe de nourrissage S 21º 58’ 39.1" E 047º 19’ 43.8" 786<br />

Manambolo signes de nourrissage S 22º 04’ 06.2" E 046º 59’ 27.5" 1238<br />

Tab. 4: Observations de Varecia variegata faites pendant l’étude.<br />

Zone Remarque Latitude Longitude Altitude (m)<br />

Ambodiara entendu des cris S 21º 53’ 17.4" E 047º 21’ 42.3" 500<br />

Ambodiara entendu des cris S 21º 53’ 17.7" E 047º 21’ 34.5" 825<br />

Antarehimamy entendu des cris S 21º 55’ 00.4" E 047º 22’ 10.3" 489<br />

Antaranjaha entendu des cris S 21º 58’ 23.6" E 047º 20’ <strong>15</strong>.4" 828<br />

Antaranjaha entendu des cris S 21º 58’ 31.5" E 047º 20’ 13.6" 743<br />

rissage et émis des cris. La présence de huit autres espèces<br />

de lémuriens a également été constatée (Tab. 2). L’une d’entre<br />

elles, Varecia variegata editorum, est une sous-espèce<br />

gravement menacée selon l’UICN (2009), et les détails de<br />

toutes les observations de cette espèce sont présentés dans<br />

le Tab. 4.<br />

Résultats par zone située dans le corridor forestier de Fandriana-<br />

Vondrozo<br />

Ambendrana: Le village d’Ambendrana (S21°22’44.9" E 047°<br />

18’31.0",altitude 1121 m) est placé sous l’autorité de la commune<br />

rurale d’Androy et situé à une vingtaine de kilomètres<br />

au sud du Parc National de Ranomafana. Ce village est entouré<br />

de rizières localisées tout autour du corridor.La forêt<br />

d’Ambendrana a une superficie de 1.496 hectares et est<br />

gérée par la communauté de base depuis 2003. Au cours de<br />

l’enquête, les villageois n’ont reconnu que 3 espèces de<br />

lémuriens des 12 présentées sur les photos, notamment<br />

l’espèce Hapalemur griseus. D’après nos observations, la<br />

forêt d’Ambendrana est perturbée. Cependant, nous avons<br />

pu localiser quelques groupes de lémuriens, dont un groupe<br />

de H. griseus, et des signes de nourrissage.<br />

Amindrabe: La forêt d’Amindrabe a une superficie de 5.800<br />

hectares et est également gérée par la communauté de base<br />

depuis 2003.Cette forêt est située à 5,7 km du village d’Ambendrana.<br />

Le Fokontany Amindrabe (S21°<br />

23’14.8" E047°21’ 46.4", altitude 1096 m)<br />

fait également partie de la commune ru-<br />

rale d’Androy et comprend plusieurs villages.<br />

Durant l’enquête, les villageois ont<br />

reconnu 5 espèces de lémuriens, dont H.<br />

griseus. Pendant l’expédition dans le site<br />

d’Amindrabe, deux anciens signes de<br />

nourrissage (vieux d’environ un an d’après<br />

nos constatations) de P.simus ont été trouvés<br />

sur le tronc d’une espèce de bambou<br />

localement appelé <strong>Vol</strong>otsangana (S21º24’<br />

22.5", E047º23’07.2", altitude 1055 m).<br />

Nous avons également trouvé deux<br />

groupes de H. griseus, des Propithecus edwardsi<br />

et des signes d’alimentation de Daubentonia<br />

madagascariensis, attestant de la<br />

grande diversité de ce site en espèces de<br />

lémuriens.<br />

Ambodiara: Le Fokontany d’Ambodiara<br />

(S21°54’41.3", E047°23’29.2, altitude<br />

346 m) existe depuis 1910 et est composé<br />

de 8 villages. Le village d’Ambodiara est<br />

situé à 5,9 km, c’est-à-dire à environ 3<br />

heures de marche à l’ouest d’Ikongo. Au<br />

cours de l’enquête, les villageois ont reconnu<br />

9 espèces de lémuriens,dont Hapalemur<br />

aureus, H. griseus et également Prolemur<br />

simus. D’après nos observations, la<br />

forêt d’Ambodiara est perturbée. Nous<br />

n’avons pas trouvé P.simus sur ce site,mais<br />

nous avons constaté la présence de Cathariostachys<br />

sp. Par contre, Varecia variegata<br />

editorum abonde dans cette localité, et<br />

nous avons trouvé des signes de nourrissage<br />

de H. aureus et H. griseus.<br />

Antarehimamy: Situé dans le district<br />

d’Ikongo, le village d’Antarehimamy (S21°<br />

55’59.2",E047°22’17.6",altitude 410 m) se<br />

situe à 3,16 km au Nord-Est d’Ambodiara<br />

et à 9,01 km à l’ouest de la commune<br />

rurale d’Ikongo.Lors de l’enquête,les villa-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 37<br />

geois ont reconnu 7 espèces de lémuriens,mais aucun lémurien<br />

de bambou.Néanmoins,nous avons trouvé des signes de<br />

nourrissage de Hapalemur aureus et H. griseus. Nous avons<br />

également remarqué l’abondance de Varecia variegata editorum<br />

sur le site.<br />

Antaranjaha/Ambolomadinika/Tsianivoho:Située dans le district<br />

d’Ikongo, la commune d’Ambolomadinika gère 12<br />

Fokontany, dont Antaranjaha et Tsianivoho. Le Fokontany<br />

Antaranjaha (S21°59’42.3",E047°25’40.2") est situé à 3,7 km<br />

au Sud-Ouest d’Ambolomadinika. Dans ce site, les villageois<br />

n’ont pas reconnu de lémuriens de bambou. Cependant, des<br />

cris de Hapalemur aureus ont été entendus dans la forêt à<br />

<strong>15</strong>0 m environ de notre campement,c’est-à-dire à Ankazondrano.A<br />

Marofototra,situé à 30 minutes du Fokontany d’Antaranjaha,<br />

toutes les jeunes pousses de bambou Cathariostachys<br />

sp.étaient coupées.Ce sont des signes de nourrissage de<br />

H. griseus. De plus, un villageois a confirmé avoir trouvé un<br />

groupe de H. griseus comprenant 12 individus à cet endroit.<br />

Nous avons également entendu des cris de Varecia variegata<br />

editorum, vu un groupe de Eulemur rufus, et trouvé un piège à<br />

lémuriens dans la forêt. Dans la commune rurale d’Ambolomadinika,<br />

on remarque beaucoup de zones agricoles déboisées.<br />

Malheureusement, les lémuriens de bambou sont menacés<br />

à cause de la coupe massive de bambous dans ces<br />

zones et la chasse pratiquée par les habitants de la Commune.<br />

Manambolo:Située dans la région de Fianarantsoa,la forêt de<br />

Manambolo (S22°04’06.2",E046°59’27.5",1238 m) se trouve<br />

dans le Fokontany de Morafeno, commune rurale de Sendrisoa.<br />

La gestion de la forêt est assurée par le FI.TE.MA<br />

(FIkambanan’ny TEraky MAnambolo) et concerne cinq villages:<br />

Mandamako, Mahavita, Ambinda, Ankazobe, Ampidira.<br />

La survie de la population locale dépend largement de l’agriculture,<br />

l’élevage et la production du rhum traditionnel.<br />

Cependant, la culture sur brûlis est encore pratiquée sur la<br />

lisière forestière. Lors de l’enquête, les villageois ont reconnu<br />

4 espèces de lémuriens, dont Hapalemur griseus et H.<br />

aureus. La vérification en forêt nous a révélé des signes de<br />

nourrissage de H.aureus, et nous avons vu directement Eulemur<br />

rufus et E. rubriventer.<br />

Résultats par zone située autour du corridor forestier de Fandriana-Vondrozo<br />

Mananjary: Notre campement à Tsararivotra (S21°10’41.8",<br />

E048°13’19.6", altitude 39 m) était situé à 23 km au nordouest<br />

de la ville de Mananjary. Le site de Tsararivotra est<br />

inclus dans le Fokontany de <strong>Vol</strong>omborona Asakatara et fait<br />

partie de la commune de Morafeno Mananjary.Nous n’avons<br />

trouvé que Hapalemur griseus, Cheirogaleus major et Microcebus<br />

rufus dans cette zone.<br />

Sahalanona: La commune de Sahalanona fait partie du<br />

District d’Ikongo et inclut 9 Fokontany (Sahalanona, Mahaly,<br />

etc.). La population est composée d’agriculteurs, d’éleveurs<br />

et de pêcheurs. Le village de Sahalanona (S22°03’19.2"<br />

E047°37’ 12.2", altitude 129 m) existe depuis environ 300<br />

ans. Malgré l’abondante présence de bambous, dont le<br />

bambou géant Cathariostachys sp., nous n’avons trouvé que<br />

Hapalemur griseus dans cette zone. Cette espèce est menacée<br />

par la chasse que pratiquent les villageois. D’autres<br />

espèces de lémuriens sont également en danger car elles<br />

sont aussi chassées et vendues par les villageois, notamment<br />

Avahi laniger (chassé pour l’alimentation et l’usage domestique)<br />

et Microcebus rufus (dont le prix est de 5.000 Ariary<br />

par individu).<br />

Manakara: Le village d’Ambila se trouve à 17 km au nord de<br />

Manakara. Le Fokontany Ambila fait partie de la commune<br />

d’Ambila (S22°00’11.6", E047°58’19.9") de la région de Manakara.Notre<br />

observation a été effectuée directement dans<br />

la forêt de Tsiazombazaha située à 10 km du village d’Ambila.<br />

L’enquête n’a pas eu lieu dans ce site car il n’y avait plus de<br />

village (principalement notre cible) autour de la forêt. Cette<br />

forêt est gérée par la communauté de base du Fokontany<br />

d’Ambila.A cet endroit,nous n’avons pas trouvé de bambou,<br />

et avons trouvé seulement deux espèces de lémuriens, Avahi<br />

laniger et Eulemur rufus, après vérification dans la forêt.<br />

Mahazoarivo/Ifasy: Située dans la région de Farafangana, la<br />

commune de Mahazoarivo (S22°39’49.0", E047°18’42.4",<br />

222 m) fait partie du corridor forestier, et la population pratique<br />

l’agriculture et l’élevage. L’exploitation des ressources<br />

minières, surtout des pierres précieuses, représente une<br />

source de revenus importante pour la population. Lors de<br />

l’enquête, les villageois n’ont reconnu que deux espèces de<br />

lémuriens,Hapalemur griseus et Microcebus rufus.Nous avons<br />

visité deux forêts dans cette commune,à Mitimboto (Fokontany<br />

de Mahazoarivo) et Ifasy ou Mahafasy (Fokontany Mahatsara)<br />

où deux groupes de H. griseus ont été vus sur chaque<br />

site. A Ifasy (S22°39’13.0", E47°14’56.1"), des individus de H.<br />

griseus de très grande taille ont été localisés, similaires à<br />

Prolemur simus, mais l’absence des touffes de poils blancs sur<br />

les oreilles nous a permis de faire la distinction. Nous avons<br />

également remarqué que le nom local de H. griseus était<br />

différent à Mitimbato et Ifasy,respectivement Varibolo madinika<br />

et Varibolo vaventy.<br />

Iandraina: Le Fokontany d’Iandraina fait partie de la commune<br />

Rurale de Vohimasy. Il se situe à <strong>15</strong> km au nord-ouest<br />

de Farafangana. La forêt de Befoza et celle d’Ambolosy<br />

(S22°46’07.0", E047°41’07.0", 53 m) se trouvent dans ce<br />

fokontany. Les populations sont constituées principalement<br />

d’agriculteurs et d’éleveurs. La pratique des cultures vivrières<br />

constitue l’activité principale. Contrairement aux<br />

autres sites que nous avons visités dans le sud de la zone<br />

d’étude, nous avons trouvé une population de Cathariostachys<br />

sp. à Ambolosy.<br />

Sahamadio: Située dans la région de Farafangana, cette zone<br />

est plus ou moins enclavée (absence d’infrastructure routière)<br />

et même la circulation et le transport de produits<br />

locaux s’effectuent toujours par pirogue.La commune rurale<br />

de Sahamadio (S22°31’13.4", E047°35’02.8", altitude 27 m)<br />

dépend beaucoup de l’agriculture. L’existence de signes de<br />

nourrissage dans la forêt de Sahamadio nous a permis d’établir<br />

que Hapalemur griseus,localement appelé "varibolo" y est<br />

présent.L’enquête effectuée au niveau de la commune rurale<br />

d’Ambalatany a également confirmé la présence de lémuriens<br />

de bambou de grande taille dans la forêt d’Ambalakazaha.<br />

Evato:Dans la commune d’Evato (S 22°36’42",E 047°41’20"),<br />

dans la région de Farafangana, le développement des différentes<br />

infrastructures est remarquable,citons comme exemple<br />

les hôpitaux, écoles, marchés et routes en bon état. Un<br />

bloc de forêt primaire se trouve à Iaboloha dans cette<br />

commune. Notre enquête nous a donné des informations<br />

sur la présence de plusieurs espèces de lémuriens dans cette<br />

forêt. Ce site mérite donc d`être visité pour une prochaine<br />

vérification.<br />

Mahafasa: Dans cette zone située également dans la région<br />

de Farafangana, ce qui reste de forêt primaire est en général<br />

la forêt de bambou,un endroit où se trouvent des tombeaux.<br />

Etant donné la situation actuelle de sécurité, nous n’avons<br />

pas obtenu la permission de visiter cette forêt sacrée de<br />

bambou. Cette dernière recouvre une grande surface, environ<br />

3 km de longueur et jusqu’à 100 m de largeur,et pourrait<br />

être importante en tant qu’habitat de lémuriens.


Page 38 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Discussion<br />

La série d’expéditions menée le long du Corridor forestier<br />

Fandriana - Vondrozo nous a permis d’évaluer provisoirement<br />

la répartition des lémuriens de bambou. Concernant<br />

Prolemur simus,un seul signe de nourrissage a été identifié,et<br />

ce signe remontait à un an, confirmant les résultats des<br />

études précédentes qui indiquent que l’espèce a une distribution<br />

fragmentée dans la région (Wright et al., 2008). Pour<br />

Hapalemur aureus (espèce menacée EN), la découverte de<br />

l’évidence de sa présence sur six zones,toutes dans le corridor<br />

forestier, est encourageante car cela implique une large<br />

distribution dans celui-ci, bien que l’espèce ne semble pas<br />

exister en-dehors.Hapalemur griseus (espèce vulnérable VU)<br />

a été trouvé dans presque toutes les zones visitées, dans le<br />

corridor forestier mais également dans des zones éloignées<br />

de ce dernier.<br />

La menace principale pour les espèces de bambou dans la<br />

région du corridor Fandriana-Vondrozo est la destruction<br />

des habitats naturels et leur conversion en champs de culture.Cette<br />

technique est appelée "agriculture sur brûlis".Par<br />

conséquent, cette pression entraîne la raréfaction et même<br />

la disparition des espèces autochtones de bambous. Malgré<br />

la présence de bambous à l’intérieur du corridor, la persistance<br />

de la pratique du tavy,les coupes de bambous en permanence<br />

et surtout la chasse aux lémuriens mettent en péril<br />

la survie des espèces de lémuriens. En outre, la taille de la<br />

forêt du Corridor Fandriana-Vondrozo est petite par rapport<br />

aux autres corridors forestiers du pays. Sa largeur est<br />

très réduite surtout dans sa partie sud, et sur la photo<br />

aérienne, la voûte forestière apparaît très ouverte. Tous ces<br />

facteurs menacent la viabilité des populations de lémuriens<br />

vivant dans le corridor, et tout particulièrement les espèces<br />

présentant une distribution fragmentée telles que P. simus.<br />

Actuellement, beaucoup de lémuriens sont chassés et vendus<br />

par les villageois (exemple:Sahalanona,Antaranjaha).Les<br />

forêts de bambous sont fragmentées et isolées les unes des<br />

autres, ce qui laisse à penser que ces lémuriens de bambou<br />

sont réellement en danger. En outre, les utilisations des<br />

bambous dans la région sont nombreuses. La population locale<br />

utilise les différentes espèces de bambou suivant leur<br />

taille pour la construction des maisons, particulièrement<br />

pour les toitures, les murs, et des clôtures. Les bambous<br />

servent également à fabriquer du matériel pour les usages<br />

quotidiens, parmi lesquels les paniers à fruits, volailles, écrevisses<br />

et anguilles. Enfin, ils permettent de transporter des<br />

bagages. Aussi, les espèces de bambous de plus grand diamètre<br />

sont utilisées comme récipient pour transporter de<br />

l’eau. La conséquence négative de l’utilisation des bambous<br />

est minime par rapport à la destruction des habitats. Exemple:le<br />

Corridor d’Ampitsinjovabe (site d’Antarehimamy) est<br />

une bonne localité pour trouver H. griseus, H. aureus et V.<br />

variegata editorum, mais ces trois espèces sont menacées à<br />

cause de la chasse et des coupes sélectives de bois pratiquées<br />

par les habitants résidant autour du corridor.<br />

Pour la conservation de Prolemur simus,il faudrait accroître la<br />

taille des aires protégées en y incluant les forêts de bambous,<br />

et restaurer les fragments d’habitats isolés au sein d’un<br />

paysage agricole déboisé, afin d’équilibrer la valence écologique,<br />

c’est-à-dire la zone supportable pour l’espèce (en<br />

pratiquant une reforestation de bambou). Cependant, d’une<br />

façon générale, il y a un besoin immédiat de sensibilisation,<br />

pour conscientiser la population aux problèmes de coupe de<br />

bambous,de tavy et de chasse des lémuriens,afin d’assurer la<br />

survie d’espèces de lémuriens dans et autour du Corridor<br />

Fandriana-Vondrozo. Finalement, les sites d’Ambodiara, Mahazoarivo<br />

(Alafady, Ranomena), Ambalakazaha et Mahafasa<br />

sont recommandés pour une nouvelle vérification de la présence<br />

ou non des lémuriens de bambou. En effet, la population<br />

locale semble être convaincue d’avoir trouvé P. simus à<br />

ces endroits.<br />

Remerciements<br />

Nos vifs remerciements vont: au Ministère de l’Environnement,<br />

des forêts et du Tourisme, à la Direction Générale de<br />

l’Environnement et des forêts, et à la Direction du Système<br />

des Aires Protégées, Madagascar, pour leur accord et la<br />

délivrance de l’autorisation de recherche (permis n°279/08/<br />

MEFT/SG/DGEF/DSAP/SSE); à The Aspinall Foundation, GB,<br />

pour le financement de l’enquête dans le cadre du Projet<br />

"Sauver Prolemur simus";au Groupe d’Etude et de Recherche<br />

sur les Primates de Madagascar (G.E.R.P) et son personnel<br />

administratif; au Centre International de Formation pour la<br />

Valorisation de la Biodiversité (Centre ValBio) et son personnel<br />

administratif; à l’ICTE et Conservation International,<br />

Antananarivo,pour leurs conseils et entire collaboration;aux<br />

communes, Fokontany, et COBAS des zone visitées pour<br />

leurs amabilité et collaboration; et enfin, aux assistants de<br />

recherche du Centre ValBio à Ranomafana, Justin Rakotonjatovo,<br />

Dominique Razafindraibe, Jean-Guy Razafindraibe,<br />

Aime-Victor Tombotiana et Telo Albert, et au chauffeur de<br />

The Aspinall Foundation,Mohamad Mbaraka,pour leur assistance<br />

sur le terrain.<br />

Références<br />

Andriaholinirina, V.N.; Fausser J.L.; Rabarivola, J.C. 2003. Etude<br />

comparative de Hapalemur simus (Gray,1870) de deux<br />

sites de la province autonome de Fianarantsoa, Madagascar:forêt<br />

dégradée d’Ambolomavo et forêt secondaire de<br />

Parc National de Ranomafana. Lemur News 8: 9-13.<br />

Dolch, R.; Fiely, J.L.; Ndriamiary, J.N.; Rafalimandimby, J.; Randriamampionona,R.;Engberg,S.E.;Louis,E.E.Jr.2008.Confirmation<br />

of the greater bamboo lemur, Prolemur simus,<br />

north of the Torotorofotsy wetlands,eastern Madagascar.<br />

Lemur News 13: 14-17.<br />

Godfrey, L.; Vuillaume-Randriamanantena, M. 1986. Hapalemur<br />

simus: endangered lemur once widespread. Primate<br />

Conservation 7: 92-96.<br />

Godfrey, L.R.; Simons, E.L.; Jungers, W.L.; DeBlieux, D.D.;<br />

Chatrath,P.S.2004.New discovery of subfossil Hapalemur<br />

simus, the greater bamboo lemur, in western Madagascar.<br />

Lemur News 9: 9-11.<br />

Jones,J.P.G.;Andriahajaina,F.B.;Hockley,N.J.;Balmford,A.;Ravoahangimala,<br />

O.R. 2005. A multidisciplinary approach to<br />

assessing the sustainability of freshwater crayfish harvesting<br />

in Madagascar.Conservation Biology 19:1863-1871.<br />

King, T.; Chamberlan, C. 2010. Conserving the critically endangered<br />

greater bamboo lemur Prolemur simus.Oryx 44:<br />

167.<br />

Meier, B.; Rumpler, Y. 1987. Preliminary survey of Hapalemur<br />

simus and of a new species of Hapalemur in eastern Betsileo,<br />

Madagascar. Primate Conservation 8: 40-43.<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, F.; Louis E.E.;<br />

Langrand, O.; Ratsimbazafy, J.; Rasoloarison, R.; Ganzhorn,<br />

J.U.; Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006. Lemurs<br />

of Madagascar. 2nd ed. Conservation International,<br />

Washington, D.C.<br />

Mittermeier, R.A.; Ratsimbazafy, J.; Rylands, A.B.; Williamson,<br />

L.;Oates,J.F.;Mbora,D.;Ganzhorn,J.U.;Rodriguez-Luna,E.;<br />

Palacios, E.; Heymann, E.W.; Cecilia, M.; Kierfull, M.; Yongcheng,L.;Supriatna,J.;Roos,C.;Walker,S.;Aguiar,J.M.2007.<br />

Primates in Peril: The World’s 25 Most Endangered Primates<br />

2006-2008. Primate Conservation 22: 1-40.<br />

Mittermeier, R.A.; Wallis, J.; Rylands, A.B.; Ganzhorn, J.U.;<br />

Oates, J.F.; Williamson, E.A.; Palacios, E.; Heymann, E.W.;<br />

Kierulff,M.C.M.;Yongcheng,L.;Supriatna,J.;Roos,C.;Walker,<br />

S.; Cortés-Ortiz, L.; Schwitzer, C. 2009. Primates in<br />

Peril: The World’s 25 Most Endangered Primates 2008-<br />

2010. Primate Conservation 24: 1-57.<br />

Ratolojanahary,M.;Rajaonson,A.;Ratsimbazafy,J.;Feistner,A.;<br />

King, T. 2009. Identification des sites prioritaires pour la


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 39<br />

conservation de Prolemur simus par la récolte des connaissances<br />

indigènes locales sur les distributions respectives<br />

du bambou et des hapalémurs dans et autour du corridor<br />

Fandriana-Vondrozo: Rapport Final. GERP / The Aspinall<br />

Foundation / Centre ValBio, Madagascar. 25 pp.<br />

Sterling E.J.; Ramaroson, M.G. 1996. Rapid assessment of the<br />

primate fauna of the eastern slopes of the Réserve Naturelle<br />

Intégrale d’Andringitra, Madagascar. In: S.M. Goodman<br />

(ed.), A Floral and Faunal Inventory of the Eastern<br />

Slopes of the RPserve Naturelle Intégrale d’Andringitra,<br />

Madagascar, with Reference to Elevational Variation. Fieldiana<br />

Zoology 85: 293-305.<br />

TAF 2008. Projet Varibolomavo: Sauver Prolemur simus -Objectifs<br />

et actions proposées. The Aspinall Foundation,<br />

Port Lympne Wild Animal Park, Kent, GB. 4 pp.<br />

TAF 2009. Projet Varibolomavo: Sauver Prolemur simus -Premiers<br />

résultats et actions immédiates. The Aspinall Foundation,<br />

Antananarivo, Madagascar. 6 pp.<br />

Tan, C.L, 1999.Group Composition, Home Range Size, and<br />

Diet of Three Sympatric Bamboo lemur species (genus<br />

Hapalemur) in Ranomafana National Park, Madagascar.<br />

International Journal of Primatology 20(4): 547-566.<br />

UICN 2009. IUCN Red List of Threatened Species. Version<br />

2009.2. www.iucnredlist.org.<br />

Wright P.C.; Daniels P.S.; Meyers, D.M.; Overdorff, D.J.; Rabesoa,<br />

J.A. 1987. Census and study of Hapalemur and Propithecus<br />

in Southeastern Madagascar.Primate Conservation<br />

8: 84-88<br />

Wright,P.C.;Johnson,S.E.;Irwin,M.T.;Jacobs,R.;Schlichting,P.;<br />

Lehman, S.; Louis, E.E. Jr.; Arrigo-Nelson, S.J.; Raharison,<br />

J.-L.; Rafalirarison, R.R.; Razafindratsita, V.; Ratsimbazafy, J.;<br />

Ratelolahy, F.J; Dolch, R.; Tan, C. 2008. The Crisis of the<br />

Critically Endangered GreaterBamboo Lemur (Prolemur<br />

simus). Primate Conservation 23: 5-17.<br />

Effect of red ruffed lemur gut passage on<br />

the germination of native rainforest plant<br />

species<br />

Onja H. Razafindratsima 1,2*, Emilienne Razafimahatratra<br />

1<br />

1Department of Animal Biology, University of Antananarivo,<br />

Madagascar<br />

2Department of Ecology and Evolutionary Biology, Rice University<br />

– MS 170, 6100 Main St., Houston, TX 77005, USA<br />

(current affiliation)<br />

*Corresponding author: ohr1@rice.edu, onjhar@hotmail.com<br />

Key words: seed dispersal, germination success, Varecia<br />

rubra, primate, corridor restoration, Masoala<br />

Abstract<br />

Like much of Madagascar’s remaining rainforest,the forest of<br />

Masoala National Park is facing severe threats from deforestation<br />

and fragmentation. The remaining fragmented areas<br />

are connected by degraded corridors which are important<br />

for biological exchange. Frugivorous animals such as lemurs<br />

may have an important role in the restoration of such degraded<br />

areas through seed dispersal. Unfortunately,no studies<br />

have been carried out before concerning the role lemurs<br />

play in the restoration of the largest corridor in Masoala,<br />

Ambatoledama. This study explores the effect of seed passage<br />

inside the gut of the frugivorous red-ruffed lemur<br />

(Varecia rubra) on the germination of some native tropical<br />

plants with the aim to understand the capacity of V. rubra to<br />

help in the restoration of the Ambatoledama corridor. We<br />

planted seeds of nine plant species that we collected from V.<br />

rubra’s fresh feces in a nursery to compare with seeds that<br />

we extracted manually from corresponding fruits. The germination<br />

of seeds was monitored each month after planting<br />

them. Results showed that defecated seeds had overall a significantly<br />

higher germination rate than non-passed seeds.<br />

Thus, lemur ingestion of seeds has the capacity to improve<br />

seed germination of several species and some plants require<br />

the physiological treatment inside the gut to germinate. Results<br />

suggested that restoration projects in the area including<br />

the Ambatoledama corridor should take into account the<br />

important role Varecia rubra plays in the regeneration of the<br />

forest and corridor.Management actions that increase movement<br />

and protection of animals moving into and out of the<br />

corridor will be important for the long term success of the<br />

project.<br />

Introduction<br />

The rainforest of the Masoala Peninsula suffers greatly from<br />

loss and fragmentation caused by the human population<br />

living around the area.The forest is subdivided into different<br />

fragments, connected by corridors of degraded habitat<br />

which are Ambatoledama,Analambolo and Ilampy (Holloway,<br />

1997). Corridors are vital for enabling gene flow and dispersal<br />

of wildlife among habitat fragments (Mech and Hallett,<br />

2001). The largest of these is the Ambatoledama corridor,<br />

which connects two large parcels of the forest (Fig. 1). The<br />

restoration of this corridor is critical for safeguarding wildlife<br />

populations in the fragments and for preserving gene flow<br />

between fragments (Mech and Hallett, 2001; Haddad et al.,<br />

2003). To restore this degraded corridor, it is necessary to<br />

plant native trees or to encourage zoochory (biological dispersal<br />

of seeds through animal defecation) (Duncan and<br />

Chapman, 2002; Neilan et al., 2006). Since 1997, Madagascar<br />

National Parks (MNP) and the Wildlife Conservation Society<br />

(WCS) have established a restoration project in the Ambatoledama<br />

corridor by planting native fruiting trees (Holloway,1997)<br />

with the aim of attracting frugivorous vertebrates<br />

which will in turn carry seeds into the degraded parts of the<br />

forest and into forest clearings. Unfortunately, no studies<br />

have previously been carried out to shed light on the importance<br />

of frugivorous animals,especially lemurs,in the reforestation<br />

of the Ambatoledama corridor.Unlike the majority of<br />

tropical forests,the diversity of the frugivorous bird community<br />

in Madagascar is impoverished, and therefore primates<br />

are the principal dispersers of its tropical trees (Goodman,<br />

1997; Dew and Wright, 1998; Ganzhorn et al., 1999; Bleher<br />

and Böhning-Gaese,2001).Ten lemur species are indentified<br />

as living in the Masoala Forest (Mittermeier et al., 2006); one<br />

of which (Varecia rubra) is endemic to this region and has Endangered<br />

status (IUCN, 2008), and can be found in both the<br />

corridor habitat and adjacent forest fragments (Razakamaharavo<br />

et al., 2010). Previous studies demonstrated that<br />

Varecia variegata is an effective disperser in the southeastern<br />

rainforests (Dew and Wright,1998).However,we know very<br />

little about the potential role of V.rubra for regeneration and<br />

restoration of the corridor habitat in Ambatoledama.<br />

In this study, we explored the germination success of seeds<br />

defecated by Varecia rubra in order to understand their capacity<br />

for seed dispersal and potential impact on the restoration<br />

of the degraded rainforest corridor at Ambatoledama.<br />

Our objective was to shed light on the role of this species in<br />

forest regeneration. Understanding their influence on tree<br />

germination is particularly important given the threatened<br />

status of this species. This paper tested the hypothesis that<br />

gut passage of seeds by Varecia rubra facilitates seed germination.<br />

Our prediction was that lemur-gut-passed seeds have a<br />

higher germination rate than non-passed seeds because of<br />

the physiological treatment affecting the seed coat inside the<br />

gut.


Page 40 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Materials and methods<br />

Field site<br />

This study was carried out at the Ambatoledama corridor<br />

(S<strong>15</strong>°27’ E050°01’) on the north-eastern part of the Masoala<br />

Peninsula. Ambatoledama connects Masoala National Park<br />

with Makira National Forest to the West. Its forest has undergone<br />

significant deforestation but restoration projects<br />

have augmented Ambatoledama such that it now forms a 1<br />

km wide corridor of secondary forest (Hekkala et al., 2007;<br />

Razakamaharavo et al.,2010).It consists of a dense evergreen<br />

rainforest with an altitude ranging from 300 to 700 m. The<br />

forest is mostly characterized by the presence of tree species<br />

of the Pandanacea, Ebenaceae, Clusiaceae, Euphorbiaceae,<br />

Sapotaceae and Rubiaceae families (Martinez, unpublished).<br />

Study species<br />

Varecia rubra belongs to the family Lemuridae (Gray, 1821)<br />

and is one of two species recognized within the genus (Mittermeier<br />

et al., 2006). V. rubra is only found on the Masoala<br />

peninsula and it is classified by the World Conservation Union<br />

(IUCN) as Endangered (IUCN, 2008). V. rubra is a largesized<br />

diurnal species with a body length ranging from 43 to<br />

57 cm (Vasey, 2003) and has a typically frugivorous diet<br />

(Rigamonti, 1993; Vasey, 1997). They currently inhabit both<br />

the corridor habitat and the adjacent protected areas (Razakamaharavo<br />

et al., 2010) and are thus potentially important<br />

for regeneration of the corridor habitat.<br />

Field experiment<br />

Focal animals were followed for 3-5 days per week from<br />

dawn to dusk (from 0600 hours to 1800 hours) to collect<br />

fresh fecal samples (Dew and Wright,1998;Kaplin and Moermond,1998;Stevenson,2000;Poulsen<br />

et al.,2001;Link and Di<br />

Fiore, 2006). Each fecal sample was washed and filtered<br />

through a 1-mm sieve (Stevenson,2000).Seeds were extracted<br />

and then identified with the help of local research guides<br />

and an expert local botanist familiar with the Masoala flora.<br />

We planted gut-passed seeds and control seeds that were<br />

extracted manually from fruits in an outdoor nursery adjacent<br />

to the corridor at Ambatoledama. The nursery consisted<br />

of two "flower beds" of 11.2 m 2: one for defecated<br />

Fig. 1: Location of the Ambatoledama corridor.<br />

seeds and the other one for non-passed seeds. Following<br />

methods used by the conservation agents of MNP in Ambatoledama,<br />

a sunshade of 80 cm height, composed of Longoza<br />

leaves (Afromomum angustifolium) was placed above each<br />

flower bed to imitate the closed canopy of the forest. Also,<br />

the soil of the nursery was mixed with fertile soil from cultivated<br />

field. Seeds were placed in the soil mixture and<br />

covered by 1 mm-thick river sand to keep a constant temperature.<br />

An equal number of seeds were planted within each species<br />

per treatment. However, the numbers varied between species<br />

depending on how many seeds were collected from<br />

lemur feces. The germination of seeds was assessed each<br />

month after planting.<br />

Data analysis<br />

We performed a paired t-test to test for differences between<br />

the germination rate of lemur-gut-passed and nonpassed<br />

seeds, an ANOVA analysis to test if the two factors<br />

(seed species and treatment) had effects on the germination<br />

rate of the seeds and to determine whether there was interaction<br />

between these factors. We analyzed the germination<br />

of each species in order to assess the influence by lemur gut<br />

passage, with Pearson test using contingency tables, which<br />

was adjusted with Bonferroni correction for multiple comparisons<br />

(Sokal and Rohlf, 1995).<br />

Results<br />

In total, 268 fresh fecal samples from three individuals of<br />

red-ruffed lemur were collected during 58 days of observation.<br />

The fecal samples contained fleshy fruit parts, stalks,<br />

leaves, soil and fecal liquid. 95.52 % of these contained seeds,<br />

to some of which fleshy fruit parts were still attached. 906<br />

seeds of more than 1mm size were extracted. A majority of<br />

them were intact with minor scarification.They represented<br />

34 different plant species that belong to <strong>15</strong> Families.Based on<br />

our collected sample, the most common seed species found<br />

in lemur defecations were the nine species we chose to<br />

study here (Tab. 1). In the nursery, we planted a total of 390<br />

defecated seeds and compared them with 398 non-passed<br />

seeds.<br />

Lemur-gut-passed seeds had significantly higher germination<br />

rates overall than non-passed seeds (t=3.284,df=8,p=0.011).<br />

Passed seeds had a germination rate<br />

of 64.61 %, whereas non-passed<br />

seeds had a rate of 39.69 %.For each<br />

species, seeds that had been defecated<br />

had a higher germination rate<br />

than non-passed seeds, except for<br />

Tsilaitra (Tab. 1). This pattern was<br />

driven primarily by four species, including<br />

Antaivaratra,Matahobaratra,<br />

Tsilaitra, and Vongobe species.<br />

In a two factor analysis of variance<br />

for seed germination, there was a<br />

significant interaction between the<br />

species of seeds and their treatment<br />

(passed or non-passed) (F= 4.2004,<br />

p


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 41<br />

Tab. 1: List of species studied with their germination rate. Sample sizes are represented in<br />

brackets. The star on p-values corresponds to their significance (Pearson test) after a<br />

Bonferroni correction for multiple tests.<br />

# Malagasy Scientific Family Germination rate Pearson test<br />

name name<br />

gut-passed non-passed ChiP- seeds seeds squarevalue 1 Antaivaratra Potameia sp. Lauraceae 41.67 (n = 48) 17.86 (n = 56) 7.139 0.0075*<br />

2 Hazondronono Sideroxylon Sapotaceae 80.00 (n = 10) 60.00 (n = 10) 0.952 0.3291<br />

3 Karaka Pandanus Pandanaceae 40.00 (n = 20) <strong>15</strong>.00 (n = 20) 3.135 0.0766<br />

4 Matahobaratra Garcinia sp. Clusiaceae 58.06 (n = 31) 00.00 (n = 31) 25.364


Page 42 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Dokolahy, J. 2005. Etude de la régénération naturelle des<br />

savoka du pont forestier d’Ambatolaidama en vue d’une<br />

restauration forestiere.Unpubl.DEA thesis,ESSA University<br />

of Antananarivo, Madagascar.<br />

Duncan,R.S.;Chapman,C.A.2002.Limitations of animal seed<br />

dispersal for enhancing forest succession on degraded<br />

lands. Pp. 437-450. In: D.J. Levey; W.R. Silva; M. Galetti<br />

(eds.). Seed Dispersal and Frugivory: Ecology, Evolution<br />

and Conservation. CABI Publishing, Oxford, UK.<br />

Ganzhorn, J.U.; Fietz, J.; Rakotovao, E.; Schwab, D.; Zinner, D.<br />

1999. Lemurs and the regeneration of dry deciduous forest<br />

in Madagascar.Conservation Biology 13(4):794-804.<br />

Golden, C.D. 2009. Bushmeat hunting and use in the Makira<br />

Forest, north-eastern Madagascar: a conservation and livelihoods<br />

issue. Oryx 43: 386-392.<br />

Goodman,S.M.1997.Observations at a Ficus tree in Malagasy<br />

humid forest. Biotropica 29: 480-488.<br />

Gosper,C.R.;Stansbury,C.D.;Vivian-Smith,G.2005.Seed dispersal<br />

of fleshy-fruited invasive plants by birds: contributing<br />

factors and management options. Diversity and Distributions<br />

11: 549.<br />

Haddad, N.M.; Bowne, D.R.; Cunningham, A.; Danielson, B.J.;<br />

Levey,D.J.;Sargent,S.;Spira,T.2003.Corridor use by diverse<br />

taxa. Ecology 84: 609-6<strong>15</strong>.<br />

Hatchwell, M. 1999. Plan de gestion de complexe des Aires<br />

Protégées de Masoala. Unpubl. Wildlife Conservation<br />

Society report.<br />

Hekkala, E.R.; Rakotondratsima, M.; Vasey, N. 2007. Habitat<br />

and distribution of the ruffed lemur, Varecia, north of the<br />

Bay of Antongil in northeastern Madagascar. Primate<br />

Conservation 22: 89-95.<br />

Holloway, L. 1997. Catalysing natural regeneration of rainforest:<br />

Masoala corridors. Unpublished report presented<br />

to Wildlife Conservation Society, Madagascar.<br />

Howe, H.F. 1986. Seed dispersal by fruit-eating birds and<br />

mammals. Pp.123-189. In: D.R. Murray (ed.). Seed Dispersal.<br />

Academic Press, Sydney.<br />

Howe, H.F.; Smallwood, J. 1982. Ecology of seed dispersal.<br />

Annual Review of Ecology and Systematics 13: 201-228.<br />

Into,I.2009.Investigation into the illegal felling,transport and<br />

export of precious wood in the SAVA region of Madagascar.<br />

Global Witness and the Environmental Investigation<br />

Agency, Inc. Report.<br />

IUCN. 2008. Red List of Threatened Species.<br />

www.iucnredlist.org.<br />

Kaplin, B.A.;Lambert,J.E. 2002.Effectiveness of Seed Dispersal<br />

by Cercopithecus Monkeys: Implications for Seed Input<br />

into Degraded Areas.Pp.351-364.In:D.J.Levey;W.R.Silva;<br />

M. Galetti (eds.). Seed Dispersal and Frugivory: Ecology,<br />

Evolution and Conservation. CABI Publishing, Oxford,<br />

UK.<br />

Kaplin,B.A.;Moermond,T.C.1998.Variation in seed handling<br />

by two species of forest monkeys in Rwanda. American<br />

Journal of Primatology 45: 83-101.<br />

Link, A.; Di Fiore, A. 2006. Seed dispersal by spider monkeys<br />

and its importance in the maintenance of neotropical<br />

rain-forest diversity. Journal of Tropical Ecology 22: 235-<br />

246.<br />

McKey,D.1975.The ecology of coevolved seed dispersal systems.Pp.<strong>15</strong>9-191.In:L.E.Gilbert,P.H.Raven(eds.).Coevolution<br />

of Animals and Plants. University of Texas Press,<br />

Austin, TX, USA.<br />

Mech, S.G.; Hallett, J.G. 2001. Evaluating the effectiveness of<br />

corridors: a genetic approach. Conservation Biology <strong>15</strong>:<br />

467-474.<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, F.; Louis, E.E.;<br />

Langrand, O.; Ratsimbazafy, J.; Rasoloarison, R.; Ganzhorn,<br />

J.U.;Rajaobelina,S.;Tattersall, I. 2006.Conservation International<br />

Tropical Field Guide Series: Lemurs of Madagascar.<br />

Conservation International, Washington, DC, USA.<br />

Neilan, W.; Catterall, C.P.; Kanowski, J.; McKenna, S. 2006. Do<br />

frugivorous birds assist rainforest succession in weed<br />

dominated old field regrowth of subtropical Australia?<br />

Biological Conservation 129: 393-407.<br />

Poulsen, J.R.; Clark, C.J.; Smith, T.B. 2001. Seed dispersal by a<br />

diurnal primate community in the Dja Reserve, Cameroon.<br />

Journal of Tropical Ecology 17: 787-808.<br />

Razakamaharavo, V.R.; McGuire, S.M.; Vasey, N.; Louis, E.E.;<br />

Brenneman, R.A. 2010. Genetic architecture of two red<br />

ruffed lemur (Varecia rubra) populations of Masoala National<br />

Park. Primates 51: 53-61.<br />

Rigamonti, M.M. 1993. Home range and diet in red ruffed<br />

lemurs (Varecia variegata rubra) on the Masoala Peninsula,<br />

Madagascar. Pp. 25-40. In: P.M. Kappeler; J.U. Ganzhorn<br />

(eds.). Lemur social systems and their ecological basis.<br />

Plenum Press, New York, USA.<br />

Schupp, E.W. 1993. Quantity, quality and the effectiveness of<br />

seed dispersal by animals. Plant Ecology 107: <strong>15</strong>-29.<br />

Schuurman, D.; Lowry, I.I. 2009. The Madagascar rosewood<br />

massacre. Madagascar Conservation & Development 4<br />

(2): 98-102.<br />

Sokal,R.R;Rohlf,F.J.1995.Biometry:the principles and practice<br />

of statistics in biological research. WH Freeman, New<br />

York, USA.<br />

Stevenson, P.R. 2000. Seed dispersal by woolly monkeys (Lagothrix<br />

lagothricha) at Tinigua National Park, Colombia:<br />

dispersal distance, germination rates, and dispersal quantity.<br />

American Journal of Primatology 50(4): 275-289.<br />

Vasey, N. 1997. Community ecology and behavior of Varecia<br />

variegata rubra and Lemur fulvus albifrons on the Masoala<br />

Peninsula, Madagascar. Unpubl. Ph.D. thesis, Washington<br />

University, St. Louis, USA.<br />

Vasey, N. 2003. Varecia, ruffed lemurs. Pp. 1332-1336. In: S.M.<br />

Goodman; J.P. Benstead (eds.). The Natural History of<br />

Madagascar. Chicago University Press, Chicago, USA.<br />

Wehncke, E.V.; Dalling, J.W. 2005. Post-dispersal seed removal<br />

and germination of selected tree species dispersed by<br />

Cebus capucinus on Barro Colorado Island, Panama. Biotropica<br />

37: 73-80.<br />

Feeding ecology of the crowned sifaka<br />

(Propithecus coronatus) in a coastal dry<br />

forest in northwest Madagascar (SFUM,<br />

Antrema)<br />

Claire Pichon 1*, Rivo Ramanamisata 2, Laurent Tarnaud<br />

1, Françoise Bayart 1, Annette Hladik 1, Claude<br />

Marcel Hladik 1, Bruno Simmen 1<br />

1UMR 7206, Eco-anthropologie et Ethnobiologie, Centre<br />

National de la Recherche Scientifique,and Museum National<br />

d’Histoire Naturelle, 4 avenue du Petit Château, 91800 Brunoy,<br />

France<br />

2Département de Biologie Animale,Faculté des Sciences,B.P.<br />

906, Université d’Antananarivo, Antananarivo (101), Madagascar<br />

*Corresponding author: cpichon@mnhn.fr<br />

Key words: diet, primate, activity budget, forest composition<br />

The crowned sifaka (Propithecus coronatus; Milne-Edwards,<br />

1871) inhabits dry forests, riparian forests and mangroves of<br />

northwest Madagascar. Originally believed to occur in a restricted<br />

area between the Mahavavy River in the southwest<br />

(where it overlaps with P.deckenii) and the Betsiboka River in<br />

the northeast (which separates it from P. coquereli), sightings<br />

west of the Mahavavy River and along the Bongolava Massif<br />

suggest that the distribution of this medium-sized species is<br />

wider (Tattersall, 1986; Thalmann et al., 2002). The distribution<br />

and the taxonomic status of crowned sifakas have long<br />

been debated, but the combination of morphological and<br />

biogeographic evidence supports considering it as a valid<br />

species (Thalmann et al., 2002; Mittermeier et al., 2006;<br />

Groves and Helgen, 2007; Mittermeier et al., 2008). Considered<br />

as Endangered (A2 c,d) by the IUCN (2010), populations<br />

of crowned sifakas were estimated not to exceed 1,000<br />

individuals in the wild.However,recently discovered populations<br />

in restricted fragmented forests extend the species’


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 43<br />

distribution range farther towards the Southwest. A "Biocultural<br />

Project" was therefore initiated at Antrema (a site<br />

located in the Mahajanga region) in 2000 to promote sustainable<br />

management (Gauthier et al., 2001).The project aims at<br />

preserving a coastal environment in which crowned sifakas<br />

occur in high densities while allowing villagers, mainly fishermen,<br />

to use natural products of the environment with parsimony<br />

and to benefit from technical and economical help.The<br />

project also aims at promoting local socio-cultural rules and<br />

a way of life that tends to respect the forest environment,including<br />

useful plants and several sympatric lemur species<br />

(Propithecus coronatus, Eulemur fulvus, Eulemur mongoz, Lepilemur<br />

sp., Microcebus murinus). The site contains three of the<br />

Northwest’s typical ecosystems (dry semi-deciduous forest,<br />

mangrove swamp, savanna), which suffer moderate anthropogenic<br />

pressure (Gauthier et al., 2001). Owing to local<br />

beliefs, especially the sacred (“masina”) nature of sifakas, the<br />

Sakalava community plays a central role in this conservation<br />

process (Harpet et al.,2000,2008).In this context,a few studies<br />

started investigating the behavior in relation to habitat<br />

and food supply of the lemur species of Antrema (Gauthier et<br />

al., 1999; Razafimahefa, 2001; Ramanikirahina, 2004). However,a<br />

detailed analysis of the feeding ecology and population<br />

densities of P. coronatus is still lacking. We present here preliminary<br />

data on the plant species composition of the whitesand<br />

coastal forest inhabited by a dense population of sifakas<br />

(among other prosimian species) and on the feeding ecology<br />

of sifaka groups censused since 2008.<br />

Methods<br />

Study site<br />

The Antrema station is a coastal area of 12,300 ha located on<br />

the left riverside of the Betsiboka estuary, northwestern<br />

Madagascar (<strong>15</strong>°42’-<strong>15</strong>°50’S, 46°-46°<strong>15</strong>’E; Gauthier et al.,<br />

2001). The region undergoes a distinct dry season of 7<br />

months from April to October.The mean annual rainfall (n =<br />

9 years) in the Mahajanga region is 1,410 mm (with a peak in<br />

January-February), with irregular rainfall during the dry season.With<br />

an annual mean of 27° C,temperature is highest in<br />

October and lowest between June and August (Airport of<br />

Mahajanga, 2000-2009).<br />

Although the Antrema area has been traditionally protected<br />

by the local Sakalava beliefs, forest areas where studies are<br />

conducted are fragmented. After two first surveys in November<br />

2007 and April-May 2008, we decided to establish<br />

the study site at Badrala (<strong>15</strong>°45.665’S, 46°12.300’E). With<br />

about 24 ha just behind the littoral dune,this non-sacred forest<br />

site offers suitable conditions to study the socioecology<br />

of sifakas and the dynamics of a dry forest in Madagascar.The<br />

forest there is partly split by a sandy open dune that sifaka<br />

groups can cross easily. Tree logging occurs at low intensity<br />

(with few selected species for defined use, e.g. for boats or<br />

coffins) and small trees are sporadically cut for fences and<br />

house building. We studied floristic composition by inventorying<br />

trees along four North/South-oriented line transects,<br />

10 m-wide each, that were roughly perpendicular to the sea<br />

front.Within this 0.73 ha,we tagged each tree > 10 cm diameter<br />

at breast height (DBH) with plastic labels, recorded<br />

their DBH, the number of stems and their vernacular name.<br />

Likewise, we counted woody lianas and herbaceous vines<br />

> 1 m high within eight 10 x 10 m (800 m 2) plots regularly<br />

spaced along the transects. Plant species were sampled and<br />

dried for later botanical identification.<br />

Sifaka population density<br />

In order to locate and identify groups of P. coronatus in<br />

Badrala, we initially mapped groups encountered during<br />

repeated transect walks. We drew individuals’ facial masks<br />

for each of the followed groups, noted their sex from visual<br />

inspection of the genitalia and other external characteristics<br />

(cysts, scars, damaged ears, fur colour), and took pictures.<br />

Knowledge gained progressively of groups and individuals<br />

allowed us to provide a preliminary estimate of population<br />

density for the Badrala site.<br />

Behavioral data collection<br />

We collected behavioral data during 4 periods (06 to 21 July<br />

2008; 11 November to 12 December 2008; 05 April to 06<br />

June 2009;17 October to 22 November 2009). Most groups<br />

were already accustomed to the sporadic presence of local<br />

people. Once we could observe animals at close distances,<br />

we followed each group successively over 2 to 5-day periods,<br />

from 06:30 to 18:30 hours.<br />

We used the instantaneous scan-sampling method (Altmann,<br />

1974) to study group activity budget.Every 5 minutes,we recorded<br />

the individuals’ activity using one of the following categories:resting<br />

(immobile,with eyes open or closed),moving<br />

(more than 0.5 m),foraging (searching for a food item),feeding<br />

(processing or chewing a food item), social activity (displaying<br />

agonistic and affiliation behaviors with other individuals)<br />

and other miscellaneous behaviors. We noted the plant<br />

part and species eaten by individuals.<br />

Besides recording activity budgets,we determined diet from<br />

mouthful counts converted into weight of ingested matter<br />

(Hladik, 1977) for 2 periods: April-June 2009 and October-<br />

November 2009.We estimated food intake in focal individuals<br />

that were followed continuously for 30 minutes each.<br />

Observations were alternated across males and females (excluding<br />

juveniles) within groups.<br />

Results<br />

Forest composition<br />

Plant families occurring at Badrala are presented separately<br />

for trees and lianas/vines in Fig.1.To date,91 tree and liana or<br />

vine species have been identified at least at the family level,<br />

and taxonomic identification of <strong>15</strong> more putative species is<br />

still in progress.The 5 richest families in terms of the number<br />

of species are Fabaceae, Sapindaceae, Ebenaceae, Euphorbiaceae<br />

and Apocynaceae.The most dominant tree species are<br />

Strychnos decussata, Vitex beraviensis, Mimusops occidentalis,<br />

Baudouinia fluggeiformis and Macphersonia gracilis that represent<br />

almost one third of total basal area and tagged trees.<br />

Combretum coccineum, Hypoestes sp., Landolphia perrieri and<br />

Reissantia sp.accounted for more than one third of the lianas<br />

and vines.<br />

Density of trees inventoried on the 4 transects (n=486) corresponds<br />

to 666 inds. ha 1 with a total basal area of 14.5 m²<br />

ha -1.We found a high density of woody lianas and herbaceous<br />

vines in the 800m² plots (n=373).<br />

Sifaka population density and group composition<br />

Groups at Badrala have 1-3 breeding adult males, 1-4 breeding<br />

adult females, and 1-4 immature offspring. We encountered<br />

between <strong>15</strong> and 20 groups at this site. Based on current<br />

recognition of individuals within these groups, a minimum<br />

estimate of 300 inds. km 2 was calculated. Mean size of<br />

focal groups was 4.3 ± 1.8 individuals (n=16).<br />

Diet and activity pattern<br />

Sifakas consumed at least 60 plant species from 32 families.<br />

Tab. 1 lists major food species eaten. During the dry season,<br />

14 plant species represented 75 % of the diet whereas only 7<br />

species were the main food resource in the wet season.


Page 44 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Tab. 1: Food species accounting for 50 and 75 % of the diet of Propithecus coronatus during the dry season and the wet season.<br />

Eaten plant species are listed in decreasing order and their abundance in transects and plots (see text) is indicated.<br />

Family Species Vernacular name Items Abundance (%)<br />

Dry season<br />

Lamiaceae Vitex beraviensis Mojiro yl 10,7<br />

Fabaceae Baudouinia fluggeiformis Manjakabentany yl ml 4.7<br />

Sapotaceae Mimusops occidentalis Natofotsy yl stems 3.9<br />

Anacardiaceae Operculicarya gummifera Atokonjo ml buds 3.5 <br />

Sapindaceae Majidea zanguebarica Tsipopoka yl ml fl 2.3<br />

Oleaceae Noronhia boinensis Tsilaitra beravina yl 1.9<br />

Moraceae Trilepisium occidentalis Kililo ml 1.2<br />

Sphaerosepalaceae Rhopalocarpus lucidus Hazondringitra yl fr 1.0<br />

Melastomataceae Warneckea sp. Voatrotrokoala yl 0.6 75 %<br />

Burseraceae Commiphora sp. Arofy fr buds 0.4<br />

Fabaceae Bussea perrieri Morango ml 0.2<br />

Olacaceae Olax dissitiflora Ambiotsy ml 0.2<br />

Moraceae Ficus pyrifolia Nonika fr<br />

Unidentified - RR80 ml<br />

Wet season<br />

Anacardiaceae Abrahamia deflexa Motsovavy yl fl 3,1<br />

Anacardiaceae Abrahamia sp. Manavodrevo buds yl fl 1.2<br />

Fabaceae Chadsia flammea Fanamohazo buds yl fl 0.8 50 %<br />

Sapotaceae Capurodendron gracilifolium Natoboay buds yl fr 0.2<br />

Apocynaceae Landolphia perrieri Vahipira yl 6.8 75 %<br />

Combretaceae Terminalia sp. Taly buds yl 3.1<br />

Anacardiaceae Operculicarya gummifera Atokonjo yl 3.5<br />

yl: young leaves; ml: mature leaves; fl: flowers; fr: fuits<br />

Fig.1:Abundance of plant families plotted in<br />

decreasing number of individuals among a)<br />

trees with DBH>10cm (based on transects;<br />

0.73 ha) and b) woody lianas and herbaceous<br />

vines >1 m height (based on plots;<br />

0.08 ha).Striped bars refer to the plant families<br />

with the highest number of species.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 45<br />

58%<br />

(a) Dry season (b) Wet season<br />

9%<br />

2%<br />

1%<br />

30%<br />

25%<br />

11%<br />

6%<br />

1%<br />

Sifakas were highly folivorous during both seasons, supplementing<br />

their diet with flowers, fruits, vegetative buds, and<br />

sometimes young stems (Fig. 2). They consumed more mature<br />

leaves and fruits in the dry season and more flowers in<br />

the wet season.<br />

The activity budget of the sifakas is presented in Fig. 3. Although<br />

‘resting’ predominated throughout the study,<br />

individuals rested more in the dry season than in the wet season.Inversely,they<br />

travelled less and engaged in feeding activities<br />

more often during the wet season.<br />

Discussion<br />

The sifaka density was found to be high in the dry forest of<br />

Antrema, with a minimum estimate far above the 173 inds.<br />

km 2 found in the riparian forest of Anjamena (Muller et al.,<br />

2000) or for other sifaka species in dry or wet forests<br />

(O’Connor, 1988; Ganzhorn, 1992). This high density might<br />

be related to some peculiar characteristics of the forest in<br />

terms of food quantity and/or food quality available to this<br />

prosimian species. However,tree basal area was not particularly<br />

high compared with other dry forests in Madagascar<br />

and Mayotte (Hladik, 1980; Simmen et al., 2005). It is not yet<br />

clear also whether high density is related to a putative low<br />

predation pressure.To our knowledge,no sightings or traces<br />

of viverrid carnivores have been reported; large raptors and<br />

boas would be the only predators that could affect the<br />

demography of the Antrema sifaka population (Garbutt,<br />

2007; Sinclair and Legrand, 2008).<br />

As regards their feeding behavior, crowned sifakas fed primarily<br />

on leaves from a few tree, liana and vine species, and<br />

supplemented their diet with a wide range of secondary<br />

items as commonly occurs in other Propithecus species<br />

(Meyers and Wright, 1993; Simmen et al., 2003; Lehman and<br />

Mayor, 2004; Irwin, 2008). Although this species remained<br />

57% Young leaves<br />

Mature leaves<br />

Flowers<br />

Fruits<br />

Other<br />

Fig.2:Food categories in the diet of Propithecus coronatus during the dry season<br />

(a) and the wet season (b).<br />

29,4%<br />

(a) Dry season<br />

0,8% 5,9%<br />

50,0%<br />

(b) Wet season<br />

3,9%<br />

35,8%<br />

5,3%<br />

46,6%<br />

Resting<br />

Locomotion<br />

Foraging<br />

Feeding<br />

6,8%<br />

7,1%<br />

3,6% 4,8%<br />

Social<br />

Other<br />

Fig. 3: Activity budget of Propithecus coronatus during the dry season (a) and the<br />

wet season (b).<br />

folivorous during our study,its diet changed<br />

with seasons. Young leaves were the preferred<br />

food type in the early wet season,<br />

while mature leaves were the dominant one<br />

in the beginning of the dry season. In addition,<br />

P. coronatus ate a higher proportion of<br />

liana and vine parts during the wet season.<br />

Crowned sifakas also followed the typical<br />

activity pattern of other sifaka species<br />

(Norscia et al.,2006;Patel,2006;Charrier et<br />

al., 2007), spending most of their time resting<br />

and devoting a substantial amount of<br />

time to feeding activities and locomotion.<br />

Activity budget nevertheless changed with<br />

seasons. It is generally suggested that the<br />

cool dry season represents a period of food<br />

scarcity for animals,which they compensate<br />

for by reducing their energy expenditure,<br />

travelling less and resting more. In a recent<br />

joint research project, the content of litter<br />

traps regularly distributed along the transects<br />

was collected and weighted every two<br />

weeks throughout one year. It was found<br />

that plant species could be grouped according<br />

to their temporal pattern of leaf loss<br />

(Ranaivoson et al., 2010; see also Razakanirina,<br />

2010). Several trees, lianas and vines<br />

lost their leaves more or less regularly<br />

throughout the dry season while others<br />

were characterized by delayed leaf loss or<br />

on the contrary by precocious leaf fall.One<br />

consequence is that leaves are available<br />

throughout the year, although as different sets of species<br />

varying in quantity,diversity,and presumably,nutritional quality.This<br />

at least could explain why sifakas are able to increase<br />

the diversity of consumed plants (and adopt a more opportunistic<br />

strategy) during the dry season, a period normally<br />

described by the scarcity of food resources.<br />

Future work on seasonal variations in the diet’s nutritional<br />

and chemical content will allow us to examine the role of<br />

qualitative aspects in food choices (Moss,1991;Dearing et al.,<br />

2000) and further examine potential differences between<br />

genders with regard to the importance of energy conservation<br />

for female sifakas (Wright, 1999; Charrier et al., 2007).<br />

Conclusion<br />

Better knowledge of the ecology and the villagers’ social perception<br />

of this flagship species may contribute to conservation<br />

of other diurnal lemurs, by incorporating the villagers’<br />

symbolic perception of their natural environment. Investigating<br />

the interactions between this species and plants of the<br />

coastal dry forest ecosystem will undoubtedly result in<br />

better conservation decisions for Antrema. From an evolutionary<br />

ecology standpoint, the studies we have planned for<br />

the next years at Antrema will also contribute to better<br />

identify the selective pressures that have been driving the<br />

evolution of prosimian typical life-history traits such as<br />

reproductive synchronization or dominance-based feeding<br />

priority of females over males in gregarious species (Wright,<br />

1999; Dewar and Richard, 2007).<br />

Acknowledgements<br />

We thank the Malagasy Institutions that authorized to collect<br />

and export the plant samples,the Ministère de l’Environnement,<br />

des Eaux et forêts et du Tourisme. We also thank<br />

Antrema’s project staff for assistance with the field work as


Page 46 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

well as Master degree students S.Razakanirina,T.Ranaivoson,<br />

V. Randriantoposon and L. Razafindramahatra for helping<br />

with data collection. Special thanks to the specialists of the<br />

Dept of Phanerogamy,J.N.Labat,P.Phillipson and Pete Lowry,<br />

for helping with plant identification. Finally, we thank C.A.<br />

Gauthier, E. Roger, D. Rakotondravony and H. Razafindraibe<br />

for logistic support and collaborative work, and E.G. Leigh<br />

for helpful comments on an earlier draft. This study was<br />

funded by the UMR 7206 - CNRS,and was conducted under<br />

the "Convention cadre de cooperation" between the Université<br />

d’Antananarivo and the Museum National d’Histoire<br />

Naturelle, Paris.<br />

References<br />

Altmann, J. 1974. Observational study of behavior. Sampling<br />

methods. Behavior 49: 227-267.<br />

Charrier,A.;Hladik,A.;Simmen,B.2007.Feeding strategy and<br />

social dominance in female sifakas (Propithecus v.verreauxi)<br />

living in a Didiereaceae forest in southern Madagascar.<br />

Rev. Ecol. (Terre Vie). 62: 257-263.<br />

Dearing,M.D.;Mangione,A.M.;Karasov,W.H.2000.Diet breadth<br />

of mammalian herbivores:nutrient versus detoxification<br />

constraints. Oecol. 123: 397-405.<br />

Dewar,R.E.;Richard,A.F.2007.Evolution in the hypervariable<br />

environment of Madagascar.Proc.Nat.Acad.Sci.USA 104:<br />

13723-13727.<br />

Ganzhorn, J.U. 1992. Leaf chemistry and the biomass of folivorous<br />

primates in tropical forests. Test of a hypothesis.<br />

Oecol. 91: 540-547.<br />

Garbutt,N.2007.Mammals of Madagascar:A Complete Guide.<br />

Yale University Press, New Haven.<br />

Gauthier,C.A.;Deniaud,J.L.;Leclerc-Cassan,M.;Rakotomalala,M.;Razafindramanana,S.;Renson,G.1999.Proc.2nd<br />

Int.<br />

Symp. Biogeography, diversity and endemism in Madagascar,<br />

Paris.<br />

Gauthier,C.A.;Huguet,S.;Rakotondravony,D.;Roger,E.2001.<br />

Diagnostic physico éco-biologique de la station forestière<br />

à usages multiples d’Antrema (péninsule de Katsepy).Parc<br />

Zoologique de Paris, Muséum national d’Histoire naturelle,<br />

Paris.<br />

Groves, C.P.; Helgen, K.M. 2007. Craniodental characters in<br />

the taxonomy of Propithecus.Int.J.Primatol.28:1363-1383.<br />

Harpet,C.;Jeannoda,V.;Hladik,C.M.2000.Sacred lemur sites<br />

in the Sakalava region of North-West Madagascar: updated<br />

data and implications for sustained development<br />

and conservation programs. Rev. Ecol. (Terre Vie) 55:<br />

291-295.<br />

Harpet,C.;Navarro,L.;Ramanankirahana,R.2008.Rôle et implications<br />

des croyances et des savoir-faire locaux dans les<br />

programmes de conservation: exemple d’un site à lémuriens<br />

sacrés au cœur de la Station Forestière à Usages<br />

Multiples d’Antrema (Pays Sakalava, Madagascar). Rev.<br />

Ecol. (Terre Vie) 63: 289-292.<br />

Hladik,A.1980.The dry forest of the West coast of Madagascar:<br />

climate, phenology, and food available for Prosimians.<br />

Pp.3-40.In:P.Charles-Dominique;H.M.Cooper;A.Hladik;<br />

C.M.Hladik;E.PagPs;G.F.Pariente;A.Petter-Rousseaux;J.J.<br />

Petter; A. Schilling (eds.). Nocturnal Malagasy Primates.<br />

Ecology, Physiology, and Behavior. Academic Press, New<br />

York.<br />

Hladik, C.M. 1977. Field methods for processing food samples.<br />

Pp. 595-601. In: T.H. Clutton-Brock (ed.). Primate<br />

Ecology: Studies of Feeding and Ranging Behavior in Lemurs,<br />

Monkeys, and Apes. Academic Press, London.<br />

Irwin, M.T. 2008. Feeding ecology of Propithecus diadema in<br />

forest fragments and continuous forest.Int.J.Primatol.29:<br />

95-1<strong>15</strong>.<br />

Lehman, S.M.; Mayor, M. 2004. Dietary patterns in Perrier’s<br />

sifakas (Propithecus diadema perrieri): A preliminary study.<br />

Am. J. Primatol. 62: 1<strong>15</strong>-122.<br />

Meyers,D.M.;Wright,P.C.1993.Resource tracking:food availability<br />

and Propithecus seasonal reproduction. Pp. 179-92.<br />

In: P.M. Kappeler; J.U. Ganzhorn (eds.). Lemur social systems<br />

and their ecological basis.Plenum Press,New York.<br />

Mittermeier,R.A;Ganzhorn,J.U.;Konstant,W.R.;Glander,K.;<br />

Tattersall, I.;Groves,C.P.;Rylands,A.B.;Hapke,A.;Ratsim-<br />

bazafy, J.; Mayor, M.I; Louis Jr., E.E.; Rumpler, Y.; Schwitzer,<br />

C.; Rasoloarison, R.M. 2008. Lemur diversity in Madagascar.<br />

Int. J. Primatol. 29: 1607-1656.<br />

Mittermeier,R.A;Ganzhorn,J.U.;Konstant,W.R.;Glander,K.;<br />

Tattersall, I.;Groves,C.P.;Rylands,A.B.;Hapke,A.;Ratsimbazafy,<br />

J.; Mayor, M.I; Louis Jr., E.E.; Rumpler, Y.; Schwitzer,<br />

C.; Rasoloarison, R.M. 2006. Lemurs of Madagascar. Conservation<br />

International, Washington.<br />

Moss,R.1991.Diet selection.An ecological perspective.Proc.<br />

Nutr. Soc. 50: 71-75.<br />

Muller,P.;Velo,A.;Raheliarisoa,E.O.;Zaramody,A.;Curtis,D.J.<br />

2000. Surveys of sympatric lemurs at Anjamena, North-<br />

West Madagascar. Afr. J. Ecol. 38: 248-257.<br />

Norscia,I.; Carrai, V.; Borgognini-Tarli, S.M.2006. Influence of<br />

dry season and food quality and quantity on behavior and<br />

feeding strategy of Propithecus verreauxi in Kirindy, Madagascar.<br />

Int. J. Primatol. 27: 1001-1022.<br />

O’Connor, S. 1988. Une revue des différences écologiques<br />

entre deux forêts galeries,une protégée et une dégradée,<br />

au centre sud de Madagascar.Pp.216-227.In:L.Rakotovao;<br />

V. Barre; J. Sayer (eds.). L’équilibre des écosystèmes forestiers<br />

à Madagascar. Actes d’un séminaire international.<br />

UICN, Gland.<br />

Patel, E.R. 2006. Activity budget, ranging, and group size in<br />

silky sifakas (Propithecus candidus). Lemur News 11: 4.<br />

Ramanikirahina,R.2004.Rythme d’activité et régime alimentaire<br />

de Propithecus verreauxi coronatus et d’Eulemur mongoz<br />

dans la Station Forestière d’Antrema. Mémoire de<br />

DEA, Univ. Antananarivo, Faculté des Sciences, Dept Biologie<br />

Animale.<br />

Ranaivoson, T.N.; Razakanirina, H.; Roger, E.; Rajeriarison, C.;<br />

Hladik, A. 2010. Structure de l’habitat de Propithecus coronatus<br />

et disponibilités alimentaires dans la station forestière<br />

a usage multiple d’Antrema: Application de la méthode<br />

des tris de litière et interprétations des adaptations<br />

des espèces arborescentes et lianescentes.AETFAT Congress<br />

April 25-30. Antananarivo, Madagascar.<br />

Razafimahefa,M.A.2001.Caractérisation des habitats de Propithecus<br />

verreauxi coronatus dans la station forestière à usages<br />

multiples d’Antrema (Katsepy): cartographie, typologie,<br />

étude ethnobotanique. Mémoire de DEA, Univ. Antananarivo,<br />

Faculté des Sciences, Dept Biologie et Ecologie<br />

Végétale.<br />

Razakanirina, H. 2010. Suivi phénologique global et statut de<br />

conservation de 4 espèces végétales (Strychnos decussata,<br />

Diospyros ferrea,Gardenia decaryi et Capurodendron gracilifolium)<br />

consommées par Propithecus verreauxi coronatus dans<br />

la forêt de Badrala (Antrema). Mémoire de DEA, Univ.<br />

Antananarivo,Faculté des Sciences,Dept Biologie et Ecologie<br />

Végétale.<br />

Simmen, B.; Hladik, A.;Ramasiarisoa,P. 2003. Food intake and<br />

dietary overlap in native Lemur catta and Propithecus verreauxi<br />

and introduced Eulemur fulvus at Berenty, southern<br />

Madagascar. Int. J. Primatol. 24: 948-967.<br />

Simmen, B.; Tarnaud, L.; Bayart, F.; Hladik, A.; Thiberge, A.L.;<br />

Jaspart, S.; Jeanson, M.; Marez, A. 2005. Richesse en métabolites<br />

secondaires des forêts de Mayotte et de Madagascar<br />

et incidence sur la consommation de feuillages chez<br />

deux espèces de lémurs (Eulemur spp.). Rev. Ecol. (Terre<br />

Vie) 60: 297-324.<br />

Sinclair, I.; Langrand, O. 2008. Birds of the Indian Ocean<br />

islands. Struik, Cape Town.<br />

Tattersall, I. 1986. Notes on the distribution and taxonomic<br />

status of some subspecies of Propithecus in Madagascar.<br />

Folia Primatol. 46: 51-63.<br />

Thalmann, U.; Kümmerli, R.; Zaramody, A. 2002. Why Propithecus<br />

verreauxi deckeni and P. v. coronatus are valid taxa.<br />

Quantitative and qualitative arguments. Lemur News 7:<br />

11-16.<br />

Wright, P.C. 1999. Lemur traits and Madagascar ecology:<br />

Coping with an island environment.Yrbk Phys.Anthropol.<br />

42: 31-72.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 47<br />

Effet de la dégradation de l’habitat sur la<br />

consommation alimentaire d’Eulemur<br />

rubriventer dans deux sites: Talatakely et<br />

Vatoharanana,du Parc National de Ranomafana<br />

Laingoniaina H.Rakotonirina 1,2*,Germain J.Spiral 1,2,<br />

Jonah H. Ratsimbazafy 1,2, Soanorolalao Ravelonjanahary<br />

1,Raharizelina Ralaiarison 1,2,Stacey Tecot 3,Alex<br />

Hall 4, Tricia Calhoon 4, Gisèle R. Randria 1,2<br />

1Département de Paléontologie et d’Anthropologie Biologique,<br />

Faculté des Sciences, B.P. 906, Université d’Antananarivo,<br />

Madagascar<br />

2Groupe d’Etudes et de Recherche sur les Primates de Madagascar<br />

(GERP)<br />

3Department of Anthropology, University of Stony Brook,<br />

USA<br />

4<strong>Vol</strong>untary field assistant<br />

*Contact de l’auteur principal: laingoniaina2000@yahoo.fr<br />

Mots clés:Eulemur rubriventer,dégradation,habitat,consommation<br />

alimentaire, Ranomafana, Madagascar<br />

Introduction<br />

La grande île est potentiellement riche en matière de biodiversité<br />

et est par conséquent renommée pour sa remarquable<br />

richesse écologique, biologique et génétique (Ganzhorn<br />

et al.,2001).Cette richesse qui est gravement menacée<br />

par la diminution et la destruction immuables des habitats<br />

naturels de nombreuses espèces fait de Madagascar un des<br />

huit "hotspots" les plus considérés de notre planète (Ganzhorn<br />

et al., 2001).<br />

A l’échelle mondiale, la menace la plus grave pour la population<br />

des primates est la destruction et la dégradation de leur<br />

habitat, notamment les forêts tropicales qui hébergent aujourd’hui<br />

environ 90 % des primates non humains du monde<br />

(Mittermeier et al., 2006, 2010). Les lémuriens malgaches ne<br />

font pas exception à cette constatation. La dégradation des<br />

forêts affecte la biologie générale des lémuriens car non<br />

seulement elles leur fournissent des abris et de la nourriture,<br />

mais aussi elles servent de supports à la locomotion et aux<br />

différentes activités de ces animaux (Razafimahazo, 2001).<br />

Selon Randriatahina en 2001, la fragmentation de l’habitat<br />

affecte en premier lieu la distribution et la dispersion de la<br />

nourriture.Certains facteurs influencent le rythme d’activité<br />

et le budget-temps des primates:il s’agit surtout des facteurs<br />

écologiques majeurs tels que la structure de l’habitat,le type<br />

d’alimentation (Zaonarivelo, 1999). Par ailleurs, Dunbar<br />

(1988) affirme que les primates pourraient augmenter leur<br />

déplacement journalier pour trouver de la nourriture ou<br />

inversement en vue d’économiser leur énergie.<br />

Notre présent travail est axé sur la corrélation entre l’habitat<br />

et l’alimentation des lémuriens.Les lémuriformes montrent<br />

un degré de variabilité en ce qui concerne la spécialisation<br />

aux régimes alimentaires.La plupart d’entre-eux (les<br />

Lémuridés,les Mégaladapidés,les Indridés) se spécialisent au<br />

régime végétarien. Cependant, la proportion de feuilles, de<br />

fleurs, et de fruits consommés varie suivant les espèces et<br />

sous-espèces,d’une région à une autre,et de saison en saison<br />

(Richard, 1978). Selon Zaonarivelo (1999), des facteurs écologiques<br />

influencent les comportements des lémuriens et la<br />

perturbation de leur habitat affecte leur organisation sociale<br />

et l’exploitation des ressources alimentaires.<br />

En tenant compte de toutes ces observations, nous avons<br />

effectué une étude concernant l’effet de la dégradation de<br />

l’habitat sur la consommation alimentaire d’Eulemur rubriventer<br />

dans deux sites: Talatakely et Vatoharanana du Parc National<br />

de Ranomafana, dans la province de Fianarantsoa.<br />

Il y a lieu de souligner qu’Eulemur rubriventer, une espèce<br />

hautement frugivore (Overdorff, 1993), dispose d’une haute<br />

importance écologique car elle participe activement à la dispersion<br />

des graines dans la région du Sud-Est de Madagascar,<br />

en particulier dans le Parc National de Ranomafana. A cet<br />

égard, bien que l’animal soit encore classé dans la catégorie<br />

vulnérable selon la liste rouge de l’UICN (Mittermeier et al.,<br />

1994,2006,2010),il a besoin d’ une action de conservation.<br />

C’est la raison pour laquelle le parc national de Ranomafana a<br />

été choisi comme notre station de recherche car par rapport<br />

aux autres régions de l’île, les lémurs à ventre roux y<br />

sont les plus répandus (Mittermeier et al.,2006);et leur habitat<br />

présente un degré variable de dégradation.<br />

Compte tenu de cette variation du degré de dégradation et<br />

de perturbation du milieu de vie d’Eulemur rubriventer dans le<br />

Parc National de Ranomafana, nous pouvons avancer une<br />

hypothèse selon laquelle la consommation alimentaire n’est<br />

pas statistiquement différente entre celle de Vatoharanana<br />

et celle de Talatakely.<br />

Ce projet a été réalisé dans le cadre de la collaboration interdépartementale<br />

entre l’Université d’Antananarivo, l’ICTE/<br />

MICET,le MNP et l’Université de Texas.Ainsi,le présent travail<br />

qui vise en la conservation des lémurs à ventre roux a<br />

comme objectifs d’inventorier les différentes espèces de<br />

plantes consommées par Eulemur rubriventer,de comparer le<br />

régime alimentaire adopté dans chaque site d’étude, de<br />

déterminer les caractéristiques des plantes consommées<br />

dans les deux sites d’études à dégradations différentes.<br />

Site d’études<br />

Le parc National de Ranomafana se trouve dans le Sud Est de<br />

Madagascar.Sa superficie est de 41.600 ha.Ce parc se localise<br />

au Nord-Est de Fianarantsoa, à 70 km à l’Ouest de l’Océan<br />

Indien et à 400 km d’Antananarivo.Il est situé entre 47°18’ à<br />

47°37’ Est de longitude et 21°2’ à 21°25’ Sud de latitude. La<br />

température moyenne annuelle est de l’ordre de 21°C selon<br />

Turk en 1995. Quant à la pluviosité, Overdorff a affirmé en<br />

1996 que la pluie y est saisonnière avec une précipitation<br />

moyenne de 2000 mm. Deux sites ont été choisis pour<br />

effectuer notre travail de recherche. Il s’agit de:<br />

Talatakely:milieu perturbé et plus dégradé.Il est situé à environ<br />

10 mn de marche de la poste de garde et de contrôle<br />

du Parc d’Ambodiamontana. Ce site de 1020 m d’altitude<br />

(Brady et al., 1996), est caractérisé par une visite fréquente<br />

de touristes. Notons également que, à cause des abattages<br />

intensifs des arbres par les bûcherons (Kremen, 1992), la<br />

forêt de Talatakely se trouve fortement dégradée.<br />

Vatoharanana: un milieu moins perturbé et moins dégradé.<br />

Cet endroit est à 1090 m d’altitude et se trouve à 2<br />

heures de marche de Talatakely. Ce champ de forêt était exploité<br />

par les bûcherons il y a 25 ans (Brady et al.,1996).Mais,<br />

la dégradation était moins intense que celle de Talatakely<br />

(Kremen, 1992). La visite des touristes dans cette station<br />

d’études est également moins fréquente. Vatoharanana est<br />

donc un site moins perturbé par rapport à Talatakely.<br />

Les deux stations de recherche sont représentées dans la<br />

figure 1.<br />

Espèces étudiées<br />

Afin de répondre à toutes nos questions, une espèce hautement<br />

frugivore, qui participe activement à la dispersion des<br />

graines (Overdorff,1993),a fait l’objet de notre étude.Il s’agit<br />

du Lémur à ventre roux ou Eulemur rubriventer. Généralement,cette<br />

espèce de taille moyenne vit en petit groupe de 2


Page 48 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Fig. 1: Localisation des deux sites d’études dans le Parc<br />

National de Ranomafana.<br />

à 5 individus. Elle consomme également des feuilles, des<br />

fleurs, de la terre, des mille-pattes. Selon Overdorff (1996),<br />

l’animal mange beaucoup plus de fruits et moins de feuilles.<br />

Eulemur rubriventer présente un dimorphisme sexuel au<br />

niveau de la morphologie. En effet, le ventre des femelles est<br />

clair;tandis que la poitrine et la partie inférieure du corps du<br />

mâle sont visiblement colorées en marron roux. Le mâle<br />

diffère également de la femelle par la présence de tâche<br />

blanche sur le coin interne des yeux (Dague et Petter,1988).<br />

En ce qui concerne notre étude, nous avons suivi cinq<br />

groupes de lémurs à ventre roux dont trois à Talatakely et<br />

deux à Vatoharanana.<br />

Suivi écologique<br />

Le suivi écologique proprement dit était précédé de la familiarisation<br />

de tous les groupes d’études. A ce propos, durant<br />

cinq mois d’études sur terrain,du mois de décembre 2003 au<br />

mois d’avril 2004, la fréquence d’observation était de cinq<br />

jours par semaine. L’observation s’étale de sept à douze<br />

heures dans la matinée et de treize à quinze heures dans<br />

l’après midi. Au total, l’équipe a suivi cinq groupes pour les<br />

sites de Talatakely et de Vatoharanana, pendant 588 heures<br />

45 minutes et 54 secondes.<br />

La méthode d’enregistrement continu de données a été<br />

adoptée.Elle nous donne des informations plus fiables et plus<br />

pratiques par rapport à une méthode d’enregistrement instantané<br />

(Martin et Bateson, 1986). En outre, nous avons<br />

collecté les données sur l’alimentation en suivant la méthode<br />

de "focal animal sampling" (Altmann, 1974). Durant ces observations,nous<br />

avons enregistré les informations suivantes:<br />

Site d’études: Talatakely ou Vatoharanana;<br />

Groupe d’étude;<br />

Focal animal;<br />

Date de l’observation;<br />

Heure d’observation (Début et fin);<br />

Temps dépensé (Début et fin) à la consommation alimentaire<br />

et aux autres activités;<br />

Nom de chaque espèce consommée (plantes ou autres);<br />

Parties consommées des plantes: fruit, feuille, fleur;<br />

Etat des parties comsommées (fruit immature ou mûr,<br />

jeune feuille, feuille mature, fleur ouverte ou fermée);<br />

Piste la plus proche.<br />

Analyses statistiques<br />

Test de similarité entre deux échantillons<br />

Ce test sert à vérifier la similarité entre le régime alimentaire<br />

adopté par les lémurs à ventre roux de Talatakely et celui de<br />

Vatoharanana.Il se base sur la valeur du coefficient de Jaccard<br />

(Brower et al.,1990).Ce coefficient est donné par la formule<br />

suivante:<br />

CC: Coefficient de Jaccard<br />

S1: Effectif d’espèces végétales, animales et autres dans le<br />

régime de l’espèce de Talatakely (ET);<br />

S2: Effectif d’espèces végétales, animales et autres dans le<br />

régime d’Eulemur rubriventer de Vatoharanana (EV);<br />

C:Effectif d’espèces végétales,animales et autres communes<br />

(ET et EV)<br />

Par souci de conformité, nous avons adopté les échelles<br />

suivantes:<br />

0-40 %: faible similarité entre les deux régimes;<br />

40-60 %: similarité moyenne entre les deux régimes;<br />

60-80 %: grande similarité entre les deux régimes;<br />

80-100 %: forte similarité entre les deux régimes.<br />

Test de Chi-deux:<br />

Cette méthode sert à comparer la durée moyenne journalière<br />

(en minute) consacrée à la consommation alimentaire<br />

des lémurs à ventre roux de Talatakely et de Vatoharanana.A<br />

cet effet, les variables utilisées sont les durées moyennes<br />

journalières dépensées à la consommation des fruits, des<br />

feuilles, des fleurs et autres (sol, eau, champignon, insectes,…);<br />

et ce dans des intervalles de temps bien déterminés;<br />

c’-est-à-dire, entre 7 et 8h, 8 et 9h, 9 et 10h, 10 et 11h, 11 et<br />

12h, 13 et 14h et finalement entre 14 et <strong>15</strong>h. Plus précisément,<br />

elle nous permet de vérifier si la différence entre la<br />

consommation de ces aliments est statistiquement significative<br />

ou non dans les deux milieux.<br />

Résultats<br />

Temps dédié à l’activité alimentaire<br />

Fig. 2 montre l’allure générale de la durée moyenne journalière<br />

en ce qui concerne la consommation alimentaire<br />

générale des lémurs à ventre roux du milieu plus dégradé de<br />

Talatakely et celle du site moins dégradé de Vatoharanana.<br />

Selon cette figure,la prise de nourriture débute entre 7 et 8h.<br />

Concernant le site de Talatakely,elle dessine un pic entre 9 et<br />

10h. Cette activité diminue jusqu’à 12h, puis remonte pour<br />

atteindre le maximum vers 14 à <strong>15</strong>h. Quant à l’Eulemur rubriventer<br />

de Vatoharanana,le pic de l’alimentation se situe entre<br />

8 et 9h. La courbe diminue jusqu’à 12h environ. Ensuite, une<br />

légère remontée de l’activité est constatée jusqu’à <strong>15</strong>h envi-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 49<br />

ron. L’hypothèse nulle est acceptée car l’analyse statistique<br />

( 2= 9,95 ;avec ddl=6,et p>0,05) indique une différence non<br />

significative concernant la prise de la nourriture entre<br />

chaque intervalle de temps.<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

7-8h 8-9h 9-10h 10-11h 11-12h 13-14h 14-<strong>15</strong>h<br />

Intervalle de temps<br />

Talatakely Vatoharanana<br />

Fig. 2: Temps consacré à la consommation alimentaire pour<br />

Eulemur rubriventer dans les deux sites d’étude: Talatakely et<br />

Vatoharanana.<br />

Durée en minute<br />

Similarité entre les régimes alimentaires d’Eulemur rubriventer du<br />

site dégradé de Talatakely et de celui de la station moins dégradée<br />

de Vatoharanana<br />

L’inventaire des espèces consommées par les lémurs à<br />

ventre roux dans les deux sites nous a permis de calculer le<br />

coefficient de Jaccard afin de tester s’il existe ou non une<br />

similarité de régimes dans les deux milieux. Nous avons<br />

recensé 52 espèces de plantes qui sont utilisées comme<br />

source de leur nourriture pour le site de Talatakely. En<br />

revanche, 60 espèces sont inventoriées dans le site de<br />

Vatoharanana.Il est à noter que 35 d’entre elles sont à la fois<br />

consommées à Talatakely et à Vatoharanana. La liste des<br />

espèces végétales utilisées par ces animaux comme source<br />

de leur nourriture (avec la durée de consommation correspondante)<br />

est résumée dans le tableau récapitulatif suivant.<br />

Tab. 1: Liste des espèces végétales consommées (61) par<br />

Eulemur rubriventer, avec la durée de consommation correspondante,<br />

dans les deux sites d’étude.<br />

Nom<br />

malagasy<br />

Ramy<br />

Kalafambakaka<br />

Durée (en mn)<br />

Genre Famille Fr Fe Fl Tala Vato<br />

Canarium<br />

madagascariensis<br />

Burseraceae + +<br />

Oncostemum sp. Myrsinaceae + + + 23,57 242,55<br />

Vakoana Pandanus sp. Pandanaceae + + + 21,40<br />

Nonoka Ficus sp. Moraceae + 24,02 269,75<br />

Vahimberana<br />

Strongylodon c<br />

raveniae<br />

Fabaceae + 2,03 189,72<br />

Voara Ficus sp. Moraceae + 70,08 39,45<br />

Voara rano Ficus botryoides Moraceae + + 23,13 36,<strong>15</strong><br />

Sandramy Protorhus sp.<br />

Anacardiaceae<br />

+ 17,08<br />

Voandavenona<br />

+ 12,70 87,63<br />

Famakilela Ficus sp. Moraceae + + 3,65 7,55<br />

Tavolo malady Cryptocarya<br />

acuminata<br />

Lauraceae + 98,32<br />

Vahitamboro Danais sp. Rubiaceae + + 19,10 12,97<br />

Mahanoro<br />

Streblus<br />

dimepate<br />

Moraceae + 62,58<br />

Tsirika Pandanus sp. Pandanaceae + 38,00 1,67<br />

Rotra Syzygium sp. Myrtaceae + 27,28<br />

Apana Ficus sp. Moraceae + 8,070 135,<strong>15</strong><br />

Sira Neodypsis sp. Arecaceae + 36,30 21,47<br />

Rotra mena Syzygium sp. Myrtaceae + 9,020 17,32<br />

Fandramanana Aphloia<br />

theaeformis<br />

Flacourtiaceae<br />

+ 127,82<br />

Velatra spécial Ruellia sp. Acanthaceae + 68,68 27,05<br />

Durée (en mn)<br />

Nom<br />

malagasy<br />

Genre Famille Fr Fe Fl Tala Vato<br />

Faritraty Memecylon sp.<br />

Melastomataceae<br />

+ 16,83 101,57<br />

Maranitratoraka<br />

Vernonia sp. Asteraceae + 68,40<br />

Vahivoraka<br />

Mendoncia<br />

avani<br />

Mendonciaceae<br />

+ + 169,48<br />

Fatsikahitra Alberta humblotii Rubiaceae + + 9,03 425,63<br />

Albizia Albizia chinensis Leguminosae + 29,67<br />

Rotra fotsy Syzygium sp. Myrtaceae + 30,97<br />

Tongoalahy Bakerella sp.<br />

Loranthaceae<br />

+ + 3,25 25,68<br />

Kalafana<br />

spécial<br />

Oncostemum<br />

botryoides<br />

Myrsinaceae + + + 7,67 130,45<br />

Hafipotsy Grewia sp. Tiliaceae + 35,92<br />

Fanalamangidy +<br />

Vavaporetaka Melanophylla<br />

crenata<br />

Melanophyllaceae<br />

+ 26,05 16,58<br />

Kaboka Voacanga sp. Apocynaceae + 86,73 66,30<br />

Sandramy fot-<br />

Protorhus sp.<br />

syAnacardiaceae<br />

+ 20,32<br />

Apaliala Treculia africana Moraceae + 14,85<br />

Ramandriona Dilobeia thouarsii Proteaceae + 7,<strong>15</strong> <strong>15</strong>,28<br />

Andriambo.<br />

lamena<br />

Menispermaceae<br />

+ 138,73<br />

Bararata Gaertnera sp. Rubiaceae + 26,75 11,62<br />

Nato jabo<br />

Mammea<br />

vatoensis<br />

Clusiaceae + 69,60<br />

Tavilona Vernonia sp. Asteraceae + 4,07<br />

Malanimanta<br />

Apodytes<br />

thouvenotii<br />

Icacinaceae + 3,52<br />

Voantsosoka + 45,08<br />

Lambinanala Nuxia sp. Loganiaceae + 17,88<br />

Rahiaka<br />

Chrysophyllum<br />

boivinianum<br />

Sapotaceae + 6,30 663,50<br />

Amontana Ficus lutea Moraceae + 22,42<br />

Goavy<br />

Psidium<br />

cattleianum<br />

Myrtaceae + 589,02<br />

Fanorafa<br />

Euphorbiaceae<br />

+ 173,10<br />

Kimba spécial Symphonia sp. Clusiaceae + 3,23<br />

Veso<br />

Terminalia tetranoCombretaraceae + 2,02<br />

Vahirano Cissus sp. Vitaceae + <strong>15</strong>,73 104,17<br />

Fohaninasity Psychotria sp. Rubiaceae + 260,93<br />

Rohindambo Smilax anceps Smilacaceae + 5,67<br />

Sary<br />

Potameia<br />

chartacea<br />

Lauraceae + 36,60<br />

Kalamasina<br />

Embelia madagascariensis<br />

Myrsinaceae + 10,43<br />

Ambora<br />

Tambourissa<br />

thouvenotii<br />

Monimiaceae + 10,85<br />

Harongana<br />

Harungana mada-<br />

Clusiaceae<br />

gascariensis<br />

+ 21,45<br />

Nato spécial Sideroxylon sp. Sapotaceae + 1,82<br />

Holatra Champignon +<br />

Amboralahy<br />

Decarydendron he-<br />

Monimiaceae<br />

lenae<br />

+ 10,33<br />

Sandramy<br />

Mena<br />

Protorhus sp.<br />

Anacardiaceae<br />

+ 1,50<br />

Inconnue 1,37 8,82<br />

Champignon 6,60<br />

Tala = site de Talatakely; Vato = site de Vatoharanana; Fr = fruits; Fe = feuilles ;<br />

Fl = fleurs.; *: consommé<br />

Le calcul du coefficient de Jaccard offre une valeur de 0,45;<br />

soit 45 %. Il en découle que le régime alimentaire d’Eulemur<br />

rubriventer des deux sites présente une similarité moyenne.<br />

Aussi, la différence entre le régime d’Eulemur rubriventer des<br />

deux milieux peut être révélée par la constatation de la<br />

durée consacrée à la consommation de chaque catégorie<br />

alimentaire telle que les fruits, les fleurs, les feuilles et bien<br />

d’autres (Cf. Tab. 2 et Fig. 2).<br />

En se basant sur ce tableau récapitulatif (Tab.2) et sur la Fig.2,<br />

nous constatons que dans le milieu dégradé de Talatakely, la<br />

consommation des fruits s’avère très importante par rapport<br />

à celle du milieu moins dégradé de Vatoharanana. De<br />

plus en comparant avec l’espèce du site de Talatakely,celle de


Page 50 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

la station de Vatoharanana comble beaucoup plus sa nourriture<br />

avec des fleurs, des feuilles, et d’autres types d’aliments.<br />

Tab. 2: Comparaison de la consommation journalière de<br />

chaque catégorie alimentaire d’Eulemur rubriventer dans les<br />

deux sites durant la période d’observation (en minute).<br />

Sites Fruit Fleur Feuille Autres<br />

Talatakely 80,80 0,52 4,54 0,12<br />

Vatoharanana 72,58 8,32 11,16 1,63<br />

Durée de la consommation<br />

(en minute)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Fruit Fleur Feuille Autres<br />

Catégorie alimentaire<br />

Talatakely Vatoharanana<br />

Fig.3:Allure de la consommation journalière de chaque catégorie<br />

alimentaire d’Eulemur rubriventer dans les deux sites<br />

durant la période d’observation.<br />

Discussion<br />

Eulemur rubriventer est un lémurien hautement frugivore.<br />

Mais la proportion des fruits qu’il consomme varie suivant le<br />

degré de perturbation,de dégradation,de l’altitude du milieu,<br />

ainsi que de la saison. Notons également que la consommation<br />

des différentes catégories alimentaires dépend de la<br />

disponibilité des ressources alimentaires (Rasolofonirina,<br />

2001). Lors de notre étude, nous constatons que dans le<br />

milieu dégradé de Talatakely, la consommation des fruits<br />

s’avère très importante que dans le milieu moins dégradé de<br />

Vatoharanana.De plus,en comparant avec l’espèce du site de<br />

Talatakely, celle de la station de Vatoharanana comble beaucoup<br />

plus sa nourriture avec des fleurs, des feuilles, et d’autres<br />

types d’aliments. Ceci est dû certainement à la saison<br />

cyclonique durant laquelle le vent est violent.Comme le site<br />

de Vatoharanana est beaucoup plus élevé par rapport à Talatakely,il<br />

s’avère logique qu’il est beaucoup plus affecté par ce<br />

vent violent.En effet,les fruits deviennent rares car beaucoup<br />

d’entre eux tombent par terre. Selon Zaonarivelo (1999),<br />

pendant la période de crise, Varecia variegata variegata augmente<br />

le taux de folivorie même si les feuilles sont des aliments<br />

de compensation.Cette stratégie adoptée par l’animal<br />

lors de la période de crise est également observée chez<br />

d’autres espèces de lémuriens de la forêt dense humide<br />

(Ganzhorn, 1988) entre-autres l’Eulemur rubriventer,leEulemur<br />

mongoz qui se nourrissent de fleurs en plus des fruits et<br />

des feuilles durant la période de floraison (Sussman, 1975).<br />

Par ailleurs,Garbutt (1999) argumente que les fruits constituent<br />

la majeure partie de l’alimentation d’Eulemur rubriventer.<br />

Mais quand ils ne sont pas disponibles,les feuilles et les fleurs<br />

sont aussi consommées (Rasolofonirina, 2001). Notons à la<br />

même occasion que les primates adoptent différentes stratégies<br />

pour affronter le manque de nourriture de base (le<br />

fruit pour notre cas) soit en augmentant le temps de la<br />

recherche de nourriture en se déplaçant beaucoup, soit en<br />

acceptant de consommer des aliments de basse qualité<br />

(Zaonarivelo, 1999).<br />

Par rapport au milieu dégradé,l’abondance des fruits dans le<br />

milieu moins dégradé est évidente.Mais en tenant compte de<br />

l’étude phénologique mensuelle des plantes recensées, ce<br />

n’est pas toujours le cas; car plusieurs facteurs pourraient<br />

agir sur ce milieu.Ainsi le climat,en particulier la pluviosité et<br />

le cyclone, influence la qualité et la quantité de la nourriture<br />

disponible (Dajoz, 1985). En effet, durant la période cyclonique,<br />

l’altitude de la station joue un rôle important sur les<br />

arbres à semences. Autrement dit, plus l’altitude d’un milieu<br />

est élevée,plus le vent agit directement sur les arbres et plus<br />

les fruits tombent. Par conséquent, les arbres portent moins<br />

de fruits. L’animal est obligé de se rabattre sur d’autres<br />

catégories alimentaires comme les feuilles, les fleurs, les<br />

champignons, les insectes pour pouvoir combler l’insuffisance<br />

de nourriture de base.Ce cas se rencontre dans le site<br />

de Vatoharanana qui est considéré comme milieu moins<br />

dégradé et qui est situé à une altitude plus élevée (1090 m)<br />

par rapport au site dégradé de Talatakely qui se trouve à une<br />

altitude de 1020 m (Brady et al, 1996). Concernant le site de<br />

Talatakely, la dispersion des fruits dans l’espace est insuffisante<br />

à cause de la dégradation de ce milieu.Ainsi,au lieu de<br />

combler sa nourriture par d’autres types d’aliments, il est<br />

contraint à se déplacer loin afin de consommer de la nourriture<br />

de haute qualité qui lui apporte beaucoup plus d’énergie<br />

comme le glucide, le lipide et les protéines (Zaonarivelo,<br />

1999).<br />

Finalement, en se basant sur les données phénologiques,<br />

nous avons constaté que la consommation de chaque catégorie<br />

alimentaire varie suivant leur disponibilité mensuelle<br />

dans chaque mileu. Au mois de décembre, par exemple,<br />

l’Eulemur rubriventer de Vatoharanana consomme beaucoup<br />

plus de fleurs que de fruits par rapport à celui de Talatakely<br />

car pendant ce mois, les fleurs y sont disponibles. Remarquons<br />

également que l’espèce de la station de Talatakely ne<br />

consomme que des fruits durant la fructification de l’espèce<br />

introduite de goyave (Psidium cattleianum). Ce type de fruit<br />

est très apprécié par l’animal.<br />

Le régime alimentaire d’Eulemur rubriventer est moyennement<br />

similaire dans les deux milieux étudiés.<br />

Cependant, quelques espèces de plantes consommées par<br />

l’animal sont propres à chaque site. L’espèce introduite de<br />

goyave Psidium cattleianum se rencontre uniquement à Talatakely.<br />

Notons que l’introduction de cette espèce marque la<br />

dégradation de cette station. Par contre, l’animal de Vatoharanana<br />

a l’opportunité de consommer, par exemple, l’espèce<br />

Mammae vatoensis qui est endémique à ce site. Cette<br />

similarité moyenne entre les deux régimes implique que la<br />

dégradation du site de Talatakely n’est pas encore poussée à<br />

l’extrême (Randriamahaleo,2005).En effet,il est classé parmi<br />

les sites moyennement dégradés. Selon Tam-Alkis (1997), le<br />

site de Talatakely est séparé de Vatoharanana par une barrière<br />

biogéographique (rivière Fompohonona). Il paraît que<br />

la dispersion des graines de part et d’autre de cette rivière<br />

est empêchée. Voilà pourquoi certaines espèces de plantes,<br />

utilisées comme source alimentaire, caractérisent uniquement<br />

l’un de ces sites. Par conséquent son régime varie<br />

suivant le site.<br />

Conclusion<br />

Cette étude nous a permis de fournir plus d’informations sur<br />

la relation entre la dégradation de l’habitat d’Eulemur rubriventer<br />

et sa consommation alimentaire.L’investigation révèle<br />

une similarité moyenne entre le régime alimentaire adopté<br />

par l’animal de Talatakely et celui de Vatoharanana. L’espèce<br />

semble être principalement frugivore quelque soit le site.<br />

Cependant, la proportion de consommation varie suivant le<br />

milieu. A Talatakely, par exemple, ce lémur à ventre roux se


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 51<br />

nourrit beaucoup plus de fruits par rapport à celui de Vatoharanana<br />

où il comble sa nourriture avec des fleurs, des<br />

feuilles, et bien d’autres catégories alimentaires. Ceci est dû<br />

sans doute au passage des deux cyclones (Elita et Gafilo)<br />

dans la région durant la période d’étude. En fait, Vatoharanana<br />

se trouve à une altitude très élevée par rapport à Talatakely.En<br />

effet,les vents violents agissent directement sur les<br />

arbres fruitiers, conduisant ainsi l’insuffisance des fruits.<br />

Aussi, la consommation de Psidium cattleianum (Myrtaceae),<br />

qui est une espèce introduite propre à Talatakely semble être<br />

très importante dans ce milieu. Par contre, Chrysophillum<br />

boivinianum s’avère être la plus appréciée par l’animal de<br />

Vatoharanana. Toutes ces constatations nous conduisent à<br />

dire que la consommation alimentaire d’Eulemur rubriventer<br />

paraît être conditionnée par la disponibilité de la nourriture<br />

dans chacun des sites visités et par l’état de l’habitat.<br />

Remerciements<br />

Nous tenons à remercier le Centre Valbio, le MICET représentés<br />

respectivement par le Professeur Patricia Wright et le<br />

Docteur Benjamin Andriamihaja pour leur soutien et leur<br />

collaboration durant la longue haleine de travail dans le Parc<br />

National de Ranomafana. Nos vifs remerciements s’adressent<br />

également à tous les guides de recherche pour leur<br />

assistance (Telo Albert, Victor, Koto, Nirina) et à tout ce qui<br />

contribue, de près ou de loin à la réalisation de ce projet.<br />

Références bibliographiques<br />

Altmann, J. 1974. Observational study of behavior: Sampling<br />

methods. Behavior 49: 227-267.<br />

Brady, L.H.; Jenkens, R.; Kauffmann, J.; Rabearivony, J.; Raveloson,<br />

G.; Rowcliffe, M. 1996. Madagascar Expedition 93.<br />

Final Report. Univ. East Anglia. Norwich, U.K.<br />

Brower,J.E.;Zar,J.H.;von Ende,C.N.1990.Field and laboratory<br />

methods for general ecology. Kevin Kane, ed. Wm C.<br />

Brown publishers, Dubuque.<br />

Dague, C.; Petter, J.J. 1988. Observations sur le Lemur rubriventer<br />

dans son milieu naturel.Pp.78-89.In:L.Rakotovao,V.<br />

Barre,et J.Sayer (eds.),l’Equilibre des Ecosystèmes Forestiers<br />

à Madagascar: Acte d’un séminaire international.<br />

IUCN, Gland, Switzerland and Cambridge U.K.<br />

Dajoz 1985. Précis de l’écologie. 5ème edition. Dunod University.<br />

Paris. Pp. 135.<br />

Dunbar,R.I.M.1988.Prosimiens.Primate adaptation and evolution.<br />

Academic Press. Harcourt Brace Jovanic. Pp. 67-<br />

110.<br />

Ganzhorn, J.U. 1988. Food partitioning among Malagasy Primates.<br />

Oecologia (Berlin) 75: 436-450.<br />

Ganzhorn, J.U.; Lowry II, P.P.; Schatz, G.E.; Sommer, S. 2001.<br />

The biodiversity of Madagascar: one of the world’s hottest<br />

hotspots on its way out. Oryx 35 (4): 346-348.<br />

Garbutt, N. 1999. Mammals of Madagascar. Yale University<br />

Press, New Haven.<br />

Kremen, C. 1992. Assessing the indicator properties of species<br />

assemblages for natural areas monitoring. Ecological<br />

Applications. 2(2): 203-217.<br />

Martin, P.; Bateson, P. 1986. Measuring behavior. Cambridge<br />

University Press. Cambridge.<br />

Mittermeier, R.A.; Louis, E.E.; Schwitzer, C.; Langrand, O.;<br />

Konstant, W.; Rylands, A.B.; Hawkins, F.; Rajaobelina, S.;<br />

Ratsimbazafy, J.H.; Rasoloarison, R.; Roos, C.; Kappeler,<br />

P.M.;MacKinnon,J.2010.Lemurs of Madagascar.Third edition.<br />

CI Field Guide Series. Washington, DC, USA.<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, F.; Louis, E.E.;<br />

Langrand, O.; Ratsimbazafy, J.H.; Rasoloarison, R.; Ganzhorn,<br />

J.U.; Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006.<br />

Lemurs of Madagascar. Second edition. CI Field Guide<br />

Series. Washington, DC, USA.<br />

Mittermeier, R.A.; Tattersall, I.; Konstant, W.R.; Meyer, D.;<br />

Mast,R.1994.Lemurs of Madagascar.Conservation International,<br />

Washington, D.C, USA.<br />

Overdorff, D.J. 1993. Ecological and reproductive correlates<br />

to range use in red-bellied lemurs (Eulemur rubriventer)<br />

and rufous lemurs (Eulemur fulvus rufus). Pp. 167-178. In:<br />

Kappeler, P.M.; Ganzhorn, J.U., Lemur Social Systems and<br />

their Ecological Basis. New York.<br />

Overdorff, D.J. 1996. Ecological correlates to activity and habitat<br />

use in two prosimian primates: Eulemur rubriventer<br />

and Eulemur fulvus rufus in Madagascar. American Journal<br />

of Primatology 40: 327-342.<br />

Randriamahaleo,S.I.2005.Effets de la dégradation de la forêt<br />

et impacts sur les activités sociales de Propithecus diadema<br />

edwardsi dans deux sites Talatakely et Valohoaka du Parc<br />

National de Ranomafana. Mémoire de DEA d’Anthropologie<br />

Biologique. DPAB, Faculté des Sciences, Université<br />

d’Antananarivo.<br />

Randriatahina,G.H.2001.Etude des intéractions sociales des<br />

femelles de Varecia variegata variegata, dans la forêt perturbée<br />

de Manombo, Farafangana, Madagascar. Mémoire<br />

de DEA d’Anthropologie Biologique. DPAB, Faculté des<br />

Sciences, Université d’Antananarivo.<br />

Rasolofonirina 2001. Contribution à l’étude comparative du<br />

comportement chez Eulemur rubriventer et Eulemur fulvus<br />

rufus femelles pendant la lactation dans la forêt dense<br />

humide de Ranomafana. Mémoire de DEA. Département<br />

de Paléontologie et d’Anthropologie Biologique, Faculté<br />

des Sciences, Université d’Antananarivo.<br />

Razafimahazo, J.C. 2001. Contribution à l’étude saisonnière<br />

dans l’utilisation verticale de l’habitat par deux lémuriens<br />

Hapalemur aureus et Hapalemur simus dans la forêt dense<br />

humide de Ranomafana Ifanadiana. Mémoire de DEA.<br />

Département de Paléontologie et d’Anthropologie Biologique,<br />

Faculté des Sciences, Université d’Antananarivo.<br />

Richard 1978.Behavioral variation:Case of a Malagasy lemur.<br />

Freeman, New York, USA.<br />

Sussman,R.W.1975.A preliminary study of the behavior and<br />

ecology of Lemur fulvus rufus. Pp. 237-258. In: I. Tattersall<br />

and R.W. Sussman (eds), Lemur Biology. Plenum Press,<br />

New York.<br />

Tam-Alkis, J. 1997. Factors affecting the distribution and<br />

abundance of a Chameleon assemblage in Ranomafana<br />

National Park, Madagascar. DICE, University of Kent and<br />

Canterbury.<br />

Turk, D. 1995. A guide of trees of Ranomafana National Park<br />

and Central eastern Madagascar. Pp. 330.<br />

Zaonarivelo, Z.R. 1999. Analyse des modalités d’adaptation<br />

de Varecia variegata variegata à un milieu perturbé. Cas de<br />

Manombo, Farafangana. Mémoire de DEA. Département<br />

de Paléontologie et d’Anthropologie Biologique, Faculté<br />

des Sciences, Université d’Antananarivo.<br />

Observations of terrestrial latrine behaviour<br />

by the southern gentle lemur Hapalemur<br />

meridionalis in the Mandena littoral<br />

forest, southeast Madagascar<br />

Timothy M. Eppley* and Giuseppe Donati<br />

Nocturnal Primate Research Group,Department of Anthropology<br />

and Geography, Oxford Brookes University, Gipsy<br />

Lane, OX3 0BP, Oxford, UK<br />

*Corresponding author: eppleyti@gmail.com<br />

Key words: southern gentle lemur, Hapalemur meridionalis,<br />

defecation, latrines, Mandena<br />

Latrine behaviour is defined as the non-random selection of<br />

a specific defecation site,and although it is rarely described in<br />

primates it is well known among other mammalian species as<br />

a form of olfactory communication (Irwin et al.,2004).Olfactory<br />

compounds, which convey chemical signals, are transmitted<br />

via scent-producing skin gland secretions, saliva, and/<br />

or waste products (Epple, 1986). Olfaction signals may be<br />

advantageous as they are not limited spatially and temporally,<br />

allowing individuals of a predominately visual communication


Page 52 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

to receive signals when distant from the source (Schilling,<br />

1979;Irwin et al.,2004).Olfactory signals may transmit information<br />

pertaining to environmental familiarisation (Schilling,<br />

1979), reproductive behaviour and condition (Epple, 1986),<br />

territorial demarcation (Mertl-Milhollen,1979),and inter- or<br />

intra-group spacing (Schilling, 1979; Epple, 1986).<br />

Previous literature has discussed latrines by varying in location<br />

(arboreal, terrestrial, or subterranean), and being further<br />

analysed by volume of faeces and spatial distribution<br />

(Schilling, 1980; Boonstra et al., 1996; Irwin et al., 2004; Pouvelle<br />

et al., 2009). This behaviour appears to be well studied<br />

within other mammals but for primates, especially strepsirhines,<br />

latrine use is only sparsely mentioned within much<br />

broader scope research (Irwin et al.,2004).In this report we<br />

present our observations of this peculiar behaviour exhibited<br />

by the southern gentle lemur, Hapalemur meridionalis,a<br />

threatened primate that occurs in southeast Madagascar.We<br />

will use our observations to review the hypotheses offered<br />

thus far to explain latrine use,i.e.advertisement of sexual cycle,predation<br />

avoidance,intra- group and inter-group spacing<br />

in the context of the fragmented littoral forest.<br />

Methods<br />

This research was conducted from May to July 2008, on the<br />

southern gentle lemur within the Mandena littoral forest<br />

(24°95’S 46°99’E), a coastal forest in southeast Madagascar.<br />

The littoral forest is among the most endangered ecosystems<br />

in Madagascar (Bollen and Donati, 2006) and Mandena<br />

is a protected conservation zone encompassing 230 hectares<br />

of fragmented and partially degraded littoral forest<br />

interspersed with marsh and swamp. Three groups of H.<br />

meridionalis (mean = 5.7 ind/group) were habituated and<br />

followed daily from dawn to dusk with 62 hours of observation<br />

recorded (Eppley and Donati, in press). These lemurs<br />

are of particular interest, as they do not subsist exclusively<br />

on bamboo like the majority of their congeners. Rather, the<br />

southern gentle lemur exhibits a dietary predilection for<br />

terrestrial (turf) grasses while displaying a unique grazing<br />

behaviour (Eppley and Donati, in press). Although the main<br />

research being conducted focused on the feeding ecology of<br />

these animals, opportunistic observations of latrine behaviour<br />

were collected ad libitum. In addition to habitat characteristics<br />

and GPS waypoints taken at the feeding and resting<br />

sites of three groups, latrine locations were also recorded.<br />

Spatial analyses were carried out with ArcMap version 9.3,<br />

with the outermost feeding and resting site waypoints for<br />

each group being used to create the minimum polygon for<br />

their respective ranging areas.<br />

Results<br />

On three separate occasions an entire group of foraging H.<br />

meridionalis were witnessed descending to the ground and<br />

defecating in succession either near or under a high-rooted<br />

tree of different species.Latrine bouts were recorded ad libitum<br />

on a single occasion for Group B (four individuals) and<br />

twice for Group C (seven individuals). Observations took<br />

place within the forest fragment, and were never witnessed<br />

in open canopy areas. The three occurrences of this terrestrial<br />

latrine behaviour were observed shortly after individuals<br />

had awoken from a midday resting bout (between 11:00<br />

and 14:00) at distances approx. 20 m from the resting site.<br />

The three locations where the latrine behaviour was exhibited<br />

are shown in Figure 1.Little overlap between the ranging<br />

areas of the three groups was observed with 0.92 ha (7.74 %)<br />

calculated to exist between groups A and B,0.18 ha (1.68 %)<br />

between groups A and C, and 0.06 ha (0.73 %) between<br />

groups B and C. After an individual had defecated, they<br />

ascended three to four meters and continued feeding.Subsequently,<br />

the group followed an order of sequential defecation,<br />

where by one conspecific would defecate and the next<br />

would rapidly follow.The individuals remaining at an elevated<br />

height always appeared vigilant, scanning the surrounding<br />

area and sometimes continuing to forage, while the conspecific<br />

was on the ground. Upon inspection of two of the<br />

defecation sites, accumulations of hardened faecal matter<br />

were identified. Dissimilarly, the third site consisted of only<br />

fresh faeces with no sign of old faecal matter.<br />

Fig. 1: Ranging areas of the three observed H. meridionalis<br />

groups within the northeast corner of the Mandena littoral<br />

forest. The three latrine sites were observed within the territorial<br />

boundary buffer zones of Groups A & C and B & C.<br />

Discussion<br />

Among primates,latrine behaviour has been recorded (Table<br />

1) in Alouatta seniculus (Gilbert, 1997; Feeley, 2005; Neves et<br />

al., 2009; Pouvelle et al., 2009), Ateles geoffroyi (Notman et al.,<br />

2009), as well as the strepsirhines: Cheirogaleus major, C.<br />

medius, Lepilemur leucopus (Charles-Dominique and Hladik,<br />

1971; Russell, 1977), L. microdon, L. ruficaudatus, Hapalemur<br />

aureus, H. griseus, Prolemur simus, and Lemur catta (Irwin et al.,<br />

2004). With the exception of Neotropical primates, however,minimal<br />

research has been conducted to understand its<br />

function within primates and latrine utilisation is often a matter<br />

of debate. In Ranomafana National Park, for example, H.<br />

griseus have been observed to occasionally use the same<br />

resting/sleeping sites and since they often defecate very soon<br />

after they wake up (Tan,pers.comm.),an accumulation of faecal<br />

material under these trees may appear inadvertently<br />

latrine-like (Notman et al., 2009; Pouvelle et al., 2009). Thus,<br />

latrine use by H.griseus may be anecdotal within this population.<br />

Irwin et al. (2004) presented four non-mutually exclusive<br />

hypotheses for the possible adaptive function of primate<br />

latrines:1) advertisement of sexual cycle,2) predation avoidance,<br />

3) intra-group spacing, 4) and inter-group spacing.<br />

The conveyance of scent-marks is well known to advertise<br />

sexual activity and receptivity (Asa, 2008). If this holds true<br />

for H. meridionalis, latrines should be used more frequently<br />

during the breeding seasons. It has been reported that H.<br />

griseus mate between June and July, experiencing a gestation<br />

length of approximately 137 days (Tan, 2006). Though our<br />

research potentially overlapped with the mating season, we<br />

made no observations of mating during the study period.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 53<br />

Thus, we had no possibilities to compare the mating season<br />

with pre- or post-mating periods, as the hypothesis testing<br />

would require. However, since two of the latrines at Mandena<br />

appeared to be utilized long-term, similar to the findings<br />

of Irwin et al.(2004),we conclude that the advertisement<br />

of sexual receptivity is unlikely the sole function of lemur<br />

latrines.<br />

Tab. 1: Observed primates that have exhibited terrestrial<br />

latrine behaviour. Adapted from Irwin et al. (2004).<br />

Species Localities References<br />

Hapalemur<br />

meridionalis<br />

Mandena Conservation<br />

Zone<br />

This study<br />

Hapalemur<br />

griseus<br />

Analamazaotra<br />

Special Reserve<br />

Irwin et al. (2004)<br />

Prolemur<br />

simus<br />

Ranomafana<br />

National Park<br />

P. Wright (in Irwin et al., 2004)<br />

Lemur catta Isalo National Park<br />

J. Jernvall and P. Wright<br />

(in Irwin et al., 2004)<br />

Lepilemur<br />

leucopus<br />

Beza Mahafaly<br />

Special Reserve<br />

L. Nash (in Irwin et al., 2004)<br />

Lepilemur Manombo Special J. Ratsimbazafy (in Irwin et al.,<br />

microdon Reserve<br />

2004)<br />

Lepilemur sp.<br />

(?microdon)<br />

Kalambatritra<br />

Special Reserve<br />

Irwin et al. (2004)<br />

Lepilemur<br />

ruficaudatus<br />

Kirindy Forest<br />

J.U. Ganzhorn (in Irwin et al.,<br />

2004)<br />

Ateles<br />

geoffroyi<br />

Runaway Creek Nature<br />

Preserve, Belize<br />

Notman et al. (2009)<br />

Alouatta<br />

seniculus<br />

Nouragues Reserve,<br />

French Guiana<br />

Pouvelle et al. (2009)<br />

Gentle lemurs have a particularly effective predator avoidance<br />

strategy including camouflage from cryptic pelage, rapid<br />

flight behaviour,and potential cathemeral activity pattern<br />

(Mutschler et al., 1999; Curtis et al., 2006; Tan, 2006). Several<br />

potential predators of Hapalemur exist in the littoral forest.<br />

There have been documented cases of fossa Cryptoprocta<br />

ferox preying on H. griseus (Goodman and Pidgeon, 1999;<br />

Sterling and McFadden,2000).The Madagascar tree boa Sanzinia<br />

madagascariensis (= Boa manditra) also prey on Hapalemur<br />

spp.(Goodman et al.,1993;Rakotandravany et al.,1998),<br />

and several aerial predators (Madagascar harrier hawk Polyboroides<br />

radiatus, Frances’s sparrowhawk Accipiter francesii,<br />

Henst’s goshawk Accipiter henstii,common barn owl Tyto alba,<br />

and the Madagascar long-eared owl Asio madagascariensis)<br />

represent a threat to medium-sized lemurs (Goodman et al.,<br />

1993; Wright, 1997; Karpanty and Goodman 1999). In fact,<br />

the concealment of Hapalemur faeces under large high-rooted<br />

trees may theoretically act as a safeguard against predation<br />

by impairing the ability of a predator to detect the prey<br />

population (Boonstra et al.,1996;Irwin et al.,2004).Although<br />

these observations are in accord with the anti-predator idea,<br />

single faecal deposits were also detected at indiscriminate<br />

locations. Thus, more data are necessary to test the hypothesis<br />

of latrine behaviour as an anti-predator strategy.<br />

Intra-group spacing has also been suggested to advertise<br />

proximal resource use and assist in inter-individual spacing<br />

(Kruuk,1992).In accord with Irwin et al.(2004),however,it is<br />

unlikely that Hapalemur latrine behaviour is used for intragroup<br />

spacing, as they live in cohesive family units.<br />

The territorial demarcation hypothesis suggests that scentmarks<br />

are placed around home range boundaries to act as a<br />

delineation of the territory, i.e. inter-group spacing (Mertl-<br />

Millhollen, 1979; Lewis, 2005). In fact, it is evident from our<br />

observations that H.meridionalis chose defecation sites in the<br />

narrow areas of overlap with neighbouring conspecifics<br />

groups (Fig. 1). If this adaptive function holds true, latrine<br />

behaviour might be even more common in areas of dense<br />

population (Irwin et al.,2004),such as the forest fragments of<br />

Mandena (Eppley and Donati, in press).<br />

Although the exhibition of preferred, non-random defecation<br />

sites is most likely multifactorial,latrines in Mandena appear<br />

to best fulfil the function of inter-group spacing. Therefore,<br />

latrines may be a low-energy behavioural response to<br />

the ecological challenge of defending resources with minimal<br />

rates of agonism (Irwin et al.,2004).In the future,more quantitative<br />

studies should focus on seasonal and spatial exhibition<br />

of latrine use to verify whether this behaviour is intrinsically<br />

linked to territorial delineation and resource defence in<br />

lemurs.<br />

Acknowledgements<br />

We would like to thank the Commission Tripartite of the<br />

Malagasy government, Ministère de l’Environnement, des<br />

Eaux et forêts of the Malagasy government,the University of<br />

Antananarivo, and CAFF/CORE for permission to conduct<br />

research, as well as the Malagasy Institute for the Conservation<br />

of Tropical Environments (MICET) for all of their logistical<br />

assistance. Financial support was provided partly by the<br />

Chester Zoo (NEZS) and QMM.We would also like to thank<br />

the QMM Environmental Team, most especially Manon Vincelette,<br />

Jean-Baptiste Ramanamanjato, Johny Rabenantoandry,<br />

Faly Randriatafika, and Christophe Rambolamanana for<br />

all of their advice and logistical help. We are grateful to Jörg<br />

Ganzhorn for all of his continuous support and scientific advice.Thank<br />

you to the entire staff of the Oxford Brookes Primate<br />

Conservation MSc program, especially Simon Bearder,<br />

Anna Nekaris, and Vincent Nijman. We greatly appreciate<br />

the GIS assistance of Maureen Mullen. My sincere gratitude<br />

goes to my field guide Robertin "Tintin" Ravelomanantsoa<br />

and research assistant Abi Coleman for their companionship<br />

and tireless help in the marecage.<br />

References<br />

Asa, C.S. 2008. Scent and the single male: ring-tailed lemurs<br />

produce honest signals.Molecular Ecology 17:3223-3224.<br />

Bollen,A.;Donati,G.2006.Conservation status of the littoral<br />

forest of south-eastern Madagascar: a review. Oryx 40:<br />

57-66.<br />

Boonstra,R.;Krebs,C.J.;Kenney,A.1996.Why lemmings have<br />

indoor plumbing in summer.Canadian Journal of Zoology<br />

74: 1947-1949.<br />

Charles-Dominique,P.;Hladik,C.M.1971.Le Lepilemur de sud<br />

de Madagascar: ecologie, alimentation, et vie sociale.<br />

Revue d’Écologie (La Terre et la Vie) 25: 3-66.<br />

Curtis, D.; Donati, G.; Rasmussen, M. 2006. Cathemerality.<br />

Folia Primatologica 77: 5-6.<br />

Epple, G. 1986. Communication by chemical signals. Pp.<br />

531-580. In: G. Mitchell; J. Erwin (eds.), Comparative<br />

Primate Biology, <strong>Vol</strong>ume 2A: Behavior, Conservation and<br />

Ecology. Alan R. Liss, New York.<br />

Feeley,K. 2005.The role of clumped defecation in the spatial<br />

distribution of soil nutrients and the availability of nutrients<br />

for plant uptake. Journal of Tropical Ecology 21:<br />

99-102.<br />

Gilbert, K.A. 1997. Red howling monkey use of specific defecation<br />

sites as a parasite avoidance strategy.Animal Behaviour<br />

54: 451-455.<br />

Goodman, S.M.; Pidgeon, M. 1999. Carnivora of the Réserve<br />

Naturelle Intégrale d’Andohahela, Madagascar. Fieldiana:<br />

Zoology 94: 256-68.<br />

Goodman,S.M.;O’Connor,S.;Langrand,O.1993.A review of<br />

predation on lemurs: implications for the evolution of<br />

social behavior in small, nocturnal primates. Pp. 51-66. In:<br />

P.M.Kappeler;J.U.Ganzhorn (eds.). Lemur Social Systems<br />

and their Ecological Basis. Plenum Press, New York.<br />

Irwin, M.T.; Samonds, K.E.; Raharison, J.-L.; Wright, P.C. 2004<br />

Lemur latrines: observations of latrine behavior in wild


Page 54 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

primates and possible ecological significance. Journal of<br />

Mammalogy 85: 420-427.<br />

Lewis, R.J. 2005. Sex differences in scent-marking in sifaka:<br />

mating conflict or male services? American Journal of Physical<br />

Anthropology 128: 389 98.<br />

Karpanty, S.M.; Goodman, S.M. 1999. Diet of the Madagascar<br />

harrier-hawk, Polyboroides radiatus, in southeastern Madagascar.<br />

Journal of Raptor Research 33: 313-316.<br />

Kruuk, H. 1992. Scent marking by otters (Lutra lutra): signalling<br />

the use of resources. Behavioral Ecology 3: 133-140.<br />

Mertl-Millhollen, A.S. 1979. Olfactory demarcation of territorial<br />

boundaries by a primate-Propithecus verreauxi. Folia<br />

Primatologica 32: 35 2.<br />

Mutschler, T. 1999. Folivory in a small-bodied lemur: the<br />

nutrition of the Alaotran gentle lemur (Hapalemur griseus<br />

alaotrensis).Pp.221-239.In: H.Rasaminanana;B.Rakotosamimanana;<br />

J.U. Ganzhorn; S.M. Goodman (eds.). New<br />

Directions in Lemur Studies. Kluwer Academic / Plenum<br />

Publishing, New York.<br />

Neves,N.D.S.;Feer,F.;Salmon,S.;Chateil,C.;Ponge,J.-F.2009.<br />

The impact of red howler monkey latrines on the distribution<br />

of main nutrients and on topsoil profiles in a tropical<br />

rain forest. Austral Ecology doi:<br />

10.1111/j.1442-9993.2009.02066.x<br />

Notman, H.; Hartwell, K.; Pavelka, M.S. 2009. Spider monkey<br />

"latrine sites" at Runaway Creek Nature Reserve, Belize.<br />

American Journal of Primatology 71(Suppl 1): 91.<br />

Pouvelle, S.; Jouard, S.; Feer, F.; Tully, T.; Ponge, J.-F. 2009. The<br />

latrine effect: impact of howler monkeys on the distribution<br />

of small seeds in a tropical rain-forest soil. Journal<br />

of Tropical Ecology 25: 239-248.<br />

Rakotondravony, D.; Goodman, S.M.; Soarimalala, V. 1998.<br />

Predation on Hapalemur griseus griseus by Boa manditra<br />

(Boidae) in the littoral forest of eastern Madagascar. Folia<br />

Primatologica 69: 405 08.<br />

Russell, R.J. 1977. The behavior, ecology, and environmental<br />

physiology of a nocturnal primate, Lepilemur mustelinus<br />

(Strepsirhini, Lemuriformes, Lepilemuridae). Unpubl. Ph.<br />

D. thesis, Duke University, Durham, North Carolina.<br />

Schilling, A. 1979. Olfactory communication in primates. Pp.<br />

461-542. In: G.A. Doyle; R.D. Martin (eds.). The Study of<br />

Prosimian Behavior. Academic Press, New York.<br />

Schilling, A. 1980. Seasonal variation in the fecal marking of<br />

Cheirogaleus medius in simulated climatic conditions. Pp.<br />

181-190. In: P. Charles-Dominique; H.M. Cooper; A.<br />

Hladik;C.M.Hladik;E.Pages;G.F.Pariente;A.Petter-Rousseaux;<br />

A. Schilling (eds.). Nocturnal Malagasy Primates:<br />

Ecology, Physiology, and Behavior. Academic Press, New<br />

York.<br />

Sterling,E.J.;McFadden,K.2000.Rapid census of lemur population<br />

in the Parc National de Marojejy, Madagascar. A<br />

floral and faunal inventory of the Parc National de Marojejy,<br />

Madagascar: with reference to elevation variation. Fieldiana:<br />

Zoology 97: 265-274.<br />

Tan, C.L. 2006. Behavior and ecology of gentle lemurs (genus<br />

Hapalemur). Pp. 369-381. In: L. Gould; M. Sauther (eds.).<br />

Lemurs: Ecology and Adaptation. Springer, New York.<br />

Wright, P.C.1997.Impact of predation risk on the behaviour<br />

of Propithecus diadema edwardsi in the rain forest of Madagascar.<br />

Behaviour 135: 483-512.<br />

Wright, P.C. 1999. Lemur traits and Madagascar ecology:<br />

coping with an island environment. Yearbook of Physical<br />

Anthropology 42: 31-72.<br />

Conservation des lémuriens via la protection<br />

de leurs habitats et le développement<br />

communautaire dans les corridors<br />

de Betaolana et Tsaratanana-Betaolana,<br />

région de SAVA<br />

Lala Razafy Fara 1*, Iarilanto Andriamarosolo 2<br />

1WWF Madagascar & Western Indian Ocean PO, BP 738<br />

Antananarivo 101, Madagascar<br />

2WWF Andapa, BP 28, Andapa 205, Madagascar<br />

*Corresponding author: frazafy@wwf.mg<br />

Contextes<br />

Ecologique:<br />

Madagascar est connu pour sa haute valeur en biodiversité.<br />

Sa flore et sa faune ont une valeur d’endémicité très élevée<br />

(au dessus de 80 %) due entre autres à son insularité. Madagascar<br />

est donc plus riche en espèces endémiques comparées<br />

à d’autres continents du monde.Le microclimat de l’île a<br />

permis que d’une région à une autre, la flore et la faune constituent<br />

une richesse spectaculaire à part.<br />

Pour la partie Nord de Madagascar, la flore luxuriante, avec<br />

des espèces endémiques du genre Dalbergia, est encore à<br />

découvrir.Le WWF a travaillé dans la région de SAVA pour la<br />

mise en place de deux Aires Protégées (AP),Parc National de<br />

Marojejy et Réserve Spéciale d’Anjanaharibe Sud, actuellement<br />

sous gestion du Madagascar National Parks. Pour le<br />

WWF,la conservation du flux génétique implique le maintien<br />

et la restauration de la connectivité écologique.Ce maintien<br />

peut être le plus important paramètre le long des pentes<br />

altitudinales car cette connectivité est actuellement très<br />

rare au sein de l’écorégion de l’Est.De plus,il peut constituer<br />

un refuge pour la biodiversité vu les changements du climat<br />

(Erdmann et al., 2005).<br />

Eu égard aux efforts déjà investis dans la protection des deux<br />

AP (Parc de Marojejy et de la Réserve Spéciale d’Anjanaharibe<br />

Sud), le WWF a continué ses efforts de conservations<br />

dans les deux corridors forestiers (Betaolana et Tsaratanana-Betaolana).<br />

Dans ces localités, les espèces endémiques<br />

sont aussi très remarquables comme le palmier Marojejya<br />

insignis et la fougère Asplenium marojyense. La forêt dense et<br />

humide de cette partie de l’île abrite une multitude de faune<br />

à découvrir et à protéger.<br />

La forêt occupe encore 35,60 % de la région de SAVA (données<br />

images satellites de 2000),ce taux est élevé par rapport<br />

à d’autres régions de Madagascar.La richesse en biodiversité<br />

de cette zone est démontrée par de nombreuses études,sur<br />

la flore et sur la faune, conduites dans cette zone.<br />

Pour ces deux corridors Betaolana et Tsaratanana-Betaolana,<br />

les inventaires effectués par Rajaonson et Rakotonirina<br />

(2007) pour le WWF ont montré l’existence de 10 espèces<br />

de lémuriens pour le corridor Betaolana, et de sept espèces<br />

pour le corridor Tsaratanana Betaolana, 84 espèces d’oiseaux<br />

pour l’ensemble des deux corridors. En comparaison<br />

avec les inventaires des lémuriens effectués par Goodman et<br />

al. (2003), la région d’Andapa, incluant les AP de Marojejy et<br />

d’Anjanaharibe-Sud et le corridor forestier de Betaolana,<br />

possèdent une richesse spécifique en communautés de lémuriens<br />

et tient une place importante en biodiversité à Madagascar.La<br />

synthèse des études déjà effectuées dans la zone a<br />

recensé 12 espèces de lémuriens dont: Microcebus rufus,<br />

Cheirogaleus major, Allocebus trichotis, Phaner furcifer, Avahi<br />

laniger, Lepilemur mustelinus, Daubentonia madagascariensis,<br />

Hapalemur griseus griseus, Eulemur rubriventer, Eulemur fulvus


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 55<br />

albifrons, Propithecus candidus, Indri indri. Parmi ces espèces<br />

citées, celles non rencontrées dans les deux corridors sont:<br />

Indri indri et Phaner furcifer (pour les deux corridors Betaolana<br />

et Tsaratanana-Betaolana) et Allocebus trichotis pour le<br />

corridor Tsaratanana Betaolana).<br />

Parmi les espèces de lémuriens, le Simpona (Propithecus candidus)<br />

est une des 25 espèces de primates les plus menacées<br />

dans le monde (Mittermeier et al., 2005), d’où l’intérêt de se<br />

focaliser sur sa conservation. Certains auteurs (Petter et al.,<br />

1979; Tattersall, 1982) pensent que l’habitat du Simpona<br />

pourrait éventuellement s’étendre vers le Sud jusqu’aux<br />

forêts de la péninsule de Masoala. Il est par contre prouvé<br />

que le versant Ouest de Anjanaharibe-Sud, actuellement<br />

sans statut de protection, héberge une population importante<br />

de Simpona. La population de Simpona de la région<br />

Andapa et donc mondiale est estimée à une valeur comprise<br />

entre 100-1000 individus (Mittermeier et al., 1994). Des<br />

inventaires effectués par le WWF vers la fin 2006 ont relevé<br />

que le Simpona se rencontre aussi vers le Nord du Corridor<br />

de Betaolana en allant vers le Nord Ouest du côté du massif<br />

de Tsaratanana.<br />

Social et économique:<br />

Les deux corridors forestiers, Betaolana et Tsaratanana<br />

Betaolana, couvrent approximativement une superficie respective<br />

de 16 500 ha et de 130 900 ha et sont très riches en<br />

forêt.En se référant aux délimitations sur la carte 1,les deux<br />

corridors renferment encore jusqu’à 90 % de forêts. Situées<br />

sur des sols ferralitiques, les forêts des deux corridors sont<br />

localisées entre les altitudes 850 et 1600 m pour Betaolana<br />

et 800 à 2280 m d’altitude pour Tsaratanana-Betaolana. Les<br />

deux corridors jouissent encore du climat humide de la<br />

région de SAVA.<br />

Les deux corridors appartiennent aux districts d’Andapa<br />

(pour le Corridor de Betaolana) et de Bealanana (pour le<br />

corridor de Tsaratanana-Betaolana). Les populations des<br />

communes locales vivant à la périphérie de ces corridors<br />

sont estimées, en 2009, à 72 521 pour le corridor Betaolana<br />

et à 41 333 pour le corridor Tsaratanana-Betaolana (à partir<br />

des données d’INSTAT 1993).<br />

Dans la région de SAVA, les forêts dans les deux corridors<br />

Betaolana et Tsaratanana Betaolana font partie des domaines<br />

forestiers de l’Etat. Ils n’ont de ce fait pas de statuts<br />

particuliers (Garreau et Manantsara, 2003). Toutefois, le<br />

WWF, connaissant l’importance de la flore et la faune dans<br />

cette zone, a mis en œuvre de 2005 à 2008 deux projets<br />

spécifiques pour la conservation des lémuriens et de leurs<br />

habitats dans la région de SAVA. Dans le cadre des projets<br />

mis en œuvre par le WWF qui se sont succédés dans la région<br />

de SAVA, celui-ci a travaillé avec les populations locales<br />

pour mettre ces deux corridors sous statuts de Nouvelles<br />

Aires Protégées. Pour le Corridor Betaolana, huit communautés<br />

de bases ayant reçu des contrats de transferts de gestion<br />

des lots de forêts ont déjà déposé leur manifestation<br />

d’intérêt dans ce sens en 2008.Les différentes étapes et procédures<br />

à respecter suivent actuellement normalement leur<br />

cours.<br />

Cet article, eu égard à tous les acquis dans le cadre des<br />

projets du WWF, est une capitalisation des expériences de<br />

WWF Madagascar pour les projets de conservation des<br />

lémuriens et de leurs habitats dans le Nord de Madagascar.<br />

L’un des deux projets est connu sous son appellation courte,<br />

projet Simpona. Son but est en effet de mettre en exergue<br />

cette espèce phare bien qu’elle ne soit pas la seule à être<br />

protégée dans le cadre des projets du WWF.<br />

Approche de conservation<br />

Les sites des deux projets<br />

La région de SAVA se trouve dans l’ex Province d’Antsiranana<br />

au Nord de Madagascar. Les deux projets du WWF<br />

dans cette localité ont été conduits dans deux corridors<br />

forestiers entre les Aires Protégées Tsaratanana (Réserve<br />

Naturelle Intégrale), Marojejy (Parc National) et Anjanaharibe<br />

Sud (Réserve Spéciale).La carte suivante montre la situation<br />

générale de ces localités.<br />

Les objectifs de conservation<br />

A partir de la connaissance des richesses de cette localité,<br />

des pressions et menaces sur les espèces cibles,la finalité des<br />

deux projets était de freiner l’utilisation irrationnelle de la<br />

forêt tout en construisant un environnement où les populations<br />

locales pourront vivre en harmonie avec la nature.<br />

Découlant de cette finalité,les objectifs des deux projets ont<br />

été de: 1) Mieux connaître le niveau de menace sur les<br />

lémuriens et sur leurs habitats; 2) Elaborer des scénario de<br />

zonages et de gestion; 3) Conscientiser et éduquer les<br />

communautés locales concernant les menaces et la protection<br />

des lémuriens; 4) Initier de nouveaux transferts de<br />

gestion des forêts auprès des communautés locales de base<br />

(sur la partie Ouest du Corridor de Betaolana); 5) Protéger<br />

et/ou restaurer les habitats des lémuriens; 6) Renforcer la<br />

protection des lémuriens par l’extension et la création de<br />

nouvelles aires protégées; 7) Vulgariser et promouvoir les<br />

produits de substitution des principaux produits forestiers;<br />

8) Procéder au suivi d’évaluation des méthodes et procédures<br />

de gestion internes des associations des forêts; 9)<br />

Restaurer les terrains défrichés de la périphérie du corridor.<br />

En bref,les deux projets essaient de renforcer les conditions<br />

requises pour la conservation à long terme de la biodiversité<br />

via la conservation des fonctions écologiques des deux corridors<br />

(Betaolana et Tsaratanana-Betaolana) de manière participative.<br />

Diagnostic participatif: Mieux connaitre pour mieux<br />

protéger<br />

Cartographie<br />

A partir des connaissances issues de la littérature, une cartographie<br />

simplifiée basée sur des cartes topographiques<br />

(échelles 1/100 000) et des interprétations des images satellites<br />

2000 a été élaborée. L’objectif est de partir des limites<br />

des forêts à partir de ces images pour délimiter des zones où<br />

les inventaires forestiers vont être réalisés.De même,de par<br />

cette technique,des zonages forestiers et des cartes d’occupation<br />

des sols sont élaborés.Le zonage forestier se base sur<br />

les états de dégradations des forêts. Les unités semblables<br />

ont été groupées dans une même catégorie définie pour un<br />

objectif spécifique (conservation, enrichissement / restauration,<br />

droit d’usage).<br />

Inventaire des lémuriens par des primatologues<br />

Pour mieux intégrer les populations locales dans l’importance<br />

de la conservation des lémuriens,elles ont été invitées<br />

à participer aux inventaires des lémuriens.Leur connaissance<br />

de base, combinée aux connaissances scientifiques de deux<br />

primatologues recrutés ont été pour renforcer les acquis<br />

dans le cadre de la littérature.Cette approche a aussi permis<br />

d’élaborer des documents de base pour le suivi des lémuriens<br />

et de choisir des espèces pour la restauration<br />

forestière.


Page 56 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Fig. 1: Carte de localisation générale des sites.<br />

Etudes des pressions et menaces sur les lémuriens et leurs<br />

habitats<br />

Les études sur les pressions et menaces ont été conduites<br />

selon des enquêtes informelles et formelles et selon des observations<br />

directes.Les enquêtes informelles servent à la fois<br />

à gagner la confiance des populations locales et à recueillir le<br />

maximum d’informations. Les enquêtes formelles sont utilisées<br />

par les consultants primatologues pour une meilleure<br />

représentativité des réponses. Les membres de l’équipe de<br />

WWF,à mesure de l’avancement de la conduite des activités<br />

dans le cadre des deux projets, ne cessent de faire des<br />

recoupements entre toutes les réponses obtenues.<br />

La participation des membres des communautés de base est<br />

indispensable dans les deux types d’enquêtes pour qu’ils se<br />

sentent responsables et pour confronter les réponses au fur<br />

et à mesure que des biais sont observés. Les méthodes<br />

classiques de recherches participatives utilisées sont du<br />

genre MARP: Méthode Accélérée de Recherche Participative<br />

et PALM: Participatory Learning Methods ou Méthode<br />

d’apprentissage Participatives. Les membres de l’équipe du<br />

WWF ont reçu auparavant des formations sur ces méthodes.<br />

Dans le cadre de leur travail, ces méthodes sont<br />

conduites lors des premières approches au sein d’une nouvelle<br />

communauté demandant à gérer une ressource naturelle<br />

dans leur terroir.<br />

Responsabilisation sous forme de transfert de<br />

gestion<br />

Inventaire forestier et zonage<br />

Dans chaque localité de travail avec une communauté, des<br />

inventaires forestiers ont été conduits.La finalité est de connaitre<br />

les potentialités des différents types de forêts en<br />

produits forestiers ligneux et non ligneux. Une uniformisation<br />

des méthodes de relevés a été réalisée. A partir des<br />

cartes de zonages élaborées, les inventaires ont été concentrés<br />

dans les zones de conservations et des droits<br />

d’usage.Des parcelles imbriquées sont définies.Elles ont des<br />

surfaces de 100 x 100 m pour des diamètres de 1,30 m (dhp)<br />

supérieur ou égal à 30 cm;deux parcelles de 25 x 25 m pour<br />

les arbres de dhp compris entre 10 cm à 30 cm; et deux<br />

parcelles de 5x5m.Lesdimensions de ces parcelles peuvent<br />

varier en fonction du relief (si le terrain est trop accidenté,la<br />

réduction des dimensions est préconisée) et leur nombre<br />

varié.Mais quelques soient les variantes,une moyenne de un<br />

hectare par type de forêt est requise pour les gros diamètres.<br />

Elaboration de plan d’aménagement<br />

En vue de l’obtention des contrats de transfert de gestion<br />

des forêts auprès du Ministère des forêts, chaque communauté<br />

devrait établir des plans d’aménagement des forêts.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 57<br />

Les plans d’aménagement suivent les directives proposées<br />

par la Direction Générale des forêts. Le WWF,pour l’élaboration<br />

de ces plans,a surtout veillé à ce que les prélèvements<br />

respectent le principe de la durabilité à savoir: ne prélever<br />

que le volume correspondant aux accroissements moyens<br />

annuels. Pour un meilleur équilibre entre les besoins des<br />

populations locales, des reboisements en espèces introduites<br />

sont aussi proposés dans ces plans d’aménagement,<br />

mais dans des parcelles en dehors des forêts naturelles.<br />

Appropriation sous forme de contrôle<br />

L’approche d’appropriation sous forme de contrôle a aussi<br />

été développée pour atteindre les objectifs des deux projets.<br />

Elle consiste à encourager les membres des communautés à<br />

l’établissement de parcelles d’observation en forêt en se<br />

basant sur les pistes existantes et sur les signes visibles de<br />

pressions (coupe, pièges). Des représentants dynamiques au<br />

sein de chaque communauté sont ainsi élus et font des visites<br />

(contrôles) régulières, parfois inattendues, en forêts. Ces<br />

visites sont organisées pour observer la biodiversité<br />

(floraison des plantes,augmentation du nombre des groupes<br />

de lémuriens observés, passage d’un oiseau ou autre type<br />

d’animal faisant la particularité de leur forêt etc.) et pour<br />

constater si des pressions sur les lémuriens et la forêt sont<br />

encore présentes. Ces membres notent leurs observations<br />

dans des cahiers réservés pour ces observations et tout<br />

autre évènement qu’ils jugent importants (rencontre avec<br />

d’autres personnes, etc.).<br />

Mesures d’accompagnement<br />

Le WWF défini les mesures d’accompagnement de toute<br />

activité développée pour contribuer à l’amélioration des<br />

conditions de vie des populations locales. Ces activités doivent<br />

à la fois réduire les pressions sur la biodiversité en générale<br />

et sur les cibles de conservation en particulier (forêt<br />

naturelle et lémurien) et compenser les efforts de conservations<br />

entrepris. L’approche consiste d’abord à analyser les<br />

résultats de toutes les études préalables aux transferts de<br />

gestion des forêts. A partir de ces analyses, les potentialités<br />

de chaque terroir (à partir des cartes d’occupation des sols<br />

et des rendements obtenus pour chaque spéculation engagée)<br />

dans lesquels vivent les communautés sont dégagées.<br />

Les mesures à développer cherchent ainsi à augmenter les<br />

sources de revenus des paysans et à améliorer leur alimentation<br />

pour une meilleure santé.<br />

Résultats et discussions<br />

Inventaires forestiers et zonages<br />

Au total, 14 inventaires forestiers (correspondants au nombre<br />

de transfert de gestion des forêts) ont été effectués dans<br />

la région de SAVA. La potentialité des forêts est variable. Le<br />

nombre des arbres de dhp > 30 varie de 200 à 400/ha. Au<br />

total, 200 espèces de plantes (ligneuses et non ligneuses)<br />

sont inventoriées. D’un site à l’autre, le nombre des espèces<br />

ligneuses inventoriées varie de 45 à 87.<br />

Les espèces les plus fréquemment rencontrées sont: Tambourissa<br />

religiosa,Weinmannia rutembergii,Zantoxyllon mananarense,<br />

Chrysophyllum boivinianum, Canarium madagascariensis,<br />

Symphonia fasciculata, Diospyros aff.ambilensis, Macaranga<br />

decaryana, Erythroxylum sphaeranthum, Brachylaena merana,<br />

Syzygium emirnense, Uapacca densiflora, Ocotea cymosa…<br />

En fonction de l’éloignement des forêts par rapport aux villages,<br />

leur état de dégradation diffère. Cette observation a<br />

permis de faire trois grande classifications: forêt naturelle<br />

plus ou moins intacte,classée à protéger ou à conserver (for-<br />

mant donc le noyau dur);forêt partiellement dégradée,localisée<br />

encore en plein cœur de la forêt,classée comme forêt à<br />

restaurer;forêt naturelle à faible potentialité, due à un degré<br />

d’écrémage localisée à la périphérie des lisières, classée<br />

comme zone de cantonnement de droit d’usage.<br />

Transfert de gestion des forêts<br />

Le WWF a pu mettre en place dans le cadre de ces deux projets<br />

14 transferts de gestion. Pour chaque communauté, la<br />

surface totale des forêts dans ces transferts varie de 300 à<br />

5000 ha (dépendant du taux de couverture forestière dans le<br />

territoire de chaque village d’appartenance de la communauté).<br />

Les zonages des forêts sont décrits précédemment.<br />

En principe, les contrats sont établis pour trois ans. Ensuite<br />

une évaluation devra se faire par le Service Forestier en partenariat<br />

avec les communes d’appartenance des communautés<br />

gestionnaires des forêts.Etablis à partir de 2007,certains<br />

contrats nécessitent ainsi une évaluation à partir de cette<br />

année ou au plus tard en début de l’année prochaine.<br />

Au total,les 14 transferts de gestion des forêts ont permis de<br />

sécuriser sous la gestion des COBA,27 000 ha de forêts.Ces<br />

forêts incluent tous les types de forêts à différents usages définis<br />

auparavant (conservation, restauration, droit d’usage).<br />

Les valeurs de la restauration pour le WWF sont présentées<br />

dans son document de la vision de la biodiversité (Erdmann<br />

et al., 2005) qui a défini 40 aires comme Aires Prioritaires de<br />

conservation de par leur valeur en biodiversité. Les études<br />

sur leur état de dégradation ont relevé aussi que 23 de ces aires<br />

auront probablement besoin d’importante restauration<br />

(< 20 % de forêt),si elles doivent entièrement concourir à la<br />

conservation de la biodiversité. Dans tous les sites de transferts<br />

de gestion des forêts, le WWF met ainsi l’accent sur<br />

l’importance de la restauration. Les communautés avec l’encadrement<br />

du WWF, des observations sur terrain et des<br />

inventaires effectués définissent ainsi des zones de restauration<br />

dont la superficie varie d’une communauté à une<br />

autre.Les espèces utilisées pour ces restaurations des forêts<br />

dégradées sont essentiellement des essences autochtones.<br />

Leur choix est justifié par leur emplacement (héliophile pour<br />

les zones très ouverts et/ou périphérie de la forêt; nomade<br />

pour les zones sous couvert des espèces héliophiles) ou par<br />

leur utilisation (construction, nourriture des lémuriens).<br />

Suivis et contrôles<br />

Le WWF, pour faciliter l’uniformisation des suivis et contrôle<br />

en matière des lémuriens, a élaboré un livret sur les<br />

lémuriens avec la photo des espèces et une description<br />

sommaire des espèces.L’idée de départ était d’exploiter ces<br />

livrets peu avant la fin des projets pour les analyser. Il a<br />

pourtant été constaté que les représentants des communautés<br />

n’ont pas utilisé les livrets,mais les a bien classés dans<br />

leur valise. Leur explication est que le livret (en couleur) est<br />

trop beau pour être amené et abimé en forêt à cause de<br />

l’humidité. Néanmoins, les suivis et contrôles ont été effectivement<br />

effectués par les communautés. De plus, les données<br />

ont été stockées soit dans des cahiers à part, soit dans<br />

leur tête.<br />

Dans le cadre des suivis et contrôles instaurés de manière<br />

participative,des suivis et contrôles à part doivent aussi être<br />

faits par les organismes techniques d’appuis des communautés.<br />

En effet, à travers les expériences de l’élaboration du<br />

livret, il a été constaté que les instructions et formations<br />

n’ont pas été suivies correctement.Les agents des deux projets,<br />

ne se sont donc rendus compte qu’un peu tardivement<br />

de la nécessité de faire aussi des suivis et contrôles rapprochés.


Page 58 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Table 1: Caractéristiques des localités d’observation des lémuriens.<br />

Localités Andrakengy Andasipiro Ambodivoara Ambodimandresy<br />

Période 20 Novembre - 6 Décembre - 19 Novembre - 5 Décembre -<br />

d’observation 3 Décembre 2006 17 Décembre 2006 3 Décembre 2006 17 Décembre 2006<br />

Coordonnées S 14° 18’ 53.4’’ S 14° 12’ 10.0’’ S 14° 32’ 05.0’’ S 14° 32’ 05.0’’<br />

géographiques E 049< 16’ 38.3’’ E 049< 22’ 34.8’’ E 049< 26’ 42.1’’ E 049< 30’ 21.1’’<br />

Les suivis et contrôles effectués par les paysans ont quand<br />

même permis de localiser des sites d’observations de l’espèce<br />

Propithecus candidus (Simpona).Patel, en échangeant les<br />

données avec l’équipe des projets du WWF a publié en 2009<br />

que l’espèce Propithecus candidus est aussi rencontrée dans le<br />

Corridor de Betaolana et de Tsaratanana-Betaolana. Quelques<br />

caractéristiques des localités où les inventaires ont été<br />

effectués et où cette espèce a été observée sont synthétisées<br />

dans le tableau 1.<br />

Les alternatives aux pressions et menaces<br />

Les pressions sont définies comme étant les activités causant<br />

des impacts négatifs aussi bien sur les forêts que sur les<br />

lémuriens. Ces activités peuvent être légales ou illégales. Par<br />

contre, les menaces sont des activités pouvant apparaître<br />

dans le futur et pouvant avoir des impacts négatifs sur les<br />

cibles (dans le cadre de ce projet les cibles sont les lémuriens<br />

et leur habitat).<br />

Les analyses,effectuées dans le cadre de ces deux projets ont<br />

montré que les pressions et les menaces sur les cibles sont<br />

principalement constituées de: la déforestation causée essentiellement<br />

par les cultures sur brûlis, la dégradation des<br />

forêts engendrée par les prélvements diverses (bois de construction<br />

ou autre matériels pour la construction tels que les<br />

lianes et les bambous, cueillette de miel), la chasse moderne<br />

et le piège traditionnel. La déforestation tue à la fois les<br />

lémuriens et détruit leur habitat. Il en est de même des<br />

pièges traditionnels mais à un degré moindre.<br />

Pour arrêter les pressions sur les forêts, les deux projets du<br />

WWF ont donc analysé les activités pouvant remplacer<br />

celles formant une pression et constituant une menace dans<br />

le futur.En bref les activités développées sont:l’amélioration<br />

de l’exploitation de l’espace par l’agroforesterie; la promotion<br />

des cultures maraichères,l’amélioration des cultures de<br />

riz sur les bas fonds étroits par les Systèmes de Riziculture<br />

Améliorés (SRA),la promotion des briques pour la construction<br />

des maisons et le reboisement des espèces à croissance<br />

rapide; l’apiculture, la pisciculture et l’amélioration de l’élevage<br />

des volailles.<br />

Elaboration d’une stratégie régionale pour la conservation des<br />

lémuriens<br />

Les principales cibles de conservations des deux projets sont<br />

la forêt humide et les lémuriens. A part les transferts de<br />

gestion,les deux projets ont aussi été conduits pour éduquer,<br />

informer et sensibiliser les populations locales (partant des<br />

élèves dans les écoles primaires aux écoles secondaires mais<br />

aussi l’ensemble des populations concernées dans les communes).<br />

Pour la sauvegarde des lémuriens, les engagements des parties<br />

prenantes sont recherchés à travers l’élaboration et la<br />

mise en œuvre d’une stratégie régionale pour la conservation<br />

des lémuriens. Dans cette stratégie, les activités de<br />

chaque partie sont définies de manière à minimiser les<br />

dépenses monétaires afin de les rendre réalisables.<br />

Pour une meilleure intégration ou engagement de chaque<br />

entité, une Association des Amis des lémuriens a été créée.<br />

Cette association est mise en réseau via un site web aux<br />

amoureux des lémuriens dans le monde. La vision a été<br />

développée pour le long terme. Toutefois,<br />

le WWF s’est rendu comte<br />

qu’avec l’isolement de chaque localité,<br />

les réponses instantanées et directes<br />

des membres aux intéressés via le site<br />

web sont très limités et précaires. En<br />

effet,pour se connecter,les élèves doivent<br />

aller à Andapa; et même si cer-<br />

tains élèves d’Andapa sont concernés, le reflexe avec cette<br />

haute technologie nécessite encore un encadrement rapproché<br />

pour être efficace.<br />

Pour mieux unir les efforts,une Union Régionale des Associations<br />

de gestion des forêts, appelée aussi "Gestion Unie du<br />

Corridor de Betaolana" a aussi été créé. Malgré les efforts<br />

investis pour créer cette Union, elle est restée au stade de<br />

constitution (dépôt de dossier) au moment où les phases des<br />

deux projets sont terminées. Toutefois, elle est engagée et<br />

sera reprise dans les autres projets du WWF dans cette<br />

localité. Il est donc souligné ici l’importance des encadrements<br />

par des organismes promoteurs dans le long terme ou<br />

du moins à moyen terme pour obtenir de meilleurs impacts<br />

dans les phases du projet.<br />

Les parties prenantes définies dans ce document<br />

sont composées par les partenaires techniques et les autres<br />

organismes et/ou associations travaillant dans les domaines<br />

de l’environnement, les communautés de base, les organes<br />

de décentralisation et de déconcentration de l’Etat (les<br />

régions, les communes, les districts et les Fokontany).<br />

Conclusions<br />

La capitalisation des deux projets du WWF dans le Nord a<br />

permis de comprendre les efforts encore à fournir dans le<br />

cadre de la conservation des lémuriens et de leur habitat.Les<br />

deux projets conduits dans la région de SAVA sont complémentaires,<br />

ceci a permis une uniformisation des approches<br />

techniques et scientifiques. Les deux projets ont enrichis les<br />

données sur la diversité de la zone en flore et en faune.Ils ont<br />

pu se réaliser de manière participative. En effet, ils ont été<br />

très bien accueillis par les populations locales du fait que ces<br />

projets étaient majoritairement axés sur les activités de<br />

développement pour atteindre leurs objectifs de conservation.<br />

En conclusion, les défis à lancer doivent se concentrer sur<br />

deux aspects.<br />

Aspect technique: des études plus poussées sur la flore et la<br />

faune sont à conduire. En effet, les découvertes à faire sont<br />

encore immenses vu l’étendue du massif forestier.<br />

Aspect développement: des activités sont engagées et n’en<br />

sont qu’au début de leur mise en œuvre. Il serait nécessaire<br />

dans le futur de faire des évaluations de ces projets en<br />

termes d’impact sur la conservation des habitats et des<br />

lémuriens ainsi que sur l’amélioration des conditions de vie<br />

de la population locale.<br />

Ces deux projets ne sont pas des projets de recherches.<br />

Toutefois, ils ont pu être enrichis par les interventions des<br />

scientifiques consultants d’une part et des équipes du WWF<br />

d’autre part.<br />

Remerciements<br />

Nos vifs remerciements s’adressent aux bailleurs qui ont<br />

financés les projets du WWF Madagascar dans la région de<br />

SAVA. Ils ont permis de conduire à la fois des études scientifiques<br />

et des activités de développement.Ces bailleurs sont:<br />

WWF Allemagne, WWF Suède et la Conservation Internationale.<br />

Bien qu’à faible volume en terme de fonds, nous<br />

tenons aussi à remercier le WWF Danemark pour des fonds<br />

spécifiquement alloués à l’élaboration des support de com-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 59<br />

munication (poster,teeshirt,banderoles etc.) pour une meilleure<br />

compréhension des aspects de la conservation auprès<br />

des paysans en particulier et des parties prenantes en<br />

général.<br />

Bibliographie<br />

Erdmann, T.K.; Rambeloarisoa, G.; Ratsifandrihamanana, N.;<br />

Ranaivomanantsoa,A.F.;Abraham,A.;Powell,G.;Allnutt,T.<br />

2005. Vision sur la Biodiversité de l’Ecorégion de la forêt<br />

Humide de Madagascar. Rapport interne pour le WWF-<br />

International et le WWF Madagascar and West Indian<br />

Ocean Programme Office.<br />

Patel,E.R.2009.Silky Sifaka,Propithecus candidus,1871.In:R.A.<br />

Mittermeier, J. Wallis, A.B. Rylands, J.U. Ganzhorn, J.F.<br />

Oates,E.A.Williamson,E.Palacios,E.W.Heymann,M.C.M.<br />

Kierulff, Y.Long,J. Supriatna,C.Roos,S.Walker,L.Cortés-<br />

Ortiz, C. Schwitzer (eds.). Primates in Peril: The World’s<br />

25 Most Endangered Primates 2008-2010. IUCN/ SSC<br />

Primate Specialist Group (PSG), International Primatological<br />

Society (IPS), and Conservation International (CI),<br />

Arlington, VA. 84pp.<br />

Garreau,J.M.;Manantsara,A.2003.The protected-area complex<br />

of the Parc National de Marojejy and the Reserve<br />

Speciale d’Anjanaharibe-Sud. Pp. 1451-1458. In: S.M.<br />

Goodman, J.P. Benstead (eds.). The Natural History of<br />

Madagascar. University of Chicago Press, Chicago, USA.<br />

Goodman,S.M.;Raherilalao,M.J.; Rakotomalala,D.;Raselimanana,A.;Schütz,H.;Soarimalala,V.2003.Les<br />

Lémuriens.Pp.<br />

279-286.In:S.M.Goodman,L.Wilmé (eds.).Nouveaux résultats<br />

d’inventaires biologiques faisant référence à l’altitude<br />

dans la région des massifs montagneux de Marojejy<br />

et d’Anjanaharibe-Sud. Recherches pour le Développement,<br />

série sciences biologiques no. 19. Centre d’Information<br />

et de Documentation Scientifique et Technique,<br />

Antananarivo, Madagascar.<br />

Mittermeier, R.A.; Tattersall, I.; Konstant, W.R.; Meyer, D.;<br />

Mast,R.1994.Lemurs of Madagascar.Conservation International,<br />

Washington, D.C., USA.<br />

Mittermeier, R.A.; Valladares-Padua, C.; Rylands, A.B.; Eudey,<br />

A.A.; Butynski, T.M.; Ganzhorn, J.U.; Kormos, R.; Aiguiar, J.<br />

M.; Walker, S. 2005. The World’s 25 Most Endangered<br />

Primates 2004-2005. Lemur News 10: 3-6.<br />

Petter,J.J.;Charles-Dominique,P.1979.Vocal communication<br />

in prosimians. Pp. 247-305. In: G.A. Doyle and R.D. Martin<br />

(eds.).The Study of Prosimian Behavior.Academic Press.<br />

Rajaoson,A.;Rakotonirina,L.H.2007.Rapport pour le WWF;<br />

Inventaire des lémuriens et des forêts dans le Corridor de<br />

Betaolana et le Corridor Tsaratanana-Marojejy. 89p.<br />

Tattersall, I. 1982. The Primates of Madagascar. Columbia<br />

University Press, New York, USA.<br />

Genetic diversity in ten Indri (Indri indri)<br />

populations compared to other lemur<br />

species<br />

John Zaonarivelo 1,Rick Brenneman 2*,Rambinintsoa<br />

Andriantompohavana 3, Edward E. Louis, Jr. 2,3<br />

1University of North Madagascar, Antsiranana, Madagascar<br />

2Center for Conservation and Research, Omaha’s Henry<br />

Doorly Zoo,3701 South 10th Street,Omaha,NE 68107,USA<br />

3Madagascar Biodiversity Partnership, Antananarivo, 101<br />

Madagascar.<br />

*Corresponding author: rabr@omahazoo.com<br />

Genetic diversity is considered by most to be the key to long<br />

term survival and the maintenance of the evolutionary trajectory<br />

of a species.Genetic variation at loci under selection<br />

gives the species as a whole the mechanisms with which to<br />

respond or adapt to environmental changes.Lemurs in general<br />

are poorly studied with respect to establishing baseline<br />

parameter estimates for genetic diversity.Only limited popu-<br />

lation genetics studies exist on the genera Propithecus, Avahi,<br />

Varecia, Eulemur, Microcebus, and Mirza (Tab. 1). To date, the<br />

genus Indri is depauperate of population genetic data that<br />

would help better understand the genetic diversity harbored<br />

in its populations.<br />

Tab.1:Lemur studies using multilocus microsatellite suites to<br />

estimate genetic diversity as observed (HO) and expected<br />

(HE) heterozygosity levels.<br />

Species PopuSam- Loci HO HE Reference<br />

lationsples Indri indri 2 20 20 0.654 0.766 Zaonarivelo<br />

et al., 2007b<br />

Propithecus<br />

deckeni<br />

2 20 14* 0.790 0.851 Lei et al., 2008a<br />

P. deckeni 1 10 18* 0.776 0.776 Lei et al., 2008b<br />

P. coquereli 1 25 20 0.635 0.771 Rakotoarisoa<br />

et al., 2006a<br />

P. candidus 2 18 17* 0.648 0.614 McGuire et al., 2009<br />

P. coronatus 1 10 18* 0.771 0.774 Lei et al., 2008b<br />

P. diadema 2 20 13* 0.818 0.814 Ramarokoto<br />

et al., 2008<br />

P. edwardsi 2 20 12* 0.681 0.618 Bailey et al., 2009<br />

P. verreauxi 3 30 13 0.670 0.712 Rakotoarisoa<br />

et al., 2006b<br />

P. tattersalli 2 20 16* 0.673 0.683 Razafindrakoto<br />

et al., 2008<br />

P. tattersalli **3 75 13<br />

Quéméré et al.,<br />

0.699 0.682<br />

2009<br />

P. tattersalli 9 224 13<br />

Quéméré et al.,<br />

0.690 0.660<br />

2010<br />

Avahi laniger 5 37 22 0.640 0.838 Andriantompohavana<br />

et al., 2004<br />

A. occidentalis<br />

1 7 22 0.514 0.586 Andriantompohavana<br />

et al., 2004<br />

Varecia<br />

rubra<br />

2 32 <strong>15</strong> 0.616 0.618 Razakamaharavo<br />

et al., 2010<br />

V. variegata<br />

variegata<br />

4 35 25 0.337 0.506 Louis et al., 2005<br />

Eulemur<br />

cinereiceps<br />

2 21 16* 0.598 0.641<br />

Tokiniaina et al.,<br />

2009<br />

E. collaris 4 40 10* 0.617 0.576 Ranaivoarisoa<br />

et al., 2010<br />

E. sanfordi 5 54 11* 0.562 0.567 Ramanamahefa<br />

et al., 2010a<br />

E. coronatus 6 80 11* 0.636 0.673 Ramanamahefa<br />

et al., 2010b<br />

E. rubriventer<br />

2 12 20 0.531 0.643 Andriantompohavana<br />

et al., 2007<br />

Lemur catta 1 24 7*<br />

Zaonarivelo et al.,<br />

0.837 0.838<br />

2006<br />

Microcebus<br />

ravelobensis<br />

8 205 7<br />

Olivieri et al.,<br />

0.6<strong>15</strong> 0.605<br />

2007<br />

M. ravelobensis<br />

12 187 8<br />

Radespiel et al.,<br />

0.708 0.734<br />

2008<br />

M. bongolensis<br />

3 45 8<br />

Olivieri et al.,<br />

0.557 0.565<br />

2008<br />

M. danfossi 7 78 8 0.628 0.662 Olivieri et al., 2008<br />

Mirza<br />

coquereli<br />

***1 69 7<br />

Markolf et al.,<br />

0.712 0.799<br />

2008<br />

* Heterozygosity averages calculated using loci with null allele<br />

frequency estimates less than 0.10.<br />

** Estimated over genetic clusters, not actual populations<br />

*** Samples taken from 1993-2006.<br />

The Indri (Indri indri, Gmelin, 1788), or Babakoto as it is<br />

known in most of eastern Madagascar,is the largest extant lemur<br />

(Powzyk and Thalmann, 2003). Indri are primarily midlevel<br />

forest folivores preferentially feeding on immature<br />

leaves and somewhat also on mature leaf matter, flowers,<br />

fruits,seeds and even bark when necessary (Britt et al.,2002).<br />

The Babakoto is currently threatened by the rapid reduction


Page 60 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

of forest cover and fragmentation of suitable habitat (Harper<br />

et al., 2007) which limits the species’ density and range<br />

(Glessner and Britt, 2005). Although protected, the Babakoto<br />

is also threatened by subsistence hunting pressure and<br />

bush meat trade (Golden, 2005). Designated as Endangered<br />

according to the IUCN Red List of Threatened Species<br />

(IUCN, 2008), I. indri is currently split into two subspecies,<br />

Indri indri indri (Gmelin, 1788) and Indri i. variegatus (Gray,<br />

1872). Here, we present population genetic parameter estimates<br />

from populations along the entire range of the species<br />

analyzed from nuclear microsatellite multilocus genotypes.<br />

Methods<br />

Samples were collected from 106 Indri from 10 sites across<br />

the geographical range of the species (Fig. 1). From north to<br />

south,the forests represented in the collection were Anjanaharibe-Sud<br />

Special Reserve, Marotandrano Special Reserve,<br />

Ambatovaky Special Reserve,Zahamena Special Reserve and<br />

National Park, Betampona Nature Reserve, Anjozorobe<br />

Regional Forest Reserve, Mantadia National Park, Analamazoatra<br />

Special Reserve (Andasibe),Maromizaha Classified<br />

Forest, and Anosibe an’ala Classified Forest. The elevations<br />

of the sampling sites ranged from lowland forests (Anosibe<br />

An’ala, 125 m asl) to highland forests (Anjozorobe, 1358 m<br />

asl).<br />

Fig. 1: Map of Madagascar indicating the study areas.<br />

Immobilization and collection<br />

All lemurs investigated in this study were free-ranging and<br />

were immobilized with a CO2 powered DAN-INJECT (Brrkop,<br />

Denmark) Model JM rifle propelling Pneu-Darts (Williamsport,<br />

PA) loaded with 10 mg/kg estimated body weight<br />

of Telazol ® (Fort Dodge).We recorded the location (within 6<br />

m accuracy) of all of the immobilized lemurs using a global<br />

positioning system (GPS) device. Each individual was transported<br />

back to the base camp where complete morphometric<br />

data were taken (Zaonarivelo et al., 2007a). Whole<br />

blood (1.0 cc per kilogram) from the femoral artery and<br />

2.0 mm skin biopsies from the ear pinnae were collected<br />

from each sedated lemur (Junge and Louis, 2002). A Home<br />

Again ® (Home Again Pet Recovery Service, East Syracuse,<br />

NY) microchip was placed subcutaneously between the scapulae<br />

of each lemur to positively identify individuals re-captured<br />

during any future immobilizations. Following data and<br />

sample collection, an injection of lactated Ringer’s solution<br />

was administered subcutaneously to support maintenance<br />

requirements and to dissipate the effect of the Telazol ®.Animals<br />

were monitored for three hours post recovery then<br />

released according to the capture GPS coordinates.<br />

Data generation<br />

Ear punches were dissected into quarters and DNA was<br />

extracted using standard PCI/Chloroform procedures (Sambrook<br />

et al., 1989). Approximately 50 ng of genomic DNA<br />

was used for each PCR reaction. Multilocus genotypes were<br />

generated from a suite of 20 Indri-specific microsatellite loci<br />

as described in Zaonarivelo et al. (2007b). The genotype file<br />

was checked for typographical errors,scoring errors,stutter<br />

bands and allele dropout with Micro-Checker (van Oosterhout<br />

et al., 2004) and Microsatellite Analyser (MSA; Dieringer<br />

and Schlötterer, 2002). We used CERVUS (version 2.0,<br />

Marshall et al.,1998;Slate et al.,2000) to identify loci with excessive<br />

null allele frequency estimates (nf > 0.10) and to estimate<br />

polymorphic information content of the loci.Moderate<br />

(0.05 < nf < 0.20) and high (0.20 < nf) null allele frequencies<br />

can have significant effects on population genetics parameter<br />

estimates (Chapuis and Estoup, 2007). The process of redesigning<br />

primer pairs is both costly and time consuming;<br />

therefore,we opted to delete problematic loci from the data<br />

set. We deleted eight loci with moderate null allele frequencies<br />

(nf > 0.1) to reduce the bias from misclassification of null<br />

heterozygotes as homozygotes (Callen et al., 1993; Hoffman<br />

and Amos, 2005) and to control the variance of parameter<br />

estimates (Chapuis and Estoup, 2007). The accepted loci<br />

were verified for independence of linkage disequilibrium<br />

(with Bonferroni-adjusted P-values) in FSTAT (Goudet,1995,<br />

2001).<br />

Hardy-Weinberg exact tests (Guo and Thompson, 1992)<br />

were performed by locus and population in Genepop (version<br />

4.0, Raymond and Rousset, 1995). Initially, we used the<br />

default settings for the MCMC estimation of HWE then<br />

increased the batch size from 100 to 250 to reduce the standard<br />

error of the P-value to below 0.01. Genetic diversity<br />

was measured as observed heterozygosity (HO) and expected<br />

heterozygosity (HE). In addition, the number of effective<br />

migrants was estimated globally and pair-wise using the private<br />

allele method. We used FSTAT to calculate the total<br />

number of alleles (k), mean number of alleles (MNA), and<br />

rarefacted allelic richness (AR; Leberg, 2002) by locus and<br />

population.Allelic richness estimates the allelic diversity in a<br />

data set based on the population with the fewest number of<br />

individuals contributing genotypes by locus. This is an unbiased<br />

comparison of allelic diversity since populations with<br />

more contributors provide a greater opportunity to capture<br />

more alleles from lower frequency occurrences. Wright’s Fstatistics<br />

were estimated in FSTAT for within population<br />

similarity (FIS) and between population differences (FST)<br />

according to Weir and Cockerham (1984).<br />

The effective population sizes were estimated with the linkage<br />

disequilibrium (LD) option in NeEstimator (Peel et al.,<br />

2004; Hill, 1981; Waples, 1991). We tested all populations<br />

having met the minimum statistical threshold required (n =<br />

20 genes or 10 individuals) for the presence of bottleneck<br />

events using Bottleneck (version 2.0, Cornuet and Luikart,


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 61<br />

1996; Luikart et al., 1998; Piry et al., 1999) under the Infinite<br />

Alleles Model (IAM; Kimura and Crow, 1964), the Stepwise<br />

Mutation Model (SMM;Ohta and Kimura,1973),and the Two<br />

Phase Model (TPM;di Rienzo et al.,1995).We varied the proportion<br />

of the single step contribution to the TPM to identify<br />

the P < 0.05 threshold of significance.The program identifies<br />

populations with an excess of heterozygosity relative to<br />

mutation-drift equilibrium which is indicative of a reduction<br />

in the effective population size (Maruyama and Fuerst,1985).<br />

An estimate of relationships among all individuals sampled at<br />

each forest was done in SPAGeDi (Hardy and Vekemans,<br />

2002),then compared to a simulation of known pedigreed individuals.<br />

The analysis was performed to calculate the relationship<br />

coefficients described in Queller and Goodnight<br />

(1989) in the absence of spatial data.<br />

Results<br />

Genetic diversity as mean number of alleles ranged from<br />

6.08-8.92 per population. Using the rarefacted allelic richness,<br />

the range lowered to 5.87-7.67. The expected heterozygosity<br />

ranged from 0.77-0.86 (P > 0.05;Fig.2) with an average<br />

of 0.81, while the observed heterozygosity ranged from<br />

0.65-0.84 (P < 0.05; Fig. 3) with an average of 0.74. The number<br />

of effective breeders in the sampled populations averaged<br />

between 12.6 and 39.6 per population (Tab. 2).<br />

Results from Bottleneck showed that none of the 10 populations<br />

deviated from a mutation-drift equilibrium under the<br />

SMM.Three populations,Anjanaharibe Sud,Ambatovaky and<br />

Anjozorobe did not show evidence of population bottleneck<br />

under the IAM either.The rest of the populations were significant<br />

for bottleneck events under the IAM and varying proportions<br />

of single step contributions under the TPM.<br />

The frequencies of the relationship coefficients estimated<br />

using SPAGeDi were overlaid upon a simulation generated<br />

from known pedigreed data so that each of the population’s<br />

relative distribution of relationships could be compared with<br />

parent offspring, full sibling, half sibling and unrelated relationship<br />

coefficient distributions (Fig. 4). The data indicated<br />

that the sampling was from individuals that were somewhat<br />

related more than the unrelated individuals in the reference<br />

simulation. Inbreeding can also be due to background relatedness<br />

where an increased allelic identity by descent is a result<br />

from bottleneck events in the population’s history.Relationship<br />

coefficient distributions sup-<br />

port the assumption that the individuals<br />

sampled were often from family<br />

groups. All of these sources may potentially<br />

be due to the effects of habitat<br />

fragmentation which is certainly<br />

the case in the Anosibe an’ala population<br />

where the habitat is so fragmented<br />

that although multiple family<br />

groups were encountered, they were<br />

found in isolated forest fragments.<br />

Discussion<br />

Of the 10 Indri populations sampled,<br />

six (Anjanaharibe Sud, Ambatovaky,<br />

Zahamena, Betampona, Mantadia, and<br />

Anosibe an’ala) deviated from HWE<br />

with an excess of homozygotes.Considering<br />

inbreeding as potential cause,<br />

five of the populations (Anjanaharibe<br />

Sud, Ambatovaky, Betampona, Mantadia,<br />

and Andasibe) had relatively<br />

high FIS and one (Anosibe an’ala) had<br />

Y<br />

.90<br />

.80<br />

.70<br />

.60<br />

55DD<br />

A B C D E F G H I J<br />

X<br />

Fig. 2: Ranges of expected heterozygosities with 95 % confidence<br />

intervals: A) Anjanaharibe Sud; B) Marotandrano; C)<br />

Ambatovaky; D) Zahamena; E) Betampona; F) Anjozorobe;<br />

G) Mantadia;H) Andasibe;I) Maromizaha; J) Anosibe an’ala.<br />

4DF4<br />

Y<br />

.90<br />

.85<br />

.80<br />

.75<br />

A B C D E F G H I J<br />

X<br />

Fig. 3: Ranges of observed heterozygosities with 95 % confidence<br />

intervals: A) Anjanaharibe Sud; B) Marotandrano; C)<br />

Ambatovaky; D) Zahamena; E) Betampona; F) Anjozorobe;<br />

G) Mantadia;H) Andasibe;I) Maromizaha; J) Anosibe an’ala.<br />

Tab. 2: Population genetic parameter estimates for 10 populations comprised of n<br />

samples each derived from 12 microsatellite loci for number of alleles (k), the mean<br />

number of alleles (MNA), allelic richness (AR), probability of satisfying Hardy-Weinberg<br />

Equilibrium (HWE), observed (HO) and expected (HE) heterozygosities, inbreeding<br />

estimate (FIS), the number of effective breeders (Neb) estimated with the<br />

linkage disequilibrium method and 95 % confidence interval,and results from the Bottleneck<br />

test under the infinite allele model (IAM) and the two phased model (TPM)<br />

with proportion of multistep mutations contributing to the P < 0.05 significance level.<br />

n k MNA AR HWE HO HE FIS Neb 95% CI IAM TPM<br />

ANJ 10 80 6.67 6.41 * 0.67 0.77 0.135 23.0 16.2-37.8 NS NS<br />

TAND 10 73 6.08 5.87 NS 0.75 0.77 0.024 21.9 <strong>15</strong>.1-36.9 ** 70<br />

VAK 11 76 6.33 5.92 NS 0.69 0.77 0.121 20.1 14.7-30.4 NS NS<br />

ZAH 14 107 8.92 7.65 NS 0.81 0.86 0.060 39.6 28.8-61.3 ** 10<br />

BET 10 79 6.58 6.37 ** 0.73 0.80 0.093 18.3 13.5-27.1 ** 20<br />

ANJZ 10 83 6.92 6.70 NS 0.84 0.79 -0.066 20.9 <strong>15</strong>.1-32.5 NS NS<br />

TAD 10 96 8.00 7.67 NS 0.75 0.85 0.120 20.1 <strong>15</strong>.3-28.3 ** 70<br />

DASI 11 81 6.75 6.40 NS 0.73 0.81 0.095 12.6 10.2-16.2 ** 5<br />

MIZA 10 89 7.42 7.17 NS 0.83 0.84 0.021 <strong>15</strong>.9 12.4-21.3 ** 5<br />

ANOSIBE 10 92 7.67 7.38 * 0.65 0.85 *0.236 28.8 19.9-49.3 ** NS<br />

* P < 0.05, ** P < 0.001; Anjanaharibe-Sud(ANJ), Marotandrano (TAND), Ambatovaky (VAK),<br />

Zahamena (ZAH), Betampona (BET), Anjozorobe (ANJZ), Mantadia (TAD), Andasibe (DASI).<br />

Maromizaha (MIZA), Anosibe an’ala (ANOSIBE).


Page 62 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Frequency<br />

Frequency<br />

Frequency<br />

Frequency<br />

Frequency<br />

Frequency<br />

Frequency<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

Anjanaharibe-Sud<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Morontandrano<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Ambatovaky<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Zahamena<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Betampona<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Anjozorobe<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Mantadia<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Frequency<br />

Frequency<br />

Frequency<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

Andasibe<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Maromizaha<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Anosibe an'ala<br />

-0,5 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9<br />

Relationship Coefficients<br />

Parent-Offspring Full Sibling Half Sibling<br />

Unrelated All Populations<br />

Fig. 4: Distributions of relationship coefficients estimated in<br />

each population overlaid on a simulation of 10,000 known<br />

genotypes and pedigreed relationships (Queller and Goodnight,<br />

1989).<br />

a significantly high FIS estimate. Considering relationship<br />

among the samples as one manner of capturing inbreeding,all<br />

populations show some degree of relationship above what<br />

would be expected if the sampled individuals were unrelated.<br />

This is not surprising since samples were collected as found<br />

and this could include individuals that are members of a family<br />

group which is supported by the relationship coefficient<br />

distributions in Fig. 2.<br />

All populations demonstrated some degree of recent reduction<br />

in the effective population sizes.The bottlenecks did not<br />

appear to have been a single global event as different populations<br />

showed differing degrees to which the bottlenecks<br />

were detected. Using Lawler’s (2008) 4*Neb*generations,<br />

the bottlenecks detected would have had an expected window<br />

of occurrence of up to 250 to 800 years ago, within the<br />

timeframe of human encroachment. Hence, we postulate<br />

that among other things, anthropogenic disturbances,<br />

whether habitat destruction or subsistence hunting, may<br />

have influenced the demographic reduction that we detected<br />

in the bottleneck test. These baseline values could be useful<br />

in long-term or future studies to determine genetic health<br />

trends over time under various forest or habitat conditions.<br />

Genetic diversity is considered to be the most important<br />

factor in determining the genetic health of a species or population.Among<br />

the lemurs,there is little information in the literature<br />

that addresses the genetic diversity estimations for<br />

multiple populations of a given species. Ranaivoarisoa et al.<br />

(2010) found the observed heterozygosity in three of four<br />

Eulemur collaris populations to be higher than the expected<br />

heterozygosity. In E. coronatus, Ramanamahefa et al. (2010a)


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 63<br />

found the expected heterozygosity to be higher in five out of<br />

six populations,one comparison was significantly higher (P <<br />

0.01).In E.sanfordi,Ramanamahefa et al.(2010b) found that in<br />

all populations sampled,the observed heterozygosities were<br />

higher than the expected heterozygosities. Lastly, Quéméré<br />

et al. (2009), found that their study estimated the expected<br />

heterozygosity level for several populations of P. tattersalli to<br />

be higher than the estimate found by Razafindrakoto et al.<br />

(2008) using a different marker suite in different populations.<br />

Other studies (included in Tab. 2) have estimated heterozygosity<br />

levels for one or two populations of various lemur<br />

species in recent years.While these estimates provide some<br />

general sense of genetic diversity, they are not standardized<br />

(e.g. not the same markers were used in each study) so the<br />

estimates are contingent on the polymorphic information<br />

content and amplification quality in each independent study.<br />

What we do see is a relative trend that the observed<br />

heterozygosities are in general lower, but usually not significantly,<br />

than the expected heterozygosities under the assumptions<br />

of HWE.<br />

In this study on I. indri, we found the differences among the<br />

HO estimates to differ but not significantly and the differences<br />

among the HE estimates to differ with low significance<br />

(P < 0.05). The average estimates for heterozygosity, thus<br />

genetic diversity, were in the upper range of those found in<br />

limited population studies on other lemur species. These<br />

estimate trends provide the basis for future and integrative<br />

studies where multiple species might be considered in sympatric<br />

zones to investigate the overall genetic health of the<br />

biodiversity and to better understand the effects that humans<br />

may be having on the evolutionary potential of lemurs.<br />

Acknowledgements<br />

We acknowledge the Ministry of Environment and Eaux &<br />

Forets, Madagascar National Parks, U.S. Fish & Wildlife Service,<br />

Professor Gisele and the Department of Paleontology<br />

and Anthropology, University of Antananarivo for their help.<br />

This project would not have been possible without the support<br />

of the staff, guides, and drivers of Henry Doorly Zoo<br />

and the Madagascar Biodiversity Partnership. We also wish<br />

to thank the Theodore F.and Claire M.Hubbard Family Foundation,<br />

Bill and Berniece Grewcock, the Ahmanson Foundation,<br />

the James Family Foundation and the Hawks Family<br />

Foundation for their support of this project.<br />

References<br />

Andriantompohavana, R.; Randrianamanana, J.C.; Sommer,<br />

J.A.;Brenneman,R.A.;Louis,E.E.Jr.2004.Characterization<br />

of twenty-two microsatellite loci developed from the<br />

genome of the Woolly Lemur (Avahi laniger). Mol. Ecol.<br />

Notes 4(3): 400-403.<br />

Andriantompohavana, R.; Morelli, T.L.; Behncke, S.M.; Engberg,S.E.;Brenneman,R.A.;Louis,E.E.Jr.2007.Characterization<br />

of twenty Eulemur-specific microsatellite loci characterized<br />

in two populations of the Red-Bellied Brown<br />

Lemur, Eulemur rubriventer. Mol. Ecol. Notes 7(6): 1162-<br />

1165.<br />

Bailey, C.A.; Lei, R.;Brenneman, R.A.; Louis, E.E. Jr. 2009. Characterization<br />

of 21 microsatellite loci in the Milne-Edwards<br />

sifaka (Propithecus edwardsi). Conserv. Genet. 10:<br />

1389-1392.<br />

Britt,A.;Randriamandratonirina,N.J.;Glasscock,K.D.;Iambana,<br />

B.R. 2002. Diet and feeding behaviour of Indri indri in a<br />

low-altitude rain forest. Folia Primatol. 73: 225-39.<br />

Callen, D.F.; Thompson, A.D.; Shen, Y.; Phillips, H.A.; Richards,<br />

R.I.; Mulley, J.C.; Sutherland, G.R. 1993. Incidence and<br />

origin of "null" alleles in the (AC)n microsatellite markers.<br />

Am. J. Hum. Genet. 52: 922-927.<br />

Chapuis, M.-P.; Estoup, A. 2007. Microsatellite null alleles and<br />

estimation of population differentiation. Mol. Biol. Evol.<br />

24(3): 621-631.<br />

Cornuet,J.M.;Luikart,G.1996.Description and power analysis<br />

of two tests for detecting recent population bottlenecks<br />

from allele frequency data. Genetics 144: 2001-<br />

2014.<br />

Di Rienzo,A.;Peterson,A.C.;Garza,J.C.;Valdes,A.M.;Slatkin,<br />

M.; Freimer, N.B. 1994. Mutational processes of simplesequence<br />

repeat loci in human populations. Proc. Nat.<br />

Acad. Sci. USA. 91: 3166-3170.<br />

Dieringer, D.; Schlötterer, C. 2002. Microsatellite analyser<br />

(MSA): a platform independent analysis tool for large<br />

microsatellite data sets. Mol. Ecol. Notes 1(3): 167-169.<br />

Glessner,K.D.G.;Britt,A.2005.Population density and home<br />

range size of Indri indri in a protected low altitude rain<br />

forest. Int. J. Primatol. 26(4): 855-872.<br />

Gmelin, J.F. 1788. Caroli a Linné systema naturae per regna<br />

tria naturae, secundum classes, ordines, genera, species,<br />

cum characteribus, differentiis, synonymis, locis. Tomus I.<br />

Editio decima tertia,aucta,reformata.42:1-500.Lipsiae,G.<br />

E. Beer.<br />

Golden, C. 2005. Eaten to Endangerment: Mammal hunting<br />

and the bushmeat trade in Madagascar’s Makira forest.<br />

M.S. Thesis: Accession 17105 Box 1, Harvard University<br />

Library, Cambridge, MA.<br />

Goudet, J. 1995. FSTAT, a computer program to test F-statistics.<br />

J. Hered. 86: 485-486.<br />

Goudet, J. 2001. FSTAT, a program to estimate and test gene<br />

diversities and fixation indices (version 2.9.3). Updated<br />

from Goudet (1995).<br />

Guo,S.W.;Thompson,E.A.1992.Performing the exact test of<br />

Hardy-Weinberg proportion for multiple alleles. Biometrics<br />

48: 361-372.<br />

Gray, J.E. 1872. On the varieties of Indris and Propithecus.<br />

Annals and Magazine of Natural History, London, British<br />

Museum Trustees.<br />

Hardy, O.J.; Vekemans, X. 2002. SPAGeDi: a versatile computer<br />

program to analyse spatial and genetic structure at the<br />

individual level. Mol. Ecol. Notes 2: 618-620.<br />

Harper, G.J.; Steininger, M.K.; Tucker C.J.; Juhn, D.; Hawkins, F.<br />

2007. Fifty years of deforestation and forest fragmentation<br />

in Madagascar. Environ. Conserv. 34(4): 1-9.<br />

Hill, W.G. 1981. Estimation of effective population size from<br />

data on linkage disequilibrium. Genet. Res. 38: 209-216.<br />

Hoffman, J.J.; Amos, W. 2005. Microsatellite genotyping<br />

errors: detection approaches, common sources, and consequences<br />

for paternal exclusion. Mol. Ecol. 14: 599-612.<br />

IUCN. 2008. IUCN Red List of threatened species.<br />

www.iucnredlist.org. Downloaded on 17 April 2009.<br />

Junge,R.E.;Louis,E.E.2002.Medical evaluation of free-ranging<br />

primates in Betampona Reserve, Madagascar. Lemur<br />

News 7:23-25.<br />

Kimura,M.;Crow J.F. 1964.The number of alleles that can be maintained<br />

in a finite population. Genetics 49: 725-738.<br />

Lawler, R. 2008. Testing for a historical bottleneck in wild<br />

Verreaux’s sifaka (Propithecus verreauxi verreauxi) using<br />

microsatellite data. Am. J. Primatol. 70: 990-994.<br />

Leberg, P.L. 2002. Estimating allelic richness: Effects of ample<br />

size and bottlenecks. Mol. Ecol. 11: 2445-2449.<br />

Lei, R.; McGuire, S.M.; Shore, G.D.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2008a. Characterization of twenty-one microsatellites<br />

developed from Propithecus deckeni deckeni.Mol.Ecol.<br />

Res. 8(4): 773-776.<br />

Lei, R.; McGuire, S.M.; Shore, G.D.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2008b. Characterization of twenty microsatellites<br />

developed from Propithecus deckeni coronatus with crossamplification<br />

in Propithecus deckeni deckeni. Conserv.<br />

Genet. 9(4): 999-1002.<br />

Louis, E.E. Jr.; Ratsimbazafy, J.H.; Razakamaharavo, V.R.; Pierson,<br />

D.J.; Barber, R.C.; Brenneman, R.A. 2005. Conservation<br />

genetics of black and white ruffed lemurs (Varecia variegata<br />

variegata) from southeastern Madagascar. Animal<br />

Conservation 8: 105-111.<br />

Luikart, G.; Allendorf, F.W.; Cornuet, J.-M.; Sherwin, W.B.<br />

1998. Distortion of allele frequency distributions provides<br />

a test for recent population bottlenecks. J. Hered. 89:<br />

238-247.<br />

Markolf, M.; Roos, C.; Kappeler, P. 2008. Genetic and demographic<br />

consequences of a rapid reduction in population<br />

size in a solitary lemur (Mirza coquereli). Open Conserv.<br />

Biol. J. 2: 21-29.


Page 64 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

Marshall, T.C.; Slate, J.; Kruuk, L.E.B.; Pemberton, J.M. 1998.<br />

Statistical confidence for likelihood-based paternity inference<br />

in natural populations. Mol. Ecol. 7(5): 639-655.<br />

Maruyama, T.; Fuerst, P.A. 1985. Population bottlenecks and<br />

non equilibrium models in population genetics.II.Number<br />

of alleles in a small population that was formed by a recent<br />

bottleneck. Genetics 111: 675-689.<br />

McGuire, S.M.; Emodi, G.P.; Shore, G.D.; Brenneman, R.A.;<br />

Louis, E.E. Jr. 2009. Characterization of 21 microsatellite<br />

marker loci in the silky sifaka (Propithecus candidas). Conserv.<br />

Genet. 10(4): 985-988.<br />

Ohta,T.;Kimura,M.1973.Simulation studies on genetic electrophoretically<br />

genetic variability in a finite population.<br />

Genetics 76: 6<strong>15</strong>-624.<br />

Olivieri,G.;Zimmermann,E.;Randrianambinina,B.;Rasoloharijaona,<br />

S.; Rakotondravony, D.; Guschanski, K.; Radespiel,<br />

U. 2007. The ever-increasing diversity in mouse lemurs:<br />

three new species in north and northwestern Madagascar.<br />

Mol. Phylogenet. Evol. 43(1): 309-27.<br />

Olivieri, G.I.; Sousa, V.; Chikhi, L.; Radespiel, U. 2008. From<br />

genetic diversity and structure to conservation: genetic<br />

signature of recent population declines in three mouse<br />

lemur species (Microcebus spp.). Biol. Conserv. 141: 1257-<br />

1271.<br />

Peel,D.;Ovenden,J.R.;Peel,S.L.2004.NeEstimator:software<br />

for estimating effective population size, Version 1.3.<br />

Queensland Government, Department of Primary Industries<br />

and Fisheries.<br />

Piry, S.; Luikart, G.; Cornuet, J.M. 1999. BOTTLENECK: A<br />

computer program for detecting recent reductions in the<br />

effective population size using allele frequency data. J.<br />

Hered. 90: 502-503.<br />

Powzyk, J.; Thalmann, U. 2003. Indri indri, Indri. Pp. 1342-1345.<br />

In: S.M. Goodman; J.P. Benstead (eds.). The Natural History<br />

of Madagascar. University of Chicago Press.<br />

Queller, D.C.; Goodnight, K.F. 1989. Estimating relatedness<br />

using genetic markers. Evolution 43: 258-275.<br />

Quéméré,E.;Louis,E.E.Jr.;Ribéron,L.;Chikhi,L.;Crouau-Roy,<br />

B. 2009. Non-invasive conservation genetics of the critically<br />

endangered golden-crowned sifaka (Propithecus<br />

tattersalli): high diversity and significant genetic differentiation<br />

over a small range. Conserv. Genet. DOI:<br />

10.1007/s10592-009-9837-9.<br />

Quéméré, E.; Crouau-Roy, B.; Rabarivola, C.; Louis, E.E. Jr.;<br />

Chikhi, L. 2010. Landscape genetics of an endangered<br />

lemur (Propithecus tattersalli) within its entire fragmented<br />

range. Conserv. Genet.<br />

DOI:10.1007/s10592-009-9837-9.<br />

Radespiel, U.; Rakotondravony, R.; Chikhi, L. 2008. Natural<br />

and anthropogenic determinants of genetic structure in<br />

the largest remaining population of the endangered<br />

golden-brown mouse lemur,Microcebus ravelobensis.Am.J.<br />

Primatol. 70: 860-870.<br />

Rakotoarisoa, G.; Shore, G.D.; McGuire, S.M.; Engberg, S.E.;<br />

Louis, E.E. Jr.; Brenneman, R.A. 2006a. Characterization of<br />

20 microsatellite marker loci in the Coquerel’s Sifaka (Propithecus<br />

coquereli). Mol. Ecol. Notes. 6(4): 1119-1121.<br />

Rakotoarisoa, G.; Shore, G.D.; McGuire, S.M.; Engberg, S.E.;<br />

Louis, E.E. Jr.; Brenneman, R.A. 2006b. Characterization of<br />

13 microsatellite marker loci in the Verreaux’s Sifaka (Propithecus<br />

verreauxi). Mol. Ecol. Notes. 6(4): 1122-1125.<br />

Ramanamahefa, R.; McGuire, S.M.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2010a. Population genetic parameter estimates for<br />

five populations of Sanford’s lemur, Eulemur sanfordi<br />

(Archbold, 1932), from northern Madagascar. Lemur<br />

News 14: 26-31.<br />

Ramanamahefa, R.; McGuire, S.M.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2010b. Population genetic parameter estimates for<br />

six populations of crowned lemurs, Eulemur coronatus<br />

(Gray,1842),from northern Madagascar.Lemur News 14:<br />

21-26.<br />

Ramarokoto,R.;Lei,Runhua,R.;Vincent,J.;Day,S.;Shore,G.D.;<br />

Brenneman, R.A.; Louis, E.E. Jr. 2008. Characterization of<br />

twenty-one microsatellites developed from Propithecus<br />

diadema. Conserv. Genet. 9(5): 1377-1380.<br />

Ranaivoarisoa, J.-F.; McGuire, S.M.; Lei, R.; Ravelonjanahary,<br />

S.S.;Engberg,S.E.;Bailey,C.;Kimmel,L.;Razafimananjato,T.;<br />

Rakotonomenjanahary, R.; Brenneman, R.A.; Louis, E.E. Jr.<br />

2010. Population genetic study of the Brown Collared<br />

Lemur (Eulemur collaris) in Southeastern Madagascar.<br />

Online Conserv. Biol. J. 4: 1-8.<br />

Raymond,M.;Rousset,F.1995.GENEPOP (Version3.1):Population<br />

genetics software for exact tests and ecumenicism.<br />

J. Hered. 86: 248-249.<br />

Razafindrakoto A.; Quéméré, E.; Shore, G.D.; McGuire, S.M.;<br />

Louis, E.E. Jr.; Brenneman, R.A. 2008. Characterization of<br />

20 microsatellites marker loci in the golden-crowned<br />

sifaka (Propithecus tattersalli). Conserv. Genet. 9(4): 1027-<br />

1031.<br />

Razakamaharavo, V.; McGuire, S.M.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2010. Genetic architecture of regional red ruffed<br />

lemur (Varecia rubra) populations in Masoala National<br />

Park of Madagascar. Primates 51(1): 53-61.<br />

Sambrook,J.;Fritch,E.F.;Maniatus,T.1989.Molecular Cloning:<br />

a Laboratory Manual. 2nd edn. Cold Spring Harbor Press,<br />

New York.<br />

Slate, J.; Marshall, T.C.; Pemberton, J.M. 2000. A retrospective<br />

assessment of the accuracy of the paternity inference program<br />

CERVUS. Mol. Ecol. 9(6): 801-808.<br />

Tokiniaina, H.; Bailey, C.A.; Shore, G.D.; Delmore, K.E.;<br />

Johnson,S.E.;Louis,E.E.Jr.;Brenneman R.A.2009.Characterization<br />

of 18 microsatellite marker loci in the whitecollared<br />

lemur (Eulemur cinereiceps). Conserv. Genet. 10:<br />

1459- 1462.<br />

Van Oosterhaut,C.;Hutchinson,W.F.;Wills, D.P.M.;Shipley,P.<br />

2004. MICRO-CHECKER: software for identifying and<br />

correcting genotyping errors in microsatellite data. Mol.<br />

Ecol. Notes 4: 535-538.<br />

Waples,R.S.1991.Genetic methods for estimating the effective<br />

size of Cetacean populations.Pp.279-300.In:A.R.Hoelzel<br />

(ed.).Genetic Ecology of Whales and Dolphins, Special<br />

Issue 13.International Whaling Commission,London.<br />

Weir, B.; Cockerham, C.C. 1984. Estimating F-statistics for<br />

the analysis of population structure. Evolution 38(6):<br />

1358-1370.<br />

Zaonarivelo, J.R.; Andriantompohavana,R.;Engberg, S.E.; Kelley,<br />

S.G.; Randriamanana, J.-C.; Louis, E.E. Jr.; Brenneman,<br />

R.A. 2007a. Morphometric data for Indri (Indri indri) collected<br />

from 10 forest fragments in eastern Madagascar.<br />

Lemur News 12: 17-21.<br />

Zaonarivelo, J.R.; Sommer, J.A.; McGuire, S.M.; Engberg, S.E.;<br />

Brenneman,R.A.;Louis,E.E.Jr.2007b.Isolation and characterization<br />

of twenty microsatellite marker loci from the<br />

Indri (Indri indri) genome. Mol. Ecol. Notes 7: 25-28.<br />

Zaonarivelo, J.R.; Andriantompohavana, R.; Shore G.D.; Engberg,<br />

S.E.; McGuire, S.M.; Louis, E.E. Jr.; Brenneman, R.A.<br />

2006.Characterization of 21 microsatellite marker loci in<br />

the ring-tailed lemur (Lemur catta). Conserv. Genet. 8(5):<br />

1209-1212.<br />

Verreaux’s sifaka fur condition in the<br />

spiny forest of southern Androy<br />

Ivan Norscia 1*, Jean Lambotsimihampy 2, Elisabetta<br />

Palagi 1,3<br />

1Natural History Museum, UniversitB di Pisa, Via Roma, 79,<br />

56011, Calci (PI), Italy<br />

2Berenty Village, Antandroy, Madagascar<br />

3Unit of Cognitive Primatology and Primate Center,Institute<br />

of Cognitive Sciences and Technologies, The National Research<br />

Council (CNR), Rome, Italy<br />

*Corresponding author: norscia@hotmail.com<br />

Résumé<br />

Les conditions du pelage des animaux peuvent représenter<br />

un moyen fiable et un indicateur non invasif pour comprendre<br />

l’état de santé d’une population et distinguer des segments<br />

différents de la même population.En 2008 nous avons<br />

effectué un recensement de sifaka (Propithecus verreauxi)<br />

dans les forêts riveraines de la réserve de Berenty (foret<br />

galerie et de transition de Malaza et forêt secondaire aux


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 65<br />

espèces allochtones de Ankoba) et dans six portions de<br />

forêt épineuse qui sont inclues dans le domaine privé de<br />

Berenty. Nous avons relevé l’état du pelage des animaux<br />

selon trois conditions: fourrure intègre (niveau 1), fourrure<br />

faiblement endommagée (ponctuée par des petites zones,<br />

sans pelage, couvrant moins de 30 % du corps; niveau 2),<br />

fourrure fortement endommagée (pelage manquant sur une<br />

surface supérieure à 30 %;niveau 3).Nous avons aperçu seulement<br />

quatre sifaka au niveau de pelage 3 et, par conséquence,<br />

nous avons pu évaluer statistiquement les différences<br />

seulement entre les niveaux de pelage 1 et 2, en comparant<br />

forêt épineuse et les forêts riveraines, soi au niveau<br />

des groups d’animaux (n= 41) soi au niveau des zones recensée<br />

(n= 9). Même si avons détecté un nombre significativement<br />

plus haut de sifaka avec la fourrure faiblement<br />

endommagée dans le domaine épineuse,la nature et surtout<br />

l’entité du dommage indiquent que les conditions du pelage<br />

n’arrivent pas vraiment à différentier des segments distincts<br />

dans la population de sifaka de Berenty.<br />

Introduction<br />

An index of coat condition can be a non-invasive tool for<br />

tracking health and stress at the population level (Jolly,<br />

2009a). In fact, pelage growth can be directly influenced by<br />

the proximate stimulus of light (acting through neuro-endocrine<br />

pathways), by the nutritional status, and indirectly by<br />

temperature and behavior (Ling, 1970). Two main functions<br />

of fur are a) insulation, which allows conservation of body<br />

heat, thus reducing energy expenditure and food requirements;<br />

and b) shielding, which protects day-active mammals<br />

from excessive heat load from solar radiation (Scott et al.,<br />

2001; Kenagy and Pearson, 2000).<br />

Here, we considered coat condition of Propithecus verreauxi<br />

(Verreaux’s sifaka) as a possible indicator of the "health status"<br />

of animals in different habitats and investigated whether<br />

it could provide information on possible population stress in<br />

the poorly investigated spiny forest of south Madagascar.<br />

The dry spiny forest of southern Madagascar is a thorny environment,both<br />

metaphorically and literally speaking.Listed as<br />

one of the 200 most important ecological regions in the<br />

world,it harbors the highest level of plant endemism in Madagascar<br />

(Elmqvist et al., 2007). In spite of its importance, the<br />

spiny forest is underrepresented in terms of protection and<br />

conservation programs (Fenn, 2003; Ganzhorn et al., 2003;<br />

Seddon et al.,2000).To fill,at least in part,this gap,we investigated<br />

sifaka fur condition in different spiny forest parcels<br />

inside the Berenty Estate (Androy region,south Madagascar)<br />

and compared it with sifaka inhabiting the riverine forest<br />

areas inside the Berenty Reserve, a habitat much richer in<br />

staple food for lemurs.<br />

Methods<br />

Study site, survey technique, and fur condition evaluation<br />

In March-April 2008, a comprehensive sifaka survey was conducted<br />

in the Berenty Estate, covering 134 ha of spiny forest<br />

and 60 ha of non-spiny forest areas. The Berenty Estate is located<br />

in the semi-arid Androy Region (rainfall averages less<br />

than 500 mm per year). The spiny forest is usually 3 to 6 m in<br />

height with dwarf and xerophyte plants,and emerging trees of<br />

the Family Didieraceae that may reach more than 10 m in<br />

height,such as the keystone species Allouadia procera (Elmqvist<br />

et al., 2007). We performed the survey in all accessible spiny<br />

forest parcels (sacred areas, used as a cemetery, cannot be<br />

accessed by anyone except for local family clans) and in three<br />

riverine areas of the Berenty Reserve (on the Mandrare river),<br />

comprising a northern section (occupied by the 40 ha secondary<br />

forest of Ankoba dominated by the exotic legume species<br />

Pithecellobium dulce;S 24.99°;E 46.29°) and a southern section<br />

(Malaza: S 25.01°; E 46,31°) (Fig. 1 shows study locations). Inside<br />

Malaza we considered the 7 ha gallery forest (dominated<br />

by tamarinds;Tamarindus indica) and the front-transitional forest<br />

(13 ha) (Jolly et al.,2006).In all the areas considered in this<br />

study,logging and hunting are prohibited,and the fossa (Cryptoprocta<br />

ferox) isabsent.<br />

Fig.1:Study site location:Berenty reserve (solid outline;white<br />

area:scrub;diagonal lines:Ankoba and Malaza riverine forests)<br />

and spiny forest fragments (black areas): 1 = Spiny Malaza; 2 =<br />

Spiny Reserve 1;3 = Spiny Reserve 2;4 = West Rapily;5 = Fragment<br />

X; 6 = Anjapolo, about 13 km north-west of Berenty.<br />

Dashed outlines include degraded spiny and/or scrub areas.<br />

The rest of the territory (white) is covered by pasture and<br />

sisal fields. (Map based on Google Earth satellite view).<br />

We performed the survey via walking, at a speed of about 1<br />

km/h,along preexisting trails and through forest paths chosen<br />

ad hoc to have visibility of at least 50 m to the right and left (to<br />

avoid pseudoreplication we followed Norscia and Palagi,<br />

2008).<br />

During the census we evaluated the fur condition of each individual<br />

lemur.We scored coat condition on a 3-point scale:coat<br />

undamaged, with fur fully covering the body (level 1); ruffled<br />

coat,with fur punctuated by small areas of reduced/missing fur<br />

(on less than 30 % of the body, especially on elbows and/or<br />

knees;level 2);patchy coat,usually with black skin areas clearly<br />

visible due to reduced/missing fur (on more than 30 % of the<br />

body, especially on elbows/knees, external sides of forearms<br />

and thighs, fingers and toes; level 3) (Fig. 3).<br />

Statistics<br />

We performed the analyses at group or at forest site level.<br />

Owing to the small sample size (n


Page 66 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

in the spiny and two in the non-spiny forest areas). Thus, we<br />

considered only level 1 (undamaged coat) and 2 (moderately<br />

missing fur) for the analyses and found that the proportion of<br />

individuals with level-1 fur was significantly higher in the nonspiny<br />

than in the spiny areas both in the analysis per forest<br />

site (Exact Mann-Whitney U test, nnon-spiny=3, nspiny=6, Z=<br />

-2.35, p=0.024) (Fig. 2) and in the analysis per group (Mann-<br />

Whitney U test, nnon-spiny=31, nspiny=11, Z=-3.26, p=0.001).<br />

FUR FUR CONDITION<br />

CONDITION<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

SPINY FOREST RIVERINE<br />

AREAS FOREST AREAS<br />

Fig. 2: Difference in fur condition (proportion of individuals<br />

showing level-1 fur) between the spiny and riverine forest areas.<br />

The difference is significant (p


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 67<br />

Fenn, M.D. 2003. The spiny forest ecoregion. Pp. <strong>15</strong>25-<strong>15</strong>30.<br />

In: S.M. Goodman; J.P. Benstead (eds.). The Natural History<br />

of Madagascar. University of Chicago Press, Chicago.<br />

Ganzhorn, J.U.; Goodman, S.M.; Dehgan, A. 2003. Effects of<br />

forest fragmentation on small mammals and lemurs. Pp.<br />

1228-1234. In: S.M. Goodman; J.P. Benstead (eds.). The<br />

Natural History of Madagascar. University of Chicago<br />

Press, Chicago.<br />

Jolly, A. 2009a. Coat conditions of ringtailed lemurs, Lemur<br />

catta, at Berenty Reserve, Madagascar: I. Differences by<br />

age, sex, density and tourism, 1996-2006. Am. J. Primatol.<br />

71: 191-198.<br />

Jolly, A. 2009b. Coat conditions of ringtailed lemurs, Lemur<br />

catta, at Berenty Reserve, Madagascar: II. Coat and tail<br />

alopecia associated with Leucaena leucocephala. Am. J.<br />

Primatol. 71: 199-205.<br />

Jolly, A; Koyama, N; Rasamimanana, H; Crowley, H; Williams,<br />

G.2006.Berenty Reserve:a research site in southern Madagascar.Pp.32-42.In:A.Jolly,R.W.Sussman,N.Koyama,H.<br />

Rasamimanana (eds.). Ringtailed Lemur Biology: Lemur<br />

catta in Madagascar. Springer Verlag, New York.<br />

Kenagy, G.J.; Pearson, O.P. 2000. Life with fur and without:<br />

experimental field energetics and survival of naked meadow<br />

voles. Oecologia 122: 220-224.<br />

Ling, J.K. 1970. Pelage and molting in wild mammals with<br />

special reference to aquatic forms.Q.Rev.Biol.45:16-54.<br />

Mundry, R; Fischer, J. 1998. Use of statistical programs for<br />

nonparametric tests of small samples often leads to<br />

incorrect P values: examples from Animal Behaviour.<br />

Anim. Behav. 56: 256-259.<br />

Norscia, I.; Palagi, E. 2010. Fragment quality and distribution<br />

of the arboreal primate Propithecus verreauxi in the spiny<br />

forest of south Madagascar. J. Trop. Ecol. DOI:<br />

10.1017/S0266467410000519.<br />

Norscia,I.;Palagi E.2008.Berenty 2006:census of Propithecus<br />

verreauxi and possible evidence of population stress. Int. J.<br />

Primatol. 29: 1099-11<strong>15</strong>.<br />

Scott, D.W.; Miller, W.H.; Griffin, C.E. 2001. Structure and<br />

function of skin.Muller and Kirk’s Small Animal Dermatology,<br />

6th ed. W.B. Saunders, Philadelphia.<br />

Seddon, N.; Tobias, J; Yount, J; Ramanampamonjy, J.M.;<br />

Butchart,S;Randrianizahana H.2000.Conservation issues<br />

and priorities in the Mikea forest of south-western Madagascar.<br />

Oryx 34: 287-304.<br />

Siegel,S.;Castellan,N.J.Jr.1988.Nonparametric Statistics for<br />

the Behavioral Sciences, Second edition. MacGraw-Hill,<br />

New York.<br />

Rediscovery of Sibree’s dwarf lemur in<br />

the fragmented forests of Tsinjoarivo,<br />

central-eastern Madagascar<br />

Marina B. Blanco<br />

Department of Anthropology, University of Massachusetts,<br />

240 Hicks Way, Amherst, MA 01003, USA,<br />

mbblanco@anthro.umass.edu<br />

The recent genetic confirmation of a rare dwarf lemur<br />

species, C. sibreei, at Tsinjoarivo is bitter-sweet. The excitement<br />

of reporting the first known living population of this<br />

species is tainted by conservation concerns, as the forest<br />

fragment in which Sibree’s dwarf lemurs were captured is<br />

highly disturbed and targeted for illicit logging. This species,<br />

like many others inhabiting rapidly degrading forests, faces<br />

the serious threat of extinction.<br />

Taxonomic background of the genus, first field discovery,<br />

and subsequent recognition of C. sibreei<br />

During the 19th century,the small nocturnal lemurs of Madagascar<br />

were clumped in a chaotic array of species and genera.<br />

For most of the 20th century,however,dwarf lemurs (Cheirogaleus)<br />

were classified in only two species: the eastern C.<br />

major and the western C.medius (Schwarz,1931).Around the<br />

turn of the century, Groves (2000) conducted a taxonomic<br />

revision of the genus on the basis of morphological analysis<br />

of museum specimens and increased the species number to<br />

seven: C.medius,C.adipicaudatus,C.major,C.ravus,C.crossleyi,<br />

C. minusculus and C. sibreei. This last species, in fact, had been<br />

originally described by the Swiss naturalist Forsyth Major in<br />

1896 during one of his expeditions to Madagascar (Forsyth<br />

Major, 1896). He had named it Chirogale sibreei in honor of<br />

fellow naturalist James Sibree,who had spent more than fifty<br />

years in Madagascar and had written extensively about its<br />

people, fauna, flora and geology. Forsyth Major published<br />

measurements of an individual "obtained from the neighbourhood<br />

of Ankeramadinika," a locality vaguely described<br />

by its discoverer as "one day’s journey to the east of Antananarivo",but<br />

in fact a well-known village at the time,located in<br />

the central high plateau on the road that connected Antananarivo<br />

to Mahatsara on the east coast (Capitaine "X",<br />

1901). In his taxonomic revision, Groves (2000) included as<br />

Cheirogaleus sibreei not only the holotype from Ankeramadinika<br />

(currently housed at the Natural History Museum in<br />

London) but also three additional specimens (3 skins and 1<br />

skull), two of which came from Ampasindava, northwestern<br />

Madagascar, and one from an unclear provenance (Imerina,<br />

which refers to a region of the central highlands around<br />

Antananarivo).<br />

The taxonomic shrinkage of Cheirogaleus<br />

The increase in the number of species within the genus<br />

Cheirogaleus was not surprising because dwarf lemurs occupy<br />

a wide variety of habitats in Madagascar,and their close relatives,the<br />

mouse lemurs (Microcebus), had undergone a taxonomic<br />

explosion of their own with more than 10 species<br />

described during the past <strong>15</strong> years (Louis et al.,2008;Olivieri<br />

et al., 2007; Radespiel et al., 2008). However, Groves’ 2000<br />

revision of dwarf lemur taxonomy did not escape criticism,<br />

not least of which had to do with the criteria that he used to<br />

define species, the lack of reliable locality information from<br />

museum specimens, and the absence of on-the-ground surveys<br />

to assess geographic boundaries and variation among<br />

species (Blanco et al., 2009; Tattersall, 2007). A recent and<br />

more comprehensive revision of dwarf lemur taxonomy was<br />

carried out by Groeneveld and colleagues, who compiled<br />

genetic and morphometric data from field as well as museum<br />

specimens from a variety of localities across Madagascar,<br />

including some of the specimens studied by Groves (Groeneveld<br />

et al., 2009; 2011). This research showed overall consistency<br />

between morphological and genetic data in recognizing<br />

only three Cheirogaleus species: C. medius, C. major<br />

and C. crossleyi. Individuals that previously had been assigned<br />

to C. adipicaudatus fell within the C. medius clade, and those<br />

named as C.ravus grouped with C.major.Results were inconclusive<br />

for C.minusculus and C.sibreei because holotype specimens<br />

were not available for sampling and their genetic affiliation<br />

could not be determined. Genetic data from one of the<br />

C. sibreei museum specimens from Ampasindava linked this<br />

specimen to C. medius. Nevertheless, the C. sibreei holotype<br />

from Ankeramadinika was larger and did not group morphologically<br />

with other C. medius. This suggested that the individuals<br />

from Ampasindava may have been misclassified by<br />

Groves as C. sibreei (Groeneveld et al., 2010). The status of<br />

this species remained equivocal.<br />

Second field discovery of C. sibreei, at last<br />

The story of a dwarf lemur named "May" told by Mitchell<br />

Irwin (2002) turned out to be rather prophetic. Irwin’s<br />

research team rescued this dwarf lemur badly burned in a


Page 68 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

human-induced fire nearby Andasivodihazo,one of the forest<br />

fragments at Tsinjoarivo (Fig. 1). At the time, "May" was believed<br />

to be, as were all eastern rainforest dwarf lemurs, C.<br />

major. Unfortunately, this female could not fully recover and<br />

died soon after the salvage, but her skeletal remains were<br />

carefully preserved and stored at the University of Antananarivo<br />

by Irwin’s team. Seven years later this specimen came<br />

to play a key role in our morphological analysis of dwarf<br />

lemurs at Tsinjoarivo.<br />

Fig.1: Map showing Tsinjoarivo and other localities associated<br />

with Sibree’s dwarf lemurs; see text for details.<br />

In 2006, with the logistic help of Mitchell Irwin and Jean-Luc<br />

Raharison, I began a survey of nocturnal lemurs at Tsinjoarivo.<br />

My assistants and I successfully trapped dwarf lemurs<br />

at two study sites: in one of the forest fragments (Andasivodihazo,<br />

19º41’<strong>15</strong>"S, 47º46’25"E, 1660 m) and within continuous<br />

forest (Vatateza, 19º43’<strong>15</strong>"S, 47º51’25"E, 1396 m)<br />

(Blanco et al., 2009). Even to an inexperienced eye, fragment<br />

dwarf lemurs looked different from continuous forest individuals,<br />

in that they were overall smaller, with grayer fur,<br />

marked eye rings and significantly larger female genitalia (Fig.<br />

2). Our morphological and dental analyses determined that<br />

of all the species described by Groves,C.sibreei was the most<br />

similar to forest fragment dwarf lemurs (Blanco et al., 2009).<br />

(Hopefully, sampling of C.sibreei’s holotype will be allowed in<br />

the near future to definitely determine whether or not there<br />

is a genetic match between this specimen and fragment<br />

dwarf lemurs from Tsinjoarivo.) Recent genetic analyses<br />

have confirmed not only that dwarf lemurs from Andasivodihazo<br />

constitute a different clade (and therefore an independent<br />

phylogenetic lineage), but also that the fragment<br />

dwarf lemur species had branched off first and was ancestral<br />

to the other dwarf lemur species (Groeneveld et al., 2010).<br />

To date, no other living population of C. sibreei has been<br />

reported in the wild and more intensive surveys around the<br />

Tsinjoarivo area (including possibly remaining forests nearby<br />

Ankeramadinika, ~100 km from Tsinjoarivo) are warranted<br />

to assess geographic boundaries and population density.<br />

Fig.2: Sibree’s dwarf lemur captured at Andasivodihazo, one<br />

of the forest fragments at Tsinjoarivo.<br />

Conservation concerns<br />

The genetic confirmation of three clades corresponding to C.<br />

medius, C. major and C. crossleyi, each of which has broad<br />

geographic distributions, implied that dwarf lemurs might be<br />

less threatened than previously thought (Groeneveld et al.,<br />

2009). However, the situation for C. sibreei is radically different.<br />

Tsinjoarivo’s unique geographic setting, continuous<br />

with the central plateau on the west and the steep escarpment<br />

of rainforest in the east, may harbor a unique array of<br />

animal communities. To date, C. sibreei has been captured in<br />

sympatry with C. crossleyi at one forest fragment, Andasivodihazo,and<br />

at one intermediate location,Ankadivory.Both of<br />

these areas are subjected to illicit logging and heavy deforestation<br />

(Fig.3).Furthermore,these forest sites are located towards<br />

Tsinjoarivo’s western boundary which reaches some<br />

of the highest altitudes (up to ~1650 m) known in eastern<br />

Fig. 3: Example of logging near Ankadivory, one of the forest<br />

sites where Sibree’s dwarf lemurs were captured.


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 69<br />

rainforests in Madagascar.So far,only C.crossleyi has been captured<br />

at Vatateza,a lower altitude site located within continuous<br />

and less disturbed forest.Virtually everything has to be<br />

learned about the "ancestral" C.sibreei,including how to prevent<br />

its extinction through habitat loss.Concerted efforts by<br />

organizations such as Sadabe (www.sadabe.org) are instrumental<br />

in raising awareness of endangered species and promoting<br />

research and educational programs in the Tsinjoarivo<br />

area.<br />

Acknowledgements<br />

I am particularly thankful to the research team in Madagascar:<br />

Malagasy students <strong>Vol</strong>olonirina Rahalinarivo and Mamihasimbola<br />

Rakotondratsima, and local assistants Noel Rakotoniaina,<br />

Edmond and Nirina Razanadrakoto. Additional<br />

thanks to Jean-Luc Raharison and Mitchell Irwin for providing<br />

logistical support and assistance in the field. I am also<br />

grateful to Laurie Godfrey, Stacy Gebo and Christoph<br />

Schwitzer for their comments. This research was supported<br />

by funds from the Rufford Foundation, MMBF/Conservation<br />

International Primate Action Fund and Primate Conservation<br />

Inc. I would like to thank the Ministère de l’Environnement<br />

et des forêts of the Malagasy government and the University<br />

of Antananarivo for permission to conduct this research.The<br />

project in Madagascar was facilitated by the Institute<br />

for the Conservation of Tropical Environments (ICTE,<br />

Patricia C. Wright) and the Madagascar Institute pour la<br />

Conservation des Ecosystèmes Tropicaux (MICET), especially<br />

Benjamin Andriamihaja.<br />

References<br />

"X." 1901. Voyage du Général Gallieni: cinq mois autour de<br />

Madagascar, progrès de l’agriculture, développement<br />

commercial, ressources industrielles, moyens de colonisation.<br />

Hachette, Paris.<br />

Blanco, M. B.; Godfrey, L.R.; Rakotondratsima, M.; Rahalinarivo,<br />

V.; Samonds, K. E.; Raharison, J-L.; Irwin, M. T. 2009.<br />

Discovery of sympatric dwarf lemur species in the high<br />

altitude forest of Tsinjoarivo, eastern Madagascar: implications<br />

for biogeography and conservation.Folia Primatol.<br />

80: 1-17.<br />

Forsyth Major, C. I. 1896. Diagnosis of new mammals from<br />

Madagascar. Ann. Mag. Nat. Hist. 6: 318-325.<br />

Groeneveld, L. F.; Weisrock, D. W.; Rasoloarison, R. M.; Yoder,<br />

A. D.; Kappeler, P. M. 2009. Species delimitation in lemurs:<br />

multiple genetic loci reveal low levels of species diversity<br />

in the genus Cheirogaleus. BMC Evol. Biol. 9: 30.<br />

Groeneveld, L. F.; Blanco, M. B.; Raharison. J-L.; Rahalinarivo, V.;<br />

Kappeler, P. M.; Godfrey, L. R.; Irwin, M. T. 2010. MtDNA and<br />

nDNA corroborate existence of sympatric dwarf lemur species<br />

at Tsinjoarivo,eastern Madagascar.Mol.Phylogenet.Evol.<br />

55: 833-845.<br />

Groeneveld, L. F.; Rasoloarison, R. M.; Kappeler, P. M. 2011<br />

Morphometrics confirm taxonomic deflation in dwarf<br />

lemurs (Primates: Cheirogaleidae) as suggested by genetics.<br />

Zool. J. Linn. Soc. 161: 229-244.<br />

Groves,C.P.2000.The genus Cheirogaleus:unrecognized biodiversity<br />

in dwarf lemurs. Int. J. Primatol. 21: 943-962.<br />

Irwin,M.T.2002.The story of May,a courageous dwarf lemur.<br />

IPPL News April: 12-14.<br />

Louis, E. E.; Engberg, S. E.; McGuire, S. M.; McCormick, M. J.;<br />

Randriamampionona, R.; Ranaivoarisoa, J. F.; Bailey, C. A.;<br />

Mittermeier, R. A.; Lei, R. 2008. Revision of the mouse<br />

lemurs,Microcebus (Primates,Lemuriformes),of northern<br />

and northwestern Madagascar with descriptions of two<br />

new species at Montagne d’Ambre National Park and<br />

Antafondro Classified Forest. Primate Conservation 23:<br />

19- 38.<br />

Mullens, J. 1875. Twelve Months in Madagascar. James Nisbet<br />

& Co., London.<br />

Olivieri,G.;Zimmermann,E.;Randrianambinina,B.;Rasoloharijaona,<br />

S.; Rakotondravony, D.; Guschanski, K.; Radespiel,<br />

U. 2007. The ever-increasing diversity in mouse lemurs:<br />

Three new species in north and northwestern Madagascar.<br />

Mol. Phylogenet. Evol. 43: 309-327.<br />

Radespiel, U.; Olivieri, G.; Rasolofoson, D. W.; Rakotondratsimba,<br />

G.; Rakotonirainy, O.; Rasoloharijaona, S.; Randrianambinina,<br />

B.; Ratsimbazafy, J. H.; Ratelolahy, F.; Randriamboavonjy,<br />

T.; Rasolofoharivelo, T.; Craul, M.; Rakotozafy, L.;<br />

Randrianarison,R.M.2008.Exceptional diversity of mouse<br />

lemurs (Microcebus spp.) in the Makira region with the<br />

description of one new species. Am. J. Primatol. 70: 1033-<br />

1046.<br />

Schwarz,E.1931.A revision of the genera and species of Madagascar<br />

Lemuridae.Proc.Zool.Soc.Lond.1931:399-426.<br />

Tattersall, I. 2007. Madagascar’s lemurs: Cryptic diversity or<br />

taxonomic inflation? Evol. Anthropol. 16: 12-23.<br />

Funding and Training<br />

AEECL Small Grants<br />

Since 2009,AEECL awards two small grants of up to € 1,000<br />

each year to graduate students, qualified conservationists<br />

and/or researchers to study lemurs in their natural habitat.<br />

Priority is given to proposals covering conservation-relevant<br />

research on those species red-listed as Vulnerable, Endangered,<br />

Critically Endangered or Data Deficient by the IUCN.<br />

We support original research<br />

that helps with establishing<br />

conservation action plans for<br />

the studied species. Grants<br />

are normally given to recent<br />

graduates from Malagasy universities to help building local<br />

capacity.<br />

We may also, in special circumstances, support studies on<br />

Malagasy species other than lemurs if the proposal provides<br />

satisfactory information as to how lemurs or the respective<br />

habitat/ecosystem as a whole will benefit from the research.<br />

All proposals will be assessed by the Board of Directors of<br />

AEECL and/or by external referees.The deadline for applications<br />

is February <strong>15</strong>th of each year. Successful applicants will<br />

be notified by June 1st.More information can be found on the<br />

AEECL website, www.aeecl.org.<br />

The Mohamed bin Zayed Species Conservation<br />

Fund<br />

Announced at the World Conservation Congress in Barcelona<br />

in 2008,The Mohamed bin Zayed Species Conservation<br />

Fund is a significant philanthropic endowment established to<br />

do the following:<br />

Provide targeted grants to individual species conservation<br />

initiatives;<br />

Recognize leaders in the field of species conservation;and Elevate<br />

the importance of species in the broader conservation<br />

debate.


Page 70 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

The fund’s reach is truly global,and its species interest is nondiscriminatory.<br />

It is open to applications for funding support<br />

from conservationists based in all parts of the world,and will<br />

potentially support projects focused on any and all kinds of<br />

plant and animal species, subject to the approval of an independent<br />

evaluation committee.<br />

Details on this important new source for species conservation<br />

initiatives and research can be found at<br />

www.mbzspeciesconservation.org<br />

CI Primate Action Fund<br />

The principal objective of Conservation International’s Primate<br />

Action Fund is to contribute to global biodiversity<br />

conservation by providing strategically targeted, catalytic<br />

support for the conservation of endangered nonhuman<br />

primates and their natural habitats.<br />

Projects submitted to the foundation should have one or<br />

more of the following characteristics:<br />

A focus on critically endangered and endangered nonhuman<br />

primates (and most especially those included in the<br />

biennial listing of the World’s 25 Most Endangered Primates)<br />

living in their natural habitats;<br />

Location in areas of high overall biodiversity and under great<br />

threat (e.g., "threatened hotspots", "megadiversity" countries)<br />

- to ensure maximum multiplier effect for each project;<br />

Direction and management by nationals from the tropical<br />

countries,to help increase local capacity for implementing<br />

biodiversity conservation;<br />

The ability to strengthen international networks of fieldbased<br />

primate specialists and enhance their capacity to be<br />

successful conservationists; and<br />

Projects that result in publication of information on endangered<br />

primate species in a format that is useful both to<br />

experts and the general public.<br />

Applications for support are considered throughout the year<br />

with no deadlines for submittal. Proposals should be sent by<br />

electronic mail to:<br />

Anthony B. Rylands, Primate Action Fund, Conservation International,<br />

2011 Crystal Drive, Suite 500, Arlington, VA<br />

22202, USA, a.rylands@conservation.org<br />

Recent Publications<br />

Lemurs of Madagascar, 3rd edition, by Russell A. Mittermeier,<br />

Edward E. Louis Jr., Matthew Richardson, Christoph<br />

Schwitzer,Olivier Langrand,Anthony B.Rylands,Frank Hawkins,<br />

Serge Rajaobelina, Jonah Ratsimbazafy, Rodin Rasoloarison,<br />

Christian Roos, Peter M. Kappeler and James Mackinnon.Illustrated<br />

by Stephen D.Nash.Conservation International,<br />

Tropical Field Guide Series, Arlington, VA, 2010. 762<br />

pp. ISBN: 978-1-934<strong>15</strong>1-23-5. US$55.00.<br />

In 2006,Madagascar was making significant progress towards<br />

conservation by expanding the protection of its natural treasures.At<br />

the same time,the second edition of Conservation<br />

International’s Tropical Field Guide Series, Lemurs of Madagascar,had<br />

just come off the press,a full twelve years after its<br />

much-celebrated predecessor. A lot has changed in four<br />

years. Political and economic instability has imperiled both<br />

the Malagasy people and their unique wildlife. Conservation<br />

has taken drastic steps backwards as the desperation of the<br />

masses and greed of a few elites and international profiteers<br />

has exacerbated the conflict between the domains of humans<br />

and wildlife. CI has answered the call to action by releasing<br />

a new third edition of its lemur field guide, dwarfing<br />

previous editions in both size and its depth of research and<br />

detail. With nearly 1,100 references to support it–up from<br />

approximately 500 references in the second edition–the<br />

third edition stands as more than just a complete compendium<br />

of our knowledge about lemurs, but the perfect guide<br />

for appreciating the history, diversity, uniqueness, and pure<br />

beauty of our strepsirrhine cousins.<br />

According to CI’s Jill Lucena,from early 2009,the 13 authors<br />

and dozens of contributors have worked tirelessly on the<br />

third edition,dedicating thousands of hours towards its production.<br />

Authors Matthew<br />

Richardson and Anthony B.<br />

Rylands, as well as illustrator<br />

Stephen D. Nash and<br />

graphic designer Paula K.<br />

Rylands,labored exclusively<br />

on the project for nine<br />

months. The end result is a<br />

field guide that will leave<br />

other academic fields envious!<br />

This new volume is 247<br />

pages longer than the previous<br />

edition, with 767 pages<br />

of carefully organized maps,<br />

photos, and colorful illustrations,<br />

in addition to all<br />

the details lemur enthusiasts<br />

and researchers have<br />

come to expect from this<br />

book.The content is so rich<br />

that the book’s dimensions<br />

have increased from 7.5" x<br />

4.5" x 1" to slightly more than 9.25" x 6.25" x 1.25" just to accommodate<br />

everything.And herein lies what may be the only<br />

problem with this new edition. Reviews of the previous two<br />

editions had lavished praise for not only the content and<br />

scope, but also the portability of the books. Although it will<br />

fit comfortably in a backpack, it will add more weight and<br />

consume more space than its predecessors. But given the<br />

content, that may be a small price to pay.<br />

The layout of the book has not changed much since the last<br />

edition. An enthralling chapter on Madagascar’s ancient geological<br />

history has been added, providing tantalizing details<br />

about the mysteries of Madagascar’s ancient past,while a few<br />

familiar chapters and appendices have been reordered. Each<br />

lemur family has now been assigned its own chapter.The section<br />

entitled "How to Use This Field Guide" still walks new<br />

readers through the layout of the book. The "Quick Visual<br />

Reference" and colored tabs facilitate speedy navigation and<br />

help to satiate an ecotourists’ spontaneous hunger for specific<br />

information. The "Lemur Life-list" returns in a more<br />

readable table format to help ecotourists record their first<br />

sightings of the numerous lemur species. Even the maps of<br />

the island have been revamped and are easier to read in this<br />

larger format.<br />

Introductory chapters discuss ancient geology,lemur origins,<br />

the extinct subfossil (giant) lemurs, the history of lemur re-


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 71<br />

search, and lemur conservation. Each chapter contains significant<br />

updates from the second edition. The ancient geology<br />

of Madagascar is covered in meticulous detail, while the theories<br />

of lemur origins are explored in depth, leaving both<br />

reader and researcher alike desperate for more definitive<br />

answers.The chapter on the extinct subfossil lemurs is beautifully<br />

illustrated with new peer-reviewed artwork from<br />

award-winning illustrator Stephen D. Nash, and has new details<br />

about their biology and extinction.The history of lemur<br />

research and discovery expands greatly upon the work from<br />

the last half century–a topic greatly underrepresented in the<br />

previous edition. Additionally, the chapter is loaded with<br />

newly added artwork from the 1700s and 1800s. The lemur<br />

conservation chapter provides a critical update on the newest<br />

emerging threats faced by lemurs and their habitat,<br />

namely the logging of precious hardwoods and bushmeat<br />

hunting. Additional detail is also provided about other important<br />

threats that received little mention previously, such<br />

as invasive species, cattle-raising, and mining.<br />

The bulk of the book details the description, geographic<br />

range,natural history,conservation status,and best locations<br />

to observe each of the 101 species and subspecies of lemur.<br />

(This total is up from the 71 taxa detailed in the second edition,yet<br />

the authors note that upcoming research may reveal<br />

as many as 110 to 125 lemur taxa!) Each species section<br />

sports a portrait photo, detailed range map, and other photos<br />

to enrich the lavish textual content.Once again,the third<br />

edition sets itself apart from the previous editions with its<br />

encyclopedic coverage of details from the lemur research literature.Species,such<br />

as the silky sifaka (Propithecus candidus),<br />

are discussed in significantly greater detail,bringing everyone<br />

from bright-eyed ecotourists to veteran lemur researcher<br />

up to speed on the latest findings.<br />

The second edition of Lemurs of Madagascar sold out quickly,<br />

leaving shelves empty as early as February 2008. The third<br />

edition is poised to do the same. With a print run of 10,000<br />

copies,nearly two-thirds are already spoken for according to<br />

Jill Lucena.To help promote conservation education in Madagascar,<br />

CI is generously donating 3,000 copies to its partner<br />

in the field,NGO Fanamby.CI hopes that the remaining copies<br />

will spark the public’s interest in Madagascar’s ecological<br />

gems and spur a new wave of ecotourism to bolster conservation<br />

efforts.<br />

Once again, CI has provided an invaluable tool for a diverse<br />

audience, which includes ecotourists, Malagasy tour guides,<br />

students,lemur researchers,and lemur enthusiasts.Although<br />

larger and not quite as portable as its predecessors, the increased<br />

size of the third edition hosts a wealth of enhanced<br />

encyclopedic detail,new and stunning artwork by Stephen D.<br />

Nash, and additional color photos and illustrations. With a<br />

copy of this printing in hand, the only things missing are a<br />

backpack full of supplies and an airline ticket to Madagascar.<br />

So what are you waiting for?<br />

Alex Dunkel<br />

Theses Completed<br />

Blanco,M.B.2010.Reproductive biology of mouse and dwarf<br />

lemurs of eastern Madagascar,with an emphasis on brown<br />

mouse lemurs (Microcebus rufus) at Ranomafana National<br />

Park,a southeastern rainforest.PhD Dissertation.University<br />

of Massachusetts, Amherst.<br />

This dissertation investigates reproductive schedules of<br />

brown mouse lemurs at Ranomafana,using intensive trap-<br />

ping techniques. The reproductive condition of female<br />

mouse lemurs was recorded on the basis of vaginal morphology,vaginal<br />

smears,body mass gain profiles and nipple<br />

development. Testis size was measured in males throughout<br />

the reproductive season. The timing of the first seasonal<br />

estrus was determined in frequently captured females<br />

over multiple years and it showed individual periodicities<br />

close to 365 days,consistent with endogenous regulation<br />

and entrainment by photoperiod. The timing of<br />

estrus did not correlate with female age or body mass.<br />

Males showed testicular regression during the rainy season,<br />

although there was high inter-individual variation in<br />

testes size at any given point during the reproductive season.<br />

Furthermore, some individuals completed testicular<br />

regression earlier than others. Implications for polyestry<br />

are discussed.<br />

For comparative purposes,mouse lemurs were also trapped<br />

at two study sites in the Tsinjoarivo area: one in a forest<br />

fragment and the other within continuous forest.<br />

These forests are higher in altitude than the main study<br />

area at Ranomafana. Trapping success for mouse lemurs<br />

was lower at Tsinjoarivo than Ranomafana.Albeit preliminary,<br />

data from Tsinjoarivo suggest that females have lower<br />

reproductive success than do females at Ranomafana.<br />

Nevertheless, mouse lemurs in the Tsinjoarivo forest<br />

fragment did not appear to be in "poorer" condition than<br />

those in the continuous forest.It had been reported in the<br />

literature that western gray mouse lemurs captured in secondary<br />

forests have lower body masses and lower recapture<br />

rates than those captured in primary forest; in fact,<br />

the opposite was true of the mouse lemurs at Tsinjoarivo.<br />

I additionally collected data on a larger member of the<br />

family Cheirogaleidae, the dwarf lemurs (Cheirogaleus),<br />

which live in sympatry with Microcebus at Ranomafana and<br />

Tsinjoarivo. I analyzed the patterns of growth, development<br />

and reproduction in Cheirogaleus and Microcebus and<br />

compared dwarf and mouse lemurs to other similarlysized<br />

prosimians which do not undergo torpor or hibernation.These<br />

comparisons draw attention to the unusual<br />

reproductive and metabolic strategies employed by cheirogaleids<br />

to cope with Madagascar’s unpredictable environments,<br />

which ultimately define their very unique life<br />

histories.<br />

Key words: Cheirogaleus, Madagascar, Microcebus, Mouse<br />

lemurs, Rainforest, Ranomafana, Reproduction, Tsinjoarivo.<br />

Bonaventure, R.T.A.R. 2010. Ecologie et comportement de<br />

Propithecus verrreauxi dans les zones d’extension de la<br />

Réserve Spéciale de Bezà Mahafaly.Engineer in agronomy,<br />

option Eaux et forêts.Eaux et forêts,Ecole Supérieure des<br />

Sciences Agronomiques de l’Université d’Antananarivo<br />

(ESSA), Madagascar.<br />

The population of Propithecus verreauxi in the special<br />

reserve of Bezà Mahafaly is one of the conservation targets<br />

of the site which is the subject of a long-term follow.<br />

Natural destruction of their habitat and the pressure of<br />

hunting which is exerted on this species outside of the<br />

current reserve are the origin of the sifakas’ decline.With<br />

the park extension project under way, furthering the<br />

knowledge on behavior and ecology of Propithecus verreauxi<br />

in disturbed areas outside the current reserve is essential<br />

for decision-making regarding conservation measures<br />

for this species. Thus,a study of behavior and ecology<br />

of the sifakas was carried out in the extension area of the<br />

special reserve of Bezà Mahafaly in gallery and transition<br />

forest at the end of the dry period. The study was centered<br />

on 3 focal groups including one in the gallery forest<br />

and two in the transition forest. The method of focal animal<br />

sampling was chosen to study their behavior.A floristic<br />

inventory according to the Gentry method, which<br />

includes transects of 2 x 50 m, was carried out to study<br />

the habitat. On the whole, 120h of observations of sifaka<br />

behavior were carried out and 12 transects were walked.<br />

In disturbed areas, the sifakas still consumed preferred<br />

plants.This resulted in a high intake of 2 or 3 easily digestible<br />

plant species while at the same time a large variety of<br />

other species was consumed.Thus,the disturbance of the<br />

sites did not influence food intake of the sifakas.Moreover,


Page 72 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

it was the group of sifakas in the gallery forest which was<br />

the most affected by resource scarcity in the dry period,<br />

necessitating a priorisation of the sifaka groups in this forest<br />

formation in the extension of the reserve.In addition,<br />

the availability of nutritional resources influenced spacial<br />

dispersion of group members as well as group size. With<br />

the current park extension project different access restrictions<br />

will be implemented, having as an objective the<br />

conservation of the sifaka groups as well as other conservation<br />

targets outside of the current reserve,while introducing<br />

a range of alternative income-generating activities<br />

and sustainable resource management practices for the<br />

local communities.<br />

Key words: Lemur, Propithecus verreauxi,Ecology, Behavior,<br />

Conservation, Special reserve, BezB Mahafaly, Madagascar.<br />

Delmore,K.2009.Maintenance of stability in the Andringitra<br />

brown lemur hybrid zone.M.A.thesis,University of Calgary,<br />

Calgary, Alberta, Canada.<br />

Two models of hybrid zone stability have been proposed:<br />

1) the tension zone model, which predicts that intrinsic<br />

selection acts against hybrids but is counteracted by dispersal<br />

of parentals into the zone and 2) the bounded superiority<br />

model,which predicts that exogenous selection<br />

favours hybrids within transitional habitats and parentals<br />

outside the zone.I used morphological,genetic and ecological<br />

data to evaluate these models in a stable hybrid zone<br />

between Eulemur rufifrons and E.cinereiceps in southeastern<br />

Madagascar. This zone appears to conform to the<br />

bounded superiority model: it was relatively wide and<br />

composed mostly of hybrids that were equally as fit as<br />

parentals.Gene flow between parental and hybrid populations<br />

was also limited, clines in multiple characters were<br />

non-coincident and significant ecological correlates were<br />

identified. Results suggest that hybridization can serve as<br />

an important evolutionary force and need not always be<br />

considered a conservation risk for endangered taxa.<br />

Hobinjatovo, T. 2009. Etude morphométrique et génétique<br />

de conservation d’Eulemur cinereiceps (Milne-Edwards et<br />

Grandidier, 1890) dans les forêts de Mahabo, de Manombo<br />

et de Vevembe, Madagascar. Mémoire de DEA en Biologie,Ecologie<br />

et Conservation Animale,Département de<br />

Biologie Animale,Faculté des Sciences,Université d’Antananarivo.<br />

Cette étude a pour but, d’une part, de connaître et de<br />

comparer la morphométrie d'’Eulemur cinereiceps de la forêt<br />

de Mahabo,de Manombo et de Vevembe - Madagascar,<br />

ainsi donc de voir le degré du dimorphisme sexuel et<br />

d’autre part, d’établir des données de bases génétiques<br />

pour avoir de plus amples informations en vue de la conservation<br />

de cette espèce en danger critique.La descente<br />

sur le terrain et la collecte des données ont été effectuées<br />

pendant deux semaines du mois de mai 2006 et le travail<br />

au laboratoire pour l’étude génétique a été fait du mois de<br />

Février au mois de Mai 2007.Ce lémurien pése en moyenne<br />

2,04 kg avec une longueur moyenne de la couronne de<br />

la tête de 10,84 cm,celle du corps de 33,31 cm et est doté<br />

d’une queue de 50,44 cm. La comparaison de la morphométrie<br />

des individus des sites d’étude, par le test U de<br />

Mann-Whitney montre que le Lémurien à Collier Blanc<br />

de Vevembe est de plus grande taille que ceux des 2 autres<br />

sites.La différence de taille entre le mâle et la femelle<br />

n’est pas significative. Chez cette espèce, le dimorphisme<br />

sexuel est très marqué concernant la couleur du pelage et<br />

la dimension de la canine supérieure,considérable chez le<br />

mâle.Le testicule droit du mâle est plus long,large et volumineux<br />

que le gauche.14 marqueurs génétiques polymorphiques<br />

ont été sélectionnés pour effectuer le génotypage<br />

par l’utilisation de la technologie moléculaire et à l’aide<br />

de la réaction en chaîne polymérasique. Les programmes<br />

de Cervus, GenePop, Fstat, Structure et Bottleneck ont<br />

été utilisés pour déterminer la structure et la nature génétique<br />

de la population d’Eulemur cinereiceps. Ces analyses<br />

ont permis de déterminer que la valeur de la diversité<br />

des gènes des populations est pareille et modérée, oscillant<br />

autour de 57 % ;la divergence génétique est comprise<br />

entre 0,05 à 0,<strong>15</strong> et est qualifiée de modérée; la richesse<br />

allélique varie de 2,928 à 3,632;une migration entre la population<br />

de Mahabo et de Vevembe,d’une part et celle de<br />

Manombo et de Vevembe d’autre part,a été identifiée;un<br />

certain degré de consanguinité a été constaté à Mahabo.<br />

La population de Manombo subit un goulot démographique<br />

et aucune structure distincte ni sous - structure n’a<br />

été observée au sein des populations de ces 3 sites.Même<br />

si cette espèce est en danger critique, sa santé génétique<br />

est modérée.Elle pourrait être bonne si les solutions adéquates<br />

sur la conservation génétique étaient appliquées.<br />

Dans le cas contraire,elle deviendrait désastreuse.La prise<br />

immédiate de mesures de conservation efficientes est<br />

donc nécessaire afin de préserver les populations pures<br />

d’E. cinereiceps et de protéger ses habitats.<br />

Mots-clés: Eulemur cinericeps, Mahabo, Manombo, Vevembe,<br />

Madagascar, Morphométrie, Mensuration, Génétique,<br />

Population, Conservation.<br />

Ingraldi, C. 2010. Forest fragmentation and edge effects on<br />

eight sympatric lemur species in southeast Madagascar.<br />

M.A. thesis, University of Calgary, Calgary, Alberta, Canada.<br />

Extensive slash-and-burn agriculture in southeastern Madagascar<br />

has led to the fragmentation of forests in this region,<br />

creating a constricted available habitat area and increasing<br />

the proportion of forest edge. I investigated the<br />

response to forest fragmentation and edge effects in eight<br />

lemur species through comparisons of species density<br />

and diversity between fragments, as well as correlation<br />

analyses including population distribution patterns,ecological<br />

variables,and distance from forest edge.I also include<br />

a more detailed focus on the behavioural response of Eulemur<br />

cinereiceps. Results were highly varied, with no species<br />

showing strong aversion to forest edge but with higher<br />

overall densities in larger,more connected fragments.<br />

Eulemur cinereiceps spent significantly more time near the<br />

forest edge while resting, but edge did not affect feeding<br />

patterns or food availability. These results suggest that<br />

conservation management should focus on maintaining<br />

large, complex fragments and improving connectivity<br />

through forest corridors.<br />

Mihaminekena,T.H.2010. Etude de la relation entre la dégradation<br />

de l’habitat et les activités de Propithecus edwardsi<br />

du Parc National de Ranomafana Ifanadiana, Madagascar.<br />

Mémoire de DEA en Paléontologie et évolution biologique,<br />

Biologie Evolutive, Primatologie, Département de<br />

Paléontologie et d’Anthropologie biologique, Faculté des<br />

Sciences, Université d’Antananarivo.<br />

Une étude sur le comportement et l’habitat de Propithecus<br />

edwardsi a été réalisée dans le Parc National de Ranomafana.Elle<br />

a été réalisée dans trois sites ayant chacun un<br />

degré de perturbation inégal: Talatakely (fortement perturbé);<br />

Sakaroa (moyennement perturbé) et Valohoaka<br />

(non perturbé). Sa finalité est d’analyser le type de comportement<br />

biologique adopté par l’espèce en réponse à la<br />

dégradation de son habitat et de le comparer entre les<br />

trois sites. La méthode adoptée est celle décrite par Altmann<br />

en 1974 qui consiste à déterminer l’activité du focal<br />

animal toutes les dix minutes et celle de tous les groupes<br />

toutes les cinq minutes. Pour toutes les activités, sauf le<br />

déplacement, la différence est toujours significative pour<br />

les trois sites. Le repos est plus élevé dans le site intact<br />

(36.6%) par rapport à l’alimentation.Inversement le repos<br />

est moins fréquent (28.9 %) que l’alimentation (53.6 %)<br />

dans le site fortement perturbé. La fréquence des activités<br />

de l’espèce dans le site moyennement perturbé est<br />

toujours comprise entre les deux sites perturbés et non<br />

perturbés. Pour ses activités, l’espèce utilise certains niveaux<br />

de strates, spécialement ceux compris entre 10 et<br />

<strong>15</strong> et <strong>15</strong> et 20 m. Néanmoins, l’espèce habitant le site intact<br />

se place à un niveau plus haut que celle de la forêt perturbée.<br />

Les grands arbres sont plus abondants à Valohoaka<br />

qu’à Sakaroa et à Talatakely:respectivement la hauteur<br />

varie de 10.80, 9.53 et 9.47 m; celui du DHP est de 13.59<br />

cm;12.17 et 11.09 cm.Les épaisseurs de la couronne sont<br />

respectivement 4.42,4.28 et 3.91 m.Les parties de plantes


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 73<br />

consommées pour chaque site sont significativement très<br />

différentes. La corrélation entre la consommation de jeunes<br />

feuilles et les activités exercées est toujours positive et significative<br />

quel que soit le site. Les femelles choisissent un niveau<br />

plus haut des arbres que les mâles à Valohoaka et à Talatakely<br />

par contre à Sakaroa c’est l’inverse. La cohésion du<br />

groupe est plus observée dans le site intact par rapport à celui<br />

dégradé.Bref,la perturbation influe les activités générales<br />

et la structure de l’habitat de Propithecus edwardsi.<br />

Mots-clés:Propithecus edwardsi, Lémuriens, Degré de perturbation,<br />

Habitat, Activités, Parc National de Ranomafana,<br />

Madagascar.<br />

Polowinsky, S.Y. 2009. Nutrition of captive Sclater’s lemurs<br />

(Eulemur macaco flavifrons GRAY, 1867) and crowned<br />

lemurs (Eulemur coronatus GRAY,1842),with special emphasis<br />

on the problem of obesity. PhD dissertation, Biology<br />

and Geography, University of Duisburg-Essen, Germany.<br />

This study was concerned with the obesity problem of blueeyed<br />

black lemurs and crowned lemurs in captivity. Its aims<br />

were to optimize the species’ diet in captivity by combining<br />

data obtained from individuals kept at different European<br />

zoos as well as from wild blue-eyed black lemurs to gain a<br />

better understanding of the ecological and nutritional needs<br />

of Eulemur macaco flavifrons in order to prevent individuals<br />

from becoming obese and to assist planned conservation<br />

measures.<br />

The captive part of the study was conducted in two European<br />

zoos:Cologne Zoo (Germany) and Parc Zoologique<br />

et Botanique de Mulhouse, Sud-Alsace (France). A longterm<br />

study with one group of blue-eyed black lemurs<br />

(1.3) and one group of crowned lemurs (1.2) was carried<br />

out at Cologne Zoo.In addition,three groups of blue-eyed<br />

black lemurs (2.1; 1.1; 1.1) and three groups of crowed<br />

lemurs (2.2; 2.1; 3.2) were studied at Mulhouse Zoo. The<br />

body weight development of captive individuals was registered<br />

and compared to body weight data of wild individuals.<br />

The obesity rate in captivity was recorded. An obese<br />

animal was identified as one weighing more than two standard<br />

deviations over the mean wild weight. Moreover,<br />

nutrient and energy intake of Eulemur macaco flavifrons<br />

and Eulemur coronatus at Cologne Zoo and Mulhouse Zoo<br />

were registered. In addition, digestibility trials were conducted.<br />

Samples of feeds and faeces were analyzed using<br />

Weende analysis and detergent analysis. In Madagascar,<br />

four groups of Eulemur macaco flavifrons in two forest fragments,one<br />

mainly primary forest and the other predominantly<br />

secondary forest,were observed.Samples of plants<br />

utilized by free-ranging blue-eyed black lemurs were collected.They<br />

were botanically classified and analyzed using<br />

Weende analysis and detergent analysis.<br />

The mean body weights of Eulemur macaco flavifrons as well<br />

as Eulemur coronatus in captivity were significantly higher<br />

than the mean body weight of free-ranging individuals.100<br />

% of the Eulemur macaco flavifrons sample and 33.3 % of<br />

the Eulemur coronatus sample were obese.Significant body<br />

weight differences were found between the groups studied<br />

at Cologne Zoo and Mulhouse Zoo, which could be<br />

explained by different feeding regimes. Comparing the<br />

diet of free-ranging blue-eyed black lemurs to the zoo<br />

diets that were based mainly on fruits and vegetables at<br />

Cologne Zoo and Mulhouse Zoo, considerable differences<br />

were found with respect to NDF,ADF,ADL and crude<br />

protein content, whereas ash and crude lipid content varied<br />

only slightly.The NFC and energy content in the zoo<br />

diets were almost twice as high as those in the diet of wild<br />

blue-eyed black lemurs. The high NFC,crude protein and<br />

metabolizable energy content and low fibre content of<br />

the zoo diets as compared to the wild diet,combined with<br />

a relatively high apparent digestibility of ~80 % for Eulemur<br />

macaco flavifrons and ~84 % for Eulemur coronatus, respectively,<br />

and in combination with lemurs’ typically low basal<br />

metabolic rates, all clearly contribute to the obesity problem<br />

of captive Eulemur macaco flavifrons.<br />

The presented data of food consumed by Eulemur macaco<br />

flavifrons in captivity and in the wild reveals elementary<br />

differences concerning nutrient and energy composition.<br />

Although a bright variety of fruits and vegetables could<br />

protect animals in captivity from stereotypic behaviour, a<br />

systematic reassessment of the zoo diet is suggested:<br />

increasing fibre content and decreasing energy density by<br />

feeding vegetables,and whenever possible,fresh plant material<br />

in appropriate quantities instead of energy-rich<br />

fruits, gruel or commercial feeds. Although the utilization<br />

of the food fibre content by a generalist frugivore like Eulemur<br />

macaco flavifrons or Eulemur coronatus is limited, fibre<br />

content plays an important role in the maintenance of<br />

physiological health. A zoo diet corresponding to the natural<br />

requirements of lemurs guarantees an optimization<br />

of breeding programmes and presents a valuable and necessary<br />

contribution to the preservation of these highly<br />

endangered species.<br />

Key words: Eulemur macaco flavifrons, Eulemur coronatus,<br />

Nutrition, Digestibility, Obesity, Captivity, Energy intake.<br />

Rafaliarison R.R. 2010. Activité générale du Prolemur simus:<br />

transition saison sèche - saison de pluies et activité de la<br />

femelle avant et après mise bas dans le Parc National<br />

Ranomafana.Département de Paléontologie et d’Anthropologie<br />

Biologique, Université d’Antananarivo, Madagascar.<br />

Cette étude a été réalisée dans la parcelle 3 du parc national<br />

Ranomafana qui abrite le seul groupe du parc.Elle nous<br />

aidera à mieux comprendre les variations de l’activité générale<br />

du Prolemur simus pendant la transition de la saison<br />

sèche à la saison de pluie ainsi que la variation de l’activité<br />

de la femelle avant et après mise bas. Les résultats ont<br />

montré que le Prolemur simus a dépensé la moitié de leur<br />

temps à l’alimentation suivi du repos. Les variations de la<br />

fréquence de l’activité sont en relation avec la partie consommée<br />

(tige, moelle ou jeunes pousses), la disponibilité<br />

alimentaire,la température et la pluie ainsi que la disponibilité<br />

en eau.La strate la plus utilisée est comprise entre 0<br />

à 5 m. La présence d’un nouveau né a une influence sur<br />

l’activité et la proximité des individus du groupe. Pour la<br />

femelle, il y a une diminution de la fréquence de l’alimentation<br />

après la mise bas.Il y a aussi une augmentation très<br />

marquée de la fréquence du repos après la mise bas.Le juvénile<br />

s’éloigne de la femelle après mise bas tandis que le<br />

mâle reste toujours près de la femelle.<br />

Mots clés: Prolemur simus, Activités, Mise bas, Parc National<br />

Ranomafana, Madagascar.<br />

This study was carried out in Parcel 3 of Ranomafana National<br />

Park,where the only group of Prolemur simus within<br />

the park is present.It concerns the variation in the general<br />

activities of P.simus during the transition from the dry season<br />

to the rainy season as well as the activity of the female<br />

before and after giving birth.The results showed that P. simus<br />

spent half of their time feeding, followed by resting.<br />

The variation in frequency of activities was related to the<br />

consumed plant parts (trunk,culm pith or bamboo shoot),<br />

availability of food,temperature,rain and the availability of<br />

water. The most frequently used forest stratum was between<br />

0 and 5 m of height. The presence of the new-born<br />

had an influence on the activity and the spacing of the individuals<br />

in the group.For the female,there was a reduction<br />

of the frequency of feeding after giving birth. There was<br />

also a very marked increase in the frequency of resting after<br />

birth. The juvenile stayed away from the female after<br />

she had given birth,but the male always remained close to<br />

the female.<br />

Key words:Prolemur simus,Activity,New born,Ranomafana<br />

National Park, Madagascar.<br />

Raharivololona,B.M.2010.Intestinal parasite infection of the<br />

gray mouse lemur (Microcebus murinus, J.F. Miller, 1777) in<br />

the south-eastern littoral forest of Madagascar. PhD Dissertation,<br />

Hamburg University, Hamburg, Germany.<br />

Madagascar’s plants and animals belong to one of the most<br />

unique and threatened biotas of the world. Lemurs are<br />

the flagship species associated with the biological crisis of<br />

the island and notably vulnerable to habitat degradation.<br />

While most studies on the effect of habitat destruction<br />

on species survival have focused on population reduction<br />

and forest degradation, indirect effects, such as altered<br />

parasite loads have received little attention. Parasitologi-


Page 74 Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

cal studies have concentrated on large primates, such as<br />

apes and monkeys.This is probably due to epidemiological<br />

interest in apes, which are genetically closer to humans<br />

and are known to be a reservoir of certain pests and<br />

diseases fatal to humans. Prosimians’ gastrointestinal parasites<br />

are less studied.<br />

The goal of this project was to assess and describe the<br />

gastrointestinal parasites of the lemur species Microcebus<br />

murinus (Family Cheirogaleidae), also known as the gray<br />

mouse lemur, from the littoral forest fragments of Mandena<br />

in extreme southeastern Madagascar. In addition, I<br />

wanted to evaluate the utility of determining gastrointestinal<br />

parasite loads based on fecal samples. From April<br />

2003 to October 2005, 427 fecal samples obtained<br />

from169 different individuals of M. murinus from five forest<br />

fragments were analyzed to assess the parasite species<br />

richness of this animal based on parasite egg morphology.Three<br />

individuals of M.murinus were also sacrified in<br />

order to look for adult worms for identification and confirmation<br />

of parasite species, and to localize their gastrointestinal<br />

parasites in the digestive tract. Screening all<br />

fecal samples by using the modified technique of the<br />

McMaster flotation, I noted that M. murinus harbored at<br />

least nine different intestinal parasites, which included 1)<br />

six Nemathelminthes:a member of the family Ascarididae,<br />

one species of the family Subuluridae represented by the<br />

genus Subulura,an unidentified Strongylida,a species of the<br />

genus Trichuris (Trichuridae), two species of the family<br />

Oxyuridae: the first belongs to the genus Lemuricola and<br />

the second is still unidentified;2) two Plathelminthes:two<br />

cestodes of the genus Hymenolepis (Hymenolepididae);3)<br />

one Protozoa: belonging to the order Coccidia.<br />

These gastrointesinal parasites of M.murinus from Mandena<br />

have not been previously described from this primate.<br />

The cestode infection deserves special attention,as these<br />

parasites have not been previously reprted from lemurs.<br />

Adult worms of Trichuris species were found in the caecum,<br />

as well as Lemuricola worms in the caecum and large<br />

intestine.Subulura worms were more abundant in the caecum<br />

than in the small and large intestine. A large number<br />

of Subulura larvae were observed in the caecum.As exemplified<br />

by the data on Subulura sp. worms in the digestive<br />

tract of M.murinus,the number of nematode parasite eggs<br />

and larvae found in the feces are correlated with the intensity<br />

of infection in the digestive tract.<br />

To assess effects of forest fragmentation and degradation,fecal<br />

samples from the first captureof 169 individuals of Microcebus<br />

murinus living in five littoral forest fragments were<br />

analyzed for gastrointestinal parasites. The fragments differed<br />

in size and forest quality. In good quality forest<br />

blocks, lemurs from a smaller fragment had higher prevalences<br />

and intensities of infection of gastrointestinal nematodes<br />

and protozoans than animals from a larger forest<br />

fragment. In larger forest blocks, excretion of eggs from<br />

Ascarididae and tapeworms was higher in a degraded forest<br />

fragment than in a better quality forest fragment.This<br />

situation was reversed in small forest fragments with fewer<br />

eggs of Subulura nematodes and protozoans shed by<br />

lemurs in the degraded fragment than by lemurs from the<br />

good quality fragment. The analyses are hampered by the<br />

fact that only one forest fragment was available per type<br />

of treatment. Keeping this limitation in mind, the results<br />

are consistent with other studies and indicate that forest<br />

degradation and fragmentation have marked effects on<br />

the level of parasitism of Madagascar’s lemurs.<br />

To assess seasonal effects on the excretion of gastrointetinal<br />

parasites I screened fecal samples from M. murinus<br />

caught during monthly trapping sessions for eggs and<br />

larvae of intestinal parasites. Parasite excretions changed<br />

seasonally when analyzed at the level of individual hosts.<br />

The number of parasite species and the abundance of parasite<br />

eggs and larvae in Microcebus feces were higher during<br />

the hot season than the cold season.Reduced parasite<br />

excretion during the cold season could be due to environmental<br />

factors or due to the ability of M. murinus to<br />

enter torpor and hibernation during the cold season<br />

which might lead to reduced metabolism of intestinal parasites<br />

and results in reduced shedding of parasite eggs.<br />

No such seasonal variation was found on the level of the<br />

lemur population when the analyses were based on samples<br />

of unknown origin.<br />

The study revealed noticeable effects of forest fragmentation<br />

on parasite loads as measured via the excretion of<br />

parasites. The disadvantageous consequences of increased<br />

parasite infections on the health of these animals is due<br />

to changes in habitat conditions and is a factor that needs<br />

to receive more attention when developing conservation<br />

plans.<br />

Key words: Microcebus murinus, Parasites, Habitat degradation,<br />

Fragmentation, Forest quality, Hymenolepis.<br />

Randrianarimanana, H.L. 2009. Etude comparative de l’alimentation<br />

et du comportement des deux espèces sympatriques<br />

d’Indriidés :Propitecus diadema et Indri indri dans<br />

le Réserve Naturelle Intégrale n°1 de Betampona (Tamatave).Mémoire<br />

de DEA en Paléontologie et évolution biologique,Biologie<br />

Evolutive,Primatologie,Département de<br />

Paléontologie et d’Anthropologie biologique, Faculté des<br />

Sciences, Université d’Antananarivo.<br />

Des études comportementales et nutritionnelles des<br />

deux espèces sympatriques d’Indriidés (Propithecus diadema<br />

et Indri indri) ont été réalisées pendant les mois de<br />

mars,avril,juin et juillet 2008 dans la Réserve Naturelle Intégrale<br />

numéro un de Betampona (Tamatave). Les données<br />

comportementales et nutritionnelles,la hauteur fréquentée<br />

et la nature des supports et des coordonnées<br />

géographiques ont été enregistrés toutes les 10 minutes.<br />

Des analyses statistiques ont été réalisées pour étudier<br />

comment ces deux plus grands lémuriens partagent leurs<br />

nourritures et habitats. Même si les deux espèces ont la<br />

même fréquence d’alimentation et sont toutes deux considérées<br />

folivores, Propithecus diadema consomme un peu<br />

plus de fruit qu’Indri indri (respectivement 33,6 et 9,4 %) et<br />

utilise beaucoup plus d’espèces végétales comme source<br />

de nourriture. Propithecus diadema fréquente des hauteurs<br />

beaucoup plus basses qu’Indri indri durant ses activités<br />

(8,3071et 10,208 m). De plus, cette dernière espèce<br />

utilise beaucoup de petits supports (respectivement 3,80<br />

et 5,38 cm) et peu inclinés (40,32° et 47,79°). Propithecus<br />

diadema se déplace beaucoup tandis qu’Indri indri se repose<br />

davantage.Malgré le chevauchement de leur territoire,<br />

ces deux espèces montrent une séparation de leur niche<br />

écologique.<br />

Mots-clés: Propithecus diadema, Indri indri, Alimentation,<br />

Comportement, Comparaison.<br />

Razafindratsima, O.H. 2009. Rôle écologique de Varecia rubra<br />

et d’Eulemur albifrons dans le Corridor Ambatolaidama du<br />

Parc National Masoala.Mémoire de DEA en Biologie,Ecologie<br />

et Conservation Animale, Département de Biologie<br />

Animale, Faculté des Sciences, Université d’Antananarivo.<br />

Une étude a été effectuée sur deux espèces de lémuriens<br />

sympatriques dans les forêts tropicales humides du corridor<br />

Ambatolaidama du Parc National Masoala - Varecia<br />

rubra (Geoffroy, 1812) et Eulemur albifrons (Geoffroy,<br />

1796). Le but est d’étudier les rôles écologiques de ces<br />

espèces dans la reforestation du corridor en tant que disséminatrices<br />

de graines. Ceci afin de mettre en évidence<br />

leur importance au niveau de ce site et par conséquent,<br />

d’élaborer une stratégie de conservation. Un groupe d’E.<br />

albifrons et trois groupes de V.rubra ont été suivis.Trois femelles<br />

de V.rubra,choisies comme animaux focaux,ont été<br />

munies de colliers à radio émetteur. Ces espèces ont fait<br />

l’objet de suivis quotidiens, de novembre 2006 à janvier<br />

2007, afin de collecter des informations sur leur régime<br />

alimentaire et leur défécation. Pour E. albifrons, aucune<br />

donnée sur son alimentation n’a été obtenue de part la<br />

difficulté de son suivi dû à l’absence de collier. Les fèces<br />

collectées sont analysées afin d’en extraire des graines qui<br />

ont été, ensuite, inventoriées, mesurées et identifiées. La<br />

viabilité de ces graines a été étudiée par un test d’immersion<br />

dans l’eau,puis par la mise en terre dans une pépinière<br />

des graines déféquées comparées avec celles extraites<br />

manuellement des fruits. Afin de comprendre le devenir<br />

de ces graines après leur dépôt, une étude de l’habitat où


Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010 Page 75<br />

les fèces ont été déposées a été réalisée. Les résultats de<br />

cette étude ont démontré que V.rubra a une frugivore élevée<br />

(86.1 %). Aussi, ces deux espèces participent activement<br />

à la dissémination des graines de la majorité des<br />

espèces végétales du corridor, avec 16 graines par jour<br />

disséminées par V. rubra représentées par 34 espèces végétales<br />

appartenant à <strong>15</strong> familles, et 10 graines par jour<br />

pour E. albifrons réparties dans 8 familles avec 11 espèces.<br />

De plus, après leur passage au niveau du tube digestif de<br />

ces animaux,les graines sont viables (x2 = 107,283,ddl = 2,<br />

p = 0,0001) et ont une germination plus élevée que les<br />

graines témoin (x2 = 55,680, ddl = 1, p = 0,0001). Très peu<br />

d’entre elles ont subi des dommages (seulement de 3,8 %<br />

et 0,7 % respectivement pour les graines déféquées par V.<br />

rubra et E. albifons). L’étude de l’habitat démontre une<br />

réussite de germination malgré une forte pente.Ces deux<br />

espèces de lémuriens sont donc d’importantes disséminatrices<br />

de graines de la forêt humide du corridor Ambatolaidama.Elles<br />

jouent un rôle important dans le maintien<br />

de l’équilibre écologique et contribuent à la reforestation<br />

du corridor.<br />

Mots-clés: Varecia rubra, Eulemur albifrons, Primates, Régime<br />

alimentaire, Dispersion des graines, Parc National<br />

Masoala, Corridor, Ambatolaidama, Madagascar.<br />

Razakanirina H. 2010. Suivi phénologique global et statut de<br />

conservation de 4 espèces végétales (Strychnos decussata,<br />

Diospyros ferrea,Gardenia decaryi et Capurodendron gracilifolium)<br />

consommées par Propithecus verreauxi coronatus dans<br />

la forêt de Badrala (Antrema - Région Boeny). Mémoire<br />

de DEA en Biologie et Ecologie Végétale,option Ecologie<br />

végétale, Département de Biologie et Ecologie Végétale,<br />

Faculté des Sciences, Université d’Antananarivo.<br />

La Station Forestière à Usage Multiple d’Antrema constitue<br />

un des habitats de Propithecus verreauxi coronatus.Dans<br />

cette région, ces Lémuriens sont vénérés comme étant<br />

les représentants des ancêtres des "Sakalava". Cette culture<br />

leur offre donc un haut niveau de protection mais<br />

est- ce que la forêt peut leur fournir la nourriture dont ils<br />

ont besoin?<br />

Des études sur la phénologie et une évaluation du statut<br />

de conservation des quelques espèces consommées par<br />

ce lémurien ont été réalisées dans la forêt sèche sur dune<br />

de Badrala (partie Nord de la station),afin de faire ressortir<br />

les différents types phénologiques et la saisonnalité des<br />

différentes phénophases des arbres de cette forêt. Trois<br />

(3) plots de 2000 m2 ont été montés dans la forêt et dans<br />

chaque plot,tous les arbres à DHP > $10 cm sont numérotés<br />

et des paniers collecteurs de litières sont installés<br />

suivant un transect de 200 m. La phénologie des arbres a<br />

été suivie pendant une année grâce à des observations directes<br />

de chaque individu et à l’analyse des litières qui<br />

sont collectées tous les <strong>15</strong> jours. La période de floraison<br />

maximale des espèces se produit au début de la saison humide,<br />

avant l’apparition des feuilles et la défeuillaison est<br />

assez importante au milieu de la saison sèche. Strychnos<br />

decussata, Diospyros ferrea, Gardenia decaryi et Capurodendron<br />

gracilifolium sont classées en danger d’extinction<br />

(EN). Ainsi, des mesures de conservation sont à entreprendre<br />

afin de protéger ces espèces et les habitats de ce<br />

lémurien.<br />

Mots-clés: Suivi phénologique, Statut de conservation,<br />

Plantes consommées,Propithecus verreauxi coronatus,forêt<br />

sèche, Badrala, Station Forestière à Usage Multiple d’Antrema,<br />

Madagascar.<br />

Rued, A.C. 2009. Social structure and female foraging strategies<br />

in white-collared lemurs (Eulemur cinereiceps). M.A.<br />

thesis, University of Calgary, Calgary, Alberta, Canada.<br />

This thesis examines the nature of male-female affiliation<br />

in Eulemur cinereiceps, specifically whether it consists of<br />

special relationships or a central male social structure. A<br />

special relationship includes an unrelated male and female<br />

adult who preferentially associate and affiliate with each<br />

other over all other individuals within the group. I also<br />

examine the flexibility of female foraging strategies in<br />

response to changes in resource availability and energy<br />

requirements. I tested the resource defence hypothesis,<br />

which proposes that reproductive females form special<br />

relationships with males to improve foraging success and<br />

offset the energetic costs of reproduction.Data were collected<br />

on two small groups in Mahabo forest,on the southeastern<br />

coast of Madagascar.Analysis of social structure<br />

data suggested central male structure when resources<br />

were scarce and central female structure during the period<br />

of relative resource abundance.The resource defence<br />

hypothesis was not supported by foraging data.<br />

Solomon,S.K.2010.Living on the edge:a preliminary dry season<br />

study of crowned lemur (Eulemur coronatus, Gray<br />

1842) and Sanford’s lemur (E.sanfordi,Archbold 1932),responses<br />

to anthropogenic habitat changes in northern<br />

Madagascar. M.A., Anthropology (Environment & Sustainability),University<br />

of Western Ontario,London,Canada.<br />

Habitat fragmentation through anthropogenic disturbance<br />

is a significant threat to primates in all biogeographic<br />

areas. Recent research has shown that primates have<br />

non-patterned responses to this disturbance and that general<br />

models of changing primate behaviour are not effective<br />

conservation tools. Previous research on primates in<br />

fragments is concentrated in the Neotropics demonstrating<br />

a need to investigate species-specific responses in other<br />

areas of the world. This study examined two sympatric<br />

lemur species, the crowned lemur (Eulemur coronatus)<br />

and Sanford’s brown lemur (Eulemur sanfordi) and their responses<br />

to anthropogenic habitat fragmentation in northern<br />

Madagascar. Although habitat generalists, Sanford’s<br />

lemur was extirpated at the study site while crowned lemur<br />

density was low but viable; they were restricted to<br />

forest fragments on the periphery and top of limestone<br />

massifs. Conservation initiatives in these fragments are<br />

reliant on preserving fruit trees located in the remaining<br />

forest flatlands and the commitment of a community conservation<br />

group.<br />

Key words: Northern Madagascar, Crowned lemur, Sanford’s<br />

brown lemur,Forest fragmentation,Edge effects,Lemur<br />

density,Community conservation,Dry season,Deciduous<br />

forest.


Guidelines for authors<br />

Lemur News publishes manuscripts that deal largely or exclusively with lemurs and their habitats. The aims of Lemur News are: 1) to<br />

provide a forum for exchange of information about all aspects of lemur biology and conservation, and 2) to alert interested parties<br />

to particular threats to lemurs as they arise. Lemur News is distributed free of charge to all interested individuals and institutions. To<br />

the extent that donations are sufficient to meet production and distribution costs, the policy of free distribution will continue. Manuscripts<br />

should be sent to one of the editors electronically (see addresses for contributions on the inside front cover). Lemur News<br />

welcomes the results of original research, field surveys, advances in field and laboratory techniques, book reviews, and informal status<br />

reports from research, conservation, and management programs with lemurs in Madagascar and from around the world. In addition,<br />

notes on public awareness programs, the availability of new educational materials (include the name and address of distributor and<br />

cost, if applicable), and notification of newly published scientific papers, technical reports and academic theses are all appropriate<br />

contributions. Readers are also encouraged to alert Lemur News to pertinent campaigns and other activities which may need the<br />

support of the lemur research and conservation community. Finally, Lemur News serves as a conduit for debate and discussion and<br />

welcomes contributions on any aspect of the legal or scientific status of lemurs, or on conservation philosophy.<br />

Manuscripts should be in English or French, double spaced with generous margins, and should be submitted electronically in Word<br />

(*.doc or *.docx) or rich text format (*.rtf). They should generally be 1-8 pages long, including references and figures. Submissions to<br />

the “Articles” section should be divided into Introduction, Methods, Results and Discussion and should include a list of 4-6 key words.<br />

Short reports and other submissions do not need subheadings or key words. Ideally, English articles should include a French abstract<br />

and vice versa. Articles should include a map of the area discussed, including all major locations mentioned in the text. Macros,<br />

complex formatting (such as section breaks) and automatic numbering as provided by text processing software must be avoided. The<br />

corresponding author’s affiliation and full address must be provided, including e-mail and telephone number. For all other authors,<br />

affiliation and address should be provided. Use superscript numerals for identification. Tables should include concise captions and<br />

should be numbered using roman numerals. Please give all measurements in metric units. Please accent all foreign words<br />

carefully.<br />

Maps should always be made as concise as possible and should include an inset showing the location of the area discussed in relation<br />

to the whole of Madagascar.<br />

Photographs: Black-and-white photographs are ideal. Color photographs are acceptable if they can be printed in greyscale without<br />

losing any of the information that they are supposed to convey. Please send only sharply-focused, high quality photographs. Please<br />

name each file with the photographer credit and the number of the identifying caption (e.g. “Schwitzer_Fig.1”). We are always<br />

interested in receiving high quality photographs for our covers, especially those of little known and rarely photographed lemurs, even<br />

if they do not accompany an article.<br />

All figures should include concise captions. Captions should be listed on a separate sheet, or after the References section of the<br />

manuscript. Subtle differences in shading should be avoided as they will not show up in the final print. Maps, photographs and figures<br />

should be sent electronically in any one of the following formats: BMP, CDR, EMF, WMF, XLS. Please name all files with the name of<br />

the first author of the manuscript to which they belong. Do not send figures embedded in the text of the manuscript.<br />

References: In the text, references should be cited consecutively with the author's surname and year of publication in brackets (e.g.<br />

Schwitzer et al., 2010; Kaumanns and Schwitzer, 2001). The reference list should be arranged alphabetically by first author's surname.<br />

Examples are given below.<br />

Journal article<br />

Ranaivoarisoa, J.F.; Ramanamahefa, R.; Louis, Jr., E.E.; Brenneman, R.A. 2006. Range extension of Perrier’s sifaka, Propithecus perrieri, in<br />

the Andrafiamena Classified Forest. Lemur News 11: 17-21.<br />

Book chapter<br />

Ganzhorn, J.U. 1994. Les lémuriens. Pp. 70-72. In: S.M. Goodman; O. Langrand (eds.). Inventaire biologique; Forêt de Zombitse.<br />

Recherches pour le Développement, Série Sciences Biologiques, n° Spécial. Centre d’Information et de Documentation Scientifique<br />

et Technique, Antananarivo, Madagascar.<br />

Book<br />

Mittermeier, R.A.; Konstant, W.R.; Hawkins, A.F.; Louis, E.E.; Langrand, O.; Ratsimbazafy, H.J.; Rasoloarison, M.R.; Ganzhorn, J.U.;<br />

Rajaobelina, S.; Tattersall, I.; Meyers, D.M. 2006. Lemurs of Madagascar. Second edition. Conservation International, Washington, DC,<br />

USA.<br />

Thesis<br />

Freed, B.Z. 1996. Co-occurrence among crowned lemurs<br />

(Lemur coronatus) and Sanford’s lemur (Lemur fulvus sanfordi)<br />

of Madagascar. Ph.D. thesis, Washington University, St. Louis, USA.<br />

Website<br />

IUCN. 2008. IUCN Red List of Threatened Species.<br />

. Downloaded on 21 April 2009.<br />

Call for voluntary contributions<br />

As most readers of Lemur News are certainly aware,<br />

fundraising has become more difficult. We will continue<br />

to distribute Lemur News free of charge to all interested<br />

individuals and institutions. However, we would like to ask<br />

subscribers for voluntary contributions to cover production<br />

costs. Please contact one of the editors for information on<br />

how to make contributions.<br />

Drawing by Stephen D. Nash


Editorial.................................................................................1<br />

Feature: Madagascar’s Environmental Crisis<br />

Madagascar’s illegal logging crisis: An update<br />

and discussion of possible solutions<br />

Erik R. Patel...............................................................................2<br />

Ongoing threats to lemurs and their habitat<br />

inside the Sahamalaza - Iles Radama National<br />

Park<br />

Melanie Seiler, Guy H. Randriatahina,<br />

Christoph Schwitzer.................................................................7<br />

News and Announcements..........................................9<br />

Short Communications<br />

Preliminary conservation status assessment for<br />

the Data Deficient northern giant mouse lemur<br />

Mirza zaza<br />

Eva Johanna Rode, K. Anne-Isola Nekaris,<br />

Christoph Schwitzer...............................................................11<br />

An observation of the hairy-eared dwarf lemur,<br />

Allocebus trichotis, in the Lakato region, eastern<br />

Madagascar<br />

Erwan Lagadec, Steven M. Goodman..................................12<br />

When big lemurs swallow up small ones:<br />

Coquerel’s dwarf lemur as a predator of grey<br />

mouse lemurs and endemic rodents<br />

Susanne Schliehe-Diecks, Matthias Markolf,<br />

Elise Huchard.........................................................................13<br />

Collective mobbing of a boa by a group of<br />

red-fronted lemurs (Eulemur fulvus rufus)<br />

Lennart Pyritz, Tianasoa Andrianjanahary..........................14<br />

Response of two nocturnal lemurs (Microcebus<br />

murinus and Lepilemur leucopus) to a potential<br />

boiidae (Sanzinia madagascariensis) predator<br />

Krista Fish...............................................................................16<br />

Effective predation defence in Cheirogaleus<br />

medius<br />

Kathrin H. Dausmann...........................................................18<br />

Lepilemur feeding observations from Northern<br />

Madagascar<br />

Andrew J. Lowin......................................................................20<br />

Hypotheses on ecological interactions between<br />

the aye-aye (Daubentonia madagascariensis)<br />

and microhylid frogs of the genus Platypelis in<br />

Tsaratanana bamboo forest<br />

Andolalao Rakotoarison, Solohery A. Rasamison,<br />

Emile Rajeriarison, David R. Vieites, Miguel Vences............21<br />

Discovery of crowned sifaka (Propithecus<br />

coronatus) in Dabolava, Miandrivazo, Menabe<br />

Region<br />

Josia Razafindramanana and Rija Rasamimanana............23<br />

Inferences about the distant past in Madagascar<br />

Elwyn L. Simons......................................................................25<br />

Husbandry guidelines for mouse lemurs at Paris<br />

Zoo<br />

Delphine Roullet....................................................................27<br />

Lemur News <strong>Vol</strong>. <strong>15</strong>, 2010<br />

ISSN 1608-1439<br />

Table of contents<br />

Articles<br />

Diurnal lemur density in the national park<br />

parcel Ivontaka Nord, UNESCO Biosphere<br />

Reserve of Mananara-Nord<br />

Marta Polasky Lyons..............................................................29<br />

Distribution of Prolemur simus north of the<br />

Mangoro-Nosivolo River - how far north do we<br />

really have to look?<br />

Rainer Dolch, Erik R. Patel, Jonah H. Ratsimbazafy,<br />

Christopher D. Golden, Tianasoa Ratolojanahary,<br />

Jean Rafalimandimby, Jonathan L. Fiely................................32<br />

Enquête préliminaire de la distribution des<br />

lémuriens de bambou dans et autour du<br />

Corridor forestier Fandriana-Vondrozo,<br />

Madagascar<br />

Andry Rajaonson, Maherisoa Ratolojanahary,<br />

Jonah Ratsimbazafy, Anna Feistner, Tony King....................34<br />

Effect of red ruffed lemur gut passage on the<br />

germination of native rainforest plant species<br />

Onja H. Razafindratsima, Emilienne Razafimahatratra.....39<br />

Feeding ecology of the crowned sifaka<br />

(Propithecus coronatus) in a coastal dry forest<br />

in northwest Madagascar (SFUM, Antrema)<br />

Claire Pichon, Rivo Ramanamisata, Laurent Tarnaud,<br />

Françoise Bayart, Annette Hladik, Claude Marcel<br />

Hladik, Bruno Simmen.......................................................... 42<br />

Effet de la dégradation de l'habitat sur la<br />

consommation alimentaire d'Eulemur<br />

rubriventer dans deux sites: Talatakely et<br />

Vatoharanana, du Parc National de Ranomafana<br />

Laingoniaina H. Rakotonirina, Germain J. Spiral,<br />

Jonah H. Ratsimbazafy, Soanorolalao Ravelonjanahary,<br />

Raharizelina Ralaiarison, Stacey Tecot, Alex Hall,<br />

Tricia Calhoon, Gisèle R. Randria..........................................47<br />

Observations of terrestrial latrine behaviour by<br />

the southern gentle lemur Hapalemur<br />

meridionalis in the Mandena littoral forest,<br />

southeast Madagascar<br />

Timothy M. Eppley, Giuseppe Donati....................................51<br />

Conservation des lémuriens via la protection de<br />

leurs habitats et le développement communautaire<br />

dans les corridors de Betaolana et Tsaratanana-<br />

Betaolana, région de SAVA<br />

Lala Razafy Fara, Iarilanto Andriamarosolo.........................54<br />

Genetic diversity in ten Indri (Indri indri)<br />

populations compared to other lemur species<br />

John Zaonarivelo, Rick Brenneman, Rambinintsoa<br />

Andriantompohavana, Edward E. Louis, Jr............................59<br />

Verreaux’s sifaka fur condition in the spiny forest<br />

of southern Androy<br />

Ivan Norscia, Jean Lambotsimihampy, Elisabetta Palagi.....64<br />

Rediscovery of Sibree’s dwarf lemur in the<br />

fragmented forests of Tsinjoarivo, central-eastern<br />

Madagascar<br />

Marina B. Blanco....................................................................67<br />

Funding and Training.....................................................69<br />

Recent Publications........................................................70<br />

Theses Completed..........................................................71

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!