IHT POWERS THIS LIQUID SEMCCONOUCTOR-see p.31

27-cent Hard-Rock Fuzz Box
Sn/Fe Moving-Vane Ammeter
Perpetual-Motion Freq Standard
Penny Pincher's Police Convertor

TE SKIES ABOVE US
E's roving report on what's what in outer space

Dazzle your friends with lightworks.

 EICO All EIectronc Solid orgars iranstorm sound :a
 Translators

 Strobe Lites

Build the Stereo Kits praised by experts.

Build for fun and use with Eicocraft jiffy project kits.

Shape up your own car/boat with EICO Engine Analyzer

Be a technocrat with EICO solid-state test equipment

EICO 240 Solid-Siate
FET-TVOM
S49 95 kt . S09 $95 \therefore$ rod

EICO 2:2 Sold desta
io uxe FET-TVOM 1

EICO 150 Solic-State
Signal Tracer
fos 330 Sold-State
$\$ 5995 \mathrm{k} / \mathrm{l} \$ 7995$:

FREE 1969 CATALOG

> 5/ $\sqrt{4} \sqrt{3}$ EICO Electronic Instrument Co.. Inc.
> EICO Canada Ltd.

TV repair needs you! Now!

Sound too good to be true? We assure you it is all true, and you can prove it to your own satisfaction within a few days! This course can stand up to any TV training you can get anywhere, at any price and the cost is incredibly low.

National Electronic Associations agree. They found the ICS course so thorough, so helpful, easy-to-grasp that they approved it for use in their own apprenticeship training program!

There are six detailed self-teaching texts here, complete with illustrations and diagrams. So effective, so practical, that when you have completed the first two texts you should be able to locate and repair 70 percent of all common TV troubles! Black and white, color.

- And now you can get expert training in a matter of weeks!
- Approved by National Electronic Associations!
- At a cost of under $\$ 100$!
- Peoplé are crying for TV service!

This course opens a tremendous future for you. Full-time, part-time, your own business. You've got a whole new career to gain-nothing to lose!

Send the coupon-today!

iCS, Scranton, Pa. 18515
ICS International Correspondence Schools Division of Intext

- ICS, Scranton, Pa. 18515

S Electronics

\bullet	SCIENCE SPECIALS
$\star 44$	The Skies Above Us-an introduction to prowling the galaxies
46	San Onofre's Fabulous 450-Southern Culifornia's unique, nuclear-powered generating station
-	CONSTRUCTION PROJECTS
* 35	Universal Darkroom Timer-an all-solid-state device that times prints and negatives with great accuracy and no moving parts
* 41	Penny Pincher's Police Convertor-easy to build, low-cost convertor for listening to fire and police calls
* 61	$\mathrm{Sn} / \mathrm{Fe}$ Moving-Vane Ammeter-works on AC or DC
* 67	97-Cent Hard-Rock Fuzz Box-add fuzz to your amplified guitar
* 79	Perpetual Motion Freq Standard-an electronic tuning fork
-	SCIENCE AND ELECTRONICS FEATURES
* 31	Light Powers This Liquid Semiconductor-experiment with the primitive photoelectric cell
73	Tallest Tower-newest design in self-supporting towers
78	Famous Patents-Marconi's four-circuit tuning patent
-	COMMUNICATIONS-SWL/CB/HAM
49	Their Time Is Your Time-standard time stations 'round the world
56	Saturday Morning Ham-In-suburban Philadelphia hams at an early ag
76	Ham Traffic-watch not, have not
-	LAB CHECKS
59	Heathkit Model IG-28 Color Bar and Dot Generator
65	EICO Cortina Model 3150 Integrated Stereo Amplifier
71	Univox-Super--Fuzz Guitar Fuzzbox
-	SCIENCE SHORTIES
30	The Precision Approach-cartoon page
40	Did You Know That . . - -keeping up to date on the latest happenings
60	Little Annie Fanny-broad view of computer drawing
82	TV's Long, Long Way to Tipperary
-	REGULAR DEPARTMENTS
8	Stamp Shack-philatronics
10	Positive Feedback-a word from the boss
12	Bookmark-tome touting
14	New Products-gudgets and gimmicks
18	Ask Me Another-readers' Q \& A
24	Literature Library-yours for two bits

White's Radio Log, Vol. 51, Part 5-page 83
Emergency Radio Services-Philadelphia Area-page 99

130 watt "instant heat" soldering gun for wiring, appliance repair, radio, T.V., etc. Kit includes: solder gun with long nosed tip, 1 tip for cutting plastic and removing putty, 1 flat iron tip for removing dents from wood
and heat sealing, 5 ft solder, attractive
theavy gauge metal case. heavy gauge metal case.

Mig. Sugg. List

WEN exclusive single post design gives iong reach \& clear view of work. Automatic heat control for all soldering jobs. 3 interchangeable tips -3 separate heat ranges, 25 100 watts. $100-200$ watts, $200-450$ watts.
Handsome molded plastic carrying case. Mfg. Sugg. List

Model 250. 250 ing gun. Heats in Mfg. Sugg. List
Model 100K Kit 100 watts in $21 / 2$ Mfg. Sugg. List

WEN PRODUCTS, INE.

5808 NORTHWEST HIGHWAY, CHICAGO. ILLINOIS 60631 312/763/6060
INDUSTRIALLY LISTED FOR CONTINUOUS DUTY, 100% AMERICAN MADE

NEW AND IMPORTANT SAMS BOOKS

ALL-NEW EDITION OF THE FAMOUS AUDIO CYCLOPEDIA

Completely revised 2nd Edition-the most comprehensive reference now available on audio-by the renowned authority, Dr. Howard W. Tremaine. Fully covers every phase of the subject, including all the latest developments, right down to the newest solid-state and integrated circuits. Contains authoritative, concise explanations of thousands of topics in the fields of acoustics, recording, and reproduction. Virtually a complete reference library on the audio art in a single volume.
Order 20675, on/y
$\$ 29.95$

Transistor Substitution Handbook. New 9th Ed. Fully updated. Lists thousands of direct substitutions: includes basing diagrams and polarity indications. Covers manufacturers of all transistor types, providing substitutions for U.S. and foreign home entertainment, industrial, and military types. Order 20705, only.. $\$ 1.95$

Know Your VOM-VTVM. 2nd Ed.
Explains VOM's, VTVM's and solid-state electronic voltmeters in language anyone can understand. Includes full explanations of the circuitry, uses, care and repair of the instruments. Explains how to understand electricai measurements. Order 20676, only $\mathbf{\$ 3 . 5 0}$

73 Dipole and Long.Wire Antennas

Describes virtually every type of wire antenna; includes dimensions, configuration, and construction data for 73 different types, plus appendices describing construction and operation of noise bridges and antenna line tuners, measuring data, etc
Order 65071, (Editors \& Engineers) only. \qquad .$\$ 4.50$
Using and Understanding Unijunction Transistors Explains the construction, operation, and characteristics of the unijunction transistor (U.JT). Shows applications and circuits employing UJT's. Separate chapters describe the use of U.J's as oscillators, voltage controls, time delays and flashers, and in sensing circuits. Order 20720, only.

RTL Cookbook

Explains the principles and use of RTL (Resistor-Transistor Logic) digital integrated circuits. Provides the experimenter with an understanding of RTL integrated circuits as they are used in everyday electronic projects. Shows how these circuits work and how to design with them. Order 20715, on/y. $\$ 5.25$

RECENT BESTSELLING BOOKS

Tube Substitution Handbook. 12th Ed. 20700.... $\$ 1.75$ How to Build Speaker Enclosures. 20520 3.50 Citizens Band Radio Handbook. 3rd Ed. $20569 . . .4 .25$ Color-TV Servicing Guide. 20358. 4.25

Tape Recorders-How They Work. 2nd Ed. 20445.. 4.50 How to Repair Major Appliances. 20650........... 4.95 Short-Wave Listener's Guide. 3rd Ed. $20695 . .$.
----HOWARD W. SAMS \& CO., INC.----
Order from any Electronic Parts Distributor, or mail to Howard W. Sams \& Co., Inc., Dept. R Г-10 4300 W. 62 nd St., Indianapolis, Ind. 46268
Send the following books: Nos.
\$ enclosed
\square Send FREE 1969 Sams Book Catalog
Name

Address

City
State____Zip

JULIAN M. SIENKIEWICZ, WA2CQL Editor-in-Chief

RICHARD A. FLANAGAN, KQD2566
Managing Editor
CHARLES S. HARRIS
Technical Editor
HELEN PARKER, KQD7967
News Editor

JIM MEDLER
Art Editor and Associate Art Director

ARTHUR S. COOKFAIR; ERNEST A. KEHR; MARSHALL LINCOLN, K9KTL/W7DQS; ROY K. MARSHALL, PH.D.; JACK SCHMIDT
Contributing Editors

JOSEPH A. D'AMATO, Art Director IRVING BERNSTEIN, Cover Art Director MARGARET R. GOTTLIEB, Art Associate JIM CAPPELLO, Advertising Director CARL BARTEE, Production Director GERTRUD BORCHARDT, Production Manager MARILYN VARGAS, Assistant Production Manager WILFRED M. BROWN, Instruments Division Manager
B.G. DAVIS, Chairman of the Board JOEL DAVIS, President and Publisher LEONARD F. PINTO,
Vice-President and General Manager
VICTOR C. STABILE, KBP@681,
Vice-President and Treasurer
ROGER G. CAVANAGH,
Circulation and Marketing Director

SCIENCE AND EIECTRONICS and RADIO-TV EXPERIMENTER Nol. 27, No. 21 is published bi-monthly by Science \& Mechanics Publishing Ca., o subsidiary of Davis Publicerions, Inc. Editorial, business, and subscription offices: 229 Pork Avenue South, New York, N.Y. 10003. One-year subscription isix issues) - $\$ 4.00$; two-year subscription 112 issues) - $\$ 7.00$; and three-year subscription 118 issuesl $-\$ 10.00$. Add $\$ 1.00$ per year for postage outside the U.S.A. and Canada. Advertising offices: New York, 229 Park Avenue South, 212 -OR 3.1300; Chicago; 520 N. Michigon Ave., 312-527-0330; Los Angeles: J. E. Publishers Rep. Co., 8380 Melrose Ave., 213-653-5841; Atlanta: Pirnie \& Brown, 3108 Piedmont Rd., N.E.; 404-233.6729; long Island: Len Oslen, 9 Garden Street, Great Neck, N.Y., 516-487-3305; Southwestern advertising representative: Jim Wright, 4 N .8 th . St., St. Lovis, $314 . \mathrm{CH}$-1.1965.

EDIIORIAL CONTRIBUIIONS must be accomponied by return postage and will be handled with reasonable care; however, publisher assumes no responsibility tor return or sofety of manuscripts, art work, or photogroptis. Alt contritutions should be addressed to the Editor. SCIENCE AND ELECTRONICS and RADIO-TV EXPERIMENTER, 229 Park Avenue South, New York, N.Y. 10003.

Second class postage paid of New York, New York and ot additional mailing office. Copyright 1969 by Science ond Mechanics Publishing Co.

SUPER $6^{\prime \prime}$ SPACE CONOUEROR Superh Astronomical Refector-Up to 576X. Capable of revealling fint stars of nearly 13 th magnitude, splft double stars separated
by less than 1 sec . of are. Features alum1by less than 1 sec, of arc. Features andumiished pyrex parabolle mirror accurate to $1 / 4$ wave, 48 F . L. 8 X achromatic finder scope. 4 eyepicces- $48 x$ Keliner, $1 / 2$ " $98 X$ \& $1 /$ E " $^{\prime 2}$ 102X Ramsdensinarlow io double or triple alaminum tube. Electric elock drive w/manual slow-motion control. Setting eircles. Heavy-duty equatorial mount. Pedestal base. Stoct Ne. 85,086HP........ \$239.50 F.O.B.
3" HEFLECTOR TELESCOPE
stock No. 85,050HP........529.95 Ppd

- AEIGHT IDEAS' IN UNIQUE LIGHTING Bg, new 100-page handbook packed with developnents, applications, equipment. Coveis strobes, sources, black llght, projectors, eryetal and organic slldes, color organs, mirrars polirized color, screens, light boxef,
Musicvision, etc. Rare find for business. Murie homion, etc. Rare find for fory. Ideal for display houses, com: bos, experimenters, hobbyists. $81 /$ al' $^{\prime \prime} 11^{\prime \prime}$ loozeleaf paper punched to fit 3 ring binder
stock No. 9100 HP

ASTRONOMICAL TELESCOPE KITS
Grind your own mirror for powerful icteecope. Kit ontains fine annemped pyrex mirror blank, tool, abrasives diagonal mirror
and eyeplece lenses. you bulld instrument End eyeplece lenses. Y
Fhlued from $\$ 76.00$ up.

70.007 HP
65.85 F.O.8

A COOL ADVENTURE . . . WITH LIGHT! The almost hypnotic spell of ever changing firelikht has with captured motions motiont Hsing and cascading fountaln blowing in the wind, paychedelic eolors appear, intervinKle and vanish to rise again in new patterns
and drift away. This sonthing light show housed in a handsome $11^{1 / 2^{\prime \prime}}$ square by $7 \prime$ deep, wainut finished lumia light hox is an effective addition to hny room-your living Especially effective among a wall picture group. Modern as tomorrow-available today!

LONG-WAVE BLACK LIGHT FIXTURE Extremely versatile, compactly designed, lang zave (3200-4000 Angstroms) blick 1 light
(ultraviolet) Axture. Has 6 -watt, $120-\mathrm{v}$ lamp with bullt-in fiter-ellminates harmill shorter wave ultraylolet rays. Use to identify minerals, fuggi, bacteria-check for surface fiaws, oll and pas leakage-perfect for displass with forescent paper, palnes, chat, crayons trace push-pull switch, connecting plug, Mount yert.' horr., Stock No. $70,364 \mathrm{HP}$
512.50 PDD. No. $60,124 \mathrm{MP}$ (Replacement Bulb) $\$ 4.50 \mathrm{Ppd}$

NEWI LOW-COST COLOR ORGAN
Create tremendous variety of unusual and
beautiful effects. Simply plug in 3 diff. sets of eolored lights and place near audio, source. Noles plicked up by interior "mike' deter metermines intensity. Surprising number of commercifl, display and home uses-control lighting in bools and fountains, window and holiday decorations, great for parties. Tough,
 stock No. 1900нP......

SEE MUSIC IN DAZZLING ACTION Mosic) IfioN Dramatic Breakthrough in $\begin{gathered}\text { Audio-Visual Enjoyment }\end{gathered}$ Mosic riow Dramatic Breakthrough in $\begin{gathered}\text { Audio-Visual Enjoyment }\end{gathered}$
 Aetually soo favorite musical selections transAetually sod into fintastic patterns of beautiful color -each individual note creating its owr unique twisting, radlating shape ing each shape dancing and praneing, whirling and swirling tached to stereo, radio, tape recorder. Send 25 c in coln for 16 page booklet $\$ 9096 \mathrm{HP}$. Walnut Cabinet Model
No. 85,181HP (....... \$99.50 F.O.B. $8^{\prime \prime}$ Set-No. 71,030 HP. $\$ 45.00$ Ppd.

NICKEL-CADMIUM BATTERY BARGAINI Terrific values-slightly used gov't surplus. Rifhtwelght s cell, high current output. Recharges in 1 Exour with Edmund k1t. Won't deteriorate when left discharged. Minimum maintenance-few drops of water per year. Rugged, shock-and-vibra. ton resistant nylon case. Delivered, partially
chnrged, alled with electrolyte. $34 / \mathrm{m}^{\prime \prime} \times 2^{\prime \prime} \times 8 / \%$, stock Ne. $70,942 \mathrm{NP}$ (battery)...515.00 Ppd. Stock No. 70,807HP (charger kit) $\$ 8.00 \mathrm{Ppd}$.
Stock No. $41,109 \mathrm{EH}$ (cell)..... $\$ 3.95 \mathrm{Ppd}$.

- The multi-color, 50 -lire stamp issued by Italy on Nov. 25, 1968, is simply inscribed, "Centro Telespaziale del Fucino." But the intercontinental communications progress it commemorates is vastly more impressive. It was released to mark the opening of expanded facilities built by the Italian Government to take advantage of satellites for the intercontinental transmission and reception of private messages, radio and TV programs. The design shows the Fucino installations, with one of two Space antennae, each about 30 feet in diameter, in the foreground.
- Once the United States and the Soviet Union rocketed sophisticated hardware into outer Space, and proved satellites could be kept orbiting under meticulous control from ground stations, this new communications technique was adapted to commercial use to serve mankind.
In Washington, the initial efforts were culminated by the organization of intelsat, in February of 1965, to harness spacecraft potentials on a private basis. The peculiar ability of sending messages across vast distances not only relieved pressure on overloaded cables beneath the seas; it enabled broadcasters to transmit instantaneous news events in a manner impossible through existing terrestrial equipment.
- italcable and rai, Italy's two organizations concerned with private and commercial message transmission, and radio-TV productions respec-

Italy 1968 Fucino Installation
tively, appreciated the potentials of intelsat. And almost as soon as its formation was announced, arrangements were made to link themselves into the American satellite program. They created "Telespazio" exclusively for this purpose under the aegis of the Italian Ministry of Posts and Telecommunications.

- By June, 1965, Telespazio was ready to make use of the first Early Bird facilities. Equipment which already is outmoded, was installed in a brand new, specifically designed center at Fucino, two miles from Avezzano, in Aquila Province, and once an important source of water in the days of Caesar and Claudius.
- As early as October of that year, Italian ${ }^{-}$ TV viewers witnessed the arrival and all-day visit of Pope Paul VI to the UN, in New York via satellite.
- As this communications medium was developed, Telespazio kept. pace by acquiring and installing the costly equipment as it came from the manufacturers here. And while the new antennae now are in operation, still more recent equipment already is in the process of being built, including a more sophisticated antenna that is 27.40 meters (90 feet) in diameter.
- On Aug. 1, 1928, the Broadcasting Corporation of China was established in Nanking, to provide the populace with early radio news and entertainment programs. To mark the 40th anniversary of that noteworthy event, the Chinese Postal Administration released a pair of special postage stamps produced by the government's engraving plant in Taipeh.
- The $\$ 1$ value features a map of Asia with concentric circles spreading all over the mainland from Formosa. All during World War II, BCC fostered morale of both the armed forces

China (Taiuan) 1968 Postal 40th Anni.
and the populace; it linked government agents in occupied areas, and conveyed China's voice to allied nations. After it moved to Taiwan in 1949, its facilities are being used to transmit programs to the mainland of China, to keep the Chinese there constantly aware of what is happening on Formosa.

- The $\$ 4$ shows a small microphone from which an interesting pattern of red circles and (Continued on page 105)

COMPLETE WITH ALL ADAPTERS AND ACCESSORIES, NO "EXIRAS"

STANDARD TUBES:

- Tests the new Novars, Nuvistors, 10 Pins, Magnovals, Compactrons and Decals.
- More than 2,500 tube listings.
\checkmark Tests each section of multi-section tubes individually for shorts, leakage and Cathode emission.
\checkmark Ultra sensitive circuit will indicate leakage up to 5 Megohms.
\checkmark Employs new improved $41 / 2^{\prime \prime}$ dual scale meter with a unique sealed damping chamber to assure accurate, vibration-less readings.
\sim Complete set of tube straighteners mounted on front panel.
- Tests all modern tubes including Novars, Nuvistors, Compactrons and Decals.

\author{

- All Picture Tubes, Black and White and Color
}

ANNOUNCING...for the first time

A complete TV Tube Testing Outfit designed specifically to test all TV tubes, color as well as standard. Don't confuse the Model 257 picture tube accessory components with mass produced "picture tube adapters" designed to work in conjunction with all competitive tube testers. The basic Model 257 circuit was modified to work compatibly with our picture tube accessories and those components are not sold by us to be used with other competitive tube testers or even tube testers previously produced by us. They were custom designed and produced to work specifically in conjunction with the Model 257.

BLACK AND WHITE PICTURE TUBES:

- Single cable used for testing al! Black and White Picture Tubes with deflection angles 50 to 114 degrees.
- The Model 257 tests all Black and White Picture Tubes for emission, inter-element shorts and leakage.

COLOR PICTURE TUBES:

The Red, Green and Blue Color guns are tested individ. ually for cathode emission quality, and each gun is tested separately for shorts or leakage between control grid, cathode and heater. Employment of a newly perfected dual socket cable enables accomplishments of all tests in the shortest possible time.

The Model 257 is housed in a handsome, sturdy, portable case. Comes complete with all adapters and accessories, ready to plug in and use. No "extras" to buy. Only

SEND NO MOHEY WITH ORDER PAY POSTMAN NOTHING ON DELIVERY

Try it for 10 days before you buy. If completely satisfied you may remit $\$ 47.50$ plus postage and handling charge. (If you prefer you may use our Easy Payment Plan.) If not completely satisfied, return to us, no explanation necessary.

Fill in coupon for a FREE One Year Subscription to OLSON ELECTRONICS' Fantastic Value Packed Catalog-Unheard of LOW, LOW PRICES on Brand Name Speakers, Changers, Tubes, Tools, Stereo Amps, Tuners, CB, and other Values. Credit plan available.

NAME

\qquad
ADDRESS \qquad
CITY \qquad STATE
GIVE ZIP CODE
If you have a friend interested in electronics send his name and address for a FREE subscription also.

OLSON ELECTRONICS

480 S. Forge Street Akron, Ohio 44308

Julian M. Sienkiewicz EDITOR-IN-CHIEF

Don't look now, but our new name-SCIFNCE and Electronics-appears on top of our old one . . . and in larger type, too! Yep, we've made the switch. From here on in we can only go to bigger and better coverage of the exciting worlds of science and electronics. However, we can't do the job alone. We need help from you! Look carefully at this issue and let us know what you think of it. Then, in a short letter, let us know exactly what you like and what you dislike. Tell us, too, what's missing so we can make our coverage more interesting and more complete

It's as difficuit for an editor to judge his magazine as it is for an artist to judge his paintings. (Could this explain why the re are many starving artists and editors?) So you see. by writing you can get a better magazine and maybe make the Editor rich simultaneously (Whee!). Please address all your remarks to The Editor, Science and Electronics, 229 Park Avenue So., New New York, N.Y. 10003.

Plot! Programming a computer requires translation of word or picture directions into a numerical language understood by the computer's electronic circuits. Now, a new computer accessory simplifies this translation by making many programming tasks as easy as tracing lines on a blueprint or photograph. The accessory, a three-axis reversible scaler, was developed by The MicroMetric Corporation, Berkeley. Calif. a member of The Grass Valley Group, Inc. Designed for a wide range of industrial and scientitic applications. the new scaler will free programmers. now in short supply, from routine production and laboratory work, allowing them to concentrate on more profitable assignments.

Programming a computer to control a machine tool. for example, can be accomplished merely by tracing a blueprint of the desired part with the plotting cross hairs of a MicroMetric two axis "digitizer," as the combination of the new scaler and its plotting table is called.
(Continued on page 102)

Heathkit* - Your Best Buy In Electronics

NEW Heathkit Solid-State Auto Tune-Up Meter ... Measures Dwell, RPM And DC Voltage

The new Heathkit ID-29 is most versatile . . redly three automotive test instruments in one ... and its low price makes it even a better value. Mcasures Dwell on all 4 -cycle 3. 4,6 , or 8 eylinder engines... measutes RPM in two ranges $0-1500$ and $0-4500 \ldots$ measures DC voltage from 0 to 15 volts. And no batteries are needed... running engine provides both signal and power. Eusy to use . . . on both 6 and 12 volt system without changing leads. It's lightweight, easy to carry ... comes equipped with black polypropylene case that has a built-in lead storage compartment and is resistant to virtually everything. Fast simple assembly, . . takes just one evening. The perfect accessory for the handyman who wants to do his own car tunt-up, emergency road service personnel, or shop mechanics . . . order your ID-29 now. 4 lbs.

NEW Heathkit GD-48 Solid-State Metal Locator

A low cost, versatile, professional metal detector at one-third the cost of comparable detectors. Packed with features for long life, rugged reliability, and dozens of uses. Completely portable, battery operated and weighs only 3 lbs The GD-48 is highly sensitive, probes to 6 feet, and has an adjustable sensitivity control. Its built-in speaker signals presence of metal: front pancl meter gives visual indication. Other features include built-in headphone jack, telescoping shaft for height adjustment, smartly styled and smarily designed for casy inhand use and casy assembly. Whether you're an amateur weekend hobhyist or a professional treasure hunter the GD-48 is for you ... also a great help to contractors, surveyors, Gas, Electric, Telephone and other public Utility Companies. 4 lbs. GDA-48-1, 9 Volt Battery $\$ 1.30^{*}$; GD-396, Headphones, 2000 ohm (Superex) \$3.50*

NEW Heathkit Electronic Metronome

The new Heathkit TD-I7 is a low cost, precisc performing electronic Metronome. . . a handy heiper for any music student. Battery operated . . . no springs to wind . . . accurate, steady calibration is always maintained . .. from 40 to 210 beats per minute. Instruction label on bottom gives conversion from time ignature and tempo to beats per minute. Stylish fruit wood finished cabinet. Easy solid state circuit board construction . . . assmbles and calibrates in only 2-3 hours. The new Heathkit TD-17 Electronic Metronome is so low in cost every music student can alford one . . . order yours now. 1 lb .

NEW Heathkit GR-88 Solid-State
 Portable VHF-FM Monitor Receiver

Tunes both narrow and wide band signals between $152-174 \mathrm{MHz}$. . . for police, ire, most any emergency service. Exceptional sensitivity and selectivity, will outperform other portable receivers. Features smart compact styling ... with durable brown leatherette case, fixed station capability with accessory AC power supply, variable tuning or single channel crystal control, collapsible whip anenna, adjustable squelch control and easy circuit board construction. The nev GR-88 receiver is an added safety precaution every family should have ... order yours today. 5 Ibs.

NEW Heathkit GR-98 Solid-State
 Portable Aircraft Monitor Receiver

Tunes 108 through 136 MHz for monitoring commercial and private aircraft broadcasts, airport control towers, and many other aircraft related signals. Has all the same exceptional, high performance features as the GR-88 above. The perfect receiver for aviation enthusiast ... or anyone who wants to hear the whole exciting panorama of Annerica in flight. 5 lbs. GRA-88-1, AC Power Supply \$7.95

NEW Heathkit GD-28 8-Track Cartridge Tape Player

The new GD-28 is an ideal addition to any home music system. Plays prerecorded tapes through any system with a Tape Recorder. Tuner or Auxiliary input. Just push in the 8 -track stereo cartridge . . . it starts and changes tracks automatically . . ceven shows which tack is playing. Changes tracks instantly with the front panel switch ton. Goes together quickly on one circuit board, and the famous Motorola tape playing mechanism is preasiombled \& adjusted. At tractive wood-graned polyurethane cabinet included. Order yours now. 10 lbs.

FREE! Heathkit Catalog
Now with more kits, more calor. Fully describes these along with over 300 kits for stereo/hi-fi. color TV. electronic organs, guitar amplifiers. amateur radio, marine, oducational, CB, home 8 hobby. Mail coupon or write Heath Company. Benton Harbor, Michigan 49022.

Prices a specisications subject to change without nome

D Here's How! Don't take a back seat to any one when it comes to shortwave and mediumwave DXing. The fifth edition of How To Listen To The World is now available and raising eyebrows of shortwave novices and pros alike. One of the main purposes of this book is to enable the listener (and TV viewer) to obtain the greatest benefit from the world of radio through his receiver. Radio world listening nowadays is no longer a purely shortwave matter. Over the last few years, there has been an ever increasing interest in world listening on medium waves. Therefore, such Table of Content titles as "Im-

Soft cover 211 pages $\$ 3.95$

proving medium-wave reception." "Mediumwave propagation." and "Medium-wave DXing from Australia" offer a guide to the locked-in shortwave DXer who wants to switch to the lower frequencies. How To Listen To The World is edited by J. M. Frost and includes articles from qualified authors, radio broadcast organizations and DX-club officials. Get your copy today direct from Gilfer Associates, Inc.. Box 239, Park Ridge, N. J. 07656.

γ

1 Takes Two for Stereo. How does the prospective buyer of hi-fi and stereo equipment spot those features which add up to the best possible equipment in a particular price range and avoid those which are well packaged, but low in quality? And how can the owner of a system improve his rig to gain increased listening pleasure? These are a few of the many questions answered in a practical two-volume paperback set by the noted author Murray P. Rosenthal. The volumes are titled How To Select and Use Hi-Fi and Stereo Equipment.

Volume' I, which concentrates on the basic hi-fi and stereo equipment, opens with a brief but very thorough discussion of acoustics. Written clearly, concisely, it gives the reader an excellent background, including the often overlooked relationship between enclosure, speaker and listening area. Criteria are given for selecting the various types of speakers. Cutting through the confusing array of enclosure types and sub-types the book tells just how different kinds of enclosures affect sound, and which kinds are particularly effective in given situations. Headphones, preamplifiers, amplifiers, tuners and receivers are then discussed, showing

a sampling of control features, connection possibilities, and a comparison of the advantages and disadvantages of tube vs transistorized equipment.

Volume II fully discusses record players and tape recorders, components which may be added to the basic hi-fi or stereo rig at any time. It shows how different kinds of construction in these components can affect performance. Covering phono arms, pick-up types, styli, etc., it gives concrete reasons why certain kinds. of equipment should be selected or avoided. A particularly valuable feature of Volume II is a thorough troubleshooting guide. Here are 38 pages of tips on solid-state devices, tools, testing. for those listeners who want to keep their equipment in top working order.

So pick up your copies of How to Select and Use Hi-Fi and Stereo Equipment and get with good sound. Available at many electronic parts stores or direct from the publisher. Hayden Book Company. Inc., 116 West 14 th Street, New York, N. Y. 10011.

D Ham Fact Dept. In the United States, anyone can get an amateur license-no prior electronics experience is necessary, and for the Novice Class ticket, age is no barrier. Many youngsters under ten already have theirs, as well as a host of young-at-heart enthusiasts who have begun to climb the ladder toward that General. Advanced. or Extra Class I_icense. To pass the Novice Class exam only a "speaking acquaintance" is required-the basic rules and code. In effect now are new FCC rules intended
to encourage present radio amateurs toward achievement of higher class licenses with reserved operating privileges and to stimulate interest among outsiders.

A new book, Ham Radio Incentive Licensing Guide, tells how to begin, or to advance, to cach succeeding license class, in clear, concise, and easy-to-understand terms. For many, the most formidable obstacle is learning the code. Here the reader will find proven methods of learning and developing proficiency with lnternational Morse Code. An entire Chapter is devoted to each license class, eliminating the necessity of wading through material irrelevant for the reader's immediate goal, and if he is shooting for a higher class ticket, he can simply skip to the appropriate Chapter. The Incentive Licensing Guide, prepared with the aid of the

FCC, includes actual test material, substantially as it appears on official exam forms, and it covers every question which may be encountered in each test, from Novice to Extra Class. Naturally, the text is authorized by a ham, Bert Simon, W2UUN. To get your copy write to the publisher, Tab Books, Blue Ridge Summit, Pa. 17214.

D Color Bench Rainbow. Here's a handy benchmate for practicing color TV technicians and B\&W experts who want to break into color TV servicing. It's On the Color TV Service Bench,

a brand-new troubleshooting guidebook written by a real pro, Jay F. Shane, an expert who cut his teeth on the first TV circuits 20 years ago. The text describes causes and cures for
(Continued on page 105)

cialist! Computers, communications, alarm systems, aifcraft. space, machinery control
EARN while you LEARN
A few months after enrolling you can be doing spare time Electronics repair jobs paying up to $\$ 25$ to $\$ 35$ for an. evening's work!

PREPARE TO STEP INTO

 JOBS LIKE THESE:Industrial Controls Maintenance - Your Own Electronics Service Shop - Closed Circuit T.V. Jnstallation Service Electronic Computer Maintenance Communications - Aerospace Work Automation Electranics Insfallalion. . . and hundreds mere we'll tell you oboul!

LEARN BY DOING

Build and keep vital electronics test equip. ment from big kits we supply. All yours to use and keep!

MAIL COUPON FOR BIG FACT BOOK Get big Free fact pack! See how you learn fast at home; start earning fast! Rush coupon today!

I. t.i. ApProved for training under new g.1. bill

MAIL COUPON FOR ELECTRONICS MONEY MAKING FACTS

Sun of a Gun!

This new movie light unit from Sylvania is named the Sun Gun, is designed for 8 and 16 mm movie cameras, and operates on 9 nickel cadmium energy sources in a separate power pack that weighs only 3 lb . Each energy source has a running time of 10 minutes or approximately two $50-\mathrm{ft}$. rolls of movie film when batteries are fully charged. The energy power packs can be fully recharged in 60 minutes with a separate recharger. The Sun Gun features a beam selector in the back of the light head so you can regulate the light bean from spot to flood even when shooting. The total light output on the spot position is 15,000 center beam candle power and 7,000 center beam candle power at the flood position. The light

Sylvania Sun Gun Movie Light Unif
source is a 150 -watt tungsten-halogen Iamp with an average rated life of 30 hours when operated in the Sun Gun system. The total Sun Gun unit will have a price of $\$ 119.95$, including a custom-made carrying case. For more information write to Sylvania Electric Products Inc., 730 Third Ave., New York, N.Y. 10017.

Beep-Beep! Beep-Beep!

Do the kids bug you on road trips? Bell \& Howell has devised the Road Runner cassette tape player kit to keep them off your back. Besides the Road Runner cassette, six batteries and earphone, the kit contains two original tapes with stories, travel facts, behavior tips, sing-along songs and games, all set to original music. There's also a travel booklet and a spe-

Bell \& Howell Road Runner Cassette Kit
cial prerecorded cassette tape bonus offer. The package comes in a sturdy travel carton with handle and sells for $\$ 38.88$. If you bought the elements separately they would come to $\$ 45.00$. The Road Runner cassette features touch control for last forward, play or stop, easy drop-in cassette loading, and a rugged case. You can, of course, use all standard cassette tapes in the Road Runner. At your local dealer or write to Bell \& Howell, Video and Audio Products Div., 7235 N. Linder Ave., Shokie, III. 60076.

CB Base Station Antenna

Avanti has a new CB base station antenna designed along the lines of antennas used to pinpoint signals on "moon bounce." Therefore, they have called it the Moonraker, and it combines $1 / 2$-wave cross dipole elements with Avanti's PDL design reflector. They inchude a switch box so you can have either horizontal or vertical operation. Moonraker's shorter boom length (15 ft) helps heep weight and turning radius to a minimum and lets you use a standard inexpensive TV-type antenna rotor system. Also a plus from the shorter boom length is better signal excitation for greater true gain- 14.5 dB . Impedance is 50 ohms,

Avanti Moonraker CB Base Station Antenna

power handling 1000 watts. Wind survival is 90 mph , the weight of the Moonraker is 24 lb ., and the price is $\$ 129.95$ with a one-year guarantee. Write to Avanti Research \& Development, Inc., 33-35 W. Fullerton Ave., Addison, III. 60101 .

Skywatch by Ear

Heath Company has a new portable aircraft monito: receiver, the GR-98, which tunes from $108-136 \mathrm{MHz}$. With it you can hear commercial and private aircraft, airport control towers, air control conversations, and many other air-craft-related signals. There's a six-to-one vernier tuning control, a built-in whip antenna, $40-\mathrm{kHz}$ selectivity and $1.5-w \mathrm{~V}$ sensitivity for a 10 dB signal-to-noise ratio. Another feature is adjustable squelch control, and, for those

now.... betiler way
Io drive and adilisi hex socket screws

...IN PRECISION WORK

With the tools in this new, compact convertible screwdriver set, you can turn all types of hex socket screws . . . in all types of locations... faster, easier than with conventional keys

Handy midgets are ideal for such delicate, precision work as assembly and servicing of instruments and controls. Remarkable "piggyback" torque amplifier handle adds grip, reach, and power needed for other applications, lets you do more jobs with
fewer tools.

PS-89 SET
8 midgets (hex size $.028^{\prime \prime}$ thru $1 / 8^{\prime \prime}$) plus hollow. "piggyback" handle. Slim, trim, see-thru plastic case fits pocket or tool box, doubles as bench stand.

0000

REQUEST COMPLETE HAND TOOL CATALOG

which includes information on other Xcelite Compact Sets, too - slot tip/ Phillips/Scrulox ${ }^{(8)}$ screwdrivers, nutdrivers, and combinations.

Nationwide availability through local distributor

who want to monitor one station almost continuously, the GR-98 has crystal control of one-channel-just plug in the crystal of your choice, tune to the approximate frequency and flip the front panel switch to the Xtal position and you're on frequency immediately. GR-98 weighs less than 4 lb . with six C cells installed, and measures $71 / 4 \times 81 / 2 \times 31 / 2-i n$. For fixed station use, the carrying handle converts into a tilt stand and an external antenna jack is provided. The tuner portion is factory assembled and aligned; the rest goes together on a single circuit board. Price: $\$ 49.95$. For more details write Heath Co., Benton Harbor, Mich. 49022.

Hobbyists, Stop Squinting!

Having trouble making out details on those printed circuits? The Magni-Fi has a headband that adjusts to any head size and a precision $21 / 2$ diopter lens. It not only leaves your hands free to work, but the hinged lens swings up and out of the way when you don't need it. You can wear Magni-Fi without or with glasses. And

one of the nicer features of the Magni-Fi is its very low price: $\$ 7.95$. If desired, a 3 -diopter lens is available for $\$ 2.98$. Magni- Fi is available by mail ($35 \$$ postage) from Nel-King Products, Inc., 811 Wyandotte St., Kansas City, Mo. 64105.

Grownup Erector Set

Dexion Inc.'s slotted steel angle is now available at your local lumber yards, hardware, and department stores. Framework for workbenches, machine stands, shelving, soap box racers, and lots of other items can be assembled just like you did with your Erector set. All you need is a wrench and a hacksaw. Dexion angle

Dexion Slotted Steel Angle
is made of cold rolled steel with a baked enamel finish. It's packaged in bundles of 8 fivefoot lengths with nuts, bolts and comer braces included. This is called the Dexion 100 kit and its price is $\$ 12.65$. Write for their Idea Pamphlet, which illustrates 21 do-it-yourself projects-from storage units to pet stands and puppet theatres. For a free copy send to Dexion Inc., 39-27 59th St., Woodside, N.Y. 11377.

New Sound 'N Color Family

A whole new dimension for your musiccolor! EICO has three new models in their Sound ' N Color line which use special lowvoltage, high-intensity lights to achieve their startling effects. The light boxes come in three and four channel models-each channel responding to a different portion of the audio spectrum. Every combination of musical in-

struments produces its own distinct multi-color pattern. Shown are Model 3440, 3-channel, 15 x 10×6-in., in hit form $\$ 49.95$, wired $\$ 79.95$. Next is Model 3445, 4 -channel, $24 \times 12 \times 10$-in., kit $\$ 64.95$, wired $\$ 99.95$. The one on the right is the jumbo model, 3450,4 channels. $30 \times 15 \times$ 11 -in., kit $\$ 79.95$, wired $\$ 109.95$. For more info, write EICO Electronic Instrument Co., Inc., 283 Malta St., Brooklyn, N.Y. 11207.

Clear the Tracks for Stereo!

The new Heathkit GD-28 is a stereo tape player kit designed to play back prerecorded 8 -track stereo tape cartridges through any home music system. Unit is completely automatic; the user just plugs in the cartridge of his choice. A metal tape splice switches the play-head from one track to the next automatically, or you can select the track you want by pushing the slideswitch on the front panel. Pilot lamps indicate which track is playing. The tape player mechanism is preassembled and adjusted, and the 6-Iransistor, 2 -diode preamplifier circuit goes together in a trice on one small circuit board.
(Continued on page 106)

MULTICORE SALES CORP., WESTBURY. N.Y. 11591

It's Zapped!

Everytime my amplifier is turned on, the 6X5 rectifier tube burns out. What gives?
$-R . L . F .$, Middletown, N. Y.
Undoubtedly the input filter capacitor (see diagram) is shorted. Replace it with one of the same value in microfarads. The same trouble

occurs in solid-state diode rectifier circuits only there's a very low ohmic resistor between the diode and the filter capacitor that overheats and pops. Replace filter, capacitor, resistor and diode.

Never!!

Can you give me a schematic of a solidstate phono preamplifier?
-C. R. B., Amityville, N. Y.
Why? There are several good wired units available on printed circuit boards and modules that are a heck of a lot cheaper than the parts needed to make one. Look through the catalogs of Lafayette Radio, Allied Radio, and Radio Shack for some good buys.

Show Some Resistance

1 am having trouble getting the right voltage out of a DC power supply. When I use a capacitor input circuit, the voltage is too high. When I disconnect the input filter capacitor,
the voltage is too low. Do I have to add an AC input voltage control?
-A. M., Santa Barbara, Calif.

Try a resistor in series with input capacitor C1. Try various values until the output voltage is correct. The resistor will probably have to be a wire wound type rated at 10 watts or more.

Old Waves

What was the first broadcasting station in the U.S.? Both KDKA in Pittsburgh and WWJ in Detroit claim the title. Also, was it 1920 or 1921?
-D. H., Metairie, La.
The way we heard it, it was KQW in San Jose in 1913. Before that DeForest broadcast live opera in New York. And before that it was just ghosts in the attic.

Point of Information

In reply to E. E. C., Jr., of New Bern, N. C. on where to obtain the light emitting diode for the "Talk on an Infrared Light Beam," they are obtainable from Cleveland Service District, Lamp Division, General Electric Co., 12910 Taft Avenue, Cleveland, Ohio 44108. Request an SSL-4 solid state lamp. The cost is under $\$ 10.00$. (Our thanks go to G. H. of Dickinson, N . D. for the info.)

DX for UX199

I have an old RCA Radiola 20 which uses type UXI99 tubes. Where, can 1 get replacement tubes? Our local stores don't have them.
-L. J. E., Everett, Wash.
Get information on the phone by dialing 206-MA 4-2341 or order direct by mail from Seattle Radio Supply, 2117 Second Avenue, Seattle, Wash. 98121 . The Company advertises that they have lots of old tubes (199, 12A, 483, etc.) and sell them at $\$ 3.00$ each.

Achtung!

I have seen a relatively new Grundig radio in a local drug store. The owner got it out-ofstate from a fellow who needed the moncy. Whom can I contact to obtain Grundig sales information? I am interested in $A M$ and $F M$ stereo plus short wave reception.

- . B. V., Montgomery, Ala.

Write to Grundig Electronic Sales, 355 Lexington Avenue, New York City.

Going Abroad

In recent months I have obtained quite a few $2 S$ transistors. l have found no reference to such types in magazines or books and would like to know if they are interchangeable with (or the same as) 2 Ns . If not, please give me some information on them.
-D. S., Liberty, Mo.
Get a copy of the Datadex Transistor Reference Book for $\$ 3.95$ from IRC. Inc., 401 N . Broad St., Philadelphia, Pa. 19108. It lists 2 S numbers and their 2 N or other equivalents.

Amateur Juvenile

I am not old enough to have a CB license. But I have heard that it does not matter what your age is for ham license. Is this true?
—D. L. S., Brookfield. Mo.
Wish I had your problem. Yes, it's true. If you can pass the test. Start studying.

Back to School

I know next to nothing about radio or electronics, but would like to learn. I saw an ad in your magazine on kits. Would I be able to gain enough basic knowledge from assembling these

THOUSANDS OF BARGAINS TOP VALUES IN ELEctronic

Transistors, Modules, C. B., Speakef, Stereo, Hi-Fi, Photo Cells and Thousands of Other Electronic Parts. Send for FREE Catalogue
electronic distributors inc.

EDI

Dept. TA-2, 4900 Elston Chicago, III. 60630 - rush catalogue

Name
Address
City
sta

TREASURE

Find buried gold, silver,
coins, treasures.
5 Powerful models.
Write for free catalog

4219 E UNIVERSITY AVE., SAN DIEGO, CALIF. 92105
A sensible way to protect
(and preserve) your copies of

A durable, custom-designed Library Case will protect your copies of Science and rlectronics from dust and wear. At the same time, it will help you conserve valuable space and reduce library clutter.
Each Library Case has a muscular $95 / 8^{\prime \prime} \times 65 / 8^{\prime \prime} \times 4 \frac{1 / 8 "}{\prime \prime}$ frame that can hold 12 issues of Scifnce and Elfetronics. In elegant washable Blue simulated leather, is spine is embossed with $16-\mathrm{k}$ gold lettering for maximum legitility. (Each Library Case also includes gold transfer so you can print the volume and year each case contains.) To order, metely fill in and return the form below.
TO: JESSE JONES BOX CORP.
P. 0. Box 5120 - Dept. D - Philadelphia, Pa. 19141

Please send me Science and Electronics Library Cases at $\$ 3.50$ each.* I understand this price includes postage, packing and handling. (* 3 Library Cases for $\$ 10.00$, 6 for $\$ 19.00$.) My check (or money order) for —__ is enciosed

WAME
(PI.EASE PRINT)
ADDRESS
GITY \qquad STATE \qquad Z1P
Mote: Satisfaction ouaranteed or money refunded. Allow 3 weeks for delivery.
kits to go on to more advanced projects, or would I be better off to start out some other way?
-S. G. K., Wichita, Kansas
Building kits is a good way to get some practical experience. But, take a home-study course or go to a resident school to learn theory and to get guidance. There's nothing like school for learning.

Museum Piece

I recently acquired an old Burndept SW/BCB receiver and a set of 26 plug-in coils. It will cover 11.8 to 520 meters, but it uses three Burndept Super-Valves in place of tubes. I wonder if you could tell me its age and approximate value. It works and is in fairly good condition.
$-F$. W., Kamloops, B.C.
The Super-Valves are undoubtedly tubes with a glamorous name. Vintage should be around 1929; value about one buck. The Edison Museum in Greenfield Village, Dearborn, Michigan, would probably like to have it.

Way Out

I need some advice about protecting my shortwave antenna from lightning. I have been told to use a lightning arrestor. I have also been told not to use one, because it could very well attract lightning. What should I do?
-C. L., Fredericksburg, Va.
Use a lightning arrestor. But install it properly, or you'll be exactly where you started, with no protection at all.

Do Hum In

Between musical passages there is an annoying hum in the speaker which is fed by a transistorized anplifier employing a Class B output stage. I don't notice the hum when music is played. How can 1 stop the hum? -D. E. R., Holywood, Calif.

You might try adding additional power supply filtering by adding capacitor C2, diode D and resistor R , as shown in the diagram. Capacitor Cl is the existing output filter capacitor. When there is no audio signal going through the amplifier, power supply current is low, the diode does not conduct, and filter section R/C2 reduces power supply ripple. When power supply current rises, the diode conducts, shorting R , and allowing heavy current to flow
with a voltage drop of less than a volt across the diode.

Connect a DC voltmeter across D and try various values of \mathbf{R} (during no-signal condition) so that the diode will not be forwardbiased and therefore conduct. For C2, use a high value electrolytic. If ungrounded output is positive instead of negative, reverse the polarity of the diode and of C2.

Socket to Me

I read somewhere that it is possible to pep up a receiver by replacing the RF amplifier with a tube of higher gain. I decided to do this with my Lafayette HA-63. I replaced the 6BA6 with a 6GM6 (making all socket changes). Now my " S " meter no longer works, there's no increase in sensitivity, but there is some distortion. Can you tell me what I did wrong and possibly how to correct it.

> -P. A. J., Maspeth, N.Y.

The two tubes have somewhat different characteristics. Make sure you wired socket terminals 2 and 7 together! In general, it's better not to tamper with a receiver. The man who designed it obviously had good reasons for selecting the tubes he did; there is only a small difference in price between these two types. Gain is usually dependent on overall circuit design and the parameters given in tube manuals should not be taken too literally.

Long Story on Long Wire

I am using a Hallicrafters $S-120$ to listen to the $B C B$. Sensitivity on the $B C B$ is good with just the ferrite bar antenna. However, being a DX hound, I would like to use a better an-

What good are clean ash trays when you can't tet the car the ash trays come in even when you have a reservation and the reservation has been confirmed?

For a long time now, there's been so little difference between car rental companies they argued publicly about who had the cleanest ash trays. Max has changed all that.
Max is National Car's computer. He knows from minute to minute which of our cars are available. Wherever you are, anytime of the day or night, you can call National for a reservation toll-free at 800-328-4567. And thanks to Max, we don't have to make any assumptions or blind promises like those New York outfits do.
We just ask Max what's available, Max tells us, and we can guarantee you a car on the spot. National also features GM cars, gives $\mathrm{S} \& \mathrm{H}$ Green Stamps, and has 1800 locations. Second only to old what's-its-name.
Now there are some differences you can sink your credit card into-any recognized credit card.

We make the customer No. 1

Just

 about everybody dabbles in electronics!
Why not you?

There's one magazine that'll put you in orbit. elementary

Here's a magazine that serves up electronic theory in pleasant spoonfuls and reinforces the knowledge you gain with exciting and useful projects you can build at home today! This fine magazine will be delivered to your mailbox at the special rate of just $\$ 3.00$ for six issues. Order now!

ELEMENTARY ELECTRONICS Dept. 113

 229 Park Ave., South, New York, N.Y. 10003Begin my subscription to ELEMENTARY ELECTRONICS at your special low-subscription rate of $\$ 3.00$.
(Outside USA \& Canada, add $\$ 1.00$ for postage $\&$ handling)
\square Bill me $\quad \square$ Money enclosed
(No stamps please)

```
Name
```

(please print)
Address.

City
State \qquad
Zip

ASK ME ANOTHER

tenna like the 75 -foot long wire in my attic which I use for SW. This is my problem. How do I go about coupling the antenna to the S-120? I've tried connecting it to the antenna terminal on the back, but the results were very poor. The antenna boosted signals, but I got hets, a high-pitched tone, and strong locals all over the band. Also, when 1 tune in a strong local (on the right frequency) the audio is very distorted. Connecting the antenna to the ferrite bar antenna netted me the same results. How can I couple the antenna to the S-120 so that it works for BCB? Also, how can 1 eliminate the ferrite bar antenna completely, and just use the antenna?
-W. W., Chicago, Ill.

Your receiver's schematic diagram shows that when an external antenna is connected to the antenna terminal the long wire ant signal is fed to a tap on the internal ferrite antenna, which is as it should be. In Chicago, in the proximity of lots of high power radio signals, you can expect the problems you encountered. There's just too much signal being pumped into the receiver input. You could try adding a manual RF gain/level control, as shown in the simplified diagram. Break the circuit at " X " and connect a 5000 -ohm pot and an $0.1 \mu \mathrm{~F}$ capacitor as shown by dotted lines.

He Gets the Image

My small, portable eight-transistor radio picks up CW signals on 930 kHz and at about 690 kHz when I'm at Newport Beach. With my communications receiver operating in the $200-400 \mathrm{kHz}$ band, I hear CW signals exactly the same as on the BCB except that they are much stronger. Could you please explain this?
-L. C. Tucson, Ariz.
It could be that the signals from the CW station are being heterodyned with a signal
from a strong BCB station. For example, if a CW signal on 290 kHz beats with a BCB station on 640 kHz their sum frequency would be 930 kHz . You would hear the CW signal as an audio tone since the sum frequency and the carrier of the BCB station on 930 kHz would not be exactly the same. Also, the $290-\mathrm{kHz}$ signal beating with a $980-$ kHz BCB signal would produce a beat at 690 kHz .

These may no be the actual conditions that existed when you heard the CW signals, but the principles are the same. The CW signals could have come from a beacon, Naval, or commercial shore station, or from a nearby ship.

These signals will produce a beat if the first stage of your receiver is non-linearwhich would be the case if it has no RF stage ahead of it. If it has one, the RF stage could be overloading or be biased improperly for linear operation.

Cheapy Q Checker

The only test equipment I have is a VOM. How can I test the transistors in my radio with it?

> --T. J., Duluth, Minn.

Connect the negative lead of the VOM (set to measure DC volts) to the collector of a pnp transistor and the positive lead to its emitter. If it is an npn transistor, the VOM leads should be just the reverse. Finally, use a clip lead and short the base to the emitter. If the voltage increases, the transistor is active and you're in business. But, let's be hon-est-you need a transistor tester.

Not all good things disappear...

Though Radio-TV Experimenter-the oldest name on the newsstands for a smallsize electronics magazine-is passing into history like the 5 c beer, its new name, SCIENCE AND ELECTRONICS, will continue to serve its readers in the spirit and tradition of the old.

Any dramatic changes? Not really, for you see the editorial coverage for Radio-TV Experimenter has been science and electronics for several years.

Look for a bright new future with SCIENCE AND ELECTRONICS, for with its new descriptive name many new readers interested in the varied esoteric corners of electronics and science will join our ranks. And with greater numbers, the Editors of SCIENCE AND ELECTRONICS can serve you better. There'll be bigger and better stories; varied construction projects for hobby, home, and tab; fun items just for relaxing. Look for it on your newsstand or, better yet, enter your subscription now.

ELECTRONIC PARTS

*2. Now, get the all-new 512 -page, fully illustrated Lafayette Radto 1969 catalog. Discover the latest in CB gear, test equipment, ham gear, tools, hooks, hi-fi components and gifts. Do it now!
\$5. Edinund Scientific's new catalog contains over 4000 products that enibrace many interests and fields. It's a 148-page buyers' guide for Science Fair fans.
*4. Olson's catalog is a multi-colored newspaper that's packed with more bargains than a phone book has names. Don't believe us? Get a copy.
*1. Allied's catalog is so widely used as a reference book that it's regarded as a standard by people in the electronics industry. Don't you have the 1969 Allied Radio catalog? The surprising thing is that it's free!
$\star 7$. Before you build from scratch, check the Fair Radio Sales latest catalog for electronic gear that can be modified to your needs. Fair way to save cash.
8. Get it now! John Meshna, Jr.'s new 96 -page catalog is jam packed with surplus buys-surplus radios, new parts, computer parts, etc.
$\star 140$. How cheap is cheap? Well, take a gander at Cornell Electronics' latest catalog. It's packed with bargains like 6W4, $12 \mathrm{AX} 7,5 \mathrm{U} 4$, etc., tubes for only 336. You've got to see this one to believe it!
\$135. Get with ICs! RCA's new integrated Circuit Experimenter's Kit KD2112 is the first of its kind and should be a part of your next project. Get all the facts direct from RCA. Circle 135.
106. With 70 million TV and 240 million radios somebody somewhere will need a vacuum tube replacement at the rate of one a second! Get Universal Tube Co.'s Troubleshooting Chart and facts on their $\$ 1.50$ flat rate per tube.
10. Bursteln-Applebee offers a new giant catalog containing Jous of big pages crammed with savings including hundreds of bargains on hi-fi kits, power tools, tubes, and parts.
*11. Now available from $E D I$ (Electronic Distributors, Inc.): a catalog containing hundreds of electronic items. EDI will be happy to place you on their mailing list.
$\star 6$. Bargains galore, that's what's in store! Poly-Paks Co. will send you their latest 8 -page flyer chock-full of Poly-Paks' new $\$ 1.00$ electronic and scientific "blis-dor" paks and equipment.
23. No electronics bargain hunter should be caught without the 1969 copy of Radio Shack's catalog. Some equipment and kit offers are so low, they look like misprints. Buying is believing.

CB--AMATEUR RADIO SHORTWAVE RADIO

102. No never mind what brand your CB set is. Sentry has the crystal you need. Same goes for ham rigs. Seeing is believing, so get Sentry's catalog today. Circle 102.
103. It may be the first-Gilfer's speciality catalog catering to the SWL. Books, rigs, what-nots-everything you need for your listening post. Go Gilfer, circle 146 !
104. You can get increased CB range and clarity using the "Cobra$23^{\prime \prime}$ transceiver with speech compres-sor-receiver sensitivity is excellent. Catalog sheet will be malled by $B \& K$ Division of Dynascan Corporation.
105. Newly-designed CB antenna catalog by Antenna Specialists has been sectionalized to facilitate the picking of an antenna or accessory from a handy index system, Man, Antenna Specialists makes the pickin' easy.
106. Bone up on the CB with the latest Sams books. Titles range from "ABC's of CB Radio" to "99 Ways to Improve your CB Radic." So Circle 130 and get the facts trom Sains.
107. Want a deluxe CB base station? Then get the specs on Tram's all new Titan II-it's the SSB/AM rig you've been waiting forl
108. Get your copy of E. F. Johnson's new booklet, "Can Johnson 2Way Radio Help Me?" Aimed for business use, the booklet is useful to everyone.
109. Boy, oh boy-if you want to read about a flock of CB winners, get your hands on Lafayette's new 1969 catalog. Lafayette has CB sets for all pocketbooks.
110. Pick up Hallicrafters' new fourpage illustrated brochure describing Hallicrafters line of monitor receivers -police, fire, ambulance, emergency, weather, business radio, all yours at the flip of a diai.
111. Pep-up your CB rig's performance with Turner's $\mathrm{M}+2$ mobile microphone. Get complete spec sheets and data on other Turner mikes.
112. Hy-Gain's new CB antenna catalog is packed full of useful information and product data that every CBer should know. Get a copy.
113. Get the scoop on Versa-Tronics' Versa-Tenna with instant magnetic mounting. Antenna models available for CBers, hams and mobile anits from 27 MHz to 1000 MHz .
114. CBers, Hams, SWLs-get your copy of World Radio Labs' 1969 catalog. If you're a wireless nut or experimenter, you'll take to this catalog.

* 101 . If it's a $C B$ product ${ }_{\text {. }}$ chances are Imernational Crystal has it listed in their colorful catalog. Whether kit or wired, accessory or test gear, this CB-oriented company can be relied on to fill the bill.

103. Squires-Sanders would like you to know about their C.B transceivers, the " 23 'er" and the new "S5S." Also, CB accessories that add versatility to their 5 -watters.

TOOLS

\star 78. Xcelite's midget hex socket screwdrivers in Xcelite's PS-89 set let you make delicate adjustments easier. "Piggyback" handle adds grip, reach, and power needed for other jobs.
118. Secure coax cables, speaker wires, phone wires, etc., with Arrow staple gun tackers. 3 models for wires and cables from $3 / 16^{\prime \prime}$ to $1 / 2^{\prime \prime}$ dia. Get fact-full Arrow literature.

ELECTRONIC PRODUCTS

143. Bring new life to your hobby. Exciting plans for new projects-let Electronics Hobby Shop give you the dope. Circle 143, now.
\$44. Kit builder? Like wired products? E/CO's 1969 catalog takes care of both breeds of buyers. 32 pages full of hi-fi, test, CB, ham, SWL, automotive and hobby kits and products -do you have a copy?
\star 42. Here's colorful 116 page catalog containing a wide assortment of clectronic kits. You'll find something for any interest, any budget. And Heath Co. will happily send you a copy.
144. Hear today the organ with the "Sound-of-Tomorrow," the MeloSonic by Whippany Electronics. It's portable-take it anywhere. Send for pics and descriptive literature.
145. C. B. Hanson new Automatic Control records both sides of a telephone call automatically-turns off automatically, too! Get all the details -today!
146. Did you dig Delfa's new literature package chucked full of pics and

Starred items indicate advertisers in this issue. Consult their ads for additional information and specifications.
specs on such goodies as an FETVOM, SCR ignition system. computerized auto tach, hi-voltage analyzer, etc.? Man, then let Delia know you're alive! Circle 126 now!
109. Seco offers a line of specialized and standard test equipment that's ideal for the home experimenter and pro. Get specs and prices today.
9. Troubleshooting without test gear? Get with it-let Accurate Instrument clue you in on some great buys. Why do without?
145. Alco Electronic Products has 28 circuit ideas using their remote control relay. Get 100 -and-one odd jobs done at home without calling an electrician. Get all the facts today!

SCHOOLS AND EDUCATIONAL

*136. You can become an electrical engineer only if you take the first step. Circle 136 and ICS will send you their free illustrated catalog describing 17 special programs. ICS also has practical electrical courses that'll increase your income.
*74. Get two free books-"How to Get a Commercial FCC License" and "How to Succeed in Electronics"from Cleveland Institute of Electronics. Begin your future today!
*3. Get all the facts on Progressive Edu-Kits Home Radio Course. Build 20 radios and electronic circuits; parts, tools and instructions come with course.
142. Radio-Television Training of America prepares you for a careernot a job. 16 big kits help you learn as you build. 120 lessons. Get all the facts today!
114. Prepare for tomorrow by studying at home with Technical Training International. Get the facts loday on how you can step up in your present job.
137. For success in communications, broadcasting and electronics get your First Class FCC license and Grantham School of Electronics will show you how. Interesting booklets are yours for the asking.

HI-Fl/AUDIO

104. You can't hear FM stereo unless your FM antenna can pull' 'em in. Learn more and discover what's available from Finco's 6-pages "Third Dimensional Sound."
105. Kenwood puts it right on the line. The all-new Kenwood FM-stereo receivers are described in a colorful 16-page booklet complete with easy-to-read-and-compare spec data. Get your copy today!
106. Shure's business is hi-fi-cartridges, tone arms, and headphone amps. Make it your business to know Shure!
107. Mikes, speakers, amps, re-ceivers-you name it, Electro-Voice makes it and makes it good. Get the straight poop from $E-V$ today.
108. Get the inside info on why Koss/Acoustech's solid-state amplifiers are the rage of the experts. Colorful brochure answers all your questions.
109. The all new. lavishly-illustrated, full-color brochure, "At Home With Stereo" clues you in on H.H. Scott's

1969 stereo consoles. Discover how to pick a hi-fi console for your living room.

TAPE RECORDERS AND TAPE

14. You just gotta get Craig's new pocket-size. full-color folder illustrating what's new in home tape record-ers-reel-to-reel, cartridge and cassette, you name it! li looks like a who's who for the tape industry.
15. Yours for the asking-Elpa's new "The Tape Recording Omnibook." 16 jam-packed pages on facts and tips you should know about before you buy a tape recorder.
16. All the facts about Concord Electronics Corn. tape recorders are yours for the asking in a free booket. Portable, battery operated to fourtrack, fully transistorized stereos cover every recording need.
17. "All the Best from Sony" is an 8-page booklet describing Sony-Superscope products-tape recorders, microphones, tape and accessories. Get a copy today before you buy!
18. If you are a serious tape audiophile, you will be interested in tho all new Viking/Telex line of quality tape recorders.

TELEVISION

70. Need a new TV set? Then assemble a Heath TV kit. Heath has all sizes. B\&W and color, portablo and fixed. Why not build the next TV you watch?
71. National Schools will help you learn all about color TV as you assemble their $25-\mathrm{in}$. color TV kit. Just one of National's many exciting and rewarding courses.

SCIENCE AND ELECTRONICS Department 1169 229 Park Avenue South New York, N.Y. 10003		Indicate total number of booklets requested								
	1	2	3	4	5	6	7	8	9	10
	11	12	14	17	23	26	30	31	34	35
Please arrange to have the literature whose numbers I have	42	44	45	46	48	70	74	78	96	99
circled at right sent to me as	100	101	102	103	104	106	107	109	111	114
soon as possible. I am enclosing 25 to cover handling. (No	116	118	119	123	126	127	129	130	135	136
stamps, please.)	137	140	141	142	143	144	145	146		
- Creme	NAME									
	ADDRESS									
	CITY									
	STATE ZIP									

Can you solve these two basic problems in electronics?

This one is relatively simple:
When Switch S_{2} is closed, which lamp bulbs light up?
Note: If you had completed only the first lesson of any of the RCA Institutes Home Study programs, you could have solved this problem.
(d-d) s, $10 \wedge 0 z-z$ wo|qodd

This one's a little more difficult:

What is the output voltage ($\mathrm{p}-\mathrm{p}$)?

Note: If you had completed the first lesson in the new courses in Solid State Electronics, you could have easily solved this problem.
These new courses include the latest findings and techniques in this field. Information you must have if you are to service today's expanding multitude of solid state instruments and devices used in Television, Digital, and Communications Equipment.

If you had completed an entire RCA Institutes Home Study Course in Semiconductor Electronics, Digital Electrorics, or Solid State Electronics, you should now be qualified for a good paying position in the field you choose. Send for complete information. Take that first essential step now by mailing the attached card.

RCA Institutes Autotext learning method makes problem-solving easier... gets you started faster towards a good-paying career in electronics

Are you just a beginner with an interest in electronics? Or, are you already making a living in electronics, and want to brush-up or expand your knowledge? In either case, RCA has the training you need. And Autotext, RCA Institutes' own method of Home Training will help you learn more quickly and with less effort.

Wide Range of Courses

Select from a wide range of courses. Pick the one that suits you best and check it off on the attached card. Courses are available for beginners and advanced technicians.
Electronics Fundamentals
Black \& White Television Servicing
(Transistorized TV Kit Available)
Color Television Servicing (Color TV Kit Available)
FCC License Preparation Automatic Controls Automation Electronics Industrial Electronics Nuclear Instrumentation Electronics Drafting Computer Programming

Plus these new

up-to-the-minute courses
Semiconductor Electronics Digital Electronics
Solid State Electronics
Communications Electronics
Prepare for good paying positions in lields like these
Television Servicing
Telecommunications
Mobile Communications CATV
Broadcasting
Marine Communications Nuclear Instrumentation Industrial Electronics Automation
Computer Programming Solid State
Electronics Drafting

Build and keep this valuable oscilloscope.

In the new program on Solid State Electronics you will study the eftects of temperature and leakage characteristics of transistors.

Valuable Equipment-Yours To Keep

A variety of RCA Institutes engineered kits are included in your program of study. Each kit is yours, to keep when you've completed the course. Among the kits you construct and keep is a working signal generator, a multmeter, a fully transistorized breadboard superheterodyne AM receiver, and the all-mportant oscilloscope. These 4 kits are at no extra cost. Compare this selection with other home study schools.

Convenient Payment Plans

RCA Institutes offers liberal monthly payment plans to suit your budget.

Classroom Training Also Available

RCA Institutes operates one of the largest technical schools of its kind. Day and evening classes. No previous training is required. Preparatory courses are avallable. Classes start four times a year.
Job Placement Service, Too!
Companies like Bell Telephone Labs, GE, Honeywell, IBM, RCA. Westinghouse, Xerox, and major rado and TV networks have regularly employed graduates through RCA Institutes' own placement service.
All RCA Institules courses and programs are approved for veterans under the new G.I. Bill.
Send Altached Postage Paid Card
Today. Check Home Sludy or Classroom Training.
Accredited Member National Home Study Council.

PRECISION a of by dack schmidt APPPOACH

"Roger, 4175, it is confirmed
. . . we have you in radar contact!"

".. . . thereby turning off the light whenthe closet door is closed!"

"Our pulsing sonar shows it to be over 80 feet deep along here."

". . . . adjust to 3147.42 kHz , or give the chassis a rap with a hammer!"

Science $_{\text {and }}$
 Electronics

 LCHT POWERS THIS LIOUID SEMICONDUCTOR!

Some copper, some ead some water, a spoonful of chemical, and you've made a PHOTOCELL!

FOR THE PAST lew years, solid state electrenics have tecome commonplace. However, back in the Roaring 205, before the transistor, pioneers in electronics experimented with many unusual devices. One of the most interesting devices of this period was the liquid photocell, an inexpensive, easily made photovoltaic cell housed in a glass jar containing copper and

Liquid Semiconductor

lead electrodes and a liquid electrolyte, lead nitrate.

A thin coating of copper oxide on the copper electrode acts as the photosensitive element. You can experiment with the liquid photocell by building this liquid semiconductor described in the article and in the accompanying drawing and photos. Also included are plans for a variable sensitivity meter module that can be used to test DC current output of the liquid photocell.

How It Works. When radiant energy, in

When a load is connected to the electrodes, a small DC current flows from the photocell. The amount of DC current is determined by the internal resistance between the copper and lead electrodes through the electrolyte.

This internal resistance varies with the condition of the copper oxide coating on the copper electrode, which is the photoelectric sensitive surface. When light strikes the copper oxide, electrons are emitted, and the internal resistance of the photocell is changed. This causes a larger DC current to flow out of the photocell into the load. The amount of light controls the DC current output; the more light, the more current output

the form of visible light, strikes a suitably prepared metallic substance, electrons are emitted. In the absence of light, the copper and lead electrodes of this photocell have a small potential difference, as does an clectrochemical battery with no load applied.
from the photocell.
Construction. You will need sheet copper, a strip of lead or lead solder, and a glass jar approximately $43 / 4-\mathrm{in}$. high with a $23 / 4$-in. diameter (we used a "Maxim" instant coffee $4-\mathrm{oz}$. jar). The size of the jar

is not critical, but the jar must be made of clear glass and should have a plastic lid, or you will have to make a wooden or plastic lid to fit. The copper sheet may be difficult to obtain. We cut and flattened a length of $1 / 2$-in. copper tubing for our model.

Begin construction by cutting a 4 -in. x $11 / 4$-in. piece of sheet copper. Bend one end to form a right angle $1 / 2-\mathrm{in}$. wide, and drill a hole to clear a 6-32 machine screw in the center, as shown in the drawing. Before the copper strip can be used. a coating of cuprous exide must he formed on it to serve as the sensitive surface. Hold the sheet by the $1 / 2-\mathrm{in}$. angled section with a large pair of pliers and heat the copper strip evenly in the flame of a gas stove or a torch. Hold the strip well inside the flame, so it does not become covered with soot. Heat the copper until it becomes uniformly dark, then remove the strip from the flame and allow it to cool. Do not let the surface touch anything.

The black surface of the copper strip is cupric oxide. Just below the cupric oxide is a thin layer of cuprous oxide-actually the photosensitive oxide. After the copper strip has cooled, place it in a jar filled with pure household ammonia. Cap the jar and allow the copper strip to soak until most of the black oxide is off. Cuprous oxide has a red color, but because the layer is so thin it may be difficult to see. Also, the ammonia develops a bluish tint from the dissolved copper oxide; therefore, don't wait until all of the

BILL OF MATERIALS FOR LIQUID SEMICONDUCTOR

J1, J2—Fahnestock elips Kafayette 3217601 or equiv.)
R1-1500-ohm potentiometer
1 - $4 \times 5-\mathrm{in}$. sheet of fiberboard
1-Glass iar (see text)
$1-11 / 4 \times 31 / 2$-in. sheet of copper (see (ext)
1-3 $1 / 2$-in.-long piece of lead solder or lead strip (see text)
1 - $0-1 \mathrm{~mA}$ milliameter Lafayette 99 T 5052 or equiv.) or $0-5 \mathrm{~mA}$ milliameter (Lafayette 9955053 or equiv.)
Misc.-Screws and nuts, black plastic tape, wire coathanger, hookup wire, etc.

Bill of Materials above specifies either 0-1 or 0.5 mA milliammeter, since actual value isn't critical. Idea here is to let you use whatever is most readily available. As explained in text, 100 -watt lamp is required to calibrate meter.
black oxide is off, as the inner layer of cuprous oxide may also start to dissolve. Remove the copper from the ammonia and wash it in water to remove the ammonia. (Hold it hy the angle.)

While the copper strip is soaking, drill the plastic cap of the jar and mount a length of wire solder (preferably not cored) or a thin strip of pure lead to a Fahnestock clip fastened to the lid as shown in the drawing. Cut the lead electrode to a length of $31 / 2-\mathrm{in}$. After the copper strip has been washed,

Both meter and shunt potentiometer are mounted on fiberbcard panel. Supporting bracket is formed from wire coal hanger.

Completed meter panel rests at convenient angle on supporting bracket. Pair of Fahnestock clips mounied at top serve as terminals.

Liquid Semiconductor

mount it approximately $3 / 4-\mathrm{in}$. away from the solder as shown in the drawing. Do not touch the photosensitive surface with your fingers.

Cover the rear of the copper strip with black plastic tape so that light will strike only the surface facing the lead electrode and the light source.

Fill the jar with water to just below the plastic top, making certain that the water level is below the end of the machine screws holding the electrodes to the jar cover. Dissolve one teaspoon of lead nitrate in the water. Note: all lead compounds are poisonous, therefore thoroughly wash your hands and all items that were in contact with the lead nitrate. Lead nitrate can be obtained from a chemical supply or student science store. After the lead nitrate is dissolved, screw on the plastic cap and electrode assembly. The water should be clear. If, because of chemical treatment of your local water, it does not remain clear after adding the lead nitrate, you may have to use distilled water to mix with the lead nitrate electrolyte.

The Photocell Meter. The liquid photocell has a low impedance output; therefore, it requires a low resistance meter for accurate readings. A $5-\mathrm{mA}$ milliammeter should be used to indicate the change in the DC current output. A VOM with an equivalent $5-\mathrm{mA}$ range usually has a higher internal resistance and will not indicate as well as the individual meter.

Our meter module unit contains a $1-\mathrm{mA}$ meter movement with a variable sensitivity control connected in parallel with the meter (see the drawing). We built our module on a 4×5-in. piece of fiberhoard. Coathanger wire is bent into a support bracket and is bolted to the bottom of the fiberboard as shown in the photo.

Connect a $5-\mathrm{mA}$ milliammeter or the meter module, to the photocell terminals as shown in the drawing. The copper electrode is connected to the meter plus terminal and the lead one is connected to the meter negative terminal. There may be a high current output from the photocell momentarily. If so, short out the photocell terminals (or turn the meter module sensitivity control to minimum resistance) until this output current drops.

Potentiometer R1 is shunt to adjust range of $0-1 \mathrm{~mA}$ meter. It is best viewed as a sensitivity control allowing a wide range of readings.

The photocell has to be aged with the meter connected, until the dark current (DC current output with no light) is from 0.3 to 0.5 mA . This aging may take anywhere from several minutes to an hour, depending upon the quality of the cuprous oxide layer on the copper electrode.

Testing the Photocell. Place a 100 -watt lamp near the photocell on the side near the lead electrode. Turn the lamp on and observe that the photocell DC current output increases. Adjust the meter module sensitivity control as necessary for an indication. The amount of current increase will depend on the quality of the cuprous oxide layer formed on the copper electrode. Our unit had a 2 mA increase.

Experiment with various lamps of different wattages, as well as with fluorescent lamps. Also test the photocell in sunlight. Make a chart of the photocell DC output current readings obtained with the lamp at different distances from the cell.

The liquid photocell has a definite life span. As it is used, you will notice that the copper electrode becomes darker and the DC current output from the light source diminishes gradually. This occurs because lead is gradually being deposited on the copper strip through internal electrochemical activity.

When the DC current output becomes too low, remove the copper electrode from the photocell, clean the surface with sandpaper, and then reheat the copper strip to form a new oxide coating, as previously described in the construction of the photocell. Remove the oxide from the copper with ammonia, wash and replace the copper electrode in the photocell. In this way the photocell will have an indefinite life just by renewing the coating on the copper strip.

by Ron Michaels

In addition to the purest of chemicals and water, what's the most important factor influencing photographic processes - whether involving films or prints and most decidedly in the case of color? Timing, of course! Accurate, repeatable timing is a must in the darkroom if you want to produce consistently good work.

Our Universal Darkroom Timer provides both accuracy and repeatability over a wide range. This solid-state timer can control exposure time as well as development time at the flick of a switch. In addition to calling

Universal Darkroom

 Timer

 Timer}
it a Universal Timer, we should also refer to it as a Custom Designed Timer. Reason is that with the exchange of just a few critical components the timing cycle ranges can be tailored to fit your particular darkroom needs.

For example, we prefer never to expose print paper for more than seven seconds when using the enlarger- 1 hat's the maximum exposure time in the process we use. Also, we never keep negatives in their developing solutions for more than seven minutes. Since these two ranges represent the maximum timing cycles we use, we selected the components that produce these ranges for our timer. The Timing Table included with this article gives the proper values of the key components for several other timing ranges.

How It Works. A full-wave silicon controlled rectifier (SCR) switching circuit is the heart of our timer. When the SCR turns

TIMING TABLE

A-For enlarger timing of 0.7 seconds and process timing of 0.7 minutes

R1- 50,000 -oinm potentiometer
R3- 10 -megohm potentiometer
C,1-200-uF, 350-V electrolytic capacitor
B-For enlarger timing of 0.10 seconds
and process timing of $0-10$ minutes
R1- 50,000 ohm potentiometer
R3- 10 -megohm potentiometer
C1-300-uf, 350-V electrolytic capacitor
C-For enlarger timing of $0-15$ seconds and process timing of 0.15 minutes

R1- 100,000 ohm potentiometer
R3-10-megohm potentiometer
C1-400-uF, 350-V electrolytic capacitor
on (allows current flow to pass through), AC current can llow through the bridge rectifier (Q2) and the load, or whatever is plugged into the output sockets. When the SCR is turned off the bridge acts like an open switch and no current flows through the load. The balance of the circuit is an unique biasing arrangement that adapts the switching circuit to function as two different timers.

Key point to remember in the following circuit description is that the SCR remains

on (and the bridge conducts) whenever a current of more than 200 microamps ($1 / 5$ of a milliamp) is fed into the gate terminal.

The Enlarger Timer. The desired operation is that the enlarger lamp will turn on at the touch of a button, remain on for a present time period, then will turn off automatically. The desired time period is selected by an adjustable control (R 1). When function switch $\mathbf{S} 1$ is placed in the enlarger position, the timing circuitry for this function is actuated. This is a very straightforward operation.

When pushbutton switch S2 is depressed,
timing capacitor Cl_{1} is charged to approximately 200 VDC. Instantly this voltage sends a substantial amount of current into the gate terminal of the SCR, turning it on and thus permitting rectifier bridge current to flow through the load. Switch SI is a double pole unit; one section is used to select one of the two convenience outlets to be connected to the timer switching circuit. When S1 is placed in the enlarger position, outlet "OI", labeled enlarger, is connected. This is the outlet the Enlarger's power cord is plugged into.

The SCR remains on as long as the gate

Rear view of timer assembly showing locations of two outlets where power cords for audible indicator for both process timer and enlarger are plugged in. Right-hand outlet is connected to short duration timing circuit for enlarging; left-hand outlet is connected to long duration timing circuit for processing. Bell or buzzer is powered through latter outlet.

PARTS LIST FOR UNIVERSAL DARKROOM TIMER

Cl-Electrolytic capacitor, 350 volt rating, 200 UF (for $0-7 \mathrm{sec}$ timing) (Cornell Dubilier BR200-350 or equiv.); 300 uf (for $0-10 \mathrm{sec}$. timing) (Cornell Dubilier BR300-350 or equiv.); 400 uf (for $0-15 \mathrm{sec}$. timing) (Cornell Dubilier BR400-350 or equiv.)
C2-100 UF, 250 volt electrolytic capacitor
(Cornell Dubilier BR100-250 or equiv.)
D1-Silicon, bilateral trigger diode (Motorola HEP 3111
D2-Diac trigger diode (GE ST-2)
O1, O2-Panel mounting AC socket (Allied 47 FO830 or equiv.)
Q1-Silicon controlled rectifier (SCR) (GE 106B1)
Q2-Bridge rectifier International Rectifier 10DB6A)
R1—Potentiometer, 50,000 ohm for $0-7 \mathrm{sec}$. and $0-10$ sec. timing (Allied 46E5314 or equiv.); 100,000 ohm for $0-15 \mathrm{sec}$. timing (Allied 46E5317 or equiv.)
R2-4700-ohm, $1 / 2$-watt resistor
R3-10-megohm potentiometer (IRC-CTS D106 with shaft 18 or equiv.)

R4-1-megohm, $1 / 2$-watt resistor
R5-680,000-ohm, $1 / 2$-watt resistor
R6-1,800-ohm, $1 / 2$-watt resistor
R7-820-ohm, $1 / 2$-watt resistor
R8-68,000-ohm, $1 / 2$-watt resistor
R9-6,800-ohm, $1 / 2$-watt resistor
R10-820-ohm, $1 / 2$-watt resistor
S1, S4—Dpdt toggle switch (Allied 56F3867 or equiv.l
S2-Spst, normally open pushbutton switch (Allied 56F4947 or equiv.)
S3, 55-Spst toggle switch (56F3869 or equiv.)
T1—Power transformer, 117 volt pri.; 125 volt, 0.15 mA sec. and 6.3 volt, 1 amp . sec. (not used) (Allied 54 F 4163 or equiv.)
$1-8 \times 5 \times 3$-in. sloping-front cabinet (Allied $42 F 8686$ or equiv.)
1-Terminal tie strip (Allied 47F2917 or equiv.)

Misc.—Hardware, wire, solder, cement, fiberglass tape, labels, etc.

Schematic detailing Universal Darkroom Timer. Note that text and schematic refer to a position of 54 as "Ready" whereas in the photo this position is marked "Reset." These designations are interchangeable, so mark your timer as you want.

Universal Darkroom Timer

current flow continues. However, the combined current drain of the SCR and the adjustable shunt resistance, consisting of RI in series with R2, rapidly discharges timing capacitor C1. The exact time of discharge is dependent on the setting of R1. Within a few seconds Cl's voltage falls beluw the breakdown voltage of trigger diode DI
it into wall outlet. When S3 is placed in focus position, the enlarger lamp is turned on and remains on until S3 is placed in the off position, where it must remain whenever using the timer to time an operation.

The Process Timer. For this function the timing cycle is of much longer duration (several minutes), and the timer should sound a signal at the end of the present timing interval. When S1 is placed in the process position, a biasing circuit is activated that is virtually the opposite of the circuit for the enlarger timing just described.

The process timing operation is controlled by tuggle switch S4. With S4 in the

Timer assembly with cover of cabinet removed to show mounting of components on "U" shaped section of cabinet. This becomes front panel, bottom, and rear panel of timer cabinet assembly.
All controls except for power switch 55 are mounted on front panel (power switch was placed on rear panel to simplify wiring). Even if timer should inadvertently be left turned on for long periods of time no harm will result. Nor will your power bill 200 m , as timer requires little power.

View shows front panel and interior layout of timer assembly. Notice how CI and C2 are taped together and cemented in position on rear panel. With exception of variable resistors, all semiconductors and resistors are placed on an insulated tie strip, to which tie strip terminals have been staked. Strip is mounted adjacent to power Iransformer on bottom of cabinet and raised by spacers to prevent shorting out circuitry.
(about 30 V) and the diode blocks any further flow of current into the gate of the SCR.

Pushing S2 a second time recharges C1 and recycles the timing circuit. Toggle switch S3 has been added as a bypass switch to enable focusing the enlarger without having to disconnect it from the timer and plug
ready position, capacitor C 1 is kept fully discharged and the SCR is kept turned off. Therefore, no current can flow through the load (in this case some type of 117-volt operated signal device-a bell, horn, or buzzer). When S4 is switched to its time position, capacitor C 1 is connected to the 200volt DC supply through a high value re-
sistance chain composed of potentiometer R3 in series with R4.

Because of its high capacity, and this resistance chain, C1 charges very slowly, and, after several minutes (the exact time is dependent on the setting of R3), the voltage across capacitor Cl reaches the breakdown voltage of diode D1. Instantly the capacitor begins to discharge through the SCR gate, turning the SCR on and allowing current to flow through the load, which in this operation is the signaling device.

With S1 in the process position, outlet "O2" is activated through the timer. However, after about 5 seconds, C1's voltage falls below the critical diode breakdown
the cabinet's base next to the power transformer. All other controls except for power switch S 5 are mounted on the front panel. The two convenience outlets and the power switch are mounted on the rear of the cabinet.

The two electrolytic capacitors, C 1 and C2, are first taped together with fiberglass binding tape and then cemented to the inside surface of the rear of the cabinet. Before fastening the tie strip to the cabinet base, mount all of the components mentioned above to it.

The timer draws so little current in standby condition that no harm would result from leaving the power on when the unit was

Finished product is very professional looking timing device that is of inestimable value in any darkroom, be it for professional or amateur photographers. It combines facilities to time development of film and/or paper as well as exposure timing for the enlarger. Incorporating silicon controlled rectifier and sophisticated timing approach, unit provides two different timing ranges economically by sharing common components.
potential, current flow stops, the SCR is turned off, and the signaling device stops sounding. The capacitor then again begins building up to the breakdown potential, at which point the signal device would again be activated. However, the person using the timer would normally interrupt the cycle as soon as the signal is first sounded. Used in this manner our circuit behaves in much the same way as an electrical or mechanically driven clock.

Building the Timer. We housed our timer in an aluminum cabinet having a cowl front. Our reason for using this type of cabinet is that the overhang, or cowl avoids accidental operation of the controls in the darkroom. The unit has been well designed and packs a lot of circuitry into a small space. Even so, there is ample room to easily wire the components if you follow our layout as shown in the photos.

All of the resistors, the bridge rectifier, the SCR, and diode D1 are mounted on a phenolic board containing staked terminals, which, in turn, is mounted in the center of
not being used. Therefore, to facilitate the parts layout and the wiring, the power switch was mounted on the rear panel.

Calibrating the Timer. Once the proper timing ranges have been chosen, and the components specified in the Timing Table have been wired in the circuit, calibration points can be marked on the panel adjacent to the knobs for R1 and R3. The exact locations of the marks are determined by checking the timing of on status with a stopwatch at each of the timing periods desired to meet your particular darkroom process.

Because many of the components in the circuitry are common to both timing operations there is some interaction between the two adjustable controls. For this reason it is important that $S 4$ be kept in the ready position whenever using the unit as an enlarger timer.

Our Universal Timer has an advantage over commercial units. Should you change your photo processing procedures, which may require a change in timing, this can be easily done by exchanging a few parts.

Did you know that...

... clouds of nitrogen dioxide were recently studied remotely by a team of Canadian scientists? Working under an HEW contract and using a unique, telescopic, gas-analyzing spectrometer, Toronto's Barringer Research Inc. was able to perform quantitative chemical analyses of polluted air over the Los Angeles basin withoul making physical contact with the material under study.
. . . new ICs help put market transactions on brokers' desks? Developed by Trans-Lux Corporation, the new VidiQuote records current stock-exchange information in binary code, then converts it to alpha-numeric characters which are displayed on a compact TV monitor. Its ICs are by Texas Instruments.
. . FM radios alert emergency personnel in an unusual use of a CATV system? Cablevision of Virginia, the firm responsible for the community-minded hookup, speeds emergency squad members 10 disaster scenes by sending distress calls over its CATV system. A Jerrold-operated company, Cablevision devised the hookup to supplement the klaxon atop the courthouse in Clifton Forge, Va. Results are swifter and surer rescues.

If you don't live so far away from a police or fire transmitter that a strong wind is needed to blow the signal out to you, you can throw together a six-buck vhf converter for listening to these calls in less time than it takes a soldering iron to heat up. By the time the iron is hot you'll have all the parts mounted and ready for final soldering.

The six-buck converter uses very few parts: a 9 -volt battery, a small 5 -k pot with a switch and a Cordover CM-H FM Converter Module. The parts can be mounted

New adventures in

 fuzz snooping for six bucks! !

even be wired together without a housing. If you want to go the deluxe route, you can build the unit in a small utility box for approximately one more dollar, and include a battery connector instead of directly-wired/ soldered battery connections.

Works With FM. Unlike the more commonly used converters that are operated in conjunction with an AM radio as the basic
module's internal oscillator to 52 MHz , the 52 MHz oscillator signal will beat with the 152 MHz received signal and will produce new signals equal to the sum and difference of the oscillator and received signals. (152 $\mathrm{MHz}+52 \mathrm{MHz}=204 \mathrm{MHz}$ and, 152 MHz $-52 \mathrm{MHz}=100 \mathrm{MHz}$). These new signals appear at the module's output along with the original 152 MHz and 52 MHz signals for a total of at least four frequencies: 204 $\mathrm{MHz}, 152 \mathrm{MHz}, 100 \mathrm{MHz}$ and 52 MHz . Since the $F M$ radio is tuned to 100 MHz , only the 100 MHz signal will be received by the FM radio and the audio output of the

Practically any mounting arrangement will work for Police Converter, but it's best to keep leads from R1 to module as short as possible. Module (at right) is roughly size of ice cube.
receiver, and since vhf police and fire signals are FM , if the $\mathrm{CM}-\mathrm{H}$ converter module is used with an FM radio you will get better sensitivity.

Even though it's possible to receive FM signals on an AM radio by using slope detection and by tuning the AM set to the sideband of the received signal, since police and fire FM signals are narrow band FM (actually split channel), by the time these signals have passed through the slope detector there would not be much modulation left.

How It Works. The converter module works on the heterodyne principle, similar to that used in a standard BC radio. Within the module is an adjustable oscillator whose frequency is approximately $88-108 \mathrm{MHz}$ removed from the frequency of the desired signal. To illustrate, let's assume the desired frequency is 152 MHz , and we want the 152 MHz signal to be received when the FM radio is tuned to 100 MHz . If we adjust the

PARTS LIST FOR PENNY PINCHER'S POLICE CONVERTER

81—9-V battery (Lafayette 9916021 or equiv.)
1-CM-H Cordover vhf police and fire converter module (Lafayette 19 T5528 or equiv.)
R1- 5000 -ohm potentiometer with spst switch (S1) (Lafayette 32 T 7363 or equiv.)
Misc.—Plastic box (Lafayette 9978078 or equiv.l, hardware, hook-up wire, battery terminal (Lafayette 9916287), metal strap to hold battery, solder, etc.
radio will be the modulation of the 152 MHz signal.

To provide for reception of various police and fire vhf channels and to ensure that the signal can be heterodyned to a quiet spot of the FM band, the internal oscillator of the module is adjustable over a very wide range, covering reception of the total 150164 MHz band, which can be positioned on just about any part of the FM band.

Certainly for $\$ 6$ one doesn't expect to obtain the most sensitive of converters. The unit we assembled was effective up to five miles away from base stations of police and
module's connecting leads and the external connections. Make certain all leads are kept away from the metal panel; use sleeving to make certain the splices can't touch the panel.

Drill a $1 / 8-\mathrm{in}$. hole through the top of the plastic case for the connecting lead from the module to the FM radio ($24-\mathrm{in}$. length of stranded insulated wire). Pass the wire through this hole and then secure the front panel with the screws supplied. Finally, attach a small alligator clip to the radio-connecting wire.

Aligning Converter. Extend the whip

Completed Converter mounted in plastic box sports symmetrically placed tuning and adjust controls. Converter's antenna lead is ideally clipped to whip antenna on associated FM set.
fire transmitters, and reception from mobile units was limited to one or two miles, deperrding on the terrain.

By feeding output of the converter to an FM radio, the signal is detected by an FM detector and maximum modulation is extracted from the signal. The converter module uses a single $24-\mathrm{in}$. wire lead both as the receiving antenna and the radio coupling. The lead is clipped or connected to the antenna of the FM radio. The antenna serves both as the antenna for the module and the converter/radio coupling.

Building the Converter. Our converter is built on the front panel of a $4 \times 21 / 8 \times 15 / 8$ in. utility case. The converter module is mounted on the front panel by pushing the module's mounting clip through a $27 / 64-\mathrm{in}$. or a $13 / 32$-in. hole. Adjusiment control R1/S1 should be mounted as close as possible to the module. Connections should be made directly to the module's leads; do not attempt to use terminal strips between the
antenna of the FM radio and clip the converter wire to any part of the FM antenna. Tune the radio to a dead spot on the bandpreferably between 90 and 100 MHz . Turn on the converter by rotating RI's knob, and then very slowly, alvance RI until the background noise heard in the radio reaches a usable volume. If R1 is advanced too far the radio will block up. It will go quiet and you may hear several different FM commercial radio stations as $R I$ is adjusted. The correct RI adjustment is maxinium noise just before "blocking." As a double check, when R1 is correctly adjusted you will hear clicks as you touch the FM antenna.

If possible, borrow a friend's vhf FM police and fire receiver and tune in the local police or fire frequencies. When you hear a transmission in this receiver, adjust the tuning slug of the converter module until you hear the same station. If you can't borrow a receiver, you'll just have to be patient
(Continued on page 109)
by Dr. Roy K. Marshall
\star A pair of 7×50 binoculars or a monocular of that size and power can be very useful in prowling along the Milky Way. (The 7 indicates the magnifying power, in diameters; the 50 tells the diameter of the front lens, in millimeters.) About November 1 , the most distant object in the sky that can be seen without optical aid might be picked up with such a glass, as a smudgy, slightly elongated haze, then looked for without the glass, just so you can say that you saw light that is $2,200,000$ years old!

The great galaxy in Andromeda stands almost exactly overhead at $10 \mathrm{p} . \mathrm{m}$. on the date suggested above. It consists of about 150 billion stars arranged in a great spiral form that is so distant that light from it arriving here now left there more than two million years ago. And light, remember, travels at a speed of 186,300 miles per second.

Our sun is one of the stars in a similar galaxy, our own, whose flattened spiral shape is responsible for the appearance of the Milky Way.
\star The galaxies are interestingly detailed objects as photographed through large telescopes, but disappointing as seen with the eye through the same instruments, because the eye takes only snapshots, while the pho-

tograph can be exposed as long as we wish, to build up the strength of the image and reveal the structural details.

Another object that is disappointing visually but shows intricate filamentary structure in photographs has recently come into astronomical news in connection with the strange, periodically pulsing sources of radio signals called "pulsars." The gaseous nebula itself has been known since 1731, when the astronomer Bevis ran across it; in a large telescope it is a hazy, elongated faint patch of light. It has been called the "Crab Nebula," from a fancied resemblance to that animal.

The gas cloud, first seen by Bevis in 1731, lies in Taurus, in our eastern sky on Nov. 1, closely south of the " A " in Taurus on our map for Nov. 1 at 10 p.m.
\star A close friend of mine among astronomers, Dr. John Charles Duncan, examined many photographs of the Crab Nebula, taken over decades at the Mount Wilson Observatory, and found that before 1926, the Crab Nebula had been expanding at such a rate that, about 900 years earlier, this cloud of gas had been all at one point.
With the cooperation of a scholar in the University of California, he discovered that, in the year 1054, Chinese and Korean as-

The Night Sky in November

tronomers had noted a very bright star in the very spot where the Crab Nebula stands today-a "guest star," which today we call a nova, or new star, which we hnow today is not really a new star, but one which newly calls our attention to it.

A nova is a star which generates energy so strongly that the overlying layers of the star can't hold it in, so the star literally explodes. For a tew days or weeks or even months, the star may be the brightest object in the sky, until it subsides to the obscurity from which it erupted. We have records in both early and later times of many such exploding stars.

What we see when we observe the Crah Nebula in Taurus is the gaseous debris of the colossal explosion when a star literally "blew its top." The gigantic explosion occurred about 3050 years B.C., because modern measures show that the object's distance is 4100 light-years. Now, after a lapse of almost 5000 years, the Crab Nebula may be telling us something of a new state of matter.

* The great radio telescopes have been telling us that something in or near the Crab Nebula is sending us radio "beeps" at intervals of one-thirtieth of a second.
(Continued on page 110)

This flme of year seeq the summer stars slipping our wa sight in the west and those of the winten coming once more into view in the east. The summer Milky Way arches from the southwest, through Sagiftarius, Aquila and Cygnus, then thins into the winter Milky Way and passes into Cepheus, Cassiopeia, Perseus, and finally through Auriga in the northeast. The "summer triangle" of Alpair in Aquila, the Eagle, Vega in Lyra, the Lyre, and Deneb in the tail of Cygnus, the Swan, is still displayed in the west, while the Pleiades gliffel above ruddy Aldebaran in the east. The golden planet Jupifer which glorifies our sky most of the summer is now lost in the sun's glare, but the ofther giant of the sun's family, the finged Safurn, is now closest to us (673,000 ,000 miles) and is abouf midway between the two triangles of Cefus and Aries. Red Mars is low in the southwest, in Sagittarius. The almost first quarter moon passes south of Mars on October 17 and again on November 15, while the full moon passes north of Saturn on October 25 and again on No-
 principal sfars and planets which are above the horizon at latitude 34° North at about 9 p.m. standard time at the middle of the month. These maps are practical star location guides anywhere in the United States throughout the month showing the shy at 10 p.m. On the first and at 8 p.m. On the last of the month. To look af the night sky in October and November, select the proper map and hold it vertically. Then turn the map so that the point of the compass foward which you are tacing shows at the botfom ot the map. Our special thanks go to the Griffith Observatory in Los Angeles, Calitornia.

Our new columnist
 Ur. Roy K. Marshall

You wouldn't think the man looking so directly at you has spent most of his lite gazing at stars but that's his story. From a doctorate in astrophes ics at the University of
 Michigan through stints at various planetariums (planetaria?), Dr. Roy K. Marshall has perhaps not as many qualifications as there are stars, but enough. Dr. Marshall has been associated with the Adler Planetarium, Chicago; the Yerkes Observatory, University of Chicago; the Harvard Observatory; the Fels Planetarium, Philadelphia; Morehead Planetarium, Chapel Hill, N.C.; Odessa College Planetarium, Odessa, Texas and is currently Director of the Gibues Planetarium, Co. lumbia Museum of Science, Columbia, S.C. Dr. Marshall is the author of "The Nature of Things," "Sun, Moon and Planets," "Star Maps for Beginneis" and "Sundials." A man for all media, Roy Marshall has been education director for the Philadelphia Inquirer radio and TV stations, science editor of the Philadelphia Evening Bulletin, columnist for SKY AND TELESCUPE riagazirie, and now astronomy columnist for SCIENCE AND ELECTRONICS. He is the recipient of an honorary degree from the Philadelphia College of Pharmacy and Science "for propagating the knowledge of science via writings, lecturing, planetarium work, radio and television." Let him welcome you aboard on a fascinating trip to the heavens!
by James Robert Squires

One of San Onofre's five watch engineers, Pat Riley is empowered with making go/nogo decisions in event of trouble. His job: to make sure that everything remains AOK.Set beside the Pacific Ocean in a manmade cavity 90 ft . below the cliffs, the San Onofre nuclear-powered generating station is located roughly 60 miles south of Los Angeles. In operation since January of last year, the station is capable of generating

SAMONOFRES

450 megawatts of electrical power, 80% of which is used by the Southern California Edison Company and 20% by the San Diego Gas and Electric Company, co-owners of the project.

The generating station, which is of the

Twin flash evaporators (left), powered by steam from secondary system, convert sea water into distilled water at rate of 120 gallons per minute. Water is stored in huge tanks for later use; any excess is pumped to reservoir high on cliffs for supplying domestic water needs.

ABBCLCOSS 40

pressurized water type similar to that used by nuclear submarines and surface vessels typified by the aircraft carrier Enterprise, has its nuclear reactor located at the bottom of the big sphere (see our photos).

To understand how the station works, re-

Overall view of San Onofre. Large sphere at right houses nuclear reactor and its associated steam generators; sphere is vented to relieve pressure in event of mishap.
member that whenever the pressure on a quantity of water is raised above 14.7 pounds per square inch (psi), the water will no longer boil at 212 F . Because of the 2000 psi pressure within the reactor's primary system, water doesn't even boil at the

Steam generators and turbine generator (left) form secondary portion of generating sefup. Though heated by nuclear enengy, pressurized water serves only as means of conducting energy between reactor and sfeam generators. Right, sea intake and outflow pump pit.

SHOOMRESEARBLICOS 50

system operating temperature of 575 F -hence the term, pressurized water reactor.

In operation, distilled water in the primary system circulates around the nuclear reactor and in doing so absorbs tremendous energies in the form of heat. This pressurized water is then forced to one of three steam generators located with the reactor inside the sphere. Steam produced by these generators is used to drive the plant's turbine-generator, thus producing electrical energy in the same manner as conventional, fossil-fueled stations.

Above, output fransformer af San Onofre; below, master control room. Indicator panels continuously flash status of instruments and equipment to engineer in charge; levers control position of rods in core.

Structure immediately in front of sphere is waste collection building. Here, radioactive substances which cannot be otherwise disposed of are baled and pressed into cement containers.

Their Time Is Your Time

A multi-million-dollar effort by many nations of the world converts your shortwave receiver into an electronic Timex!

Regularly as clockwork, the shortwave time stations split the hours into tiny fragments with their incessant electronic pulses. No music, no personalities, no entertainment, not even a newscast to break the monotony. Their programming is a bomb-a time bomb!

On the whole, their ticks, tones, and tech data are of interest mostly to scientific sorts who rely on their specialized services. Still, these "clock radios" offer some interesting DX to shortwave listeners.

Mention standard time stations, and most SWLs figure you're talking about the 46 -year-old WWV, the National Bureau of Standards' operation at Ft. Collins, Colorado. For, truth to tell, WWV has been ticking away since 1923 (originally from Greenbelt, Maryland) on $2.5,5,10,15,20$, and 25 MHz . And the more hip also know its Hawaiian counterpart, WWVH, at Puunene on Maui Island, which joined in on 5, 10 , and 15 MHz in 1948. Still others are familiar with Canada's CHU, widely heard on $3.330,7.335$, and 14.670 MHz .
(turn page)

Their Time Is Your Time

But there are scores of other shortwave time stations operating around the globe. They are run by astronomical observatories, private and government labs, and military commands.

Little-Known DX. There are several reasons why many SWLs don't realize the DX potential of these scrvices. Some share the standard frequencics with WWV and WWVH, which usually dominate the channels. Others have mini-skeds, transmitting just a few minutes each week. Then, too. some use off-beat wavelengths, which makes them tough to tune unless you know when and where to listen.

But when conditions are right. the foreign time-tickers can be logged during the WWV/WWVH silent periods-quarter to and quarter past the hour. respectively-or during brief pauses in their voice announcements. Sometimes, unexpectedly, alien tick-
ing can be heard right through the U.S. time stations.

Some identify only in International Morse Code, causing problems for SWLs who can't read CW. Way to get around this is to tape the signals, then play them back at halfspeed to decipher the individual di-dah combinations.

Three On Five. For openers, stake out 5 MHz during the early evening hours, when WWV will no doubt be pounding in. However, during the voice announcement just before each quarter hour, you may hear a CW signal in the background, tapping out the call ZUO threc times. This station, one of the most frequently heard overseas standard time services, belongs to South Africa's Republic Observatory in Johannesburg. Its transmitter at Olifantsfontein sometimes puts in a surprisingly good signal for just 4 kW .

A few hours later, between 0645 and 0700 GMT , the same $5-\mathrm{MHz}$ frequency has been offering the electronic time signals of IBF, the Instituto Elettrotecnico Nazionale station at Turin, Italy. At times it manages

Putting together a OSL collection can be interesting when cards are grouped by topics-stamp collectors do this. A topical collection of time stations on six continents and Oceania set up in a nice display. For once it will be possible to show your friends the interesting world of shortwave listening. The chart at the top of the facing page tells you what will be needed in effort to get a complete set. Some of the nicer QSLs are shown on these pages - JJY-Japan, IBFItaly, CHU-Canada, VNGAustralia. Get yours today!

Standard time stations around the world				
Country	Station	Address	Frequen (MHz)	n to Tune (GMT)
argentina	LOL	Observatorio Naval, Buenos Aires, Avenida Costanera Sur 2099	5.000	0000-0100
AUSTRALIA	VNG	Australian Post Office, Postmaster General's Dept., 57 Bourke St., Melbourne 3000	7.515	1200-1300
brazil	PPE	Observatorio Nacional, Rua Gen. Bruce 586, Rio de Janeiro, GB ZC-08	8.721	0025-0030
CANAL ZONE	NBA	U.S. Naval Observatory, Balboa	5.870	0155-0200
CEYLON	4PB	Colombo Radio, Colombo	8.742	1325-1330
Chile	ccv	Instituto Hidrografico, Casilla 324, Valparaiso	8.205	0055-0100
CHINA	XSG	Zikawei Observatory, Shanghai	8.333	0855-0905
cZECHOSLOVAKIA	OMA	Standard Frequency Station, Budecska 6, Praha 2, Vinohrady	3.170	Evenings
ENGLAND	MSF	National Phyșical Lab, Teddington, Middlesex	5.000	Evenings
gERMANY, EAST	DIZ	German Geodetic Institute, DDR15, Potsdam	4.525	Evenings
guam	NPN	U.S. Naval Observatory	5.448 .5	1155-1200
italy	IBF	Instituto Elettrotecnico Nazionale, Corso Massimo d'Azeglio 42, Torino	5.000	0645-0700
Japan	JJY	Radio Research Laboratories, Koganei, Tokyo	15.000	2200-2300
PERU	OBC	Comunicaciones Navales Radio, Callao	12.307	0055-0100
SOUTH AFRICA	zU0	Republic Observatory, Johannesburg	5.000	0200-0400

to bull its way through the WWV transmissions, identifying both by CW and voicein Italian, naturally.

Also noted on 5 MHz from time to time is LOL, the Argentine Naval Observatory station at Buenos Aires. It's identified by its thrice-repeated Morse call letters. Unfortunately, while the station's staff claims it wants reception reports, DXers complain that QSLs are few and far between.

Most of the stations, though, are good verifiers. One of the best-with a sharp QSL to boot-is Japan's JJY. Recently, this service of Radio Research Laboratories in Tokyo has been heard through WWV on 15 MHz during our late afternoons.

Off-Beat Frequencies. If you don't want to fight the QRM on the standard frequencies, switch to the time stations that use the far-out frequencies. For example, there's the German Geodetic Institute's DIZ in the East Berlin suburb of Potsdam. (Its $5-\mathrm{kW}$ transmitter, on 4.525 MHz , is actually located in nearby Nauen.) No identifications here, but on this frequency it is unmistakable, particularly during the later afternoon and around midnight in the U.S.

Halfway around the world is VNG, the time station of the Australian post office in Melbourne. It identifies by voice-and in English, happily enough-on the hour only.
(Continued on page 109)

You get more for your money from NRI-

America's oldest and largest Electronic, Radio-Television home-study school

Compare. You'll find - as have so many thousands of others - NRI training can't be beat. From the delivery of your first les. sons in the remarkable, new Achievement Kit, to "bite size," easily-read texts and carefully designed training equipment . . . NRI gives you more value.

Shown below is a dramatic, pictorial example of training materials in just one NRI Course. Everything you see below is included in low cost NRI training. Other major NRI courses are equally complete. Text for text, kit for kit, dollar for dollar-your best home-study buy is NRI.

get a faster start WITH NRI'S NEW EXCLUSIVE ACHIEVEMENT KIT

The day your enrollment is received your Achievement Kit will be on its way to you. It contains everything you need to make an easy, fast start in the Electronics training of your choice. This attractive, new starter kit is an outstanding, logical way to introduce you to home-study the way NRI teaches it . . . backed by a dedicated staff and the personal attention you should expect of a home-study school. It is your first special training aid . . . designed to make your adventure into Electronics absorbing, meaningful. Your Achievement Kit contains your first group of lesson texts; rich vinyl desk folder to hold study material; the industry's most complete Radio-TV Electronics Dictionary; valuable reference texts; lesson answer sheets; envelopes; pencils, pen; engineer's ruler-even postage. No other school has anything like it.

LEARNING BECOMES AN ABSORBING ADVENTURE WITH NRI TRAINING KITS

What better way to learn than by doing? NRI pioneéred and perfected the "home lab" technique of learning at home in your spare time. You get your hands on actual parts and use them to build, experiment, explore, discover. Electronics come alive! NRI invites comparison with training equipment offered by any other school. Begin NOW this exciting, practical program. It's the best way to understand the skills of the finest technicians-and make their techniques your own. Whatever your reason for wanting to increase your knowledge of Electronics . . . whatever your field of interest . . . whatever your education . . . there's an NRI instruction plan for you, at low tuition rates to fit your budget. Get all the facts about NRI training plans, NRI training equipment. Fill in and mail the attached postage•free card today. NATIONAL RADIO INSTITUTE, Washington, D.C. 20016.

Accredited by the Accrediting Commission of the National Home Study Council.

OVER 50 YEARS LEADERSHIP IN ELECTRONICS TRAINING

[^0]

Code practice occupies sizable portion of Salurday morning sessions. Informal gatherings normally begin with Joe tapping telegrapher's key while boys jot down letters they hear. To earn FCC Novice license, boys must pass test showing they can send and receive code at 5 wpm .

§aturday GMorning

Keen ears pick out coded letters as slow but steady di-dahs issue from oscillator. Once code has been memorized, boys begin pounding out their own messages (pholos at right).
\square This is the world of diodes . . . transistors . . . toroids. It's a maze of tiny electronic components . . . of wire and perf boards . . . of telegraphers' keys . . . 9-volt batteries and soldering guns.

This is Joseph R. Wasserman's 90 -minute Saturday morning world spent with a dozen or more (depending on the vagaries of weather, homework, and colds) wide-eyed

Concentration is a must when it comes to absorbing cold facts. Boy at left is poring over ARRL's License Manual which lists 50 sample questions and answers would -be Novice may face during his exam.

Ham-in

and quick-to-learn kids from suburban Philadelphia. It's a 90 -minute world that has a way of slopping the clock, for those 90 min utes more often than not somehow stretch into two or more hours.

Joe is a school psychologist (Monday to Friday) with the Upper Darby School System (adjacent in Delaware County, Pa.) and a ham radio buff of long standing. And

Soldering is another skill successfully acquired oy members of Joe's Salurday Morning Ham-in Friefcly word frem Joe encourages do-it-yoursel'er to develop sure, light touch.

§aturday TMorning 'Ham-in

he has some provocative theories about education as well as a mutual love for his hobby and "his boys."
"These kids," he says, "are 10,11 , and 12. Just look at what they can learn about electronics, about circuitry and radio theory once a week in this room. I believe we can teach children more detailed, more difficult, and certainly more useful material of all kinds at earlier ages."

The LaMott Community Center in Cheltenham Township, Montgomery County, Pa., began sponsoring Joe's class last fall. The youngsters learn the International Morse Code, prepare to take the Federal Communications Commission's Novice License test, and are building their own transistorized receivers.

Just to keep spirits high and to show his Saturday morning Marconis what they may strive to achieve, Joe brings his own transmitter and receiver. The boys have listened in while ham operators around the world have carried on contacts across the poles and over the seas.

The talk from Texas, California, Alaska, the U.S.S.R., England, even Nairobi is frequently technical. But Joe's boys understand. Not all, to be sure. But more and more each week.
-Joe Gronk

Two foroids are required for receivers boys are building, and they wind them themselves. Below, boy samples signals from Joe's rig.

Thrilled with romance of communicating with earth's four corners, boys claster around Joe's transmitter and receiver. Often, they too manage to take part in exciting world of DX action.

HEATHKIT MODEL IG-28

All-IC Color Bar and
Dot Generator

Just as with one of the airlines' claims, there's a "something extra" with the Heathkit Color Bar and Dot Gencrator. In this instance that something is extra features hung on a standard color generator. What they do is make it a lot easier to align a TV for darn good color quality; you might say they're akin to the fine tuning adjustments common to lab-grade service equipment.

The IG-28 is all solid-state, using the latest in computer type design to obtain the necessary waveforms. Thing is, the step counters and adjustable dividers generally associated with color generators normally require at least an oscilloscope for proper generator alignment. With the IG-28, however, integrated circuit flip-flops and gates mean that you build it and it works.

Except for the non-critical circuits, such as the RF oscillators and modulator, the IG-28 is all-IC, with printed circuits for everything except the front-panel controls. Since the ICs are essentially direct coupled through the printed foils, should any problems arise you simply plug in a new IC (all ICs use sockets).

Even the RF oscillator is made troublefree through use of a printed "tank coil." Rather than rely on the usual type of wire coil, which can be damaged, the IG-28's oscillator coil is part of the printed foil on the RF printed circuit board. And though it appears to be a "wavy foil," it's actually a coil.

Large printed-circuit board in IG-28 contains all electronics except RF oscillator and video output amplifier. All pulse circuits are IC self-locking flip-flops or gates, and all ICs plug into sockets for quick and easy servicing.

Features, Features. The IG-28 provides the usual color generator patterns: dots, cross hatch, horizontal lines, vertical lines, and color bar. What's more, it also provides for purity adjustment, a "plaid" gray scale, and a 3×3 divide for the vertical and horizontal lines.

In addition to the tunable RF output covering channels 2 through 6 (with an associated level control), there is a video signal output with level control, a $4.5-\mathrm{MHz}$ sound carrier output, a sync take-off on the front panel, and the usual "gun killer" switches. Since some of these features are totally new to some of you we'll take time out to explain.

If you look at a color bar pattern on a black-and-white TV, or a color receiver with the color turned off, the color bars appear as shades of gray. Now picture many of these shades of gray running hoth vertically and horizontally so they form a "plaid" pattern of gray scale covering the entire CRT.

When a color set is properly adjusted (using the test procedure given in the Heath manual), the color gun levels are such that no color tinting occurs on the "plaid" pattern. In short, it makes it easy to adjust the TV so black and white reproduces as black

LABCHECK

and white-not B \& W with a smidgen of color.

A 3×3 divider does what it says-it divides the number of vertical and horizontal lines by three, so that only three H and V lines (rather than 8 to 10) appear on the CRT. The intersection of the two center lines represents "dead center" on the CRT, and the reduced number of lines is often much easier to use for centering linearity, and dynamic convergence

Attached gun killer cables have insulationpiercing alligator clips that stab through insulation, making contact but not injuring wires to CRT color grids.

correct component and soldering.
If you're careful and make no mistakes in selecting the components, the IG-28 will work right off the bat, giving you horizontal lines and an RF output. Then, using the supplied alignment tool, you adjust the RF oscillator trimmer capacitor so the IG-28's tuning corresponds to the channel selected on the TV. Two quick adjustments bring in the vertical lines, and the IG-28 is ready for use.

A notable feature of the IG-28, by the way, is the assembly/instruction manual, with perhaps the best written, illustrated, and thorough color adjustment procedure we have seen to date.
The Heathkit IG-28 Color Bar and Dot Generator is priced at $\$ 79.95$; a wired version is available for $\$ 114.95$. For additional information write to the Heath Co., Dept. 19, Benton Harbor, Mich. 49022.

Easy to build-works on AC and DC

by Charles Green, W6FFQ

When the first electric indicator was made by Hans Öersted in 1819 out of a magnetic compass and some wire, he could not have imagined that millions of meters that are its direct deseendants would be in use wherever a low-cost rugged indicator is required. For example: as an ammeter in an automobile.
The iron vane electrical meter (ammeter or voltmeter as it's called today) is made in two general types: the polarized vane type-a magnet or an iron vane moving in a magnetic field, or, the repulsion vane type-two iron vanes repelling each other in an induced magnetic field created by the current flow being measured.

Our project uses the repulsion vane principle in an easy-to-build iron vane ammeter. This project will provide the reader the opportunity to combine education with the fun of building. This simple ammeter indicates from 0 to 1 ampere, AC or DC. A solenoid, two sections of a tin can, and a rubber band (in lieu of the conventional metal pivot and spiral spring) are the essential
meter components housed in a plastic "p" box. Included in this article are experiments to help you better understand the repulsion vane action of this type of meter.

Vane Repulsion Experiments. Fig. 1 shows the components used in one experiment that can be performed to show how iron vanes move by magnetic repulsion. In our experimental hookup shown in the photo, the coil is made by random winding 200 turns of \#22 enameled magnet wire on a $11 / 4-\mathrm{in}$. diameter cardboard coil form, about 1 -in. long. This cardboard form can be made by cementing cardboard wound around a bottle having $11 / 4-\mathrm{in}$. diameter. Use plastic tape to hold the wire in place and leave $10-\mathrm{in}$. leads coming out of the coil. Remove about 1 in . of the enamel from the end of each lead.

Next, cut up a clean tin can to make two $11 / 2 \times 1 / 2-i n$. pieces. These will become the iron vanes in this experiment. Make sure the tin can is made from sheet iron and not from aluminum. Bend each iron piece about $1 / 2-\mathrm{in}$. from one end into a right angle.

MOUMV WMIE AMMEEER

Fig. 1. Vane repulsion experiments demonstrate basic operation of mov-ing-vane ammeter. Circuit works with 6-V battery or filament transformer.

Then make two $1 \times 1 \times 1 / 4-\mathrm{in}$. wood blocks, and place them under the coil form about $3 / 4 \mathrm{in}$. apart, as shown in the photo. Place the two sheet iron vanes inside the center of the coil, with the longer ends upright, and about $1 / 8-\mathrm{in}$. apart. Make sure they do not touch the wood blocks. The small $1 / 2-\mathrm{in}$. bends should be in the clear space between the blocks.

Connect the coil leads to a knife switch, and a 6 -volt battery. Polarity isn't important, as the coil will work with the battery connected either way. See Fig. 2.

Close the switch and note that the two iron vanes repel each other. This is because the magnetic field of the coil magnetizes each iron vane with the same magnetic polarity; both north ends of the vanes are adjacent to one another, as well as both south ends. This is the reason why they repel one another. Fig. 3 explains this action.

Repeat the experiment, but hold one of the vanes with a wood pencil (or other nonmagnetic item) so that it does not move. Observe that the free vane is still repelled by the fixed vane. It is this action, with one fixed, and one moving vane, that is used in iron vane meters.

Disconnect the battery, and replace it with a, 6.3-V transformer (as in Fig. 2). Repeat the previous experiments with the transformer replacing the battery in the circuit, and observe that the iron vane is repelled in the same manner with AC as it is with DC. Even though the AC changes its direction of flow, the magnetic fields still magnetize the iron vanes in a similar manner.

Building the Meter. The iron vane ammeter is built into a $45 / 8 \times 35 / 8 \times 11 / 2$-in. plastic box supplied with a clear plastic lid. Use the same coil wound for the vane experiments for this meter unit (see the ammeter assembly drawing).

Start construction by making the vane bracket out of $0.05-\mathrm{in}$. or heavier sheet aluminum. Make the iron vanes from tin can sheet metal as indicated in Fig. 4. Use a rubber band that fits snugly over the bracket as shown, but not too tightly. It should be able to be twisted and then spring

back easily. Mount the moving vane on the rubber band about $1 / 2-\mathrm{in}$. down from the top of the bracket, by bending a $1 / 8-\mathrm{in}$. lap of the bracket end around the rubber band.

Mount the bracket and the fixed vane in the bottom of the plastic box as shown in Fig. 5. Before tightening the mounting

Basic structure of moving-vane ammeter is shown in photo above and in detail drawing at right. Text describes how unit is calibrated for both $A C$ and $D C$ readings.

Fig. 2. Because of nature of hookup, iron vanes will always repel one another regardless of battery polarity. If desired, $6.3-\mathrm{V}$ filament transformer (T1) can replace B1.

ATTRACT

Fig. 3. Vanes can aftract one another only when polarities differ. Here, polarities are always same, so vanes repel.

BRACKET

Fig. 4. Details of brackef, moving vane, and fixed vane. Bracket is made of 0.05in. aluminum strip, vanes from tin can.
tom of the box. Position it as shown in the drawing of Fig. 5.

Install Fahnestock clips on the plastic box as shown and connect them to the coil leads. Dress the coil leads to the sides of the box and hold the leads in place with a drop of cement.
(Continued overleaf)

MOUNC WUANE AMMEEER

Cement the scale, drawn on a sheet of paper, to a block of wood, $3 \times 2 \times 1-\mathrm{in}$. The wood block is bolted to the box bottom with two sheet metal or wood screws, positioned as shown in the drawing. Screw small rubber feet on each corner of the box.

Make a pointer for the meter from a straightened length of \#22 enameled magnet wire, and solder one end to the moving vane as shown in the photo and drawing. Do not use too much heat as heat can damage the rubber band. Bend the wire to make a pointer for the meter scale and cut off the excess wire. The pointer is about $23 / 4 \mathrm{-in}$. long. Place a small drop of cement inside the coil form to act as a vane stop and prevent the pointer from hitting the side of the box cover. Make sure that the pointer and vane swings freely and returns to a zero point.

Calibrating the Meter. You will need both a DC and an AC meter having 1 -ampere ranges; a 200 -ohm, wire-wound rheostat; and AC and DC power sources. Three $6-\mathrm{V}$ batteries will serve as the DC source and a $6.3-\mathrm{V}, 1$-ampere filament transformer will do for the $A C$ source.

Before calibrating, draw an arc on the meter scale and establish a zero point. The meter will have separate AC and DC calibrations as shown in the photo and drawing. If necessary, reposition the meter

Commercial moving-vane ammeters of yes-ter-year were much like water meters. Note that device was accurate only if vertical.

Fig. 6. Hookup for calibrating movingvane ammeter for DC. See lext for details.

Fig. 7. Filament transformer and $A C$ ammeter are required for easy $A C$ calibration.
pointer by bending the top of the bracket.
Adjust the rheostat to maximum resistance and connect it in series with the calibrated DC ammeter, 18 -volt battery and the iron vane meter as shown in the circuit of Fig. 6. Adjust the rheostat and calibrate the iron vane meter according to the DC ammeter readings. Note that the iron vane meter will not respond near the zero position. Calibration of our unit was started at the 0.3 ampere position and was marked at every 0.1 ampere position to 1 ampere. Now connect the AC ammeter and filament transformer as shown in the circuit of Fig. 7 for the AC calibration. Be sure to set the rheostat to maximum resistance before beginning calibration. We started calibration of our unit at the 0.2 ampere point and continued as in the DC calibration. We used rub-on lettering to make the scale for the best appearance.

Operation. The use of a rubber band instead of the more conventional metal pivot and spiral spring makes for easier construction. But temperature changes and sagging and aging rubber may cause the meter indications to vary. The meter will still work as a good indicator for approximate current readings.

Try using the ammeter to check the current of household light bulbs. The ammeter, together with the vane repulsion experiments, will also make a good science fair project.

EICO CORTINA

Model 3150 Integrated Stereo Amplifier
\square When the original EICO Cortina amplifier was introduced a year or so ago, just about nothing else was available that delivered comparable performance at such a low price. But the original Cortina unfortunately lacked the punch needed to drive

switch provides the tape-recorder input. Outputs include main speaker, remote speaker, headphones, and tape recorder.

Other Controls. Volume and tone controls are ganged, which means that what you do to one channel you automatically do to

The 3150 's frequency response and the effect of its controls

RIAA equalization on 3150 was ruler flat from 20 to $20,000 \mathrm{~Hz}$. Bass and treble controls had fulcrum around $1-\mathrm{kHz}$ point, with maximum boost and cut of some 20 dB .

Response at 1-watt output with tone controls centered was also pretty much ruler flat. High filter was effective, though low filter proved somewhat broad.
low-efficiency speakers to high volume levels. Now, a new, high-power Cortina, Model 3150, overcomes that limitation with 150 watts (IHF) of stereo power outputa lot more than needed by any speaker system. (For those who don't need the extra power the original 70 -watt Cortina is still available.)

In addition to packing more punch, the 3150 Cortina also utilizes the latest in highpower solid-state technology for rock-bottom distortion. The new Cortina offers four inputs: a selector switch handles magnetic phono, tuner, and auxiliary; a tape-monitor
the other. A balance control is provided for equalizing the stereo volume; a speaker selector selects either headphones, main speakers, remote speakers, or all speakers.

Panel switches provide for loudness contour, mono/stereo, lo-cut, hi-cut, and power; the rear apron contains both switched and non-switched $A C$ outlets.

Though the circuitry is fairly conventional, the mono/stereo switch is somewhat unusual. Reason is that the mono connection is made by parallel-connecting the signal inputs together, rather than the preamplifier outputs. This method avoids the

LAB CHECK

crossloading of the amplifiers which often results in increased distortion. (We could not determine any deleterious effects, including increased noise level, caused by the EICO-type connection.)

The 3150 , available wired ($\$ 225.00$) or kit (\$149.95), complete with wood finish cabinet, uses modular construction; each individual section-preamp, driver, etc.-is on a separate printed-circuit board, and each channel has its own boards. There appear to be no assembly problems other than the usual tedium of plugging many components into matching holes.

Performance. Typical of the most mod. ern solid-state designs, the EICO Cortina

Each side of chassis contains printed circuit modules for single amplifier channel (this is upper side of completed amplifier). Topside also contains power-supply filter, shown to left of husky power transformer. Even chassis is assembled in modular form: front (with controls), back, and amplifier base.
amplifier is absolutely ruler flat from 20 Hz to 20 kHz at normal listening levels of 1 watt, and almost ruler flat at the rated power output of 40 rms watts (sine-waveform) per channel into an 8 -ohm load. As with most solid-state amplî̃ers, power output varies somewhat with load impedance. For the Cortina, the rated power output per channel is 50 watts into 4 ohms and 25 watts into 16 ohms. (Under no circumstances should the total per channel speaker load be less than 4 ohms. Reason is that the 3150 , like most solid-state amplifiers, will attempt to deliver a tremendous amount of power into any-
thing even remotely resembling a short circuit. And, unfortunately, any load offering an impedance of less than 4 ohms is going to look too much like a short circuit for comfort.)

Output transistors are recessed in heat sinks, which are themselves recessed to provide flat, non-protruding rear apron. Both main and remote speaker terminals (at left) have their own common (ground) connections.

Distortion is about as low as can be measured with standard lah-grade instruments. Total harmonic distortion (THD) at the threshold of clipping was 0.1% at 20 $\mathrm{Hz}, 0.08 \%$ at 1 kHz , and 0.18% at 20 kHz .

As shown in our curves, tone-control range is very wide, with almost 20 dB cut and boost at the extreme ends of the listening spectrum. The loudness switch adds about 7 dB boost at 20 Hz .

Our curves also show high-frequency cut to be good: only 3 dB down at 7 kHz . The low-frequency cut, however, is a little more broad than usual. This means that a listener would likely notice a slight loss of bass when the lo-cut is used to reduce turntable rumble (though we can't see why anyone would connect anything other than a quality turntable to this amplifier).
The magnetic input equalization is absolutely ruler flat, with a sensitivity of 0.0015 V (rms) for rated power output. Hum and noise measured better than 80 dB down, which is absolutely dead quiet at any volume-control setting.

How It Sounds. The EICO 3150 is easily identified as having "transistor sound." Its output is exceptionally clean and transparent, noticeably so at the higher frequencies where the amplifier can deliver some 5% more than the rated power before clipping. In fact, it is quite something to listen to a soprano's high C at full power output; few other amplifiers can handle it as well as the 3150 .

For additional information on the 3150 Cortina, write EICO, Dept. T, 283 Malta St., Brooklyn, N.Y. 11207.

Add "Fuzz" to your guitar amp for mere pennies
by Herb Friedman, W2ZLF/KB19457
or just 97\% you can modify the amplifier of your practice, or budget, guitar by adding the hottest sound going with the hard-rock combos-fuzz. For those too square to know what fuzz is, we'll explain. Fuzz is distortion, out-and-out distortion of the original guitar sound. Unlike random distortion, most fuzz effects are accomplished by squaring the waveform of the guitar pickup, thereby obtaining a husky sound quality akin to that of a saxophone.

Most new guitar amplifiers have the fuzz built in, the technical terms for fuzz being harmonic modifier, overtone, or something

Hard-Rock Fuzz Box

similar. Whatever it's called, it's still fuzz. If the amplifier doesn't have built-in fuzz, the fuzz sound can be added through the use of a fuzz box-an adapter connected between the guitar pickup and amplifier input. Though fuzz boxes provide the conveniences of adjustable fuzz quality and a foot switch, the price range of $\$ 12$ to $\$ 40$ often puts it well outside the budget, particularly for units considered practice or budget units that originally cost less than the commercial fuzz box. Well, for you budgetminded people, we offer the 97¢ Fuzz Box, actually a fuzzing circuit that is built directly into the amplifier (see Fig. 1).

What Is Fuxz. As shown in the schemmatic, the fuzz circuit is nothing more than a diode clipper (D1 and D2), a switch to turn it on and off (S1), and a depth control (R1) that sets the degree of fuzz effect. The on-off switch can be combined with the control, and if you use the recommended source for parts the whole bit will cost 976 . If you want to build a super-deluxe version having a separate on-off switch it may run about $\$ 2$. When a separate switch is used the setting of the depth control is not atfected as the fuzz is switched in and out.

How It Works. Diodes D1 and D2 are the silicon type, requiring approximately 0.5 to 0.7 volt before they conduct. The fuzz circuit is connected into the amplifier at a

PARTS LIST FOR 974 FUZZ BOX
CI-100-uF capacitor lsee text about voltage rating and when required)
D1, D2-Low signal voltage silicon diode (see text) (Lafayette 1956001 or equiv.)
R1/SI-10,000-ohm miniature potentiometer fayette 32T7356 or equiv.)
Sl-Spst toggle switch (Lafoyette 34 T 3301 or 9916162 or equiv.-see text)
with spst switch LLafayette 3217364 or equiv.) (same less switch-see text-La-

Fig. 1. Parts for fuzz circuit mounted on amplifier panel surrounding existing controls.
point, usually across the volume control, where the guitar signal is approximately 1 to 3 volts. Therefore, the diodes will clip that part of the signal waveform that exceeds 0.5 to 0.7 volt. R1 increases the conduction voltage, allowing the user to set the clipping level anywhere from just peaks of the waveform (slight fuzz) to the husky sound obtained when the diodes are returned directly to ground. The photographs clearly indicate the effect of the fuzz circuit. Fig. 2 shows a sine-waveform simulating the guitar sound with no fuzz-S1 open. Fig. 3 is the fuzz circuit cut-in, with R1 at almost full resistance (note that the waveform is just slightly distorted). Fig. 4 shows the high degree of distortion obtained when R1 is set to zero resistance-full fuzz.

The scope pictures have been adjusted to be almost equal in size for clarity of illustration. Actually, as you would expect, the fuzz circuit causes a loss in sound level of up to 6 dB , depending on the degree of fuzz. This is generally no problem since most guitar amplifiers have much more than 6 dB reserve gain.

When fuzz is added to transistor ampli-

Left, fuzz circuit added to vacuum tube

 amplifier. Right, fuzz circuit to use if your amplifier is transistorized.

Fig. 2. Undistorted sine wave aulput of guitar amplifier simulating guitar sound with no fugz added.

Fig. 3. Output of guitar amplifier with fuzz in, R1 at nearly full resistance. Note waveform slightly distorted.

Fig. 4. Output of guitar amplifier with maximum fuzz, R1 set tc 0 resistance. Note high degree of distortion.
fiers the circuit must be modified slightly by inserting a $100-u \mathrm{~F}$ capacitor (C 1) in series with the arm of R1, as shown in the schematic. Voltage rating of C 1 should be equal, at least, to the voltage to which D1 and D2 connect. Polarity connections of Cl are determined by the amplifier circuit voltage at D1-D2 (usually + for npn and - for pnp trapsistors). When the voltage is positive, Cl's positive lead is connected to the arm of R1, or, if the voltage is negative, C1's negative lead is connected to it.

Where to Connect. The fuzz circuit must be connected into the amplifier at some point where the signal level exceeds 1 V . This is normally after the microphone preamplifier, across the volume control. (If tone controls are also connected across the volume control they are ignored.) If the volume control is in the circuit before the microphone preamplifier rather than after it (which would not be normal), or if it follows a second amplifier stage, connect the fuzz after the first amplifier, following the plate DC blocking capacitor. Do not connect the fuzz to the wiper arm of the volume control as this will disable the volume control, causing the volume control to affect only the degree of fuzz. Similarly, don't try to get more fuzz by connecting to the grid of the output tube as this will sharply reduce the overall amplifier gain, and the volume control again will affect only the degree of fuzz. The best location for the fuzz circuit is at the point where the signal voltage just exceeds 1 V , usually after the microphone preamplifier.

In transistor amplifiers you

Hard-Rock Fuzz Box

will most likely find the $1 .-\mathrm{V}$ signal level point is the collector of the second transistor. Connect the transistor-version fuzz (with Cl) to the collector of this transistor.

Placing the Parts. Try to keep the fuzz circuit away from power leads because it is a relatively low level circuit, and is prone to hum pickup. It is better to locate it as close as possible to the volume control or associated circuit. A typical installation is shown in the photographs. A miniature potentiometer (RI) is used to squeeze in between existing components.
amplifier ground. There usually is a ground wire connecting the ground lug of the volume control to the input jack ground. If the volume control is grounded to the chassis through its mounting bushing (no ground bus wire), connect the fuzz ground from S1 to the volume control ground at the volume control-do not ground the fuzz just any old place on the chassis. Nine times out of ten it doesn't matter where the fuzz is grounded, but yours might be the tenth case.

Using the Fuzz. When SI is open (fuzz off) the amplifier will function normally. With SI closed (fuzz on) the fuzz effect can be varied from full on to fuzz off, as determined by R1's setting; full resistance is little or no fuzz, while zero resistance is maximum fuzz. Do not expect the rough, harsh fuzz associated with add-on fuzz
 boxes. The 97¢ Fuzz simply cannot gencrate that much distortion. You'll get a definite husky sound, quite different from the normal guitar sound, but not quite the rough effect of an add-on commercial unit.

Since the fuzz sound is really harmonics created by distorting the original waveform, the amplifier must be capable of passing the harmonic frequencies, for if the harmonics are reduced, or filtered out completely, the final sound won't be much different from the normal guitar sound. Therefore, when using the fuzz make certain the amplifier's tone control-which is usually of the highcut type-is wide open to pass all of the high

Using a center punch to mark panel before drilling prevents possibility of bit slipping and inadvertently scratching panel.

First step is to drill the holes in the panel. To avoid shaking the amplifier to pieces with an electric drill, leave the amplifier mounted in its case for support and center punch the panel (so the drill doesn't walk into other components). Then drill the mounting hole(s), preferably with a slow speed drill. The slower the speed the lower the vibration.

Whether you use a separate on-off switch, or one mounted on the back of R1. try to connect the ground end to the low leve!
frequencies. After a little practice, of course, you can use the tone control to get subtle shading of fuzz tone quality.

About the Parts. D1 and D2 are the cheapest small-signal silicon type; usually sold in packages of 10 for about 90 cents. $R 1$ is a "dime size" transistor potentiometer of 10,000 ohms, available with a switch (Lafayette $32 \mathrm{~T} 2405,79 \%$) or without a switch (Lafayette $32 \mathrm{~T} 7356,59$). If you use a separate on-off switch for SI you can buy a standand size toggle type (Lafayette 34T3301, about 50¢) or a subminiature type (Lafayette 9976162 , price around $\$ 1.50$) if space is at a premium.

UNIVOX

Super-Fuzz

Guitar FuzzboxImagine, if you can, a guitar sound so with it, so now, so far out, that it can't be put on a record! That's just what you get with a Univox Super-Fuzz-the ultimate in a guitar fuzzbox.

Unlike conventional fuzzboxes, the Univox Super-Fuzz neither distorts the waveform by clipping signal peaks, nor generates a slight kickback oscillation that causes a peak burst of distortion. Instead, this unusual unit generates almost completely new sound waveforms which are triggered by the basic guitar waveforms. And the sound no longer resembles that of a guitar. Rather, it can simulate many new ethereal instruments depending on the setting of the Univox's controls.
\checkmark For Vibrato. For example, with a guitar, vibrato-a rapid variation in pitchcan only be obtained by changing the tension on the guitar strings; this is normally accomplished by physical movement of a guitar's vibrato arm which is mechanically connected to the guitar strings. The closest you can get electronically is wah-wah, a simple system whereby a foot control causes an oscillator to trigger on guitar waveforms

Fig. 1. Pure, $600-\mathrm{Hz}$ sine-waveform.

in a manner that simulates a frequency shift.
On the other hand, the Univox can be set to automatically trigger a slight frequency shift at the beginning of each note that creates a continuous "blue note" sound. End result sounds as though the vibrato handle had actually been moved at the beginning of each note!

And that's only one effect. The Univox can generate everything from standard fuzz effect to impulse waveforms that can be handled by only the finest of amplifier equip-ment-waveforms so steep they couldn't be traced by a phono stylus even if they could be cut on disc.

Picture Gallery. Some typical effects that can be obtained are shown in our waveform photographs. These were made using a sine-waveform test signal. Since guitar sounds aren't necessarily sine-waveform, the actual effects obtained surpass those shown in our photos.

Fig. 1 is our $600-\mathrm{Hz}$ reference, a pure sine-waveform. In Fig. 2, the Univox No. 1 fuzz has been slightly opened, distorting the basic waveform as in a typical fuzzbox and also adding some second harmonic (note 6

Fig. 2. With No. 1 fuzz slightly open.

LABCHECK

cycles rather than 3). Increasing the No. 1 fuzz effect gives distorted second harmonic as shown in Fig. 3; and even more No. 1 fuzz gives a severely distorted second harmonic, producing a high order harmonic fuzz tone (Fig. 4). These are all the effects which give the so-called saxophone guitar sounds.

Fig. 5 is a slight amount of No. 2 fuzz, which virtually destroys the guitar's normal sound and makes it multiple harmonics and some basic original frequency. Fig. 6 shows

Fig. 3. With No. 1 fuzz more open.

Fig. 4. With No. 1 fuzz fully open.

Fig. 5. With No. 2 fuzz slighlly open.
even more No. 2 fuzz with multiple harmonics, distorted basic tone, and impulses at slightly lower than the second harmonic frequency. The sound here is unbelievably weird. And it is at the point where the impulses are generated that the slide tone effect is obtained as the impulse starts at a slightly lower frequency and slides up about $1 / 4$ to $1 / 2$ tone.

Fig. 7 is maximum No. 2 fuzz. Note that the waveform is not blurred because of poor scope sync. Rather, the sound is harmonics, added to harmonics, creating more harmonics, on top of the distorted basic frequency, with impulses added. It's an unbelievable effect somewhere west of Pepperland!

Fig. 6. With No. 2 fuzz more open.

Fig. 7. With No. 2 fuzz fully open.
As shown, the Univox Super-Fuzz gets its myriad effects from only two of three controls, for one is a balance control and contributes nothing to the effects.

The FOOTSWITCH on the top cuts the superfuzz in and out. The balance control sets the superfuzz level so that the amplifier's output sound level is the same with or without fuzz. The expander control carries the power switch and provides the desired fuzz depth; the more it is advanced the greater the degree of fuzz effect.
(Continued on page 107)

Tallest self-supporting antenna tower in the U.S. was recently erected by the Monroe County Electric Co-op just north of Waterloo, Illinois.

Interestingly enough, the Union Metal Manufacturing Company in Canton, Ohio has fabricated a series of monotube self-supporting antenna poles from 25 feet through 200 feet since 1941 . But the $225-\mathrm{ft}$ antenna pole in our photos is the first to be manufactured in this series and the first one erected in the U.S.
L.V. Hard, manager of the Cooperative, said this pole was ordered to complete his excellent communications hookup. His system consists of a Motorola base station and six Motorola mobile units, broadcasting on 158.78 MHz and covering three counties with a range of 35 miles.

Frior to its erection, the antenna

Below, left, ten $80-\mathrm{in}$. anchor rods made up pole's anchorage. Below, right, Alois Luhr (no hat) checks pole's 16-ft-deep foundation.

pole was assembled and painted, and the aircraft warning lights installed and wired. The three lower sections had the wire rope slings in place with the come-a-longs (coffin hoists) in tension. Before raising the pole into position, a tag line was fastened at the top of the pole and another one about halfway down. Taking care to protect the aircraft warning light at the top of the pole, workers fastened the wire sling at the balance point of the pole.

Not entirely self-supporting, the antenna pole is comprised of 13 tapered tubular sections telescoped together to a total length of 225 ft . The butt tubular section is $24-\mathrm{in}$.

Breathtaking part of 20 -minute erection time came as $225-\mathrm{ft}$ pole was progressively raised higher and higher toward true vertical. As safety precaution, steel cable was placed around pole near base and held taut by winch truck. Erection crew found plenty of opportunity to put their two-way radios to good use during course of actually raising $26,850-\mathrm{lb}$. lower.

Wire rope slings with come-alongs and heavy copper wire around joints were in place at start. At first lift, entire antenna pole was carefully checked. Crew of Monroe Coop took special care to guard aircraft warning beacon at lop of pole.

in diameter, while the very top is a mere 3.8 in. in diameter.
L. E. Dechant of Dechant Electric Ser. vice in Belleville, Ill., supervised installation of the coaxial cable and antenna at the top of the pole. Equipped with Motorola twoway radios to talk to the ground, one of Dechant's men and a member of the Cooperative's crew climbed the pole to attach the antenna and coaxial cable. Addition of the antenna gave the pole/antenna combo an overall height of 247 ft .

The Motorola base station was moved from its former location in Waterloo and on the air by $4: 30 \mathrm{p} . \mathrm{m}$. of the same day.

Coop engineer Wiley Jones (sweater) checks prole position over anchor bolts before pole is lowered into final position. Once pole had been seated on anchor bolts, workmen then adjusted first leveling nuts, then anchor nuts to ensure that entire 247 -ft-high structure was both adequately secure and accurately locked in true 90 -degree-from-horizontal position.

by MARSHALL LINCOLN

Watch Not, Have Not

SWLing generally is thought of as being completely separate from ham radio. Separate it is, though there's a form of this activity that has become very important to hams. The SWLs in question are hams who're active in a specialized form of SWLing. They perform a vital service for all of us.

Though these SWLs scan the ham bands, they're mainly interested in finding nonhams! They're not looking for bootleggers in the usual sense-but they are looking for radio stations which don't belong on our frequencies.

These SWL-hams are officially known as members of the Intruder Watch. This is a ham activity which is little known, but vitally important to all of us. It was organized about five years ago by the ARRL to provide a systematic, effective way of spotting commercial stations which operate illegally on ham frequencies. It also provides a means
to get these intruders moved with FCC help.
The Intruder Watch corps has grown to include several dozen dedicated hams who spend a few hours each week tuning across the ham bands searching for signals, mostly from foreign broadcast stations, that have moved in and set up shop. Once these are located, their frequencies must be determined and the stations identified. Then a written report is made to ARRL headquarters.

These reports from Intruder Watchers all over the country are dovetailed together and forwarded regularly to the FCC. Then, either the FCC or the State Department makes official contact with the offending stations or with their government authorities. From this procedure, which is unavoidably slow and cumbersome at times, has come considerable relief from foreign broadcasters who have created undue interference on the ham bands.

Among the hams who help guard our precious frequencies against commercial stations moving in are two Intruder Watch listeners, Dr. William W. McGrannahan, KøORB, Kansas City, Mo. (right) and Elmer P. Fruhardt, Jr. W9GFF (left), Chicago, III. They are among the dozens of hams over the country who regularly submit reports of commercial stations they've heard interfering with legal ham operations. It is through this group's actions that it is possible for our government to take action that will stop this infringement on IF overcrowded ham frequencies.

It's important that such complaints be processed against these intruders. If their intrusion on ham frequencies goes unchallenged, these broadcasters can claim in the future that no one objected to their use of ham frequencies and that they therefore should be allowed to continue to use them legally!

This can happen because of a loophole in the international ham regulations: some frequencies are reserved world-wide for ham use, but other portions of our bands are shared with various commercial users in other parts of the world. If there is no official complaint that these commercial stations interfered with legal ham operations, then the commercial boys can legally continue to use ham frequencies. That would be a sneaky way to steal some of our frequencies!

Bandits In Our Brotherhood. The FCC has confirmed its agreement in principle with the concern expressed in this column some time ago regarding the guttersnipe behavior of a growing number of ham radio operators.

In a recent report of its own activities, the FCC had this to say: "The past year has shown a significant trend toward increased on-the-air feuding and use of questionable language in a radio service which historically has prided itself on cooperative selfregulation. Limited manpower has prevented attention to any but the most flagrant cases. Approximately 2800 violation and advisory notices were issued to licensees during the year."

If some of us tend to shrug this off, it should be emphasized this is a pretty serious condemnation of the behavior of some of
our brother operators. Never before has the FCC had to make such a criticism of the Amateur Radio Service.

Generally, it has been complimentary about our actions and our service. But now, the federal rule makers are beginning to frown at what some of those in our midst are beginning to do to the once-proud world of amateur radio.

Anyone who has done much listening in recent years can only marvel that the FCC hasn't complained about this before. But now the handwriting is on the wall. The "criminal element" in our midst-the fellows who carry on with dirty language and roughhouse manners-consists of more than just a few scattered cases. Fact is, they've become numerous enough to deserve official condemnation by the government agency that writes the rules we're supposed to live by.

Formerly hams were noted for doing a good job of policing their own bands. As a result, FCC enforcement could be at a minimum and still our bands could be pretty clean in terms of individual behavior. But now sterner measures may become necessary unless hams can clean their own house. There's no room in our wonderful hobby for those who have no respect for one another or for decent public conduct.

Remember, even in the privacy of your home, you're on public display every time you key up the transmitter and talk into the mike. Anyone can be listening just as if you were down at the courthouse square on a soap box.

To protect our hobby and our future op-
(Continued on page 108)

In the year 1901, accepted scientific theory said that wireless communication must be limited to about 165 miles. When Guglielmo Marconi announced his plan to transmit signals across the Atlantic, the greatest scientific minds in the world said it couldn't be done!

But the 26-year-old engineer went ahead and invented a better "wireless" system and, on Dec. 13, 1901, used it in the first transatlantic transmission. He had done the thing that couldn't be done.

The irony of it is that 40 years later the Supreme Court of the United States found his claim to that accomplishment invalid.

The pessimistic predictions of the turn-of-the-century scientists were based on the line-of-sight theory. According to that theory,

radio waves, which travel in a straight line, would not follow the curve of the earth, but would go off into space. Despite the gloomy forecasts of failure, Marconi succeeded in sending radio waves across the Atlantic Ocean. Explanations were quick to follow. The following year Sir Oliver Heaviside and Arthur Kennelly showed that radio waves are bounced back to earth by an ionized layer in the stratosphere (the "Heavi-side-Kennelly layer").

Marconi's achievement was acclaimed by the scientific world. But it's one thing to convince a group of scientists and quite another to convince a group of lawyers and judges. In the legal world, the young Italian’s troubles were just beginning.

Marconi patented his improved radio system in 1904 (Patent No. 763,772.) Because his system required two tuning circuits in the transmitter and two in the receiver, the patent became known as the "four-circuit

Others were quick to use Marconi's system (without permission) and the patent became involved in one law suit after another. While the rest of the world acknowledged the inventor's acconplishment, lawyers and judges continued to argue about it.
(Continued on page 109)
Marconi's four-circuit tuning patent filed on June 28, 1904 illustrated circuits for both his transmitter (Fig. 1) and his long-wave receiver (Fig. 2).

PEEPETUAL Motion ARE STANDARD

by Ron Michaels

0ach or Rock . . . no matter what kind of music you make, you'll make it better if the instrument you play is in tune. Obviously, if this statement is true for one instrument-and who will dispute it-it's unquestionably true for an instrumental group. Trouble is, tuning up an assembly of different instruments can be a problem: pone of the standard assortment of tuning aids (pitch pipes, whistles, etc.) is really very accurate. On the other hand, the tuning fork, a universal standard for musical tone, produces a very low-level output that's hard to work with in a large

STANEARD

your ear. For this reason the fork must be passed from player to player-a timeconsuming job.

Our anmplified electronic tuning fork oscillator will lick this problem. The heart of this unit is a conventional tuning fork, that produces a pure sine wave output that is absolutely accurate. Its electronic circuitry is arranged so that the tone output is continuous and at sufficient volume from the built-in loudspeaker for most group applications. It's not necessary to repeat striking it during tunc-up-time.

How It Works. Q1, a Darlington amplifier, is connccted as an oscillator that, suspiciously, looks like any conventional feedback oscillator configuration. And so it iswith one major difference: the collector and base inductors (coils L1 and L2) are coupled together via the tuning fork. In essence, this circuit can be compared to a dog chasing its own tail.

Completed perpetual motion Freq Standard. That's on/off switch S1 at lower right, only control to be found anywhere on unit.

The tuning fork vibrations induce a sinusoidal current flow in coil L2, connected to the base of Q1, which is amplified by the transistor and fed through collector coil L1. This produces a magnetic field around L1 that is sinusoidal, forcing the tuning fork to vibrate. Because the fork vibrates at this

PARTS LIST FOR PERPETUAL MOTION FREQ STANDARD

B1—9-V battery (Eveready 266 or equiv.)
C1-250-UF, $12-\mathrm{V}$ electrolytic capacitor
C2-10-uF, $12-\mathrm{V}$ electrolytic capacitor
J1-Open-circuit phone jack
L1, L2-Seetext
Q1-2N5306 Darlington Amplifier (GE)
Q2, Q3-2N5172 transistor (GE)
R1— 1000 -ohm, $1 / 2$-watt resistor
R2— 220,000 -ohm, $1 / 2$-watt resistor
R3- 820 -ohm, $1 / 2$-watl resistor
R4- 560 -ohm, $1 / 2$-watt resistor

R5-1800-ohm, $1 / 2$-walt resistor
S1-Spst toggle switch
T1-Output transformer: 1000 -ohm pri.; 8 -ohm sec. (Lafayette 33T8550 or equiv.)
1-Tuning fork (see text)
1—2 $1 / 2$-in., 8 -ohm speaker (Lafayette 9916038 or equiv.)
Misc.-Aluminum minibox, $1 / 4$-round wood molding, epoxy cement, battery strap, tie strip 14 lug), perfboard and push-in terminals, wire, solder, hardware, etc.
fundamental resonant frequency, the output frequency is stable and accurate.

What starts the fork vibrating in the first place? Random electrical noise. The minute you turn on the power switch, Q1 amplifies this noise which, in turn, starts the fork vibrating. In a few seconds (typically 5 to 10) the fork stabilizes at its resonant frequency.

Transistors Q2 and Q3 form a straightforward audio amplifier circuit that drives the built-in speaker. The signal to be amplified is taken from the base of Q1, its input, rather than its output, because the sine wave is purer at this point. The trip through the Darlington amplifier tends to distort the waveform.

If you desire greater output volume, the oscillator output can be fed from J1 to any external audio amplifier.

Building It. You must use a steel tuning fork, so be sure that the one you buy is not aluminum. A magnet tells all. Your local music supply shop will have (or will be able to order) stcel forks in a wide range of fundamental frequencies. The fork we use vibrates at 440 Hz (standard A). However, you do not have to stick with a $440-\mathrm{Hz}$ fork as any other frequency will work in the device.

Thread the end of the fork's stem with a steel threading dic. The fork will, in all probability, have a stem diameter of $1 / 4-\mathrm{in}$., so that a $1 / 4-20 \mathrm{NC}$ die is perfect. This threading enables mounting the fork securely with $1 / 4-20$ nuts to the aluminum minibox that serves as the chassis/cabinet (as shown in photo). A secure mount is necessary for proper operation since the fork must be firmly held in place between the two coils.

From Phones To Oscillator. L1 and L2 are coils obtained from a Trim 2000-

Freq Standard's mechanical construction is simplified by placing tuning fork in bottom of minibox, perfboard and most related components in top.
ohm impedance headphone. Each coil has an impedance of 1000 ohmsthe two coils are wired in series in the headphone case to total the 2000 ohms of the unit. To remove the coils, first unscrew the hard rubber cap and lift off the thin metal diaphragm (it is held in place by magnetic attraction). Remove the two bolts that hold the horseshoe magnet to the coil assemblies (each coil assembly consists of a coil of wire mounted on a right angled pole piece to facilitate its mounting to the magnet). Carefully cut the very thin copper wires that join the coils together and also the wires from each coil to its respective output terminal of the headphone.

Firmly fasten coils L1 and L2, each to a separate wooden block, made from $1 / 4$ round wood molding approximately 2 - in. long, by means of a wood screw through the hole in their pole piece/mounting support

FREO STANDARD

into the wood block. Using epoxy cement, cement the wooden blocks to the base of the minibox, as shown in the photograph. The blocks should be positioned so that the space between a tuning fork tine and the pole piece of a coil is $1 / 10-\mathrm{in}$. L2 should be mounted so that it is placed about a coil's length further down the length of its respective tine than coil L1 is down its tine (see photo). This positioning will improve signal linearity.

Carefully solder flexible, insulated wire extensions to the fine wires of each coil, of sufficient length to dress them away from the fork and long enough to reach a tie strip. The wire from the coils is very fine and enameled. Be careful in removing the enamel when preparing the fine wire for soldering to the extension leads. Make sure all the enamel has been removed and the copper is bright and clean. Handle the fine wires with the care you would give a delicate piece of china; they are fragile, and can be easily broken at the coil bobbin.

The balance of the components are mounted and wired on a piece of perfboard, using push-in terminals as soldering points.

View of bottom portion of Freq Standard, showing tuning fork, coils L1 and L2, and wooden blocks which hold them. See text for recommendations re placement of coils.
Since AC hum pickup (from adjacent power lines) is a potential problem, keep all interconnecting leads as short as possible. Another reason to keep them short is to ensure that they will not droop onto the tuning fork when the minibox is closed. This will affect the fork's output. Note: The phasing of the two coils is important. If you get no tone from the unit after checking out your wiring job, reverse the connections to either one of the coils, but not both.

TV's long,

 long way to Tipperary

An up-to-date Directory of North American AM, FM, and TV Stations, including special sections on World-Wide Shortwave Stations and Emergency Stations for Selected Areas

WHITE'S RADIO LOG CONTENTS FOR 1969*

	Listing	Page
Feb./March	U.S. AM Stations by Frequency	92
	World-Wide Shortwave Stations	107
	Emergency Radio Services-Chicago Area	109
April/May	U.S. TV Stations by States	92
	Canadian TV Stations by Cities	94
	Canadian AM Stations by Frequency	95
	World-Wide Shortwave Stations	97
	Emergency Radio Services-New York City Area	99
June/July	U.S. AM Stations by Location	84
	World-Wide Shortwave Stations	98
	Emergency Radio Services-San Francisco Area	101
Aug./Sept.	U.S. FM Stations by States	82
	Canadian AM Stations by Location	88
	Canadian FM Stations by Location	88
	World-Wide Shortwave Stations	89
	Emergency Radio Services-Boston Area	92
Oct./Nov.	U.S. AM Stations by Call Letters	84
	WorldWide Shortwave Stations	96
	Emergency Radio Services-Philadelphia Area	99
Dec./Jan. (1970)	U.S. FM Stations by Call Letters	
	Canadian AMM Stations by Call Letters	
	Canadian FM Stations by Call Letters	
	World-Wide Shortwave Stations	
	Emergency Radio Services-Washington-Baltimore Area	

- If you save six consecutive issues of Radio-TV Experimenter and Science and Electronics, you will have a complete White's Radio Log. If you have missed an issue, you may be able to get a copy by writing directly to the publisher stating which issue you wish and enclosing $\$ 1.00$ for each issue.

WHITE'S

KAAA Klngman, Ariz.
KAAY Little Rock. Ark. KABC Los Angeles, Calif. KABH Midand. Tex
KABL Abilene, Kans,
KABQ Albuquerque, N. M .
KABR Aberdeen, S.Dak.
KACE Riverside, Calit.
KACI The Dalles, Orep.
KACT Andrews. Tex.
KACY Port Hueneme, Calif KADA Ada, Okla.
KADO Marshall. Tex. KAFE Sante Fe. N.M KAFF Flagstaff, Ariz KAFY Bakersfield, Callif. KAGE Crossett. Ark. KAGI Grants Pass Oreg. KAGO Klamath Falis, Oreg. KAGT Anacortes. Wash.
KAHU Waburn. Calif.
KAIM Honolulu. Hawail
KAIN Nampa, Ida.
KAIR Tucson, daiz
KAJO Grants' Pass, Oreg.
KAKC Tulsa, Okla.
KALB Wlehita, Kan.
KALE R Richland, Wash
KALF Mesa. Arlz.
KALG Alamopordo. N.Mex.
KALL Salt Lake city, Utah KALM Thayer, Mo
KALN rola Kan
KALO Little Rock, Ark.
KALT Atlanta, Tox.
KAMD Camden. Ar
KAMI Cozad, Neb.
KAML Kenedy-Karnes City.
KAMO Ropers. Ark.
KAMP EI Centro, Calif.
KAND Anaconda. Mont
KANE New lboria Le
KANI Wharton, Tex.
KANO Anroka. Minn.
KANS Larned, Kan.
KAOK Lake Charles, La.
KAOL Carrollton, Mo.
KAPA Raymond, Wash.
KAPB Marksville La.
KAPI Pueblo, Colo.
KAPR Doualas. Ariz.
KAPS Mt. Vernon.
KAPY Port Angeles. Wash.
KARE Atehison, Kan
KARI Blaine. Wash
KARK Little Rock, Ark.
KARM Fresno, Calif.
KARR Great Falls, Mont.
KARS Belen, N.M.
KART Jerome. Idaho
KARV Russellville, Ark
KARY Prosser. Wash.
KASH Eugene, Dre.
KASI Ames, lowa
KASL Newcastle, Wyo. ASO Minden. Min KAST Astoria, Or KASY Auburn, Wash, KATA Arcata, Callf,'
KATE Albert Lea, Minn KATI Casper, Wyo. KATL Miles City, KATO Safford, Ariz KATQ Texarkana. Tox KATR Eugene, Ore.
KATY San Luls Obispo, Cal. KATZ St. Louls. Mo. KAUS Austin, MInn.
KAVE Carlsbad. N. Mex
KAVL Lancaster. Callf.

kHz_{2}

1230
1090
790

1560
960
1350
1420
1570
1570
1300
1290
360
520
520
230
1410
930
550
380
800
930
115
950
940
870
1340
$\begin{array}{r}1490 \\ 1270 \\ \hline\end{array}$
1270
970
1250
970
1240
580
580
960
960
1510
1290
14

1290
1370
1250
1250
900
1430

990
1390
1390
1430
1430
580
$\begin{array}{r}580 \\ \\ \hline 340\end{array}$
1240

147
151
1510
1390
1390
1400
143
134
1370
1480
690
990
9370
1220
1290
1470
550
950 KBOA Kend, Oreg.
920
320 KBOE Oskaloosa, towa KBOI Boise, Ida.

KBOL Boulder, Ark KBOM Bismark. Mandan. N. Dak.

IKBON Omaha, Nebr. KBOP Pleasanton, Tex. KBOR Brownsville, Tex. KBOX Dallas, Tex KBOY Medford Orea KBPS Portland Oreg. KBRB Ainsworth NOB. KBRC Mt, Vernon, Wash KBRF Fergus Falls, Minh. KBRI Brinkley, Ark. KBRK Brookings. S. Dak KBRL McCook, Nebr. KBRN Bremerton, Wash KBRR Leadville, Colo, KBRS Sprinodale. Ark. KBRV Soda Springs, Ida. KBRX O'Neill. Nebr. KBRZ Springhiil KBSN Crane, Tex. KBST Big Spring.
610 KBTA Batesville Art

U. S. AM Stations by Call Letters

Are your home-town AM stations listed correctly in White's Radio Log? If you believe there is a correction called for in White's listings, please check first with your local station. For each callsign obtain the correct city location, frequency, and power. (Remember, even though your local paper may list a station as a "home-town" station, it may be officially licensed by the FCC for operation in the next city.) Get all the facts on a piece of paper (be very brief), include your name and address, and mail to White's Radio Log, Radio-TV Experimenter, 229 Park Avenue South, New York, N. Y. 10003. Your help in contributing to the accuracy and completeness of White's Radio Log will be sincerely appreciated. See page 96.
—Edito:

WYNK Baton Rouge, La.
WYNN Flurence, S.C.
WYNR Grunswick, Ga.
WYNS Leighton, Pa.
WYNX Smyrna. Ga.
WYNZ Ypsilanti, Mich.
WYOQ WYoming, Mich.
WYOU Tampa, Fla.
WYPR Danvilie, Va,
WYRE Annapolis. Md.
WYRN Louisburg, N.C.

1380	WYRU Red Springs. N.C.	
540	WYSE Inverness, Fia.	
790	WYSH Clinton. Tenn.	
1150	WYSL Buffalo, N. Y.	
1550	WYSR Franklin. Va.	
1520	WYTH Matisori. Ga.	
1530	$W Y T I$	Rocky Mount. Va.
1550	WYVE Wytheville. Va.	
970	WYWY Barbourville, Ky.	
810	WYXI Athens. Tenn.	
1480	WYYY Kalamazoo. Mich.	

| 1510 | WYZE Atlanta, Ga. | |
| :--- | :--- | :--- | :--- |
| 1560 | WZAM Prichard, Ala. | 1480 |
| 1980 | WZBN Zion, Ill. | 1270 |
| 1400 | WZEP DeFuniak Sprgs.. Fla. | 1460 |
| 1250 | WZIP Cincinnati, Ohio | 1050 |
| 1250 | WZKY Albemarie, N.C. | 1580 |
| 1570 | WZOB Ft. Payne. Ala. | 1250 |
| 1280 | WZOE Princeton, III. | 1490 |
| 950 | WZST Leesburg, Fla. | 1410 |
| 1390 | WZUM Carnegie, Pa. | 1590 |
| 1470 | WZYX Cowan. Tenn. | 1440 |

A THANK YOU NOTE FROM THE EDITORS

Abstract

Thank you! The Editors of Science and Electronics would like to thank all readers who offered information on station changes, additions, and deletions during the past few months. Though many of the letters overlapped, each aided us considerably in the task of making White's Rudio Log as current as possible at press time. If we left your name out, please forgive us!

Donald A. Blesse, Rumson, N.J. Elmer C. Carison, Cocoa, Fla, Charles Ekstrom, Chicago, IIl. John Garofano, Framingham, Mass.
WWR. Garrett, Augusta, Ga. Tom Kincitel, Commack, N.Y. David Moore, Jr., Little Rock, Aik.
Lars Nielsen, Dundas, Ontario
Sydney Osgood, Suncock, N.H,
A. Pace, Toronto, Ontario
R.L.A. New England, Sharon, Mass.
John N. Ramsey, W. Hartford, Conn.
Jerry Robertson, Croswell, Mich.
Gladys Sienkiewicz, Brooklyn, N.Y.
Mark Wirtz, Evansville, Ind.
Jerry Yacuzzi, W. Hartford, Conn.

White's World-Wide Shortwave Stations

Many of you who read White's Radio Log's Shortwave Listings have written to ask for further information on the stations you hear which do not fit into the categories of either broadcasting or amateur stations. They include ships, aircraft, miltary, police, fire, etc.

To DXers, such stations are generally classified as utility stations and they constitute a fascinating aspect of the hobby; so interesting in fact, that a great many DXers specialize in logging and QSLing them.

While very few utilities stations have their own printed QSL cards, many will gladly complete and return to you a prepared card for this purpose. Just enclose the card with your reception report and ask then to sign it and return it-include on the eard spaces for the station to fill in their power, antenna type, and any other data of interest.

If you would like to take a whack at this off-beat DX fare, all you have to do is tune your communications receiver around to their favorite nesting places. Look between 2 and 3.5 MHz , from 4 to 4.8 MHz , from 5.1 to 5.9 MHz , from 6.2 to 7 MHz , from 7.3 to 9 MHz , from 10 to 11.5 MHz , from 12 to 14 MHz and you'll hear them pouring in from all over the world. For police and fire monitoring, you'll need a special receiver covering the 30 to 50 , or 150 to 174 MHz bands-these are readily available at
a wide' range of prices from most dealers. If you like, send in some of your reception results to us here at White's, and we'll probably run them.

Propagation Forecast. The noise level will now start to fall off sharply as cooler weather arrives. This means not only improved reception (except from south of the Tropic of Capricorn) on the lower SW hands like 60 and 90 Meters, hut also on the medium wave $\mathrm{BCB}-535$ to 1605 kHz . No broadeast DXer should neglect the latter in his quest for new countries. Here, depending upon your receiver, patience, and luck, you can log such stations as ZNS at Nassau, Bahamas (1540 kHz) ZBM1 Pembroke (1235) and ZFB1 St. George's, (960), Bermuda, R. Jamaica (720 and 770 kHz), R. Barbados and ZBVI Tortola, British Virgin Islands (both currently on 780). None of these countries have SWBC stations and all, with the possible exception of Bermuda, will be best when ionospheric disturbances knock out upper latitude QRM.

By the way, and contrary to what some old timers may try to tell you, the noise level is the only real DX factor (hetween . 3 and 30 MHz) that tropospheric weather conditions will affect.

Meanwhile it seems that no one knows for certain what the sunspot count will do next but this may be the last really good winter

Oct./Nov. 1969 LISTENER'S STANDARD TIME	ASIA (except Near East)	EUROPE, NEAR EAST \& AFRICA (N. of the Sahara)	AFRICA (S. of the Sahara)	SOUTH PACIFIC	LATIN AMERICA
$0000-0300$	$(19), 25,(31)$	41,49	$49,60 e$	$31,41 w$	49,60
$0300-0600$	$31,41,(49)$	$(19 w),(31)$	$19 w$	41,49	49,60
$0600-0900$	$25,49 w$	$13,16,19$	19	25,31	49
$0900-1200$	16,19	$13,16,19$	19,25	25	25,31
$1200-1500$	16,19	$13,16,19$	19,25	(19)	25,31
$1500-1800$	16,19	$25,31,(49)$	$31 w, 49,60 \mathrm{e}$	(19)	31,49
$1800-2100$	16,19	31,49	$25,31,(60 \mathrm{w})$	16,19	$(49), 60$
$2100-2400$	16,19	31,49	60	16,19	$(49), 60,90$

To use the table put your finger on the region you want to hear and log, move your finger down until it is alongside the local standard time at which you will be listening and lift your finger. Underneath your pointing digit will be the shortwave band or bands that will give the best DX results. The time in the above propagation table is given in standard time at the listener's location, which effectively compensates for differences in propagation characteristics between the East and West Coasts of North America. Abbreviations: w-Western North America and e-Eastern North America. When w or e follow a band listing, it means the band is only good for that part of the continent. The shortwave bands in brackets are suggested as possible second choices. Refer to White's Radio Log for our world-wide Shortwave list.
for 13 Meters. This band is particularly for European and, to a much lesser extent, African propaganda watchers during daylight hours. Major African 13-Meter outlets (South of the Sahara) are the voice of Nigeria on 21455 kHz and Radio RSA on

21500 and 21535 kHz . The same midday period may also produce improved Latin American prospects as compared with last fall and winter, not because of any significant change in propagation, but due to that increased activity on the international bands.

kHz	Call	Name	Location
4273	VNG	R. Pyongyang	Pyongyang, N. Korea 4500 VNndhurst, Australia
4680	HCWEI	R. Nacional EspeioQuito, Ecuador	

60-Meter Band-4750 to 5060 kHz

4760	-	Gorovit Dzambul	Dzambul, USSR
4765	-	R.TV Congolaise	Congo
4775	-	R. Afghanistan	Kabul, Atghanistan
4785	-	Gorovit Baku	Baku. USSR
4790	YVON	Ondenas Portenas	Pt. La Cruz, Venezuela Cuenca Ecuador
4800	HCSV5	R. Amazonas	
4810	HCLS3	R. Coro Sta Cecilia	Loia, Ecuador
4820	OAX7K	R. Puno	Bangkok. Thailand
4830	HSKB	R. Thalland	Bombay India
4840	VUB	All India R.	Forest Side Mauritius
4850 4860	V3USE	Mauritius BC	Moscow, USSR
4860 4870	OCX4T	R. Obispado	Peru
4880	OCX4E	R. Once Sesenta	Lima Peru
4890	HRVL	R. Lux	Tequcigalpa, Honduras
4895	OAZ4T	R. Chanchamayo	Lima, Peru
4908	-		Shangnal.
4915	CP88	R. Amboro	La Paz, Eolivia
4923	HCRQI	R. Quito	Qurio, Ecuador
4935	CRSRE	R. Club de Malanje	Malanie, Angola
4940	OAZ4R	R. San Juan	San Juan, Peru
4950	OAX71	R. Madre de Dios	Lima, Per
4960	-	R. Peking	Peking, China
4968	-	R. Ceylon	Colomibo, Ceylon

WHITE'S SHORTWAVE STATION LISTINGS

kH_{2}	Call	Name	Location
	Crbrz	Emis Official	Luanda, Angola
$\begin{array}{\|} 9545 \\ 9555 \end{array}$	HVJ	Vatican R.	Vatican City
9565		Deutsche Welle	Poro, Philippines
		Relay Welle	Kigali, Rwanda
$\begin{aligned} & 9570 \\ & 9575 \end{aligned}$	BED91	BBC Relay	Tebrau. Malaysia
9585	-	R. Nacional	Teipei, Formosa
9590		R. Peking	Peking China
99600	OAX3E	Swiss BC	Berne, Switz.
9610	OAX3E	R. Huardz	Huaraz, Peru
9618	OBX7E	R. EI Sol	Nouakcholf, Murefania
9620	CXAb	SODRE	Monfevideo Uruguay
9630	-	R. Nacional	Lisbon, Portugal
9645	TIFC	Faro del Caribe	London, Engiand
9655		R. Free Europe	Munich Wh
9660	BED42	V. Free China	Taipei, Formosa
9675	$2 \mathrm{YT9}$	R. Diario de Manha	Manha, Brazil
9690	-	BBC Relay	Moscow USSR
	-	R-TV Francaise	Paris Erance
9710		RA!	Rome, Italy
9720	Crbrz	Emis Official	Luanda, Angola
9735	二	Deufsche Welle	Greenville, NC
		Relay	
9755	PCJ	Chinese Aip Force	Formosa
9760		R. Hanoi	Hanoi N Veth.
9770		BBC	London, En naland
10000	VUD	All India R.	Delhi, India
	LOL	me signais)	Buenos Aires, Arg.
11515		Uan bator	Ulan Bator, Mangolia
11685	CRGRR		Peking. China
		R. Dismang	Luanda, Angola

ananarive, Malasay Rep

 Cologne, W. Germany port au Prince, Haiti Tegueigalpa. Honduras London. England Booota, Colombia Munich, W. Germany Bonaire. Neth. Ant. Hermosillo. Mex Manila, Philippines Bogata, Colombia Halifax. NS London, England Rio de Janeiro. Brazil Vienna, Austria Tokyo, Japan Kiev, USSR Seoul, S. Kored Kuala Lumpur, Malaysia Lisbon, Porfugal Greenville, NC Limo, Peru Budapest. Hungary Peking. China Pyongyang, N. Korea Peking, ChinaPeking, China
41-Meter Band- 7100 to 7300 kHz

7155	-	R. Nationale	Tananarive
7165	-	R. Free Europe	Malagsay Rep
7180		R. Liberty	Suain ${ }_{\text {S }}$ M, Wermany
7190	HLK30	V Free Korea	Seoul. S. Korea
7230	-	R. America Relay	Wooterton, England
7260	VUM	All India R.	Peking. China
7280		R. Moscow	Moscow USSR
7290	-	RAI	Rome lialy
7295	-	R. Liberty	Spain'
7305	-	R. Peking	Peking, Chi
7443 9009		UN Radio	Gene
9009	4×831	Kol Zion	Tel Aviv, Israel

31-Meter Band- 9500 to 9775 kHz

9500	R. Peking	Peking China
9510 -	R. Bucharest	Bucharest, Rumania
9515 9525 9 PCJ	R. Ankara	Ankara, Turkey
9530 -	${ }_{\text {R. }}$ R. Moscow	Hilversurn, Neth. Moscow USSR

25-Meter Band-11700 to 11975 kHz		
$1700=$	W/BS	Windward Itslands
${ }_{11720}$	CBCC America Relay	Tangiers, Morocco
	V. America Reloy	Poro. hhilippines
117755	Vatican Radio	Tirana, Albania
117760 vud	R. Honoi	Hanoi, N Vietnam
11775	R R. voice G	Addis Ababa Ethiopia
117900 WNYW	Deutsche We	
118800	${ }^{\text {RaI }}$	Rome
11815 vud	Aill Am	Porot Phil
${ }_{11830} 18$	R. Peking	eking, ${ }^{\text {c }}$
11885 vuo	Aill	reenville
118855	R. Voice Gospel	Addis Ababa, Ethiopia
11870	V iennese	Perkng.
11875 D2H6	National Council	Dumaguete City, Phil.
$\begin{aligned} & 11880 \\ & 11890 \\ & 1185 \\ & \text { DRE } \end{aligned}$	R. Solendid Call of Orient	Buenos Aires, Argentina

This Issue's Shortwave Contributors

Randy McTavish, Clayton Lake, Me., Bill Fredericksman, Philadelphia, Pa., Arnie Wuster, Milwaukee, Wisc., E. K. Herman, Kissimmee, Fla., Edward Trumbult, Sr., FPO, San Francisco, Cal., Willis Rednel, Sayville, N.Y., Steven Thorsen, San Diego, Calif., Gladys Sienkiewicz, New York, N.Y., Stan Levine, Galveston, Tex., Ike iselin, Portland, Ore., Arthur I. Chang, Honolulu, Hawaii, Alex MacDonald, Vancouver, B.C., Sally Esterne, Atlanta, Ga., Warren Hallowell, Little Rock, Ark., Fred Kleiner, Circleville, Ohio, Dick Williams, Ir., Des Moines, lowa, H. H. Ustmer HI, APO, New York, Morton Yarmy, Dover, Del., Mike O'Dannon, The Village, Okla., L. R. Dolinger, Great Falls, Mont., Peter Lelange, St. Agathe, Que., Red Wilkins, Chattariooga, Tenn.

			Location	H2	Call	Name	Location
kHz_{2}	Call	Name	- Location				
$\begin{aligned} & 11905 \\ & 11910 \end{aligned}$	ZAA	R Tirana	Tirana, Albania Delhi, India	$\begin{aligned} & 15285 \\ & 15320 \end{aligned}$ 15385	D	$\begin{aligned} & \text { R. Habs } \\ & \text { R. Aust } \end{aligned}$	Melbourne, Australia
11920	ZAA	R. Tirana	Eng	15435	DMQ15	Deutsche Well	
11935	-	R. Naciona	Lisbon, Portugal				
11945	CR		London, England				
65		$\begin{aligned} & \mathrm{ER} \\ & \mathrm{R} \end{aligned}$	Tokyo, Jadan Monrovia, Liberia				
	ELWA						
19-Meter Band-15100 to 15450 kHz						R. Ankara	Ankaro. Tyrkey
		V. Andes R. V. Gospe BBC R. Corporacion R. Budapest R. Norway BBC Relay V. Anerica Relay V. America Relay R. Liberity R. Berlin international All India R.	Quito, Ecuador AddisAoaba, Ethiopid London, England Santiago, Chile Budapest, Hungary Oslo, Norway Ascension Is!and Moniovia, Libería Poro, Philippines Spain Berlin, E. Germany Delhi, India			BBC	London, England
		3-Meter Band-21450 to 21750 kHz					
		21495		CSA. 67	R. Nacional	Lisbon, Portugal	
		21540			R. Berlin		
				-		London, England	
						London England	

White's Emergency Radio Station Listings for the Philadelphia Area

Science and Electronics and Radio-TV Experimenter furnishes this exclusive listing of emergency radio stations as an aid to our many readers now engaged in the fascinating and rapidly growing hobby of monitoring emergency radio communications. We have and will be publishing similar lists devoted to different metropolitan areas in forthcoming issues so that you'll be able to accumulate a sizable array of this difficult-to-obtain data. Refer to the index on page 83 for our 1969 program.

If you desire to obtain similar lists from other areas in the United States that have not or will not be published in this magazine in 1969, then we suggest you write to Communications Research Bureau, Box 56, Commack, N. Y. 11725. They may have a list of emergency radio services that covers your locality. Include a stamped, self-addressed envelope with your request.

PHILADELPHIA POLICE DEPT.

$\begin{aligned} & \text { KEX220 } \\ & \text { KGF587 } \end{aligned}$	\| 54.65 154.71 453.15453 .20453 .25453 .30453 .35453 .40453 .55 453.55453 .75453 .80453 .95			
	PHILADELPHIA FIRE DEPT.			
KGB476 $\quad 153.95154 .235170 .15$				
PENNSYLVANIA MUNICIPAL, TOWN, \& BORO POI.ICEIFIRE STATIONS				
Station	Police		Fire	
Abington	KGA260	39.18	KGC774 KGC368	54.13 54.13
			KGC984	33.70
Ardmore Aston Twp. Bally			KEO364	46.42 33
			KBQ387	46.10
Bensalem Twp.	KAU696	155.37 155.55		
	KGF305	45.62	KG8827	33.90 46.42
				46.42
Boothwy Booths Corner			KGE909	46.42 33.94
Boyertown			KGD 390 KGE756	33.94 33.70
Bridgeport Boro				33.70

	Police		Fire	
Bristol	KFF353	155.37 155.55	$\begin{aligned} & \text { KGD366 } \\ & \text { KGE733 } \end{aligned}$	$\begin{aligned} & 46.10 \\ & 46.10 \end{aligned}$
	KGB760	$\begin{array}{r} 155.55 \\ 155.37 \\ 155.55 \end{array}$		
Bristol Two.	*	$\begin{aligned} & 155.37 \\ & 155.55 \end{aligned}$	$\begin{aligned} & K G D 367 \\ & K G H 408 \end{aligned}$	46.10 46.10
			KGD829	46.10
Briston Brookhaven			KGT620	46.42 33
Bryn Mawr			KGB86	33.90
			mobiles	33.42
			KEU993	3370
Center Point Center Square			KGD513	33.70 4610
Chalfont			KGE615	154.13
Cheltenham Twp.	KFA484	154.725	KGB398	15443
Chester			mobilas	4642
ester $\mathrm{H}+\mathrm{s}$. Collegeville			KGG324	33 154 150
Colmar			KGF244	154.13
			KGC902	3370
Conshohocken			KGD760	33.70
Cornwells			KGE437	46.10 46
Cornwells Hts.			KBO387	46.10
			KGE873	46.10
			KGH700	46.10
Croydon	KBH352	155.55	KGE379	46.10 46.14

White's philadelphia emergency stations

Station		Police	Fire	
Trevose Hts.			KGE452	46.10 46.14
			KDO246	47.46 46.10
Trumbauersville Tullytown	*	155.55	KGE638	46.10 46.14
Tylersport Upper Darby Twp.			KEM672	33.70 154.19
	KGA853	155.09	KGA346	154.19
	*	39.28		
Upper Morele. land Twp. Upper Pottsgrove			KGF463	33.70
	*	155.37	KGF463	
Upper Southame- to Wp. Tape		155.43	KBB52	33.90
Wallinaford Warminster Twp	KGD796	39.82	KBb52	
	KDZ470	155.37	$\mathrm{KCQPO}_{\mathrm{K} G \mathrm{D} 741}$	46.10 46.10
Warrington Twp.	KDA390	155.79	KGD891	46.10
Warwick Twp. Wayne	*	155.43	KGE*	46.1
			KG8393	33.70 33.90
			mobiles	46.42
	KGA612	45.42	KGD665	33.90
West Chester Boro	Call	mHz	Call	$\mathrm{mHz}^{\text {c }}$
West Consho- hocken West Park			KGD343	
			KCO285	33.70
			K.JP390	33.70
West Point Whitehall Twp. Willow Grove			KJow	54.13
	KFR636	39.28	KBS490	154.13
			KGC578	154.13 33.90
				46.10
	\checkmark			46.14
Wrightstown Twp	.	$\begin{aligned} & 155.37 \\ & 155.43 \end{aligned}$		
Wycombe Wyndmoor Yeadon Boro			KGD959	46.14
		39.42	KGl257	46.36
	KGB242	39.42		

N.J. MUNICIPAL, TOWNSHIP, BORO POLICE \& FIRE						
Allentown			$\begin{aligned} & \text { KDA357 } \\ & \text { KEH800 } \\ & \text { KJB229 } \end{aligned}$			
Ateo	KFR678	155.37				
Audubon Boro	KEB362	155.37	KEE390	$\begin{array}{r} 46.18 \\ 154.43 \end{array}$		
			$\begin{aligned} & \text { mobiles } \\ & \text { KBT810 } \end{aligned}$	$\begin{aligned} & 154.385 \\ & 154.43 \end{aligned}$		
Barrington* Boro Belmar Boro Bellmawr	$\begin{aligned} & \text { KEF872 } \\ & * \\ & \text { KEB473 } \end{aligned}$	$\begin{aligned} & 155.37 \\ & 155.37 \\ & 155.37 \end{aligned}$	$\begin{aligned} & \text { KCY548 } \\ & \text { KEV433 } \end{aligned}$	$\begin{array}{r} 154.43 \\ 154.43 \end{array}$		
Berlin Boro Beverly	$\begin{aligned} & \text { KEX298 } \\ & \text { KEE941 } \end{aligned}$	$\begin{aligned} & 155.37 \\ & 155.49 \end{aligned}$				
Blackwood			KDX508 KE1808	$\begin{array}{r} 154.385 \\ 154.385 \end{array}$		
				154.43		
Blackwood Terr.			KEG955	154.43		
			KFA473	154.13		
Blawenburg			KJK804 mobiles KCQ270	$\begin{aligned} & 154.31 \\ & 154.13 \\ & 154.43 \end{aligned}$		
Bridgeport Burlington Twp. Camden	$\begin{aligned} & \text { mobiles } \\ & \text { KEB210 } \end{aligned}$	$\begin{aligned} & 155.49 \\ & 159.03 \end{aligned}$		$\begin{array}{r} 153.77 \\ \\ 54.43 \end{array}$		
			KEG405			
Cherry Hill Chews Landing	KEA395	155.52	$\begin{aligned} & \mathrm{KDO} 312 \\ & \mathrm{KJH} 233 \end{aligned}$	$\begin{aligned} & 154.43 \\ & 154.385 \\ & 154.43 \end{aligned}$		
Cinnaminson Clarksboro Clementon Boro Collingswood Delanco Twp. Deiran Twp. Deptiord Twp. E. Greenwich Twp. Edgewater Park Twp. Ewing Twp. Gibbstown Glendale Glendora	KEB4\|B	155.49	KAY257	154.13		
		155.37				
	KEB356	156.21				
	KEE393	155.49				
	KFG450	155.49				
	*	158.97	*	154.13		
				154.13		
	*	155.49				
	*	37.26	KFR552	154.43 154.13		
	KED374	158.97 155.37	KFR552	154.43		
	KDB419	158.37 155.37	KEES44	154.385		
	KEG297	155.37	KEE544	$\begin{aligned} & 154.385 \\ & \mid 54.43 \end{aligned}$		

Station	Police		Fire	
Runnemede Boro	KEC963	155.37	KEF932	154.43
Sergeantsville			KFT567	$\begin{array}{r}154.43 \\ \hline 33\end{array}$
Sewell			$\begin{aligned} & \mathrm{KCU} 294 \\ & \mathrm{KFO} 890 \end{aligned}$	33.74 154.13
Somerdale Boro	KED959	155.37		
Stockton			KDN919	154.13
Tewksbury Twp.			KDN919	33.74 33.74
Thorofare			KJD911	154.13
Titusville			KEB973	154.13
Trenton	KEB276		KGL510	154.13
	KGV253	37.26 37.26	$\begin{aligned} & \text { KDG330 } \\ & \text { KEA739 } \end{aligned}$	154.43
			KED796	154.43 46.38
			KEG274	154.43
			KEG513	154.43
			KFK665	154.43
			KJD337	154.43
			KJE25	155.16
Voorhees Twp.	*		KEE921	154.13
Waterford Twp.	*	155.37	*	154.43
W. Amwell Twp.			*	154.385 33.74
Westmont	KEB484	156.21	KEE719	154.385
Westville Boro	KEE405	155.37		154.43
White Horse		155.37	$\begin{aligned} & \text { KED463 } \\ & \text { KEE593 } \end{aligned}$	154.43 154.43
Willingboro Twp.	KE1693	155.49		154.43
Woodbury	KEA936	158.97	KAQ657	154.13
Woodbury Hts.		158.9		
Yardville			$\begin{aligned} & \text { KEG635 } \\ & \text { KDL821 } \end{aligned}$	154.13 154.43
			KDL822	154.43

DELAW ARE RIVER PORT COMMISSION PD.

$\begin{aligned} & \text { KEA651 } \\ & \text { KEF9777 } \\ & \text { KGASG } \\ & \text { KGE905 } \end{aligned}$	Camden, N.J. Camden, N.J. Philadelphia, Pa . Philadelphia Philadelphia, Pa		$\begin{aligned} & 158.79 \\ & 154.89 \\ & 158.79 \\ & 154.89 \end{aligned}$
BUCKS COUNTY (Pa.) AGENCIES			
KC1570	Doylestown (police)	$155.13 \quad 155.37$	155.43
KGF3I8	Doylestown (fire)	155.55^{*} 46.14	

PENNSYLVANIA STATE POLICE

KDN502	Philadelphia	
KFM497	Trevose	42.62
KGA990	Philadelphia	42.62
KGA992	Lionville	42.62
KGA999	Quakertown	42.62
KGD352	Spring City	42.62
KGD369	Media	45.14
KGD370	Buckingham Min.	42.62
	Turnpike: $155.67 \quad 155.91$	159.21

$\frac{\text { CHESTER COUNTY (PG.) }}{\mathrm{K} \text { COLICE/SHERIFF }}$

DELAW ARE COUNTY (Pa.) AGENCIES

	KDK667	Media (fire)	46.36
KGA905	Media (police)	39.82	

MONTGOMERY COUNTY	(Pa.)	POLICE/SHERIFF	
KGA243	Eagleville	45.26	45.46
KGA243	Norristown	45.26	45.46

BURLINGTON COUNTY (N.J.) AGENCIES

Police-		
Marlton	KFT545	
Mt. Holly	KEE508/KFR662	155.49
Riverside	KFR660	155.49
Willingboro	KFR661	155.49
Fire-		155.49
Beverly	KDG405	154.22

Positive Feedback
Continued from page 10

In the construction field, calculating the amount of concrete needed to resurface a road becomes as simple as tracing an aerial photo of the route, eliminating the extensive ground surveying normally required.

NEW JERSEY STATE POLICE

KEA810	Voorhees Twp.	44.6244 .664494
KEA814	Hightstown	$154.68 \quad 154.92$ $44.6244 .66 \quad 44.94$
KEA8I8	Mantua Twp.	$154.68 \quad 155.445$ 44.6244 .6644 .94
KEF823	S.	154.68154 .92 44.6244 .6644 .94
		154.68 154.92
KEA826	Edgewater Twp.	44.6244 .6644 .94
KEA832	Trenton	154.68155 .445 $44.62 ~ 44.66 ~ 44.94$
		$154.68 \quad 155.445$
KEA833	Woodstown	44.6244 .6644 .94
KEA834	N. Hanover Twp.	$\begin{gathered} 154.68 \quad 154.92 \\ 44.6244 .6644 .94 \end{gathered}$
KEC848	Plainsboro	154.68155 .445 44.6244 .6644 .94
	Plainsboro	$\begin{array}{r} 44.6244 .6644 .94 \\ 154.68 \quad 155.445 \end{array}$
KEC877	Bordentown Twp.	44.6244 .6644 .94
KED722	Washington Twp.	$154.68 \quad 155.445$ 44.6244 .6644 .94
		$154.68 \quad 154.92$
KFX347	Hopewel!	44.6244 .6644 .94
NJ		$154.68 \quad 155.445$

As the operator of the breadbox-size instrument traces the blueprint or photo, 264 of the latest Texas Instruments integrated circuits (ICs) within the unit translate straight and curved movements of the plotting cross hairs into computerized number codes. The numbers are displayed as illuminated digits on the control console and are transmitted to a computer card punch or an incremental tape deck.
"Before the new, low-cost TI integrated cir-

Converting graphic material like this electronic circuit into computer language is as easy as tracing lines with MicroMetric Corporation's new digitizer system. As the operator traces the drawing on the plofting table, 264 Texas instruments integrated circuits within the scaler cabinet (left) convert drawing coordinates into digital language for storage on computer cards or tapes. MicroMetric's innovative use of recent $T /$ circuits resulted in a scaler which is 25 percent less expensive, less than a third as heavy and less than a fourth as large as less-capable scaling equipment formerly available.
cuits were avaikable, a comparable digitizer would have been too expensive. too slow, too large and too unreliable for most users." Mr. Elisher, a spokesman for MicroMetric. sald. "The scaler we've developed is 25 percent less expensive, less than a thid as heavy and a fourth as large as less-capable two-dimension scalers which preceded it.
"In addition, the higher speed of the new TI transistor-transistor logic (TTL) microcircuits open up a wider range of possible applications," he said. "For example, interferometer systems for measuring large precision-machined metal parts can now count at rates exceeding 300,000 cycles per second.
"Older systems could not count above 50,000 cycles per second. But the high-speed TI circuits easily operate at 5 million cps-well above the requirement for this application. This high specd means greater accuracy and shorter production limes for interferometer users.
"There's a common computer practice called 'time sharing'," Mi. Elisher said. "In most instances, it means several companies sharing a single computer whose calculating speed is so great that ownership of the computer could not be justified by one company alone.
"Time-shating as applied to the MicroMetric scaler, however, refers to the sharing of certain
circuits among the three rows of illuminated numericals on the scaler's front panel. The circuitry computes one axis, then the second, then the third, and repeats-all so quickly that to the human eye, the three rows of numerals seem to be changing simultaneously.
"This time-sharing of circuitry gives equipment designers an important new area for costsaving," he said. In MicroMetric's case, timesharing cuts many logic circuits by a factor of 17, and failure-prone connections within the system by a factor of three.

Reader Mail Department. This Editor receives considerable nail requesting a source for vintage tubes of the pre-war era. (Naturally, I mean World War II.) Well, Arcturus Electronics Corp. has been lucky enough to acquire over 9800 obsolete tubes of $1925-1930$ vintage. These lubes have been added to their inventory of other hard-to-ohtain types, which, on the evidence, many of outr readers would be interested in obtaining. Does Arcturus have the vacuum tube you want? There's only one way to find out -write, requesting a listing of available uibes plus prices. Both appear in their mid-1969 catalog. and it's yours for the asking. Just drop a postcard to Arcturus Electronics Corp.. Dept. JS, 502 22nd St., Union City, N.J. 07087. Be sure to say that you read about it in Science and Electronics.

Oil Down There! A helicopter-transported oil prospecting device developed by SInclair Oil's Tulsa Research Center has been used successfully in the muskeg areas of the Arctic North Slope of Canada where conventional methods are both slow and costly. The device, mounted on a quadrapod, is known as the Helicopter Dinoseis system. It is used in locating underground geologic structures which may contain oil or gas.

Resembling moon vehicles in appearance, the Dinoseis quadrapods are sturdily constructed yet light enough to be transported from one shot point to another by helicopter.

The Helicopter Dinoseis system is composed of a 24 -inch diameter expandable seismic energy generator chamber suspended between the legs of a quadrapod and resting on the ground. A confined mixture of oxygen and propane is exploded in the chamber by an electrical spark, driving the bottom steel plate against the ground and imparting high-frequency seismic waves into the earth to subsurface rock formations.

Reflected waves were recorded on analog seismic equipment in the Canadian operations, but the same could be recorded on digital seismic gear.

A control module, equipped to serve five exploder units, carries propane and oxygen which fuel the seismic generators. a compressor to provide air used in a recoil system and a generator for power for the control system and radios.
(Turn page)

Positive Feedback

Continued from previous page

The eight seismic energy generators are fired simultaneously by radio from the recording unit, and may be pulsed each 10 seconds.

In the Canadian operations, the helicopter moved eight quadrapods and their Dinoseis exploders, two control modules, recording equipment, and personnel one-half mile from one shot point to another in 17 minutes.
"We are extremely gratified by results on these initial operations," F. R. Fisher, head of the Research Center, said. "Mechanical operations were excellent, data quality was comparable and cost was significantly lower than the conventional dynamite and shot-hole method. We are encouraged to believe the Helicopter Dinoseis seismic exploration system will provide the answer to the logistical and economic problems of conducting seismic work in the remote areas of the world."
"Hi There, Big Boy!", said in a sexy voice may mean nothing more to an IBM engineer than the punch card that programmed it. It's all because some IBM engineers developed an experimental device that helps improve the naturalness of synthesized human speech.

The new device-called a formant generator -has application in machine-to-man voice communication devices. Computer-based systems using formant generators could be used to provide stock market quotations, telephone information assistance and satellite commands.

The formant generator is a digitally tunable filter which simulates resonances in the human vocal tracts (formants) during speech. Three of the formant generators, each covering a specific frequency range, are used to simulate the three lowest resonances of the human vocal tract. These devices are also modified and used in the same speech synthesizer to simulate nasal (such as " m " and " n ") and fricative (such as " f ", " v " and "sh") sounds. (Fricative-that's a word you don't fool with!)
Information on the components of speech is used to design the controls for the formant generatbrs. These are initially fluctuating wave-forms-subsequently converted to digital data -which determine the frequencies and amplitude of the sounds produced. One source of such information is sound spectrograms.

This information, after digitizing, is stored by a computer. It is then used to vary the frequencies of the three formant generators in complex combinations to simulate the rapidly shifting formants of human voice. These formants are combined with the output of other speech sound generators and filters-fricative, nasal, hiss and "buzz"-to produce recognizable, "spoken" sounds.

> A member of the IBM Speech Synthesis Laboratory showing a sound spectrogram of the phrase "allow young Willie." The spectrogram illustrates the three lowest formants of speech, indicated by the dark, horizontal bars. The addresses for the three formants are stored by a computer and used to vary the three formant generators required for speech synthesis.

The formant generators filter the complex waveforms obtained from a broadband source. Each consists of an attenuator between two amplifier-type integrators, plus a feedback circuit. Attenuation, determined by the digital address from a computer, is obtained by turning on different transistors which modify amplifier gain. All frequencies, however, are not attenuated equally, and the frequencies selected vary with the amount of attenuation. The least-attenuated frequencies, returned to the input by the feedback circuit, determine the frequency range of the generated formant.

It'll be a long time before the female operator's voice at the other end of a telephone line is computerized. So dream on, lads, while our dreams may still be real.

Pure HzO. A water purification system utilizing ozone has been developed for the millions of homeowners, farmers and small commercial businesses who derive their water from the 15 -million wells in America and other private sources. Many of these wells contain undesirable impurities and as time goes by the situation gets worse.

Ozone reportedly oxidizes from water harmful pollutants such as sulphur, bacteria, virus, and many other kinds of impurities. It is also reputed to keep pipes and plumbing free of blackening and damaging corrosion, and it eliminates the tastes and odors of sulphur and other unpleasant substances. Ozonator Corporation of Batavia, N. Y., creators of the system, also maintains that water purified with ozone contains no residual taste or odor that is the case with conventional chlorine or other chemical equipment.

Ozone is an activated oxygen molecule, formed when air is charged by electricity. It is
familiar in nature as that fresh smell after a lightning storm. Ozone is unstable, and when bubbled through a household water supply it readily combines with and oxidizes existing impurities.
Ozone's purification properties have been known for hundreds of years. Paris and many other cities in France and Germany have used ozone to purify municipal water since the early 1900 s . Until the development of the Ozonator Corporation system, however, ozone was too expensive to produce for application to household water purification.

Ozonator Corporation reports the purifier to be completely automatic and self-regulating. There are no chemicals to add or replace, no backwashing is necessary, and it is unconditionally guaranteed. Since air and electricity are the only raw materials, there is a minimum of maintenance. The Ozonator unit is compact, easy to install, and operates inexpensively from standard household electrical outlets.
This water purification system is fine, if all you need is a glass of water. However, industry needs can only be solved with major sea-water purification plants.

Bookmark
 Continupd from page 13

both the usual everyday color TV troubles, as well as those tough dogs run into once in a blue moon. Here are common sense service bench approaches for solving all sorts of color TV troubleshooting problems, many of them adapted from well-established B\&W techniques.

Definitely not a textbook, On the Color TV Scrvice Bench tells how to tackle specific problems in a logical, professional way. Moreover, the author clearly explains how the operation of each circuit is affected by specific faulty components. One doesn't have to be an engineer to understand and use the information; it's all boiled down to essentials, including clear-cut facts evolved from numerous case histories. The reader will find the step-by-step alignment instructions-RF, IF, chroma, de-
modulators, etc.-greatly simplify those mysterious techniques that all too many technicians shy away from. The author shows how to really get that dusty alignment gear to work-even how to use it for troubleshooting purposes.

The book starts right out by unscrambling those tough "brightness" problems, revealing cures for dozens of elusive troubles in a number of familiar chassis. Following the same style of treatment, the content progresses through horizontal deflection systems, horizontal oscillators, high-voltage regulator systems (shunt, feedback, and pulse-controlled), vertical deflection systems, video amplifiers, chroma IF circuits, color sync circuits, color killers and burst amplifiers, and color demodulators. The final chapter describes a number of post-repair techniques which make the difference between simple "patching up" and restoring a receiver to like-new operation. To get your copy, write directly to the publisher. Tab Books, Blue Ridge Summit, Pa. 17214 and tell him the ol' Bookworm sent you.

Stamp Shack

Continued from page 8
blue waves emanate to cover the entire area of the vignette. These represent stereo FM, a service that was introduced to China on the anniversary occasion.

[^1]- BCC today transmits $5561 / 2$ hours of radio programs each day, the various ones intended for domestic, international and particularly mainland China reception. This is possible by the use of ten $50-\mathrm{KW}$ transmitters. In addition to the stations in Taipeh, BCC operates facilities in ten other Formosan cities to form what is called "The Mandarin Network."

- What's New?

- The Space City Cover Society, Box 53545, Houston, Tex. 77052, has been preparing and processing commemorative covers in connection with the liftoff and landing of virtually every NASA Spacecraft. Collectors interested in such souvenir covers may write to M. Allen Banks, the society's director. for details.
- One of the more useful books which collectors should own is "Identify Your Stamps," by Ervin J. Felix. It is available from the Whitman Publishing Co., Racine, Wis. 53404, at $\$ 2.50$. Its 260 -pages are packed with answers to questions which constantly confound beginners (and some veterans).

Heathkit GD-28 8-Track Stereo Tape Player
Heath says it should only take about 6 hours to put together. The GD-28 comes with a walnut-grained polyurethane cabinet and necessary connecting cables and operates from 120 volts. Price in hit form is $\$ 59.95$ from the Heath Co., Benton Harbor, Mich. 49022.

Lazy Private !istening

If you're just too tired to get up and cross the room to adjust controls while enjoying your stereo headset, Allied has a unit for you. The Allied Stereo Headphone Remote Control, Model H-879, permits a listener to adjust the volume of one or two headphones from his chair. The unit has an ontoff switch for speak-

Allied Stereo Headphone Remote Control H-879
ers, two volume controls and standard $1 / 4-\mathrm{in}$. headphone jacks. The headphones plug into the remote control which connects with low-priced cable to the amplifier or receiver. Size of AIlied's H-879 is $23 / 4 \times 4 \times 2 \mathrm{in}$. and the price is $\$ 9.95$. A $25-\mathrm{ft}$. roll of cable costs $\$ 1.60$. In all Allied stores or by mail from Allied Radio Corp., 100 No. Western Ave., Chicago, Ill. 60680.

Just Give Us the FAX

Distributed by Martel Electronics, this is the Rotel 550 AM/FM/Multiplex receiver, which gets a rating of 70 watts 1 HF . The 550 has front-end tuning, individual bass and treble controls for each channel, loudness control for boosting extreme highs and lows at moderate listening level, and a wide power bandwidth. The tuner is designed for both AM and FM

Rote/ 550 AM/FM/Multiplex Receiver
and will lock onto a station even in low reception areas. There is a smoked-glass dial and brushed gold face plate. Price is $\$ 299.50$ and you can write for further specs to Martel Electronics, 2339 S. Cotner Ave., Los Angeles, Calif. 90064.

Pro Transceiver for Hams

Here is a brand-new transceiver from Galaxy, the GT-550, complete with a line of accessories. The Galaxy GT-550 is a 5-band SSB unit designed for either mobile or fixed station use by amateur radio operators. Really compact, $111 / 4 \times 123 / 8 \times 6 \mathrm{in}$., and weighing only 17 lb ., it has 550 watts SSB power, 360 watts CW. Price of the GT-550 is $\$ 449.00$. The Gal-

axy accessories include: the LA amplifier at $\$ 495.00$, the RF console at $\$ 69.00$, the remote VFO at $\$ 75.00$, and the speaker console at $\$ 19.95$. Available optional accessories are: AC power supply, mobile power supply, phone patch, CW filter, VOX accessory, calibrator, mobile mounting bracket, and a floor-board adapter. For a brochure with complete specs on the line write Galaxy Electronics, 10 S . 34 th St., Council Bluffs, Iowa 51501 .

Antennas, to the Rear!

Model TLM is an antenna trunk lip mount which requires neither drilling nor defacing of your vehicle. The clamp and antenna base support are constructed from $1 / 8-\mathrm{in}$. carborized plated steel and the mount cover is grey Cycolac plastic. Easily installed in seconds on the rear or side of any automobile trunk lip, TLM will give lowest SWR and minimum noise. The assembly includes New-Tronics' break-cable adaptor with all connections factory soldered plus a special coax cable retainer to protect it when the trunk lid is closed. Model TLM will accom-
modate a wide selection of antennas with the standard $3 / 8$-in. base. No special tools required. Price is $\$ 8.95$ and inquiries should be directed to Sales Dept., New-Tronics Corp., 15800 Commerce Park Dr., Brookpark, Ohio 44142.

New-Tronics TLM Trunk Lip Mount

Take Your Component's Temp?

Just a mite bigger than a fountain pen, Thermy is a handy new sensing device that quickly gives accurate temperature readings of any solid or liquid with which it is placed in

Mura Corp. Thermy
contact. Thermy will electronically measure temperatures from $-60^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F}$ or from $-50^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$, used in conjunction with a quality voltmeter or multitester. You get temperature data beyond the capabilities of ordinary mercury thermometers because its two 40 -in. long leads and its $11 / 2-\mathrm{in}$. long steel probe tip permit entry into heretofore inaccessible areas. A sensitive thermal unit inside the probe increases in resistance as it cools, lowers in resistance as it heats. When you use Thermy with a multitester, hold the probe tip against an object for a quick resistance read-otut. A conversion scale is provided to translate ohms to F or C degrees. In a protective case, Thermy is priced at $\$ 14.95$, and for more info write Mura Corp., 355 Great Ncck Rd., Great Ncck, N.Y. 11021.

not crack the circuit in a reasonable time, we must make an educated guess. First off, there is a clipper such as found in all fuzzboxes. Then there appears to be self-oscillation triggered by positive feedback above a predetermined level, as set by the Expander control. Finally (and this is a far-out guess), a multivibrator triggered by the positive and negative peaks of the basic waveform provides the impulses.

The Univox Super-Fuzz is priced at $\$ 24.95$, including one connecting cable and a $9-\mathrm{V}$ battery. For additional information write Lafayette Radio Electronics Corp., Dept. S, 111 Jericho Tpke., Syosset, N.Y. 11791.

erating privileges, each of us should do a share of getting rid of the hooligan ham who has become noteworthy enough to be mentioned in the FCC's official report. And condemnation on the air won't do it-that's merely stooping to this alley cat trend which we're trying to wipe out. But total ostracism of any ham who doesn't behave himself on the air can be effective. Make a firm resolution to have nothing to do with a fellow whose behavior on the air is open to question. Once he runs out of people to talk to, he will mend his ways.

Instant Emergency Network. Some scoffers say that hams no longer can be really effective in providing emergency communications. But an ever-growing group on 40-Meter phone is proving this just isn't so!

These fellows and gals have set up a fulltime emergency net that spans the U.S. from coast to coast. And they keep it operating every day of the week and almost around the clock! The beauty of the thing is that the net is organized so it can be strictly an easy-going-type operation. However, it can be instantly switched into a brisk, efficient emergency net when the need arises.

At a time when idle rag chewing seems to be taking over the low phone bands, these operators are showing the world they have a serious interest in using their ham rigs for work, not just for play.

You've read about the West Coast Amateur Radio Service (WCARS) in this column before. That net has been operating since 1963 on 7255 kHz . Its main function has been to provide the system for mobiles encountering traffic accidents, fires, or other emergencies to be able to notify the proper authorities through operators who monitor this frequency at home. Western highways carry a lot of traffic, and sometimes help is quite a ways away in the wide open spaces. Result is that this net has helped a lot of people in trouble over the years.

Last year, the Mid-Western Amateur Radio Service (MWARS) went into operation to serve the same function in the middle of the country. Now this year the East Coast Amateur Radio Service (ECARS) went into operation. All three nets operate on 7255 kHz except when propagation conditions cause them to interfere with each
other. Then MWARS moves to 7258 and ECARS moves to 7253.

The practical value of this nation-wide emergency setup was first proved when a mobile in Georgia encountered a serious automobile accident and couldn't raise anyone in his area to call the police. The West Coast group heard his calls, however, and an Arizona station called that state's Highway Patrol, which had hot-line communications with Georgia authorities.

This story brings up the question: why don't hams have more emergency monitoring frequencies set aside for just such occurrences? Actually, this is an old idea which has been tried many times, but it has only been a success over a wide area since these 40 -Meter groups got interested.

For many years in the past, the ARRL designated a frequency in each band, both phone and CW, for "National Calling and Emergency Frequencies." For a while, the League's Official Observer corps was requested to send post cards to casual users of these frequencies, notifying them of the voluntary plan to keep these frequencies clear for emergency calls.

However, the idea never really caught on. Everybody agreed it sounded good, but few operators made the effort to make the idea work. Now, though, with the leadership and enthusiasm shown by these three regional emergency nets, the idea of full-time emergency frequencies is gathering momentum again.

Maybe you're interested? If so, listen in on 7255 kHz for a while to learn how they operate. They'll be glad to have you join them. And if you're on a trip with a 40). Meter mobile rig in your car, try monitoring this frequency as you drive along.

Just about everyone has heard the. "tock, tock, tock" of WWV-the big U.S. time station. Tune 'em in and send a report today.

Their Time Is Your Time

Continued from page 51

As with most Down Under stations, listeners will find our early morning hours best. Generally, its $10-\mathrm{kW}$ transmitters on 5.425 and 7.515 MHz are audible after 1200 GMT . Before that, your best bet is 12.005 MHz .

Our list shows a broad cross section of some of the standard time stations now on the air. Some are sure bets; others will really try your skill, patience, and-you guessed it-luck. With the time services you can never be sure what will pop up next. But whatever it is, you're in for a good time!

Famous Patents

Continued from page 78

The court battle dragged on for years, finally reaching the Supreme Court in 1943. Nearly 40 years after the patent was granted, the highest court in the land found Marconi's patent claims invalid.

But even the wise old men of the Supreme Court couldn't agree completely. In a split decison, three of the judges strongly disagreed with the majority.

One dissenting judge, Mr. Justice Rutledge, attacked the decision of his colleagues with the statement:
"Before his (Marconi's) invention . . . ether borne communication traveled some eighty miles. He lengthened the arc to 6000 . Whether or not this was 'inventive' legally, it was a great and beneficial achievement. Today, forty years after the event, the Court's decision reduces it to an electrical mechanic's application of mere skill ...
"By present (1943) knowledge it would be no more. School boys and mechanics now could perform what Marconi did in 1901. But before then wizards had tried and failed."

Copies of Marconi's Four-Circuit Tuning patent are available for fifty cents each from the U.S. Patent Office, Washington, D.C. 20231. In ordering, give the number of the potent-No. 763.772.

Police Convertor
 Continued from page 43

and hunt for the stations-and hope they come on while you're tuning.

Sometimes better reception may be obtained on different parts of the FM band; for example, you may get better reception with the radio tuned to 90 MHz than to any other frequency slot in the band. Once you have the vhf band tuned in, experiment with the radio's tuning and R1's adjustment.

Using the Converter. Keep in mind that police and fire calls, are not broadcast continuously as are the broadcasts from AM radio stations. These FM transmissions are of short duration and then the carrier goes
off. If you try to adjust the converter during a slack part of the day, it may be minutes or even an hour between calls-for all intents and purposes the band might appear dead. Just because you can't tune in a signal don't assume the converter isn't working.

The Skies Above Us

Continued from page 4.5
Now, astronomers have discovered that a star close to the center of the Crab Nebula is changing in brightness at the rate of once in a thirtieth of a second. This star must be the "villain of the piece." This is the remnant of the star which, about four thousand years ago, "blew its top."

Almost everyone today knows that an aton consists of positively-charged particles (protons) plus an equal number of neg-atively-charged particles (electrons) to make the atom electrically neutral. If the electrons and the protons are smashed together because of intense gravitational attraction, they make neutrons. These neutrons will not give off visible light but, around them, compressed into a hard ball, may be a few normal atoms.

These "neutron stars" may be much heavier and denser than our sun or any matter we know or can imagine, yet be only 10 miles or so in diameter. Such an unbelievably dense ball may spin on its axis in a fraction of a second and, if one side is brighter than any other part, the flickering of a pulsar may be explained, say the experts.
\star The crux of the matter is: have we found in the faint star near the middle of the Crab Nebula an example of these collapsed, exceedingly-condensed, hypothetical neutron stars?

There were the "quasars," objects which, like the pulsars, were discovered by radio telescopes. Instantly, some astronomers, especially the younger and young middleaged ones, had instant explanations for these new-found objects, and their "explanations" fell, one-by-one, by the wayside. After several years, we don't yet know whether the quasars are near-by objects of reasonable radiation or enormously distant objects violating all of our previously-derived laws of nature, including impossibly-high emission of energy and impossibly-fast apparent velocities of recession-faster than the velocity of light.

Too many young astronomers and physicists want to get too quickly into the act. We might compare this with what Dr. Thomas Gold, a few years ago. said about the surface of the moon-that it was an ocean of dust, and any man who stepped on it would be drowned and smothered by dust. We have landed many Surveyor probes
on the moon, and they have not been swallowed by dust.
\star Why don't the youngsters in astronomy wait, before they rush into print, for at least one second thought-about lunar surface dust, quasars, pulsars, and so on-so they can sacrifice immediate notoriety in favor of possible studiously-studied chance for immortality?

The history of all sciences points up the necessity of plodding along until no "hugs" remain in the theory and its fulfillment. If Isaac Newton could wait more than 20 years before announcing his law of gravitation in 1686, our modern astronomers can wait a year or two before cluttering up our technical journals with fast-judgment pronouncements, later to be demolished.

It was Kepler who demolished, once for all, the Ptolemaic (earth-centered) hypothesis of planetary motions, which had been the law from 1500 years earlier.

There are many mysteries awaiting our explanation in this universe of ours. Let no one think that, from a few miscellaneous observations, he can arrive at a complete explanation, especially when it blithely overthrows reasonably-established physical laws derived from decades or even a lifetime of observations, correlations, and conclusions. How incompetent will seem many would-be geniuses when their snap-judgment rushings into print will be demolished by those who come after.

"The die is cast, the book is written, to be read now or by posterity, I care not which. It can well await its reader. Has not God waited six thousand years for on observer?" The words of John Kepler from his last book.

CLASSIFIED Tharket Ollace
 FOR BIGGER PROFITS! NEW CAREER OPPORTUNITIES! READ AND REPLY TO THESE CLASSIFIED ADS

Classified Ads 65 p per ward, each insertion, minimum 10 words, payable in advance. To be included in the next available issue of SCIENCE \& ELECTRONICS (formerly RTV-Exp.) copy must be in our New York Office by Sept. 10th. Address orders to C. D. Wilson, Manager, Classified Advertising, SCIENCE \& ELECTRONICS, 229 Park Avenue South, New York, N. Y. 10003.

ADDITIONAL INCOME

MONEY-Sparetime Opportunity Panelists At Home Wanted By New York Researcher. Leading research flrm seeking people to furnish honest opinions by mall from home. Pays cash for all opinions cost. For information write: Research 669, Mineola, N. Y. 11501 , Dept. 633-SE.

MAKE Your Classified Ad Pay Get "How, To Write a Classified Ad That Pulls.". Includes certificate worth $\$ 2.00$ Puward classiffed ad. Send $\$ 1.25$ to C. D. Avenue South, New York, N. Y. 10003.

BUSINESS OPPORTUNITIES
I MADE $\$ 40.000 .00$ Year by Mailorder! Helped others make money! Start with \$10.00-Free Proof! Torrey, Box 318-T, Ypsilanti, Michigan 48197.
FREE Book "'g90 Successful, LittleKnown Businesses." Fascinating! Work home! Plymouth 311-J, Brooklyn, N. Y 11218.

1000 GOLD STRIPE Name and Address Labels, 500 SEASONS GREETING LABELS. 500 PERSONALIZED PHONOGRAPH Record Labels $\$ 1.00$ each or three GR $\$ 2.89$ SPRENDID GIFTS, 15772
for
NORTHLAWN, DED. SM-10, DETROIT, MICH. 48238.

EDUCATION \& INSTRUCTION
SCHOOL of Occult Science. P.O. Box 13372, New Orleans, La. 70125.

ELECTRONIC COMPONENTS

FREE CATALOG Over 80 different solld state electronic products. New Electronic Strobe Kit. $\$ 9.95$ ppd. See complete line of Bowman solid state products at your local authorized dealer. Bowman Elec$\underset{\mathrm{N}}{\mathrm{tronics.}}$ Inc., 155 East 1st Avenue, Roselle. N. J. 07203.

GIFTS THAT PLEASE

FREE distinctive gift catalog. Renwell Company, 5305 Wellington. Chicago, Ill. 60641.

INVENTIONS WANTED

WE etther sell your invention or pay cash bonus. Write for details. Universal Inventions, 298-5 Marion, Ohio 43302.

MISCELLANEOUS

"ADULT" Books, Magazines . . Free "ADULT" Books, Magazines. "Free Illustrated catalogue! State age, Saugus,
stamp.) Clifton's, Box 1068-M9, Sug Stamp.) Clif.

KNIVES 101 Imported Novelty Knives. Catalogue 504 Friedmar Imports, Box $533-\mathrm{EE}$, Montebello, Calif. 90640.

MONEYMAKING OPPORTUNITIES

EASY-to-start rubber stamp business home in spare time. Make up to $\$ 16.50$ an hour without experience. Facts free. Write to: Roberts, 1512 Jarvis, Room CR-105-A, Chicago, Illinois 60626.

COMMERCIAL Chemical Products Formulations. Catalog $\$ 1.00$ (Refundable). Polychemical. 2411 Northeast 136 Lane, Mlami. Fla. 33161.
LEARN Secrets That Make You Rich: $\$ 2.00$ Book. Guinn, D669, 78 Tubmill, Milford, Delaware 19963

PERSONAL

SUBMINIATURE LISTENING DEVICES, low priced, high performancedirect from manufacturer. Dealers Welcome. Audiotronix, RT-8, 156 Fifth Avenue, New York, N.Y. 10010.

ELIMINATE Debts Without Borrowing Particulars Free. Helper, 10639 Riverside, Particulars Free Helper, 10
No Hollywood, Calif. 91602.

STOP Smoking this Book presents Medical and Psychological Method. Refund Guarantee $\$ 2.00$. Laury, 41886-A Debra Elyria, Ohio 44035

PRINTING, MIMEOGRAPHING \& MULTIGRAPHING

$250 \mathrm{EACH}-l e t$ erheads, statements, envelopes and business cards. Send copy (up to 5 lines) and $\$ 17.75$ to The Wrightway 404 East Green, Champaign, Ill. 61820.

RADIO \& TELEVISION

THOUSANDS AND THOUSANDS of types of electronic parts, tubes, transistors, instructlons, etc. Send for Free Cat alog. Arcturns Electronics
$502-22 n d$ Street. Union City, N. J. 07087^{\prime}.

POLICE-Flre-Aircraft-Marine-Amateur calls on your broadcast radio! Free catalog. Salch Company, Woodsboro EE14, Texas 78393.

Radio \& TV Tubes 33\%. Free Catalog. Cornell. 4217 West University, San Diego, California 92105.

RECEIVING \& INDUSTRIAL TUBES, TRANSISTORS, All Brands-Biggest Discounts. Technicians, Hobbyists, Experi-menters-Request Free Giant Catalog and Save! Zalytron, 469 Jericho Turnpike, Mineola, N. Y. 11501.

HEAR Police + fire radio dispatchers. Catalog of excluslve "confidential" official police/fire dispatcher stations. Cal signs! Frequencies! Send stamp. CommuYork 11725 .

GERMAN and JAPANESE TUBESGERMAN and JAPANESE List. The parts. Send $\$ 1.00$ for Price 151 , Lawton, Oklahoma 73501 .
"DISTANCE Crystal Set Construction" Handbook-50c. "Coil Winding"-504. Catalog. Laboratories, $12041-\mathrm{H}$ Sheridan, Garden Grove, Calif. 92640.

SUPER Distance AM Broadcast Reception, "Music Magnet"' Kit \$2.95. Information 254 . Rand Laboratories. Winthrop. Maine 04364 .
C.B. BUYERS' Guide-A new magazine for the buyers of Citizen's Band Electronic Equipment. Send $\$ 1.25$-includes Postage to C. B. Buyers' Guide. 229 Park Avenue South, New York, New York 10003.

STAMP COLLECTING

FREE 121 Flàg Stamps With Approvals. W-B Stamps, Wlikes-Barre. Penna. 18703.

THERE IS NO CHARGE FOR THE ZIP CODE-PLEASE USE IT IN YOUR CLASSIFIED AD

For Greater Classified Profits

WHY NOT TRY THE NEW

combined classified ad medium

Your classified ad will appear in SCIENCE \& MECHANICS MAGAZINE as well as in a minimum of four other SCIENCE \& MECHANICS PUBLICATIONS. Write now for information to C. D. Wilson, Manager Classified Advertising, SCIENCE \& MECHANICS, 229 Park Avenve South, New York, N. Y. 10003.

Join "THE TROUBLESHOOTERS"

They get paid top salaries for keeping today's electronic world running

Suddenly the whole world is going electronic! And behind the microwave towers, push-button phones, computers, mobile radio, television equipment, guided missiles, etc., stand THE TROUBLESHOOTERS -the men needed to inspect, install, and service these modern miracles. They enjoy their work, and get well paid for it. Here's how you can join their privileged rankswithout having to quit your job or go to college in order to get the necessary training.

JUST Think how much in demand you would be if you could prevent a TV station from going off the air by repairing a transmitter...keep a whole assembly line moving by fixing automated production controls...prevent a bank, an airline, or your government from making serious mistakes by servicing a computer.

Today, whole industries depend on Electronics. When breakdowns or emergencies occur, someone has got to move in, take over, and keep things running. That calls for one of a new breed of technicians-The Troubleshooters.

Because they prevent expensive mistakes or delays, they get top pay-and a title to match. At Xerox and Philco, they're called Technical Representatives. At IBM they're Customer Engineers. In radio or TV. they're the Broadcast Enginecrs.

What do you need to break into the ranks of The Troubleshooters? You might think you need a college degree, but you don't. What you need is know-how-the kind a good TV service technician has-only lots more.

Think With Your Head, Not Your Hands

As one of The Troubleshooters, you'll have to be ready to tackle a wide variety of electronic problems. You may not be able to dismantle what you're working on-you must be able to take it apart "in your head." You'll have to know enough Electronies to understand the engineering specs, read the wiring diagrams, and calculate how the circuits should test at any given point.

Learning all this can be much simpler than you think. In fact. you can master it whout setting foot in a classroom...and without giving up your job!

For over 30 years, the Cleveland Institute of Electronics has specialized in teaching Electronics at home. Weve developed special techniques that make learning casy, even if you've had trouble studying before. Our at $10-$ rugrammed lessons build your knowledge as easily and solidly as you'd build a brick wall-one brick at a time. And our instruction is personal. Your teacher not only grades your work, he analyzes it to make sure you are thinking correctly. And he returns it the same day received, while everything is fresh in your mind.

Always Up-To-Date

To keep up with the latest developments, our courses are constantly being revised. This year CIE students are

NEM college-level course in ELECTRONICS ENGINEERING

for men with prior experience in Electronics. Covers steadystate and transient network theory, solid state physics and circuitry pulse tech niques, computer logic and mathematics through calcu lus. A college-level course for men already working in Electronics.
getting new lessons in Laser Theory and Application, Microminiaturization. Single Sidehand Techniques, Pulse Theory and Application. and Boolean Algebra.

In addition, there is complete material on the latest troubleshooting techniques including Tandem System, Localizing through Bracketing. Equal Likelihood and Half-Split Division, and In-circuit Transistor Checking. There are special lessons on servicing two-way mobile radio equipment. a lucrative field in which many of our students have set up their own businesses.

Your FCC License-or Your Money Back:

Two-way mobile work and many other types of troubleshouting call for a Government FCC License, and our training is designed to get it for you. But even if your work doesn't require a license, it's a good idea to get one. Your FCC License will be accepted anywhere as proof of good electronics training.

And no wonder. The licensing exam is so tough that two out of three non-CIE men who take it tail. But our training is so effective that 9 out of 10 C'IE graduates pass. Thats why we can offer this famous warranty with confidence: If you complete a license preparation course, you get your FCC License-or your money back.

Mail Card for 2 Free Books

Want to know more? Send for our 4-4-page catalog describing our courses and the latest opportunities in Electronics. Weill send a special book on how to get a Government FCC License. Both are free-just mail the bound-in postpaid card. If card is missing, use coupon below.

ENROLL UNDER NEW G.I. BILL

All (IE courses are available under the new G.I. Bill. If bou served on active duty since January 31, 1955. or are in service now, check box on card or coupon for G.I. Bill information.

Cleveland Institute of Electronics
1776 East 17th Street. Clevelamd. Ohio 44114

Cleveland Institute of Electronics 1776 East 17th Street, Cleveland, Onio 44114

Please send me without cost or obligation:

1. Your 44-page book "How to Succeed in Electronics" describing the jot opportunities in Electronics today. and how your courses can prepare me for them
2. Your book on "How To Get A Commercial FCC License."

I am especialiy interested in:

BUILD 20 RADIO CIRCUITS AT HOME

 PROGRESSIVE RADIO "EDU-KIT" ${ }^{(2)}$ PROGRESSIVE RADIO "EDU-KIT" ${ }^{(2)}$ A. Practical Home Radio. Course A. Practical Home Radio. Course
 Now Includes
 * 12 RECEIVERS
 * 3 TRANSMITTERS
 * SQ. WAVE GENERATOR
 औ SIGNAL TRACER
 - AMPLIFIER
 * SIGNAL INJECTOR
 - CODE OSCILLATOR
 * No Knowledge of Radio Necessary
 \star No Additional Parts or Tools Needed
 \star EXGELLENT BACKgROUND FOR TV
 \star SCHOOL INOUIRIS INVIED
 \star Sold In 79 Countries
 YOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADIO COURSE
 In a proressional manner: how to service radios rou will work with the wire and solder You will learnt the basic principes of rado. Youment of printed circuit chassis. RF and AF dith and practice code, using the prosressive code occillator, test equipment. You will 'rarn qresive opnamic usadio the Progressive Signat Tracer, Progressive Signal Injector, Pro- fre instructional material. ing instructional material. for the Novice. Technician and General receive training the accompanyAmauteur Licenses. You will build Roceiver, Transm, tter, Squal Classes of F.C.C. Radio will receive an excellent backeround injector circuits, and learn how to operate them. You

 Absolutely no previous knowledge of radio or science is required. The '"Edu-kit', is the product of many years of teaching and engineering experience, The "Edu-kit' willprovide you with a basic education in Electronics and padio, worth many times the low

THE KIT FOR EVERYONE

You do not neea me sligntest background ested in or science. Whether you are interwant an interesting hobby, a well paying business or ajob with a future, you will find Me "Edu-Kit" a worth-while investment:

PROGRESSIVE TEACHING METHOD

and is unogressive Radio Edu-kit is the foremost educational radio kit in the world and is universally accepted as the standard in the field of electronics training. The "Edt: learn schematics, study theory, practice trouble shooting-all in a closely inten construct, You begin by examining the various radio parts of the interesting, background in radio. function, theory and wiring of these parts. Then you build a simple radio. With this first and trouble-shooting. Then you build a more advanced radio, learn more advanced testing and techniques. Gradually, in a progressive mancer, and at your own rate, you will find yourself constructing more advanced multi-tube radio circuits, and doing work like at Tracer, Square Wave Generator and Signal Injector circuits. Thes Code Oscillator, Signal Tracer, Square Wave Generator and Signal Injector circuits. These are not unprofessional wiring and soldering on metal chassis, plus the new method of radio construction known

THE "EDU-KIT" IS COMPLETE

 You will receive alt parts and instructions necessary to build twenty different radio andelectronics circuits, each guaranteed to operate, our Kits contain tubes, tube sockets, vari-
able, electrolytic, mica, ceramic and paper dielectric condensers, resistors, tie strips, hardwelectrolytic, mica, eeramic and paper dielectric condensers, resistors, tie strips, selpmium, reptifiers. coils, volume controls and switches, etc.
in addition. you receive Printed circuit materials, including printed circuit chassis. special tube sockets, hardware and instructions. You also reccive a useful set of tools, a professional electric soldering iron, and a self-powered Dynamic Radio and Electronics in addition to F.c.C. Radio Amateur License training. You will also receive lessons for servicing with the Progressive Signul Tracer and the Progressive sitjnal lnjector, a High Fidelity Guide and a Quiz Book. You receive Membership in Radio-TV Clitb. Free consulta-
tion Service, Certificate of Merit and Discount Privileges. You receive all parts. tocis, instructions, etc. Everythino is yours to keep. Privileges. You recelve all parts. tocis, Progressive "Edu.Kits" Inc., 1186 Broadway, Dept. S56 NN, Hewlett. N. Y. 11557 UNCONDITIONAL MONEY-BACK GUARANTEE- Please rush my Progressive Radio "Edu-Kit" to me, as indicated below Check one box to indicate choice of mode

Regular model $\$ 26.95$.
Deluxe model $\$ 31.95$ (same as regular model except with superior parts
and tools plus valuable Radio \& TV Tube Checkerl
Check one box to indicate manner of payment

- I enclose full payment. Ship "Edu-Kit" post paid.

1 enclose $\$ 5$ deposit. Ship. "Edu-Kit"' C.O.D. for balance plus postage.
Send me FREE additional information describing "Edu-Kit.'
Name
Address
City \& Stat
PROGRESSIVE "EDU-KITS" INC.
1186 Broadway, Dept. 556 NN, Hewlett, N. Y. 11557

SERVICING LESSONS

Abstract

servicing in a progressive manner. fou you construct. You will learn symptoms and causes of trouble in home, portable and car radios. You will learn how to une the sprofessional signal tracer the Radio \& Elcetronics Tester While you are learning in this practical way, you your friends and neighbors. and charge fecs, which wil! far exceed the rorice of the '"Edu-kit. '. Our Consultation service

FROM OUR MAIL BAG

J. Statatis, of 25 Poplar PI., Water bury conn.. writes: friends. reve repaired money. The. 'Edu-Kitr, paid for itself. was ready to spend $\$ 240$ for a course,
out found your ad and sent for your kit.'' Ven valerio, p. O. Box 21. Magna, Utan: , The Edu-kits are wonderful. Here am sending you the questions and aiso Radio for the last seven years, but like
to work with Radio Kits, and like to bould work with Radijo Kits, and like to offerent kits; the signal Tracer works fine. Also like to let you know that I reed proud of becomine a member of your
 drop you a few linis to say that wo rethat such a bargain can be had at such a ow price, I have already started reget into the swing of it so quickly. The Trouble-shooting Tester that comes with the kit is really swell. and finds the

PRINTED CIRCUITRY

At no increase in price, the "Edu-Kit" now includes Printed Circuitry. You build a Printed Circuit Signal Injector. a unique servicing instrument that can detect many Radio and TV troubles. This revolutionary new technique of radio construction is now becoming popular in commercial radio and A Pets
A Printed Circuit is a special insulated chassis on which has been deposited a conducting material which takes the place of wiring. The various parts are merely plugged printed circuitry terminals.
Automation Electronics. A knowis of modern Automation Electronics. A krowledge of this terested in Electronics.

[^0]: BUILD-TEST-EXPLORE-DISCOVER. An Misis sours - tom Actione.
 ment Kit to the only Color TV specifically designed for training - when you enroll for NRI's TV-Radio Servicing course. Other courses are equally complete. But NRI training is more than kits and "bitesize" texts. It's also personal services which have made NRI a 50 year leader in the home-study field. Mail the postage-free card today.

[^1]: China 40th Anniversary
 Postal
 Administration
 Issue
 1968

