Algorithmic Methods in Queueing Theory (AIQT)

Rob van der Mei
CWI and VU University Amsterdam
Contact: mei@cwi.nl, www.few.vu.nl/~mei

Time schedule

Course	Teacher	Topics	Date
1	Rob	Methods for equilibrium distributions for Markov chains	$25 / 01 / 21$
2	Rob	Markov processes and transient analysis	$01 / 02 / 21$
3	Rob	M/M/1-type models and matrix-geometric method	$08 / 02 / 21$
4	Rob	Buffer occupancy method	$15 / 02 / 21$
5	Rob	Descendant set approach	$22 / 02 / 21$

Wrap up of last two courses

- Calculating equilbrium distributions for discretetime Markov chains
- Direct methods

1. Gaussian elimination - numerically unstable
2. GTH method (reduction of Markov chains via folding)

- Spectral decomposition theorem for matrix power Q^{n}
- Maximum eigenvalue (spectral radius) and second largest eigenvalues (sub-radius)
- Indirect methods

1. Matrix powers
2. Power method
3. Gauss-Seidel

Wrap up of last week

- Continuous-time Markov chains and transient

- Continuous-time Markov chains

1. Generator matrix Q
2. Uniformization
3. Relation CTMC with discrete-time MC at jump moments

- Transient analysis

1. Kolmogorov equations
2. Differential equation
3. Expression $P(t)=e^{Q t}=X \operatorname{diag}\left(e^{\lambda_{i} t}\right) Y^{T}=\sum_{i=0}^{N} e^{\lambda_{i} t} x_{i} y_{i}^{T}$
4. Mean occupancy time $\operatorname{over}(0, \mathbf{T})$

Lecture 7:

Algorithmic methods for M/M/1type models

Lecture 7 overview

This Lecture deals with continuous time Markov chains with infinite state space as opposed to finite space Markov chains in Lectures 5 and 6

- Objective:

To find the equilibrium distribution of the Markov chain

Background (1): M/M/1 queue

server

- Customers arrive according to Poisson process of rate λ, i.e., the inter-arrival times are iid exponential random variables (rv) with rate λ
- Customers' service times are iid exponential rv with mean $1 / \mu$
- Inter-arrival times and service times are independent
- Service discipline can be First-In-First-Out (FIFO), Last-In-FirstOut (LIFO), or Processor Sharing (PS)

Under above assumptions, $\{N(t), t \geq 0\}$, the number of customers in $\mathrm{M} / \mathrm{M} / 1$ queue at time t is continuous-time infinite space Markov chain

Background (2): M/M/1 queue

Let p_{i} denote equilibrium probability of state i, then

- $-\lambda p_{0}+\mu p_{1}=0$,
- $\lambda p_{i-1}-(\lambda+\mu) p_{i}+\mu p_{i+1}=0, i=1,2, \ldots$

Solving equilibrium equations for $\rho=\lambda / \mu<1$ (with $\sum_{i \geq 0} p_{i}$
= 1) gives:

$$
p_{i}=p_{i-1} \rho, p_{0}=1-\rho \Rightarrow p_{i}=(1-\rho) \rho^{i}, i \geq 0
$$

This means N is geometrically distributed with parameter ρ_{8}

Background (3): M/M/1 queue

Solution: $p_{i}=(1-\rho) \rho^{i}, i \geq 0$
Feature: jumps only to neighbouring states
Idea of generalization to "M/M/1-type" queues:

1. State i replaced by set of states (called level i)
2. Load ρ replaced by rate matrix \mathbf{R}

Solution: $p_{i}=(1-\rho) \rho^{i}, i \geq 0$

Tail probabilities: conditioning w.r.t. number of customers upon arrival + PASTA

$$
\begin{aligned}
P(W>t) & =\sum_{i=0}^{\infty}(1-\rho) \rho^{i} \sum_{j=0}^{i-1} \frac{(\mu t)^{j}}{j!} e^{-\mu t}=\sum_{j=0}^{\infty} \frac{(\mu t)^{j}}{j!} e^{-\mu t} \sum_{i=j+1}^{\infty}(1-\rho) \rho^{i} \\
& =\sum_{j=0}^{\infty} \frac{(\mu t)^{j}}{j!} e^{-\mu t} \rho^{j+1}=\rho e^{-\mu(1-\rho) t}, \quad t \geq 0 .
\end{aligned}
$$

given i customers upon arrival, waiting time Erlang-i distributed with mean i / μ if Poisson process with rate $\mu, \#$ arrivals in $(0 ; t)$ is Poisson with mean $\mu \mathrm{t}$ Prob $\{$ time until i-th arrival $>\mathrm{t}$) $=\operatorname{Prob}\{\#$ of arrivals in $(0 ; \mathrm{t})\}<i$

Background (5): M/M/1 queue

- Stability condition: expected queue length is finite, loảd $\rho:=\lambda / \mu<1$. This can be interpreted as drift to the right is smaller than drift to left
- In stable case, ρ is probability the $\mathrm{M} / \mathrm{M} / 1$ system is nonempty, i.e., $P(N=0)=1-\rho$
- Q, the generator of $M / M / 1$ queue, is a tri-diagonal matrix, and has the form

$$
Q=\left(\begin{array}{cccc}
-\lambda & \lambda & 0 & \cdots \\
\mu & -\lambda-\mu & \lambda & \ddots \\
0 & \mu & -\lambda-\mu- \\
\vdots & \ddots & \mu & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right)
$$

Quasi Birth Death (QBD) process

- A two-dimensional irreducible continuous time Markov process with states (i, j), where $i=0, \ldots, \infty$ and $j=$ $0, \ldots, m-1$
- Subset of state space with common i entry is called level $i(i>0)$ and denoted $l(i)=\{(i, 0),(i, 1), \ldots,(i, m-$ $1)\} . l(0)=\{(0,0),(0,1), \ldots,(i, n-1)\}$. This means state space is $U_{i \geq 0} l(i)$
- Transition rate from (i, j) to $\left(i^{\prime}, j^{\prime}\right)$ is equal to zero for $\left|i-i^{\prime}\right| \geq 2$
- For $n>1$, transition rate between states in $l(i)$ and between states in $l(i)$ and $l(i \pm 1)$ is independent of \mathbf{n}

Example of QBD process

boundary states
State transition diagram for an $M / M / 1$-type process.

Block tri-diagonal structure: transitions are permitted

- between states at the same level (diagonal blocks)
- to states in the next highest level (super-diagonal blocks)
- and to states in the adjacent lower level (sub-triangular blocks)

Example of QBD process

Order the states lexicographically, i.e., $(0,0), \ldots,(0, n-$ $1),(1,0), \ldots,(1, m-1),(2,0), \ldots,(2, m-1), \ldots$, the generator of the QBD has the following form:

$$
Q=\left(\begin{array}{ccccccc}
B_{00} & B_{01} & 0 & 0 & 0 & 0 & \ldots \\
B_{10} & A_{1} & A_{2} & 0 & 0 & 0 & \ldots \\
0 & A_{0} & A_{1} & A_{2} & 0 & 0 & \ldots \\
0 & 0 & A_{0} & A_{1} & A_{2} & 0 & \ldots \\
& & & \ddots & \ddots & \ddots & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

Note that row sums are 0:
$\left(B_{00}+B_{01}\right) e=0,\left(B_{10}+A_{1}+A_{2}\right) e=0$, and $\left(A_{0}+A_{1}+A_{2}\right) e=0$

Example of QBD process

$n=2$
$m=3$

Example of QBD process

Generator matrix

$Q=\left(\begin{array}{ccccccc}B_{00} & B_{01} & 0 & 0 & 0 & 0 & \cdots \\ B_{10} & A_{1} & A_{2} & 0 & 0 & 0 & \cdots \\ 0 & A_{0} & A_{1} & A_{2} & 0 & 0 & \cdots \\ 0 & 0 & A_{0} & A_{1} & A_{2} & 0 & \cdots\end{array}\right)$

Block matrices
departures: $\mathbf{i} \rightarrow \mathbf{i} \mathbf{- 1}$ arrivals: $\mathbf{i} \rightarrow \mathbf{i}+\mathbf{1}$

$$
A_{0}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right)
$$

$$
\begin{gathered}
A_{1}=\left(\begin{array}{ccc}
-\left(\gamma_{1}+\lambda_{1}\right) & \gamma_{1} & 0 \\
\gamma_{2} & -\left(\mu+\gamma_{1}+\gamma_{2}\right) & \gamma_{1} \\
0 & \gamma_{2} & -\left(\gamma_{2}+\lambda_{2}\right)
\end{array}\right) \begin{array}{l}
\text { generator of } \\
\text { transitions } \\
\text { within level } \\
B_{00}=\left(\begin{array}{cc}
-\left(\gamma_{1}+\lambda_{1}\right) & \gamma_{1} \\
\gamma_{2} & -\left(\gamma_{2}+\lambda_{2}\right)
\end{array}\right) \\
B_{01}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right), \quad B_{10}=\left(\begin{array}{cc}
0 & 0 \\
\mu / 2 & \mu / 2 \\
0 & 0
\end{array}\right) .
\end{array}>. \begin{array}{l}
16
\end{array}
\end{gathered}
$$

Lecture 7: M/M/1 type models

Stability: Neuts’ Drift Theorem

Theorem: The QBD is ergodic (i.e., mean recurrence time of the states is finite) iff

$$
\pi A_{2} e<\pi A_{0} e \text { (mean drift condition) }
$$

where e is the column vector of ones and π is the equilibrium distribution of the irreducible Markov chain with generator $A=A_{0}+A_{1}+A_{2}$,

$$
\pi A=0, \quad \pi e=1
$$

Interpretation: $\pi A_{2} e$ is mean drift from level i to $i+1 . \pi A_{0} e$ is mean drift from level i to $i-1$ (Neuts' drift condition) Generator A describes the behavior of QBD within level ${ }_{17}$

Interpretation of Neuts' Drift Theorem

$A_{0}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & 0\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \lambda_{2}\end{array}\right)$
$A_{1}=\left(\begin{array}{ccc}-\left(\gamma_{1}+\lambda_{1}\right) & \gamma_{1} & 0 \\ \gamma_{2} & -\left(\mu+\gamma_{1}+\gamma_{2}\right) & \gamma_{1} \\ 0 & \gamma_{2} & -\left(\gamma_{2}+\lambda_{2}\right)\end{array}\right)$
$\mathrm{A}=\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}=\left(\begin{array}{ccc}-\gamma_{1} & \gamma_{1} & 0 \\ -\gamma_{2} & -\gamma_{1}-\gamma_{2} & \gamma_{1} \\ 0 & \gamma_{2} & -\gamma_{2}\end{array}\right)$
$\pi_{1}=\frac{1}{1+\frac{\gamma_{1}}{\gamma_{2}}+\left(\frac{\gamma_{1}}{\gamma_{2}}\right)^{2}} \quad \pi_{2}=\frac{\frac{\gamma_{1}}{\gamma_{2}}}{1+\frac{\gamma_{1}}{\gamma_{2}}+\left(\frac{\gamma_{1}}{\gamma_{2}}\right)^{2}} \quad \pi_{3}=\frac{\left(\frac{\gamma_{1}}{\gamma_{2}}\right)^{2}}{1+\frac{\gamma_{1}}{\gamma_{2}}+\left(\frac{\gamma_{1}}{\gamma_{2}}\right)^{2}}$
Mean drift to the right: $\pi A_{2} e=\left(\begin{array}{lll}\pi_{1} & \pi_{2} & \pi_{3}\end{array}\right) A_{2}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\lambda_{1} \pi_{1}+\lambda_{2} \pi_{3}$

π_{1}	$\gamma_{1}\| \| \gamma_{2}$
π_{2}	$\gamma_{1} \mid \gamma_{2}$
π_{3}	level $\mathbf{i}=2$

Equilibrium distribution of QBDs

Let $p_{n}=(p(n, 0), . ., p(n, m-1))$ and $p=\left(p_{0}, p_{1}, \ldots\right)$
Then equilibrium equation " $p Q=0$ " reads

- $p_{0 B_{00}}+p_{1 B_{10}}=0$,
- $p_{0} B_{01}+p_{1} A_{1}+p_{2} A_{0}=0$
- $p_{n-1} A_{2}+p_{n} A_{1}+p_{n+1} A_{0}=0, n \geq 2$
$Q=\left(\begin{array}{ccccccc}B_{00} & B_{01} & 0 & 0 & 0 & 0 & \cdots \\ B_{10} & A_{1} & A_{2} & 0 & 0 & 0 & \cdots \\ 0 & A_{0} & A_{1} & A_{2} & 0 & 0 & \cdots \\ 0 & 0 & A_{0} & A_{1} & A_{2} & 0 & \cdots \\ & & & \ddots & \ddots & \ddots & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\end{array}\right)$

Theorem: if the QBD is positive recurrent, there exists a constant matrix R , such that

$$
p_{n}=p_{n-1} R, n \geq 2 \rightarrow p_{n}=p_{1} R^{n-1}, n \geq 2
$$

To do: find p_{0}, p_{1}, and R

Special case of QBD: M/M/1 queue

In that case, the "block matrices" simplify to:

$$
\begin{aligned}
& B_{00}=(0), \quad B_{01}=(\lambda), \quad B_{10}=(0) \\
& A_{0}=(\mu), \quad A_{1}=(-\lambda-\mu), \quad A_{2}=(\lambda)
\end{aligned}
$$

Then the equilibrium probability of state i
$-\lambda p_{0}+\mu p_{1}=0$,
$\lambda p_{i-1}-(\lambda+\mu) p_{i}+\mu p_{i+1}=0, \quad i=1,2, \ldots$

Solving equilibrium equations for $\rho=\lambda / \mu<1$ gives:
$p_{i}=p_{i-1} \rho, p_{0}=1-\rho \Rightarrow p_{i}=(1-\rho) \rho^{i}, i \geq 0$,

Lemma: The matrix R is the minimal nonnegative solution to the matrix equation

$$
A_{2}+R A_{1}+R^{2} A_{0}=0
$$

Proof: Substituting $p_{n}=p_{1} R^{n-1}, n \geq 2$ into the balance equations

$$
p_{n-1} A_{2}+p_{n} A_{1}+p_{n+1} A_{0}=0, n \geq 2
$$

implies that $p_{1} R^{n-2}\left(A_{2}+R A_{1}+R^{2} A_{0}\right)=0$

- R is called the rate matrix of the Markov process Q
- R has spectral radius <1, and thus, $I-R$ is invertible

R-matrix for special case M/M/1

Lemma: The matrix R is the minimal nonnegative solution to the matrix equation

$$
A_{2}+R A_{1}+R^{2} A_{0}=0
$$

$$
\begin{aligned}
& B_{00}=(0), \quad B_{01}=(\lambda), \quad B_{10}=(0), \quad e=(1) \\
& A_{0}=(\mu), \quad A_{1}=(-\lambda-\mu), \quad A_{2}=(\lambda), \quad R=(\rho)
\end{aligned}
$$

In $M / M / 1$-case, the matrix $R=(r)$ and the above equation is:

$$
\lambda+r(-\lambda-\mu)+r^{2} \mu=0 \rightarrow r=1 \text { or } r=\rho
$$

smallest non-
negative solution

Iterative calculation of R-matrix

Lemma: The matrix \boldsymbol{R} satisfies the following equation

$$
A_{2}+R A_{1}+R^{2} A_{0}=0
$$

Iterative solution to compute \mathbf{R}
Lemma implies: $A_{2} A_{1}^{-1}+R+R^{2} A_{0} A_{1}^{-1}=0$
Hence: $R=-A_{2} A_{1}^{-1}-R^{2} A_{0} A_{1}^{-1}=-V-R^{2} W$
Iteration: $R_{(0)}=0 ; \quad R_{(k+1)}=-V-R_{(k)}^{2} W, \quad k=1,2, \ldots$
The iteration can be shown to converge to \mathbf{R} (fixed point equation), since spectral radius < 1

Calculation of p_{0} and p_{1}

Lemma: The stationary probability vectors p_{0} and p_{1} are the unique solution of

- $p_{0 B_{00}}+p_{1} B_{10}=0$
- $p_{0 B_{01}}+p_{1}\left(A_{1}+R A_{0}\right)=0$
- $p_{0} e+p_{1}(I-R)^{-1} e=1$ (normalization condition)

In M/M/1-case, $B_{00}=(0), \quad B_{01}=(\lambda), \quad B_{10}=(0), \quad e=(1)$

$$
A_{0}=(\mu), \quad A_{1}=(-\lambda-\mu), \quad A_{2}=(\lambda), \quad R=(\rho)
$$

Balance equations

$$
\begin{aligned}
& -\lambda p_{0}+\mu p_{1}=0 \\
& \lambda p_{i-1}-(\lambda+\mu) p_{i}+\mu p_{i+1}=0, \quad i=1,2, \ldots
\end{aligned}
$$

Normalization

$$
1=p_{0}+\frac{p_{1}}{1-\rho}=p_{0}+p_{1}+p_{1} \rho+p_{1} \rho^{2}+\cdots=p_{0}+p_{1}+p_{2}+\cdots_{24}
$$

Matrix geometric method

Step 1: Verify that the matrix satisfies requirements of QBD structure
Step 2: Verify that stability condition is satisfied
Step 3: Use recursion to compute the R-matrix
Step 4: Solve the set of equations to calculate p_{0} and p_{1}
Step 5: Use recursion $p_{n}=p_{n-1} R$ to find all other p_{n} vectors

Example of Matrix Geometric method

Take the following parameter values for the example QBD process on page 13:

$$
\lambda_{1}=1, \quad \lambda_{2}=.5, \mu=4, \gamma_{1}=5, \gamma_{2}=3
$$

The infinitesimal generator is then given by

Step 1. The matrix obviously has the correct QBD structure.

Example of MGM

Step 2: Check stability

2. We check that the system is stable by verifying Equation (8). The infinitesimal generator matrix

$$
A=A_{0}+A_{1}+A_{2}=\left(\begin{array}{rrr}
-5 & 5 & 0 \\
3 & -8 & 5 \\
0 & 3 & -3
\end{array}\right)
$$

has stationary probability vector

$$
\pi_{A}=(.1837, .3061, .5102)
$$

and

$$
.4388=\pi_{A} A_{2} e<\pi_{A} A_{0} e=1.2245
$$

Example of MGM

Recall that

$R=-A_{2} A_{1}^{-1}-R^{2} A_{0} A_{1}^{-1}=-V-R^{2} W$

Step 3: Recursion for R-matrix

3. We now initiate the iterative procedure to compute the rate matrix
R. The inverse of A_{1} is

$$
A_{1}^{-1}=\left(\begin{array}{ccc}
-.2466 & -.1598 & -.2283 \\
-.0959 & -.1918 & -.2740 \\
-.0822 & -.1644 & -.5205
\end{array}\right)
$$

which allows us to compute

$$
\begin{gathered}
V=A_{2} A_{1}^{-1}=\left(\begin{array}{ccc}
-.2466 & -.1598 & -.2283 \\
0 & 0 & 0 \\
-.0411 & -.0822 & -.2603
\end{array}\right) \\
W=A_{0} A_{1}^{-1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
-.3836 & -.7671 & -1.0959 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Example of MGM

Recursion

$R_{(0)}=0 ; \quad R_{(k+1)}=-V-R_{(k)}^{2} W, \quad k=1,2, \ldots$

Step 3: Recursion for R-matrix (continued)

$$
R_{(k+1)}=\left(\begin{array}{ccc}
.2466 & .1598 & .2283 \\
0 & 0 & 0 \\
.0411 & .0822 & .2603
\end{array}\right)+R_{(k)}^{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
.3836 & .7671 & 1.0959 \\
0 & 0 & 0
\end{array}\right)
$$

and iterating successively, beginning with $R_{(0)}=0$, we find

$$
\begin{gathered}
R_{(1)}=\left(\begin{array}{ccc}
.2466 & .1598 & .2283 \\
0 & 0 & 0 \\
.0411 & .0822 & .2603
\end{array}\right), R_{(2)}=\left(\begin{array}{ccc}
.2689 & .2044 & .2921 \\
0 & 0 & 0 \\
.0518 & .1036 & .2909
\end{array}\right), \\
R_{(3)}=\left(\begin{array}{ccc}
.2793 & .2252 & .2921 \\
0 & 0 & 0 \\
.0567 & .1134 & .3049
\end{array}\right), \cdots
\end{gathered}
$$

After 48 iterations, successive differences are less than 10^{-12}, at which point

$$
R_{(48)}=\left(\begin{array}{ccc}
.2917 & .2500 & .3571 \\
0 & 0 & 0 \\
.0625 & .1250 & .3214
\end{array}\right)
$$

Example of MGM

Equations for p_{0} and p_{1}

- $p_{0 B_{00}}+p_{1} B_{10}=0$
- $p_{0 B_{01}}+p_{1}\left(A_{1}+R A_{0}\right)=0$
- $p_{0} e+p_{1}(I-R)^{-1} e=1$ (normalization condition)

Step 4: calculation of p_{0} and p_{1}

$$
\left(p_{0}, p_{1}\right)\left(\begin{array}{cc}
B_{00} & B_{01} \\
B_{10} & A_{1}+R A_{0}
\end{array}\right)=\left(p_{0}, p_{1}\right)\left(\begin{array}{rr|rrr}
-6 & 5.0 & 1 & 0 & 0 \\
3 & -3.5 & 0 & 0 & .5 \\
\hline 0 & 0 & -6 & 6.0 & 0 \\
2 & 2 & 3 & -12.0 & 5.0 \\
0 & 0 & 0 & 3.5 & -3.5
\end{array}\right)=(0,0)
$$

Solution:

$$
\left(\pi_{0}, \pi_{1}\right)=(1.0,1.6923, \mid .3974, .4615, .9011)
$$

Next step: normalization

Example of MGM

- $p_{0 B_{01}}+p_{1}\left(A_{1}+R A_{0}\right)=0$
- $p_{0} e+p_{1}(I-R)^{-1} e=1$ (normalization condition)

Step 4: normalization of p_{0} and p_{1}

Normalization constant equals

$$
\begin{aligned}
\alpha & =\pi_{0} e+\pi_{1}(I-R)^{-1} e \\
& =(1.0,1.6923) e+(.3974, .4615, .9011)\left(\begin{array}{ccc}
1.4805 & .4675 & .7792 \\
0 & 1 & 0 \\
.1364 & .2273 & .15455
\end{array}\right) e \\
& =2.6923+3.2657=5.9580
\end{aligned}
$$

which allows us to compute

$$
\pi_{0} / \alpha=(.1678, .2840)
$$

and

$$
\pi_{1} / \alpha=(.0667, .0775, .1512)
$$

Example of MGM

Step 5: subcomponents of stationary distribution

$$
\begin{gathered}
\pi_{2}=\pi_{1} R=(.0667, .0775, .1512)\left(\begin{array}{ccc}
.2917 & .2500 & .3571 \\
0 & 0 & 0 \\
.0625 & .1250 & .3214
\end{array}\right) \\
=(.0289, .0356, .0724)
\end{gathered}
$$

and

$$
\begin{gathered}
\pi_{3}=\pi_{2} R=(.0289, .0356, .0724)\left(\begin{array}{ccc}
.2917 & .2500 & .3571 \\
0 & 0 & 0 \\
.0625 & .1250 & .3214
\end{array}\right) \\
=(.0130, .0356, .0336)
\end{gathered}
$$

and so on.

Applications of three M/M/1-type models

1. Machine with set-up times
2. Unreliable machine
3. $M / E_{r} / 1$ model

Machine with set-up times (1)

- In addition to assumptions on the $\mathrm{M} / \mathrm{M} / 1$ system, further assume that the system is turned off when it is empty
- System is turned on again when a new customer arrives
- The set-up time is exponentially distributed with mean $1 / \theta$

Machine with set-up time (2)

- Number of customers in system is not a Markov process: evolution depends on whether ON or OFF
- Two-dimensional process of state (i, j) where i is number of customers and j is system state ($j=0$ if system is off, $j=0$ if system is on) is Markov process

Machine with set-up time (3)

- $p(i, j)$ is equilibrium probability of state $(i, j), i \geq 0, j=0,1$

Balance equations:

1. $p(0,0) \lambda=p(1,1) \mu$
2. $p(i, 0)(\lambda+\theta)=p(i-1,0) \lambda(i \geq 1)$
3. $p(i, 1)(\lambda+\mu)=p(i, 0) \theta+p(i+1,1) \mu+p(i-1,1) \lambda(i \geq 1)$

Machine with set-up time (4)

Let $p_{i}=(p(i, 0), p(i, 1))$, then balance equations read

$$
\begin{aligned}
& p_{0} B_{1}+p_{1} B_{2}=0 \\
& p_{i-1} A_{0}+p_{i} A_{1}+p_{i+1} A_{2}=0, i \geq 1
\end{aligned}
$$

where

$A_{0}=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right), A_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & \mu\end{array}\right), A_{1}=\left(\begin{array}{cc}-(\lambda+\theta) & \theta \\ 0 & -(\lambda+\mu)\end{array}\right)$,
$B_{1}=\left(\begin{array}{cc}-\lambda & 0 \\ 0 & -\lambda\end{array}\right), B_{2}=\left(\begin{array}{ll}0 & 0 \\ \mu & 0\end{array}\right)$
We use the Matrix-Geometric Method (MGM) to the find the equilibrium probability distribution

Machine with set-up time (5)

Let $p_{i}=(p(i, 0), p(i, 1))$, then balance equations read

$$
\begin{aligned}
& p_{0} B_{1}+p_{1} B_{2}=0 \\
& p_{i-1} A_{0}+p_{i} A_{1}+p_{i+1} A_{2}=0, i \geq 1
\end{aligned}
$$

Generator matrix (block structure)

$$
Q=\left(\begin{array}{cccc}
B_{1} & A_{0} & 0 & \cdots \\
B_{2} & A_{1} & A_{0} & \ddots \\
0 & A_{2} & A_{1} & \ddots \\
\vdots & \ddots & A_{2} & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right) \quad A_{0}=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right), A_{2}=\left(\begin{array}{cc}
0 & 0 \\
0 & \mu
\end{array}\right), A_{1}=\left(\begin{array}{cc}
-(\lambda+\theta) & \theta \\
0 & -(\lambda+\mu)
\end{array}\right)
$$

We use the Matrix-Geometric Method (MGM) to the find the equilibrium probability distribution

Matrix Geometric method (1)

Balance principle: Global balance equations are given by equating flow from level i to $i+1$ with flow from $i+1$ to i which gives,

$$
(p(i, 0)+p(i, 1)) \lambda=p(i+1,1) \mu, i \geq 1
$$

In matrix notation, this gives

$$
p_{i+1} A_{2}=p_{i} A_{3}, \text { where } A_{3}=\left(\begin{array}{ll}
\lambda & 0 \\
\lambda & 0
\end{array}\right)
$$

> Recall that (balance equation)

Elimination of p_{i+1} gives, for $i \geq 1, \quad p_{i-1} A_{0}+p_{i} A_{1}+p_{i+1} A_{2}=0, i \geq 1$

$$
\begin{aligned}
& p_{i-1} A_{0}+p_{i}\left(A_{1}+A_{3}\right)=0 \Rightarrow p_{i}=-p_{i-1} A_{0}\left(A_{1}+A_{3}\right)^{-1} \\
& \Rightarrow R=-A_{0}\left(A_{1}+A_{3}\right)^{-1}=\left(\begin{array}{cc}
\lambda /(\lambda+\theta) & \lambda / \mu \\
0 & \lambda / \mu
\end{array}\right) \frac{\text { Explicit }}{\text { expression for } R}
\end{aligned}
$$

Matrix Geometric method (2)

- Stability condition: absolute values of eigenvalues of R should be strictly smaller than 1

$$
\lambda<\mu \text { and } \theta>0 \text { cons }
$$

$$
p_{0}\left(I+R+R^{2}+\cdots\right) e=1 \Rightarrow p_{0}(I-R)^{-1} e=1
$$

- Note that $(0,1)$ is a transient state, thus $p(0,1)=0$.

Normalization gives that $p(0,0)=\frac{\theta}{\theta+\lambda}\left(1-\frac{\lambda}{\mu}\right)$

- Mean number of customers

$$
E[L]=\sum_{i \geq 1} i p_{i} e=p_{0} R(I-R)^{-2} e
$$

Observations:
if $\theta \rightarrow$ infinity, then regular $M / M / 1$, and $p(0,0)=1-\lambda / \mu$
if $\lambda / \mu \rightarrow 1$, then $p(0,0) \rightarrow 0$

Explicit solutions in special cases

Property: In case $A_{2}=v . \alpha$ is a product of two vectors where v is column vector and α is row vector with $\sum_{j=0}^{m} \alpha_{j}=1$, the rate matrix reads, with e is a column vector of ones,

$$
R=-A_{0}\left(A_{1}+A_{0} e \alpha\right)^{-1}
$$

Interpretation of the assumption When the process Q jumps from level i to level $\mathrm{i}-1$, the probability of jumping to state $(\mathrm{i}-1, \mathrm{j})$ is independent of the starting state at level i

(see lecture notes for more details and special cases)

Unreliable machine (1)

Poisson with rate λ

server uptime exponential with mean $1 / \eta$
service time exponential with mean $1 / \mu$
repair time exponential with
mean 1/ θ

- Customers arrive according to Poisson process with rate λ
- Service times is exponentially distributed of mean $1 / \mu$
- Uptime of the machine is exponentially distributed with mean $1 / \eta$
- Repair time is exponentially distributed with mean $1 / \theta$
- Stability condition: load is smaller than capacity of the machine: $\lambda / \mu<P($ machine is up $)=\theta /(\theta+\eta)$

Unreliable machine (2)

- The two-dimensional process of state (i, j), where i number of customers, j the state of machine ($j=1$ machine up, $j=0$ machine down) is a Markov chain
- Note that $A_{2}=\binom{0}{0 \mu}=\binom{0}{\mu}\left(\begin{array}{ll}0 & 1\end{array}\right)=v \alpha$, with $v=\binom{0}{\mu}$ and $\alpha=\left(\begin{array}{ll}0 & 1\end{array}\right)$.

Unreliable machine (3)

 Stability:$\frac{\lambda}{\mu}<\rho_{U}$. with $\rho_{U}=\frac{1 / \eta}{1 / \eta+1 / \theta}$ (=fraction of time that system is up)

Balance equations:

$$
\begin{aligned}
p(i, 0)(\lambda+\theta) & =p(i-1,0) \lambda+p(i, 1) \eta, \quad i=1,2, \ldots \\
p(i, 1)(\lambda+\eta+\mu) & =p(i, 0) \theta+p(i+1,1) \mu+p(i-1,1) \lambda, \quad i=1,2, \ldots
\end{aligned}
$$

Matrix notation:

$$
\begin{gathered}
p_{0} B_{1}+p_{1} A_{2}=0, \\
p_{i-1} A_{0}+p_{i} A_{1}+p_{i+1} A_{2}=0, \quad i=1,2, \ldots, \\
A_{0}=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right), \quad A_{1}=\left(\begin{array}{cc}
-(\lambda+\theta) & \theta \\
\eta & -(\lambda+\mu+\eta)
\end{array}\right), \quad A_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & \mu
\end{array}\right) \\
B_{1}=\left(\begin{array}{cc}
-(\lambda+\theta) & \theta \\
\eta & -(\lambda+\eta)
\end{array}\right) .
\end{gathered}
$$

Level probabilities:

$p_{i}=(p(i, 0), p(i, 1))$

Unreliable machine (3)

Stability:

$\frac{\lambda}{\mu}<\rho_{U}$. with $\rho_{U}=\frac{1 / \eta}{1 / \eta+1 / \theta}$ (=fraction of time that system is up)

$$
\pi_{0}=\frac{\eta}{\eta+\theta} \quad \pi_{1}=\frac{\theta}{\eta+\theta}
$$

machine down machine up (solution to MC within a level)

Mean drift to the left: $\quad \pi A_{2} e=\left(\begin{array}{ll}\pi_{0} & \pi_{1}\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & \mu\end{array}\right)\binom{1}{1}=\mu \pi_{1}$
Mean drift to the right: $\pi A_{0} e=\left(\begin{array}{ll}\pi_{0} & \pi_{1}\end{array}\right)\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)\binom{1}{1}=\lambda$
Neuts' drift condition: $\lambda<\mu \pi_{1}=\frac{\mu \theta}{\eta+\theta}$

Unreliable machine (4)

Since $A_{2}=v \alpha$, the matrix-geometric method gives

$$
p_{i}=p_{0} R^{i, i \geq 1, ~ w i t h ~} R=-A_{0}\left(A_{1}+A_{0} e \alpha\right)^{-1}=\frac{\lambda}{\mu}\left(\begin{array}{ll}
\frac{\eta+\mu}{\lambda+\theta} & 1 \\
\frac{\eta}{\lambda+\theta} & 1
\end{array}\right)
$$

Note in this case we have that $p_{0}(I-R)^{-1}=\left(\begin{array}{ll}1-p_{u} & p_{u}\end{array}\right)$, where p_{u} is probability that the machine is up $\theta /(\eta+\theta)$.

- We find $p_{0}=\left(\begin{array}{ll}1-p_{u} & p_{u}\end{array}\right)(I-R)=\left(\begin{array}{ll}p_{u}-\frac{\lambda}{\mu}\end{array}\right)\left(\begin{array}{ll}\frac{\eta}{\lambda+\theta} & 1\end{array}\right)$

M/Er/1 model (1)

server

Poisson with rate λ

Poisson arrivals rate λ
service times Erlang-r
distributed with mean with mean $\beta=r / \mu$

- Poisson arrivals with rate λ
- Service times is Erlang distributed of r phases each of mean $1 / \mu$, i.e., is sum r exponentially distributed random variable, each of rate μ
- Stability if offered load is smaller than 1 :

$$
\rho=\lambda r / \mu<1
$$

- Two dimensional process of state (i,j) where i is number of customers in the system (excluding the customer in service) and \mathbf{j} remaining phases of customer in service is Markov process

M/Er/1 model (2)

j

Balance equations:

$$
\begin{aligned}
& p(i, j)(\lambda+\mu)=p(i-1, j) \lambda+p(i, j+1) \mu, \quad j=1, \ldots, r-1 . \quad(i \geq 1) \\
& p(i, r)(\lambda+\mu)=p(i-1, r) \lambda+p(i+1,1) \mu,
\end{aligned}
$$

M/Er $/ 1$ model (2)

State diagram:

Balance equations:

$$
\begin{array}{ll}
p(i, j)(\lambda+\mu) & =p(i-1, j) \lambda+p(i, j+1) \mu, \quad j=1, \ldots, r-1 \\
p(i, r)(\lambda+\mu) & =p(i-1, r) \lambda+p(i+1,1) \mu,
\end{array} \quad(i \geq 1)
$$

Matrix notation: $p_{i-1} A_{0}+p_{i} A_{1}+p_{i+1} A_{2}=0, \quad i \geq 1$
where $p_{i}=(p(i, 1), \ldots, p(i, r))$
$A_{0}=\lambda I, A_{2}=\left(\begin{array}{cccc}0 & \cdots & 0 & \mu \\ \vdots & & 0 & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0\end{array}\right), A_{1}=\mu\left(\begin{array}{cccc}-1 & 0 & \cdots & 0 \\ 1 & -1 & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 1 & -1\end{array}\right)-\lambda I$

Matrix Geometric method

Balance principle: Global balance equations are given by equating flow from level i to $i+1$ with flow from $i+1$ to i which gives,

$$
(p(i, 1)+\cdots+p(i, r)) \lambda=p(i+1,1) \mu, i \geq 1
$$

In matrix notation this gives

$$
p_{i} A_{3}=p_{i+1} A_{2} \text {, where } A_{3}=\left(\begin{array}{ccc}
0 & \cdots & 0 \lambda \\
\vdots & \vdots & \vdots \lambda \\
0 & \cdots & 0 \lambda
\end{array}\right)
$$

Elimination of p_{i+1} gives, for $i \geq 1$,

$$
\begin{gathered}
p_{i-1} A_{0}+p_{i}\left(A_{1}+A_{3}\right)=0 \Rightarrow p_{i}=-p_{i-1} A_{0}\left(A_{1}+A_{3}\right)^{-1} \\
\Rightarrow R=-A_{0}\left(A_{1}+A_{3}\right)^{-1}
\end{gathered}
$$

- Continuous-time Markov chains on a strip
- M/M/1-type structure, QBD-processes

- Equilibrium solution of the form $p_{i}=p_{1} R^{i-1}(i=1,2, \ldots)$
- Matrix geometric methods
- Powerful numerical method
- Closed-form expressions in special cases

References

- William J. Stewart, The matrix geometric/analytic methods for structured Markov chains, http://www.sti.uniurb.it/events/sfm07pe/slides/Stewart_2.pdf
- R. Nelson. Matrix geometric solutions in Markov models: a mathematical tutorial. IBM Technical Report 1991.
- G. Latouche and V. Ramaswami (1999), Introduction to Matrix Analytic Methods in Stochastic Modeling. SIAM.
- M.F. Neuts (1981), Matrix-geometric solutions in stochastic models. The John Hopkins University Press, Baltimore.

