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Time schedule

Course | Teacher | Topics Date
1 Rob Methods for equilibrium distributions for Markov chains 25/01/21
2 Rob Markov processes and transient analysis 01/02/21
‘ 3 Rob M/M/1-type models and matrix-geometric method 08/02/21
4 Rob Buffer occupancy method 15/02/21
5 Rob Descendant set approach 22/02/21




Wrap up of last two courses  ©*

Calculating equilbrium distributions for discrete- =
time Markov chains

Direct methods

1. Gaussian elimination — numerically unstable

2. GTH method (reduction of Markov chains via folding)
Spectral decomposition theorem for matrix power Q"

Maximum eigenvalue (spectral radius) and second largest
eigenvalues (sub-radius)

Indirect methods SN
1. Matrix powers @ O ey
2. Power method 05@ o oo @

3. Gauss-Seidel



Wrap up of last week

« Continuous-time Markov chains and transient
analysis

vrije Universiteit

 Continuous-time Markov chains
1. Generator matrix Q
2. Uniformization
3. Relation CTMC with discrete-time MC at jump moments

 Transient analysis

Kolmogorov equations

Differential equation

Expression P(t) — Wt — Xdlag At YT Ze)‘t Tiys
Mean occupancy time over (0O, T)

N~
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Lecture 7:

Algorithmic methods for M/M/1-
type models
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Lecture 7 overview ke

o This Lecture deals with continuous time Markov chains
with infinite state space as opposed to finite space
Markov chains in Lectures 5 and 6

a  Objective:
To find the equilibrium distribution of the Markov chain

Lecture 7: M/M/1 type models



Background (1): M/M/1 queue f

Server

— ]

Ly=3 load: p=AB<1

0 Customers arrive according to Poisson process of rate 4, i.e.,

the inter-arrival times are iid exponential random variables (rv)
with rate 1

Customers’ service times are iid exponential rv with mean 1/u
Inter-arrival times and service times are independent

Service discipline can be First-In-First-Out (FIFO), Last-In-First-
Out (LIFO), or Processor Sharing (PS)

Under above assumptions, {N(t),t = 0}, the number of customers in
M/M/1 queue at time t is continuous-time infinite space Markov chain

7
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Background (2): M/M/1 queue f

A A A A A
0 1 i1 i i+
v M u M M M

Let p, denote equilibrium probability of state i, then
* —Apy +up, = 0,
* Api—l o (/1 + “)pl + UDi+1 = 0' [ = 1'21
Solving equilibrium equations for p = A/u < 1 (with ;5 p;
= 1) gives:

P =pisPp Po=1—p=|p; =1 -p)p,i= 0,

This means N is geometrically distributed with parameter g

Lecture 7: M/M/1 type models



Background (3): M/M/1 queue f

A A A A A A
..“____ . ___l_J p____.. lj_ _l-_l : ' .___l-_l -

Solution: p; = (1 — p)pl’l > ()

Feature: jumps only to neighbouring states

Idea of generalization to “M/M/1-type” queues:

1. State i replaced by set of states (called level i)
2. Load p replaced by rate matrix R

Lecture 7: M/M/1 type models



Background (4): M/M/1 queue ?

4 A

0 1 i1 0 i

W M
! y u ! ! u

Solution: p. = (1 — p)pi,i > ()

Tail probabilities: conditioning w.r.t. number of customers upon arrival + PASTA

i—1 2 oo 2 oo
7 . i (Ht)h} —put (/‘“L)J —ut i
PW>t) = > (1—p)p') e =) =™ > (1—p)p
i=0 §=0 J A §=0 J i=j+1
_ Z (};1) e—,ul‘[}}—l—l + e p(l—p)t t 2 0
7=0

given i customers upon arrival, waiting time Erlang-i distributed with mean i/p

if Poisson process with rate p, # arrivals in (0;t) is Poisson with mean ut 10
Lecture 7: M/M/1 type models - prgh { time until i-th arrival > t) = Prob { # of arrivals in (0;t) } < i
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Background (5): M/M/1 queue L

o Stability condition: expected queue length is finite, load"
p0:= My < 1. This can be interpreted as drift to the right is

smaller than drift to left

a In stable case, p is probability the M/M/1 system is non-
empty,ie., PIN=0)=1—-p

o Q, the generator of M/M/1 queue, is a trl-dlagonal
matrix, and has the form @ @ * @ ® @

PR
u A

P

11
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Quasi Birth Death (QBD) process?

a A two-dimensional irreducible continuous time Markov
process with states (i,j), wherei =0, ...,c0and j =
0,..m-—1

a  Subset of state space with common i entry is called
level i (i > 0) and denoted (i) = {(i,0), (i, 1), ..., (i,m —
1D3. 1(0) = {(0,0),(0,1), ..., (i,n — 1)}. This means state
space is U;sq (i)

o Transition rate from (i, j) to (i',j) is equal to zero for
i —i'| = 2

a Forn > 1, transition rate between states in [(i) and
between states in [(i) and [(i £ 1) is iIndependent of n

12
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Example of QBD process

State transition diagram for an M /M /1-type process.
boundary states o

=

: # .:l'-.- e l 1 i W e .}L li R .,-'_ -
v ory - 2= (e (s .+ - -
01 " TIHTZ ?1||T2 TIHT Tl‘ ‘TE Y ‘ Y, |
W/ s N L '
¥ ‘ ‘"f 12 ) (22 B (32)F+—( 4 B s)—F ...
w2 l R ‘ i I 5
o2 [y, Wy, inlly inl]y, My
2 (13 2.3 (33 (43 (53 Lo i
e e - = ;I~ e - = ‘_.__I
level 0 level 1 level 2 level 3 Teveld _  level5 ™
S~ _ ~\:A
Block tri-diagonal structure: transitions are permitted same
_ transitions for
- between states at the same level (diagonal blocks) all levels >1

» to states in the next highest level (super-diagonal blocks)
« and to states in the adjacent lower level (sub-triangular blocks)

13
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Example of QBD process f

Order the states lexicographically, i.e., (0,0), ...,(0,n —
1),(1,0),...,(1,m—1),(2,0),...,(2,m — 1), ..., the generator of the
QBD has the following form:

lexicographical ordering ( Boo Boy O 0 0 0 --- \
1 A" 1.13 i 2_167L1 3.1 A 4.1 Ly 51 A “ e s BID flj_ _-42 U U U
w el e Wjn | 0 Ag A Ay 0 0
71‘ '72 412)—E—(20)—L (32)- L (4L (5 SR Q _ | | |
Zo.z yl‘ ‘Yz 71‘ [ ‘) 71\ |Yz Y,l |Yz 71| ’72 0 0 Ag Ay Ay 0
5 N 2.3 12 33 N 4 12 3 12

Note that row sums are 0:
(BOO + BOl)e — O, (Bl() + Al + Az)e — O, and (AO + Al + Az)e =0

Lecture 7: M/M/1 type models 14



Example of QBD process

| CWL_
ke

Al g 1.1 : 2,1) }Ll 3.1 A'l 4.1 ll 5.1 )Ll . e 8 @ BDU BOI U U 0 0 vrije Universiteit
% ) ' 17 ' i A Ay 0 0 0
01 - Y]|y Y”y 71||Y YIHY Y ‘|Y
'1~2u 1_211l 2P’1 2“1‘2 0 A AL Ay 0 )
T ‘ £ (2,2) 32 42 (52 Ty
: : ‘72 ) el ' 0 0 AD Al AQ 0
o Al Al wll Wl ]
Ay ain N ~ -
L3 2.3 33 43 \ 5,3
-/ Ry = A gy Ay
n m m m
E T |5 lebe! 0
n = 2 n Y2 # AQ
¥ M A1
m r/2 p/2 |2 * m level 1
m=3 o Ao
e A1
i e 3z ¥ o levgl 2
Y2 oo A2
* 71 A1
m p va ok M level 3
Y2 oo Ag
L 61 A1
m H T2 kT level 4
Y2 oo A2
level 0 level 1 level 2 level 3 level 4 level 5

Lecture 7: M/M/1 type models
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Example of QBD process

Generator matrix

[ By By 0 0 0 0 - )
By Ay Ay 0 0 0
0 Ay Ay Ay 0 0
@= 0 0 Ag Ay Ay 0O
n m m m m
* 1M |E\)E
n Y2 Ao
* oM AL
m #/2 w292 + m leve
Y2 o* Ao
M A
m It Yo ¥ m leve
Y2k A2
Aq
m I Y2 71 leve
* Ag
* M A1
m Y2 ¢ M leve
Y2o* A2
level 0 level 1 level 2 level 3 level 4 level 5

Lecture 7: M/M/1 type models

Ay 11 i 21 5 31 )M 41 A L (e
0L - Yl]|72 Yluyz Y1||"’2 Yl‘ hz Yl‘ |Yz
Y, 1, (12)—F—(2,2) L 32)—E—{(42 52
02)° ?1| Y, Yl‘ ‘72 Y,\ |y2 Y|’ "yz " ’YZ
2 1; = - = £ h 43 » 53 =

Block matrices

departures:i > i-1 arrivals: i = i+l

0 0 0 A 00
_(40 — 0 n 0 _:4.2 = 0 0 0
0 0 0 0 0 Ao
A = v —(p+ 1 +72) m transitions
0 72 ~(2+22) / within level
Boo = ~nt+h) I )
2 —(72 + A2)
0 o
5 M 00 B 2w
01 = 10 = /2 w2
0 0 Ao g g
0 O

16



Stability: Neuts’ Drift Theorem ‘z'

Theorem: The QBD is ergodic (i.e., mean recurrence time
of the states is finite) iff

A,e < mA,e (mean drift condition)

where e is the column vector of ones and r is the
equilibrium distribution of the irreducible I\/Iarkov chaln with
generator A = A, + A, + A,, o o

", 12—t sa— ...
925 7|| ]": Yl| IVJ Tl\ i"‘: '| ]Y: 7'[ ‘TE
— — A2 N (132 (33— (43 ——(53)—— o« = «
— ) — A ky A3 Ao Ay

Interpretation: mA,e is mean drift from level itoi + 1. w4 e
IS mean drift from level i to i — 1 (Neuts’ drift condition)

Generator A describes the behavior of QBD within level

Lecture 7: M/M/1 type models



Interpretation of Neuts’ Drift

A A A A A A r.l | ?J ‘Tl T" hz T'l ‘T3 TI[ ‘YZ i . ]72
@ @ 1** 7, @ @ @ - - | 92 ;1 TI‘ 13 ?l‘ hz Yl\ Lf) T" ]Yz " ‘Yz
0O 0 0 A0 0 —(71 + A1) Y1 0
Ao=1| 0 pu 0 |, A2=] 0 0 0 = 72 —(k 4+ +72) M
0 0 0 0 0 X\ 0 V2 —(72 + A2)
—Y1 Y1 0
0 —
Y2 ])/2 , 7, .
1 = (ﬁ) Y
— )/2 1 v5
1+%+(?) 1+ﬁ+(ﬁ) 1+ﬁ+(ﬁ) i .
2 2 Y2 \)V2 . Yo \V> fl| Y,
. T 3
Mean drift to the right: md,e = (11 T2 T3) A, 1 |=Am, + A, 3 :
1\l leveli=2
Mean drift to the left: md,e = (M1 T2 T3) A, (1 = um,
1 18
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Equilibrium distribution of QBDs L

Letp, = (p(n,0),..,p(n,m —1)) and p = (py, Py, ---)
Then equilibrium equation "pQ = 0" reads

—_ B By O 0 0 0 -

* PoBy +P1310 =0, P A A 0 0 0 -
—_ 0 Ay Ay Ay 0 0 ...

* p0801 + p]‘Al + pZAO _ O Q=1 0 0 A A A 0 .-

Theorem: if the QBD is positive recurrent, there exists a
constant matrix R, such that

Pn=Pn-1Rn=2 -p,=p,R",n>2

To do: find p,, p,, and R

19
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Special case of QBD: M/M/1 queue f
00 606

In that case, the “block matrices” simplify to:
Boo = (0), Bo1 =(A), Bio=(0)
Ao =(n), Av=(-A—p), Az=(A)
Then the equilibrium probability of state i
—Apy +up; = 0,
Api—l o (A + ,u)pl + UDi+1 = 0, L = 1121

Solving equilibrium equations for p = A/u < 1 gives:
P, =Di-1p Po=1—p= p;=(1—p)p,i= 0,

Lecture 7: M/M/1 type models
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. for any other non-negative W
R-m atrlx solution S, we have R<'S V
pa &

Lemma: The matrix R is the minimal nonnegative
solution to the matrix equation

A, 4+ RA,+ R?A, = 0

Proof: Substituting p, = p,R™1,n = 2 into the balance equations
pn—lAz + pnAl + pn+1AO = 0,n=2
implies that p,R""%(4,+ RA,; + R?4A,)) = 0

 Ris called the rate matrix of the Markov process Q

* R has spectral radius < 1, and thus, /-R is invertible

Lecture 7: M/M/1 type models 21



R-matrix for special case M/M/1

Lemma: The matrix R is the minimal nonnegative
solution to the matrix equation

A, 4+ RA,+ R?A, = 0

Boo = (0), Bor=(\), Bio=(0), e=(1)
Ao=(p), Av=(-A—-p), A2=(\), R=(p)
In M/M/1-case, the matrix R = (r) and the above equation is:

Ar(=A=—p)+r*p=0—=r=1lorr=p

smallest non-
negative solution

Lecture 7: M/M/1 type models 22



Iterative calculation of R-matrix f

Lemma: The matrix R satisfies the following equation

A,+ RA, + R?4, = 0

Iterative solution to compute R
Lemma implies: Agﬂl_l + R+ Rgﬁlgﬁlfl =0
Hence: R = — Ay A7 — RZAGAT = -V — R*W

lteration: o) =0; Ry = -V — R'(;l.ﬂ-ii EF=1.2....

The iteration can be shown to converge to R (fixed point equation) ,
since spectral radius < 1

Lecture 7: M/M/1 type models 23



Calculation of p, and p, ?

Lemma: The stationary probability vectors p,and p, -

are the unique solution of Bo B 00 00
* pOBOO + plBlO — O Q= 0 A("JD :4; 4? Ay O

* PoBy, T P1(A1tRAp) =0 I
* poe + p; (I — R) 1e =1 (normalization condition)

In M/M/1-case, Boo = (0), Boi1 = (A), Bio=(0), e=(1)
AO:(M)) Ay :(_)\_ﬂ)v AQ:()\)v R:(IO)

Balance equations S v oa
00 006

—Apy +up; = 0,

Apiog —A+Wp,+pupipy1 =0, i=12,..
Normalization

1 :p0+1p_—1p — o+ PP+ PP =po D

Lecture 7: M/M/1 type models



Matrix geometric method

Step 1: Verify that the matrix satisfies requirements of QBD structure
Step 2: Verify that stability condition is satisfied

Step 3: Use recursion to compute the R-matrix

Step 4: Solve the set of equations to calculate p, and p;,

Step 5: Use recursion p, = p,._.«R to find all other p, vectors

25
Lecture 7: M/M/1 type models



Example of Matrix Geometric metho%

Take the following parameter values for the example QBD process on page 13:

s lln ol ot e e
Al — ]_.. AQ p— +1.r_-;|‘ ﬁf p— 4‘ .f‘}l f— 5. z-}l2 — 3+ Y'U:: .!_,_J-LY‘;_ZJ;ML“Lﬁiv,”,

The infinitesimal generator is then given by

[ —6 50| 1 \
3 —3.5 5
6 5 1
2 2| 3 —12 50
0= 3 —35 5
6 5 1
1 3 —12 5.0
A, A, 3 —35 |A, 5
\ )

Step 1. The matrix obviously has the correct QBD structure.

26
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Example of MGM @;

Step 2: Check stability

2. We check that the system is stable by verifying Equation (8). The

infinitesimal generator matrix

—5 5) 0
A=A+ A1 + Ay = 3 —8 D
0 3 =3

has stationary probability vector
ma = (.1837, .3061, .5102)
and

A388 = mpAge < maAge = 1.2245

27
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Recall that ‘iii-
Exam Ie Of M G M R.eia—flgill_l — Rzﬂ[}}ll_l — _V — RQH'
be
mw°

Step 3: Recursion for R-matrix

3. We now initiate the iterative procedure to compute the rate matrix

R. The inverse of Aq is

— 2466 —.1598 —.2283
AT =] —.0959 —.1918 —.2740
— 0822 —.1644 —.5205

which allows us to compute

_ 2466 —.1598 —.2283
V=AA7" = 0 0 0
_ 0411 —.0822 —.2603

0 0 0
W =ApAT ' = | —3836 —.7671 —1.0959
0 0 0

28
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Example of MGM "

Roy=0; Rgeyy=-V—-R,W. k=12

Step 3: Recursion for R-matrix (continued)

2466 1598 2283 0 0 0
Ropony=1| 0 0 0 [+R% | 3836 7671 1.0959
04110822 2603 0 0 0

and iterating successively, beginning with R, = 0, we find

2466 1598 2283 2689 .2044 2921
Ry = 0 0 0 . Ry = 0 0 0
0411 0822 .2603 0518 1036 .2909

Ry = 0 0 0
0567 1134 .3049

After 48 iterations, successive differences are less than 1072 at which
point

2917 .2500 3571
0625 1250 3214

29
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Equations for p, and p, W
Example Of MGM * POBOO+P1310=0
*  PoBy, T P1(41+RAp) =0 ;ﬁk
poe + p; (I — R) ‘e = 1 (normalization condition) ™"

Step 4: calculation of p, and p,

/[ 6 50| 1 0 0\
. . 3 _35| 0 0 5
00 01 )
0, D1 = (po,p1)] 0o 0| -=6 60 0 | =(0,0)
(p p )( Bio A1+ RAp ) _
9 o 3 —120 5.0
\ 0 0| 0 35 —35 )
Solution:

(mo,m1) = (1.0, 1.6923, | .3974, .4615, .9011)

Next step: normalization

30
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Equations for p, and p, W
Example Of MGM * PUBOO+P1310=0
*  PoBy, T P1(41+RAp) =0 ;ok
poe + p, (I — R)"'e = 1 (normalization condition) ™"

Step 4: normalization of p, and p,

Normalization constant equals

a = mge+m ([ — R)_l e

= (1.0, 1.6923)e + (.3974, .4615, .9011) 0 0 e

=  2.6923 + 3.2657 = 5.9580
which allows us to compute
mo /v = (L1678, .2840)

and
m /a = (.0667, .0775, .1512)

Lecture 7: M/M/1 type models
31



Example of MGM @;

Step 5: subcomponents of stationary distribution

2917 .2500 .3571
T = m R = (.0667, .0775, .1512) 0 0 0
0625 .1250 .3214
= (.0289, .0356, .0724)
and
2917 .2500 .3571
m3 = mo R = (.0289, .0356, .0724) 0 0 0
D63 12500 3314

= (.0130, .0356, .0336)

and so on.

32
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Applications of three M/M/1-type L

models

1. Machine with set-up times
2. Unreliable machine
3. M/E/1 model

33
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Machine with set-up times (1) f

server turned OFF when

server system empty
Poisson with rate A

setup-time exponential with
mean 1/6

load: p=AB <1

service time exponential with
mean B=1/pn

o In addition to assumptions on the M/M/1 system, further
assume that the system is turned off when it is empty

o System is turned on again when a new customer arrives

o The set-up time is exponentially distributed with mean 1/6

34
Lecture 7: M/M/1 type models



Machine with set-up time (2) f

o
i A A A
A Xy €S- ----- states with
system ON
/ ” & . €------ states with
) ¥ ki system OFF
1 - 3 ;

o Number of customers in system is not a Markov
process: evolution depends on whether ON or OFF

a Two-dimensional process of state (i,j) where i is
number of customers and j is system state (j =0 if
system is off, j = 0 if system is on) is Markov process

35
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Machine with set-up time (3)

(0,1)is a J
transient *~
state

1

a p(i,j) is equilibrium probability of state (i,j),i = 0,j =0,1

Balance equations:

1. p(0,0)A = p(1,D)u
2. p(i,0A+60)=p(i—-1,01 (i=1)
3 p(i, DA+u)=p{A,0)0 +p(i+1,Du+pi-1,DA (i=1)

36
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Machine with set-up time (4)

Let p, = (p(i,0),p(i,1)), then balance equations read
poB1+ pB, _ 0, j

L

pi-14 + pid; + pi+14;, = 0,1 =21

where

0= Y= Y= (05

—A 0 0 0
Bl:(o —A)'Bzz(u O)

We use the Matrix-Geometric Method (MGM) to the
find the equilibrium probability distribution

37
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Machine with set-up time (5)
Let p, = (p(i,0),p(i, 1)), then balance equations read =~
pOBl + plBZ O) j

pi-149+ A1+ P14, = 0,i =21 '

Generator matrix (block structure)

B, A, 0 - 1 0 0 —(A+6) 6

B; A(l) A()’-.\ AO:(O ?1)"42:(0 u)’A1:< 0 —(/1+u)>
Q=0 A, A"

\E A2.°'/
We use the Matrix-Geometric Method (MGM) to the
find the equilibrium probability distribution

Lecture 7: M/M/1 type models
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Matrix Geometric method (1) L

Balance principle: Global balance equations are
given by equating flow from level i to i + 1 with flow

from i + 1 to i which gives, ‘,,- |
(p(5,0) +p(i, D)A = p(i + LDp,i =1

- In matrix notation, this gives S

Q

A 0
Pi+14; = pid;, where Az = (/1 O)

Recall that (balance equation)

o Elimination of p;,; gives, fori > 1, pi140+ pidi +piad, = 0,i=1
Pi—14y+pi(A;+43) =0= p; = —pi_140(4; + 43)7™"

_ A/(A+0) A/u xplici
= R = _AO(Al +A3) 1 — ( 0 /1/,“ E_x;%stsionforR

Lecture 7: M/M/1 type models 39



Matrix Geometric method (2)

o Stability condition: absolute values of eigenvalues
of R should be strictly smaller than 1

(0,1)isa J

A < ,Ll aIld 0 > O transient ~._

state

o Normalization condition gives L ENEY,
pol+R+R*+-)e=1=>p,(I—R)le=1
o Note that (0,1) is a transient state, thus p(0,1) = 0.

Normalization gives that p(0,0) = % (1 _ %)

o Mean number of customers Observations:
if @ — infinity, then regular

M/M/1, and p(0,0)= 1 — N/
E|L] = Z ipje = poR(I — R)™2%€ it Nu— 1, then p(0,0)— 0

=1
Lecture 7: M/M/1 type models 40
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Explicit solutions in special cases k

Property: In case A, = v.a is a product of two vectors
where v IS column vector and « is row vector with
i=o aj = 1, the rate matrix reads, with e is a column

vector of ones,
R=—-A4,(4; + Ajea)™ 1,

level i-1 level i

Interpretation of the assumption

When the process Q jumps from level |
to level i-1, the probability of jumping to
state (i-1, j) is independent of the
starting state at level |

V3d;3

(see lecture notes for more details and special cases)

Lecture 7: M/M/1 type models 41
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server uptime exponential wﬂ#

Unreliable machine (1)

server mean 1/
service time exponential with
Poisson with rate A mean 1/u
repair time exponential with
mean 1/0

load: p=AB <1

o Customers arrive according to Poisson process with rate 4
o Service times is exponentially distributed of mean 1/u

o Uptime of the machine is exponentially distributed with
mean 1/n

o Repair time is exponentially distributed with mean 1/6

o Stability condition: load is smaller than capacity of the
machine: A/u < P(machineisup) =60/(6 + n)

42
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Unreliable machine (2)

: Universiteit

states with
system ON

states with
system OFF

] —=

o The two-dimensional process of state (i,j), where i
number of customers, j the state of machine (j = 1

machine up, j = 0 machine down) is a Markov chain

* Note that A, = (82) = (2) (0 1) =va, withv = (2) and a=(0 1).

Lecture 7: M/M/1 type models 43



Unreliable machine (3) /| |
Stability: S
A < with pp = L/ (=fraction of time that system is up)
Balance equations:
p(,0)(A+60) = p(i—1,00\+p(i, 1)y, § = e
p(i, ) A+n+p) = pi,0)00+pi+ 1, )p+p(i—1,1)A, i=1,2,...
Matrix notation: Level probabilities:

poBy +p1As = 0,
pic1Ao +piAL + piy1As = 0, 1=1,2,...,

(A0 [(—(A+6) 0 (00
AO_(O )\)' Al_( n (/\Jr,u.JrT]))' AQ_(O pf)

B = (_(/\f KA n>)'

Lecture 7: M/M/1 type models

pi = (p(,0),p(i, 1))
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Unreliable machine (3)

Stability:
A . 1/n
— < J. W|th U — -
[ AL P L/n+1/6
1
j
o= 6 Bk
0 n+0 = —— | /E‘f’“f Ia_i__,.;;»
machine down machine up n \/'e n nvle
(solution to MC within a level) T

Mean drift to the left: mA,e = (o 1) (
Mean drift to the right: mA,e = (To T1) (

Neuts’ drift condition: 2 < pr, = n‘%

0 A

vrije Universiteit

(=fraction of time that system is up)

. ___-,-ﬁ*t €-=-=-=== states with

system ON

states with



Unreliable machine (4)
%

<
=S
\.a
s
s
]
<
2
-
g

j
u u u
1 . : €------ states with
" Y A system ON
|
n\|/6 ni /0 n\ /o states with
0 A o , ~N,.‘,—s,;sz:gm_OFF
0O A 1 A 2 3 A | —=

Since A, = va, the matrix-geometric method gives

e 4
. " . - A
Pi = PoRLE 2 1, With R = —Ao(A; + Agea)™ == o 1
A+0

Note In this case we have thatp,(I —R) ™1 =1 —py P,
where p,, is probability that the machine is up 6/(n + 6).

We find p = (1 =pu )0 = R) = (p = 2) (25 1)
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M/E /1 model (1) f

Poisson arrivals rate A
Poisson with rate A

load: p=AP <1

service times Erlang-r
distributed with mean with

mean B=r/p

a Poisson arrivals with rate A

a Service times is Erlang distributed of r phases each of mean 1/y,
l.e., is sum r exponentially distributed random variable, each of
rate p

o Stability if offered load is smaller than 1:
0=Ar/fu<1

o Two dimensional process of state (i,j)) where i is number of
customers in the system (excluding the customer in service)
and j remaining phases of customer in service is Markov

pProcess 47
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M/E /1 model (2)

e ] .

Poisson arrivalsrate A

service times Erlang-r
distributed with mean with

mean B=r/pn
j Ly=3 load:p=2AP<1
7 0 ° e "= ° °
“. ,
Ay
o y - . .
A
i % 8 m % o m @ s i ® @ o B
A A

Balance equations:

p. ) A+p) = pli—LjA+p(i.j+Du,  j=1,....r—=1 (i >1)
pi,r)A+p) = pli—Lr)A+pi+1,1)p,

48
Lecture 7: M/M/1 type models



M/E,/1 model (2)

State diagram:
T
u LL

A A i

Balance equations:
p(i. 7)) A+ p) = pli— 1, )A+p(i, 5+ 1, I P, S |
pli.r)A+p) = pli—Lr)A+p(i+1,1)pu, (1> 1)
Matrix notation: p, (Ag + p;A; + pir1Ads = 0. i > 1
where p; = (p(i, 1), ..., p(i.r))

0 0 u -1 0 0
Ap =LA, =] R I A B

6 O 0 1 -1

49
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. . | CWI_
Matrix Geometric method L

o Balance principle: Global balance equations are
given by equating flow from level i to i + 1 with flow
from i + 1 to i which gives,

@D+ -+plrPA=pi+1Dui=1
o In matrix notation this gives

0 - 021
pil; = pi414, Where A; = ( Pl /1>
0 --- 0A

o Elimination of p;,; gives, fori > 1,
Pi—14y+pi(A;+43) =0= p; = —pi_140(4; + 43)7™"
= R —_ _AO(A]_ + AB)_l
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Wrap up f

Continuous-time Markov chains on a strip
M/M/1-type structure, QBD-processes

State transition diagram for an M /M /1-type process.

boundary states Fomeee s : oo :
| A Ay i Ay il
v Ay -1 L (gL (g S (520 e e
| i |
01 T]‘ 7 Wy Phin Oy Ny
W2 5 n u l
Y]HY” 1,2 22 —H—32 — 4,2 52 ——F— o+ o o
0.2 Yl Y2 | ,’7 Yl YE E Y] ’ YZ 1 Y_?
A 1.3 E 3.3 ' 4.3 | 5.3
< % 2,3 | 3,3 | X ~ 53
A2 Ao A3 Al An
level 0 level 1 level 2 level 3 level 4 level 5

 Equilibrium solution of the form p, =p, R™(i=1, 2,...)
« Matrix geometric methods

« Powerful numerical method

* Closed-form expressions in special cases 51
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