
Algorithmic Methods 
in Queueing Theory (AlQT)

Rob van der Mei
CWI and VU University Amsterdam

Contact: mei@cwi.nl, www.few.vu.nl/~mei
1

Thanks to: Ahmad Al Hanbali

server

arrival rate 

load:  =  < 1Lq = 3



Time schedule

Course  Teacher Topics Date

1 Rob Methods for equilibrium distributions for Markov chains 25/01/21

2 Rob Markov processes and transient analysis 01/02/21

3 Rob M/M/1‐type models and matrix‐geometric method 08/02/21

4 Rob Buffer occupancy method 15/02/21

5 Rob Descendant set approach 22/02/21
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Wrap up of last two courses
• Calculating equilbrium distributions for discrete-

time Markov chains

• Direct methods
1. Gaussian elimination – numerically unstable
2. GTH method (reduction of Markov chains via folding)

• Spectral decomposition theorem for matrix power Qn

• Maximum eigenvalue (spectral radius) and second largest
eigenvalues (sub-radius)

• Indirect methods
1. Matrix powers
2. Power method
3. Gauss-Seidel
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Wrap up of last week
• Continuous-time Markov chains and transient

analysis

• Continuous-time Markov chains
1. Generator matrix Q
2. Uniformization
3. Relation CTMC with discrete-time MC at jump moments

• Transient analysis
1. Kolmogorov equations
2. Differential equation
3. Expression
4. Mean occupancy time over (0,T)
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Lecture 7: 

Algorithmic methods for M/M/1-
type models
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Lecture 7 overview

 This Lecture deals with continuous time Markov chains
with infinite state space as opposed to finite space  
Markov chains in Lectures 5 and 6

 Objective: 
To find the equilibrium distribution of the Markov chain
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Background (1): M/M/1 queue

 Customers arrive according to Poisson process of rate 𝜆, i.e., 
the inter-arrival times are iid exponential random variables (rv) 
with rate 𝜆

 Customers’ service times are iid exponential rv with mean 1/𝜇
 Inter-arrival times and service times are independent
 Service discipline can be First-In-First-Out (FIFO), Last-In-First-

Out (LIFO), or Processor Sharing (PS)

Under above assumptions, ሼ𝑁ሺ𝑡ሻ, 𝑡 ൒  0ሽ, the number of customers in 
M/M/1 queue at time 𝑡 is continuous-time infinite space Markov chain

Lecture 7: M/M/1 type models
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Background (2): M/M/1 queue

Let 𝑖 denote equilibrium probability of state , then
• 0 1 
• ௜ିଵ  𝑖 ௜ାଵ
Solving equilibrium equations for (with 𝑖௜ஹ଴

) gives:
𝑖 ௜ିଵ ଴ 𝑖

௜ , 

This means N is geometrically distributed with parameter 

i i+1i-10 1

λ λ λ λ

µµµµ

λ λ

µ µ
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Background (3): M/M/1 queue

𝑖
௜Solution: 

Feature: jumps only to neighbouring states

Idea of generalization to “M/M/1-type” queues: 
1. State i replaced by set of states (called level i)
2. Load ρ replaced by rate matrix R

Lecture 7: M/M/1 type models
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Background (4): M/M/1 queue

𝑖
௜

i i+1i-10 1

λ 4 λ λ

µµµµ

λ λ

µ µ

Solution: 

Tail probabilities: conditioning w.r.t. number of customers upon arrival + PASTA

given i customers upon arrival, waiting time Erlang‐i distributed with mean i/
if Poisson process with rate , # arrivals in (0;t) is Poisson with mean t
Prob { time until i‐th arrival > t)  = Prob { # of arrivals in (0;t) } < i 
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Background (5): M/M/1 queue
 Stability condition: expected queue length is finite, load 

ρ:= λ/µ < 1. This can be interpreted as drift to the right is 
smaller than drift to left

 In stable case, ρ is probability the M/M/1 system is non-
empty, i.e. , 

 Q, the generator of M/M/1 queue, is a tri-diagonal
matrix, and has the form

Lecture 7: M/M/1 type models
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Quasi Birth Death (QBD) process

 A two-dimensional irreducible continuous time Markov 
process with states , where and 

 Subset of state space with common entry is called 
level and denoted 𝑙ሺ𝑖ሻ ൌ ሼሺ𝑖, 0ሻ, ሺ𝑖, 1ሻ, … , ሺ𝑖,𝑚 െ
1ሻሽ. 𝑙ሺ0ሻ ൌ ሼሺ0,0ሻ, ሺ0,1ሻ, … , ሺ𝑖,𝑛 െ 1ሻሽ. This means state 
space is ௜ஹ଴

 Transition rate from to is equal to zero for 

 For , transition rate between states in and 
between states in and is independent of n 

Lecture 7: M/M/1 type models
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Example of QBD process

level 0 level 1 level 2 level 3 level 4 level 5

Block tri-diagonal structure: transitions are permitted
• between states at the same level (diagonal blocks)
• to states in the next highest level (super-diagonal blocks)
• and to states in the adjacent lower level (sub-triangular blocks)

/2

/2

boundary states

same
transitions for
all levels >1

Lecture 7: M/M/1 type models
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Example of QBD process
Order the states lexicographically, i.e., 0,0 , … , ሺ0,𝑛 െ
1ሻ, 1,0 , … , 1,𝑚 െ 1 , 2,0 , … , 2,𝑚 െ 1 , …, the generator of the 
QBD has the following form:

Note that row sums are 0: 
ሺ𝐵଴଴ ൅ 𝐵଴ଵሻ𝑒 ൌ 0, ሺ𝐵ଵ଴ ൅ 𝐴ଵ ൅ 𝐴ଶሻ𝑒 ൌ 0, and ሺ𝐴଴ ൅ 𝐴1 ൅  𝐴2ሻ𝑒 ൌ 0

Lecture 7: M/M/1 type models

1

2
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4

5

6
lexicographical ordering
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Example of QBD process

n = 2

m = 3
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Example of QBD process
Generator matrix

Block matrices

arrivals: i → i+1departures: i → i‐1

generator of 
transitions
within level
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Stability: Neuts’ Drift Theorem
Theorem: The QBD is ergodic (i.e., mean recurrence time 
of the states is finite) iff

2 0 (mean drift condition)
where is the column vector of ones and is the 
equilibrium distribution of the irreducible Markov chain  with 
generator 0 1 2,  

Interpretation: 2 is mean drift from level to . 0
is mean drift from level to (Neuts’ drift condition)
Generator describes the behavior of QBD within level
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A = A1 + A2 + A3 = 
െγ1 γ1 0
െγ2 െγ1 െ γ2 γ1

0 γ2 െγ2

Interpretation of Neuts’ Drift 
Theorem

level i = 2

𝜋ଵ ൌ  
1

1 ൅  𝛾ଵ𝛾ଶ
൅ 𝛾ଵ

𝛾ଶ

ଶ 𝜋ଶ ൌ  

𝛾ଵ
𝛾ଶ

1 ൅  𝛾ଵ𝛾ଶ
൅ 𝛾ଵ

𝛾ଶ

ଶ 𝜋ଷ ൌ  

𝛾ଵ
𝛾ଶ

ଶ

1 ൅  𝛾ଵ𝛾ଶ
൅ 𝛾ଵ

𝛾ଶ

ଶ

𝜋𝐴2𝑒 ൌ  𝜋ଵ 𝜋ଶ 𝜋ଷ  𝐴ଶ
1
1
1

= λ1𝜋1 ൅ λ2𝜋3Mean drift to the right:

𝜋𝐴0𝑒 ൌ  𝜋ଵ 𝜋ଶ 𝜋ଷ  𝐴଴
1
1
1

= μ𝜋2Mean drift to the left:

𝜋1

𝜋2

𝜋3
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Equilibrium distribution of QBDs
Let 𝑛 and 0 1

Then equilibrium equation reads
• 0 ଴଴ 1 ଵ଴ , 
• 0 ଴ଵ 1 ଵ 2 ଴
• ௡ିଵ 2 𝑛 1 ௡ାଵ 0 

, 

Theorem: if the QBD is positive recurrent, there exists a 
constant matrix R, such that 

௡ ௡ିଵ ௡ 1
௡ିଵ

To do: find 0, 1 
, and 
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Special case of QBD: M/M/1 queue

Then the equilibrium probability of state 
0 1  

௜ିଵ  𝑖 ௜ାଵ

Solving equilibrium equations for gives:
𝑖 ௜ିଵ ଴ 𝑖

௜ , 

In that case, the “block matrices” simplify to: 
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R-matrix
Lemma: The matrix is the minimal nonnegative 
solution to the matrix equation

2 1
2

0 

Proof:
𝑝௡ିଵ𝐴2 ൅ 𝑝𝑛𝐴1 ൅ 𝑝௡ାଵ𝐴0 

ൌ  0, 𝑛 ൒ 2
Substituting 𝑝௡ ൌ 𝑝1𝑅௡ିଵ,𝑛 ൒ 2 into the balance equations

implies that 𝑝1𝑅௡ିଶ 𝐴2 ൅  𝑅𝐴1 ൅ 𝑅2𝐴0 ൌ  0

• R is called the rate matrix of the Markov process Q 

• R has spectral radius < 1, and thus, I-R is invertible

for any other non‐negative 
solution S, we have R ≤ S
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R-matrix for special case M/M/1
Lemma: The matrix is the minimal nonnegative 
solution to the matrix equation

2 1
2

0 

In M/M/1-case, the matrix R = (r) and the above equation is:

smallest non‐
negative solution



Hence:
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Iterative calculation of R-matrix
Lemma: The matrix satisfies the following equation

2 1
2

0 

Iterative solution to compute R
Lemma implies:

Iteration:

The iteration can be shown to converge to R (fixed point equation) , 
since spectral radius < 1
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Calculation of p0 and p1
Lemma: The stationary probability vectors 𝟎 and 𝟏

are the unique solution of
• 0 ଴଴ ଵ ଵ଴

• 0 ଴ଵ ଵ ଵ ଴

• ଴ 1 
ିଵ (normalization condition)

In M/M/1-case, 

0 1 

௜ିଵ  𝑖 ௜ାଵ

Balance equations

Normalization
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Matrix geometric method

Step 1: Verify that the matrix satisfies requirements of  QBD structure

Step 2: Verify that stability condition is satisfied

Step 3: Use recursion to compute the R-matrix

Step 4: Solve the set of equations to calculate p0 and p1

Step 5: Use recursion pn = pn-1R to find all other pn vectors
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Example of Matrix Geometric method
Take the following parameter values for the example QBD process on page 13:

Step 1

A2 A1 A0
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Example of MGM
Step 2: Check stability
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Example of MGM
Step 3: Recursion for R-matrix

Recall that
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Example of MGM
Step 3: Recursion for R-matrix (continued)

Recursion
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Example of MGM

Step 4: calculation of p0 and p1

Solution:

Next step: normalization

Equations for p0 and p1
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Example of MGM

Step 4: normalization of p0 and p1

Normalization constant equals

Equations for p0 and p1
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Example of MGM
Step 5: subcomponents of stationary distribution



Lecture 7: M/M/1 type models
33

Applications of three M/M/1-type 
models

1. Machine with set-up times
2. Unreliable machine
3. M/Er/1 model
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Machine with set-up times (1)

 In addition to assumptions on the M/M/1 system, further 
assume that  the system is turned off when it is empty

 System is turned on again when a new customer arrives
 The set-up time is exponentially distributed with mean 

server

Poisson with rate 

load:  =  < 1Lq = 3

server turned OFF when
system empty

setup‐time exponential with
mean 1/θ

service time exponential with
mean β = 1/ 
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Machine with set-up time (2)

 Number of customers in system is not a Markov 
process: evolution depends on whether ON or OFF

 Two-dimensional process of state where is 
number of customers and is system state ( if 
system is off, if system is on) is Markov process  

states with
system ON

states with
system OFF
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Machine with set-up time (3)

 is equilibrium probability of state 

Balance equations: 

(0,1) is a 
transient
state
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Machine with set-up time (4)

Let 𝑖 , then balance equations read

0 1 1 2 ൌ  

௜ିଵ 0 ௜ 1 ௜ାଵ 2 

where

଴ ଶ ଵ

ଵ ଶ

We use the Matrix-Geometric Method (MGM) to the 
find the equilibrium probability distribution
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Machine with set-up time (5)
Let 𝑖 , then balance equations read

0 1 1 2 ൌ  

௜ିଵ 0 ௜ 1 ௜ାଵ 2 

1

2

0

1

2

0

1

2

Generator matrix  (block structure)

𝐴଴ ൌ
𝜆 0
0 𝜆 ,𝐴ଶ ൌ

0 0
0 𝜇 ,𝐴ଵ ൌ

െ 𝜆 ൅ 𝜃 𝜃
0 െ 𝜆 ൅ 𝜇

𝐵ଵ ൌ
െ𝜆 0
0 െ𝜆 ,𝐵ଶ ൌ

0 0
𝜇 0

We use the Matrix-Geometric Method (MGM) to the 
find the equilibrium probability distribution
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Matrix Geometric method (1)
 Balance principle: Global balance equations are 

given by equating flow from level to with flow 
from to which gives,

 In matrix notation, this gives

௜ାଵ 2 ௜ 3 where ଷ

 Elimination of ௜ାଵ gives, for ,

௜ିଵ 0 ௜ 1 3 ௜ ௜ିଵ ଴ ଵ ଷ
ିଵ

଴ ଵ ଷ
ିଵ Explicit

expression for R

Recall that (balance equation)
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Matrix Geometric method (2)
 Stability condition: absolute values of eigenvalues 

of R should be strictly smaller than 1

 Normalization condition gives

଴
ଶ

଴
ିଵ

 Note that is a transient state, thus  . 
Normalization gives that ఏ

ఏାఒ
ఒ
ఓ

 Mean number of customers

௜
௜ஹଵ

0 
ିଶ

Observations:
if θ → infinity, then regular 
M/M/1, and p(0,0)= 1 – λ/μ

if λ/μ → 1, then p(0,0) → 0  
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Explicit solutions in special cases

Property: In case ଶ is a product of two vectors 
where is column vector and is row vector with 

௝
௠
௝ୀ଴ , the rate matrix reads, with is a column 

vector of ones, 
଴ ଵ ଴

ିଵ,

Interpretation of the assumption
When the process Q jumps from level i 
to level i-1, the probability of jumping to
state (i-1, j) is independent of the
starting state at level i

(see lecture notes for more details and special cases)

level ilevel i-1

v1a2 v1a3

v1a1

v3a2

v3a3

v3a1
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Unreliable machine (1)

 Customers arrive according to Poisson process with rate 

 Service times is exponentially distributed of mean 1/

 Uptime of the machine is exponentially distributed with 
mean 

 Repair time is exponentially distributed with mean 

 Stability condition: load is smaller than capacity of the 
machine:  

server

Poisson with rate 

load:  =  < 1Lq = 3

server uptime exponential with
mean 1/𝜂

repair time exponential with
mean 1/θ

service time exponential with 
mean 1/
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Unreliable machine (2)

 The two-dimensional process of state , where 
number of customers, the state of machine (
machine up, machine down) is a Markov chain

states with
system ON

states with
system OFF

𝐴ଶ ൌ
0
0

0
𝜇 ൌ 0

𝜇 0 1 ൌ 𝑣𝛼, with 𝑣 ൌ 0
𝜇 and 𝛼= 0 1 .• Note that
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Stability: 

with (=fraction of time that system is up)

Balance equations: 

Matrix notation: 

Unreliable machine (3)

Level probabilities: 



Stability: 

with (=fraction of time that system is up)

Unreliable machine (3)

𝜋଴ ൌ  
η

η ൅ θ

𝜋𝐴2𝑒 ൌ  𝜋଴ 𝜋ଵ
0 0
0 𝜇

1
1 = 𝜇𝜋ଵMean drift to the left:

Mean drift to the right:

𝜋ଵ ൌ  
θ

η ൅ θ
machine upmachine down

𝜋𝐴0𝑒 ൌ 𝜋଴ 𝜋ଵ λ 0
0 λ

1
1 = λ

Neuts’ drift condition: λ < μ𝜋1 
=  ఓ஘
஗ା஘

(solution to MC within a level)
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Unreliable machine (4)

 Since ଶ , the matrix-geometric method gives

𝑖  0 ௜ with  ଴ ଵ ଴
ିଵ ఒ

ఓ

ఎାఓ
ఒାఏ
ఎ

ఒାఏ

 Note in this case we have that 𝑝଴ 𝐼 െ 𝑅 ିଵ ൌ 1 െ 𝑝௨ 𝑝௨ , 
where ௨ is probability that the machine is up .

 We find ଴ ௨ ௨ ௨
ఒ
ఓ

ఎ
ఒାఏ
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M/Er/1 model (1)

 Poisson arrivals with rate λ

 Service times is Erlang distributed of r phases each of mean 1/μ, 
i.e., is sum r exponentially distributed random variable, each of 
rate μ

 Stability if offered load is smaller than 1:

ρ = λr/μ < 1

 Two dimensional process of state (i,j) where i is number of 
customers in the system (excluding the customer in service) 
and j remaining phases of customer in service is Markov 
process

server

Poisson with rate 

load:  =  < 1Lq = 3

Poisson arrivals rate 

service times Erlang‐r 
distributed with mean with
mean β = r/ 
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M/Er/1 model (2)

Balance equations: 
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M/Er/1 model (2)
State diagram:

𝐴଴ ൌ 𝜆𝐼,𝐴ଶ ൌ
0 ⋯
⋮

0 𝜇
0 0

⋮
0 ⋯

⋮
⋯ 0

,𝐴ଵ ൌ 𝜇
െ1 0
1 െ1

… 0
⋱ 0

⋮ ⋱
0 ⋯

⋱ 0
1 െ1

െ 𝜆𝐼

Balance equations: 

Matrix notation: 
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Matrix Geometric method
 Balance principle: Global balance equations are 

given by equating flow from level to with flow 
from to which gives,

 In matrix notation this gives

௜ 3 ௜ାଵ 2 where ଷ

 Elimination of ௜ାଵ gives, for ,

௜ିଵ 0 ௜ 1 3 ௜ ௜ିଵ ଴ ଵ ଷ
ିଵ

଴ ଵ ଷ
ିଵ
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Wrap up
• Continuous-time Markov chains on a strip
• M/M/1-type structure, QBD-processes

• Equilibrium solution of the form 
• Matrix geometric methods

• Powerful numerical method
• Closed-form expressions in special cases

Lecture 7: M/M/1 type models

𝑖 = p1 Ri-1 (i = 1, 2,...)
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