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Figure 1: Transition rate diagram of the homogeneous simple random walk on the state space (n,m) with no
transitions in the interior to the North, North-East, and East. Only the transitions at a few selected states are

depicted as an indication.

Conditions 1.1.  Step size: Only transitions to neighboring states are allowed;

Forbidden steps: No transitions from interior states to the North, North-East, and East are allowed;
Homogeneity: In the interior, all transitions in the same direction occur according to the same rate.

Furthermore, in order to avoid the random walk exhibiting a trivial behavior, we consider the following assumptions.

M = (M., M,) = ( Z (n" = n)P(n,m),(nm) s Z (m' — 7n,)p(,,vm)‘(",m,)), n,m > 0;

n’,m’>0 n' m'>0

M= M) = (0 = o ey 3 00 = )P0 e ) 1> 05

n’,m’'>0 n’,m’>0
M" = (M;"M;’) = ( Z (n' - n)p(().nz).(n'.vn’): Z (m' - 7”)F(!\.1n),[11’.7u’))< m > 0.
n’,m’'>0 n’,m’'>0

hbor random walk is ergodic if and only if, one of the following

Then, when, M # 0, the h X nearest neig

three conditions holds:

i) My <0, My < 0, MM, — M,M,, < 0, and M,M — M, M} < 0;
i) My <0, My >0, and M,M; — M, M, <0;

iii) M, >0, M, <0, and M, M}, — M,M, < 0.

Theorem 1.1. [1, Theorem 2.33] Under the Conditions for meromorphicity 1.1 and Assumptions 1.1, and given

the stability condition, there exists an N € Z., such that for n4+m > N, the equilibrium distribution , ,, can be

written

Tum =Y (a0, B0)znm(a0, o), (1)

(a0,B0)
where (o, By) runs through the set of at most four feasible pairs and c(cv, By) is an appropriately chosen coefficient

and

~
Zn,m(0, fo) = coog By + Z crog (Brly + fuBr), nym >0,
k=1
o

Zn,0(0, Bo) = Zm\n"ﬁ n >0,
k=0

oo
z0,m (a0, Bo) = de B, m > 0.
k=0
The equilibrium distribution of the states close to the origin, e.g. o0, can be obtained as a function of (2)-(4) by

solving the corresponding system of balance equations.




Step 1: 7, ,, = a™f™, m,n > 0, is a solution to the balance equations in the interior if and only if o and

the following kernel equation
ILL ?zc Coro 8 !

af(g-11+q,-1+qo,-1+q-1-1+q-10) =
g1+ 5%q -1+ q0,-1 + q-1,—1+a"5q_10.

Step 2: Consider a product-form coafj " that satisfies the kernel equation (5) and also satisfies the balance
equations of the horizontal boundary. Without loss of generality, we can assume that ¢y = 1. If the product-

equations of the 1l boundary then this constitutes the solution

of the balance equations up to a multiplicative constant that can be obtained using the normalizing equation.

Otherwise, consider a linear combination of two product-forms, B™, m,n > 0, such that

appen it must be

s long as our expression of linear combinations of product-forms violates one of the two balance
y, we continue by ing new product-form terms satisfying the kernel equation (5).
This will eventually lead to Equations (2)-(4). Of course, one still needs to show that the s

(4) converge for all n,m > 0.

o the statement of Theorem 1.1.

h algorithmic implementation
ILJL “W’Y\MU(Q‘Q Inputs p,
. Set ag = p°, dp = 1 and N,
Compute 3y from Equation (18).
'PYUU-ALM‘Q max{[log(¢)/log(50)]
Compute r sively o, B;, for , Nca, from Equation (18).
: Compute the coefficients ¢; and d;, s a, recursively from the balance equations, starting with
dy =1, cf. Step
For all [Tea/2] < m,n < Tea, compute Trf,';\,v;,'" from Equation (28).

8: For all 0 < m,n < |T.a/2], solve the linear system of the balance equations (6)-(11) and compute

atisfied, else update Nca + 1 and go to Stey
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Figure 1: Transition rate diagram of the homogeneous simple random walk on the state space (n,m) with no

transitions in the interior to the North, North-East, and East. Only the transitions at a few selected states are

depicted as an indication.
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Figure 2: The one-step transition probabilities.

qi.—1 =rint 1, qo.0 =rira(tii 2 + ok 1),
qo.—1 =ri(l =r)t11 +r2(1 —ri)t21, q-1,1 =rirti b2,
gro0=ri(l =r)tip+r(—rphr q-1,-1=0-r) —ry).

Conditions 1.1.  Step size: Only transitions to neighboring states are allowed;
Forbidden steps: No transitions from interior states to the North, North-East, and East are allowed;
Homogeneity: In the interior, all transitions in the same direction occur according to the same rate.

Furthermore, in order to avoid the random walk exhibiting a trivial behavior, we consider the following assumptions.
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1\1’:(31,’..31{,):( S0 =y D (m’*777)P(n.«1).<n/.m'y)- n>0;
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q >0
.slr\ab\ M’ M= M) = (Y @ = ) o, (' = m)po,m) urm) )+ > 0.
“nfm'>0 >0
Coy\dl {jm en, when, M # 0, the homogeneous nearest neighbor random walk is ergodic if and only if, one of the following

ditions holds:
i) M, <0, My <0, M, M, — M,M, <0, and M,M/ — M,M// <0;
ii) M, <0, M, >0, and ] ! 1) < 0;

iii) M, >0, M, <0, and M, M, — M,M., < 0.
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Step 1: 7, = a™B™, m,n > 0, is a solution to the balance equations in the interior if and only if o and S satisty

the following kernel equation

aB(g-11 +q1,-1+qo,-1 +¢-1,-1+q-10) =
a’q 11+ B -1+ aB’qo -1 + B2 1 + B (5)
Step 2: Consider a product-form coaf 55" that satisfies the kernel equation (5) and also satisfies the balance
equations of the horizontal boundary. Without loss of generality, we can assume that ¢y = 1. If the product-

form coaf By also satisfies the balance equations of the vertical boundary then this constitutes the solution

of the balance equations up to a multiplicative constant that can be obtained using the normalizing equation.
Otherwise, consider a linear combination of two product-forms, say coaf 85" + c1a™B™, m,n > 0, such that

this combination satisfies now the balance equations of the vertical boundary. For this to happen it must be

that 8 = By and then o = o is obtained as the solution of the kernel equation (5) for 8 = fy.

Step 3: Finally, as long as our expression of linear combinations of product-forms violates one of the two balance
equations on the boundary, we continue by adding new product-form terms satisfying the kernel equation (5).
This will eventually lead to Equations (2)-(4). Of course, one still needs to show that the series expression

of Equations (2)-(4) converge for all n,m > 0.

This procedure leads to the statement of Theorem 1.1.

9, —1Pm—1n+1 + 4—1,1Pm+1,n—1 + G0, 1Pm.n+1
q—1,0Pm+10 +G—1,-1Pmt1n41, m>0,n>0, 22) q-11

G = 4q0,~DPm0 = q1,-1Pm—1,1 +q1,—1Pm—1,0 + 40,—1Pm,1 =10
(q-1,0+4-1,-DPm+1.0 + 4-1,-1Pmt1,1, m>0,n=0, (2.3) Bt + @t

Q-1 4-1,-1" Qo1 qi-1

(g —4-1,0P0n = q-1,1P1,n—1+q-1,1P0,n—1 + 4-1,0P1,n
(90.~1 +g-1,-D)Po.nt1 + q-1,-1P1at1, m=0,n>0, (2.4)

9,-1 q1,-1
q-10 +q-1,-1

(qr,-1+9-1,0p00 = (g-1.0+g-1,-1P1,0+ (g0,—1 +q-1,-1)Po,1 m—
qg-1,-1p1,1, m=0,n=0, 2.5)

Figure 2: The one-step transition probabilities.
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the term (&, Bo) for the vertical boundary is symmetrical.
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Dmn = Xmpn + Fomn, m=>0,n>0,m+n>0. (2.13)

Clearly, from this result we can derive similar expressions for performance characteristics such



1 algorithmic implementati

Uu. numMpA A

2: Set ag = p”, dp =1 and N, = 1.

Compute fy from Equation (18).

"Pﬂ)u—dﬂMfe : hax{[log(¢)/log(Bo)].

Compute recursively «;, j3;, for i from Equation (18).

: Compute the fficients ¢; and d;, 1, a, recursively from the balance equations, starting with
do =1, cf. Step 2.
For all [Tca/2| < m,n < Tea, compute 771,',\“ *) from Equation (28).
3: For all 0 < m,n < |T.a/2], solve the linear system of the balance equations (6)-(11) and compute 7Nea .
. Normalize

. Stop if Equation (29) is satisfied, else update + 1 and go to Step 5.
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Figure 2: The one-step transition probabilities.







