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A virtually inaccessible interior
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Ocean island lavas provide a
“window” to the mantle’ s composition
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Lavas as probes of the mantle’ s composition:

Radiogenic isotopes (e.g., 87Sr/8Sr, 143Nd/144Nd, 29°Pb/2%4Pb) and
some trace element ratios are not changed between solid and melt.

8-,SrI%Sr solid mantle p— 8-,SrI%Sr melt
(Peridotite) (Basalt)



Hotspot lavas reveal a heterogeneous mantle
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Lavas erupted at hotspots are isotopically heterogeneous.

Therefore: The solid mantle sources of these lavas are heterogeneous.




Ocean island petrology/geochemistry:
Probes of the Earth’ s deep interior

The observation that the mantle is heterogeneous leads to some of
the most important questions in the study of the deep Earth:

Part 1: How do ocean islands
sample the heterogeneous mantle:
plumes vs. cracks?

Part 2: How are mantle heterogeneities
formed, and what are they made of?

Brandenburg et al. (EPSL 2008)

Part 3: What was the starting point?

Part 4: How are the heterogeneities
distributed, at what length-scales?




Part 1: How do ocean islands sample
the mantle: Plumes vs. Cracks?

40t anniversary of an important hypothesis: Hotspots are
formed by upwelling mantle plumes (Morgan, 1971).

convection in the lower mantle which provides the motive  material up to the asthenosphere and horizontal currents in thi

1 now propose that these hotspots are manifestations of  deep mantle plumes bringing heat and relatively primordis
force for continental drift. In my model there are about twenty asthenosphere flow radially away from each of these plume
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Revision: Not all hotspots are formed by plumes.

Warping and cracking of the Pacific plate
by thermal contraction David Sandwell and Yuri Fialko
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Volcanism in Response to
Plate Flexure
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Chauvel et al., EPSL, 1997

Hotspot “highway”

Jackson et al., G-.cub.ed, 2010
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Hotspot “highway”
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Long-lived, overlapping hotspot tracks
that preserve distinct isotopic pedigrees

Konter et al., EPSL 2008
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60-100 million-year-old seamounts in the west Pacific “backtrack” (using Wessel and
Kroenke, 2008) to the current locations of 3 different active hotspots.

The “backtracked” seamounts have the same geochemistry as the hotspot of origin.

Age-progressive, geochemicaly distinct, long-lived.



| Rurutu hotspot:
The longest
lived hotspot?

(Wessel &
Kroenke, '08)
. Only Pb data
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Prediction of mantle plume hypothesis: Plumes
must be hotter than the adjacent mantle

Use melt compositions to infer mantle melting temperatures.
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Controversial. Use olivine-melt compositions and extrapolate to mantle melting
temperatures. Falloon et al. (2007) observed no difference between average
ambient mantle (i.e., MORB) and plumes. Putirka et al. (2007) got a 200
degrees C difference.



Part 2. How did the mantle become heterogeneous?
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Recycling hypothesis: Crustal

materials injected into the
mantle at subduction zones,
and this material is returned to
the surface in upwelling mantle
plumes.

Mantle plumes from ancient oceanic crust
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Recycling hypothesis

Oceanic plates and sediment are injected into the mantle at
subduction zones, returned to the surface in mantle upwellings

(plumes?), and melted beneath hotspots.
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Rivers contribute > 85% of
ocean floor sediment

“The geochemical signature of OIB originated in the upper mantle and crust through melting.”
-Bill White, 2008



New 8/Sr/%6Sr and %3Nd/144Nd data:
Consistent with upper continental crust!
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Continental crust has unique
trace element “fingerprints”
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But what about the other components??
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Paradox: How can radically different subducted lithologies
generate such similar trace element patterns in OIBs?

100

=@=EM1
A=HIMU

=>=Marine sediment (GLOSS)
=O=Eclogite

Sample/PM

xxxxxxxxxxxxxxxxxxxxxxxxxx

Rb Ba Th U Nb Ta K La Ce Pb Pr Nd Sr Zr Hf SmEu Ti Gd Tb Dy Ho Y Er Tm Yb Lu

1. Exotic modern sediment?
2. EXxotic metasomatic components?

3. Ancient sediments? Archaean, Neo-proterozoic? Poor constraints.



The “holy grail”

Major element (lithological?) heterogeneity
accumulates in the mantle
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Pinpointing specific major element compositions for the different isotopic
reservoirs will allow experimentalists to better constrain source lithologies



Lithological heterogeneity?

An olivine-free mantle source of
Hawaiian shield basalts

Alexander V. Sobolev'~, Albrecht W. Hofmann', Stephan V. Sobolev’* & Igor K. Nikogosian>®
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Part 3: Where is “"home”?
Following accretion, a deep terrestrial magma ocean...

Siderophile elements (Fe-Ni) to the core, leaving behind the
early (primitive) silicate mantle.

From the primitive silicate earth, the crust (continental and
oceanic) was extracted from the early primitive mantle.

Crust subducted back into the mantle & mixed/stirred.

Did portions of the earliest primitive mantle survive to
the present day?

Courtesy of NASA/JPL-Caltech



“Prospecting” for primitive mantle:
If any of the early-Earth survived,
what would it look like today?

1. Noble gas isotopes and abundances (high 3He/*He)

2. A primitive, mantle reservoir should have predictable
abundances (chondritic?) of the refractory, lithophile
elements (e.g., Sm and Nd).

3. Pb-isotopes will be on the Geochron, the locus of data in Pb-
isotope space that have had the same U/Pb for ~4.5 Ga.

 Any mantle-derived melts satisfying these three
requirements? No!



Lavas with primordial 3He/*He don’ t
have primitive chondritic 43Nd/144Nd
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Implications for Neodymium-142

(Boyet and Carlson, Science, 2005)
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- Background: Nd-isotopes, two “clocks”:
147Sm decays to #3Nd (t,,=106 Ga)
146Sm decays to '#°Nd (t,,=103 Ma)

- Discovery: Boyet and Carlson (2005) found that
142Nd/144Nd ratios in accessible modern terrestrial
lavas are 1815 ppm higher than O and C chondrites.

- Implications: All modern terrestrial samples evolved
from a mantle reservoir with a Sm/Nd ratio 5% higher
than chondrites, and super-chondritic 1#3Nd/44Nd!

There are two models for this:
A. Primitive mantle isn’t chondritic:*3Nd/"4*Nd=0.5130

B. Primitive mantle is chondritic ('*3Nd/'44Nd=0.51263)

but differentiated into 2 complementary reservoirs that
sum to chondrite:

1. Early depleted reservoir, progenitor of all modern
terrestrial lavas (*3Nd/'*“Nd=0.5130)

2. Hidden enriched reservoir (1*3Nd/44Nd << 0.51263).



Predicted parental mantle reservoir
overlaps with high 3He/*He reservoir
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Problem: Terrestrial lavas with high 3He/*He don’ t
plot on the Geochron!
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Baffin and West Greenland picrites
plot near the Geochron
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PREMA (Prevalent Mantle)
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If the large proportion of OIB lavas with present-day '43Nd/'44Nd near 0.5130 reflects a
high proportion of non-chondritic primitive material in the mantle, then primitive material
must comprise a substantial portion of the modern terrestrial mantle.



A growing clamor....

Bottom line: Terrestrial oxygen isotopes ™~
not like C and O-chondrites
(Clayton)! Cr too (Qin & Carlson).

) March 2008 doi:10.3038 /mature06 760

Super-chondritic Sm/Nd ratios in Mars, the Earth and

the Moon
Implications: Gullaome Car, Brnard Bourdon’, Alex . Haldsy® & Ghylane Quits’
1. DMM is >45-90% of the mantle (to b 40
>1600 km depth). If primitive mantle
143Nd/144Nd is 0.5130 (instead of 20 :
0.51263) then much more than 25% Y I
of the mantle needs to be depleted to = .} T A
make DMM!
2. What was once considered depleted = .o+ o Pan
may actually be enriched! /LH'\""
3. How to preserve for 4.5 Ga? 40t / (+Vesta?)
4. A whole new family of models are =16 G100 030 091 0o GEs
needed! O smpeiitE 000

Far from being a “dying field”, we are in the midst of a geochemical revolution!



Part 4: Distribution of mantle
heterogeneities inferred from ocean islands

DUPAL DUPAL vs. seismic

anomaly low velomty anomaly
— - : = .- s L’,‘, ..." ton ~— o — e ’I
' : A A 3\ | e oy, 200~ } G ¢ X \‘, ) » WA
AT h-'.’ff; Q0 2N\
A - ¥ Y X
r ‘° \A ' ‘ N o > '/;. ;«. A 200 ]
, A 04 el .

- ’ .| "% ) S W — A
| * oy bowSTSraegy | r‘ j//(’/‘{‘(// == )‘1

@ o - T vemed :y,. : e ;-_" 0.0
s o Bl | L ———— Castillo, Nature, 1988 |

--The DUPAL anomaly is a globe encircling feature of isotopic enrichment in
southern hemisphere OIBs. Largest isotopic feature in the Earth’ s mantle.
--Key observation: surface geochemistry associated with seismic
anomalies at depth.



How to generate hemispheric heterogeneity
in the first place?

Focused subduction around
the perimeter of a supercontinent?

“Indeed, what can be proved in the

. 7 -C. Allegre
Earth Sciences?” .79 & coc Lond. 4

vol. 360, 2002
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Geochemical structure of CMB
preserved in plume conduits

Farnetani

250 0 250
Y- distance n TBL (km)

Prediction: A plume south of the low velocity zone will be enriched on the
north side. Indeed, we have discovered such a plume....
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Looking ahead

Plumes, no plumes, or sometimes plumes? Are
notspots hotter?

Does recycled crust and/or sediment explain
notspot geochemistry? Is the mantle lithologically
neterogeneous?

s the Earth chondritic? Or does primitive mantle
nave “3Nd/44Nd=0.5130?! Without the
chondrite model, the “road ahead” has no
map!

What caused the DUPAL anomaly? Is the
DUPAL anomaly responsible for the zoned nature
of mantle plumes?




Models of mantle convection and distribution of
heterogeneities
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Hw - Hawail OIB Chemistry — Conditions of Melting

Mq - Marquesas .
versus Source Heterogeneity
Ga - Galapagos

Ea « Eastor
PG « Pitcalrn-Gambier
Sy » Soclety
Sa - Samoa
Ca -Caroline
Dasgupta et al. (2010)
t2 - t1 = plate age at the time of volcanism

t > 2 >

® —> ’ —>
1

Thermal Erosion I Solidus | Solidus

t, - sea-floor age

t; - eruption age
d, - LAB at the present-day
d, - LAB at the time of volcanism
or the shallowest possible depth
of decompression melting
d; - solidus depth or deepest condition
Magmatic Underplating of decompression melting




OIB Chemistry — Source Heterogeneity
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Melt inclusions:

1. Small volumes of melt
trapped in growing crystals
at depth.

2. Melt inclusions record
“snapshots” of
Intermediate mixing steps
In magmas.

Melt inclusion compositions often do not reflect whole rock composition:

1.) The isotopic variability reflects the diversity of mantle sources that contribute to a

single lava.

OR
2.) The isotopic heterogeneity results from processes operating at depth, including
magmatic assimilation of crustal materials.
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If the 2Nd excess is from 46Sm decay....two models

1. Early (>4.53 Ga) differentiation event of a
chondritic primitive mantle, resulting in two
complementary reservoirs:

A. EDR (Early Depleted Reservoir):
-High Sm/Nd (~5% higher than chondrites)

-All modern mantle reservoirs derive from the
EDR with #3Nd/"#4Nd = 0.5130.

B. EER (Early Enriched Reservoir):
-“Hidden” reservoir with low Sm/Nd.

2. Non-chondritic primitive mantle that has
Sm/Nd ~5% higher than chondrites.

-Earth accreted from material with super-
chondritic Sm/Nd.

-All modern reservoirs derive from primitive
mantle with 143Nd/'44Nd = 0.5130

**We don’ t know whether elevated 42Nd/'#4Nd in
modern terrestrial rocks results from early depletion
event or accretion from a non-chondritic material.
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Moon-forming event, and the survival of
a “hidden” early enriched reservoir?

An early differentiation event—if it
even occurred—is constrained
(14Sm-142Nd systematics) to
have occurred within 30 million
years (>4.53 Ga) of accretion.

Moon formation must have
followed any early differentiation
event (182W-182Hf systematics).

How would a “hidden”
reservoir remain hidden during
a giant impact event?

. . Half an Hour After the Giant Impact, based
AISO, a hidden enriched on computer modeling by A. Cameron, W.

reservoir is ENRICHED Benz, J. Melosh, and others. Copyright

William K. Hartmann

(U,Th,K), and is therefore hot.
Should be present in plumes.
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Old Reservoir, Old Idea
(new possibilities)

CONTINENTAL FLOOD  MID-OCEAN RDGE
BASALTS BASALTS
(o) %8

-4 -2 QO 2 +4 +6 +8 +10 +»

“The nominal value of e€HUR=Q for the continental flood
basalts indicates they are derived from a reservoir which
has maintained an unfractionated, chondritic Sm/Nd
throughout the history of the earth.”

-DePaolo & Wasserburg, GRL 1976



How does a portion of the
mantle survive for ~4.5 Ga?

Brandenburg et al. (EPSL, 2008)

Solid-state convective stirring
Is thought to process large
portions of the mantle on
geologic time-scales.

Recent dynamic models
suggest that pristine portions
(up to 10-15%) of the mantle
might have escaped
differentiation and mixing
over the age of the Earth (in
convective “eddies”?).



ONd/“Nd

What do chondrites tell us?
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In detail, chondrites aren’ t “chondritic”!



The building blocks of planets
within the “terrestrial’ region
of protoplanetary disks

R. van Boekel ~, M, Min', Ch. Leinert’, LB.F.M. Waters'*, A, Richichi’,
0.Chesneau’, C. Dominik ', W, Jaffe’, A Dutrey”, U, Graser’, Th. Henning ",
J. de Jong”, R, Kahler', A. de Koter', B, Lopez’, F. Malbet’, S, Morel’,
F. Paresce’, G. Perrin’, Th. Preibisch’, F. Przygodda’, M. Schaller’

& M. Wittkowski”

SSIEEX
Inner disk Outer disk
(0-2AU) (2-20 AU)

Totie 1 Dust properties in the inner and outer disk

Corystidirdy Foacoon of Won Oorains Crval ding ondne 10
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e O OLer ciab Yr e e Ok s O Oniter chak
MD 1620 0" 15* 25t 65 254
HD 144450 - ° xr 20*.5
HD 1482527 " 0" £ = 21 y

van Boekel et al., The building blocks of planets within the

terrestrial’ region of protoplanetary disks, Nature, 2004.
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Or, sediment is subducted and
subsequently mixed to “smithereens™?

Australian-
Indian plate

Thin sediment
veneers would
be
“destroyed”
by mixing.

Figure 11 Evolution of S Austrahan-Indam plate in the steady state cuxing mode]
of Van Keken & Zhoug (1959). Snapabots of the parscles that composed the plate 22
tme O are shown at 1, 2 and 4 Ga

Van Keken et al.{Ann. Rev. Earth Planet. Sci., 2002)

The mantle is a big place: Mass of subducted continents is only 0.1% of the mantle.
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150 Km

Melt Transport Through Focused Porous Flow

) Melt Production Zone

M. Braun via
Workman, 2004

Crust

Depleted
Lithosphere



Tackley, 2000
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Nucleosynthetic anomalies?

Ranen & Jacobsen (2006): Measured anomalies in the abundance of 137Ba and 138Ba in a variety of
chondrites, and concluded that the difference in 142Nd/144Nd between chondrites and terrestrial
rocks reflects nucleosynthetic heterogeneity in the solar nebula. They argued that imperfect mixing
of the nucleosynthetic contributions from various stars thus could result in variations in 142Nd/
144Nd that are not related to 146Sm decay.

1. These anomalies not confirmed in either previous (Hidaka et al. 2003) or more recent studies (Andreasen
& Sharma 2007; Carlson et al. 2007; Wombacher & Becker 2007).

2. Although excesses in 135Ba and 137Ba, which are related to variations in the ratio of r- to s-process

components, have been observed in carbonaceous chondrites, they have not been observed in ordinary
chondrites or eucrites (Hidaka et al. 2003; Andreasen & Sharma 2007; Carlson et al. 2007).

3. When Ba isotopic anomalies are measured in carbonaceous chondrites, they show little or no correlation
with the magnitude of 142Nd deficit measured in the same sample (Carlson et al. 2007). Ba isotopic
anomalies in carbonaceous chondrites appear to have little or no significance for the interpretation of the
142Nd/144Nd difference between chondrites and terrestrial rocks.

Of greater concern is the discovery that carbonaceous chondrites contain approximately 100 ppm
deficits in 144Sm (Andreasen & Sharma 2006; Carlson et al. 2007), which, like 146Sm, is produced
by the p-process. This result indicates nucleosynthetic variability in C-chondrites.

1. ltis possible to correct for this p-process deficit in C-chondrites. A 100 ppm deficit in 144Sm/152Sm
would translate into an 11 ppm deficit in 142Nd/144Nd due to the reduced abundance of 146Sm
(Andreasen & Sharma, 2006). Therefore, the correction brings the average C-chondrite 142Nd/144Nd
value to ~21 ppm below terrestrial, a value that is similar to that obtained for other meteorite groups.

2. P-process heterogeneity does not appear to be significant for O- and E-chondrites, basaltic eucrites or
lunar samples, as all these materials have the same 144Sm/152Sm as measured for terrestrial rocks

Conclusion: The observed difference between chondritic and terrestrial 142Nd/144Nd does not reflect

mitAalAAANAARIA IhAtAra~aAsamsAaibis m A aAlar mARIIlA Wit vicatAanA 1a At Avialaima~aAdA W+ A AAaAamyvs AF 114120 a4~



Sample/Primitive mantle

Highest *He/*He Baffin Island
lavas bracket the OJP
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Jackson and Carlson (Nature, in review)



Relationship between flood basalts and a
primitive (non-chondritic) mantle

* Relics of the early Earth may not be so rare?

* Why would this reservoir be sampled by large
igneous provinces?

A.Primitive Mantle produces more heat, melts more.
B.Primitive Mantle is more fusible, melts more.

A recipe for producing extraordinary volumes of melt?



-2.50 -1.00 0.00 2.50

&Vg (%)

Figure 1| Reconstructed large igneous provinces and kimberlites for the
past 320 Myr with respect to shear-wave anomalies at the base of the
mantle. The deep mantle (2,800 km on the SMEAN tomography model®) is
dominated by two LLSVPs beneath Africa and the Pacific. The 1% slow
contour (approximating to the PGZs) is shown as a thick red line. 80% of all
reconstructed kimberlite locations (black dots) of the past 320 Myr erupted
near or over the sub-African PGZ. The most ‘anomalous’ kimberlites (17%)

Torsvik et al. (Nature, 2010)



PREMA? (Prevalent Mantle)

. PREMA defined by the i
most frequently — > -
occuring 143Nd/'44Nd in BEARTLIK B
global OIB dataset. > 5. F
Zindler and Hart (1986)
it § chongritc primitve |

mantle predicted by

- PREMA is isotopically - I 142Nd/ 144N :
similar to the highest - . | i)
SHe/*He lavas from "o 2 »
Baffin Island. —

n -

« Is PREMA a surviving Wi

portion of a non- AR B S o O e
chondritic Primitive el 8138 RS E S'M
Mantle? N/ NG

Zindler and Hart, 1986
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Starting composition of the Earth—Chondritic?

10 }
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Abundance in solar atmosphere
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Abundance in carbonaceous chondrites
Comparison of solar-system abundances (relative to

silicon) determined by solar spectroscopy and by analysis
of carbonaceous chondrites (after Ringwood, 1979)

1.) Carbonaceous (C) chondrites = Sun

2.) C-chondrites and Earth came from
the same (homogeneous?) solar
nebula, and the sun represents over
99.9% of solar system’ s mass.

helhsrefere;cgoahendnites Ishaniftion:

(non-volatile, lithophile elements like
Sm and Nd)

4.) If the Earth is a C-chondrite, then
Earth and chondrites have the same
143Nd/144Nd_ (147Sm > 143Nd + 4He)




Primordial helium in Earth’ s mantle?
eHelium in the Earth’ s mantle:

-Two isotopes: 3He (lower abundance) and “He (greater abundance)
-U and Th decay to Pb via alpha decay (*He nuclei production)

-Little 3He produced in the earth (mostly primordial)

-Therefore, 3He/*He in the earth decreases with time.

-Absolute 3He/*He ratios in the solar system are small (103 to 10-8),
so we normalize to 3He/*He ratio in atmosphere (Ra, 1.38x10°).

*The sun (solar wind) and the atmosphere of Jupiter have high 3He/*He.
High 3He/*He is thought to be primordial.




Homogeneous?

Y23318D-Td/VSVN 40 A$811n0)




In the beginning....

4.568 Ga (Bouvier & Wadhwa, 2010)

Solar Nebula Theory:

Cloud of gas and dust

Rotating disk

Gravitational collapse

Solar nebula with young sun
Planets accrete from rotating cloud

ko~

Courtesy of NASA/JPL-Caltech



Part 2: Did portions of the earliest, primitive
mantle survive to the present day?

--The “Holy Grail” of mantle geochemistry

--The “initial condition” for the silicate Earth required for modeling
evolution.

--The discovery would constrain the Earth’ s early chemical evolution: How
did the Earth arrived at its present geochemical state?
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Baffin Island lavas have highest
e/*He

*He/*He (Ra)
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What about initial SHe/*He on OJP?
(and the other old flood basalts?)

Combining ["He] cosmogenic dating with U-Th/He eruption ages
using olivine in basalt

Sarah M. Aciego ***, Donald J. DePaolo ®°, B.M. Kennedy ®, Michael P. Lamb °,
Kenneth W.W. Sims ¢, William E. Dietrich ®

“....olivine phenocrysts in basalt are embedded in
basaltic groundmass that has much higher [U] and
[Th] than the olivine. Consequently, “He from
alpha-decay of groundmass U is implanted into the
rims of the olivine grains.”



A non-chondritic Earth?

The community has known for several decades that the Earth
doesn’ t have oxygen isotopes like C and O-chondrites!

Implications:

1. DMM is >45-90% of the
mantle (to >1600 km depth).
If primitive mantle '#3Nd/ |
144Nd is 0.5130, instead of kel §:

05133 | .1. Mid-Ocean Ridge Basalts
| o

0'512642)’ then much more ;:: Q;’ =, Non-chondritic primitive mantle
than 25% of the mantle . Once ST EETG
needs to be depleted to 3
make DMM! 2 osizs depleted this field may

2. What was once considered osizr NOW be enI’IChed ' |
depleted may actually be o126 [ chondrite - e -
enriched! 05125 |

3. How to preserve for 4.5 Ga? 05124 |

4. A whole new family of omp e (thzmar:njOO?,
models are needed!

Far from being a “dying field”, we are in the midst of a geochemical revolt



Caveat: Crustal contamination
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Trace elements indicate no role for
continental contamination in our sample suite
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Kent et al. (2004) obtained a trace element dataset on Baffin Island glasses
(pillow rims). The glasses are extremely fresh, give pristine Pb and U.



Why do high 3He/*He lavas from other
localities plot off of the Geochron

(and have somewhat lower SHe/*He)?

* Recycled crust is rich in Pb,
U and Th.

 If recycled crust mixes with
ambient mantle, or
surviving pieces of primitive
mantle, the mixture will be
shifted away from the

o s P30 Ra) “ geochron.

157 T

U and Th in recycled crust

SUE S L8, will generate “He and will

07 '8 ‘9 o reduce the 3He/*He of the
“pp ™ pp mixture.

Jackson et al. (Nature, 2010)




Magmatic He is hosted in the olivine,
U and Th in the basalt matrix
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1. Helium is massively degassed before and during eruption.
2.Following degassing of He, parent-daughter ratios (U/He & Th/
He) are increased by many orders of magnitude.

3.“He generated by U and Th decay diminishes 3He/*He ratio.
4.Lesson: Avoid measuring 3He/*He on old lavas (62 Ma)!




Another Caveat: Radiogenic “He
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Super-chondritic Sm/Nd ratios in Mars, the Earth and
the Moon

Guillaume Caro', Bernard Bourdon?, Alex N. Halliday® & Ghylaine Quitté*
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Combined lunar datasets define an isochron which intersects the shergottite isochron at a
value of Sm/Nd ~5% higher than chondritic, and '42Nd/'44Nd like Earth.

Planetary differentiation? If so, we need hidden enriched reservoirs on Earth, Moon and Mars
which would have shifted the composition of the depleted reservoirs by the same amount.

Given differences in size and age, this seems unlikely.

The fact that the lunar and martian isochrons intersect at a #2Nd/'#*Nd ratio identical to the
terrestrial value can hardly be coincidental....instead, all 3 bodies accreted form material with
Sm/Nd ratio ~5% higher than chondrites.



The mantle tetrahedron
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20F Raymond, Quinn and Lunine 2006~
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Showing the time-wise accretion of the largest three final planets

The three final planets were built from 175-500 initial embryos
during 47-98 separate collisions
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Hemispherically heterogeneous high *He/*He mantle.
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High *He/*He mantle is heterogeneous.
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Earth’ s “missing” titanium, tantalum and niobium (TITAN)
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The Standard Model
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Remarkable agreement between trace
elements and isotopes fingerprints
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Ti and Nb depletions vs. isotopes
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Multiple isotopic systems consistent
with recycled sediment
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Recap: Strong geochemical evidence for a
sediment signature in Samoan lavas, but....

Rapid-cycled sediment Shallow-level assimilation
from the Tonga trench? of marine sediment?

A NS N

\ V| opening Lau Rasin
| Marine sediment

Plate teariigy g X -\ Oceanic crust

Turner and Hawkesworth, Geology 1998



Rule out contamination by
sediments from the Tonga trench

Tonga trench — Savai’ i convergence rate = 24 cm/year !



Rule out contamination by
shallow modern marine sediments
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Trace elements didn’ t indicate a
sediment signature either....
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“High tech” dredging
in the 21st century
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Wu et al., 2009 EPSL
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Fig. 5 Compurison of the caculared densities of the subducred continersal onuese and
MORE { Aok and Takahasts, 2004; Hirose et ol 1999) with respect 1o he density profile
derived from PREM mode ( Deieworskl and Anderson, 198 1) Densky cakulations were
carmied out along the theee geotherms which are typcal for cold sad bot subduction and
normal mangle (Akaogl aad Navrotsky, 1989 Aok and Takabashl, 2004 ) The third
order high-tempersture Bech-Murmaghan equation of state was wsed i the density
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Trending toward continental crust...
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Lost Continents?

* 0.5-0.7 km?3 marine sediment (mostly

derived from continents) is subducted
annually.

* In4 Ga, thisis a LOT of sediment—or about
1/3 of the mass of modern continents.

That’ s Africa + S. America!

* What is the fate of this sediment”? Where is
it now? Do we ever see it again?



Typical oceanic hotspot lavas:
No clear sediment signature

Blue = MORB

OIBs:
Green = Hawaii

Red = Mangaia Is.

Orange = Tristan lIs.

Normalized concentration
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Samoa historically an example of a hotspot that
samples a recycled sediment component, but....
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Recycled sediment signatures
In hotspot lavas are rare...

« Large quantities of sediment enter the mantle.
Africa AND S. Americain 4 Ga!

 Why is recycled
sediment so rare
in hotspot lavas?
It took >30 years
of looking!

~ |Hofmann (l}lature, 2002) .



Sediment melted during subduction and
“short-circuited” back to the surface?

Island-Arc Volcano

Oceanic Crust

Tracine t firanis I m“l\/lass balance indicates that ~20% of
TACHIS HTace SIOMOIe N the element budget in subducted

sediment input to volcanic ..ot is recycled to the arc.
output at subduction zones a larger fraction of subducted

Terry Plank” & Charles W Langmuie  sediment may continue to descend
| | . with the plate into the deeper mantle.”



An attempt to “frame” the debate
Two end-member positions:

Plumes are real

e Plumes exist as upwellings from the core-mantle boundary layer.
Most of the active hotspots in the oceans are driven by plumes.
Age-progressive hot spot tracks are a key signature of plumes.
These plumes sample mantle that has been sequestered for ~ 2 Gy.
These upwellings are ~ 150°C hotter than ambient mantle.

Three of the species in the mantle zoo live in this boundary layer.

Don’t need ‘em

with apologies to the FHAN Club if I’ve misstated
their position - (Foulger-Hamilton-Anderson-Natland)

Plumes don’ t exist as important dynamical features of the mantle.

We rarely if ever see material from the lower mantle.

hotspots are volcanism from the upper mantle, related to plate fracturing.
age progression in hotspot chains is related to fracture propagation.

the upper mantle is wildly heterogeneous, both chemically and lithologically.
the > 104 volcanic seamounts in the ocean are ephemeral “crack-melts”
from the uppermost mantle.



What is a Mantle Plume?

a narrow quasi-vertical upwelling of mantle, driven
either by thermal or chemical buoyancy (or both).

As a plume decompresses near the surface (<200 km), it may partially

melt, leading to volcanism. This surface expression is usually

called a “hot spot”.

The term “hotspot” should not be taken as always implying a “plume”.
Plumes may or may not be “fixed” in position (typically migrate at < cm/year).
Plumes may or may not “live” for a long time (typically < 100 Ma).

Plumes may or may not have ever been “seen”.

Plumes are of unknown diameter, but usually “considered” to
be circa 100 - 500 km.

Plume upwelling velocities are unknown, but usually “considered” to
be circa meters/year.



