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Deformation of tame admissible covers of curves

Stefan \\¡e'wers

lvelvers,Q exp-math. uni-essen. de

Abstract

Let X be a sernistable curve over a cotnplete local ring and let
Þ:l - .f, be a tame admissible cover of the special fiber. To lift p to
a tame admissible cover p : l" * X, it suffices to lift p locally in small
neighborhoods of the singular points. The present paper gives a proof
of this result using formal patching. As an application in the case of
snrooth curves, a proof of Grothe¡rdieck's Theorem on the tame fun-
damental group of smooth projective curves in positive characteristic
is included.

Introduction
Let X be a semistaìrle cnrve ovel a complete local ring and let þ:Y - X be a
tame aclmissible cover of ihe special fiber.'Choose a horizontal divisor .D C X
lifting the branch locus D C X of l. To def'orm p to a tame admissible cover
p :1" * X, ramified along D, it suffices to lilT I locally in small neighborhoods
of the singular points. To do so, one has to choose roots of local parameters of
the singular points of X, Hence, defbrmations of p exist in general only ¿¡¡ut
a tamely ramifred extension of the base ring and are in general not unique.

In the case of smooth curves, holveveL, deformation of tame admissible
covers is always possible and is unique. This result was first proved b5,-

Grothendieck ancl usecl in his theory of specialization of fundamental groups.

[8]. In [9] deformation of mock covers is studied and applied to tame fïnda-
mental groups. These results can be rel'ormulated in terms of deformation of
tame aclmissible covers which are unramified over the singular points. In [23].
clefbrmation of admissible covers over complete cliscrete valuation rings are

clescribed. This is usecl to construct a specialization morphism of fundamen-
tal groups of curves with semistable recluction. The fìrndamental group of the
special fiber', classifying aclmissible covers, is clescribed b¡r a graph of groups.

Thele are also many results on cleibrmatiou of covels of curves which are not
admissible. The1,' are all proved using some version of either lbrmal or rigid
patching. Let us only mention the result of Harbater [10] that every finite

1



240 I4 814/BRS: Deformation of tame admjssjble coveïs of cu¡'ves

gr.or.rp is a Cialois group o\¡er Qp(r') ancl the proof of Abh¡'anliar's conjecture
in [22] ancl [11].

The cletblmation theorem provecl in tliis paper is used in [13], [19] ancl [2õ]
to compactil-r'Flurlvitz spaces. For this application it is important to have a

plecise unic¡reuess statement and to tt'orli over cluite general complete local

lings. Even though rigid patching has often shou'n to be the more flexible

approach, in palticulal for covers n'ith lvilcl ramification, in the present situ-
ation formal patching seems to be more appropriate. The potential and the

mechanisms of formal patching ale certainly lvelÌ linolvn to algebraic geome-

te¡s. But thet'e seems to be no ret'erence lbr this particular result lvhich is

reasonabl¡,' self contained ancl accessible ibr a lvicler audience.

Thelefore, the present paper has tlvo goals. First, to give a rigorous proof

of the general clelbrmation theorem of admissible co\¡ers. Second, to make

lbrmal patching and its application to fundamental groups more accessible to

non-specialists.

The main result

Let -R be a con-rplete noetherian local ring rvith separaìrly closed residue field
À ancl let XlRbe a projective norlal cur,;e. By this rve mean that the special

fiber Í :: X xR lc has at lvorst ordinarrv clouble points Í1,... , xn e X as

singularities ancl their complete iocal rings on X are of the ibrm

O x," ?.R[lu¡''t'¡ | u¡u¡ = t¡l],

n,lrere the isomolphism is inclucecl by elements rI¡,u¡ € (?.v,', lvith t¿'.= u¡u¡ e

R. The elements u;,u¡ can even be chosen from the henselian local ring
()x,,, C O¡,,,. It othel rvorcls, X is locally around c¡ (in the étale topologl'')

isomorphic to the stanclarcl noclal curve SpecA[u¡, u¡lu¡u¡ = lo].

Let D C X be a. ntarl; on X, i.e. a horizontal divisor which is étale

orrer SpecA ancl does not meet the singular points. Ã tame admissible cot:er

p:\" - (X,D) is a flnite morphism betlveen nodal culves, ,,r'hich is tamei-u"

lamified along D, étale over X'- - D ancl verifìes the lbllowing condition over

the singular points. Lel y¡ € l" be a point l¡zing over one of the singular points

r¡. Then y¡ is a singular point of Yf R,i.e. ()y,uj: -R[[s¡,srlr;s; : r¡]] rvith

Tj :: rjsj € .Ë. i\loreover, lve can choose r¡,s¡ e Ov,r, such that rl' = ui and

tIt : rj for an integer nj prime to the charactelistic of À a¡d u¡,u¡ e ()y,s¡

as above.

Suppose lve are given a tame admissibie cover' þ : Y * 
-(X, 

D) of the

special fiber i :: X xnk of X. For every point y, € Y- lying over a

singr.rlar point e1 € X lve can choose rr,Jr € 01r,,,, lvitlt frJ, : 0, tit - ui

ancl sli = lrj, q,he¡e Lrijl)i ate as belbre and t¡,i:¡ clenote theil restrictions

to tlre special fiber. A deJornt,ation, of p to fr is a tame aclrnissible cor.'er

p i\'- X lvith p xnk - p. For ever"u* cieformation p of I thele ale unique
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lifts rr, -rj e Ov,u¡ of r;,s¡ u'ith rjr - ui, s:t = ?rj and rr i: rjsj € r?. Thus
tlre delbrmation p determines a tuple (r¡); of elements of .R with ,ij : t;.
Let ns call the tuple (r;) Ihe deJornr.ation døtunt for p corresponding to the
deformation p. Our main result can be stated as follou's.

Tlreorenr: The assignment

p 
- 

(r¡:: r¡s¡)¡

inrluces a bijection between isontorphisnr classes of d,eforntations of p to R
and the set of tuples (tì¡ of ele¡¡¿ents of R with rlt = t,. lforeouer, the iso-
ntorlthisnt between tuo deforntations with the sante deforrnøtion datum (r¡)¡
is unique.

This theorem appears as a claim in [13] (page 61 f) for simple covers and in

[19], $3.23 in the same generality as above. in the case that -R is a complete
discrete valuation ring ancl D:A it is proved in [23]. The surjectivitl,'of the
map in the theorem is proved in [12] for the case.R = À[[rr,... ,r"]]. Other
special cases of the theorem appear in rarious papers dealing with Galois
action on fundamental groups, e.g. in [1õ].

Outline

Section 1 serves an an introduction to formal patching. \tr'e explain the general

iclea of the proof ancl present the necessary tools, namely étale localization.
clescent ancl Grothenclieck's Existence Theorem. In Section 2 we shorv that
ever¡r tame admissible cover is étale locally isomorphic to a cover of a certain
standard shape. To shorv this, lve introduce local coordinate systems of a
noclal cnrve at an orclinary double point. Section 3 contains the proof of ihe
main result. In Section 4 we give a proof of Grothendieck's theorem on the
tame lïndamental group of curves in positive characteristic. The appendix
contains sone results about étale ring extensions and henselization which are

used in this paper.
Throughout, rve assume that the reader is lãmiliar with the definition

of a scheme, Holvever, lve have tried to keep the references as accessible

as possible. IVIost proofs make only references to Hartshorne's book or a
stanclarcl textbooli on commutative algebra.

I thanli Davicl Harbater and Helmut Völhlein fbr helpful discussions about

the content of this paper,

L Formal patching

This section is an introduction to formal patching, as it is understoocl in
this paper. The reader familiar with this circle of ideas can sliip ii without
problems. The general refèrence for this section is [8]'
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\,\¡e start in 1.1 lvith an outline of tlie proof of oul main resr.rlt from a
more genelal point of vien'. Nlore plecisell.'. lve explain those icleas of the
ploof lvhich are inclepenclent of the special case of aclmissible covers. This
outline motivates the fbllon'ing subsections, lvheLe the tools lve need to do
lblmaì patching are plesentecl. These are étale localization, étale clescent and
Grothenciieclt's Existence Theorem.

1.1 Outliue of the proof
1.1.1 Let ¡? lte a complete local ring u'ith resiciue field A'. Let X be a
scheme o'n'eL -R. \\¡e n'rite X :: -X x¡ Â'for the special fiber. Let P be a
ploperty of morphisms of schemes which is locaÌ, in an appropriate sense. To
fix ideas, lve assume that a morphism lvith propertl' P is finite.

Problem 1.1.1 Suppose r\¡e are given a morphism p : Y - X rvith propertl'
P. Does there exist a morphism p ; \' + X rvith propert¡r P such that
},=l'xnÀ.?

The present paper cleals lvith this problem in the case that a morphism
lvith propert.u" P is an admissible cover of curves. In the rest of this section
lve sholv that, uncler certain general conclitions on the scheme X and on
the property P, Problem 1.1.1 can be solvecl using standard techniques of
algebraic geometry.

l.Lz The main iclea is to solve Problem 1.1.1 first locally and then to
glue the local solutions together to a global solution. To do this, lve choose
an open co\¡eling (L'¡)¡e t of X. Then (U¡ := {:¡ n X), is an open covering
of -\ and_(!i :: p-t(U)), is an open coveling of Y. I\Ioreover', the maps
p; : l'¡ - úi¿ incluced by p have property P (since P is a local ploperty). For
i.j € I u'e let [ii,.r :: L,¡-:t L,, Ú,,j := Ú;^tu¡ and V¡,.¡ := V¿nV¡.

Condition 1.1.2 If the covering (U,)t ir chosen sufficiently fine, then the
lbllorving holcls.

(i) The molphisms p¡ : Ç'¡ - U¡ can be lilIed to morphisms p¡: V, + (,:;

with ploperty P.

(ii) For i + j,lei ü be an open subset ol U¡,r, and let U := U lì i and
V := þ-r(ti). Given tu'o morphism pt : V* [i ancl pz : Vz* I/ lifting
plv , V - t ancl having property P, there exists a uniclue isomorphism
a : V, i- i/2 with pz o a - p1 and alv : Idrz.

Proviclecl rvve Llse the right notion of an open covering, Conclition 1.1.2 is
snffìcient to solve Problem 1.1.1. Given the local lifts p¿: V - U¿ of (i).
Conclition (ii) malies sure there are unique isomorphisms

a¡,¡: p,r(LI¡,j) -:- p¡t((l¡,¡) (1)

lvil
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u'ith pi s cui,j = p¡ ancl o;.i = Id. Their uniqueness forces the o¡,¡ to verify
the coc¡,'cle relation

diJlp;r(u,,¡,r)o ê;,rlo;r6r,,r,o¡ = or;,Àlp;l1t,,r,0¡, (2)

n'here L¡;,¡,¡ ',- fi¡flti¡ñU¡ for i,j,È e /. In this situation rve can glue the

schemes vi along the isomorphisms o¡.¡ and obtain a scheme l' together n'ith
amorphism p:Y'- Xsuch that pr = plu. It foìlorvs lhal p isalift of p
rvith property P, solving Problem 1.1.1.

In the case that the [,¡¡ are Zariski open subsets of X, this gluing process is

given as an exercise in [1a] II, Exercise 2.12. But it is in general very difñcult
to choose a sufficiently fine zarislii covering such that condition 1.1.2 holds.

An elegant solution for this problem is to replace the Zariski topologl'- b¡'the
frner étale topology. This means that lve replace open subsets Ü'¡ C X by

étale morphisms L¡¡ * X and the intersections [/¡ n Ü'¡ by the fiber products

u;x yu¡ (for the moment we will keep the old notation). In the context of the

étale topology, the gluing process described above can be accomplished with
the theory of. descent. This theory is a generalization of botkZariski gluing

ancl Galois descent. \!'e lvill see in Section 1.2 that the descent theorem lve

need here reduces immediately to an algebraic lemma dealing with faithfully
flat descent of modules.

1.1.3 Whether rve can find a covering (U,); of X verifying Condition

1.1.2 depencls of course on the property P. In Section 2.3 rve will show that
if P means being an admissible cover of curves, then we can find an étale

covering of X of a certain standard shape. For such a covering Condition

1.1.2 (i) is then easil¡r verified. This is the onl¡' part of our formal patching

process dealing lvith the special situation of admissible covers. In our version

of lbrmal patching, condition 1.1.2 (ii) depends on the following étaleness

conclition.

Condition 1.1.3 Thereisaclenseopensubset tloCX suchthat p:Y - X
is étale over uslti and all litIs p:Y..- x of. p u'ithproperty P areétale

over L!. IVforeover, fol a sufficiently fine open covering (U')t of X and for

i I j we may assume that [,,'¿,¡ C [/0.

In the case of admissible covers of curves, one can take for Uo the complement

of the branch locus insicie the smooth locus of the curve. Then Condition 1 ' 1 .3

holds if Ä' is algebraically closed'

Assume that Conclition 1'1.3 holcls. Then the morphisms pt,r :V¿,¡ - çr¿

are étale ancl any lift of f¡,¡ to p¡,¡ : V,¡ 'Üj,¡ has to be étale' The follorving

lemma shorvs that if .R is artinian, then Condition 1.1.3 implies Condition

1.1.2 (ii).

Lenrma L.!,4 Let Abe a rin'g with, a nilpotent itleat I;let Ã:= AII' Then

euery f,nite étale Ã-algebra B lt¡s uniçr.ely to a finite étøle A-algebra B.
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If A is artinian, then m" : 0 for n ) 0. \\'e may assume thai the open
strbset Li C U¡.¡ of Conclition 1.1.2 (ii) is affine. L'= SpecA. Then 1:= m.-l
is a nilpotent icleal of .4 ancl V : p-t¡Lr¡: SpecB for. a finite A-algebra.
Assunte moreo\¡er tliat Conclition 1.1.3 holcls. Then r\¡e mav assume that B
is étale over A, ancl Conclition 1.1.2 (ii) follon's fi'om Lemma 1.1.4.

]-I.4 \Ve have seen that i\¡e can solve Problem 1.1.1 if fi is artinian and
the Conclitions 1.1.2 (i) ancl i.1.3 hold. \Ve noulcl like to extend this result
to the case that A is a complete noetherian local ring. The problem is that
lve can not appll'Lemma 1.1.'1 in the same lva)'as before. Note that even if
A is a finitely generated -R-algebra, A is in general not complete rvith respect
to the icleal 1 :: mA. It is easy to see that the analogous version of Lemma
1.1.4 is actually false in this situation. To get around this difficult¡r u'e need
a further conclition.

Condition 1.1.5 The ring .R is noetherian ancl complete and X is a projec-
tive scheme over -R.

For r¿ ) 0 let -R" :: Rlm"+L and X, :: X xn .R,. Assume that the
Conditions 1.1.2 (i) ancl 1.1.3 holcl if rve replace the,E-scheme X by the -R,-
schemes Xr. Then lve can use Lemma 1.1.4 ancl étale descent to constntct a
seqltence of finite morphisms pn : Y, - Xn lvith property P such that Y^ :
Y.+r Xn,+, r?, and | :Yo. In this situation and uncler Condition 1.1.5 lve
can apply Grothendieck's Existence Theorem (see Section 1.a). This theorem
slrows that there is a finite morphism p:Y - X such that Y" :Y xnRn
lbr all r¿ ) 0. It remains to shorv thal p has property P. Since this depends
stlongly on P, lve I'ormulate it as the last conclition.

Condition 1.1.6 If the morphisms pn : \', - X^ all have property P, then
p : \" * X has plopert¡' P.

L.2 Etale localization
\,!'e are going to introduce some terminology related to the étale topolog¡r of
a scheme. All the clefinitions are restrictecl to affine étale morphisms. This
is all lve will need ancl it reduces the technical bacliground. Throughout, X
denotes a separated scheme.

L,2.1 A morphism of schemes g I U * X is called affine étale, if
L': Spec.4 is affine, its image g(t/) is contained in some affine open subset
SpecB C X ancl the ring extension B - A inducecl bi'g is étale (see the
Appendix fol a clefinition of 'étale').

LetrrnraL.2.l Letç | U = SpecA- X be an affine étale ma¡t. Then

Jor any ffine open suó.seú Spec-B C X containing ç([)), B - A is é,tale.
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i\Ioreoaer, iJ ç' : U' = Spec A' - X is ønother affine étale map, the sante
is true for the projection of the fibered product U xy Ut to X and for any
ntorphisnt U' - Li oJ X-schentes.

Proof: The first claim follows from the fact that 'étale' is an open condition
(see the Appendix). For the second claim, take V := Spec "BllSpec-B'. u'here
Spec.B C X (resp. Spec.B'C X) contains <,r(t¡) (resp. p(ii')). B1'[1+]'il.
Ex. 4.3, l'= SpecB'/ is again afine (here u'e use that X is separated). B¡-
the construction of fibred products in [14] II, Thm. 3.3, rve get LI x.y [i'=
(U ì ö-rV) x v (U, n (,þ,)-t V) = Spec 4,, wirh 4,, = (AØ n 8,,) @ 8,, (Btt @ p, A).
The B"-algebra A" is étale by Lemma õ.1.2 (i), proving the second claim.

If there is anrv X-morphism f : U' * (/, then lve can take one Spec.B C
X containing both ç(U) and 1t'(U'), and then / is given by a B-algebra
nrorphism Or - A, rvhich must be étale by Lemma 5.1.2 (ii). This proves the
last claim. I

An (affine étale) coveringr tl of. X is a family (ç¿ : U; - X),et of affine
étale morphisms lvhose images cover X.

Given a covering U = (U¿ * X);er, we rvill frequently use the following
notation.

U¿,¡ := U; xx U¡ , U¿,j,x:= U; xx U¡ xy U¡, i, j,k e I.
Note that, if the U; are Zariski open subsets of X, then we actually har.e

Li¿,i = U¿ ñ U¡, U;,¡,r = U; f) U¡ î U¡. We have lots of natural maps:

IJ * , t]¿7 U,,¡7 U;,j,t. (t)
i i,j i,r,,t

The two arrolvs in the miclclle rve call pÍl] (projection to the flrst l'actor, [:;)
ancl pl? (projection to U¡). On the right hancl sicle, rve have three maps r/jl,r..
/ = 1,2,3, for the projection leaving out the /-th läctor.

B)' Lemma 1.2.!, U¿,¡ = SpecA¿,¡, U;,i,* = SpecA¿,¡,¡. Theref'ore (3) cor-
responds to a complex of ring morphisms:

A''= O A; --i A" 
'= O A,,¡ 4 A"'i= O ¿,,r,0. (4)

i i,j i,j,k

Lenrnra t.2,2 Assunte X = Spec.4. affi,ne. Then:

(i) Canonically, A" = A' Ø,q A' o,nd Att - At Øt A' Øt A'

(ä) The natural morphism A * A' is faithfully fl,øt

Proof: By the construction of fibered products in the affine case, A;,j =
A, 8¡ A¡ ancl A¿,j,r. = A¿ Ø¡ A¡ Ø,', At. This proves (i). Á * A' is étale,
tlrerefbre flat. It is faithfully flat because Spec,4,'= ¡U¡ -* X: Spec¡l is

surjective ([1i] 4.C (iii)). r
Iuote that we giv.e 'covering' (recouvrement, Uberdeckung) a different meaning than

'cover' (revêtenrent, Uberlagerung)
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L.2.2 Let Ä' be a fielcl. A geometric point of X is a scheme morphism
c : Spec À' - -{ such that À' is an algebraicalll'' closed field. Let r : Spec À' -
-{ be a geometric point. An (affine étale) neigl-rborhood of ø is a pair
([.I, rr''), rvhele t,¡ .-.- X is an afÊne étale morphism [i - X ancl.u' : Spec k - Li

a lift of ¡ to [i. F¡ec¡rentl¡-. q'e n'ill q'rite [i insteacl of ([i, r') ancl cal] it simpl¡'
a neighborhood of rr. Let El(-\,o) clenote the categor¡'of neighborhoods of
r. A morphism ([it.tr) - (Li2,12) is a commutative cliagram

Spec ß : Spec À' : SPec È

.L t' 1,, f ø

Lít+Uz+X
If a morphism from U1 to U2 exists, rve lvill sa¡; that L¡r is smaller than [.¡2.

Let El'(X,ø) be the full subcategoly of all connected neighborhoods.

It follon's from Lemma ö.2.1 that El'(X,ø) is a filiered inverse s1''stem.

Therefore rve can define the (strict) henselian local ring of X at ¿ as

()x., :: lim A, [,¡ : Spec A € El'(X, Í) (õ)

Of course, fbt' everv neighborhoo ð. U : Spec A ol x , O x," is the henselízalion

of. A - À, as clefinecl in the Appenclix. \4'e define the (strict) complete
local ring Oy' of. X at r to be the completion oî.(2x,,.

1.2.3 Local decomposition of finite morphisms Recall that a mor-

phism f : \'' - X of schemes is called finite, if for every open affine subset

U : SpecA C X the preimage f-\(U) = SpecB is affine and,B is a finite A-

algebla, i.e. finitel1.' generatecl as A-module. Then r'\¡e can lvrite Y : Spec 6,
lvhele 13 is a finite O¡-algebra on X, i.e. a cohel'ent sheaf u'ith an adclitional

algebra st¡uctnre (see [t+], II.3 ancl II.Ex. 5.17).

Let / : l" : Spec ß - X be a frnite morphism and ¿ : SpecÅ, - -{ a

geometric point. Since A is algebraicall¡,'closed, l'x¡ SpecÀ'3 Specb" for

some r¿ ) 0. The rr idempotents of A;n correspond one to one to the lifts

?J1,...,yr : Spec k -Y of r to l'.
If. Lf : SpecA * X is an affine étale neighborhood of ø, then l' ::

1'xy Li : SpecB, rvhere B is a finite A-algebra. By Lemma 5.1.2 (i)'
V : Spec B * \" is an afÊne étale maP.

Lemnra 12,3 For euery sufficiently small connected étale neighborhoodU :
SpecÁ of r, V = Spec B is a d.isjoint union oJ the lornt

l' : V, 14 = SpecB;,
i= I

sucl¿ that !i = Spec B¡ - \" is a connected neighborhood of y¡. Ivloreo'-er,

07,,s, = l4 B. Øt A',

ultet
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wlt,ere A' - k runs ouer Elt(A - k).

Proof: LeI Ã be the henselization of A rvith respect to A - À' ancl B :=
B Ø¿, A. Since .À - B ir finite ancl L henselian, r'r'e obtain a clecomposition

B : Øi=ê; into local fäctors. For a sufficientl¡' small A' * k € Et'(A -.- À').

ne har.'e B Ø,r A' = Ø¡B; such that B, = Br 8.+, Á. This proves the first
claim. Checlting the r.rniversal propertl'' of henselization (Remark õ.2.2) we

see that B; is the henselization of B u'iih respect to the ring morphisms
B * k corresponclinS to y;. Non' the second claim follou's I'rom the clefinition
of henselization. I

\\¡e lvill sa.r,' that a neighborhood [i u'ith the properties formulated in
Lemma 1.2.3 decomposes the finite map.F. \\¡e may also state this as

follon's: by choosing an arbitraril"u* small affine étale neighborhood U of ¡.
its inverse image on I' is the disjoint union of arbitraril¡' smali affine étale

neighborhoocls Vi of y;.

1.3 Descent

A cluasi-coherent sheaf M on a scheme X is an (?¡-module which is, over e\L

ery afÊne open subset U = Spec Á, represented by an A-module .,\y'. Ivlore pre-

cisel¡ given an affine open coverinS(U¡ = Spec.4¡ C X); of X, .'1''l corresponds

to a farnil¡r of A¡-moclules M; together lvith isomorphisms luI¿ Øt, A;,¡ a
lvI;Ø\.4¿,¡ r'erifying a natural cocycle condition (where Spec A;,¡ : U¿x xU¡)-
The theory of clescent shorvs that this is still true if (U; = SpecA¿ - X); is

an étale covering, as clefined in the last section. iVloreover, this also u'orks

lbr finite (?¡-algebras 6. Since the latter correspond to finite morphisms

p:1' * X, descent is the right tool to glue finite morphisms, as described in
1.1.2.

1.3.1 Let X be a scheme and M a cluasi-coherent sheaf of (2¡-modules

over X (see [t+], II.5), Given an afine étale map ç:Ll - SpecA - X, the

inverse image g-M is a quasi-coherent sheaf on [/ = SpecA, so it can be

lvritten as

ç-M=X[ (6)

rvhere û/ is an A-module ([14] II Proposition õ.4). If \c' ;U'= Spec,4'-* X
is another affine étale map and f t U' * U is an X-morphism, we can

wúte (g')-M =.ll,/'ancl the relation ç' : ç o/ induces a natural A'-linear
isomorphism

IuI' = ùl Øt A' (i)

Norv let tl = (ç¡: U¿ = Spec A¿ - X)¡ be an affine étale covering and M
a quasi-coherent sheaf on X. Then çiM : Iy',, u'here .V/¡ is an A¿-modqle.
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Lsing the notation introclucecl in Section 1.2, the relations \tn"p!:) : çr"p::]
incluce a fãmil1,' a,v : (o¡,j)¡,; of A¡.;-linear isomorphisms

a¡,, : :1,[¡ O.t, A¡.j -'- 11,!, Øs, At.¡. (8)

Fol each triple i.j,A, tlie lämil¡'(a;.r) gives rise to A¡,;,¡-linear isomorphisms

oft)o , :tf, Ø.t, Ai.¡,t -1- X'ItØ.r* A;,r,¡.

o!21.¡,, !l'I;Ø¿,, At,j,* -1- XIt Ø..ru A¡,¡,¡ (9)

cj3,)r. : ,t'd Ø.r¡ A,,r,r, -:- A,[j o;, 4,,;,1..

For instance, of])^. ir clefinecl by'c¡,jØor.)A;,;,¡, rvhere 
"ll,o: 

A;,¡ --- A,.r.r is the
natttral morphism ancl rvhere u'e have identified (,1/, ø¡, A¡,¡)Øa,,¡ A;,r,¡ rvith
rl/,8¡, A¡,r,¡ and (X,I¡ Ø4 A¡,¡) Ø¡,,¡ A¡,¡,¡ rvith L,I¡ Ø.ti A;,¡,¡. The other tu,o
cases are similar. A teclious but formal verification sholvs that the follon'ing
cocycle relation holds fbr ever,v triple i, j, li:

"Í.110 " "!']* = "!'),0. (10)

Converselv, let (Xd)¡ be a famil¡r of A;-modules and (on,¡);,¡ a famill,-of A¡.¡-
linear isomorphisms as in (8). The datum (XI¡,a;,¡) is called a descent
datum on the covering ll iI Lhe family of isomorphism, a!-1)^. clerivecl from
the o;,¡ as in (9) r'erifies the cocycle relation ( 10). A morphism of clescent clata
from (.11i, o¡,¡) to (À'¡,,6;,r) is given by a family of A¡-linear maps /, : ,\y'¿ * .V,
compatible with a;,; and B;,¡ in the obvious lva)¡. Another formal verification
shorvs thai

M r- (XI¿,a¡,¡) (i1)

defines a functor li'om the category of cluasi-coherent sheaves on X to the
category of descent data on /,/.

Theorenr 1.3.1 (Descent for quasi-coherent sheaves) The functor de-

fined by (11) is an, ecluiualence of categoríes. In particular, for euery de-
scent dcttum, (ùI¡,a¡,¡) on Ll there erists a quasi-coherent sheal /vl on X uith
çiM = luI;.

Proof: For a proof of this theorem and much more general results, see e.g. [20]
Chapter VII or [1] Chapter 6.1. We will explain hou,to reduce the theorem
to a problem on faithfully flat descent of modules.

First assume that X = SpecA is affine. Let (lvI;,a¡,;) be a descent datum
on Z/. Then l\'I' := OII:[ has a natural stmcture of an A/ : O;A; moclule.
Using Lemma 1r2.2 we obtain canonical A'-linear isonorphisms

i\I' ØtA'= O tuI;ØeA¡ = O 1,'I¿gs, A¿,¡

.4' Øt x['= 6,rr, Øt A¡= d At.¡Ø¡, Ar.¡. (12)

i,¡ i,.r
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Therefore a descent datum (i4,oi,¡) on Z/ gives rise to a a datum (I.I',a).
where -/ìy'' is an .A.'-moclule and a : I.I'gaA' : A'ØAM' is an A" = A'ØsA'-
linear isomorphism. The cocycle relation (10) corresponds to the relation

o(3) o o(r) = o(2) (13)

lvith A"'-linear isomorphisms

a(r) : A'Ø¡ A'Øs 1,1' -:' A'Øt x,I' Ø¿ A'
q(2) : A' Ø.t A' Øt xI' -:- ,try''8¡ A' Ø¿ A' (l{)
al3) : A' Øe xI' Øt At -:* ,'1y''8r A' Ø¿ A'

obtained by tensoring o on the left, in the middle and on the right u'ith ld-.r,.
Remember that we are assuming X = Spec.,4 and lve can therefore identifi'

a cluasi-coherent sheaf M on X rviih the A-module fuI := f(X,^l). In this
case lve have III' - @;!l'I¡ : ù[ Ø¡ A' . anrl a is defined by or I (m @ a2) r-
(¿r I ,¿) @ ø2. We can therefore reformulate the statement of Theorem 1.3.1
as folìou's. Given a faithfully flat ring homomorphism A -* A', the functor

I'l r- (!l'I' := IVI ØtA',a) (15)

is an ecluivalence between the category of A-modules and the categorl,' of
descent data for the morphism A * A'. For a proof of this statement, see

e.g. [18] I Remark 2.21.
The general case of Theorem 1.3.1 now follows c¡rite easily. We can cover

X be affine Zariski open subsets V, = SpecBr. It is easy to see that for
every /¿ rve can restrict our descent datum (i\[;,a¿¡) otU to a descent datum
on the étale coveringUlvu - (LI; x¡ Vu * Vò of.V, = Spec.Br. Applying
Theorem 1.3.1 in the afine case, rve obtain quasi-coherent sheaves Mu onl',
corresponding to Br-modules &/r. Using the fully faithfulness of the functor
(11) in the affine case rve get isomorphisms,løfulvunv,3 Mulvunv,, because

both sheaves correspond to the restriction ofthe descent datum (Ir';,o¡.¡) to
the affine open subset VpnV,. The uniqueness of these isomorphisms forces

them to satisfy the usual cocycle relation, By [1a] II Exercise 1.22 u'e can giue
Lhe Mu to a quasi-coherent sheaf ,¡V. By construction, M corresponds to
the descent datum (lt'I¿,a¿¡). A similar argument shows the fully faithfïlness
of (11) in the general case. I

1.3.2 Let X andU be as before and let B be a finite O¡-algebra. Regard-
ing B as a cluasi-coherent sheaf on X, we obtain a descent datum (8,,*¡,j),
lvhele the B¡ are finite A;-algebras and the o¡,¡ are isomorphisms of A;.r-
algebras. \&'e say thai (B¡,a1,¡) is a descent clatum lbr finite 0.¡-algebras on

u.

11
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corollary L.3.2 The J'tLrtctor ß r* (B¡,a;,r) i.s an erluitalence be.tueen the

category à¡ ¡ritr 0;-algebras a¡trl the category of ¿escent data J'or tinite (9s-

ulgebras ort U .

Proof: Let (.Bi.cr¡.r) be a clescent clatum lbr finite o¡-algebras on l/. The

algel>ra str.uctur.e of th. -B; is given b]' At-linear multiplication maps ?n; :

Alø.0, B; - B¡. These maps velifl'' certain iclentities corresponding to the

,,,1", ib, multiplication in a ring. Lsing the faci that the o'¡,¡ are algebra

'rolphisms, 
thã famill'' (nu;)¿ is easil¡'' seen to be a morphism of descent clata'

B),Theorem 1.3.1 lve obtain a cluasi-coherent sheaf B on X together u'ith

a nror.phism ¡¡t : ß Øox ß * B ol cluasi-coherent sheaves. The morphism

rrr verifies the same iclentities as the ???; ancl defines thus a structttre oÏ OX-

moclule on 6. It remains to shorv that 6 is actualll'' a finite O¡-module' In

'ien,of 
the construction of 6 in the proof of Theorem 1.3.1, this follou's from

the follorving fact. LeI XI be an A-moclule and A * A' a faithfulli'' flat ring

extension. Then.41 is finitel"v* generatecl over A \fr. lI' :: Il'I ØtA'is finitel¡''

generatecl over A'. I

I.4 Grothendieckts Existeuce Theoreur

Let .R be a complete local ring lvith maximal icleal m and let x be a scheme

over'-R. For r¿ ) 0, Iet -Rr ,: Rlm"+'anci Xr := X xR ¡?'' Note that X" is
a closecl subscheme of X. In pa'ticular, Í := Xo is the special fiber of X.

A formal coherent sheaf on X is a family (Mn)*>-o of coherent sheaves

Mn on X, iogether rvith a system of isomorphisms

?n,n" i MnØRn R'" -:- M^' n) tt¿ (16)

suclr that çt,*o(fn,^an,. fil) : ?nJ lbr all n 2 m2 L For instance,

gi'nen a.olt"t"nt iheaf M on X, lt'e can clefine the formal coherent sheaf
"M ,: (M Øn.R,),, callecl the formalization of. Jvl. There is an obvious

notion àf morphisms 6etlveen formal coherent sheaves. Formalization is a

functor

M -- M := (M Øn A"), (1i)

fi.om coherent to fbrmal coherent sheaves. A fbrmal coherent sheaf M' on

x is calleci algebraizable, if there exists a coherent sheaf ,¡v on x with

M': M.

Tlreorem 1.4.l (Grothendieck's Existence Theorem) Let R be a cont-

plete noetl.rerian làcal ,i,ng anrl X a projectiue sche¡ne ouer R. Then (17) is

an. eqtLhalence oJ'categor'írr. h paricrdar. euery Jorntal col¿erent sh'eal on X

is algebrai:able.
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The ploof of this theorem in [7], Chapter õ, uses the cohomology of co-

herent sheaves. In [1a] this cohomological machineri,'is developed under less

general h¡,'potheses. Belolv lve give a proof of Theorem 1.4.1 which follou's
closely the original lines of [7] but onl¡' relies on results proved in [14]. First
n'e state the corollarl,' n'hich lve lvill need to do formal patching.

LeL XIR be as in Theorem 1.4.1 and let 6 be a finite (?¡-algebra (see

Section 1.2.3). Regarcling B as a coherent sheaf, lve define its formalization
ß := (B^). Each 6, is a finite (?.¡"-algebra and the isomorphisms B. ØR"

Rn a B- respect the algebra structure' Thereibre n'e call 6 a formal finite
(?¡-algebra. The follou'ing Corollar.n* is implied by Theorem 1.4.1 in the
same rva]¡ as Corollary' 1.3.2 is implied b.v' Theorem 1.3.1.

Corollary 1.4.2 Assumption as in Theorent 1./.1. Euery forntal f,nite Oy-
alg eb ra is uniquely algeb raizable.

1.4.1. Before passing to the proof of Theorem 1.4.1 we fix some notation
and recall some general facts. Since X C Ph b"t assumption, lve can consider

coherent resp. lbrmal coherent sheaves on X as coherent resp. formal coherent

sheaves on Fþ. Therefore, rve may assume that X = Fh.
X = Fh has a standard affine open covering (Ü¡; = Spec.zl¡)¡, lvhere Ä¡ =

RlTolTi,...,T,lT;l,i = 0,...,r. Let M be acoherent sheaf on X. For ever¡-

secluence il,. .. ,i, lvith 1 ( ir < ... 1i, ( r lt'e put L¡¡r,... ,io i= U;rn...ñ[i¡,
and,X{,,...,;o := I([/i,,... ,;r,M). In a standarcl manner we obtain a complex

@t4 - Ox,Ii,j - O¡¡,,r,0 - 
(1s)

i i,j t,i,r.

of .R-modules (see [14] II.4). Note that AI; = l(Ui,M) (resp. rVl¡,¡ ::
f([i;,¡, M) etc.) are frnitely generated A;-modules (resp. finitely generated

A;,j = A;fT¡lT¡l-moclules etc.). For q ) 0 u'e defrne the cohomology group

Ho(X,M) as the q-th cohomology group of the complex (18). By [14] ili.
Thm. 4.5 this coincides with the definition of cohomology via derived fnnctors.

In particular, Ho(X,M) =l(X,M) are the global sections of M.
Lel M' = (Mn)^ be a formal coherent sheaf. Note that lve can consider

Mn as a coherent sheaf on X. We will rvrite lt4') '= l([i¿,M,), lutfi) ::
f(tr¡,¡, Mn) etc. For n ) rn the natural morphism Mn * M- induces

morphisms

u!") - u:^), X'll¡) 
- 

¡/n',î), ... (19)

ancl hence a compatible system of morphisr-ns.Il't(X, M") - Hq(X,M^).
\\¡e define the cohomology of a fbrmal coherettt sheaf b1'

H|(X,M'):= lim rl"(-Y.;V"). (20)
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The main ingreclient of the proof of GET is the Theorem on Formal Functions

([l1l III, Theolem i1.1). It states that i'or anl'' coherent sheaf .M on X and

qà0lvehave

J7n(X, M):1Þ ¡In(X, lVln) = Hc(X,M)' (21)

1.4.2 Let M' : (M^)^ be a formal coherent sheaf on X = Fh. \\:e

n,ill sa1,' Ihat M' is generatecl b1,' a finite number of global sections if there

are elenrents 't1r1,... ,mt e Ho(X,,fu{') lvhose inrages generate the A¡-moduie

,11n("), fbr all 1( i 1r,r"r ) 0. Ciiven a formal coherent sheaf vVfl aú'k eZ.
ne clefine its À'-th tu'ist of M' tobe M'(k):= (M;(k))" (see [1a] ILð).

Proposition 1.4.3 Let M' be a forntal coherent sheaf on X = Fh. Then for
À'> 0, M'(k) is generated by a f'nite nuntber of global sections.

Proof: Let .R :: O,>om^/ñ"+1 be the graded ring associated ,i_Ã. Consider

the sheaf ,Â2 :: Or>om" Mn as a cltasi-coherent sheaf on X :: S. 'vtr'e claim

that ,,v{ is a coherent sheaf. In fact, ;1izf ir g"n".oted as an (?.'-module b}' its

subsheaf ,,lirle, lvhich is a finitely generated (2¡o-module. Itíote that lve hare

Ho(x, u) = o ¡tn(x, ^" Mn). (22)

nz0

B¡r [17] 10.D, ,R is noetherian. Hence lve can app^ly [1a] III, Theorem

ö.2. to conclncle that for a > 0 the coherent sheaf ,,vr(Ë) is generated b1'

a finite nttmber of global sections and 'fiq(x' M(kÐ = 0 for all q > 0' In
particular., Mo(k) is generated by a finite number o{ global sections and

¡1t(X,m",M"(À')) = 0 fbr all n ) 0 (use (22))'

Tlre slrort exact sequence 0 - m"+lM'+r(k) - M"+t(À') * tl"(È) - 0

yielcls an exact sec¡.tence

Ho(x,M*+r(k)) 
- 

Ho(x,M"(k)) 
- 

Hr(x,mn+1M'+r(À')) :0.
(23)

slrorving that the firsi morphism is surjective. Choose a set t121, ... ,r7t¡ €.

F1o(X, Mo(À')) of global generators of ,^lo(k). Lsing inductively that the first

map in (23) is surjective, rve can IiiT them to global sections fl?r,"' ,t??¡ €

¡10(X, M'(k)). By Nalial,ar¡ra's Lemma, their images in I/0(X,M"(À;)) gen-

etate Mn lbl all rl 2 0. This is exactly lvhat lve lvanted to prove' I

L,4.3 Norv lve are going to prove GBT. Let M, N be coherent sheaves

on x. Then there is acoherent sheaf 71om(M,rv) such that Hom(M,y'/) =

HoçHc

mal sl:
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This p

It:
fincl a
such tl
there r

formal

f',(
cohere

\

The fi
lãithfu
phism
Mbe
coliern

2t
lame
u'ith a

in the
This i
resulti

s"i
ctlrve
neighl
ancl li
be crr

\¡et!' (

ring (r

simpk
In

of olc
compl
give t
pIove,



of tame admissible cove.r,s of curves

-iET is the Theorem on Formal Functions
hat for an1,' coherent sheaf M on X and

's(X,M") 
= Hq(X,M). (21)

lormal coherent sheaf on X = Fh. \\:e
finite number of global sections if there
{') whose inages generate the A;-module

n a formal coherent sheaf .Âl' ancl, lc e Z,
M'(k) F (M'"(k))" (see [1a] ILð).

'ntal coherent sheaf on X = Vp. Then for
te number of global sections.

bhe graded ring associated to -R. Consider

asi-coherent sheaf on Î 
'= %. We claim

,,V it g"n"tuted as an (?¡-module b-i' its
rerated (?¡o-module. Note that u'e hare

O ro(x, *"Mn). (22)

¿>0

Hence rve can app^ly [1a] III, Theorem
re coherent sheaf ,,Vl(È) is generated b¡''

r,nd I/q(X, M(k)) = 0 for all g > 0. ln
a finite number of global sections aad

(use (22)),
t"+LMn¡(k) - M^+{k) -* tf"(Ë) - 0

,(À.)) * H'(X,mn+rM,+r(É)) = o.
(23)

i surjective. Choose a set nr1,...,nt¡ €
rf ,^lo(e). Lsing inductively that the frrst

ilT them to global sections n?ri.'. ,???¡ Ç

nma, their images in.f/0(X,M'(Lr)) gen-

ctly what lve lvanted to Prove. t

ve GBT' Let, M,.Ä/ be coherent sheaves

al'llom(M,N) such thai Hom(,Âøf 
'y',/) =
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Ho('Ilom(M,//)) ([14] II.õ). Formalizing this construction u'e obtain a for-

mal sheaf 1lomlM.N) such that Hom(.M,N) = Ho('l7om(M,N)). The
Theorem on Formal Functions (21) implies

Hom(M,,,l/) = Hom(,'V,"4/)' (21)

This proves the fïrlì¡,' faithfulneés of the formalization functor M '- M.
It remains to sholv that for any' formal coherent sheaf M' on X lve can

fincl a coherent sheaf M u'ith M' = M. B1'' Proposition 1'4.3 !\'e can find Å'

suclr that M'(,k) is generated by a finite numbel of global sections. Therefore

there exists a natural number / ancl a surjective morphism CI* * M'(k) of
formal coherent sheaves. Twisting with -Å: we obtain a surjective morphism

f' : g;¡(-k)t - M'. Applying this proced*re once more to the formal

coherent sheaf Ker(//), lve obtain an exact sequence

Ox(-k')t' :-* Cl*1-t)t L Jvl' "--'* 0' (25)

The first tlvo formal sheaves are obviously algebraizable. Hence the fulll'
täithfïlness of the formalization functor guarantees the existence of a mor-

phism g: Ox(-k')t' - Ox(-k)¡of coherent sheaves such that g' - g' Let
M I>e the coliernel of g. Then M Øn Rn = Mn because both sides are the

coliernel of gr,. Hence M'= M, r

2 Tame admissible covers

Tame aclmissible covers are finite morphism betlveen relative nodal cun'es

u,ith a particular local ramification behavior. Our goal is to show that localll'

in the étale topology all tame admissible covers have a certain standard shape.

This is clone in Section 2.3. Section 2.1 and 2.2 contain some preliminar¡-

results.
section 2.1 gives a cletailed study of the strict complete local ring of a

curve at an orclinary double point. The deformation theory of a curve in a
neighborhoocl of an orclinary double point depencls on the lvay one can choose

"n.i 
lift the so called lormal coordinate systems. Since this will turn out to

be crucial lbr the clelbrmation theory of tame admissible covers' we do it
rrer)¡ caletulllr Note holvever that uncler the assumption of a reduced base

rin! (rvhich zuffices fbr most applications), prool's would become substantialll'

simpler'.
In Section 2.2 rve use the results of 2.1 to study étale neighborhoods

of orclinary clouble points. Technically, this means to compare the strict

complete local ring of such a point to the strict henselian local ring. \\'e also

give the analogous statements for smooth points, which are much easier to

pro\re,
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2.L Formal double points

Let ,-l ancl A be complete noetherian local rings. Denote their marimal ideals
b-"" m{ Ã ancl 9Jl q,+ and theresiduefielcl /?/m b¡,'Ä'. Let R * A be a
faithfuill' flat local ring extension.

The ring A is callecl a formal double point over ,l if thele exists a pair
t¿,l of elements of A such that

(r) ¿ :: lIU C m,

(ii) u, u induce an isomorphism A ã Rllu,uluu = ú]] of -R-algebras.

In this case, the pair (u, u) is called a (formal) coordinate system for Al R.
An"u" element J € A can be lvritten unicluelJ' in the form

f = oo + I rl ui +fo|J (26)
t>0 i>0

rvith dq, a'r.a',' €.R. \ry'e q'ill call (26) the ('u,u)-expansion of /.

Proposition 2.1.1 Let A,R be as in the f,rst paragraph oJ this section. As-
sunte that A:: AlmA is a Jorntal double point oaer k. Then:

(i) Euery coordi¡¿ate system (n,u) of Ãlk lifts to a coordinate system (u,u)
of AlR. In ltarticular', AIR is a formal double point.

(ä) Euery pair r,-s e Å uith rs € m such that

lll : 1r, -q, ûr >

is a Jornt,al coordinate systent..

Proof: Let (u, u) be a coordinate system lbr A. Note that tbr every pair u, u €
A iifting u, u the inducecl ring homomorphism r?[[u, u]] * A is surjective, since
it is strrjective mod m. !\¡e Ìrave to find lills u,u such lhat uu € fi. To do

this, rve rvill construct inductively a secluence of lilIs un,Dn € A oL u,u atd
a sequence of elernents l, € m (for n ) 0) such that u, i untLt 'I)n - 't)n¡1

mocl m"+lL, tn = tn+L mocl m"*l artd u,run = t, mocl mn*1,
To start, talie an1' pail us,ue lilIing u,Ð ancl let le ::0. Suppose lve have

alreacl;, constluctecl lln1r)n;ú, lbl some rz ) 0. Then lve can lvrite

- t tlui'¡u''ur^&nun _ ," _ 
,.j¿o eT\

= tn I no,o * f oo,o u'n +Ð oo,r r', mocl m"+?A \ /

¿)0 ¡ )0

lvith a¿,.¡ e mn*r. For tlie first ec|.rality lve have usecl the lãct that an element

of m"+14 can be lvritten ¿ìs a po!\¡el series in ur,u, lvith coeficients in m"*1.

Y 

- I4t

Fol the r
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;s

,n local rings. Denote their maximal ideals
sidue field r?/m b¡' A, Let .R * A be a

louble point over .R if there exists a pair

t = r?[[u, vluu : ú]] of .R-algebras.

a (formal) coordinate system f.ot AlR.
uniquelf in the form

)o',u' *\a'iui (20)
>0 i>0

i) the (u, u)-expansion of /.
in the f,rst paragraph of this section. As-

double point ouer k. Then:

) "Í 
Alk lifts to ø coordinøte sgstem (u,o)

s a formal double point.

m such that

l: ( rrS,ñ )

stem tbr A. Note that for every pair u, u €
norphism.R[[u, u]] -* A is surjective, since
r find lifls u, u such thal uo € -R. To do
a sequence of liils u,n,'un € A of. u,u and
tt > 0) such that tln - 'un11, un = ?)n*r

arrdunun = ú, mod mt*l,
;ing u,tr and let úe ::0. Suppose lve have
me rr ) 0. Then lve can lvrite

oui+\ao,¡ur^ mod m"*24
(2i )

j>0

ity rve have used thg
: selies in ur,un wit'h
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For the congruence lve have usecl uru, € mA. Let u21r i:'ttn- D_oo;ri.-'
j>0

ancl t,n+r i='t)n - I on.o ui.-1. L,sing (2î) lve obtain
i>0

ün*Lun*r = tt,n'un- I on,o ui - | as.¡ t'r^
i>o j >o

= tn I ao.o

(2s)

Hence the inclqction step is done if lve define tn+t i= tn *ao,o. Let, u'.= Iimu'.
r.r:: Iimu, ancl t:= limúr. Then u,o lil't ù,0 ancl uo: I € m.

The follorving argument is taken tïom [6], Lemma 2.2. Consider the short

exact secluence of .R-modules

Q + I + Rllu,ulua:r]] * A -* 0. (29)

The homomorphism on the right is the one induced from the above choice

of u,v € A. since A is .R-flat, (29) remains exact after reduction modulo m

(see [16] XVI, Lem.3.3). But kfla,Olua = 0]l : Alm{is an isomorphism b1''

h1,'pothesis, hence.I = m.I. Since -R[[u, uluu: t]] is noetherian, the ideal 'I is
finitely generatecl ancl Naltayama's lemma implies / = 0' This proves (i)'

Let r, s be as in Statement (ii) of the proposition and let (4, o) be some

coorclinate system for Ãlk. Denote b.t (t,6) the reduction of (r,s) to A'
Wîite

f = ao +Ð d, a, +Y. o'! ,"

r : åo * Ë ,l "' +f b',' ,0, (30)

i>0 i>0

nith coefficients in k. Using ts: uu:0 one finds step by step that the

lbllowing holcls: first, asbs = 0, next cto = bo = 0 and frnally that either

a'¡ = b'! = 0 or al = b'o = 0 for all-i > 0 (u'e may assume-the latter)'
By u$i,*ption the maximal icleal of A is generated by f,s. This can on11.'

happen iL a,r,bti I 0. Therefbre tire porver series in (30) are in one r,ariable

ancl-invertible.- This pro\¡es that (r,5) is a coorclinate system for a/r. The

argument used at the end of the proof of (i) shorvs that (r, s) is a coordinate

system f.or AlR. I

Proposition 2,7.2 Let AIR be ø formal clouble point. Then the set of ideals

{uA.,uA} ancl the idealtR (wittr,t t= uu) cu'e the san'te lor øny choice of a
coordinate system, (u, u).

Proof: First, let us assnme that thete exists a coolclin¿rte system (u,u) of. Al R

Ivith uu = 0. Lincler this assumption, lve n'ill prove that tbr every coordinate

sl,stem (r,s) of Af R, tvehave rs = 0 ancl eithel rA = uA and sA = uA or

nrod mn*zrl

mod m"+24,

f'act that an element
coefficients in mn+r,
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r,4: t',A ancl .'tA: t¿4. \\¡lite

r:ao*la'¡ri*Iøi't'i.
i>o i>o ( :3l )

..=öo+falur+fliui.
i>o i>0

Since (r,s) is a coorclinate s1''stem, the (tr't')-expansion o.f rs,133sists onil'' of

a constant term. Computinj the (u,'r-')-expansion of r's using (3i) ancl uo = 0'

one obtains

n-1

asb!^ *Do',b'^-, * a'nbs = Q,

i=1
n-1

(32)

t,\,

straighl

Dlu.nì

Pr,n =

lvhere I

ancl (in

Propol
be coor,

uniclueasb'l +Ðo'ibi-, * a'lbo = g,

i=1

I'or all rr > 0. Reclucing (31) mocl m and applf ing the arguments from the

proof of Proposition ii.i úll (follou'ing (ão)) *" can assnme t\'b'l I 0

*o.l m un.l a'/,ål = 0 mod m' For n:1, (32) states

asb\*atrbo=g, asb'l+o'lbo-0 (33)

Ren,rite this as bs = -(a\)-laså',, ancl as = -(b'i)-ra'lbs. Plugging ihe second

ecination into the tlrrt yiåiat å;(ì - þ\b')-La'iír) = 0' But the second factor

is congruent to r mocl?, n""tà Ot: õ'gy si'mmetri'' *'e obtain ú¿o:0' In

particular, this Proves rs :0'
Next we prove by incluction that ø'/' b'; : 0 for all i > 0' Assume that

this is true t'or ail i < À- for some N > 0. Then (32) *'ith-rz := 
^. 

+ 1 states

"jl; = O ancl øþð'i = O, tn"r"tore ðþ = o'i . 0' \['e have shou'n that r (resp'

-s) is a porver series i" "'tr"rp. 
,) ,tårting-*ith an invertibìe coefûcient lbr the

firstpower.ThisprovesrA'=uAandsA=uAaldhencethePropositionin
this special case.

The general case follorvs easily' Lei (u'u) be a coordinate system and

t := uu. The icleal I :- tR is thà mininal one such that uu = 0 f.or e';ery

coorclinate system (at,fl of AIIA over '1//' The icieals uA and t'A are the

inu'".r" imogl, of ul,f tÁ anð"uAf tA' ¡

Lel Al Rbe a formal clouble point' ('u'u) a coorclinate system and n a

natural number. Define

Pu,n i= Ann¿(u"A) : {a e A I atf : 0} d A' 
(31)

P,,n i: Ann,l('u"A) - {o e Al att" : 0} { A'

ancl P, t= Pr,L, Pu 
"= 

P,,¡' Using the unicltteness of the ('tl' u)-expansion' a

Proof:
Ploposì

By (36

in.Rf

be the (

lve con(

snnr in

u'hich il

Eve:

This pl
t^¿: I.

For,
ô¿r" ani
other p
b'=b
clecomp

À-¡l=
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b'.ni +lb','ui
(31 )

d>0

, the (u.u)-expansion of rs consists onll'- of
r,u)-expansion ofrs using (31) and uu :0,

a!;b'^-;*alnbs=9,
(32)

a!,'ü_;la'lbs-0,

I rn and applying the arguments from the

ollowing (30)) u'e can assume a\,bi f 0

)r r¿ = i, (32) states

0, asíi+ø!lbo=0 (33)

rnd aq = -(U)-ra'iås. Plugging the second

- (ø'rb!)-raiói) = O. But the second factor
,0 = 0. By symmetry u'e obtain øo = 0' In

hat a!!,ål = O for all i > 0' Assume that
fi > 0. Then (32) u'ith n := À'* I states

U¡¡ = a'¡¡ = 0. \&'e have sholvn that r (resp'

tarting with an invertible coeficient for the

and sA = uA and hence the Proposition in

y. Let (u,o) be a coordinate system and

,e mininral one such that úÐ = 0 for euerv

. over Rf I. The ideals uA antl t'A are the

tA. I
point, (u,u) a cooldinate system and n a
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straightforlvard verifi cation shon's:
æ

Pu.n: {!orrt lo,t'- 0 (i = 1, ...,n-I), ct¿t":0 (i> n)} cuA,
: 
-r

(3ö)
Pu,n: {f on"tln;úi=0 (f = 1, ...,11-I), ct¿t" =0(i > n)} CuA,

i=r
lvhere I := uu € m. From this lve see immecliatel-r, that

Pu, f\ Pu,n : Pr,n , Pu, : (0) (86)

ancl (inside A)

Rn(P",^ + P,,") = (0). (3i)
Proposition 2.1.8 (contpare with Itg], g3.7 and gg.g) Let (u,u) and (u,,a,)
be coordinate system,s oJ Al R and, n Z I such that uA =' u,A. The.re are
unique units a,b e Ax with

(u') = au", (u') = b1)n, 0,b e Rx

Proof: Put t:= uu and tti=,u,tt)t. Consider the case n = 1first. 81,-
Proposition 2.1.2 there are nnits a,,b, eAX with L/ = c!,tu,at=Uu. Lel

ct'bt = co+ i.irt + i "irt , co,c!¡,ci e R. (JB)
i=l i=l

be tlre (u, u)-expansion of ø'ål. Lsing its uniclueness ancl ú, = y'1.¡t = (atb,)t e R
n'e conclucle c',t = c,tt = 0 for every i ) l. Therefore (J5) tells us that the
sum in (38) is of ihe form

e,'b' : co * cz i ct, co € A, 4 €. pu, cz e pu (Bg)

which is unique by (36) and (J7).
Every pair (a,b) of. units of A with trt = o,,u,t u, = bu is of the form

(!,=o.'+À,ô=b,*lt, Àepu,p€,pr, (40)

By (36) rve have )¡r : 0, so using (3g) and (40), rve get the clecomposition

ab : et'b' * å') 1 a, ¡r = cs* (", + U^) + (cz+ a,^) (41)

in Àf Pu* P,.Since it is unique, abe R is equivalent to

À--(ð')-rc¡, p--(a')-rcz. (42)

This proot's at the same time the existence and the uniqueness in the case
^^_ tlL - L,

For general n, dednce the existence of. a,b e Ax with (u,)" = e,,tlnt (o,)" :
ö'rr" ancl ab e R by using the case n = I and taking n-th powers. Anl'
otlrer pair tL',b' ç AX lvith the same properties can be written as ú/ = d + ),
b' = b * p, u'ith ), €, Pu,n ancl ¡r €. P,,n. As above, one gets the uniclue
cleconrposition o'b' = u,bib)'* ap € n+ pu,n* pr,n, and one can clecluce
À - p. = 0, lvhich proves the uniclueness of ø, ó. I
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)

>0

I

>0

tla'!ti
i>0

o'iui

t) = {ø e Al au," = 0} { A, 
tB+)

r) ={øÇAluu"=0}{4,
g the unic¡reness of the (u,t')-expansion. a
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2.2 Marked nodal curves

2.2.7 Let r? be a noetherian ring. A curve over -R is a scheme X n'hich is

flat ancl of finite presentation over -R such that all geometric fibers of X f R are

reducecl curves. A nodal curve is a cun'e X/-R such that all geometric fibers

have at most ordinar-r' double points as singulalities. \\¡e n'rite X'' C -{
ibr the smooth locus of the morphism X * Spec.R. A mark on a nodal

cun'e X/S is a closed subscheme l) C X'* such that the natural morphism
D - Spec.R is finite étale. Hence D : Spec,R'for a finite étale Ã-algebra

fr'. \Ve call the pair (X/fi,D) a marlted noclal cun'e.

Remark 2.2.1 Being a marlied nodal curve is local in the étale topologl'.
IUore precisely, let X be ascheme over anoetherian ring -R, D C X a closed

strbscheme and (L¡¡ - X), an étale covering. Then (X/-R, D) is a marked

nodal curve if and onl¡' íf. (UilR, D xsç U;) is a marlied nodal cr,trve, for ali i.

2.2.2 LeI XlRbeanodal curve, fr afield and ø : Spec k - X ageometric
point nhose image is a closed point of X. Let X C X be the fiber of the

morphism X * SpecÃ containing the image of r. The composition of r
rvith the morphism X - Spec Ã corresponds to a ring morphism Ã * À'. Let
.R :: (?sp""R," (resp. Ê.:= Osp""n,,) be the strict henselization (resp. strict
completion) of -R rvith respect to ft.

In this snbsection rve assume in addition that the image of r is a singular
point of i. Sin." Xl R lsnodal q'e have O¡,,: À;[[t, uluu = 0]]' \4"e will sal''

that r is a geometric double point of X/-R.

Proposition 2.2.2 Let XIR be as aboue and r : SpecÄ * X a geontetric

tlottble point of XlR. Then the cont'plete local ring Oxp is a formal double

point oter Î1. ¡tæ Section 2.1).

Proof: By the definition of a curt'e, there is a Zarislii open subset [i :
spec A c x containing the image of ¿ such that A is flat and of finite presen-

tation over .R. By Proposition õ.2.3 (i) ancl (ii) the complete local ring (2¡."

is a local flat .R-algebra. Let m :: Ker(fi - À'). Since Ü' :: Spec (AlmA) is

an open subset of X containing the image of ø, Proposition 5.2.3 (iii) sho$.s

tirat (?¡,, = Ox,,lm0.¡,,. Hence the Proposition tbllorvs from the clefinition

of geometric clouble points and Proposition 2.1.1 (i). r
If r : Spec k - X is a rational double point, Proposition 2'2.2 shou's

that there exists a pair u,u of eÌements of. (9y,' such that t := uu € il
anc), Oy* = Ã[['u,uluu = t]]. Such a pair (u,o) will be called a formal
coordinate system lbL X/,R at ø. Noie that the ring extensiont -R * -R

and ox,, - ox,, are faithfully flat, in particular injective (Proposition ð.2.3

(ii)). \\¡e lvill call a pair u,u of elements o,. O¡,, a coordinate system for
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b, in particular injective (Proposition õ.2.3

rnrents of. Ox,, a coordinate system for

IUEWERS: Deformation of tame admissible coverc of curves 259

XIR at.r if Í := uu e il ancl (u,u) (regarclecl as a pair of elements of (gs=)
is a formal coorclinate s1.-stem.

Proposition 2.2.3 Let XIR be as beJore and x : SpecÂ' * X q geontetric
double point. There etists a coordinate system (u,u) for XIR at x. Let
(r,u) be ang coordinate systent lor XIR at r and Ã, € Et(Ã * À) such that
t ;= uu € R'. Then for euery suffi.ci.ently small ffine étale neighborhood
L'= SpecA - X of r, the natural morphisnt R'fu,r\uu - t] * A is étale.

Proof: The first assertion is a consequence of Proposition 2.2.2 anc), Artin's
Approximation Theorem. \!'e will not give the details of the argument, be-
cause a much more general statement is proved in [3] xv, corollaire 1.3.2.
For the second assertion, let (u,u) be an1' coordinate system for Xf R aI t.
By definition, t := uu € R,hence rve can find R, e il'(R* À.) with t e R,.
LetU = SpecA* X beaneighborhoodof r. Replacing Aby AØnÀ,
rve may assume that A is an .R'-algebra. By the definition of. Ox,, rve mav
assume that u, u e A. l!'e obtain a natural morphism R'[u,uluu = f] * á.
Since U = Spec A - X is a neighborhood of r, A is ecluippecl with a nat-
ural morphism A * À'; the composition R'fu,ulua - ú] * k sends u,u,t to
0. Taking the completion of the rings R'fu,uþru = f] and A with respect
to the morphism to À, rve obtain an isomorphism .R[[u, uluu = q] a CIx..
Hence, by Proposition 5.2.3 (v) the morphism R'[u,uluu - t] *.4 is étale in
a neighborhood of the maximal ideal Ker(A * È). Repla cing U = Spec,4 b],
a Zariski open neighborhoocl of this point completes the proof of the Propo-
sition. r

Given a coordinate system (u,u) of a geometric double point on Xl R. a
pair (.R', [/ = Spec A - X) as in Proposition 2.2.8 will be cal]ed a coordi-
nate neighborhood fbr (u, o). Frecluentil' we will omit the ring r1, from our
notation.

2,2.3 Let .R, X and r : Spec k * X be as in the first paragraph of.2.2.2.
Norv rve assume that ø is a geometric smooth point on Xl R. By this we mean
that the image of r is a smooth point of the frbre X C X on rvhich it lies. In
addition, let D C X be a mark on the nodal cvrve Xf R. For an afine étale
neighborhoodU = Spec.zl * X of a,let Du:= D xx {/. Then (tl,Dv) i"
again a marked nodal curve. Since [/ = SpecÁ is affne, Du = Spec(AlI)
for an ideal .I { A ([14] II, Corollary 5.10). By definition, R -. AII is finite
étale. There are two cases to consider. Filst, if the image of r lies on X - D.
then lbr any sufficiently small neighborhood U = S¡rec A - X of. r lve have
I = A ancl D¿i = 0. On the other hancl, if r lies on D, Proposition 5.2.3 (iii)
ancl (v) imply

R = On,, = Oy,,f I(9y,,, il = ()n,, = (9¡,,f IOy,,. (1i)
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Proposition 2.2.4 Let x: Specfu - X be a geon'tetric smooth point on the

n,o,irrt noilal curue (XlR,Dj. fhure etists an elentent z € Ox,, such, that

for euery sufficiently s,rrott ofun, étale neighborhood Li : Spec 
"l ' 

X of r
'the 

natiral itorphisnt 'R[z] * A is étale' Xloreouer' if r lies on D' we can

choose z such that Du is defined, by the etluation z:0'

Proof: \l'e l'iil assume that ø lies on D' Since ¿ is a smooth point of -i
we harre OX,,: À.[[:]]. Sirnilarly'to n,hat $,e clid in the proof of Proposition

2.1,1 (i) ancl Proposition 2.2.2 one shon's that 0-1,' : n¡¡t1]' Here: is

any Iift of t to C?x,'. Letti = SpecA- X beaneighborhoodof ø and

I4 Asuch that D xxLi = Spec (AlI)'Let i:: IOx,'' By'(+3) n'e have

i¿fill t Î =,R. Therefore z - a e Î fot some ø € 1î1 { -R' 
^\\''e 

may replace : b¡'

" i o, tr.n." z e Î. Now Nakayama's Lemma implies Î : zOx,'' Using [17]

21.E (i) rve conclucle that' IOx,' = ztox''' Actualiy' lve ma]'assume that

z = z' € Ox,". After shrinkingU = Spec' ' rve may assume that : € A and

I = zA. Completing the natural morphism R[z) ' A with respect to À; rve

obtain an isomorphism a[[z]] 3 ox,'' Hence' after shrinking Ü': SpecA a

little bit more, 'R[;] * A will be étale' r

If r lies on D,an element z €. Ox,, with (?x,": n¡¡"11 and' Î : z()x.'

rvill be callecl a formal coordinate for D at x' If' z is moreover an element

of. Oy,,, it will be called a coordinate lor D at s'

2.3 Tanre adurissible covers

2.3.1Lef(XlR,D)beamarkeclnoclalcurveoveranoetherianring'R
(see section z.i¡ árr.t p':1, * X a finite morphism of schemes. Iüoreover, let

y 
' 
Sp.. k -Y bea closecl geometric point ancl x 

"= P oy' Since p is finite'

it incluces finite Iocal ring extensions

()x," 
- 

OY'u' Ox'' 
- 

?v'u' (1+)

As in Sectio n2.2, il. (resp. Ã) clenotes the strict henselization (resp' the strict

.on pt"tion¡ of I wiih ,årp".t to /c. The first (resp. second) arrorv iu (aa) is

a mårphism of -R-algebras (resp' 
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Definition 2.3,1 (see t13l gÐ Let p, x and' y be as øbot;e' lVe say that
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'lssunr,e 
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Ox,r, & forn-ral coorclinate system (r,s) o/ Ov,o und an integetn printe

tothecharacteristi'coJksuchthat(lfisendstt'tor"a¡ttluto-s''

(ii) A.ssunle that r is a s¡ttooth ¡toint lging on D ' Then tl't'ete e:tist a lorntal
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to the characteristíc of k such that Oy,o = n[þr]] ønd (lfl sends z to
'r.un ,

(iii) # x is a sntooth poínt not lying on D then Ov,r? Ox,,.

The ntorphisrn p i.s calletl a tame admissible cover of (XIR,D) d it i-:

to,nte q,dntissíble at euery geonßtric point U oÍ t' .

Pari (ii) ancl (iii) of Definition 2.3.1 are usualll' stated as follorvs: the mor-
phism p is étale over X'* - D and tamel¡,' ramified along D. Let

ncrf;(X) t={piY-X}

be the category rvhose objects are tame admissible covers ot (XlR,D) and
n'hose morphisms betlveen objects Y * X and, Z -r X are morphisms of
schemes 1 - Z compatible rvith the maps to X.

2,3.2 Consider the following situation. Let (XlR,D) be a marked nodal
curve and p:1' * X a finite morphism. Let gr : Specå -' Y be a geometric
closed point such that r := p o ! is a geometric double point of X and such
that p is admissible at y. \\¡e want to study p in a neighborhood of y. Let
(/ = Spec A - X be a neighborhood of o which decomposes p (see Section
1.2.3). Then there is a unique component I/ = SpecB of.U xx Y which is a
neighborhood of y. We will refer to V as the local inverse image of U aty.

Proposition 2.3.2 Let (u,u) be ø coordinate system at r. If U = Spec,4 -X í,s a sufficiently small coordinate neighborhood for (u,a) then

B = Alrrs I r" = ltrsn =tr,rs = r],

uhereV: Spec8 is the local inaerse im,age of U aty, n an integer prime to
the charøcteristic of k and, r € i? n A. In particulør, Y I R is ø nodal cun)e in
a nei,ghborhood ol y and (r,s) is a coordinate systent øt y.

Proof: Let Ã i= Ox,,, Ê := Oy,u, A:= Ox,, ancl B := Oy,v'By hypothesis

rve have u,u € Ã, t r= ua e it ancl .Â = nllr,oluu =^ú]1. By Definition
2.3.1 there exist formal coordinate systems (u',u') for A and (r',s') for B
strch that (r')" = u' and (r')" = u'. From Proposition 2.L.2 we know that
there exist unique elementr â,ö e åx with u = ou', u = bu'ancl øô e .R*.
By Hensel's Lemma lve can choose c,d e Ax with c" = ø and r/" = à. Then
(ccl)" = ab e il*, therefore rve have cel e il", by Hensel's Lemma. Let
T i= cr'ancl s := ds'. Then rn ='u, st = t and ¡:= rs €.R. But rt, s" €. B
ancl r'€-.,?, hence by Proposition 5.2.3 (vi) rve have r,s €.å ancl r e iÌ..

Lel È¡,= ÁJt',slr" = 'u,sn = u,rs = r]. Since À '* Br is a finite
local extension, -å1 is henselian. There is a natural local morphism .É1 -*'8.
Taking completions at both sides lve obtain an isomorphism, because the



Y

262 WEWERS: Deformation of tame admissible covel:s of curves

completion of .81 is easill,'seen to be isomorphic to A : Al[r,s lrs: r]].
With Proposition ð.2.3 (r') u'e conclude B : Bt. Therefore, iti U = Spec,4'

is sufücientll' small, V' = Spec B is as stated in the Proposition. The other
statements folìon' easil¡'. I

\\¡e neecl a slight strengthening of Proposition 2.3.2. Let l-' C l" be the
fibel of \"lR on n'hich y lies. Then Oy,,: Ov,ulm2r,y, l\'here m is the

maximal icleal of A (.o-pot" q'ith the proof of Proposition 2.2.2). Let (u. u)

be a coorclinate s1,'stem for X/,R at r. \&'rite z,u lbr the image of u't'in
0N., = 0v,,f mr2;¡.'.

Proposition 2.3.3 Notation as aboue. Let (r,s) be a coordinate system for
t' at y such that in : u qnd s" = u. Then there ís ø unique coordinate system

(r,s) /orl' aty lifiing (r,5) such thatr" =u and, sn ='u.

Proof¡ B-r- Proposition 2.3.2 lve can choose a coordinate system (r',s') for
l" at y rvith (r/)" : u and (r')" : u. Then the coordinate system (r, s) lve

are looking for is of the form r = (trrt t s = ôs' ,,r'ith ø, b e 0l-,o ancl øå € -R* '

Then r" = u ancl sn :1) is ecluivalent to a"(r')" : (r')" and ån(s')" = (s')".
Brv Proposition 2.1.3 this is ecluivalent tQ (tn = l and ö" : 1. Appll''ing

Proposition 2,l.3 to Oy,u wefind that (r,s) is a lift of (r,5) if ancl onl¡' if the

reductions a,b oI a,b are unicluell'' determined n-th roots of unity. Nolv the
Proposition lbllolvs from Hensel's Lemma. I

2,3.3 \\¡e continne wiih the notation fixed in the first paragraph of 2.3.3,

bnt this time uncler the assumption that ø is a smooth point of XIR l,ving on

D C X. In analogy to Proposition 2.3.2 ancl Proposition 2.3.3 rve can shou'

the lbllowing.

Proposition2.3.4 Letz beacoordinateforD atr. IJU =SpecA- X
is a stfficiently sntall coordinate neighborhoodfor z and V: SpecB itslocal
inuerse image at y, then

B=Alulzo"=zl.

Heren, is an integer prime to the characteri,stic of k. As an element o.lOv,o,

tu is nnie¡rely detern'rined by z and th,e intage oJ w in Oy,v: Ov,rf ñOv,n-

3 Deformation theory
This section contains the main delbrmation resnlt. In 3.1 we give the nec-

essar)¡ notation ancl the precise statement (Theorem 3.1.1). IVloreoyer, \\'e

slietch how this theoretn can be generalizecl to the case of a non algebraicalll'

closecl resiclue fielcl, using Galois descent.
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3.1 Statement of the ntain result
263

3.1.1 Let .R be a noetherian com,plete local ring u'ith algebraicall.n- closed
residue fielcl À'= Rlm. LeI (XIR,D) be a marked nodal cun'e u'here X is
projective over -R. \\¡e lvrite X := X xp À. for the special fiber ancl D ::
D xp A.c ,Í.

Let p : lr' * .t e ncrfl(X¡ be a tame aclmissible cover. A deforma-
tion of þ to R is a pair (p,,\), where p : Y * X € ncrf;(X) is a tame
aclnrissible cover and ) : l'x¡ k:' Y is an isomorphism in the categor¡.-
nerf lX¡. An isomorphism from one deformation (p1,i1) to another tp^¡rl
is an isomorphism l:Yia li u'ith pzo f = p1 ancl Àz"U x kl¡) = Àr. Let

Def¡(Â) = {(p,Ð}l= ({õ)

be the set of isomorphism classes of deformaiions of p to R. l\,Iost of the time
rve u'ill identify the special fiber of a deformation with i, i.e. lve will assume
À = Idr and write p e Def¡(R).

3.1..2 Before stating the main theorem lve have to fix some notations.
The special fiber .t has a finite number of ordinary clouble points, which
n'e denote by sr, ,.. ,îr e X (they can be identified with the corresponcling
geometric points rd : Speck * X). Let, I"= {1,...,r}. By Proposition
2.2.2 we can choose coordinate systems (ut,r;) for X at ri, i e -I'. Recall that
'u,;,1); ãte elements of the strict henselian local ring 0¡,", such that t¡ i= Trit)i

is an element of .R and Oy,,, = A[[ui,u¿lu;u¿ = ¿i]]. \ry'e rvrite ù;,Ð; for the
imag_e of u;,a¿ in ON,,, = O¡ç,r,f mOy,,¡. Then (¿r,¡r) is a coordinate system
fbr X at ø¡.

Fix i € -I'for a moment and let p-t(ri) : {yj e }t l:l e Jj} be the
frber of p over a;, indexed by a finite set "I,1. By Proposition 2.3.2 there exist
coordinate systems (r¡,s¡) for i at !; such that ri' = u¡ and -út = r¡ fo,
integers ni prime to the characteristic of È, for all i e li. Let J' be the
disjoint union of lhe sets J! for i € ,I' and let rc : Jt * 1' be the map sencling

ieJitot.
Let p e Def¡(.R) be a deformation of p to R. For j € J' and. i := n(j),

Proposition 2.3.3 shows that there is a uniclue lift (r;,s¡) of (r¡,s¡) to a
coorclinate system of I' at U¡ such that rii : u¡ arid "lt = ,r. Note that
rj i= r js j is an element of .R with ri' = tt. This defines a map

Def¡(r?) 
-' 

f @)
(p, À) r---- . (r¡ i= s¡r¡)¡ç¡t

u'here ?(.R) := {(r¡)¡s l r¡ e R, rii = t*Uì. An element (r¡)¡ of. ?(.R) u'ill
be called a deformation datum. Note that the map (a6) depends on the
clroice of the coordinate systems (u¿,u¡) and (r;,s¡). L,sing the assumptions
and notations of 3.1.1 and 3.1.2, we can norv state the main theorem.

(46)
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Theoren 3.1.7 The nrøp (/6) is bijectir;e. tr'Ioreouer, if tuo deforntation-¡

of p are isontorphic, then thís isontorphisnt is unitlue.

The ploof of this theorem n'ill be gir.en in Section 3.2, follon'ing the outline
given in Section 1.1.

3.1.3 In the stateme¡rt of Theorem 3.1.1 lve have assumed that the residue

field À of -R is algebraicall¡' closed. This is more than u'e reallJ* need. A careful
inspection of the proof of Theorem 3.1.1 sholvs that we onll'' have to assume

that the singr.rlarities of X and the points on D = D xpk are A'-rational

ancl that À' contains enough roots of unity. For instance, this holds if À is
separably' closed. But one can prove much more.

Suppose .R is a compiete noetherian local ring with arbitrary resiclue field
À'. Let À'' be a sepalable closure of À and let ,R be the strict completion of .R

rvith respect to À''. Let (XlR,D) be a ?rojective marked nodal curve. \l'rite
.Í:=Xx¡1,'forthespecialfiberand X::X xp-R. Let p:Y'* (X,D) be

a tame admissible cover and p'its base change io È'. Base change from.R to
.R io.lu..t a map

Def¡(-R) 
- 

Defu'(,R)' (1i)

Let G := Gal(À'/&) be the Galois group of I;. Note that the action of G on

È' extends naturalll' to an action on ¡?.

Remark 3.1.2 There is a natural action of G on Defu,(.R). The map (47)

incluces a bijection Defe(,R) = Defr,(.R)G. In particular, if p is unramified
over tlre singulal points then there is a unique deformation p of p to R.

The first tlvo statement of this remark are a variant of \&'eil's Descent

Criterion and can be proved using étale clescent. The third statement follou's

1ì'om the first two and lïom Theorem 3.1.1. Note that Theorem 3.1.1 can be

appliecl to * I it. Hence we have a bijection Defu,(^R) = ?(.R), rvhere ?(A) is

definecl as in (46) in terms of^coorclinate systems of X at the singular points.

The incluced G-action on ?(r?) can be determined fi'om the natural action of
G on the strict complete local rings of the singuiar points of Y. In particular,
if XIR is smooth or if p is unramified over the singular points, ?(,R) has

exactly one element.

. As remarlied in the introduction, the results of [9] about deformation of
mocli covers with tame ramifi.cation can be reformulated in terms of tame

admissible covers which are unramified over the singular points. Therefore.

by Remarlt 3.1.2, Theorem 3.1.1 implies the results of [9]. However, the more

general resr-rlts of [10] on mock covers with rviid ramification do not lbllon'

h'orn Theorem 3.1.1.
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3.7.4 Suppose that X is a smooth projective cur\€ over a complete
noetherian local ring .R, ancl let D C X be a mark. \!'e n'ill call tame
admissible col'ers of (X, D) tamely ramified covers.

Corollary 3.1.3 The fitnctor

ncrf;1x) -a RcYf(x)

reducittg tantely ranúf,ed couers of X to the special fiber X:= X xR lc is an
equi,-alence of categ ories.

Proof: In the case of smooth curves, Theorem 3.1.1 and Remark 3.1.2 shorv
that tamel¡'ramified covers lift uniquel¡r. To prove Corollary 3.i.3, it remains
to show the following. Let p : Y * (X,D) and 17 : Z * (X,D) be tamell'
ramified co!€rs. Denote their reductions to XAy p andf. Let /-: Z -Í'be
an i-morphism. Then / lifts unicluelv to an X-morphism f : Z - Y.

Using the result of Section 2.3, it is easy to see that C := p-L(D) C I'
is a mark and / a tame admissible cover of (Y,C). \!'e alreacly knorv that /
liftstoatameadmissiblecover/:Z'* Y. Itfollows thatpof : Z'- X
is a tame admissible cover. I\,Ioreovert p o / is a lift of 4. But since lifting is
uniclue lve may assume that Zt= Z and po f =T, I

In Section 4 u'e lvill use Corollary 3.1,3 to construct a specialization mor-
phism fbr tame firndamental groups.

3.2 Proof of the main theorem

In this Section u,e give a proof of Theorem 3.1.1 following the outline given in
Section 1.1. In 3.2.1 u'e choose an étale covering of the curve X and fix some
notation. In 3,2.2 !\¡e prove the theorem in the special case of an artinian
base ring. In Section 3.2.3 we pror,'e the general case by successively lifting p
to the artinian rings.Ê, := Rlm"+r and applying Grothendieck's Existence
Theorem.

3.2.1 Notations and assumptions are as in Section 3.1.1 and 3.1.2. In
addition, rve assume that -R is artinian. This means that mtr = 0 for some
integer /ú > 0. The scheme Spec.B consists of a single point and the closed
enrbedding X C X induces a homeomorphism of the underlying topological
spaces. Recall from 3.1.2 that r¡, i e I',are the singular points of .i, that y,;,
j e J', are the singular points of 7 and that the map ,ç : J' - .I' is defined
by l(y¡) = rn0). We have cìrosen coordinate systems (u¡,ur) (resp. (f¡,s¡))
for X at r¿, i e-I', (r'esp. fbr i at U¡, j €,/',) such that fii = u"1¡¡ and
-n:.qj' = UxU).

Tlre closed sul>scheme D C X consists of a finite set of smooth points
r¡*r,,.. ,Í" € i. Let I" := {r*1,... ,s}. For iel"letp-t(r¡) = {y¡ e }:'I
i e t|¡ lre the fi.bel over r¡, indexed b"v J'i.Let J" i- l);ç¡,,/', I := I'l) 1".
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J := J'l)J" anclextencl ru to amap r : J -/rvith ru(f) = i Lor j €."If. For all
i e 1", choose a coordinate s; e. Ox,,; for D at r; (Proposition 2.2.4). For all

i e Ji, choose an element tu; €, Ot,u, such that Oy,r¡:9¡.,,ltu¡lrSi : z,l.
as in Proposition 2.3.4.

Fori € I,lelU; = Spec A;* X beanaffineétaleneighborhoodof ø;. \4¡e

mav assume that ü'i is a coordinate neighborhood, for the coordinate srvstem

(u;, u;) if. i e I' and for the coordinale z; of. D il i € /". Hence, we have

étale ring morphisms R[u;,u; I u¡r, = t;l - A¿ for i € f' and Rlz¡) - A; for
i e 1". Let L¡q := X - {r; I i e I} C X and .Iq :=.IU{0}. \4¡emay assume

that t,b = Spec/s is affine. ThenU:= (L,'t)ie¡o is an afine étale covering
of X. In the sequel n'e will keep the open subset üs fixed and continue to
shrink the neighborhoods U¿,i €.I, as necessary. Then U will alwa¡'s remain
a co\¡ering of X. Hence rve ma)' assume that for all i € .I the image of L¡;

on X is contained in ûi U {r¡}. This implies that for i I j the image of
U¿,j i= U¿ x x U¡ on X is contained in [/q.

Letll := (Û¿:= û'¡ xx *)r.r._be the restriction of I'l to X. For i e I'
(resp. i € I"), ü'¡ := Spec A¿ * X is a coordinate neighborhood for (¿¡,¡r)
(resp. for:¡), lvhere Ã¿ = A;lmA¡. Since p:Y * X is a finite map, lve can

n'rite Í - Spec B for afinite (2¡-algebra 6. Let c = (Õ¡,o¡,¡)_be the descent

clatum for 6 on t/ (Section 1.3). In particular, d; is a finite ái-algebra such

that ü'r x¡ i = SpecÕ;. Note that the neighborhoods U; of æ; can be made

arbitrarily small by choosing L¡¿ small. We may therefore assume that we

have Õ; = Ox1¡¡=;B¡, where

B¡ : Arlr¡,s¡ l ü' - an, -4' = oj, rjisj : 01 (48)

lbrj€J,land

B¡:Ãn[ø¡lrit=z,]

for j € ./j' (see Lemma 1.2.3, Proposition 2.3.2 and Proposition 2'3.4)

(4e)

3.2.2 Let p:Y - X beadeformationof ploR' Wecanwritel"=
Spec6 for a finite O¡-algebra B with B = ß 8n Ä;. Let a: (C¡,a¿,¡) be the

clescent datum fbr B on l,/. It follou's that a = a 8R k. By the Propositions
2.3.3 ancl 2.3.4 there are uniclue lifts (rr',s¡) of (f¡,s¡) (resp. tu¡ of tD¡) with
,lt = u*(j)and sJ' = or(j), j e J' (resp. tuJ' = zx(j)¡ j e J")' Moreover, rve

may assume that C; = @^1i¡=¡.8¡, lrrhere

B¡=A;Ír¡,s¡lrlt =un, tlt =ri, r¡8¡=r¡lt r¡:=r¡s¡€ R ('10)

fol j e ,/,1,

B¡ = A¡lw¡ lnit = ,,1 (51)
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: J - I u'ith rc(j) = i for j e 4. For all

,, for D at üi (Proposition 2.2.4). For all
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o¡ løii = z;) (49)

ition 2.3.2 and Proposition 2.3.4).

¡rmation of p to .R. We can lvrite l' :
h B = 6 8n ß. Let a = (Ci, o¡,¡) be the
s that o - o 8n &. By the Propositions
; (r¡,s;) of (F¡,5¡) (resp. to¡ of to¡) with
'esp. tuli = zx(i)¡ i e J"). Moreover, rve

tere

t¡, r¡s¡ - r f, r¡ := r¡s¡ € R (50)
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for j € l' and B¡ = B¡ 8n A'for all j € J. Since p is étale oger L¡s, Ce is
an étale Aq-algebra. Fol the same reason ancl our choice of the covering U,
Ci 8,r, A;,; ancl C¡ 8,r¡ A¡.¡ arc étale A¡,¡-algebras, for i, i e I, i + i .

Nolv let p' : l" * X be another deformation of p to .R inducing the
sanre cleformation clata (ri),t * p. Let, l'-': SpecB'ancl ¿t' = (C!,ai.;) be
the corresponcling clescent clatum fbr B' on U. Since Cq ancl Cl ate étale -.{s-

algeblas n'ith Co@nÀ' - Co : Cl&nÀ', there is a uniclue Ag-linear isomorphism
jo : Co -, C6 with / 8n ,(' = Id¿o (Lemma õ.1.1). After shrinking the
neighbolhoods L'¡, i € /, lve find Ai-linear isomorphisms fi : C, * Cl u'ith

f ¿Ønk - Icl¿,, because (aS) and (49) depend, up to unique isomorphism, onll''
on the deformation data (r¡)¡. N'loreover, the /¡ are unicluely determined b1''

their values on the coordinates rx, s¡ and tu¡. It follorvs from the Propositions
2.3.3 and 2.3.4 that the /, are unique. \!'e claim that the famil.u" (J) is an
isomorphism of descent data betlveen a and a'. This follows from the fact
that Q 8r¡ A;,¡, C¡Øe¡ A;,¡, C!Øe,A;,¡ and CiØ;., A¡,¡ arc étale A¿,¡-algebras

and from Lemma õ.1.1. By Corollary 1.3.2 the family (/¡) descends to a
uniclue isomorphism f ;1'' * Y between the deformations p' and p, This
prol'es the second statement of Theorem 3,1.1 and the injectivity of the map
(a6) in our special case.

To prove the surjectivity of the map (46), let (r¡)¡ e T(R). For i € /,
define a finite A¡-algebra C¡ = Or(¡)=tB; by the expression given in (õ0)
and (ö1). By Lemma õ.1.1 we can lift C¡ to a finite étale Ae-algebra Cq.

t,sing or.rr assumptions on the covering l,/, it is easy to see that for all i I
j, i,j e Io, C¡Øt, A¡,¡ and C¡Øe¡ A¡,¡ are étale At,j-algebras' Therefore
rve can apply Lemma 5.1.1 once more to construct A;,¡-linear isomorphisms
a¡,¡: C;Øt¡A¿,¡ a C¡Øt¡,A.d,j lvith oi,j8n k = a¿,j. Let a :: (C;,a;;).
Since e 8n À' = c, the uniqueness statement of Lemma õ.1.1 forces a to be

a clescent datum. By Corollary 1,3.2, a determines a finite Oy-algebra B,
hence a finite morphism p:Y = SpecB * X liiTing p. By construction. p is
a tame admissible cover. This completes the proof of Theorem 3'1.1 in the
special case.

3.2,3 \!'e are now going to prove Theorem 3.1.1 in the general case. For
rr ) 0, let -R, := Rlm"*l and Xn:= X xnLn. In particular, Xo = X.
Let p : Y - X be a deformation of þ lo Rwith deformaiion datum (r¡)¡.
Thinli of p as a frnite (2¡-algebra B wiih Y" = Spec B, The finite (?¡"-algebra

ßn := B Øn R^ corresponds to the deformation p xn Rn of p to .Rn with
clelbrmation clatum ("r("))r. Here rrf") clenotes the image of r¡ in .Rn, Lsing
the special case of Theorem 3.1.1 and Grothendieclç's Existence Theorem
(Corollary 1.4.2), rve see that p is determined by the delbrmation datum (r¡)¡
up to unique isomorphism.

Conversel¡r, let (r¡)¡ € ?(À) be a del'ormation clatum. Applying Theorem

3. I . 1 in the case of an artinian base ring, rve obtain a compatible system of lifts
p^ tL'n * Xn with clelbrmation clatum (rj"')t.Write l'" = SpecB,,, then 6' =

'.u¡ lwii = z;) (51 )
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(6")" is a formal finite (?¡-algebra. B¡' Grothendieck's Existence Theorem

iCàrofforr- 1,,1.2) rve obtain a finite (2¡-algebra B with Bn = B 8n'R"' Let

i.-:= gp".B. All ne have to sholv is that p:Y - X is a tame admissible

cover.

Let :r € ¡ be a singular point of the special fibre a¡d A e p-L(æ)' Choose a

formal coorclinate system (u, u) for X al rand write Á t: 0 x,, = A[fu, ulut' =

t]1. Since p is finite, iJ := Ov,y is a finite local Á-algebra' It follou's from

Proporitior, õ.2.3 (iii) that (2v^,u = k¡m"+tÊ' 81' the construction of yn'

there exist elements rn,sn €. Blm"+rþ lvith ri = un, s"n:'t)n, rn;= ¡t'e' €
À' ancl B¡m"+tþ = Ã'[[r',s' l^r*sn: ""]l' 

lvforeover' ]ve may assume that

(r,*,,s,*r) litrs (r,,r"j."sin.å b ; ;*pËie, *'e frncl elements r,s € B rvith

i'*ug; r;,;" in å7m"+t such that re = ttt se = 1) and r := rs €' R' B"'"

theiocai criterium of fl,atness ([17] 20.C Theorem 49), B i: tltl 'R-algebra'

Hence, by Proposition 2'1.1' rve have B = Rllr,slrs = "ll' \!'" have shorvn

that p is tamsaclmissible at g (Definition 2.3'1 (i))' BI:i**: arguments

orr" ,Lonu, that the same is true if o is a smooth point of X. This completes

the proof of Theorem 3.1.1. t

4 Tame fundamental groups of smooth curves

Let X be a smooth projective curve over a complete local ring .R with alge'

braicall¡r closecl resiclue fielcl, ancl let D c X be a mark. corollary 3.1.3 states

that taåely ramifiecl covers of the special fiber (¡, D¡ titt uniquely to tamel,u"

ramifiecl .or,"r, of (x,D). This result rvas ûrst obtained by A. Grothendieck

ancl usecl to prove hi, fu*olls theorem stating that the prime to ¡r-part of the

tame firn<lamental group of a smooth projective cllrve over an algebraicalll'

closecl fielcl of characteristic p is the same as it would be in characteristic 0.

so far, [8] is the only complete reference for this result. For the special

case of étale funclamental groups there is the more accessible account of [20].

In both expositions Grothenclieck's Theorem is deduced from facts about

f*nclamentil groups of rather general schemes. We lvill see in this section

that the case of tame covers of smooth projective curves can be handled with

much less machinery. we are roughly going to prove the following. Let "R be a

mixecl characteristic cliscrete valuation ring with algebraically closed residue

fielcl of characteristic p > 0 ancl x a connected smooth projective curve o\ier

.R u,ith a mark D C X. Then there is a surjective specialization morphism

h.om the tame tinclamental group of the generic geomet-ric_fi.ber (x¡¡, D¡¡) of

X to the tame funclamental lroup of the special fiber (i, D)' Moreo'er' this

specialization morphism inclices an isomorphism on the prime to p parts of

the tame lïnclamental grouPs.
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4.L The taure fundaurental group as a Galois group

Let Â,' be an algebraically' closed field and X a smooth connected projec-
tiye curçe oyer Ã,'. In this case, a mark D C X of X/Å: is a finite set
D = {¿r, . . . , t"} of closed points of X. Tamel¡' ramified co\,€rs of (X, D) cor-

respond to finite tamell,' ramified extensions of the function fielcl À'(X) of I.
Thus n'e can clefine the tame fundamental group n? (X) as the Galois group
of the maxinral algebraic extension of È(X), tamel¡r ramified o!€r Í1,. . . , Ír.
This is classical valuation theory'lbr ftrnction fields in one variable. IVforeover.

if lu is of characteristic 0, rf (X) is the profinite completion of the topological
tïrndamental group t i"o(Xc - {tr,... ,r'}). This follows from the Riemann
Existence Theorem. In this subsection, rve list all the facts lve need about
tame fundamental groups of smooth projective curves over an algebraicalll''
closed field.

4.1.1 If ø € X is a closed point, the local ring Ox,ois a discrete raluation
ring with quotient fiekl Å.'(X). This induces a bijection betu'een closed points
of X and discrete valuations of å(X) which are trivial on å. If z € &(X) is a

local parameter for ø, the complete local ring is of the form CIy,': klfzJl.
If. p:Y -' (X,D) e Rcrfl(X) is a tamely ramified cover (see Definition

2.3.1) and l" is connected, the function ûeld ,t(Y) is a finite extension of È(X).
tamely ramified over the valuations corresponding to the points ï!,...,t,.
In fact, let y € p-'(x;) and consider the natural extension Ox,', - Ov,o of.

raluation rings; passing to the complete local rings, we obtain Oy,u = È[þo]] :
(9¡¡,,,\wþu" : g] f'or a suitable choice of local parameters z and w and with n

prime to the characteristic of È (see Definition 2.3'1 (ii)).
Conversel¡', let I/À'(X) be a finite field extension which is tamely ramified

ov€r æ1, . . . , t, ancl unramified everylvhere else' Then -õ = k(Y) for a smooth

connected projectiye curve Y over È. I\'foreovet', the birational map induced

by tlre inclusion È(X) .- L = k(Y) extends uniquely to a tamely ramified
cover p '.1' '-* (X, r).

This correspondence betlveen function fields and connected curves carries

over to non connected curves. Let p : Y - (X,D) be any tamely ramiûed

cover and let Yr,... ,y; be the connected components of Y. The function
ring of Y is clefined as the finite å(X)-algebra k(Y) := k(yr) O ... O /c(l:).
The extension È()')//c(X) is tamely ramified ov€r o1, ...,îr and unramified
everyrvhere else. We obtaín an ecluivalence between ncrf (X) and the categorl'

of finite /c(X)-algebras, tamely ramified ov€t o1, .'. ,ür (from now on we u'ill
tacitly unclerstancl that 'tamely ramified ov€r 11,' . . , or' implies 'unramified
everywhere else').

4.L.2 Choose an algeìrraic closure l"(X) " O and let O C O be the

maximal subextension tamely ramified ov€r 11,...,t¡. Then O/k(X) is a
Galois extension. Choose a closed point ø e X - {tr,... ,o,} and a discrete
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valuation i¿ of fl extencling the valuation of A'(X) corresponding to a. Define
the tame fundanental group of (X, D) u'ith base point ¿ as the Galois
group of O over À:(X):

n?(X,a) := Gal(o/k(X)). (ð2)

It may seem strange that n?(X,ø) does not depend on a. But the choice of
a ancl ã determines the u'ay'in u'hich n?(X,ø) classifies all tamely ramified
covers of (X, r). For ottr purposes it suffices to consider only Galois co\:ers

of (X, D).
Let G be a finite group. A G-Galois cover of (X, D' ø) is a tamely

ramifiecl cover p i 1' - (X,D) e Rcyfl(X) together with an isomorphism
G 3 Autx(Y') such that Y is connected and G (as automorphism group of
the cover p) acts transitively and without fixed points on the fiber p-t(a). A
pointed G-Galois cover of (X, D,a)is a G-Galois cover p ;Y - (X'r)
together with a choice of an elemenl b e p-t(a).

Let p:l' - (X,D) be a G-Galois cover. Then k(Y)lk(X) is a finite field
extension and G acts as a group of È(X)-automorphisms on ,t(Y)' \tr'e can

identify p-'(o) with the set of valuations of k(Y) extending ø. Since G acts

transitivel¡r and frxed point free on this set, Ë(Y)/&(X) is a Galois extension

lvith Galois group G. Moreover, if we choose an element å e p-l(c) there

is a unique embeclcling À6 : À(Y) -, O over È(X) such that Àt1(¿) - ð (*
raluation of À()/)). The restriction map on the Galois groups induced b."* À6

is a surjective continuous homomorphism ø'f (X, e) * G.

Conversely, any surjective ancl continuous homomorphism n?(X,a) * G

corresponds to a subfield L C Q which is Galois over À(X) with Galois group

G, lf Y is the smooth projective model of tr, i.e. L = k(Y), we obtain a

G-Galois cover p i1' * (X,D).Note that G acts without fixed points on

p-'(o) because ø is unramified in L = k(Y). I\'Ioreover, there is a uniclue

distinguished element b e p-L(a) corresponding to the restriction of ã on

L = k(Y). We have proved the following:

Proposition 4.1.1 The choice of ã induces a bijection between isomorphism

c/øsses of pointed G-Galois couers of (x, D,a) and swjectí,ae continuous mor-

phisms n?(X,a) * G.

Let g,r ) 0. Let ls,, be the profinite group with 2g +, generators

Qr,btr. , , , Qs,bs, ct,.. . , c, and the single relation

[or,år] '.."[on,bo]'"r'.'.'cr = 1. ('i3)

Remark 4.1.2 If. the ground fielcl È is of characteristic 0 and the curve x of
genus g, we obtain an isomorphism

fn,, å ,rlçx,o¡.
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rtion of A'(X) corresponding to a. Define

iX,D) with base point ø as the Galois

' Gal(o/ß(X)). (Ð2)

loes not depend on a. But the choice of
h zrf (X,o) classifies all tamell'ramified
it suffices to consider only Galois co\:ers

Galois cover of (X,D,ø) is a tamel¡r
fcrfl(X) together with an isomorphism
rcted and G (as automorphism group of
;hout fixed points on the fiber p-r(ø). A
ø) is a G-Galois cover p :Y * (X,D)
b e p-t(a).

s cover. Then À:(r*)/À'(X) is a finite field
fr(X)-automorphisms on å(Y'). \tr'e can
tions of ,b(Y) extending ø. Since G acts
his set, k(Y)lk(X) is a Galois extension
rve choose an element ô e p-l(a) there
O over &(X) such that À;r(ã) - ô (*

nap on the Galois groups induced b-l' À¡
hism rf (X, a) - G.
ntinuous homomorphism rf (X, ø) * G
;h is Galois over È(X) with Galois group
rodel of L, i.e. L = k(Y), we obtain a
¡te that G acts without fixed points on
, : A(1'). llforeover, there is a unique
rrresponding to the restriction of ã on
ving:

induces a bijection between i,somorphism
(X , D , a) and surjectiue continuous mor-

profinite group with 2g +, generators
ingle relation

bol."r.....cr=L (ö3)

is of characteristic 0 and the curve X of

."!çx,o¡
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To prove this fact, one nray assume that /c is a subfield of C, One can sholv
that the natural homomorphism a'f(Xç, a) * r!(X,ø) is actually an iso-
morphism, because any G-Galois cor€r of (Xc, Dg) is already defined over À'.

81,' the Riemann Existence Theorem, "f (Xc, a) is isomorphic to the profinite
conrpletion of the topological fundamental group a'l"P(Xc - {rr, ... ,r,},a),
which is 1o.,. See e.g. [2a] for more cletaiìs.

4.2 Tanre covers over complete discrete valuation rings

In this section -R u'ill be a complete discrete valuation ring with algebraicall.v
closed residue freld À. We denote by /í the quotient field of Ã and by 1í an

algebraic closure of /f . \!'e rvork out several details about smooth projective
curves and tamely ramified covers over .R which are used in the proof of
Grothendieck's Theorem.

4.2.1 Purity of branch locus First we need some preliminaries about
regular local rings of dimension 2. See [17], Chapter 17, or [2] VIII $3 for
more details.

LeL A be a noetherian local domain; denote its residue field by k, its
maximal ideal by m and its cluotient field by /f. The ring A is regular of
dimension d iff its completion A is.

From nolv on, assume A to be regular of dimension 2. LeI S¿ be the set

of discrete valuations u of. I{ such that the valuation ring o, contains A. If
u e St then þ := Añ m, is a prime ideal of height 1. The localization A
is a discrete valuation ring, hence o, = A . Regular local rings are normal.
therefore eclual to the intersection of their localizations at primes of height

one. \&'e see that

A= ) o,. (õ1)
uê.St

Let u € 5¿ ancl þ := Allm, be as above and choose s, € F -m2. By [2] VIII,
5.3 Proposition 2 ancl Corollaire 1 we conclude that À := AlaA is regular and

that (ø) is a prime ideal. Since dimÁ:2 rve have in fäct p - (ø), and.zl is

a discrete valuation ring. IVforeover, lrye have u'(ø) : 0 for all u' € S¡ - {r}.
We will call an element ø € A rvith the above properties a parameter of ¡l
at u.

The fbllowing lemma is a special case of the Purity Theorem of Nagata

ancl Zariski, also called 'Purity of branch locus'. Its proof is an adaption of a
proof given in the Appendix of [a]. For much more general versions of Purity,
see e.s. [8] X.3.

Lenrnra 4,2.1 Let A be ø noetherian regular local dontain of dimension2, Ii
the quotient Jield oJ A and. Llli a finite eúension. Then the integral closure
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B ol A in L is a fnite A-¡nodule ol rank lL : Iil. trIoreoter, B is étale ouer
A iff LlIi is unrantif.ed ouer S'1 (the set of taluations don¿inating A).

Proof: Let "Ss be the set of discrete 
'alnations u of L ìving o'er some

valuation u € fi. Denote the corresponding yal¡ation ring by 0- and put

B::)0. GL) (õð)
ue ò-a

From (õ.1) !\'e carì see that A c B. As intersection of integralll' closecl domains
of. L. B is itself an integrally closed dom¿in of r. Hence, if lve can shou, that
.B is a flnite A-module then it n'ill folion' Ihat B is the integral closure of A
in I.

Let u € "9.a be any valuation of 1í dominating A and choose a parameter
a lor A at t,. Since the localization ,41o¡ is a discrete valuation ring, B1o¡ ::
ñ*1,o0. is the integral closure of. Aç7 in tr. By standard valuation theorv
.B1.¡ is a free A1o¡-module of rank [I, : 1f]. Therefore Bç¡f aBp¡ is a free
A1"7f aAp¡-mocluleof rank [.1 : /t']. Let Ã:: AlaA and.Ë :: BlaB. ltsÁg
the fact that u(ø) = 0 for all u € ^9¿ - {r"} it is easy to see that the Á-algebra
B := BlaB injects into B6¡f aBlo¡. Since Àis a discrete valuation ring, it
lbllon's that B is a free Á-module of rank < IL , /í]. Naiia.v'ama's Lemma
implies that B can be generated (as an A-module) by IL : Ii] elements. But
Z is the cluotient field of .8, therefore,B is free over A of rank exactiy lI : It'].

Let ð1, ... ,bn be an A-basis of B ancl 6 be the cliscriminant of .B over A
n'ith respect to ð1,. .. ,bn. Now -[//í is unramifiecl over S,1 itr o(ó) :0 for
alì tr 6 5',r iff ó € A' iff .B is étale over A (Lemma 5.1.2 (iv)). This completes
the ploof of the lemma. I

If L I Ii is tamely ramified in onl¡r one place of 51, rve can use Abhyanliar's
Lemma to prove another version of purity. Its formulation is simpler if n'e
work with strict complete local rings.

Lenrnra 4.2.2 In th,e situation ol Lentn'ra y'.2.1, assume that A is comltlete
with algebruicølly closed residue field. Assume ff¿oreorier that LlIi is tamely
runtifierl ouer some ualuøtion uo € S¡ ønd unramified ouer S¡- {us]l. Then
LlIi is purely røntif,ed atas and the integral closu.e ol A in L is of the fornt

B: Alblb'= o).

Here e is the ramification inder of u6 in L and a €. A is a parameter of A at
uo,

Proof: For any natural number e prime to the resiclue characteristic of trq

rve ptrt /ç :: 1([ålå" - a)] this is a finite extension of .If of degree e, purelv
lanrifiecl in uq ancl unramifiecl over 5i - {ro}. Nloreover, A":: Alblb : al
is the integral closure of A in 1f"; it is a complete regular local domain of
clirnension tq'o (see 12] VIII, 5.4).
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Let, L" := L .1í" (inside some algebraic closnre of /t'). By Abh-r'ankar's
Lemma (see e.g. [20], Appendix to Chapter iX) and the hypothesis !\'e can
choose e such thal L"f Ii" is unramified at the unic¡re extension of uo to /t'".
Hence it is unramified at all discrete r.-aluations dominating Ár. Nou' Lemma
.1.2.1 applies. shou'ing that the integral closure B" of A" in ,L" is finite étale
over .4'". But A" is strictly henselian, therefore lve have B"= A" (Proposition
õ.2.3 (r') ) and I C Ã". In particular, ue is purel¡' ramified in -L. Hence, if
n'e choose e to be its ramification index, then I : /í" and B = 4". I

4,2.2 Specialization LeI X be a connected smooth projective cunæ over
.8. It is a regular scheme of dimension 2. \1'e will use the notation X := X x nk
for the special fiber, X¡¡ := X x n-Ií for the generic fiber and X¡7 i= X x p /i
for the geometric generic fiber. Note that X is an integral scheme, because it
is both regular and connected (use [14] II Proposition 3.1 and the fact that a
regular connected scheme is irreducible). \,!'e will denote its function field b--"

/t'(x).
Let ¿ be a closed point of the generic fiber X¡¡ (which $'e consider as an

open subset of X). The point r corresponds to a discrete valuation of /f (X)
u'hich is trivial on .It'. The local ñng (9y,, is the corresponding valuation
ring. Let -I(' be the residue field of r and -R' the integral closure of ,R in -Ií'.
Then .R' is a complete discrete valuation ring, purely ramified over Ã. Since
XIR is projective, the morphism Spec.[í' - X corresponding to ø extends
unicluely to a morphism Spec R' - X ([14] II, Th. 4.7 and Th. 4.9). Let ã
be the image of the special point of Spec.R'on X. The point r is the unique
closed point of the special fiber X contained in the Zarislii closure of o on X.
\!'e will call ¡ the specialization of r and write x -+ x.

Let ø € .i C X be a closed point of the special fiber. The local ring (?¡,¡
is a regular local ring of dimension 2 with quotient field /i(X). Let 5¡ be

the set of discrete raluations of /f(X) dominating Ox,r. A valuation a € Sz

corresponds to a point on X of codimension 1 lvhose Zariski closure contains

i. Hence !\¡e can identily .S¡ rvith the set {e € X¡ç | r * c} U {ti}, where 4
is the generic point of the uniclue irreducible component of X containing ã.

Therefbre (,54) becomes

ox,, = ([l o",,) nox,n, (õ6)
caû

Let D C X be a marli on X (see Section 2.2). Ïnparticular, D = Spec¡î'
for a finite étale .R-algelxa .R'. But since -Ê is strictly henselian rve have -R' :
A O . . . O .R. Therelbre D is the Zariski closure of a finite set {r1, . . . 

' 
ø,} C

X¡ç of /r-r'ational points lvhose specializations ã1,.,.,î, e X arc pairlvise
clistinct. \\¡eu'illiclentii,vDu'iththeset{tr,...,u,}andwriteX(/í)forthe
set of -Ii-rational points of X(/í).

(5õ)
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Lenrnra 4,2,3 Let X be a sntooth prcjectiue cutae oaer R and let D =
{tt,.. . ,x,} be a ntarl¡ on X.

(i) For eueryclosedpointxeX thereeristsapointx €X(/i) uithx* x.

(ä) Let p :1'' * (X,r) be a tøntely rantilied couer andø € X(1í) such that
its s¡teciali:ation a is not an elentent of the reduction {t¡,...,t,} oÍ
D. Then for any point õ e p-t1a; the¡u is ø unique point b € I'(/í)
uith b * -b 

and p(b) : a.

Proof: Lel a e ,'t. gy Proposition 2.2.3 u'e have ()y,6 : A[["]] for some

Iocal coordinate s. Hence rve can embed /í(X) (u'hich is the quotient field of
Ox,a) into /i((:)). This defines a discrete valuation u, rvith residue field 1f
on /í(X). It is clear that the point o € X(/t') corresponding to u, specializes
to o. This proves the first claim. In the situation of (ii), p is étale at ö.

Therefore Ox,u 3 (?r,6, proving the second claim. t

4.2.3 Reduction liorv rve assume in addition that the geometric fibers
X¡¡ and X aru connected. For any finite extension li'f Ii,let .R' be the
integral closure of .R in .Ii'. Then X' := X xp-R'is a smooth projective curve
over .R'. The scheme X' is still connected, has special fiber X and function
field /t''(X') = /f(X) 8¡c /í'.

Proposition 4.2,4 Let p¡ i Y¡7 + (Xrr, D,t) be a tamely rant'if,ed G-Galois
couer. Assunte that the order of G is prime to the chørqcteri,stic of k. Then
there eústs ø tantely ranti.fied couet p:Y' - (X,D) with p¡ = p xRIi. Its
red,uction þ:Y - (.f ,r) is a G-Galois coter.

Proof: By assumption lj¡ is connectecl. The G-Galois cover p¡¡ is already
defined over some finite extension -Ií' of Ii, i.e. there is a tamely ramifred
G-Galois cover pKt : Y¡¡, * (X¡¡,,D¡¡,) wiih p¡¡ : pK,xI(¡.Ii' Note that
tlre corresponding extension of fïrnction fields Ii'(r'K,) f Ii'(X¡¡,) is a G-Galois
extension. Onr assumption on G allolvs us to apply Abhyankar's Lemma.

N'Iore precisely, after a tamely ramifiecl extension of lt'' we may assume that
the cliscrete valuation of /r'(X') corlesponcling to the generic point of X is

unramified in li'(Iiç,).
Lel,Y' be the normalization of X' in .K'(Y¡ç,) and p' : Y' -- X' the natural

map ([1a] II Ex.3.8). By construction Y'is a normal integral scheme rvith
ftrnction field /('(1") = Ã'(Yi¡,). We claim that p'is a tamely ramified cover

of (X',D').
Let i € X be a closed point and let ,B be the int'egral closure ol 0;ç,,¡

in -Ií'(Y¡¡,). By Lemma 4.2.I B is finite over 0¡,,¡. Therefore the fiber
(p')-t(¿) = {yr,...,U,} is a finite set ancl .B is its semi-local ring (i.e. its
localizations are exactly Oy,,s¡). In particular, p' is a finite morphism.
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Let S¡ :* {r € X¡ç, | ø ".e r} U {ri} b" the set of discrete raluations
of /í'(X¡,',) specializing to r. If r / Irr,...,r,\ then.I('(Y¡ç,)//í'(X¡ç,) is
uuamifiecl orær S¡. If J' : c'¡ then it is tamely ramified o\¡er si and unramified
over 5¡ - {rr}. t,sing Lemma 4.2.1ancl Lemma 4.2.2, we conclude that p' is
a tamel¡'ramified cover of (X'rD').

Let þ := p' x n,l; be the reduction to the special frber; it is a tamel¡,' ramified
cover of (,f , D). By Corollary 3.1.3 it lifts uniquely to a tamell,' ramified cor.er
p:l'- (XrD).The uniclueness of lifting implies p'= p xRA'. Therefore
pt;=pxn.Ií.

Note that there is a natural G-action on f inducing a G-action on !- and
hence on Í. To prove that p:Y -,t is in fact a G-Galois cover, it remains
to show that l-' is connected. Assume that i is the disjoint union of tu'o open
subset lt,Íi. Then the natural maps ff - (N,D) are still tamely ramified
covers, for i = 1,2. Lift them to tamely ramified covels Y * (X,D),i = 1,2.
By the unic¡ueness of lifting, rve conclude that l" is the disjoint union of Yi
ancl l!. But Y is an integral normal scheme and hence connected ([14] II
Proposition 3.1). Therefore one of the Yi must be empty, proving that l-' is

connectecl. r

4.3 The specialization morphism
Let G be a profinite group. We define the prime to p part of G as the
inverse limit over those finite quotients of G which are of order prime to p and
clenote itby Qn'.It is a profinite quotient of G. If ó: G * Il is a continuous
morphisms of profinite groups, / factors to a continuous morphism 4n' ' 6n' -
f/p'. Note that surjectivity of / implies surjectivity of 6n' , Remember that
Is,, denotes the tame fundamental group of a smooth projective curve of
genus g with r marked points in characteristic zero (Remark 4.I.2).

Tlreorem 4.3.1 (Grothendieck) Let X be s, smooth projectiue curve of
genus g o1)er o,n algebruically closed f,eld k ol charøcteristic p > 0 and
ao¡Ít,... ,Í, be Ttairwise d,istinct closed points. Let D:= {Ír, ... ,Í,}. Then
there is a surjectiue homomorphism of Ttrof,ni,te groups

f.e,, -* n!(X,ao¡

induci,ng an isonrorphism on the pri,me to p parts, i.e.lli,,3 nt(X,as)n'

The proof of this theorem will be given in the rest of this section. In
4.3.1 rve construct a lift of .t to characteristic 0. In 4.3.2 we construct the
specialization morphism between tame funclanrental groups. In 4.3.3 it is

shorvn that this specialization morphism is injectiræ on the prime to p parts.

4.3.1 Let i be a smooth projective curve ovel an algebraicall¡'' closed

field of characteristic p > 0 ancl let D = {rr,... ,i"} be a mark on .i. Let
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A :: tl'(À') be the ling of Witt vectors over À'; it is a complete cliscrete
valuation ring of characteristic 0. \Ve adopt the notations 1f, 1i etc. from
Section 4.2. B¡.' Proposition .1.3.2 belon' r\¡e can lift Í to a smooth projective
cuLt'e X over -R: its geometric generic fiber X¡¡ is connectecl. B¡' Lemma
.1.2.3 u'e can lift Ír,... , Í, € X to 1f-rational points rf1,... ,c, e -\(/r).
This clefines a ma¡k D :: {sr,... , r,} on X.

Proposition 4.3.2 Let X be a sntootl¿ projectiue curue ouer k.

(i) There etísts a sntooth projectbe curue X ouer R uith X: X xn A.'.

(ii) # X is connected, then for any X as in (i) the generic geometric f.ber
X6 :: X x ¡¡ Ii is connected.

Proof: \Ve rvill give a proof of (i) only in characteristic different from 2. For
the general_case, see e.g. [8j III. If char(À) I 2 then there exists a simple

ntorphisnr f : X - F| (see [ö] Proposition 8.1). In particular, / is tamell''
ramifiecl, having onl¡' ramification of orcler 2. Therefore lve can lift / to a

tamel¡r ramified cover /: X * F! (Corollarv 3.1.3). This proves (i) in this
special case.

Assume ihat X is connected ancl that X is a lilI of X as in (i). Let

^R be the integral closnre of .R in 1i. Then Xp := X xR.R is a smooth
projective curve over the valuation ring ,R rvith special fiber X. Since the

natural morphism Xn * Spec-R is closed ([14] II Theorem 4.9), ever.u- closed

sttbset of X¡q must intersect the special fiber X. Therefore Xp is connected.

A connected regular scheme is integral. Therefore X¡ C X¡1 is integral and

in particular connected. r

4.3.2 Let (X,D) be as constructecl in 4.3.1. Choose a closed point aq €
i- {0r,... ,ã,}. By Lemma 4,2.3 (i) lve can choose a point ør € X(1f) -
{",,...,r,} which specializes to ø6, We will regard øs (resp. ø1) as base

points on X (r'esp. X¡¡). As in 4.1.2, choose an algebraic closure l"'(i¡ * 9o

and let flq be the maximal subextension of Oq lvhich is tamely ramified over

i1,...,i,. Extencl the valuation on ß(X) corresponding to ø6 to a r,'aluation

ãq on O6. Similarly fol X¡: Iet O1 be an algebraic closure of /î(X), O1 the
maximal subextension tamely ramified oV€r c1,... ,t, and ã1 a valuation of
01 lying ov€ï d1. As in 4.1.2, rve define the fundamental groups

n?o(Xr,ø1) := Gal(Or//ï(X)), 
"?(N,øq) 

:= Gal(Oo/l(.t)) (õi)

We can interpret Lemma 4.2.3 as tbllorvs. The process of specialization a1 *
(¿o is a'path'in X - D connecting as with ø1, ôûcl tamely ramifiecl covers

of (X. D) have a uni<¡re lifting property rvith respect to such patirs. In close

analogl' to topological covering,space theory, this lilTing property clefines a

nrolphisrn rlt'(JfrÍ, at) 
- "?(X,ae) 

of fundamental groups.
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ied over c1, . . . , e, and ã1 a valuation of
frne the fundamental groups

), n?(X,ø¡) := Gal(Oo/r(,t)) (õi)

llows. The process of specialization a1 *
; as with ø1, ancl tamely ramifiecl covers

rerty lvith respect to such paths. In close

,ce theory, this lifTing property clefines a

, aq) of fundamental groups.
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Proposition 4.3.3 There er.i.:ts a natural surjectiue morphisnt of profnite
grou,s 

ó:afß(xr¡,ør) * ,r!(x,as).

Proof: Let G = ?rP(X, oo)lH be a finite cluotient. _B¡'Proposition 4.1.1 it
corresponds to a pointed G-Galois cover þ:Y * (.Í,t). Let bo € p-t(ao)
be the clistinguished point.

Corollary 3.1.3 states that lve can lift p to a tamell,'ramified cover p:
I'* (X,D) lvith automorphism group G. In particular, G acts on I'þ'
Lemma 4.2.3 (ii) shorvs that specialization defines a G-equirariant bijection
pr{L@ò I p-'(oo).Hence G acts transitively ancl fixecl point free on p[J(n1)'
B¡' Proposition 4.3.2 (ii) lî. is connected. Hence ptt : Yr - Xrr is a G-Galois
corrcr. Let år € piit(ør) be the uniclue lift of åo o\¡er ør (Lemma 4.2.3 (ii) ).
Consider pri as a pointed G-Galois cover rvith distinguished point å1. 81'
Proposition 4.LI, p¡7 corresponds to a surjectiræ continuous homomorphism
,it¡1 : rlt'(Xrc,at) - G.

We claim that the maps y'¡¡ are compatible (where I/ runs over all normal
subgroups of finite index) and lift to the desired surjective morphism p. To
prove this rve have to shorv the following: if G' = r?(N,oo)lH'is a smaller
clnotient than G, i.e. H C H', and. tþ : G - G' is the natural map, then
,þ o ön = öH,.

Let p' : Y'_* .t be the pointed G'-Galois cover corresponding to the
natural map n'f(.i,¿o) * G'(with distinguished point åi)' Let p':Y'-, X
be its lift to ¡1 ancl å/, be the lift of öi in (p')-1(ø1). Let À61 : /î(t''; --
O1 be the unic¡re embeclcling such that Àtl(¿r) is the valuation on /î(I")
corresponding to the point å/t. The map p¡¡, is the restriction map of Galois
groups corresponding to À6i

By the definition of G and G' we have a natural inclusion fr(}") C
/c(Í) C Oo of Galois extensions, such that the restriction map from G =
cal(lc(i)/Å,(,t)) !o G' = qal(È(Y)lk(X)) is the natural map. It induces

an.f,-morphism / : | - v'' such that ¡1Oo¡ = 46. By Corollary 3'1.3 /
lilTs unicluely to an X-morphism f : Y -, Y/. The uniqueness statement of
Lemma 4.2.3 (ii) implies that /(å1) = å1. Let p : Il(Y')'* lî(I') be the
inclusion of fïrnction frelcls inducecl by /. We have

À61 = À¡, o ¡r, (õ8)

because both embeddings restrict ã1 to the valuation corresponding to ð"' if
rve translate (58) into the corresponding equation for maps between Galois

groups, we obtain tþ o ón = (þH,. This proves the proposition' t

4.3.3 We are nou' going to finish the proof of Theorem 4.3.1' Remember

that .Ñ is an algeblaically closed fieid of characteristic 0. By Remark 4.1.2
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rve can iclentii.r, n'ltt(X¡i,ø1) u,ith 1r,,. Thus, the proof of Theorem.1.3.1 is

complete if lve are able to shon' that the morphism o given in Proposition
.1.3.3 is injective on the prime to p parts.

Reconsiclering the construction of the specialization morphism, lve see that
n'e have to prove the fbllou'ing. Let G be a finite cluotient of a'irr (X¡. a¡ ) of
or'<ler prime to p. Then the natural map ?i' 

' 
rrfttiX6, or) - G factors oter

a.
d' corresponds to a punctured G-Galois cover p/i : Y'1¡ - X¡ (u'ith dis-

tinguished point å1 e p¡l(or). 81'Proposition 4.2.4 rve can find a tamel¡''

ranrifieclco\¡erp: l'- - X u'ith prc: p xn1i. Its reduction p:: p xpÀ. is

a G-Galois cover, lvhich lve consider as punctured b"'* the specialization ås of
å¡. Therefore p corresponcls to a surjective map X :r!(X,oo) - G. B1'the
construction of p lve have ',¡* = Xo Ó. r

5 Appendix
For the convenience of the reader, this appendix contains some results about
étale ring extensions and henselian rings rvhich are used in this paper. Our
main rel'erence is [21]. See also [18] Chapter I, $3.

5.1 Let A,B be rings, ç: A- B a morphism and { € SpecB. A-
B is called unramified aL q, if. pB - q and the residue field extension
A lp,q - B lqB is separable (rvhere p :: ç-L(q) e SpecÁ). \4¡e sa¡''

IhaI B lA is unramifred, if it is unramified for all t¡ € Spec B. Assume for
a moment that B is finiteiy generated as an A-algebra. Then A * -B is
unramified at q iff A - B is 'net' at q (in Raynaud's terminology, see [21]
I, Def. 4) itr (OB/,{) = 0 (see [21] IiI, $4' Prop. 9 u' Ex. 1). Since O67¡ is a
finiiely generated B-moclule, being unramified is an open property on Spec.B

(suPPo¡7¿ C SPecB is closed).
A - B is called étale, if it is of finite presentation, flat and unramified.

A -* B is called formally étale if for evely A-algebra C ar,d ideal / { C
with -I2 = 0 the canonical map

Hom¿(.B, C) 
- 

Hom¡(B,C lI) (õ9)

is a bijection. By [21], Chapitre I, Definition 2 and Chapitre V, Corollaire 1'

A - B is étale if and only if it is of frnite presentation and formally étale.

Lemma 5,L,1 Let A be s, ring with a nilpotent id'eal I ; let A := Al I' Then

eaery f,nite étale A-algebra B l;fts uniçtely to a finite étale A-algebra B.

Proof: This lbllou's from [21] V, Thm. 4, ancl fi'om Nakayarna's Lemma. r

Lenrnra 5.1.2 Let A be a ring antl B,C be A'algebras.
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1r,". Thus, the proof of Theorem 4.3.1 is
rat the morphism o given in Proposition
parts.
rf the specialization morphism, n'e see that
G be a finite cluotient of rfrt(X6, a1) of

I map y- r nfttlx¡,rr) * G factors over

?-Galois cor¡er pfç : Y'¡7 - X¡¡ (n'ith dis-
r Proposition 4.2.4 rve can find a tamell'
= p xR /î. Its reduction Þ := p x¡ À' is

r as punctured b,"" the specialization ås of
rrjective map X : n!(X,oo) .-- CJ. 8.,* the
ù.r

his appendix contains some results about
rings which are used in this paper. Our
Chapter I, $3.

* B a morphism and q € Spec8. A -¡B = q and the residue field extension
where p := p-l(q) € SpecÁ). \4¡e sa1.'

ramified for all g € Spec B. Assume for
ated as an A-algebra. Then A * B is

at q (in Raynaud's terminology, see [21]
II, $4, Prop. I u. Ex. 1). Since Os¡,a is a
unramified is an open property on Spec.B

f finite presentation, flat and unramified.
f for every A-algebra C and ideal ,t { C

-----* Homa(B,ClÐ (,i9)

)efinition 2 and Chapitre V, Corollaire 1,

I finite presentation and formally étale.

\ a nilpotent ideal I; Iet A:= Al I. Then

miçrely to ø fnite étale A-algebra B.

rm. 4, and lrom Nakayama's Lemma. I

' B,C be A-algebras.
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(i) //A - B is étale, then so is C * B ØtC.

(ä) LetB *C beanA-algebranrorphisrn. IIA- B andA-C arc étale,
thenB*Cisétale.

(iii) fA-B andB*C areétale,thenA-C isétale.

(ir') ássunre that B is ø finite free A-algebra and let (68¡) 4 A be the dis-

crintinant ideal. Then A - B is étale if and only if 6nø e A* .

Proof: As remarked above, a ring extension is étale if and only' if it is formall"""

étale and of finite presentation. This implies the Claims (i), (ii) and (iii)'
because the analogous statements hold both for formally étale and for finitell'
presentecl morphisms. To prove (iv), note that A - B is étale if and onll'' if
it is unramified. By [21] III Proposition 10 and lI, A - B is unramified if
and only if B8r (A lpA ) is a separable A lpA -algebra, for all þ € SpecÁ.
It is n'ell knorvn that the latter holds if and only if.69¡¡ ( p (see e.g. [18] III
Proposition 3.1). r

5.2 Let A be a ring and A * lb a morphism to some field ,L'. Denote by'

El (A - lc) the category of étale A-algebras .B equipped with an A-algebra
morphism B - lt. lvlorphisms betn'een objects B - k and C - À are

A-algebra morphisms B - C compatible rvith the maps to ,t. If such a
morphism exists, then we say that C '-* lc is smaller than B * &. A ring is
called indecomposable if it is not the direct sum of trvo rings (equiralentll',
SpecA is connected, [14] II Ex. 2.19). Let Et'(A * È) be the full subcategor,v*

of indecomposable objects of Et(A * À).

Lenrma 5.2,L Let A - l¿ be øs aboue and B - k, C * Ä € Et(A _' ß)'
IJ C is indeconrposable, then there is at most one ntorphism from B -'+ k to
C * t¡. In any case, there euists an indecornposable D'* È € El'(A - k),
sntaller than B - l; and, C * k.

Proof: See [21] VIII $2, Prop. 2. I
The Lemmas 5.1.2 ancl5.2.1 allow us to define the direct limit

Ã:=liry A', A' -, k € Êl/(A * À'). (60)

The ring ã is callecl the henselization of .4 rvith respect to A - À:' There
is a natirral A-algebra morphism A - k. If k is separably closecl, then ,{' is
called a strict henselization of 4 at Ker(A * /c)'

A local ring A is called henselian, if every finiie .A'algebra is the direct
snmof localfactors (see [21],I, Def. 1). Or, equivalentl¡ if A verifies Hensel's

Lemma ([21] I, Prop. 5). The ring A is called strictly henselian if it is

henselian ancl its resiclue fielcl is separably closecl' From [21] Chap. VIII, u'e

get
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ian ring ancl its resiclue fielcl l'/rir is ttre

A --Ã is flat and unramified' If A is
,o. Ã, * A: satisfies the follon'ing universal

A-algebra B, ecluipped rvith an A-algebra

tue fi-elcl contains the separable ciosure.oJ

,lgebra morphism Ã - B compatible u'ith

A rvith respect to A * À; as the completion

; separably closecl, ,Â is called the strict

'therian 
ring, A-- B be a f'nitely presented

. to a f,eld lc. Then:

thi,sn'¿s Ã "- B (resp' A - Ê¡ bet*"en the

ions) with tesPect to l;.

d, A- B are føithfullY fl'øt'

4 A, then ¡1= Ã¡tl, and' Ê = e¡tl"

r= ker(B -* È) iff Ã - Ê is surjectiue iff

3 il ¡s an isomorPhisn¿ ifi A 3 B ¡s q'n
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(iv): If A * B is unramified at q, then it is net in a neighborhoocl of
!.,ly [2i] V, $1 Thm. 1, n'e can fincl A'* À.€_Et'(4--f) ana flt+ k €
El'(P * jì u'ith_-Bl = A'lI'. Now (iii) implies A ='e¡t Ã. îhe surjectivit-r,
of A - B immediately implies the surjectivit¡,' of Á * å. Nonu assume the
latter. Then A - A ancl Á * B ur" unr.amifiecl, hence there composition is
unramifi.ed, too. Thus, A lp * B lq.- Ê¡lA" is separable ancl-pB - rîr¡
(n'here ñr..r, fir¡ are the maximal icleals of Á, .B ancl p := ker(A * À.)). No*,
the fhithful flatness of. B -- B ancl rtr¡ = qB implies FBc: q, hun.u A- B
is unramifi.ecl at q.

(v): If A- B is étale at (and ther: also aro*nd) q, the clefinition of the
henselization immecliately shou's that ,q= il, rvhich trivially implies l= A.
Assuming the latter, rve conclude as in the proof of (iv) that A - B is
unramified at q. Now the faithful flatness of. A - ¡î and B - B ancl [17]
4.8 sholv that A * -B is flat, therefore A--- B is étale in a neighborhooci
of q.

- ("i).^ Let a € Á b" un element which is integral ou", Á. Then A, :=
Ala) c Á is a finite local extension of Á. But the completion of .Â ancr A' is A
for both rings. B¡' ("), .Â * A/ mnst be étale, Therefore A' = Ã and a e Ã.

I

ersal property of henselization (see Remark

; a direct consequence'

rse change Ã - B ø,1 .Â is flat, too' But

/,--+ le € Et(B * k), where A'* ß runs

r [21] VIII, $i, Prop. 5 that B is-also the

nåtorul morphism to lb, i'e' B Ø¡A * f 
.is

ancl [1?] 4.4 shows that 'À -* B is faithfirll¡''

her rings lve use are noetherian, too' and

' 
ttrZl z5.l Cor. 1)' Look at the factorizaiion

ooi ir'fuirhf,rlly flat by the base change rule'

he maximal icleal of lø¡Ê,hence faithtirlll''

vs that ¿, - Ê is faithfullY flat'

rrphism l,¡-t Ã -- A ' Since A is henselian

ãrpnir*,,Ã//Á ttt,st be henselian'-By the

;;i';;; is a morphis* iJ * Ã¡tÃ, which

f the morphism of the first sentence'
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