Iwahori-Hecke Algebra

- The symmetric group \mathfrak{S}_n is generated by s_1, \ldots, s_{n-1} , where $s_i := (i, i + 1)$.
- The (*Iwahori-*)*Hecke algebra* $H_n(q)$ of \mathfrak{S}_n over a field \mathbb{F} is an $\mathbb{F}(q)$ -algebra generated by T_1, \ldots, T_{n-1} with *quadratic relations* $(T_i + 1)(T_i - q) = 0$ for $i = 1, 2, \ldots, n-1$ and *braid relations*

$$\begin{cases} T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, & 1 \le i \le n-2, \\ T_i T_j = T_j T_i, & |i-j| > 1. \end{cases}$$

- The algebra $H_n(q)$ has an $\mathbb{F}(q)$ -basis $\{T_w : w \in \mathfrak{S}_n\}$, where $T_w :=$ well defined for any expression $w = s_{i_1} \cdots s_{i_k}$ with k minimum.
- Set q = 1: $H_n(q) \to \mathbb{F}\mathfrak{S}_n, T_i \to s_i, T_w \to w, s_i^2 = 1$, same braid relations.
- When $\mathbb{F} = \mathbb{C}$, Tits showed that $H_n(q) \cong \mathbb{C}\mathfrak{S}_n$ unless $q \in \{0, \text{roots of unity}\}$.
- Set q = 0: $H_n(q) \to H_n(0), T_i \to \overline{\pi}_i, T_w \to \overline{\pi}_w, \overline{\pi}_i^2 = -\overline{\pi}_i$, same braid relations.
- $H_n(0)$ is also generated by $\pi_i := \overline{\pi}_i + 1$ with $\pi_i^2 = \pi_i$ and the same braid relations.

Representation theory of \mathfrak{S}_n

- Every \mathfrak{S}_n -module (over \mathbb{Q}) is a direct sum of simple/irreducible modules.
- The simple \mathfrak{S}_n -modules S^{λ} are indexed by *partitions* $\lambda \vdash n$, where
- $\lambda = (\lambda_1, \dots, \lambda_k)$ is a decreasing sequence of positive integers whose sum is *n*. • Representations of \mathfrak{S}_n correspond to symmetric functions via the *Frobenius*
- *characteristic map* Frob : $S^{\lambda} \mapsto s_{\lambda}$, where s_{λ} is a *Schur function*.
- Symmetric functions form a graded Hopf algebra Sym with a self-dual basis $\{s_{\lambda}\}$, and Frob is a Hopf algebra isomorphism.

Representation theory of $H_n(0)$

- A *composition* of *n*, denoted by $\alpha \models n$, is a sequence $\alpha = (\alpha_1, \ldots, \alpha_\ell)$ of positive integers whose sum is *n*. It can be identified with its *descent set* Des $(\alpha) := \{\alpha_1, \alpha_1 + \alpha_2, ..., \alpha_1 + \dots + \alpha_{\ell-1}\} \subseteq \{1, ..., n-1\}.$
- Norton showed $H_n(0) = \bigoplus_{\alpha \models n} \mathbf{P}_{\alpha}$, so every indecomposable projective (simple, resp.) $H_n(0)$ -module is isomorphic to some \mathbf{P}_{α} ($\mathbf{C}_{\alpha} := \mathbf{P}_{\alpha}/\mathrm{rad}\,\mathbf{P}_{\alpha}$, resp.).
- The graded Hopf algebras QSym (*quasisymmetric functions*) and **NSym** (*noncommutative symmetric functions*) have dual bases $\{F_{\alpha}\}$ and $\{s_{\alpha}\}$ indexed by compositions α . We have **NSym** \rightarrow Sym \hookrightarrow QSym.
- Krob and Thibon introduced two Hopf algebra isomorphisms:
- Ch : $H_n(0)$ -modules \longleftrightarrow QSym, $\mathbf{C}_{\alpha} \mapsto F_{\alpha}$ (up to composition factors),
- ch: projective $H_n(0)$ -modules \longleftrightarrow NSym, $\mathbf{P}_{\alpha} \mapsto \mathbf{s}_{\alpha}$.

Coinvariant algebra as an \mathfrak{S}_n **-module**

- The symmetric group \mathfrak{S}_n acts on the polynomial ring $\mathbb{Q}[\mathbf{x}_n] := \mathbb{Q}[x_1, \ldots, x_n]$ by variable permutation.
- The corresponding *invariant algebra* is generated by the *elementary symmetric* functions $e_1(\mathbf{x}_n), \ldots, e_n(\mathbf{x}_n)$.
- The *coinvariant algebra* $R_n := \mathbb{Q}[\mathbf{x}_n]/I_n$ is the quotient of $\mathbb{Q}[\mathbf{x}_n]$ by the ideal $I_n := \langle e_1(\mathbf{x}_n), \ldots, e_n(\mathbf{x}_n) \rangle.$
- The coinvariant algebra R_n has \mathbb{Q} -dimension n! and has various \mathbb{Q} -bases constructed by Artin, Garsia–Stanton, and others.
- Chevalley showed that R_n is isomorphic to the regular \mathfrak{S}_n -representation.
- Lusztig and Stanley described the graded \mathfrak{S}_n -module structure of R_n using the major index statistic on standard Young tableaux.

Ordered set partitions and the 0-Hecke algebra

Jia Huang

University of Nebraska Kearney

University of California San Diego

Coinvariant Algebra as an $H_n(0)$ **-module**

• The algebra $H_n(0)$ acts on $\mathbb{F}[\mathbf{x}_n]$ by the *isobaric Demazure operators*:

$$\pi_i(f) := \frac{x_i f - x_{i+1}(s_i(f))}{x_i - x_{i+1}}, \quad \forall f \in \mathbb{F}[x]$$

- This action has the same invariant/coinvariant algebra as \mathfrak{S}_n .
- The first author showed that $R_n := \mathbb{F}[\mathbf{x}_n]/I_n$ is isomorphic to the regular $H_n(0)$ -representation with bigraded characteristics

representation with digraded characteristic
$$\sum_{i=1}^{i} inv(w) mai(w)$$

$$\operatorname{Ch}_{q,t}(R_n) = \sum_{w \in \mathfrak{S}_n} q^{\operatorname{inv}(w)} t^{\operatorname{maj}(w)} F_{\operatorname{Des}(w^{-1})}.$$

(q-grading: *length filtration* of $H_n(0)$; t-grading: polynomial degree)

Ordered set partitions

- Let $OP_{n,k}$ be the set of *ordered set partitions* of $[n] := \{1, 2, ..., n\}$ with k blocks. Let $\mathbb{F}[\mathcal{OP}_{n,k}]$ be the vector space with $\mathcal{OP}_{n,k}$ as a basis.
- The symmetric group \mathfrak{S}_n actions on $\mathbb{F}[\mathcal{OP}_{n,k}]$ by permuting $1, 2, \ldots, n$.
- The Hecke algebra $H_n(0)$ acts on $\mathbb{F}[\mathcal{OP}_{n,k}]$ by the rule

 $-\sigma$, if i + 1 appears in a block to the left of i in σ , $\overline{\pi}_i(\sigma) := \{ s_i(\sigma) \mid \text{ if } i + 1 \text{ appears in a block to the right of } i \text{ in } \sigma. \}$ if i + 1 appears in the same block as i in σ ,

- Example: $\sigma = (245|6|13), \overline{\pi}_1(\sigma) = -\sigma, \overline{\pi}_2(\sigma) = (345|6|12), \overline{\pi}_4(\sigma) = 0.$
- An element of $\mathcal{OP}_{n,k}$ can be written as $\sigma = (w, \alpha)$, where $w \in \mathfrak{S}_n$ and $\alpha \models n$ satisfy $Des(w) \subseteq Des(\alpha)$. For example, (245|6|13) = (245613, (3, 1, 2)).
- For $\sigma = (B_1 | \cdots | B_k) = (w, \alpha) \in O\mathcal{P}_{n,k}$, define $maj(\sigma) = maj(w, \alpha) := maj(w) +$

 $(\alpha_1 + \cdots + \alpha_i - i).$ $i : \max(B_i) < \min(B_{i+1})$ $\operatorname{Stir}_q(n,k)$).

- Example: maj(24|57|136|8) = 4 + (2 1) + (2 + 2 + 3 3) = 9.
- We have $|OP_{n,k}| = k! \cdot \text{Stir}(n, k)$, where Stir(n, k) is the (signless) Stirling *number of the second kind* counting k-block set partitions of [n]. Moreover, if $\text{Stir}_q(0,k) := \delta_{0,k}, \text{Stir}_q(n,k) := \text{Stir}_q(n-1,k-1) + [k]_q \cdot \text{Stir}_q(n-1,k)$ for $n \ge 1$, and rev_q reverses the sequence of q-coefficients, then $mai(\sigma)$

$$\sum_{\sigma \in O\mathcal{P}_{n,k}} q^{\operatorname{mag}(\sigma)} = \operatorname{rev}_q(\lfloor k \rfloor!_q \cdot$$

Generalized Coinvariant Algebra

- Let k and n be two integers with $1 \le k \le n$ throughout the end of the poster. • Haglund, Rhoades, and Shimozono introduced an \mathfrak{S}_n -stable homogeneous ideal
- of $\mathbb{Q}[\mathbf{x}_n]$ generated by $x_1^k, x_2^k, \ldots, x_n^k, e_n(\mathbf{x}_n), e_{n-1}(\mathbf{x}_n), \ldots, e_{n-k+1}(\mathbf{x}_n)$.
- The quotient $R_{n,k} := \mathbb{Q}[\mathbf{x}_n]/I_{n,k}$ reduces to the coinvariant algebra R_n if k = n.
- The Artin basis and Garsia-Stanton basis for R_n can be generalized to $R_{n,k}$.
- As an ungraded \mathfrak{S}_n -module, $R_{n,k}$ is isomorphic to $\mathbb{Q}[\mathcal{OP}_{n,k}]$.
- Haglund, Rhoades, and Shimozono gave an explicit descriptions of the graded \mathfrak{S}_n -module structure of $R_{n,k}$, generalizing the work of Lusztig–Stanley.
- In general, the ideal $I_{n,k}$ is not $H_n(0)$ -stable. To remedy this, replace x_i^k with the *complete homogeneous symmetric function* $h_k(\mathbf{x}_i)$ for all *i* and get an ideal $J_{n,k}$.
- The span of x_i^k, \ldots, x_n^k is isomorphic to the defining representation of \mathfrak{S}_n and the span of $h_k(\mathbf{x}_1), \ldots, h_k(\mathbf{x}_n)$ is isomorphic to the defining representation of $H_n(0)$.

$$1 \stackrel{s_1}{\longleftrightarrow} 2 \stackrel{s_2}{\longleftrightarrow} \cdots \stackrel{s_{n-1}}{\longleftrightarrow} n \qquad 1 \stackrel{\pi_1}{\longrightarrow} 2 \stackrel{\pi_2}{\longrightarrow} \cdots \stackrel{\pi_{n-1}}{\longrightarrow} n$$
$$x_1^k \stackrel{s_1}{\longleftrightarrow} x_2^k \stackrel{s_2}{\longleftrightarrow} \cdots \stackrel{s_{n-1}}{\longleftrightarrow} x_n^k \qquad h_k(\mathbf{x}_1) \stackrel{\pi_1}{\longrightarrow} h_k(\mathbf{x}_2) \stackrel{\pi_2}{\longrightarrow} \cdots \stackrel{\pi_{n-1}}{\longrightarrow} h_k(\mathbf{x}_n)$$

$$T_{i_1}\cdots T_{i_k}$$
 is

Brendon Rhoades

 $[\mathbf{x}_n], \quad 1 \le i \le n-1.$

 $\bigoplus_{i \in A_{n,k}} N_{\alpha,\mathbf{i}} \cong \bigoplus_{\beta \models n} P_{\beta}^{\bigoplus \binom{n-\ell(\beta)}{k-\ell(\beta)}}$ $x_1 x_2$ $\overline{\pi}_1 = \overline{\pi}_3 = 0$ $1 \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \overline{\pi}_1 = \overline{\pi}_2 = \overline{\pi}_3 = 0$ $\overline{\pi}_2 = -1$ $P_{(4)}$ x_1x_3 $\widehat{x_1} \widehat{x_4} \widehat{)} \overline{\overline{\pi}_3} = 0 \quad x_1 x_2 x_4 \quad x_2 x_4 \quad x_1 x_2 \quad x_1$ $\overline{\pi}_1 = -1 \left(x_2 x_3^{\mathsf{K}} \right)$ $\bigotimes_{\substack{\overline{\pi}_1=0\\\overline{\pi}_3=-1}} \overline{\pi}_1 = 0$ $x_1 x_3 x_4$ $|\widetilde{} \longrightarrow \overline{\pi}_1 = \overline{\pi}_3 = -1$ $\swarrow \overline{\pi}_2 = -1$ $\overline{\pi}_3 = 0$ $x_3 x_4 \xrightarrow{} \overline{\pi}_1 = \overline{\pi}_3 = 0$ $x_2 x_3 x_4$ $\bigwedge \prod_{\overline{\pi}_2 = \overline{\pi}_3 = 0}^{\overline{\pi}_1 = -1}$ $P_{(4)} \oplus P_{(2,2)}$ $P_{(3,1)}$ $k = \left[\frac{n - \ell(\alpha)}{k - \ell(\alpha)} \right]_t \mathbf{s}_{\alpha}$ and $t^{(w)}t^{\operatorname{maj}(w)} \begin{bmatrix} n - \operatorname{des}(w) - 1 \\ k - \operatorname{des}(w) - 1 \end{bmatrix}_{t} F_{\operatorname{Des}(w^{-1})}$ $\sigma^{\operatorname{inv}(w)} t^{\operatorname{maj}(w,\alpha)} F_{\operatorname{Des}(w^{-1})}$ $(w,\alpha) \in \mathcal{OP}_{n,k}$ $\left[n - \operatorname{des}(Q) - 1\right]$ $|k - \operatorname{des}(Q) - 1|_{t} S_{\operatorname{shape}(Q)} = \operatorname{grFrob}_{t}(R_{n,k}).$

$$S_{n,k} = \bigoplus_{(\alpha,\mathbf{i})\in \mathbf{i}}$$

• It follows that

$$\mathbf{ch}_{t}(S_{n,k}) = \sum_{\alpha \models n} t^{\operatorname{maj}(\alpha)}$$
$$\mathbf{Ch}_{q,t}(S_{n,k}) = \sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\alpha)}$$
$$= \sum_{w \in \mathfrak{S}_{n}} \sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\alpha)}$$

• The quotient $S_{n,k} := \mathbb{F}[\mathbf{x}_n]/J_{n,k}$ is a graded $H_n(0)$ -module having the same \mathbb{F} -dimension and similar \mathbb{F} -bases as $R_{n,k}$. Moreover, its Hilbert series is $\operatorname{Hilb}(S_{n,k};q) = \operatorname{rev}_q([k]!_q \cdot \operatorname{Stir}_q(n,k)) = \sum q^{\operatorname{maj}(\sigma)}$ • As an ungraded $H_n(0)$ -module, $S_{n,k}$ is projective and isomorphic to $\mathbb{F}[\mathcal{OP}_{n,k}]$ with the following direct sum decomposition, where $N_{\alpha,i}$ is an $H_n(0)$ -submodule of $S_{n,k}$ and $(\alpha, \mathbf{i}) \in A_{n,k}$ means $\alpha = (\alpha_1, \ldots, \alpha_\ell) \models n, \mathbf{i} = (i_1, \ldots, i_n) \in \mathbb{Z}^n$, $\alpha_1 > n-k$, and $k-\ell \ge i_1 \ge \cdots \ge i_{n-k} \ge 0 = i_{n-k+1} = \cdots = i_n$. • The figure below illustrates $S_{4,2} \cong P_{(2,2)} \oplus P_{(1,3)} \oplus P_{(3,1)} \oplus P_{(4)}^{\oplus 3} \cong \mathbb{F}[\mathcal{OP}_{4,2}].$ $P_{(4)} \oplus P_{(1,3)}$ Setting q = 1 and comparing with work of Haglund–Rhoades–Shimozono give

$$\operatorname{Ch}_{t}(S_{n,k}) = \sum_{Q \in \operatorname{SYT}(n)} t^{\operatorname{maj}(Q)} \begin{bmatrix} t \\ t \end{bmatrix}$$

Connections with Macdonald polynomials

- notation) by $\Delta'_F : H_\mu \mapsto F[B_\mu(q,t) 1] \cdot H_\mu$.
- and Val($\mathbf{x}; q, t$) are certain formal power series in $\mathbf{x} = (x_1, x_2, ...)$.
- The Delta Conjecture becomes the Shuffle Theorem when k = n.

$$\Delta'_{e_{k-1}}e_n|_{q=0} = \Delta'_{e_{k-1}}e_n|_{t=0},$$

Our Main Results

• Let H_{μ} be the *modified Macdonald symmetric function* indexed by a partition μ , and let $B_{\mu} := \sum q^{i} t^{j}$, where (i, j) ranges over the coordinates of the cells of μ . • For $F \in \text{Sym}$, the *delta operator* $\Delta'_F : \text{Sym} \to \text{Sym}$ is defined (using plethystic • Delta Conjecture: $\Delta'_{e_{k-1}}e_n = \operatorname{Rise}_{n,k}(\mathbf{x};q,t) = \operatorname{Val}_{n,k}(\mathbf{x};q,t)$ where $\operatorname{Rise}(\mathbf{x};q,t)$ • Garsia–Haglund–Remmel–Yoo prove the Delta Conjecture when q = 0 or t = 0. Combining this with results of the second author and Wilson gives $\mathbf{x}_{q=t} = \operatorname{Rise}_{n,k}(\mathbf{x}; 0, t) = \operatorname{Rise}_{n,k}(\mathbf{x}; t, 0)$ $= \operatorname{Val}_{n,k}(\mathbf{x}; 0, t) = \operatorname{Val}_{n,k}(\mathbf{x}; t, 0).$ • The above symmetric function equals $(\omega \circ \operatorname{rev}_t)(\operatorname{Ch}_t(S_{n,k}))$ by our results and earlier work of Haglund–Remmel–Wilson, where ω interchanges e_n and h_n .