Ordered set partitions and the 0-Hecke algebra

Jia Huang

University of Nebraska Kearney
Brendon Rhoades
University of California San Diego

Iwahori-Hecke Algebra

- The symmetric group \Im_{n} is generated by s_{1}, \ldots, s_{n-1}, where $s_{i}:=(i, i+1)$. - The (Iwahori-)Hecke algebra $H_{n}(q)$ of \subseteq_{n} over a field \mathbb{F} is an $\mathbb{F}(q)$-algebra generated by T_{1}, \ldots, T_{n-1} with quadratic relations $\left(T_{i}+1\right)\left(T_{i}-q\right)=0$ for $i=1,2, \ldots, n-1$ and braid relations

$$
\begin{cases}T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, & 1 \leq i \leq n-2, \\ T_{i} T_{i}=T_{i} T_{i} & |i-i|>1 .\end{cases}
$$

The algebra $H_{n}(q)$ has an $\mathbb{F}(q)$-basis $\left\{T_{w}: w \in \mathfrak{\Im}_{n}\right\}$, where $T_{w}:=T_{i_{1}} \cdots T_{i_{k}}$ is well defined for any expression $w=s_{i_{1}} \cdots s_{i_{k}}$ with k minimum

- Set $q=1: H_{n}(q) \rightarrow \mathbb{F} ⿷_{n}, T_{i} \rightarrow s_{i}, T_{w} \rightarrow w, s_{i}^{2}=1$, same braid relations. When $\mathbb{F}=\mathbb{C}$, Tits showed that $H_{n}(q) \cong \mathbb{C} ⿷_{n}$ unless $q \in\{0$, roots of unity $\}$. Set $q=0: H_{n}(q) \rightarrow H_{n}(0), T_{i} \rightarrow \bar{\pi}_{i}, T_{w} \rightarrow \bar{\pi}_{w}, \bar{\pi}_{i}^{2}=-\bar{\pi}_{i}$, same braid relations. - $H_{n}(0)$ is also generated by $\pi_{i}:=\bar{\pi}_{i}+1$ with $\pi_{i}^{2}=\pi_{i}$ and the same braid relations.

Representation theory of \mathfrak{S}_{n}
Every $\mathbb{\Im}_{n}$-module (over \mathbb{Q}) is a direct sum of simple/irreducible modules. The simple \Im_{n}-modules S^{λ} are indexed by partitions $\lambda \vdash n$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is a decreasing sequence of positive integers whose sum is n. -Representations of \mathfrak{S}_{n} correspond to symmetric functions via the Frobenius characteristic map Frob: $S^{\lambda} \mapsto s_{\lambda}$, where s_{λ} is a Schur function.
Symmetric functions form a graded Hopf algebra Sym with a self-dual basis $\left\{s_{\lambda}\right\}$, and Frob is a Hopf algebra isomorphism.

Representation theory of $H_{n}(0)$
A composition of n, denoted by $\alpha=n$, is a sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of positive integers whose sum is n. It can be identified with its descent set $\operatorname{Des}(\alpha):=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \ldots, \alpha_{1}+\cdots+\alpha_{\ell-1}\right\} \subseteq\{1, \ldots, n-1\}$.
Norton showed $H_{n}(0)=\bigoplus_{\alpha \equiv n} \mathbf{P}_{\alpha}$, so every indecomposable projective (simple, resp.) $H_{n}(0)$-module is isomorphic to some $\mathbf{P}_{\alpha}\left(\mathbf{C}_{\alpha}:=\mathbf{P}_{\alpha} / \operatorname{rad} \mathbf{P}_{\alpha}\right.$, resp. $)$. The graded Hopf algebras QSym (quasisymmetric functions) and NSym (noncommutative symmetric functions) have dual bases $\left\{F_{\alpha}\right\}$ and $\left\{\mathbf{s}_{\alpha}\right\}$ indexed by compositions α. We have NSym \rightarrow Sym \hookrightarrow QSym.
Krob and Thibon introduced two Hopf algebra isomorphisms
$\mathrm{Ch}: H_{n}(0)$-modules $\longleftrightarrow \mathrm{QSym}, \mathbf{C}_{\alpha} \mapsto F_{\alpha}$ (up to composition factors), ch: projective $H_{n}(0)$-modules $\longleftrightarrow \mathbf{N S y m}, \mathbf{P}_{\alpha} \mapsto \mathbf{s}_{\alpha}$

Coinvariant algebra as an \mathfrak{S}_{n}-module
The symmetric group \mathfrak{S}_{n} acts on the polynomial ring $\mathbb{Q}\left[\mathbf{x}_{n}\right]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ by variable permutation
The corresponding invariant algebra is generated by the elementary symmetric functions $e_{1}\left(\mathbf{x}_{n}\right), \ldots, e_{n}\left(\mathbf{x}_{n}\right)$
The coinvariant algebra $R_{n}:=\mathbb{Q}\left[\mathbf{x}_{n}\right] / I_{n}$ is the quotient of $\mathbb{Q}\left[\mathbf{x}_{n}\right]$ by the ideal $I_{n}:=\left\langle e_{1}\left(\mathbf{x}_{n}\right), \ldots, e_{n}\left(\mathbf{x}_{n}\right)\right\rangle$,
The coinvariant algebra R_{n} has \mathbb{Q}-dimension $n!$ and has various \mathbb{Q}-base constructed by Artin, Garsia-Stanton, and others.
Chevalley showed that R_{n} is isomorphic to the regular \Im_{n}-representation. Lusztig and Stanley described the graded ς_{n}-module structure of R_{n} using the major index statistic on standard Young tableaux.

Coinvariant Algebra as an $H_{n}(0)$-module
-The algebra $H_{n}(0)$ acts on $\mathbb{F}\left[\mathbf{x}_{n}\right]$ by the isobaric Demazure operators $\pi_{i}(f):=\frac{x_{i} f-x_{i+1}\left(s_{i}(f)\right)}{x_{i}-x_{i+1}}, \quad \forall f \in \mathbb{F}\left[\mathbf{x}_{n}\right], \quad 1 \leq i \leq n-1$.

- This action has the same invariant/coinvariant algebra as \Im_{n}.
- The first author showed that $R_{n}:=\mathbb{F}\left[\mathbf{x}_{n}\right] / I_{n}$ is isomorphic to the regular $H_{n}(0)$-representation with bigraded characteristics

$$
\mathrm{Ch}_{q, t}\left(R_{n}\right)=\sum_{w \in \mathfrak{E}_{n}} q^{\operatorname{inv}(w)} t^{\mathrm{maj}(w)} F_{\operatorname{Des}\left(w^{-1}\right)} .
$$

(q-grading: length filtration of $H_{n}(0)$; t-grading: polynomial degree)

Ordered set partitions

- Let $O \mathcal{P}_{n, k}$ be the set of ordered set partitions of $[n]:=\{1,2, \ldots, n\}$ with k blocks. Let $\mathbb{F}\left[O \mathcal{P}_{n, k}\right]$ be the vector space with $O \mathcal{P}_{n, k}$ as a basis.
\cdot The symmetric group $\mathfrak{\Im}_{n}$ actions on $\mathbb{F}\left[O \mathcal{P}_{n, k}\right]$ by permuting $1,2, \ldots$,
- The Hecke algebra $H_{n}(0)$ acts on $\mathbb{F}\left[O \mathcal{P}_{n, k}\right]$ by the rule

$$
\bar{\pi}_{i}(\sigma):= \begin{cases}-\sigma, & \text { if } i+1 \text { appears in a block to the left of } i \text { in } \sigma, \\ s_{i}(\sigma) & \text { if } i+1 \text { appears in a block to the right of } i \text { in } \sigma \\ 0, & \text { if } i+1 \text { appears in the same block as } i \text { in } \sigma,\end{cases}
$$

Example: $\sigma=(245|6| 13), \bar{\pi}_{1}(\sigma)=-\sigma, \bar{\pi}_{2}(\sigma)=(345|6| 12), \bar{\pi}_{4}(\sigma)=0$. - An element of $O \mathcal{P}_{n, k}$ can be written as $\sigma=(w, \alpha)$, where $w \in \mathbb{S}_{n}$ and $\alpha \vDash n$ satisfy $\operatorname{Des}(w) \subseteq \operatorname{Des}(\alpha)$. For example, $(245|6| 13)=(245613,(3,1,2))$. - For $\sigma=\left(B_{1}|\cdots| B_{k}\right)=(w, \alpha) \in O \mathcal{P}_{n, k}$, define
$\operatorname{maj}(\sigma)=\operatorname{maj}(w, \alpha):=\operatorname{maj}(w)+\sum_{i: \max \left(B_{i}\right)<\min \left(B_{i+1}\right)}\left(\alpha_{1}+\cdots+\alpha_{i}-i\right)$.

- Example: $\operatorname{maj}(24|57| 136 \mid 8)=4+(2-1)+(2+2+3-3)=9$.
- We have $\left|O \mathcal{P}_{n, k}\right|=k!\cdot \operatorname{Stir}(n, k)$, where $\operatorname{Stir}(n, k)$ is the (signless) Stirling number of the second kind counting k-block set partitions of [n]. Moreover, if $\operatorname{Stir}_{q}(0, k):=\delta_{0, k}, \operatorname{Stir}_{q}(n, k):=\operatorname{Stir}_{q}(n-1, k-1)+[k]_{q} \cdot \operatorname{Stir}_{q}(n-1, k)$ for $n \geq 1$, and rev_{q} reverses the sequence of q-coefficients, then

$$
\sum_{\sigma \in O \mathcal{P}_{n, k}} q^{\operatorname{maj}(\sigma)}=\operatorname{rev}_{q}\left([k]!_{q} \cdot \operatorname{Stir}_{q}(n, k)\right) .
$$

Generalized Coinvariant Algebra

- Let k and n be two integers with $1 \leq k \leq n$ throughout the end of the poster. - Haglund, Rhoades, and Shimozono introduced an \Im_{n}-stable homogeneous ideal of $\mathbb{Q}\left[\mathbf{x}_{n}\right]$ generated by $x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}, e_{n}\left(\mathbf{x}_{n}\right), e_{n-1}\left(\mathbf{x}_{n}\right), \ldots, e_{n-k+1}\left(\mathbf{x}_{n}\right)$. - The quotient $R_{n, k}:=\mathbb{Q}\left[\mathbf{x}_{n}\right] / I_{n, k}$ reduces to the coinvariant algebra R_{n} if $k=n$. - The Artin basis and Garsia-Stanton basis for R_{n} can be generalized to $R_{n, k}$ - As an ungraded \Im_{n}-module, $R_{n, k}$ is isomorphic to $\mathbb{Q}\left[O \mathcal{P}_{n, k}\right]$.
-Haglund, Rhoades, and Shimozono gave an explicit descriptions of the graded ς_{n}-module structure of $R_{n, k}$, generalizing the work of Lusztig-Stanley.
- In general, the ideal $I_{n, k}$ is not $H_{n}(0)$-stable. To remedy this, replace x_{i}^{k} with the complete homogeneous symmetric function $h_{k}\left(\mathbf{x}_{i}\right)$ for all i and get an ideal $J_{n, k}$
- The span of $x_{i}^{k}, \ldots, x_{n}^{k}$ is isomorphic to the defining representation of \mathfrak{S}_{n} and the span of $h_{k}\left(\mathbf{x}_{1}\right), \ldots, h_{k}\left(\mathbf{x}_{n}\right)$ is isomorphic to the defining representation of $H_{n}(0)$.
$1 \stackrel{s_{1}}{\longleftrightarrow} 2 \stackrel{s_{2}}{\longleftrightarrow} \cdots \stackrel{s_{n-1}}{\longleftrightarrow} n$
$1 \xrightarrow{\pi_{1}} 2 \xrightarrow{\pi_{2}} \cdots \xrightarrow{\pi_{n-1}} n$
$x_{1}^{k} \stackrel{s_{1}}{\longleftrightarrow} x_{2}^{k} \stackrel{s_{2}}{\longleftrightarrow} \cdots \stackrel{s_{n-1}}{\longleftrightarrow} x_{n}^{k}$
$h_{k}\left(\mathbf{x}_{1}\right) \xrightarrow{\pi_{1}} h_{k}\left(\mathbf{x}_{2}\right) \xrightarrow{\pi_{2}} \cdots \xrightarrow{\pi_{n-1}} h_{k}\left(\mathbf{x}_{n}\right)$

Our Main Results
The quotient $S_{n, k}:=\mathbb{F}\left[\mathbf{x}_{n}\right] / J_{n, k}$ is a graded $H_{n}(0)$-module having the sam \mathbb{F}-dimension and similar \mathbb{F}-bases as $R_{n, k}$. Moreover, its Hilbert series is

$$
\operatorname{Hilb}\left(S_{n, k} ; q\right)=\operatorname{rev}_{q}\left([k]!!_{q} \cdot \operatorname{Stir}_{q}(n, k)\right)=\sum_{\sigma \in O \mathscr{P}_{n, k}} q^{\operatorname{maj}(\sigma}
$$

As an ungraded $H_{n}(0)$-module, $S_{n, k}$ is projective and isomorphic to $\mathbb{F}\left[O \mathcal{P}_{n, k}\right]$ with the following direct sum decomposition, where $N_{\alpha, \mathbf{i}}$ is an $H_{n}(0)$-submodule of $S_{n, k}$ and $(\alpha, \mathbf{i}) \in A_{n, k}$ means $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \vDash n, \mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}^{n}$,
$\alpha_{1}>n-k$, and $k-\ell \geq i_{1} \geq \cdots \geq i_{n-k} \geq 0=i_{n-k+1}=\cdots=i_{n}$

$$
S_{n, k}=\bigoplus_{(\alpha, \mathbf{i}) \in A_{n, k}} N_{\alpha, \mathbf{i}} \cong \bigoplus_{\beta=n} P_{\beta}^{\oplus\left(\begin{array}{l}
k-c(\beta)
\end{array}\right)}
$$

The figure below illustrates $S_{4,2} \cong P_{(2,2)} \oplus P_{(1,3)} \oplus P_{(3,1)} \oplus P_{(4)}^{\oplus 3} \cong \mathbb{F}\left[O \mathcal{P}_{4,2}\right]$

It follows tha

$$
\begin{aligned}
\mathbf{c h}_{t}\left(S_{n, k}\right) & =\sum_{\alpha=n} t^{\operatorname{maj}(\alpha)}\left[\begin{array}{l}
n-\ell(\alpha) \\
k-\ell(\alpha)
\end{array}\right] t \mathbf{s}_{\alpha} \quad \text { and } \\
\mathrm{Ch}_{q, t}\left(S_{n, k}\right) & =\sum_{w \in \mathfrak{E}_{n}} q^{\operatorname{inv}(w)} t^{\operatorname{maj}(w)}\left[\begin{array}{l}
n-\operatorname{des}(w)-1 \\
k-\operatorname{des}(w)-1
\end{array}\right]_{t} F_{\operatorname{Des}\left(w^{-1}\right)} \\
& =\sum_{(w, \alpha) \in O \mathcal{P}_{n, k}} q^{\operatorname{inv}(w) t^{\operatorname{maj}(w, \alpha)} F_{\operatorname{Des}\left(w^{-1}\right)} .}
\end{aligned}
$$

Setting $q=1$ and comparing with work of Haglund-Rhoades-Shimozono give

$$
\mathrm{Ch}_{t}\left(S_{n, k}\right)=\sum_{Q \in \operatorname{SYT}(n)} t^{\operatorname{maj}(Q)}\left[\begin{array}{l}
n-\operatorname{des}(Q)-1 \\
k-\operatorname{des}(Q)-1
\end{array}\right]_{t} s_{\text {shape }(Q)}=\operatorname{grFrob}_{t}\left(R_{n, k}\right) .
$$

Connections with Macdonald polynomials
Let \widetilde{H}_{μ} be the modified Macdonald symmetric function indexed by a partition μ, and let $B_{\mu}:=\sum q^{i} t^{j}$, where (i, j) ranges over the coordinates of the cells of μ. For $F \in \operatorname{Sym}$, the delta operator $\Delta_{F}^{\prime}: \operatorname{Sym} \rightarrow \operatorname{Sym}$ is defined (using plethystic notation) by $\Delta_{F}^{\prime}: H_{\mu} \mapsto F\left[B_{\mu}(q, t)-1\right] \cdot \widetilde{H}_{\mu}$.
Delta Conjecture: $\Delta_{e_{k}}^{\prime} e_{n}=\operatorname{Rise}_{n, k}(\mathbf{x} ; q, t)=\operatorname{Val}_{n, k}(\mathbf{x} ; q, t)$ where $\operatorname{Rise}(\mathbf{x} ; q, t)$ and $\operatorname{Val}(\mathbf{x} ; q, t)$ are certain formal power series in $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$.
The Delta Conjecture becomes the Shuffle Theorem when $k=n$.
Garsia-Haglund-Remmel-Yoo prove the Delta Conjecture when $q=0$ or $t=0$. Combining this with results of the second author and Wilson give
$\left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{q=0}=\left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0, q=t}=\operatorname{Rise}_{n, k}(\mathbf{x} ; 0, t)=\operatorname{Rise}_{n, k}(\mathbf{x} ; t, 0)$

$$
=\operatorname{Val}_{n, k}(\mathbf{x} ; 0, t)=\operatorname{Val}_{n, k}(\mathbf{x} ; t, 0) .
$$

The above symmetric function equals $\left(\omega \circ \operatorname{rev}_{t}\right)\left(\mathrm{Ch}_{t}\left(S_{n, k}\right)\right.$ by our results and earlier work of Haglund-Remmel-Wilson, where ω interchanges e_{n} and h_{n}.

