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ABSTRACT: The interelectronic repulsion is strongly responsible of the main
structural characteristics of the atomic densities and, in particular, of their level of
information content. In this work, the effect of such a repulsion on some
information-theoretic descriptors is quantified and analyzed by considering different
complexities and distances between the Bare Coulomb Field (BCF) and the Hartree–Fock
(HF) position and momentum densities of neutral atoms throughout the Periodic Table. In
doing so, the Quantum Similarity Index (QSI), the Quadratic Distance (QD), the
Jensen-Shannon (JSD) and Fisher (FD) Divergences as well as complexity measures are
employed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 1738–1747, 2010

Key words: atomic one-particle densities; interelectronic repulsion; Jensen-Shannon
and Fisher divergences; quantum similarity index; quadratic distance

1. Introduction

T he interelectronic repulsion within atomic sys-
tems forbides to consider the global atom as

a nucleus “surrounded” by a mere superposition
of one-electron orbitals, each one governed exclu-
sively by the electron-nucleus attraction potential
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which depth being given by the nuclear charge Z.
Ignoring the repulsive forces is the basic feature
of the so-called Bare Coulomb Field (BCF) model
[1] among others, in which the electron densities
in both position and momentum spaces are deter-
mined by adding over all orbitals the corresponding
hydrogen-like densities.

This work deals with the problem of quantify-
ing the disimilarity among atomic electron densities
built up within different models, in order to estab-
lish a comparison to be interpreted according to the
main differences between both the models. Espe-
cially interesting appears the case in which the
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EFFECT OF THE INTERELECTRONIC REPULSION

interelectronic repulsive force is taking into account
in one model but not in the other, with the aim of
analyzing the most relevant informational charac-
teristics, as will be described later, of the respective
one-particle densities.

Different choices of models involving or not the
repulsion can be considered. Such is the case, for
instance, of the BCF model in the “non-repulsive”
case, but not the only one.At this point, it is worthy to
remark the well-known Kohn–Sham equations and
the associated densities [2], where the Fermi statistics
between the spin-like electrons remains perform-
ing the appropriate manipulations. This framework,
together with some additional models, will be also
considered elsewhere with similar and complemen-
tary aims. For the main purposes of this work, the
quantitative comparisons between atomic densities
are carried out taking as reference “non-repulsive”
densities the BCF ones. Similar comments concern-
ing atomic densities arising from equations enclos-
ing the repulsive terms can be also done, in the sense
that different frameworks are susceptible of being
employed, such as the Near-Hartree–Fock with or
without relativistic corrections, configuration inter-
action, etc.

Some results have been rigorously proved con-
cerning BCF densities. For instance, March showed
that the electron charge density is a monotoni-
cally decreasing function for an arbitrary number
of closed shells in the BCF case [1], and also the
same property holds in the momentum space [3].
Additional results for the kinetic and total energies
have been also obtained [4–6]. More recently com-
putations for the atomic reciprocal form factor have
been carried out in a BCF showing that this rele-
vant quantity is spherically symmetric, positive and
monotonically decreasing [7], and also more general
mathematical results have been also provided [8].

Instead of considering the BCF problem and
solutions, more sophisticated models, such as the
Hartree–Fock (HF) one [2], appear necessary in
order to properly describe the atomic system by
also considering the repulsive forces among elec-
trons. Thinking on the N electron density in posi-
tion space as a negatively charged cloud located
around the nucleus with positive charge Z, it is
immediate to realize that the interelectronic repul-
sion makes the cloud to increase its spread over the
whole space and to decrease the mean speed of its
constituents. This effect has an influence on the posi-
tion and momentum atomic electron densities when
taking into account the repulsive forces when com-
pared with those built up from the purely attractive

electron-nucleus potential. In this sense, it should be
expected the repulsion to give rise, on one hand, to a
more sparse position density and, on the other hand,
to a momentum density more concentrated around
the origin as center of the region of very low speeds.

The aforementioned intuitive notions on the
effects of the repulsive forces among electrons on
their representative one-particle densities in both
position and momentum spaces would be desir-
able to be described not only qualitatively, as just
done above, but also quantitatively by means of
appropriate density functionals in order to quan-
tify the specific level of sparsing of both the BCF
(non-repulsive) and the HF (including repulsion)
densities, and also by measuring in an appropriate
way the ‘distance’ between both the models in terms
of the corresponding distributions.

Different ways of measuring the information con-
tent of a distribution as well as the distance between
two of them have been succesfully applied in many
diverse fields [9–14], physics and chemistry among
them and, in particular, in the study of atomic sys-
tems [15–21].As a first step, the spreading degree of a
given normalized-to-unity density function ρ(r) can
be measured by means of well-known information-
theoretic functionals, such as the Shannon entropy
[22],

Sρ ≡ −
∫

ρ(r) ln ρ(r)dr, (1)

the Fisher information [23]

Iρ ≡
∫

ρ(r)| �∇ ln ρ(r)|2dr, (2)

the disequilibrium [24–27]

Dρ ≡
∫

ρ2(r)dr (3)

or the variance,

Vρ ≡ 〈r2〉 − 〈r〉2 (4)

(〈rk〉 being the kth-order radial expectation value of
the density), among others. It is worthy to remark
here that Fisher information Iρ posseses a “local char-
acter,” in the sense of its value being very sensitive to
strong changes of the density even within very small
regions, contrary to the “global character” of the oth-
ers measures defined above, which are much more
dependent on the shape of the distribution over its
whole domain.
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In spite of the information provided by those func-
tionals, a more complete description usually requires
to deal with magnitudes involving more than a
unique descriptor of the aforementioned ones, as is
the case of the so-called complexities, being specially
relevant the product-like ones such as the LMC [24],
the Fisher–Shannon [28], and the Cramer–Rao [29]
complexities. These quantities are proposed as gen-
eral indicators of pattern, structure, and correlation,
revealing also how far from the extreme cases (highly
concentrated functions approaching a Dirac delta,
and almost uniform ones everywhere) the density
is. The limiting cases correspond to very low values
of any complexity, for which one of their constituent
factors (according to the extreme case considered)
reaches its minimal value as well as the complexity
itself.

Appart from quantifying the absolute informa-
tion of a single distribution, it also appears very
interesting to have at our disposal multiple-density
functionals in order to measure the distance and/or
similarity among them. This kind of measures have
been commonly employed to establish how distant
is the distribution we are interested in from a given
“a priori” one usually chosen by following a crite-
ria according to the specific poblem we are dealing
with. Again, there appear different definitions of
“distance,” each one displaying its own properties,
which makes it more or less appropriate depending
on the specific characteristics of the distributions that
are more interesting to be compared. Let us mention
here, as relevant distance measures, the Quantum
Similarity Index (QSI) [30, 31] and the Quadratic
Distance (QD), both defined in terms of overlap inte-
grals of the distributions, as well as the Fisher (FD)
[32] and Jensen–Shannon (JSD) [13, 33, 34] diver-
gences, which definitions are based, respectively, on
the concepts of relative Fisher information [35, 36]
and Kullback–Leibler or relative Shannon entropy
[14, 37].

It is worthy to point out that the aforementioned
“global” or “local” character of different information
functionals also translates on the associated com-
plexities and distances defined in terms of them.
Consequently, the local character is only displayed
by the Fisher Divergence FD, the other distances
being of global character, and similarly concerning
complexities according to being or not defined in
terms of Fisher information Iρ .

The main aim of this work is to study the effect of
the interelectronic repulsions on all neutral atoms
throughout the Periodic Table by means of their
electron densities ρ(r) and γ (p) in both conjugated

spaces, namely position and momentum, respec-
tively. In doing so, the aforementioned informa-
tion functionals and/or distances will be considered
within the Bare Coulomb Field and the Hartree–Fock
models. For the systems we are dealing with, i.e.,
neutral atoms in the absence of external fields, it is
sufficient to consider the spherically averaged den-
sities ρ(r) and γ (p). The results in both spaces will
be analyze from a physical point of view according
to relevant structural characteristics of the atomic
densities, such as the shell-filling process. The BCF
densities are easily built up in terms of hydrogen-
like wavefunctions, whereas the numerical study
throughout this work in the HF case will be car-
ried out by using the accurate Near-Hartree–Fock
wavefunctions of Koga et al. [38].

2. The Quantum Similarity Index (QSI)
and the Quadratic Distance (QD)

The concept of “distance” between distributions
finds its roots in the same concept associated to a
coupled of elements in a vectorial space, constituing
in fact an extension of it. Supplying an appropri-
ate norm on the space in such a way of giving rise
to a metric or distance leads us to the best known
and deeply studied L2 space, in which the distance
between two vectors is given by the square root of
the scalar product of the difference vector with itself.
Considering the space of finite norm distributions
defined over the whole three-dimensional space, and
normalizing properly, the quadratic distance, to be
denoted by QD, is defined as

QD(ρ1, ρ2) ≡
{∫

[ρ1(r) − ρ2(r)]2dr
}1/2

(5)

Among all well-known properties any distance has,
let us remark that (i) it is non-negative for any pair
of distributions, and (ii) the minimal value zero is
reached if and only if both functions are identical
(supossed to be defined both over the same domain).
Having these properties in mind, it is clear that the
QD values provide us with an indicator of similarity
between densities. Nevertheless, it is not at all the
only one. In this sense, it is worthy to remark here
the definition of the so-called Quantum Similarity
Index (QSI) [39, 40], given in terms of exactly the
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same three integrals as for the QD after carrying out
the squaring operation, which is given by

QSI(ρ1, ρ2) ≡
∫

ρ1(r)ρ2(r)dr√∫
ρ2

1(r)dr
∫

ρ2
2(r)dr

(6)

where the numerator is referred as the “Quantum
Similarity Measure” (QSM) of ρ1 and ρ2, whereas
the denominator is defined in terms of the corre-
sponding disequilibriums defined in Eq. (3). The
main properties of this measure, appart from sym-
metry, are (i) it ranges over the bounded interval
[0, 1] and (ii) the maximal value 1 is only reached
for the identical case. Its definition arises from the
molecular research field [30], but later on has been
widely applied in many different problems and sub-
jects in order to establish a comparative measure
as indicator of “similarity” between both distribu-
tions taking the base of the aforementioned main
properties [41–45]. Let us remark here the differ-
ent character of both measures in spite of being
defined in terms of exactly the same integrals, attend-
ing to the boundeness of the QSI contrary to the
unbounding property of QD. This comment can
be also expressed in terms of the “saturation” val-
ues (those corresponding to identical distributions),
being 0 for QD and 1 for QSI.

Let us numerically analyze both measures (QD
and QSI) between the BCF and HF electron densities,
in position and momentum spaces, ρ(r) and γ (p),
respectively. In Fig. 1(a), QDr(HF, BCF) is displayed
for all neutral atoms with nuclear charge Z = 1−103,
and similarly in Fig. 1(b) for the momentum space
(by only replacing the HF and BCF densities ρ by γ

and, consequently, the variable “r” by “p”). First, we
can observe that the values in both figures have been
drawn as piecewise curves, each piece correspond-
ing to the periods, which constitute the periodic
table. This has been made in order to better inter-
pret the results according to the shell-filling process.
As should be expected, increasing the number of
electrons makes the distance between both the mod-
els also to increase, due to the higher effect of the
electronic repulsion, as clearly observed in Fig. 1(a).

In spite of the piecewise drawing procedure, the
curve in Fig. 1(a) corresponding to QDr(HF, BCF)

appears almost continuous while QDp(HF, BCF) in
Fig. 1(b) clearly displays the aforementioned piece-
wise behavior attending to the periods the atoms
belong to. Nevertheless, the periodicity pattern can
be also observed in QDr(HF, BCF), not in terms of
apparent discontinuities in the curve as occurs in

FIGURE 1. Quadratic Distance QD(HF, BCF) for
neutral atoms with nuclear charge Z = 1 − 103 in (a)
position and (b) momentum spaces. Atomic units are
used.

momentum space, but as changes in its slope when
going from a period to the next one. These results
are interpreted as follows: the main characteristic
which share both models is the identical value of the
nuclear charge Z, and also that the region around
the nucleus is mainly governed by the attractive
electron-nucleus potential over the repulsive one.
The last one is dominant over the first in external
regions (valence subshell), which characterizes the
periodicity patterns of the atomic systems. However,
the rapid decrease (exponential) of the charge densi-
ties makes the external subshells contribution to the
integrals to be almost negligible. The opposite can
be argued in discussing Fig. 1(b), where more slow
electrons (close to p = 0) are just those of valence
subshells which, consequently, carry a relevant
apport on computing the integrals. These comments
can be better understood by observing Figs. 2(a)
and (b), where the involved one dimensional inte-
grands (the functions integrated from 0 to ∞) are
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FIGURE 2. (a) Functions 4π r 2ρ2
HF(r ) (label HFˆ2),

4π r 2ρ2
BCF(r ) (label BCFˆ2), and 4π r 2ρHF(r )ρBCF(r ) (label

HF*BCF), defining overlap integrals for computing the
Quadratic Distance QDr (HF, BCF) for Z = 88 atom in
position space, and (b) similarly in momentum space for
the Quadratic Distance QDp(HF, BCF) of momentum
densities γ (p). Atomic units are used.

represented in order to appreciate their contribution
to the global integrals. As previously mentioned, it
is clearly observed that the relevant values of the
three involved integral in position space, even for
heavy atoms [Z = 88 as in Fig. 2(a)] are strongly
localized very close to the origin (i.e., the nucleus)
displaying there almost identical values, whereas the
differences among them in momentum space for the
same atom [Fig. 2(b)] are not only much stronger but
also displayed over a much wider region.

A similar analysis is also carried out in terms of
similarities QSI between the BCF and HF densities
in both conjugated spaces. This is done attending to
Fig. 3, where QSI(HF, BCF) are displayed again for
Z = 1 − 103 in position and momentum spaces [Fig.
3(a)]. It is clearly observed that values of similarity
between both models in position space are extremely
close to the maximal value 1 and appear to be very

little sensitive to the specific valence subshell of
the considered systems, contrary to the momentum
space case, which have a decreasing trend and show-
ing, additionally, the shell-filling patterns including
the anomalous cases. Justifying these results requires
again the previous interpretation concerning the
quadratic distance QD attending to the behavior of
the involved integrals. Nevertheless, it is possible
to observe the aforementioned structural character-
istics also in position space by restricting ourselves
to a much narrower interval for QSIr(HF,BCF), as
shown in Fig. 3(b) for values all above 0.975. From
the analysis of both figures, it is worthy to point out
that, in spite of QSI displaying periodicity patterns
in both conjugated spaces, the position one appears
to posseses a much smaller sensitivity in this sense
than the momentum one.

It is worthy to point out that location of extrema
in both QD and QSI in momentum space mostly
belongs to noble gases (Z = 10, 18, 36, 54, 86) or

FIGURE 3. Quantum similarity index QSI(HF, BCF) for
neutral atoms with nuclear charge Z = 1 − 103 in
position and momentum spaces. Atomic units are used.
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atoms suffering anomalous shell-filling (e.g., Z =
24, 29, 46, 64, 79, 93), usually minima for QD being
maxima for QSI.

Summarizing the results of the present section,
it has been clearly shown that distances based
on overlap integrals as QD and QSI in order to
quantify the effects of the interelectronic repulsion
in atomic systems are mainly determined by the
nuclear charge Z in position space, displaying much
richer information on shell structure when dealing
with momentum space densities.

3. The Fisher (FD) and
Jensen–Shannon (JSD) Divergences

Apart from the above-discussed distances defined
in terms of overlap integrals, there also exist addi-
tional comparative measures, some of them aris-
ing at a first step from fundamental information-
theoretic functionals of a single distribution, such
as Shannon entropy [Eq. (1)] and Fisher information
[Eq. (2)], and their later extensions for establish-
ing information-based comparisons among distribu-
tions, as is the case of the Kullback–Leibler relative
entropy [14] and the relative Fisher information
[35, 36].

To preserve the desirable properties of any dis-
tance measure, namely non-negativity, symmetry,
and saturation for identical distributions, the afore-
mentioned relative Shannon and Fisher measures
give rise to their associated concept of “divergence.”
Both them are defined as follows: the Fisher Diver-
gence (FD) is defined as the symmetrized Fisher
relative entropy, given by

FD(ρ1, ρ2) ≡
∫

ρ1(r)
∣∣∣∣ �∇ ln

ρ1(r)
ρ2(r)

∣∣∣∣
2

dr

+
∫

ρ2(r)
∣∣∣∣ �∇ ln

ρ2(r)
ρ1(r)

∣∣∣∣
2

dr (7)

and similarly for the Jensen–Shannon Diver-
gence (JSD) in terms of the Kullback–Leibler
entropy (KL),

KL(ρ1, ρ2) ≡
∫

ρ1(r) ln
ρ1(r)
ρ2(r)

dr (8)

where JSD is the sum of KL distances of each density
to the mean one, namely

JSD(ρ1, ρ2) ≡ KL
(

ρ1,
ρ1 + ρ2

2

)
+ KL

(
ρ2,

ρ1 + ρ2

2

)
,

(9)

equivalently expressed, after minor manipulations,
in terms of Shannon entropies as

JSD(ρ1, ρ2) ≡ S
(

ρ1 + ρ2

2

)
− 1

2
[S(ρ1) + S(ρ2)], (10)

being consequently interpreted as the “excess” of
Shannon entropy of the mean density respect to the
mean value of the individual Shannon entropies.
From their definitions, the aforementioned proper-
ties of distance measures are immediately observed
to be verified, where non-negativity of JSD arises
from the convex character of Shannon entropy S or
the non-negativity of KL. So both JSD and FD diver-
gences provide us with comparative measures of the
distance between two distributions, each one based
on a relevant descriptor of the information content.
Such a distance character of the JSD and the FD diver-
gences has been previously employed in studying
different systems, problems, and/or processes [32,
43, 46].

Let us now apply these concepts of distance to the
previously afforded problem of comparing the BCF
and HF atomic densities in position and momentum
spaces, in order to quantify the effect of the electronic
repulsion on the information content of the densi-
ties as well as on the periodicity patterns. This will
be done by analyzing Figs. 4(a), (b), and 5 in which
the aforementioned divergences are represented for
neutral atoms throughout the whole Periodic Table.

The Fisher Divergence FD(HF, BCF) is displayed
in Figs. 4(a) (position space) and 4(b) (momentum
space, in log-scale). Similarly to the previously stud-
ied quantities (Section 2), monotonicity characters
are opposite in both spaces, displaying an increas-
ing behavior in position space and decreasing in
the momentum one. Again, the overall behavior
in each space is the expected one in the sense of
a higher number of electrons making more rele-
vant the repulsive effect and expanding the charge
cloud. Nevertheless, now shell-filling patterns can
be clearly appreciated in both conjugated spaces,
whereas QSI and QD values appeared to be related
to such a process only in momentum space. In what
concerns location of extrema, most of them corre-
pond (as also ocurred with momentum space QD
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and QSI) to noble gases or anomalous shell-filling
cases, maxima in position space corresponding to
minima in the the momentum one and conversely.

Concerning the Jensen–Shannon Divergence JSD
(HF,BCF) represented in Fig. 5 for both conjugated
spaces, some comments are in order. First, the shell-
filling process of the atomic systems is also revealed
in the position and the momentum spaces, both
curves displaying a very similar shape. In fact, they
differ roughly in a scaling factor and/or a small
shift depending on the range of Z values consid-
ered (light, medium, or heavy atoms). Nevertheless,
the difference between the absolute values of JSDr

and JSDp for a given Z are much smaller than for
all previously studied measures, some of them even
belonging to different magnitude orders. Again loca-
tion of extrema corresponds mostly to noble gases
and anomalous shell-filling systems, but now being
of the same type (minimum or maximum) in both
conjugated spaces, contrary to the opposite character
for the FDr and FDp divergences.

FIGURE 4. Fisher Divergence FD(HF, BCF) for neutral
atoms with nuclear charge Z = 1 − 103 in (a) position
and (b) momentum spaces. Atomic units are used.

FIGURE 5. Jensen–Shannon Divergence
JSD(HF, BCF) for neutral atoms with nuclear charge
Z = 1 − 103 in position and momentum spaces. Atomic
units are used.

So, it is clearly shown that the Fisher (FD) and
Jensen–Shannon (JSD) Divergences are the most
useful measures, when compared with the others
considered in this work, in order to study the inter-
electronic repulsion effects by means of position
space densities, but similar results are also provided
by the same quantities in the momentum space.

4. Complexity Measures

Different meanings appear associated to a global
concept of “complexity,” which constitutes a mea-
sure of structure and correlation in systems and
processes. This is the reason of finding many defi-
nitions [24, 47–52] of complexity as well as several
fields of application [53–56]. Nevertheless, informa-
tion concepts such as entropy, disequilibrium, and
others also studied in this work are usually basic
ingredients in its quantification, which is not unique
appearing strongly conditioned according to the
specific system or process under study.

Most proposals of formulating this quantity build
it up as the product of two factors [57–59], being
not the only way of defining it. One factor takes
into account order/disequilibrium and the other dis-
order/uncertainty. Their product gives rise to the
complexity, which provides a measure of how far
the distribution is from the extremum cases of max-
imum localization or maximum disorder for which
complexity reaches minimal values.

Among the more succesful definitions for study-
ing different kind of problems such as those afforded
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in this work, it is worthy to remark the following
ones, for which some rigorous results have been
also provided: (i) the López–Ruiz, Mancini and Cal-
bet complexity (CLMC) [24], (ii) the Fisher–Shannon
complexity (CFS) [28], and (iii) the Cramer–Rao com-
plexity (CCR) [29]. Deep additional studies of the
associated information planes substended by the
constituent factors have been also carried out [60, 61].

The CLMC complexity CLMC(ρ) is defined in
terms of the so-called exponential entropy L ≡ eS

(S being the Shannon entropy) and the disequilib-
rium D as defined by Eq. (3), being given by their
product [57]

CLMC(ρ) ≡ eSρ · Dρ (11)

with S quantifying the uncertainty and D the level
of order. The way of defining this magnitude arises
from the appropriate scaling and replication proper-
ties desirable for such a measure of information.

Concerning the Fisher–Shannon complexity CFS(ρ),
it is formulated as the product of Fisher information
Iρ and the so-called power entropy Jρ as [28]

CFS(ρ) ≡ Iρ · Jρ (12)

with

Jρ ≡ 1
2πe

e
2
3 Sρ , (13)

while the Cramer–Rao complexity replaces the
Shannon-based delocalization factor by the variance
Vρ defined in Eq. (4), giving rise to [29]

CCR(ρ) ≡ Iρ · Vρ (14)

The usefulness of the CLMC complexity and some
of its extensions and generalizations has been widely
shown [54, 55, 57], as well as the recently introduced
CFS [29] and CCR [62] complexities, particularly for
the study in atomic and molecular physics [15–17, 31,
63–65] giving rise to new insights in this field from
an information-theoretic point of view. Neverthe-
less, they have been usually employed with the aim
of providing information on multielectronic systems
by computing their complexities within an specific
model (e.g., Hartree–Fock among others), but not
for comparing their values from different models in
order to interpret their differences according to rele-
vant physical properties, such as the interelectronic
repulsion as in this job.

For illustration, let us compare the CLMC com-
plexity values of the HF and BCF systems in

FIGURE 6. LMC complexity measures CLMC(HF) and
CLMC(BCF) for neutral atoms with nuclear charge
Z = 1 − 103 in (a) position and (b) momentum spaces.
Atomic units are used.

both position and momentum spaces, as displayed,
respectively, in Figs. 6(a) and (b). As expected from
the intuitive notion of complexity described above,
such an information measure increases when the sys-
tem is not only governed by the attractive potential
(BCF), but additionally by the repulsive interelec-
tronic one (HF). Such an increase is strongly depen-
dent on the atomic shell-structure, the BCF curves
containing much slighter peaks (local extrema) when
compared with those of the HF values. This differ-
ent level of structure is observed in both conjugated
spaces, more enhanced in the momentum one. Loca-
tion of extrema are usually associated (as ocurred
with previously studied measures) to noble gases
and anomalous shell-filling, their character (maxi-
mum or minimum) being conditioned by the con-
sidered space (position or momentum) and system
(HF or BCF). Similar comments can be also done con-
cerning Fisher–Shannon and Cramer–Rao complex-
ities, CFS, and CCR, respectively, whose associated
figures are not shown for the sake of shortness.
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FIGURE 7. Shannon entropies S(HF) and S(BCF) for
neutral atoms with nuclear charge Z = 1 − 103 in (a)
position and (b) momentum spaces. Atomic units are
used.

It is natural to wonder to which extent the afore-
mentioned complexities provide a complete infor-
mational description of the differences between the
BCF and HF systems according to both the electron
repulsion effect and the shell-filling process. This can
be clearly appreciated by studying Figs. 7(a) and (b),
corresponding to the Shannon entropies S(HF) and
S(BCF) in position and momentum spaces, respec-
tively, and comparing them to the previously ana-
lyzed CLMC complexities. Let us keep in mind that
one of the CLMC factors is essentially the Shan-
non entropy (its exponential in fact). In spite of the
Shannon entropy appearing shifted attending to the
inclusion or not of the repulsive forces, it is not
quite enough to display by itself the relevant sruc-
ture associated to shell-filling, as does occur with
LMC complexity. In fact, both HF and BCF Shan-
non entropies in momentum space are monotoni-
cally increasing functions (without local extrema).
These observations enhance the previously men-
tioned main feature of complexity as information

measure, appearing able to provide much richer
information than the individual factors composing
it. These comments can be also applied to the study
of the other considered CFS and CCR complexities
and their factors.

5. Conclusions

The study of different distribution distances,
divergences, and complexities allows to gain a
deeper physical insight on the relevance of the
interlectronic repulsion in atomic systems as com-
pared with the corresponding purely Coulombic
ones. To obtain a complete informational descrip-
tion, it appears preferable to deal simultaneously
with measures in position and momentum atomic
densities. Nevertheless, Fisher and Jensen-Shannon
divergences as well as complexities provide rele-
vant information in both conjugated spaces, whereas
distances based on overlap integrals necessarily
requieres to employ momentum densities. Appart
from the repulsion effect, the shell-filling patterns
in the HF framework are also clearly displayed in
the just mentioned cases, not only attending to the
specific valence subshell but additionally to its occu-
pation number, the information measures detecting
also the anomalous shell-filling.

References

1. March, N. H. Phys Rev A 1986, 33, 88.
2. Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and

Molecules; Oxford University Press: Oxford, 1989.
3. Smith, V. H., Jr.; Robertson, D. D.; Tripathi, A. N. Phys Rev A

1990, 42, 61.
4. March, N. H.; Santamaría, R. Phys Rev A 1989, 39, 2835.
5. Howard, I. A.; March, N. H. J Phys A 2002, 35, L635.
6. March, N. H.; Cizek, J. Int J Quantum Chem 1988, 33, 301.
7. Angulo, J. C.; Romera, E. Int J Quantum Chem 2006, 106, 485.
8. Lin, C.; Lin, M. Comm Nonlinear Sci Numer Simul 2008, 12,

677.
9. Cover, T. M.; Thomas, J. A. Elements of Information Theory;

Wiley-Interscience: New York, 1991.
10. Renyi, A. In Proceedings of the 4th Berkeley Symposium on

Mathematics, Statistics and Probability, 1960; pp 547–561.
11. Tsallis, C. J Statis Phys 1988, 52, 479.
12. Pearson, K. Phil Mag 2000, 50, 157.
13. Taneja, I. J.; Pardo, L.; Morales, D.; Menéndez, M. L. Questiio

1989, 13, 47.
14. Kullback, S.; Leibler, A. Ann Math Statist 1951, 22, 79.
15. Gadre, S. R.; Bendale, R. D. Phys Rev A 1987, 36, 1932.

1746 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 110, NO. 9



EFFECT OF THE INTERELECTRONIC REPULSION

16. Guevara, N. L.; Sagar, R. P.; Esquivel, R. O. Phys Rev A 2003,
67, 012507.

17. Nalewajsky, R. F. Information Theory of Molecular Systems;
Elsevier Science: Boston, 2006.

18. Angulo, J. C. Phys Rev A 1994, 50, 311.
19. Ho, M.; Smith, V. H., Jr.; Weaver, D. F.; Gatti, C.; Sagar, R. P.;

Esquivel, R. O. J Chem Phys 1998, 108, 5469.
20. Borgoo, A.; Godefroid, M.; Indelicato, P; De Proft, F.; Geer-

lings, P. J Chem Phys 2007, 126, 44102.
21. Liu, S. J Chem Phys 2007, 126, 191107.
22. Shannon, C. E.; Weaver, W. The Mathematical Theory of

Communication; University of Illinois Press: Urbana, 1949.
23. Fisher, R. A. Proc Cambridge Philos Soc, 1925, 22, 700.
24. López-Ruiz, R.; Mancini, H. L.; Calbet, X. Phys Lett A 1995,

209, 321.
25. Onicescu, O. CR Acad Sci Paris A 1966, 263, 25.
26. Pipek, J.; Varga, I. Phys Rev A 1992, 46, 3148.
27. Carbó-Dorca, R.; Arnau, J.; Leyda, L. Int J Quantum Chem

1980, 17, 1185.
28. Angulo, J. C.; Antolín, J.; Sen, K. D. Phys Lett A 2008, 372, 670.
29. Angulo, J. C.; Antolín, J. J Chem Phys 2008, 128, 164109.
30. Carbó-Dorca, R.; Girones, X.; Mezey, P. G., Eds. Fundamen-

tals of Molecular Similarity; KluwerAcademic/Plenum Press:
New York, 2001.

31. Nalewajski, R. F.; Parr, R. G. Proc Natl Acad Sci USA 2000, 97,
8879.

32. Antolín, J.; Angulo, J. C.; López-Rosa, S. J Chem Phys 209, 130,
074110.

33. Lin, J. IEEE Trans Inform Theory 1991, 37, 145.
34. Taneja, I. J. In Advances in Electronics and Electron Physics;

Hawkes, P. W., Ed.; Academic Press: London, 1989; pp 327–
413.

35. Hammad, P. Revue de Statistique Appliquée 1978, 26, 73.
36. Biane, P.; Speicher, R. Annales de l’Institut Henri Poincare (B)

Probability and Statistics 2001, 37, 581.
37. Janssens, S.; Borgoo, A.; van Alsenoy, C.; Geerlings, P. J Phys

Chem A 2008, 112, 10560.
38. Koga, T.; Kanayama, K.; Watanabe, S.; Thakkar, A. J. Int J

Quantum Chem 1999, 71, 491.
39. Solá, M.; Mestres, J.; Oliva, J. M.; Durán, M.; Carbó-Dorca, R.

Int J Quantum Chem 1996, 58, 361.
40. Robert, D.; Carbó-Dorca, R. Int J Quantum Chem 2000, 77, 685.

41. Borgoo, A.; Godefroid, M.; Sen, K. D.; de Proft, F.; Geerlings,
P. Chem Phys Lett 2004, 399, 363.

42. Borgoo, A.; Torrent-Sucarrat, M.; de Proft, F.; Geerlings, P.
J Chem Phys 2007, 126, 234104.

43. Ho, M.; Sagar, R. P.; Schmider, H.; Weaver, D. F.; Smith, V. H.,
Jr. Int J Quantum Chem 1995, 53, 627.

44. Angulo, J. C.; Antolín, J. J Chem Phys 2007, 126, 044106.
45. Antolín, J.; Angulo, J. C. Eur Phys J D 2008, 46, 21.
46. de Proft, F.; Ayers, P. W.; Sen, K. D.; Geerlings, P. J Chem Phys

2004, 120, 9969.
47. Kolmogorov, A. N. Probl Inf Transm 1965, 1, 3.
48. Chaitin, G. J ACM 1966, 13, 547.
49. Lempel, A.; Ziv, J. IEEE Trans Inform Theory 1976, 22, 75.
50. Grassberger, P. Int J Theor Phys 1986, 25, 907.
51. Bennet, C. H. In The Universal Turing Machine—A Half Cen-

tury; Herhen, R., Ed.; Oxford University Press: Oxford, 1988;
pp 227–257.

52. Lloyd, S.; Pagels, H. Ann Phys (NY) 1988, 188, 186.
53. Shalizi, C. R.; Shalizi, K. L.; Haslinger, R. Phys Rev Lett 2004,

93, 118701.
54. Rosso, O. A.; Martin, M. T.; Plastino, A. Physica A 2003, 320,

497.
55. Chatzisavvas, K. Ch.; Moustakidis, CH. C.; Panos, C. P. J Chem

Phys 2005, 123, 174111.
56. Lamberti, P. W.; Martin, M. T.; Plastino, A.; Rosso, O. A.

Physica A 2004, 334, 119.
57. Yamano, T. J Math Phys 2004, 45, 1974.
58. Shiner, J. S.; Davison, M.; Landsberg, P. T. Phys Rev E 1999,

59, 1459.
59. López-Ruiz, R. Biophys Chem 2005, 115, 215.
60. Sen, K. D.; Antolín, J.; Angulo, J. C. Phys Rev A 2007, 76,

032502.
61. Antolín, J.; Angulo, J. C. Int J Quantum Chem 2009, 109,

586.
62. Dehesa, J. S.; Sánchez-Moreno, P.; Yáñez, R. J. J Comput Appl

Math 2006, 186, 523.
63. Borgoo, A.; De Proft, F.; Geerlings, P.; Sen, K. D. Chem Phys

Lett 2007, 444, 186.
64. Sen, K. D.; Panos, C. P.; Chatzisavvas, K. Ch.; Moustakidis,

Ch. C. Phys Lett A 2007, 364, 286.
65. Panos, C. P.; Chatzisavvas, K. Ch.; Moustakidis, Ch. C.;

Kyrkou, E. G. Phys Lett A 2007, 363, 78.

VOL. 110, NO. 9 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1747


