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possible sense el suport econòmic que he rebut al llarg d’aquests anys per part
de la Generalitat de Catalunya a través de l’AGAUR, que sempre m’ha ofert, a
més, un tracte excel·lent.

No puc oblidar tampoc aquells que no només hem caminat plegats durant el
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Molts ànims Noela en aquest tram final de l’escriptura! Espero que ben aviat
puguis tornar gaudir relaxadament del sol i un bon llibre al balcó de Gràcia. Per
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tesi), sempre està de bon humor i amb ànims de fer una canya! Xavi, perdona,
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Gràcies papa i Montse per aquest regal anomenat Aitana. Gràcies iaia, Laura
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Introduction

In our globalized world, where information and diseases can spread quickly, many
tend to regard viruses as a threat to humanity. The truth is that, in fact, viruses
have had an important impact throughout history. For instance, the influenza
of 1918 (Spanish Flu) was an especially severe strain that, combined with the
devastating situation of many countries after World War I, resulted in a pandemic
that took over 40 millions of lives (more than WWI itself). Other tragic examples
can also be mentioned like the virulent, but almost eradicated, smallpox, or the
more recent cases of Ebola and AIDS [1, 2]. However, viruses are more than
just parasites, since they play a major role in the balance of ecosystems [3], and
recently humanity is starting to take advantage of their abilities, using them as
insecticides [4], as an alternative to antibiotics [5], or even in more sophisticated
applications, like gene therapy [6].

Viruses are submicroscopic biological entities that need to infect a host cell in
order to replicate. They have probably existed since the origin of life. But, they
do not fossilize well, so paleovirology is only starting to track their history using
modern genomic techniques and strategies [7]. In any case, historical records
from ancient Egypt and Greece, centuries B.C, indicate that nowadays viruses
like smallpox virus, polio virus, or rabies virus were already present at that
time. However, the development of rationalized methods to fight these diseases
took longer. The first records of primitive types of vaccination (variolation)
come from China and India in the 11th century. But it was not until the 1790s
when Edward Jenner used cowpox, a mild version of smallpox, as a vaccine for
smallpox in Europe, a method that was improved and generalized in 1885 by
Louis Pasteur. Curiously, all this progress was achieved without knowing the
actual agents of such diseases. Dimitrii Ivanovsky was the first to report in
1892 that the causative agent of tobacco mosaic disease was not retained by the
filters that usually removed bacteria from extracts and cultures. Subsequently, in
1898 Martinus Beijerinck made the same observations independently, and, more
importantly, made the conceptual leap of identifying the responsible party for

1



Introduction

Figure 1: Electron micrographs of viruses. (a) The helical rod-like particle of
tobacco mosaic virus (TMV) [10, 11]. (b) Icosahedral human rotavirus particles
[12]. (c) Elongated bacteriophage T4, with tail and fibers [13]. (d) Bullet-shaped
particles of the rhabdovirus vesicular stomatitis virus [14]

the disease as a distinctive agent, smaller than any known bacteria. These new
entities were called ultrafilterable viruses, and eventually simplified to viruses1 [1].

The structure and composition of viruses started to be unveiled in 1935, when
Wendell Stanley crystallized tobacco mosaic virus (TMV) [8], a process facili-
tated by its structural simplicity. In addition, the introduction of the electron
microscope (EM) in the 1930s rapidly revolutionized virology. The power of am-
plification of EM (×100, 000-fold) confirmed the relatively simple architecture of
viruses (see Fig. 1), and paved the way to the first rational classification, based
on their morphology. Later on, studies on bacteriophages2 (or phages), by Max
Delbrück and coworkers, showed that phages are stable, self-replicating entities
characterized by heritable traits. Remarkably, these features turned out to be
common for all viruses. Moreover, in 1952 Alfred Hershey and Martha Chase [9]
showed that among the two main components of viral particles, i.e., protein and
nucleic acid, the latter corresponded to the genetic material of the virus, and was
ultimately responsible for its molecular replication in the host cell. At this point,
the basic aspects of viral particles were identified. But, rather than being the
endpoint of virology, it gave rise to an outbreak of a field that has many questions
to solve and is still growing today.

Interestingly, the study of viruses, due to their relative simplicity in the bi-
ological scale and their interrelation with the host cells, has led to important
breakthroughs in other fields of biology. In particular, the research on bac-
teriophages was crucial to establish the foundations of molecular biology. For
instance, in 1961 S. Brenner, F. Jacob and M. Meselson discovered messenger

1The term virus came from the Latin word for poison or venom.
2Viruses that infect bacteria.
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RNA (mRNA) [15], the genetic blueprint for protein production in the cells;
and, F. H. Crick, L. Barnett, S. Brenner, and R. J. Watts-Tobin elucidated that
the information of DNA was encoded in codons of three nucleotide basis [16].
Furthermore, the research on viruses also led to important landmarks in cellular
biology. For example, the study of oncoviruses, which can cause cancer, like Rous
sarcoma virus in chickens, eventually unveiled the molecular basis of cancer. A
clear demonstration of the scientific importance of the discoveries and advances
derived from the research on viruses is the fact that they have been recognized
by multiple Nobel Prizes [1].

Nowadays, it is well known that viruses infect all type of organisms, from bac-
teria to mammals. Surprisingly, some of them, called virophages, infect even other
viruses, once these have taken control of the cell [17]. Thus, viruses represent one
of the most clear examples of the selfish gene concept [18]: a trait that perpet-
uates over time by replication. Despite the fact that their reproduction strategy
could seem primitive and unsophisticated, viruses are the most abundant biolog-
ical entity on the planet [3, 19], and they play a fundamental role in regulating
ecosystems, especially in marine environments where microbial communities are
abundant and essential for the nutrient cycling [3,20]. Interestingly, viruses show
a rich spectrum of replication strategies that sometimes do not require killing or
even harming the host. Indeed, cryptic viruses replicate in organisms without
causing any apparent symptoms or disease [21]. Remarkably, some viruses incor-
porate their genome into the host and can remain latent for a certain period of
time, like the well known λ phage or herpes virus [1]. Indeed, viral sequences
can be integrated in the organism genome even permanently, becoming a part of
it [22].

A viral species is usually specialized in the infection of only one type of organ-
ism (or few related ones), and shows well defined morphological and molecular
traits. These characteristic traits can vary greatly among different viral species,
but there are two ingredients that are always present in virions3 [1]: the infective
genetic material, and the protective protein shell, called the capsid (see Fig. 2).

All viruses carry a piece of genetic material that contains the necessary infor-
mation to hijack the molecular machinery of the cell, and to produce new viral
particles under the right cellular conditions. The virus genome can be encoded in
the traditional double-stranded DNA (dsDNA), but also in other type of polynu-
cleotides, such as single-stranded DNA (ssDNA), single-stranded RNA (ssRNA),
or even double-stranded RNA (dsRNA) [1]. The pathway of replication in the
host cell depends very much on the type of genome. For instance, many dsDNA

3A virion is an infectious virus particle.
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Figure 2: Essential components of a virus: the capsid and the genetic material.
(a) Cryo-electron microscopy of the exterior of the bacteriophage φ29 capsid. Two
slices showing the interior of an empty capsid (b) and a capsid full of dsDNA (c).
Pictures from M. G. Rossmann’s Lab. (Purdue University).

viruses, like herpes virus, replicate their genome using a host polymerase; in-
stead, negative-sense ssRNA virions, e.g., rabies virus, require a viral polymerase
to transcribe first the genome into the reciprocal positive-sense ssRNA that is
then readable for the cell. In fact, the Baltimore classification groups viruses
into families depending on their type of genome and method of replication (see
Fig. 3). Remarkably, the origin of the viral genomes types and their methods
of replication are still in debate, and it has not been ruled out that the viral
strategies of infection could even play an important role in the emergence of the
actual three domains of life, i.e., bacteria, archaea, and eukaryote, or in their
genetic mechanisms [23–25].

In any case, nucleic acids are usually very sensitive to environmental condi-
tions, and easily degradable. Thus, between the formation of the viral particle and
the infection of a new host, viruses rely on the capsid to protect their genomes.
Viral capsids have sizes from tens to several hundreds of nanometers and are
made of multiple copies of one or a few different proteins that spontaneously self-
assemble, without consumption of chemical energy (in terms of ATP). Given the
limited size of the viral genome, this strategy is much more efficient than encod-
ing just one huge single macromolecule. The coat proteins from which they are
formed have a few nanometers in size, and, despite having completely disparate
sequences for different viruses, they end up building a set of common architec-
tures for the capsid. In fact, it has been recently shown that viral coat proteins
form only few structural lineages. Thus, viruses that are apparently unrelated
can be grouped by the structural similarities in their coat proteins, and this idea
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Figure 3: The Baltimore classification (extracted from Ref. [1]). All viruses must
generate messenger RNA (mRNA), which is required for protein production in
a cell. The different types of viruses in this classification are grouped in classes
indicated by the Roman numbers, and defined by the pathways taken to obtain
the mRNA, which are mainly determined by the nature and polarity of the viral
genomes.

is having an important impact in viral evolution [26] (see Fig. 4). Typically,
viral capsids come in different shapes that tend to be unique for each virus in
vivo (see Fig. 1), but that can be changed by the assembly conditions in vitro.
The first virion observed under the electron microscope, tobacco mosaic virus
(TMV), showed a rod-like structure with coat proteins organized in a helical
sheath, opened at both ends [11] (see Fig. 1a). However, most known viruses
show closed structures instead. In particular, quasi-spherical capsids seem to be
the most abundant, and despite their variability in sizes, their coat proteins are
usually organized in a very precise way following icosahedral symmetry [27–29]
(see Fig. 1b). The geometrical rules of construction of these quasi-spherical
viruses were established by Caspar and Klug in the early sixties [28], and since
then they have served as a structural classification, and as the basis of modern
structural virology. Nevertheless, there is an important number of viral struc-
tures that, despite being relevant, have not been completely characterized yet.
These types of virions usually present bacilliform (or prolate) capsids, like many
bacteria or plant viruses (see Figs. 1c), or conical shells, like the well known
human immunodeficiency virus (HIV). Other less abundant viral structures have
been also observed, like the bullet-shaped particles of some animal viruses (see
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Figure 4: Structure-based viral lineages (extracted from Ref. [26]). (a) Table
listing different lineages obtained comparing high-resolution structures of viral
coat proteins. (b) Comparison of X-ray-based coat protein structures of PRD1-
like viruses. The different colors indicate the domain of life of the respective hosts:
green (bacteria), red (eukarya). The structures are presented in side view, where
the lower end points to the virus interior. The core of the proteins in this lineage
shows a characteristic jelly-roll made of two β sheets (boxed for adenovirus).
The inset above is the relevant portion of the structure-based phylogenetic tree,
calculated based on these structures.

Fig.1d), or the astonishing zoo of morphologies reported for several virions that
infect extremophiles archaea [30]. The existence of these common set of struc-
tures and the underlying mechanisms responsible for their appearance is one of
the many open questions in the field.

Besides the coat proteins and the genetic material, there are other structural
elements present in many viral capsids. For instance, many bacteriophages have
a proteic tail attached to the capsid that is crucial to inject the viral genome into
the bacterial host [31]. Some virions have spikes located at specific locations on
the shell (see Fig. 2), or in the tail (see Fig. 1c), to enhance the recognition
of, and attachment to the host [32, 33]. Viral particles can also have phospho-
lipid membranes. Sometimes they are placed between the genetic material and
the protein capsid, most likely helping the assembly process or modifying the
mechanical properties of the shell, like for most viruses in the PRD1-like struc-
tural lineage [26]. In other cases the membrane is an envelope involved in virus
maturation, and in the infection of the new host, like for HIV [34]. On the other
hand, some viral proteins act as transient scaffold during the capsid assembly, and
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then are ejected during the maturation process, like for bacteriophage P22 [35];
alternatively, some proteins have an indirect structural role, for instance in the
compaction of the genetic material in some dsDNA viruses [36]. These struc-
tural elements play a role in the viral life cycle, even though they are usually
dispensable for the integrity of the viral shell.

A crucial aspect of viruses, which makes them fascinating from a biophysical
point of view, is that, although they are nanomachines properly programmed to
infect a host, viral particles do not have their own metabolism. This suggests
that during their natural cycle, from the assembly to the infection stage, they
must rely on general physical and chemical principles to succeed in most of their
tasks, and to resist the different possible extreme physiological conditions of the
environment. For example, at the right conditions, viral capsids assemble directly
from their building blocks. This means that the interactions among the coat pro-
teins (and also the scaffolding proteins of the genetic material if they are required)
spontaneously drive the formation of shells in a process that could be in principle
described by basic thermodynamics and kinetics [37–39]. Moreover, the physical
properties of the viral genome are different depending on the type of nucleic acid,
which has an important influence in the viral strategies of assembly and infection.
In particular, ssRNA viruses usually coassemble from their genetic material and
coat proteins [40–42]. Thus, it is possible to produce in vitro infective particles
by mixing just these two constitutive elements at the right conditions, like in the
paradigmatic case of TMV [40]. Instead, many dsDNA viruses first form the shell
(the procapsid), and then pack the genome at high densities using a molecular
motor [43]. The internal pressure generated during the process is generally used
to initiate the subsequent infection of the host [31, 44].

Thus, in addition to the wealth of biological details that confer specificity
to viruses, the study of the underlying physics involved in the assembly of viral
particles, their stability, or the gene delivery process, is of great importance to
understand the properties of viruses that are common among different species.
This knowledge, beyond paving the way to understand how viruses function, may
also lead to different useful applications. Viral particles have been subjected to
natural selection for hundreds of millions of years, so they have found optimal so-
lutions to perform their basic functions efficiently and that could guide the design
of a new generation of nanostructures. In fact, the impressive properties of viral
capsids make them good candidates for promising biomedical and nanotechnolog-
ical applications. For example, adenovirus capsids are used for genetic therapy,
replacing the infective viral genome for an alternative non-viral genetic material
that encodes a protein of interest [6]; viral capsids have been labeled with fluores-
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cent dyes to image the in vivo vascular system of organisms [45]; they have been
also used as nanoreactors to confine enzymatic reactions [46]; or as scaffolds to
template the production of symmetrical inorganic structures [47] with remarkable
electrical properties as nanowires [48] or efficient batteries [49]. More importantly,
the understanding of the common physical mechanisms that are behind the life-
cycle of all viruses could also help the development of broad-spectrum antivirals
that might interfere systematically with viruses that use similar strategies of as-
sembly or gene delivery. Finally, those general physical principles governing viral
capsids might also play an important role in other well defined biological struc-
tures, like gas vesicles [50], vault shells [51], or photosynthetic vesicles [52], and
could be applied to produce artificial structures with similar properties [53].

Although there has been some progress in elucidating these underlying phys-
ical properties of viruses [54], the research is still in its initial stages. In particu-
lar, there are still many open questions regarding the origin of the morphologies
adopted by viruses, their mechanical advantages, and the mechanisms that con-
trol their assembly, which will be addressed in the context of this thesis.

Scope of the Thesis

The purpose of the present thesis is to investigate the physical mechanisms in-
volved in the formation and stability of viral capsids. The work has been divided
into three main blocks, devoted to studying the structure, the mechanical proper-
ties, and the assembly of viruses. In each case we have tried to develop a general
theoretical framework to understand the different phenomena, and to establish
the basis for future investigations. Simulations have played a crucial role in jus-
tifying the theory and clarifying its connection with experiments, and have been
the driving force of the thesis. A special effort has been placed on the application
and interpretation of our findings in light of experimental information. In this
sense, we have been able to collaborate with one experimental group in analyzing
the mechanical properties of viruses.

Part I of the thesis is devoted to the study of the Structure of Viral Capsids.
Viruses adopt highly symmetrical structures that can be described by precise
geometrical principles. In particular, many viruses have a quasi-spherical capsid
whose structure has been intensely investigated from both biological and physi-
cal standpoints. However, bacilliform or prolate viruses, despite being abundant,
have been less explored. In this first part, we extend the physical and geomet-
rical principles governing the structure of spherical viruses to understand the
architecture of elongated capsids. The block is divided into two chapters.
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In the first chapter (Geometrical Construction of Viral Capsids), we will in-
troduce the geometrical principles involved in the construction of spherical and
tubular viral shells. First, we will review the classical Caspar and Klug (CK) con-
struction that classifies icosahedral quasi-spherical particles using the triangula-
tion number T . Special emphasis is placed on the reorganization of the T -capsids
in terms of classes, which groups shells sharing similar geometrical properties
that in turn translate into their actual physical properties. Then, we develop a
generalization of the CK construction for the less studied elongated capsids, for
which a complete structural classification was missing. The analysis shows that
only a limited set of tubular architectures can be built closed by hemispherical
icosahedral caps. In particular, the length and number of proteins adopt a very
special set of discrete values dictated by the axial symmetry (5-fold, 3-fold, or
2-fold) and the triangulation number of the caps. Finally, we show how these
ideas can be used to unveil the structure of some tubular viruses, by using a few
experimental inputs.

In the second chapter of Part I (Optimal Structures for Spherical and Elon-
gated Viral Capsids), we show that the origin of the aforementioned symmetrical
architectures arises from a fundamental physical principle: the free energy min-
imization. To this end, we introduce a simple phenomenological model that
accounts for the basic ingredients of the interaction between the morphological
units of capsids (the capsomers), allowing a systematic exploration of the optimal
structures for spherical and elongated shells. In this way, one recovers the CK
icosahedral capsids, and also the new architectures described for prolate capsids,
confirming the geometrical rules derived before. Interestingly, we also find non-
icosahedral structures, and “all-pentamer capsids”, which are exceptions to the
standard classification that have been observed experimentally. Thus, our simple
model reproduces the architecture of spherical and bacilliform viruses both in
vivo and in vitro, and combined with the geometrical constructions constitutes
an important step towards the understanding of viral structure, and its potential
control for biological and nanotechnological applications.

The second part of the thesis is dedicated to the analysis of the Mechanical
Properties of Viral Capsids. During the virus life cycle, the mechanical properties
of its capsid play an important role in several biological processes. For instance, to
be infective, many viruses require a maturation stage where the capsid undergoes
a buckling transition that tunes its resistance. In addition, capsids of several
double-stranded DNA (dsDNA) viruses must withstand high pressures, arising
from their densely packed genetic material, which are later on used to initiate
the translocation of the DNA into the host. In this second block, we will discuss
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some of these remarkable mechanical properties of viral capsids combining theory,
simulations, and experiments.

In Chapter 3 (Theoretical Insights in the Elasticity of Viral Shells), we will
introduce a simple theoretical framework connecting some elastic properties of
viral capsids with the microscopic interactions among coat units. This is the
basis to rationalize the study of the mechanical properties of viral shells, and also
to infer their potential biological advantages.

In the second chapter of Part II (Buckling and Maturation of Spherical Vi-
ruses), we analyze the role of the organization of coat proteins in the buckling
phenomenon observed in spherical capsids. This has been an elusive question in
the context of continuum elasticity theory, and here we use our coarse-grained
physical model, introduced in Part I, to show that capsid shape and buckling
transition are strongly influenced by the icosahedral class P of the viral structure.
In particular, we find that capsids of a specific class (P = 1) are the most likely
to produce polyhedral shapes, minimizing their energy and accumulated stress.
On the other hand, we also find that under expansion, spherical capsids always
show a buckling transition to polyhedral shells, independently on the T -number,
and in consonance with the maturation of many viral particles. Interestingly,
the resulting polyhedral shaped-particles are mechanically stiffer, tolerate larger
expansions, and withstands higher internal pressures before failing, a trait that
might be of particular interest for pressurized dsDNA viruses.

Finally, in the third chapter of the block (Built-in Stress in Bacteriophage
φ29), we investigate the unexpected mechanical properties of bacteriophage φ29,
a prolate virus that packs dsDNA at high densities. The study was performed in
collaboration with the experimental groups of P. J. de Pablo4 and J. L. Carras-
cosa5. Their experiments, using atomic force microscopy (AFM), revealed that,
for empty shells, the equatorial zone was stiffer than the caps, in contradiction
with elasticity theory. However, simulations using our model show that the origin
of this discrepancy comes from the presence of built-in stress in the structure.
Interestingly, the effects of this mechanism are analogous to the pressurization
of a bacilliform vessel. Hence, this reinforcement strategy of empty φ29 capsids
could play a relevant role in accommodating the pressure stored by the dsDNA
in the mature particle, which is crucial for the infectivity of the virus.

The last part of the thesis, titled Self-assembly of Viral Capsids, is devoted to
the kinetics and thermodynamic aspects of the self-assembly of spherical viruses,
and it is divided in two chapters.

4Universidad Autónoma de Madrid, Spain.
5Centro Nacional de Biotecnoloǵıa - CSIC, Spain.
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In the first (Classical Nucleation Theory of Spherical Shells), we introduce
a general theoretical framework to understand and characterize the assembly of
viral particles. In particular, we show that Classical Nucleation Theory (CNT)
can be adapted to explain capsid formation, providing a solid thermodynamic and
kinetic description of the viral assembly process. This theory consistently explains
many features observed in the assembly and disassembly of viral particles, for
instance, the steep concentration dependence, the lag time at the first stages
of assembly, or the sigmoidal kinetics of capsid production. Furthermore, it
clarifies some apparent controversies reported in the literature, e.g., the variability
of the critical nucleus size required for the assembly, or the hysteresis between
the processes of association and dissociation. Even though here we develop the
theory for the case of spherical capsids, the same principles could be extended
to other types of structures, or more complex assembly scenarios, e.g., involving
the genetic material or scaffolding proteins.

In order to validate some of the theoretical assumptions introduced by CNT,
in Chapter 6 (Simulation of the Constrained Assembly of Spherical Shells), we
simulate the constrained assembly of spherical capsids again using our simple
coarse-grained model. Remarkably, this study also unveils some interesting and
unexpected phenomena that can have an important role, for instance, during
the closure of capsids. The new mechanisms unveiled here open up interesting
questions regarding the physical advantages of maturation in viruses, and could
also guide the development of novel antiviral strategies focused on promoting a
misassembled capsid.

Finally, in the last chapter (Conclusions and Perspectives) we will summa-
rize the main achievements of the thesis, emphasizing the potential biological
implications of the study, and end up by discussing the new questions and future
perspectives derived from our research.
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Chapter 1

Geometrical Construction of

Viral Capsids

1.1 Introduction

A fascinating aspect of viruses is the well defined shape of their capsids. These
structures are usually highly symmetrical, and are composed of multiple copies
of one or few different coat proteins, which are arranged in a very precise fashion
in each virus. The size and morphology of the capsid can vary depending on
the virus. However, it is also true that viruses that are apparently unrelated
phylogenetically, and infect completely different organisms, can adopt the same
structure. In fact, the systematic study of viral capsids show that there are some
geometrical rules that can rationalize the structure of an important number of
viral capsids.

Among the different shapes adopted by viral capsids, there are four mor-
phologies that have traditionally caught the attention of scientists, due to their
relative abundance, their impact on research, or their consequences on human
health. These four groups correspond to rod-like, quasi-spherical, bacilliform,
and conical viruses (see Fig. 1.1).

The rod-like structures are probably the simplest architectures that viruses
can adopt (see Fig. 1.1a). The coat subunits in these capsids form an open
helical structure that wraps the genetic material in a channel of a few nanometers.
They usually infect plants, and were the first viruses to be observed, once the
electronic microscope was developed [1]. Their structural simplicity allowed the
first advances in the characterization of viruses, and unveiled the ability of viruses
to self-assemble, showing that it was possible to produce infective viral particles
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Figure 1.1: Examples of typical viral capsid shapes. (a) Electron micrograph im-
age of tobacco mosaic virus (TMV) [5], a rod-like virus. (b) X-ray reconstruction
of turnip yellow mosaic virus (TYMV) [5], which has a spherical shell. (c) Cryo-
em reconstruction of a bacteriophage T4 [6], a bacilliform or prolate virus. (d)
Electron micrograph image of the nucleocapsid of the human immunodeficiency
virus HIV-1 [7], which has a conical shape.

in vitro [2]. The tobacco mosaic virus has been the classic model of study for
rod-like viruses [3]. Despite their relative simplicity, the mechanisms involved in
the assembly of those viruses are still under investigation [4].

Probably, the spherical capsid is the most common shape adopted by viruses
(see Fig. 1.1b), since it is thought that almost half of all viruses are quasi-
spherical. The term quasi- is used to include also the faceted structures that
show a polyhedral rather than strictly a spherical shape, as we will see in more
detail in Chapters 3 and 4. The size of these capsids can vary significantly
depending on the virus, and their diameters span from ∼ 20 nm, e.g., for small
plant viruses (made of 60 coat proteins), up to ∼ 500 nm, as for giant viruses like
the mimivirus (composed of more than 60, 000 subunits), which is comparable to
the size of some small bacteria1. Despite this polydispersity in sizes, surprisingly,
almost all quasi-spherical viruses have a characteristic trait: their capsids show
icosahedral symmetry. The ubiquity of icosahedral symmetry in viruses has been
a focus of intense research since the mid 1950s, when it was first proposed [8–10],
but its origin and biological implications are still being investigated [11–14].

Despite not being as abundant as spherical capsids, bacilliform structures are
also a common shape adopted by viruses (see Fig. 1.1c). These elongated mor-
phologies have been extensively reported by electron micrographs showing also a
great variety of sizes [5,15]. However, the inherent “anisotropy” of the structures,
compared to spherical capsids, has hindered the study of their structure [16,17].

1In particular, some members of the bacterial genus Mycoplasma have dimensions around
∼ 300 nm.
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Fortunately, the progress of non-crystallographic techniques such as cryo-electron
microscopy (cryo-EM) has started to unveil the structural details of those cap-
sids [6,18–20]. The study of the geometrical properties of bacilliform capsids will
be precisely the main focus of this chapter, and their main characteristics will be
described in more detail along the following sections.

Conical capsids are perhaps the less common shape among the four groups
of morphologies that we have enumerated (see Fig. 1.1d). Nevertheless, the
interest in these structures comes from the fact that human immunodeficiency
virus (HIV), and other related retroviruses, have a conical nucleocapsid protecting
the RNA viral genome. However, these viruses can be pleomorphic, meaning that
the same virus can easily adopt different possible conical and irregular shapes
[7, 21, 22], and it has not been possible yet to reconstruct a full conical viral
capsid knowing the precise position of all the coat proteins [23, 24].

Remarkably, the presence of these common architectures in viruses can be
justified by combining genetic, physical, and geometrical arguments. We have
mentioned above that the size of viral capsids is rather small, on the order of tens
to hundreds of nanometers. This in turn restricts the amount of information that
can be coded in the viral genome. Therefore, for the sake of genetic economy
capsids are typically built from multiple copies of one or a few similar small
proteins, instead of a single macroprotein [8]. These subunits interact with each
other and self-assemble into a regular hollow shell, minimizing the free energy as
we will see in detail in Chapter 2. Notice that for a flat 2D surface the hexagonal
lattice, or its dual (the triangular lattice), maximizes the packing and the number
of interactions of identical subunits. Then, starting from this situation, it is
possible to build the four basic capsid shapes listed above. The open helical
tube characteristic of rod-like viruses can be obtained by simply wrapping the
lattice [10]. On the other hand, to construct closed shells, Euler’s theorem states
that 12 pentagonal defects2 have to be introduced on the original hexagonal
sheet [26]. If those defects are evenly distributed on the surface one will get
the polyhedral shell with icosahedral symmetry characteristic of quasi-spherical
viruses. In addition, prolate or bacilliform capsids can be made by wrapping the
lattice into an helical tube and closing each of its ends with six defects [9,16]. At
last, conical viruses can be built similarly to prolates but introducing a different
number of defects in each cap, e.g., five and seven, or four and eight [7].

The physical and geometrical principles leading to the formation of rod-like
and quasi-spherical icosahedral viruses are now relatively well understood. How-

2It would be also possible to build a closed structure using other type of defects, but they
usually introduce a higher degree of elastic frustration [10,25].
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ever, many viruses, including some bacteriophages, such φ29 or T4, and several
fungus, plant, and animal viruses, e.g., in the genera barnavirus, badnavirus, and
ascovirus, respectively [15], have a prolate capsid whose geometrical construction
is not so well understood.

The main goal of this chapter is to describe the geometrical principles that lead
to the construction of such bacilliform viral capsids. We will focus our attention
on closed elongated viruses, which are also labeled in the literature as prolate,
bacilliform, elongated, tubular, or allantoid [15], leaving aside specifically open-
ended rod-like viruses such as tobacco mosaic virus. Our work is based on the
ideas introduced by Caspar and Klug [10] and further extended by Moody [27],
and establishes a general geometrical framework to describe icosahedral spherical
capsids as well as icosahedrally-capped bacilliform shells. The choice of these
particular structures is not arbitrary and will be justified on energetic grounds in
the next chapter.

The importance of this geometrical description is that it enumerates and
characterizes the set of structures that can be built. We find that prolate capsids
adopt a discretized set of lengths, radius, and numbers of proteins. The knowledge
of these selection rules can be very useful to infer the structure of a virus from
simple experimental data as well as for nanotechnological applications that rely
on a proper control of the dimensions and architecture of viral capsids.

This chapter will be distributed as follows. First, in Section 1.2 we review the
classical Caspar and Klug construction for icosahedral viral capsids. Section 1.3
is devoted to the general geometrical description of bacilliform capsids using all
possible symmetrical constructions of prolates closed by hemi-icosahedral caps.
The main geometrical properties of the resulting prolates as well as several ap-
plications of the model for specific viruses will also be analyzed. Finally, Section
1.4 discusses some biological implications of our results, and in Section 1.5 we
summarize our findings and remark their most relevant consequences.

1.2 Icosahedral capsids

As mentioned above, the quasi-spherical shape is probably the most common ar-
chitecture among viral capsids. Despite the variety of infection routes or assembly
mechanisms used by spherical viruses, the majority of them adopt a well-ordered
structure with icosahedral symmetry, as illustrated by the gallery of Fig. 1.2.
This means that the coat proteins are organized in a way that the resultant shell
has the same elements of symmetry of an icosahedron, i.e., the presence of 15
2-fold, 10 3-fold and 6 5-fold rotation axes (see Fig. 1.3).
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Figure 1.2: Quasi-spherical viruses. The cryo-electron reconstructions of several
quasi-spherical viruses are shown. The shapes of capsids can be almost perfectly
spherical, like for rotavirus, or strongly faceted adopting a polyhedral shape, as for
adenovirus. Despite the variety of sizes of viral capsids, or the different amount of
coat proteins composing the shell, most quasi-spherical viruses have icosahedral
symmetry and can be labeled by the structural index T . In each case the depicted
triangle corresponds to one face of the implicit icosahedron, whose vertexes are
associated to 12 pentamers. The viruses shown in the figure infect different hosts.
Hong Kong 97 (HK97) is a bacteriophage virus; cowpea chlorotic mottle virus
(CCMV) is a plant virus; Nudaurelia capensis omega (NωV) infects arthropods;
while humans are the host of polyomavirus, rotavirus, and adenovirus. Adapted
from Ref. [11].

Figure 1.3: The three axes of symmetry of an icosahedron: 5-fold (a), 3-fold (b),
and 2-fold (c).
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The first insights into the occurrence of icosahedral symmetry in viruses were
presented by Crick and Watson in 1956. They suggested that small spherical
viruses should adopt a regular capsid made of multiple copies of the same protein
[8]. From a biological standpoint, this solution is specially efficient in terms
of genetic information, because a regular structure made of multiple copies of
the same protein is encoded in less genetic material that an hypothetical single
macroprotein shell. Their conclusions were based on different grounds. The two
spherical viruses crystallized at that time, bushy stunt virus (BSV) [28, 29] and
turnip yellow mosaic virus (TYMV) [30], showed crystals with a unit cell adopting
the shape of a cube. Then, since only one single viral particle was contained
in each unit cell, this meant that the viral capsid must possess also the point
group symmetry of the unit cell. In addition, it was known that the viral coat
protein was asymmetric, so this pointed out that, in order to obtain a symmetrical
viral particle, several coat proteins had to be involved in the construction of the
capsid. The ways to build a regular structure, with cubic point group symmetry,
combining asymmetric coat proteins are limited, and are all related to the classical
platonic solids (see Table 1.1). Remarkably, of all platonic solids, the icosahedron
is the biggest structure, which can accommodate 60 asymmetrical subunits (3 on
each face), and maximizes the amount of volume (genetic information) per unit
surface (coat protein production).

Interestingly, in the same number of Nature where Crick and Watson pub-
lished their seminal paper, D. Caspar showed that bushy stunt virus (BSV)
adopted the symmetry 532 corresponding to the icosahedral construction [31]
(see Table 1.1), and in the subsequent years, other spherical viruses were found
to possess also icosahedral symmetry [9].

The icosahedral point group symmetry does not impose that capsids must
be made strictly of 60 coat proteins [8]. In fact, studies on icosahedral viruses
started to show that the same symmetry was compatible with capsids made of a
different number of subunits. In 1961 Horne and Wildy were the first to propose
a model that rationalized the possible icosahedral structures of viral capsids [9],
but it was not until the seminal work of Caspar and Klug in 1962 [10] when the
theory of icosahedral capsids was properly established.

The smallest icosahedral viruses have capsids made of 60 coat proteins that
are arranged in an exact regular way on the surface of an icosahedron (see Fig.
1.4). Nevertheless, the situation becomes more complicated for larger viruses,
because not all subunits can be placed in fully equivalent environments. So,
despite having icosahedral symmetry, larger capsids will not be strictly regular
(in terms of the coat proteins). Then, inspired by the geometrical principles
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1.2. Icosahedral capsids

Crystallo-
graphic

description

No. and type
of rotation

axes present

No. of
asymmetric

units

Platonic solid
with these sym-
metry elements

23 3 2-fold 12 Tetrahedron
4 3-fold

6 2-fold Cube
432 4 3-fold 24

3 4-fold Octahedron

15 2-fold Dodecahedron
532 10 3-fold 60

6 5-fold Icosahedron

Table 1.1: The three possible cubic point groups for spherical viruses. The num-
ber of subunits will be the same as, or a multiple of, the number of asymmetric
units. A platonic solid (and its dual) is associated to each crystallographic de-
scription. This analysis was first introduced by Crick and Watson in Ref. [8].

applied by Buckminster Fuller in the construction of geodesic domes, Caspar and
Klug (CK) reasoned that coat proteins in these larger capsids should occupy
also quasi-equivalent environments [10]. This quasi-equivalence principle was
the key to formulate the precise rules to construct and characterize the possible
icosahedral capsids, and, since then, the CK construction has been the basis to
understand and classify the structure of spherical viruses [12] (see Fig 1.2).

In the remaining of this section we will introduce in detail the CK model
for quasi-spherical viruses, whose ideas will be the basis of the generalization for
elongated capsids that will be developed in Section 1.3.

1.2.1 The Caspar and Klug construction and the T -number

CK showed that the requirement of quasi-equivalence leads necessarily to icosa-
hedral symmetry as the most efficient design [10]. In these icosahedral capsids
proteins can be geometrically clustered in two types of morphological units: pen-
tamers, which are groups of five proteins aggregated around each vertex of the
icosahedron; and hexamers, which are clusters of six proteins evenly distributed
on the faces and edges of the capsid (see Fig. 1.5).

The starting point in the CK model is a flat hexagonal lattice or equivalently
its dual, the triangular one. Using this lattice, there is only a limited number of
ways to create a closed shell with icosahedral symmetry. Essentially, one has to
replace 12 evenly-distributed hexamers by the 12 pentamers required by Euler’s
theorem to make a closed surface [26]. The different ways to accomplish that
correspond to different triangulation numbers (T ), that in the CK model serve as
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Figure 1.4: The regular icosahedral capsid. (a) Icosahedron centered on a 2-fold
axis. (b) Icosahedral viral capsid made of 60 coat proteins. The structure is also
centered on a 2-fold axis. It can be seen that a morphological cluster of 5 proteins
(pentamer) forms around each of the 12 vertexes of the icosahedron. The capsid
corresponds to the satellite tobacco mosaic virus (STMV; PDB 1a34).

a systematic way to classify the structure of quasi-spherical icosahedral viruses
(see Figs 1.6 and 1.7).

The T -number is defined by the vector that joins two adjacent pentamers in
the lattice, namely,

�CT = h�a1 + k�a2 ≡ (h, k) (1.1)

where (h, k) are non-negative integers that give the number of steps to connect
two nearest pentamers along the principal directions of the hexagonal lattice, i.e.,
�a1 and �a2 (see Fig. 1.6a).

The smallest triangular face is defined by (1, 0) or equivalently (0, 1), and
has an area S0 = |�a1 × �a2|/2. The triangulation number T is the area of the
equilateral triangle defined by �CT divided by S0, or, equivalently, the number of
equilateral triangles of area S0 contained in a face of the resulting icosahedron.
Using the elementary properties of the hexagonal lattice listed in Appendix A,
one obtains

T = h2 + hk + k2 = Pf2. (1.2)

Since h and k are non-negative integers, T follows a particular series of “magic”
numbers, i.e., T = 1, 3, 4, 7, 9, 12, 13, . . . Interestingly, T also corresponds to the
number of quasi-equivalent locations of the subunits in the shell [10, 34].

Since an elementary T = 1 triangle accommodates three proteins and the
resulting icosahedron is built by twenty T -faces, the total number of proteins in
the capsid is

Nsub = 60T. (1.3)

In addition, every structure has NP = 12 pentamers, accounting for sixty pro-
teins, and the remaining subunits are distributed in NH = 10(T − 1) hexamers.
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1.2. Icosahedral capsids

Figure 1.5: From the coat protein to the capsid. In the simplest case, viral
capsids are made of multiple copies of the same subunit. The figure illustrates
the organization of coat proteins for the brome mosaic virus (BMV). (a) From
top to bottom: a single coat subunit, pentamer made of five coat proteins (dark
gray), and hexamer made of six (gray). (b) The full capsid of brome mosaic virus
(BMV) is made of 180 subunits arranged in a T = 3 icosahedral shell (see text).
The color coding for capsomers is the same as in (a). The structure was solved
by X-ray (PDB 1js9) [32] and has been rendered using Chimera [33].

Therefore the total number of capsomers in the capsid is

N = 10T + 2. (1.4)

This is a very important prediction of the CK model that will be explored in the
next chapter.

1.2.2 The P -class

In modern structural virology icosahedral capsids are generally described by the
number T (h, k). Nevertheless, Caspar and Klug proposed also a reorganization
of the T -structures in terms of classes, characterized by a new number P [10],
which must not be confused with the pseudo-triangulation number used to la-
bel icosahedral capsids made of chemically different proteins. The key point of
this reorganization was that shells within the same class have common geomet-
rical properties, and along this thesis we will see that this also has important
implications in their physical properties.

To obtain the corresponding class P , one must calculate the greatest common
divisor of the pair (h, k), which defines the multiplicity f = gcd(h, k). Then one
obtains an irreducible pair of indexes, (h0, k0), directly related to the original
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Figure 1.6: (a) Basic elements of the Caspar and Klug construction. The starting
point of the CK construction is a hexagonal lattice subdivided in small triangles,
which can be associated to single subunits. A particular disposition of asym-
metrical proteins is drawn on one hexagon of the network forming a hexamer.
The key point of the CK construction is to build an equilateral triangle that
will define the face of the final icosahedron. The vertexes of this triangle will be
associated to the vertexes of the icosahedral capsid. The different distances and
orientations (respect the hexagonal lattice) of the line that joins two vertexes of
this face-triangle, given by the vector �CT (h, k), determines the possible set of
icosahedral structures. The steps along the lattice are expressed in terms of the
coordinates h and k related to the hexagonal lattice vectors �a1 and �a2. These two
vectors alone determine the smallest face-triangle possible that is associated to
a regular icosahedron (small triangle shaded). In terms of the hexagonal coordi-
nates it can be expressed by (h = 1, k = 0) (or vice versa), and its surface defines
a T = 1 triangle that contains three subunits on average. The big shaded triangle
is defined by �CT (h = 1, k = 1) and has a triangulation number T = 3, i.e., three
times the surface of a T = 1. (b) The icosahedral T -shell is built by twenty of
these T triangles. A flat icosahedral template (bottom) and the corresponding
folded structure (top) are shown for the T = 3 capsid discussed in (a).
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Figure 1.7: Examples of T -number capsids. From left to right the first four
icosahedral structures in the CK construction are represented (bottom). On top
of each shell we have chosen a high-resolution viral capsid as an example, where
pentamers are shown in dark gray, and all hexamers are gray except one. The
different colors of this hexamer (plus the subunit on the pentamer) illustrates the
T quasi-equivalent positions of the coat protein in the capsid. All capsids have
been rendered using Chimera [33], and centered on a 2-fold axis. (a) Satellite
tobacco mosaic virus (STMV; PDB 1a34) is made of 60 subunits and adopts a
T = 1 structure (h = 1, k = 0). (b) The T = 3 structure (h = k = 1) of brome
mosaic virus (BMV, PDB 1js9) that is build by 180 coat proteins. (c) Hepatitis B
virus (HBV, PDB 2g33), a T = 4 shell (h = 2, k = 0) composed of 240 subunits
(in vivo HBV can also form T = 3 structures). (d) Finally, the T = 7 shell of
Hong Kong 97 (HK97, PDB 1ohg), which is made of 420 coat proteins. Notice
that the T = 7 shell is skewed and corresponds to the laevo construction h > k,
i.e., (h = 2 , k = 1). Its specular image will be a dextro capsid T = 7d with
coordinates (1, 2).
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T

P \ f 1 2 3 4

1 1 4 9 16
3 3 12 27 48
7 7 28 63 112
13 13 52 117 208

Table 1.2: T -numbers for the first four P classes (rows) classified by the multi-
plicity f (columns).

ones by h = fh0 and k = fk0. Hence, by applying this description into the
T (h, k) expression, Eq. (1.2), one gets

P = h2
0 + h0k0 + k2

0 (1.5)

The class P is a subset of T (P = 1, 3, 7, 13, . . .) that adopts the value of the
smallest triangulation number in the group, i.e., P = T (h0, k0) (see Table 1.2).
In particular, shells with (h, 0) or (0, k), i.e. T = 1, 4, 9, . . ., belong to the class
P = 1, and are characterized by the presence of a straight line of hexamers
connecting neighboring pentamers (see Fig. 1.8a). Those characterized by (h, h),
i.e. T = 3, 12, 27, . . . belong to the class P = 3, and in this case pentamers
are connected by a zigzag line of capsomers (see Fig. 1.8b); finally, any other
situation, i.e., h �= k �= 0, leads to classes with P > 3 that are characterized by
chiral structures. This means that (h, k) generates a skew architecture specular to
the shell represented by (k, h). To distinguish these two “isomers” it is customary
to use the label l, which means laevo or left-handed, for h > k, and d, meaning
dextro or right-handed, for h < k (see Fig. 1.9).

Interestingly, icosahedral capsids within the same class have self-similar faces
with an analogous distribution of capsomers. In other words, the triangular face
of the structure T (h0, k0) perfectly tiles the rest of T -shells from the same class
(see Fig. 1.8). The number of P -triangles necessary to tile the T (h, k)-face is
given by f2, see Eq. (1.2). For instance, the face of a T = 27 has nine times
(f = 3) the distribution of proteins of a T = P = 3 triangle, Fig. 1.8b.

Remarkably, this reorganization of capsids in terms of classes P will be also
useful to study the geometrical properties of prolate capsids.

1.2.3 Degeneration of the T -number

The modern classification of quasi-spherical viruses is made usually in terms of
this triangulation number T . But it is important to clarify that the triangulation
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Figure 1.8: Self-similarity of capsids within a class. All capsids that belong to
the same class P have an analogous distribution of hexamers. (a) In this case
the first three triangular numbers of the class P = 1 (h0 = 1, k0 = 0) are shown.
From left to right, T = 1 (f = 1), T = 4 (f = 2), and T = 9 (f = 3). In each
capsid a face of the icosahedron is shaded. Notice that a triangular face of the
smallest shell, i. e., T0 = P , perfectly tiles the rest of capsids of the class using
f2 triangular faces on each case. Thus, T = 4 and T = 9 embed 4 (f = 2) and 9
(f = 3) face-triangles of a T = 1, respectively. (b) Same as in (a), but now for the
first three triangulation numbers of the class P = 3 (h0 = k0 = 1), corresponding
to T = 3 (f = 1), T = 12 (f = 2), and T = 27 (f = 3). The structures in (a)
and (b) are not at scale.
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Figure 1.9: Skew icosahedral capsids. All capsids P > 3 are skewed and have two
enantiomorph structures. If h > k the structure is called laevo, whereas if h < k
it is called dextro. The letters l and d indicate the chirality, respectively. (a)
Cryo-em reconstruction of bacteriophage HK97, whose capsid adopts a T = 7l.
The shaded capsomers and the arrows illustrate the steps along the hexagonal
lattice (h = 2, k = 1) that joint two neighboring pentamers. (b) CK geometrical
construction of a T = 7l corresponding to the HK97 capsid shown in (a). (c) The
specular dextro CK construction of (b), i. e., T = 7d (h = 1, k = 2).

number does not always provide a unique characterization of a shell, since for
some T ≥ 49 more than one pair (h, k) can share the same T . For instance, (7, 0)
and (5, 3) both give T = 49. The same applies to the class P . Although it will
work for instance in the previous example of T = 49 corresponding to P = 1 and
P = 49, there are still cases where different structures have the same P , e.g.,
P = 91 can be obtained by two different pairs (h0, k0): (6, 5) and (9, 1).

Obviously, the simplest way to univocally describe a spherical capsid is through
the indexes h and k. Although alternative geometrical parameters providing in-
teresting structural information are also possible [35].

1.2.4 Limitations of the CK model

It is appropriate to make some clarifications regarding the CK model that will
also apply to the extension for prolate shells that will be developed in the next
section.

The CK construction only determines the point group symmetry of the capsid,
and is compatible with different clustering of the proteins. Thus coat proteins are
not strictly required to form real pentamers or hexamers. For instance, capsids
with 20T trimers, 30T dimers, or 60T monomers are completely valid. However,
independently on the physical clustering, it is customary to describe viral capsids
in terms of capsomers (or morphological units), i.e., pentamers or hexamers.
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Figure 1.10: Caspar and Klug exceptions. (a) The bluetongue virus (BTV) adopts
an icosahedral capsid made of 120 proteins (“T = 2”). Considering the dimer AB
indicated in the picture (dark and light gray) as the fundamental coat subunit,
the structure is equivalent to a T = 1 [36]. (b) Native capsid of polyoma virus
made of 72 pentamers arranged as in a T = 7d [37]. (c) Snub cube structure
made of 24 pentamers adopted also by polyoma virus reconstituted in vitro [37].

Furthermore, the fundamental subunit in the CK construction is not neces-
sarily a single protein. For example, the bluetongue virus (BTV) core [36] is an
icosahedral shell composed of 120 proteins, which would correspond to a forbid-
den triangulation number, T = 2, that apparently violates the CK construction
(see Fig. 1.10a). However, if one considers the protein dimers as the fundamental
building blocks of the capsid, then the shell becomes a regular structure made of
60 units (in this case dimers) organized as in a T = 1 shell.

Finally, not all quasi-spherical viruses strictly comply with the CK model. In
their native form, polyoma and papilloma viruses are built only by pentamers
arranged as in a T = 7d capsid [37]. In this case 60 pentamers act as hexons
and 12 as pentons3. Polyomavirus can also be reconstituted in vitro in a quasi-
spherical, but non-icosahedral, structure that resembles a snub cube [37], which
is completely outside the CK model. In this context, we must point out that
both CK’s capsids and the exceptions mentioned above have been found to be
free energy minima of protein aggregates [13], as we will show in the next chapter.
Some of the all-pentamer viral exceptions have also been justified in geometric
terms by using a tiling approach [38,39].

3A hexon and a penton are capsomers surrounded by six and five capsomers, respectively.
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Figure 1.11: Bacilliform viruses. There are many viruses that adopt an elongated
shaped closed by hemi-spherical caps at both ends, which have been identified by
electron microscopy. Two examples of electron micrographs extracted from the
ICTVdB [5] are shown: the plant virus cacao swollen shoot virus (a), and the
bacteriophage bacillus virus θ1 (b). However, only two bacilliform viruses have
been reconstituted so far by high resolution imaging techniques (cryo-electron
microscopy): bacteriophage φ29 [18] (c), and bacteriophage T4 [6] (d).

1.3 Bacilliform capsids

A significant number of viral species have a closed elongated capsid whose pre-
cise structure is not as well characterized as the spherical shells described above
(see Fig. 1.11). Here we will discuss the geometrical principles involved in the
construction of bacilliform capsids, and in the next chapter we will justify their
occurrence from a physical perspective.

We saw above that most spherical viruses have icosahedral symmetry and
follow the Caspar and Klug construction. Therefore a natural guess would be
that bacilliform viruses should be made in a similar way by an elongation of an
icosahedron. In the mid-sixties, Moody was the first to suggest an adaptation of
the CK model for prolate bacteriophages [27]. An important number of phage
viruses contain dsDNA and are characterized by a protein tail connected to the
capsid [40] (see Fig. 1.11b), which can act as a syringe to drive the injection of
the genetic material into the host. Interestingly, Moody analyzed the position of
the tail for wild types and mutants for several T -even phages4, and pointed out
that those prolate bacteriophage capsids should be CK shells elongated through

4The T -even bacteriophages are any of the T2, T4, or T6 viruses of Escherichia coli. They
share some features, but the T in the name is not related to the icosahedral index T .
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the 5-fold axis [17, 27] (see Fig. 1.12a and 1.13).

Contrary to spherical capsids, there are just a few high resolution reconstruc-
tions of prolate shells. The only cases that we are aware of, bacteriophages φ29
and T4, have been reconstructed by cryo-EM studies [6, 18] (see Figs. 1.11c and
1.11d, respectively), and they both follow the model suggested by Moody [17,27]
(see Section 1.3.1).

However, in the seventies, several studies already suggested that some bacilli-
form plant viruses might deviate from Moody’s prescription. These capsids have
no tail attached (see Fig. 1.11a), and diffraction and molecular weight experi-
ments pointed to structures with 3-fold rather than 5-fold axial symmetry [41,42].
More specifically, Hull studied some possible designs [16], but he did not describe
precisely the geometrical rules to construct them.

The main goal of this section is to generalize CK’s and Moody’s ideas to
describe the construction of bacilliform capsids, based on the elongation of an
icosahedron along all its different axes of symmetry, i.e., 5-fold, 3-fold, and 2-
fold. We will also derive the general rules that dictate the number of proteins, the
radius, length, and chirality of the body. Finally, we exemplify some applications
of these ideas by analyzing several viruses in detail.

1.3.1 Geometrical construction of prolate capsids

The simplest way of building a prolate capsid is by elongating an icosahedron
along one of its possible axes of symmetry. In such procedure, the 20 triangular
faces of the icosahedron have to be distributed among the tubular body and the
two caps (see Fig. 1.12). The body must be free of pentamers, except in the
boundaries, and each cap must keep 6 pentameric vertexes (otherwise one would
obtain a conical rather than a cylindrical structure). These constrains fix the
number of triangular faces in the cap for each axial symmetry, as shown in Fig.
1.12, and it is the first property that we need to determine.

In particular, for the 5-fold case the cap is made by five triangular faces (see
Fig. 1.12a), whereas for the 3-fold and 2-fold situations caps are built by four
faces (see Figs. 1.12b and 1.12c). Thus, if we define �cap as the number of faces
in the cap, we have �cap

5F = 5 and �cap
3F = �cap

2F = 4 for the different symmetries.
Remarkably, the 2-fold case has two specular possibilities shown in Figs. 1.12c
and 1.12d. Both are valid to define the 2-fold cap, but they have some differences
related to the handedness of the structure as will be discussed later.

The number of triangular faces in the body, �body, is then obtained by sub-
tracting from the 20 faces of an icosahedron the number of triangles involved in
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Figure 1.12: The three axes of symmetry of an icosahedron: 5-fold (a), 3-fold
(b), and 2-fold (c and d). The patterned triangles emphasize the end-faces that
constitute the cap of the elongated structure. The solid dots highlight the vertexes
that define the rim of the caps. In (c) and (d) we show that the construction of
the 2-fold prolate is intrinsically skewed and has two possibilities.

the caps
�body = 20− 2�cap (1.6)

Thus in the 5-fold case the body has ten triangular faces, �body
5F = 10, and in the

3-fold and 2-fold situations it has twelve,�body
3F = �body

2F = 12. In general, for each
prolate not all the triangular body faces will be equal. Fortunately, symmetry
arguments allow us to calculate the number of non-equivalent triangles required
to construct the body of a prolate capsid for each axial symmetry.

Any prolate capsid constructed as an elongation of an icosahedron has two
different types of rotational symmetry. First, the axial symmetry, i.e., 5-fold,
3-fold, or 2-fold, indicating that we have 5, 3, and 2 equivalent views of the
particle obtained by rotation around the longitudinal axis, respectively. The
second symmetry stems from the fact that the two caps of the structure are
equivalent. More precisely, we can always find in the middle of the body a 2-fold
symmetry axis perpendicular to the axis of the prolate.

The product of these two general symmetries defines the symmetry number

st = 2s (1.7)

that sets the number of body-faces that must be equivalent, i.e., the number of
triangular faces that should be the same to respect the symmetries of the prolate.
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s �cap �body st = 2s �n−eq

5 5 10 10 1
3 4 12 6 2
2 4 12 4 3

Table 1.3: Distribution of the triangular faces for the different icosahedral prolate
constructions (see also Fig. 1.12). Rows are associated to the axial symmetry s;
�cap is the number of faces in each cap; �body is the total number of triangular
faces in the body; st is the symmetry number; and �n−eq is the number of non-
equivalent triangles present in the body of a prolate.

Now, by dividing the total number of faces in the body by the symmetry number,
we obtain the number of non-equivalent groups of body-triangles

�n−eq =
�body

st
(1.8)

Thus from Table 1.3 is straightforward to see that for the 5-fold case only one
triangle is needed to characterize the body (see Fig. 1.13), �n−eq

5F = 1, whereas

for the 3-fold and 2-fold prolates �n−eq
3F = 2 and �n−eq

2F = 3, i.e. two and three
different triangles are needed, respectively.

All triangles in both caps are equilateral and equal, and are determined by
the cap vector �CT , Eq. (1.1). As in the CK model, this vector defines the
triangulation number of the caps Tend ≡ T , Eq. (1.2), and fixes the radius of
the prolate. To describe the triangular faces of the elongated body we need a
second vector �CQ, which connects a pentamer in one cap to the closest one in the
opposite cap. This vector is given by

�CQ = h′�a′1 + k′�a′2 ≡ (h′, k′)′ (1.9)

where (h′, k′)′ are integers from a second pair of hexagonal coordinates, rotated
counterclockwise 60o with respect to the original ones (see Fig. 1.13 and Appendix
A). Even though it is not strictly necessary to define a new pair of axes, this
representation is particularly convenient, because for h′ = h and k′ = k we recover
in the body the equilateral triangle that defines the face of an icosahedron.

Using these ideas, let’s now discuss the construction of elongated capsids for
the three icosahedral symmetries.
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5-fold prolates

This architecture was already proposed by Moody [17,27]. It is the simplest case
because the body is made by ten copies of the same mid-triangle (see Table 1.3
and Fig. 1.13). Indeed, the triangular body-face is defined straightforwardly by
�CT and �CQ. Analogously to the quasi-spherical case, the normalized surface of

this mid-triangle, |�CT × �CQ|/2S0, defines a new triangulation number, this time
associated to the body,

T1 = hh′ + hk′ + kk′ ≡ Q1f, (1.10)

which Moody labeled as Tmid. This T1-number can also be expressed in terms of
the multiplicity f = gcd(h, k), where

Q1 = h0h
′ + h0k

′ + k0k
′ (1.11)

Since in the 5-fold case there is only one kind of body-triangle, we will characterize
the length of the resulting structure by using the number

Q5F ≡ Q1 (1.12)

Then any 5-fold prolate capsid will be determined by the triangulation number
of the cap T and the Q5F number of the body; or alternatively by its class P ,
the multiplicity f , and Q5F .

For a given P and f of the cap, the indexes h′ and k′ control the length of
the shell. In particular, for h′ = h and k′ = k, one obtains T1 = Tend and

Q0
5F = Pf (1.13)

thus recovering the original CK’s icosahedral shell. The elongation with respect
to the spherical capsid can be then characterized by (see Fig. 1.13a)

ΔQ ≡ Q−Q0 (1.14)

In general, the length of a prolate will be larger than that of the icosahedral
structure, i.e., ΔQ > 0. However, it is geometrically possible also to build struc-
tures with a shorter length where T1 < Tend, i.e., ΔQ < 0 (see Fig. 1.14d). But
those oblate capsids have not been found experimentally [17].

The number of proteins in a prolate capsid is determined by the total surface
of the structure, which can be obtained by summing up the triangulation numbers
of all faces. In this case there are ten end-triangles in the caps, 10Tend, and ten
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1.3. Bacilliform capsids

Figure 1.13: (a)(top) Illustration of Moody’s geometrical model for 5-fold pro-
late capsids. (bottom) Complete flat design of a Tend = 3 and Tmid = Q = 5
prolate capsid, which corresponds to the shell of bacteriophage φ29 [18]. (b)
Zenithal (top) and lateral (bottom) views of the folded structure of a Tend = 3
and Tmid = Q = 5 prolate capsid. Below each view, there is a “ping-pong”
model representation of the same capsid, where hexamers are colored in green
and pentamers in gold.
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Chapter 1. Geometrical Construction of Viral Capsids

Figure 1.14: Elongation of a T = 3 5-fold prolate. (a) Icosahedral CK construc-
tion. (b) First length step given by ΔQ = 1 or ΔN = 5. (c) Second length step
with ΔQ = 2 and ΔN = 10. (d) Shrunk or oblate prolate given by ΔQ = −1 or
ΔN = −5.

mid-triangles in the body, 10T1. Since three proteins can be accommodated in a
T = 1 triangle the total number of protein subunits in the capsid is

N5F
sub = 3(10Tend + 10T1) = 30f(Pf + Q5F ). (1.15)

As in icosahedral capsids, the twelve pentamers of a prolate require sixty proteins.
Thus the remaining proteins are distributed in N5F

H = 5(Tend+T1)−10 hexamers,
and the total number of capsomers is

N5F = 5(Tend + T1) + 2 = 5f(Pf + Q5F ) + 2. (1.16)

As discussed above, the value of Tend controls the radius of the structure. If
we fix it, i.e., if P and f are constant, the different values of Q5F (h′, k′) in Eq.
(1.16) give the possible lengths of the prolate in terms of number of capsomers.
Since h′ and k′ are integers, the number of capsomers and proteins in the body
of a prolate can only adopt a discrete set of values. One can prove using Bezout’s
identity (see Appendix B) that the minimum step possible in Q5F is

ΔQmin
5F = 1. (1.17)

Thus, unlike Tend, Q5F can be any non-negative integer. Combining Eqs. (1.16)
and (1.17), the minimum length step of a prolate in terms of capsomer numbers
is

ΔNmin
5F = 5fΔQmin

5F = 5f (1.18)
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1.3. Bacilliform capsids

Figure 1.15: Prolate virus bacteriophage φ29. From left to right: (a) cryo EM
reconstruction, (b) triangulation net for a T = 3 Q = 5 proposed by Tao et
al [18], and (c) equivalent polyhedral shell construction centered on a 5-fold axial
symmetry.

or similarly ΔN5F
sub = 30f in terms of subunits. Hence, prolates based on f = 1

caps, e.g., Tend = 1 or Tend = 3, have lengths discretized in steps of five capsomers,
i.e., 30 proteins. However, those based on f = 2, e.g., Tend = 4 or Tend = 12 caps,
must add multiples of ten capsomers, i.e., 60 proteins, to enlarge the structure.

As mentioned before, the two detailed reconstructions of prolate viruses up to
date, corresponding to bacteriophages φ29 and T4 [6,18], have a 5-fold elongated
capsid characterized by Tend = 3 Q5F = 5 and Tend = 13l Q5F = 20, respectively
(see Fig. 1.15 and Section 1.3.3).

3-fold prolates

Alternatively, prolates can also be made by the elongation of an icosahedron along
one of its 3-fold axes (see Fig. 1.12b). As discussed above, to build this structure
one needs two different types of body-triangles (see Table 1.3). One of the body
triangles is determined again by T1, as in the 5-fold situation. The second triangle
can be defined by the body vector �CQ and a 120o counterclockwise rotation of
the cap vector (see Fig. 1.16)

�C120o

T = (−h− k)�a1 + h�a2 ≡ (−h− k, h). (1.19)

This is because these two non-equivalent body-faces and three end-triangles from
the cap must share a common vertex at the origin, which defines a pentamer.
Therefore, to properly close the structure, we must introduce a 60o wedge in the
plane between the second triangle and the adjacent end-face, Fig. 1.16. The
normalized surface of this second triangle is then |�CQ× �C120o

T |/2S0, which defines
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a second triangulation number for the body

T2 = hh′ + kh′ + kk′ ≡ Q2f (1.20)

where
Q2 = h0h

′ + k0h
′ + k0k

′. (1.21)

Since the 3-fold prolate has two non-equivalent body-triangles, it is convenient
to characterize the structure by a single Q3F -number obtained by summing up
their surfaces,

Q3F ≡ Q1 + Q2 = h0(2h′ + k′) + k0(2k′ + h′). (1.22)

For the spherical case this reduces to

Q0
3F = 2Pf = 2Tend/f (1.23)

which is twice the value obtained for Q0
5F , Eq. (1.13). This is a direct consequence

of having two non-equivalent body faces. Then, an isomeric T = 3 structure is
equivalent to Tend = 3 and Q3F = 6 in the 3-fold prolate description.

The surface of the capsid determines the total number of subunits as in the
5-fold case. Now we have eight end-triangles with Tend, six mid-triangles with
T1, and another six with T2, which leads to

N3F
sub = 3(8Tend + 6T1 + 6T2) = 6f(4Pf + 3Q3F ) (1.24)

Since the twelve pentamers of a prolate account for sixty proteins, the number
of hexamers is given by N3F

H = 4Tend + 3(T1 + T2)− 10, and the total number of
capsomers reads

N3F = 4Tend + 3(T1 + T2) + 2 = f(4Pf + 3Q3F ) + 2. (1.25)

As before, the value of Q3F controls the length of the shell and can only
adopt a discrete set of values. In this case the minimum step possible in Q3F is
(as derived in Appendix B)

ΔQmin
3F =

{
3 if |h0 − k0| ∝ 3

1 otherwise
(1.26)

Here, |h0 − k0| ∝ 3 indicates that the difference |h0 − k0| must either be zero
or a multiple of 3. Consequently, the number of capsomers for 3-fold prolates is
discretized by steps of

ΔNmin
3F = 3fΔQmin

3F =

{
9f if |h0 − k0| ∝ 3

3f otherwise
(1.27)
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Figure 1.16: (a) (top) Basic elements to build a prolate based on hemispherical
icosahedral caps centered on a 3-fold axis. The vector �Cs = �Ch/3 (in yellow) joins
two consecutive pentamers along the rim of the cap. (bottom image) Complete
flat design of the prolate with the 8 end-triangles and the 12 body-triangles. (b)
Zenithal (top image) and lateral (bottom image) view of the resulting folded
structure, along with its ping-pong model representation. The case illustrated in
this figure corresponds to a Tend = 3 Q3F = 9.

43



Chapter 1. Geometrical Construction of Viral Capsids

capsomers.

Accordingly, there are two different situations depending on the value of |h0−
k0|. In particular, for the class P = 1 (h0 = 1,k0 = 0) one gets ΔN3F = 3f , hence
the possible lengths of a Tend = 1 (f = 1) capped shell are discretized by steps
of at least ΔNmin

3F = 3 capsomers, i.e., 18 proteins. This growing law agrees
with the results obtained for AMV [42] and supports its classification as a 3-fold
Tend = 1 bacilliform particle. On the other hand, a P = 3 (h0 = k0 = 1) prolate
has ΔNmin

3F = 9f . Thus, the possible lengths of a Tend = 3 (f = 1) capsid
correspond to multiples of ΔNmin

3F = 9 capsomers. In fact, rice tungro bacilliform
virus (RTBV) has been suggested to be a 3-fold Tend = 3 prolate [43]. We will
discuss these cases in detail in section 1.3.3.

2-fold prolates

This case is the most complicated, because the body has in general three non-
equivalent mid-triangles (see Table 1.3). As mentioned in Section 1.3.1, there are
two possible ways to make a 2-fold prolate. We will focus on the 2-fold dextro
construction corresponding to Fig. 1.12c, although the arguments are valid for
the laevo case as well (see Fig. 1.12d). The body of a 2-fold prolate is determined
by three non-equivalent mid-triangles, Fig. 1.17. The first body-face is again the
T1-triangle. The second mid-triangle is the T2-triangle introduce in the 3-fold
case. The third mid-triangle is a translation by �CT of the first one and has the
same triangulation number T1, but they are not equivalent because is not possible
to relate each other applying only the symmetries of a 2-fold prolate.

The area of the three non-equivalent body triangles is 2T1 +T2, so in this case
it is convenient to define the following Q-number

Q2F ≡ 2Q1 + Q2 = h0(3h′ + 2k′) + k0(3k′ + h′) (1.28)

As for the other prolates, the value of Q2F specifies the length of the capsid,
which for the spherical structure reduces to

Q0
2F = 3Pf = 3Tend/f (1.29)

Since the body is determined by three non-equivalent mid-triangles, this value is
three times Q0

5F , Eq. (1.13). Thus, a T = 3 icosahedral capsid corresponds to
Tend = 3 and Q0

2F = 9.

The total number of proteins of the prolate can be computed as in the 5-fold
and 3-fold cases. Now we have eight end-triangles in the caps with Tend, and four
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Figure 1.17: (a) (top) Basic elements required to build a prolate capsid with
2-fold axial symmetry. The vector �Cs = �Ch/2 (in yellow) joins two consecutive
pentamers at the rim of the cap. (bottom) Complete flat design of the prolate
with the 8 end-triangles and the 12 body-triangles. (b) Zenithal (top image)
and lateral (bottom image) view of the resulting folded structure, along with its
ping-pong model representation. The case illustrated in this figure corresponds
to a Tend = 3 and Q2F = 14 (N = 42)

.
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of each of the three mid-triangles in the body, where two of them share the same
T1 number. Thus one obtains

N2F
sub = 3(8Tend + 8T1 + 4T2) = 12f(2Pf + Q2F ) (1.30)

Again, the 2-fold prolate has twelve pentamers accounting for 60 proteins, hence
the number of hexamers is N2F

H = 4Tend +2(2T1 +T2)−10, and the total number
of capsomers is given by

N2F = 4Tend + 2(2T1 + T2) + 2 = 2f(2Pf + Q2F ) + 2. (1.31)

As in the 5-fold and 3-fold constructions, the value of Q2F determines the
length of the prolate, which can grow at discretized steps of (see Appendix B)

ΔQmin
2F =

{
7 if |h0 − 2k0| ∝ 7

1 otherwise
(1.32)

or, in terms of capsomers,

ΔNmin
2F = 2fΔQ2F =

{
14f if |h0 − 2k0| ∝ 7

2f otherwise
(1.33)

One then has two different cases depending on the value of h0 and k0. In particular
for the class P = 1 (h0 = 1,k0 = 0) or P = 3 (h0 = k0 = 1) the growing law is
ΔNmin

2F = 2f , hence the possible number of capsomers of a Tend = 1 or a Tend = 3
capped shell is discretized at intervals of 2 capsomers (see Fig. 1.18). On the
other hand, for P = 7l with (h0 = 2, k0 = 1) the minimum step is ΔNmin

2F = 14f ,
but for the specular case (h0 = 1, k0 = 2) one obtains ΔNmin

2F = 2f . Thus the
possible lengths of a shell based on a Tend = 7l are discretized by steps of 14
capsomers, whereas for a T = 7d the minimum step is of 2 hexamers. Hence,
for a 2-fold prolate the two isomers of a chiral cap can have different associated
bodies, and the handedness plays an important role. This occurs because the
caps are already skewed (see Figs. 1.12c and d). In addition, in the laevo 2-fold
construction, by symmetry, one would obtain the same results but interchanging
h0 and k0 and so the handedness of the solutions.

Finally, we are not aware of any prolate virus which is known for sure to have
a 2-fold construction. However, it is possible that a particle of AMV [44] might
be the case, as discussed in Section 1.3.3.
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Figure 1.18: Examples of 2-fold elongated structures. (a) Second 2-fold elongation
of a T = 1 prolate, i.e., ΔQ2F = 2. (b) Fifth elongation of a 2-fold T = 3
bacilliform structure, i.e., ΔQ2F = 5.

1.3.2 Tubular body description

The generalized model of elongated capsids introduced above allows us to enumer-
ate all possible icosahedral prolates. In this section, we will describe a procedure
to compute, for any icosahedrally-capped shell, the radius, the length, and the
position of the capsomers in the body. This geometrical characterization of the
resulting capsids was carried out neither in CK nor in Moody’s model, but it
turns out to be quite helpful for both recognition and design of viral shells.

The tubular body of an elongated virus can be built by rolling up an hexagonal
sheet, much in the same way as with carbon nanotubes [45] (see Fig. 1.19).
However, for prolate viral capsids only the subset of tubes closed by icosahedral
caps with 5-fold, 3-fold, or 2-fold axial symmetry are valid.

This procedure involves an approximation, since one assumes that the surface
of the resulting cylinder is the same as that of the flat lattice, which implies that
hexamers will be bent and stretched in the tube. However, it can be shown that
even for the smallest capsids this turns out to be a very good approximation (see
Appendix C).
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Figure 1.19: (a) The unrolled tubular body of a prolate virus (shaded area)
shown on the honeycomb lattice. The solid dots indicate the location of the
pentamers at the rim. The chiral angle θ between �Ch and �a1 of the hexagonal
lattice characterizes the arrangement of hexamers in the body. A body made of
rings of hexamers is obtained when θ = 0o (i.e., n = 0), whereas zigzag tubes
correspond to θ = 30o (or m = n). (b) Tubular body obtained by rolling up the
shaded area in the direction of �Ch so that O meets O′ and B meets B′. The
example corresponds to the body of a Tend = 1 Q2F = 9 2-fold prolate, with
h = 1, k = 0, and h′ = 3,k′ = 0.

Radius of the tube

In the tubular description the properties of the body can be evaluated from the
associated flat hexagonal representation (see Fig. 1.19). Let’s define �Ch as the
chiral vector that determines the circumference of the tube

�Ch = m�a1 + n�a2 ≡ (m, n) (1.34)

This vector belongs to the hexagonal lattice, i.e., m and n are integers, and
connects all pentamers along the rim of the cap. Hence, �Ch must be related to
the cap vector �CT , even though the specific relation will depend on the axial
symmetry.

Let’s discuss first the case for a 5-fold capsid, which is particularly simple.
It is clear from Figs. 1.12a and 1.13 that the rim of the tube is delimited by
five vertexes, or pentamers, of the icosahedral cap, and they all lie on a plane
perpendicular to the axis of the prolate. In addition, the cap vector �CT , Eq.
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(1.1), connects two adjoining pentamers on this boundary, so by unrolling the
body of the capsid it is easy to realize that the circumference of the tube is just
made by five times the cap vector, and so

�C5F
h = 5�CT = 5f(h0, k0) (1.35)

In particular, for prolates of the class P = 1 one gets �C5F
T = (5f, 0), and for the

class P = 3 one has �C5F
T = (5f, 5f).

For a 3-fold bacilliform capsid, the circumference of the cap is defined by three
non-consecutive vertexes (pentamers), which lie again in a section perpendicular
to the axis (see Fig. 1.12b). The vector that connects two of these vertexes lying
on the rim is plotted in Fig. 1.16 and can be expressed in terms of the cap vector
as �CT − �C120o

T . Now, the chiral vector is just obtained by summing up three times
this vector

�C3F
h = 3(�CT − �C120o

T ) = 3f(2h0 + k0, k0 − h0). (1.36)

Similarly, in the 2-fold case the circumference of the tube is defined by the
two pentamers which are farther apart and lie on a section perpendicular to the
axis (see Fig. 1.12c). As one can see in Fig. 1.17, the rim vector that connects
the two pentamers in the unrolled body is 2�CT − �C120o

T . Hence, the chiral vector
is made by two times the rim vector, i.e.,

�C2F
h = 2(2�CT − �C120o

T ) = 2f(3h0 + k0, 2k0 − h0) (1.37)

For symmetry reasons the specular construction defined in Fig. 1.12d leads to
the same results but permuting h0 and k0.

Since the length of the chiral vector is the circumference of the tubular body,
the radius of a prolate is given by the simple formula

R =
|�Ch|
2π

(1.38)

Computing now the absolute value of �Ch for each symmetry, Eqs. (1.35), (1.36),
and (1.37) (see also Appendix D), one obtains the general expressions for the
radius of all possible prolate viruses based on icosahedral caps

R5F =
5

2π

√
Tend a (1.39a)

R3F =
3

2π

√
3Tend a (1.39b)

R2F =
2

2π

√
7Tend a (1.39c)
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where a is the lattice parameter, i.e., the distance between hexamers. All radii
scale with the square root of the cap surface, R ∼ √

Tend. Interestingly, if we
compare the coefficients of the three cases for a given Tend we get the general
inequality

R5F � R3F � R2F (1.40)

Hence, even though the three radii are similar, the 5-fold prolate is the smallest,
followed by the 3-fold and finally the 2-fold structure.

Chiral angle and distribution of hexamers in the body

The distribution of hexamers in the body of a prolate is determined by the chiral
angle θ, which is the angle between the chiral vector �Ch and the first vector �a1

of the hexagonal lattice, Fig. 1.19. Accordingly

cos(θ) =
�Ch · �a1

|�Ch|
=

2m + n

2
√

m2 + mn + n2
(1.41)

where, due to the symmetry of the hexagonal lattice, θ is defined between 0o and
60o.

In terms of the arrangement of hexamers in the body, there are two specially
symmetric situations (see Fig. 1.20). The cases n = 0, corresponding to θ = 0o,
or m = 0, yielding θ = 60o, both lead to a tubular body where the hexamers are
arranged in rings; whereas m = n corresponds to a chiral angle θ = 30o and a
distribution of hexamers in zigzag rows5. Any other case will lead to a skewed
arrangement of body hexamers.

Using the expressions of the chiral body vector for the different symmetries,
Eqs. (1.35), (1.36), and (1.37), we can explore which caps are associated to the
symmetrical bodies described above (Table 1.4). In particular, rings are obtained
for P = 1 5-fold, P = 3 3-fold, and P = 7l 2-fold, whereas zigzag tubes appear
for P = 1 3-fold, P = 3 5-fold, and P = 21d 2-fold. Notice that to enlarge a
prolate one needs a minimum number of capsomers that have to respect the axial
symmetry. For the symmetrical bodies one then has to add a complete ring or
half of a zigzag to increase the length of the structure, respectively. Thus, these
type of bodies are clear examples of the division in cases observed in the growing
laws for ΔNmin. Although we can also find skewed examples, for instance, a
prolate based on h0 = 4, k0 = 1 (P = 21) cap in the 3-fold configuration has a
chiral angle θ ≈ 190, but follows ΔNmin = 9f , like for the ring body case R9

(P = 3) commented above.

5Note that in carbon nanotubes the nomenclature is different: rings and zigzag layers of
hexamers correspond to zigzag and armchair nanotubes, respectively [45].
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(h0, k0) P S N0
ΔN
f

πR
af

ΔLmin

a θ(o) Body

5 5 5
2

1
2

√
3 0 R5f

(1, 0) 1 3 10f2 + 2 3 3
2

√
3 1

2 30 Z6f

2 2
√

7 1
2

√
3
7 19.11 skew

5 5 5
2

√
3 1

2 30 Z10f

(1, 1) 3 3 30f2 + 2 9 9
2

1
2

√
3 0 R9f

2 2
√

21 1
2
√

7
10.89 skew

5 5 5
2

√
7 1

2

√
3
7 19.11 skew

(2, 1) 7 3 70f2 + 2 3 3
2

√
21 1

2
√

7
10.89 skew

2 14 7 1
2

√
3 0 R14f

(1, 2) 2 2 7 1
14

√
3 21.79 skew

5 5 5
2

√
13 1

2

√
3
13 13.90 skew

(3, 1) 13 3 130f2 + 2 3 3
2

√
39 1

2
√

13
16.10 skew

2 2
√

91 1
2

√
3
91 5.21 skew

(1, 3) 2 2
√

91 1
2

√
3
91 27.00 skew

Table 1.4: Expressions for the most important properties of an elongated virus
particularized for each axial symmetry s (5-fold, 3-fold and 2-fold) and the lowest
classes P . N0 is the number of capsomers in the spherical seed of the prolate;
ΔNmin is the smallest step in number of capsomers between different lengths of
the prolate; R is the radius of the prolate in the tubular approximation; ΔLmin

is the smallest length step; θ is the chiral angle, which determines the orientation
of hexamers in the tubular part of the prolate (the chiral angles of specular
skew structures are related by θ → −θ, i.e. 60o − θ, and for 2-fold prolates this
implies also the transformation of the intrinsic chirality); and the column “Body”
classifies the arrangement of hexamers in the body as rings Ri or zigzags Zi of i
hexamers, and skewed structures.
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Figure 1.20: Symmetrical and skew tubular bodies. There are two possible non-
chiral tubular constructions, which are associated to prolates of different class
P depending on the axial symmetry. (a) A tubular ring body is illustrated,
where each layer, highlighted in white, is made of 10 capsomers, R10. This tube
is associated to prolates capped by Tend = 4 (5-fold). (b) The zig-zag tube
shown is composed of layers made of 10 hexamers, Z10, as the one highlighted.
It corresponds to bacilliform capsids based on Tend = 3 (5-fold). (c) There are
infinite types of chiral bodies. Here the case associated to a prolate capped by
Tend = 7l (5-fold) is shown.

Smallest length step and particle length

The chiral vector controls the diameter of the prolate and the precise arrangement
of hexamers in the body. However, the length of the capsid is controlled by the
body vector �CQ, which connects two closest pentamers from different caps (see
Fig. 1.19). By combining both vectors it is possible to compute the remaining
relevant properties of a bacilliform shell.

In particular, the length of the tubular body will be given by the perpendicular
projection of �CQ onto �Ch (see Fig. 1.19), namely,

L =
|�Ch × �CQ|
|�Ch|

=

√
3

2

Q

|�Ch|
sf a2 (1.42)

where the value of s can be 5, 3, or 2 in consonance with the axial symmetry,
and Q and �Ch have different expressions depending on s, as we have seen in the
previous sections. For every symmetry, Q is discretized by ΔQmin, so we get
straightforwardly the discretization of the lengths of a prolate

ΔLmin =

√
3

2

ΔQmin

|�Ch|
sf a2 =

√
3

2

ΔNmin

2πR
a2 (1.43)
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that can be also be expressed in terms of ΔNmin. Now, if we apply the results
obtained for each axial symmetry we obtain

ΔLmin
5F =

√
3

2
√

P
a (1.44a)

ΔLmin
3F =

ΔQmin
3F

2
√

P
a (1.44b)

ΔLmin
2F =

√
21

14

ΔQmin
2F√
P

a (1.44c)

ΔLmin defines also the shortest tube and is directly related to the elongation
of the body, Eq. (1.14),

ΔL = ΔLmin
(
Q−Q0

)
= ΔLminΔQ (1.45)

which becomes zero for a spherical capsid, when Q = Q0. In Table 1.5 the values
of these properties for each axial symmetry are summarized.

Finally, the aspect ratio of a prolate can also be computed dividing the total
length of the particle (including the caps), L = 2R + ΔL, by its width, 2R, i.e.,

ar =
2R + ΔL

2R
= 1 +

ΔL

2R
(1.46)

The length and radius of a capsid depends on the separation between cap-
somers, a, and thus on the size of the proteins. Contrarily, the aspect ratio is
a dimensionless quantity, that could be compared directly, independently of the
particular dimensions of a virus.

Finally, the position of all capsomers in the tube can also be evaluated, as
shown in Appendix E.

Degeneracy and number of relative orientations

Interestingly, some prolate structures could be built in different ways. Here the
term degenerate refers to architectures that, for a particular axial symmetry, have
the same Tend and Q numbers, i.e., radius and length, but differ in the relative
orientation of pentamers in both caps. Therefore, we will refer to them as prolate
isomers (see Fig. 1.21).

The degeneracy arises when there is more than one possible choice of the
body vector �CQ with the same perpendicular projection onto �Ch (see Fig. 1.21).

This occurs when there is more than one lattice point in the segment �Ch/s that
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1.3. Bacilliform capsids

Figure 1.21: The two possible degenerate spherical structures for a Tend = 4 with
5-fold axial symmetry. The top images show the polyhedral shell and the bottom
ones, their construction in a flat hexagonal lattice following the same ideas as in
Fig. 1.13. (a) Classical isomeric case that corresponds to the CK icosahedral cap-
sid. (b) Quasi-spherical structure that has the same radius, length, and number
of proteins as in (a), but with a different relative position of pentamers between
both caps.
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joins two consecutive pentamers on the rim, offering then the chance of choosing
more than one relative orientation between the caps for a given tubular length.
Mathematically, the degeneracy, i.e., the number of different structures with the
same Tend, axial symmetry, and length, can be calculated as the ratio between
�Ch/s and the smallest lattice vector in the direction of �Ch, namely,

D ≡ |�Ch|/s

|�Ch|/gcd(m, n)
= f ΔQmin (1.47)

Then D determines the number of isomers of a prolate.

Accordingly, all elongated structures based on icosahedral caps with f > 1
or ΔQmin > 1 are degenerate. In the 5-fold case ΔQmin

5F = 1, so structures with
f = 1, e.g, Tend = 1, 3, 7, 13 . . ., have always a unique prolate capsid, whereas
for f > 1, e.g, Tend = 4, 9, 12, there are f possible isomers with different relative
orientations between the pentamers of the two caps. We stress that this occurs
even for the spherical case when Tend = T1. For instance, a Tend = 4 (f = 2)
can adopt two spherical configurations (see Fig. 1.21), but only one has full
icosahedral symmetry [46]. In fact, we will see in the next chapter that for T = 4
the non-icosahedral structure is feasible and has the same free energy as the
icosahedral one.

Interestingly, elongated structures with 3-fold and 2-fold axial symmetry can
be degenerate even for f = 1, but only for classes P with ΔQmin > 1. For
instance, the Tend = 3 (3-fold) leads to ΔNmin

3F = 9, or equivalently ΔQmin =
3. Thus the total number of isomers will be D = 3, according to Eq. (1.47).
Note that the body of this prolate is a ring made of 9 capsomers (R9) (see
Fig. 1.16b), and since the axial symmetry is 3 is completely natural to have 3
degenerated structures for a given length. Again, this holds even for the non-
elongated capsids, leading to 3 possible structures for a spherical T = 3 capsid
(but only one strictly icosahedral) when a hemi-icosahedral cap is rotated around
the 3-fold axis. Another example is the elongated architecture based on Tend = 7d
with 2-fold axial symmetry and the choice of caps of Fig. 1.12c. In this case
ΔNmin

2F = 14 or ΔQmin = 7, so we obtain D = 7 possible isomers. We remark
that the body in this case corresponds to a ring of 14 capsomers (R14), i.e., seven
times the axial symmetry6.

6Contrarily to the T = 4 (5-fold) case, the rotations of spherical structures around the 3-fold
and 2-fold axis (when it is geometrically possible) present some energetic disadvantages. Except
for the icosahedral structure, the rest of isomers usually bring two pentamers of opposite caps
very close. This represents an important energetic cost, which will increase the elastic energy
of the shell [47], because topological defects on the hexagonal lattice tend to repel each other.
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1.3. Bacilliform capsids

1.3.3 Applications: structural characterization of prolate viruses

In this section, we will study several viruses to illustrate how the insights gained
in this work can be useful for characterization purposes.

Bacteriophage T4

Bacteriophage T4 is one of the few prolate viruses whose capsid structure has
been determined at high resolution [6] (see Fig. 1.22). This case represents an
excellent example to illustrate how to infer the structure of a bacilliform capsid
using few raw experimental data.

Figure 1.22: Bacteriophage T4. (a) Geometrical construction for a 5-fold prolate
T = 13 and Q5F = 20, which is made of 167 capsomers. (b) The correspon-
dent ping-pong model built using the tubular body approximation combined with
hemispherical icosahedral caps. (c) Bacteriophage T4 cryo-EM reconstruction [6].

In particular, we will use the experimental diameter of the capsid, 2Rexp =
86 ± 3 nm, and the distance between hexamers in the body, aexp = 14 ± 2 nm,
both obtained from Ref. [6]. Inserting these data in the formulas of the radius
for the different symmetries listed in Table 1.5, one obtains T5F = 14.9 ± 1.6,
T3F = 13.8 ± 1.5, and T2F = 13.3 ± 1.4 as potential values for the triangulation
number of the cap. Since, in principle, Tend = 14 or 15 are not valid results, the
triangulation number should be either Tend = 13 or 16.

In addition, the shell is composed by 167 capsomers: 155 hexamers made of
930 copies of gp23∗, 11 pentamers made of gp24∗, and the gp20 connector7, which
can be assumed to play the role of an effective pentamer in the model. Taking
into account the growing laws for the different Tend-caps proposed in Table 1.6, it
is evident that only Tend = 13 with 5-fold axial symmetry leads to a capsid with

7gp means gene product of the viral genome.
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T N0 ΔNmin
5F ΔNmin

3F ΔNmin
2F

1 12 5 3 2
3 32 5 9 2
13 132 5 3 2
16 162 20 12 8

Table 1.6: Number of capsomers N0, Eq. (1.4), in an icosahedral capsid based
on different Tend-caps, and the corresponding growing laws, ΔNmin, for each
symmetry, Eqs. (1.18), (1.27), and (1.33).

167 capsomers. The number of hexamers involved in the elongation is 35 because
the icosahedral shell has 132 capsomers, thus from Eq. (1.18) one gets ΔQ5F = 7.
Taking into account that in the spherical case Q0

5F = 13, our analysis suggests
that the structure of bacteriophage T4 is a 5-fold prolate with Tend = 13 and
Q5F = 20, which is in fact the structure resolved in the cryo-em reconstruction.
We can also compute the aspect ratio using Eq. (1.46) obtaining a value of 1.3
in agreement with the experimental value, 1.4± 0.2.

Therefore, using three simple inputs, i.e., diameter, distance between hexam-
ers, and total number of proteins, it has been possible to infer the structure of the
virus. These data can be obtained from different experimental techniques, e.g.,
electron micrographs, optical diffraction, or sedimentation, but unfortunately
seem not to be available in the literature for most viruses.

Alfalfa Mosaic Virus (AMV)

AMV is a well studied plant virus that adopts different lengths depending on the
amount of genetic material encapsidated [41, 42] (see Table 1.7). The number
of protein subunits in the in vitro reconstituted capsids has been determined
from their molecular weights and correspond to Nsub = 60, 132, 150, 186, and
240 [42]. Only the smallest capsid has been reconstructed by X-ray [48] and is
a spherical T = 1 composed of twelve pentamers. The elongated particles have
a diameter similar to that of the icosahedral one, hence it is natural to assume
that they might be based on Tend = 1 caps. Considering that the body of the
prolate particles is formed by hexamers, then the number of proteins can easily
be translated into number of capsomers, obtaining the series N = 12, 24, 27, 33,
and 42. Interestingly, a multiple of at least three hexamers is added in every
step, and according to our model, this can only be explained if AMV elongated
particles adopt a structure Tend = 1 centered on a 3-fold symmetry axis (see
Tables 1.6 and 1.7, and Fig. 1.23). Optical diffraction studies have revealed
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AMVparticle n Nsub N Lexp(nm) Q3F

Ta−b 4 132 24 29.9± 2.4 6
Tb 5 150 27 34.8± 1.6 7
M 7 186 33 43.3± 2.0 9
B 10 240 42 56.1± 2.2 12

Table 1.7: Different experimental properties for the four particles of AMV: num-
ber of proteins in the shell, Nsub, which follows the law 60+(18×n) [42], number
of capsomers (N), length, and the inferred value of Q3F .

that in fact AMV posses three-fold symmetry [41], and a Geodestix model of a
similar architecture was suggested in Ref. [16]. However, the precise geometrical
properties of this model were never indicated.

The predictions of our model are not only useful to infer the structure, but
can also be used to extract other geometrical and structural information. For
instance, the architecture proposed has a body made of hexamers arranged in a
zigzag pattern Z6, and the minimum step of ΔN3F = 3 capsomers corresponds
to an increment in length of ΔL3f = a/2 (see Table 1.4). Experimentally, it
is known that each step of 18 subunits, i.e, 3 hexamers, increases the length by
4.34 nm [42]. Hence the distance between hexamers should be a � 8.68 nm, which
is in agreement with diffraction analysis [41], and from that one can estimate, for
instance, the typical size of a capsomer or a coat protein.

AMV also makes an alternative elongated particle that contains 120 protein
subunits, and does not follow the sequence discussed above [44]. Assuming that
the central body is built of hexamers, this number of proteins corresponds to N =
22 capsomers. In addition, the particle has again a similar radius suggesting that
it is based on Tend = 1 caps. Hence, in the framework of our model there are two
possible structures for this alternative particle (Table 1.6): a Tend = 1 bacilliform
shell centered on a 5-fold axis with Q5F = 2; and a Tend = 1 prolate centered on
a 2-fold axis with Q2F = 5. However, Ref. [44] suggests that the particles show
an oblate shape. In that case the 2-fold situation seems a better candidate since
2-fold structures are quite distorted and could lead to deformed shapes. In any
case, experimentally is not clear whether this particle is polymorphic.

Rice Tungro Bacilliform Virus (RTBV)

Rice tungro virus shows spherical and bacilliform shapes in vivo of similar di-
ameter, but no structure of the virus has been fully determined yet. As in the
case of AMV, let’s explore some basic experimental results to predict a plausible
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Figure 1.23: Alfalfa mosaic virus (AMV). (a) Electron micrograph showing AMV
particles of spherical type, Ta, and some elongated ones, Tb, M , and B. The
picture is a composition based on the research of Hull [41] (Fig. 3 therein). (b)
Structures predicted by the geometrical model and obtained also as optimal struc-
tures in the simulations of the next chapter. The sequence corresponds to the size
of AMV found in [42]. We notice that Hull obtained slightly different apparent
molecular weights for the particles shown in (a) [41], although the organization
of AMV in types of different lengths are qualitatively in agreement.

capsid architecture.

The diameter of the tubular part has been obtained from EM micrographs,
and has a value 2Rexp = 30± 3 nm. In addition, diffraction experiments suggest
that the distance between hexamers in the body is aexp = 10 ± 2 nm, and that
capsomers are arranged in rings [43].

In the framework of our geometrical model, for each axial symmetry there
is only one possible class P associated to a body made of hexamer rings. More
specifically, P = 1, P = 3, and P = 7l for 5-, 3-, and 2-fold symmetries, re-
spectively (see Table 1.4). One can now use the experimental estimate of aexp

to calculate what would be the expected radius of the prolate for each situa-
tion. Thus, the values 2RP=1

5F = f(16 ± 2)nm, 2RP=3
3F = f(28 ± 3)nm, and

2RP=7
2F = f(44 ± 9) nm, are obtained in each case. Comparing with the experi-

mental value we can conclude that RTBV is either based on a Tend = 4 (5-fold)
or a Tend = 3 (3-fold) structure, with a body made of rings of ten, R10, or nine
hexamers, R9, respectively.

The lack of further experimental information does not allow us to discriminate
between both possibilities. However, our model can be used to predict what would
be the expected geometrical properties of the virus in each case. If RTBV is based
on a Tend = 4 (5-fold), its number of subunits should follow the law N5F

sub = 240+
(n×60), and its total length should be L(n) = 2R+nΔL, where ΔL = 8.7±1.7 nm
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Figure 1.24: Rice tungro bacilliform virus (RTBV). (a) Electron micrograph
showing spherical and bacilliform particles of rice tungro virus [43]. (b) Geodestix
model suggested by Hull based on the diffraction patterns from the tubes in the
electron micrographs (see Fig. 3 [43]). (c) Tubular construction of the predicted
bacilliform structure based on our analysis. This corresponds to a 3-fold T = 3
Q3F = 39 (N = 131). On the top we have a view of the cap, and at the bottom
we show the body.

is the same for both architectures because they have ring-bodies. Experimentally,
the length of the predominant particle is Lexp = 130±3 nm. Therefore, we obtain
a value of n = 11±3 for the number of steps, so taking into account that Q0

5F = 2,
leads to Q5F = 13± 3. Thus, the structure would have N = 152± 30 capsomers
or Nsub = 900 ± 180 proteins. Analogously, if RTBV is based on a Tend = 3 (3-
fold) architecture, one would obtain a structure characterized by N = 131± 30,
Q3F = 39 ± 9, and N3F

sub = 180 + (n × 54) = 770 ± 160 protein subunits. Notice
that, just by knowing the total number of proteins or the molecular weight of the
capsid, one could know which is the right structure.

Again, based on diffraction experiments, Hull proposed that RTBV might be
an elongated particle based on Tend = 3 (3-fold) [43], which is one of the solutions
of our analysis (see Fig. 1.24). However, from the experimental data used above
we cannot reject the Tend = 4 (5-fold) architecture.

Bacteriophage P22 polyheads

Bacteriophage P22 has been intensively investigated, and constitutes one of the
most well known models of viral assembly [49, 50]. The coat subunits form an
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empty T = 7 spherical capsid, when they coassemble with the scaffolding proteins,
and maturation of the capsid and packaging of the viral dsDNA are required for
P22 to become infective. Interestingly, recent experiments have applied amino
acid substitutions in the β-hinge structure of the coat protein, which seems to
be a relevant motif controlling the assembly [51]. In particular, two different
substitutions at position 170, i.e., F170L and F170A, promote the formation of
long tubes that show at least one capped end. These structures have been called
polyheads and will be the focus of our study in this subsection.

Fortunately, P22 polyheads were long enough to allow high-resolution cryo-
EM reconstructions [52] (see Fig. 1.25). The F170L polyheads show two types of
tubes smaller than the wild type spherical shell, and with axial symmetries 9-fold
(C9) and 1-fold (C1, meaning no symmetry), respectively. Moreover, the shape of
the hexamers resemble that of the skewed hexons in the P22 procapsid, and the
interaction with scaffolding proteins corrects the assembly. On the other hand,
F170A polyheads only show one type of tube (see Fig. 1.25c), which is similar in
diameter with the P22 shell, and has a 3-fold axial symmetry (C3). Interestingly,
the hexons in this case are isometric like those found in mature P22 virions, and
scaffolding proteins do not correct the tubular formation.

Here, our goal is to extract some basic geometric information of the tubes
and to infer the possible structure of the polyhead caps. For all cases, we first
measure the average hexamer-hexamer distance from the exterior reconstruction
(see Fig. 1.25a). To avoid distortions due to the curvature we only look to the
hexons closest to the center of the tube. This determines the lattice parameter of
the tube a. Then the width of the different tubes is measured, taking into account
an intrinsic error due to the protrusions in the surface, and the normalized radius
respect the lattice parameter, R/a, is computed. Finally, we measure the chiral
angle of the tube, which is related to the angle between a line of hexamers and a
perpendicular section of the tube (see Fig. 1.19). All these values are summarized
in Table 1.8, and will be enough to predict the structures based on the geometrical
model.

The radius R/a is directly related to the triangulation of the cap by Eq.
(1.39) (see also Table 1.5). Then for F170 (C9) the possible candidates for the
triangulation number are T5F = 4.5± 0.5, T3F = 4.2± 0.5, and T2F = 4.1± 0.5.
These results suggest that the structure could be based on a triangulation number
Tend = 3 or 4. In addition, the chiral angle indicates a ring body (see Table 1.4),
and the cross section reconstruction clearly shows a ring of nine hexamers (see
Fig. 1.25c). Then the only compatible solution corresponds to a Tend = 3 prolate
centered on the 3-fold axis. On the other hand, the radius of the F170L (C1) is
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Figure 1.25: Cryo-em reconstructions of bacteriophage P22 polyheads. The three
structures were reconstructed from long available tubes of P22. From left to right:
F170L (C9), F170L (C1), F170A (C3). The panels correspond to the exterior
view of the tube (a), a slice of half tube from the interior (b), and the axial
projection of the tubes, where one hexamer is identified in each case to facilitate
the interpretation. This last panel clearly unveils the axial symmetries of each
tube. Extracted from Ref. [52].
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Tube a [±0.2 nm] R/a θ [±1.5o] Prediction

F170L (C9) 12.4 1.7± 0.2 0 Tend = 3 (3-fold)
F170L (C1) 11.7 1.9± 0.3 5.8 –

F170A 13.1 2.0± 0.2 12.5 Tend = 7 (3-fold)

Table 1.8: Properties and predictions for P22 polyheads. For each tube the
lattice parameter a, the normalized radius R/a, and the chiral angle θ have been
measured from the image of Fig. 1.25. The most plausible caps for the polyheads
(see text) have been obtained by comparing those values with the predictions for
the geometry of prolates.

slightly bigger with intermediate values between T = 4 and 7, more specifically
T5F = 5.3± 0.9, T3F = 5.7± 0.8, and T2F = 5.1± 0.8. Moreover, the chiral angle
does not seem to be compatible with any of the reported cases for these caps in
the theory (compare Tables 1.8 and 1.4). Since the characteristics of this tube
are similar to the former one, we suggest that this polyhead is a malformation of
the F170 (C9), which could be promoted either by an error in the cap formation,
or by direct assembly of the tube. Notice that the restricted architectures of the
bodies in the geometrical model arise due to the constrain of having an ordered
structure of the caps. Interestingly, in the absence of scaffolding, the coat protein
of P22 self-assembles in vitro into T = 3 and T = 4 structures, which suggests
some connections with the structures adopted by F170 polyheads.

Finally, let’s analyze the F170A tube. As shown in Table 1.8, the radius is the
biggest one; in particular it is associated to either T5F = 6.3±0.6, T3F = 5.8±0.6,
and T2F = 5.6 ± 0.6, so the most probable triangulation number of the cap
seems to be T = 7. In addition, the chiral angle is very close to the prediction
corresponding to a 3-fold of this type of cap (see Table 1.4), which is compatible
with the C3 axial symmetry observed experimentally (see Fig. 1.25c). Then the
F170A polyhead seems to be a Tend = 7 (3-fold) bacilliform capsid.

1.4 Discussion

In the previous section we have applied the results of our geometrical model of
prolates to characterize specific viruses and make predictions. Depending on the
available experimental data, the model can be used in different ways. In any case,
only simple algebraic equations, which could be easily used by anyone interested
on characterizing a prolate virus, are required. In this context, we emphasize that
there is an important number of electron micrographs that identify elongated
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viruses, whose structures remain unknown [5, 15, 53]. The combination of these
images with basic molecular information of the capsids, e.g., the coat protein
size, or the number of coat proteins, would provide a rapid prediction of the
structures, which might facilitate the study of these viruses. Unfortunately, in
many cases the basic molecular information is not easy to found in the literature
or the micrographs available are not of good quality.

The advances in cryo-EM have allowed to reconstruct high-resolution images
of asymmetric structures that have been elusive to crystallization and X-ray anal-
ysis. In particular, two viruses, and some of their main components, have been
studied in detail so far: bacteriophage φ29 [18, 19, 54] and bacteriophage T4 [6].
The precise characterization of these structures is fundamental to elucidate the
molecular mechanisms involved in the different stages of the virus life cycle. To
this end it is very important to achieve high resolution images to identify the
precise amino-acids or molecular groups involved in each part of the structure.
The quality of the reconstructions can be in general enhanced by imposing the
right symmetries of the structure. In this sense, the geometrical theory of pro-
lates described in this chapter provides an excellent tool to suggest the potential
local and global symmetries present in a prolate virus.

As we have seen in this chapter, most bacteriophage prolates seem to adopt
a 5-fold structure [17]. In terms of the assembly, this type of axial symmetry is
probably promoted by the nucleation of the capsid around the connector, which
plays the role of an effective pentamer [18]. On the contrary, elongated plant
viruses seem more prone to adopt a 3-fold architecture. Interestingly, two poly-
heads of the mutant P22 phage show 3-fold structures rather than 5-fold ones (see
Table 1.8). This could be related to an assembly mechanism based on trimeric
interactions proposed recently [52]. The fact that a phage would be able to form a
3-fold prolate, supports one of the key ideas of this thesis that will be formulated
in the next chapter, i.e., that the precise structures of viral capsids arises because
they are free energy minima.

It is worth to mention that the connector of the tail in bacteriophages usually
have a 12-fold symmetry [18, 19], but it is placed in a 5-fold axis of the prolate.
This symmetry mismatch has raised some discussion in the literature, see for
instance Refs. [19, 55]. One might think that this problem could be avoided by
adopting an elongated structure with 3-fold axial symmetry. However, it is worth
to stress that the organization of the capsomers (or the coat proteins) at the tips
of the caps for a 3-fold prolate changes depending on the Tend. Nevertheless, a
5-fold bacilliform architecture is always built with a pentamer on the tip of the
cap, regardless the value of Tend.
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Another surprising result of the geometrical prolate model is that allows the
construction of shrunk capsids (see Fig. 1.14d), thus obtaining an oblate struc-
ture, which in some cases might resemble a lemon-shaped shell. Interestingly
there are some bacteriophages [40] and archaea viruses [56] that adopt lemon-
shaped capsids, but we have not performed any analysis yet to investigate their
structure.

1.5 Conclusions

In this chapter we have presented a geometrical model that establishes the ar-
chitectural principles controlling the construction of spherical and prolate viruses
with icosahedral symmetry. The ideas were based on the classical CK design
for quasi-spherical shells [10], and the work of Moody for 5-fold prolates [17,27].
We have completed the catalog of icosahedral capped prolates by introducing the
precise constructions for the 3-fold and 2-fold bacilliform architectures.

Interestingly, there is a finite set of possibilities to construct them, and that
leads to discretization rules for the length and number of proteins. These rules
are determined by the axial symmetry and the T number of the cap, which also
dictate the radius and length of prolates, as well as the arrangement of capsomers
in the tubular body.

Remarkably, we have shown that it is possible to construct quasi-spherical
capsids that can be conceived as two hemispherical caps rotated around one of
their symmetry axes. These isomeric or degenerate shells do not have complete
icosahedral symmetry, but are spherical structures that could compete and inter-
fere in the assembly of viral particles. In fact, preliminary results suggest that,
in terms of free energy, these structures are in some cases equally stable as the
normal icosahedral ones. In general, elongated viruses with f > 1 or ΔQmin > 1
can also have more than one structure with the same length but differing on the
relative orientation between the caps. This might have some implications in the
possible reconstructions of prolate structures by high-resolution techniques.

It is worth to mention that, as we will see in the next chapter using a very
simple model of interaction between capsomers, these icosahedral prolate struc-
tures are indeed free energy minima, thus justifying their possible occurrence in
nature. However, not all of them seem to be equivalent in energy or even energet-
ically optimal, which might be the reason why some structures, specially those
based on 2-fold axial symmetry, seem hard to be observed in native viruses.

On the other hand, there are viruses, like polyomavirus, that are able to
adopt elongated structures built exclusively by pentamers [57,58]. Strictly, these
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structures do not follow the geometrical model described above, although an
alternative tiling theory has been proposed to explain some of the architectures
[39, 59]. In the next chapter we will see that all-pentamer prolate capsids closed
by icosahedral caps are indeed plausible energy minima, and follow exactly the
same selection rules predicted by the geometrical model introduced here.

The results of this work open the door to a simple characterization of elon-
gated viruses using a few parameters, e.g., subunit’s size or number, particle
dimensions or chirality of the body, which can be obtained from different stan-
dard experimental techniques, such as electrophoresis, electron microscopy and
electron or X-ray diffraction.

The fact that prolate viruses can adopt different lengths suggests that in
principle it should be possible to control them by using the proper assembly
conditions and/or using, for instance, different lengths of genetic or nongenetic
materials. This possibility would facilitate the design of artificial viral capsids
in applications such as nanopatterning or nanotemplating. The structural in-
formation provided by the geometrical principles laid out in this work could be
potentially very helpful in this task.
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Appendices

A Useful properties of a hexagonal lattice

In this appendix, we summarize some properties of the hexagonal lattice that are
used in the calculation of the geometry of prolate viruses. The vectors used in
this work to characterize the end-caps and the body are described by two different
systems of hexagonal coordinates. The first system is characterized by the basis
vectors (see Fig. 1.13)

�a1 = a(1, 0) ; �a2 = a(0, 1) (A-1)

where a is the lattice parameter of the hexagonal sheet, i.e., the distance between
the centers of two adjacent hexamers. Moreover, since the hexagonal axes are
not orthogonal, the elementary products among basis vectors are

�a1 · �a1 = �a2 · �a2 = a2 ; �a1 · �a2 =
a2

2
(A-2)

�a1 × �a1 = �a2 × �a2 = 0 ; |�a1 × �a2| =
√

3 a2

2
(A-3)

The second set of coordinates, labeled with primes and used to characterize
the body vector, are given in terms of a pair of hexagonal axes rotated 60o

counterclockwise respect to the first system, and its basis vectors are

�a′1 = a(1, 0)′ ; �a′2 = a(0, 1)′ (A-4)

Therefore, �a′1 coincides with �a2 of the original basis. The inner and crossed
products between �a′1 and �a′2 are analogous to those between �a1 and �a2, given
by Eqs. (A-2) and (A-3). In addition, the inner products between vectors of the
two pairs of basis are

�a1 · �a′1 =
a2

2
; �a1 · �a′2 = −a2

2
(A-5)

�a2 · �a′1 = a2 ; �a2 · �a′2 =
a2

2
(A-6)

and their cross products are

|�a1 × �a′1| = |�a1 × �a′2| =
√

3 a2

2
(A-7)

�a2 × �a′1 = 0 ; |�a2 × �a′2| =
√

3 a2

2
(A-8)
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Using these products it is possible to compute every property reported in this
work derived from an operation between vectors.

In general, the area of a triangle defined by two vectors �a and �b can be
computed as |�a×�b|/2. In particular, the area of the elementary triangle, defined
by �a1 and �a2, and corresponding to T = 1, is

S0 =
|�a1 × �a2|

2
=

√
3 a2

4
(A-9)

B Minimum step ΔQmin and the greatest common di-

visor gcd(a, b)

To calculate the minimum step of ΔQ one needs to introduce, essentially, four
properties related to the greatest common divisor of two integer numbers a and b,
i.e., gcd(a, b). (i) The Bézout’s identity, establishing that if p and q are integers,
the smallest positive integer value of d = ap+bq is the gcd(a, b). Moreover, for any
integer n: (ii) gcd(a+nb, b) = gcd(a, b), (iii) gcd(a×n, b) = gcd(a, b)×gcd(n, b),
and (iv) gcd(a, 0) = |a| for a �= 0.

Once the values of (h0, k0) and f that characterize the caps are fixed, the
length and the area of the body depend only on Q(h′, k′). Any change in length
corresponds to transform the body vector from (h′, k′) to (h′ + p, k′ + q). Using
Eqs. (1.11), (1.22) and (1.28) that define Q for each symmetry, we have that the
change in Q is:

ΔQ =

⎧⎪⎨⎪⎩
p(h0) + q(h0 + k0) 5-fold

p(2h0 + k0) + q(h0 + 2k0) 3-fold

p(3h0 + k0) + q(2h0 + 3k0) 2-fold

(B-1)

Using Bézout’s identity, the smallest value of ΔQ, i.e., the smallest step in Q, is
then given by the greatest common divisor of the numbers that multiply p and
q in each case. We can then use the properties of the gcd mentioned above to
derive the growing laws for each symmetry, namely

ΔQmin
5F = gcd (h0, h0 + k0) = gcd (h0, k0) = 1 (B-2)

ΔQmin
3F = gcd (2h0 + k0, h0 + 2k0) = gcd (3k0, h0 − k0) = gcd (3, h0 − k0) (B-3)

ΔQmin
2F = (3h0 + k0, 2h0 + 3k0) = gcd (7k0, h0 − 2k0) = gcd (7, h0 − 2k0) (B-4)

which correspond to Eqs. (1.17), (1.26) and (1.32).
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Figure C.1: (a) Contact of two hexamers in a ring layer. (b) Representation of
one rigid hexamer in the cross section of a ring body Rn.

C Estimate of the error in the tubular approximation

As an estimation of the error associated to neglecting curvature effects in the
tubular approximation, let’s calculate the relative discrepancy in the radius for
a particularly simple case: a ring body made of n rigid hexamers. Let’s first
compute the exact radius, Rex, using the fact that each ring layer is composed of
n capsomers in contact (Fig. C.1a).

A ring of n hexamers satisfies the equation 2α n = 2π, where 2α is the arc
defined by a hexamer of the layer (Fig. C.1b). This angle is related to the radius
of the tube by sin α = a

2R . Hence, combining both equations the exact radius of
a ring tube is obtained

Rex =
a

2sinπ
n

(C-1)

In our geometrical model, the tubes were constructed by wrapping the hexag-
onal sheet into a cylinder, with a resulting radius given by Eq. (1.38). For the
particular case of a ring body of n capsomers, | �Ch| = n a, yielding

R =
n

2π
a (C-2)

which coincides with the exact radius, Eq. (C-1), in the limit n � 1. For a given
n, the relative error between Eq. (C-2) and the exact radius is

ΔR

Rex
= 1− n

π
sin

π

n
, (C-3)
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Figure C.2: Relative error of the flat approximation. n is the number of hexamers
in the ring layer.

where ΔR = Rex − R. The smallest tube in the prolate model is T = 1 5-
fold (n = 5), which has a relative error of 6% as shown in Fig C.2. For bigger
structures the relative error decays as 1/n2. Hence the tubular approximation
used for bacilliform viruses is reasonably good even for the smallest particles.

D Value of the gcd(m, n) and |�Ch| for each axial sym-

metry

Many of the properties of the tubular part of an elongated virus depend on the
value of gcd(m, n). Contrarily to the case of carbon nanotubes, for an icosa-
hedrally capped capsid not all values of (m, n) are valid. The gcd(m, n) can
be computed from the values of (m, n) adequate for each symmetry, defined by
Eqs.(1.35), (1.36), and (1.37), leading to

gcd(m, n)5F = 5fgcd(h0, k0) = 5f (D-1)

gcd(m, n)3F = 3fgcd(3, h0 − k0) =

{
9f if |h0 − k0| ∝ 3

3f the rest
(D-2)

gcd(m, n)2F = 2fgcd(7, h0 − 2k0) =

{
14f if |h0 − 2k0| ∝ 7

2f the rest
(D-3)

We emphasize that the same results obtained for the growing laws, ΔNmin, in
the prolate construction Eqs. (1.18), (1.27), and (1.33), can be obtained from
gcd(m, n).
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Another important property is the modulus of the chiral vector |�Ch|. Since
the values of (m, n) are restricted by the symmetry, the possible values of |�Ch|
are

|�Ch| =

⎧⎪⎨⎪⎩
5
√

Tend a for a 5-fold

3
√

3Tend a for a 3-fold

2
√

7Tend a for a 2-fold

(D-4)

E Coordinates of the capsomers in any tubular body

In this block, we use the tubular approximation introduced above to compute the
coordinates of the capsomers in the body of any prolate. With this knowledge we
have been able to built ping-pong models of bacilliform viruses, which have been
very useful to illustrate the structures, and to explore further physical properties.

E.1 Unit-cell tubes

In order to determine the position of all capsomers in the tubular body of a
prolate virus, it is convenient to introduce the concept of unit-cell as the minimum
repeating unit of an infinitely long tube. This unit cell is the rectangular portion
of the hexagonal lattice defined by the chiral vector, �Ch, and the step vector, �t
(see Fig. E.1),

�t = t1 �a1 + t2 �a2 = (t1, t2) (E-1)

which is the shortest lattice vector in the axial direction, i.e., perpendicular to
�Ch.

To calculate the components of the step vector one must take into account
three properties: (i) �t is perpendicular to the chiral vector, i.e., �Ch · �t = 0; (ii)
it belongs to the hexagonal lattice, i.e, t1 and t2 must be integers; and (iii) it
has the smallest non-zero absolute value; this means that the components t1 and
t2 do not have a common factor, otherwise one could built a shorter step vector
dividing by it, so gcd(t1, t2) = 1.

From condition (i) an expression relating the components of the step and
chiral vectors is obtained

mt1 + n t2 = 0 (E-2)

One can now give for instance t2 in terms of the other components, t2 = −t1 m/n,
and taking into account (ii) and (iii), and using the properties described in the
Appendix B, it is possible to obtain an explicit formula for the step vector

�t =
1

dR
(−(2n + m), 2m + n) (E-3)
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Figure E.1: The unrolled tubular body of a prolate virus (shaded area) shown
on the honeycomb lattice. The chiral vector �Ch = (m, n) defines the rolling
direction and the rim of the body where the caps have to be fitted. The fact
that icosahedral caps close the tube restricts the possible values of (m, n). The
rectangular area delimited by �Ch and the step vector �t, which is perpendicular
to �Ch, defines a unit-cell tube, i.e., the simplest repeating unit of an infinitely
long tube. This unit-cell tube has the same relative orientations of pentamers
in both caps. However, the shortest tube that can be built is defined by the
symmetry vector �q. ψ and τ are the projections of �q in the directions of �Ch and
�t, respectively, and are related to the pitch and the length of the prolate body.

where dR is

dR = gcd(2n + m, 2m + n) = gcd(3, m− n) gcd(m, n) (E-4)

Therefore, for a specific prolate with a chiral vector (m, n), the step vector �t is
completely determined.

The unit cell of the elongated body is defined by �Ch and �t. Nevertheless one
needs still another tool to explicitly compute the position of the hexamers in this
body: the symmetry vector �q.

E.2 Symmetry vector

The symmetry vector, �q, is defined by the origin of �Ch and the hexamer in the
unit-cell closest to the rim (see Fig. E.1). By construction, �q is a lattice vector,
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and can be expressed in hexagonal coordinates as

�q = q1 �a1 + q2 �a2 = (q1, q2) (E-5)

where, q1 and q2 must be integers. Moreover, �q is the smallest vector in that
direction, so it must verify gcd(q1, q2) = 1.

In the unit-cell there are Nuc hexamers, determined by the product |�Ch × �t|,
i.e., the area of the cell. Then, applying Nuc consecutive times the symmetry
vector, starting from the origin of �Ch and taking the end of �q as the next starting
point every time, one gets the positions of all hexamers in the unit-cell. How-
ever, the finite body of a prolate is discretized by steps of ΔNmin, rather than
by complete unit cells, Nuc ≥ ΔNmin. Thus the direct application of �q is not
appropriate to describe the tube of prolates, but this can be circumvent by decom-
posing �q in cylindrical components and taking into account the axial symmetry
of the structure.

The hexamers in the tubular body of a prolate are in general arranged in an
helical pattern that can be better described in cylindrical coordinates. Then, it
is more convenient to use the parallel ψ and perpendicular τ projections of the
symmetry vector with respect to the boundary �Ch (see Fig. E.1), which are given
by

ψ =
�q · �Ch

|�Ch|
2π

|�Ch|
(E-6)

τ =

∣∣∣�Ch × �q
∣∣∣

|�Ch|
= ΔLmin. (E-7)

The components φ and τ correspond to the rotation and longitudinal translation,
respectively, that have to be applied to position of a hexamer to obtain the next
one in the helical body.

E.3 Hexamers positions

One can then calculate the position of the hexamers in the tubular part of any
elongated prolate as a linear combination of the chiral �Ch and the symmetry
vector �q as

i�q + j
�Ch

gcd(m, n)
(E-8)

where i, j are integers and �Ch/gcd(m, n) is the shortest lattice vector in the
direction defined by the chiral vector. It is more convenient to reexpress the
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position of the hexamers in cylindrical coordinates yielding

z = iτ for i = 0 up to ΔL/ΔLmin (E-9)

φ = iψ + j
|�Ch|

gcd(m, n)

2π

|�Ch|
= iψ + j

2π

gcd(m, n)
(E-10)

where ΔL is the length of the tube, ψ and τ are the projections of �q in the
directions parallel and perpendicular to �Ch, and periodic boundary conditions
in the azimuthal angle ψ have to be imposed, i.e., for each layer i the index j
runs from 1 to gcd(m, n) = ΔNmin. In more rigorous mathematical terms, the
position of each successive hexamer in the tube can be obtained as a rotation of ψ
around the tube axis combined with a translation τ in the axial direction, which
reflect the basic space group symmetry operations for a chiral tube [45,60].
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Chapter 2

Optimal Structures for

Spherical and Elongated Viral

Capsids

2.1 Introduction

As we have seen in the introduction of the thesis and in the previous chapter, viral
capsids generally have well-defined and precise structures. Indeed, they adopt a
common set of architectures (namely, spherical, rod-like, bacilliform, or conical)
that can be described and classified by the same construction principles. This is
truly remarkable, specially taking into account that these viruses infect different
hosts and are made out of coat proteins, whose amino-acid sequences, sizes or
conformations can be very diverse [1–6].

More importantly, in many cases the wild type structure of a viral capsid can
be reconstituted in vitro in a self-assembly process from a solution of the coat
proteins alone [7–18], in combination with the scaffolding proteins (when those
are required) [19–22], or in the presence of the viral genome [23, 24], producing
infectious particles in the latter case. This spontaneity observed in the formation
of viral capsids suggests that the process of assembly should be driven by a
fundamental thermodynamic principle: the free energy minimization [25–29].

Furthermore, several in vitro experiments have shown that viral coat proteins
are able to assemble into well-defined structures different from the native capsid
at different physicochemical conditions [7, 8, 11, 13, 30–32]. In particular, in the
mid 1970s Adolph and Butler already showed the self-assembly polymorphism
of CCMV coat proteins at different pH and salt concentrations (see Fig. 2.1), a

83



Chapter 2. Optimal Structures for Spherical and Elongated Viral Capsids

Figure 2.1: Self-assembly capsid protein diagram of CCMV adapted from Adolph
and Butler [8]. The axes show the range of pH and ionic strength conditions that
were used for the different assembly experiments. The pictures in the diagram
illustrate the dominant species at each condition.

seminal experiment that was recently reproduced and extended in Ref. [30]. The
existence of common structures among wild type viral capsids, and the intrinsic
ability of their coat proteins to self-assemble into different shapes suggest that the
formation of these structures should be controlled by some generic mechanisms
of interaction.

Following these ideas there has been an increasing effort to understand the
structure of viruses from a physical standpoint. The case of quasi-spherical
viruses have been the most investigated as we will review in the first section
of the chapter. In particular, it is worth to mention the work of Zandi et al. [33],
which has recently unveiled the underlying reasons behind the emergence of icosa-
hedral symmetry in viruses using a simple physical model. On the other hand,
prolate viruses have been less explored, and the physical reasons justifying their
possible structures remain unknown. The main goal of this chapter is precisely
to adapt the investigation performed in Ref. [33] to the case of bacilliform viral
capsids, and to study whether the icosahedral prolate structures predicted by
the geometrical model in Chapter 1 are all feasible and can be justified from a
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physical point of view.

The present chapter is organized as follows: in Section 2.2 we rederive the
results of Ref. [33] for spherical capsids, using a slightly modified physical model
that will be the basis of our extension to study the elongated capsids in Section
2.3. Finally, Section 2.4 summarizes the more relevant findings of our study, mak-
ing a special emphasis on the connection with the geometrical model of Chapter
1, and on the prediction of the structure of several bacilliform viruses.

2.2 Spherical capsids

As mentioned in the previous chapter, most spherical viruses self-assemble build-
ing a capsid with icosahedral symmetry. The fact that many viruses can be
reconstituted in vitro from their molecular components in a spontaneously self-
assembly process points out that the emergence of icosahedral symmetry, and
the rules derived from the CK construction, might be generic features of the free
energy minima of aggregates of viral capsid proteins.

The best way to justify this hypothesis would be to systematically explore
the equilibrium structures of viral capsids by simulating the coat proteins and
their interactions for typical aggregation conditions. However the evaluation
of the capsid free energy by realistic all-atom or quasi-all-atom simulations is
computationally very expensive, and only the smallest viruses at very short time
scales (at the of pico to nanoseconds) can be studied [34].

An alternative would be to consider “coarse-grained” models that would allow
to efficiently tackle the problem. Indeed, the initial effort to design simple models
to study the emergence of the well-defined structure of capsids was based on
attempts to connect viral icosahedral symmetry with the mathematical problem
of obtaining the closest packing of N equal disks (representing the capsomers) on
the surface of a sphere [35–37]. Interestingly, this approach was intimately related
to one problem posed much earlier by Thomson [38] that focused on the minimum
energy configuration of N electrons on a spherical surface. That subsequently
raised the question of determining the arrangement of N overlapping disks, with
a minimum size, to completely cover the surface of a sphere [39]. Following these
ideas, a more recent model derived a self-assembly phase diagram by analyzing
the energy minima structures made of identical capsomers with a given cohesion
energy and spontaneous curvature [25]. Unfortunately, all these models only deal
with identical morphological units and led to capsid structures with symmetries
lower than icosahedral.

On the other hand, when icosahedral symmetry is imposed in the modeling of
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viral structures, it is possible to recover the quasi-equivalent organization present
in the CK construction [40]. In fact, recent investigations have even allowed
the possibility to infer the configuration of the internal genetic material or the
organization of multishell icosahedral capsids for certain viruses [41–43], by affine
extensions of icosahedral symmetry. Interestingly, it has been possible to recover
also the coat protein organization of some icosahedral all-pentamer viruses, which
deviate from the standard CK classification, using principles of tiling theory [44]
or pentagon packing models [45]. Other approaches based on the assumption of
icosahedral symmetry have focused instead on the pathways and kinetics of the
capsid formation process [46,47], studying, for instance, mechanisms that enhance
or preclude the proper formation of viral capsids [48] (see also Chapters 6 and 7).
Finally, elasticity arguments demonstrated that, for large shells, the pentameric
disclinations in a capsid destabilize the spherical shape, and leads to a faceting
that produces a more polyhedral-like structure (through a phenomenon named
“buckling transition”), in consonance with the observations of big quasi-spherical
viral capsids (see also Chapter 4) [49, 50].

However, the origin of icosahedral symmetry in viruses, the validity condi-
tions for the CK construction, and the physical principles underlying the quasi-
equivalence principle were not firmly established until the work of Zandi et al.
in Ref. [33], which was able to successfully explain the emergence of CK icosahe-
dral shells and other type of structures observed in in vitro experiments using a
very simple minimal model. That model, properly adapted and extended, is the
one that we have used to analyzed prolate capsids, and it is introduced in the
following section.

2.2.1 Minimal model of spherical capsids

As mentioned in the introduction, capsid proteins of distinct viruses can differ
in terms of the sequence, size and conformations of their amino acids. However,
in their final structures they are invariably clustered into morphological units,
e.g., pentamers and/or hexamers, which are very similar in all viruses [51]. Thus,
while the interaction between proteins can be very complex and species-specific,
capsomers are expected to interact through a more generic and isotropic potential.

The model that we will use then focuses on the interactions at the level of cap-
somers, rather than individual proteins, and it is an adaptation on the previous
work of Zandi et al. [33]. The minimal model presented in Ref. [33] was designed
to capture the essential ingredients of the interaction between capsomers: a short-
range repulsion, associated to the subunit conformational rigidity, that prevents
protein overlapping; and a longer-range attraction representing the driving force
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for capsomer aggregation. There are many possible potentials that qualitatively
fulfill these requirements. For sake of simplicity, a Lennard-Jones-like potential
was chosen, a well-known interaction model in the condensed matter field. Thus,
the effective capsomer-capsomer interaction potential is described by

V (r) = ε0

[(σ

r

)12
− 2

(σ

r

)6
]

(2.1)

where r is the separation between capsomer centers, σ is their optimal distance,
and ε0 is the binding energy between them (see Fig. 2.2a). The capsomer-
capsomer binding energy ε0 was taken to be 15 kT (where k is the Boltzmann
constant and T is the absolute temperature), a typical value reported from atom-
istic calculations of subunit binding energies [52].

As we have discussed in great detail in the previous chapter, an essential fea-
ture of the organization of coat subunits in the final viral capsids is the presence
of two morphological structures: pentamers and hexamers, which are made of five
and six proteins, respectively. In general, these two capsomers may have different
internal energies arising from differences in folding, stretching, and contact inter-
actions between the coat subunits. We will represent this free energy difference by
ΔE. Accordingly, the Boltzmann factor e−ΔE/kT would account for the relative
probability of a free capsomer to be a pentamer rather than an hexamer. It is
very important to emphasize that we are not claiming that, during the assembly
of a capsid, hexamers and pentamers are necessarily present in solution and able
to physically switch between each other. The mechanisms and the pathways to
create these two structural units in the final shell can differ very much depending
on the virus. For instance, the coat subunits of bacteriophage HK97 can actually
aggregate into hexamers and pentamers before starting the assembly, and ending
up forming a T = 7 shell [12]. But in the vast majority of cases, such as in
CCMV, the building blocks (in that case stable dimers) present in solution are
not necessarily the morphological units found in the assembled capsid (a T = 3
shell in the case of CCMV [8,53]). Our analysis here focuses on the final equilib-
rium structure adopted by viral capsids, not on the assembly pathways, and the
Boltzmann factor introduced above is a convenient tool to properly explore the
free energy landscape of the proposed thermodynamic model for viral shells.

In the seminal paper of Zandi et al. [33], an isotropic interaction model was
used, where capsomers were considered as disks of two different sizes. For these
disks the equilibrium distance σ was related to the distance of the disks centers
at contact, which depended on the curvature of the capsid. Unfortunately, this
became an inconvenient when we tried to extend the equilibrium model to study
elongated shells, due to the ambiguity in the definition of the equilibrium distance
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Figure 2.2: Coarse-grained capsomer model. (a) Effective capsomer-capsomer
interaction. The Lennard-Jones potential, Eq. (2.1), is plotted as a function of
the distance between the center of two capsomers r, where σ is the equilibrium
distance, and ε0 is the binding energy. (b) Hexameric and pentameric capsomers
are modeled as spheres. Their radii σh and σp are related by that of the circum-
scribed hexagon and pentagon, having the same edge.

at the boundary where the spherical cap and the cylindrical tube meet (see Section
2.3). Thus, we decided to remodel the capsomers as spheres, which is a less
realistic shape compared to the actual capsomers, but keeps the isotropic nature of
the potential and overcame the problems for bacilliform capsids. In this situation
the equilibrium distance is determined exclusively by the distance between the
centers of two capsomers in contact.

The size of the model pentamers and hexamers was chosen in such a way that
they can produce a good covering of a spherical capsid. In particular, the ratio
between their effective radii was determined by inscribing their equatorial circles,
respectively, into a pentagon or a hexagon of the same edge, to respect the fact
that pentamers and hexamers are typically made of the same protein1 (see Fig.
2.2b). Therefore, the ratio between the radius of a hexamer, σh, and that of a
pentamer, σp, is given by

rph =
σp

σh
=

tan(π/6)

tan(π/5)
≈ 0.8 (2.2)

1In reality, some viruses are made by different coat proteins, but they usually have a similar
size.
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Since we use a pair potential, the equilibrium distance will depend on which type
of capsomers are interacting. In particular, we have three different possibilities,
i.e., hexamer-hexamer, pentamer-pentamer, and hexamer-pentamer, and since
the equilibrium distance corresponds to the contact distance for each case, we
have

σhh = 2σh = 2σ0 (2.3a)

σpp = 2σp = 2 rph σ0 (2.3b)

σph = σp + σh = (1 + rph)σ0 (2.3c)

respectively. Here σ0 is the hexamer radius that defines our length scale, which
is straightforwardly related to the lattice parameter a of the geometrical model
by (see Chapter 1)

a = 2σ0 (2.4)

This connection will be specially useful to compare the predictions of both the
geometrical and equilibrium simulation models.

Finally, the binding energy was assumed to be the same (ε0 = 15 kT ) in all
cases. All simulation results will be reported in reduced units, i.e., in units of ε0

for the energy and σ0 for lengths.

2.2.2 Monte Carlo simulations

After formulating the model and the interaction between units, the next step was
to minimize the free energy of the system to obtain the equilibrium structures of
these model shells. To that end, we resorted to a simple, standard and powerful
tool in statistical mechanics: Monte Carlo simulation.

Since we were interested in the structures of spherical capsids, a key simpli-
fication in our model was to add the constrain that capsomers are forced to be
on the surface of a sphere of radius R. This is equivalent to have an extremely
rigid bending energy between capsomers and to assume that coat proteins have
associated a certain preferred or spontaneous curvature in their interaction (or
alternatively that it is introduced by a scaffold), which imposes the radius of the
spherical shell.

Given the strength of the binding energies and the fact that we are only
interested on the study of equilibrium structures of viral capsids, which usually
are highly symmetrical, the kinetic energy of capsomers is neglected, and we
focus on the internal energy of capsids as a result of the capsomer-capsomer
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interactions. Thus, the energy of the system is characterized by the Hamiltonian

H(N, R) ≈
N∑

i=1

∑
j<i

V (rij) + Eint
i (2.5)

where N is the total number of capsomers, rij is the distance between capsomer
i and j, and Eint

i is the internal capsomer energy given by

Eint =

{
0 hexamer (h)

ΔE pentamer (p)
(2.6)

To minimize this energy and to obtain the equilibrium capsid structures, a
simple Monte Carlo (MC) algorithm was implemented. This consisted essentially
on two different types of “motions”: a small displacement of a morphological unit
on the surface of the template R; and an attempt to switch the internal state of
the capsomer, i.e., between hexamer and pentamer. After every movement the
new energy was computed, H ′(N, R), and compared with the old one, H(N, R),

ΔH = H ′ −H (2.7)

The standard metropolis MC algorithm accepts this new configuration with a
probability

Pacc =

{
1 if ΔH < 0

e−ΔH/kT if ΔH > 0
(2.8)

Thus, if the new energy is lower, the movement is always accepted, and if it is
higher the acceptance follows a Boltzmann probability. Applying this procedure
repeatedly ensures the minimization of the energy [54].

Fig. 2.3 illustrates the main steps of our MC exploration. The initial con-
dition of each simulation is that N capsomers, all of them initially hexamers,
are placed randomly on the surface of a sphere with radius R. Then, the MC
algorithm is applied to equilibrate the structure, and the same procedure is re-
peated for different radii, which leads to an energy minima at Re(N) associated
to a specific optimal structure. It is worth to notice that for large N , the free
energy landscape gets more complex, with a number of metastable configurations
increasing exponentially [55]. Thus, to avoid possible trapping on local minima,
each simulation N(R) was repeated using different initial conditions, and the
average and optimal (the absolute minimum of the energy in all different runs)
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Figure 2.3: Monte Carlo simulations. (a) Spherical surface of radius R where the
movement of the capsomers is constrained. (b) Initial random configuration of N
hexamers on the template R. (c) The number of capsomers N is fixed during the
simulation, and for each radius R we minimize the energy of the system using the
Monte Carlo algorithm described in the text. The figure represents the energy
per capsomer for a N = 32 shell as a function of the radius of the capsid, with the
energy minimum located at Re. In this particular case we allowed the coexistence
of both hexamers and pentamers, which corresponds to the ΔE = 0 limit in the
text. The optimal structure obtained at Re is an icosahedral T = 3 capsid (d).

configurations were analyzed2. Note that during the simulations the number of
pentamers in each structure is never imposed.

We performed two different types of simulations: one set with ΔE = 0, cor-
responding to the case where hexamers and pentamers have the same energy;
and a second set of simulations with ΔE � 0, to mimic the case where only one
type of capsomer is present. In the one-capsomer exploration, each single sim-
ulation was composed of 25000 MC cycles, which were usually divided in 15000
equilibration cycles and 10000 production cycles to get statistical properties. We
repeated the simulation from 10 to 20 times. For the hexamer-pentamer scenario,
we performed also simulations of 25000 MC cycles, but they were decomposed
in three parts 5000 equilibration cycles allowing only displacement movements of
capsomers, 10000 equilibration steps including also the pentamer-hexamer switch-
ing, and 10000 production cycles, allowing both types of movements. The ratio
of displacement versus switching moves was chosen as 2N : 1, which was found
to be efficient to find the energy minima. Finally, for each N , we repeated the
simulations at different radii R at intervals of ΔRstep = 0.01σ0, as illustrated in
Fig. 2.3c. The energy versus R typically shows a nearly parabolic behavior. The

2We analyzed structures up to N ∼ 100. However for larger values of N , non standard
techniques as parallel tempering or simulated annealing would be necessary to efficiently avoid
trapping in metastable energy minima [54].
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value of the energy and radius corresponding to the global minimum, define the
optimal radius Re(N) and the optimal energy Ee for a given N .

2.2.3 Two different morphological units

Most spherical viruses have pentamers and hexamers as morphological units in the
final capsid, although those units are not necessarily stable in solution. Therefore,
let’s first analyze the model in the limit of ΔE = 0, where the pentamers and
the hexamers have the same energy.

The total energy of a capsid scales with the number of capsomers, Et(N) ∼
N . Thus, for bigger capsids the energy decreases linearly and that complicates
the comparison between structures with different N . Therefore, we will analyze
the structures in terms of their energy per capsomer ε(N) = Et/N , which is
an intensive property that can be interpreted as a sort of equilibrium chemical
potential, μe(N) ≈ ε(N), in our model. Following the analogy, we can interpret
the different spherical structures obtained for different N as different phases of
the system, and the local minima in the ε(N) landscape will be associated to the
more stable equilibrium phases for the viral capsids.

We have minimized the free energy applying the Monte Carlo method de-
scribed above for N in the range N ∼ 10 − 100. Fig. 2.4 plots the energy per
capsomer ε(N) in units of ε0 versus the number N of capsomers. One can observe
that on average, ε(N) decreases as N increases, which is related to the accumu-
lation of hexons, i.e., capsomers with six neighbors. For large N , the energy per
capsomer tends to a value slightly larger than that of a flat hexagonal network3

εhex ≈ −3.38 ε0, due to the energetic penalty of the pentameric defects required
to close the shell.

Except for some small capsids, we find that all optimal structures for any N
are exclusively composed by 12 pentamers and N − 12 hexamers. This seems a
natural result, because the six neighbor coordination of hexons maximizes the lo-
cal energy, and 12 pentameric disclinations are the minimum required to close the
structure, in agreement with Euler’s theorem. In addition, the most pronounced
minima in ε(N) are seen at N = 12, 32, 42, and 72 (see Fig. 2.4), and the capsid
structures associated with them are shown in Fig. 2.5. All four minima have
icosahedral symmetry and match with the first elements in the CK series, T = 1,
T = 3, T = 4, and T = 7, respectively. Therefore, we find that the icosahedral

3For a binding interaction ε0 the energy of a capsomer that only interacts with its six nearest-
neighbors at the equilibrium distance will be −3ε0. The influence of the non-nearest-neighbors
reduces the total energy, even though the energy of the nearest-neighbors slightly increases due
to compression.
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Figure 2.4: Equilibrium landscape for spherical capsids (two morphological units).
Energy per capsomer for the optimal configuration of each N capsid. The case
corresponding to hexamers and pentamers having the same internal energy, ΔE =
0, is plotted.

symmetry and the T -number organization, commonly observed in viruses, arises
naturally from the free energy minimization of a very generic interaction. This
is the same result obtained in Ref. [33], despite the differences in the model,
which strongly supports the idea that these structures appear in a generic way
irrespective of the interaction details.

In our exploration up to N ∼ 100 we found two surprises: first, there is
a pronounced local minima at N = 78 that shows a tetrahedral symmetrical
structure, rather than icosahedral, although we are not aware of any virus or
aberrant particle adopting this architecture. Second, N = 92 is not a local
minimum, and in fact the energy of a disordered structure was slightly lower
than the CK-construction T = 9 itself. The absence of T = 9 is related to the
accumulated stress of this particular architecture due to the spherical template
constraint, as it will be discussed in detail in Chapter 4. Remarkably, for N
large, the differences in the energy per capsomer start to be relatively small and
the landscape of metastable structures becomes more complicated. In fact, many
large viruses assemble with the help of scaffolding proteins that might impose
the right curvature and select the proper structure. Thus, we did not perform a
systematic study for N > 100, but we were able to obtain two more CK structures
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Figure 2.5: Gallery of optimal structures for capsids with two morphological units
(ΔE = 0).

as energy minima for N = 122 (T = 12) and N = 132 (T = 13)4.
As we have discussed in the previous chapter, the number of quasi-equivalent

positions for the coat units is proportional to the T -number of shell. This suggests
that bigger T architectures should be more challenging to build. However, the
four equilibrium configurations obtained in the studied range of N , developed
spontaneously the icosahedral symmetry, despite the complexity of the structures.
For instance, we notice that the T = 7 is built by a chiral repeat motif. In
particular, in Fig. 2.5d we show the right-handed T = 7d. Surprisingly, for the
N = 42 local minima we find two well defined structures that have the same
energy (see Fig. 2.6). One corresponds to the strict icosahedral construction T =
4, and the other is the 5-fold isomer predicted by our CK generalized geometrical
model (see Chapter 1). We point out that the 3-fold and 2-fold isomers are
geometrically feasible for T = 4, but in those cases, pentamers become too close in
the central body and the energy increases too much, so they are not energetically
favorable.

2.2.4 One type of morphological unit

There are some viruses assembled using just one type of morphological unit,
typically pentamers [11, 17, 56]. To study this situation in the framework of our
model we now focus on the limit where the difference of internal energies between
hexamers and pentamers is relatively large, |ΔE/ε0| � 1. In equilibrium this will

4We performed larger MC simulations with 40× 25000 MC cycles with ΔRstep ranging from
0.0005 up to 0.001. The T = 12 and T = 13 shells were the local minima for N = 122 and
N = 132, respectively. The optimal values were Ropt = 5.7255 with ε(122) = −3.2337ε0 for
T = 12, and Ropt = 5.9229 with ε(132) = −3.2345ε0 for T = 13.
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Figure 2.6: The two equilibrium structures with the same energy per capsomer,
obtained for N = 42. (a) The icosahedral CK construction T = 4, and (b) its
5-fold isomer. The folded figures at the bottom have been built following the
generalized geometrical model discussed in Chapter 1.

lead to capsids where all units are exclusively hexamers (ΔE > 0), or pentamers
(ΔE < 0), depending on the sign of ΔE.

Again, MC simulations were performed to study the range of capsids from
N = 10 up to 99. The energy landscape ε(N) for the optimal structures of this
capsids made of one type of capsomer corresponds to the gray curve in Fig. 2.7.
Comparing the present results with the pentamer-hexamer scenario, one observes
a dramatic reorganization of the equilibrium spectrum. In particular, the optimal
energy of all structures is higher, and the new landscape ε(N) is more complex,
with many local minima competing specially below N < 50. These differences
are a direct consequence of the impossibility of combining capsomers of different
size.

More specifically, the pronounced minima in the landscape ε(N) include those
at N = 12, 24, 32, 44, and 48 (see Fig. 2.7). Interestingly, this sequence of
magic numbers coincides with maxima of the packing density of N hard disks
on a spherical surface [36]. Pentons made using only one type of capsomer are
energetically more costly than the pentamer-hexamer pentons of the previous
scenario (see Figs. 2.8b and 2.8c). Thus the suppression of capsomer switching
clearly has a destabilizing effect on icosahedral symmetry. In this scenario the
only surviving T -structures are T = 1 (N = 12) and T � = 3 (N = 32) (see
Fig. 2.9a and c). We use the index T � to label icosahedral capsids with T > 1
made by only one type of capsomer. These capsids are not strictly included
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Figure 2.7: Equilibrium landscape for spherical capsids. Energy per capsomer
for the optimal configuration of each N capsid. The cases corresponding to one
morphological unit, ΔE � ε0, and for two types of capsomers (hexamers and
pentamers), ΔE = 0, are plotted.

in the CK-construction based on coat proteins, but capsomers occupy the same
position in both cases and the basic rule N = 10T +2 still applies. However, the
penalty associated to pentons gives rise to alternative type of defects (see Fig.
2.8d). Interestingly, the N = 24 and 48 minima have octahedral symmetry (see
Table 1.2 in Chapter 1), characterized by the presence of holes with local 4-fold
axial symmetry (see Fig. 2.9e). In particular, the N = 24 minimum has the
symmetry of a chiral octahedral Archimedean solid known as the snub-cube, and
the N = 48 has an equivalent organization of capsomers, duplicating the number
of capsomers, and is called snub cuboctahedron. Finally, the N = 44 structure has
cubic symmetry (truncated rhombic dodecahedron), once again with holes with
4-fold axial symmetry (see Fig. 2.9d).

Interestingly, at N = 72 we find a local minima that is not very pronounced
but it is worth to comment. The structure resembles a T � = 7, but with some
defects (see Fig. 2.9f). The introduction of a small compression (R < Re(72)),
favors the presence of icosahedral symmetry, because the stress can be optimally
absorbed in the 5-fold sites. Surprisingly, at N = 42 we do not have any trace of
the intermediate CK-structure T � = 4. The reason is related also to the absence
of T = 9 in the pentamer-hexamer scenario. Both cases, T = 4 and T = 9, belong
to the class P = 1, which for spherical shells accumulates much more stress in
the 5-fold sites in comparison with rest of classes, as we will see in Chapter 4.
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Figure 2.8: Common local configuration of capsomers. (a) Hexon of hexamers
(equivalent for all-pentamers). (b) Penton combining one pentamer and 5 hex-
amers. (c) Penton made of hexamers (equivalent for all-pentamers). (d) Hole
with 4-fold local symmetry.

Figure 2.9: Gallery of optimal structures for capsids with one morphological unit
(ΔE � ε0).

The icosahedral structure T = 1 is equivalent for the two scenarios explored,
and is adopted by many viruses [1]. Interestingly, there are some viruses that
have an all-pentamer capsid with T � = 7, for instance polyoma virus [57], human
papilloma virus [1], and simian virus SV40 [58]. Moreover, in vitro experiments
performed by Salunke et al. in Ref. [11] on the self-assembly of polyoma virus
at different conditions, have shown the possibility of getting different empty all-
pentamer structures with the same building blocks. More specifically, they ob-
tained the wild type N = 72 with T � = 7, the common N = 12 with T = 1, and
also a N = 24 shell having the symmetry of a left-handed snub-cube5 (see Fig.
2.10). All these structures turn out to be local free energy minima in our model.

Therefore, the results obtained in this section seem consistent with the in vivo
and in vitro experiments commented above. In addition, it has been shown that

5More recently, Plevka et al. obtained octahedral snub cube particles in the crystals of a
bacteriophage MS2 coat protein mutant, rather than the T = 3 capsids adopted in the wild type
form [59].
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Figure 2.10: Polymorphism of the polyoma capsid. The structures above show
the three X-ray reconstructed capsids for the in vitro self-assembled polyoma
empty capsids [11]. Below there are the correspondent equilibrium structures
obtained as local minima in Fig. 2.7. In particular N = 12 (T = 1) (a), N = 24
(snub cube) (b), and N = 72 (T � = 7) (c). We have superimposed a fragment of
the original capsid in the capsid models to facilitate the comparison.

the coexistence of two different types of morphological units, i.e., pentamers and
hexamers, is not absolutely required to obtain icosahedral capsids with T > 1.
Nevertheless, in the one-capsomer scenario the formation of pentons is more
costly, which has a clear destabilizing effect on the icosahedral symmetry. This fa-
vors the emergence of other symmetrical structures and dramatically complicates
the spectrum of optimal structures (see Fig. 2.7).

2.2.5 Discussion

So far we have investigated the catalog of optimal equilibrium structures of vi-
ral capsids. However, the selection of a specific structure N , or equivalently the
selection of one energy minima in Fig. 2.7, involves some extra mechanisms in
addition to the basic interaction proposed in our model. Depending on the viral
species those mechanisms could be related, for example, to the existence of a
preferred “spontaneous curvature” among the coat subunits that can depend on
the assembly conditions [11], to the presence of scaffolding proteins that impose
a particular radius [20]; or by the size of the enclosed genome [60]. Then, these
effects restrict the size of the capsid to a particular range of radii in the neighbor-
hood of one of the local energy minima, for instance, in the range N = 70±5 that
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contains the icosahedral solution T = 7. But capsids of native virus tend to be
perfectly monodisperse, so another intriguing question is how this monodisperi-
sty is achieved, or, referring to the previous example, why the T = 7 structure
with N = 72 is preferentially selected compared to its neighbors N = 71 or
N = 73. Looking at Fig. 2.4, one can see that the energy per capsomer of the
N = 72 structure differs by only ≈ 0.05ε0 from the chemical potential associ-
ated to its neighbors N = 71 and N = 73. This could seem a small difference,
but one should not forget that the total energy difference is 72 times larger, i.e.,
around ≈ 54 kT . Since at equilibrium, the probability of finding a particular
structure follows a Boltzmann distribution, the relative abundance of the N = 71
and N = 73 capsids will be completely negligible, and the minimum of ε(N) at
N = 72 will ensure the production of nearly monodisperse T = 7 capsids.

Therefore, under this thermodynamic framework it is easy to justify why the
coat proteins of some spherical viruses are able to produce alternative icosahedral
or highly symmetrical structures when assembled at different conditions [11, 30,
53], or when the regions of the coat proteins involved in the preferred curvature
are changed by point mutations [61, 62].

There are two important remarks that have to be made at this point. The
first one is that the present model only aims to describe what are the optimal final
structures for spherical viruses. The pathways and the precise process of capsid
formation lies outside the scope of this model, and will be analyzed in more de-
tail in the third part of this thesis. The second point is that we are not claiming
that the Lennard-Jones like potential used in the model is the actual interaction
between capsomers in real viruses. Nevertheless, it captures the crucial elements
required for a successful capsid self-assembly, i.e, the attraction needed for the
aggregation and the excluded volume repulsion associated to the steric effects
between capsomers. Remarkably, the exploration of other similar potentials [33],
also with different ranges of attraction yield the same results [63]. The truly re-
markable conclusion is that the emergence of icosahedral structures of viral cap-
sids seems to be a general consequence of free energy minimization, irrespective
of the particular details of the interaction. Indeed, the typical interactions associ-
ated to the attraction between proteins, like hydrophobic or hydrogen bonds, are
thought to be of a relatively short range. A part from the possible cooperative
hydrophobic effects promoted by the solvent during assembly, electrostatic inter-
actions play also a relevant role in the stabilization of capsids [64]. Interestingly,
it has been shown that the combination of a short range hydrophobic interaction
with an emergent longer range electrostatic repulsion in the aggregation state is
an efficient mechanism to stabilize the formation of hollow shells [65,66]. In any

99



Chapter 2. Optimal Structures for Spherical and Elongated Viral Capsids

case, this issue and the influence of more realistic details, like the shape of coat
subunits and their intrinsic anisotropic interactions, are out of the scope of this
thesis, and will be addressed in future investigations.

2.3 Prolate capsids

Now that the efficiency of our simple model in exploring the landscape of optimal
spherical capsids has been shown, we turn into the less studied scenario of prolate
viral structures.

The study of elongated structures is more challenging than that of spherical
structures from either an experimental and a theoretical point of view. However,
the exploration of coarse-grained models have paved the way to get new insights
in the physical origin of such structures. Indeed, a phenomenological model was
recently developed by Chen and Glotzer [67] to study the optimal packing of iden-
tical hard spheres with square-well interactions on a prolate spheroid surface with
convexity constraints [67]. They were able to show that the elongated optimal
structures composed of 15, 17, 18, and 42 identical units, resemble the hypo-
thetical structures of aberrant FHV [68] and of native φ29 [69], although these
viruses have two types of morphological units rather than one. Further, Nguyen
and Brooks [70] studied the polymorphism observed in the self-assembly of viral
capsids, using a simplified model for capsomers. Besides spherical T -number cap-
sids, they obtained some elongated structures including that of the maize streak
virus (MSV) [71] as well as some prolates with structures similar to those of FHV
and φ29, although combining hexamers and more than 12 pentamers. More re-
cently, Fejer et al. obtained some elongated shells as energy minima for a generic
anisotropic interaction between capsomers of a unique size [72].

However, the range of possible prolate structures, the validity conditions for
the geometrical construction introduced in Chapter 1, and the physical principles
justifying the appearance of prolate architectures were not fully known. Thus,
the goal of this section is to explore what are the energetically optimal structures
for prolate viruses. To that end, we have adapted and extended the minimal
model of interactions introduced in the previous section based on Ref. [33].

2.3.1 Minimal model of prolate capsids

To study the equilibrium structures for bacilliform capsids, we have adapted the
model introduced for the spherical case. The main difference consists on the ge-
ometrical template that constraints the movement of the capsomers. Capsomers
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Figure 2.11: Spherocylindrical template. The surface is determined by the ra-
dius R and length L. All possible capsomer-capsomer interactions are shown,
indicating in each case the equilibrium distance.

are now forced to be on the surface of a spherocylinder made of two hemi-spherical
caps of radius R and a cylindrical body of radius R and length L (see Fig. 2.11).
As in the spherical study, this surface restriction will allow a quick exploration of
the possible equilibrium structures, but presents limitations at big radii, where
optimal structures are expected to be more faceted (see Chapter 4). Notice that
in the spherical case, for each N it was only necessary to explore the radius to
obtain the equilibrium structure. Here, instead one has to deal also with the
length. In particular, for a fixed R one can always find an optimal length L
that properly closes a structure of N capsomers. Thus, in this case, each N will
have associated a complex energy landscape εN (R) with several energy minima
at different radii. This is clearly a more complicated scenario, and it required a
bigger effort in the analysis of the possible structures.

The algorithm programmed to study prolate viral capsids works as follows.
N hexamers are placed at random positions on the surface of a spherocylinder of
body length L and radius R. In order to find the free energy minimum structure,
for each N at a fixed value of R, three different types of Monte Carlo moves
are attempted: (i) a move to change the position of the capsomer on the surface
of the spherocylinder; (ii) a move to change the capsomer size, i.e., switching
between the hexamer state and the pentamer state; and (iii) a move to adjust
the length L of the cylindrical body6. We emphasize again that this Monte
Carlo protocol can explore the energy minima, but it is intended to describe
neither the actual kinetics nor the pathways involved in the physical process of

6To refine the results we also applied a similar Monte Carlo simulation where the length was
changed manually.
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assembly. Different relative ratios between the different types of moves were
tested in order to facilitate the reaching of the optimal structure. Typically, the
combination that worked best was 200:5:1 (position:size:length). The system was
then allowed to equilibrate (typically for 25000 to 125000 MC steps, and from 10
to 40 repetitions), and both the average and the absolute minimum values of the
free energy after equilibration were recorded.

2.3.2 Two different morphological units

Here, we analyze the equilibrium structures for capsids where hexamers and pen-
tamers have the same internal energy ΔE = 0. More specifically, we explored
the energy landscape for bacilliform capsids with a total number of capsomers
between 12 < N < 100, and for each N we obtained the optimal values of the
length, lN (R), and free energy per capsomer, εN (R), as a function of the radius
R.

The solid curve of Fig. 2.12 shows N = 82 as a particular, but representative,
example of the spectrum εN (R). In general, all equilibrium structures showed a
cylindrical body made of hexamers distributed in a regular hexagonal pattern,
and an accumulation of six pentons in each cap, usually made of pentamers
(see Figs. 2.13). As in the spherical case, this is a consequence of the Euler’s
theorem. In the absence of bending penalties associated to the curvature, capsids
with small radii and long cylindrical bodies are energetically favorable in the
equilibrium spectrum. This is a consequence of the fact that the hexagonal
network present in the cylindrical body allows local optimal configurations, with
six nearest-neighbors located at an equilibrium distance from each other. Instead,
the presence of pentons in the spherical caps leads to higher energies on average,
because reduces the coordination number, and usually has associated a significant
amount of stress on the capsid [73] (see Chapter 4). However, it is evident
from Fig. 2.12 that the energy landscape εN (R) is not smooth, and shows some
pronounced local minima at some specific radii. In general, these minima are
related to well defined architectures that optimize the free energy, and are a
consequence of the discrete nature of capsids and the interactions between the
coat units. We notice though that the final equilibrium structure of a capsid
does not necessarily corresponds to the global energy minimum structure for a
given N , but rather corresponds to one of the different local minima, which end
up being selected once the bending energy, spontaneous curvature, size of the
encapsidated genome [60, 74] or even scaffolding mechanisms [20] are taken into
account, as in the spherical case.

Interestingly, the energy landscape of N = 82 (see Fig. 2.12) shows four
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Figure 2.12: Spectrum of the free energy per capsomer εN (R) versus the radius
R for a fixed number of capsomers N = 82. The curve corresponds to the results
for the simulation with two types of capsomers (ΔE = 0). The vertical dashed
lines indicate the position of icosahedral prolates Tend.

pronounced local minima at radii similar to the CK capsids. A close inspection
of the structures shows that they are in fact Tend prolates centered on a 5-fold
axis (see Fig. 2.13), in agreement with the geometrical bacilliform construction
(see Chapter 1). When the spectra for different N are compared, most of the
pronounced minima are not always present, but appear periodically at similar
radii.

These results suggest the existence of a discrete set of special “magic” values
for the radius of the structures, which are particularly optimal from the energetic
point of view.

Table 2.1 lists the values of the radii that correspond to the deepest local
free-energy minima that appear consistently for different values of N . A careful
analysis of the corresponding optimal structures at these special values of the
radii indicate that twelve pentamers have always been distributed symmetrically
on the caps. Note that the energetically favorable structures correspond to hav-
ing T -numbered caps with cylindrical bodies made of a rolled-up hexagonal sheet
of hexamers. In particular, well-defined local free-energy minima were obtained
for the radii that correspond to hemi-spherical Tend = 1, 3, 4 and 7 caps centered
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Figure 2.13: Optimal prolates for N = 82. We show the pronounced local minima
present in the energy landscape ε82(R) (see Fig. 2.12). They correspond to Tend

(5-fold) bacilliform capsids.

on a 5-fold axis, coinciding to the lowest triangulation numbers in the CK clas-
sification. We also find well-defined minima for radii corresponding to Tend = 1
and Tend = 3 with caps centered on a 3-fold axis. In our simulations, prolates
with icosahedral caps centered on a 2-fold axis were also observed but only for
Tend = 1. These structures are unusually distorted, and apparently unfavorable
for larger caps. Interestingly, for a fixed Tend the average radii of the different
axial symmetries are slightly different, in agreement with the prolate geometrical
theory that predicted R5F < R3F < R2F (see Chapter 1).

Fig. 2.14 shows a gallery with one example for each type of icosahedral
capped prolate obtained in our simulations. We observe that all bodies are made
of hexamers arranged either in rings (Rn) or zigzag (Zn) layers of n capsomers,
with the exception of Tend = 1 (2-fold) and Tend = 7 (5-fold) that have skewed
bodies (see also Table 2.1). These are precisely the body architectures that we
expected from the prolate geometrical model.

Plots of the minimized energy per capsomer versus the number of capsomers,
at a fixed radius, reveal a well-defined sequence of energy minima associated with
a specific cap configuration. Fig. 2.15 illustrates, as an example, a plot of ε(N)
versus N for a fixed radius, R, that corresponds to a Tend = 7 cap centered on a
5-fold axis. The smallest optimal prolates associated with these energy minima
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< R > Cap Body N0
seq ΔN < ΔL >

1.668 Tend = 1 (5-f) R5 12 5 1.68
1.673 Tend = 1 (3-f) Z6 12 3 0.97
1.674 Tend = 1 (2-f) skew 12 2 0.61

2.761 Tend = 3 (5-f) Z10 32 5 1.00
2.875 Tend = 3 (3-f) R9 32 9 1.72

3.205 Tend = 4 (5-f) R10 42 10 1.71

4.243 Tend = 7 (5-f) skew 72 5 0.70

Table 2.1: Properties of the optimal sequences corresponding to the case where
hexamers and pentamers have the same internal energy (ΔE = 0). < R > is the
average radius of the sequence; Cap indicates the structure (the T number) of the
hemispherical caps, as well as the axial symmetry for the icosahedral ones; Body
describes the pattern of hexamers in the cylindrical part; N0

seq is the number of
capsomers of the spherical seed of the sequence; ΔN is the number of hexamers
added to the body for consecutive particles in a sequence, and < ΔL > is the
length step obtained from the simulation.

are also shown in the figure. It is remarkable that the difference in the number
of capsomers between these structures is fixed and equal to ΔN = 5, which is
in agreement with the predictions of Chapter 1 for the construction of prolate
viruses with Tend = 7 caps centered on 5-fold symmetry [5, 77]. Our results
confirm the different rules predicted in the previous chapter for the prolates that
are closed by T -numbered caps centered on the 3-fold or 2-fold axes, listed also
in Table 2.1.

Remarkably, the results of our simulations indicate that not all icosahedrally-
capped prolates that can be geometrically constructed seem to be energetically
optimal. In particular, we do not obtain 3-fold prolates for Tend > 3, and 2-fold
architectures seem only thermodynamically relevant for Tend = 1. To understand
this phenomenon it is useful to compare the energies of prolates with the same
Tend-number for the different axial symmetries. Fig. 2.16 plots the sequences
corresponding to Tend = 1 and Tend = 3. Surprisingly, for Tend = 1 the 3-fold
structure has a slightly lower energy than the 5-fold one, and the energy of the
2-fold particles is not that high, and some of them are in fact locally optimal
structures. For Tend = 3, the 3-fold structures still appear as locally optimal ar-
chitectures for particular numbers of capsomers, despite having in general higher
energies than those centered on the 5-fold axis. In contrast, for Tend = 3 the
2-fold symmetry does not appear as an optimal structure in our simulations, and
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Figure 2.14: Gallery of optimal prolate capsids based on icosahedral caps for
ΔE = 0, where hexamers are colored in green, and pentamers are colored in
gold. The top images show a zenithal view of the cap, whereas the lower images
show a lateral view of a representative example of the complete bacilliform. For
each cap, the arrangement of hexamers in the body as well as the minimum step
in the number of capsomers ΔN are also indicated. The structures have been
rendered using gOpenMol [75, 76].

for Tend > 3 only the 5-fold symmetry appears to be an optimal architecture.
Moreover, it turns out that for Tend > 1 the 5-fold based structure is consistently
the one having the smallest energy, followed by that of the 3-fold and 2-fold (see
Fig. 2.16). The divergence in energy for the different prolates seems related to
the different distribution of pentamers in the caps. The 5-fold case is the most
efficient absorbing the stress induced by the spherical curvature, while the 2-fold
case is clearly the worst configuration.

Finally, we have analyzed other less pronounced free-energy minima. They
also show precise radii of construction and growing rules ΔN . These non-
icosahedral capped structures usually have highly symmetrical tubular bodies
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Figure 2.15: Sequence of energy minima at fixed radius. (a) Free energy per
capsomer εR(N) versus number of capsomers N at fixed radius R, corresponding
to the case Tend = 7 with two different morphological units. (b) Images of the
structures corresponding to the first three minima of the sequence: a spherical
T = 7 capsid, and two prolate capsids with Tend = 7, and Q5F = 8 and Q5F = 9,
respectively. At each step hexamers introduced in the body are colored in blue
(Q5F = 8) and red (Q5F = 9). Moreover, the highlighted pentamer illustrates
the rotation of the inferior cap.

made of rings or zigzag layers of hexamers. Interestingly, the nonicosahedral
capsid of such prolates seem to be associated with the shallow minima in the
spherical study, enhanced by the well-formed bodies. We remark that both the
icosahedral spheres and prolates produced deeper energy minima, which supports
the dominance of icosahedral symmetry among viral capsids. However, these non-
icosahedral structures should not be discarded as possible competitors in some
circumstances.

In the block 2.3.4 we discuss in detail some experimental findings under the
perspective of these results.

2.3.3 One type of morphological unit

Some viruses, such as those of the polyomaviridae family or the maize strike virus
(MSV), are made from only one type of capsomer (pentamers in the cited cases),
and can assemble into elongated particles [71,78,79]. To study the set of possible
optimal structures for these capsids one can again increase the internal energy
difference between pentamers and hexamers, |ΔE/ε0| � 1. In the spherical case
(see Section 2.2.1 and Ref. [33]), this led to a dramatic reorganization of the
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Figure 2.16: (a) Sequence of local free energy minima for Tend = 1 bacilliform
particles centered on each of the possible axes of symmetry (the lines are just a
guide for the eye). (b) Same plot for Tend = 3, where the 2-fold structures have
been computed based on our geometrical model.

optimal structure spectrum, where non-icosahedral capsids strongly competed
with icosahedral ones.

That is also the case for the spherocylindrical model. As an example, the
gray line in Fig. 2.17 shows the results of the optimal energy per capsomer as a
function of the radius εN (R), for N = 82 and |ΔE/ε0| � 1. The energy is lower
for small radii prolates (long bodies), and some well defined energy minima are
present.

As in the two capsomer case, an exhaustive analysis was performed for dif-
ferent values of N . Prolates based on caps T ∗end = 1, 3, and 7 centered on both
5-fold and 3-fold symmetries were found7. However, now the 2-fold structure
is not even present for Tend = 1, and the 3-fold construction competes also for
T � > 3. Interestingly, here the cylindrical body has stabilized the T �

end = 7 cap
bacilliforms, contrarily to the spherical case where a slightly distorted T � = 7
was obtained at N = 72. Nevertheless, as in the spherical shell with only one
type of capsomer, no T ∗end = 4 structure was found. This is in agreement with
the fact that spherical caps within the P = 1 class accumulate more stress than
other classes (as will be shown in Chapter 4), a feature that is accentuated for
big shells in general, and specially for capsids made of only one capsomer type.
The main properties of these icosahedral prolates are summarized in Table 2.2
and for each case an example is shown in Fig. 2.18.

7Recall that the triangulation number T ∗ indicates that the distribution of capsomers is
equivalent to the classical T , but with only one type of capsomer.
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Figure 2.17: Spectrum of the free energy per capsomer εN (R) versus the radius
R for a fixed number of capsomers N = 82. The solid line corresponds to the
results for the simulation with two types of capsomers (ΔE = 0), and the gray
line is for one type of capsomer (|ΔE/ε0| � 1).

Despite the fact that these structures are made by only one kind of capsomer
their capsomers occupy again the same positions expected from the generalized
prolate geometrical model. Moreover, the same selection rules ΔN , and the rest
of geometrical properties for icosahedral capped structures are recovered (see
Tables 2.1 and 2.2).

As in the spherical case, non-icosahedral capped prolates become particularly
relevant for the one-capsomer scenario. In particular, a bacilliform structure
based on a snub cube centered on a 3-fold axis was obtained periodically at steps
ΔN = 3 (see Figs. 2.9 and 2.18). For bigger radii the bacilliform shape favors
also the formation of stable structures that seem based on the spherical capsid
N = 44 with ΔN = 6 (see Fig. 2.9), and 6-fold axial symmetry (which was a
local symmetry embedded in a 2-fold axis in the spherical structure). This prolate
architecture is stable enough to suppress the presence of a possible alternative
architecture based on the spherical capsid N = 48. The geometrical properties
of all these bacilliform shells are summarized in Table 2.2, and the structures are
illustrated in Fig. 2.18.
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< R > Cap Body N0
seq ΔN < ΔL >

1.703 T ∗end = 1 (5-f) R5 12 5 1.72
1.724 T ∗end = 1 (3-f) Z6 12 3 1.01

2.593 Snub Cube skew 24 3 0.69

2.789 T ∗end = 3 (5-f) Z10 32 5 1.01
2.912 T ∗end = 3 (3-f) R9 32 9 1.75

3.344 Cubic Z12 44 6 1.03

4.235 T ∗end = 7 (5-f) skew 72 5 0.65
4.244 T ∗end = 7 (3-f) skew 72 3 0.39

Table 2.2: Results for the optimal sequences of spherocylinders with one kind of
capsomers (|ΔE/ε0| � 1). The columns have the same meaning as in Table 2.1.

Figure 2.18: Gallery of optimal prolate capsids for |ΔE|/kBT � 1, i.e, for one
morphological unit, where capsomers are all pentamers. The top images show a
zenithal view of the cap and the bottom images a lateral view of the complete
bacilliform. For each cap, the arrangement of hexamers in the body as well as the
minimum step in the number of capsomers ΔN are also indicated. The structures
have been rendered using gOpenMol [75, 76].
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2.3.4 Equilibrium map of prolates

The results of our simple physical model derived above complement the geomet-
rical model of Chapter 1, and show that some prolates, which are geometrically
feasible, are not probable structures from an energetic point of view. Moreover,
it introduces some alternative non-icosahedral structures, that were not proposed
before, but, that could compete with the icosahedral elongated ones. Combin-
ing these two models, we summarize in Fig. 2.19 the map of possible optimal
structures for bacilliform capsids up to T = 7.

Figure 2.19: Equilibrium map of prolates. We combine the most relevant results
for one and two capsomer types bacilliform capsids, and organize the structures
in terms of the reduced radius, i.e, R/a, as in the geometrical model.

In the previous chapter the case studies for bacilliform capsids composed
of two type of capsomers were practically exhausted. In the context of these
optimal structures obtained from the physical model, let’s now discuss again the
structures of some bacilliform capsids made of two types of capsomers, as well as
some all-pentamer elongated viruses.

Prolates with two types of capsomers

Our thermodynamic study confirms that the 5-fold icosahedral bacilliform con-
struction suggested by Moody [77] for bacteriophages is, in general, the most
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stable elongated architecture, and follows precisely the geometrical rules derived
in Chapter 1. In particular, we recover the structure of φ29 [69], which is a
Tend = 3 (5-fold) Q5F = 5 (Fig. 2.14d). The convenience of the 5-fold geome-
try was discussed for tailed bacteriophages, but this construction should be also
efficient for other types of viruses.

Figure 2.20: Aberrant capsids of flock house virus (FHV). The top row shows
two elongated structures proposed for FHV mutants based on the X-ray recon-
struction of the wild type T = 1 [68]. The associated optimal structures of both
FHV mutants obtained in the simulations. The two capsids correspond to T = 1
(3-fold) with Q3F = 3 and 4, respectively. On the right a polyhedral construction
of the bigger mutant is shown.

Interestingly, 3-fold prolates are also optimal structures, at least for small
Tend. We emphasize that for Tend = 1 the 3-fold structure has even a lower
energy than the 5-fold construction (see Fig. 2.16a), which might justify why
several elongated plant viruses, like AMV [80], or some aberrant structures of
flock house virus FHV [68] (see Fig. 2.20) seem to adopt a capsid based on
a 3-fold rather than the typical 5-fold construction of bacteriophages [5]. For
Tend = 3, 3-fold bacilliform structures are still equilibrium structures, and it has
been suggested that some plant viruses, for instance RTBV [81] and badnavirus
genus [82], have this particular structure. Finally, 2-fold particles are at least
local optimal structures for Tend = 1, which supports the possibility of a 2-fold
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structure of the AMV8.

Elongated Papovaviridae particles

In the infection process of Papovaviridae viruses, which form all-pentamer cap-
sids, hollow tubular particles, usually with rounded ends, have been observed and
characterized experimentally. In particular, Kiselev and Klug observed mostly
narrow tubes in human wart virus, wide tubes in polyoma virus, and both kind
of tubes in rabbit papilloma virus [83]. The narrow tubes have a diameter about
300 Å, and are made of paired pentamers placed in a very distorted hexagonal net-
work. On the other hand, the diameter of the wide tubes is about 450 to 550 Å ,
and pentamers in the body show a clear hexavalent-like configuration, although
they are still paired [78, 79] (Fig. 2.21). Due to the hexagonal configuration of
the tube, we focus on the wide prolate.

Figure 2.21: (a) Electron micrograph of the most frequent class of “hexamer”
tube, which is capped at both ends and appears adjacent to an icosahedral T � = 7
capsid (extracted from Ref. [78]). The diffraction was performed on the boxed
area, which was flattened. (b) Filtered image obtained from the diffraction pat-
tern of (a). (c) Computer planar model from regular pentamers arranged in a
p2 lattice. (d) Architecture proposed based on our analysis: icosahedral prolate
capped by a T �

end = 7 centered on a 3-fold axis.

8See Section 1.3.3 in Chapter 1 for the detailed geometrical discussion about AMV and
RTBV.

113



Chapter 2. Optimal Structures for Spherical and Elongated Viral Capsids

The distance between the morphological units is about 90 to 100 Å . From
this one obtains an approximate radius R/σ0 ≈ 4.5 − 5.5, which is similar to
the T �

end = 7 bacilliform capsids of the physical model (see Table 2.2). This is
not surprising since the size of these tubes is similar to the wild type spherical
shell, which is precisely a T � = 7. In addition, the tube is skewed with a chiral
angle 47.73o, which is very close to the theoretical prediction 49.11o for the 3-
fold architecture for that Tend (see Chapter 1). Thus, Papovaviridae wide tubes
seem to be T �

end = 7 prolates centered on the 3-fold axis (see Fig. 2.18h). We
notice that a study based on a tiling theory also pointed to a structure based on
a T �

end = 7, although the axial symmetry was not confirmed [84,85].

Geminivirus

The structure of geminate viruses, and the effect of genome length on the size of
their capsids, is quite remarkable. For example, both maize streak virus (MSV)
and African cassava mosaic virus (ACMV) [86] adopt a spherical T = 1 shell, but
form geminate capsids when the full length genome is present [71]. A geminate
capsid is composed of 22 pentamers and its structure resembles a T ∗end = 1 (5-f),
as shown in Fig. 2.22.

Figure 2.22: X-ray reconstruction of MSV [71] and the corresponding N = 22
prolate capsid based on a Tend = 1 (5-fold) and Q5F = 3.

Nevertheless, we remark that the two halves of MSV seem slightly separated
and rotated compared to our N = 22 particle. This distortion might be caused
by the encapsidated ssDNA.

2.4 Conclusions

In summary we find that the minimization of the free energy of a very simple
physical model, which captures the essential ingredients of viral assembly, re-
produces the structures of spherical and prolate viruses observed experimentally,
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both in vivo and in vitro. For spherical shells, the work of Zandi et al. in Ref. [33]
already showed that the origin of icosahedral symmetry was intimately related
to the free energy minimization of a generic interaction. Here, we have extended
these ideas to the case of elongated structures. This study has been particularly
challenging, since the inclusion of a new degree of freedom, the length of the
bacilliform body, dramatically increased the effort to explore the map of optimal
equilibrium solutions. In addition, contrarily to the CK construction of spherical
viruses, there was not a complete catalog of icosahedral capped prolates to com-
pare our results. This motivated the development of the extended geometrical
model of elongated capsids discussed in Chapter 1.

More specifically, our study reveals that the icosahedrally-capped prolates
centered on 5-fold axial symmetry proposed by Moody [77], and adopted by
some bacteriophages, like T4 and φ29, are indeed free energy minima structures.
Moreover, we also find that bacilliform viruses with icosahedral caps centered on
3-fold and, exceptionally, on 2-fold axis, are also optimal structures and compete
with the 5-fold architecture, at least, for small T caps. Interestingly, we have
found in the literature several examples of elongated viral capsids, especially
among plant viruses, that seem to adopt a T = 1 (3-fold) configuration, like
AMV and aberrant FHV, or a T = 3 (3-fold) prolate structure, like that of
RTBV.

Remarkably, the icosahedral prolate structures obtained in the simulations
follow precisely the selection rules for the length, the structure of the body, as
well as for the total number of capsomers N that were derived in the geometrical
prolate model in Chapter 1.

The physical model also allowed the exploration of capsids made of only one
type of capsomer, in correspondence with all-pentamer viruses. In these cases
icosahedral-capped structures were also energy minima, except for T = 4, and
followed again the rules of the geometrical model. The 2-fold configuration was
not an optimal structure this time, but the 3-fold architecture competed with the
5-fold one even for the largest T prolates explored. A notable example are the
elongated capsids of polyomavirus observed in vivo, which based on our analysis
seem to be a T � = 7 (3-fold) architecture. In addition, in the all-pentamer
scenario some non-icosahedral capped structures were particularly relevant and
competed energetically with the T -number capped prolates.

Thus, the combination of the physical model and the geometrical construction
brings an extended catalog to classify prolates capsids that should be helpful for
the experimental determination of structures. In particular, our results shed some
light on the structure of several elongated viruses, such as φ29, AMV, aberrant
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FHV, RTBV, polyoma tubular particles, and geminate viruses, many of which
have not yet been fully characterized.

Finally, in a more general perspective, the structural insights provided by the
results of our work open the door to the design and control of the structure and
dimensions of viral-like particles, which can be extremely useful as nanotemplates
and customized containers in nanotechnological applications.
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Chapter 3

Theoretical Insights in the

Elasticity of Viral Shells

3.1 Introduction

The main role of viral capsids is to protect the genetic material of the virus and
to ensure its safe release into a new host. In particular, during the extracellular
period between the released of the virion, from an infected cell, until a new host is
found, the viral capsid must face a variety of physicochemical conditions [1], that
can be even extreme in terms of temperature, pH, radiation or dehydration [2,3].
In addition some results suggest that virions are also subjected to substantial
mechanical stress due, for instance, to osmotic shocks related to a sudden change
of salt concentration in the environment, or to the packaging of the viral genome
at high densities [4–7]. In fact, double stranded DNA (dsDNA) viruses have to
withstand up to tens of atmospheres arising from the confined genetic material [7,
8]. Moreover, after the self-assembly of the capsid and before becoming infective,
many viruses suffer a maturation process that properly tunes the mechanical
properties of the viral shell. This maturation often changes the shape of the
capsid through a process named “buckling transition” [1, 9–17]. In this process
an initial spherical capsid with icosahedral symmetry undergoes a transformation
into a polyhedral-like shell with more flat triangular faces, adopting usually the
shape of an icosahedron.

Therefore, the mechanical properties of viral capsids play a very important
role in the viability and functionality of a virus. The study of these properties
has motivated an intense research in the last years and will be the main topic of
this second part of the thesis.
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Since different viruses have common designs and can be subjected to similar
types of mechanical stresses, this suggests that some of the properties that confer
stability to the capsids should be generic, and intimately related, for instance,
to the shape or structure of the capsid, or the strength of the protein binding,
rather than to the specific amino-acid sequence of the coat protein.

From a physical standpoint, viruses can be regarded essentially as nanoscopic
thin shells. Thus, there has been a renewed interest in applying traditional con-
cepts from elasticity theory [18] to understand some of the mechanical properties
of viral capsids [19–32]. These studies have been specially promoted by the ap-
plication of some experimental techniques customarily used in physics that have
been able to extract precise mechanical properties. For instance, optical tweezers
have allowed to measure the force of the packing motor of bacteriophages during
the storage of dsDNA [33], and atomic force microscope (AFM) has been able to
probe the mechanical resistance of single capsids [34–52].

Spherical capsids have been the main subject of these studies, and the elas-
ticity models have been built usually based on two different approaches. In
one case, capsids are described as continuum thin shells characterized by few
elastic moduli [21–28]. These studies have provided interesting insights of sev-
eral phenomena from buckling [21] to conformational transitions [24]. The other
elasticity approach is based on the discretization of capsids in elastic networks.
These models go from quasi-atomistic to more coarse-grained descriptions, and
have facilitated the implementation of nanoindentation simulations (many times
in correspondence with specific AFM experiments) [37–43, 47, 49–51], and also
the study of viral capsids fluctuations [19,20,29–31], which might play an impor-
tant role triggering the swelling of capsids for gene delivery [19], or the buckling
transition during virus maturation [29]. These two strategies provide powerful
techniques to characterize the mechanical properties of viral capsids. Neverthe-
less, the connection between the macroscopic magnitudes that characterize the
structures, with the morphological constituents and their intermolecular interac-
tions has not received so much attention [53–55].

In this chapter we will present some simple ideas to link the global mea-
surements with the local properties of capsids, which should establish a basis to
understand the microscopic origin of their elastic behavior. This description is
an intermediate approach between the continuum elasticity and elastic network
models.
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3.2 Elastic properties of quasi-spherical capsids using

a simple surface-covering model

In this section, we will use a simple surface-covering model to perform a qual-
itative comparison between the geometrical and elastic properties of spherical
and icosahedral shells. The influence of the precise structure of the virus on
these properties, and specially on the occurrence of a buckling transition will be
analyzed in more detail in the next chapter.

3.2.1 The size of equilibrium structures

As we have previously discussed the assembly of capsids is driven by attrac-
tive interactions among coat proteins, which eventually lead to a specific final
structure. To protect efficiently the genetic material, capsomers have to be close
packed in the final shell, and this packing is limited by the steric effects of coat
units, rather than by the attractive forces. This means that the size and shape of
the structural subunits determine the amount of proteins that fit in a particular
shell with a given shape and size, irrespective of the details of the cohesive forces,
and of whether those are specific (e.g., disulfide bonds or covalent cross-linking)
or non-specific (e.g., hydrophobic and electrostatic). Therefore, this paves the
way to derive very general laws relating the number of coat proteins to the size
of the resulting capsid for any given shape.

In particular, there is a simple way to estimate the optimal radius of a shell
based on a surface-covering assumption. The idea is to assign an effective area
to each capsomer and then to compute the radius of the structure whose area
can accommodate all the capsomers, assuming full coverage. This procedure is
particularized for spherical and for polyhedral capsids in the following subsec-
tions (see Fig. 3.1), although the same concepts can be applied to other type of
structures.

Spherical capsids

Let’s first derive a general expression for the radius of spherical capsids with
icosahedral symmetry using this simple full-covering assumption (see Fig. 3.1).
As we have seen in the first block of this thesis, T -shells are composed of 10(T−1)
hexamers plus 12 pentamers. Thus, the total surface is given by St = 10(T −
1)AH + 12AP , where AH and AP are the effective surface contribution of an
hexamer and a pentamer, respectively. Since the surface of a spherical shell
is Ssph = 4πR2, by equating both areas we obtain the radius in terms of the
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Figure 3.1: Spherical and icosahedral shapes. Two structures with icosahedral
symmetry are shown: a spherical capsid (a) and an icosahedron (b). Both cases
have a T = 7l configuration and are made of 72 capsomers. Notice that the
hexamers and pentamers are not exactly the same in the two morphologies. In
particular, pentamers are almost flat in the spherical shape, but adopt instead a
pyramidal shape in the icosahedron.

T -number

Rsph
th (T ) =

√
1

4π
[10(T − 1)AH + 12AP ] (3.1)

This is a general expression that could be also expressed in terms of N just
inverting the CK relation T (N), derived in Chapter 1, Eq. (1.4).

Let’s now particularize it to the simple physical model for capsomers used in
the simulations of Chapter 2. In this context, it is important to stress that the
effective area of the capsomers has to be chosen to cover the surface of the shell,
rather than just using the physical projection of the actual spherical capsomer
on the surface. Accordingly, and as shown in Fig. 3.2, an hexamer is represented
by an hexagon of area

AH = 2
√

3 σ2
0 (3.2)

which circumscribes a capsomer of effective radius σ0; similarly, a pentamer is
represented by a pentagon with the same side as the hexagon, and an area

AP =
5

3
cot

(π

5

)
σ2

0 (3.3)
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3.2. Elastic properties of quasi-spherical capsids

Figure 3.2: Effective area of a hexamer and a pentamer in a spherical capsid. The
physical model introduced in Chapter 2 used spherical capsomers of different
size for hexamers (σH = σ0) and pentamers (σP ), which were inscribed in a
hexagon and pentagon of the same edge, respectively. The areas of these polygons
correspond to the effective surface of the capsomers in the spherical capsid.

Then, the expression for the radius, Eq. (3.1), takes the form

Rsph
th (T ) =

√
5
√

3

π

(
T +

1√
3

cot
(π

5

)
− 1

)
σ0 (3.4)

which is plotted in Fig. 3.3. Interestingly, this simple relation is in very good
agreement with the radii of the equilibrium structures obtained from the simula-
tions in Chapter 2.

In the limit of big shells the contribution of the 12 pentamers becomes negli-
gible yielding

Rsph
th (T ) =

√
5
√

3

π
T σ0 ≈ 1.66

√
T σ0 (3.5)

which gives the expected scaling R ∼ T ∼ √N , and constitutes a much simpler
relation. In Fig. 3.4 we plot the relative error of this approximation, where one
can see that, except for very small T , the formula is almost exact. Indeed, for
T = 1 the limit expression has an associated error around 10%, which decays
very fast as ∼ 1/T .

Polyhedral capsids

The same procedure can be applied to get the radius of a polyhedral capsid
(see Fig. 3.1). The surface of the structure in terms of capsomers is St =
10(T − 1)A′H + 12A′P , where A′H and A′P correspond to the effective area of the

units for the polyhedral case. The total area of an icosahedron is Sico = 40
√

3
5+
√

5
R2,
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Figure 3.3: Theoretical and optimal radii for spherical capsids. The gray dots
correspond to the radii obtained in the simulations of spherical capsids in the
pentamer-hexamer scenario, i.e., ΔE = 0 (see Chapter 2). The black curve
plots the theoretical radii derived in the surface-covering model, Eq. (3.4). The
agreement is excellent and confirms that the steric effects between coat units
determine the size of the capsid (if the number of subunits is fixed).

where R is the radius of the polyhedron measured from the center to one vertex
[56]. Equating both areas one obtains

Rico
th (T ) =

√
5 +

√
5

40
√

3
[10(T − 1)AH + 12AP ] (3.6)

which is the general expression for polyhedral capsids.
Now, it is reasonable to assume an effective hexamer surface equivalent to the

hexamer in spherical capsids1,

A′H = AH . (3.7)

However, for the pentamers in this polyhedral surface it is more convenient to
assign them an effective area related specifically to the vertexes on the CK con-
struction

A′P =
5

6
AH (3.8)

1Indeed this choice is even more natural in the icosahedron, because the surface is recovered
precisely by true hexagons, instead of “spherical” hexagons (see Fig. 3.1).
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Figure 3.4: Relative error of the radius for spherical capsids between the exact
expression, Eq. (3.4), and the approximation for big shells Eq. (3.5).

corresponding to the removal of one of the triangles of an hexamer (see Chapter
1). Note that this is precisely the area of a pentagonal pyramid at the vertex of
the icosahedron (see Fig. 3.5). Then this leads to

Rico
th =

√
5 +

√
5

2
T σ0 ≈ 1.90

√
T σ0 (3.9)

which is plotted in Fig. 3.5. In this case all capsids follow the strict scaling
R ∼ T ∼ √N for all N , because T is rigorously proportional to the surface of a
triangular face of the polyhedral shell.

Let’s define the ratio between the radii of the polyhedral and the spherical
shapes as

γR =
Rico

0

Rsph
0

. (3.10)

For a fixed T , one gets that the radii of faceted shells are always slightly bigger
than that of their spherical counterparts as shown in Fig. 3.5. In particular, in
the limit of big shells, the radii of the polyhedral capsids tend to be almost 15%
larger than that of the spherical shell, i.e.,

γR =
Rico

th

Rsph
th

≈ 1.15 (3.11)

as shown in Fig. 3.6.
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Figure 3.5: Theoretical radii for spherical, Eq. (3.4), and polyhedral shells, Eq.
(3.9), as a function of the T -number.

It is interesting to compare the volumes of both shapes. In particular, the
volume of the polyhedral shell is given by the classical formula of an icosahedron
[56]

V ico
th =

80(3 +
√

5)

3
(√

10 + 2
√

5
)3 (Rico

th )3. (3.12)

If we now compare it with the volume of a spherical capsid

V sph
th =

4π

3
(Rsph

th )3 (3.13)

the following ratio is obtained

V ico
th

V sph
th

=
20(3 +

√
5)

π
(√

10 + 2
√

5
)3

(
Rico

th

Rsph
th

)3

≈ 0.61

(
Rico

th

Rsph
th

)3

(3.14)

This ratio is plotted in Fig. 3.7, where we observe that, although icosahedral
radii are systematically bigger, Rico

th > Rsph
th , the geometrical prefactor inverts the
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Figure 3.6: Ratio between the radii of the polyhedral, Eq. (3.9), and spherical
capsids, Eq. (3.4). The dotted line is the limit for big shells, Eq. (3.11).

relation for the volumes so that V ico
th < V sph

th (at least for T � 3)2. In particular,
in the limit of big shells, Eq. (3.11), one gets

V ico
th

V sph
th

≈ 0.91 (3.15)

So, except for very small shells, the volume of polyhedral capsids is almost 10%
smaller compared to spherical shells of the same area. This might have important
consequences in the mechanical properties of capsids, specially when they are
pressurized due to the compaction of the viral genome, like for some dsDNA
bacteriophages [8].

Note that in the comparison between spherical and icosahedral shells it was
assumed that the structures had coat subunits with the same characteristic size
σ0. To compare structures with different subunit sizes, e.g., σ0 and σ′0, it is
necessary first to normalize their respective radii, i.e., R0/σ0 and R′0/σ′0. Then
the results derived above will apply.

2Recall that the pentamers in the icosahedral shape have a larger effective area, i.e., A′
P > AP

(see Fig. 3.1). For small capsids the total surface is dominated by the contribution of pentamers,
and the area of the icosahedral shell becomes big enough to enclose a larger volume than the
spherical counterpart. When the T -number increases the surface is dominated by the hexamers,
which have the same effective area for both shapes, so the two capsids have essentially the
same total effective area. At this point, since the sphere is the structure that maximizes the
volume/surface ratio, it is natural to obtain Vsph > Vico. Finally, notice that a T = 3 capsid
is made by 12 pentamers and 20 hexamers, thus almost 2/3 of capsomers are hexamers, and it
makes sense that the inversion of volumes takes place around T ≈ 3.
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Figure 3.7: Theoretical prediction for the ratio of volumes of polyhedral and
spherical capsids plotted following Eq. (3.14). The dotted line is the limiting
value for big shells, Eq. (3.15). The intersection V ico

th = V th
th takes place around

T ≈ 3, and it is indicated by a vertical dotted line.

3.2.2 Energy of capsids

Let’s define the total energy at equilibrium of a capsid containing N capsomers as
Ee(N). This optimal energy is determined by the local interactions among coat
proteins, and for each N corresponds to a minimum of the free energy versus
radius (see Chapter 2). From a continuum elasticity perspective, this energy
can be regarded also as the minimization of the elastic energy of the shell [22].
Interestingly, elastic constants of capsids can be computed in an indirect way by
applying specific deformations to the capsids. Some of these deformations have
also an intrinsic biological interest, because are involved in different steps of the
virus cycle.

In particular, radial deformations are specially appealing because can be in-
duced by several phenomena, like the internal pressure associated to the genetic
material, variations of the pH, or osmotic shocks due to a sudden change of envi-
ronmental conditions [4, 13, 57]. To understand the properties and to determine
the potential advantages of the different viral shapes, we will connect the mi-
croscopic interactions with the macroscopic elastic description for this specific
deformation.

The equilibrium energy Ee(N) is a minimum, so for small radial deformations,
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the total energy can be described by a parabolic expression3 centered around
Ee(N), i.e.

EN (δR) = Ee(N) +
1

2
aE(δR)2 (3.17)

where δR = R−R0(N) is the deformation, R0(N) is the equilibrium radius, and
aE can be associated with the stiffness of the capsid. Our main goal here will be
to connect this total energy with the microscopic interactions and deformations.

For small deformations, the local interaction between coat subunits can be
described also as a quadratic minimum around the equilibrium position of the
pair-interaction potential

uij(δr) = ε +
1

2
au(δr)2 (3.18)

where δr = r − σ is the local deformation, σ is the equilibrium distance, ε is
the binding energy at equilibrium, and au is the local stiffness of the bond. To
connect the thermodynamic and the microscopic descriptions let’s study a simple
case. In particular, we assume a mean-field approach where all bonds interact
on average with the same potential u ≈ uij associated to an effective interaction
involving only the nearest neighbors with an average coordination number4 z.
Using this simplifying approximations, one can write

EN (δR) =
zN

2
uij(δr) (3.19)

Now we just need to relate the global and local deformations. For uniform de-
formations the relative global and local deformations are equal, yielding (see
Appendix A)

δr =
σ

R0
δR (3.20)

This leads to a constitutive equation connecting the microscopic and macroscopic
descriptions of capsids

EN (δR) =
zN

2
(ε +

1

2
au

σ2

R2
0

(δR)2) (3.21)

3More precisely, the energy can be expressed as a Taylor expansion in terms of the deforma-
tion δR, i.e.

E(δR) = E0 +
∂E

∂δR
δR +

1

2

∂2E

∂δR2
δR2 + o(δR3) (3.16)

However, since the expansion is around a minimum, the first derivative is zero, and in a first
approximation the deformation energy is a quadratic function.

4In a flat hexagonal sheet z would be six, but in icosahedral shells one has to take into
account the influence of pentons, specially for small shells. For instance, a T = 1 has strictly a
coordination z(T=1) = 5.
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where the minimum energy is given by

Ee(N) =
zN

2
ε (3.22)

and the rigidity of the capsid is

aE =
zN

2

σ2

R2
0

au (3.23)

Since σ2N ∼ R2
0, aE is roughly a size-independent property of the capsid in this

mean-field approximation (except for very small spherical structures).
Interestingly, it is now possible to show that the shape of capsids actually has

an important influence in the response to radial deformations. More specifically,
if one compares a spherical and a polyhedral capsid with the same number of
capsomers N , and whose local interactions are similar, namely aico

u ≈ asph
u , the

ratio between their rigidities is just given by

γE =
aico

E

asph
E

=

(
Rsph

0

Rico
0

)2

=

(
1

γR

)2

(3.24)

Remarkably, since Rico
0 > Rsph

0 , this ratio will be always smaller than one, γE < 1.
This means that, subjected to similar radial deformations, the polyhedral capsid
will accumulate less deformation energy. In particular, since for big shells γR ≈
1.15, a faceted shell will accumulate around a 30% less energy (although in terms
of relative deformations δR/R0, both shapes accumulate the same energy).

3.2.3 Pressure

The deformation energy can be related, for instance, to an effective pressure
difference p between the exterior and the interior of the capsid. The classical
thermodynamic definition of pressure is

p = −∂E

∂V
(3.25)

fixing the rest of thermodynamic magnitudes that describe the system, like the
number of subunits N , the temperature T , or the solvent properties. For an
empty capsid at equilibrium the pressure has to be zero, because the energy is a
minimum

p0 = −
(

∂E

∂V

)
R0

= 0 (3.26)
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As mentioned before, the confinement of the genetic material and osmotic effects
can induce non-zero pressure differences p �= 0.

It is more convenient to express the pressure difference in terms of radial rather
than volume changes. For both spherical and polyhedral shells the volumes are
proportional to the cubic power of the radius, Eqs (3.13) and (3.12), which can
be expressed in general as

V = aV R3 (3.27)

where aV is a geometrical constant. Now, it is easy to see that systems where
V ∼ R3 will obey

∂V

∂R
= 3

V

R
(3.28)

so the pressure equation can be rewritten as

p = − R

3V

∂E

∂R
(3.29)

In this way we obtain a direct formula for the pressure difference in terms of the
radial deformations of the capsid.

Using the previous harmonic expressions connecting the macroscopic and mi-
croscopic deformations of the system, we can now reexpress the pressure in terms
of the shape and the local interactions. In particular, the pressure associated to
a deformation δR is

p = − R

3V
aE δR = −zNR

6V

σ2

R2
0

au δR (3.30)

where in the second equality the explicit microscopic dependence has been used.
It is useful to express this pressure in terms of the relative deformation δR/R0 as

p = −ap
δR/R0

(1 + δR/R0)2
(3.31)

where

ap =
zN

6V0
σ2au (3.32)

is a pressure constant that contains all the microscopic and geometrical details.
Fig. 3.8 plots the reduced pressure p/ap which has a universal dependence on the
relative deformation that should hold for all quasi-spherical viruses, at least for
small deformations where the quadratic approximation of the deformation energy
is valid. Evidently, the actual pressure value for a particular virus is determined
by its specific properties through ap. This suggests that, by relating pressure
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Figure 3.8: Pressure and radial deformation of a capsid. The reduced pressure
p/ap is plotted as a function of the relative capsid deformation δR/R0, Eq. (3.31).
Inwards pressure is positive, and outwards pressure negative.

differences with capsid deformations, one could obtain valuable information about
the local interactions between coat subunits. It is worth to mention that there is a
clear asymmetry depending on the direction of the deformation. Higher pressures
are required to compress the shell than to expand it. Nevertheless, for very small
deformations δR/R0 
 1 the pressure reduces to p ≈ −ap δR/R0, thus recovering
a symmetric and linear behavior around equilibrium.

The maximum pressure that a capsid can resist is related to the maximum
radial deformation that it can tolerate. In the linear regime, since N ∼ R2

0 and
V0 ∼ R3

0, this maximum pressure decays as5

p� ∼ 1

R0
(3.33)

Therefore, for the same intermolecular interactions big capsids are in principle
less efficient storing pressure.

Let’s now compare the tolerance to pressure of polyhedral and spherical shells.
As before, we consider capsids with the same number of capsomers N and the
same local interactions. Then the ratio of pressures for the same relative defor-

5If the maximum pressure is set at the same relative deformation δR�/R0 for different capsid
sizes, the associated maximum pressures will also decay as p�

∼ 1/R0, even outside the linear
regime.
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mation is
pico

psph
=

aico
p

asph
p

=
V sph

0

V ico
0

(3.34)

Therefore, since V sph
0 > V ico

0 , except for very small shells, polyhedral capsids
build up larger pressures when subjected to the same relative radial deformations.
In particular, in the limit of big capsids, where V ico

0 /V sph
0 ≈ 0.91, faceted capsids

will accumulate around a 10% more pressure than the spherical counterparts.
That might constitute an advantage, for instance, for viruses that rely on pressure
driven translocations to initiate the infection.

3.2.4 Young modulus and effective spring constant

From classical elasticity theory, it is possible to relate also the internal pressure
of a thin spherical shell with the radial deformation of the capsid [18]

p = − 2Y

1− ν

h

R0

δR

R0
(3.35)

where Y is the 3D Young modulus, ν is the Poisson ratio6, and h is the effective
thickness of the capsid. Comparing this expression with the linear approximation
of Eq. (3.31), one gets

Y =
z

12

σ2NR0

V0
(1− ν)

au

h
(3.36)

which provides a microscopic interpretation of the Young modulus. In solids the
Young modulus is an intrinsic property of the material. However for thin shells
we observe that, since σ2NR0 ∼ V0, the effective Young modulus depends on the
shell thickness h as Y ∼ 1/h. Then to properly characterize viral capsids from
an elasticity point of view it is more convenient to define a 2D Young modulus
as follows [18]

Y � = Y h (3.37)

For big capsids this elastic modulus will depend essentially on the microscopic
interactions, although the changes in the effective coordination number and aV

for small shells may lead to some deviations, which have been also observed by
nanoindentation simulations [37].

Interestingly, the Young modulus is also related to the elastic constant k
measured in AFM experiments by [18]

k ≈ Y h2

R0
= Y � h

R0
(3.38)

6The Poisson ratio is typically 1/3 for protein-like materials.
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Using now Eq. (3.36) a microscopic interpretation for the elastic constant can be
obtained

k ≈ z

12

N

V0
(1− ν)σ2au h. (3.39)

Reexpressing k in terms of the microscopic properties leads to a scaling

k ∼ h

R0
au (3.40)

Therefore, if one compares capsids of similar subunit interactions and shell thick-
ness, the bigger the structure, the softer will be the elastic response. This scaling
becomes of course invalid for large R0, where k tends to a constant independent
on the curvature [18, 37].

3.2.5 Bulk modulus

The bulk modulus is an elastic magnitude defined as the inverse of the compress-
ibility of the capsid

K = −V

(
∂p

∂V

)
(3.41)

which for quasi-spherical shells can be expressed in terms of the radius as

K =
R2

9V

(
∂2E

∂R2

)
(3.42)

Now, using Eq. (3.31), the bulk modulus can be rewritten in terms of the relative
deformation as

K =
1

3
ap

1− δR/R0

(1 + δR/R0)2
. (3.43)

Fig. 3.9 plots the reduced bulk modulus K/ap as a function of the relative
radial deformation, which is a universal function, qualitatively similar to the pres-
sure. Again the asymmetry in the elastic response when comparing compression
and expansion originates by geometrical reasons, and does not require an intrinsic
asymmetry in the local interactions.

At equilibrium, the value of the bulk modulus becomes

K0 =
1

3
ap (3.44)

that similarly to the pressure decays as

K0 ∼ 1

R0
(3.45)
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Figure 3.9: Bulk modulus. The reduced bulk modulus K/ap is plotted as a
function of the relative capsid deformation δR/R0, Eq. (3.43).

since ap ∼ 1/R0. Therefore, for identical interactions, big shells are expected to
be more compressible.

Finally, when the bulk modulus of polyhedral and spherical shells are com-
pared, the same relation as for the pressures is obtained

Kico

Ksph
=

V sph
0

V ico
0

(3.46)

So, except for very small shells, polyhedral capsids are expected to be more
incompressible than spherical ones.

3.2.6 Buckling transition

The fact that Rsph
0 < Rico

0 and the nearly parabolic dependence of the energies
of capsids suggest that, upon expansion, there must be an intermediate radius
Rc after which the energy of a compressed polyhedral shell becomes smaller than
that of an expanded spherical shell (see Fig. 3.10). Therefore, the expansion
of stable spherical shells should lead in general to a buckling transition where
capsids will end up faceted and with polyhedral shape.

To estimate the transition radius, let’s assume that the energy difference
between both optimal energies is small compared to the energy barrier defined
by the cut (see Fig. 3.10). Then the condition for the cut radius reads

1

2
asph

E (Rc −Rsph
0 )2 ≈ 1

2
aico

E (Rc −Rico
0 )2 (3.47)
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R0
sph Rc R0

ico

E

Figure 3.10: Schematic representation of the energies for a spherical and a poly-
hedral shell. The transition radius Rc is defined by the cut of both branches.
The difference of optimal energies is assumed to be negligible, so the energy at
the transition is dominated by deformation energies.

and from it one gets

Rc =
1 + γR

√
γE

1 +
√

γE
Rsph

0 (3.48)

In the case where the local interactions are similar, the ratio of both energy
curvatures is only determined by the size of shells, Eq. (3.24), thus obtaining

Rc =
2γR

1 + γR
Rsph

0 ≈ 1.068 Rsph
0 (3.49)

Therefore, if the local interactions are essentially the same in both capsids, the
transition should take place around a 7% expansion in radius of the spherical
shell.

3.3 Elasticity of a 2D lattice of Lennard-Jones parti-

cles

Let’s particularize some of the results derived above for the specific case of a
Lennard-Jones potential. The interest in this model comes from the fact that both
the results of the previous chapter and the study of the mechanical properties
of the next chapter are based on this type of interaction between capsomers.
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Figure 3.11: Lennard-Jones potential, Eq. (3.50). Intermolecular interaction
uij versus the distance between particles, r. The units are normalized by the
binding energy ε0, and the equilibrium distance σ. The vertical line indicates
the inflection point of the interaction rb, Eq. (3.54), which is associated to the
maximum bonding force.

For simplicity we are going to study some basic properties of a lattice of such
particles, which will provide useful insights for the next chapter.

The Lennard-Jones potential used along the thesis is given by

uij(r) = ε0

[(σ

r

)12
− 2

(σ

r

)6
]

(3.50)

where σ is the equilibrium distance, ε0 is the binding energy, and r is the distance
between particles (see Fig. 3.11).

The main microscopic parameter in the mean-field theory introduced above
corresponds to the interaction strength, au. This can be obtained for the Lennard-
Jones by doing a Taylor expansion of Eq. (3.50) up two second order around the
equilibrium position r = σ. So one gets

uij(r) = −ε0 +
1

2

72 ε0

σ2
(δr)2 + o(δr3) (3.51)

and the interaction strength is obtained by comparison with Eq. (3.18) as

aLJ
u = 72

ε0

σ2
(3.52)
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With this value one can estimate the rest of intrinsic mechanical coefficients of a
structure, i.e., the global energy strength aE , the pressure scale ap, and the 2D
Young modulus Y �, respectively, Eqs (3.23), (3.32), and (3.37).

It is worth to compute the maximum force supported by a LJ interaction.
The force between two particles is given by the derivative of the potential, fij =
−duij/dr, and the maximum takes place when dfij/dr = −d2uij/dr2 = 0, i.e., at
the inflection point of the LJ potential (see Fig. 3.11). Thus, the value of the
maximum force is

fb = 12
ε0

σ

[(
7

13

)13/6

−
(

7

13

)7/6
]
≈ −2.69

ε0

σ
(3.53)

that corresponds to an intermolecular distance

rb =

(
13

7

)1/6

σ ≈ 1.11 σ (3.54)

Note that the cohesion force will drop for larger intermolecular separations,
r > rb. Thus if we apply an increasing tensile stress to a hexagonal network,
when the local deformation reaches r ≈ rb, some local bonds will tend to disrupt
and promote the formation of cracks in the solid lattice [58,59].

In analogy for capsids, the maximum local deformation rb can be associated
to the bursting of the shell, and sets a maximum pressure resisted by a quasi-
spherical structure, i.e., pb ≈ p(rb).

3.4 Conclusions

Based on simple theoretical insights, we have been able to connect the microscopic
properties of capsids with their global (or macroscopic) response, showing also
the relevance of the capsid shape in determining its mechanical properties.

In particular, we have computed the radii of spherical and icosahedral shapes,
based on the assumption that the steric effects among coat proteins determine
the packing of the shell. The results showed that polyhedral capsids tend to be
∼ 15% larger in radius than their spherical counterparts. On the contrary, except
for very small structures, the volume of a spherical capsid is almost ∼ 10% bigger
than that of the equivalent icosahedral shape.

A mean-field approach has allowed to characterize the total energy of cap-
sids in terms of the intermolecular interactions among the coat subunits. In
this way we have been able to compute the main mechanical properties of the
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structures under radial deformations, like the internal pressure of the shell or its
compressibility. In particular we have found a universal pressure behavior for
quasi-spherical capsids as a function of the relative radial deformation. In all
cases shells are harder to compress than to expand. Moreover, larger shells are
generally less efficient in storing pressure than smaller ones, and, for the same
microscopic conditions and relative deformations, icosahedral capsids are able to
accumulate up to a ∼ 10% more pressure than spherical shells, and are ∼ 10%
more incompressible than the spherical counterparts.

For spherical shells, it has also been possible to connect its elasticity with the
underlying microscopic properties. In particular, a constitutive relation for the
Young modulus was derived. This opens the door to connect the elastic constants
typically measured in AFM experiments with the microscopic properties of the
shell.

Finally, spherical capsids under expansion can show a buckling transition to
polyhedral shaped shells, and we provided an estimation of the transition radius.

The next chapter will show, using the model introduced in Chapter 2, the
validity of the predictions derived here. In addition, the possible biological im-
plications of these results, in particular, with regard to viruses that suffer such
buckling transitions during the maturation process, will be discussed.
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Appendices

A Local and global deformations

If a spherical capsid is subjected to a uniform radial deformation, one can easily
relate the intermolecular and global deformations (see Fig. A.1). The intermolec-
ular distances are given by σ = 2R0sin(θ/2) and r = 2Rsin(θ/2), respectively,
before and after the radial deformation. By dividing both expressions one gets

r

σ
=

R

R0
(A-1)

or in terms of the deformations

δr

σ
=

δR

R0
(A-2)

where δr = r− σ and δR = R−R0. Therefore, for a uniform radial deformation
of a spherical capsid, the relative local and global deformations are equal.

Figure A.1: Global and local deformations in a spherical capsid. The circumfer-
ences illustrates schematically a slice of a spherical capsid for two different radii.
The initial state, characterized by a radius R0 and a local distance between sub-
units σ, is shown in black. A uniform radial deformation of the initial sphere
is represented in gray, where the radius is R and the new local distance is r.
Since the deformation is uniform, in both cases the subtended angle between two
interacting subunits is θ.

Notice that for a uniform expansion, the relation between the global and local
deformations for a polyhedral capsid will be given also by Eq. (A-2).
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[26] A. Šiber, “Buckling transition in icosahedral shells subjected to volume conservation
constraint and pressure: Relations to virus maturation,” Phys. Rev. E, vol. 73,
p. 061915, 2006.
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Chapter 4

Buckling and Maturation of

Spherical Viruses

4.1 Introduction

As mentioned in the previous chapter, after the self-assembly of the capsid and
before becoming infective, many viruses suffer a maturation process that prop-
erly tunes the properties of the viral shell and which often involves a buckling
transition [1–10]. In this transition, the initial spherical capsid with icosahedral
symmetry undergoes a transformation into a polyhedral shell with flat triangular
faces and the shape of an icosahedron (see Fig. 4.1).

The occurrence of the icosahedral faceting during virus maturation can be
associated to different biological pathways. For instance, bacteriophage T7 as-
sembles a procapsid helped by scaffolding proteins, and then suffers an expansion
and a buckling transition during the packaging of the viral dsDNA [4,5]. Instead,
bacteriophage HK97 suffers a cleavage in the coat protein of the prohead and
the buckling transition can be triggered in vitro by a change in the pH [6–8].
Once triggered, the buckling transition seems to be related to an energy cascade
of steps that lowers the energy of the capsid [7, 8]. The spontaneous nature of
the transition combined with the fact that it can be activated by different signals
suggests that common features regarding the structure or interactions of the coat
proteins could play an important role determining the viability of buckling, and
the potential mechanical advantages of the final capsid.

The occurrence of this buckling transition has been addressed in physical
terms by using continuum elasticity theory [11–21]. In this context a viral cap-
sid is considered a thin elastic shell with two competing energies: the bending
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Chapter 4. Buckling and Maturation of Spherical Viruses

Figure 4.1: Buckling during virus maturation. The left panel corresponds to the
P22 bacteriophage spherical procapsid. The right panel is the mature capsid,
which has expanded and shows a polyhedral shape. The reconstruction have
been extracted from Ref. [2].

energy, which takes into account the deviations from the spontaneous curvature
imposed by the proteins, and the stretching energy, which involves the in-plane
deformations of the network of proteins. The ratio of these contributions defines
the Föppl-von Kárman number, γ = Y �R2/κ, a dimensionless parameter that
determines the shape of the virus. Here Y � is the 2D Young modulus, κ is the
bending rigidity, and R is the radius of the spherical shell. For small values of γ
the spherical shape is energetically favored. But when γ exceeds a certain thresh-
old, a buckling transition takes place and the polyhedral shape, with flat faces,
becomes more stable because it reduces the stretching energy. Since γ ∼ R2, big
icosahedral capsids are expected to be polyhedral rather than spherical, which
is in agreement with experimental observations [22]. Nevertheless, the discrete
nature and arrangement of capsomers in the viral shell might have a significant
influence in the buckling phenomenon, specially for small viruses, which cannot
be easily described in the framework of continuum elasticity theory.

In this chapter we will compare the energetics and mechanics of spherical
and icosahedral viral capsids for different triangulation numbers T (see below),
and determine how sensitive is the buckling transition to the discrete nature and
precise arrangement of protein subunits in the shell. We will also analyze the
tendency to buckle in terms of the distribution of lateral stresses, and discuss
the potential mechanical and biological advantages of polyhedral versus spherical
capsids.
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4.2. Spherical and polyhedral shells

4.2 Spherical and polyhedral shells

The CK construction described in Chapter 1 determines all possible icosahedral
capsids that can be built. In order to understand the benefits of the buckling
phenomenon, we will compare the properties of the spherical and polyhedral
capsid shapes for the same T -number (see Table 4.1).

To build spherical shells we use the exact coordinates of the icosahedral spher-
ical codes from Ref. [23], which in general correspond to local energy minima of
the capsomer-capsomer interaction model studied in Chapter 2, and Ref [24]. Us-
ing these fixed angular coordinates, we have explored the energies and mechanical
properties of spherical capsids under radial deformations.

To form the polyhedral shells, an icosahedron is reconstructed using the basic
triangles defined by the CK construction (see Appendix A). Starting from the
h and k values of a given T -number, we build the associated equilateral triangle
and keep track of the coordinates of all capsomers, i.e., nodes of the hexagonal
lattice, in the triangular face. By applying the proper rotations and translations,
we build an icosahedron out of 20 of these triangles, whose centers are placed on
the vertexes of its dual dodecahedron. This procedure generates the positions of

all capsomers on an icosahedron of edge l =
√

T and radius R = 1
4

√
5 +

√
5 l,

defined as the distance from the center to any vertex [25]. Finally, the optimal
polyhedral shell is obtained by varying the radius R to minimize the total energy,
as shown in Section 4.4. Note that we keep the same icosahedral shape for all
radii, but in each case the distances between capsomers are uniformly rescaled.

4.3 Mechanical characterization

The energy of the resulting capsids can be simply evaluated as the sum over all
pairs of capsomer-capsomer interactions, using as intermolecular potential the

T

P \ f 1 2 3 4 5 6 7 8

1 1 4 9 16 25 36 49 64
3 3 12 27 48 75
7 7 28 63 112
13 13 52 117

Table 4.1: T -numbers for the first four P classes (rows) classified by the multi-
plicity f (columns), T = Pf2 (see Eq. (1.2) in Chapter 1).

157



Chapter 4. Buckling and Maturation of Spherical Viruses

Lennard-Jones-like model described in Chapter 2. For each capsid shape we
evaluate the energy for different values of the radius as

E(R) =
N∑

i=1

∑
j<i

Vij(R) (4.1)

where the distance between capsomers (and so the interaction) depends on the
radius of the shell.

In addition to their energy, we evaluate their mechanical properties through
the stress tensor [26]. For discrete systems, the global stress is commonly mea-
sured as the average of the virial stress tensor, σαβ , and can be decomposed in
the kinetic and force contributions of each morphological unit i

Ωdσd
αβ =

∑
i

Ωd
i (σ

d
αβ)i =

∑
i

⎡⎣∑
j

1

2
miv

α
i vβ

j −
1

2

∑
i�=j

dV (rij)

drij

rα
ijr

β
ij

rij

⎤⎦ (4.2)

Here d is the dimensionality, usually 2D or 3D, and Ωd is the d-volume, i.e., the
surface in 2D or the volume of the shell in 3D. In the kinetic term, mi and vα

i are
the mass and the α component of the velocity of capsomer i, respectively. In the
force term, rij is the module of the vector �rj −�ri that joins particles i and j, and
rα
ij is the α component of this vector. Finally, Ωd

i corresponds to the d-volume per
capsomer, which can be defined in different ways, all leading to similar qualitative
results [26]. Here we use the simplest choice where each capsomer has the same
d-volume Ωd

i = Ωd/N . Using these definitions, the local, (σd
αβ)i, and global, σd

αβ ,
mechanical stresses can be computed.

Giving the high relative strength of the interactions compared to the thermal
energy, ε0 = 15 kBT , the kinetic contribution of the stress tensor in Eq. (4.2) will
be neglected. In a first approximation the interactions of the capsid determine the
main properties of the system, whereas thermal fluctuations would be relevant
only in more accurate studies, e.g., the role of soft modes in the activation of
buckling [27]. For spherical shells the stress tensor, Eq. (4.2), will be expressed
in spherical coordinates, and due to the symmetry of viral capsids it is worth to
recombine its components in three terms [26]: the lateral stress

(σ2D
T )i = − N

2A

∑
j

dV (rij)/drij

rij

(�rij · êθ)
2 + (�rij · êφ)2

2
(4.3)

the (45o) shear stress

(σ2D
θφ )i = − N

2A

∑
j

dV (rij)/drij

rij
(�rij · êθ)(�rij · êφ) (4.4)

158



4.4. Energy of spherical vs polyhedral capsids

and the radial stress

(σ3D
R )i = − N

2V

∑
j

dV (rij)/drij

rij
(�rij · êr)

2 (4.5)

where A and V are the surface and volume of the shell. For icosahedral shells the
formulas are still valid but it is better to use a different set of basis vectors. In
particular, for each face we replace (êθ, êφ) by two perpendicular vectors that are
tangent to the surface, and êr by a vector perpendicular to the face at all points.
For both capsid shapes, Eq. (4.3), (4.4), and (4.5) characterize the local stresses,
and using them into Eq. (4.2) similar expressions for the global mechanics of
capsids are obtained.

Finally, we will analyze the pressure p and the bulk modulus K, which mea-
sures the incompressibility of the capsid. It is useful to rewrite both in terms of
energy variations as (see Chapter 3)

p = −∂E

∂V
= − R

3V

∂E

∂R
(4.6)

and

K = −V

(
∂p

∂V

)
=

R2

9V

(
∂2E

∂R2

)
(4.7)

where we have transformed volume derivatives into radial derivatives, using an
expression valid for any system where V ∼ R3. We remark that for all optimal
structures the pressure is zero [26], and their compressibility will be labeled as
K0.

4.4 Energy of spherical vs polyhedral capsids

The first step was to find the optimal radii, Rsph
0 and Rico

0 , for the spherical and
polyhedral capsids with T -numbers listed in Table 4.1. To that end, starting from
the exact angular coordinates of the spherical and icosahedral shells described in
Section 4.2, we subjected the capsids to a radial deformation and calculated the
associated energy, as shown in Fig. 4.2 for the T = 13 case. For each shape and T -
number we obtained a nearly parabolic behavior around the energy minima. For
larger expansions, the compression branch is steeper than the expansion branch,
due to the details of the Lennard-Jones interaction.

Fig. 4.3 plots the optimal radii of spherical and polyhedral shells as a function
of the T -number. In both cases the radii increase as Ropt ∼

√
T , since the T -

number is proportional to the shell surface, which grows as ∼ R2. Comparing the
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Chapter 4. Buckling and Maturation of Spherical Viruses

Figure 4.2: Energy per capsomer for the spherical and polyhedral T = 13 shells
under radial deformation. The optimal radii of the sphere, Rsph

0 , the icosahedron,
Rico

0 , and the cut radius where both energies intersect, Rc, are also indicated. The
lines show a parabolic fit E = E0 + 1

2aE(R−R0)
2 around the respective minima

(see text).

optimal radii, we systematically observe that the polyhedral shells are larger than
the spherical capsids typically by ∼ 15%. This is precisely the result predicted
by the model introduced in Chapter 3. Indeed, the surface covering model is in
excellent agreement with the equilibrium results, which is a direct consequence of
the prevalence of steric effects between capsomers. Therefore, the results obtained
for the optimal radii are essentially independent of the details of the interaction
model.

Fig. 4.4 plots the energy per capsomer of the optimal spherical and polyhedral
structures as a function of the T -number. For T ≤ 4, the energy is dominated by
the 12 pentamers rather than by the arrangement of the few existing hexamers,
leading to a behavior that deviates from that of the remaining shells of a given
class. Instead, for T > 4, an important dependence on the icosahedral class P
can be observed. In particular, T -structures with P = 1 (see Table 4.1) are local
maxima in the energy landscape of spherical shells, but local minima in the poly-
hedral one. This suggests that P = 1 capsids are not particularly satisfied in the
spherical shape and will have a strong tendency to become faceted. On the other
hand, P = 3 capsids show the opposite behavior of P = 1: they are local minima
in the spherical landscape and maxima in the faceted one. The origin of these
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4.5. Buckling of spherical capsids upon expansion

Figure 4.3: Spherical and polyhedral optimal radii as a function of the T -number.
The lines are the theoretical predictions of the surface-covering model (see Chap-
ter 3), and the points are obtained by minimizing the energy of the different
structures (see text).

energy differences comes from the specific distribution of capsomers for each class
P , as will become evident in the analysis of the lateral stress (see Section 4.7).
For big capsids, the energy dependence on P attenuates, and polyhedral shells
tend to the energy of a flat hexagonal lattice of hexamers. Furthermore, for big
capsids (T > 28 in our case) spherical shells have systematically a higher energy
than icosahedral ones, in agreement with the predictions of continuum elasticity
theory [11]. The energetic frustration of the spherical shape comes from the pen-
tameric disclinations that introduce a stretching energy penalty proportional to
R2, which yields a near constant jump in the energy per capsomer with respect
to the flat hexagonal lattice. On the other hand, for small structures (T ≤ 28)
one has a complex scenario with a strong competition between spherical and
polyhedral shells. This structural dependence of the optimal energies is difficult
to justify in the framework of continuum elasticity, since its origin lies on the
discrete and specific distribution of capsomers for the different P -shells rather
than on generic elastic properties.

4.5 Buckling of spherical capsids upon expansion

Interestingly, the energy analysis for the different shapes under radial deformation
already reveals the tendency of spherical capsids to become icosahedral upon
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Figure 4.4: Energy per capsomer of quasi-spherical capsids. (a) Optimal energy
per capsomer for the spherical (blue circles) and icosahedral (green diamonds)
T shells. The T numbers corresponding to the P = 1 and P = 3 classes are
highlighted in red and brown, respectively. (b) Same data as in (a), showing the
T -numbers missing in (a), and facilitating the appreciation of the competition
between spherical and icosahedral shapes for T < 28.
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4.5. Buckling of spherical capsids upon expansion

Figure 4.5: Cut radius Rc as a function of Rsph
0 . The line corresponds to a linear

fit.

expansion, as predicted using simple arguments in the previous chapter. This
is illustrated in Fig. 4.2 for a T = 13 capsid. Upon expansion, the energy of
the spherical shell increases and eventually crosses the compression branch of the
polyhedral structure. This crossing defines a transition radius Rc beyond which
the energy of the expanded spherical shell is larger than that of the compressed
faceted capsid, thus signaling the energetic onset of buckling for this structure,
Ec. Plotting the radii Rc as a function of the optimal radii Rsph

0 for different
T -numbers (see Fig. 4.5) a linear dependence is obtained, which suggests that
spherical capsids will undergo a buckling transition when they are subjected to a
radial expansion of ∼ 7%. This is precisely the result predicted in the theoretical
analysis of Chapter 31. Notice that, in the physical model, the deformation energy
plays a major role to determine the transition point, and the energy difference
between optimal structures introduces only a minor correction, which is precisely
the scenario discussed in the theoretical analysis. However, if we look carefully,
the cut radius of the physical model is slightly bigger, due to the small deviations
with respect to the parabolic behavior of the energy around the transition point.
In any case, our observations are consistent with the capsid expansions observed
during the maturation process of many viruses, which lead to the faceting of an
initially spherical procapsid [6] (see Fig. 4.1).

1It is worth to notice that Mannige and Brooks suggested in Ref. [28], based on geometrical
considerations, that only capsids with T ≥ 7 could undergo a buckling transition with the help
of auxiliary proteins. Instead, our results indicate that under radial expansion any spherical
T -shell could in principle undergo such transition.
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Figure 4.6: Theoretical and numerical results for the bulk modulus at the optimal
radii. The blue circles and the green diamonds are the results obtained in this
chapter for the spherical and icosahedral T -shells, respectively. The two curves
are the theoretical predictions derived in Chapter 3 for a Lennard-Jones like
interaction at first neighbors. The T = 1 capsid is not shown.

4.6 Bulk modulus

From the exploration of the energy under radial deformation, the bulk modulus
of the optimal structures, K0, can also be extracted. As shown in Fig. 4.2,
the energy is parabolic around the energy minimum, and can be expressed as
E = E0 + 1

2aE(R −R0)
2, Eq. (3.17). Then, by substituting aE =

(
∂2E/∂R2

)
R0

into Eq. (4.7), we determine K0 for the different shapes and T -numbers (see Fig.
4.6).

The theoretical prediction of the bulk modulus derived in Chapter 3, and
based on a mean-field approximation, is also plotted in Fig. 4.6. Despite the
simplicity of the arguments introduced in the mechanical theory, the predictions
are in a very good agreement with the numerical results. For both capsids shapes
the bulk modulus decays inversely proportional to their corresponding optimal
radii, i.e., K0 ∼ 1/R0, as predicted, so in general larger capsids will be more
compressible. This is a a direct consequence of the geometrical prefactor R2/V ∼
1/R in Eq. (4.7) and the fact that the energy is proportional to R2 under radial
deformation. Except for T = 3 and T = 7, the bulk modulus of faceted shells,
Kico

0 , is systematically larger than that of the spherical ones, Ksph
0 , by a factor
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Figure 4.7: Bulk modulus for the spherical and polyhedral shells at the optimal
radii. A zoom of Fig. 4.6 for the region 13 < T < 64 is shown to highlight the
fact that polyhedral P = 1 shells (colored in red) are comparatively stiffer.

ranging from 2−10% for small capsids to almost 20% for bigger ones, which is also
in agreement with our predictions (note that the theory also predicts an inversion
of behavior at T ∼ 4). The values of the bulk modulus obtained in the numerical
exploration are slightly higher than the prediction. This is probably due to
the fact that, in the theoretical model, the LJ interaction was only considered
up to the nearest neighbors and the deformation energies of the ridges of the
icosahedron where not taken into account. In any case, it is surprising that
such a simple theory (without any fitting parameter), could describe the main
mechanical properties of quasi-spherical shells. Finally, there seems to be no
special structural dependence in the bulk modulus of spherical shells. Contrarily,
polyhedral P = 1 capsids are comparatively stiffer than those of any other class
(see Fig. 4.7). This dependence on the particular P cannot be captured by the
theory.
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4.7 Local distribution of stress

To elucidate the relevance of the structure in the mechanical response of viral
capsids, we computed the local distribution of stresses at the level of capsomers for
the different T -shells. Our analysis is based on the previous work done by Zandi
and Reguera in Ref. [26], where the mechanical properties of spherical capsids
were studied in detail using a similar model. We will focus on the distribution
of local lateral stresses, using the convention that a positive or negative stress
means that a capsomer is being compressed or stretched, respectively.

The distribution of stresses for the different T -shells can be naturally grouped
in classes that show a similar pattern. To illustrate how the precise arrangement
of capsomers influences the tendency of a capsid to remain spherical or to become
faceted, we have analyzed series of T -numbers corresponding to the first four P -
classes (see Table 4.1).

The simplest case is P = 1, where each pair of neighboring pentamers are
connected by a straight line of hexamers (see Fig. 4.8). This structural feature
clearly dictates the local stress pattern. In the spherical shells, positive stress
concentrates on the lines connecting pentamers, which delimits triangular areas
with stretched hexamers. The absolute values of those stresses get larger as the
the T -number of the shell increases. Compared with the rest of spherical P -shells
(see below), the P = 1 class shows the highest local stretching and compression.
This stress frustration, associated to the geometrical configuration of capsomers
in P = 1 capsids, is the underlying reason why they are local maxima in the
optimal energy landscape of Fig. 4.4. Moreover, the stress distribution clearly
highlights the energetic advantage of adopting a polyhedral shape, since the hex-
amer stretching will be relieved if the triangular regions between pentamers are
flattened. In fact, the distribution of stress in the polyhedral P = 1 capsids
shows that the local lateral stresses at the triangular faces are close to zero and
get smaller as the size of the shell increases. Furthermore, compared to the other
classes, polyhedral P = 1 capsids have the lowest stress frustration, which justifies
why they are local minima in the optimal energy landscape (see Fig. 4.4).

The other achiral class, P = 3, is characterized by zig-zag lines of hexamers
connecting pentamers, instead of straight lines (see Fig. 4.9), which leads to an
inversion of the stress behavior. In spherical P = 3 shells, compressions con-
centrates on the pentamers, whereas the hexamers surrounding them are slightly
stretched, leading to a dodecahedral pattern instead of the icosahedral one ob-
served in P = 1 (see Fig. 4.8). In this case, nothing indicates any particular
relief of the stress on the hexamers upon adopting an icosahedral shape. On the
contrary, the stress pattern suggests that the shell will flatten along the lines
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4.7. Local distribution of stress

connecting second neighbor pentamers, adopting a dodecahedral shape rather
than the icosahedral one observed in P = 1. It is worth to mention that such a
dodecahedral faceting seems to be present in the reconstruction images of Chilo
iridescent virus (CIV), a large T = 147 (P = 3, f = 7) virus [29]. In the spheri-
cal P = 3 shell, due to the symmetric capsomer arrangement, the local stress is
smoothly shared among all capsomers and its values are low enough to produce
local minima in the optimal energy landscape of Fig. 4.4. Contrarily, in the
polyhedral shape, the P = 3 class has a higher stress frustration compared to
the faceted P = 1, showing a less uniform pattern, where stress accumulates at
the zig-zag lines along the edges. In fact, the icosahedron P = 3 construction is
the most stressed of all polyhedral classes leading to local maxima in the optimal
energy per capsomer (see Fig. 4.4).

The remaining P classes are chiral, i.e., for each shell we have two specular
structures with different handedness. The arrangement of hexamers along the
line connecting neighboring pentamers is now skewed, and the resulting stress
patterns show neither a clear advantage or disadvantage on adopting the shape
of an icosahedron (see Figs. 4.10 and 4.11). Accordingly, the values of optimal
energies and stresses are intermediate between those of P = 1 and P = 3. There-
fore, classes with h0 ∼ k0 and h0 � k0 will behave similarly to P = 3 and P = 1,
respectively.

Finally, a common feature for all spherical classes is that positive stress ac-
cumulates on the pentameric disclinations as the shell gets bigger, in agreement
with the predictions of continuum elasticity theory [11]. The accumulation of
stress on the pentamers of big shells will eventually lead to a buckling transition
towards a faceted shape, and provides a mechanical justification of why for all
larger capsids the polyhedral shape seems to be energetically favored.
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4.7. Local distribution of stress

Figure 4.9: Lateral stress distribution for P = 3 spherical and polyhedral shells.
The color code is described in Fig. 4.8.
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Figure 4.10: Lateral stress distribution for P = 7 spherical and polyhedral shells.
The color code is described in Fig. 4.8.
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Figure 4.11: Lateral stress distribution for P = 13 spherical and polyhedral shells.
The color code is described in Fig. 4.8.
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4.8 Pressure and bursting

An important property of capsids is their tolerance to internal pressure before
bursting. To compare the resistance of both capsid shapes, we calculated the
maximum pressure that will lead to lateral failure of the shells.

In the previous chapter it was shown that the maximum tensile force that
two LJ particles can tolerate is given by fb ≈ −2.69ε0/σ0, Eq. (3.53), that takes
place at an intermolecular distance rb ≈ 1.11σ0, Eq. (3.54). For a 2D LJ lattice
subjected to a uniform deformation given by rb, one can compute now the local
2D lateral stress for a capsomer in this situation using Eq. (4.3), which gives
σ2D

b ≈ −1.1ε0/σ2
0. Remarkably, this rough limit of resistance of a flat hexagonal

lattice of LJ particles [30], was found to be a good approximation for the onset
of bursting in the simulations of spherical capsids under expansion in Ref. [26].
Thus to determine the bursting pressure of a capsid, radial expansions on each
quasi-spherical shell were performed until a single capsomer reaches the lateral
stress limit σ2D

b .

The associated bursting radii, Rb, are plotted in Fig. 4.12, and show a linear
dependence on the optimal radii, which correspond to expansions of roughly∼ 6%
and ∼ 9% for spherical and polyhedral shells, respectively. Hence, polyhedral
capsids resist larger relative expansions than their spherical counterparts. The
associated internal pressures at the onset of bursting are plotted in Fig. 4.13.
We observe that polyhedral capsids systematically tolerate higher values of the
bursting pressure, pb, than their spherical counterparts (except for T = 3 and
T = 7), ranging from ∼ 10 − 20% more for the smallest T -numbers up to a
∼ 35% for the largest viruses. This advantage is specially evident for the P = 1
capsids. However, in general the bursting pressure decays with shell’s size as
pb ∼ 1/Rb, because V ∼ R3 and under deformation E ∼ R2 (see Eq. 4.6 and
Chapter 3).

4.9 Potential biological implications

The aim of this section is to discuss the biological implications of the results
previously derived, and their relation with virus maturation.

The maturation process of a virus can be very complex, involving capsid
expansion, cleavage of proteins, and even covalent reinforcement of the shell [2,4,6,
8]. Therefore, to isolate the fundamental mechanisms responsible for the buckling
phenomenon, we focus first on the simple case of bacteriophage P22, a T = 7 virus
with a maturation pathway that does not require auxiliary proteins, cleavage of
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Figure 4.12: Bursting radius as a function of the optimal radii for the spherical
and polyhedral shells. The lines represent linear fits to the data.
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the coat protein, nor cross-linking between subunits [3]. Comparing the spherical
procapsid and the larger mature icosahedral shell of P22 [2] (see Fig. 4.1), one
obtains a ratio 1.16±0.04 between their radii, which is in excellent agreement with
the expected ratio 1.17 obtained in the simulations for T = 7 shells. We stress
that our simple surface-covering model accurately reproduces the radii obtained
in the simulations (see Fig. 4.3 and in Chapter 3), meaning that the result should
be robust to different types of capsomer-capsomer interaction. However, if during
virus maturation the interactions or the effective size of capsomers are strongly
altered by conformational changes or chemical processes, important deviations
could be expected. For instance, Nudaurelia capensis ω virus (NωV) is a T = 4
virus that assembles in spherical shape that after a reduction of the pH and
a cleavage in the coat protein leads to an irreversible final faceted capsid 15%
smaller in radius than the initial procapsid, i.e., the opposite behavior of the one
expected in our study [9, 10]. The realistic scenario for viruses that trigger the
maturation and the buckling transition by important changes in the viral coat
proteins, and accordingly in their effective interactions, goes beyond the scope of
the present analysis.

As mentioned in a previous section, buckling of T -shells produces polyhedral
capsids with radii ∼ 15% bigger than the spherical ones. However, the volume
of the resulting icosahedron V ico

0 is ∼ 10% smaller than the spherical one V sph
0 .

This counterintuitive result is coherent with the fact that both capsids have
the same number of capsomers, i.e., the same surface, and the sphere is the
shape that maximizes the volume/surface ratio. In addition, this result brings
up an interesting question. Many viruses that undergo a maturation process with
buckling end up storing dsDNA at high density [31], so the capsid must sustain
an important internal pressure due to the confinement of this semi-flexible and
electrostatically charged polymer. The dsDNA density is correlated with the
internal pressure [32], which means that the same amount of genetic material will
generate a higher pressure in the polyhedral shell than in the spherical capsid.
This might be a desirable effect in viruses that take advantage of this internal
pressure to initiate the infection [33].

Another interesting consequence of our results is that for T ≤ 28, the class
P clearly dictates the energetic preference in adopting either a spherical or a
polyhedral capsid. For instance, T = 13 shells tend to be more stable in the
spherical shape, and in fact some T = 13 dsRNA viruses like bluetongue virus
(BTV) or rotavirus remain spherical even after maturation [34]. On the other
hand, in viruses where the icosahedral shell is the most stable, like for T = 25,
the capsid assembly might produce a polyhedral shell already as a procapsid, as
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has been observed in the T = 25 bacteriophage PRD1 [35].

4.10 Conclusions

In this chapter we have analyzed the relevance of the T -number of viruses in the
buckling phenomenon, using a simple physical model that captures the essential
ingredients of capsomer-capsomer interactions and that successfully reproduces
the equilibrium structures of viral capsids, as we showed in Chapter 2. Despite
the simplicity of the model, it is important to point out that the qualitative results
obtained do not depend on the particular choice of the details of the intercapsomer
potential, but are rather dictated purely by the geometrical arrangement of the
capsomer in the T -shells. Obviously, the actual numerical values of properties like
the local stresses, energies, pressures or bursting radii do depend on the details of
the potential; but the trends and general conclusions that we summarize below
seem to be insensitive to them and they are just determined by general physical
and geometrical considerations.

We have found that, for small T -numbers, the tendency to buckle strongly
depends on the class P . In particular, structures from the class P = 1, e.g.,
T = 9 , 16 or 25 (T = 4 is the only exception), are the most favorable to produce
polyhedral shells, whereas capsids from the class P = 3 e.g., T = 3, 12 or 27, are
more stable as spheres. For the chiral classes P > 3 an intermediate behavior
is obtained. Nevertheless, independently on P , for big capsids (T > 28) the
polyhedral shell is always more stable than the spherical shell, in agreement with
continuum elastic theory [11].

Furthermore, the analysis of the local lateral stress distribution unveils the
microscopic explanation of the different tendency to buckle observed in different
classes P . For spherical shells one generally observes highly squeezed pentameric
zones and stretched hexamers, which is in agreement with the theory of discli-
nations in hexagonal lattices [36]. However, the class P dictates the capsomer
arrangement and the resulting pattern of stress, which for spherical shells indicate
the tendency of a structure to produce a polyhedral shell.

Interestingly, even in the cases where the spherical shape is more stable,
viruses tend to undergo a buckling transition and to become polyhedral upon
expansion, as it is often the case during virus maturation. In fact, several T = 7
viruses adopt spherical procapsids but end up becoming faceted after suffering a
buckling transition triggered by an expansion during virus maturation [2,4,6,8].

More importantly, the choice of a polyhedral instead of spherical shape seems
to have mechanical advantages that might play an important biological role.
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Faceted icosahedral shells have higher bulk moduli and tolerate larger expansions
before bursting. In addition, they are able to withstand internal pressures ∼
20% higher than spherical capsids. They also have smaller volumes than their
spherical counterparts, which could increase the pressurization of the confined
genetic material. All these enhanced properties could be advantageous for viruses
that rely on a pressurized capsid to initiate the genetic material ejection [33].
However, since the maximum tolerable pressure is inversely proportional to the
radius of the shell [26], this suggests that viruses could only take advantage of an
internal pressurization mechanism for a specific range of low T ’s.

Finally, even though many viruses show a buckling transition during mat-
uration, the pathways and processes involved can be very complex, including
auxiliary proteins, cleavage or cross-linking. Obviously, our simple model can-
not describe these pathways nor capture those complications. But our results
could be helpful in understanding the biophysical advantages of undergoing a
maturation and buckling process and adopting a faceted shape.
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Appendices

A Polyhedral shell construction

The position of all capsomers in a polyhedral shell is obtained by reconstructing
an icosahedron using as faces the basic triangles of the Caspar and Klug model.
Starting from the h and k values of a given T -number, we build the associated
equilateral triangle on a hexagonal lattice and keep track of the x, y coordinates
of all capsomers, i.e. nodes of the hexagonal lattice, that lie inside this triangle of
edge l =

√
T . By applying a rotation of arctan( 1√

3
k−h
h+k ) around the z-axis, and a

translation of (−l/2,−l/(2
√

3), R) we place the center of the equilateral triangle

at (0, 0, R), where R =
√

3
12 (3 +

√
5)l is the distance from the center to each face

of an icosahedron of edge length l. We use then 20 copies of this triangle to
reconstruct the icosahedron.

The angular coordinates of the center of those triangles in the final icosa-
hedron are given by the position of the vertexes of the dodecahedron of unit
edge, which is the dual structure of the icosahedron: (±1,±1,±1), (0,±1/φ,±φ),
(±1/φ,±φ, 0), and (±φ, 0,±1/φ), where φ = (1 +

√
5)/2 is the ”golden ratio”.

After transforming those points into spherical coordinates (r, θ, ϕ), the icosahe-
dron is reconstructed from the basic CK triangle located at (0, 0, R) by applying
a custom rotation around the z-axis, followed by one of an angle θ around the
y-axis and one of ϕ around the z-axis.

This procedure was implemented using Mathematica c© [37]. In this way we
generated the (x,y,z) coordinates of all capsomers on an icosahedron of edge

l =
√

T and radius R = 1
4

√
10 + 2

√
5 l, defined as the distance from the center

to any vertex.
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Chapter 5

Built-in Stress in

Bacteriophage φ29

5.1 Introduction

Bacillus subtilis φ29 is a dsDNA bacteriophage, which, due to its relative simplic-
ity, has been placed in the spotlight of research, providing deep insights into the
strategies used by tailed viruses [1–3] (see Fig. 5.1). In general dsDNA phages
first assemble in an empty prohead that later is filled with the genetic material.
This process requires the participation of a packing motor and the consumption
of chemical energy in the form of ATP. Interestingly, the energy stored during
the packaging of dsDNA usually gives rise to an internal pressure, which can be
used to initiate the translocation of the genetic material into the new host [4].
However, the principles and biological relevance of this mechanism remain con-
troversial [5].

Bacteriophage φ29 is a prolate virus, whose capsid has dimensions 54nm ×
42 nm and adopts an architecture Tend = 3 and Q5F = 5 centered on a 5-fold
axis, as have been discussed in Chapters 1 and 2 (see Fig. 5.1a). The shell
of the prohead is constructed from 235 gp8 protein subunits and a dodecameric
connector of protein gp10, which is placed on one end of the 5-fold axis, and plays
the structural role of a penton [8]. Therefore, the bacilliform shell is build by 12
pentons (11 gp8-pentamers and the connector) plus 20 gp8-hexamers forming the
icosahedral caps, and 10 gp8-hexamers forming the zigzag equatorial zone of the
body [1, 9] (see Fig. 5.1b). The correct assembly of the prohead requires the
interaction of the connector protein (gp10), the scaffolding protein (gp7) and the
major head protein (gp8). The absence of the connector, the scaffolding proteins,
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Figure 5.1: Bacteriophage φ29. (a) The Tend = 3 (5-fold) Q5F = 5 bacilliform
architecture derived from the physical model (see Chapter 2). (b) The prohead of
the φ29 phage reconstructed by cryo-em [6]. (c) Mature virion structure derived
from cryo-em [7].

or the presence of mutants of these proteins yield aberrant structures made of gp8
(open rounded shells, icosahedral capsids, tubular assemblies) [10]. This indicates
that the information of the major head protein is not sufficient to define the shape
and size of the virus head, but rather it is the interaction of these components
what directs the precise curvature and extension of the contacts to generate the
shell architecture [11, 12].

To produce the mature virion, the DNA is packaged into the prohead, which
also ensures the complete release of the scaffolding protein [13]. Interestingly,
contrarily to many other phages [14, 15], φ29 shows no expansion or structural
differences in the capsid when the prohead and the filled mature particles are
compared. Once the DNA has been completely stored, the connector complex
interacts with other tail components (gp11, gp12 and gp9) to secure the DNA
inside the head shell. In addition, head fibers made of protein gp8.5 are incorpo-
rated on the pentamers of the shell to enhance the attachment to the cell wall,
even though they are dispensable for virus infectivity [7] (see Fig. 5.1c). Thus it
is likely that, beyond the absence of head fibers and the tail, there are not ma-
jor mechanically relevant differences between the prohead and the empty mature
head particles [16]. Remarkably, the structure of the gp8 shell seems the same in
both the prohead and the final mature virion.

To further infect a new host, a φ29 virion must attach to a bacillus subtilis
cell and perform a two step injection mechanism. Initially, up to a 65% of the
genome is released into the host driven probably by the high pressure inside the
bacteriophage capsid. Subsequently, there is a push-pull mechanism were at least
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one viral protein that has been expressed after the initial translocation step is
involved [2].

The ubiquity of the pressure mechanism as a promoter of the initial injec-
tion of the viral genome for dsDNA bacteriophages, remains controversial [5,17].
However, the conditions at which dsDNA is packed within the capsid generates
an internal pressure that, independently on the ultimate role of this stored en-
ergy, must be withstand by the capsid [18]. Thus these viral particles must be
designed in a way to be able to sustain this outward force that can be up to
several tens of atmospheres.

The ultimately purpose of this chapter is to shade some light on the rein-
forcement mechanism of φ29. To that end, we have investigated the mechanical
properties of empty φ29 proheads combining theory, simulations, and experi-
ments. We will show that empty prolated φ29 bacteriophage proheads exhibit an
intriguing anisotropic stiffness which behaves counter-intuitively different from
standard continuum elasticity predictions. By using Atomic Force Microscopy
(AFM), we find that the φ29 shells are about twice stiffer along the short than
along the long axis. This result can be attributed to the existence of a residual
stress due to the discrete nature of the capsid, a hypothesis that we confirm by
coarse-grained simulations. This built-in stress of the virus prohead could be a
strategy to provide extra mechanical strength to withstand the DNA compaction
during and after packing, or a variety of extracellular conditions, such as osmotic
shocks or dehydratation.

The chapter is organized as follows: in Section 5.2 we introduce the AFM
experiments that measure the mechanical strength of φ29 proheads. Section 5.3
shows that basic continuum elasticity theory is not able to explain the experi-
mental results. Simulations of the physical model introduced in Chapter 2 unveil,
in Section 5.4, the mechanism of reinforcement associated to the existence of a
residual stress. In Section 5.5 new AFM experiments are performed using a cross-
linker that homogenizes the capsid shell leading to a continuum like mechanical
response, which supports the residual stress mechanism. Finally, in Section 5.6
we summarize our findings and remark the implications on the bacteriophage φ29
infection strategy.

5.2 AFM experiments

In order to measure the mechanical properties of φ29, nanoindentation experi-
ments on single procapids were performed by the group of P.J. de Pablo at the
Universidad Autonoma de Madrid.
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Atomic force microscopy (AFM) is a high-resolution technique that allows to
probe single capsids. The basic set up of an AFM experiment is illustrated in
Fig. 5.2a. In essence the microscope consists of a small tip (15 nm radius in our
case) that is ultimately responsible for touching (probing) the sample. This tip is
attached to a cantilever that can exert a force on the viral capsids. The position
of the tip is controlled using a piezolectric device that can move the sample in
the three spacial directions by an applied electric voltage. When a capsid is
probed by the AFM tip, the cantilever suffers a deflection that is measured by
a laser beam and translated into force units (once the system has been properly
calibrated). The AFM experiments are in essence divided in two parts. First the
tip scans the sample, and records a precise topographic image of a capsid (see
Fig. 5.2b); subsequently, the shell can be nanoindented at a specific locations to
measure its mechanical response.

More specifically, the first step of the experiment is the adsorption of the
proheads on a properly modified glass surface (see Fig. 5.3b). Then using the
AFM is possible to scan the surface and obtain several structural and mechanical
properties of the proheads. In particular, from the topographical profiles, the
distribution of heights of the adsorbed proheads is obtained, which shows two
clear peaks at 42±2 and 55±2nm (inset Fig. 5.3b). They can be ascribed to laid
down on the side (29 proheads) and upright particles (28 proheads), respectively
[19]. In general, to obtain topographical features of the proteinaceous structure
of each isolated prohead with AFM in buffer conditions is a daunting task which
strongly depends on the tip conditions, the stability of the anchorage of the
particle to the substrate and the adsorption geometry. Interestingly, while none
of the laid down particles showed further details beyond some triangular facets
(see Fig. 5.3c), 6 out of the 28 upright proheads presented definite recognizable
details corresponding to the 5-fold axial symmetry of the capped end of proheads
adsorbed on the connector (see Fig. 5.3e). Likewise, we found just two upright
proheads showing the connector facing up. Fig. 5.3h presents an example of a
prohead absorbed through the capped end, showing a small hole surrounded by a
ring (see Fig. 5.3g) that can be associated to the connector (see Fig. 5.3h). The
other unidentified 20 upright proheads do not present enough clues to recognize
their adsorption geometry. Therefore they could be either resting on the capped
end or on the connector. For the sake of clarity, the AFM data was compared with
the φ29 prohead cryo-EM volume [6] (Fig. 5.3a). Thus, the inherent geometrical
dilation effect between tip and sample was considered by processing the EM data,
conveniently oriented, with a dilation algorithm using a 15 nm radius tip [20].
The resulting dilated cryo-EM data (see Figures 5.3d, 5.3f, and 5.3h) present
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Figure 5.2: Scheme of the AFM experiment. (a) Block diagram of the atomic force
microscope. The sample is mounted on a piezoelectric tube that can move the
sample in the z direction using an electric voltage. The deflection of the cantilever
is measured by a laser-photodiode system properly calibrated to measure the force
applied by the tip. (b) The AFM can scan the surface to find the bacteriophage
proheads. A jumping mode protocol is used to scan the surface keeping the force
constant on average. The variations in the voltage of the piezo tracks the height
of the sample. Once the profile of prohead has been identified, the AFM can
nanoindent a specific point of the capsid.

topographical features which agree with the corresponding AFM images of a
prohead laid on the side (see Fig. 5.3c), the 5-fold symmetry of the capped end
of a particle adsorbed on the connector (see Fig. 5.3e) and the connector facing
up of a prohead adsorbed on the capped end (see Fig. 5.3g).

As commented on Appendix A, to analyze the AFM experiments, we con-
sider only proheads showing a stable mechanical behavior. Typical indentation
curves performed on glass (dotted line), on laid down (gray) and on upright
(dark) φ29 proheads are shown in Fig. 5.4a. In order to obtain the prohead stiff-
ness (spring constant) k along the perpendicular direction to the substrate the
recorded nanoindentation curves were fitted linearly [19]. The spring constants
are sorted out depending on the selected prohead adsorption geometry [21] (up-
right or laid down). In the histogram of Fig. 5.4b we classified the slopes of 56
indentations carried out on 5 upright (black) and 6 laid down (gray) proheads.
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Figure 5.3: φ29 prohead orientation geometry. Panel a shows the EM reconstruc-
tion model EMD-1117 [6]. Panel b shows an AFM image of a typical population
of φ29 proheads adsorbed on the silanized glass. The inset shows a histogram of
heights with two peaks (see text). Panel c shows a typical AFM image of a laid
down on the side prohead. Panels e and g present typical AFM images of upright
proheads adsorbed by the connector and by the capped end, respectively. Panels
d, f and h are the dilation images of the cryo-EM data of panel a conveniently
oriented to be laid down on the side, adsorbed through the connector and through
the capped end, respectively. The dilated structures compare fairly well with the
corresponding AFM data. EM data are lightly superimposed on panels d, f and
h.
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Figure 5.4: Nanoindentation experiments. Panel a shows the typical forward
indentation curves on different locations: glass (dotted), laid-down shell (gray)
and upright shell (black). Panel b presents the classification of the indentation
curve slopes (spring constants) on upright (black) and laid-down (gray) proheads.

In the upright proheads there are included 2 adsorbed through the connector,
2 through the capped end and 1 unidentified. Gaussian fitting of the data re-
sults in spring constants of 0.075±0.020 N/m and 0.192±0.034 N/m for upright
and laid down proheads, respectively. The spring constant of the laid down pro-
heads corresponds to the lowest one of the two values reported in [19] within the
experimental error.

Therefore, laid down proheads are ∼ 2.6± 0.8 times stiffer than upright ones.
Interestingly, the spring constant of the upright proheads do not depend on the
particle geometry adsorption, indicating that the position of the connector, either
on top or below the particle, is not relevant for the spring constant within the
experimental error (see discussion in Appendix B).

5.3 Elastic properties of empty prolate capsids

Let’s analyze first the expected properties of a prolate shell based on a continuum
elasticity theory description. The capsid of φ29 can be roughly considered as a
shell made by a cylindrical body closed by two spherical caps. By analyzing the
elastic response of the cylindrical and spherical part of the virus as independent
entities one would expect that the laid-down virus would be softer than the
upright one, since it is easier to deform a cylindrical than a spherical shell of the
same radius [22]. The reason is that a cylindrical shell, unlike a spherical one,

189



Chapter 5. Built-in Stress in Bacteriophage φ29

can be bent without much stretching.
In a spherical shell of thickness h and radius R subjected to a concentrated

force f , the stretching energy scales as Estr ∼ Y h (ξ/R)2d2, whereas the bend-
ing energy is Ebend ∼ Y h3(ξ2/d2), where ξ is the deformation, Y the 3D Young
Modulus, and d the length scale over which the deformation extends. Minimiza-
tion of the total energy leads to d ∼ √hR, which implies that the deformation is
proportional to the force with an effective spring constant [22]

ksph
eff ∼ Y

h2

R
(5.1)

However, in the indentation of a cylinder [23], the bending energy scales as
Ebend ∼ Y h3(ξ/R2)2R l, and the stretching energy as Estr ∼ Y h (ξR/l2)2R l,
where now l represents the length along the axis of the cylinder over which the
deformation takes place. After minimization of the total energy, one gets that
the deformation zone extends over a distance l ∼ R

√
R/h, and that again the

force becomes linear in the deformation, but now with a spring constant

kcyl
eff ∼ Y

h5/2

R3/2
(5.2)

Therefore, the ratio of spring constants is

ksph
eff

kcyl
eff

∼
√

R

h
(5.3)

In general, viral capsids can be considered as thin shells, i.e., the radius is much
bigger than the thickness of the capsid, R � h. Therefore, the cylindrical spring
constant measured on the cylindrical part is predicted to be softer than the
spherical one

kcyl
eff < ksph

eff (5.4)

When we particularize Eq. (5.3) to the geometry of φ29 (R = 21nm and
h = 1.6 nm [1], the ratio of effective constants becomes approximately(

ksph
eff

kcyl
eff

)
φ29

∼ 3.6 (5.5)

So elastic theory predicts that the indentation of the cylindrical body should be
more than 3 times softer than the spherical part, the opposite to what is found in
the AFM experiments of φ29. Interestingly, this continuum elasticity prediction
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has been quantitatively confirmed by a detailed Finite Element Analysis (FEA) of
indentation of laid down on the side and upright virus-like shells with a spherical
AFM tip of radius 20nm (see Appendix C).

To tackle this puzzling disagreement between the predictions of continuum
elasticity theory and experiments we should account for extra considerations.

Interestingly, it has been shown experimentally that when indenting with an
AFM tip on a spherical or cylindrical object whose deformation is controlled by
the surface tension, the effective elastic constant is approximately equal to the
membrane tension [24].

There are two plausible mechanisms that can originate this tension in the
walls of the capsid. The simplest one is the presence of an internal pressure
difference Δp. One should not forget that double-stranded DNA bacteriophages
such as φ29 must support at least a pressure of 30 − 60 atm arising from the
DNA packaged inside [25–27]. Hence φ29 mature heads behave as a nanoscopic
pressurized vessel. In that case, Laplace’s law [28] predicts that a thin cylindrical
tank with spherical caps supports a different membrane tension along the axial
than along the circumferential direction. In the spherical caps and along the
axial direction of the cylinder the membrane tension is Tx = hσx = ΔpR/2,
whereas in the circumferential (hoop) direction the tension is twice larger, i.e.
Tθ = hσθ = ΔpR, where σx and σθ are the corresponding stresses. Now, the
average tension will be given by the average of the two principal components of
the tension in each zone. In the cylindrical wall the average tension is

T̃cyl =
Tx + Tθ

2
=

3

2
Tx (5.6)

while for each spherical cap is given by

T̃sph =
Tx + Tx

2
= Tx (5.7)

Therefore, in a pressurized vessel the cylindrical part develops a 50% more tension
to counter act the pressure Δp compared to the spherical caps. Thus, in the
limit of high pressures, where the tensions are big enough to dominate the elastic
response of the shell, the effective elastic constants will be related by

k̃cyl
eff

k̃sph
eff

∼ 3

2
(5.8)

Accordingly, in this situation, the effective elastic constant measured when in-
denting on the cylindrical wall is expected to be 1.5 times higher than in the caps,
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Chapter 5. Built-in Stress in Bacteriophage φ29

which is comparable to the experimental results. However since the experiments
were done with empty viruses, for which the pressure difference is expected to
be zero, we have to turn to a second mechanism that could play a similar role to
pressure differences and justify the counterintuitive mechanical strength observed
in the experiments: the presence of a built-in stress.

Some theoretical works have recently predicted that icosahedral viruses [29]
and also geometrically similar nano-structures such as fullerenes and carbon nan-
otubes [30, 31], have a residual stress even at the optimal configuration which
minimizes the overall energy (see also Chapter 4). This residual tension arises
to compensate the moment of force required to bend a hexagonal sheet into a
sphere or cylinder. Thus, an empty capsid can be under tension even in the ab-
sence of a pressure difference. The magnitude of this residual stress will depend,
among other factors, on the bending stiffness, the radius of the capsid, and the
spontaneous curvature (i.e. the preferred curvature that a monolayer of capsid
proteins will assume in the absence of any external constraints, which is dictated
by the protein-protein interactions).

To analyze this hypothesis, we have resorted to our coarse-grained model, as
explained in the next section.

5.4 Coarse-grained simulation

In order to explore the distribution of stresses in the prolate shell of φ29 we per-
formed coarse-grained simulations using the simple model of capsomer-capsomer
interactions introduced in Chapter 2. In the discrete simulation, the 42 coarse-
grained capsomers (i.e., 30 hexamers and 12 pentamers) of φ29 are placed on
the surface of a spherocylinder made of a cylindrical body of length L closed by
two hemispherical caps of radius R. The capsomers interact with an effective
Lennard-Jones potential where we have added the bending energy of a sphero-
cylinder [32]

Ebend

κ
= 2πR2

(
2

R
− C0

)2

+ πRL

(
1

R
− C0

)2

(5.9)

where κ is the bending stiffness and C0 the spontaneous curvature. Using Monte
Carlo simulations we have obtained the optimal configuration and analyzed the
distribution of local and global lateral stresses following the procedure detailed
in [29] and in Chapter 4 (see also Appendix D).

More specifically, in the absence of bending energy the original model of
capsomer-capsomer interactions had associated an optimal radius R0 and length
L0 for the T = 3 Q5F = 5 capsid of φ29 (given in Chapter 2). The introduction
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5.4. Coarse-grained simulation

of the bending energy term given by Eq. (5.9) shifts this optimal solution in
a way that will depend on the values of κ and C0. This shift in the values of
(R, L) with respect to the optimal values (R0, L0) gives rise to a deformation
in the shell that builds up a tension in the walls. The value of this tension
can be assimilated to a “virtual” pressure (i.e., meaning by that the value of
an internal pressure that will generate the same lateral stress in the absence
of bending), which is not necessarily homogeneous, i.e., the local pressure in the
cylindrical zone, pcyl, can differ from the pressure in the caps, psph. Thus, in a first
approximation, we select only the set of (R, L) capsids that are in (constrained)
mechanical equilibrium, i.e., pcyl = psph or Δp = pcyl− psph = 0. The set of these
mechanically equilibrated shells defines the curve (R, L)Δp=0 and can be related
to the situation of a pressurized vessel (see Appendix D).

Alternatively, we also simulate the φ29-like capsid for different pairs of (R, L)
(the details of the simulation are explained in the Appendix D), introducing a
bending term that compensates the virtual pressure associated to the deforma-
tion, and leads to a non-pressurized vessel. The new optimal value (R, L)C0,κ is
the pair (R, L) that minimizes the total energy Etot = E(R, L)+Ebend(R, L)C0,κ,
where E(R, L) is the intermolecular energy of interaction obtained in the simu-
lation.

A typical result for the distribution of 2-dimensional local lateral stresses of
a capsid (R, L)κ,C0 is shown in Fig. 5.5. One can get the average value of the
stress in each region, i.e., the spherical caps and the cylindrical body, simply by
averaging the local stresses of all capsomers belonging to that region. We have
found that the average stress and tension developed on the cylindrical body is
consistently higher than that on the spherical caps, for a wide region of values of
the bending stiffness κ and the spontaneous curvature C0 (see Appendix D). The
ratio of the two averaged tensions oscillates roughly between 1 and 2, depending
on the values of κ and C0. Moreover, we have found that the ratio between
the cap and cylindrical stresses is independent on the details of the interaction,
since it is mainly dictated by the discrete arrangement of capsomers and the
curvature of the structure1. For small values of the bending stiffness, κ < 1, we
have found that, for a wide region of the spontaneous curvature C0, the local
stress of the hexamers in the cylindrical body is roughly ∼ 1.5 − 2 times larger
than that one of the pentamers at the apex of the caps (see Fig. 5.5). Moreover,
we find that the ratio between the average stresses in the cylindrical body and
the spherical caps is also roughly ∼ 1.5 − 2. Interestingly, in the absence of

1To confirm this point we performed different sets of simulations using alternative intermolec-
ular potentials, for instance, adding a screened electrostatic interaction.
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Chapter 5. Built-in Stress in Bacteriophage φ29

Figure 5.5: Distribution of local lateral stresses obtained in the simulation of a
coarse-grained model of the φ29 capsid. The figure shows a top view (left) and
a laid-down image (right) of the capsid model. Pentamers and hexamers are
represented by spheres with a radius ratio ≈ 0.8. Colors indicate the relative
value of the local lateral stress and the scale is normalized to the smallest value
that corresponds to the tip pentamers of the caps.

bending, the isopressure line also leads to a wide range of structures with local
and global ratio of stresses that are roughly ∼ 1.5−2. Therefore, the combination
of intercapsomeric interactions and bending energy associated with a preferred
curvature plays a similar role as pressure, and generates a built-in lateral stress
that is larger in the cylindrical body than in the spherical caps. These results
corroborate the trend observed in the experimental findings2.

5.5 Glutaraldehyde experiment

In order to further test the above mentioned hypothesis, the group of P.J. de
Pablo performed further experiments using a well known cross-linking agent such
as glutaraldehyde (GAD) [33] (see Appendix E).

GAD provides strength on samples, and is commonly used as a fixation agent
for cells and biological tissues to tolerate the manipulations inherent for any mi-
croscopy [34]. This agent can also modify the mechanical properties of protein ag-
gregates, because introduces covalent bonds surpassing the original inter-protein
interactions. Actually, a stiffness increase introduced by GAD has been reported
in microtubuli [35] and cells [36] by using AFM.

Therefore, in the case of φ29 procapsids, GAD should act as nanostaples

2Although the ratio of stresses in Fig. 5.5 matches the ratio of elastic constants measured
experimentally for the φ29, our analysis is intended only to provide a qualitative description of
the built-in-stress mechanism.
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5.5. Glutaraldehyde experiment

Figure 5.6: Glutaraldehyde induced mechanical reinforcement of proheads. Panel
a shows the spring constant distribution of glutaraldehyde treated proheads: laid
down on the side (dark) and upright (gray). Panel b presents the spring constant
of the proheads with (cross) and without (circle) glutaraldehyde.

that unspecifically clamp the adjacent proteins of the shell. The new covalent
bonds will reinforce and stabilize the procapsid structure, and will mask the
previously preferred curvature or directionality of the interactions, which are
based on weaker bonds. Assuming that the built-in stress is responsible for
the anisotropy of the φ29 proheads, and based on the previous discussion, the
reinforcement introduced by GAD should increase the intrinsic elastic constants
of the shell, and hide the tension associated with the built-in stress. Consequently,
this experiment should reverse the anisotropy, leading to the classical empty shell
scenario.

Indentation experiments were performed on 3 upright and 3 laid down par-
ticles cross linked with GAD (see Appendix E). Interestingly, this cross-linking
increases the spring constants for both upright and laid-down particles compared
to the original procapsids. More importantly, the anisotropy in the elastic re-
sponse has been reversed (see Fig. 5.6). In particular, the elastic constant of
the cylindrical body is now ≈ 1.3 times softer than that of the caps, which is in
qualitative agreement with the anisotropy predicted by the continuum elasticity
theory (even though more GAD might be necessary to reach the higher values
predicted by the FEA analysis).

The addition of 0.25% of GAD has been enough to mask the built-in stress,
converting the pre-stressed φ29 procapsids into almost stress-free prolate that
obey the behavior predicted by continuum elasticity theory. Hence, this experi-
ment strongly supports the existence of built-in stress in the procapsid of φ29.
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5.6 Conclusions

Our results reveal the strikingly anisotropic mechanical properties of φ29 bacterio-
phage prohead virus particles that seem to be due to the existence of pre-stresses
in the capsid. The presence of these residual stresses might play an important
biophysical role for the viability of the virus. Induced pre-stress is commonly
used not only in material science, but also by many biological tissues (although
not molecular aggregates so far) to increase their mechanical resistance and help
them to better tolerate tension [37]. The presence of pre-stress may stiffen the
capsid to prevent any damage from mechanical assaults such as osmotic shocks or
DNA packing, providing protection to the viral genome during the extracellular
virus cycle. On the other hand, the presence of this residual stress could play
a significant role in the pressure-assisted DNA translocation (ejection) through
the tail into the host [2] performed by the mature head. A simple estimation
using the Laplace law3 indicates that the measured stress of the equatorial zone
is equivalent to a pressure difference of 0.19 N/m/21 nm � 90 atm, the same or-
der of magnitude than that exerted by the confined DNA [3, 25, 27]. Therefore
the built-in stress could confine the internal pressure along the long axis of the
prolated shell, helping to make the most of the stored elastic energy to initiate
the DNA translocation process trough the tail.

Another biophysical interesting question relates to how this pre-stress is gener-
ated during the capsid formation. In the assembly process there is a competition
between the tendency of proteins to aggregate at the preferred curvature and the
need to minimize the rim area exposed in a partially assembled capsid by making
a closed structure [38] (see Chapters 6 and 7). If the curvature of the closed capsid
is different from the spontaneous one (i.e. the preferred curvature at which capsid
proteins will assemble without forcing them to make a closed structure), lateral
stress will develop. Interestingly, not only φ29, but most complex double stranded
DNA bacteriophages do have a scaffolding protein which co-assembles with the
main head protein to produce a prohead with the correct shape and size [39].
In the case of φ29, the presence of these scaffolding proteins is mandatory for
a correct prohead assembly [11]. This directing role of the scaffold is transient,
as once the shell is built, the scaffolding is released concomitant to the DNA
packing in the shell. We can not exclude the possibility that a certain amount
of scaffolding protein might be released from proheads during storage, but this
is not followed by any apparent change in the structure of the proheads. Since

3Assuming the elastic constant kcyl as the membrane tension for the cylindrical part, one
gets the expression kcyl/R = Δp, where R is the radius of the prolate.
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protein binding interactions are relatively weak, on the order of a few kT [40], it
is likely that scaffolding proteins might help to impose a curvature in the capsid
significantly different from the spontaneous one, by assisting the bending of the
proteins at the junctions. This will generate a much larger “membrane” stress,
which will reinforce the strength of the capsid. In the absence of the scaffold-
ing, the stress generated during the assembly might help to better tolerate the
packaging, avoiding a significant expansion.
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Appendices

A AFM of proheads

The nanoindentation experiments on single procapids were performed by the
group of P.J. de Pablo at the Universidad Autonoma de Madrid.

Stocks of empty proheads of φ29 were stored in TMS buffer (137mM NaCl,
2.7 mM KCl, 1.5 mM NaH2PO4, 8.1 mM KH2PO4, pH 7.2). A single drop
of 20 μl stock solution capsid was deposited on a silanized glass surface [41],
which was left for 30 min on the surface and washed with buffer. The tip was
pre-wetted with 20μl of buffer. The AFM (Nanotec Electrónica S.L., Madrid,
Spain) was operated in jumping mode in liquid [42] using rectangular cantilevers
RC800PSA, and Biolevers (BL-AC40TS) (Olympus, Tokyo, Japan) with nominal
spring constants of 0.05 N/m and 0.03 N/m, respectively. Cantilevers spring
constants were routinely calibrated by using the Sader’s method [43]. In order to
perform nanoindentations, single proheads were deformed by the tip by carrying
out single FZs (force vs. z-piezo displacement) experiments most likely right at
the top of the procapsids: the particle is zoomed in continuously by reducing
the x-y scanning size until the bump of the very top is under the whole piezo
scan. Afterwards the FZ is executed at the top of the particle, probably with a
few nm of uncertainty mainly provoked by the thermal drift, and the intrinsic
non-linearity and creep of the piezo. Still, this method has been proven to be
robust enough to establish electrical contact with carbon nanotubes [44], which
are even smaller than viral particles. During the first stages of indentation the
capsids show a linear deformation [23] which provides the spring constant of
the virus kv (if it is considered like a spring in series with the cantilever) as
kv = kcSg/(Sv−Sg), where kc is the spring constant of the cantilever, Sg (nm/V )
the slope of the cantilever deflection on the glass (here the substrate is considered
as non deformable) and Sv (nm/V ) the slope of the cantilever deflection on the
virus. Hence, the prohead is indented with a few separate sets of FZs of about
5 indentations in each one. Following each FZ set, an image of the prohead is
taken to confirm the integrity of the prohead, as well as to know its position
in order to correct for any drift if needed to perform the next FZs set. The
maximum force applied during each FZ never exceeded ∼ 300 pN to prevent the
damage [45], collapse [23], buckling [46], or non-linear deformations [47] of the
shells. The FZ speed is about 60nm/s. Even if the shell integrity is maintained,
in our experiments only proheads showing stable spring constants along the FZs
sets were considered to avoid particle mobility effects that often occur when the
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particle is loosely bound to the surface. Stiffness images were also performed [48],
which roughly consist on keeping the contact slopes of all the FZ curves performed
at each point of the topography image. Although this method provides a very
accurate relationship of the topography and the stiffness of the virus [49], it
is slower than single FZs and requires exceptional imaging conditions such as
robust virus anchorage and thermal drift stability. Viruses are also very prone
to destruction when using this method since, unlike a single FZ, the virus is
repeatedly indented about a few thousand times in a 128 × 128 points image.
Images were processed using the WSxM software [21]. In order to reduce the
thermal drift of the AFM, it is operated under constant temperature (210C)
conditions inside an acclimatized box.

B The influence of the connector

In order to clarify the potential influence of the connector, a stiffness map of one of
the two upright proheads showing the connector facing up was performed. After
carrying out the usual single FZ experiments to find the prohead spring constant
(0.076 ± 0.020 N/m), we succeeded in acquiring a stiffness map (see Fig. B.1b),
simultaneously with the topographical image (see Fig. B.1a). The histogram of
the stiffness slopes presented in Fig. B.1c shows two peaks at 0.055±0.007 V/nm
and at 0.075 ± 0.005 V/nm that correspond to the prohead and the substrate,
respectively.

From these data, the spring constant of the prohead is calculated to be
0.074 ± 0.020 N/m, very close to that obtained with the single FZ experiments.
An interesting detail of the stiffness map is the existence of a soft area around
the center of the prohead. Fig. B.1d shows two simultaneous profiles of the
topography (gray) and the stiffness map (dark) carried out on this region, pro-
viding a direct correlation of the low stiffness area with part of the ring of the
connector. Therefore, it is tempting to ascribe 0.04 N/m to the connector spring
constant, which is almost half of the adjacent shell area stiffness (∼ 0.07 N/m,
see Fig. B.1d). Nevertheless, despite the fact that the connector is locally softer,
its presence in the capsid replacing one of the pentamers seems not to have any
influence on the spring constant of the whole capsid.
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Figure B.1: Stiffness map of a prohead showing the connector. Panel a shows
the topography AFM data of the connector and panel b the simultaneously ac-
quired stiffness map. Panel c presents the histogram of the stiffness map. Panel
d presents a topographical profile showing the connector (gray) and the corre-
sponding stiffness profile (dotted dark).
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C FEA analysis

In order to study the quantitative mechanical response of a continuum prolate
shell, a Finite Element Analysis (FEA) was performed by A. Raman, J. Gómez
Herrero and I. A. T. Schaap.

The model considers the icosahedral geometry of the prohead emphasizing the
faceting of the viral particles. These simulations were performed using iANSYS.
The model consists of three volumes: the capsid is modeled as a hollow icosahe-
dron with an extra band of hexons around the equator, the tip is modeled as a
rigid sphere of diameter 20nm, and the substrate beneath the capsid is modeled
as a flat, rigid surface. Prohead dimension are 2nm thickness, 40 nm×54 nm [1].
All three elements exhibit planar symmetry, so the model consists of only half the
domain. Symmetry boundary conditions, which force the derivatives of the solu-
tion at the symmetry plane to zero, ensure that no features of the solution are lost.
The capsid was deformed up to 20nm indentation depth in increments of 0.5 nm.
The solution was then mirrored about the symmetry plane to obtain the com-
plete solution. The dimensions of the prohead were taken from cryo-EM [1]. The
elastic modulus was taken from [19] to be 1.8 GPa. The model is meshed using
approximately 12, 000 SOLID92 elements, which are 10-node quadratic tetrahe-
dra. Contact between the tip and capsid and between the capsid and substrate
is captured using contact pairs with CONTAC174 and TARGE170 elements.
These elements are planar and share nodes with the volume mesh at the contact
surfaces. Symmetry boundary conditions were applied at the areas that are co-
incident with the symmetry plane and displacement boundary conditions on the
tip nodes as well as the substrate nodes. The implementation of contact within
ANSYS requires the specification of a friction coefficient. A detailed convergence
study of friction coefficients suggested that a value of 0.2 captures buckling phe-
nomena of individual facets of the capsid, which was a desirable component of
that model. Also, based on a detailed mesh density convergence study ∼ 12, 000
elements were used. The model was computed with the parameters in Table C.1.
Images of the elements and representative force-indentation curves are shown in
Fig. C.1.
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Element Type SOLIDS (tetr 10-node)

Number of elements 12, 832 (top)
11, 582 (side)

Young’s modulus 1.8 GPa
Poisson’s ratio 0.3

Friction coefficient 0.20
Contact pair elements CONTACT174 and TARGE170

Basic options Auto time stepping
25 substeps

100 max. substeps
15 min. substeps

Nonlinear options 500 max. iterations

Table C.1: Parameters of the FEA model.

Figure C.1: FEA analysis of φ29 mechanical response. (a) The meshing for
upright (top) and laid down (bottom) proheads. (c) Force indentation curves
predicted by the computational model. Note that only the data in the elastic
regime prior to buckling and nonlinear effects are relevant to the discussion in
this chapter.
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D Details of the coarse-grained simulations

The φ29-like capsid, N = 42 capsomers with T = 3 Q = 5 (5-fold) (see Chapter
1), was simulated using the Monte Carlo (MC) algorithm, introduced in Chapter
2, for different pairs of radii and body lengths (R, L) around the optimal structure
(R0, L0). Each shell was equilibrated by 5, 000 MC steps and the magnitudes were
averaged using 5, 000 MC steps more4. Importantly, for each deformation we
computed the virtual pressure at the cylindrical body, pcyl, and at the spherical

caps, psph = (pleft
sph + pright

sph )/2. The virial pressure of a zone was computed by
summing the radial force on each capsomer due the intermolecular interactions
divided by the surface of the zone. Subsequently we selected the deformations
that showed constrained mechanical equilibrium, where the virtual pressure was
homogeneous, i.e., Δp = pcyl − psph = 0. This defines the isopressure curve
(R, L)Δp=0 (see Fig. D.1).
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R [σ0]

(R,L)Δp=0

Figure D.1: Isopressure curve. The set of values (R, L) associated to the φ29-
like capsid that are in (constrained) mechanical equilibrium Δp = 0 are plotted.
Each structure was equilibrated by a MC algorithm. The dotted vertical and
horizontal lines indicate intersect at the optimal structure (R, L)p=0 or (R0, L0).

For every structure the local and global 2D stresses were computed (see
Chapter 4). Special emphasis was placed on the study of the lateral stresses,

4A subset of the (R, L) map was explored using longer simulations, and agreed with the
shorter ones. Note that here the initial configuration for each simulation was a (deformed)
T = 3 Q = 5, rather than a random structure.
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which can be related to a membrane tension [29], and that can be even measured
by AFM experiments [24]. Note that for the hemi-spherical caps the local (or
global) lateral stress is given by the average of the azimuthal and hoop stresses,
σT = (σθθ +σφφ)/2, whereas in the cylindrical zone the lateral stress corresponds
to the average of the longitudinal and hoop stresses, σT = (σzz + σφφ)/2. Fig.
D.2a plots the local values of lateral stresses for a hexamer at the center of the
cylindrical body σ2D

T (H), and a pentamer on the tip of a spherical cap, σ2D
T (P ).

The stress in the hexamer is systematically bigger in magnitude than the local
stress in the pentamer, except in the region close to the optimal structure R0,
due to the non-simultaneous change of sign for both capsomers. Recall that even
at equilibrium, the discrete nature and curvature of the capsid has associated
a residual stress (see Chapter 4 and Ref. [29]). The ratio of the hexamer and
pentamer stresses is plotted in Fig. D.2b. The lateral stress in the pentamer is in
general ∼ 2 times larger than that of the pentamer. For compressed structures
R < R0 the ratio of local stresses increases and gets closer to ∼ 3, and near
R0 the ratio diverges due to the fact that the stress on the pentamer becomes
vanishingly small (see Fig. D.2a). We emphasize that the global lateral stresses
of the spherical and cylindrical zones follow a similar behavior.
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Figure D.2: Local lateral stresses following the isopressure line. (a) Lateral stress
of a hexamer at the center of the body of the φ29-like capsid, and lateral stress of
the pentamer at the tip of a spherical cap. The vertical line is placed at R0. Note
that at the optimal equilibrium the residual stress is low but non-zero. Positive
stress means compression, and negative means stretching. (b) Ratio of the lateral
stresses plotted in panel (a). The hexamer stress is generally larger, but the ratio
diverges at R � R0 because the lateral stress of the pentamer inverts the sign
and becomes zero. The vertical line is placed again at R0.
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The existence of a bending energy can compensate the virtual (inhomoge-
neous) pressure generated in the deformed structures of a φ29-like capsids, and
lead to highly stressed but non-pressurized vessels. In a first approximation we
introduce a continuum bending term for spherocylindrical shells given by Eq.
(5.9). We studied the influence of different values for the bending constant κ
and the spontaneous curvature C0 (see Fig. D.3). The total energy given by
the intermolecular energy E(R, L) and the bending energy Ebend(R, L)C0,κ, i.e.,
Etot = E(R, L) + Ebend(R, L)C0,κ, was computed and minimized using the sim-
ulated structures for different values of (R, L). Interestingly, for low values of κ
there is a prominent zone where the ratio of the residual stress for a hexamer
(at the equator of the body) and a pentamer (at the tip of a cap) is ∼ 2 (see
Fig. D.3a). When one plots the stress ratio between the cylindrical body an a
spherical cap, the zone for > 1 is even wider (see Fig. D.3b).

Both mechanisms, the pressurization and bending energy, lead to a similar
qualitative scenario with respect to the residual stress distribution of the prolate,
and are in consonance with the elastic response measured in the AFM experi-
ments.

We emphasize that our analysis of the built-in stress is a first approximation,
due to the simplicity of our intermolecular interaction, the geometrical constrain
(the spherocylindrical template), and the application of a continuum bending en-
ergy term. To obtain a more accurate quantitative analysis of this reinforcement
mechanism, a more realistic model, including a intermolecular term related to
the orientation preference between capsomers, should be investigated.
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Figure D.3: Map of the ratio of lateral stresses as a function of the parameters of
the bending energy. The total energy (intermolecular interactions plus bending
energy) was minimized for different values of the spontaneous curvature, C0,
and bending constant, κ, using the simulated structures of the Lennard-Jones
like model for different values of (R, L). (a) The local ratio of the stress in a
hexamer in the body with respect to the penton at the tip of the cap for the
different equilibrium structures is plotted. (b) The global ratio of the stress in
the cylindrical body of the prolate with respect to the hemi-spherical cap for the
different equilibrium structures is plotted.
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E Glutaraldheyde experiments

Glutaraldehyde (GAD) is a fairly small molecule with two aldehyde groups, sepa-
rated by a flexible chain of 3 methylene bridges. The potential for cross-linking is
given by the -CHO groups and happens over variable distances since in aqueous
solutions, GAD is present largely as polymers of variable size. There is a free
aldehyde group sticking out of the side of each unit of the polymer molecule, as
well as one at each end. All these -CHO groups will combine with any protein
nitrogens of the free amino groups with which they come into contact, forming co-
valent bonds and cross-linking adjacent proteins. GAD was added to the prohead
solution up to 0.25% and incubated for half an hour. Afterward the procapsids
solution was adsorbed on silanized glass as indicated above and washed out with
TMS buffer.
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Chapter 6

Classical Nucleation Theory of

Spherical Shells

6.1 Introduction

Viruses use several mechanisms to infect a cell, which can be very specific de-
pending on the viral species and its host [1]. After the infection and at certain
cellular conditions, the replication is triggered, and the viral genetic material
takes advantage of the cell machinery to produce the required components for a
new viral progeny, i.e., coat proteins, genetic material, and other products. This
can be a very complex process with some similarities to an industrial factory [2],
where the place and rhythm of the events must be properly orchestrated to pro-
duce a mature virus. Therefore, understanding the role of the different steps
during viral assembly is a key question to identify targets that could control a
virus infection [3, 4].

Depending on the virus, the capsid is successfully assembled from the coat
proteins alone [5–16], or in combination with scaffolding proteins [17–20], or the
genetic material [21–23]. However, regardless of the scenario, the process of capsid
formation is spontaneous and does not require energy consumption (in form of
ATP). This suggests that the assembly of viruses is controlled by general and
basic physical principles, and thus its amenable to a thermodynamic and kinetic
description [24–28]. In fact, many viruses can be reconstituted in vitro from
their basic components, yielding virus like particles which are fully infective and
indistinguishable from native virions. For instance, back in the forties, tobacco
mosaic virus was the first virus to be fully reconstituted in vitro by mixing the
coat proteins and the viral RNA [21].
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Also, empty capsids have been produced even for viruses that seem to require
the genetic material to assemble in vivo, such as CCMV or BMV. Moreover, it
has been shown that by tuning the coat protein concentrations, the pH, or the
ionic strength conditions the same protein is able to assemble into different capsid
structures [5,6,9,11,29–31]. This has opened also the possibility to engineer the
viral coat proteins for different type of applications. For instance, encapsulation
of materials for biomedical or material purposes or for templating nanostructures
[32].

All this has stirred the interest in studying the mechanisms of viral assembly.
To elucidate the basic aspects of the formation of well ordered spherical capsids,
typical experiments are based on scattering techniques, cryo-EM, and size exclu-
sion chromatography (SEC), combined with simple models [7,33]. The assembly
process of spherical shells has been studied also from theory [26, 27, 34–38] and
simulations [28,39–54]. In particular, the work of Zlotnick and collaborators has
been specially relevant in this context. Their in vitro experiments on HBV [13,55]
and papilloma viruses [14], combined with his seminal kinetic rate assembly mod-
els [26,56,57], and complemented also with simulations [58,59] have provided very
useful insights on the process of viral assembly. Nevertheless, and despite the ef-
forts of the community, many questions regarding the formation of shells, and
specially its kinetics, still remain open.

Viruses have developed specific mechanisms to succeed in the infection of a
particular host. However, there are many evidences from experiments and simu-
lations that unveil the presence of some characteristic and generic features in the
assembly of viral capsids. First, there is a steep dependence of capsid produc-
tion on protein concentration. Below a critical (or characteristic) concentration
no capsids can be built, whereas for concentrations larger than that, the yield of
capsids is high. Another distinguishing feature is the lack of intermediates: either
subunits in solution or fully formed capsids are typically observed in experiments.
On what concerns the kinetics, it is characterized by a marked sigmoidal kinetics
and the existence of a lag time before the formation of the first capsids takes
place. A final trend is that there is a pronounced hysteresis between the condi-
tions at which capsid assembly and capsid disassembly take place. Once capsids
are formed, they do not dissociate easily even if the concentration of free subunits
is drastically reduced. This has a clear biological relevance, since viruses must
resist a number of different environments to reach a new host, where no viral
proteins are present.

These distinctive features suggest a clear mechanism that could explain all
the above observations: nucleation. Hence the assembly of viruses shares some
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similarities with a classical first order phase transition, like the formation of
a crystal or a liquid phase from vapor. The distinguishing trend of all these
phenomena is their activated nature, i.e., the presence of an energetic barrier that
has to be surmounted for the formation of the new phase, e.g., a fully formed
capsid in the viral case. The origin of the barrier comes from the energetic cost
involved in the formation of a partial capsid. In favorable assembly conditions, the
free energy of binding between proteins, due to hydrophobic, electrostatic, and
other specific interactions, will drive the aggregation process overcoming the lost
of configurational entropy of the free subunits when they form a capsid. However,
during the process of capsid formation the subunits in the rim of a partially
formed capsid will lack some of the contacts present in the final structure. This
introduces an energetic cost that is responsible of the appearance of an energy
barrier.

Given the activated nature of the process and its similarities with a classical
transition, we will use the analogy and adapt the classical nucleation theory to the
case of viral assembly. We will explicitly see how this nucleation mechanisms can
explain the main features observed in the assembly and disassembly experiments,
and is able to predict successfully the conditions and the rate at which capsid
formation takes place.

The basic ideas of a nucleation description of viral assembly where presented
in Ref. [27]. But in this chapter we will bring these ideas to a new level by extend-
ing the theory in several directions. First, the theory is rederived to facilitate
its direct application to experiments by connecting its main ingredients to ex-
perimentally measurable quantities. Then, a kinetic description of assembly and
disassembly is elaborated, taking into account explicitly time-dependent effects.
Finally, these ideas will be used to explain the remarkable hysteresis observed
between assembly and disassembly experiments [55] and simulations [46]. Inter-
estingly, some of the basic assumptions of this analysis will be tested and verified
in the next chapter by simulating the templated assembly of our coarse-grained
model.

This chapter is divided as follows: in Section 6.2 a thermodynamic description
to characterize the equilibrium aspects of viral assembly is introduced. Section
6.3 is devoted to discuss the origin of the energy barrier involved in the formation
of intermediates. The kinetics of viral assembly is derived in Section 6.4, where
a special attention is placed on explaining the general properties observed in
experimental scenarios. In Section 6.5 the assembly ideas are adapted to explain
the disassembly situation, and to characterize the hysteresis phenomenon. The
nucleation theorem is introduced in Section 6.6, which allows a model independent
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connection with experimental observations. Finally, in Section 6.7 we summarize
our findings and remark some important biological implications.

6.2 Equilibrium aspects of viral self-assembly

As mentioned before, viruses follow different strategies for assembling their cap-
sids, and, in addition to the coat proteins, in some cases the presence of scaffolding
proteins or the genetic material is also required. For the sake of simplicity, we
will focus on the simplest case: the in vitro self-assembly of empty viral cap-
sids formed exclusively by coat proteins. This scenario has been investigated by
many in vitro experiments [6, 10,13–15,29,60]. Nevertheless, it is worth to men-
tion that the model and ideas presented below can be extended to deal with more
complicated situations that might happen in vivo. Another important remark is
that viruses can use different paths and building blocks in their assembly process.
Here we will use generically the term subunits to refer to the elementary building
blocks in the assembly, which can be, for instance, single proteins in the case
of penicilium chrysogenum virus (PcV) [61], dimers for cowpea chlorotic mottle
virus (CCMV) [62], pentamers in polyomavirus [9], or pentamers and hexamers
in solution for bacteriophage Hong Kong 97 (HK97) [10].

6.2.1 Quasichemical thermodynamic description of the assembly

During the self-assembly of a virus, the initially free subunits in solution start to
join together and form successive partial structures or clusters that will eventually
lead to a fully formed capsid [44,63] (see Fig. 6.1). We will denote by q the total
number of subunits in the final shell. For instance, q = 60 for a T = 1 PcV capsid,
whose individual building blocks are single proteins, or q = 72 for T � = 7 human
papillomavirus (HPV), whose subunits are pentamers in solution. Let’s start
our analysis by describing the general equilibrium situation where free subunits,
partially formed capsids, and fully-formed shells coexist.

The thermodynamic description of a self-assembling or an aggregative system
can be made in two different ways: using the quasichemical or the phase descrip-
tion [64]. In the quasichemical framework, clusters of different number of subunits
are treated as different chemical species; whereas in the phase approach, the as-
sembly process is interpreted as a phase transition where subunits can be either
free in solution (phase α), or in a complete capsid (phase β). In this context a
partial shell is treated like a liquid drop or a crystallite, i.e., a small region of the
compact phase β surrounded by the diluted phase α. The phase description is the
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Figure 6.1: Sketch of capsid assembly. The process of assembly of a single capsid
is illustrated from left to right. (a) The process is initiated by the presence of
free subunits, of a typical size σ0, in solution; (b) these subunits start to join
together by thermal fluctuations, and form a cluster of subunits that acts as a
capsid embryo; (c) the embryo grows, and forms a partial capsid characterized
by the presence of a rim of length l(n) (where n is the number of aggregated
subunits), as the one shown corresponding to a half-formed shell; (d) finally, a
complete capsid made of q subunits and a typical radius R is obtained.

one commonly used in classical nucleation theory, and was already introduced by
Zandi et al. to study the assembly of viral capsids [27]. For completeness, here
we will use the quasichemical description, following the ideas of Ref. [64,65], but
it is worth to stress that both approaches are equivalent.

Following typical experimental conditions, let’s consider a solution of sub-
units, intermediates, and capsids where the pressure p, the temperature T , and
the total number of subunits N are kept constant. In this context the Gibbs
free energy, G(N1, N2, ..., Nn, p, T ), contains all the thermodynamic information
of the system1

G(N1, N2, ..., Nn, p, T ) =

q∑
n=1

μnNn (6.1)

where n is the number of subunits in a (partial) capsid that also acts as the label
for each species; and, Nn is the number of aggregates of size n that, since the

1If the total volume, rather than the pressure, is the variable that it is kept constant, the
appropriate thermodynamic potential will be the Helmholtz free energy F = G − PV . Since
the pressure-volume work contributions are expected to be very small with respect to the total
energy of the solution, including the solvent, the description using the Gibbs free energy is for
all practical purposes equivalent.
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total number of subunits is constant, is related to N by

N =

q∑
n=1

nNn . (6.2)

In addition, μn is the corresponding chemical potential, which is just the variation
of free energy when a particle of a certain species is added to the system

μn =

(
∂G

∂Nn

)
Nj �=n,p,T

(6.3)

The index Nj �=n indicates that the derivative must be evaluated keeping constant
the population of the rest of species.

In general, the total concentration of subunits is far below the concentration
of solvent, where the assembly takes place2. Thus, we can consider the system
as a diluted solution. Moreover, since the solvent is much more abundant than
any species Nn, it is reasonable to ignore all interactions between aggregates of
different sizes n. Under these circumstances, the chemical potential is given by
the standard expression for an ideal mixture of non-interacting species [66, 67]

μn = μ0
n + kT ln ρn (6.4)

where

ρn =
Nn

Ns
(6.5)

is the molecular fraction of the species n, and Ns is an arbitrary reference state,
which for a diluted system is usually assigned to the molarity of the solvent. The
term μ0

n(p, T ) is the standard part of the chemical potential, i.e., the mean free
energy per aggregate of size n, which includes the configurational entropies, and
all the internal interactions of a single (partial) capsid, such as the hydrophobic
and electrostatic forces.

Indeed, in experiments is common to work with volume concentrations, cn =
Nn/V , instead of molecular fractions. Thus, to facilitate the connection with
experiments, we derive the theory using volume concentrations. In particular,
the molecular fraction ρn can be reexpressed as3

ρn =
cn

cs
(6.6)

2The molarity of water is ρs ∼ 56M , whereas for typical experimental conditions the con-
centration of subunits is on the order of ρ1 ∼ 10μM . Therefore ρs � ρ1, and the assumption of
being a dilute solution will generally hold.

3Technically, the volume V of the system is not constant, but in practice the fluctuations are
small, due to the abundance of solvent compared to the rest of species.
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and the chemical potential now reads

μn = μ0
n + kT ln(cn/cs) (6.7)

It is worth mentioning that the standard part μ0
n(p, T ) implicitly depends on

the reference state given by cs. Since the solvent is usually composed mainly
by water, for simplicity and convenience, we chose the molarity of pure water
cs = 56M as a reference state. But, it is worth to emphasize that the description
holds irrespective of the arbitrarily chosen reference state.

The equilibrium distribution of aggregates in the system can be easily ob-
tained by minimizing the Gibbs free energy, Eq. (6.1), subjected to the constraint
that the total number of subunits N is constant, Eq (6.2). This minimization can
be done, for instance, by using Lagrange multipliers, and one gets the familiar
equilibrium condition

μeq
1 =

μeq
n

n
≡ μeq (6.8)

where μeq is the equilibrium chemical potential. Therefore, at equilibrium in the
quasichemical approach, the chemical potential per subunit is the same for all
partial capsids. Now, by using Eq. (6.7), this condition leads to the well known
law of mass action

ceq
n

(ceq
1 )n

=
e−ΔW (n)/kT

(cs)n−1
≡ Keq

n (6.9)

where Keq
n is the equilibrium constant, which is independent on the total subunit

concentration. The term

ΔW (n) ≡ μ0
n − nμ0

1 (6.10)

is the standard free energy difference required to form a cluster of n subunits.
However, we stress that its actual value depends on the choice of cs, and such ref-
erence must be provided to properly compare the energies derived from different
experiments [68, 69]. Nonetheless, the standard free energy difference vanishes
for single subunits, i.e., ΔW (1) = 0, by construction and independently on the
choice of cs.

The law of mass action, Eq. (6.9), can be rewritten in a standard equilibrium
Boltzmann’s like expression as

ceq
n = cse

−ΔG(n)/kT , (6.11)

where

ΔG(n) = ΔW (n)− n kT ln(c1/cs) (6.12)
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is the total work of formation of a partially formed cluster containing n sub-
units. At this stage, it is worth to emphasize the differences between ΔG(n)
and ΔW (n): ΔW (n) represents an standard (or intrinsic) free energy difference,
which is independent on the subunit concentration; on the contrary, ΔG(n) is
the full free energy difference required to build a (partial) capsid of n subunits,
and consists of the intrinsic energy difference between having the subunits in a
capsid or in solution, ΔW (n), plus an entropic penalty for removing the n free
subunits from the solution to make the cluster, −nkT ln(c1/cs), which obviously
depends on the concentration of free subunits c1. Another important remark is
that ΔG(n) does not depend on any other concentration cn with n ≥ 2, and
its valid irrespective of whether the concentration of aggregates has reached the
aggregative equilibrium or not.

Therefore, from the equilibrium distribution of cluster sizes ceq
n or, equiva-

lently, by measuring the equilibrium constants Keq
n , one can extract the work of

formation for any (partial) capsid. However, as we mentioned in the introduction,
in typical viral assembly experiments, free subunits and fully-formed capsids are
essentially the only species detectable in solution. So, with the current exper-
imental resolution, it is not possible to extract the equilibrium constant for an
arbitrary intermediate of size n [63]. In Section 6.3, we will introduce a simple
model for W (n), inspired by the classical nucleation theory [27], that justifies
the absence or scarcity of intermediates. But before that, it is worth to discuss
the equilibrium when only the two dominant species, i.e., free subunits and fully
formed capsids, are present in the solution.

6.2.2 Equilibrium between free subunits and fully-formed cap-

sids

Experiments and simulations confirm that generally at the end of the assembly
proteins are mainly distributed in two populations: free subunits and complete
capsids [13, 15, 42, 44], as illustrated in Fig. 6.2. Therefore, one can simplify the
general expressions derived above by considering only the coexistence of N1 free
subunits and Nq complete shells, made of q subunits. Then, the conservation of
the total number of subunits, Eq. (6.2), implies

N = N1 + qNq (6.13)

and the equilibrium condition, Eq. (6.8), becomes

μeq
q = qμeq

1 ≡ μeq (6.14)
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6.2. Equilibrium aspects of viral self-assembly

Figure 6.2: Equilibrium between free subunits and complete capsids. The ideal
mixing of N subunits distributed in N1 free subunits, of typical size σ0, and Nq

capsids, of radius R and made of q subunits, is illustrated.

Now, taking into account Eq. (6.7), the equilibrium condition leads again to the
law of mass action

ceq
q

(ceq
1 )q

=
e−ΔW (q)/kT

(cs)q−1
≡ Keq

q (6.15)

with

ΔW (q) = q(μ0
q/q − μ0

1) ≡ qΔg (6.16)

The last expression defines an effective binding energy per subunit Δg, which is
the difference between standard chemical potentials of a subunit in a complete
capsid or free in solution.

Let’s define

f =
qcq

c
, (6.17)

as the fraction of subunits in fully-formed capsids, where

c = c1 + qcq, (6.18)

represents the total concentration of subunits in the solution. Using Eqs. (6.17)
and (6.18), we can rewrite the concentration of free subunits and complete capsids
as

cq =
fc

q
, (6.19)

and

c1 = (1− f)c. (6.20)
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By substituting both expressions in the law of mass action, Eq. (6.15), after a
simple rearrangement, one gets

f

(1− f)q
= Keq

q q c q−1. (6.21)

Let’s define the critical micelle concentration ccmc as the value of the total
concentration at which f = 1/2, i.e., half of the subunits are in complete capsids
at equilibrium. By imposing this requirement in the previous equation we get

ccmc

2
=

(
qKeq

q

) −1
q−1 . (6.22)

so we can rewrite Eq. (6.21) as

f

(1− f)q
=

(
2c

ccmc

)q−1

. (6.23)

We can now analyze how the subunits are distributed between being free
in solution or in complete capsids as a function of the total concentration. For
q � 1, which is typically the case for viral capsids, if 2c/ccmc < 1, then f � 0 and
basically all subunits remain in solution. To analyze the behavior for 2c/ccmc > 1
it is better to rewrite Eq. (6.23) as

1− f = f1/q
(ccmc

2c

)1−1/q
. (6.24)

which for q � 1 can be approximated as

1− f �
(ccmc

2c

)
. (6.25)

So for 2c/ccmc > 1, the concentration of free subunits remains constant c1 = c(1−
f) � ccmc/2, whereas the concentration of subunits in capsids grows linearly with
the total concentration as qcq = fc � c − ccmc/2. This behavior is represented
in Fig. 6.3. One can clearly see that the ccmc/2 is roughly the concentration at
which aggregates start to appear.

It is remarkable that in vitro self-assembly experiments performed at different
conditions, where the binding energy has been modified, comply with the pre-
dicted universal aggregation curve, Eq. (6.24). In particular, Kegel and van der
Schoot [68] showed this universality for HBV, plotting the fraction of subunits
assembled into capsids, f , versus the ratio of total and critical concentrations
of subunits (dimers in the case of HBV), c/ccmc (see Fig. 6.4). The in vitro
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Figure 6.3: Law of mass action. (a) The concentration of subunits free in solution,
c1, and in capsids, qcq, is illustrated for different total concentrations c, according
the law of mass action, Eq. (6.15). The reference concentration is cs = 56M , the
binding energy per subunit is Δg = −15 kBT , and capsids are made of q = 120
subunits. Both horizontal and vertical dashed lines correspond to the aggregation
concentration ccmc/2, Eq. (6.22). (b) The exponential dependence of the critical
micelle concentration ccmc with respect to the binding energy is illustrated. The
dashed lines correspond to the Δg used in (a).

HBV assembly experiments where done at room temperature for different salt
concentrations, and all data fall on top of the prediction of Eq. (6.24).

Finally, let’s relate ccmc with the binding energy per capsomer. Using Eqs.
(6.15) and (6.22), one gets

ccmc

2
= cse

Δg
kT (1−1/q) q

−1
q−1 . (6.26)

that in the limit q � 1 yields

ccmc

2
� cs eΔg/kT . (6.27)

Therefore, the concentration at which the capsid formation starts to become
favorable depends exponentially on the binding energy per subunit in a fully
formed capsid.

Apparently, all these results seem to suggest that capsid self-assembly could
be considered as an equilibrium aggregation process. However, this is not com-
pletely true, since, surprisingly, shell dissociation does not occur at the same
concentrations at which the assembly is triggered. This hysteresis phenomenon,
together with the scarcity of intermediates observed, point to the existence of an
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Chapter 6. Classical Nucleation Theory of Spherical Shells

Figure 6.4: Universality of capsid assembly. Fraction of subunits in fully-formed
capsids, f , versus the overall concentration of subunits c (dimers in the case
of HBV), scaled to the critical micelle concentration ccmc. The symbols are
data from Ceres and Zlotnick [13] in the study of HBV capsid assembly under
different salt concentrations. All samples are at a temperature of 25oC. Crosses,
csalt = 0.7 M ; triangles, csalt = 0.5 M ; and squares, csalt = 0.3 M . The plotted
line is the universal aggregation curve, given by Eq. (6.24). Figure adapted from
Ref. [68].

energy barrier to overcome during capsid formation [27]. As we will see along the
chapter, the experimental results discussed above do not correspond in general
to a true equilibrium aggregation, but rather to a kinetically stopped activated
process whose final state resembles an apparent equilibrium.

We devote the next subsection to explain the origin of this energy barrier and
to model the free energy of formation of a partially formed capsid, following the
standard ideas of Classical Nucleation Theory (CNT).

6.3 Free energy barrier for capsid formation

As we have just seen, the aggregation of a capsid is driven by the binding energy,
i.e., by the fact that a subunit in a fully formed capsid has a lower energy that in
solution. For c > ccmc/2, this energetic advantage overcomes the entropic penalty
of removing that free subunit from the solution, and thus the formation of a com-
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6.3. Free energy barrier for capsid formation

plete capsid becomes thermodynamically favorable. Nevertheless, the assembly
of capsids proceeds through the successive addition of subunits to intermediate
structures, and those subunits placed at the rim of a partial capsid will obviously
miss some neighbors in the exposed part. Thus, the formation of an intermediate
shell will intrinsically entail an energetic cost that originates an energy barrier.

The situation is analogous to a vapor-liquid phase transition, where the for-
mation of a liquid drop in the vapor phase has an energetic penalty associated
to the surface tension. Following the analogy with a drop, the simplest way to
model this energetic cost is by introducing a rim energy penalty associated to a
line tension λ, which in the formation of this 2D shell plays the same role as the
surface tension for a drop.

Accordingly, the standard or intrinsic energy of formation of a partial capsid
containing n subunits can be modeled as

ΔW (n) = nΔg + λ l(n). (6.28)

The first term represents the gain related to the binding energy Δg, and the
second is the total line energy for a partial capsid n, where the line tension λ is
the energetic cost per unit length, and l(n) is the length of the rim. We stress
that the previous equation applies for n ≥ 2, since, as mentioned before, the
formation energy of a free subunit is zero by construction, ΔW (1) = 0, and
the line tension would be meaningless in this case. It is also worth to mention
that a complete capsid, n = q, has no open rim, l(q) = 0, so that the line
energy will vanish. Accordingly, we recover ΔW (q) = qΔg, Eq. (6.16). The
average binding energy Δg will depend, in general, on the pH, salt concentration,
temperature, or the presence of small molecules, like ions or chaotropic agents.
As a first approximation, this binding energy will be taken as constant, even
though subunits in a capsid can occupy different local environments (see Chapter
1), or be engaged in different interactions. Surprisingly, we will show in the next
chapter that this crude approximation works in fact rather nicely.

Evidently, the growth of a shell is produced by discrete events when new
subunits are incorporated to the structure. However, following CNT ideas, it
seems convenient to approximate a partial capsid by a continuum model, which
will simplify the description of the rim. In particular, let’s consider an inter-
mediate shell as a spherical cap of radius R and angle θ, which indicates the
degree of completion (see Fig. 6.5). In this case, the length of the rim will be
l(θ) = 2πR sin θ. Now, to relate θ and n we introduce two simplifying assump-
tions: first, we consider that the radius R of the shell remains constant during
the growth; and second, the effective area occupied by a subunit in the shell, a1,
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Figure 6.5: Partial capsid model. Schematic representation of a partially formed
capsid in the continuum approximation. R is the radius of the capsid and the
angle θ characterizes its degree of completion. The circular rim has a length l(n)
that depends on the number of subunits n in the partial shell.

is the same as in the complete capsid made of q subunits, so

a1 =
4πR2

q
. (6.29)

The surface of this partial shell is A(θ) = 2πR h(θ), with h = R (1− cos θ) being
the distance from the pole of the partial capsid to the center of the hole defined by
the rim. Then, dividing this surface by the area occupied by a single subunit a1

we obtain the number of subunits n in an incomplete capsid of angle θ, namely,
n(θ) = A(θ)/a1 = q(1 − cos θ)/2. Using this last result, we can rewrite the
boundary length l(θ) as a function of n as

l(n) = 4π
R

q

√
n(q − n). (6.30)

At first sight, this circular rim description could seem too simplistic to describe
accurately the assembly of capsids. However, in Appendix A we show that the
dependency obtained for l(n) on R, q, and n holds even for non-circular rims
scenarios, and in general

l(n) = a
R

q

√
n(q − n) (6.31)

where a is a constant geometrical prefactor independent of n, R or q. In partic-
ular, for a circular boundary its value becomes a = 4π. In the next chapter we
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Figure 6.6: Rim energy for capsid formation. The line energy λ l(n), using a
circular rim approximation, Eq. (6.30), is plotted for three different capsids
sizes q. The value used for the line tension is associated to a binding energy
Δg = −15 kT , Eq. (6.35).

will see that both the line tension concept and the scaling of l(n) are in perfect
agreement with the simulation results on the growth of shells, using the physical
model introduced in Part I of the thesis.

We can now express Eq. (6.28) for n ≥ 2 making explicit the dependence on
n

ΔW (n) = nΔg + α
√

n(q − n) (6.32)

where

α = a
λR

q
(6.33)

is an energy constant absorbing the line tension λ and the geometrical prefactor
in Eq. (6.31). In Fig. 6.6 we plot the line energy term λ l(n) = ΔW (n)−nΔg, as
a function of the number of subunits n of a partially formed shell. This rim energy
is always positive, has its maximum when the capsid is half-formed, n = q/2, and
vanishes for a complete capsid, n = q.

6.3.1 A simple estimate of the line tension

Although it is not necessary for the development of the theory, it is convenient
to provide a simple estimate of the line tension λ. In the next chapter we will
evaluate more precisely its value in a particular case.
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Let’s consider a 2D lattice that is separated in two halves by a cut of length
L. The increment in boundary energy associated to this process is ΔEb = 2λL.
The line tension can then be calculated as

λ =
1

2

ΔEb

L
(6.34)

where the energy ΔEb is approximately given by the total of broken contacts.
Assuming that in the cut each subunit of diameter 2σ0 losses half of its binding
energy, then a rough estimate of the line tension will be

λ ≈ 1

2

|Δg|
2σ0

(6.35)

where Δg is the energy per subunit in the original lattice.
It is then possible to give a simple estimation for the typical values of α. As

we saw in Chapter 3, the radius of a shell is intimately related to the effective
area of the coat subunits, i.e., 4πR2 ≈ qπ(σ0)

2 for a spherical shell. This leads
to R ≈ √q σ0/2, and using Eq. (6.33) for the circular rim model one obtains

α ≈ 2π
λ√
q
σ0. (6.36)

Now, plugging the estimation of λ derived above, one gets

α ≈ π

2

|Δg|√
q

. (6.37)

Therefore, for a capsid made of q = 120 subunits with an average binding energy
per subunit Δg = −15 kT , one gets α ≈ 2.15 kT . We remark that α is inversely
proportional to

√
q, so this value can vary significantly for different capsid sizes.

In any case, in the following we will continue our derivation using a generic
value of α.

6.3.2 Free energy of capsid formation

Using this line energy concept for the intrinsic part, ΔW (n), the full work of
formation ΔG(n), Eq. (6.12), becomes

ΔG(n) = nΔg − nkT ln(c1/cs) + α
√

n(q − n) (6.38)

It is convenient to rewrite the total free energy of capsid formation as

ΔG(n) = nΔμ + α
√

n(q − n) (6.39)
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with
Δμ = −kT ln(c1/c∗) (6.40)

being the chemical potential difference and

c∗ = cse
Δg/kT (6.41)

a threshold concentration, which plays the same role as the saturation or equilib-
rium density in a vapor to liquid transition. Notice also that this concentration
roughly coincides with what would be the critical micelle concentration in an
equilibrium assembly, i.e., ccmc/2, defined in the previous section, in the limit
q � 1, Eq. (6.27), so

c� ≈ ccmc

2
. (6.42)

Since the binding energy Δg is, by definition, negative, this threshold concentra-
tion gets smaller as the binding gets stronger (see Fig. 6.3b).

The chemical potential difference Δμ and the state of aggregation of capsid
subunits depends crucially on the concentration of free subunits c1, Eq. (6.40).
For c1 < c∗, the chemical potential is positive Δμ > 0, indicating that the
binding energy gained by a subunit in getting incorporated to a capsid is not
able to overcome the entropic penalty of removing it from solution, so that the
formation of a capsid is unfavorable. For c1 > c∗ the formation of a capsid is
favored, but in that process the system has still to overcome a significant energetic
barrier, whose characteristics are evaluated below.

6.3.3 Nucleation barrier and critical nucleus

The free energy of capsid formation ΔG(n), Eq. (6.39), is made of two clear
contributions: a term proportional to n that in general will drive the assembly,
plus an energetic penalty proportional to

√
n(q − n) related to the rim of partial

capsids. The competition between these two opposite contributions gives rise
to a barrier (see Fig. 6.7), which plays a very important role in the kinetics
of capsid formation (see Section 6.4). The height of this barrier ΔG� and the
location of the maximum n�, can be easily computed by applying the condition
∂ΔG/∂n = 0, which leads to

ΔG� =
q

2

(√
Δμ2 + α2 + Δμ

)
(6.43)

and

n� =
q

2

(
1 +

Δμ√
Δμ2 + α2

)
, (6.44)
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Figure 6.7: The total free energy of formation for a partial capsid. ΔG(n) is
plotted according to Eq. (6.38). The total capsid has q = 120 subunits and
the energy scale for the line energy is α ≈ 2.15 kT . The two lines correspond,
respectively, to phase equilibrium, Δμ = 0, and a supersaturated scenario, Δμ <
0, Eq. (6.40).

which are clearly related by

ΔG�

n�
=

√
Δμ2 + α2. (6.45)

Therefore, there are only two effective parameters that control the energy barrier
ΔG� and the critical cluster n�: α, which is a constant parameter associated to
the line tension λ, Eq. (6.33); and Δμ, which is a variable term that depends on
the concentration of free subunits c1, Eq. (6.40).

As we see in Fig. 6.7, for n < n� the free energy of formation grows as we add
a subunit (∂ΔG/∂n > 0), so intermediates of these sizes will tend to disassemble
back into free subunits. On the other hand, partial capsids of size n > n�, reduce
their energy upon the addition of another subunit, (∂ΔG/∂n < 0), and they will
tend to grow spontaneously until complete a capsid. Thus n� is the critical size
that partial capsids have to reach to trigger the formation of complete shells, and
can be considered as the nucleus or the embryo of the assembly process.

It is worth to emphasize that it is precisely the existence of this energy barrier
associated to the formation of partial capsids what makes the population of inter-
mediates very scarce, in general. As was shown in Section 6.2.1, the equilibrium
population of intermediates of size n is proportional to e−ΔG(n)/kT . Thus the bar-
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6.3. Free energy barrier for capsid formation

rier, or more precisely the line tension term, penalizes this intermediate sizes in
such a way that typically only free subunits or fully-formed capsids are observed.
Remarkably, the critical nucleus is a maximum of the energy of formation ΔG(n),
and the associated critical partial capsid n� will be always thermodynamically
unstable. Therefore, if a experiment aims to reconstruct the sequence of partial
capsids during the assembly process, the critical capsid will be precisely the most
challenging species to be observed, rather than the most abundant intermediate
detected. This is an important clarification in the context of the nucleation mech-
anism of self-assembly, and it is a common misunderstanding in the interpretation
of experiments and simulations [26, 44].

It is important to remark that the height of the nucleation barrier ΔG� de-
pends on the value of Δμ, or equivalently, on the concentration c1 of free subunits
(see Fig. 6.7). As we discussed previously, at phase equilibrium, Δμ = 0, the
free energy of formation for intermediates of size n is determined exclusively by
the intrinsic line energy term. In that case the critical nucleus will correspond to
a half-formed capsid

n�
0 =

q

2
(6.46)

and the nucleation barrier will be just the line energy of this hemi-shell

ΔG�
0 =

q

2
α (6.47)

For typical values of α and q this barrier is much bigger than the thermal energy:
ΔG� � kBT (see Fig. 6.8a). But for supersaturated conditions, i.e., when c1 > c∗
or Δμ < 0, the barrier can be low enough to promote spontaneous self-assembly
at reasonable time scales4.

Asymptotic cases

It is worth to study two limit situations that simplify the expressions for ΔG�

and n�, providing a clearer insight of the influence of α and Δμ in the formation
of capsids.

The first one corresponds to a situation near phase equilibrium, where we
have the condition (

Δμ

α

)2


 1 (6.48)

4The limiting case where the barrier is suppressed and nucleation does not control the rate
of assembly has been studied by van der Schoot and Zandi in Ref. [34].
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Figure 6.8: Energy barrier and critical nucleus of assembly. (a) Height of the
energy barrier, Eq. (6.39), for different supersaturation conditions, Δμ < 0. The
nucleation energies curves are associated to capsids with q = 120 and binding
energies |Δg| of 20 kT , 15 kT , and 10 kT . The values of α used were estimated
from Eq. (6.37). (b) Critical nuclei, Eq. (6.44), associated to the barrier energies
in (a).

so there is not a significant advantage for a subunit to be in capsids rather than
in solution. By expanding the activation energy, Eq. (6.43), and critical nucleus,
Eq. (6.44), up to first order one obtains

ΔG� ≈ q

2
α

(
1 +

Δμ

α

)
(6.49)

and

n� ≈ q

2

(
1 +

Δμ

α

)
(6.50)

that are related by
ΔG�

n�
≈ α (6.51)

Therefore, one gets a linear reduction with Δμ of the activation energy and
critical nucleus with respect the equilibrium values ΔG�

0, Eq. (6.47), and n�
0, Eq.

(6.46).

On the opposite limit, if the system is subjected to strong supersaturation
conditions, i.e., (

α

Δμ

)2


 1 (6.52)
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then the first order expansion of the energy barrier and the critical nucleus leads
to

ΔG� ≈ 1

4

qα2

|Δμ| (6.53)

and

n� ≈ 1

4

qα2

Δμ2
(6.54)

that in this case are related by

ΔG�

n�
≈ |Δμ| (6.55)

So both ΔG� and n� are strongly reduced.

6.4 Kinetics of viral self-assembly

The self-assembly of viral capsids is in its essence a kinetic process. In this section
we will describe the kinetics of viral assembly, and connect it with the previous
thermodynamic description. In this way we will be able to estimate the rate of
assembly.

The assembly of a viral capsid can be thought as a reaction cascade where q
free subunits end up forming a single shell. However, to determine the kinetics of
the problem, it is necessary to be more specific about the intermediate steps of
this reaction. In principle, a partial capsid could grow by different mechanisms,
for instance, by the addition of a single subunit, multiple independent subunits
simultaneously, or even by merging different partial capsids. Fortunately, simula-
tions have shown that predominantly only one subunit is added at a time [42,44],
which could be justified by comparing the a priori probabilities of all the different
possible events. Therefore, it is reasonable to start the kinetic study consider-
ing the formation of a capsid as a series of unimolecular reactions, where the
attachment or detachment of just a single unit promotes the growth or decay of
a partial capsid. This can be formally expressed as

cn(t)
βn(t)−−−−−⇀↽−−−−−

αn+1(t)
cn+1(t) , n = 1 : q − 1 (6.56)

where cn(t) is the concentration of partial capsids made of n subunits at time t,
and βn(t) and αn(t) are the associated binding and unbinding rates, respectively,
which in general may depend on the size n and time t.
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Accordingly, the change in time of the population, or concentration, of partial
capsids of size n is controlled by the following master equation

∂cn(t)
∂t = βn−1(t) cn−1(t)− αn(t) cn(t)

−βn(t) cn(t) + αn+1(t) cn+1(t)

(6.57)

In words, this means that a partial capsid of size n can disappear and become a
n − 1 or n + 1 intermediate by the loss or gain of a single subunit, respectively,
which corresponds to the second and third terms on the right of Eq. (6.57);
besides, a new intermediate of size n can be obtained by adding or subtracting a
subunit to a partial capsid of size n− 1 (the first term) or n + 1 (the last term),
respectively. The master equation applies from n = 1 up to n = q, taking the
special conditions βq(t) = 0 and α1(t) = 0, i.e., a fully formed capsid is the last
step of the reaction and cannot grow further, while a free subunit cannot loose
any more subunits.

It is convenient to rewrite the master equation as

∂cn(t)

∂t
= Jn−1(t)− Jn(t) (6.58)

where we have defined

Jn(t) ≡ βn(t) cn(t)− αn+1(t) cn+1(t) (6.59)

as the net current of partial capsids of size n growing to size n + 1.
By solving the master equation one obtains the populations of free subunits,

intermediates, and complete capsids during the assembly process. Nevertheless,
to do so one needs first to know the rates of attachment, βn(t), and detachment,
αn(t).

The rate of attachment βn(t) can be reasonably modeled using standard’s
Smoluchowski theory of aggregation, see, for instance, Ref. [70]. At normal con-
ditions, the intermediates in the assembly may have enough time to thermalize,
before any consecutive attachment or dissociation of a subunit. Hence, it is
plausible to assume that any binding or unbinding event is completely uncorre-
lated from a previous event5. Under such circumstances, and without considering
crowding effects, the binding rate of subunits to a partial shell n will be propor-
tional to the concentration of free subunits, c1(t), their diffusion constant, D1,

5From a statistical physics standpoint, this approximation means that the assembly of a viral
capsid can be regarded as a Markovian process
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and the size of the rim of the partial shell

βn(t) = b c1(t)D1rn (6.60)

where b is a geometric correction, D1 is the diffusion coefficient of the free sub-
units, and rn is the radius of the rim of the partial capsid6. We stress that
the concentration of free subunits c1(t) will generally vary during the assembly
process, so the rate of attachment βn(t) will be clearly time-dependent.

On the other hand, the unbinding rate αn(t) is an intrinsic property of each
cluster n, and depends on thermal fluctuations and the interactions holding the
subunits in the rim of the partial shell. In general, it will be difficult to esti-
mate, but this problem can be circumvent by considering the master equation
at constrained equilibrium conditions, dictated by a fixed concentration of free-
subunits7 c1.

At constrained equilibrium there will be no change in the capsid size distri-
bution, and the net flux in the system will vanish, so

Jn = 0 (6.61)

for all n. Thus, from Eq. (6.59) one has

βn ceq
n = αn+1 ceq

n+1 (6.62)

which is known as the detailed balance condition. Here is the point where the
thermodynamics of capsid formation enters into the kinetic description of the
assembly. The constrained equilibrium concentrations, ceq

n , must follow a Boltz-
mann’s like distribution, Eq. (6.11), so we obtain

αn+1 = βn e (ΔG(n+1)−ΔG(n))/kT (6.63)

where ΔG(n) is the free energy of formation of a partial capsid n for a given c1

concentration of free subunits, as determined by Eq. (6.38). Notice that the free

6This expression is derived by calculating the flux of free subunits that collides with a sphere
of radius rn. Since subunits attach to the rim of the partial shell rather than on the exposed
surface of the “hole” this rate is probably an overestimation, but provides at least a fair qual-
itative picture of the attachment rate. The precise calculation of Smoluchowski’s aggregation
rate for partial shells will be pursued in future investigations.

7The constrained equilibrium state is defined as the aggregative equilibrium state for which
the equilibrium concentration of subunits will be c1. Note that this will not necessarily coincide
with the true aggregative equilibrium that is fixed by the total concentration c, rather than by
c1. It is worth to remark that the same final results can be obtained taking as a reference the
full aggregative equilibrium state. The derivation of the rate using this reference is, however, a
bit more indirect.
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energy difference in the exponential leads to a 1/c1 term that cancels with the
c1 factor coming from βn, Eq. (6.60). Therefore, the rate of detachment is inde-
pendent of the concentration of free subunits or intermediates, as expected, and
depends on the intrinsic properties of the partial capsid. Importantly, Eq. (6.63)
will be valid for any assembly conditions (as far as the assumptions introduced
so far hold).

The master equation can be solved numerically if one knows the initial condi-
tions, and either the attachment αn and evaporation rates βn, or the equilibrium
free energy of formation ΔG(n). However, this could be a daunting task depend-
ing on the assembly conditions and, specially, for large capsids q. Furthermore,
the master equation does not provide any explicit insight of the influence of the
free subunit concentration c1, or the binding energy per subunit Δg, in the as-
sembly kinetics. To properly characterize the assembly process, it is convenient
to derive an approximate analytical solution for Eq. (6.57).

Using the detailed balance condition, Eq. (6.62), we can now eliminate αn+1

from the expressions of the current, Eq. (6.59), yielding

Jn(t) = βn(t) ceq
n

(
cn(t)

ceq
n
− cn+1(t)

ceq
n+1

)
(6.64)

or
Jn(t)

βn(t)ceq
n

=
cn(t)

ceq
n
− cn+1(t)

ceq
n+1

(6.65)

By adding up all the terms in the last expression from n = 1 to n = q − 1, only
the first and last terms survive, obtaining

q−1∑
n=1

Jn(t)

βn(t)ceq
n

=
c1(t)

ceq
1

− cq(t)

ceq
q

(6.66)

Therefore, the rate of capsid formation depends on the boundary conditions re-
lated to the concentration of free subunits and fully formed capsids. Let’s now
discuss two different practical situations.

6.4.1 Steady-state rate of capsid formation

Let’s first study the solution in the steady-state scenario, which is characterized
by the condition ∂cn(t)/∂t = 0 that applies for all n. This means that the current
is the same for all capsid sizes, i.e.,

Jn = Jn+1 ≡ J (6.67)
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which defines the steady state rate of capsid formation J . As we saw above, the
value of this rate depends on the boundary conditions for the concentrations of
free subunits and fully-formed capsids. In particular,

J =

(
c1(t)

ceq
1

− cq(t)

ceq
q

)
/

q−1∑
n=1

1

βn(t)ceq
n

(6.68)

It is thus clear that the equilibrium state is just a particular case of steady-state
where the assembly rate vanishes Jeq = 0.

To get a steady state with a finite current J , the proper boundary conditions
are that the concentration of free subunits is fixed at the constrained equilibrium
concentration, c1(t)/ceq

1 = 1, and that of fully-formed capsids is vanishing small,
cq(t)/ceq

q � 0. Strictly, to maintain this situation one should remove the newly
produced capsids and return their subunits back to the solution. However, these
conditions will be a reasonable approximation at the beginning of the assembly,
provided that the production of capsids is low enough to not alter much the
concentration of free subunits. Then, plugging these conditions into Eq. (6.68),
one finds a general expression for the steady-state rate of assembly

J = 1/

q−1∑
n=1

1

βn ceq
n

(6.69)

Using the Boltzmann distribution for the equilibrium concentration, Eq. (6.11),
the expression for the nucleation rate becomes

J = cs

[
q−1∑
n=1

1

βne−ΔG(n)/kT

]−1

(6.70)

The next step is to evaluate the summatory within the brackets, which is not a
trivial task in general. Fortunately, the existence of a pronounced maximum in
the formation energy landscape ΔG(n) at n� facilitates the procedure to obtain
an accurate analytical approximation.

In order to do that, it is convenient first to pass from the discrete summatory
to a continuum integral

J = cs

[∫ q−1

1

dn

βn e−ΔG(n)/kT

]−1

(6.71)

The presence of a maximum allows the evaluation of the integral using the method
of steepest descent. Essentially, the overwhelming contribution to the integral
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comes, indeed, from the exponential around the maximum at the critical size n�,
so we first expand ΔG(n) around n�:

ΔG(n) ≈ ΔG(n�) +
1

2

∂2ΔG(n�)

∂n2
(n− n�)2 (6.72)

noting that the contribution from the first derivative drops out because ΔG(n)
has a maximum at n�. Using this expression in the integral we finally get

J = cs β� Z e−ΔG�/kT , (6.73)

where β� = βn� is the rate of attachment to the critical nucleus, ΔG� is the
activation energy given by Eq. (6.43), and

Z =

√∣∣∣∣ΔG′′(n�)

2πkT

∣∣∣∣ (6.74)

is the so-called Zeldovich factor, where ΔG
′′
(n�) is the second derivative of ΔG(n)

evaluated at the critical nucleus. The Zeldovich factor is a relatively small cor-
rection that accounts for the ability of partial capsids around n� to recross the
barrier and dissolve back into the solution8.

Therefore, we have arrived at the desired result that quantifies the rate of
capsid formation, J , i.e., the number of capsids formed per unit volume and
unit time. In essence, this rate depends on the rate of attachment of individual
subunits to the critical size cluster, β�, and exponentially on the height of the
nucleation barrier ΔG�. Thus viral assembly should be regarded as an activated
process where the rate of capsid formation, J , is given by an Arrhenius-like
equation. Accordingly, the height of the energy barrier controls exponentially
the velocity of the process, and could even abort the assembly at reasonable
experimental (or host) time scales. Since the energy barrier depends on Δμ, one
can effectively reduce its size and trigger the formation of capsids by increasing
the concentration of free subunits (see Figs. 6.7 and 6.8a).

It is important to mention that for typical in vitro experimental conditions,
the total concentration of subunits c is constant. In this situation, the only
real steady-state will correspond to the final aggregative equilibrium situation.
In other words, the concentration of free subunits c1 will constantly vary and
the nucleation will be a time-dependent problem, whose particularities will be
discussed in the next subsection.

8Indeed, this property is controlled by the curvature ΔG
′′

(n�). For shallow maxima the
curvature is lower and more clusters will be able to cross back the barrier, which will reduce the
rate J . Instead, for sharper maxima one will have the opposite behavior.
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Figure 6.9: Rate of assembly at different free subunit concentrations. The rate
of assembly, given by Eq. (6.73), is plotted for different concentrations of free
subunits, starting at c0 = 30μM . The curve corresponds to the assembly of
capsids made of q = 120 subunits, with a line tension λ associated to a binding
energy |Δg| = 15 kT , given by Eq. (6.35). The values of the rate are normalized
by the initial rate J0 = J(c0).

6.4.2 Time-dependent self-assembly

When the concentration c is constant, the formation of new capsids reduces the
concentration of free subunits c1, which modifies in turn both the nucleation
barrier as well as the subsequent rate of formation of capsids Fig. 6.9. To deal
with this common time-dependent scenario, one could solve numerically the set of
q master equations given by Eq. (6.57). Nevertheless, there is a simpler strategy
that involves the use of an adiabatic approximation. In this approximation the
assembly reaction is considered to be slow enough to be characterized by a quasi-
steady state rate, J(c1(t)), which is given by Eq. (6.73), and that will change
depending on the instantaneous concentration of free subunits c1(t).

The total concentration of subunits c is conserved during the assembly process,
and this constraint can be expressed as

c =

q∑
n=1

n cn(t). (6.75)

As discussed earlier, intermediates are in general rare because of the energetic
penalty associated to the presence of a rim. Therefore, it is reasonable to consider
that subunits are essentially either free in solution, c1(t), or in complete capsids,
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cq(t). Then the constrain for c reduces to

c � c1(t) + q cq(t). (6.76)

so that, at any time during the assembly, the concentration of free subunits can
be estimated by

c1(t) = c− q cq(t) (6.77)

By assuming that the system is locally in a steady-state at a given concen-
tration c1(t), then the rate of formation of new complete capsids will depend on
cq(t) and will be given by

J(cq(t)) =
∂cq(t)

∂t
(6.78)

Thus the concentration of capsids as a function of time can be evaluated by
solving the following implicit equation

t− t0 =

∫ cq(t)

0

dcq(t)

J(cq(t))
(6.79)

which is obtained by integrating Eq. (6.78). In the integration we have consid-
ered that no complete shells are present in the solution at the beginning of the
experiment, cq(t0) = 0.

Fig. 6.10 plots the evolution in time of the concentration of complete capsids
for q = 72, obtained from the numerical solution of the set of master equations,
Eq. (6.57), and by the “adiabatic approximation”, Eq. (6.79). We can observe
a clear sigmoidal kinetics and that the approximation reproduces accurately the
expected production of complete capsids.

When does viral assembly start?

It is very important to emphasize that self-assembly does not initiate at phase
equilibrium conditions, i.e., when the chemical potentials of a subunit in the
capsid and free in solution are equal, Δμ = 0. At those conditions, although
the formation of a complete capsid is energetically favorable, there is still a very
high energetic barrier to overcome that will make the process unfeasible (see
Fig. 6.7). For higher free subunit concentrations, the energy of formation of
a partial capsid is reduced, which lowers and enables to initiate the process.
Therefore, the self-assembly will start at a concentration cstart

1 larger than the
critical equilibrium or threshold concentration c∗. This might have important
biological implications, since this mechanism may warrant that enough capsid
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Figure 6.10: Time dependent production of capsids. The concentration of capsids
increases with time along the assembly. The dots correspond to the solution of
the master equations, Eq. 6.57, while the curve is the theoretical prediction by
the “adiabatic approximation” given by Eq. (6.79). The plot has been calculated
for typical assembly conditions for capsids made of q = 72 subunits, with a critical
concentration of ccmc = 0.2μM , a line energy α ≈ 2 kT , and a rate of attachment
≈ 70Hz/μM . The initial concentration was c1(0) = 10μM .

proteins are produced before the assembly starts, thus preventing, in general, the
malformation of incomplete capsids due to the depletion or the lack of enough
free subunits. In addition, it could facilitate the regulation of the process by a
seed or a signal related to a change in the conditions.

Remarkably, even at supersaturation conditions where the formation of cap-
sids becomes feasible, the assembly process will not start instantaneously. At
the beginning, the system will require a certain time to overcome the nucleation
barrier ΔG(n�) from scratch, and to reach a quasi-steady state rate. During this
time lapse no complete capsids will be produced. This lag time can be estimated
as [71]

τ ∼ 1

4πβ�Z2
(6.80)

Therefore, it is inversely proportional to the square of the Zeldovich factor Z2

and to the rate of attachment of subunits to the critical nucleus β�, which scales
linearly with the concentration of free subunits c1. The existence of lapse of time
has been reported in experiments and simulations [15, 16].
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Figure 6.11: Free energy of formation of a partial capsid (disassembly). The
two lines correspond, respectively, to phase equilibrium, Δμ = 0, and to an
undersaturated scenario, Δμ > 0. The total capsid has q = 120 subunits and the
energy scale for the line energy is α ≈ 2.15 kT , Eq. (6.37.)

When does viral assembly stop?

Once the assembly has started, the successive production of capsids will reduce
the concentration of free subunits. This will progressively increase the size of the
barrier to overcome, and will affect the rate of formation of new capsids (see Fig.
6.9). Eventually, the rate will be so slow that the number of capsids will appear
stable over the experimental time scale, and this will constitute an apparent end
of the assembly.

So in practice, the end of the assembly will take place when the concentra-
tion of free subunits drops below a critical value cstop

1 . This concentration will
be smaller than the one triggering the assembly, but generally larger than the
critical equilibrium concentration, i.e., c� < cstop < cstart. Therefore, in the nu-
cleation framework the self-assembly of capsids does not stop necessarily when
the reaction reaches the phase equilibrium, Δμ = 0, but rather when the rate of
formation becomes experimentally unobservable, which in general will still occur
at supersaturated conditions, Δμstop < 0.

With these ideas in mind, let’s now discuss the inverse process of disassembly,
and the associated hysteresis.
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Figure 6.12: Hysteresis of HBV assembly. Mass fraction of proteins in capsids as
a function of the total capsid protein concentration in a disassembly experiment,
where purified capsids of HBV were diluted at controlled conditions, and the
dissociation was assayed by size exclusion chromatography (SEC) (open circles).
The assembly isotherm (solid line) was predicted for the same conditions, based
on previous assembly experimental studies [13]. Taken from Ref. [55]

6.5 Disassembly of capsids and hysteresis

In an assembly experiment, one starts from only free subunits in solution and
monitors the formation of capsids. Conversely, in a disassembly experiment, ini-
tially one only has complete capsids and monitors how they disaggregate back
into free subunits. If the assembly of capsids would be a truly equilibrium pro-
cess with no energy barrier, rather than an activated process, the assembly and
disassembly would occur at the same concentrations, and the same master curve
would describe both processes. However, this is usually not the case. For in-
stance, Fig. 6.12, extracted from Ref. [55], represents the final concentrations of
capsids as a function of the total initial concentration of proteins for assembly
and disassembly experiments of HBV capsids, where all other conditions are the
same. The different behavior in both situations is what is referred to as hystere-
sis in capsid assembly, and it can be explained in the context of the nucleation
theory of viral capsids.
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6.5.1 The rate of capsid disassembly

The thermodynamic and kinetic theory introduced in the previous sections is
also able to account for capsid disassembly. To do so, one just has to interpret
the dissociation of a shell as the inverse process of capsid formation. Therefore,
let’s consider a system with a total concentration of subunits c, where only fully-
formed capsids are initially present, so cq(t = 0) = c/q.

Now, the dissociation of capsids requires to jump the free energy barrier in
the opposite direction of assembly, i.e., from right to left in Fig. 6.11. The height
of this activation barrier for disassembly will be now given by

ΔG�
dis = ΔG(n�)−ΔG(q) (6.81)

where n� is the critical cluster size, whose expression is the same derived in the
assembly scenario, Eq. (6.44). Thus the activation energy for dissociation will
be just given by

ΔG�
dis =

q

2

(√
Δμ2 + α2 −Δμ

)
, (6.82)

Notice that, to lower the barrier towards disassembly, undersaturated conditions,
Δμ > 0, will be required, rather than the supersaturated scenario, corresponding
to Δμ < 0, discussed in the assembly case.

Now, having characterized the thermodynamics of disassembly, let’s turn to
the kinetics. The set of master equations given by Eq. (6.57) can also describe
the dissociation process, using the proper boundary conditions. Again, to get
some analytic insight, let’s focus first on the steady-state limit.

For disassembly, the right boundary condition for the rate in Eq. (6.68) will
be c1/ceq = 1 and cq/ceq

q � 1, since disassembly will only be possible when the
concentration of capsids in solution is much bigger than the corresponding at
equilibrium9.

If during the disassembly we assume that the boundary conditions are kept
constant, one can derive from Eq. (6.68) a good approximation for the steady-
state rate of disassembly as

Jdis � −
(

cq

ceq
q

)
/

q−1∑
n=1

1

βnceq
n

(6.83)

9The concentration of free subunits c1 determines the total work of formation of a partial
capsid, ΔG(n), or equivalently, the constrained equilibrium concentrations of species n, which
were used to derive the rate of detachment αn, Eq. (6.63). Therefore, even for negligible c1

concentrations the left boundary condition of the rate in Eq. (6.68) will be by construction
c1/ceq = 1.

246



6.5. Disassembly of capsids and hysteresis

By using the Boltzmann distribution for ceq
n , Eq. (6.11), we get

Jdis = −cq

[
q−1∑
n=1

1

βne−ΔGdis(n)/kT

]−1

(6.84)

where ΔGdis(n) = ΔG(n) − ΔG(q). Finally, applying the steepest-descent ap-
proximation around the maximum at n� in the integral representation of the
summatory, one obtains

Jdis � −cq β�Z e−ΔG�
dis/kT (6.85)

where Z is the Zeldovich factor given again by Eq. (6.74), since ΔG
′′
(n�) =

ΔG
′′

dis(n
�) because both energies of formation differ only by an additive constant.

Therefore, we have arrived at the desired result that quantifies the rate of
capsid disassembly Jdis, i.e., the number of capsids disassembled per unit volume
and unit time. Interestingly this dissociation rate is completely analogous to the
assembly rate Jas given by, Eq. (6.73), except for the negative sign (indicating
the disappearance of complete capsids) and the prefactor. So both, the assembly
and disassembly scenarios, are characterized by Arrhenius-like laws, where the
activation energy plays a crucial role.

6.5.2 The origin of hysteresis

The existence of an activation energy controlling the rate of both assembly and
disassembly processes is the fundamental origin for the hysteresis observed in
capsids.

More precisely, we have seen that capsid assembly cannot take place in general
at phase equilibrium conditions, i.e., Δμ = 0, since in that case the activation
barrier is so high that becomes insurmountable. Thus, to make capsid forma-
tion feasible, we had to start from a concentration of subunits much larger than
the threshold c∗, corresponding to Δμ < 0, to lower the nucleation barrier and
facilitate its crossing. Similarly, to induce capsid disassembly, we now have to
lower the disassembly barrier ΔG�

dis, and this can only be achieved by having
undersaturated conditions corresponding to Δμ > 0 (see Fig. 6.13).

Therefore, a successful assembly requires Δμ < 0, but to have dissociation
one needs Δμ > 0. Since the chemical potential difference depends on the con-
centration of free subunits, and on the total concentration, that means that the
concentrations at which assembly and disassembly will start (or stop) will be
different. And that is in essence the origin of the hysteretic behavior observed
experimentally.
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Figure 6.13: Free energy landscapes associated to the hysteresis. The energy of
formation of a partial capsid at phase equilibrium, Δμ = 0, and in the kineti-
cally stopped scenarios of assembly, Δμa < 0, and disassembly Δμdis > 0, are
illustrated. The vertical dashed lines indicate the barrier energies that have to
be surmounted in each case.

In an assembly experiment, if the total concentration of proteins is fixed, the
barrier associated to the formation of capsids will increase in time due to the
progressive depletion of free subunits. This will in turn slow down the rate of
assembly, until the rate is at some point so low that the formation of new capsids
becomes undetectable at a reasonable experimental time scale. The experiment
will have then reached a state of apparent equilibrium, even though the conditions
could still be far from the true equilibrium, determined by the law of mass action,
Eq. (6.15).

Let’s call Δμstop
a to the value of the chemical potential difference correspond-

ing to this apparent equilibrium situation, for which the barrier ΔG∗a is so high
that the assembly rate Ja is negligibly small.

Now, if we perform a disassembly experiment, it is reasonable to assume that
the process will stop and the new apparent equilibrium will be reached when the
final rate for disassembly is similar to the same threshold value for the assembly,
namely

Ja � Jdis (6.86)

Since the most important factor controlling both rates is the height of their
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respective barriers (except for some logarithmic corrections coming from the pref-
actors), the rates will be similar when the heights of the activation barriers will
be the same

ΔG�
a ≈ ΔG�

dis (6.87)

In addition, using Eqs. (6.43) and (6.82), this relation implies that

Δμa ≈ −Δμdis (6.88)

Finally, using the definition of the chemical potential in terms of the concentra-
tions, Eq. (6.40), we get

(c�)2 � ca
1 cdis

1 (6.89)

where ca
1 and cdis

1 are the apparent equilibrium concentrations of free subunits
obtained at the end of the assembly and disassembly experiments, respectively.
This relation is specially relevant, because ca

1 and cdis
1 are experimentally accessi-

ble quantities [13,55], so the critical concentration c�, or equivalently the average
binding energy, given by Eq. (6.41) can be obtained. Thus combining assembly
and disassembly experiments is an excellent strategy to obtain the thermody-
namic properties of capsids.

To end this analysis, let’s clarify why, despite the fact that both assembly and
disassembly are out-of-equilibrium processes, they seem to verify a kind of law of
mass action, which has led in some cases to misinterpret these experiments as an
equilibrium situation.

6.5.3 The generalized law of mass action

As we have discussed along this chapter, in vitro experiments show that the
assembly of viruses starts above a critical concentration of free subunits, which
seems to follow a universal curve for different experiments [68] (see Fig. 6.4)
similar to the law of mass action [13].

Interestingly, disassembly experiments of fully formed capsids lead to final
concentrations of subunits that also seems to obey a law of mass action, but
surprisingly with a much stronger dissociation constant than the expected from
assembly experiments [55] (see Fig. 6.12). The emergence of these two different
equilibrium-like scenarios has led to consider that viruses follow a pseudo law of
mass action [35], and it has been proposed that conformational changes in the
coat proteins that modify their effective binding interactions are responsible for
this hysteresis between assembly and disassembly [55]. Here, we demonstrate
that the apparent final concentrations of free subunits and capsids, discussed
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above, obey, indeed, a sort of generalized law of mass action when the formation
of a capsid is considered as an activated process. This means that no structural
modifications are in principle required to explain the puzzling results of assembly
and disassembly, even though their presence can also have repercussions in the
dissociation and stability of viruses [72].

As discussed before, under favorable assembly conditions, the formation of
new capsids stops when the concentration of free subunits reaches a particular
value, which has an associated nucleation barrier that is too high to be overcome.
We called the corresponding concentration ca

1, and the chemical potential differ-
ence Δμa. Obviously, in an assembly experiment, if the initial total concentration
is c < ca

1, the barrier will be even higher, and no capsid will form, so all proteins
will remain free in solution. Instead, when c > ca

1, the assembly will proceed until
c1 � ca

1. In addition, since we consider experiments with constant total number
of subunits, the concentration of subunits in capsids at the end of the reaction
will be

qcq = c− ca
1 (6.90)

As in Section 6.2.2, we can reexpress this relation as a function of the fraction of
subunits in complete capsids f , Eq. (6.19), and rearranging some terms we get

1− f = (ca
1/c) (6.91)

or equivalently
1− f = (c�

stop/c) (6.92)

where, for convenience, we have identified c�
stop = ca

1. This last expression is
completely analog to the universal law derived for true equilibrium in Eq. (6.25).
Thus, c�

stop plays the same role as c� = ccmc/2 in an equilibrium aggregation pro-
cess. More precisely, if we plot the concentrations of free subunits and complete
capsids as a function of the total concentration, we will get exactly the same
behavior as that predicted for the equilibrium micellization (see Fig. 6.4).

The important point here is that, by interpreting those experiments as equi-
librium states, one only gets an apparent equilibrium constant, or, equivalently,
and apparent binding energy, which is not the true thermodynamic equilibrium
value for the capsid. In particular, c�

stop and μa are intimately related by Eq.
(6.40), and taking into account also Eq. (6.41) we have

c�
stop � cse

(−Δμa+Δg)/kT (6.93)

or
c�
stop � cse

Δgapp
as /kT (6.94)
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where we have identified the apparent binding energy of assembly as

Δgapp
as = Δg −Δμa (6.95)

Hence, the difference between the true equilibrium and the pseudo-law of mass ac-
tion, respectively, Eqs. (6.27) and (6.93), is the shift in the free energy associated
to the chemical potential excess Δμa.

Evidently, a disassembly experiment will lead to an analogous situation. Thus
one will recover again a law of mass action kind of behavior, controlled by another
apparent energy

Δgapp
dis = Δg −Δμdis (6.96)

In the previous section, using a simple time scale argument, we concluded that
the condition that leads to similar final rates was Δμas � −Δμdis, Eq. (6.88).
Therefore, comparing both apparent energies we finally obtain

Δg � Δgapp
dis + Δgapp

a

2
. (6.97)

which corresponds to the true effective binding energy.
That means that we have to correct the interpretation of those experiments

on virus assembly and disassembly that are kinetically stopped by the presence
of an insurmountable activation barrier, rather than strictly equilibrated. In par-
ticular, according to our thermodynamic-kinetical model, the apparent energies
per contact measured from association and dissociation experiments are both dif-
ferent from the true equilibrium binding energy. Nevertheless, a good estimate of
the right binding energy can be obtained by simply averaging these two apparent
binding energies, as far as both type of experiments are performed at the same
physicochemical conditions.

6.6 Nucleation theorem: the size of the critical nu-

cleus

In the context of nucleation, there is a very useful relation between the size of the
critical cluster, the nucleation barrier, and the nucleation rate. This relation is
known as the nucleation theorem, and was originally derived by Hill in the context
of his small systems thermodynamics [73, 74], and then applied to experiments
by Kaschiev [75].

In essence, the nucleation theorem establishes that(
∂ΔG(n)

∂Δμ

)
T,p

= n (6.98)
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and it holds in general for any n. This result is specially useful applied to the
critical size n∗, due to its significance in the kinetics of assembly In that case we
obtain (

∂ΔG�

∂Δμ

)
T,p

= n� (6.99)

A remarkable aspect of this relation is that it is model independent, i.e., it does
not depend on the details of the explicit model of line tension introduced in
Section 6.3.

More importantly, the nucleation theorem, combined with the kinetics de-
rived from classical nucleation theory, establishes a route to extract the critical
size directly from the experimental measures of the capsid formation rate. In
particular, from the expression of the steady state rate, Eq. (6.73), one gets

∂ lnJ

∂Δμ
=

∂ lnβ�

∂Δμ
− n�

kT
(6.100)

In addition, from the definition of the chemical potential difference Δμ, Eq.
(6.40), one has

∂Δμ

∂ ln c1
= −kT (6.101)

and considering also the dependency of β� on c1 given by Eq. (6.60), we finally
obtain

∂ lnJ

∂ ln c1
= n� + 1 (6.102)

Hence, in an assembly experiment, the slope of the rate of capsid formation with
respect to the concentration of free subunits will be directly related to the size of
the critical nucleus.

A very important remark is that, in the context of nucleation, the size of
the critical nucleus is not unique, but depends on the supersaturation or, equiv-
alently, on the concentration of free subunits. Therefore, this might justify the
controversy regarding the distinct critical cluster sizes that have been reported
for the same virus at different experimental conditions [15].

6.7 Conclusions

There are two main conclusions that can be drawn from the results of this chap-
ter. The first one is that the formation of viral capsids is an activated process,
rather than an equilibrium aggregation. And the second one, is that the classical
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nucleation theory of capsids (CNTC) provides a solid framework for the under-
standing of the thermodynamics and kinetics of viral self-assembly. The CNTC
description was already introduced in the seminal paper of Zandi et al. [27] but
in the present chapter we have extended these ideas in different directions and
used them to get new and interesting results. In particular, we have rederived
the thermodynamics of viral assembly using a quasichemical approach, that com-
plements the phase route used in Ref. [27], and facilitates its understanding. We
have also worked out the kinetic description of the assembly, computing explicitly
the rate of assembly for both the steady-state and time-dependent scenarios.

In this framework, we have shown that CNTC consistently explains the main
phenomenology observed in assembly experiments. The most important feature
of this description is the existence of an energy barrier for the formation of a cap-
sid that originates from the energetic penalty associated to the missing binding
interactions at the rim of a partially-formed capsid. It is precisely this energetic
cost, that can be modeled as a line energy, that justifies the scarcity of inter-
mediates observed in experiments. Moreover, the existence of a lag time at the
beginning of the assembly process corresponds to the lapse required for the free
subunits to overcome the activation energy and start the production of capsids.
Both the height of this activation barrier and the size of the critical nucleus de-
pend strongly on the concentration of free subunits. As the assembly proceeds,
the height of the barrier and the associated assembly rate progressively decrease
due to the consumption of free subunits and the fact that the total concentra-
tion of coat proteins remains constant. At a certain point, the rate becomes
so low, that in practice the reaction stops and the systems reaches an appar-
ent equilibrium, different from the aggregative equilibrium, but that can also be
characterized by a pseudo law of mass action.

We have also extended the CNTC description to account for capsid disas-
sembly. That has allowed us to explain the origin of the hysteresis between the
conditions at which capsid assembly and disassembly takes place in experiments.
Moreover, we have shown that a proper interpretation of the thermodynamics
of these assembly and disassembly experiments can be used to extract the true
binding energies for capsids.

Interestingly, the CNT model of viral capsids clarifies some controversies re-
ported in the literature. For instance, the existence of a pseudo-law of mass
action is fully compatible with a nucleation mechanism and it is a kinetic conse-
quence, rather than an equilibrium trait; the hysteresis between the association
and dissociation conditions of viral shells is a natural result of the presence of an
energy barrier, and it is not necessarily related to conformational changes of coat
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proteins; or, remarkably, the critical nucleus is the most unstable intermediate,
and should be the most challenging specie to capture or monitor during an exper-
iment or a simulation. In addition, its size depends on the concentration of free
subunits, and it is neither an intrinsic property of the coat proteins interactions,
nor a precise geometrical arrangement of them. Thus, it is natural to obtain
different critical nuclei depending on experimental conditions.

The assembly of viral capsids, based on the nucleation mechanism described
by CNTC, has associated general features that might have important biological
consequences during different steps of the virus life cycle. In particular, in the
absence of an energy barrier, the formation of intermediates could deplete the
stock of coat proteins before even producing a single complete capsid. Instead,
the existence of the barrier requires a higher concentration of subunits to activate
the process, and destabilizes the partial capsids, which facilitates the formation
of fully-formed capsids. Moreover, once a capsid is formed, the presence of the
barrier will prevent the virus to disassemble even at conditions where the assem-
bly would not be possible. This hysteresis phenomenon is of vital importance
for viruses, since they usually have to resist different physiological environments
before infecting a new host.

Beyond its descriptive power, the CNTC can also be used to predict, at least
qualitatively, the thermodynamics and kinetics of the assembly of specific viruses.
In particular, this might be specially useful to design experiments at conditions
that will ensure the efficient production of capsids at reasonable time scales. Con-
versely, the understanding of the general principles that rule viral assembly could
also facilitate the design of novel widespectrum anti-viral strategies, targeted to
interfere or impede a proper assembly of the virus.
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A. Boundary length l(n)

Appendices

A Boundary length l(n)

We derive here a general expression for the boundary length of a partial shell.
The rim of a capsid vanishes only when the structure is closed, l(q) = 0, or in
the virtual situation of a partial shell made of no subunits, l(0) = 0. Then, if
we assume that the density of subunits in the partial capsid is constant during
the growing process, by symmetry, the maximum length will take place for a
half-formed capsid, lmax = l(q/2). The simplest formulation for these constraints
will be l(n) = g[n(q − n)]z, where z > 0 and g is a prefactor including the
boundary length scale. Now, let’s consider the two characteristic length scales
of the problem, i.e., the subunit and capsid radii, σ0 and R, respectively. For a
single subunit the length is related to its size l(1) ∼ σ0, which leads to g ∼ σ0/qz

assuming q � 1 (a standard condition in capsids10). For a half capsid the length
must be related to its radius l(q/2) ∼ R and one gets g ∼ R/q2z. It is also
reasonable to assume that the density of subunits is constant during the assembly,
and is fixed by the covering of subunits in the completed capsid qσ2

0 ∼ R2.
Applying this relation to the last g expression one obtains g ∼ σ0/q2z−1/2, and
by consistency with the first g we get z = 1/2. Consequently g ∼ R/q and the
length of a partial capsid will be

l(n) = a
R

q

√
n(q − n) (A-1)

where a is a constant geometrical prefactor independent of n and the length
scales. As we have shown in Section 6.3 for the limit of circular rims, a = 4π.

10The smallest number of subunits in a capsid is q = 12, which corresponds to T = 1 structures
made of pentameric capsomers. However, if the fundamental free subunits are monomers, this
small shell will be composed of q = 60 coat proteins.
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Chapter 7

Simulation of the Constrained

Assembly of Spherical Shells

7.1 Introduction

As we have seen in the previous chapter, the assembly (and disassembly) of viral
shells is an activated process, where subunits have to surmount an energy barrier
to form a capsid. Although the height of the nucleation barrier is strongly con-
trolled by the concentration of free subunits, its origin comes from the missing
contacts at the rim of partial capsids, which is an intrinsic property independent
on the concentration of subunits. In the CNT framework, to model this energy
penalty we assumed a simple scenario where intermediates have circular bound-
aries with an associated line tension. This continuum hypothesis allowed us to
make simple predictions and to illustrate the main consequences of CNT. Nev-
ertheless, real capsids are discrete systems made of subunits, so it is natural to
question whether these simplifying assumptions are accurate enough to describe,
in particular, small and medium sized viral structures. But how do we test the
accuracy of the continuum assumptions?

One obvious answer to the question would be to estimate the energy of for-
mation of partial capsids directly from experiments. However, the presence of
the barrier destabilizes the intermediates, lowering their effective concentrations.
This precludes most of the partial structures to be detected experimentally [1,2].

Alternative, computer simulations could provide the answer. Although in
silico experiments based on atomistic or quasi-atomistic models are still too ex-
pensive computationally to study the assembly of viral capsids [3], more simplified
models have already been able to reproduce some of the main features of viral-
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like capsid assembly [4–23]. In particular, in silico experiments have shown that
partial capsids usually grow by adding just a single subunit at a time, and among
all possible intermediates, only a small set of them, which is associated to low free
energies, contributes significantly to the pathways of assembly [21,23]. Therefore,
in principle simulations could provide the required information to test the free
energy model of partial capsids assumed in the CNT. However, this analysis has
not been performed yet in any previous work.

Thus, our main goal in this chapter will be to study the assembly of viral
capsids in order the analyze the mechanisms and the energy of formation of
these shells. To that end, we will implement a constrained simulation (Section
7.2) using the physical model introduced in Part I. This will show that in fact
the continuum model provides a good description of the assembly and accounts
accurately for the intrinsic free energy of formation of partial capsids (Section
7.3). In addition, the simulations will unveil an unexpected phenomenon that
promotes the premature closure of shells, and that can be understood in terms
of the line tension of the rim (Section 7.4).

7.2 Simulations of spherical capsid formation

The generic capsomer-capsomer interaction model introduced in the first part of
the thesis was able to explain successfully the final structures adopted by spher-
ical viruses. So it is natural to use it also in this study. In particular, we will
investigate the constrained assembly of this model for capsomers interacting on a
spherical template of a fixed radius1. This surface will constrain the radial posi-
tion of the capsomers that integrate the (partial) capsid, and might be interpreted
as the spontaneous curvature imposed by protein-protein interactions for small
capsids, the protein or membrane scaffold that supports the assembly of larger
capsids, or the artificial template provided by nanodrops in recent self-assembly
experiments [25].

We emphasize that this model is not adequate to simulate the actual assembly
of capsids from scratch, i.e., starting from a solution of free subunits (mimicking
a common experimental scenario2). Instead, we simply aim to characterize the
structure and the intrinsic free energies of partial capsids. More precisely, we will

1In unconstrained conditions, the Lennard-Jones like potential used will form solid clusters,
rather than shells [24].

2To properly simulate that situation it will be convenient to add an explicit term related to
the directional interactions between subunits, associated to concepts like the bending energy
and the spontaneous curvature.
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focus on the constrained growth of a single shell, to validate the assumptions of
CNT, and for which the actual model will be enough. For simplicity, we only
explore the scenario with shells made of only one-type of capsomer, which was
discussed in Section 2.2.4 for the equilibrium situation.

In particular, the simulation procedure used to model shell growth is as fol-
lows. One starts by placing one capsomer on a spherical template of radius R,
which will constrain the radial position of the aggregated subunits. Next, a new
capsomer is added at a randomly picked position on the surface, and the new
particle is allowed to diffuse until it hits one of the previously added subunits.
This cluster of subunits is then equilibrated by applying up to 104 Monte Carlo
(MC) steps, which ensures the partial capsids to reach a low energy configuration
in consonance with observations in more detailed simulations3. The first 0.5 · 104

MC are devoted to the equilibration of the cluster, where the second 0.5 · 104

MC steps were used to evaluate the statistical properties of the partial capsid,
in particular its energy. Next, a new particle is inserted at a random position on
the unoccupied part of the template and the process is continued until the capsid
refuses the introduction of further particles after 105 random trials searching for
remaining available space on the capsid (see Fig. 7.1). The maximum number of
particles that can be accommodated on the sphere depends on the radius R of
the template. We explored radii going from Rmin = 1.82 σ0 (N ∼ 10 subunits)
to Rmax = 4.82 σ0 (N ∼ 80 subunits) at intervals of ΔRstep = 0.01 σ0 in radius.
Moreover, to allow different assembly pathways to compete in the formation of
the shell, we repeat the assembly protocol 100 times for each value of the tem-
plate radius R. Finally, when different structures compete, the results reported
correspond to the statistically dominant structure. Using this procedure, the
energies per capsomer in the final shells as well as the average energies of the
different intermediates were characterized.

Let’s first focus on the final structures. The average energy per capsomer
obtained in the final structure of our constrained-assembly simulations is plotted
in Fig. 7.2 as a function of R (solid line). For comparison, the optimal average
energy per capsomer obtained in the equilibrium simulations of Section 2.2 (where
the number of capsomers N was fixed and the radius optimized, given by Re(N))
is shown as a discrete set of “+” symbols, connected by a dotted line. The
energy per capsomer obtained in the assembly for fixed R is always higher (or

3We also performed fast assembly simulations allowing only the equilibration of the new
attached capsomer. Except for very small capsids, this led to disordered structures. This
situation will correspond at high rates of attachment (due to extreme supersaturation conditions)
or strong binding interactions, which mislead the rearrangement of bonding interactions and lead
to malformed capsids [11,15].
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Figure 7.1: Sketch of the constrained assembly simulation. (a) Starting from one
subunit, for every assembly growth-step, a new subunit is added randomly on
the accessible surface of the spherical template, and rambles on the sphere until
it hits the partial capsid (the black line illustrates a path). Subsequently, the
new partial capsid is equilibrated using the MC algorithm (b). The process is
repeated until a new subunit cannot fit on the template (c).

equal) than the minimum energy per subunit for R = Re(N), as it should. The
shaded sectors in Fig.7.2 indicate the intervals [Ra, Rc]N of radii over which a shell
structure is produced with the same number N and architecture. Remarkably,
the final arrangement of subunits in these structures is the same as that of the
optimal equilibrium all-pentamer capsids, which corresponded to Tammes Magic
Number structures [26]. In particular, the N = 12 and N = 32 structures show
icosahedral symmetry (T = 1 and T � = 3, respectively), while, for instance, the
N = 24 and N = 48 structures have a more complex cubic symmetry. As the
radius increases from Ra to Rc for given N , the symmetry of the structure does
not change, but it carries an increasing level of elastic strain, as indicated by the
steep rise in the energy per capsomer. With only one exception, the equilibrium
radius Re(N) of a Magic Number structure is located outside the stability interval
[Ra, Rc]N for constrained assembly. The exception is the N = 12 dodecahedral
shell where the structure assembles near the optimal radii Ra � Re(N = 12).

Therefore, in general, it becomes impossible to accommodate all the subunits
N in a capsid having a fixed radii equal to the equilibrium one Re(N). The
reason is that, at the last stages of the growth, a capillarity pressure associated
to the open hole strains the capsid and promotes its premature closure. Hence,
bigger radii are required to prevent this implosion and to assemble the structure
with the right number of subunits (see Fig. 7.2). We will analyze this interesting
phenomenon in more detail later. First, let’s focus on the intrinsic energies of
partial capsids before this implosion takes place.
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Figure 7.2: Energy per particle of the equilibrium shell structures (+ symbols
joined by a dashed line), and of the constrained-assembly shells (dots joined by a
solid line), both as a function of the template radius R expressed in units of σ0.
The bigger dots and shaded areas indicate the range Ra to Rc of sphere radii where
the constrained assembly shells adopt a particular equilibrium “Magic Number”
structure. As an example, the equilibrium radius Re(32) as well as Ra(32) and
Rc(32) are indicated for N = 32.

7.3 The energy of formation of partial capsids

As shown in Section 6.3, the assembly energy of a partial shell can be expressed
as

E(n) = μe n + Eb(n) (7.1)

where μe is the equilibrium energy per capsomer of the completed and unstrained
shell, while Eb(n) is defined to be the “boundary energy” of the partial shell.

As discussed in the CNT of viral capsids this boundary energy would be
equal to the line tension λ times the perimeter length l, Eb(n) = λ l(n). Within
a continuum model, a partial capsid can be represented as a spherical cap with
a circular rim, which is the shape that would minimize this line energy. An
expression for the length of such boundary was already derived in Section 6.3,
yielding l(n) = (4πR/qR)

√
n(qR − n), where R is the radius of the capsid and

qR is the number of subunits that could be in principle accommodated in such a
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capsid. Assuming a constant density of coat subunits in the growing phase, the
area per subunit in any partial capsid will be the same as the equilibrium one
given by

a1 =
4πR2

e

N
(7.2)

Thus, the value of qR for any radius within the stability region [Ra, Rc]N of the
structure N , and before the closure, will be given by

qR =
4πR2

a1
= N

(
R

Re

)2

(7.3)

For the equilibrium radius we recover qRe = N , but bigger radii can accommodate
a larger total number of capsomers, i.e., q(R>Re) > N , as it should.

Combining these results, one gets

Eb(n, R) = λ
4πR

qR

√
n(qR − n) (7.4)

It is useful then to reexpress the previous result using a dimensionless line tension.
From dimensional arguments, one expects the line tension λ to be proportional
to μe/σ0, the characteristic energy per assembly subunit divided by the charac-
teristic length scale. This leads to a boundary energy

Eb(n, R) = Λ
|μe|
σ0

R

qR

√
n (qR − n) (7.5)

where

λ = Λ
|μe|
4πσ0

(7.6)

is the actual line tension, and Λ is a dimensionless line tension, which absorbs
also the geometric constant prefactor. Let’s try to estimate the value of this line
tension for this particular model.

7.3.1 Line energy of a flat hexagonal sheet

To have a clearer insight of Λ, let’s first discuss the line tension for a flat hexag-
onal lattice. One can compute the line tension by just splitting the hexagonal
lattice and counting the energy cost of the lost contacts per unit length (see Sec-
tion 6.3.1). However, this will depend on the direction of the cut. In this case,
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one could think about two plausible cut directions. Cutting along the crystallo-
graphic axis, λcry, each capsomer, occupying a length 2σ0, will lose two associated
contacts, 2εc (see Fig. 7.3a), so

λcry =
1

2

|εc|
σ0

(7.7)

Equivalently, we can perform the same computation along the zigzag direction,
λzig. In this situation four contacts, 4εc, are lost every length step 3b, where
b = 2σ0/

√
3 is the edge of the hexagon. Thus, one gets

λzig =
1√
3

|εc|
σ0

(7.8)

which is slightly larger than λcry. The contact energy in a hexagonal lattice is
directly related to the energy per capsomer μe. Each contact is shared by two
capsomers, and each capsomer has six neighbors, so

εc =
1

3
μe (7.9)

Using this into λcry and λzig, and comparing with the expression for the boundary
energy, Eq. (7.6), we get two reference values for the dimensionless line tension,
Λ. One for the crystallographic direction

Λcry =
2π

3
(7.10)

and the other for the zigzag cut

Λzig =
4π

3
√

3
(7.11)

In the next subsection, the accuracy of this simple prediction will be tested.
Our strategy is to first see whether Eq. (7.5) can be used to fit our numerical
results for ordered capsids and, if so, to extract a value for Λ.

7.3.2 Comparison with the simulation results

In order to validate the proposed expressions for the boundary energy, average
energies of all intermediates having n capsomers for a given radius, E(n), were
evaluated in the constrained assembly simulations. Thus, these values combined
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(a) (b)

Figure 7.3: Line tension of a hexagonal lattice. (a) Cut along the crystallographic
direction, the missing hexagons are colored in gray. For every step of length 2σ0

two contacts are broken (dashed lines). (b) Cut along the zig-zag direction. For
every step of length 3b four contacts are lost (dashed lines), where b = 2σ0/

√
3

is the edge of the hexagon.

with Eq. (7.1) determine the boundary energy Eb(n), at a fixed radius R for any
partial shell n of the final structure N as

Eb(n) = E(n)− μen. (7.12)

It is important to emphasize that, for a given structure with N total capsomers,
this μe(N) corresponds to the optimal value of the energy per capsomer obtained
in the simulations of Chapter 2, and plotted in Fig. 7.2.

Now, one can fit Eq. (7.5), with Λ as the sole fitting parameter, to the values
of the boundary energy Eb derived from the simulations for n = 2 up to n = N−1.
In particular, Fig. 7.4 shows the boundary energies of a T � = 3 structure with
N = 32 for the two stability region limits, i.e., R = Ra(32) and R = Rc(32).
The theoretical curves are in good agreement, specially for the larger radius
R = Rc(32). The quality of this agreement is comparable for other N values,
and is particularly accurate for the Magic Numbers (see Appendix A). We stress
that the only relevant deviations occur at the last stage of the assembly, which is
a consequence of the premature closure phenomenon that will be discussed later.
More importantly, the values of Λ obtained from the fit for N = 32 are almost
constant, ranging from Λa(32) = 2.45±0.02 to Λc(32) = 2.47±0.01, and are very
close to the zigzag hexagonal reference Λzig ≈ 2.42, as we can see in Fig. 7.5.

The discontinuities observed in Λ when comparing the values derived for the
different assembly radii (see Fig. 7.5) track the jumps in Fig. 7.2, i.e., they
are related to changes in the final number of subunits (and the symmetry) of
the corresponding equilibrium shell structures. Thus, Fig. 7.5 illustrates that
discreteness effects are important for the capillary action exerted on small partial
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Figure 7.4: Boundary energy Eb(n) of a partial shell, in units of ε0, as a function
of the number of assembly units n. Solid dots and open dots are the line energy
results obtained in the simulation for the stability radius of N = 32, and R =
Rc(32) and R = Rc(32), respectively. Solid and dashed lines show the results of a
fit to Eq. (7.12). The elastic energy stored in the closed shell is (for R = Ra(32))
indicated as ΔEstr. The critical nucleus size corresponding to the top of the
barrier is indicated by n�

0.

shells. Interestingly, the Magic Number shells have dimensionless line energies
significantly higher than those of the less stable structures. The larger values of Λ
for the Magic Number structures seem to indicate that Magic Number shells are
exceptionally prone to implosion, as will be discussed later in detail. Interestingly,
the values of Λ lay generally in the interval between the reference values Λcry and
Λzig. In particular the values of the Magic Numbers structures and large shells
are very close to Λzig. This indicates that the partial capsids of these structures
have rims that on average may tend to adopt a zigzag configuration. For instance,
a T = 1 will tend to grow around a 3-fold axis, while a T � = 3 will promote the
capsid formation around a 5-fold axis4.

Therefore, the line tension concept gives a good qualitative description of
the boundary energy of partial capsids, despite the discreteness effects. More
importantly, for the Magic Number structures and large shells the growth is

4This does not mean that a penton nucleates the assembly. We emphasize that, specially at
the initial stages of the assembly, the partial capsid structure fluctuates and the disclinations,
like pentons, are not necessarily stacked.
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Figure 7.5: Dimensionless line tension. Grey dots correspond to the fitted values
of Λ using Eq. (7.5) for all radii of assembly. Dots are connected as a guide for the
eye. The black dots highlight the results for the Magic Numbers structures. The
predictions for the dimensionless line tensions Λcry and Λzig for the two principal
directions of an hexagonal lattice, given by Eqs. (7.10) and (7.11), respectively,
are also plotted.

particularly well described by a circular rim approximation and a line tension
associated to Λzig, and given by

λ0 =
1

3
√

3

|μe|
σ0

(7.13)

7.4 Closure by implosion

As we have seen in Fig. 7.2, in general it is not possible to assemble a structure
N at its radius of equilibrium Re(N). In particular, Fig. 7.6a shows a typical
situation observed in the assembly of a shell at the equilibrium radius R = Re(32).
At the last stages of the growth, a partial capsid of n = 29 subunits presents
a hole that still would be able to accommodate a number of extra capsomers.
However, when one more subunit is added, the hole undergoes an inward collapse
(implosion) and the shell adopts a closed N = 30 structure. After this, it is not
possible to increase the number of particles any further.

When the assembly radius is increased, R > Re(N), at some point the implo-
sion can be avoided and we get an expanded version of the equilibrium structure
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Figure 7.6: Implosion of incomplete shells. The assembly units are shown as
spheres colored according to the energy scale shown on the left (in units of ε0).
(a) For a template with radius equal to the N = 32 equilibrium radius Re(32),
the capsid closes prematurely at N = 30 due to inward collapse of the hole in
the N = 29 structure. Note that the n = 29 hole still could accommodate
more subunits. (b) For larger template radius (exceeding Ra(32)) this premature
collapse no longer takes place and a uniformly stretched version of the equilibrium
N = 32 icosahedral structure is produced. (c) As the template radius is further
increased, shell closure proceeds by the collapse of the five-fold symmetric hole in
the n = 31 structure when a subunit is inserted. If the radius is increased beyond
Rc(32), then a hole at the n = 32 shell remains stable, which allows to add more
subunits leading to a N > 32 shell.

N . This defines the assembly radius R = Ra(N). Figure 7.6b illustrates the
successful assembly of the icosahedral shell T � = 3 at R = Ra(32). We remark
that this structure is strained, so it has a higher energy than the equilibrium one
(see Fig. 7.2 and Chapters 3 and 4). Remarkably, the completion of the N = 32
structure proceeds around a 5-fold axis, which is in agreement with the structural
insight provided by the dimensionless line tension analysis, Λ(32) � Λzig, in the
previous section.

If the template radius is increased, beyond R = Ra(N), the structure N is
recovered up to a limit radius R = Rc(N). As an example, the assembly of
N = 32 at R = Rc(32) is shown in Fig. 7.6c. Interestingly, we observe that
at n = 31 the remaining hole would be able to accommodate more than one
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extra capsomer, but it prematurely closes at n = 32 leading to the icosahedral
structure N = 32. Thus, in this case the implosion effect is responsible for the
proper completion of the equilibrium structure N .

The range determined by Ra(N) and Rc(N) defines the stability region of as-
sembly of the structure N , i.e., [Ra, Rc]N . We remark that the lowest production
of well-defined N capsids takes place at the assembly radius Ra(N). Contrarily,
at Rc(N) the yield is extremely high (see Appendix B). The implosion effect
shows a cyclic behavior along the assembly of structures. At the beginning of
any stability region this phenomenon does not occur, although it is responsible of
the alternative smaller capsids that reduces the yield; then as the radius increases
it is responsible for properly close the N shell until Rc(N) is reached; and, after
that, it generally starts a new stability region for another N , where the implosion
is not present initially.

The origin of this phenomenon is related again to the line tension of the rim
in the partial capsids. Nevertheless, to properly describe the implosion effect
present at the last stage of the assembly, it is necessary to extend the original
continuum model given by Eqs. (7.1) and (7.5).

7.4.1 Hole implosion and the capillary pressure

The inward collapse observed in the assembly of spherical shells is driven by the
formation of new bonds that can be produced by closing the shell, at the cost
of stretching the existing bonds. We have seen that even for small and medium
capsids the line tension concept is able to describe accurately the effect of the
missing bonds on the rim of a partial capsid. But to properly study the closure
effect, we must add a stretching term, Estr to the original line energy model,

E(n) = μen + λl(n) + Estr(n) (7.14)

Interestingly, hole collapse was reported in experimental studies of the closure of
holes in lipid bilayer fluid shells [27]. In that case, the energetics of hole closure
was described also by assigning to the perimeter of the hole a line tension. So
it is useful to examine, in a similar way, the premature closure of a shell with a
hole.

For the sake of simplicity, we focus on the simpler situation of hole collapse
in a flat hexagonal sheet, thus ignoring the curvature effects in the capsid. Let’s
assume that a circular hole of area ΔA0 has been removed from a flat and un-
strained sheet of area A, and that the rim of the hole is subjected to a line tension

274



7.4. Closure by implosion

λ. Then, the stretching energy is given by

Estr(ΔA) =
1

2
K

(ΔA0 −ΔA)2

A
(7.15)

where, K is the 2D area modulus of the sheet, which is an intrinsic property. For
a fixed number of units n, the line energy and the new stretching term are the
only energies required to study the closure process. Their combination leads to
the elastic energy

Eel(ΔA) =
1

2
K

(ΔA−ΔA0)
2

A
+ 2
√

πΔA λ (7.16)

where the length of the rim has been expressed in terms of the area ΔA of the
hole, ΔA = πr2, where r is the hole radius.

Setting the derivative of Eel(ΔA) with respect to ΔA to zero gives

K
ΔA0 −ΔA

A
= λ

√
π

ΔA
(7.17)

This equates the radial elastic stress, K(ΔA0 − ΔA)/A, exerted by the partial
shell on the rim of the hole with the contractile capillary pressure, λ/r. For a given
partial capsid n the values of K, λ, and A will be essentially constant. However,
the hole of the unstretched partial shell, ΔA0, will depend on the assembly radius
R. Then, for radii where the hole is big enough, there are two solutions to Eq.
(7.17): an energy minimum near ΔA � ΔA0 that corresponds to a mechanically
stable state, and an unstable energy maximum for ΔA 
 ΔA0 (see Fig. 7.7).
The energy maximum separates the stable state from a boundary minimum at
ΔA = 0, that corresponds to the collapsed state. The energy maximum thus acts
as an activation barrier against hole collapse. As the radius of assembly reduces,
the unstretched hole ΔA0 also reduces and the two solutions approach and merge
at a critical hole area

ΔA�
0 =

(
3
√

3π

2

λ

K
A

)2/3

(7.18)

For shell radius corresponding to ΔA0 ≤ ΔA�
0, the hole is mechanically unstable

and collapses (see Fig. 7.7).
This continuum description appears to account, at least qualitatively, for the

observations of the simulations: for a certain radius once we reach the partial shell
n with ΔA0 ≤ ΔA�

0, the structure implodes and precludes the formation of the
expected structure with N > n; but when the radius is increased the hole remains
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Figure 7.7: Capillary balance and implosion. Two characteristic scenarios related
the elastic energy given by Eq. (7.16) are illustrated by plotting Eel/λ versus the
variable hole area ΔA. The value ΔA = 0 means that the capsid is closed. For
a given partial shell n the term K/λA is constant. Then for an assembly radius
R1 an initial hole of area ΔA01 is unstable and leads to implosion in a downhill
process. Instead, for a larger radius of assembly R2, the initial hole ΔA02 will
slightly compress to balance the capillary pressure and the strain of the shell, and
will find a stable size. In this case, an energy barrier prevents the closure of the
capsid.

stable, which allows the completion of N . If we keep increasing the radius we will
repeat cyclically the same process for bigger shells. This justifies the existence
of a stability region for bigger radii than the expected equilibrium radius of the
structure. According to Eq. (7.18), the critical area of the hole required to
prevent implosion grows as R4/3 assuming A ∼ R2. So the collapse of partial
shells is predicted to become increasingly pronounced as the shell radius grows,
which explains why the N = 12 capsid was able to assemble at the equilibrium
radius.

We notice that at the beginning of the assembly, the capillary pressure acts
in the opposite direction and compresses the partial shell, rather than stretching
it. In that situation one could also perform a similar analysis.

Finally, the fact that in Fig. 7.4, the fit for an assembly radius Ra(32) deviates
more than for Rc(32) with respect to the theoretical curve at the end of the
assembly could be easily explained in this context. It is clear now that this
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originates because the hole at n = 31 is stable in both cases, but for the smallest
radius the stretching will be higher, which is a term that was not considered
in the original model. On the other hand, at the beginning of the assembly
the compression of the partial shell produced by the capillary pressure of the rim
affects both radii in a similar way, and is the origin of the small deviations respect
the line energy curve in Fig. 7.4.

7.5 Conclusions

We have seen that the growth of highly-symmetrical shells can be properly de-
scribed by continuum concepts. In particular, the line energy model introduced
in CNT is surprisingly accurate to characterize the intrinsic energy of partial
capsids, specially for the Magic Numbers structures. Moreover, the line tension
associated to those architectures can be accurately estimated theoretically. The
results of this chapter thus reinforce the applicability of CNT to describe the
thermodynamics and kinetics of viral assembly.

Remarkably, a premature closure phenomenon related to the negative capil-
lary pressure of the rim at the last stages of the assembly has been unveiled. This
implosion effect precludes the formation of optimal capsids at their optimal ra-
dius, and shifts the assembly towards bigger radii. It is worth to notice that this
same closure mechanism is responsible for the stability region of the structures,
which is particularly wide for the Magical Numbers structures, due to the larger
associated line tension.

The underlying physics of the implosion effect is related to the balance of the
capillary pressure of the rim with the stretching of the partial shell. This can be
analyzed in a continuum framework by a simple model of the line and stretching
energies, which confirms and explains the observations of the simulations.

Interestingly, it follows from our findings that, except for the T = 1 shell,
to properly form a complete capsid in a constrained assembly scenario (which
seems common for large shells) it is convenient to impose a spontaneous radius
bigger than the equilibrium one. This leads to a final capsid that is strained. So
it suggests that post-assembly (or maturation) mechanisms would be required to
shrink the radius of the shell to obtain the true equilibrium structure. In order
to stabilize the structure and minimize the strain, viral capsids could rely on
scaffold expulsion, cleavage of the coat proteins, or cross-linking of the subunits.
Alternatively, as we saw in Chapter 5, the additional stress obtained by the
strained shell could be useful to reinforce the mechanical response of the capsid.
Therefore, from a physical standpoint, the maturation of viral capsids do not seem
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to have a univocal motivation, and probably tunes the mechanical properties of
the shells to optimize the infection strategy of each virus.

We finally stress that the closure phenomenon described above could also be
present in unconstrained assembly scenarios. However, in those situations the
proper closure of the shell could be facilitated by fluctuations of the radius.
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Appendices

A Line energy fit

Fig. A.1 shows the line energies obtained from the simulation, using Eq. (7.12),
for the shaded local minima in Fig. 7.2 (except for N = 32 that was already
plotted in Fig. 7.4). The lines show the fitted curves (before the closure) using
Eq. (7.5) and Λ as the only fitting parameter. The line tension model is in very
good agreement even for small shells.

Fig. A.2 provides the correlation coefficient5 R2
fit of the line energy model

Eq. (7.5) when fitted to the simulation results, using the NonlinearModelFit
function implemented in Mathematica [28]. Except for some small shells and
some transition radii, the quality of the fits is excellent, specially for the deep
local minima structures.

5R2
fit is given by 1 − SSmod/SStot, where SSmod is the sum squares of the fitted model

respect the data, and SStot is the total sum of squares of the data respect the average. Thus,
for R2

fit = 1 one obtains a perfect fit.
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Figure A.1: Boundary energy Eb(n) of a partial shell, in units of ε0, as a function
of the number of assembly units n. Solid dots: R = Ra; open dots: R = Rc.
The lines show the results of the fits to Eq. (7.12). The panels correspond to the
structures N that are deep local minima in Fig. 7.2 (except N = 32).
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Figure A.2: Correlation coefficient R2
fit of the line energy fit for all the assembly

radii explored. The black dots highlight the deep local minima shade in Fig. 7.2.

281



Chapter 7. Simulation of the Constrained Assembly of Spherical Shells

B Yield of assembly

Fig. B.1 plots the production yield fyield of assembly structures over the 100
simulations performed at each radius. The scale goes from 0 (no production) to
1 (maximum yield). When several structures compete at the same radius, we
select the most efficient one. So the yield is always fyield ≥ 1/2. The structures
related to optimal minima at equilibrium typically reach high yields over the
whole stability regions [Ra(N), Rc(N)]N . Notice that for these highly symmetri-
cal structures the production is lower the closer one gets to the initial assembly
radius Ra(N).
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Figure B.1: Yields of assembly. The efficiency of capsid production fyield is
plotted for all the assembly radii. The yield is normalized to 1, which means
that all attempts led to the same N structure. The shaded areas highlight the
stability regions of the capsids related to optimal equilibrium structures, which
are plotted with bigger dots.

282



References

[1] D. E. Kainov, S. J. Butcher, D. H. Bamford, and R. Tuma, “Conserved intermediates
on the assembly pathway of double-stranded RNA bacteriophages,” J. Mol. Biol.,
vol. 328, pp. 791–804, 2003.

[2] C. Uetrecht, I. M. Barbu, G. K. Shoemaker, E. van Duijn, and A. J. R. Heck,
“Interrogating viral capsid assembly with ion mobility-mass spectrometry,” Nature
chemistry, vol. 3, pp. 126–32, 2011.

[3] P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, and K. Schulten,
“Molecular dynamics simulations of the complete satellite tobacco mosaic virus,”
Structure, vol. 14, pp. 437–49, 2006.

[4] D. C. Rapaport, J. E. Johnson, and J. Skolnick, “Supramolecular self-assembly:
molecular dynamics modeling of polyhedral shell formation,” Comput. Phys. Com-
mun., vol. 121, p. 231, 1999.

[5] D. C. Rapaport, “Self-assembly of polyhedral shells: a molecular dynamics,” Phys.
Rev. E, vol. 70, p. 051905, 2004.

[6] D. Rapaport, “Role of reversibility in viral capsid growth: A paradigm for self-
assembly,” Phys. Rev. Lett., vol. 101, pp. 1–4, 2008.

[7] D. C. Rapaport, “Modeling capsid self-assembly: design and analysis,” Phys. Biol.,
vol. 7, p. 045001, 2010.

[8] R. Schwartz, P. W. Shor, P. E. Prevelige, and B. Berger, “Local rules simulation of
the kinetics of virus capsid self-assembly,” Biophys. J., vol. 75, pp. 2626–36, 1998.

[9] T. Zhang and R. Schwartz, “Simulation study of the contribution of
oligomer/oligomer binding to capsid assembly kinetics,” Biophys. J., vol. 90, pp. 57–
64, 2006.

[10] M. S. Kumar and R. Schwartz, “A parameter estimation technique for stochastic
self-assembly systems and its application to human papillomavirus self-assembly,”
Phys. Biol., vol. 7, p. 045005, 2010.

[11] M. F. Hagan and D. Chandler, “Dynamic pathways for viral capsid assembly,”
Biophys. J., vol. 91, pp. 42–54, 2006.

283



References

[12] M. F. Hagan, “Controlling viral capsid assembly with templating,” Phys. Rev. E,
vol. 77, p. 051904, 2008.

[13] M. F. Hagan and O. M. Elrad, “Understanding the concentration dependence of
viral capsid assembly kinetics–the origin of the lag time and identifying the critical
nucleus size,” Biophys. J., vol. 98, pp. 1065–74, 2010.

[14] O. M. Elrad and M. F. Hagan, “Encapsulation of a polymer by an icosahedral virus,”
Phys. Biol., vol. 7, p. 045003, 2010.

[15] H. D. Nguyen, V. S. Reddy, and C. L. Brooks, “Deciphering the kinetic mechanism
of spontaneous self-assembly of icosahedral capsids,” Nano Lett., vol. 7, pp. 338–344,
2007.

[16] H. D. Nguyen and C. L. Brooks, “Generalized structural polymorphism in self-
assembled viral particles,” Nano Lett., vol. 8, pp. 4574–4581, 2008.

[17] H. D. Nguyen, V. S. Reddy, and C. L. Brooks, “Invariant polymorphism in virus
capsid assembly,” J. Am. Chem. Soc., vol. 131, pp. 2606–14, 2009.

[18] M. Hemberg, S. N. Yaliraki, and M. Barahona, “Stochastic kinetics of viral capsid
assembly based on detailed protein structures,” Biophys. J., vol. 90, pp. 3029–42,
2006.

[19] A. W. Wilber, J. P. K. Doye, A. A. Louis, E. G. Noya, M. A. Miller, and P. Wong,
“Reversible self-assembly of patchy particles into monodisperse icosahedral clusters,”
J. Chem. Phys., vol. 127, p. 085106, 2007.

[20] I. G. Johnston, A. A. Louis, and J. P. K. Doye, “Modelling the self-assembly of virus
capsids,” J. Phys.: Cond. Matt., vol. 22, p. 104101, 2010.

[21] T. Keef, A. Taormina, and R. Twarock, “Assembly models for Papovaviridae based
on tiling theory,” Phys. Biol., vol. 2, pp. 175–88, 2005.

[22] D. Endres, M. Miyahara, P. Moisant, and A. Zlotnick, “A reaction landscape identi-
fies the intermediates critical for self-assembly of virus capsids and other polyhedral
structures,” Protein science, vol. 14, pp. 1518–1525, 2005.

[23] P. Moisant, H. Neeman, and A. Zlotnick, “Exploring the paths of (virus) assembly,”
Biophys. J., vol. 99, pp. 1350–7, 2010.

[24] D. Wales and J. Doye, “Global optimization by basin-hopping and the lowest energy
structures of lennard-jones clusters containing up to 110 atoms,” J. Phys. Chem. A,
vol. 101, pp. 5111–5116, 1997.

[25] C. B. Chang, C. M. Knobler, W. M. Gelbart, and T. G. Mason, “Curvature de-
pendence of viral protein structures on encapsidated nanoemulsion droplets,” ACS
Nano, vol. 2, pp. 281–286, 2008.

[26] D. A. Kottwitz, “The densest packing of equal circles on a sphere,” Acta Cryst. A,
vol. 47, pp. 158–165, 1991.

284



References

[27] E. Karatekin, O. Sandre, H. Guitouni, N. Borghi, P.-H. Puech, and F. Brochard-
Wyart, “Cascades of transient pores in giant vesicles: Line tension and transport,”
Biophys. J., vol. 84, pp. 1734–1749, 2003.

[28] I. Wolfram Research, Mathematica edition: version 7.0. Wolfram Research, Inc.,
2008.

285





Conclusions and Perspectives

In this thesis we have tried to elucidate the general physical principles that play a
major role in the morphology, stability, and assembly of viral capsids. The main
conclusions of this work are summarized in the following:

In Part I of the thesis, we showed that the structure of viral capsids can be
rationalized using basic geometrical rules and physical principles.

Thus, in Chapter 1, we developed a general theory that characterizes both
spherical and bacilliform (or prolate) capsids under the same geometrical frame-
work. This theory is the natural extension of the classical Caspar and Klug con-
struction of icosahedral shells (CK) [1] and the prolate construction of Moody
[2,3], and enumerates all possible structures based on hemi-spherical icosahedral
caps with axial symmetry. Our study indicates that the specific symmetry and
T -number of the caps strongly constrain the possible architecture of the central
bodies. Indeed, we have derived the precise geometrical rules that determine, for
any structure, the discrete set of radii, lengths, helicity, and number and position
of coat proteins. The theory also predicts the existence of isomers for some archi-
tectures, which could interfere with (or enrich) the assembly of certain viruses.
More importantly, this general theory allows to infer the structure of viral cap-
sids based on simple experimental data, thus facilitating a rapid cataloging of
their structures. Accordingly, it might be useful to interpret different types of
experiments, and could guide high-resolution studies of viral capsids.

Subsequently, in Chapter 2, we demonstrated that the structures derived in
the previous geometrical study arise naturally from a simple physical model,
which captures the basic ingredients involved in the interactions among viral
capsomers. The results corroborated the theoretical selection rules, and pointed
out that not all possible designs are equally favorable from an energetic stand-
point. This confirms that icosahedral symmetry in elongated viral capsids is ob-
tained spontaneously from the free energy minimization of a very generic interac-
tion. Moreover, our model shows the possibility of building some non-icosahedral
capped prolates that could also play a relevant role in the assembly of viruses.
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The combination of both our geometrical and physical studies pave the way to
design artificial elongated nanostructures with well defined properties.

In the second part of the thesis, we analyzed the role of the discrete na-
ture of viral capsids and the organization of capsomers in the actual mechanical
properties of shells.

We first introduced a simple theoretical framework, in Chapter 3, connect-
ing the intermolecular interactions among coat subunits and the global elastic
properties of the capsid. We particularized the study to spherical and polyhedral
structures, observing that a buckling transition naturally occurs by the expan-
sion of spherical capsids, in consonance with the maturation of several viruses.
Furthermore, the polyhedral structures turned out to be more resistant than
their spherical counterparts, as far as the intermolecular interactions remain un-
changed. This could be a biological advantage for some viruses, especially those
that rely on pressurization as an infection strategy. We stress that the princi-
ples involved in this theory could be easily adapted to other types of structures,
and establishes a molecular basis to interpret the mechanical properties of viral
capsids.

Then, in Chapter 4, the general mechanical properties of spherical and poly-
hedral capsids predicted by the theory in Chapter 3 were confirmed, using our
simple interaction model. In addition, it was shown that the T -number (or more
precisely the P -class) of the quasi-spherical structure plays a relevant role in the
stability and local mechanical properties of the shell. We remark that this as-
pect of the study was elusive for both the traditional continuum elasticity theory
and the mean field molecular theory introduced previously. In particular, P = 1
capsids resulted to be more prone to adopt a polyhedral shape, whereas P = 3
shells showed the opposite behavior. In the limit of large capsids the spherical
morphology became less stable for any T than the polyhedral counterpart. The
different tendencies to buckle are related to the local distribution of stress as-
sociated with the class P and could play a relevant role in the decapsidation,
bursting, or local mechanical response of viral capsids. Therefore, we have shown
that the characterization of capsids in terms of the class P , rather than just the
T -number, could be particularly useful in order to elucidate common mechanical
properties for different viruses.

Additionally, Chapter 5 unveiled some unexpected properties of bacilliform
capsids. The study indicated that the non-uniform stress distribution of capsids,
related to the discrete nature of the structure, plays a crucial role determining
the mechanical properties of bacteriophage φ29 procapsids. More precisely, the
existence of built-in stress present in those empty bacilliform shells is able to
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reinforce their mechanical properties, inverting the classical anisotropic response
expected from continuum elasticity theory. Interestingly, this behavior is similar
to the pressurization of a prolate. Thus, the built-in stress could play an impor-
tant biological role facilitating the accommodation of the pressure produced by
the highly compacted dsDNA in the mature φ29 virion.

The self-assembly of viral capsids was explored in the third block. In par-
ticular, we showed that viral assembly and disassembly are activated processes
controlled by a nucleation barrier.

The first chapter of Part III demonstrated how classical nucleation theory
(CNT) can be adapted to explain not only the assembly [4] but also the disas-
sembly of viral capsids. We focused on the case of spherical shells, being able to
justify and characterize the hysteresis reported in several experiments. This phe-
nomenon originates because the association and disassociation of capsids are acti-
vated processes, controlled by an energy barrier, and become kinetically stopped
at typical accessible time-scales. Thus, hysteresis is a fundamental property of
viral capsids, and will be present even in the absence of maturation processes. In
addition, we indicated how experiments of assembly and disassembly can be com-
bined in order to extract thermodynamic properties of capsids, like the average
binding energy. We emphasized that the height of the energy barrier and the size
of the critical nucleus depend on the concentration of free subunits, which clar-
ifies some controversies reported in the literature. A special effort was made to
express CNT in accessible experimental magnitudes to facilitate its application.
Remarkably, the predictions of CNT could be a good starting point to guide the
design of broad spectrum antivirals, aimed at interfering with the assembly or
disassembly processes.

Finally, in Chapter 7 we confirmed that the underlying assumptions of CNT,
are surprisingly good in characterizing the assembly of discrete shells, which
were simulated using the physical model introduced in the previous parts. In
particular, assumptions like the line tension or the use of an average binding
energy were shown to be accurate to describe the thermodynamics of capsids.
Furthermore, an interesting closure mechanism for spherical capsids was unveiled.
This phenomenon originates due to the negative capillary pressure present in the
rim of a partial shell at the last stages of the assembly. Surprisingly, this implosion
effect precludes the constrained assembly of optimal structures at their respective
optimum radius, but promotes a wide stability region for bigger radii, where
perfect viral capsids are easily assembled. Interestingly, due to the implosion
effect, the final shells are strained, which increases their built-in stress. Hence,
this closure phenomenon opens up interesting questions regarding the physical
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origin and biological motivations of virus maturation. In addition, the implosion
effect could be exploited as a potential physical antiviral strategy to promote the
malformation of capsids.

The general theoretical frameworks and physical principles developed in this
thesis are by no means limited to the particular cases discussed. The flexibility
of the ideas presented may become very useful to the systematic description of
more complex situations. In this sense our findings may open up new research
lines to carry out future investigations. Concerning these perspectives, we can
quote some short-term objectives and broader generalizations.

One of our first goals will be to confirm the predictions derived from the gen-
eral theory and the physical model of bacilliform capsids. To this end, the case
of alfalfa mosaic virus (AMV) is particularly interesting, because independent
experiments indicate that this plant virus might adopt an elongated structure
with 3-fold axial symmetry. This is one of the new architectures predicted in our
study, and has never been reconstructed for any virus. Curiously, all bacterio-
phage prolates characterized up to now adopt a 5-fold structure instead. Thus,
we plan to compare the mechanical and assembly properties of both type of ar-
chitectures to elucidate the potential physical advantages in relation also to the
infection strategy of each virus.

A natural extension of the geometrical and physical model is the study of
capsids with conical shape. These shells are similar to the elongated particles, but
in this morphology each cap has a different number of disclinations (pentamers).
Interestingly, one of the most studied viruses today, HIV, adopts precisely a
conical nucleocapsid, and the rationalization of its structural principles is still
a focus of intense research [5–7]. Therefore, this line of study is particularly
appealing, and could shed some light on understanding this popular virus.

A priority in our future research is to progressively develop more realistic
physical models for the intermolecular interactions in the viral capsids. The first
step will be to introduce an explicit term in the capsomer-capsomer potential
that will take into account the preferential angle of interaction. In this way, it
will be possible to remove the spherical and spherocylindrical templates that we
used to explore the equilibrium structures, the mechanical properties, and the
assembly of viral capsids. This will allow us to refine different aspects studied
here, and also extend the research to new scenarios.

For instance, we could explore the dynamic process involved in the buckling
transition, related to maturation, and also generate intermediate shapes, instead
of only comparing the final states for perfect spherical and icosahedral morpholo-
gies. In addition, this could naturally confirm if faceted P = 3 structures adopt

290



References

a more dodecahedral shape rather than icosahedral, as some viral structures also
suggest [8].

The extended version of the capsomer-capsomer interaction model will permit
us to deform the viral particles in multiple ways, leading to a better understand-
ing of the mechanical properties of capsids. For example, we could mimic using
simulations the standard atomic force microscopy (AFM) setup to perform lo-
cal deformations, and compare the results more directly with the experiments.
From this comparison, reasonable values for intermolecular interactions could be
estimated, giving a more accurate insight than the classic elastic analysis com-
monly used today [9]. In addition, these studies could systematically establish
the conditions where continuum elasticity theory is not a good approach, like in
the built-in stress scenario observed for bacteriophage φ29.

Another immediate application of the extended intermolecular interaction will
be the simulation of unconstrained capsid assembly. In this way, we could study
in detail the kinetics of viral assembly, and determine the degree of accuracy of
quantitative CNT predictions.

We are also interested in analyzing in more detail using the CNT model two
particular set of experiments. First, we want to study the hysteresis experiments
of hepatitis B virus [10]. Thus, applying the ideas derived in the CNT model we
expect to extract valuable thermodynamic information, and estimate the condi-
tions where assembly and disassembly are expected, respectively. Regarding the
kinetics of capsid production, it will be worth to study, for instance, the light
scattering experiments on the assembly of papilloma virus [11], and compare it
with the rate of formation derived in the CNT context. Analyzing experiments
at different concentrations of subunits might allow us to precisely characterize its
kinetics, and make predictions. Remarkably, the ideal scenario would be to study
both type of experiments for the same virus, although in the literature these data
is very scarce.

In addition, the CNT could be extended to describe more complex assembly
scenarios. One example is the formation of capsids in the presence of scaffolding
proteins. In this case the new ingredients will be, essentially, the interaction
between coat and scaffolding proteins, their stoichiometry in the capsid, and the
concentration of scaffold proteins, which could be easily introduced in the CNT
framework. Another scenario of special interest corresponds to the coassembly of
coat proteins and the genetic material. Nevertheless, in this case there is not a
unique assembly mechanism, which varies depending on the length of the genome
and the capsid-genome interactions [12,13]. In addition, the configurations of the
genetic material are more challenging to characterize energetically, so this will be
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a more complicated case of study.
In a more general perspective, a long term goal is to connect the interactions

of the physical phenomenological model with experimental accessible parameters.
For instance, it has been shown that hydrophobic and electrostatic forces dom-
inate the assembly of viruses, and can be modeled by effective potentials [14].
The rationalization of those interactions can be applied to analyze the assembly
of specific viruses at different pH or salt concentrations [15]. Therefore, express-
ing the capsomer-capsomer model in terms of these realistic forces will allow us to
simulate the assembly or mechanical properties of viruses in consonance with the
actual physicochemical conditions. In this way, we could predict, for example, the
assembly phase diagram (pH/ionic-strength) of specific viruses. Furthermore, the
combination of in vitro experiments, these type of simulations, and the CNT the-
ory might build a solid bridge to understand in vivo scenarios of virus assembly,
which are particularly difficult to monitor and interpret today.

Another interesting line of investigation concerns the study of the reasons why
viral coat proteins shapes can be grouped in few structural lineages [16]. Are the
shape and interactions of these structures optimal designs for the assembly or the
stability of viral capsids? To answer this question, we will adapt the capsomer-
capsomer physical models to the case of model proteins, exploring different coarse-
grained shapes for the subunits, and simulating the stability and mechanical
properties of icosahedral capsids made of these coat proteins. Later on, we could
study possible advantages regarding the assembly kinetics of capsids.

Finally, the principles governing the structure and assembly of viral shells
are quite universal, so they should also be present in the formation and stabil-
ity of other kinds of biological structures like gas vesicles [17], vault shells [18],
photosynthetic vesicles [19], or ferritin [20]. More importantly, the rationaliza-
tion of these principles could be the first step in the design of artificial materials
in soft matter. Remarkably, novel structures mainly based on hydrophobic and
electrostatic interactions have already been designed, mimicking the assembly of
viruses [21, 22].

In summary, despite the significant achievements in virology during the last
century, and the emerging interest in the interdisciplinary field of physical vi-
rology, several fundamental questions regarding the properties of viruses remain
open. The understanding of the underlying physical mechanisms involved in the
life cycle of viruses might help to control their impact in our society, and also to
take advantage of their astonishing properties to develop fascinating nanotech-
nological applications.
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