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Abstract— A robot with contact sensing capability can reduce
uncertainty relative to the environment by deliberately moving
into contact and matching the resulting contact measurement to
different possible states in the world. We present a manipulation
planner that finds and sequences these actions by reasoning
explicitly about the uncertainty over the robot’s state. The plan-
ner incrementally constructs a policy that covers all possible
contact states during a manipulation and finds contingencies
for each of them. In contrast to conformant planners (without
contingencies), the planned contingent policies are more robust.
We demonstrate this in simulated and real-world manipulation
experiments. In contrast to POMDP-based planners, we show
that our planner can be directly applied to high-dimensional
configuration spaces.

I. INTRODUCTION

When robots move in the real world, their motion is un-
avoidably affected by uncertainty. This uncertainty may lead
to a single action having possibly several different outcomes.
To be prepared for this, a motion planner must in advance
determine suitable reactions and capture these alternatives in
branches of a motion plan. During the execution of such a
plan, the planner can use sensor data to select among these
branches the one matching the current situation. A plan able
to address such eventualities is called a contingency plan; a
planner producing it is called a contingent planner [1].

To find contingency plans, a planner can model the
uncertainty of the robot and reason probabilistically about
sensor events that might happen during execution. However,
taking into account all possible eventualities is not possible.
The high-dimensionality and the continuous state and action
space in manipulation problems make global, complete so-
lutions to contingent planning intractable. To be effective, a
planner must make approximations.

We present the Contingent, Contact-Exploiting RRT
(ConCERRT)—a planner that overcomes this complexity for
contingencies based on contact sensing. The planner finds
robust strategies in configuration space for problems such as
the one shown in Fig. 1. These problems require the robot to
adapt its motion based on sensor information obtained from
contact sensors. The key to our planner is the assumption that
contact sensing is uncertainty-free. This assumption allows
to rule out a large part of the robot’s state space, given a
contact measurement. This simplifies planning and leads to
a low number of contingencies.

Compared to related Partially Observable Markov Deci-
sion Process (POMDP) approaches, our planner does not
require any a priori discretization of configuration or action
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Fig. 1.

A robot performs tactile localization of an object using contact
sensors on two fingers of a soft hand. By moving into contact and measuring
which finger makes contact first, the robot can estimate the position of the
box relative to itself and then adapt its action to reach ggoa. Our planner
finds such strategies using models of the world and the uncertainty.

space. Instead, it builds a task-specific discretization of
the state space during planning, informed by the available
actions, similar to sampling-based motion planners. In our
experiments, we show that our planner consistently finds
successful contingency plans in realistic applications. We
show solutions for problems with high uncertainty where
non-contingent planners fail. In real world experiments, we
show that our assumptions about uncertainty hold in realistic
scenarios.

II. RELATED WORK

We will discuss methods on the spectrum between
uncertainty-unaware planning and complete search in belief
space, in increasing order of their treatment of uncertainty.

A. Sampling-based Motion Planning

Sampling-based motion planners, like RRT [2], generate
a collision-free path from a description of the environment
and robot kinematics. They efficiently search the high-
dimensional configuration space because they do not require
any a priori discretization but create it during planning,
adapted to the problem. Sampling-based motion planners
can plan in the space of configurations in contact [3, 4, 5],
but they usually do not consider uncertainty which makes
resulting plans brittle. Our planner is based on the RRT
framework, but it reasons explicitly about uncertainty.

B. Conformant Planning

A conformant plan is a fixed sequence of actions that is
guaranteed to lead to a goal state, even under significant
uncertainty. To find such plans, planners can operate in
information space [2] or, as a special probabilistic case, belief



space. A classic way to compute conformant plans is to
compute all regions from which compliant actions lead to
a goal (pre-images) and then chain them to a sequence of
actions [6]. This framework was used to find manipulation
strategies that bring objects with unknown position into a
desired state, without any sensing [7, 8].

For high-dimensional problems, conformant plans can be
found in a sampling-based framework by representing the
uncertain state as a Gaussian distribution [9, 10, 11, 12] or
as a set of particles [13, 14, 15, 16]. Highly related to our
planner is the Contact-Exploiting RRT (CERRT) planner [17]
which is a conformant, sampling-based planner that searches
a combined space of configurations in contact and in free
space. Our planner also searches this combined space using
a particle-based state but instead of a single action sequence
it generates a policy with multiple branches in reaction to
contact events.

C. Contingent Planning

A contingency plan (also conditional plan or feedback
plan) is a decision tree or graph that branches based on
observations. It can be understood as a policy 7 that maps
observations to actions. Contingent planners generally solve
a broader class of problems than conformant planners, e.g.
part orientation for arbitrary shapes and realistic friction
models [18]. In this paper we present a contingent extension
of the CERRT planner. One way to add contingencies to
a plan is to reverse and retry motions that do not lead to
the desired outcome [14]. However, in our problem most
motions increase uncertainty and therefore are generally
irreversible. Instead, our planner incrementally constructs the
policy m by repeatedly invoking the conformant CERRT
planner and reconnecting less likely outcomes to previously
found solutions.

D. Optimal Planning under Uncertainty

A generic approach to compute globally optimal contin-
gency plans is the POMDP framework. The solution to a
POMDP is a policy 7 that maps from belief space (i.e.
the space of probability distributions) to actions. For low-
dimensional, discrete action and state spaces, point-based
solvers [19] can approximate optimal solutions. POMDPs
were used to solve simple 2D grasping problems [20] that
use contact as feedback. However these approaches scale
badly in high-dimensional spaces. While there exist solvers
for continuous state [21] and action spaces [22], they can
not easily be applied to the high-dimensional configuration
space of a robot manipulator.

One way to use POMDP solvers for manipulation is to
discretize the lower-dimensional manifold of configurations
in contact [23, 24]. This allows to solve a tactile localization
task, where a robot uses a sequence of contact motions
to locate an object. However, the discretization limits the
approach to problems with few possible contacts. Our ap-
proach does not rely on a predefined discretization but only
searches the reachable contact manifold during planning.
In our experimental results we show that we can generate

similar policies on the tactile localization task for more
complex contact manifolds.

III. PROBLEM DESCRIPTION

Planning contingencies for contact-sensing robots requires
to combine reasoning about uncertainty with a model for
contact sensing. Before presenting our algorithm, we will
describe the problem formally.

ConCERRT plans in the n-dimensional configuration
space C. Cyaiq is the valid configuration space composed
of free space Cge. and the configurations in contact at the
boundary dCgee. The robot can execute actions u which are
either straight line joint space motions in free space, guarded
motions (moving until the robot is in contact), or compliant
slides along surfaces. All motions have an uncertain outcome
and the robot can not fully perceive its configuration but must
estimate it from noisy sensors. Additionally, the robot does
not fully know its initial configuration. Therefore, instead
of planning in configuration space, we plan in belief space
B, where each belief b € B is a probability distribution
over the configuration space. We model the initial state
uncertainty as a Gaussian distribution by := N (qo,0p) and
use a motion model with independent joint noise 6§ =
8q+ N(0,+/]8q|0s). We assume the robot has access to
reliable contact sensors to observe the active contact(s) at
a given configuration g. A key assumptions for efficient
planning is that contact sensing is fully observable. i.e. we
assume that no contact is ever detected wrongly. In this paper
we use two different contact sensor models:

1) Tactile sensor model assumes binary contact sensing on
different parts of the robot: Oyeiite(q) = {01, ..,0k}, where
each contact observation o; = ¢; is a sensor patch indicating
contact in the given configuration.

2) Force sensor model assumes the robot can detect the
contact normal: Oforee(q) = {01,...,0r}. Each observation
0; = (c¢i,n;) is a pair of sensor patch and wall normal n;. A
belief b is valid, if it lies mostly in the valid configuration
space, i.e.:

/ b(g)dg>1—¢
q€Cyalid

Bhyaiiq is the space of all valid beliefs. The planning problem
is now the following: given a start and goal belief by, b, €
Byaiig, find a policy 7 : Byaiq — U that brings the robot to
the goal belief state with high probability. In this paper
we only care about finding feasible policies and do not
consider optimality. This problem is a belief space planning
problem [10], however, the possibility for the robot to make
contact with the environment makes the state non-Gaussian
or even multi-modal.

IV. CONCERRT

In this section, we present the Contingent Contact-
Exploiting RRT planner (ConCERRT), a sampling-based
motion planner that finds contingency plans based on contact
sensing. Before describing the algorithm, we will first explain
two insights that are crucial for understanding our planner.



A. Belief State Partitioning

The first insight is that a robot can effectively reduce un-
certainty by moving into contact and observing the resulting
contact measurement to rule out parts of its state space. For
example, a robot (Fig. 2) with uncertain state moves towards
a wall until it touches with the left or the right finger. By
visualizing this in belief space, the reduction of uncertainty
becomes obvious: the contact event partitions the belief in
two halves, each with less uncertainty than the original belief.

(a) A 3-DOF robot with initial (b) Contact partitions the belief b
position uncertainty moves from into »’ and b” configurations in con-
free space into contact with a tact with the left and right fingers
two-fingered hand. respectively.

Fig. 2. Belief state partitioning with binary contact sensing

These belief space partitions can also arise out of contact
direction sensing which we show in Fig. 3. Here the robot
(in this case a 2D point robot) can sense the normal at the
point of contact. The robot now moves towards an edge and
matches the sensor reading to the wall normals. Just like
before, the result of this action is the partition of a large
belief into two smaller belief states, which is an efficient
reduction of uncertainty.

Fig. 3. Left: a robot with state uncertainty moves from state by towards a
corner in the world, which projects the uncertainty on the surfaces. Right:
measuring the contact normal (n’ or n”) allows the robot to partition its
belief state b into lower uncertainty states b’ and b”.

This is the first insight exploited by the ConCERRT
planner: some actions reduce uncertainty by partitioning the
belief space. The ConCERRT planner exploits these actions
and assembles them into robust policies.

B. Incremental Policy Construction

Using belief-space partitioning actions in a planner is not
straightforward as every added partition adds at least two
new belief states to the policy. Both states must be eventually
connected to the goal. However, we will show now that this
effort can be limited in practice, as a planner can reuse sub-
solutions to speed up planning.

Fig. 4. Two iterations of the ConCERRT planner: Top left: the initial
search tree T}, connecting start and goal beliefs by and b,. Top right: the
resulting policy 7, which consists of one path from start to goal but also
contains one unconnected partition by. Bottom left: the next iteration of the
algorithm. Starting from b, the algorithm builds a new search tree 7}, that
can connect to any of the beliefs in 7. The planner finds a path that can
reconnect by moving back to bog. Bottom right: This path is added to the
final policy 7'.

The working principle of ConCERRT is shown in Fig. 4.
ConCERRT maintains two separate lists of belief states:

o Bopen contains all belief states that are yet to be con-
nected to the goal. It is initialized with the initial
belief of the robot and increases with every belief space
partition. If Bypen is empty, the planner returns success.

o Beonnected contains all beliefs that are already connected
to the goal. Initially, it only contains the goal belief bg,
however over time the planner expands the policy and
adds elements to Beonnected-

ConCERRT now runs for every state in Bopen @ separate
tree search, attempting to connect to any state in Beonnected-
If it can connect any node from Bypen to any node from
Beonnecteds it adds the resulting action sequence to the policy
and it also adds all nodes visited by that path to Beonnected- If
this sequence results in any new partitions, it adds to Bopen
and creates a new tree for each of them.

This parallel search using a whole forest of trees might
seem like an overhead. However, the effort is limited in
practice, which can be explained by the algorithm moving
from exploration to exploitation [25]. Initially the algorithm
must explore most of the space as Bconected CONtains only
one element. But whenever adding a path to the policy, the
algorithm also adds states to Beonnected- At some point nodes
in Beomected Will cover most of the state space. All these
beliefs are opportunities for exploitation which decrease the
complexity of later iterations.



C. Algorithm Outline

Based on the two previous insight we can now give the
full description of the ConCERRT planner (Alg. 1). To plan
efficiently with the non-Gaussian belief states, we represent
the belief with a set of particles b = Q = {q1,...,qn} where
each particle g is a configuration. We denote the sample mean
and covariance of the configurations in a belief b with u, and
Y, respectively.

ConCERRT initially samples a fixed number of particles
from the initial belief by and adds them as root to the initial
search tree. Then, in every iteration, ConCERRT cycles
through all elements of Bypen and expands the respective
tree. The expansion works similar to an RRT planner. It
samples a random configuration, finds a nearest neighbour
in the current search tree, chooses an action, simulates the
effects of that action and adds the resulting state to the tree
and tries to connect the new state to the goal(s).

Algorithm 1 ConCERRT

Input: by, b
Output: 7
1: Bopen by

Beonnected < bg

Tbo by

w0

while P(7) <1 do

for all b € Bopen do

T, < Tb~EXPAND(Bconnected)
7 < n. UPDATE(T,)
Bopen < Bopen- UPDATE(T;,)
Beonnected <= Beonnected- UPDATE(Tb)

return 7
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We will now give implementation details for the expan-
sion. The numbers in parentheses refer to the lines in Alg. 2.
Sampling (1): The planner samples a random configu-
ration to extend the current tree towards. The tree growth is
randomly biased towards the goal by choosing L, instead
of a random sample with a fixed probability p(b).

Nearest neighbour search (2): The nearest neighbour
selection computes a norm that balances uncertainty and
Euclidean distance. As a distance term over uncertainty we
use the trace norm dy(b) := \/tr(¥X,). As spatial distance
to the random sample grang We use dy (b) 1= ||ty — Granda||2-
We select the best neighbour based on a bias-parameter
yelo, 1}

Brear = argmin,, ly <dz(b) + ) dz(b’)> +(1— y)d“]

b ESib(b)

Sib(b) denotes the set of all siblings of b , i.e. the partitions
that were reached from the same action. For details about
the influence of the y-parameter, we refer to the CERRT
planner [17].

Action selection (3): The planner chooses an action u
randomly. The possible actions are: connect, which moves
particles towards the random sample on a straight line;
guarded, which moves toward the random sample and stops
when contact is gained; slide, which moves in contact along

a surface, maintaining contact until the contact state changes.
These actions are identical to the CERRT planner [17].

Simulation (4): To compute the resulting belief state
b’ from applying action u in belief bpear, we simulate the
execution of u for every particle in byer by sampling the
noisy motion model. We check &' for joint limits or collisions
with links that do not sense contact (5).

Belief state partitioning (6): If b’ is valid, we apply
the contact sensor model to find potential partitions of the
belief state. For each particle ¢’ € ¥ we compute O(q’) =
{00, -..,0}. We then cluster the belief b’ into {by, ,...,b], },
such that particles with the same measurement are in the
same belief. The implementation is different for the two
sensor models: For the tactile sensor model, we cluster
based on the sensor patches that are in contact. For the
force sensor model, we cluster two particles into different
beliefs if the difference between their measured normals is

larger than 15°. ,We estimate the transition probabilities as
plbl |bu) = 5o

Goal connect (9): We add the new beliefs bj, to the tree
and try to connect them to any belief in Bopnected- TO do so
we simulate a noisy connect action towards every bgoa €
Beonnected Tesulting in a new distribution b”. We check if b”
lies within the goal belief by testing if dy(q) < &y =2 for
all g € b”, where dy(q) is the Mahalanobis distance between
q and by . If this test succeeds, ConCERRT UPDATEs the
policy 7 with all beliefs on the solution path, Beopnected With
all new beliefs that were connected to the goal, and Bopen
with all new partitions that are not yet connected to the goal,
as described in Section I'V-B.

Algorithm 2 T .EXPAND()

Input: Bconnecled
1: Grand < RANDOM_CONFIG()
bnear <~ NEAREST_NEIGHBOUR (¢and, T)
u < SELECT_ACTION(grand; bnear)
b SIMULATE(grand; bnear 4)
if IS,VALID(b/) then
Bcontingencies — BELIEFJ’ARTITIONING(b/)
for all b € Bcontingencies do
T<+T. ADD,BELIEF(b”)
T+T. GOAL,CONNECT(bN, Beonnected)
return T
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V. EXPERIMENTS AND RESULTS

We evaluate the planner in simulation and real world
experiments to show that a) ConCERRT scales up to high
dimensional problems compared to other belief space mo-
tion planners. b) the contingency branches of ConCERRT
allow to solve problems with significantly higher uncertainty
than comparable non-contingent contact-based planners. c)
ConCERRT policies are robust enough to be executed on
real world systems. We implemented all experiments using
the Robotics Library [26]. All experiments were carried out
on a desktop computer with an Intel i5 3.5GHz processor.
Table I gives the values of the planner’s parameters for all
experiments.



bo

qg

Fig. 5. Left: 2-DOF gripper problem with initial distribution by and goal
configuration g,. The finger tips on the gripper (gray) can sense contact
with the object (red). Right: 7-DOF problem. The right configuration shows
the mean of the initial belief uy,. The goal configuration g, is inside the
green container next to the yellow box. The blue rod at the end-effector is a
force sensor. One policy computed by ConCERRT is shown with red lines.

Param. | Description 2D grip- | 7D sim | 7D real
per robot robot
t [min] time budget 10 16.66 16.66
Y contact/free-space 0.7 0.9 0.85
bias
N number of particles 50 40 100
Ostep simulation step size 0.05 0.5 0.5
p(be) goal bias probability 0.1 0.1 0.3
Oinit initial uncertainty [0,0] 0 2,2,2,3
,3,3,3] %
1072
Ginotion motion uncertainty [o,0] [0,0,0, (1,1,1,2,
0,0,0,0]| 2,2,0] x
10~2
€4 dist. threshold to goal | 0.2 0.03 0.035
TABLE I

PLANNING PARAMETERS

A. ConCERRT scales to high dimensional problems

Most belief space planners rely on pre-defined discretiza-
tion which lets them fail in complex environments. We
now validate in simulation that ConCERRT scales to high-
dimensional state space with complex contact states. The
first experiment (Fig. 5 left) models a gripper with contact
sensors on the fingers and the fingertips (similar to the
setup in Koval et al. [24]). The gripper can translate in
two dimensions. Compared to a similar problem from the
POMDP literature [20], there are no outer walls limiting
the workspace which increases the difficulty of the problem.
In the second experiment (Fig. 5 right) a Barrett WAM 7-
DOF arm must reach into a rectangular container and touch
a yellow obstacle. To reduce uncertainty, it can measure
the contact normal of the surfaces with a stick-shaped end-
effector.

The results for the second problem (Fig. 7) prove that the
planner is efficient enough to compute policies directly in 7-
dimensional configuration space. The planner finds policies
under significant motion uncertainty that slide along the walls
of the container to localize the yellow box. We do not show
results for uncertainties ¢ > 0.4, because the simulation of
the sliding action becomes unreliable for extremely high
motion uncertainties. Without a fixed discretization, this
problem is not solvable for POMDP-based motion planners
[20, 23] which become intractable under the larger number of
DOF and complex contact manifolds. ConCERRT also han-

dles a significant amount of motion uncertainty. This relaxes
the assumptions of related approaches [24] which require the
inverse kinematics of the robot and fully observable joint
states. Thus, we are able to solve a larger set of problems.
ConCERRT also relaxes the assumptions of Particle-RRT
motion planners [14] as it does not require reversible actions
and fully observable joint states.

B. Contingent planning increases robustness

Contingency plans capture many possible execution states
and find appropriate reactions. Therefore, they should be
more robust than plans without contingencies. To validate
this, we ran the ConCERRT planner on the simulation
scenarios (see Sec.V-A), varying the amount of uncertainty.

We compare our planner against two baselines. The first
baseline is an uncertainty-unaware RRT-Connect with goal
bias (RRTCon) [27]. The second baseline is the confor-
mant CERRT planner [17]. To compare contingent and
non-contingent planners we must define a suitable scoring
function taking into account both the planning time and the
quality of the plan. Therefore, we compute the score as
Pyyccess = P(7) - Ns%c(’), where P(7) is the success probability
of the policy (equal to 1 for CERRT) and NS%C(’) is the ratio
of found solutions. We run 30 experiments per setup for the
2-DOF and 10 experiments for the 7-DOF problems.
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Fig. 6. Success rate of RRTCon, CERRT, and ConCERRT on the 2-DOF
gripper problem as function of the position uncertainty. ConCERRT still
finds solutions for ¢ > 0.3 where the conformant planner fails.

In Fig. 6 we show results for the 2-DOF problem. The
RRT Connect always returns a trajectory which fails even
with little uncertainty (Ngyec =0 for ¢ > 0.05). The solution
quality of the CERRT planner drops to 0% while ConCERRT
solutions’ quality stays over 50%, even for the highest
uncertainty.

The result in Fig. 7 shows that ConCERRT substantially
outperform the baselines in terms of robustness to uncertainty
if the dimensionality increases. In Fig. 8 we show how the
solution quality improves over planning time for the 7-DOF
problem with different values of uncertainty. Interestingly,
low uncertainties do not necessarily lead to lower compu-
tation times for ConCERRT. We believe this is due to the
planner committing to suboptimal contingencies too early,
i.e. choosing a contingent plan when a conformant strategy
would be possible which lead to one failed plan for o = 0.01
and one for 0.5. The planner finds policies that succeed in
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Fig. 7. Success rate comparison of CERRT and ConCERRT for a 7-DOF
manipulator with force sensing. Our contingent planner can handle up to
ten times higher uncertainty than a conformant planner.
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Fig. 8. The success probability for different ConCERRT policies with
increased computation time. The solution quality of the policy increases
over time until all possible contact events are covered.

50% of the runs under one minute. The policies improves
as time goes on, approaching 100%. This shows the anytime
property of ConCERRT.

C. Real robot experiment

To validate the policies generated by ConCERRT in a real
world application, we applied the generated policies on a 7-
DOF Barrett WAM robot arm with a soft hand (RBOHand
2 [28]) as end-effector. The experiment is inspired by the
problem in Koval et al. [24] where a WAM arm equipped
with a contact sensing hand localizes an object on a table
surface. Similarly, our task is to sequence contact motions
that reduce uncertainty enough such that the hand stops
centered in front of the box. Fig. 1 shows the experimental
setup. The fingers of a soft hand deform when they contact
the environment which results in a measurable pressure
change. We use large changes in pressure as a proxy for
contact sensing. We only use the partially inflated index and
little fingers as contact sensors. To find a policy we run
the ConCERRT planner as initially but we exclude the slide
action from planning as reliable sliding is hard to implement
with a soft manipulator.

ConCERRT consistently finds feasible policies in 16.66
minutes. One computed policy 7 with P(x) = 1.0 is shown
in Fig. 9. The policy executes multiple motions in front
of the box, expecting no contact, however the policy also
contains contingencies for the contact case. The most likely
path through the graph does four of these free space motions
and then executes a guarded move to ensure the final contact.
To evaluate the robustness of the policy, we move the box
0, 2, 4, and 6 cm to the left and right relative to the hand’s

Guarded move P
Connect —
Contingent branch <3

Belief state

Fig. 9. The ConCERRT policy as executed on the real robot. Circles are
belief states with contact state / (index finger), L (little finger), I,L (both
fingers), or ¢ (no contact). The edges with the respective probabilities are
actions that move the robot to the goal state b,. The edge coloring shows
the path taken by the robot in Fig. 10

Fig. 10. Snapshots of two executions of the same policy found by the
ConCERRT planner. Top: Box displaced +2 cm—the index finger makes
contact first. Bottom: Box displaced —4 cm—the little finger makes contact
first. The shown paths correspond to the blue/red edges in Fig. 9

initial position. We execute the policy four times for each
displacement while keeping the initial hand position constant.
Fig. 10 shows an exemplary execution of two strategies with
two different box displacement.

For the given uncertainty model, CERRT is not able to
find a conformant solution, thus we can only compare the
execution to a uncertainty-unaware planner such as RRT-
Connect (RRT). Here we assume that the robot executes the
RRT trajectory perfectly but is not aware of the moving box.
Thus the position error of the RRT is equal to the position
of the box relative to the hand. The results in Fig. 11 show
that the selected ConCERRT policy is robust up to 4 cm
uncertainty and it can handle 6 cm to the right but starts to
fail when the box is moved further to the left.

Contact sensing via pressure sensors is not fully reliable. A
wrong contact event triggered in six executions out of the 28
runs. In one case this failure could be detected automatically
as the contact observation was not part of the policy. In
another case, a wrongly detected contact triggered a false
reaction, resulting in a high error in the final hand position
(at +4 cm), while the other five cases were within the 3.5 cm
error bound. We expect to mitigate these failures in the future
by equipping the soft fingers with deformation sensors [29].

VI. CONCLUSION

We presented a novel contingent contact-based motion
planner that combines the efficiency of sampling-based mo-
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Fig. 11. Relative position of hand and object after execution of different
policies for different object displacements. The real robot can localize the
box until up to 4 [cm] position uncertainty.

tion planners with an efficient uncertainty reasoning. Our
planner, Contingent, Contact-Exploiting RRT (ConCERRT),
exploits contact sensing to anticipate informative contact
events that can happen during execution of the plan under
uncertainty. We demonstrated that the planned contingencies
allow our planner to solve problems with higher uncer-
tainty than comparable non-contingent planners. Compared
to POMDP-based motion planners, ConCERRT scales to
high dimensional problems with a non-trivial contact mani-
fold. This is because our planner discretizes the state space
during planning and only reasons about reachable contact
events. We demonstrated this by successfully running ex-
periments on a 7-DOF robot both in simulation and in the
real world. There are some limitations to the ConCERTT
planner, due to the assumption of a fully observable contact:
The planner cannot deal with unreliable contact sensors and
it needs edges in the environment to disambiguate its state.
Additionally, the planner does not take path length into
account and might compute long paths. However, it was
shown before that asymptotically optimal planning is feasible
for similar problems [16]. We believe this will also transfer
to ConCERRT.

REFERENCES

[1] L. Pryor and G. Collins, “Planning for contingencies: A decision-
based approach,” Journal of Artificial Intelligence Research, vol. 4,
pp. 287-339, 1996.

[2] S. M. LaValle, Planning algorithms.
2006.

[3] X. Ji and J. Xiao, “Planning motions compliant to complex contact
states,” The International Journal of Robotics Research, vol. 20, no. 6,
pp. 446-465, 2001.

[4] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” The International Journal of
Robotics Research, vol. 23, no. 7-8, pp. 729-746, 2004.

[5] K. Hauser and J.-C. Latombe, “Multi-modal motion planning in non-
expansive spaces,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 897-915, 2010.

[6] T.Lozano-Pérez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” The International Journal of
Robotics Research, vol. 3, no. 1, pp. 3-24, 1984.

[71 M. A. Erdmann and M. T. Mason, “An exploration of sensorless
manipulation,” IEEE Journal on Robotics and Automation, vol. 4,
no. 4, pp. 369-379, 1988.

[8] K. Y. Goldberg, “Orienting polygonal parts without sensors,” Algo-
rithmica, vol. 10, no. 2, pp. 201-225, 1993.

Cambridge university press,

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Alterovitz, T. Siméon, and K. Y. Goldberg, “The stochastic motion

roadmap: A sampling framework for planning with markov motion
uncertainty.” in Robotics: Science and systems, vol. 3, 2007, pp. 233—

241.

J. Van Den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” The International Journal of Robotics Research, vol. 30,
no. 7, pp. 895-913, 2011.

R. Platt Jr, R. Tedrake, L. Kaelbling, and T. Lozano-Pérez, “Be-
lief space planning assuming maximum likelihood observations,” in
Robotics: Science and Systems, 2010.

A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in [EEE International Conference on
Robotics and Automation (ICRA), 2011, pp. 723-730.

N. A. Melchior and R. Simmons, “Particle RRT for path planning
with uncertainty,” in IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2007, pp. 1617-1624.

C. Phillips-Grafflin and D. Berenson, “Planning and resilient execution
of policies for manipulation in contact with actuation uncertainty,” in
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2016.
C. Guan, W. Vega-Brown, and N. Roy, “Efficient planning for near-
optimal compliant manipulation leveraging environmental contact,” in
IEEE International Conference on Robotics and Automation (ICRA),
2018, pp. 215-222.

F. Wirnshofer, P. S. Schmitt, W. Feiten, G. von Wichert, and W. Bur-
gard, “Robust, compliant assembly via optimal belief space planning,”
in [EEE International Conference on Robotics and Automation (ICRA),
2018.

A. Sieverling, C. Eppner, F. Wolff, and O. Brock, “Interleaving motion
in contact and in free space for planning under uncertainty,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 4011-4017.

J. Zhou, R. Paolini, A. M. Johnson, J. A. Bagnell, and M. T.
Mason, “A probabilistic planning framework for planar grasping under
uncertainty,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp.
2111-2118, 2017.

H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief
spaces.” in Robotics: Science and Systems, 2008.

K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Grasping POMDPs,”
in [EEE International Conference on Robotics and Automation (ICRA),
2007, pp. 4685-4692.

H. Bai, D. Hsu, W. S. Lee, and V. A. Ngo, “Monte carlo value itera-
tion for continuous-state POMDPs,” in Workshop on the Algorithmic
Foundations of Robotics (WAFR). Springer, 2010, pp. 175-191.

K. M. Seiler, H. Kurniawati, and S. P. Singh, “An online and
approximate solver for POMDPs with continuous action space,” in
IEEE International Conference on Robotics and Automation (ICRA),
2015, pp. 2290-2297.

M. Koval, D. Hsu, N. Pollard , and S. Srinivasa, “Configuration lattices
for planar contact manipulation under uncertainty,” in Workshop on the
Algorithmic Foundations of Robotics (WAFR), 2016.

M. Koval, N. Pollard, and S. Srinivasa, “Pre-and post-contact policy
decomposition for planar contact manipulation under uncertainty,” The
International Journal of Robotics Research, vol. 35, no. 1-3, pp. 244—
264, 2016.

M. Rickert, A. Sieverling, and O. Brock, “Balancing exploration and
exploitation in sampling-based motion planning,” IEEE Transactions
on Robotics, vol. 30, no. 6, pp. 1305-1317, 2014.

M. Rickert and A. Gaschler, “Robotics library: An object-oriented
approach to robot applications,” in I[EEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 733-740.

J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation (ICRA), 2000, pp. 995-1001.

R. Deimel and O. Brock, “A novel type of compliant and underactuated
robotic hand for dexterous grasping,” The International Journal of
Robotics Research, vol. 35, no. 1-3, pp. 161-185, 2016.

V. Wall, G. Zoller, and O. Brock, “A method for sensorizing soft
actuators and its application to the RBO Hand 2,” in [EEE Interna-
tional Conference on Robotics and Automation (ICRA), May 2017, pp.
4965-4970.



	Introduction
	Related Work
	Sampling-based Motion Planning
	Conformant Planning
	Contingent Planning
	Optimal Planning under Uncertainty

	Problem Description
	ConCERRT
	Belief State Partitioning
	Incremental Policy Construction
	Algorithm Outline

	Experiments and Results
	ConCERRT scales to high dimensional problems
	Contingent planning increases robustness
	Real robot experiment

	Conclusion

