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Frontispiece





The	Tower	of	Mathematics	is	the	Tower	of	Babel	inverted:	its	voices	grow	more
coherent	as	it	rises.	The	image	of	it	is	based	on	Pieter	Brueghel’s	“Little	Tower

of	Babel”	(1554).



An	Invitation

Less	than	All	cannot	satisfy	Man.
—William	Blake

We	commonly	think	of	ourselves	as	little	and	lost	in	the	infinite	stretches	of	time
and	space,	so	that	it	comes	as	a	shock	when	the	French	poet	Baudelaire	speaks	of
“cradling	our	infinite	on	the	finite	seas.”	Really?	Is	it	ourself,	our	mind	or	spirit,
that	is	infinity’s	proper	home?	Or	might	the	infinite	be	neither	out	there	nor	in
here	but	only	in	language,	a	pretty	conceit	of	poetry?

We	are	the	language	makers,	and	what	we	express	always	refers	to	something
—though	not,	perhaps,	to	what	we	first	thought	it	did.	Talk	of	the	infinite
naturally	belongs	to	that	old,	young,	ageless	conversation	about	number	and
shape	which	is	mathematics:	a	conversation	most	of	us	overhear	rather	than
partake	in,	put	off	by	its	haughty	abstraction.	Mathematics	promises	certainty—
but	at	the	cost,	it	seems,	of	passion.	Its	initiates	speak	of	playfulness	and
freedom,	but	all	we	come	up	against	in	school	are	boredom	and	fear,	wedged
between	iron	rules	memorized	without	reason.

Why	hasn’t	mathematics	the	gentle	touches	a	novelist	uses	to	lure	the	reader
into	his	imagination?	Why	do	we	no	longer	find	problems	like	this,	concocted
by	Mahāvīrā	in	ninth-century	India:

One	night,	in	a	month	of	the	spring	season,	a	certain	young	lady	was	lovingly	happy
with	her	husband	in	a	big	mansion,	white	as	the	moon,	set	in	a	pleasure	garden	with
trees	bent	down	with	flowers	and	fruits,	and	resonant	with	the	sweet	sounds	of
parrots,	cuckoos	and	bees	which	were	all	intoxicated	with	the	honey	of	the	flowers.
Then,	on	a	love-quarrel	arising	between	husband	and	wife,	her	pearl	necklace	was
broken.	One	third	of	the	pearls	were	collected	by	the	maidservant,	one	sixth	fell	on
the	bed—then	half	of	what	remained	and	half	of	what	remained	thereafter	and	again
one	half	of	what	remained	thereafter	and	so	on,	six	times	in	all,	fell	scattered
everywhere.	1,161	pearls	were	still	left	on	the	string;	how	many	pearls	had	there	been
in	the	necklace?

Talking	mostly	to	each	other	or	themselves,	mathematicians	have	developed
a	code	that	is	hard	to	crack.	Its	symbols	store	worlds	of	meaning	for	them,	its



sleek	equations	leap	continents	and	centuries.	But	these	sparks	can	jump	to
everyone,	because	each	of	us	has	a	mind	built	to	grasp	the	structure	of	things.
Anyone	who	can	read	and	speak	(which	are	awesomely	abstract	undertakings)
can	come	to	delight	in	the	works	of	mathematical	art,	which	are	among	our
kind’s	greatest	glories.

The	way	in	is	to	begin	at	the	beginning	and	move	conversationally	along.
Eccentric,	lovable,	laughable,	base,	and	noble	mathematicians	will	keep	us
company.	Each	equation	in	a	book,	Stephen	Hawking	once	remarked,	loses	half
the	potential	readership.	Our	aim	here,	however,	is	to	let	equations—those
balances	struck	between	two	ways	of	looking—grow	organically	from	what	they
look	at.

Many	small	things	estrange	math	from	its	proper	audience.	One	is	the
remoteness	of	its	machine-made	diagrams.	These	reinforce	the	mistaken	belief
that	it	is	all	very	far	away,	on	a	planet	visited	only	by	graduates	of	the	School	for
Space	Cadets.	Diagrams	printed	out	from	computers	communicate	a	second	and
subtler	falsehood:	they	lead	the	reader	to	think	he	is	seeing	the	things	themselves
rather	than	pixellated	approximations	to	them.

We	have	tried	to	solve	this	problem	of	the	too	far	and	the	too	near	by	putting
our	drawings	in	the	human	middle	distance,	where	diagrams	are	drawn	by	hand.
These	reach	out	to	the	ideal	world	we	can’t	see	from	the	real	world	we	do,	as	our
imagination	reaches	in	turn	from	the	shaky	circle	perceived	to	the	conception	of
circle	itself.

Fuller	explanations	too	will	live	in	the	middle	distance:	some	in	the	appendix,
others—the	more	distant	excursions—(along	with	notes	to	the	text)	in	an	online
Annex,	at	www.themathcircle.org.

Gradually,	then,	the	music	of	mathematics	will	grow	more	distinct.	We	will
hear	in	it	the	endless	tug	between	freedom	and	necessity	as	playful	inventions
turn	into	the	only	way	things	can	be,	and	timeless	laws	are	drafted—in	a	place,
at	a	time,	by	a	fallible	fellow	human.	Just	as	in	listening	to	music,	our	sense	of
self	will	widen	out	toward	a	more	than	personal	vista,	vivid	and	profound.

Whether	we	focus	on	the	numbers	we	count	with	and	their	offspring	or	the
shapes	that	evolve	from	triangles,	ever	richer	structures	will	slide	into	view	like
beads	on	the	wire	of	the	infinite.	And	it	is	this	wire,	running	throughout,	that
draws	us	on,	until	we	stand	at	the	edge	of	the	universe	and	stretch	out	a	hand.

http://www.themathcircle.org




Chapter	One

Time	and	the	Mind

Things	occupy	space—but	how	many	of	them	there	are	(or	could	be)	belongs	to
time,	as	we	tick	them	off	to	a	walking	rhythm	that	projects	ongoing	numbering
into	the	future.	Yet	if	you	take	off	the	face	of	a	clock	you	won’t	find	time	there,
only	human	contrivance.	Those	numbers,	circling	round,	make	time	almost
palpable—as	if	they	aroused	a	sixth	sense	attuned	to	its	presence,	since	it	slips
by	the	usual	five	(although	aromas	often	do	call	up	time	past).	Can	we	get
behind	numbers	to	find	what	it	is	they	measure?	Can	we	come	to	grips	with	the
numbers	themselves	to	know	what	they	are	and	where	they	came	from?	Did	we
discover	or	invent	them—or	do	they	somehow	lie	in	a	profound	crevice	between
the	world	and	the	mind?

Humans	aren’t	the	exclusive	owners	of	the	smaller	numbers,	at	least.	A
monkey	named	Rosencrantz	counts	happily	up	to	eight.	Dolphins	and	ferrets,
parrots	and	pigeons	can	tell	three	from	five,	if	asked	politely.	Certainly	our	kind
delights	in	counting	from	a	very	early	age:

One	potato,	two	potato,	three	potato,	four;
Five	potato,	six	potato,	seven	potato,	more!

Not	that	the	children	who	play	these	counting-out	games	always	get	it	right:

Wunnery	tooery	tickery	seven
Alibi	crackaby	ten	eleven
Pin	pan	musky	Dan
Tweedle-um	twoddle-um	twenty-wan
Eerie	orie	ourie
You	are	out!

This	is	as	fascinating	as	it	is	wild,	because	whatever	the	misconceptions
about	the	sequence	of	counting	numbers	(alibi	and	crackaby	may	be	eight	and
nine,	but	you’ll	never	get	seven	to	come	right	after	tickery),	the	words	work
perfectly	well	in	counting	around	in	a	circle—and	it’s	always	the	twenty-first
person	from	the	start	of	the	count	who	is	out,	if	“you”	and	“are”	still	act	as



numerals	as	they	did	in	our	childhood.	We	can	count	significantly	better	than
rats	and	raccoons	because	we	not	only	recognize	different	magnitudes	but

know	how	to	match	up	separate	things	with	the	successive	numbers	of	a	sequence:

a	little	step,	it	seems,	but	one	which	will	take	us	beyond	the	moon.
The	first	few	counting	numbers	have	puzzlingly	many	names	from	language

to	language.	Two,	zwei,	dva,	and	deux	is	bad	enough,	even	without	invoking	the
“burla”	of	Queensland	Aboriginal	or	the	Mixtec	“ùù”.	If	you	consult	just
English-speaking	children,	you	also	get	“twa”,	“dicotty”,	“teentie”,	“osie”,
“meeny”,	“oarie”,	“ottie”,	and	who	knows	how	many	others.	Why	is	this	playful
speciation	puzzling?	Because	it	gives	very	local	embodiments	to	what	we	think
of	as	universal	and	abstract.

Not	only	do	the	names	of	numbers	vary,	but,	more	surprisingly,	how	we
picture	them	to	ourselves.	Do	you	think	of	“six”	as	

A	friend	of	ours,	whose	art	is	the	garden,	has	since	childhood	always
imagined	the	numbers	as	lying	on	a	zigzag	path:

What	happens,	however,	if	we	follow	Isobel’s	route	past	60?	It	continues	into
the	blue	on	a	straight	line.	Almost	everyone	lets	the	idiosyncrasies	go
somewhere	before	a	hundred,	as	not	numbers	but	Number	recedes	into	the
distance.	3	and	7,	11	and	30	will	have	distinct	characters	and	magical	properties,
perhaps,	for	many—but	is	65,537	anyone’s	lucky	number?	What	makes
mathematics	so	daunting	from	the	very	start	is	how	its	atoms	accelerate	away.	A
faceless	milling	crowd	has	elbowed	out	the	kindly	nursery	figures.	Its	sheer
extent	and	anonymity	alienate	our	humanity,	and	carry	us	off	(as	Robert	Louis



Stevenson	once	put	it)	to	where	there	is	no	habitable	city	for	the	mind	of	man.
We	can	reclaim	mathematics	for	ourselves	by	going	back	to	its	beginnings:

the	number	one.	Different	as	its	names	may	be	from	country	to	country	or	the
associations	it	has	for	you	and	me,	its	geometric	representation	is	unambiguous:	
.	The	notion	of	one—one	partridge,	a	pear	tree,	the	whole—feels	too
comfortable	to	be	anything	but	a	sofa	in	the	living-room	of	the	mind.

Almost	as	familiar,	like	a	tool	whose	handle	has	worn	to	the	fit	of	a	hand,	is
the	action	of	adding.	We	take	in	“1	+	1”,	as	a	new	whole	needing	a	new	name,
so	easily	and	quickly	that	we	feel	foolish	in	trying	to	define	what	addition	is.
Housman	wrote:

To	think	that	two	plus	two	are	four
And	neither	five	nor	three
The	heart	of	man	has	long	been	sore
And	long	’tis	like	to	be.

Perhaps.	But	the	head	has	long	been	grateful	for	this	small	blessing.
With	nothing	more	than	the	number	one	and	the	notion	of	adding,	we	are	on

the	brink	of	a	revelation	and	a	mystery.	Rubbing	those	two	sticks	together	will
strike	the	spark	of	a	truth	no	doubting	can	ever	extinguish,	and	put	our	finite
minds	in	actual	touch	with	the	infinite.	Ask	yourself	how	many	numbers	there
are;	past	Isobel’s	60,	do	they	come	to	a	halt	at	65,537	or	somewhere	out	there,	at
the	end	of	time	and	space?	Say	they	do;	then	there	is	a	last	number	of	all—call	it
n	for	short.	But	isn’t	n	+	1	a	number	too,	and	even	larger?	So	n	can’t	have	been
the	last—there	can’t	be	a	last	number.

There	you	are:	a	proof	as	profound,	as	elegant,	as	imperturbable	as	anything
in	mathematics.	You	needn’t	take	it	on	faith;	you	need	neither	hope	for	nor	fear
it,	but	know	with	all	the	certainty	of	reason	that	the	counting	numbers	can’t	end.
If	you	are	willing	to	put	this	positively	and	say:	there	are	infinitely	many
counting	numbers—then	all	those	differences	between	the	small	numbers	you
know,	and	the	large	numbers	you	don’t,	shrink	to	insignificance	beside	this
overwhelming	insight	into	their	totality.

This	entente	between	1	and	addition	also	tells	you	something	important	about
each	point	in	the	array	that	stretches,	like	Banquo’s	descendants,	even	to	the
crack	of	doom.	Every	one	of	these	counting	numbers	is	just	a	sum	of	1	with
itself	a	finite	number	of	times:	1	+	1	+	1	+	1	+	1	=	5,	and	with	paper	and
patience	enough,	we	could	say	that	the	same	is	true	of	65,537.

These	two	truths—one	about	all	the	counting	numbers,	one	about	each	of
them—are	very	different	in	spirit,	and	taken	together	say	something	about	how



peculiar	the	art	of	mathematics	is.	The	same	technique	of	merely	going	on
adding	1	to	itself	shows	you,	on	the	one	hand,	how	each	of	the	counting
numbers	is	built—hence	where	and	what	each	one	is;	on	the	other,	it	tells	you	a
dazzling	truth	about	their	totality	that	overrides	the	variety	among	them.	We	slip
from	the	immensely	concrete	to	the	mind-bogglingly	abstract	with	the	slightest
shift	in	point	of	view.

Armies	of	Unalterable	Law

Does	number	measure	time,	or	does	time	measure	number?	And	in	one	case	or
both,	have	we	just	proven	that	ongoing	time	is	infinite?	Like	those	shifts	from
the	concrete	to	the	abstract,	mathematics	also	alternates	minute	steps	with
gigantic	leaps,	and	to	make	this	one	we	would	have	to	go	back	to	what	seemed
no	more	than	a	mere	form	of	words.	We	asked	if	you	were	willing	to	recast	our
negative	result	(the	counting	numbers	never	end)	positively:	there	are	infinitely
many	counting	numbers.	To	put	it	so	seems	to	summon	up	an	infinite	time
through	which	they	are	iterated.	But	are	we	justified	in	taking	this	step?

To	speak	with	a	lawyerly	caution,	we	showed	only	that	if	someone	claimed
there	was	a	last	number	we	could	prove	him	wrong	by	generating—in	time—a
next.	Were	we	to	turn	our	positive	expression	into	a	spatial	image	we	might
conjure	up	something	like	a	place	where	all	the	counting	numbers,	already
generated,	lived—but	this	is	an	image	only,	and	a	spatial	image,	for	a	temporal
process	at	that.	Might	it	not	be	that	our	proof	shows	rather	that	our	imaging	is
always	firmly	anchored	to	present	time,	on	whose	moving	margin	our	thought	is
able	to	make	(in	time)	a	next	counting	number—but	with	neither	the	right,
ability,	nor	need	to	conjure	up	their	totality	all	at	once?	The	tension	between
these	two	points	of	view—the	potentially	infinite	of	motion	and	the	actual
infinity	of	totality—continues	today,	unresolved,	opening	up	fresh	approaches	to
the	nature	of	mathematics.	The	uneasy	status	of	the	infinite	will	accompany	us
throughout	this	book	as	we	explore,	return	with	our	trophies,	and	set	out	again.

Here	is	the	next	truth.	We	can	see	that	the	sizable	army	of	counting	numbers
needs	to	be	put	in	some	sort	of	order	if	we	are	to	deploy	it.	We	could	of	course
go	on	inventing	new	names	and	new	symbols	for	the	numbers	as	they	spill	out:
why	not	follow	one,	two,	three,	four,	five,	six,	seven,	eight,	and	nine	with	kata,
gwer,	nata,	kina,	aruma	(as	the	Oksapmin	of	Papua	New	Guinea	do,	after	their
first	nine	numerals,	which	begin:	tipna,	tipnarip,	bumrip	…)?	And	surely	the
human	mind	is	sufficiently	fertile	and	memory	flexible	enough	to	avoid



recycling	old	symbols	and	follow	7,	8,	and	9	with	@,	¤,	β—dare	we	say	and	so
on?

The	problem	isn’t	a	lack	of	imagination	but	the	need	to	calculate	with	these
numbers.	We	might	want	to	add	8	and	9	and	not	have	to	remember	a	fanciful
squiggle	for	their	sum.	The	great	invention,	some	five	thousand	years	ago,	of
positional	notation	brought	the	straggling	line	of	counting	numbers	into
squadrons	and	regiments	and	battalions.	After	a	conveniently	short	run	of	new
symbols	from	1	(for	us	this	run	stops	at	9),	use	1	again	for	the	next	number,	but
put	it	in	a	new	column	to	the	left	of	where	those	first	digits	stood.	Here	we	will
keep	track	of	how	many	tens	we	have.	Then	put	a	new	symbol,	0,	in	the	digits’
column	to	show	we	have	no	units.	You	can	follow	10	with	11,	12	and	so	on,
meaning	(to	its	initiates)	a	ten	and	one	more,	two	more,	…	Continue	these
columns	on,	ever	leftward,	after	99	exhausts	the	use	of	two	columns	and	999	the
use	of	three.	Our	lawyer	from	two	paragraphs	ago	would	remind	us	that	those
columns	weren’t	“already	there”	but	constructed	when	needed:	65,537,	for
example,	abbreviates

As	always	in	mathematics,	great	changes	begin	off-handedly,	the	way
important	figures	in	Proust	often	first	appear	in	asides.	Zero	was	only	a
notational	convenience,	but	this	nothing,	which	yet	somehow	is,	gave	a	new
depth	to	our	sense	of	number,	a	new	dimension—as	the	invention	of	a	vanishing
point	suddenly	deepened	the	pictorial	plane	of	Renaissance	art	(a	subject	to
which	we	shall	return	in	Chapter	Eight).

But	is	zero	a	number	at	all?	It	took	centuries	to	free	it	from	sweeping	the
hearth,	a	humble	punctuation	mark,	and	find	that	the	glass	slipper	fitted	it
perfectly.	For	no	matter	how	convenient	a	notion	or	notation	is,	you	can’t	just
declare	it	to	be	a	number	among	numbers.	The	deep	principle	at	work	here—
which	we	will	encounter	again	and	again—is	that	something	must	not	only	act
like	a	number	but	interact	companionably	with	other	numbers	in	their	republic,
if	you	are	to	extend	the	franchise	to	it.

This	was	difficult	in	the	case	of	zero,	for	it	behaved	badly	in	company.	The
sum	of	two	numbers	must	be	greater	than	either,	but	3	+	0	is	just	3	again.	Things
got	no	better	when	multiplication	was	in	the	air:	3	·	17	is	different	from	4	·	17,
yet	3	·	0	is	the	same	as	4	·	0—in	fact,	anything	times	0	is	0.	This	makes	sense,	of
course,	since	no	matter	how	many	times	you	add	nothing	to	itself	(and
multiplication	is	just	sophisticated	addition,	isn’t	it?),	you	still	have	nothing.



What	do	you	do	when	someone’s	services	are	vital	to	your	cause,	for	all	his
unconventionality?	You	do	what	the	French	did	with	Tom	Paine	and	make	him
an	honorary	citizen.	So	zero	joined	the	republic	of	numbers,	where	it	has	stirred
up	trouble	ever	since.

Our	primary	mathematical	experience,	individually	as	well	as	collectively,	is
counting—in	which	zero	plays	no	part,	since	counting	always	starts	with	one.
The	counting	numbers	(take	17	as	a	random	example),	parthenogenetic	offspring
of	that	solitary	Adam,	1,	came	in	time	to	be	called	the	natural	numbers,	with	
as	their	symbol.	Think	of	them	strolling	there	in	that	boundless	garden,	innocent
under	the	trees.	For	all	that	we	have	now	found	a	way	to	organize	them	by	tens
and	hundreds,	they	seem	at	first	sight	as	much	like	one	another	as	such	offspring
would	have	to	be.	Yet	look	closer,	as	the	Greeks	once	did,	to	see	the	beginnings
of	startling	patterns	among	them.	Are	they	patterns	we	playfully	make	in	the
ductile	material	of	numbers,	as	a	sculptor	prods	and	pinches	shapes	from	clay?
Or	patterns	only	laid	bare	by	such	probing,	as	Michelangelo	thought	of	the
statue	which	waited	in	the	stone?	Of	all	the	arts,	mathematics	most	puts	into
question	the	distinction	between	creation	and	discovery.

If	you	happened	to	picture	“six”	this	way	 ,	its	pleasing	triangular	shape

might	have	led	you	to	wonder	what	other	natural	numbers	were	triangular	too.

Add	one	more	row	of	dots— 	so	10	is	triangular.	Or	take	a	row	away—

:	3	is	triangular	too.	3,	6,	10	…	15	would	be	next,	by	adding	on	a	row	of
five	dots	to	the	triangular	10;	then	comes	21.	We	might	even	be	tempted	to	push
the	pattern	back	to	one,	 ,	as	if	it	were	a	triangular	number	by	default	(extending
the	franchise	again).

Here	are	the	first	six	triangular	numbers:

Each	is	bigger	than	the	previous	one	by	its	bottom	row,	which	is	the	next	natural
number.	This	pattern	clearly	undulates	endlessly	on.

Idly	messing	about—the	way	so	many	insights	burst	conventional	bounds—
you	might	ask	what	other	shapes	numbers	could	come	in:	squares,	for	example.



4	is	a	square	number:	 	and	the	next	would	be

Again,	by	courtesy,	we	could	extend	this	sequence	backward	to	1:	 .	The	first
six	square	numbers,	each	gotten	by	adding	a	right	angle	of	dots	to	the	last,

are	1,	4,	9,	16,	25,	36.	Another	endless	rhythm	in	this	landscape.
But	isn’t	all	this	messing	about	indeed	idle?	What	light	does	it	shed	on	the

nature	of	things,	what	use	could	it	possibly	be?
Light	precedes	use,	as	Sir	Francis	Bacon	once	pointed	out.	Think	yourself

into	the	mind	of	that	nameless	mathematician	who	long	ago	made	triangular	and
square	patterns	of	dots	in	the	sand	and	felt	the	stirrings	of	an	artist’s	certainty
that	there	must	be	a	connection	between	them:

If	there	was,	it	was	probably	well	hidden.	Perhaps	he	recalled	what	the	Greek
philosopher	Heraclitus	had	said:	“A	hidden	connection	is	stronger	than	one	we
can	see.”	Hidden	how?	Poking	his	holes	again	in	the	sand,	looking	at	them	from
one	angle	and	another,	he	suddenly	saw:

each	of	these	square	numbers	was	the	sum	of	two	triangular	ones!	Then	the	leap
from	seeing	with	the	outer	to	the	inner	eye,	which	is	the	leap	of	mathematics	to
the	infinite:	this	must	always	be	so.



Our	insight	sharpens:	the	second	square	number	is	the	sum	of	the	first	two
triangular	numbers;	the	third	square	of	the	second	and	third	triangulars,	and	so
on.	You	might	feel	the	need	now	for	a	more	graceful	vessel	in	which	to	carry
this	insight—the	need	for	symbols—and	make	up	these:

where	that	“always”	is	stored	in	the	letter	“n”	for	“any	number.”
By	itself	this	is	a	dazzling	sliver	of	the	universal	light,	and	its	discovery	a

model	of	how	mathematics	happens:	a	faith	in	pattern,	a	taste	for	experiment,	an
easiness	with	delay,	and	a	readiness	to	see	askew.	How	many	directions	now	this
insight	may	carry	you	off	in:	toward	other	polygonal	shapes	such	as	pentagons
and	hexagons,	toward	solid	structures	of	pyramids	and	cubes,	or	to	new	ways	of
dividing	up	the	arrays.

As	for	utility,	what	if	you	wanted	to	add	all	the	natural	numbers	from	1	to	7,
for	example,	without	the	tedium	of	adding	up	each	and	every	one?	Well,	that
sum	you	want	is	a	triangular	number:

We	might	try	writing	 	and	work	our	way	backward—but	this	will
get	us	into	an	ugly	tangle—and	if	it	isn’t	beautiful	it	isn’t	mathematics.	Faith	in
pattern	and	easiness	with	delay:	we	want	to	look	at	it	somehow	differently,	with
our	discovery	of	page	13	tantalizingly	in	mind.	A	taste	for	experiment	and	a
readiness	to	see	askew:	well,	that	triangle	is	part	of	a	square	in	having	a	right
angle	at	its	top—what	if	we	tilt	it	over	and	put	the	right	angle	on	the	ground:

Why?	Just	messing	about	again,	to	make	the	pattern	look	squarelike;	but	this
feels	uncomfortable,	incomplete—it	wants	to	be	filled	out	(perhaps	another



ingredient	in	the	mix	of	doing	mathematics	is	a	twitchiness	about	asymmetries).
If	we	complete	it	to	a	square,	we’re	back	to	what	proved	useless	before.	Well,

what	about	pasting	its	mirror	image	to	it,	this	way?

This	doesn’t	give	us	a	7	·	7	square	but	a	7	·	8	rectangle	…	and	we	want	only	the
unmirrored	half	of	it—that	is,	 ,	which	is—28!	Is	this	it?

Another	way	of	saying—or	seeing—this:	in	order	to	find	the	sum	of	the	first
seven	numbers,	 ,	we	took	 	and	slid	another	 	next	to	it,	upside-down—then
took	(of	course!)	half	the	result.	When	you	straighten	out	the	triangles	 	you
get	a	7	by	8	rectangle,	half	the	dots	in	which	give	the	desired	28.

So	in	general,

for	any	number	n.
Or

The	sum	of	the	first	hundred	natural	numbers,	for	example,	must	be	 .
Experiments	of	light	have	yielded,	as	Bacon	foretold,	experiments	of	fruit.

Unnatural	Numbers



We	could	play	in	these	pastures	forever	and	never	run	out	of	discoveries.	But
something	came	up	in	passing,	just	now,	which	suggests	that	a	neighboring
pasture	may	have	grass	uncannily	greener.	Our	abandoned	attempt	to	find	 	by
looking	at	 	brought	up	subtraction,	which	isn’t	at	home	among	the	natural
numbers.

Aren’t	negative	numbers	in	fact	ridiculously	unnatural?	Five-year-olds—
fresh	from	the	Platonic	heaven—will	tell	you	confidently	that	such	numbers
don’t	exist.	But	after	a	childhood	of	counting	games,	years	of	discretion
approach	with	the	shadows	of	commerce	and	exchange.	I	had	three	marbles,
then	lost	two	to	you,	and	now	I	have	one.	I	lose	that	one	and	am	left	with	none,
so	I	borrow	one	from	a	friend	and	proceed	to	lose	that	too,	hence	owing	him
one.	How	many	have	I?	Even	recognizing	that	I	had	one	marble	after	giving	up
two	is	scaly,	a	snake	in	our	garden,	the	presage	of	loss.

How	are	we	even	to	picture	the	negative	numbers—by	dots	that	aren’t	there?

Yesterday	upon	the	stair
I	met	a	man	who	wasn’t	there.
He	wasn’t	there	again	today—
I	wish	that	man	would	go	away.

But	the	negative	numbers	won’t	go	away:	Northerners	are	intimately	familiar
with	them,	thanks	to	thermometers,	and	all	of	us,	thanks	to	debt.

Perhaps	by	their	works	shall	you	know	them,	through	seeing	the	palpable
effects	of	subtracting.	Look	again	at	our	triumphant	discovery	of	what	the	first	n
natural	numbers	added	up	to.	If	we	subtract	from	these	numbers	all	the	evens,
what	sum	are	we	left	with—what	is	the	sum	of	the	odds?

It	looks	as	if	it	might	be	the	square	of	how	many	odd	numbers	we	are	adding.
And	here	is	a	wonderful	confirmation	of	this,	in	the	same	visual	style	as	our	last
one—another	piece	of	inspired	invention.	When	we	add	right	angles	of	dots	to
the	previous	ones,	as	we	did	on	page	13,



what	are	we	doing	but	adding	up	the	successive	odd	numbers?	So	of	course	their
sum	is	a	square:	the	square	of	how	many	odds	we	have	added	up.

A	thousand	years	of	schoolchildren	caught	the	scent	of	subtraction	in
problems	like	this,	as	they	studied	their	Introductio	Arithmetica.	It	had	been
written	around	A.D.	100	by	a	certain	Nichomachus	of	Gerasa,	in	Judea.	His	vivid
imagination	conjured	up	some	numbers	as	tongueless	animals	with	but	a	single
eye,	and	others	as	having	nine	lips	and	three	rows	of	teeth	and	a	hundred	arms.

Subtracting—taking	away	the	even	numbers	from	the	naturals—has	left	us
with	the	odd	numbers.	To	people	making	change,	subtraction	turns	into	what
you	would	have	to	add	to	make	the	whole	(“98	cents	and	2	makes	1,	and	4
makes	5”).	But	it	is	an	act	also	of	adding	a	negative	quantity:	$5	and	a	debt	of	98
cents	comes	to	$4.02.	Does	the	fact	that	we	can’t	see	the	negative	numbers
themselves	make	them	any	less	real	than	the	naturals?	The	reality	of	the
naturals,	after	all,	is	so	vivid	precisely	because	we	can’t	sense	them:	numbers
are	adjectives,	answering	the	question	“how	many,”	and	we	see	not	five	but	five
oranges,	and	never	actually	see	65,537	of	anything:	large	quantities	are	blurs
whose	value	we	take	on	faith.	If	we	come	to	treat	numbers	as	nouns—things	in
their	own	right—it	is	because	of	our	wonderful	capacity	to	feel	at	home,	after	a
while,	with	the	abstract.	On	such	grounds	the	negatives	have	as	much	solidity	as
the	positives,	and	ramble	around	with	them,	like	secret	sharers,	in	our	thought.

We	extend	the	franchise	to	them	by	calling	the	collection	of	natural	numbers,
their	negatives	and	zero,	the	Integers:	upright,	forthright,	intact.	The	letter	Z,
from	the	German	word	for	number,	Zahl,	is	their	symbol,	and	−17	a	typical
member	of	their	kind.	And	once	they	are	incorporated	to	make	this	larger	state,
we	find	not	only	our	itch	to	symmetrize	satisfied,	but	our	sense	of	number’s
relation	to	time	widened.	If	the	positive	natural	numbers	march	off	toward	a
limitless	future,	their	negative	siblings	recede	toward	the	limitless	past,	with	0
forever	in	that	middle	we	take	to	be	the	present.	It	takes	a	real	act	of	generosity,
of	course,	to	extend	the	franchise	as	we	have,	because	we	so	strongly	feel	the
birthright	of	the	counting	numbers.	“God	created	the	natural	numbers,”	said	the
German	mathematician	Kronecker	late	in	the	nineteenth	century,	“the	rest	is	the
work	of	man.”	And	certainly	zero	and	the	negatives	have	all	the	marks	of	human
artifice:	deftness,	ambiguity,	understatement.	If	you	like,	you	can	preserve	the
Kroneckerian	feeling	of	the	difference	between	positives	and	negatives	by
picturing	our	present	awareness	as	the	knife-edge	between	endless	discovery
ahead	and	equally	endless	invention	behind.



From	Ratios	to	Rationals

You	pretty	much	know	where	you	are	with	the	integers.	There	may	be	profound
patterns	woven	in	their	fence-post-like	procession	over	the	horizon,	but	they
mark	out	time	and	space,	before	and	behind,	with	comforting	regularity.
Addition	and	multiplication	act	on	them	as	they	should—or	almost:	(–6)	·	(–4)	=
24:	a	negative	times	a	negative	turns	out,	disconcertingly,	to	be	positive.	Why
this	should—why	this	must—be	so	we	will	prove	to	your	utter	satisfaction	in
Chapter	Three.	Otherwise,	all	is	for	the	best	in	this	best	of	all	possible	worlds.

Exhilarated	by	its	widened	conception	of	number,	mind	looks	for	new	lands
to	colonize	and	sees	an	untamed	multitude	at	hand.	For	from	the	moment	that
someone	wanted	to	trade	an	ox	for	twenty-four	fine	loincloths,	or	a	chicken	for
240	cowrie	shells,	making	sense	of	ratios	became	important.	You	want	to	scale
up	this	2	by	4	wooden	beam	to	6	by—what?	Three	of	your	silver	shekels	are
worth	15	of	your	neighbor’s	tin	mina:	what	then	should	he	give	you	for	five
silver	shekels?

The	Greeks	found	remarkable	properties	of	these	ratios	and	subtle	ways	of
demonstrating	them.	If	an	architect	wondered	what	length	bore	the	same	relation
to	a	length	of	12	units	that	4	bears	to	7,	a	trip	with	his	local	geometer	down	to
the	beach	would	have	him	drawing	a	line	in	the	sand	4	units	long;	and	at	any
angle	to	that,	another	of	7	units,	from	the	same	starting-point,	A:

the	urge	for	completion	would	lead	them	both	to	draw	the	third	side,	BC,	of	their
nascent	triangle.	But	now	the	geometer	continues	the	lines	AB	and	AC	onward:



and	marks	a	point	D	on	AB’s	extension	so	that	AD	is	12	units	long:

ingenuity	and	an	intimacy	with	similar	triangles	now	leads	him	to	draw	from	D	a
line	parallel	to	BC,	meeting	AC	at	E:

AE	will	be	in	the	same	ratio	to	12	as	4	is	to	7.
At	no	time,	you	notice,	was	 	called	a	number,	nor	was	a	fraction	like	

involved;	no	one	solved	 	for	x	to	find	x	equal	to	 .	Those	expressions
couldn’t	be	numbers	to	the	early	Greeks,	for	whom	magnitudes	were	one	thing,
but	their	ratios	another.	Both	were	of	vital	importance	to	Pythagoras	and	his
followers,	who	in	southern	Italy	and	Greece	from	the	fifth	century	B.C.	onward
revealed	to	their	initiates	the	deep	secret	that	numbers	are	the	origin	of	all	things,
and	that	their	ratios	made	the	harmonies	of	the	world	and	its	music.	For	if	a
plucked	string	gives	middle	C,	then	plucking	a	string	half	its	length	would	give
the	octave	above	middle	C.	A	string	 	as	long	as	the	original	C	string	would	give
you	its	fifth,	G;	 	as	long,	its	fourth,	F—those	intervals	that	are	the	foundation	of
our	scales.	These	ratios	were	propagated	through	the	universe,	making	the
accords	that	are	the	music	of	the	spheres	(we	don’t	hear	it	because	its	sound	is	in
our	ears	from	birth).	But	 	or	 	couldn’t	possibly	be	numbers,	because	numbers
arose	from	the	unit,	and	the	unit	was	an	indivisible	whole.

How	nightmarish	it	would	have	been	for	a	Pythagorean	to	think	of	that	whole
fractured	into	fractions.	It	would	mean	that	how	things	stood	to	one	another—
their	ratios—and	not	the	things	themselves	were	ultimately	real:	and	they	could
no	more	believe	this	than	we	would	think	that	adjectives	and	adverbs	rather	than



nouns	were	primary.	That	would	have	led	to	a	world	of	flickering	changes,	of
fading	accords	and	passing	dissonances,	of	qualities	heaped	on	qualities,	where
shadowy	intimations	of	what	had	been	and	what	would	be	tunneled	like	vortices
through	a	watery	present	you	never	stepped	in	twice.

If	Greek	philosophers	and	mathematicians	did	not	have	fractions,	it	seems
their	merchants	did—picked	up,	perhaps,	in	their	travels	among	the	Egyptians,
for	whom	fractions	(though	only	with	1	in	their	numerators)	dwelt	under	the
hawklike	eye	of	Horus.

Against	this	background	of	daily	practice,	insights	into	how	ratios	behaved
kept	growing,	until	inevitably	they	too	became	embodied	in	numbers.	How
could	properties	accumulate	without	our	concluding	that	what	has	them	must	be
a	thing—especially	since	we	are	zealous	to	make	objects	out	of	whatever	we
experience?	So	they	came	to	live	among	the	rest	as	pets	do	among	us,	each	with
its	cargo	of	domestic	insects:

Great	fleas	have	little	fleas
Upon	their	backs	to	bite	’em,
And	little	fleas	have	lesser	fleas,
And	so	ad	infinitum.

For	an	uncanny	property	of	these	fractions	is	that	they	crowd	endlessly	into
every	smallest	corner.	Between	any	two	you	will	always	find	another:	 	lies
between	 	and	 	;	between	 	and	 	is	 	;	between	 	and	 	is	 .	The	average	of	the
two	ends	falls	between	them,	along	with	how	many	other	splinters	of	the	whole,
so	that	infinity	not	only	glimmers	at	the	extremities	of	thought	but	is	here	in	our
very	midst,	an	infinity	of	fractions	in	each	least	cleft	of	the	number	line.

So	the	franchise	was	hesitantly	extended	to	ratios	in	the	guise	of	fractions,
although	uneasiness	at	splitting	the	atomic	unit	remained.	The	fractions,
preserving	traces	of	their	origin	in	their	official	name	of	Rational	Numbers,	were
symbolized	by	the	letter	Q,	for	“quotient.”	Does	this	variety	of	names	reflect	the
doubts	about	their	legitimacy?	To	counteract	these	worries,	notice	that	the
integers	now	can	be	thought	of	as	rationals	too:	each—like	17—is	a	fraction
with	denominator	1:	 	(or,	if	you	have	a	taste	for	the	baroque,	 ,	 ,	and	so	on).



And	notice	how	this	new	flood	of	intermediate	numbers	makes	number	itself
suddenly	much	more	time-like:	flowing	with	never	a	break,	it	seems,	invisibly
past	or	through	us.

We	can	conclude:	numbers	are	rational,	and	a	rational	is	an	expression	of	the
form	 ,	where	a	and	b	can	be	any	integer.	Or	almost	any:	a	pinprick	of	the	old
discomfort	remains	in	the	fact	that	b,	the	denominator,	cannot	be	0.	Tom	Paine
again,	waving	his	Common	Sense.	Why	it	makes	sense	(not	so	common,
perhaps)	that	you	cannot	divide	by	zero	will	be	part	of	the	harvest	reaped	in
Chapter	Three.

Nameless	Dread

Fractions	keep	crowding	whatever	space	you	imagine	between	them,	a
claustrophobe’s	nightmare.	Thought	of	as	ratios,	however,	they	are	a
Pythagorean’s	dearest	dream:	any	two	magnitudes,	anywhere	in	the	universe,
would	stand	to	one	another	as	a	ratio	of	two	natural	numbers.	Take	the	module
of	the	way	we	count,	the	number	10.	Is	it	a	coincidence	that	it	is	the	triangular
sum	of	the	first	four	counting	numbers?

The	Pythagoreans	didn’t	think	so:	10	must	have	seemed	to	them	as	compact	of
meaning	as	the	genetic	code,	coiled	within	a	cell,	seems	to	us.	For	not	only	did
the	individual	numbers	of	this	triangular	ten—which	they	called	the	tetractys—
each	carry	a	distinct	significance	(unity,	duality,	the	triangular,	the	square	…),
but	their	ratios,	as	you	saw,	expressed	the	harmony	that	orders	the	universe.	No
wonder	a	Pythagorean’s	most	sacred	oath	was	by	this	tetractys,	the	Principle	of
Health	and	“fount	and	root	of	ever-flowing	nature.”

In	this	atmosphere	their	wonderful	works	of	geometry	grew:	insights	others
may	previously	have	had,	but	based	now	for	the	first	time	on	proof.	It	was	no
longer	a	matter	of	faith.	No	mystical	revelation,	no	authority	human	or	divine,
authenticated	these	truths.	Mind	confronted	them	directly	through	impartial



logic,	which	lifted	you	up	from	the	streets	of	Tarentum	or	a	hill	overlooking	the
Hellespont	to	the	timeless	topography	of	ideas:	not	the	setting,	you	would	have
imagined,	for	the	destruction	of	the	Pythagorean	attunements.	Yet	the	tragic
irony	that	runs	beneath	all	Greek	thought	burst	out	most	catastrophically	here,
for	the	wedding	of	insight	to	proof	in	Pythagoras’s	prized	theorem—that	the
square	on	a	right	triangle’s	hypotenuse	equals	in	area	that	of	the	sum	of	squares
on	the	two	sides

had	a	lame	patricide	as	its	offspring.
We	have	only	the	faintest	echoes	of	the	story,	in	late	and	unreliable	sources	at

that,	since	secrecy	obsessed	the	Pythagoreans	generally,	but	at	this	moment	most
of	all.	A	Pythagorean	named	Hippasus,	they	say,	from	Metapontum,	used	that
great	theorem	to	prove	there	was	a	magnitude	which,	when	compared	to	the	unit
length,	couldn’t	make	a	ratio	of	two	natural	numbers.	But	if	this	were	so,	where
would	the	music	of	the	spheres	and	the	harmony	of	things	be?	Where	the	whole,
the	tetractys,	the	moral	foundations	of	life?

Yet	Hippasus’s	proof	had	an	iron	certainty	to	it.	Put	in	modern	terms,	a	right
triangle	both	of	whose	legs	are	of	length	1	has	a	hypotenuse	of	length	h,	which
the	theorem	lets	us	calculate.



We	must	have	h2	=	12	+	12,	that	is,	h2	=	2.	So	the	length	of	 .	You	need	only
look	at	a	diagram	to	convince	yourself	that	h	as	much	deserves	to	be	called	a
length	as	do	the	other	two	sides.	If	it	isn’t	a	natural	number,	it	must,	for	a
Pythagorean,	be	a	ratio	of	natural	numbers	a	and	b:

This	is	already	a	little	awkward,	since	ratios	weren’t	magnitudes	for	them,	as	a
length	would	have	to	be.	But	much	worse	lay	ahead.	If	this	ratio	wasn’t	in	lowest
terms—if	a	and	b,	that	is,	have	some	common	factor	like	2—cancel	it	out	until
the	equivalent	ratio	is	in	lowest	terms.	Let’s	still	denote	it	by	a	and	b,	knowing
now	that	these	two	natural	numbers	have	no	factor	in	common.

Hippasus	let	the	desire	to	simplify,	and	a	craftsman’s	feel	for	arithmetic,	now
take	him	where	they	would.	It	is	this	artistic	motivation	and	reckless
commitment	to	whatever	consequences	follow	that	is	the	mathematician’s	real
tetractys,	the	sign	to	kindred	spirits	across	millennia;	and	it	is	what	makes	for	the
glories	and	despairs	of	mathematics.

“	 	”	is	clumsy	both	as	a	symbol	and	a	thought.	If	we	square	both	sides	of	our
equation	we	come	up	with	the	simpler	translation:

And	since	multiplication	is	in	turn	simpler	than	division,	translate	again	by
multiplying	both	sides	of	this	equation	by	b2:

2b2	=	a2.

At	this	point	the	Hippasus	in	each	of	us	pauses	to	assess	what	has	happened.
Since	b	is	a	natural	number,	so	is	b2;	and	twice	a	natural	number,	such	as	2b2,	is
an	even	number.	The	even	and	odd,	like	left	and	right,	darkness	and	light,	bad
and	good,	were	pairings	immensely	congenial	to	the	Pythagoreans,	so	the
evenness	of	a2	would	have	struck	them.

Only	numbers	that	are	themselves	even	can	have	even	squares:	an	odd
squared	(such	as	5)	will	stay	odd	(25).	Hence	since	a2	is	even,	a	must	be	too,
which	means	it	is	twice	some	natural	number	n:

a	=	2n.



Hence	a2	=	4n2.
Carry	this	consequence	carefully	back	to	our	last	equation,	2b2	=	a2,	and

replace	a2	there	by	4n2:

2b2	=	4n2.

Why	do	this?	You	might	think	of	the	initial	impulse	as	experimental;	or	perhaps
intuition	is	flowing	as	surely	as	a	river	to	the	sea.

Once	again	let	the	aesthetic	impulse	to	simplify	lead	our	efforts,	and	divide
both	sides	of	this	latest	equation	by	2:

b2	=	2n2.

The	same	reasoning	as	before	shows	us	that	b2	is	even—hence,	so	is	b.
The	dénouement	of	this	drama	is	on	us	before	we	have	time	to	draw	breath.

We	have	seen	that	a	and	b	must	both	be	even,	so	they	have	2	as	a	common
factor.	But	we	canceled	out	all	common	factors	when	we	began!	So	 	is	a
fraction	which	must	be	simultaneously	in	lowest	terms	and	not	in	lowest	terms.
We	followed	a	path	and	it	brought	us	to	the	impossible,	a	contradiction—yet
each	of	our	steps	was	wholly	logical.	The	only	possibility	left	must	be	that
assuming	in	the	first	place	that	 	was	rational	 	was	mistaken:	 	is	not	a
ratio	of	natural	numbers.	It	wasn’t,	isn’t,	and	never	can	be	a	rational	number;	yet
it	clearly	exists,	stretched	out	on	the	hypotenuse,	just	as	much	as	do	unit	lengths.

The	Pythagoreans	couldn’t	deny	the	validity	of	Hippasus’s	proof.	One	story
has	it	that	they	were	at	sea	when	he	told	it	to	them,	and	they—or	the	gods—
drowned	him	for	his	impiety.	The	proof	they	could	no	more	drown	than	the
infant	Oedipus	could	be	killed	by	his	parents.	Henceforth	they	had	to	live	with	
	being	irrational,	or	as	they	called	it	άλογος,	nameless.	And	they	lived	with	it

in	dread,	like	priests	who	perform	their	office	knowing	that	God	is	dead.	It	was
the	secret	deep	within	the	nested	Pythagorean	secrets.

There	it	grew,	for	any	natural	multiple	of	 	must	be	irrational	also.	If	 ,	for
example,	were	rational—if	 —then	 	would	equal	 ,	a	rational	again.
Hippasus	from	Hades	calls	out	that	this	cannot	be.	The	growth	metastatized:	any
rational	whatever	(except,	of	course,	0)	times	 	will	be	irrational,	since	if	
,	then	 ,	which	is	a	ratio	of	natural	numbers.	The	tight	line	of	the	rationals
was	now	peppered	with	these	irrational	offspring	of	 .

The	darkness	grew	only	deeper:	 	turned	out	to	be	irrational	also	(the	proof



is	very	like	Hippasus’s,	but	with	a	threefold	classification	of	naturals	instead	of
the	twofold	distinction	we	had	for	 ).	So,	therefore,	were	all	its	numerous
progeny.	Then	 	followed	suit,	and	 ,	and	 .	In	fact	if	a	natural	number	wasn’t
a	square	like	those	we	saw	on	page	12,	its	square	root	had	to	be	irrational.
Swarms	of	irrationals	were	now	loose	in	the	land,	with	plagues	to	follow:	cube
roots	of	numbers	not	perfect	cubes	are	irrational	too,	and	fourth	roots	of
numbers	not	perfect	fourths	(the	fourth	root,	for	example,	of	81,	 ,	is	3,	but	
and	 	are	irrational)—and	so	terrifyingly	on.

The	terror	lies	in	what	seems	our	inability	to	accommodate	all	these	invaders.
Remember	how	packed	the	line	of	rational	numbers	was	to	begin	with—as
densely	settled	as	the	fabled	midwestern	town	whose	built-up	zones	had	a	house
between	any	pair	of	houses.	The	rationals	are	dense,	as	we	saw	before,	with	a
rational	(their	average,	for	example)	between	any	two	rationals.	Where	then
could	all	those	irrationals	possibly	fit?

If	you	claim	they	aren’t	on	the	number	line	at	all,	gently	lower	the
hypotenuse	of	the	triangle	we	began	with,	as	if	it	were	the	boom	of	a	crane,	until
it	rests	on	the	line:

Its	tip	touches	the	line	at	a	point	somewhere	between	1	and	2	(between	1.4	and
1.5	if	you	care	to	be	more	exact,	or	even	more	precisely,	between	1.41	and	1.42),
so	this	point	has	the	irrational	number	 	as	its	address.

We	will	never	be	at	ease	with	this,	but	at	least	we	can	try	to	grasp	the
situation	in	another	way:	through	decimals.	If	you	turn	a	rational	number	into	a
decimal,	that	decimal	will	either	peter	out	eventually	to	nothing	but	zeroes	(

…—or	we	could	put	a	bar	above	the	0	to	show	it	repeats	forever:	 )	or
it	will	begin	to	repeat.	So	 …	that	is,	 ,	and	 …	that	is,	

.	Why	must	this	be?	Because	you	get	the	decimal	by	dividing	the
denominator	into	the	numerator,	and	at	each	step	you	get	a	remainder.	If	you	are
dividing	by	seven,	the	only	possible	remainders	are	0,	1,	2,	3,	4,	5,	and	6	(if	you
get	a	larger	remainder,	you	could	have	divided	7	in	one	more	time).	How	many
different	remainders	are	there?	Seven:	there	can’t	be	any	more.	This	means	that



after	a	while	the	remainders	start	recycling:

and	we	see	the	cycle	beginning	again.
Clearly	the	very	nature	of	division	forces	the	decimal	representation	of	a

fraction	to	repeat.	So	if	a	decimal	doesn’t	repeat,	it	can’t	represent	a	rational
number!

This	tells	us	two	very	striking	things	at	the	same	time.	First,	that	because	 	is
irrational,	its	decimal	form	can’t	repeat:

No	matter	how	long	we	go	on,	no	cycle	will	emerge.	Hippasus’s	proof	that	 	is
irrational	guarantees	that	 	lies	not	just	between	1.41	and	1.42,	but	between
1.414	and	1.415,	between	1.4142	and	1.4143,	and	so	on.	Squeeze	it	as	tightly	as
you	like	between	two	rationals,	it	will	squeak	and	scurry	away	down	an	infinite
sequence	of	ever-narrowing	cracks.

The	second	thing	it	tells	us	is	that	we	needn’t	confine	ourselves	to	various
roots	to	find	irrationals:	we	can	now	produce	them	at	will.	All	we	need	do	is
manufacture	a	decimal	that	never	repeats.	How	to	do	that	in	a	finite	lifetime?	We
can’t	just	start	writing	out	arbitrary	strings	of	digits	after	a	decimal	point:

0.180094051	…

because	we	will	eventually	stop,	and	nothing	guarantees	that	our	string	won’t
now	or	at	some	future	time	begin	to	replicate.	As	a	matter	of	fact,	the	string



above	is	the	beginning	of	the	decimal	representation	of	a	perfectly	good	rational
number,

which,	because	of	the	size	of	its	denominator,	needn’t	start	repeating	for	more
than	two	billion	decimal	places.

We	need	a	guarantee	in	the	way	we	make	it	that	our	decimal	can’t	repeat.	In
the	midst	of	the	chaos	mind	has	released,	the	power	of	mind	to	make	order	at
one	remove—its	power	over	the	infinite—emerges	too.	For	we	can	build	into	the
very	instructions	that	will	produce	our	decimal,	the	guarantee	that	it	cannot
repeat,	so	that	it	is	indeed	an	irrational	number.

Picture	a	computer	that	will	print	out	digits	forever,	one	by	one,	after	an
original	0	and	decimal	point.	We	program	it	with	only	three	instructions:

1.	print	5.
2.	print	one	more	6	in	a	row	than	were	printed	before	the	“5”	of	the	previous
step.

3.	return	to	step	1.

Once	we	set	the	machine	in	motion	it	prints	“5”	after	the	0.	initially	there,	giving
us

0.5
then,	because	there	were	no	6s	printed	before	the	5,	it	prints	one	6:

0.56
and	cycling	back	to	its	first	order,	prints	5	again:

0.565
now	it	will	print	two	6s

0.56566
then	a	5,	then	three	6s

0.565665666	…

You	see	the	pattern	of	this	non-repeating	pattern:	the	strings	of	sixes	grow
ever	longer,	and	no	cycle	can	possibly	occur.	We	have,	with	a	few	words,	cast
an	infinite	line	with	an	irrational	hooked	on	its	receding	end—an	irrational
which	has	a	unique	location,	somewhere	between	 	and	 .

The	irrationals	that	such	an	algorithm	can	generate	are	mind-bogglingly



infinite	in	number:	we	could	use	any	digits	other	than	5	and	6;	we	could	alter	the
instructions	for	the	lengths	of	successive	strings;	we	could	put	any	integer	we
like	before	the	decimal	point.	The	rationals	are	everywhere—the	irrationals	are
everywhere	else.

Taken	all	together,	the	rationals	and	the	irrationals	came	to	be	called	the	Real
Numbers,	denoted	by	R.	Extending	the	franchise	to	them	all	means	that	from	a
distant	enough	standpoint	they	look	alike:	any	one	of	them	can	be	expressed	as	a
decimal	(17,	after	all,	is	shorthand	for	 );	some	end	in	zeroes,	some	repeat,
others	are	wild.	They	act	and	react	with	each	other	according	to	the	old	rules	of
combination,	which	means	adding	and	subtracting,	multiplying	and	dividing,
and	taking	roots.	But	why	call	them	real?	Are	they	as	real	as	this	page	or	the
light	falling	on	it—or	perhaps	even	more	real,	outlasting	all?	We	come	and	go,
but	 	and	its	ilk	remain	forever,	and	past	them,	the	deep	principles	that	show	in
their	constellations.	Perhaps	we	call	them	real	because	only	now	does	their
ensemble	fully	imitate	time	and	space	in	their	apparent	continuity,	or	because	we
sense	that	reality	ever	escapes	our	rational	convergings.

Mind	and	the	Imagination

You	may	find	yourself	now	in	the	distracted	state	where	mathematicians
notoriously	live.	The	genie	you	rubbed	from	its	bottle	was	much	more	powerful
than	you	thought:	barely	under	control.	You	see	not	only	its	huge,	escaping
shape,	but—through	the	swirls—portents	of	forms	even	more	inimical.	And	yet
you	do	have	a	sort	of	authority	over	these	numbers,	since	you	can	call	irrationals
from	the	vasty	deep	by	such	algorithms	as	you	just	saw.	It	is	like	being	on
how’s-it-going	terms	with	the	local	mob.	The	mathematician	John	von	Neumann
once	said	that	in	mathematics	we	never	understand	things	but	just	get	used	to
them.	That	can’t	be	quite	right—yet	our	understanding	must	be	stretched	to	the
breaking	point	before	it	becomes	flexible	enough	to	adjust	to	the	unthinkable.

First	you	begin	to	doubt	the	reality	of	the	reals.	Are	they	actually	already	out
there,	each	in	its	infinite	splendor?	Or	have	we	instead	only	a	machine	that	can
mint	them	on	demand,	but	with	their	edges	shaved	to	varying	tolerances?
Thought	of	so,	the	mind	resembles	a	totalitarian	state,	owning	the	means	of
production	but	with	unregenerate	individualism	corrupting	its	inventories.

One	glance,	however,	at	the	stroke	of	a	line	across	a	piece	of	paper	reminds
you	that	there—or	if	not	there,	then	in	what	that	line	stands	for—all	of	the	points
fully	exist,	rationals	and	irrationals	alike.	How	could	we	calculate	any	length



were	our	ruler	not	brought	right	up	against	what	is,	taking	its	measure?	Even	if
our	measurements	require	astronomical	instruments,	the	distance	from	here	to
Alpha	Centauri	hasn’t	waited	for	us	to	bring	it	into	being.	The	irrationals	lay
undiscovered	in	the	body	of	mathematics	as	the	system	of	tectonic	plates	lay
undiscovered	in	the	earth’s	until	recently:	both	were	there	to	be	found,	and	who
knows	what	other	systems	may	still	operate	unknown?

Then	you	think	to	yourself:	with	just	a	handful	of	digits—some	before	a
decimal	point	and	some	after—I	can	invent	a	number	most	likely	never	thought
of	before.	Invent	or	discover,	discover	or	invent—or	do	numbers	evolve
organically,	like	forms	of	life,	when	demands	and	conditions	coincide?

Since	it	was	those	decimally	advantaged	numbers,	the	irrationals,	that
provoked	these	thoughts	at	the	edge	of	reason,	the	weight	of	our	perplexity	falls
on	them.	Should	we	really	have	accepted	their	existence	with	such	docility?	All
Hippasus	showed	was	that	 	wasn’t	rational—why	grant	that	it	is	something
else,	something	at	all,	and	not	just	a	minute	gap	in	the	number	line?	When	we
lowered	the	 	hypotenuse	a	few	pages	back,	perhaps	its	tip	hovered	over	a	hole.
Why	might	the	number	line	not	turn	out,	on	sufficient	magnification,	to	be
porous?

Let	us	focus	the	lens	instead	on	how	we	have	come	up	with	our	numbers.
“One”	seems	there	in	the	mind	and	its	world,	from	the	very	start,	and	zero	as
well:	something	and	nothing.	The	action	of	adding	then	gives	us	the	naturals.
Subtracting	brings	the	negatives	into	the	light;	dividing,	the	rationals:	and	it	is
only	when	a	new	operation	appears—the	taking	of	roots—that	the	irrationals
show	themselves.	So	there	we	are:	new	numbers	devised—or	revealed—by
operations	on	old	ones;	the	familiar	actions	with	their	touring	company	of	actors,
a	complete	set	of	plots	and	all	the	dramatis	personae	needed	to	enact	them.

Or	is	it	complete?	Can	all	of	our	cast	really	perform	in	all	of	the	scenes?
What	about	taking	roots	of	negative	numbers,	such	as	 ?	This	symbol	stands
for	a	number	which	times	itself	is	negative	one.	Such	a	number	can’t	be	positive,
since	a	positive	times	a	positive	is	positive.	It	can’t,	however,	be	negative,
because	as	you	remember	and	Chapter	Three	will	attest,	a	product	of	two
negatives	is	positive	too	(going	on	with	the	story,	while	putting	a	proof	of	one	of
its	claims	on	hold,	is	part	of	that	easiness	with	delay	we	spoke	of	earlier).

Nowhere,	then,	on	our	real	line—not	at	zero,	nor	to	its	left	nor	to	its	right,	not
sheltered	among	the	rationals,	nor	masquerading	as	an	irrational—can	there	be
any	number	which	is	the	square	root	of	negative	one.	It	is	at	this	point	that	a
deep	quality	of	the	mathematical	art	emerges—let’s	call	it	the	Alcibiades
Humor.	For	Alcibiades	was	the	enfant	terrible	of	ancient	Athenian	life	at	the



time	of	Socrates:	handsome	and	willful,	outrageous	and	heroic,	arrogant	and
playful,	disrupter	of	discourse	and	envoy	of	passion	to	the	feast	of	reason.
Plutarch	tells	us	that	even	as	a	boy,	dicing	in	the	street,	he	dared	an	angry	carter
to	run	him	over—and	of	course	the	carter	turned	back.

The	Alcibiades	Humor	in	mathematics	is	just	this	hubris,	this	refusal	to	stop
playing	when	all	seems	lost.	No	square	root	of	negative	one?	Then	let’s	make	it
up!	For	imagination	extends	beyond	the	real.	Give	this	new	number	a	name	and
its	habitation	will	follow.	Call	it	i,	for	imaginary;	let	it	be	a	number,	a	new	sort
of	number	whose	only	property	is	that	its	square	is	–1:

Now	tightrope	thinking	begins,	that	odd	blend	of	eliciting	and	inventing	at
the	heart	of	mathematics,	extending	the	frontier	and	the	franchise.	With	so	little
to	go	on,	what	can	we	ask?	In	the	spirit	of	i2,	see	what	i4	would	have	to	be:

i4	=	i2	·	i2	=	(–1)	·	(–1)	=	1,

so	i	is,	astonishingly,	a	fourth	root	of	1!
And	i3?

i3	=	i2	·	i	=	(–1)	·	i	=	–i.

Now	we	have	a	little	table	of	powers	of	this	what-you-will:

and	i5?	That	is	i4	·	i,	or	1	·	i,	so	i	again—and	now	we	know	that	the	pattern	of
our	table	will	cycle	forever,	allowing	us	to	calculate	what	any	power	of	i	must
be.	Just	divide	the	power	you	have	in	mind	by	4	(thus	casting	out	the	cycles)	and
see	what	remainder	is	left—how	powerful,	in	mathematics	too,	the	saved
remnant	often	is.	Take	i274,	for	example;	4	into	274	leaves	a	remainder	of	2,	so
i274	is	the	same	as	i2,	or	–1.

We	bring	this	alien	slowly	to	earth	by	asking	it	to	engage	with	the	terrestrials.
i	+	i	is	2i,	and	13i	means	i	added	to	itself	13	times.	13	+	i	is	just	…	13	+	i:	the



alien	mixes	with	the	natives	on	formal	terms,	keeping	his	distance.	In	that
remoteness	he	generates	further	imaginaries,	as	I	generated	the	natural	numbers.
On	a	trajectory	of	their	own	they	range	and	play,	as	addition,	subtraction,
multiplication,	and	division	draw	them	endlessly	out:

But	just	in	the	midst	of	these	eccentric,	playful	creatures	is	0i,	and	that	is	0:	a
real	number!	It	is	where	the	trajectory	of	i	strikes	the	real	line,	so	that	we
needn’t	picture	these	two	progressions	as	parallel	or	skew,	but	intersecting—and
therefore	(so	much	created	out	of	nothing	and	imagination)	producing	a	plane	of
numbers	where	once	a	thin	line	had	been.

The	Complex	Plane

The	real	line	and	the	imaginary	line	need	not,	of	course,	meet	at	right	angles,	but
to	give	some	familiarity	to	the	representation	of	space,	it’s	convenient	to	work
with	the	one	unique	angle	that	divides	the	universe	into	four	equal	quadrants
(and	while	we	are	at	it,	to	keep	the	grid	square	by	letting	the	units	on	both	lines



be	the	same	length).
It	might	be	a	mistake	to	pause	now	and	ask	what	these	imaginaries	really	are.

They	had	been	described	as	“sophistic”	by	Italian	mathematicians	in	the
Renaissance;	it	was	Descartes	who	dismissively	first	called	them	“imaginary.”
Newton	held	them	to	be	impossible,	and	Leibniz	said	that	 	was	an	amphibian
between	being	and	not-being.	In	1629	the	Frenchman	Albert	Girard	agreed:	“Of
what	use	are	these	impossible	solutions?	I	answer:	for	three	things—for	the
certitude	of	the	general	rules,	for	their	utility,	and	because	there	are	no	other
solutions	to	certain	equations.”	Their	use—how	they	behave,	what	they	tell	us
about	numbers	and	the	mind	and	the	world—will	be	our	way	to	understand	them
better,	for	use	and	understanding	combine	in	complex	solutions	to	questions	we
ask	too	simply.

In	fact,	the	combinations	of	real	and	imaginary	numbers—hybrids	such	as	3	+
5i	or	 	–	4i—are	called	Complex	Numbers	with	the	letter	C	on	their	caps:	17,	for
example,	is	shorthand	for	the	complex	number	17	+	0i.

Do	you	feel	we	have	been	hustling	you	through	inadequate	justifications,	like
confidence-tricksters	more	eager	to	persuade	than	explain?	We	can’t	after	all
just	say	that	anything	we	choose	is	a	number,	or	argue	like	lawyers	from
precedent,	or	like	prophets,	from	revelation.	We	have	to	show	that	the	franchise
has	been	legitimately	extended	to	these	imaginaries,	and	that	they	can	do	work
that	none	of	the	other	citizens	could	manage.	But	this	we	must	do	in	the	context
of	mathematical	legitimacy	itself,	which	is	the	subject	of	the	next	chapter.

Like	Sheherazade,	let’s	end	one	story	as	the	next	begins	to	edge	forward	and
say	that	our	operations	and	what	they	operate	on	are	at	last	complete:	the	natural
numbers	are	nested	inside	the	integers,	those	in	the	rationals	and	those	within	the
reals—and	the	reals	are	no	more	than	a	line	on	the	infinite	complex	plane	we
drew	on	page	33.	Were	there	Pythagoreans	today,	these	nests	might	serve
instead	of	the	tetractys	as	the	fount	and	root	of	ever-flowing	nature:



The	Talisman	of	the	New	Pythagoreans





Chapter	Two

How	Do	We	Hold	These	Truths?

We	knew	as	soon	as	we	saw	it	that	the	sum	of	the	first	seven	natural	numbers
was	half	the	number	of	dots	in	a	7	by	8	rectangle—and	also	saw	at	once	that	this
must	be	true	in	general:

Of	course	this	was	a	sophisticated	kind	of	seeing,	done	less	with	the	body’s	eye
than	the	mind’s,	focused	at	infinity.	Somehow,	inexplicably,	we	seem	to	jump	in
a	moment	out	of	time—or	is	it	into	a	sort	of	time	with	the	breadth	of	space—is
that	where	these	figures	lie?

We	could	show	off	by	applying	our	insight	to	particular	numbers:

Such	examples	might	strengthen	our	conviction,	but	no	matter	how	many	of
them	encourage	our	belief,	there	are	too	many	numbers	for	examples	ever	to
prove	anything.	The	claim	that	no	natural	number	is	greater	than	a	million	is,
after	all,	confirmed	by	the	first	million	test	cases.

It	is	easy	to	ask	how	we	know	that	a	statement	is	always	true,	but	very	hard	to
answer.	A	twelfth-century	Indian	proof	of	the	Pythagorean	Theorem	consists	of
no	more	than	two	puzzle-like	diagrams	with	the	single	explanatory	word:
“Look!”	And	below	is	a	thoroughly	wordless	early	proof	from	China.1



And	here	indeed,	looking	leads	to	seeing.	Is	this	because	an	exemplar	rather	than
an	example—a	particular	case	whose	particularity	doesn’t	matter—wakens	our
sense	of	analogy	and	the	ability	to	recognize	pattern?

In	order	to	savor	once	more	this	all	too	fugitive	experience,	here	is	a	very
different	way	of	seeing	that

Again	we	choose	an	example—say,	10.	You	look	at	the	sum

1	+	2	+	3	+	4	+	5	+	6	+	7	+	8	+	9	+	10

and	ingrained	habits	of	reading	from	left	to	right,	as	well	as	being	systematic,
lead	you	to	starting:	1	plus	2	is	3,	and	3	makes	6,	and	4	makes	10	…	But	what	if
you	look	at	it	differently	(and	the	secret	of	all	mathematical	invention	is	looking
from	an	unusual	angle)—what	if	you	add	in	pairs	as	follows:

1	+	10	=	11,	2	+	9	=	11,	3	+	8	=	11—in	fact,	all	these	pairs	will	add	up	to	11!
And	how	many	pairs	are	there?	5—that	is,	half	of	10.	So



Some	people	relish	the	geometric	approach,	some	the	symbolic.	This	tells
you	at	once	that	personality	plays	as	central	a	role	in	mathematics	as	in	any	of
the	arts.	Proofs—those	minimalist	structures	that	end	up	on	display	in	glass
cases—come	from	people	mulling	things	over	in	strikingly	different	ways,	with
different	leapings	and	lingerings.	But	is	it	always	from	the	same	premises	that
we	explore?	Is	there	some	sort	of	common	sense	that	is	to	reason	what	Jung’s
collective	unconscious	used	to	be	to	the	psyche?	One	of	these	approaches,	or
some	third,	must	have	been	in	the	mind	of	the	ten-year-old	Gauss—the	Mozart
of	mathematics—when,	in	his	first	arithmetic	class,	he	so	startled	his	teacher.	It
was	1787	and	Herr	Büttner	was	in	the	habit	of	handing	out	brutally	long	sums
like	these,	which	the	children	had	to	labor	over.	When	each	one	finished	he
added	his	slate	to	the	pile	growing	on	the	teacher’s	desk.	The	morning	might
well	be	over	before	all	had	finished.	But	Gauss	no	sooner	heard	the	problem
than	he	wrote	a	single	number	on	his	slate	and	banged	it	down.	“Ligget	se’!”	he
said,	in	his	Braunschweig	accent:	“There	it	lies!”	And	there	it	lay,	the	only
correct	answer	in	the	lot.

Gauss	may	have	had	better	access	to	his	intuition	than	most	of	us	do,	but	isn’t
it	clear	that	what	is	common	to	us	all	is	this	very	intuition?	Yet	ever	since	the
earth	turned	out	not	to	be	flat,	our	trust	in	the	obvious	has	been	weakened.
Insight	and	intuition	were	knocked	off	their	pins	by	Hippasus:	his	irrational
shook	the	Greeks	more	profoundly	than	the	eruption	of	irrational	passions
through	the	sunlit	surface	of	life.

Fear	begets	law.	The	jurist	in	the	soul	demands	system	to	hem	in	the	disorder
that	the	irrationals	let	loose.	The	remedy	that	Eudoxus,	one	of	Plato’s	followers,
came	up	with	in	the	fourth	century	B.C.	was	to	build	up	even	the	most	banal
certainty	on	an	armature	of	proof.	This	meant	deducing	results	by	pure	logic
from	as	trim	and	tight	a	foundation	as	he	could	find.	These	foundations	were
“axioms,”	like	the	familiar	“equals	added	to	equals	make	equals”—statements	so
weighty	and	worthy	of	belief	that	we	don’t	even	know	how	to	doubt	them.	Their
evolution	is	curious,	because	we	are	such	inveterate	doubters.

Plato’s	theory	of	recollection	explained	why	we	simply	recognize	truths	for
what	they	are:	the	soul	had	seen	them	directly	in	its	abstracter	state,	among	the
eternal	Ideas,	before	we	were	born.	Aristotle	hedged	these	bets:	some	first
principles	were	common	to	all	the	sciences,	some	were	justified	by	the
consequences	they	begot.	All	came	from	generalizing	what	we	saw	in	the
physical	world.	The	Stoic	philosophers	a	century	later	spoke	of	a	“recognizable
impression”	which	gave	us	our	basic	certainties.	Our	apprehension	first
encounters	an	image	as	an	open	hand	would	an	object;	then	begins	to	close



around	it	in	assent;	next	grasps	it	tightly—the	fit	of	hand	to	object	was
“recognition”—and	finally	(here	the	Stoic	Zeno,	teaching	his	students,	would
cap	his	clenched	right	fist	with	his	left	hand)	holds	it	as	knowledge.

When	the	Gnostics	fastened	onto	the	Pythagorean	pairing	of	darkness	and
light,	putting	it	at	the	heart	of	everything,	a	belief	began	to	grow	in	something	on
a	different	plane	from	our	animal	instincts:	an	inner	or	natural	light	which
enhaloed	the	truth.	By	the	time	of	St.	Augustine	and	later	St.	Thomas	Aquinas,
the	two	strands	of	recognizable	impression	and	natural	light	twined	around	each
other	to	redefine	“intuition,”	which	gave	us	immediate	truth.

Immediate:	that	was	the	test;	and	where	but	in	France,	so	charmed	by	élan,
would	immediacy	be	an	irresistible	force?	Where	but	in	France	would	the
graceful	sweep	of	articulate	thought	guarantee	its	validity?	On	November	10,
1619,	the	young	Descartes	had	a	dream	in	the	midst	of	the	Lowland	Wars,	where
he	served	with	Prince	Maurice	of	Orange.	In	it	he	saw	that	authority	counted	for
nothing	in	mathematics,	whose	methods	were	able	to	find	unimpeachable	truths.
When	he	wrote	up	the	principles	of	this	method	nine	years	later,	in	Règles	pour
la	direction	de	l’esprit,	he	said	that	in	order	to	gain	knowledge	we	must	begin
with	what	we	can	intuit	clearly	and	immediately,	pass	one	by	one	through	all	the
relevant	stages	in	a	continuous	and	uninterrupted	movement	of	thought,	to	see	in
the	end	the	truth	directly	and	transparently.



René	Descartes	(1596–1650),	whose	interest	in	mathematics	was	sparked	by	a
problem	he	saw	posted	on	a	wall	in	Holland	in	1618.

This	trumpet	call	echoed	as	resonantly	through	France	as	playing	up	and
playing	the	game	did	through	England.	You	hear	it	in	1810,	when	the	French
geometer	Gergonne	wrote	that	axioms	were	theorems	whose	mere	statement
sufficed	for	recognizing	their	truth.	You	hear	it	at	the	end	of	the	nineteenth
century	in	Rimbaud’s	Une	saison	en	enfer:	“We	are	dedicated	to	the	discovery
of	divine	light.	All	the	filthy	memories	are	disappearing	…	I	will	be	allowed	to
possess	the	truth	in	a	single	soul	and	body.”	(There	is	also	an	echo	here	of	the
Stoic	and	Cartesian	concern	for	purity,	lest	even	intuition	fall	into	error.)

But	what	if	metaphors	of	light	or	appeals	to	something	as	flighty	as
imagination	struck	you	as	too	flimsy	a	framework	for	the	tower	of	mathematics?
A	different	prospect,	from	the	world	rather	than	the	mind,	opened	up	with	Locke
and	the	enlightenment:	a	prospect	whose	vanishing-point	was	self-evident	truth.
A	paradox	incriminates	itself	without	any	help	from	others.	Doesn’t	a	tautology,
at	the	other	extreme,	exonerate	itself?	You	could	doubt	that	the	stars	have	fire,
but	there	is	no	way	of	doubting	that	a	star	is	a	star.	Such	truths,	which	literally
“say	themselves,”	were	seized	on	as	axioms	with	Jeffersonian	vigor.

Then	came	Kant.	With	one	brilliant	stroke	he	cut	to	the	heart	of	the	matter,
the	fundamental	peculiarity	of	mathematics:	whatever	we	invent	in	it	at	once
seems	independent	of	our	inventing,	as	if	it	had	instead	been	discovered	to	have
been	there	even	before	experience.	This,	he	said,	was	because	we	got	our
experiences	from	knitting	our	perceptions	together	in	causal	fabrics—but	those
perceptions	had	first	been	shaped	by	our	intuitions	of	space	and	time.	It	was	this
shaping	that	mathematics	studied	(space	in	geometry,	time	in	number),	so	of
course	these	forms	registered	as	a	priori:	prior	to	experience.	They	were	the	one
and	only	way	that	mind	made	its	perceptions	(as	the	Stoic	hand	fitted	its	grasp	to
what	it	encountered).	The	basic	truths—the	axioms	of	mathematics—must
therefore	generate	the	unique	set	of	conclusions	that	follow	in	our	probing	of
how	these	intuitions	of	space	and	time	work.

The	Tablets	of	the	Law

What	were	these	truths—common,	self-evident,	a	priori,	simple,	or	immediate
—that	mind	apprehended	in	its	out-of-mind	state?	They	were	aphorisms	such	as
this:	the	order	in	which	you	add	or	multiply	two	numbers	makes	no	difference;



the	result	will	always	be	the	same:

a	+	b	=	b	+	a

a	·	b	=	b	·	a.

Only	someone	bamboozled	by	the	old	shell	game	could	doubt	these
Commutative	Laws,	which	you	see	in	action	whenever	you	watch	the	wheeling
formations	of	a	marching	band:	7	columns	4	abreast	turn	at	the	drum	major’s
whistle	into	4	columns	of	7.	Since	these	laws	hold	for	the	natural	numbers,	the
impulse	of	the	time	was	to	carry	them	through	to	the	outermost	circles	of	the
mathematical	empire,	past	integers	and	rationals,	as	satraps	once	carried	the	laws
made	in	Persepolis	to	every	Persian	province.

You	find	these	axioms	stated	with	growing	sophistication	during	the
eighteenth	and	nineteenth	centuries.	In	Germany,	while	Georg	Ohm	in	the	1820s
was	drafting	his	law	that	united	electrical	voltage,	current,	and	resistance,	his
younger	brother	Martin	was	making	the	laws	for	weaving	the	numbers	together
through	the	operations	on	them,	such	as	the	Associative	Law,	which	declared
that	regrouping	couldn’t	change	a	sum	or	a	product:

a	+	(b	+	c)	=	(a	+	b)	+	c

a	·	(b	·	c)	=	(a	·	b)	·	c.

It	was	all	very	well	and	wonderfully	concise	to	express	these	laws	about
numbers	with	letters,	but	how	could	we	guarantee	in	a	republic	rather	than	a
monarchy	that	the	letters	could	stand	for	any	kind	of	number	at	all?	In	England	a
man	named	George	Peacock,	who	seemed	able	to	believe	six	impossible	things
before	breakfast,	stated	Peacock’s	Principle	of	Permanence	in	1833:	“Whatever
form	is	algebraically	equivalent	to	another	form	expressed	in	general	symbols,
must	continue	to	be	equivalent,	whatever	those	symbols	denote.”	So	if	an
operation	made	sense	for	the	natural	numbers,	it	must—by	Peacock’s	Principle
—make	sense	for	any	kind	of	number.	His	Principle	never	stooped	to	ask	why
this	should	be	so,	and	in	fact	(as	we	shall	see	on	page	114),	led	to	nonsense.
Hidden	in	the	neutral	word	“form,”	however,	was	the	embryo	of	an	abstractly
formalist	point	of	view	that	would	utterly	shift	our	understanding	of
mathematics.



George	Peacock	(1791–1858)

This	changing	way	of	looking	was	part	of	the	broader	Romantic	rebellion
against	Enlightenment	ideals.	On	his	twenty-first	birthday,	June	8,	1831,	Robert
Schumann	wrote	in	his	diary:	“It	sometimes	seems	to	me	that	my	objective	self
wanted	to	separate	itself	completely	from	my	subjective	self,	or	as	if	I	stood
between	my	appearance	and	my	actual	being,	between	form	and	shadow.”	Form
allied	to	appearance,	actual	being	to	shadow:	a	disturbing	pairing	that	catches
not	only	the	split	in	Schumann’s	personality	and	in	his	ghost-ridden	music,	but
in	the	time	itself.	It	became	possible	to	think	that	mathematics	might	rid	itself	of
the	subjective,	of	intuition,	and	find	its	justifications	in	form:	in	appearances	that
had	nothing	more	to	them	than	their	representing	this	form	and	displaying	its
impersonal,	formal	rules.	An	extra	incentive	came	from	the	growing	fascination
with	ingenious	artifice,	with	clockwork	that	could	imitate	or	even	surpass	the
organic	(the	mood	had	been	set	two	centuries	before	when	Pascal	invented	the
first	“mathematical	engine”	and	remarked	in	awe	that	although	it	showed	no
trace	of	will,	as	animals	did,	it	approached	nearer	to	thought	than	all	the	actions
of	animals).	Even	the	American	Constitution,	although	kept	folded	up	in	a	little
tin	box,	was	fondly	thought	of	as	a	machine	that	would	go	of	itself.

So	Peacock’s	Principle	of	Permanence	extended,	on	such	alluringly	formal
grounds,	the	Commutative	and	Associative	Laws	to	all	kinds	of	numbers,	as
well	as	extending	an	important	axiom	that,	in	Ohm’s	style,	tied	together	the
operations	of	addition	and	multiplication:

a	·	(b	+	c)	=	a	·	b	+	a	·	c.



This	Distributive	Law	says	that	you	will	get	the	same	result	if	you	first	add	two
numbers	(b	and	c)	and	then	multiply	them	by	a	third	(a),	or	first	multiply	each	by
a	and	then	add	the	results.

Formalism—where	relations	hold	among	symbols	that	need	have	no	further
referents—became	an	ideal	shelter	in	the	revolution	that	was	sweeping	through
mathematics	itself	in	the	nineteenth	century.	Everyone	had	taken	for	granted,
over	the	past	two	millennia,	that	Euclid’s	geometry	described	this	precious	only
endless	world	in	which	we	say	we	live—or	in	Kant’s	terms,	the	way	mind	must
spatially	conceive.	Yet	now	geometries	were	being	invented	by	Frenchmen	and
Russians,	Hungarians	and	Germans,	each	different	from	Euclid’s	but	as	cogent.
Where	had	the	uniqueness	gone?	Wouldn’t	the	fall	of	Geometry’s	house	bring
Arithmetic’s	down	with	it?	One	attempt	followed	another	to	end	the	scandal	and
purify	Euclidean	geometry	of	its	vulnerable	elements;	but	as	in	the	French
revolution	that	preceded	this	one,	the	cry	kept	sounding	for	an	ever	purer	to
purify	the	pure.

If	Formalism	couldn’t	save	shape,	it	would	save	number.	The	axioms	began
to	coalesce,	going	on	from	the	Associative,	Commutative,	and	Distributive—
now	elevated	to	the	hollowly	dignified	status	of	“Laws”—to	include	something
important	which	had	been	omitted	until	then.	For	those	laws	had	said	that	if	you
had	such-and-such	numbers,	then	such-and-such	configurations	held	among
them.	But	what	guaranteed	that	there	were	any	numbers	at	all?	An	axiom	was
needed	to	assert	that	there	was	something—and	why	not	another	axiom,	while
we	were	at	it,	about	nothing	as	well?	Axioms,	that	is,	which	stated	that	“1”
existed,	and	affirmed	also	the	existence	of	“0”.

Questions	about	how	to	consider	mathematical	existence	became	the	special
concern	of	David	Hilbert,	a	German	mathematician	whose	outlook	dominated
much	of	the	twentieth	century.	His	was	an	existence	haunted	by	existence.	At	a
meeting	of	mathematicians	in	Leipzig	shortly	after	World	War	I,	Hilbert	asked	a
young	Hungarian	whether	one	of	his	colleagues	was	still	alive.	Yes,	the
Hungarian	answered,	and	began	to	say	where	he	was	teaching	and	what	he	was
working	on.	Hilbert	kept	interrupting:	“But—”;	the	Hungarian	went	on:	“And	he
was	married	a	few	years	ago,	and	has	three	children,	the	oldest—”	Hilbert	burst
out:	“But	I	don’t	want	to	know	all	of	that!	I	just	asked:	does	he	still	exist?”

On	the	Portmanteau,	if	not	the	Permanence,	Principle,	1	and	0	were	packed
with	other	significant	properties	as	well;	and	despite	zero’s	late	entry	into
history,	by	the	early	twentieth	century	1	and	0	were	installed	together	at	the
beginning	of	mathematical	creation,	like	Adam	and	Eve.



The	axiom	of	additive	identity:	There	is	a	number,	“0”,	which	when	added	to	any
other	leaves	the	sum	unchanged:

a	+	0	=	a.

The	axiom	of	multiplicative	identity:	There	is	a	number,	“1”,	which	when	multiplied
by	any	other	leaves	the	product	unchanged:

a	·	1	=	a.

And	since	it	isn’t	self-evident	that	these	germinal	numbers	are	different,	we	have
to	legislate	it	in	by	adding	to	the	last	axiom:

and	1	≠	0.

Each	of	these	two	axioms	calls	up	a	sibling	that	assures	us	we	can	come	back
to	0,	or	1,	from	just	about	anywhere	on	the	number	line.

The	axiom	of	additive	inverses:	For	any	number	a,	there	is	another	number,	written	–
a,	such	that

a	+	(–a)	=	0.

The	axiom	of	multiplicative	inverses:	For	any	number	a,	except	0,	there	is	another
number,	written	 ,	such	that

In	the	interest	of	elegance	and	abbreviation,	“a	+	(–a)”	is	usually	written	“a	–	a”.
This	treats	the	sign	“–”	for	the	adjective	“negative”	as	if	it	stood	for	the	notion	of
subtracting:	testimony,	really,	to	Ohm’s	dynamic	view	that	these	are	axioms	for
the	operations	as	well	as	for	what	they	operate	on.	It	was	this	spirit	that	animated
Newton,	a	century	and	a	half	before,	not	to	ask	futile	questions	about	what
gravity	is,	but	to	describe	how	it	acts	(its	form,	that	is,	rather	than	its	substance).
Masses	and	forces	were	on	a	par,	as	now	were	numbers	and	the	forces	on	them.

The	lawyers	of	mathematics	tend	to	be	satisfied	with	this	list,	but	their	clerks
may	insist	on	a	prefatory	pair	to	ensure	that	the	boiler-plate	language	is
impenetrable:



The	axiom	of	closure	under	addition:	If	a	and	b	are	numbers,	so	is	a	+	b.

The	axiom	of	closure	under	multiplication:	If	a	and	b	are	numbers,	so	is	a	·	b.

Had	you	supposed	that	adding	two	numbers	would	produce	a	caterpillar,	or
multiplying	them,	a	butterfly?	Such	axioms	verge	on	mere	definition—almost
beneath	the	dignity	of	self-evidence.

Schumann	wasn’t	alone	in	finding	how	shadowy	objects	become	when	their
forms	are	separated	from	them.	You	might	well	ask	at	this	point,	“What	are
these	the	axioms	of?	Are	these	‘numbers’	nouns	or	adjectives	or	verbs?	Are	they
processes	or	the	products	which	processes	yield?”

One	thing	is	certainly	clear:	not	all	of	these	laws	have	been	brought	from	the
inner	sanctum	of	the	natural	numbers	to	the	kingdom’s	extremes,	as	the	impulse
described	on	page	43	suggested.	Consult	again	your	New	Pythagorean	talisman
on	page	35:	the	axiom	of	additive	inverses	holds	not	in	 	but	first	in	 ;	the
axiom	of	multiplicative	inverses	not	even	in	 	but	first	in	 .	It	is	as	if	the	long
revolution	had	moved	the	centers	of	power	and	interest	out	to	the	colonies,	and
the	whole	was	now	being	ruled	from	them.

In	truly	formalist	style	this	collection	of	axioms	wasn’t	addressed	to	one	kind
of	number	or	another	but	thought	of	by	its	first	formulators	as	characterizing	a
self-standing	whole:	a	body	(Körper)	as	the	German	mathematician	Richard
Dedekind	tellingly	called	it.	Schumann	might	have	brooded	over	this	slight	to
any	indwelling	spirit,	Pascal	over	the	missing	will.

What	was	a	body	in	German	became	the	even	less	suggestive	“field”	in
English,	the	formalist	point	of	view	being	that	here	was	a	list	of	laws	and
whatever	obeyed	them—rational,	real,	or	complex	numbers,	or	motions	like	the
rotation	of	figures	on	a	geometric	plane,	or	chairs	or	beer	mugs—was	a	field	(the
lure	of	abstraction	may	make	mathematicians	seem	like	a	subspecies	on	the
verge	of	evolving	beyond	lives	steeped	in	the	senses).	Further	relations	could	be
deduced	from	those	fundamental	ones,	and	other	relations	could	be	shown	not	to
hold	among	whatever	obeyed	them.	It	was	the	triumph	of	the	container	over	the
content:	the	slots	stood	to	one	another	in	specific	ways;	hence,	so	must	anything
slotted	into	them.

To	take	these	laws	in	all	at	once,	in	a	continuous	sweep	as	Descartes	would
have	us	do,	here	are	the	unbroken	Tablets	of	the	Law,	as	delivered	to	us	in	1893
by	the	equally	abstract	Heinrich	Weber	(a	man	about	whom	much	is,	but	little
more	need	be,	known).	They	are	expressed,	only	for	convenience,	in	terms	of
numbers	(a	pure	Formalist	would	have	said:	“If	a,	b,	and	c	are	elements	of	the
field,”	and	so	on).



You	may	feel	a	need	now	for	the	axioms	of	subtraction	and	division—but	see
with	what	Spartan	economy	they	have	been	included.	Subtraction	isn’t	a	primary
operation	but	is	the	inverse	of	addition;	division,	similarly,	is	just	the	inverse	of
multiplication.	Their	respective	axioms	let	you	balance	the	number	line	around	0
or	1.

We	can	also	answer	what	seemed	a	merely	rhetorical	question	in	Chapter
One.	We	asked	on	page	10:	“multiplication	is	just	sophisticated	addition,	isn’t
it?”	The	answer	is:	No.	Certainly	3	·	4	means	4	added	to	itself	3	times,	or	3
added	to	itself	4	times;	but	what	does	3	·	 	mean?	Three	copies	of	 	added
together.	The	commutative	law	helps	you	make	some	sense	of	“	 	copies	of	3
added	together,”	but	how	could	you	explain	at	all	in	terms	of	addition	what	 	·	
	means?	Addition	and	multiplication	are	equally	fundamental	operations—

Romulus	and	Remus	(and	commonly	suckled	by	the	Distributive	Axiom)—but
ultimately	independent.

You	might	complain:	“Where	have	you	gotten	this	 	and	that	 	from?	Since
a	field	axiom	gave	us	1,	another	axiom	produces	2,	3,	and	all	the	naturals,
another	their	negatives,	and	a	third	the	rationals—but	nothing	on	the	list
accounts	for	the	irrationals.”	And	you	are	right	so	to	complain:	we	need	some
way	to	assert	their	existence,	and	merely	invoking	different	kinds	of	roots	won’t
do,	since	as	you	saw	on	page	28–29	we	can	make	irrationals	in	so	many	other
ways.

Much	energy	and	imagination,	much	argument	and	ink	were	spent	on	shaping
something	adequate	and	elegant	enough	to	round	out	the	table.	In	the
background	moved	Schumann-like	shadows	that	separated	appearance	ever
further	from	being:	for	it	is	a	trait	of	romantic	enterprises	that	proxies	beget
proxies	and	what	was	stood	in	for	turns	out	itself	to	have	been	a	stand-in.	So



numbers	gradually	came	to	be	thought	of	as	secondary	phenomena	and	sets
emerged	as	fundamental.	These,	at	last,	had	no	antecedent	and	needed	no
definition.	Unlike	different	sorts	of	numbers,	we	grasped	sets	at	once	and	might
call	them	“collections”	or	picture	them	as	bags	containing	distinct	objects,	but
this	was	mere	paraphrase	of	what	we	knew	without	knowing	(they	weren’t
defined	in	terms	of	numbers	or	anything	else,	but	now	numbers	could	be	defined
in	terms	of	them).	Sets	and	their	doings	put	bedrock	under	what	had	been
shifting	sands.

Richard	Dedekind
(1831–1916)

As	early	as	1835	the	Irish	mathematician	William	Rowan	Hamilton—chaotic
in	life,	discoverer	of	unguessed-at	order	in	thought—came	up	with	the	idea	that
an	irrational	could	be	pinned	down	by	dividing	the	rational	numbers	into	distinct
sets;	and	this	idea	Richard	Dedekind	brought	to	fulfillment	later:	he	noted	the
date	carefully	in	his	diary	(November	24,	1858),	startled,	perhaps,	that	a
universal	truth	should	enter	human	experience	on	a	winter	evening	in
Switzerland;	or	struck	by	his	boldness	at	invoking	completed	infinities,	since
“set”	snaps	up,	as	a	conceptual	whole,	an	infinite	array	as	swiftly	as	it	does	three
buttons.

His	idea	was	that	if	you	break	up	the	line	of	rationals	into	two	distinct	sets,
with	all	those	in	the	first	to	the	left	of	each	one	in	the	second,	the	fracture
between	them	is	itself	a	number.	Make	the	left-hand	set	all	the	rationals	less	than
2,	for	example,	and	the	right-hand	set	all	rationals	greater	than	2.	Clearly	2
(which	is	a	rational	number:	 )	is	the	line	of	division.	Instead	fill	the	left-hand	set
now	with	all	the	negatives	along	with	all	the	rationals	whose	squares	are	less
than	2,	and	the	right-hand	set	with	all	whose	squares	are	greater	than	2.	Again



there	is	a	split	between	these	two	infinite	sets:	 .	Confer	on	this	cut,	says
Dedekind,	the	status	of	number.	Defining	all	the	reals	via	these	“Dedekind	Cuts”
breathes	life	into	the	irrationals	among	them,	and	the	spirit	of	our	laws	is	in	that
breath.	For	all	that	Dedekind’s	definition	lacks	the	immediacy	of	our	other
terms,	being	as	far	above	them	in	sophistication	(using	as	it	does	infinite	sets)	as
the	closure	axioms	were	below,	it	wonderfully	catches	the	character	of	the
irrationals,	sifting	like	viruses	through	ever	finer	filters.	As	with	all	the	best
mathematical	ideas,	it	catches	too—and	refines—a	common	way	of	thinking:	“I
don’t	know	where	the	line	is,	but	I	know	this	was	over	the	line,”	said	a	Boston
detective	in	a	case	of	child	abuse.

The	rationals,	Q,	are	a	field,	and	enriched	by	Dedekind	Cuts,	so	are	the	reals,
R.	Add	in	 	and	we	find	ourselves	in	the	broadest	field	of	the	complex
numbers,	C.	We	know	the	ancient	name	of	the	field	this	wall	encloses:	Eden.

Eden

For	now	we	have	our	axioms,	and	logic	enough	to	water	them.	Austere	as	these
axioms	seem,	planted	in	a	landscape	as	stark	as	biblical	narrative,	the	vast	and
colorful	garden	of	mathematics	will	grow	from	their	seeds.	You	may	wonder
why	we	haven’t	added	to	our	axioms	the	fact	that	a	·	0	=	0	for	any	a.	The	answer
is:	because	we	can	now	prove	it,	beginning	to	construct	the	tower	of
mathematics	upward	from	the	smallest	possible	base.

We	start	with	1	–	1.	The	Additive	Inverse	Axiom,	A4,	assures	us	that	this	is
0.	Multiply	both	sides	of	0	=	1	–	1	by	any	number	a:

a	·	0	=	a	·	(1	–	1).

Now	apply	the	Distributive	Axiom,	D,	to	this	equation’s	right-hand	side,	and
you	find	that

a	·	(1	–	1)	=	a	–	a.

But	once	again,	by	A4,	a	–	a	=	0.	Shake	these	steps	out	in	the	right	order	and	you
get:

a	·	0	=	a	·	(1	–	1)	=	a	–	a	=	0,



so	that	crossing	the	bridge	of	equalities	from	left	to	right	gives	us	what	we	want:

a	·	0	=	0.

This	is	an	appetizer:	a	foretaste	of	the	proving	art.	In	it	you	won’t	catch	a
whiff	of	the	kitchen	from	which	it	came:	the	cook’s	instinct	for	where	to	begin,
the	mise	en	place	of	the	axioms	and	then	their	adroit	use.	There	is	a	touch	of	the
showman	in	mathematical	presentations,	where	the	deductions	are	made	to	look
effortless.

Take,	for	example,	a	wild	question	whose	answer	nevertheless	follows	from
these	axioms.	What	are	all	the	solutions	to	the	equation

y2	+	y	=	x3	–	x?

A	sketch	of	the	answer	begins	to	materialize	by	giving	specific	values	to	x	and
then,	using	techniques	derived	from	the	axioms,	finding	what	y’s	will	produce
these	values.	So	for	x	=	1,	y	will	have	to	be	0;	and	for	 ,	we	have	

	or	 ,	and	the	y’s	turn	out	to	be	roughly	1.38	and	–
2.38.	This	sketch,	filled	in	by	yet	further	descendants	of	the	axioms,	shows	that
the	infinite	number	of	solutions	lie	on	a	“cubic	curve,”	which	when	plotted	on
the	coordinate	plane	has	this	curiously	disjoint	shape:

There	you	see	all	the	real	solutions	to	our	equation.

But	the	Garden	of	Eden	is	famous	for	its	snake,	and	the	snake	is	the	desire	for



more	precise	knowledge.	Are	there	specific	pairs	of	integers,	those	uniquely
fundamental,	ancient	numbers,	which	satisfy	this	equation?	Looked	at	again,	you
see	that	it	can	be	rewritten	as

y	·	(y	+	1)	=	(x	–	1)	·	x	·	(x	+	1),

so	that	with	integers	in	mind	we	are	asking:	are	there	any	numbers	which	can	be
expressed	as	a	product	of	two	consecutive	integers	(y	and	y	+	1)	and	at	the	same
time	as	a	product	of	three	consecutive	integers	(x	–	1,	x,	and	x	+	1)?	Not	only
has	the	question	developed	a	profounder	character	when	posed	in	terms	of
integers,	but	strangely	enough,	the	axioms	for	the	reals	can’t	tell	us	enough	to
answer	it!	It	isn’t	even	clear,	at	first	glance,	how	many	integral	solutions	there
are.

And	yet,	this	isn’t	so	strange:	the	axioms	describe	(or	prescribe)	the	general
life	of	the	reals,	not	the	specific	mores	of	those	living	in	Z,	close	to	the	inner
city	of	N.	Other	means,	attuned	to	these	cloistered	citizens,	will	have	to	be
derived	from	their	particular	traits.2

Our	understanding	of	the	Pythagorean	talisman	has	all	at	once	to	be	turned
inside	out.	You	could	no	more	expect	to	govern	the	founding	city	from	the
provinces	than	the	Emperor	Postumus	could	have	hoped	to	govern	Rome	from
Trier.	The	rationals,	the	reals,	the	complex	numbers	no	longer	appear	as
successive	approximations	to	what	ultimately	is,	but	as	ever	more	tenuous
fictions	flung	in	support	around	the	central	keep.

Perhaps	this	is	what	Kronecker	meant	when	he	said	that	God	made	the
natural	numbers	and	the	rest	was	the	work	of	man.	You	might	even	hear	in	this
an	echo	of	ancient	Democritus:	“By	convention	sweet,”	he	said,	“by	convention
bitter;	by	convention	hot,	by	convention	cold,	by	convention	color:	but	in	reality,
atoms	and	void.”

What	are	these	other	means	for	understanding	the	natural	numbers?
Rephrased	in	the	Formalist	style,	what	axioms	describe	them?	The	ingenious
idea	for	proving	properties	peculiar	to	 	is	called	Induction.	Not	children’s
induction:	“Anything	I	say	three	times	is	true”;	nor	the	peculiar	Roman	legal
procedure	called	ampliatio,	where	an	undecided	jury	could	demand	that	all	the
evidence	be	repeated	over	(and	over)	again.	Not	even	the	sort	of	induction	used
in	science,	which	concludes	from	a	lot	of	test	cases	that	a	hypothesis	probably
holds.	Certainty	is	the	outcome	here,	and	from	many	more	than	three	or	even	a
lot	of	instances:	in	fact,	from	all	of	them.

Inductive	proofs	work	for	statements	about	the	natural	numbers,	by	sweeping



through	their	array	as	if	they	stood	like	dominoes,	each	less	than	a	domino’s
length	away	from	the	next.	Push	over	the	first	and	all	will	tumble	down.	For	the
ingenious	idea	behind	induction	is	this:	prove	that	the	statement	in	question	is
true	for	the	first	natural	number	it	applies	to—typically	1	(that	corresponds	to
knocking	over	the	first	domino).	Then	show	that	if	the	statement	is	true	for	any
natural	number,	it	must	also	be	true	for	the	next	one	(that’s	the	equivalent	of
checking	that	the	dominoes	are	close	enough	together	to	communicate	the	initial
impulse	to	all).

It	is	this	second	step	that	sets	the	mind’s	teeth	on	edge,	since	it	looks	as	if	we
were	assuming	what	we	wanted	to	prove.	Not	so:	we	assume	only	that	our
statement	is	true	for	some	number	n,	and	then	using	that	assumption,	strive	to
show	it	must	be	true	for	the	next,	n	+	1.	If	we	succeed,	then	since	the	statement
was	proved	to	be	true	for	1,	it	must	also	be	true	for	2;	but	true	for	2	must	mean	it
is	true	for	3;	and	so	4;	and	therefore	5—ad	infinitum.	This	is	seeing	the	world	in
two	grains	of	sand.

An	example	will	help.	If	you	like,	you	may	then	adopt	medical	school
practice	in	mastering	an	operation:	watch	one,	do	one,	teach	one—a	kind	of
human	induction.

Here	is	the	proof	by	induction	of	our	already	secure	conviction	that

First	we	establish	that	the	claim	is	true	for	n	=	1.	Yes,

Now	assume	it	is	true	for	any	natural	number—call	it	“a”	for	“any.”	We’re
assuming,	that	is,	that



Using	only	logic,	the	bridges	of	equality,	a	few	of	our	axioms,	and	this
assumption,	we	now	want	to	prove	that	the	claim	is	true	for	the	next	natural
number,	which	is	a	+	1—in	other	words,	that

(a	+	2	is	the	successor	of	a	+	1:	(a	+	1)	+	1	=	(a	+	2)).
By	our	inductive	assumption	we	can	rewrite	the	left-hand	side	as

Using	the	Distributive	Law,	we	can	take	the	common	factor	(a	+	1)	out	of
these	two	terms,	giving	us

which	is	the	same	as

That	is,

as	desired.	Magical,	but	watertight.	And	like	a	good	piece	of	magic,	the	proof
doesn’t	show	us	why	the	statement	is	true	(as	our	two	visual	proofs	did),	only
that	it	is	so.

This	is	peculiar.	Induction	has	confirmed	the	truth	of	many	an	important
mathematical	insight,	but	that	insight	had	to	have	come	from	some	other	source.
What	induction	does,	in	effect,	is	show	that	the	insight	spreads	contagiously
from	a	first	number	to	the	rest	of	the	naturals,	by	making	the	insight	clamp	a
number	and	its	successor	(n	and	n	+	1)	together:	“the	empty	form,”	as	it	was
called	by	a	troubling	figure	of	twentieth-century	mathematics,	the	Dutchman	L.
E.	J.	Brouwer.	For	him,	this	is	the	form	that	remains	when	all	the	color	is
bleached	from	Before	and	After:	the	form	of	Induction	that	comes	from



recognizing	that	1	+	1	is	a	new	whole	(Brouwer	calls	it	“two-ity”).
Definitions	like	that	about	Dedekind	Cuts	might	be	hit	on	at	a	time	and	in	a

place,	but	we	tend	to	think	of	methods	(and	certainly	one	this	abstract)	as
timelessly	there:	part	of	our	make-up.	So	in	hefting	a	neolithic	hand-ax	and
feeling	it	slip	easily	into	your	grasp,	you	think:	“Of	course—they	made	and	used
tools	then	as	we	do	now.”	Patterns	of	use	are	immemorial.	Yet	induction	too	was
invented	by	an	embodied	someone,	not	a	figure	as	abstract	as	the	empty	form	he
dealt	with.	Francesco	Maurolico	was	a	Benedictine	monk	in	sixteenth-century
Sicily.	Well,	you	think,	the	contemplative	life	would	suit	such	abstract	thoughts.
Not	a	bit	of	it.	He	was	head	of	the	Mint;	he	was	in	charge	of	the	fortifications	at
Messina;	he	devised	various	ways	for	measuring	the	circumference	of	the	earth.
He	studied	music,	optics,	magnetism,	and	the	varieties	of	Sicilian	fish;	he
successfully	predicted	for	John	of	Austria	what	the	weather	would	be	like	on	the
day	of	the	Battle	of	Lepanto;	he	wrote	a	history	of	Sicily;	he	first	observed	the
supernova	that	Tycho	Brahe	got	credit	for;	in	his	spare	time	he	translated	Euclid,
Apollonius,	Archimedes—and	in	the	midst	of	this	one	thing	after	another	of	a
life,	he	came	up	with	Induction.	When	you	look	at	the	full	moon	you	may	see
his	memorial:	the	crater	Maurolicus	is	named	after	him	(dead	scientists	tend	to
become	lunar	and	planetary	features,	dead	mathematicians	e-mail	servers).

The	moon,	aged	fourteen	days	and	one	hour,	from	a	photograph	made	through	a
telescope	on	October	27,	1890.	The	crater	Maurolicus	is	in	the	upper-left

quadrant,	below	Tycho.	If	this	orientation	bothers	you,	it	isn’t	that	the	moon	has
turned	over	in	the	course	of	a	century,	but	that	the	telescope	lens	inverted	the



image.

In	his	book	Arithmetica,	Maurolico	proves	by	induction	that	the	sum	of	the
first	n	odd	numbers	is	n2:	the	theorem	whose	truth	we	constructed	on	page	17.	If
you	care	to	try	an	inductive	proof	yourself,	remember	the	tripartite	form:

1.	Prove	the	statement	true	for	n	=	1;
2.	Assume	that	it	is	true	for	n	=	k,	and	then
3.	Prove	that	it	is	true	for	k’s	successor,	k	+	1.

You	will	probably	also	want	to	use	the	fact	that	the	kth	odd	number	has	the	form
2k	–	1	and	the	next	one	2k	+	1	(you	can	check	your	proof	against	that	in	the
Appendix).

It	tells	you	how	risky	this	new	kind	of	proof	must	have	seemed	to	its	inventor
that	he	actually	checked	the	statement	not	only	for	1	but	for	3	and	5.	It	is	as	if
we	were	witnessing	scientific	induction	turning	into	mathematical	induction.

History	isn’t	inductive,	since	there	never	seems	to	have	been	a	definitive	first
instance	of	any	notion	you	can	name.	In	the	south	of	France,	Levi	ben	Gerson,	in
1321,	used	a	process	he	called	“rising	step	by	step	without	end,”	which	amounts
to	induction.	Three	centuries	before	him,	Abu	Bakr	al-Karaji,	in	Baghdad,
proved	that	cubing	each	of	the	first	ten	naturals	and	then	taking	the	sum,	was	the
same	as	the	square	of	the	sum	of	these	naturals:

13	+	23	+	…	+	103	=	(1	+	2	+	…	+	10)2.

His	proof	has	an	inductive	air	to	it,	working	back,	as	he	does,	from	the	ten	he
wants	to	the	truth	that	13	=	12	(the	n	=	1	case).	He	“must	have”	had	induction	in
mind,	just	as	Marie	Antoinette	“must	have”	thought	longingly	of	Vienna	just
before	the	guillotine’s	blade	fell.	Arguments	titillatingly	close	to	induction
appear	around	the	same	time	in	Ibn	al-Haytham	and	al-Samaw’al	(do	they	stop
short	with	a	sort	of	“et	cetera,”	not	seeing	the	pearl	of	price	in	their	hands?)—
and	with	hindsight	we	might	even	make	out	inductive	reasoning	descending	the
infinite	staircase	of	past	time,	through	and	dimly	beyond	Euclid.

The	clue	that	induction	gave	for	axiomatizing	the	heart	of	the	labyrinth,	 ,
was	picked	up	by	Dedekind	and	followed	in	1889	by	an	Italian	mathematician
named	Giuseppe	Peano,	who	in	the	fervor	of	his	purity	sought	to	purge	his
language	even	of	words	and	to	use	symbols	instead:	⊃	to	mean	“implies,”	∈	for



“belongs	to,”	and	so	on.	His	students	rebelled.	He	tried	to	appease	them	by
giving	them	all	passing	grades.	It	wouldn’t	do.	He	was	forced	to	resign	his
professorship	in	Turin.	The	axioms,	however,	kept	their	chairs	and	are	in	them
still.	They	are	few	in	number,	deceptively	simple	(may	not	all	simplicity	be
deceptive?)	and	once	again	allowed	“set”	to	loom	as	the	undefined	term	behind
the	equally	undefined	“natural	number,”	“successor,”	and	“belong	to.”	If	God
created	the	natural	numbers,	these	were	the	words	with	which	his	prophet	Peano,
at	least,	began.

Peano’s	Axioms	for	the	Natural	Numbers
1.	1	is	a	natural	number.
2.	1	is	not	the	successor	of	any	other	natural	number.
3.	Each	natural	number	n	has	a	successor.
4.	If	the	successor	of	n	equals	the	successor	of	m,	then	n	equals	m.
5.	[The	key	principle	of	induction]	If	a	set	S	of	natural	numbers	contains	1,
and	if	n	belonging	to	S	implies	that	the	successor	of	n	belongs	to	S,	then	S
contains	all	of	the	natural	numbers.

You	see,	then,	how	“1”	and	“+”,	who	walked	hand	in	hand	through	the	first
chapter,	now	take	their	solitary	way	from	Eden.

The	Mind	and	Truth

We	spoke	in	Chapter	One	of	the	Alcibiades	Humor	in	every	mathematician’s
make-up:	a	brashness	and	daring	that	flouts	convention	and	whose	motto	might
well	be	“Why	not?”	Here	you	have	seen	a	very	different	character	developing:
cautious,	insistent	on	proof,	neurotic	with	doubt.	The	wide	gap	between	insight
and	demonstration	might	lead	you	to	suspect	that	there	were	two	sorts	of
mathematician,	and	you	could	tell	from	a	glance	at	their	monastic	cells	which
were	Jeromes	with	a	lion,	which	Anthonys	subduing	demons.

It	isn’t	like	that.	Riemann	said	“Just	give	me	the	insights.	I	can	always	come
up	with	the	proofs!”	But	his	work	is	strung	with	diamonds	of	dazzling	insights.
The	prolific	eighteenth-century	Swiss	mathematician	Leonhard	Euler	was
renowned	for	his	insights—but	his	proofs	are	gems.	Both	sorts	live	like	two
souls	in	the	Faustian	breast	of	each,	not	at	war	but	in	conversation	with	one
another.



We	could	try	distinguishing	the	halves	of	the	mathematical	brain	along	the
lines	of	the	character	typologies	you	find	in	books	with	such	charming	titles	as
On	the	Psychology	of	Military	Incompetence	(impetuous,	casual	autocrats,	riding
to	battle	in	old	sweaters;	obsessive,	very	clean	authoritarians,	sending	their
troops	by	timetable	into	the	mud).	What	would	we	have?

Caricatures	only,	because	of	the	immense	variety	of	people	who	have
prospered	in	mathematics—the	reticent	and	the	contentious,	the	companionable
and	the	morose—and	because	this	art	is	the	birthright	of	us	all,	so	deep	in	the
structure	of	our	thought	that	it	is	no	respecter	of	origin	or	upbringing,	of
morality,	age,	even	of	sanity	or	madness.	But	since	in	mathematics	we	often
make	headway	in	a	difficult	problem	by	invoking	extreme	cases,	let’s	vivify	the
opposite	poles	of	mathematical	activity—the	drive	toward	insight,	the	urge	to
prove—by	typifying	each	in	men	we	have	already	met:	the	bitter	rivals	Brouwer
and	Hilbert.	Each	had	profound	insights,	each	produced	stunning	proofs—but
Hilbert	longed	to	establish	mathematics	on	unshakable,	impersonal	foundations,
Brouwer	to	free	it	from	logic	and	even	language,	asserting	the	supremacy	of
private	intuition.

For	language,	Brouwer	wrote,	“only	touches	the	outside	of	an	automaton.”
The	soul,	taken	from	the	deepest	home	of	its	still	center,	deteriorates	toward	the
external	world	through	successive	metamorphoses,	in	the	last	of	which	we
merely	enforce	our	wills	on	one	another	via	language.	Mathematicians	generally
believe	that	for	all	they	invent	their	paths,	the	landscape	through	which	those
paths	wander	is	out	there,	independent	of	them,	its	granite	truths	indifferent	to
their	climbing.	Brouwer	turned	away	from	such	a	view	in	disgust.	These	truths,
he	said,	are	“fascinating	by	their	immovability	but	horrifying	by	their
lifelessness,	like	stones	from	barren	mountains	of	disconsolate	infinity.”

Instead,	he	saw	mathematics	as	rooted	in	the	mathematician’s	life	and	mind,
which	held	the	monopoly	on	certainty.	Experience,	axioms,	logic	itself	had
nothing	to	do	with	it,	but	intuition	proceeded	from	primordial	elements	to	a	free
and	limitless	unfolding.	He	dismissed	any	connection	of	intuition	to	the	old
Gnostic	image	of	an	inner	light,	or	to	any	sort	of	Collective	Mind:	it	was	the
individual	mind	that	mattered—in	fact,	Brouwer’s	mind.

When	he	enrolled	at	the	University	of	Amsterdam	at	sixteen,	in	1897,	he
found	himself	surrounded	by	people	who	couldn’t	understand	him	and	whom	he
couldn’t	stand.	He	made	solitary	pilgrimages	to	Italy,	walking	there	and	back	in
his	large,	dark	cloak.	He	retreated	again	and	again	to	his	thatched	hut	in	the
forest,	far	from	the	world’s	motley	plurality,	to	think	mathematics	directly,	with
eyes	closed.	For	this	was	a	game	played	in	silence,	as	Brouwer’s	follower



Hermann	Weyl	later	put	it.	What	the	mind’s	eye	saw	were	constructions	fitting
together.	How	reminiscent	this	is	not	only	of	the	Stoic	hand	fitting	the	concept	it
grasped	but	also	of	the	ancient	Greek	philosopher	Xenophanes,	who	wrote	that	it
wasn’t	fitting	for	God	to	move,	but	“without	toil	he	shakes	all	things	by	the
thought	of	his	mind.”

L.	E.	J.	Brouwer	(1881–1966).	Like	Descartes	and	Gauss,	he	had	his	best
insights	in	bed.

By	1905	Brouwer	realized	that	causal	thinking	fell	into	mere	low	cunning
and	was	fundamentally	immoral.	Human	nature	was	the	real	villain:	mankind
was	like	a	bird	arrogantly	gulping	up	its	own	nest,	as	the	Dutch	had	interfered
with	mother	earth,	gnawing	and	mutilating	her	with	their	dykes.	Driven	and
aided	by	their	characteristic	human	ability	to	reason,	“some	even	start
searching,”	he	wrote,	“for	the	foundations	of	their	science	…	trouble	increases
and	they	go	completely	crazy.	Some	in	the	end	quietly	give	up	…	they	grow
bald,	short-sighted	and	fat,	their	stomachs	stop	working	…”

He	had	a	remarkable	ability	to	attack	positions	he	himself	held,	as	though	he
had	excluded	any	ground	between	contrary	beliefs.	A	devotee	of	“air	and	mud
baths,”	he	wrote	in	1905:

…these	inept	people	then	take	air	baths,	and	when	they	discover	the	effect	of	sunrays
they	take	to	light	baths	and	sun	baths,	and	finally	to	dusk	baths,	night	baths,	moon
baths,	star	baths,	forest	baths	and	meadow	baths	as	soon	as	somebody	proclaims	them
to	be	healthy.

Brouwer’s	troubles	increased	through	his	combative	life	as	he	failed	to
impose	his	will	on	his	colleagues,	lost	his	friends,	and	alienated	all	but	his	docile



wife	and	a	shadowy	secretary.	In	the	end,	although	he	remained	long-haired,
lean,	and	fit,	he	quietly	gave	up	promoting	his	revolutionary	view	of	the	way	the
mind	builds	up	mathematics	outside	of	language:	a	view	each	of	us	shares	at	the
moment	of	insight.	What	Wordsworth	wrote	of	Newton	better	fits	Brouwer:	his
was

…	a	mind	for	ever
Voyaging	through	strange	seas	of	Thought	alone.

Meanwhile,	what	of	Hilbert	and	his	opposite	desire	to	release	mathematics
from	the	vagaries	of	personality	into	universal	acceptance?	The	field	axioms
made	sense	of	what	was	built	on	them,	but	what	made	sense	of	the	axioms?
Doubt,	as	racking	as	a	dry	cough,	shook	the	body	of	thought—for	what	did	self-
evident	mean,	after	all?	At	best	it	implied	some	sort	of	circular	reasoning;	the
alternative	was	a	regress	of	justifications	like	the	endless	tower	of	turtles
supposed	to	support	the	world—not	an	alluring	infinity.	And	then,	with	the	late-
nineteenth-century	reduction	of	mathematics	to	set	theory,	cracks	in	the	form	of
paradoxes	began	to	open	in	the	foundations	themselves.	The	rot	was
everywhere.	Doubts	increased	about	Euclidean	geometry’s	claim	to	the	throne,
with	the	pretenders	from	France,	Russia,	Hungary,	and	Germany	brandishing
their	credentials.	For	each	pictured	space	differently	(Euclid’s	surfaces	were	flat,
the	others’	differently	curved),	and	nothing	about	them	revealed	which	was	the
correct	portrait	of	actual	space.	And	there	was	the	infinite.	How	could	we,	for
example,	accept	Dedekind’s	claim	that	the	irrationals	really	existed	when,	like
anything	in	existence,	they	would	have	to	take	shape	in	finite	time—yet	lack	of	a
pattern	meant	having	to	work	out	each	of	their	infinitely	many	decimal	places?
Besides,	his	cuts	required	treating	the	sets	that	defined	them	as	already
completed	infinities.



David	Hilbert	(1862–1943).	From	a	set	of	postcards	of	the	Mathematics
Department	sold	by	the	University	of	Göttingen	to	tourists.

It	would	have	been	folly	to	beg	these	questions	by	shifting	the	burden	onto
some	other	subject,	as	if	mathematics	were	descriptive	of	the	world	so	that
physics,	say,	or	chemistry	or	the	physiology	of	the	brain	would	be	ultimately
responsible	for	its	axioms—and	in	need	therefore	of	axioms	in	its	turn.	Nor
could	doubting	simply	be	dismissed:	it	was	as	necessary	a	component	of	the	lust
to	know	as	aggression	is	of	the	sexual	drive,	though	equally	destructive	in
isolation.

But	what	about	going	back	to	the	beginning	of	mathematics	and	revisiting
and	revising	the	Pythagorean	vision?	The	harmony	there	could	be	rethought	in
terms	of	a	harmony	among	the	axioms.	If	they	were	consistent	with	one	another,
so	that	no	paradox	could	follow	from	their	workings,	a	rounded	body	of
connections	would	grow	musically	from	them.	And	if	such	axioms	were	also
complete—sufficient,	that	is,	for	deciding	the	truth	of	every	coherent	statement
these	workings	produced—then	such	a	body	would	be	a	corpus	of	mathematics.
Hilbert	had	already	shown	that	the	rival	geometries	stood	or	fell	together:	if	one
was	consistent,	they	all	were;	if	one	harbored	a	contradiction,	so	did	they	all	(see
the	appendix	to	this	chapter	for	how	he	did	this).	He	showed	too	that	their
consistency	depended	on	that	of	the	axioms	for	the	natural	numbers.	The	great
project	that	he	announced	for	the	new	century	was	therefore	clear:	logically	to
establish	that	these	axioms	were	consistent	and	complete,	so	that	arithmetic
would	stand	in	solitary	splendor—and	physics	or	astronomy	could	later	sort	out
which	of	the	equally	plausible	geometries	happened	to	fit	the	observable	facts.



How	wonderful	to	collect	together	a	harmonious	set	of	foundations	on	which
to	build	the	edifice	of	mathematics.	Nothing	about	this	enterprise,	however,
guaranteed	that	the	axioms	would	be	an	indubitable	distillation	of	reality:	that
they	were	worthy	of	belief,	as	the	word	“axiom”	meant	to	the	Greeks.	They
would	now	be	more	like	legal	stipulations,	or	“postulates”	in	the	Latin	sense	of
agreements	held	merely	for	the	sake	of	the	argument.	There	would	be	no	more
hope	of	chasing	them	back	to	unquestionable	truths	than	of	following	the
etymology	of	“postulate”	to	anything	less	fanciful	than	petitioning	kings	or
nominating	bishops	or	wooing	and	praying.

To	think	of	the	axioms	so	is	to	recognize	mathematics	as	a	work	of	art,	the
free	play	of	human	thought;	and	the	counters	in	this	play,	finite	or	infinite,
would	coexist	in	the	harmony	of	consistency.	But	“play”	is	a	word	with	a	double
lid,	like	a	magician’s	hat:	what	goes	in	as	the	ace	of	spades	comes	out	a	rabbit.
Being	the	playthings	of	the	gods,	said	Plato,	we	should	play	the	noblest	games;
yet	games	are	what	you	are	supposed	to	put	away	with	adulthood.	Didn’t	it
trivialize	our	one	contact	with	certainty	to	make	its	foundations	just	coherent—
as	whimsical	as	are	the	rules	of	Mah-Jongg?	Wouldn’t	mathematics	thus	be
reduced	to	no	more	than	a	meaningless	system,	the	ultimate	glass-bead	game?
Wasn’t	that	where	the	Formalist	impulse	was	driving	us?

An	equally	frightening	consequence	lurked.	If	mathematics	were	shown	to	be
a	flawless	machine	that	spun	gears	of	definition	past	levers	of	logic,	what	need
was	there	for	any	human	to	do	more	than	set	it	in	motion?	The	clockwork	of
1900,	the	computer	of	2000,	could	print	out	its	theorems	without	our	organic
interference.	Where	then	would	be	the	glory	of	invention	and	the	only	claim	our
littleness	has	to	the	largeness	of	things?

The	Intuitionists	attacked.	Without	saying	where	the	axioms	came	from,
wrote	the	great	French	geometer,	Poincaré,	it	would	be	as	easy	to	postulate	one
as	another,	leaving	our	efforts	arbitrary	and	incomplete.	He	himself	suggested
that	our	primary	intuition	was	of	mathematical	induction.	Brouwer	put	his	finger
on	the	key	issue:	existence.	Just	because	a	mathematical	system	was	consistent,
did	that	make	it	exist?	“A	false	theory	is	false,”	said	Brouwer,	“even	if	not
halted	by	a	contradiction,	just	as	a	criminal	act	is	criminal	whether	or	not
forbidden	by	a	court.”	Only	what	thought	can	construct	truly	exists;	and	since
what	exists	can’t	at	the	same	time	not	exist,	existence	implies	consistency.
Hilbert’s	formal	exercise	might	be	ornate	as	a	reliquary,	but	only	the	relic	it
housed—the	shard	of	intuition—worked	the	miracles	of	mathematics.

Someone	with	a	medieval	turn	of	thought	might	have	brought	up	what	we’ll
call	“The	Great	Converse”	in	Hilbert’s	defense.	The	medieval	view	was	that



creatures—the	created—glorify	God;	so	if	there	were	more	creatures,	then	the
greater	would	be	the	glorification.	Hence	if	something	could	possibly	exist,	it
would	exist.	The	world—as	crowded	with	beings	as	the	Unicorn	Tapestry—
would	then	more	loudly	sing	God’s	praise.	In	Hilbert’s	terms	this	would
translate	to:	since	that	which	is	consistent	can	exist,	therefore	it	must.	From	this
medieval	standpoint,	proving	consistency	would	be	enough	to	guarantee
existence.	Is	it	conceivable	that	Hilbert	himself	ever	held	this	view?	Could
mathematical	existence	have	meant	this	much—not	this	little—to	him?	He	wrote
to	the	profound	logician	Gottlob	Frege	on	December	29,	1899:

You	write:	“I	call	axioms	propositions	that	are	true	but	are	not	proved	because	our
knowledge	of	them	flows	from	a	source	very	different	from	the	logical	source,	a
source	which	might	be	called	spatial	intuition.	From	the	truth	of	the	axioms	it	follows
that	they	do	not	contradict	each	other.”	I	found	it	very	interesting	to	read	this	sentence
in	your	letter,	for	as	long	as	I	have	been	thinking,	writing,	and	lecturing	on	these
things,	I	have	been	saying	the	exact	opposite:	If	the	arbitrarily	given	axioms	do	not
contradict	each	other	with	all	their	consequences,	then	they	are	true	and	the	things
defined	by	the	axioms	exist.	For	me	this	is	the	criterion	of	truth	and	existence.

Of	course	you	could	see	Hilbert	as	simply	making	sense	of	Peacock’s
Principle	of	Permanence.	It	didn’t	matter	what	the	objects	of	mathematics	were
called	or	what	the	symbols	stood	for:	the	relations	among	them	were	the	issue,
and	it	was	essential	to	guarantee	that	the	axioms	begetting	those	relations	led	to
no	contradictions.	If	the	basement	of	your	building	is	filling	with	water,	you
have	to	drain	it	before	you	can	go	back	to	furnishing	the	rooms.	Once	the
foundations	were	secure,	imagination	and	meaning,	the	play	of	thought	and	the
freedom	of	mind,	could	return,	and	personality	decorate	the	impersonal	frame.

The	arguments	between	Brouwer	and	Hilbert,	at	least,	were	soon	drained	of
content	and	degenerated	into	mere	form.	Brouwer	walked	out	of	a	dinner	where
Hilbert	had	been	praised.	Hilbert	threw	Brouwer	off	the	board	of	the	journal
they	both	edited.	They	skirmished	over	who	had	published	what	first,	and	which
mathematicians	should	go	to	a	conference	in	Bologna,	embittered	as	only	angels
who	fall	out	can	be.

Brouwer’s	Silence	and	Hilbert’s	Laugh

Listening	to	them	as	amplifiers	of	the	two	voices	in	everyone	who	does
mathematics,	the	message	for	us	is	important	and	complex.	It	has	to	do	with	the
entangled	roots	of	certainty	and	imagination.	After	a	century	such	as	the	last	you



might	cynically	think	that	nothing	indubitable	was	left,	nor	anything	that
couldn’t	be	imagined.	But	imagination	isn’t	fantasy:	it	means	being	able	to	focus
ever	more	sharply	on	detail;	and	the	wonder	remains	that	the	mathematics	we
conjure	up	turns	out	to	describe	the	singular	world	we	find	ourselves	in.	We	will
therefore	need	to	attend	sympathetically	to	Hilbert	and	Brouwer,	since	it	is	from
hardly	explored	reaches	in	ourselves	that	their	voices	speak.

Below	their	antipathy	lay	a	surprising	accord,	and	their	lines	of	thought	were
more	parallel	than	skew.	As	could	happen	in	one	of	the	new	geometries	(you
will	see	why	in	Chapter	Eight),	these	parallel	paths	coincided	at	their	ends.	Each
began	his	career	convinced	that	Kant	was	basically	right:	mathematics	grew
from	intuitions	shaping	what	our	senses	took	in,	even	before	we	had	any
experiences—a	shaping,	in	fact,	that	allowed	us	to	experience.	But	the	growing
variety	of	geometries	meant	that	Kant	had	to	be	wrong	in	some	of	the	details.
Gauss	was	the	first	to	spot	this:	the	variety	must	show,	he	said,	that	our
knowledge	of	space	turns	out	to	depend	on	experience;	but	there	are	no
competing	systems	of	number	because	it	alone	comes	from	an	intuition	prior	to
experience.

Hilbert	agreed.	As	part	of	his	doctoral	examination	in	1885	he	defended	the	a
priori	nature	of	arithmetical	judgments	(those,	that	is,	about	the	natural
numbers).	Forty-five	years	later,	in	the	farewell	address	he	gave	to	his	native
city	of	Königsberg,	he	explained	that	after	the	dross	had	been	removed	from
Kant’s	theory,	“only	that	a	priori	will	remain	which	also	is	the	foundation	of
pure	mathematical	knowledge”—a	foundation,	he	said,	of	intuitive	insight.

William	Rowan	Hamilton,	the	Irish	mathematician	we	met	briefly	before,
wrote	prophetically,	as	early	as	1833,	that	the	intuition	of	time	was	the	sole
source	of	number.	With	space	now	banished	away	by	the	purifiers,	Kant’s
symmetrical	foundations	were	broken,	and	the	asymmetry	took	hold	of	the
young	Brouwer	even	more	violently	than	it	did	Hilbert.	He	too	defended	the
remaining	bastion,	but	went	beyond	Kant,	by	turning	intuition	from	passive
stamp	to	active	agent.	He	may	never	have	read	Hamilton,	but	like	him	declared
that	time	was	the	primordial	element	from	which	mathematics	came,	and	added
that	the	Primordial	Happening	was	becoming	aware	of	one’s	existing	in	time.
All	of	mathematics	was	made	by	detached	and	silent	reflection	on	this
Happening,	during	which	the	intuiting	mind	grasped	something	of	time’s	reality.
For	this	intuition	yielded	the	two	species	of	time:	the	“1”	and	“2”	from	“Then”
and	“Now”	that	gives	us	the	natural	numbers,	and	the	continuous	flow,	from	the
ever	in-between,	that	gives	us	the	rationals	and	Brouwer’s	version	of	the	reals,
which	for	him	exist	only	up	through	the	decimal	places	we	have	finished



constructing.
Despite	what	sounds	like	the	ascetic	calm	of	that	detached	reflection,

Brouwer	carried	a	world	of	capriccios	darker	than	Goya’s	back	to	his	hut.	One
had	to	be	ever	on	guard	against	impurities	that	might	creep	into	one’s	thought
and	nonintuitive	germs	that	might	be	caught	from	others.	And	while	he	wrote
publicly	of	“the	fullest	constructional	beauty,	the	introspective	beauty	of
mathematics,”	he	jotted	down	in	his	notebook	that	“Mathematics	and	its
application	are	sinful	because	of	the	intuition	of	time	which	is	directly
experienced	as	sinful.”

He	must,	however,	have	been	as	blithe	as	Alcibiades	in	excluding
contradictions	from	his	moods,	to	plunge	as	he	did	with	such	unremitting	vigor
into	the	central	task	of	his	life.	This	was	the	need	to	prove	his	fundamental
theorem.	Since	most	of	mathematics	grows	by	using	functions	(think	of	them	as
rules	or	machines	that	effectively	convert	numerical	inputs	into	numerical
outputs),	Brouwer	had	to	show	that	functions	worked	accurately	on	numbers	as
he	conceived	them:	built	up	in	time.	Natural	numbers	and	rationals	come	well
packaged,	but	irrationals,	as	you	saw	on	pages	27	and	29,	trail	off	fizzing	and
sputtering	like	the	gauzy	tails	of	comets.	Brouwer’s	irrationals	have	two	parts:
the	finite	number	of	places	we	have	made	is	like	the	comet’s	bright	head;	the
rest	is	the	tail	we	see	fading	away.	His	fundamental	theorem	would	prove	that	if
such	a	comet-like	number	entered	into	a	function,	a	specific	and	similarly
comet-like	number	(with	an	equally	finite	head)	would	come	out.	He	hoped	to
prove	that	the	output	would	depend	only	on	the	input’s	safely	constructed	head.

But	his	hopes	lie	scattered	like	Melancholia’s	tools	around	his	abandoned
building.	What	proofs	he	tried	from	1923	onward	all	failed.	The	silence	into
which	he	retreated,	until	he	died	in	1966,	was	broken	only	now	and	again	by
fresh	announcements	of	old	programs,	each	ending	on	the	threshold	of	the
theorem	he	couldn’t	prove.

Hilbert	meanwhile	had	all	but	finished	his	proof	that	the	formal	system	of
arithmetic—Peano’s	axioms—was	consistent	and	complete,	when	a	young
Austrian	logician	named	Kurt	Gödel	conclusively	showed	in	1931	that	no	proof
of	consistency	and	completeness	could	ever	be	made	within	the	system	to	which
it	referred,	as	Hilbert’s	was	meant	to—for	any	system	which	was	strong	enough
to	deal	with	the	mathematics	of	the	natural	numbers.	While	such	a	proof	might
exist	in	a	larger	system	containing	the	first,	its	consistency	would	in	turn	have	to
be	proven	in	a	yet	larger—

And	the	great	fleas	themselves,	in	turn,
Have	greater	fleas	to	go	on;



While	these	again	have	greater	still,
And	greater	still,	and	so	on.

There	was	no	hope,	then,	of	securing	the	axioms	by	Hilbert’s	clever
outflanking	maneuver.	He	and	his	rival	had	moved	through	time,	intent	on	its
expression,	to	have	their	paths	ultimately	coincide	in	failure.	Thousands	of	years
before,	someone	had	written	an	inscription	on	the	base	of	the	Egyptian	statue	of
Neith:	“I	am	all	that	was,	that	is,	and	that	shall	be,	and	no	man	has	lifted	my
veil.”

Was	their	failure	inevitable	because	they	had	risen	past	the	air	that	mind	must
breathe?	Or	had	their	counter-strivings	managed	to	raise	mathematics	to	a	higher
level?	In	his	last	publicly	spoken	words—a	recording	of	the	1931	radio
broadcast	still	exists—Hilbert	said	there	could	be	no	such	thing	in	mathematics
as	an	unsolvable	problem.	“Wir	müssen	wissen.	Wir	werden	wissen,”	he
concluded:	We	must	know.	We	shall	know.	And	his	biographer	says	that	if	you
listen	closely	to	the	recording	you	will	hear,	through	the	crackle,	a	faint	sound:
Hilbert	laughing.

The	tension	between	Brouwer	and	Hilbert	draws	large	the	contrary	poles	in
all	who	practice	this	art,	showing	mathematics’s	tensile	strength—just	as	the
weight	of	its	compiled	conclusions	shows	its	compressive.	Their	struggle
reached	its	climax	between	the	wars,	but	we	are	always	between	two	wars.	The
clamor	over	the	foundations	of	mathematics	only	sleeps.3	In	this	meantime	no
one	would	ask	for	justification	by	faith—but	might	not	justification	by	works
serve?	For	when	in	the	next	chapters	we	look	at	the	theorems	built	on	those
foundations,	we	will	see	radiant	design	and	darting	inspiration,	the	elegance	of
symmetry	and	asymmetrical	surprises,	preludial	playfulness	and	fugal
solemnity.	Will	this	not	be	convincing	evidence	that	the	tower	of	mathematics	is
firmly	founded?





Chapter	Three

Designs	on	a	Locked	Chest

Languages	grew	confused	as	the	tower	of	Babel	rose—perhaps	because	its
foundation	in	all	the	variety	of	a	common	speech	was	too	broad.	The	tower	of
mathematics	is	inverted,	widening	up	and	outward	from	its	few	axioms.	These
unify	a	greater	and	greater	diversity.

Having	walked	one	turn	up	the	spiral,	we	are	now	where	the	immediate
consequences	of	the	axioms	live.	Here	the	first	questions	that	the	axioms	give
rise	to	can	be	answered.	Is	0	the	only	additive	identity	and	1	the	unique	identity
for	multiplication?	A	proof	as	firm	as	a	handshake	shows	this	is	so,	along	with
another,	that	each	number	has	only	one	inverse	(the	proof	isn’t	in	the	eating	but
the	Appendix).	It	is	on	this	turn	that	the	proof	you	have	already	seen,	that	a	·	0	=
0,	is	at	home;	and	it	is	here	that	the	row	about	dividing	by	0	is	settled.

“I	can	more	easily	imagine	cutting	something	up	zero	times	than	I	can	a
million	times!”

“Only	God	can	divide	by	zero.”
“You	can	multiply	by	zero,	and	division	is	paired	with	multiplication,	so	you

can	divide	by	zero.”
The	keeper	of	the	axioms	comes	out	of	his	shop	holding	his	favorite

instrument,	the	proof	by	contradiction.
“Assume,”	he	says,	“that	you	could	indeed	divide	by	0.	That	means	0	has	a

multiplicative	inverse,	just	like	any	other	number.	My	axiom	M4,	about
multiplicative	inverses,	guarantees	that

so	if	n	=	0,

“Now	choose	a	number,	and	I’ll	choose	a	different	one;	I’ll	call	yours	a	and



mine	b.	So	a	≠	b.	If	you	feel	that	a	card	was	forced	on	you,	remember	my	third
axiom	of	multiplication.	It	said	that	there	were	indeed	at	least	two	different
numbers:	1	≠	0;	or	if	you’d	rather	align	yourself	with	Brouwer,	1	is	different
from	2.

“And	now	we	will	reach	our	goal	together,	in	the	way	of	mathematics,	by
building	on	previous	work.	We	know	that	a	·	0	=	0	and	b	·	0	=	0,	so

a	·	0	=	0	=	b	·	0,

hence

a	·	0	=	b	·	0.

“Multiply	each	side	of	this	equation	by	the	supposed	inverse	of	0,	 :

Now	use	the	Associative	Axiom	of	Multiplication	to	shift	the	parentheses:

But	we	saw	that	0	·	 	would	have	to	be	1,	so	what	we	have	is

a	·	1	=	b	·	1,

in	other	words,

a	=	b;

and	this	contradicts	a	being	different	from	b.	Since	the	logic	of	each	step	was
sound,	the	only	thing	that	could	have	gone	wrong	was	assuming	that	 	exists—
that	is,	that	you	could	divide	by	0.”

This	sort	of	proof,	like	close-up	magic,	is	over	so	quickly	that	it	takes
walking	slowly	around	it	to	convince	yourself	of	its	legitimacy	and	importance.
The	arguments	over	the	centuries	about	whether	 	was	0	or	1,	indefinite	or
infinite,	have	been	settled	in	a	moment:	none	of	the	above.

Farther	along	this	first	tier	lies	the	answer	to	a	puzzle	that	has	put	too	many



people	off	math	forever,	convinced	that	its	dicta	were	arbitrary	or	spiteful:	for
why	should	the	product	of	two	negative	numbers	be	positive?	We	won’t	be
helped	by	remarking	that	two	wrongs	don’t	make	a	right,	and	we	can’t	get	no
satisfaction	from	double	negations	being	assertions.	J.	B.	Brown,	writing	in	a
1936	Punch,	speaks	for	us	all:

Long	ago,	when	a	small	scrubby	schoolboy
A	mixture	of	Etons	and	ink
(Eheu	fugaces!	How	time	simply	races!
Said	somebody,	Horace,	I	think),
Whatever	the	lesson	I	read	it	and	said	it
Without	the	least	trouble	or	fuss−
But	I	never	could	see	how	on	earth	it	could	be
That	−	plus	−	made	−
But	−	times	−	made	+

So,	just	as	the	ancient	Achilles
Had	his	heel	for	opponents	to	pink,
The	armour,	it’s	plain,	of	my	versatile	brain
Has	its	single	assailable	chink.
Must	I	always	in	ignorance	wander?	I	ponder—
For	ever	be	limited	thus?
Or	will	it	be	clear	ere	I	vanish	from	here
Why	–	plus	–	is	–
But	–	times	–	is	+?

Mathematics	is	synthetic,	so	again	let’s	build	on	our	recent	gains.	Instead	of	a
proof	by	contradiction,	we	will	spin	out	from	the	axioms	a	web	fit	to	catch	this
mystery.	If	a	and	b	are	positive	numbers,	we	want	to	know	whether	(–a)	·	(–b)	is
negative,	positive,	or	what.

We	certainly	sense	that	a	positive	times	a	negative	is	negative:	owing	4
people	$3	puts	you	$12	in	debt,	and	the	Commutative	Law	assures	us	that	4	·	(–
3)	is	the	same	as	(–3)	·	4:	a	negative	times	a	positive	is	negative.	You’ll	find	a
more	rigorous	proof	in	the	Appendix.

We	are	now	ready	to	learn	what	(–a)	·	(–b)	is.	By	the	Additive	Inverse
Axiom,	b	–	b	=	0.	Multiply	both	sides	of	this	equation	by	–a:

(–a)	·	(b	–	b)	=	(–a)	·	0.

Since	anything	times	zero	is	zero,	this	simplifies	to

(–a)	·	(b	–	b)	=	0.



Ignore	the	fact	that	(b	–	b)	is	0:	it	won’t	get	us	anywhere.	Instead,	look	at	the
equation	from	the	different	angle	provided	by	the	Distributive	Axiom;	then	it
turns	into

(–a)	·	b	+	(–a)	·	(–b)	=	0.

From	our	previous	discussion,	we	know	that	(–a)	·	b	is	–(a	·	b),	so	our	latest
equation	can	be	rewritten	as

–(a	·	b)	+	(–a)	·	(–b)	=	0.

Pause	for	a	moment	to	consider	this.	–(a	·	b)	plus	something—our	mystery
guest—is	zero.	But	we	already	know	what	you	have	to	add	to	–(a	·	b)	in	order	to
get	zero:	its	additive	inverse,	the	positive	number	a	·	b!

So

(–a)	·	(–b)	is	a	·	b	in	disguise:

(–a)	·	(–b)	=	a	·	b.

The	product	of	our	two	negatives	is	positive,	no	matter	how	happy	and
undeserving	a	may	appear,	or	how	wretched	and	meritorious	b.

We	can	only	hope	that	this	became	clear	to	J.	B.	Brown	ere	he	vanished	from
here,	and	are	grateful	that	the	axioms	have	let	us	prove	the	truth	of	what
confounded	our	intuition.	Have	negative	numbers	definitively	moved
mathematical	thought	into	abstraction,	where	the	dance	of	symbols	becomes
vivid	instead	of	figures?	Or	do	you	find	the	visual	proof	in	the	appendix	to	this
chapter	not	only	convincing	but	illuminating?	Notice	that	in	our	dances	the	same
steps—axioms	of	additive	and	multiplicative	inverses,	and	distributivity—occur
again	and	again.	This	is	because,	like	square	dances	in	the	confines	of	a	barn,
little	room	to	maneuver	leads	to	intricate	patterns.	The	more	elaborate	these
become,	each	linking	on	to	the	last,	the	more	such	patterns	will	all	seem	to	lodge
in	a	sense	at	once	more	ancestral	and	more	abstract	than	sight.	It	is	as	if	the
predominance	in	our	brains	of	the	visual	cortex	masked	a	different,	deeper
apprehension—of	time,	then,	or	something	akin	to	music:	structure	itself.



The	Primal	Secret

Whatever	we	find	as	we	spiral	up	the	tower	appears	to	be	made	by	addition	or
multiplication.	Addition	you	know	like	the	back	of	your	hand.	Its	axioms	wholly
describe	it	and	its	basic	building	block	is	the	number	1.	Since	the	axioms	for
multiplication	are	all	but	the	same	as	those	for	addition,	shouldn’t	you	know	it	as
well	as	your	palm?	The	two	operations	have	different	identity	elements,	0	and	1;
the	roles	they	play	in	the	distributive	axiom	differ—and	that’s	all.	But	what	are
the	building	blocks	of	multiplication?	The	composite	number	24	breaks	down
into	a	sum	of	1s,	but	a	product	of	what—2	and	12,	or	3	and	8,	or	4	and	6?	If	you
look	for	the	atomic	factors	of	24	you	end	up	with

2	·	2	·	2	·	3,

or	23	·	31.	These	factors	are	the	atoms	of	multiplication	because	no	further	factor
(save	the	anonymous	1)	divides	them.

They	are	called	the	prime	numbers,	and	simple	as	they	are	to	describe,
nothing	in	all	of	mathematics	has	turned	out	to	resist	more	stubbornly	our	efforts
at	understanding.	Here	we	are,	wholly	within	the	circle	of	the	natural	numbers,
where	it	is	equally	natural	to	ask:	what	pattern	is	there	to	the	primes,	and	how	do
they	behave?	Insights	into	these	questions	are	so	few	and	far	between	that	each
is	celebrated	as	a	major	victory,	and	people	otherwise	lost	to	time	are
remembered	for	one	telling	conjecture	about	them.

Even	the	most	elementary	question	brings	us	up	short:	how	many	primes	are
there?	The	first	few	are

2,	3,	5,	7,	11,	13,	17,	19,	23,	29,	31	…4

Looking	at	that	line-up	and	consulting	the	inner	oracle	of	your	intuition,	you
might	be	tempted	to	think	that	the	primes	went	on	forever,	since	the	natural
numbers	do,	and	these	are	among	them.	Or	you	might	reason	that	the	farther	out
you	go,	the	fewer	there	will	be,	since	the	larger	the	number,	the	more	factors	pile
up	behind	it—so	after	some	point	the	primes	might	simply	give	out.	This
argument	is	supported	by	a	preliminary	survey:	there	are	25	primes	between	1
and	100,	6	between	1,000,000	and	1,000,100,	but	only	2	between	10,000,000
and	10,000,100.	We	are	wise	enough	in	the	vagaries	of	numbers	by	now,
however,	to	sample	only	as	a	geologist	studies	a	pebble:	not	to	deduce	the
mountain	from	it,	but	to	build	up	the	evidence	in	his	trays.



The	very	finite	proof	that	in	fact	the	number	of	primes	is	infinite	stands
framed	in	Euclid—so	it	is	at	least	2,300	years	old.	It	needs	only	the	briefest
introduction.	When	we	say	“divides”	in	this	chapter	on	Number	Theory	we	will
always	mean	“without	a	remainder”—so	3	divides	9	but	not	10.	Now	we	are
prepared	to	follow,	as	if	they	were	our	own,	the	thoughts	of	a	mind	so	very	far
from	ours	in	time	and	context.

Euclid	wants	to	prove	that	there	is	no	last	prime.	He	does	this	by	showing
that	no	matter	how	many	primes	you	have,	you	are	forced	to	produce	another.
Multiply	together	all	the	primes	you	can	think	of	in	order,	stopping	at	some
prime	p,	and	call	the	product	of	them	all	n:

2	·	3	·	5	·	7	·	11	·	13	·	…	·	p	=	n.

Clearly,	every	single	one	of	these	primes	divides	n.
But	if	we	have	n,	we	must	also	have	n	+	1.	This	seriously	large	number	is

very	much	greater	than	any	prime	in	the	collection,	but	it	can’t	be	divided	by
any	of	the	primes	from	2	to	p,	since	division	by	any	of	them	would	leave	a
remainder	of	1.

You	would	like	to	conclude	now,	with	glee,	that	n	+	1	must	therefore	be
prime—but	we	have	to	attend	first	to	a	small	point	of	order.	n	+	1	might	not
have	any	of	the	primes	from	2	to	p	as	a	factor,	yet	it	might	still	be	composite	if	it
had	a	prime	factor	q	somewhere	in	the	great	gulf	between	p	and	n	+	1.	Well	and
good:	then	q	would	be	the	new	prime.

This	flash	of	a	proof	lights	up	the	infinite	vista	of	natural	numbers	enough	for
us	to	see	that	the	primes	in	their	niches	are	stationed	endlessly	there.	Its	beauty
lies	not	only	in	the	beam’s	pure	light,	but	in	achieving	so	much	with	so	little.

The	twentieth-century	mathematician	Paul	Erdos	often	spoke	of	“The	Book”:
the	book,	he	meant,	in	which	God	keeps	all	the	most	beautiful	proofs.	“You
don’t	have	to	believe	in	God,”	said	Erdos,	“but	you	do	have	to	believe	in	The
Book.”	Everyone	has	his	own	edition	of	this	book,	but	Euclid’s	proof	of	the
infinitude	of	primes	is	likely	to	be	in	them	all.



Erdos	at	eight.	The	book	in	his	hand	is	most	likely	not	yet	The	Book.

After	such	a	breakthrough	you	would	expect	hordes	of	results	about	the
primes	to	start	pouring	in.	We	know	that	there	are	infinitely	many	multiples	of	3,
and	if	asked	for	a	formula	which	would	give	us	any	particular	one,	such	as	the
eighteenth,	could	do	so	with	ease	(54),	by	way	of	the	expression	3n.	Yet	even
this	we	still	can’t	do	for	the	primes.	A	clever	Greek	named	Eratosthenes,	in	the
third	century	B.C.,	did	make	use	of	such	patterns	to	sieve	out	the	primes	in	a
purely	mechanical	way—not	by	a	formula	but	from	what	all	formulas	like	3n
left	behind.	This	is	the	way	it	worked.

Write	out	the	natural	numbers	from	2	on	for	as	long	as	you	like,	then	cross
out	the	multiples	of	2,	then	of	3,	then	of	5—but	leave	2,	3,	and	5	themselves
standing.	The	next	number	you	come	to	has	to	be	a	prime,	so	leave	it	in	place
but	cross	out	all	its	multiples,	and	repeat	the	process.	What	you	are	left	with	will
be	just	the	primes	scattered	through	your	original	table.

Before



During

After

Ingenious?	Yes.	A	work	of	genius?	No.	Eratosthenes	seems	to	have	been	the
first	person	for	whom	that	English	put-down	was	used,	“a	Beta	mind.”	His
device	would	allow	slaves	then	and	computers	now	to	spell	out	the	primes,	but
without	any	insight	into	their	structure—without	even	any	need	to	know
multiplication	tables.	Repeatedly	counting	up	to	three,	up	to	five,	up	to	seven,
and	so	on	suffices,	and	isn’t	to	be	despised:	you	will	see	in	Chapter	Nine	how
counting	alone	will	open	windows	on	a	landscape	more	dramatic	than	any	in
fantasy	fiction.

An	enormous	number	of	primes	has	been	amassed	since	Eratosthenes’s	day,
and	our	casual	statistics	on	page	76	seem	to	show	them	dwindling	away	the
farther	along	we	go—yet	now	we	can	add:	without	ever	disappearing.	Perhaps	if
you	laid	out	regular	intervals	you	would	find	steadily	fewer	in	each,	like	settlers
in	the	first	westward	scatter	past	the	Appalachians.	To	test	this,	let’s	look	by
hundreds	at	the	stretch	from	1	to	1000:

Between The	Number	of	Primes	Is



1	and	100 25
100	and	200 21
200	and	300 16
300	and	400 16
400	and	500 17
500	and	600 14
600	and	700 16
700	and	800 14
800	and	900 15
900	and	1000 14

This	is	faintly	disquieting:	the	number	of	primes	bumps	down	and	up	as	it
declines.	Perhaps	it	will	even	out	as	we	move	much	farther	along:

Between The	Number	of	Primes	Is

1,000,000	and
1,000,100

6

1,000,100	and
1,000,200

10

1,000,200	and
1,000,300

8

1,000,300	and
1,000,400

8

1,000,400	and
1,000,500

7

1,000,500	and
1,000,600

7

1,000,600	and
1,000,700

10



1,000,700	and
1,000,800

5

1,000,800	and
1,000,900

6

1,000,900	and
1,001,000

8

Curiouser	and	curiouser.	As	bumpy	as	before,	but	at	least	the	numbers	are
consistently	lower.	If	we	move	up	to	the	thousand-long	stretch	from	107,	that	is,
10,000,000,	on,	we	might	expect	minor	perturbations,	but	at	least	we	won’t	see
any	interval	with	10	primes	in	it	again—or	will	we?

Between The	Number	of	Primes	Is

10,000,000	and
10,000,100

2

10,000,100	and
10,000,200

6

10,000,200	and
10,000,300

6

10,000,300	and
10,000,400

6

10,000,400	and
10,000,500

5

10,000,500	and
10,000,600

4

10,000,600	and
10,000,700

7

10,000,700	and
10,000,800

10

10,000,800	and
10,000,900

9



10,000,900	and
10,001,000

6

The	law	governing	the	distribution	of	primes	must	be	quite	subtle—for	surely
there	is	some	law.	At	any	rate,	we	haven’t	found	25	primes	in	a	span	of	100
numbers	this	far	out,	or	any	of	those	concentrations	we	saw	between	1	and	1000.
Perhaps	then	the	distribution	of	primes	is	settling	down	toward	some	constant
number	in	any	hundred-unit	run—two,	say,	or	three.	We	last	looked	at	107.	By
the	time	we	accelerate	away	to	the	trillions,	for	example,	we	might	expect	fewer
than	6	in	any	patch	of	100.	Disappointment	again:

Between The	Number	of	Primes	Is

1012	and	1012	+	100 4

1012	+	100	and	1012
+	200

6

1012	+	200	and	1012
+	300

2

1012	+	300	and	1012
+	400

4

1012	+	400	and	1012
+	500

2

1012	+	500	and	1012
+	600

4

1012	+	600	and	1012
+	700

3

1012	+	700	and	1012
+	800

5

1012	+	800	and	1012
+	900

1

1012	+	900	and	1012
+	1000

6



After	having	so	triumphantly	proved	so	long	ago	that	there	are	infinitely
many	primes,	why	are	we	having	such	trouble	in	the	twenty-first	century
answering	this	simple	question	about	their	distribution?	Perhaps	our	approach
has	been	wrong.	Let’s	ask	instead	if	we	will	ever	find	a	gap	larger	than	6
between	consecutive	primes	(6	was	the	gap	between	23	and	29).	There	must	be,
since	there	is,	for	example,	only	one	prime	between	1012	+	800	and	1012	+	900,
hence	a	gap	of	at	least	50.

The	startling	news	is	that	there	are	stretches	of	numbers	a	thousand	long	with
not	a	single	prime	among	them.	More:	there	are	primeless	stretches	a	million
long!	Since	the	primes	never	end,	you	will	come	on	one	eventually	after	such	a
span—which	begins	to	give	a	horrifying	sense	of	how	big	very	big	numbers	are,
and	how	immeasurably	bigger	than	big	the	infinity	of	the	natural	numbers	is.

Yet	we	have	hardly	begun.	There	is	at	least	one	run	of	natural	numbers	a
trillion	long	where	there	are	no	primes	whatsoever;	and	another	ten	trillion	long;
and	another—but	you	probably	think	that	no	human	could	possibly	know	this
for	sure,	or	that	it	would	take	an	equally	gigantic	mind	to	understand	it.	In	fact,
the	proof	is	at	your	fingertips,	so	perversely	beautiful	and	innocently	powerful	is
mathematics.	This	proof	is	a	variation	played	on	Euclid’s	theme.

We	need	a	new	symbol	to	help	us,	and	the	one	commonly	used	is	appropriate
to	the	astonishment	of	our	theorem	that	there	are	strings	of	numbers	as	long	as
you	like	that	haven’t	a	single	prime	in	them.	This	symbol	is	!,	called	factorial.
Written	after	a	natural	number	it	means:	take	the	product	of	all	the	natural
numbers	up	to	this	one.	So	3!	=	1	·	2	·	3	=	6,	5!	=	1	·	2	·	3	·	4	·	5	=	120,	and	n!	=
1	·	2	·	3	·	4	·	…	·	n.

Now	choose	any	number	n	you	like—n	could	be	7	or	93	or	65,537—and
make	the	much	larger	number	n!.	Consider	the	following	string	of	consecutive
numbers:

n!	+	2,	n!	+	3,	n!	+	4,	n!	+	5,	…	,	n!	+	n.

We	don’t	start	with	n!	+	1,	since	it	might	be	prime;	but	n!	+	2	can’t	be,	since	2
divides	each	part	and	hence	is	a	factor	of	the	whole.	In	the	same	way,	3	is	a
factor	of	the	second	number,	4	of	the	third—and	so	on,	up	to	the	last,	of	which	n
is	a	factor.	So	none	of	these	numbers—there	are	n	–1	of	them—can	be	prime!	If
you	want,	then,	to	make	a	string	of	numbers	78	octillion	long	which	is
guaranteed	to	be	without	a	prime,	let	n	be	78	octillion	plus	one	(78	·	1027	+	1	or



78,000,000,000,000,000,000,000,000,001),	and	the	required	numbers	will	run
from	(78	octillion	+	1)!	+	2	to	(78	octillion	+	1)!	+	(78	octillion	+	1).	After	that
prime-free	run,	somewhere,	there	will	be	another	prime	…

A	proof	like	this	makes	you	as	giddy	as	does	looking	too	long	at	the	night
sky,	where	darkness	and	stars	unequally	recede:

This	lonely	hill	was	always	dear	to	me,
And	this	hedgerow,	that	hides	so	large	a	part
Of	the	far	sky-line	from	my	view.	Sitting	and	gazing,
I	fashion	in	my	mind	what	lie	beyond—
Unearthly	silences,	and	endless	space,
And	very	deepest	quiet;	then	for	a	while
The	heart	is	not	afraid.	And	when	I	hear
The	wind	come	blustering	among	the	trees
I	set	that	voice	against	this	infinite	silence:
And	then	I	call	to	mind	Eternity,
The	ages	that	are	dead,	and	the	living	present
And	all	the	noise	of	it.	And	thus	it	is
In	that	immensity	my	thought	is	drowned:
And	sweet	to	me	the	foundering	in	that	sea.5

Just	when	you	think	you	have	come	to	terms	with	the	inhuman	dimensions	of
the	primes,	they	deliver	a	shock	with	a	shiver	of	intimacy	in	it.	For	if	you	go
back	to	the	list	on	page	76	of	the	first	few	primes,	you’ll	notice	that	there	are
some	which	are	only	two	apart:	3	and	5,	5	and	7,	11	and	13,	17	and	19.	By	now
you	would	expect	such	pairs—“twin	primes”	as	they’re	called—to	thin	out	and
disappear	in	the	outer	reaches.	Yet	101	and	103	are	both	prime—and	so	are	809
and	811,	and	3,119	and	3,121,	10,006,427	and	10,006,429.	It	has	long	been
suspected	that	although	they	recede	from	one	another	like	red-shifted	stars,	there
is	an	infinite	number	of	these	twin	primes.	Like	most	of	the	questions	in
mathematics,	this	one	has	yet	to	be	answered,	and	all	we	can	do	thus	far	is	come
up	with	new	champions.	The	largest	twin	primes	on	record,	to	date,	are
1,807,318,575	·	298,305	–1	and	1,807,318,575	·	298,305	+	1.	Each	would	take
about	thirteen	of	these	pages	to	write	out	in	full,	and	would	likely	make	tedious
reading.	The	excitement	lies	in	the	acrobatics	needed	to	find	them	(a	discovery
made	just	as	we	were	writing	these	pages.	For	the	actual	announcement,	see	the
on-line	Annex).

Where	does	that	leave	the	primes?	Irregular	surfacings,	gigantic	gaps,
occasional	twins—we	are	so	used	to	pattern	coalescing	at	last	from	chaos
(reading	the	geological	record	from	strewn	fossils)	that	we	proudly	think:	where
pattern	is,	our	minds	will	find	it.	What	if	after	all,	then,	there	is	no	pattern,	and



multiplication,	unlike	addition,	is	built—built	by	us!—on	utterly	chaotic
foundations?	Could	such	slender	differences	in	the	axioms	of	addition	and
multiplication	lead	to	divergences	this	profound?

Since	there	seems	to	be	no	rhythm	to	the	primes,	let’s	invert	our	way	of
looking	and	ask	if	different	rhythms	carry	different	quantities	of	them.	A	3-
rhythm	starting	with	3—

3,	6,	9,	12,	…

has	only	one	prime:	that	initial	3.	What	about	a	3-rhythm	starting	with	2?

2,	5,	8,	11,	14,	17,	…	.

where	each	number	is	one	less	than	a	member	of	the	3-times	table—so	the	rule	is
that	the	nth	term	of	the	sequence	is	3n	–	1.

A	proof,	very	like	Euclid’s	for	the	infinite	number	of	primes,	will	show	that
there	is	an	infinity	of	primes	even	in	this	sequence.	The	proof	slips	on	like	a
glove.	Assume	there	are	only	finitely	many	primes	in	the	sequence	2,	5,	8,	11,
14,	17,	…	and	so	on,	to	a	last	one,	p.	Now	multiply	all	these	numbers	together,
multiply	that	product	by	3,	and	then	subtract	one.	Call	this	result	m:

m	=	3	·	(2	·	5	·	8	·	11	·	14	·	17	·	…	·	p)	–	1.

m	is	clearly	much	larger	than	p,	the	supposedly	last	prime	in	the	sequence,	and
m	is	also	in	our	sequence,	because	it	is	of	the	form	3n	–	1.	Amazingly	enough,
any	number	of	this	form	has	at	least	one	prime	factor	of	the	form	3n	–	1	(consult
the	Appendix	for	a	proof).	Yet	we	know	from	our	little	discussion,	back	in	the
innocent	days	of	page	77,	that	none	of	the	primes	up	to	p	could	be	that	factor,
since	each	is	already	a	factor	of	3	·	(2	·	5	·	8	·	11	·	14	·	17	·	…	·	p)	and	hence
would	leave	a	remainder	of	2.	So	m	is	either	prime	and	destroys	p’s	haughty
claim	to	be	the	largest	prime	of	this	form,	or	it	has	a	prime	factor	somewhere	in
the	gap	between	p	and	m,	and	this	prime	factor	would	also	have	the	required
form	and	be	larger	than	p.

The	story	of	how	many	primes	there	are	in	such	sequences	was	finally	told	in
1837	by	a	remarkable	man	named	Johann	Peter	Gustav	Lejeune-Dirichlet	(an
ancestor,	a	young	man	from	Richelet—“le	jeune	de	Richelet”—moved	from
Belgium	to	the	Rhineland.	Naturalization	changed	the	spelling	over	time	but
some	ancient	memory	saw	to	it	that,	though	the	“ch”	became	hard,	the	“let”	is



still	pronounced	as	it	was	in	French).	Johann	married	Mendelssohn’s	sister
Rebecca,	and	since	everything	is	connected	to	everything	else,	it	should	come	as
no	surprise	that	Johann	was	taught	by	Georg	Ohm,	whom	we	met	in	the	second
chapter,	and	in	turn	taught	Kronecker,	whom	we	met	in	the	first.	What	Dirichlet
proved—one	of	the	landmarks	in	number	theory—was	that	any	sequence	of	the
form	an	+	b	will	have	infinitely	many	primes	in	it,	as	n	goes	from	1	through	the
natural	numbers;	all	that	is	required	of	a	and	b	is	that	they	have	no	common
factor.

Once	again	we	are	at	a	loss	in	trying	to	see	the	structure	of	the	primes:	no
particular	rhythm	carries	more	of	them	than	another.	Yet	if	we	assume	chaos	we
cannot	but	deduce	despair.	Since	intuition	and	common	sense	have	left	us
stranded,	we	need	an	insight—and	then	a	proof	for	it	to	nestle	comfortably	into.
Gauss—whom	we	saw	as	a	schoolboy	triumphantly	writing	on	his	slate—used
to	contemplate	tables	of	primes	for	sheer	amusement,	the	way	Russians	always
and	the	English	on	country	house	weekends	love	browsing	through	railway
timetables.

He	would	while	away	spare	hours	calculating	in	his	head	which	numbers
were	prime	in	runs	a	thousand	long.	This	sort	of	rambling	among	the	naturals,
like	a	lepidopterist	out	with	his	net,	was	to	gain	him	not	only	a	collection	of
iridescent	creatures	but	give	him	the	basis,	at	last,	for	something	approaching
their	taxonomy.

His	intimacy	with	the	raw	data	led	him	to	mull	over	a	question	with	a
statistical	flavor:	ignoring	the	stuttering	way	they	pop	up,	might	there	yet	be
some	regularity	in	how	the	sheer	number	of	primes	increases?	Let’s	graph	how
many	primes	there	are	up	to	the	number	x	(in	our	diagrams	the	horizontal	axis
will	be	the	inputs:	values	for	x;	and	the	vertical	axis	the	outputs:	number	of
primes	less	than	or	equal	to	x).	This	function	is	commonly	called	π(x),	meaning
the	number	of	primes	less	than	or	equal	to	x	(that	“π”	has	nothing	to	do	with	the
π	from	geometry,	but	was	chosen	so	that	the	Greek	p	would	remind	us	of
“prime”).	So	π(3)	=	2,	since	there	are	two	primes	(2	and	3)	less	than	or	equal	to
3,	π(4)	is	also	2,	and	π(8)	=	4	(2,	3,	5,	7	are	the	primes	less	than	or	equal	to	8).



Carl	Friedrich	Gauss	(1777–1855),	a	mason’s	son	and	the	master	builder	of
mathematics.

Only	the	horizontal	“treads”	matter	in	this	step-graph.	The	vertical	“risers”	are
conventionally	put	in	just	to	give	it	a	coherent	shape.

Here	is	the	graph	of	π(x)	for	x	up	to	100	(in	order	to	accommodate	the	slow
growth	of	the	primes,	we	have	shrunk	the	units	on	the	vertical	axis	until	those	on
the	horizontal	axis	are	about	seven	times	their	size,	so	that	the	graph	looks	much
steeper	than	it	should):



This	rises	by	uneven	steps,	but	on	a	staircase	with	at	least	a	steady	camber	to	it,
so	that	a	brush	stroke	would	make	the	rough	places	smooth—and	a	smooth	curve
stands	a	good	chance	of	representing	a	congenial	function.

Now	when	you	look	at	π(x)	for	x	up	to	50,000,	you	see	such	a	curve:	the
irregularities	have	startlingly	been	spirited	away,	as	the	remote	full	moon	makes
a	perfect	circle	in	the	sky.

Yet	smooth	as	the	curve	may	be,	we	can’t	predict	how	it	will	continue,	or
understand	what	gives	it	the	shape	it	has,	unless	we	discover	a	function	which
accounts	for	it:	a	function	whose	graph	it	is.

The	amazing	fifteen-year-old	Gauss	came	up	with	such	a	function.	He	looked
at	the	data	we	saw	on	page	79–80	and	realized	that	the	ratio	of	x	to	π(x)
increased	by	roughly	2.3	from	one	power	of	10	to	the	next.	2.3?	To	someone
utterly	engrossed	in	mathematics	this	number	will	ring	with	the	familiarity	that
“To	be	or	…”	has	for	a	reader	of	English:	it	is	the	beginning	of	a	famous
exponent.	There	is	a	number	 —an	irrational	close	to	2.7—which	lies	at	the
heart	of	biology	and	economics,	because	it	expresses	organic	growth.	When	 	is
raised	to	about	2.3	you	get	10.	The	eccentric	Scottish	mathematician	John
Napier	cobbled	together	two	Greek	words,	logos	and	arithmos,	to	make



“logarithm,”	for	talking	about	what	exponent	is	needed	to	raise	a	chosen	number
(the	base)	to	reach	the	number	you	want.	Since	“23	=	8”	says	you	must	raise	the
base	2	to	the	power	3	in	order	to	get	8,	Napier	wrote:	the	logarithm	with	base	2
of	8	is	3	(abbreviated	ln2	8	=	3).	The	number	you	need	to	raise	 	to,	in	order	to
get	10,	is	about	2.3	(lne	10	≈	2.3;	most	people	simply	write	ln	10	≈	2.3,	where
“ln”	by	itself	means	with	base	 ).	A	brief	note	in	the	Appendix	explains	 	and	its
logarithm.

Gauss	therefore	leapt	to	the	conjecture—on	the	basis	of	how	the	primes	were
distributed	among	the	first	3,000,000	integers!—that	π(x)	was	closely	followed
by	 .	You	see	here	how	well	the	two	curves	match:

Logarithms	and	irrational	numbers?	How	could	these	creatures	of	realms	so
remote	from	the	naturals	have	any	bearing	on	the	primes?	Perhaps	because	our
looking	is	statistical;	or	because	no	sort	of	number	is	an	island	but	each	is	a	part
of	the	main,	and	the	sea	of	functions	implicates	each	in	all.6

Gauss	was	unable	to	prove	his	conjecture,	which	did	not	become	a	theorem
until	1896,	when	it	was	proved	independently	in	two	very	different	ways	by	two
very	different	men,	who	were	born	a	year	apart	and	died	a	year	apart,	almost	a
century	later;	their	lives	were	to	diverge	radically	from	their	intersection	at	the
proof	of	this	conjecture.	One,	who	gloried	in	the	name	Charles	Jean	Gustave
Nicolas	de	la	Vallée	Poussin,	was	born,	lived,	and	died	in	Louvain,	in	Belgium:
a	professor,	like	his	father	before	him,	at	the	university	there;	survivor	of	two
world	wars	and	fifty	years	of	teaching.	The	other,	Jacques	Hadamard,	was	good
in	all	subjects	but	math	when	at	school	(“In	arithmetic	until	the	seventh	grade	I
was	last	or	nearly	last”);	worked	vigorously	to	clear	his	relative	Dreyfus;	had
two	sons	killed	in	the	First	World	War,	and	fled	from	France	to	America	during
the	second.	Each	sought	a	solution	to	the	clarion	call	of	this	problem	in	the



texture	of	ideas	and	techniques	thickening	around	it,	and	followed	his	separate
clue	out	of	the	labyrinth.

You	will	notice	that	the	graph	of	 	stays	below	π(x)	up	to	x	=	50,000.	Gauss,
endlessly	fecund,	came	up	with	an	even	better	approximation	to	π(x),	this	one
narrowly	overestimating	it,	up	to	at	least	x	=	1,000,000,000.	His	new
approximation,	called	Li(x),	involved	a	notion	at	the	heart	of	calculus,	the
integral:

Here	the	eighteenth-century	elongated	S	denotes	the	area	between	the	x-axis	and
the	curve	traced	by	the	function	(in	this	case	that	function	is	the	reciprocal	of	the
logarithm	function)	between	two	vertical	lines	(here	set	up	at	2	and,	to	its	right,
at	x).

You	see	the	remarkable	accord	between	π(x)	and	Li(x)	up	to	x	=	50,000	(the	area
Li(x)	measures,	after	all,	grows	as	x	grows,	and	like	π(x),	ever	more	slowly):

On	this	scale	you	can’t	even	see	the	difference	between	them,	yet	up	to	very



large	x,	Li(x)	always	overestimates	π(x).	Gauss	remarked	that	for	x	=	400,000,
π(x)	=	33,859	and	Li(x)	≈	33,922.621995—a	difference	of	less	than	.2%.	Does	it
always	overestimate?	Strangely	enough,	no.	Somewhere	very	far	out,	π(x)
becomes	larger	than	Li(x).	We	don’t	yet	know	where	this	happens,	but	it	has
been	shown	to	be	past	1020,	and	is	likely	to	be	around	1.39822	·	10316.	This
number,	far	greater	than	the	number	of	particles	in	the	universe	(a	mere	1075	or
so),	is	no	more	than	a	peak	in	the	mountainous	landscape	where	number	theorists
stride.	Once	past	their	first	crossing,	Li(x)	and	π(x)	exchange	places	infinitely
many	times	as	they	draw	closer	and	closer	together.

The	ratio	 	that	appears	in	this	integral	turns	out	to	have	a	close	relative	that
tells	us	something	about	the	distribution	of	twin	primes—even	though	we	still
have	no	proof	that	there	are	infinitely	many	of	them!	A	great	deal	of	modern
work	allows	us	to	say	that	for	any	number	a,	the	number	of	twin	primes	in	a	run
of	naturals	from	x	to	x	+	a	will	be	close	to

(for	purists,	1.3	is,	somewhat	more	precisely,	1.3203236316	…).	This	estimate
predicts	584	twin	primes	between	108	and	108	+	150,000,	and	601	have	been
found.	It	predicts	166	between	1015	and	1015	+	150,000,	and	161	have	been
found.

Even	the	great	gaps	we	saw	yawning	amid	the	primes	can	be	measured	by
logarithms.	The	length	of	the	largest	prime-free	gap	up	to	the	number	x—call
this	g(x)—is	well	approximated	by	(ln	x)2:



Looking	at	the	distribution	of	the	primes,	the	contemporary	mathematician
Don	Zagier	wrote	that	he	had	“the	feeling	of	being	in	the	presence	of	one	of	the
inexplicable	secrets	of	creation.”	Certainly	the	need	to	make	excursions	into
mathematical	continents	so	remote	from	the	naturals	in	order	to	bring	back	some
understanding	of	them,	has	an	effect	like	music’s	on	our	minds:	how	can
vibrating	brass	and	wire,	gut	and	air,	set	up	such	abstract	poignancy	within	us?

What	are	the	hints	we	should	follow:	which	are	beacons,	which	false	fires?	Is
it	important	to	know	if	the	number	of	twin	primes	is	indeed	infinite?	What	about
the	primes	that	are	“palindromic,”	like	101,	373,	and	929—does	it	matter	if	there
is	an	infinite	number	of	them	too?	Or	the	“counting	primes”	such	as
1,234,567,891	and	12,345,567,8901,234,567,891	and	(this	way	madness	lies)
1,234,56	7,891,234,567,891,234,567,891?	The	“topping	and	tailing”	primes:
you	can	remove	digits	from	either	end	of	739,397	and	what’s	left	remains	prime;
you	can	take	as	many	digits	as	you	like	from	the	tail	of	739,391,133	or	from	the
top	of	357,686,312,646,216,567,629,157	and	each	is	still	prime;	do	we	care	if
there	is	an	infinity	of	these?	Will	hidden	vistas	open	if	we	one	day	prove	the
250-year-old	conjecture	of	Christian	Goldbach,	that	every	even	number	from	4
on	is	the	sum	of	two	primes?	It	is	the	sole	memorial	to	the	dilettante	son	of	a
Königsberg	pastor,	who	established	the	pattern	for	the	education	of	future	Tsars,
and	corresponded	in	elegant	French,	German,	and	Latin	with	every	renowned
mathematician	of	his	era,	asking	difficult	questions	(for	it	marks	our	kind	that
we	know	how	to	pose	so	many	more	questions	than	we	know	how	to	answer).
As	of	1998,	Goldbach’s	conjecture	was	true	up	to	100,000,000,000,000—which
is	as	nothing	compared	with	every	even	number.

Knowing	what	creatures	there	are	and	what	creatures	there	could	be	in	this
crowd	of	primes	must	surely	give	us	a	presentiment	of	its	structure,	and	some
corner	of	the	pattern	may	be	the	key	that	will	turn	it	into	a	living	garden,	where
what	is	design	will	sort	itself	out	from	ornament.

To	what,	then,	should	we	compare	our	present	condition—as	icebound	as	was
Shackleton	at	the	Pole?	Are	we	like	those	brilliant,	autistic	people	who
understand	that	there	must	be	something	which	facial	expressions	reflect	and	can
with	avid	intelligence	catch	clues	to	correlate	some	with	others,	yet	have	no	idea
what	the	cause	of	such	effects	might	be?	Or	more	like	those	born	blind	who	can
yet	just	sense	when	they	are	facing	the	light	but	can’t	imagine	what	they	will	see
when	one	day	the	shutters	are	removed?	Will	it	be,	as	we	hope,	glorious
altogether	and	in	each	part,	or—with	simplifying	abstraction	removed—
speckled	with	unguessed	dust?



Interlude

The	Infinite	and	the	Indefinite

I	had	removed	the	black	earth’s	boundary	stones:
Once	she	had	been	enslaved	and	now	was	free.

This	is	what	Solon,	the	great	Athenian	lawgiver,	wrote	some	twenty-five
hundred	years	ago.	Taking	boundaries	away,	however,	can	lead	from	fusion	to
confusion	and	so	to	chaos.	We	know	where	we	are	when	our	thoughts,	like	our
words,	are	sharply	defined.

The	Greeks	had	a	word	for	the	infinite	and	it	was	apeiron	(ἄπειρоν),	which
literally	meant	“without	boundary”	and	translates	equally	well	into	“indefinite.”
Why	should	they,	why	should	we,	so	concern	ourselves	with	the	endless,	when	it
may	only	amount	to	the	vague?	Anaximander,	who	lived	a	hundred	and	fifty
years	before	Socrates,	recognized	the	foolishness	of	claiming	that	one	element
or	another—earth,	air,	fire,	water—was	the	source	of	everything	else.	Rather,	he
said,	the	source	is	the	apeiron—as	if	distinction	rose	out	of	indistinction,	the
way	it	does	in	so	many	creation	myths.	We	think	this	way	still,	seeing	speciation
on	a	grand	scale	evolving	from	the	unspecified,	and	minutely	differentiated
tissues	from	stem	cells.

The	infinite	disguised	as	the	indefinite	is	our	onlie	begetter.	But	in	this	same
guise	it	is	how	we	imagine	the	world	truly	to	be:	made	up	ultimately	not	of
separate	objects,	molecules,	atoms,	electrons,	or	quanta,	but,	past	the	ever	more
granular,	to	be	as	partless	as	the	ocean,	where	our	little	prisms	of	selves	spray	up
and	soon	enough	submerge.	Just	as	we	picture	continuity	in	the	material	world
by	rocks	between	boulders,	stones	between	rocks,	pebbles	between	stones,	and
sand	to	fill	in	the	crevices,	so	we	see	fractions	in	the	spaces	between	integers—
and	for	fractions	“ever	smaller”	means	denominators	becoming	infinitely	large.
If	the	heavens	are	full;	if	everything	flows;	if	time	is	a	river:	then	not	only	how
we	began	but	how	we	go	on	is	drenched	in	that	ambiguous	apeiron.



“Tell	me	if	ever	anything	was	finished,”	da	Vinci	scribbled	again	and	again
over	his	late	drawings	of	tumbling	chaos.	He	tried	to	give	some	form	to	this
chaos	by	representing	it	as	cascades	and	waves	and	whirlpools,	since	their
immensity	was	at	least	shaped	by	comprehensible	forces.	Our	hope	is	to	find
some	structure	to	the	infinite,	behind	what	might	be	only	superficial	indefinition:
regularities	governing	infinite	ensembles;	powers,	dominions,	and	thrones
among	its	blurred	degrees.

Mathematics	is	the	art	of	the	infinite	because	whatever	it	focuses	on	with	its
infinite	means	discloses	limitless	depth,	structure,	and	extent.





Chapter	Four

Skipping	Stones

Late	in	his	life,	Newton	said:	“I	seem	to	have	been	only	like	a	boy	playing	on
the	seashore,	and	diverting	myself	in	now	and	then	finding	a	smoother	pebble	or
a	prettier	shell	than	ordinary,	whilst	the	great	ocean	of	truth	lay	all	undiscovered
before	me.”	Although	mathematics	has	grown	exponentially	since	his	time,	we
still	find	ourselves	children	standing	on	the	edge	of	the	limitless	unexplored.

Pick	up	a	flat	stone	and	skim	it	over	the	water;	7,	8,	…	13	skips	perhaps,
before	it	sinks?	At	least	we	can	do	better	than	this	on	the	ocean	of	numbers,
following	regular	pulses	past	any	horizon.	Will	their	patterns	reflect	deeper
truths	about	the	working	of	the	world?	Will	the	ways	we	go	about	finding	and
confirming	these	patterns	give	insights	into	the	ways	of	the	mind?	Consider	the
sequence	of	natural	numbers,	1,	2,	3,	4,	…	and	their	successive	sums—so
familiar	to	us	by	now:

1,	1	+	2	=	3,	1	+	2	+	3	=	6,	1	+	2	+	3	+	4	=	10,	…

We’ve	proved	this	three	times	already,	in	ways	as	concrete	as	making
patterns	of	dots	and	as	abstract	as	induction,	but	have	saved	the	most	beautiful
proof	for	last.	We	want	to	know	what	1	+	2	+	…	+	n	adds	up	to.	Write	the	sum
down—and	then	write	it	again,	below—but	this	time	backwards!

And	then	add	the	columns	to	get:

(n	+	1)	+	(n	+	1)	+	(n	+	1)	+	…	+	(n	+	1)	+	(n	+	1)	+	(n	+	1)



There	are	n	of	these	terms	added	up—so	n	·	(n	+	1)—but	of	course	we	want	only
half	that	amount,	because	we’ve	counted	the	sum	twice;	so

The	Alcibiades	impertinence	of	this	is	appealing,	as	also	is	its	improvement
on	the	head-and-tail	coupling	we	used	in	the	second	proof	(on	page	39).	For	we
need	here	no	special	case	when	the	number	of	terms	is	odd	(exceptions	hint	at
incomplete	understanding,	and	proof	by	cases	at	an	ideal	beauty	not	yet
attained).	Appealing	too	is	the	way	this	approach	generalizes	to	a	series	of	n
terms	beginning	not	with	1	but	with	any	natural	number—call	it	a	(notice	that
the	second	term	will	be	a	+	1,	the	third	a	+	2	and	in	general	the	nth	term	will	be
a	+	(n	–	1)):

which	adds	up	to

2a	+	(n	–	1)	+	2a	+	(n	–	1)	+	…	+	2a	+	(n	–	1)

or,	since	there	are	n	terms,

n	·	(2a	+	(n	–	1))

and	again	we	want	only	half	of	this,	so

If,	for	example,	a	=	17	and	n	is	5	(the	series	17	+	18	+	19	+	20	+	21),	the
answer	should	be	 —and	it	is.

Why	stop	generalizing	here?	We’d	like	to	take	in	every	sort	of	sequence	with
our	widening	powers,	since	the	mind	says	“all”	when	the	eye	asks	“which?”
What	about	sequences	with	any	natural	number	acting	as	the	difference,	d,	and
not	just	1?	If	d	=	3,	for	example,	and	we	start	with	1,	we	get	the	sequence	1,	4,	7,
10,	13,	16	…	and	the	sums



Our	new	style	of	proof—leaving	pictures	behind	and	carefully	maneuvering
with	symbols—readily	accommodates	this	greater	scope:

These	two	rows	add	up	to

n	·	(2a	+	(n	–	1)d)

and	taking	the	half	we	want,

In	our	example	above,	with	a	=	1	and	d	=	3,	when	n	=	5	we	should	get

1	+	4	+	7	+	10	+	13	=	35

and	in	fact

This	proof	is	a	joy	forever.	Its	loveliness	increases	not	only	because
admiration	for	elegant	symmetry	never	dies—an	eternal	monument	to	its
unknown	inventor—but	because,	like	the	series	it	describes,	it	ripples	outward	in
ever	new	contexts.	It	gives	us	a	finite	grasp	(in	a	single	body	and	soul,	as
Rimbaud	desired)	of	an	infinite	sequence.	There	are	some,	like	the	distinguished
twentieth-century	number	theorist	André	Weil,	for	whom	a	conjecture	once
proven,	like	a	mountain	climbed,	becomes	no	more	than	a	trophy:	another	name
on	Don	Giovanni’s	list.	In	contrast,	a	piece	of	mathematics	heard	as	music	is
inexhaustibly	filled	with	promises	for	the	future	and	houses	as	well	an
inexhaustible	presence,	like	a	fugue	from	the	Well-Tempered	Clavier.

Sequences	such	as	these,	with	a	constant	difference	between	successive
terms,	are	called	Arithmetic	Sequences,	and	the	sum	of	their	terms	from	the	first



through	the	nth	is	an	Arithmetic	Series.	The	triangular	numbers	are	a	hybrid:	a
sequence	of	numbers,	as	you	saw,	which	are	successive	sums	in	an	Arithmetic
Series.	For	the	triangular	numbers	are	1,	3,	6,	10,	…	and	so	on,	which	are	the
successive	sums	of	the	sequence	that	starts	with	first	term	a	=	1	and	has
difference	d	=	1.

What	about	the	sequence	of	square	numbers,	which	every	once	in	a	while
coincides	with	that	of	the	triangulars	(at	1	and	36,	for	example)?	Remember	that
by	a	clever	diagonal	slice	we	found	that	any	square	number	was	the	sum	of	two
consecutive	triangulars.	But	now	that	the	triangulars	have	a	formal	rather	than
visual	embodiment,	cleverness	gives	way	to	clockwork.	For	the	(n	–	1)st
triangular	number	is	 ,	and	the	next	one,	the	nth,	is	 ;	so	multiplying	each
one	out	and	adding	them	to	each	other	gives:

Is	the	lost	glory	of	ingenuity	the	price	we	must	pay	for	the	gains	of
abstraction?	Or	could	the	interplay	between	the	visual	and	the	formal—the
geometric	and	algebraic—still	be	fruitful?	Let’s	follow	the	natural	drift	of	our
curiosity	from	triangular	and	square	on	to	the	pentagonal	numbers:

so	this	sequence	begins	1,	5,	12,	22,	and	goes	on	to	35,	51,	70	…	Aren’t	these
just	the	sums	we	saw	on	page	97?	But	why—why	should	this	be	so?	And	what	is
the	connection	of	the	pentagonal	shape	to	triangular	numbers?

Clearly	there	will	be	no	sum	of	two	triangular	numbers	here,	since	we	can’t
rebuild	even	5	that	way.	But	5	=	1	+	4;	1	is	triangular	and	4	is	square—what	if
that’s	the	breakup	we’re	looking	for?	Visual	ingenuity	to	our	aid	again:	let’s
design	our	netted	pentagons	with	triangles	and	squares	in	mind.	This	only	takes
some	pushing	in	at	the	sides.



That	is:

and	indeed
	10	+	25	=	35,	which	is	 	and	so,	it	seems,	on.

Once	we	write	out	our	discovery	in	formal	terms,	we	can	try	proving	it.	Since
it	looks	as	if	the	nth	pentagonal	number	is	the	(n	–	1)st	triangular	plus	the	nth
square,	and	since	the	(n	–	1)st	triangular	is	 ,	our	conjecture	is:

and	for	n	from	1	to	7,	this	gives	us	the	values	we	want:

1,	5,	12,	22,	35,	51,	70.

We	have	our	insight,	but	we	can’t	hope	for	a	proof	yet	because	we	still	need
to	understand	exactly	how	any	pentagonal	number	is	built	up	from	the	previous
one.	Mere	manipulation	of	letters	rarely	leads	to	seeing—but	looking	does.

Let’s	look	then	at	how	the	third	pentagonal	number	grows	from	the	second,
and	the	fourth	from	the	third.



In	each	case,	two	of	the	old	sides	were	extended,	and	three	new	sides	fitted	on	to
make	the	larger	pentagon.	There	is	one	more	dot	per	side	in	this	new	pentagon,
so	it	looks	as	if	we	have	added	3	dots	per	side	on	these	3	new	sides	of	the	third,	4
per	side	on	the	3	new	sides	of	the	fourth.	But	this	can’t	be	quite	right,	since	new
sides	share	a	dot	at	their	corners,	so	we	have	to	subtract	2	dots,	giving	us

Thus	to	go	from	the	third	pentagonal	number	to	the	fourth	we	could	calculate

In	short,	we	must	add	3n	–	2	dots	to	 	to	get	 .
We	could	now	with	relative	ease	prove	by	induction	that	indeed

but	we’ll	go	after	bigger	game.
With	factoring	a	number	into	its	primes	still	ringing	in	our	ears	from	the	last

chapter,	you	might	by	analogy	wonder	about	reducing	pentagonal	numbers
down	to	the	basic	triangular	numbers—and	of	course	we	can.	Since	we	know
that	any	square	number	is	the	sum	of	two	triangular	ones,	and	since	we	saw	that
a	pentagonal	is	a	triangular	plus	a	square,	any	pentagonal	number	is	the	sum	of
three	triangular	numbers.

Does	this	suggest	that	any	hexagonal	number	is	the	sum	of	4	triangulars,	and
so	on?	Wonderful	Gauss	made	this	cryptic	entry	in	his	diary	on	July	10,	1796:

Eureka!	Num	=	Δ	+	Δ	+	Δ.

Repeating	Archimedes’s	joyous	exclamation,	“I’ve	found	it!,”	he	meant	that	he
had	found	a	(by	no	means	easy)	proof	that	every	natural	number	is	the	sum	of	at
most	three	triangular	numbers.

Can	we	in	turn	follow	our	triumphs	thus	far	by	coming	up	with	a	formula	for
the	hexagonals?	A	kind	of	impatience	begins	to	set	in	at	this	point,	however,
because	the	work	promises	to	be	strenuous—and	after	it	we	would	have	to	begin
all	over	again	with	the	heptagonals,	and	so	endlessly	on.	The	three	formulas	we



already	have	are	so	different	from	one	another:

that	you	may	suspect	there	will	be	no	pattern	to	the	patterns.	Mind,	however,
keeps	clamoring	for	universal	explanations.

Let’s	act	like	mathematicians,	with	faith	in	design	and	confidence	in	our
powers	to	find	it.	Above	all,	let’s	use	the	art	of	the	infinite:	going,	that	is,	for	all
the	patterns	at	once.	We	want	the	general	formula	for	what	any	particular
figurate	number	is—that	is,	for	the	nth	term	of	any	polygonal	sequence.	The
amazing	thing	is	that	this	will	be	much	easier—and	infinitely	less	time-
consuming—than	doing	it	for	each	kind	of	polygon	in	turn.	It	is	in	this	uncanny
generalizing	power	that	mathematics	puts	to	shame	the	tailor	who	boasted	of
killing	seven	at	a	blow.

Because	the	formula	we	seek	will	deal	with	different	terms	of	different
polynomial	sequences,	we	will	need	another	letter	to	stand	for	which	sort	of
polygon	we	have	in	mind.	Let’s	speak	of	k-gons,	where	k	can	be	3,	4,	5,	and	so
on.	So	a	3-gon	is	a	triangle,	a	4-gon	a	square,	a	5-gon	a	pentagon.	We	already
have	a	formula	for	the	nth	term	of	each	of	these,	and	have	set	our	sights	on	a
formula	for	the	nth	term	of	any	k-gonal	sequence.	Having	traded	in	the	more
colorful	polygonal	names	for	this	stark	way	of	speaking,	let’s	make	one
concession	more	and	represent	the	nth	term	of	a	k-gonal	sequence	by	 .

This	kind	of	naming	and	these	sorts	of	symbols	drive	more	people	away	from
mathematics	than	teachers	who	tell	you	you’re	wrong	because	they	say	so.	We
are	perfectly	happy	to	think	of	someone	as	James	Smith	or	even	James	Topaz
Smith,	and	if	his	son	is	James	Topaz	Smith	Junior	we	take	that	easily	in	stride.
Should	the	son	become	a	Doctor	or	even	the	Right	Reverend	Doctor	James
Topaz	Smith	Junior	we	may	smile,	but	can	handle	it.	Yet	attach	a	pair	of
numbers	to	a	letter	and	we	beg	for	mercy.	The	unfamiliarity	of	this	kind	of
acronym	is	partly	to	blame,	as	is	suddenly	having	to	read	vertically—but	it	is	the
same	style	of	naming.	Like	Smith,	P	is	the	family	name:	Polygon.	k	gives	the
branch	of	the	family,	n	(like	James	Topaz)	singles	out	the	individual	in	that
branch.	So	 	is	the	fifth	triangular	number,	for	example,	 	is	the	second	square



number,	and	the	seventh	pentagonal	number	is	 .	What	we	pile	on	the	spine	of
this	weedy	symbol	will	save	us	an	enormous	amount	of	mental	energy.

Now	we	can	indulge	in	the	pleasures	of	the	table	once	more,	in	hopes	of
insight	into	what	is	actually	happening.	Here	are	the	first	few	entries	for	some	k-
gonal	sequences:

The	columns	are	interesting	but	the	rows	even	more	so.	Each	starts	with	1,	and
the	differences	between	columns	in	the	first	row	are	2,	3,	4,	5,	….	In	other
words,	the	difference	grows	by	1	for	each	new	column.

In	the	second	row,	the	differences	are	3,	5,	7,	9,	…	.	Those	grow	by	2s.	The
third	row’s	differences	grow	by	3s:	4,	7,	10,	13,	…	and	the	fourth	row
differences—5,	9,	13,	17,	…—grow	by	4s.	What	matters	here	seems	to	be	this
“growth	number”;	let’s	call	it	g.	Put	in	terms	of	each	k-gonal	sequence,	the
differences	grow	by

1	in	the	3-gonal (g	=	1)
2	in	the	4-gonal (g	=	2)
3	in	the	5-gonal (g	=	3)
4	in	the	6-gonal (g	=	4).

On	this	scanty	evidence	we	hazard	the	conjecture	that	in	a	k-gonal	sequence,	g
will	be	k	–	2.

It	looks,	then,	as	if	we	have	the	same	hybrids	in	every	case	that	we	had	with
the	triangular	numbers:	each	term	is	a	sum	in	an	arithmetic	series;	each	series
starts	with	a	=	1;	the	respective	g	is	k	–	2.

Look!	The	nth	term	of	a	polygonal	sequence	is	the	sum	of	the	first	n	terms	of



an	arithmetic	sequence	where	a	=	1	and	d	=	k	–	2.
Using	the	formula	for	the	sum	of	arithmetic	sequences	which	we	perfected	on

page	97:	 ,	with	here	a	=	1	and	d	=	k	–	2,	we	get

This	simplifies	to

You	can	check	this,	if	you	like,	for	some	entry	in	our	table—the	fourth
column,	say,	of	the	fifth	row,	the	fourth	heptagonal	number,	which	is	34.	And

Right	as	rain,	and	sometimes	even	more	so.
Does	this	remarkable	general	formula	turn	into	the	particular	formulas	we	got

for	triangular,	square,	and	pentagonal	numbers?	With	squares,	for	example,	is
the	nth	square	number	really	n2?

and	for	pentagons,	will	we	have	the	formula	

This	is	a	startling	unity	beneath	such	apparent	diversity,	which	now	lets	you
calculate	in	a	moment	the	number	of	dots—should	you	care	to	know—in	the
18th	201-gonal	number,	for	example	(321,801—a	little	touch	of	personality	in
the	crowd).

Of	course	we	haven’t	yet	proved	the	conjecture	we	got	by	studying	our	table.
Lest	you	think	that	nothing	could	be	more	boring	than	proving	the	obvious,	it
would	be	enough	to	remember	that	mathematics	is	the	one	skyscraper	of	thought
which	rises	above	mere	opinion	to	utter	certainty.	But	we	can	add	that	a	proof’s
performance	is	as	full	of	contortionists,	jugglers,	and	high-wire	acts	as	the
world’s	best	circus.	The	proof,	with	all	its	acrobatic	providers,	is	in	the	on-line



Annex.
Notice,	here,	how	far	we’ve	moved	from	the	Pythagorean	tetractys	into	a

language	and	style	of	thought	where	symbols	 	of	symbols	(3)	of	symbols	
are	casual	familiars.	When	your	former	self	complains—as	the	English
philosopher	Thomas	Hobbes	did	in	1656	to	his	contemporary	John	Wallis—that
the	page	“is	so	covered	over	with	the	scab	of	symbols,	that	I	had	not	the	patience
to	examine	whether	it	be	well	or	ill	demonstrated,”	your	present	self	can	answer,
with	Wallis:	“Is	it	not	lawful	for	me	to	write	Symbols,	till	you	can	understand
them?	Sir,	they	were	not	written	for	you	to	read,	but	for	them	that	can.”
Equations	have	come	to	explain	more	easily	than	sentences	the	structures	we
work	among.	No	wonder	mathematicians,	like	Rip	van	Winkle	playing	at	bowls
with	the	little	men	up	in	the	hills,	lose	all	sense	of	self	and	time,	and	on	returning
seem	as	alien	as	the	world	now	seems	to	them.

Arithmetic	sequences	and	series	have	led	us	along	bright	rays	into	the	infinite.
Even	more	dazzling,	however,	are	their	twins:	the	sequences	and	series	called
Geometric.	A	Geometric	Sequence	also	begins	with	any	number,	but	its	new
terms	come	not	by	adding	a	constant	d,	but	through	multiplying	by	a	constant,
usually	called	r	(for	“ratio”).

If	a	=	1	and	r	=	2,	for	example,	you	get	the	larger	and	larger	numbers

1,	2,	4,	8,	16,	…	.

Geometric	series	add	these	all	together,	up	to	a	certain	term,	say	the	64th.	Since
each	term	is	2	raised	to	a	power	one	greater	than	the	previous	one,	this	sum
would	be

1	+	2	+	22	+	23	+	…	+	263,

a	finite	but	very	large	number,	which	anyone	using	the	sure-fire	Martingale
System	of	betting	will	know	from	nightmares.	In	this	system	you	keep	doubling
your	bet	until	you	win—then	quit.	Had	you	started	with	a	dollar,	you	might	have
to	go	home	with	two—but	a	really	bad	run	of	luck,	64	tries	long,	would	leave
you	owing	more	dollars	than	there	are	atoms	on	the	earth	to	make	them	with.

When	the	ratio	shrinks	to	a	positive	number	less	than	one,	strange	and
wonderful	things	begin	to	happen—especially	if	infinity	enters	again	as	the
number	of	terms.	Let’s	experiment	with	a	=	1	and	 .



The	successive	terms	grow	rapidly	smaller,	their	sum	grows	steadily	larger—but
will	it	ever	become	infinitely	large,	or	as	large	as	19,	or	3,	or	2.07?	In	our
experimental	mood	let’s	look	at	partial	sums:

A	reasonable	conjecture	at	this	point	would	be	that	the	sum	up	to	 	will	be	a
fraction	whose	numerator	is	twice	its	denominator	less	1:	that	is,

If	so,	the	sum	keeps	falling	just	short	of	2,	though	by	less	and	less.	This	would
mean	that	no	matter	how	many	terms	we	add	on	we	will	never	get	to	19,	or	3,	or
2.07—or	even	2;	2	will	be	the	reach	that	always	just	exceeds	our	grasp.

This	is	a	peculiar	situation,	which	gives	us	second	thoughts	about	the	infinite:
an	infinite	number	of	terms	whose	sum	is	shakily	finite.	Does	this	happen	only
when	 	Let’s	experiment	further,	taking	 	…	(remember:	we
get	each	new	term	through	multiplying	the	previous	one	by	 ).

The	successive	sums	of	these	are

If	this	is	settling	down	to	some	number,	as	the	previous	series	seemed	to	do,	it	is



a	bit	more	obscure—perhaps	because	the	denominator	is	odd.	The	fraction’s
numerator	keeps	falling	just	short	of	half	the	denominator,	as	if	the	series	were
approaching	 	or	 .

As	with	triangular	numbers,	we	grow	impatient	and	ask	for	a	pattern	to	these
patterns.	Perhaps	our	asking	is	premature	and	the	next	example,	with	 ,	would
help.	The	sequence	is	1,	 	…	and	the	successive	sums	are

and	a	shrewd	guess	would	suggest	that	 	was	the	elusive	she.
Stepping	back,	the	glimmerings	of	a	beautiful	regularity	dawn.	Our

experimental	results	made	2,	 ,	and	 	the	likely	targets	of	series	whose	ratios
were,	respectively,	 , 	and	 .	If	we	think	of	2	as	 ,	then	it	might	well	be	that	when
the	ratio	is	 ,	the	sum	of	the	infinite	series	resulting	is	 .

Two	distinct	difficulties	immediately	come	up.	How	can	we	speak	of	an
“infinite	sum”	at	all,	especially	on	the	basis	of	what	must	always	be	finite
approximations?	And	second,	why	are	we	even	indulging	in	the	luxury	of	such	a
conjecture	on	the	basis	of	so	few	trials:	where	is	the	proof?

Given	the	two	voices	within	us	you	would	expect	two	answers	(at	least)	to
the	first	question.	The	more	cautious	voice	says	that	of	course	those	numbers	we
have	come	up	with	are	never	actually	attained—but	they	do	seem	like	limits
drawn	ever	closer	to—as	close	as	you	like,	given	sufficiently	many	terms.	While
the	growing	sums	also	get	closer	to	numbers	beyond	their	respective	limits,
these	limits	are	the	least	such	numbers	approximated	to	from	below	but	never
reached.	This	voice	assures	us	that	if	we	say	“the	limit	as	n	goes	to	infinity	is
such-and-such”	we	mean	what	we	say:	is	on	the	way	to	but	(like	Chekhov’s
three	sisters	and	Moscow)	never	gets	there.	Or	if	you	like,	we	mean	that	the
word	“limit”	abbreviates	the	rather	complicated	idea	we	have	just	expressed.

The	other	voice	damns	such	caution	and	adds	infinity	to	what	we	reckon	with
and	on:	 	is	what	all	the	terms	of	the	first	series	add	up	to,	just	as	language
points	to	what	it	ultimately	can’t	say.	The	rational	numbers,	which	we	first
understood	as	ratios	of	the	seemingly	more	concrete	natural	numbers,	now	stand



revealed	as	embodiments	of	yet	more	fundamental,	infinite	processes.
Remember	that	Brouwer	saw	even	the	naturals	as	belonging	to	a	limitless,
fundamental	sequence	unfolding	through	time;	he	also	thought	that	the	objects
of	the	world—including	other	humans	and	even	the	body	inhabited	by	the	self—
are	no	more	than	sequences	of	sequences	of	sensations.

These	voices	of	what	seem	like	angelic	spectators	at	our	human	play	fade	out,
as	we	come	to	the	second	question	of	proof.	Play	is,	as	always,	the	key,	in	its
many	senses:	fooling	around,	the	freedom	to	invent,	the	daring	of	Alcibiades	and
the	loose	play	in	a	fitting	that	needs	to	be	tightened.	The	stakes	being	played	for
are	these:	to	come	up	with	a	concise	way	of	understanding	the	sum	of	a
geometric	series—a	way	so	tight	that	it	will	bear	the	strain	of	extending	our
understanding	to	sums	of	an	infinite	number	of	terms.

The	series	can	start	with	any	number	a,	and	have	as	its	fixed	ratio	any	number
r	between	0	and	1.	The	successive	terms	will	be	ar,	(ar)r	=	ar2,	(ar2)r	=	ar3,	ar4,
and	so	on.	The	sum	of	the	first	n	terms—let’s	use	S	for	“sum”	and	call	this	Sn—
would	therefore	be

Sn	=	a	+	ar	+	ar2	+	ar3	+	…	+	arn-1.

So,	for	example,	in	the	series	on	page	106,	where	a	=	1	and	 ,	the	third	term,	

The	trick	that	worked	so	well	before—adding	to	this	the	same	sum	written
backwards—won’t	work	now	because	we	are	multiplying	by	a	constant	rather
than	adding	one.	Someone	fought	his	way	through	to	the	brilliant	invention	of
multiplying	both	sides	of	that	equation	by	r:

rSn	=	ar	+	ar2	+	ar3	+	ar4	+	…	+	arn

and	then	subtracting	this	equation	from	the	first,	after	a	deft	realignment:

When	subtracting	we	get	the	same	effect	that	“canceling	on	the	diagonal”	had
before,	and



Sn	–	rSn	=	a	–	arn

that	is,

Sn	·	(1	–	r)	=	a	·	(1	–	rn).

So

The	Egyptians	and	Babylonians	may	have	known	this.	Euclid	certainly	did,
and	gave	a	proof	differently	elegant	from	ours.	If	you	find	that	such	a	vaulting
proof	still	needs	a	flying	buttress	or	two	of	example,	you	might	try	what	the
formula	yields	when	a	=	1	and	r	=	 	or	 .

Now	the	big	question	is:	what	will	this	tell	us	about	the	sum	of	an	infinite
number	of	terms?	In	our	current	example,	will	we	find	that	the	limit	is	2?

With	r	=	 ,	notice	that	raising	r	to	greater	and	greater	powers	makes	it	steadily
smaller:	 	approaches	0	as	n	approaches	infinity.	Keeping	a	=	1	and	r	=	 ,	our
formula	is

Using	the	word	“limit”	and	the	symbol”	“∞”,	we	can	express	“the	limit	as	n	goes
to	infinity”	by	 	and	so	can	write

And	with	r	=	 ?



So	in	general,	as	long	as	r	is	between	0	and	1,

We	say	that	our	infinite	geometric	series	converges	to	this	limit.	This	is	an
astonishing	victory	for	the	finite	mind	over	infinity.

The	eye	can	share	this	triumph	through	a	proof	whose	picture	speaks	areas,	if
not	volumes.	All	you	need	know	is	that	two	shapes	are	similar	if	they	have	the
same	angles	(i.e.,	one	is	a	scaled-down	version	of	the	other);	that	if	two	shapes
are	similar,	their	sides	are	in	proportion	(and	vice	versa)—and	that	parallel	lines
meet	a	line	crossing	them	at	the	same	angle.

Start	by	making	a	trapezoid	PSUT,	with	right	angles	at	S	and	U	(so	PS	and
TU	are	parallel).	Let	PS	=	SU	=	1	and	UT	=	r.

Paste	another	trapezoid	TUVW	on	its	right	with	TU	=	UV	=	r,	and	the	line
PT	continued	to	meet	the	vertical	from	V	at	W.

These	trapezoids	are	similar	(right	angles	at	their	bases,	equal	angles	made	by
parallels	meeting	the	top),	so	their	sides	are	in	proportion.	This	means	that

so	VW	=	r2.
We	go	on	making	similar	trapezoids	in	this	way—their	successive	right-hand

sides	and	bases	will	be	r3,	r4,	and	so	on—and	the	line	PT	will	eventually
intersect	SU’s	extension	at	some	point	Z.

That	base	SZ	is	therefore	the	infinite	sum



1	+	r	+	r2	+	r3	+	r4	+	…

Last,	construct	a	triangle	TQP,	similar	to	ΔPSZ,	by	drawing	a	line	 	from	P
parallel	to	SZ,	and	extending	UT	to	meet	it	at	Q.	PQ	has	length	1,	and	TQ	=	QU
–	TU	=	1	–	r.

Since	ΔPSZ	is	similar	to	ΔTQP,

That	is,

There	it	is:	seen	all	at	once	and	so	naturally,	so	convincingly,	that	you	look
back	in	wonder	at	all	the	sour	wrangle	over	foundations	and	formal	proofs.	Yet
such	pictures	as	this	have	their	critics,	who	would	caution	us	to	speak	of	them
instead	as	“more	or	less	proofs.”	Pictures	can	lie;	at	the	very	least	they	can
persuade	the	eye	to	take	for	granted	what	the	mind	should	examine	in	detail.
How,	for	example,	can	we	be	sure	that	the	line	from	P	through	T	hits	the	line
extended	from	SV	precisely	at	the	end	of	the	infinite	series?	When	the	number
theorist	J.	E.	Littlewood	said	of	a	drawing	that	it	was	all	the	proof	needed	for	a
professional,	he	was	suggesting	that	a	professional	would	know	where	and	how
to	grow	the	connective	tissue.

Still,	deductive	chains	descending	from	axioms	can	be	so	long,	with	so	many
small	links	so	artfully	forged,	that	we	lose	the	sense	of	the	whole	and	ache	for
the	way	a	picture	comprehensively,	instantaneously,	catches	what	is	true,	and
why.	Lost	in	the	tangle	of	tactics	we	agree	with	Descartes	that	thought	should
move	through	a	demonstration	continuously	and	smoothly.	Aren’t	we	being
tossed	back	and	forth	once	again	between	the	intuitions	of	space	and	time:
between	the	visual	cortex	and	powers	we	read	as	greater	precisely	because	they
work	with	the	unembodied?

The	different	styles	of	proof	you	have	just	seen	are	more	on	a	par	with	one
another	than	were	those	in	Chapter	One,	where	the	visual	had	it	all	over	its
algebraic	equivalents.	Is	that	because	we	are	now	more	experienced	with	the
algebraic,	or	because	our	standards	of	proving	have	grown	higher—or	is	it	just	a
matter	of	equal	stimulation	to	different	centers	of	pleasure	in	the	mind?	And
could	a	visual	proof	still	trump	an	algebraic	one?



Consider	a	maverick	infinite	sequence	that	is	neither	arithmetic	nor
geometric:

where	each	term	is	of	the	form	 .	What	is	its	sum?	If	you	picture	this	as	did
Nicole	d’Oresme,	Bishop	of	Lisieux,	around	1350,	the	answer	suddenly	stares
disconcertingly	back	at	you:	the	left-hand	tower	shows	the	sequence	vertically;
the	second	shows	the	sum	of	each	horizontal	row	in	turn—the	third	brings	the
second	dramatically	down	to	earth.

The	sum	is	2.	What	is	not	a	little	disturbing	is	that	read	from	right	to	left,	a
finite	area	is	extended	infinitely	in	space	(those	endlessly	rising	blocks).	When
three	centuries	later	Evangelista	Torricelli—the	inventor	of	the	barometer—took
this	paradox	one	dimension	higher	by	depicting	an	infinite	solid	whose	volume
was	in	fact	finite	(the	curve	 	spun	around	its	axis,	from	 	to	infinity),	Thomas
Hobbes	wrote:	“To	understand	this	for	sense,	it	is	not	required	that	a	man	should
be	a	geometrician	or	logician,	but	that	he	should	be	mad.”	To	make	Hobbes’s
outrage	more	vivid,	realize	that	a	finite	amount	of	paint	poured	in	would	coat	its
infinite	surface	(a	paradox	for	mathematicians	only;	physicists	know	that
molecules	of	even	the	finest	oil	will	seep	just	so	far	down	the	trumpet’s
diminishing	diameter).



Going	back	to	our	geometric	series,	why	should	we	have	insisted	that	r’s
value	lie	between	0	and	1?	Certainly	in	our	visual	proof	only	that	would	make
the	line	PT	meet	the	base	at	Z.	The	choice	of	r,	however,	didn’t	trouble	George
Peacock,	of	the	Principle	of	Permanence.	It	must	have	been	one	day	before
breakfast	when	he	reasoned	that	if	r	=	1,	the	left-hand	side	of

became	 	which	he	was	happy	to	call	∞,	while	the	right-hand	side	would	be
1	+	1	+	1	+	1	+	…	forever,	which	is	infinite	indeed.	And	if	r	were	2,	for	example,
	would	be	–1,	and	as	for	the	right-hand	side	…	the	right-hand	side	would	be	1

+	2	+	4	+	8	+	…,	which	he	complacently	described	as	more	than	infinity.	The
third	impossible	thing	he	did	that	morning	was	to	accept	this	equality	of	–1	with
“more	than	infinity,”	and	the	fourth	was	to	say	that	therefore	the	equality	sign
had	a	meaning	beyond	mere	numerical	identity.	He	went	on	to	urge	us	to	accept
his	reasoning	in	order	to	avoid	an	embarrassing	multiplicity	of	cases—and	sixth,
he	said	that	rejecting	his	point	of	view	would	deprive	almost	all	algebraic
operations	of	their	certainty	and	simplicity.

Peacock	was	writing	at	a	time	when	astonishing	revelations	kept	tumbling	out
of	the	study	of	sequences	and	series,	like	harvest	from	an	upended	cornucopia.
Since	mathematics	is	freedom,	why	shouldn’t	he	have	felt	that	whatever	isn’t
expressly	forbidden	is	allowed?	But	from	that	cornucopia	had	also	fallen	the
opened	Pandora’s	box	of	divergent	series:	series	which,	as	you	added	up	their
terms,	failed	to	converge	toward	any	limit	but	grew	uncontrollably	large;	and
which	seemed	to	come	wreathed	with	the	legend:	“Everything	is	forbidden	that
isn’t	expressly	allowed.”

Geometrical	series	with	r	greater	than	1	were	a	single	example	among	many.
Could	there	be	series	whose	successive	terms	grew	smaller	and	smaller,	yet
whose	sum	grew	ever	larger?	The	same	common	sense	that	tells	us	the	earth	is
flat	also	tells	us	this	couldn’t	be.	Take	for	example	the	sequence	 ,	as	n	runs
through	the	natural	numbers:



If	you	look	at	the	growing	sum,	called	the	Harmonic	Series—

it	may	very	much	remind	you	of	our	familiar

whose	limit	is	2.	What	is	the	limit	of	this	one?	More	than	2,	since	the	first	four
terms	add	up	to	 ,	but	perhaps	not	very	much	larger:	the	first	ten	terms—from	1
to	 —give	a	total	slightly	less	than	3,	and	every	new	weight	tips	this	balance	less
and	less.

Freedom	in	mathematics	is	like	freedom	everywhere:	under	law.	We	enter
into	the	covenants	expressed	in	our	axioms	in	order	to	protect	our	freedom.	The
perplexity	is	that	as	we	explore	and	develop	new	territories,	we	don’t	quite	know
what	those	laws	are—for	while	we	carry	our	axioms	into	the	wilderness	with	us,
they	may	not	contain	charms	to	subdue	the	strange	creatures	we	meet.	So	with
infinite	series.	It	took	a	combination	of	daring	and	nostalgia	to	master	this	sum
of	the	terms	 :	nostalgia	in	the	instinct	to	compare	it	with	what	we	know	and
daring	in	the	willingness	to	do	so	without	reservations.	And	then,	that	Alcibiades
touch	of	ingenuity,	to	find	among	the	familiar	forms	just	those	that	would	give
shape	to	this	Proteus.

—part	of	our	past.	 —had	the	next	term	been	 	we	would	have	been	on
home	ground.	Well,	 	is	greater	than	 ,	so	 	is	just	a	touch	greater	than	

.	Ah—and	 	is	precisely	that	touch	greater	than	 .	But	
	is	 	again:	and	that	was	the	key	to	something	uncanny	which	Nicole

d’Oresme	discovered.	The	first	four	terms	of	our	new	series	add	up	to	more	than
.	Thinking	in	terms	of	successive	halves,	the	next	four	terms	are	each

greater	than	or	equal	to	 ,	so	their	sum	contributes	more	than	 	to	the	total;	and
the	next	eight	(each	being	greater	than	or	equal	to	 )	contribute	more	than	
again.



The	next	run	of	16	terms	will	add	its	own	total	of	more	than	a	half,	as	will	the
subsequent	32	terms.	So	this	series	must	slowly	edge	its	way	up	and	past	any
sum	of	halves,	and	hence	past	any	number	whatever:	it	is	unbounded	and	must
diverge!

A	wholly	new	set	of	instincts	had	to	be	developed	now	to	cope	with	these
innocent-seeming	infinite	series.	Which	were	enemies	and	which	were	friends,
and	unto	whom?	Subtle	and	super-subtle	tests	were	devised	to	sniff	out	the
series	that	converged;	and	what	they	converged	to;	and	how	much	information
could	be	extracted	from	divergent	series.	You	prayed	that	the	series	you	were
exploring	would	turn	out	to	be	convergent.	There	is	a	story	like	a	Biedermeier
painting	of	the	famous	Hermann	Minkowski,	walking	through	the	streets	of
Göttingen,	Hilbert’s	Mecca	for	mathematicians,	in	the	early	years	of	the
twentieth	century.	On	Weenderstrasse	he	saw	a	student	he	didn’t	know,	deep	in
thought.	Minkowski	went	up	to	him,	patted	him	on	the	back	and	said:	“It	is	sure
to	converge.”

Hermann	Minkowski	(1864–1909)

Wonders	appeared	in	these	woods.	Important	numbers	like	π	emerged	from



the	caterpillar	of	an	infinite	series:

and	 —the	base	of	the	natural	logarithms	which	we	met	in	the	last	chapter—
is	an	irrational	which	is	approximately

2.718281828459045	…

but	is	precisely	the	sum,	as	n	goes	from	0	to	infinity,	of	 :

or,	as	it	is	more	concisely	written:

Yet	there	were	creatures	with	talons	here	too;	for	while	Goya	was	right	in
saying	that	monsters	arose	when	reason	slept,	Poincaré	remarked	in	1899	that
“logic	sometimes	makes	monsters.”	He	had	in	mind	bizarre	functions	that
fluttered	around	awkward	series.	“The	divergent	series	are	the	work	of	the
devil,”	the	Norwegian	mathematician	Niels	Abel	had	written	more	than	half	a
century	before;	“	…	these	series	have	produced	so	many	fallacies	and	paradoxes
…”

It	took	more	than	a	century	to	domesticate	these	grotesques.	Even	some	series
that	properly	converge	can	have	rowdy	children.	Here	is	a	telling	example,
uncomfortably	close	to	those	we	have	scraped	an	acquaintance	with.	Instead	of
the	harmonic	series

which	we	now	know	diverges,	let’s	look	at	its	cousin,	where	every	term	with	an
even	denominator	is	negative:



this	series	actually	does	converge:	the	successive	sums	keep	hopping	right	and
left,	in	ever-diminishing	steps,	around	the	limit	they	approach.7	Let’s	call	that
limit	x,	so	that

Now	using	our	Commutative	Axiom	for	addition	(A2)	again	and	again,	rewrite
the	series	with	some	terms	interchanged	as	follows:

in	other	words,	two	negative	terms	in	a	row	after	each	positive	one.
We	can	now	group	the	terms	(using	the	Associative	Axiom	A1)	to	give	us

but	 ,	and	so	on,	so	we	get:

we	can	factor	 	out	of	each	term	of	the	right-hand	side,	so	that

and	then	notice	that	what	is	in	parentheses	is	the	very	series	we	began	with,	x.
Hence

The	only	number	that	satisfies	this	equation	is	x	=	0.
But	x	couldn’t	possibly	be	0!	The	first	two	terms,	1– ,	give	us	 ,	and

successive	pairs	of	terms	 	only	add	more	positive	values	to	it.	We	seem
to	have	to	conclude	that	0	is	somewhat	bigger	than	 ;	easy	for	Peacock,	perhaps,
but	not	for	us.	It	took	some	time	to	understand	that	our	axioms	for	addition,
which	are	always	defined	with	combinations	of	two	or	three	terms,	may	not—do



not—extend	to	an	infinite	number	of	terms	all	at	once.	Here	again,	“an	infinite
number”	is	totally	different	from	“a	great	many.”	Such	a	series	as	this	can	in	fact
be	so	rearranged	as	to	make	it	converge	to	any	number	you	choose.	we	need	to
accord	with	the	character	of	new	terrain	as	we	edge	our	old	ways	into	it,	just	as
those	man-made	rectangular	plots	you	see	in	flying	over	the	American	West
yield	to	the	givens	of	mountain	and	desert.

Two	series	which	look	very	much	alike	have	behaved	extremely	differently:

converges	to	2.

diverges.
What	if,	before	we	leave	this	forest,	we	look	at	one	of	the	most	fabulous

beings	in	it—a	series	akin	to	both	of	these:

the	series	whose	terms	are	 ,	for	each	prime	p	in	succession.	Does	it	converge
or	diverge?	How	can	we	tell,	when	we	have	so	feeble	a	grasp	of	the	succession
of	primes?	The	fact	that	each	of	its	terms	is	less	than	the	corresponding	terms	of
the	divergent	series	 	gives	hope	that	this	one	might	converge.
The	fact	that	its	terms	begin,	at	least,	equal	to	the	second	and	then	larger	than	the
third,	fourth	…	terms	of	the	convergent	series	 	somewhat	damps
this	hope.	It	is	out	there	in	no-man’s-land,	and	something	immensely	crafty
would	have	to	be	done	in	order	to	wheedle	its	secret	from	it.

It	was	Euler	who	first	gave	a	proof	of	its	fate,	and	in	the	twentieth	century
another,	wonderful	proof	was	put	together	from	spare	parts	by	Paul	Erdos—the
man	who	spoke	of	The	Book	with	the	most	beautiful	proofs	in	it.	You	will	find
in	the	Appendix	a	third,	dashing	proof	and	can	judge	for	yourself	whether	it
belongs	in	The	Book.	The	steep	ascents	here	and	there	in	it	will	give	you	a	good
sense	of	what	makes	a	proof	difficult;	of	why	the	difficulties	are	worth	it;	and	of
how	piecemeal	engineering	can	be	elevated	to	an	art.

We	will	end	this	chapter	with	a	smoother	stone	than	ordinary,	and	skipped	in
a	different	direction	from	those	whose	flight	we	have	been	following.	For	here



our	sequence	will	take	the	form	of	infinitely	towering	exponents—the	image	of
mathematics.	It	begins	modestly	enough:

xx

then	(xx)x,	and	x	(x(x	…)),	and	so	up	and	up	forever:

We	innocently	ask:	if	this	proud	tower	were	equal	to	2,

what	would	x	have	to	be?
The	most	reasonable	response	to	this	question	is	to	throw	up	your	hands	in

despair.	It	reverberates	like	the	knocking	at	the	gate	in	Macbeth:	danger	and
darkness	without.	At	a	second	glance,	however,	you	might	think:	well,	x	at	least
can’t	be	1,	since	((11)1)1	and	so	on	forever	is	just	1,	and	hence	is	too	small.	Nor
could	x	=	2,	since	22	=	4,	and	42	=	16,	galloping	from	the	very	first	past	the	2
this	tower	is	supposed	to	equal.	So	if	x	is	anything,	it	lies	somewhere	between	1
and	2.	But	then	the	waiting	darkness	closes	in,	as	with	the	series	of	reciprocals
of	primes,	 	Perhaps	there	simply	is	no	answer.	Or—heeding	Hilbert
—there	may	be	one,	but	no	human	will	ever	have	the	wit	to	find	it.	Yet	listen	to
Hilbert	fully:	there	is	no	problem	that	cannot	be	solved.	It	may	take	art,
ingenuity,	insight	to	solve	this	one,	but	solve	it	we	shall.

It	may	only	take	looking—and	looking	from	an	unusual	angle.	That	whole
left	side—that	endless	tower	of	x’s—is	2.	Endless	tower	…	but	it	is	just	as
endless	if	we	begin	at	the	second	floor	as	at	the	first:	in	fact,	the	tower	without
its	base	(the	first	x)	is	identical	to	the	tower	with	it.	This	is	a	time,	then,	when
the	strange	ways	of	the	infinite	come	to	our	aid:	that	equality	wouldn’t	appear
with	any	finite	number	of	x’s,	no	matter	how	large.	This	means	that	all	those



compiled	x’s	from	the	second	on,	being	exactly	the	same	as	the	whole	tower	(so
strange	are	the	ways	of	the	infinite),	must	likewise	equal	2	(since	that’s	what	the
whole	tower	is	equal	to).	Making	this	substitution,	we	have:

x2	=	2.

So	x	would	turn	out	to	be	the	wild	presence	that	haunted	our	first	chapter:	 .
And,	indeed,	when	 	Minkowski’s	reassurance	won’t	be	out	of	place:	the
sequence

will	converge.





Chapter	Five

Euclid	Alone

When	the	poet	Robert	Graves	was	a	student	at	Oxford,	his	tutor	was	the	eminent
classicist	Gilbert	Murray.	“Once,”	wrote	Graves,

as	I	sat	talking	to	him	in	his	study	about	Aristotle’s	Poetics,	while	he	walked	up	and
down,	I	suddenly	asked:	“Exactly	what	is	the	principle	of	that	walk	of	yours?	Are	you
trying	to	avoid	the	flowers	on	the	rug	or	are	you	trying	to	keep	to	the	squares?”	He
wheeled	around	sharply:	“You’re	the	first	person	who	has	caught	me	out,”	he	said.
“No,	it’s	not	the	flowers	or	the	squares;	it’s	a	habit	I	have	got	into	of	doing	things	in
sevens.	I	take	seven	steps,	you	see,	then	I	change	direction	and	go	another	seven
steps,	then	I	turn	around.	I	consulted	Browne,	the	Professor	of	Psychology,	about	it
the	other	day,	but	he	assured	me	that	it	isn’t	a	dangerous	habit.	He	said:	‘When	you
find	yourself	getting	into	multiples	of	seven,	come	to	me	again.’”

Since	we	seem	ourselves	to	have	gotten	from	numbers	into	sequences	of
numbers,	perhaps	it	is	time	to	take	Browne’s	advice	and	switch	to	the	squares
and	flowers	in	the	carpet:	the	delicate	patterns	of	Euclidean	plane	geometry.	The
touches	you	have	seen	already	hint	at	its	power	and	sweep,	its	combination—
like	Greek	architecture—of	ingenuity	and	formality,	with	a	sense	of	proportion
subduing	matter	to	design.

What	never	emerged	in	those	touches	is	a	stunning	peculiarity.	In	order	to
reach	conclusions	about	very	finite	figures,	very	near	at	hand,	Euclid	has	to
make	an	assumption	involving	the	infinite.	The	fifth	of	his	neat	set	of	postulates
says	in	effect	that	if	 	is	a	line	and	P	is	a	point	not	on	it,	then	there	will	be	one—
and	only	one—line	through	P	(call	it	m)	which	is	parallel	to	 .

Parallel:	that	is,	m	and	 	will	never	intersect.	Nowhere,	through	all	the	infinite
extent	of	the	plane,	will	you	ever	come	on	a	point	common	to	both.

This	postulate	made	the	Greeks	uneasy.	Expert	seamen	though	they	were,



their	longest	voyages	always	turned	round;	their	longest	epics	might	take	heroes
to	the	Hesperides	or	the	Phaeacians,	but	these	were	only	a	sleep	away.	To
invoke	the	infinite	was	to	call	up	Formlessness	and	the	Void,	to	detach	mind
from	experience.	Yet	there	was	no	way	around	it:	you	couldn’t	prove	as	homely
a	truth	as	this,	that	the	angles	in	a	triangle	added	up	to	a	straight	angle	(or	as	we
would	say,	to	180°),	without	the	parallel	postulate	to	add	divine	strength	to	your
mortal	arm.

For	if	you	picture	triangle	ABC	with	its	base,	BC,	lying	on	line	 :

and	label	its	interior	angles	a,	b,	and	c:

then	using	the	parallel	postulate	you	can	draw	the	one	and	only	line	m	through	A
parallel	to	 	(in	symbols,	m	 	 ):



This	creates	two	new	angles—call	them	d	and	e—flanking	a:

and	d,	a,	and	e	evidently	add	up	to	a	straight	angle.	Now	for	a	touch	of	human
devising.	Extend	the	line	making	side	BA	upward—call	this	line	n:

then	by	what	we	claimed	on	page	111—that	parallel	lines	meet	a	line	crossing
them	at	the	same	angle—the	angle	we	have	called	f,	between	lines	n	and	m,	must
be	the	same	as	the	angle	b	between	lines	n	and	 :

∠	f	=	∠	b.



But	when	two	lines,	such	as	n	and	m,	intersect	at	a	point	like	A,

the	“opposite	angles”	f	and	d	are	the	same:

∠	d	=	∠	f,

so

∠	d	=	∠	f	=	∠	b,

that	is,

∠	d	=	∠	b.

In	just	the	same	way—extending	side	CA	upward—form	∠	g:

∠	g	=	∠	c,	and	∠	e	=	∠	g,

so



∠	e	=	∠	g	=	∠	c,

that	is,

∠	e	=	∠	c.

Since	∠	d	+	∠	a	+	∠	e	is	a	straight	angle,	so	is	∠	b	+	∠	a	+	∠	c:	the	sum	of	the
angles	in	a	triangle	(as	the	Pythagoreans	may	have	been	the	first	to	prove)	is	a
straight	angle	(180°).

While	you	had	to	accept	the	parallel	postulate	as	true	(the	caste	mark	of
postulates),	there	was	no	reason	for	you	to	believe	us	here,	or	on	page	111,	when
we	said	that	parallel	lines	meet	a	crossing	line	at	the	same	angle;	or	that	opposite
angles	are	equal.	You	could	appeal	to	your	intuition;	or	you	could	work	your
way	easily	back	from	this	theorem	in	Euclid	to	those	earlier	ones,	following	in
the	steps	of	Thomas	Hobbes	(whom	you	now	meet	for	the	third	time):

He	was	forty	years	old	before	he	looked	on	Geometry;	which	happened	accidentally.
Being	in	a	gentleman’s	library	…,	Euclid’s	Elements	lay	open,	and	’twas	the	47th	El.
libri	I	[the	Pythagorean	Theorem].	He	read	the	proposition.	“By	God!”	said	he	(he
would	now	and	then	swear	by	way	of	emphasis),	“this	is	impossible!”	So	he	reads	the
demonstration	of	it,	which	referred	him	back	to	such	a	proposition;	which	proposition
he	read.	That	referred	him	back	to	another,	which	he	also	read.	Et	sic	deinceps	[and	so
in	order]	that	at	last	he	was	demonstratively	convinced	of	that	truth—this	made	him	in
love	with	geometry	…	I	have	heard	Mr.	Hobbes	say	that	he	was	wont	to	draw	lines	on
his	thigh	and	on	the	sheets,	abed,	and	also	multiply	and	divide.

Parallel	lines	give	the	Euclidean	plane	its	character.	Intersecting	lines,	like
those	netted	around	our	plain	triangle,	are	tactical	thought	made	visible.	And
three	lines	setting	off	each	on	its	separate	mission,	yet	happening	to	concur	at	a
single	point,	mark	rare	occasions:	beams	from	a	beacon	signaling	a	significant
event.	So	too	any	pair	of	points	lie	on	a	line	(another	postulate);	but	three



differently	defined	points	that	happen	to	be	collinear	are	the	sign	of	deeper
processes	at	work.

The	beauty	of	Euclid’s	approach	lies	in	building	up	his	geometry	from	the
simplest	polygon	there	is:	the	triangle,	that	closed	laboratory	cut	out	of	the
infinite	plane.	He	begins	by	laying	down	when	two	triangles,	however
differently	situated,	are	the	same:	“congruent,”	in	the	patois	of	the	trade,	written
≅.	This	means	that	their	corresponding	parts—side-lengths	and	angle-measures
—are	equal,	so	that	you	could,	if	you	wanted,	fit	one	on	top	of	the	other	and	see
only	a	single	copy.

Instead	of	having	to	check,	every	time,	each	of	the	three	pairs	of	sides	and
each	of	the	three	pairs	of	angles,	Euclid	sets	down	as	a	postulate	(is	it	self-
evident?)	that	if	just	two	pairs	of	corresponding	sides	and	the	angles	between
them	are	equal,	then	the	rest	of	the	pairs	must	be	equal	too:	the	triangles	are
congruent.

Here	AB	=	DE,	BC	=	EF,	and	∠B	=	∠	E:

So	by	this	side-angle-side	(SAS)	postulate,	ΔABC	≅	ΔDEF.	From	this	he	is	able
to	deduce	that	angle-side-angle	(ASA)	will	also	be	enough	to	guarantee
congruence:



(∠	A	=	∠	D,	AB	=	DE,	∠	B	=	∠	E,	so	ΔABC	≅	ΔDEF	by	ASA)

This	deduction	is	needed	because	some	combinations	don’t	suffice,	such	as
SSA:	two	pairs	of	congruent	sides	and	a	pair	of	congruent	angles	not	lodged
between	them—because,	as	you	see	below,	those	conditions	allow	you	to	create
two	noncongruent	triangles:	ABC	and	ABC′.

In	the	special	case	of	right	triangles,	the	equality	of	one	pair	of	legs,	and	of
the	respective	hypotenuses,	suffices:

(AB	=	DE,	AC	=	DF,	so	right	ΔABC	≅	right	ΔDEF)

Do	these	symbols	and	abbreviations	help	or	hinder?	They	are	meant	to	make
language	transparent	so	that	the	ideas	will	shine	through—but	at	first	they	may
act	like	a	ratchet,	catching	at	thought.	As	proofs	lengthen	from	a	few	to	many
steps,	we	trust	more	and	more	to	the	notation	to	carry	our	concentration	forward.
As	with	written	music,	chess	manuals,	or	the	shorthand	of	a	trade,	we	come	with
practice	to	take	in	ever	larger	sweeps	at	a	glance.	The	aim	is	always	to	aid
intuition,	not	to	fossilize	insight	into	formalism.

The	letters,	markings,	angle	signs,	and	congruence	signs	belong	to	the
proving,	not	to	the	triangles	themselves.	What	have	they	in	their	pockets	save
their	angle	sum?	With	triangles,	what	you	see	is	what	you	get.	They	may	be
embodied	in	a	corner	brace	down	in	the	basement,	or	in	three	stars	a	million
light-years	away—but	this	atom	of	plane	geometry	is	as	innocent	of	secrets	as	a



baby’s	face.

Of	course,	the	faces	of	babies	no	longer	seem	quite	as	innocent	as	they	did	in
our	pre-lapsarian	youth,	since	their	minute	features	must	develop	as	the	genetic
code	threaded	through	them	dictates—so	not	even	such	metaphors	can	come
close,	it	seems,	to	the	emptiness	of	a	triangle.	Its	sides	may	lengthen	or	shrink,
its	angles	narrow	or	widen,	but	these	infinite	variations	on	its	simplicity	serve
only	to	emphasize	how	thoroughly	we	know	it,	inside	and	out.

Let’s	just	tickle	this	emptiness	a	bit	before	moving	on,	to	see	if	virtual
particles	pop	into	its	empty	space.	If	you	find	the	midpoint	D	of	one	of	a
triangle’s	sides,	such	as	AB,	and	set	up	(see	the	Annex)	a	perpendicular	to	AB
there—call	it	 —(in	symbols,	 	 	AB),

then	any	point	Q	on	 	will	be	as	far	from	A	as	it	is	from	B,	and	conversely	any
point	equally	far	from	them	will	lie	on	 .	You	can	get	a	feel	for	why	this	is	so	if
you	think	of	 	as	a	flagpole	and	lines	from	Q	to	A	and	B	as	guy	wires,	holding	it
steady.	If	you	prefer	a	formal	proof,	Euclid	will	oblige.



In	this	diagram	(it	looks	like	a	specific	triangle,	but	stands,	as	in	a	morality	play,
for	All),	ΔADQ	and	ΔBDQ	are	congruent	by	SAS,	because	AD	=	BD	(since	D	is
the	midpoint	of	AB),	QD	is	equal	to	itself,	and	the	angle	trapped	between	these
corresponding	sides	is	in	each	case	a	right	angle	(since	that	is	what	it	means	for
one	line	to	be	perpendicular	to	another).	Hence	AQ	=	BQ.	Try	proving	the
converse	yourself.

Notice	that	nothing	depended	on	a	specific	length	for	QD,	so	Q,	as	it	slides
up	and	down	 ,	always	stays	as	far	from	A	as	from	B.	Well,	what	of	it?	This	is
just	artifice	layered	on	empty	form.	True.	But	since	there	was	nothing	special
about	the	side	AB,	the	same	must	hold	for	the	perpendicular	bisector	m	of	the
side	AC,	erected	at	its	midpoint	E.	 	and	m	can’t	be	parallel	(if	they	were,	CAB
would	be	a	straight	line,	i.e.,	∠	A	would	be	a	straight	angle,	which	would	blow
our	triangle	apart),	so	they	must	meet	at	a	point	O:

Once	again,	the	same	must	be	true	for	n,	the	perpendicular	bisector	of	BC,
erected	at	its	midpoint	F.	It	will	meet	 	at	some	point	R	and	m	at	some	point	S,



making	a	new	little	triangle	ORS—but	does	such	a	triangle	ORS	really	exist?	O
is	on	 ,	so	it	is	equally	far	from	A	and	B.	But	O	is	also	on	m,	so	it	is	equally	far
from	A	and	C:

This	can	only	mean	that	O	is	equally	far	from	B	and	C—so	O	must	also	be	on
the	perpendicular	bisector	of	BC!	This	transitivity	of	equality,	nothing	more,
shows	us	that	the	triangle’s	three	perpendicular	bisectors	are	concurrent:	one	of
those	significant	events.	Any	triangle	of	necessity	carries	invisibly	around	with	it
a	specific	point	that	is	equidistant	from	its	three	vertices.	This	point	may	lie
inside	the	triangle,	as	in	our	diagrams,	or	outside	it,	when	the	triangle	is	obtuse
(i.e.,	has	an	angle	greater	than	a	right	angle,	90°):



As	you	might	begin	to	suspect,	in	the	third	case—when	one	of	the	angles	is	a
right	angle—this	point	O	lies	on	a	side:	on	the	hypotenuse.	This	important	fact
will	play	a	key	role	later—its	proof	is	in	the	Appendix.

Let	a	skeptical	friend	scatter	three	non-collinear	points	A,	B,	and	C	as	he
chooses;	you	can	always	astound	him	by	drawing	an	elegant	circle	through
them.	Join	those	points	by	straight	line	segments,	making	a	triangle;	erect	the
perpendicular	bisectors	of	any	two	of	these	sides—and	where	they	meet	at	O
will	be	the	center	of	the	circle	you	seek,	whose	radius	will	be	the	length	from	O
to	any	vertex,	such	as	OA:



This	circle	is	called	the	triangle’s	circumcircle,	since	it	is	circumscribed
about	it;	and	O	is	therefore	called	the	circumcenter.	Wipe	that	tabula	rasa	off	the
triangle’s	face:	it	now	comes	equipped	with	its	circumcenter,	like	Orion	with	the
Dog	Star:

Has	a	triangle	other	dark	stars	just	waiting	to	be	made	visible?	Since	its	only
features	are	sides	and	angles	and	we’ve	just	looked	at	the	side-bisectors,	let’s	see
how	the	angle-bisectors	behave—perhaps	they	too	concur.

If	 	is	the	bisector	of	the	angle	at	A,	any	point	Q	on	it	will	be	equally	far	from
the	two	sides	AB	and	AC	(a	nice	counterpoint	to	the	side-bisectors).	As	before,
let’s	give	our	intuition	a	formal	basis.	The	distance	from	a	point	to	a	line	is	the
perpendicular	to	that	line	from	the	point,	so	the	distance	from	Q	to	AB	is	the
length	QD	(since	QD	 	AB)	and	from	Q	to	AC	it	is	QE	(QE	 	AC),	where	D
and	E	are	the	feet	of	their	respective	perpendiculars:



We	want	to	show	that	QD	=	QE,	and	the	easiest	way	to	do	this	is	to	make
them	corresponding	parts	of	congruent	triangles.	In	this	situation,
complementary	to	the	first,	we’ll	use	the	complementary	congruence	technique
of	ASA.	∠a1	=	∠a2	in	ΔAQD	and	ΔAQE,	and	certainly	AQ	=	AQ.	If	we	could
just	show	that	∠	r	=	∠	s	…	But	the	right	angles	are	equal,	and	the	sum	of	the
angles	in	each	triangle	is	180°,	so

180°	–	(∠a1	+	right	angle)	=	180°	–	(∠a2	+	right	angle),

that	is,

∠	r	=	∠	s.

The	two	triangles	are	congruent	by	ASA,	so	their	corresponding	parts	are	equal
—among	them,	QD	=	QE.	A	point	on	the	angle	bisector	is	equally	far	from	the
sides	of	the	angle	it	bisects.

The	bisector	of	∠	B	will	meet	 	at	some	point	 	(as	before,	were	they	parallel
the	triangle	would,	impossibly,	have	more	than	180°	in	it):

With	our	newly	acquired	sophistication,	let’s	draw	CI	and	hope	it	too	is	an	angle



bisector—hope	that	any	point	on	it	is	equally	far	from	CA	and	CB:

We’ll	think	transitively,	as	before,	and	see	where	it	leads	us.

Because	I	is	on	the	bisector	of	∠	A,	it	is	equally	far	from	AB	and	AC:	ID	=
IE.	Because	it	is	on	the	bisector	of	∠	B,	it	is	equally	far	from	BA	and	BC:	ID	=
IF.	So	IE	=	IF.	We	want	ΔCIE	≅	ΔCIF.	We	have	a	right	angle	in	each,	IE	=	IF
and	the	hypotenuse	IC	is	equal	to	itself—so	by	the	“hypotenuse-leg”	theorem,
ΔCIE	≅	ΔCIF.

This	means	their	corresponding	parts	are	equal—and	among	these	equal
pairs,	∠	c1	=	∠	c2.	Hence	CI	is	indeed	the	bisector	of	∠	C.	Once	again,	three
lines	with	special	functions	are	concurrent,	and	the	point	I	where	they	concur	is
called	the	triangle’s	incenter,	because	with	I	as	center	and	ID,	for	example,	as
radius,	you	can	draw	the	incircle,	fitting	snugly	inside	the	triangle,	whose	sides
will	just	touch	(be	tangent	to)	it.



How	minuet-like	these	reciprocal	movements	have	been:	side-bisectors,	the
circumcircle	and	its	circumcenter	O;	angle-bisectors,	the	incircle	and	its	incenter
I.	Remove	the	overlay	of	proof	and	what	remains	are	the	triangle’s	secret
sharers.

Are	there	more	stowaways	under	the	decks?	You	might	expect	them	to	be
harder	and	harder	to	roust	out.	Well,	what	lines	must	accompany	a	triangle?	The
line	from	a	vertex	to	the	midpoint	of	the	opposite	side,	for	example,	called	a
median.	Here	is	the	median	 	from	A	to	the	midpoint	D	of	BC.

Notice	that	the	median	is	a	new	sort	of	line:	it	certainly	isn’t,	in	general,	the
perpendicular	bisector	of	side	BC,	nor	the	bisector	of	∠	A	(though	in	the	special
case	of	an	equilateral	triangle	it	will	be	both).	The	median,	m,	from	C	to	the
midpoint,	E,	of	AB	will	meet	 	at	some	point—call	it	G:



We	begin	to	suspect	that	the	median	from	B	to	F,	the	midpoint	of	AC,	will	pass
through	G,	though	there	seems	no	immediate	reason	why	it	should.

For	the	sake	of	our	intuition,	let’s	do	something	Euclid	would	never	have
done	and	imagine	our	triangle	actually	cut	out	of	a	thin	sheet	of	metal,	with	its
mass	spread	out	uniformly;	and	then	picture	balancing	this	triangular	gusset	on	a
knife-edge.

It	just	feels	right	that	the	knife-edge	will	run	from	a	vertex,	such	as	A,	to	the
midpoint	D	of	the	opposite	side—in	other	words,	will	be	the	embodiment	of	a
median—because	that	way	the	gusset’s	mass	will	be	equally	divided.

This	would	be	true	if	we	ran	our	knife-edge	from	B	to	the	midpoint	F	of	the
opposite	side—so	these	two	knife-edges	will	intersect	at	a	point	G.



G	is	the	triangle’s	centroid,	or	center	of	gravity:	you	could	spin	the	triangle
around	on	a	pinpoint	put	under	G;	if	you	hung	it	from	a	thread	fastened	at	G	it
would	lie	level,8	which	means	that	the	median	knife-edge	from	C	on	which	the
triangle	balances	must	also	pass	through	G.

Metal	and	gussets	and	knife-edges	don’t	belong	to	mathematics—nor	does
this	“proof.”	It	was	meant	only	to	strengthen	belief,	not	yield	certainty,	as
skirling	pipes	collect	our	powers	for	the	battle	ahead.	Yet	while	we	are	in	the
mode	of	physical	analogy,	let’s	press	it	further	to	see	whether	it	can	tell	us	just
where	this	centroid	is.

Unequal	masses	won’t	balance	at	equal	distances	from	a	seesaw’s	fulcrum,
but	the	“law	of	the	lever”	says	they	will	balance	when	the	distances	are	adjusted
so	that	the	product	of	one	mass	times	its	distance	from	the	fulcrum	equals	the
product	of	the	second	mass	times	its	distance.

m1	·	d1	=	m2	·	d2

2	×	6	=	3	×	4

Keeping	this	in	mind,	let’s	go	back	to	our	solid	triangle	and	heat	it	so	much
that	the	metal	becomes	molten,	and	then	draw	off	the	mass	equally	to	the	three
vertices.	To	keep	the	triangle’s	shape,	imagine	thin	wires	connecting	the	three
blobs	at	A,	B,	and	C,	which	have	cooled	into	beads	that	can	slide	on	these	wires:

Move	the	blobs	B	and	C	to	the	midpoint	D	of	the	wire	between	them,	and	solder



in	a	wire	from	A	to	D.

The	centroid	G	is	somewhere	on	this	new	wire.	Where?	D	now	has	twice	the
mass	of	A;	so,	by	the	law	of	the	lever,	the	balance-point	between	D	and	A	must
be	twice	as	far	from	A	as	from	D:	in	other	words,	the	centroid	G	is	two-thirds	of
the	distance	from	A	to	D.	This	will	be	true	for	any	median:	the	centroid	lies	 	of
the	distance	from	the	vertex	to	the	midpoint	of	the	opposite	side.

At	this	point	you	may	say:	no	need	to	go	on—we	have	our	proof	and	a	nifty
bit	of	thinking	it	was	too!	All	of	a	sudden	the	enormous	gap	between	intuition
and	formal	proof	opens	again—more	vividly	than	ever.	On	the	one	hand,	you
can	feel	the	weight	of	conviction	almost	as	palpably	as	you	can	feel	the	weight
of	those	metal	beads.	How	could	a	triangle	not	have	a	centroid,	and	how	could	it
not	be	just	where	we	found	it?	On	the	other,	temperate	voices	remind	you	that	if
visual	proofs	need	interpretation,	physical	ones	need	even	more;	that	the	“law	of
the	lever”	doesn’t	precede	but	follows	from	mathematics;	that	we	have	let	too
many	assumptions	go	unchallenged	here	(that	mass	can	be	replaced	by	masses
concentrated	at	points;	that	mass	tells	us	about	area,	and	area	about	location	of
lines).	Form	itself	lies	behind	shaped	matter,	and	mathematics	concerns	itself
with	the	play	of	form.

Like	Archimedes,	then—who	looked	to	physics	for	his	insights	but	to
mathematics	for	his	proofs—let’s	carry	our	insight	back	into	geometry	and	find



a	proof	that	a	triangle’s	medians	are	concurrent.	We	need	only	borrow	from
Euclid	two	early	results:	(1)	in	a	triangle,	the	line	joining	the	midpoints	of	two
sides	is	parallel	to,	and	half	the	length	of,	the	third	side;

(here	the	line	FD	is	parallel	to	AB,	and	half	its	length)

and	(2)	in	that	interesting	shape,	a	parallelogram	(a	four-sided	figure	with	one
pair	of	sides	parallel	and	equal,	or—what	turns	out	to	be	the	same	thing—the
sides	parallel	in	pairs),	the	diagonals	bisect	each	other:

(RG	=	GD,	FG	=	GS)

Confident	of	the	outcome,	we	now	begin.	In	ΔABC,	with	D	and	F	the
midpoints	of	BC	and	AC,	respectively,	draw	DF	and	the	medians	AD	and	BF,
intersecting	at	G.



Let	R	be	the	midpoint	of	AG,	S	the	midpoint	of	BG,	and	draw	FR,	RS,	and	SD.

Now	we’ll	make	double	use	of	result	(1):	in	ΔABC,	DF	 	AB	and	DF	=	 	AB;
and	in	ΔAGB,	RS	 	AB	and	RS	=	 	AB.	By	all-powerful	transitivity,	DF	 	RS	and
DF	=	RS,	so	RSDF	is	a	parallelogram.

We	know	from	result	(2)	that	its	diagonals	bisect	each	other,	so	RG	=	GD.
But	R	was	the	midpoint	of	AG,	so	in	fact	AR	=	RG	=	GD;	that	is,	G	is	 	of	the
way	from	A	to	D.	If	we	repeat	this	construction	with	medians	AD	and	CE,

we	will	get	exactly	the	same	result,	with	the	diagonals	intersecting	 	of	the	way
from	A	on	AD.	Since	there	is	only	one	point	on	AD	which	is	 	of	the	distance
from	A,	this	point	is	again	G:	which	means	the	median	CE	passes	through	G,
and	we	have	shown	not	only	that	the	medians	are	concurrent	but	where	they



concur.
Part	of	the	beauty	of	this	proof	lies	in	making	such	potent	use	of	such	a

simple	fact	as	that	a	line-segment	has	only	one	point	on	it	which	is	two-thirds	of
the	way	from	one	of	its	ends;	another	part	lies	in	how	it	leans	on—but	then
straightens	up	from—an	intuition	derived	from	physics.

So	rich	is	mathematics	that	more—and	more	various—proofs	grow	in	it	than
ways	of	making	your	point	in	rolling	dice	or	devices	for	emerging	from	the
middle	game	in	chess.	This	means	that	taste,	personality,	and	cast	of	thought	can
be	accommodated.	The	proof	you’ve	just	seen	suits	lovers	of	symmetry;	should
you,	however,	have	been	seduced	by	infinite	sequences,	a	custom-tailored	proof
is	in	the	online	Annex.

However	you	choose	to	prove	it,	another	star	winks	on	in	the	night	sky.	Our
triangular	Orion	now,	we	see,	is	always	accompanied	by	three	points:

Why	stop	here?	the	altitudes	(those	perpendicular	lines	from	vertices	to	the
opposite	sides)	must	also	concur—it	would	be	too	strange	if	they	did	not.	Given
the	way	our	story	has	evolved,	you	would	expect	that	to	prove	this	would	be
harder	still.	We’re	always	wrong-footed	by	mathematics:	it	will	take	only	the
audacity	of	Alcibiades	and	looking	askew	to	make	this	new	truth	appear.

The	median	proof	in	the	Annex	involved	going	down	a	tunnel	inside	a
triangle;	this	one—to	prove	that	the	three	altitudes	are	concurrent—reverses	the
direction.	We’ll	take	our	triangle	ABC	and	build	another	one	around	it.

The	parallel	postulate	(once	again	vitally	needed)	guarantees	that	through	C
there	is	one	and	only	one	line	 	parallel	to	AB—so	let’s	construct	it:



(our	little	arrows	here	mean	that	the	two	lines	they	are	on	are	parallel).
Do	the	same	now	at	A	and	B:	through	A,	the	only	line	parallel	to	BC,	and

through	B,	the	only	line	parallel	to	AC:

These	new	lines	form	a	new	triangle;	we’ll	label	its	vertices	R,	S,	and	T.

The	ingenious	person	who	first	came	up	with	this	proof	built	such	an
enclosing	triangle	because	it	gave	him	two	parallelograms,	RCBA	and	CSBA
(each	is	a	parallelogram	because	in	each,	the	sides	are	parallel	in	pairs).	This
guaranteed	that	RC	=	AB,	and	from	the	second	parallelogram,	that	CS	=	AB.	So



by	transitivity	again,	RC	=	CS,	making	C	the	midpoint	of	RS.	You	probably
rightly	sense	that	transitivity	is	as	fundamental	to	our	thought	as	triangles	are	to
Euclidean	geometry—that	in	fact	it	is	the	mind’s	triangle,	showing	us	that	going
from	one	truth	to	another	via	a	third	means	that	we	can	now	go	directly.

If	we	chase	the	other	parallelograms	around	in	the	same	way,	we	see	that	A	is
the	midpoint	of	RT	and	B	of	ST.	Pretending	that	ΔABC	isn’t	even	there	and
looking	at	ΔRST	only,	erect	(at	A,	B,	and	C,	of	course)	the	perpendicular
bisectors	of	the	sides	of	ΔRST:	w,	x,	and	y.	We	know,	from	the	very	first
theorem	of	this	chapter,	that	they	meet	at	a	point:	the	circumcenter	of	ΔRST—
but	here,	let’s	call	this	point	H:

Of	course,	ΔABC	won’t	go	away,	nor	do	we	want	it	to.	Since	w	is
perpendicular	to	RT,	it	must	also	be	perpendicular	to	BC,	which	is	parallel	to
RT.	x	is,	for	the	same	reason,	perpendicular	to	AC	and	y	to	AB.	Yes—but	this
means	that	w,	x,	and	y	are	the	altitudes	of	ΔABC,	and	we	have	now	proven	them
concurrent	(at	H),	by	thinking	of	them	as	lines	serving	another	end	in	a	different
triangle.	So	the	nimble	mind	coaxes	new	insights	from	old	with	that	economy
that	marks	the	noblest	arts.	H	is	called	the	orthocenter	of	ΔABC,	the	fourth
fixed	point	coded	into	every	triangle’s	DNA.

What	we	spoke	of	before	as	a	minuet	has	turned	out	to	be	a	quadrille:	a
quietly	formal	dance	on	the	otherwise	empty	triangular	floor.	And	what	an
intricate	dance	it	is!	Look	again,	for	example,	at	a	triangle	ABC	and	its
orthocenter	H:



Draw	AH	and	BH:	then	C	is	the	orthocenter	of	ΔAHB!	Why?	Just	turn	your
looking	inside	out:	since	an	altitude	is	perpendicular	to	a	side,	the	side	must	also
be	perpendicular	to	the	altitude,	and	the	two	can	switch	roles	in	this	masquerade.
Is	this	an	utterly	unintuitive	revelation,	a	tautology—or	both?	Take	pencil	to
diagram	to	decide.

These	stars	shone	singly	in	Euclid’s	sky.	By	the	Age	of	Enlightenment	they
sang	in	glorious	voice	to	Reason’s	ear,	when	Euler	saw	that	the	three	points	O,
G,	and	H—the	circumcenter,	centroid,	and	orthocenter—are	always	collinear!
The	line	they	lie	on	is	called	the	Euler	Line.	The	proof	has	his	easy	genius	to	it.

ΔABC	is	either	equilateral	or	not;	if	it	is,	O	=	G	=	H,	so	of	course	this	one
point	is	on	a	line.	But	if	ΔABC	isn’t	equilateral,	then	its	centroid	won’t	be	its
circumcenter,	so	draw	the	line	from	O	to	G	and	extend	it	twice	its	length	to	a
point	we	hope	will	turn	out	to	be	H—so	we’ll	call	it	H*.



Leonhard	Euler	(1707–1783),	father	of	thirteen	and	endlessly	productive	in
mathematics.

If	we	can	prove	that	the	altitudes	all	pass	through	H*,	we	will	have	proved	that
H*	=	H	and	so	O,	G,	and	H	will	be	collinear.

First	draw	CG,	and	since	G	is	the	centroid,	when	we	extend	CG	to	meet	AB
at	D,	D	will	be	the	midpoint,	since	CGD	is	a	median.	And	the	perpendicular
bisector	will	go	up	from	D	through	O,	since	O	is	the	circumcenter.

Because	we	know	from	page	144	that	the	centroid	is	 	of	the	distance	from
vertex	to	opposite	side,	we	know	that	the	ratio	of	CG	to	GD	is	2	to	1.	By	the	way
we	constructed	it,	that	is	also	the	ratio	of	H*G	to	GO.

The	line	begging	to	be	drawn	is	from	C	to	H*,	continued	to	meet	AB	at	K.



The	little	winged	figure	trapped	inside	ΔABC	is	made	up	of	ΔDOG	and
ΔCH*G,	which	have	to	be	similar,	since	they	have	a	pair	of	angles	equal	(the
opposite	angles	∠	CGH*	and	∠	DGO),	and	the	sides	surrounding	this	angle	are
in	proportion.

This	means	that	since	OD	is	perpendicular	to	AB,	so	is	CK:	so	CK	is	the
altitude	from	C,	and	it	passes	through	H*.	Reasoning	similarly,	the	other
altitudes	show	up	passing	through	H*,	so	H*	is	indeed	H,	the	orthocenter—
which	therefore	lies	on	a	line	with	the	centroid	and	the	circumcenter.

Once	again	Heraclitus	is	right:	hidden	relations	are	more	powerful	than	those
we	see.	These	power-points	of	a	triangle	are	subject	to	powers	greater	still.

Concurrent	lines,	collinear	points—are	there	other	fundamental	shapes	that
hover	invisibly	over	a	triangle?	Yes—and	to	call	up	a	very	surprising	one	we
need	only	invoke	one	new	figure	to	combine	with	those	we	already	know:	if	you
have	a	right	triangle	like	FDN,	then	it	fits	neatly	into—is	inscribed	in—a
semicircle.

Long	before	Euclid	was	born,	Thales	proved	that	if	a	triangle	is	inscribed	in	a
semicircle,	then	it	is	a	right	triangle—and	sacrificed	an	ox	to	celebrate	his
discovery.	So	says	Pamphile;	and	although	she	lived	more	than	half	a



millennium	later,	it	would	be	nice	to	believe	her.	It	would	be	equally	nice—and
not	that	hard—to	believe	that	Thales	proved	the	converse	too:	“if	a	triangle	is	a
right	triangle	then	it	can	be	inscribed	in	a	semicircle”—for	this	follows	in	one
step	from	our	proof	in	the	Appendix	to	page	135.	Let’s	be	generous	and	call	this
result	“Thales’s	Converse.”

Now	we	let	our	figures	combine	to	re-create	a	discovery	made	by	the
reclusive	high	school	teacher	Karl	Wilhelm	Feuerbach	in	1822:	that	in	any
triangle	ABC,	a	seemingly	random	scatter	of	nine	points—

the	midpoints	of	the	three	sides,	the	feet	of	the	three	altitudes,	and	the	midpoints
of	the	three	line-segments	connecting	the	orthocenter	H	to	the	vertices—must	all
lie	on	a	circle!

In	our	diagram	these	points	are	D,	E,	and	F	(the	midpoints	of	the	sides);	J,	K,
and	L	(feet	of	the	three	altitudes,	with	orthocenter	H);	and	M,	N,	and	P,	the
midpoints	of	AH,	BH,	and	CH,	respectively.

The	number	of	points	involved	and	the	late	date	of	the	discovery	might	lead
you	to	suspect	that	the	proof	will	be	difficult;	yet	it	uses	no	more	than	parallels
and	perpendiculars,	parallelograms—and,	as	ever,	transitivity.



1.	By	our	first	result	on	page	143,	FE	 	AB	(midpoints	of	sides	in	ΔABC)	and
MN	 	AB	(midpoints	of	sides	in	ΔHAB);	so	by	transitivity,	FE	 	MN.

2.	Likewise,	EN	 	CH	(midpoints	of	sides	in	ΔCBH)	and	FM	 	CH	(midpoints
of	sides	in	ΔCAH);

3.	So	by	transitivity,	FM	 	EN.
4.	This	means	that	FENM	is	a	parallelogram.
5.	But	since	CHJ	is	an	altitude,	it	is	perpendicular	to	AB	(CHJ	 	AB),	so	by
transitivity	again	(and	again),	FM	 	MN	and	EN	 	MN.

6.	That	turns	the	parallelogram	FENM	into	a	rectangle.
7.	Thales’s	Converse	allows	us	to	conclude	that	F,	M,	N,	and	E	lie	on	a	circle
with	diameter	FN	and	center	R,	the	midpoint	of	FN.

We	are	a	third	of	the	way	there.	The	next	part	of	the	proof	is	exactly	like	the
first,	but	looks	at	points	F,	D,	N,	and	P.	These	too,	and	for	the	same	reasons,	are
the	vertices	of	a	rectangle:



One	of	its	diagonals	is	FN,	so	these	four	points,	F,	D,	N,	and	P	lie	on	a	circle
with	diameter	FN	and	center	R	at	its	midpoint—the	same	circle,	therefore,	as
before,	so	that	F,	M,	N,	E,	D,	and	P	all	lie	on	it:

But	what	about	J,	K,	and	L,	the	feet	of	ΔABC’s	altitudes?	The	diagonals	of
our	two	rectangles—FN,	EM,	and	DP—are	all	diameters	of	this	circle	with
radius	R.

Look	at	diameter	FN.	The	right	triangle	FLN	is	built	on	it	(since	BNL	is	an
altitude,	L	is	a	right	angle),

so	by	Thales’s	Converse	once	more,	L	lies	on	the	circle	with	diameter	FN	and
center	R—our	circle.

Likewise	the	right	triangle	PJD	is	built	on	diameter	PD,	so	J	is	on	this	circle;
and	right	triangle	MKE	is	built	on	diameter	EM,	which	means	K	is	on	it.



So	all	nine	points	lie	on	this	single	circle,	called	by	some	the	Nine-Point
Circle,	others	the	Euler	Circle—but	most	appropriately	the	Feuerbach	Circle,
especially	since	he	also	noticed	that	it	is	tangent	to	four	other	important	circles:
externally	to	the	three	circles	tangent	to	the	sides	of	the	triangle,	and	internally
to	the	incircle.

Will	it	surprise	you	to	learn	that	R,	the	center	of	this	wonderful	circle,	lies	on	the
Euler	Line?	And	would	you	be	surprised	to	learn	that	this	story	is	hardly	over?
For	look	at	small	triangles	formed	within	the	original	one	by	taking	each	vertex
with	the	two	adjacent	feet	of	the	altitudes:	each	has,	of	course,	its	Euler	Line
(unless	such	a	triangle	is	right	or	equilateral)—and	these	three	lines	are
concurrent	at	a	tenth	point	on	the	Nine-Point	Circle.	Great	fleas	have	little	fleas
…	(to	see	them,	look	at	the	Appendix).

Our	brief	glimpse	at	what	seemed	an	empty	triangle	has	uncovered	five
points,	a	peculiar	line,	and	now	this	circle	that	always	accompany	it,	invisible	as
familiars	to	all	but	those	who	know	the	spells	to	make	them	appear.



…	stare
At	nothing,	intricately	drawn	nowhere
In	shapes	of	shifting	lineage	…

Edna	St.	Vincent	Millay	wrote	that	in	her	sonnet	“Euclid	alone	has	looked	on
Beauty	bare.”	Alone?	Thales	too,	and	Euler	and	Feuerbach,	Hobbes	and	how
many	others,	doodling	on	telephone	pads,	heard	the	call	and	learned	how	to	look
at	this	pregnant	nowhere—or	is	it	everywhere,	these	triangles	that	are	only
represented	by	diagrams	but	lie	somehow	behind	or	beyond	or	within	them?
Isn’t	geometry,	as	Poincaré	once	said,	“L’art	de	bien	raisonner	sur	des	figures
mal	faites”—the	art	of	reasoning	well	from	ill-drawn	figures?

Henri	Poincaré	(1854–1912)

These	shapes	seem	so	much	more	concrete	than	numbers	do;	yet	just	how
elusive	(remote	and	at	the	same	time	pervasive)	they	are,	a	last	excursion	will



show.
What	if	you	asked—as	the	amateur	mathematician	Count	Giulio	Carlo	de’

Toschi	di	Fagnano	did	in	the	1700s—whether	there	was	a	triangle	of	shortest
perimeter	that	could	be	inscribed	in	a	given	triangle:	in	effect,	whether	there	is	a
least	distance	you	could	run	and	still	touch	each	of	the	triangle’s	three	walls.

Would	D	to	E,	E	to	F,	and	F	back	to	D	be	this	shortest	path?
The	problem	is	interesting	for	many	reasons.	Logic	says	that	of	all	possible

paths	there	ought	to	be	a	shortest,	but	our	intuition	fails	to	tell	us	at	once	what
the	shortest	path	is—or	even	if	there	is	a	shortest	(or	if	you	are	a	formalist,
whether	the	existence	of	such	a	path	could	be	proved,	even	were	the	path	itself
not	to	be	found).	It	is	historically	interesting	also,	because,	like	the	two-faced
Janus	stones	with	which	Romans	once	marked	their	frontiers,	it	looks	both
forward	and	back.	Back,	because	“shortest	distance”	always,	in	Euclidean
geometry,	means	“straight	line,”	which,	along	with	“point,”	is	one	of	this
geometry’s	two	most	primitive	concepts.	Ahead,	because	all	questions	about
minimizing	anything,	such	as	a	path	length,	are	chiefly	at	home	in	the
mathematics	Euclid	never	dreamed	of:	calculus,	which	was	the	high	point	of
seventeenth-century	invention.

Yet	how	could	there	be	any	question	of	a	straight	line	here,	except	for	the
obvious	fact	that	each	sprint	across	the	triangle	should	be	straight?	The	whole
path	couldn’t	possibly	be.	It	is	at	this	moment	that	the	spirit	of	Alcibiades
awakes	at	its	most	pugnacious.

“Shortest	distance	means	straight	line,	and	that	is	what	I	mean	to	have!”
“Ah,	but	you	can’t!”
“Yes,	but	I	will!”
Half	the	mathematical	insights	that	enlighten	the	world	come	from	attending

quietly	to	what	the	givens	say;	the	other	half—more	riskily—from	imposing
your	will	on	them.	Young	Alcibiades,	playing	in	the	dust,	wouldn’t	move	out	of



the	carter’s	way	and	lived	to	tell	the	tale.	Old	Archimedes,	continuing	to	draw	in
the	sand	when	the	centurion	summoned	him,	didn’t.

Let’s	go	along	with	Alcibiades	here	and	insist	on	a	single	straight	line.	It
can’t	then	be	one	that	fits	in	the	required	triangle—but	perhaps	it	could	later	be
folded	to	fit,	like	a	carpenter’s	rule.	Yet	how	should	we	start?	The	answer	also
has	an	Alcibiaden	cheekiness	to	it:	start	anywhere.	Start	with	the	D,	E,	and	F	of
the	last	diagram.	But	how	could	that	help?	Those	points	were	chosen	at	random;
no	chance	of	them	having	been	the	right	ones—unless	every	path	is	equally
short,	which	would	be	disappointing,	or	there	is	no	shortest,	which	would	be
perplexing.

Keeping	those	two	extreme	possibilities	in	mind,	our	hope	nevertheless	is	to
hit	on	the	one	true	way,	and	our	strategy—following	Polonius’s	advice	to
Laertes—is	by	indirections	to	find	directions	out.	The	idea	is	as	clever	as	it	is
ancient:	you	will	meet	it	even	in	the	Rhind	Papyrus,	which	the	scribe	A’h-Mose
transcribed	around	1650	B.C.	from	an	Egyptian	original	some	quarter	millennium
older.	It	acquired	the	name	“false	position”	(positio	falsa)	in	the	Middle	Ages;
you	could	think	of	it	as	a	tentative	early	adventure	with	x,	the	unknown.

The	problem	given	in	the	Rhind	Papyrus	is	to	find	a	quantity	such	that	when
it	is	added	to	a	quarter	of	itself,	the	result	is	15.	The	method	was	this:	choose	any
old	number,	and	then	adjust	the	result.	Since	we	are	free	to	choose,	let’s	pick	a
number	that	will	simplify	our	thinking:	4—because	it	is	easy	to	find	a	quarter	of
it:	1.	That	would	give	us	5	(=	1	+	4)	rather	than	the	desired	15.	Since	5	is	a	third
of	15,	our	answer	has	fallen	short	by	a	factor	of	3,	so	multiply	the	4	we	chose	by
3,	giving	us	12,	and	behold!	12	when	added	to	a	quarter	of	itself,	which	is	3,
yields	15.	Any	choice,	of	course,	would	have	worked:	had	you	chosen	2	instead,
then	2	+	 	falls	6	times	short	of	15,	so	you	would	have	had	to	multiply	2	by	6—
and	so	get	12	again.

The	geometric	equivalent	of	positio	falsa	is	to	choose	(as	we	did)	any	points
D,	E,	and	F	on	the	triangle’s	sides.	Now	for	the	first	of	two	world-class	insights:
think	of	sides	AC	and	BC	as	mirrors	and	reflect	the	point	D	in	each	of	them,	to
X	and	Y,	respectively,	outside	the	triangle:



(“reflect”	means	drawing	a	perpendicular	from	D	to	T	on	AC	and	then	extending
DT	its	own	length	to	X—so	X	is	the	virtual	image,	through	the	glass,	of	D.	Do
the	same	thing	with	a	perpendicular	to	U	on	BC).

Now	connect	X	to	our	random	point	E,	and	F	to	Y,	giving	the	zigzag	path
XEFY:

The	reason	for	this	bizarre	maneuver	is	that	XE	is	the	same	length	as	DE,	part
of	our	original,	random,	path:	ΔTXE	≅	ΔTDE	(by	SAS:	the	shared	side	ET,	the
right	angles,	and	the	equal	sides	TX	and	DT),	so	EX	=	ED.	Similarly,	on	the
other	flank,	FY	=	FD.	Hence	XEFY	is	the	same	length	as	the	path	from	D	to	E
to	F	and	back	to	D.

Suddenly	we	see	how	to	satisfy	Alcibiades’s	demand:	if	only	XEFY	were	a
straight	line,	it	would	be	the	shortest	distance	from	X	to	Y—and	therefore,	so
would	the	internal	path	it	was	reflected	from.	This	means	we	can	abandon	two	of
our	three	random	choices,	E	and	F,	and	for	the	arbitrary	point	D	get	a	shortest
path	as	follows.



Reflect	D	in	the	“mirror”	AC	to	X	and	in	the	“mirror”	BC	to	Y;	connect	X	and
Y	by	a	straight	line.	It	will	meet	AC	(at	M)	and	BC	(at	N).	Then	D	to	M,	M	to	N,
and	N	back	to	D	will	be	the	shortest	triangular	path	inscribed	in	the	original
triangle	ABC—if	we	start	at	D.

Are	we	done?	No,	because	although	for	a	given	D	we	now	know	where	to
find	the	other	two	points,	we	don’t	know	where	to	station	D	along	AB	so	that
DMN	will	be	the	shortest	of	all	possible	paths.	Or	to	put	it	in	terms	of	a	straight
line:	what	choice	of	D	will	minimize	the	length	XY?

This	is	where	the	second	world-class	insight	appears	(from	what	heaven	of
invention?).	It	wasn’t	Fagnano	but	Leopold	Fejér	whom	the	fiery	muse	visited.
He	taught	in	Hungary	in	the	early	twentieth	century	but	almost	didn’t,	his
appointment	having	been	opposed	by	anti-Semites	on	the	faculty.	One	of	them
—knowing	perfectly	well	that	he	had	changed	his	name	from	Weiss—asked:	“Is
this	Leopold	Fejér	related	to	our	distinguished	colleague	in	the	Faculty	of
Theology,	Father	Ignatius	Fejér?”	The	eminent	physicist	Lóránd	Baron	von
Eötvös	answered	at	once:	“Illegitimate	son.”	Opposition	ceased.

Copy	Fagnano’s	construction	with	the	falsely	positioned	D,	and	add	the	lines
CX,	CD,	and	CY:

You	might	think	of	the	see-saw	XY	hung	by	CX	and	CY	from	the	balance	point
C:	for	just	as	before	(looking	at	congruent	triangles	ΔTXC	and	ΔTDC	on	one
side,	congruent	triangles	ΔUYC	and	ΔUDC	on	the	other),	CX	=	CD	=	CY.

∠XCY	can’t	change	(it	will	always	be	twice	the	original	∠C,	made	up	of	∠



ACD	and	∠	BCD;	and	∠	XCA	=	∠	ACD,	∠	YCB	=	∠	BCD),	but	CX	and	CY
could	shorten,	in	effect	pulling	up	and	shortening	XY.	How	short	can	they	get?
Since	each	equals	CD,	it	is	just	a	question	of	when	CD	is	shortest—and	since	the
shortest	distance	from	a	point	to	a	line	is	the	perpendicular,	this	will	be	when
CD	is	the	altitude	from	C	of	ΔABC!	So	the	inscribed	triangle	we	first	called
DEF	will	have	the	least	perimeter	when	our	contrived	line	XY	is	shortest,	and
XY	is	shortest	when	D	is	the	foot	of	the	altitude	from	C.

Since	there	was	nothing	special	about	C	and	side	AB,	the	same	will	be	true	of
the	other	two	sides:	E	must	be	the	foot	of	the	altitude	from	B	and	F	the	foot	of
the	altitude	from	A:	then	D	to	E,	E	to	F,	and	back	again	from	F	to	D	will	be	the
minimal	triangular	path	inscribed	in	ΔABC:

So	the	minimal	path	was	built	into	the	triangle’s	genetic	code	all	along,	a
cousin	of	the	altitudes	whom	we	had	just	come	to	know.	We	discovered	how	to
construct	it	by	playing	a	game	of	positio	falsa	in	our	familiar	old	representative
triangle,	ABC.

Yet	how	representative	was	that	triangle	after	all?	A	sudden	doubt:	will	our
construction	work	if	the	triangle	is	obtuse?	For	then	some	of	the	altitudes	would
meet	not	the	opposite	sides	but	their	extensions:



and	clearly	the	path	DEF	fails	to	lie	within	ΔABC.	In	fact,	with	F	as	one	of	the
points	on	the	path,	where	could	the	other	two	possibly	be?	For	every	choice	such
as	D	and	E—

we	could	get	a	shorter	path	by	moving	D	and	E	closer	to	A:

If	we	think	of	D	and	E	as	points	on	a	number	line,	with	A	as	zero,	we	know
that	for	any	choice	we	make	we	can	always	make	A	smaller—so	there	seem	to
be	shorter	and	shorter	but	no	shortest	triangular	path	inscribed	in	an	obtuse
triangle	(the	path	AF	from	the	vertex	A	meets	AC	and	AD	at	the	same	point,
which	only	by	an	abuse	of	language	fits	our	requirements).	We	have	the	same
problem	with	a	right	triangle:



Since	the	feet	of	the	perpendiculars	are	F	and	A,	they	give	us	no	path	save	AF;
and	any	other	points	chosen	on	AC	and	AB	will	slide	together,	approaching	the
single	line	AF	as	a	limit,	as	they	did	in	the	obtuse	triangle.	This	plausible
argument	isn’t	a	proof	but	points	to	one,	which	you	will	find	in	the	Appendix.

What	we	have	just	witnessed	in	solving	Fagnano’s	Problem	is	an	encounter
found	everywhere	in	mathematics:	arrogance	coming	up	against	the	natural
resistance	of	things.	The	problem	is	solved	for	all	time	in	any	of	the	infinite
kinds	of	acute	triangle—solved	by	putting	old	objects	in	new	arrangements.	It	is
unsolvable	for	right	triangles	and	the	infinite	varieties	of	obtuse	triangles	(or
should	we	say:	it	is	solved	for	these	too,	by	knowing	that	there	is	no	shortest
path,	unless	you	are	willing	to	settle	for	a	triangle	with	only	one	side?).9

“Arrogance”	is	what	Alcibiades’s	enemies	called	what	his	friends	saw	as
insouciant	confidence.	Intuition	urges	straight	lines	on	a	mind	in	pursuit	of	least
distance,	and	reason	has	to	contrive	how	to	form	intuition	to	fit	the
circumstances.	Is	this	the	way	the	two	voices	of	Formalist	and	Intuitionist
harmonize	in	us?	What	we	first	hear	of	their	concord	is	this	blithe,	inventive
tone.	(A	last	marvelous	example	in	the	Appendix	will	tell	us	more	about	this
tone	and	about	what	we	once	mistook	for	“innocent”	triangles.)

How	could	the	body’s	eye,	which	sees	only	what	is,	ever	match	the	mind’s,
which	also	sees	what	might	be?	How	could	any	particular	diagram	ever	be
adequate?	The	Formalist	seems	to	have	the	last,	cautionary	word:	if	anything	is
infinite,	it	is	the	subtlety	of	the	world.	Yes,	the	Intuitionist	answers,	and	of	the
mind	(since	each	is	a	part	of	the	other).



Interlude

Longing	and	the	Infinite

In	1187	the	Frankish	Kingdom	of	Jerusalem	was	attacked	by	the	Saracens.	Their
leader,	the	Saladin,	raised,	they	said,	“an	army	without	number,	like	the	ocean.”
It	was	an	army	of	80,000	men.	Nowadays	we	take	that	number	in	with	ease:	the
crowd	at	a	good-sized	football	stadium.	There,	of	course,	they	have	made	their
way	through	a	turnstile	and	are	sitting	in	ordered	seats,	not	swarming	toward	us
with	spears.	But	we	have	our	own	versions	of	the	countless:	the	midges	at
twilight,	the	sands	on	the	shore,	all	the	leaves	on	all	the	trees	that	were	or	are	to
be.	Countless	needn’t	mean	infinite,	just	uncounted	or	hard	to	count.

Yet	how	easily	our	thought	slides	away	from	the	very	many	to	the	infinite,	as
if	we	were	anxiously	eager	to	grasp	infinity	through	an	image.	The	eagerness	is
anxious,	however,	because	an	ancient	interdict	lies	behind	it:	thou	shalt	not
make	graven	images.	Kenneth	Clark	explains:

The	voice	that	spoke	to	Moses	out	of	the	burning	bush,	or	the	single	almighty	being
who	spoke	through	the	prophets,	was	infinite,	and	to	give	him	finite	shape	in	visible
form	was	blasphemy.

Why	do	we	insist	that	our	god	be	infinite?	Why	would	being	bound	in	a
nutshell	world	give	us	bad	dreams?	Why	do	we	fear	the	cloister	more	than	the
agora?	Longing	and	love	have	always	“the	expansion	of	infinite	things,”	as
Baudelaire	wrote,	and	the	distant	beloved	her	infinite	variety.	The	romantic	in	us
wants	always	to	be	there,	not	here,	at	every	possible	here,	just	as	heaven	is	for
our	reach	exceeding	our	grasp.

Longing	prolongs.	The	more	remote	the	object	of	our	desire,	the	more
incomparable	it	seems.	How	could	we	even	set	about	describing	it?	The
numerical	faculty	in	us	proposes	images	remote	and	vast	enough	to	be
commensurable	with	our	awe,	not	only	because	they	have	a	sculptural	purity	to
them	but	because	the	abstract	calls	up	in	us	a	tension	between	the	distant	and	the



near,	very	similar	to	what	we	feel	for	the	remote	beloved.	You	sense	it	in
watching	the	prolongation	of	parallels	to	that	ultima	where	they	converge.	It
echoes	in	the	series	you	see	approaching	its	limit	ever	more	closely,	making
“ever”	itself	thinkable	and	the	infinite	a	diminishing	fraction	away.

Images	grown	abstract	in	geometry	sidestep	the	Second	Commandment,	yet
even	in	this	rarified	realm	our	infatuation	with	the	infinite	propels	us	beyond	the
geometric	to	forms	that	have	no	shape:	the	letters	that	stand	for	numbers,	the
numbers	that	stand	for	themselves.	In	its	transparent	doings,	algebra	echoes	with
angelic	exchange—or	are	the	promises	algebra	holds	out	to	us	diabolic	(as	the
eminent	mathematician	Michael	Atiyah	suggests),	since	they	may	give	us	mere
mechanism	when	what	we	wanted	was	meaning?	To	the	algebraist,	his	timeless
equations	offer	the	prospect	of	understanding	not	just	the	infinity	of	past	and
future	time,	but	the	forms	that	hold	time	itself.

The	totality	of	numbers	strands	midges	and	grains	of	sand	at	the	starting	line
—yet	through	induction	we	plane	over	this	totality	and	grasp	its	structure.
Mathematics	(the	yearning	halves	of	geometry	and	algebra	completed	to	a
whole)	lets	us	see	what	Ravel	detected	in	eighteenth-century	French	music:
“Illimitable	visions	but	of	precise	design,	enclosed	in	a	mystery	of	sombre
abstractions.”	The	abstractions	of	mathematics,	however,	are	shot	through	with
light,	for	it	is	to	this	art	that	all	music	aspires.





Chapter	Six

The	Eagle	of	Algebra

Geometry	sprawls	as	organically	as	a	Gaudi	apartment	house,	with	Euclid’s
room	tucked	away	down	a	corridor.	Yet	glancing	through	his	door	in	Chapter
Five	we	caught	sight	of	astonishing	vistas,	each	shaped	from	the	simplest
elements:	points,	lines,	circles.	When	we	suggested	you	draw	one	or	another	of
these	you	probably	didn’t	take	us	seriously,	knowing	we	would	do	it	for	you—or
more	deeply,	because	mathematics	lies	in	an	enchanted	world	somewhere
between	reality	and	imagination.	You	can’t	make	geometry’s	figures—only	poor
paraphrases	of	them:	its	lines	have	no	thickness	but	infinite	extent;	its	points
have	no	dimension	to	them	at	all;	its	circles	are	perfectly	rounded.	Only	the
golden	compass	that	William	Blake’s	Ancient	of	Days	holds	in	his	hand	at	the
world’s	beginning	would	suffice.	Yet	in	our	splodgy	points	and	wobbly	lines	we
know,	without	ever	having	seen	them,	just	what	is	being	represented,	and
recognize	Triangle	and	Square	themselves	in	our	caricatures.

What	does	it	mean,	then,	when	Euclid	asks	us	to	construct	a	triangle,	its
circumcenter	or	circumcircle?	What	is	being	lifted	up	from	those	lines	of
Archimedes	in	the	dust	or	of	Hobbes	on	his	thigh?	Isn’t	it	that	we	want	to	see
how	the	gods	(as	the	Greeks	would	have	put	it)	would	do	this;	or	how	(as	we
would	say)	our	best	efforts	approximate	ever	more	closely	to	a	limit?

It	is	just	here	that	another—and	singularly	Greek—consideration	intrudes:	the
aesthetics	of	a	frugal	and	seafaring	people.	If	we	can’t	get	everything	from
nothing,	let’s	try	to	get	as	much	as	we	can	from	as	little	as	possible.	In	this	spirit
the	Pythagoreans,	long	before,	compressed	the	harmonies	of	the	universe	into
the	tetractys.	Our	kit	of	tools	for	constructing	should	be	as	elegantly	minimal	as
a	mariner’s.	Euclid	probably	knew	of	subtle	devices	for	making	sophisticated
shapes,	but	confined	himself	to	an	unmarked	straightedge	and	compass.	With
these	alone,	he	hoped	to	construct	whatever	came	up	in	his	geometry:	certainly
triangles	and	squares	for	a	start,	and	why	not	five-	and	six-sided	figures	and	in
fact	all	the	polygons	that	come	after,	whether	they	have	7	or	17	or	65,537	sides?

We	looked	for	the	basic	generators	of	the	Natural	Numbers	in	Chapter	Three
and	found	the	primes.	In	Chapter	Five	we	saw	that	the	triangle	was	the



fundamental	unit	of	plane	geometry.	Now	the	issue	is	actually	to	build	anything
in	this	geometry	with	Euclid’s	basic	means.10

That	issue	may	strike	you	by	turns	as	insultingly	simple	and	mind-bogglingly
complex.	Simple,	because	we	know	how	to	picture	any	such	polygon—
especially	if	we	go	one	step	further	and	ask	only	about	those	that	are	regular,	in
which	all	of	the	sides	are	equal.	We	can	easily	sketch	a	regular	seven-sided
polygon—a	heptagon—for	example:

and	filling	in	the	cake	slices	from	its	center,	can	even	say	how	many	degrees
must	be	in	each	such	slice	at	the	central	vertex:

Since	it	takes	360°	to	circle	around	a	point,	the	answer	will	be	 .
Given	the	dimensions	of	the	slices	we	could	calculate	the	heptagon’s	area	and
the	length	of	its	perimeter.	Yes—but	that’s	not	the	question.	Can	we	in	fact	not
sketch	but	construct	it	exactly	with	our	two	ideal	tools?

This	is	where	the	mind	begins	to	boggle:	just	how	should	we	go	about	it,
having	no	protractor?	Even	if	we	had	one,	the	most	delicate	hand	in	the	world
couldn’t	capture	the	remoter	digits	of	our	endless	decimal,	which	the	arithmetic
mind	so	easily	gauges.	There	must	be	a	way,	but	it	doesn’t	leap	to	the	eye.
Grown	cautious	over	the	course	of	the	past	five	chapters,	we	may	even	want	to
reserve	judgment	about	whether	there	always	is	a	way.	Mathematics	seems	ever
to	teach	us	two	lessons:	there	is	no	limit	to	our	mind’s	ingenuity;	and	there	is
even	less	of	a	limit	to	the	intransigence	of	the	world.

Let’s	begin	our	architectural	work	at	the	beginning	and	construct	a	regular
(equilateral)	triangle.	Easy	enough:	since	Euclid	cares	only	for	shape,	not	size,



draw	any	length	AB.

Now	set	your	compass	point	at	A,	its	pencil	at	B,	and	swing	an	arc:

Reverse	this	process,	putting	the	point	at	B,	the	pencil	at	A,	and	swing	a	second
arc,	meeting	the	first	at	C:

Now	use	your	straightedge	again	to	draw	in	line-segments	AC	and	BC.	All
sides,	being	radii	of	the	same	circle,	are	equal;	hence	 	ABC	is	equilateral.	With
such	an	easy	beginning,	the	rest	of	the	regular	polygons	should	tumble	to	our
will	like	induction’s	dominoes.

A	square:	from	Chapter	Five	we	know	how	to	construct	a	line	perpendicular
to	a	line-segment	at	its	midpoint—call	it	B:

Now	swing	an	arc	with	center	B	and	radius	BA,	meeting	this	perpendicular	at	C:



To	conclude,	swing	two	arcs	with	radius	BA	and	centers	A	and	C,	meeting	at
D;	then	with	your	straightedge	construct	AD	and	DC,	completing	the	desired
square.

This	playing	off	of	compass	against	straightedge	made	triangle	and	square	so
easy	to	construct	that	you	feel	there	must	be	something	here	that	will	generalize
from	n	to	n	+	1.	What,	therefore,	does	it	tell	us	about	the	pentagon?	A	deafening
silence	is	all	the	answer	we	hear.

Let’s	make	a	strategic	retreat	and	ask	(as	we	did	about	the	heptagon)	how
many	degrees	would	have	to	be	in	each	of	its	“central	angles”	α	(Greek	letters
for	angles—as	a	trip	o’	the	hat	to	those	who	first	told	us	about	them,	and	to
avoid	confusion	with	Roman	letters	for	points	and	lines):

.	That	looks	more	promising	than	what	we	got	for	a	heptagon.	If	we
could	construct	a	72°	angle	with	straightedge	and	compass	we	could	then	iterate
it	four	times	around	and	so	have	our	regular	pentagon.	(Since	size	doesn’t
matter,	any	circle	from	the	center	would	put	points	equally	far	along	each	spoke,
and	we	would	make	the	sides	with	our	straightedge	between	adjacent	points.)

One	of	the	high-risk	appeals	of	mathematics	is	that	you	never	know	whether



the	next	problem	you	stumble	on	might	not	lead	you	like	Childe	Roland	to	a
dark	tower.	Constructing	this	angle	of	72°	will	plunge	us	into	a	misty	wood
where	everything	seems	a	symbol	instead	of	itself,	and	legends	at	least	as	old	as
the	Pythagoreans	call	up	intimations	of	mathematics	as	sorcery.	It	will	take	the
eagle	of	algebra	to	rescue	us	from	our	amazement	and	bring	us	back	to	the
greater	light	of	how	things	intricately	are.

It	needs	no	more	than	drawing	in	the	diagonals	of	our	pentagon	to	discover
within	it	the	pentagram	dear	to	the	black	arts.	Look	at	the	center	of	the
pentagram:	another	pentagon!	Draw	its	diagonals	…	Look	at	our	original
pentagon	and	a	pentagram	begins	to	take	shape	around	it	…	tunnel	one	way,
tower	the	other—moving	in	and	out	toward	infinity.

There	is	mystery	enough	just	in	our	diagram:	each	diagonal	divides	whichever
diagonal	it	crosses	into	a	Golden	Ratio.	Euclid	defines	it	this	way:	“As	the	whole
line	is	to	the	greater	segment,	so	the	greater	is	to	the	less.”	We	would	now	say:

(We	say	it	so	casually,	yet	what	a	leap	in	thought	this	invitation	to	algebra
involves,	going	one	step	beyond	positio	falsa	and	asking	a	letter	to	stand	in	for
an	unknown	quantity,	so	that	manipulating	mere	forms	will	reveal	their	content!)
When	the	mask	is	lifted	and	we	see	the	hidden	number,	this	relation	yields
perfectly	proportioned	rectangles



which	the	far-sighted	detect	everywhere	in	the	arts	of	their	favorite	culture	(sides
in	a	ratio	of	2:3,	3:5,	5:8,	8:13,	…	better	and	better	approximate	this	Golden
Mean).	Some	musicians	believe	that	the	major	sixth	is	the	most	beautiful	interval
because	the	frequencies	it	lies	between	are	virtually	in	this	ratio	(or	is	it	vice
versa?).	Since	you	can	find	it	in	shapes	as	different	as	nautilus	shells	and	pine
cones,	enthusiasts	of	occult	design	discover	it	throughout	animate	nature	and
behind	the	Master	Plan	of	Things.	A	significant	(if	not	a	golden)	proportion	of
the	Internet	is	devoted	to	its	lore.	Kepler,	astride	two	worlds,	wrote	that
“Geometry	has	two	great	treasures:	one	is	the	theorem	of	Pythagoras;	the	other,
the	division	of	a	line	into	extreme	and	mean	ratio.	The	first	we	may	compare	to	a
measure	of	gold,	the	second	to	a	precious	jewel.”	The	Pythagoreans	used	the
pentagram	as	a	secret	sign	among	themselves	and	called	it	“Health.”	Variants	of
the	story	we	heard	in	the	first	chapter	about	Hippasus	and	his	fate	center	around
the	pentagram	rather	than	the	irrationality	of	 .	The	Tower	of	Mathematics,
which	is	our	frontispiece,	derives,	inverted,	from	Brueghel’s	Tower	of	Babel.	Its
sides	angled	in,	for	him,	at	72°—no	doubt	with	referential	intent.

How	does	any	of	this	help	in	constructing	the	pentagon?	We	will	leave	it	for
a	time	and	set	off	on	a	strategy	at	the	heart	of	much	of	mathematics:	let’s	call	it
“fetching	from	afar.”	Here	the	mathematician	as	Merchant	Adventurer	travels	to
realms	remote	from	his	problem	in	order	to	return	enriched	with	the	means	for
solving	it.	The	golden	ratio	will	be	part	of	his	cargo.	You	have	seen	this	process
at	work	before,	as	when	we	found	a	triangle’s	orthocenter	by	looking	instead	at
the	circumcenter	of	a	different	triangle.

Shuffling	around	in	the	attic	of	insight	we	come	on	this	thought:	were	we
able	to	construct	a	regular	10-gon	(decagon),	we	would	be	able	to	construct	our
pentagon,	simply	by	joining	together	the	decagon’s	alternate	vertices:

The	central	angle,	α,	of	each	slice	of	a	decagon	is	 ,	and	since	we	are
interested	in	regular	decagons,	the	base	angles	of	each	slice	will	be	equal,	hence
the	familiar	 	each.



If	we	take	the	side	lengths	to	be	one	unit	long,	our	task	is	to	construct	the
segment	forming	the	base.	Call	its	length	t.

If	we	could	do	that,	then	we	would	draw	a	circle	with	center	O	and	radius	1,
choose	any	point	A	on	its	circumference	and	with	radius	t	draw	an	arc
intersecting	the	circle	again	at	B.	Doing	this	nine	more	times	around	the
circumference	would	give	us	the	points	to	join	by	straight	lines,	so	making	the
decagon,	and	this	in	turn	would	yield	our	pentagon.

Yet	how	construct	t?	This	is	the	moment	no	mechanism	can	rise	to:	only	our
prehensile	minds.	Imagine	having	our	slice	already	constructed,	and	further
imagine	bisecting	the	angle	at	A,	with	a	line	meeting	BO	at	D:

The	72°	angle	at	A	is	now	cut	into	two	equal	angles	of	36°.	∠ADB	is	therefore
180°	–	(36°	+	72°)	=	180°	–	108°	=	72°.	If	the	base	angles	of	a	triangle	are	equal,
so	are	the	sides	opposite	them	(by	a	proof	identical	in	form	to	Pappus’s	daring



contrivance	in	the	appendix	to	page	162),	so	AB	=	AD:	that	is,	both	are	of	length
t.

But	∠OAD	=	∠AOD	=	36°,	so	by	the	same	theorem	applied	to	 	ADO,	AD
=	OD:	OD	is	also	of	length	t.

Since	OB	=	1,	the	segment	DB	=	1	–	t.

Here	is	our	ship	sailing	home:	 	OAB	~	 	DAB	since	their	corresponding
angles	are	the	same.	Hence	their	sides	are	in	proportion:

In	this	case,

the	extreme	and	mean	ratio!
Our	task,	however,	is	to	construct	the	length	t.	How	can	we	do	this?	It	is	now

that	algebra	brings	us	its	little	formal	touches,	anticipated	so	long	ago	in	Egypt,
to	free	the	unknown.

Multiply	both	sides	of	this	equation	by	(1	–	t)	and	then	by	t,	turning	it	into

1	–	t	=	t2.

Collect	all	terms	on	one	side:

0	=	t2	+	t	–	1.

Now	if	we	could	only	solve	this	quadratic	equation	in	t	…	(you’ll	find	two	ways
of	solving	quadratics	in	the	Appendix),	we’d	discover	that



If	we	have	a	line	segment,	v,	whose	length	is	greater	than	1	(and	 	is	greater
than	1),	we	know	geometrically	how	to	subtract	a	length	1	from	it:

QR	has	length	v	–	1.	So	if	we	could	construct	a	line-segment	of	length	 ,	we
could	then	construct	another	of	length	 .	And	since	we	are	masters	of
bisecting	line-segments,	we	could	then	make	our	segment	t	of	length

Hippasus	Revisited

The	Pythagorean	world	was	shattered	by	Hippasus’s	proof	that	there	were
numbers,	such	as	 ,	which	weren’t	the	ratio	of	whole	numbers.	Horrified	though
Pythagoras	must	have	been	by	the	monstrous	progeny	of	the	simple	straightedge
and	compass,	might	he	(or	we)	not	take	comfort	in	the	thought	that	regularity
remained,	but	at	one	remove:	the	means	for	making	these	monsters—the
Euclidean	tools—were	still	ideally	simple.	A	hidden	regularity,	revealed	by
reiterated	applications	of	the	Pythagorean	Theorem,	lies	too	among	the
offspring:



Harmony	has	been	restored	to	the	world—not	on	the	level	of	its	objects	but	of
their	making.

But	what	if	for	some	other	polygon	you	needed	 	A	slick	way	to	do	the
2nth	root	of	any	natural	follows	from	similar	triangles	and	Thales.	For	in	a	right
triangle	ABC	we	can	drop	the	perpendicular	to	the	hypotenuse	(meeting	it	at	D).
Two	new	triangles	are	thus	formed,	similar	to	the	original	one	and	hence	(by
transitivity)	to	each	other:

	ADC	~	 	ACB	because	each	contains	∠A	and	has	a	right	angle.	Likewise	
ACB	~	 	CDB	(∠B	in	common	and	the	right	angle).	Their	paired	sides	are
therefore	in	proportion:

Since	we	know	from	Thales’s	Converse	(page	151)	that	a	triangle	inscribed	in	a
semicircle	is	a	right	triangle,	let’s	construct	a	circle	of	diameter	AB	=	1	+	5	=	6,
and	on	this	diameter	place	D	so	that	AD	=	1	(our	given	unit	length).	Then	DB	=
5.



Erect	a	perpendicular	to	AB	at	D,	meeting	the	circle	at	C;	and	draw	AC	and	BC.
What	is	the	length	of	DC	(the	mean	proportional	between	1	and	5)?

so	(DC)2	=	5	and	 ,	as	desired.
Now	we	can	construct	our	way	backward	to	the	length

hence	to	the	regular	decagon—

and	therefore	to	the	pentagon.

The	pentagon	stretched	our	conceptual	engineering.	Will	the	hexagon	be



proportionally	harder	to	construct?	No:	it	takes	hardly	any	work	and	no	thought
whatever,	because	we	just	fit	six	equilateral	triangles	around	a	central	point:	6	×
60°	=	360°,	and	equilateral	triangles	give	us	not	only	the	central	angles	but	the
equal	sides	we	need.

Suddenly	it	becomes	clear	that	we	can	construct	a	12-sided	polygon	(dodecagon)
if	we	can	bisect	the	central	angles	of	the	hexagon—

and	indeed	that	we	could	have	found	the	hexagon	by	bisecting	the	central	angles
of	the	triangle:

so	if	we	could	bisect	an	angle,	every	constructed	n-gon	would	give	us	a	2n-gon
for	free—and	angle-bisection	falls	readily	to	compass	and	straightedge.	To



bisect	∠AOB,	swing	any	arc	with	center	O,	meeting	AO	at	P	and	BO	at	Q.

Then	with	radius	PQ	and	center	P,	swing	another	arc,	and	do	the	same	with
center	Q;	these	two	new	arcs	meet	at	R.	OR	is	the	bisector	of	∠AOB,	since
ΔORP	≅	ΔORQ:	the	paired	sides	are	equal	(a	fourth	way	that	Euclid	establishes
triangle	congruence,	called	SSS).

What	vistas	this	opens	up!	Now	that	we	can	bisect	angles,	the	triangle	will
give	us	the	hexagon,	the	hexagon	the	dodecagon,	from	that	in	turn	the	24-gon,
and	so	on—in	fact,	any	member	of	the	sequence	2n	·	3.	The	square	gives	us	all
polygons	with	2n	·	4	sides,	and	now	the	pentagon	all	those	with	2n	·	5	sides.
Infinitely	many	regular	n-gons	are	constructible,	then—but	the	sophistication
gained	from	Chapters	Three	and	Four	somewhat	moderates	our	enthusiasm:	7,	9,
and	15,	for	example,	don’t	appear	in	any	of	these	sequences,	nor	in	fact	do
infinitely	many	others.	The	story	may	not	be	quite	over.

Since	15	=	3	×	5	and	we	can	construct	triangle	and	pentagon,	perhaps	a	little
tinkering	with	them	will	give	us	the	15-gon.	In	a	circle	with	center	O	construct	a
regular	pentagon	ABCDE	(easily	said,	and	now,	with	craftsmanship,	done):

Starting	at	A,	and	with	the	circle’s	radius	OA,	move	around	the	circumference
marking	off	the	points	which	would	give	the	regular	hexagon	(see	page	179):



Now	from	A	connect	every	other	vertex,	a	new	and	easy	way	of	making	the
equilateral	triangle	AFG:

Draw	OA,	OB,	OF,	and	OC.	The	central	angle	of	the	triangle,	∠AOF,	contains
120°	and	the	central	angle	of	the	pentagon,	∠AOB,	contains	72°.	So	∠BOF	=
120°	–	72°	=	48°.	∠BOC	is	also	72°;	that	means	∠FOC	is	72°	–	48°	=	24°,	the
central	angle	of	a	15-gon	 .	CF	is	therefore	the	side	of	a	regular	15-
gon.	Setting	the	compass	to	length	CF	and	swinging	around	the	circumference
will	give	us	the	rest	of	the	15-gon’s	vertices.



This	technique	will	allow	us	to	bring	forth	a	new	product-polygon	from	any
pair	of	constructed	polygons	whose	number	of	sides	have	no	factors	in	common.
We	couldn’t	get	9	out	of	3	and	3,	for	example,	because	the	two	triangles	would
merge	into	one.	A	square	and	a	pentagon	would	give	us	a	20-gon,	if	we	hadn’t
already	lazily	produced	one	through	bisecting	the	angles	of	a	decagon.

Even	were	we	to	go	on	constructing	other	hybrids,	that	wouldn’t	do	away
with	the	sort	of	irritation	we’ve	already	felt	when	we	were	getting	dribs	and
drabs	of	results	about	polygonal	numbers,	nor	would	it	satisfy	our	impatience	for
the	infinite.	We	need	to	be	more	serious;	we	want	to	be	more	systematic,	and
ask:	precisely	what	can	and	can’t	be	constructed	with	straightedge	and	compass?
We	want	to	join	an	Intuitionist’s	relish	for	making	with	a	Formalist’s	delight	in
legal	elegance.	If	a	polygon	requires	lengths	expressed	by	various	kinds	of
numbers,	can	Euclid’s	tools	really	produce	them?	The	way	to	find	out	is	simply
to	build	up	the	kinds	of	lengths	they	can	construct.	Our	program	is	therefore	to
find	out	what	kinds	of	things	are	constructible—to	find	a	filter	into	which	you
can	pour	all	the	real	numbers,	which	lets	through	only	those	(and	all	those)
numbers	that	measure	constructible	lengths.

Let’s	start	with	something	we	know	goes	through	the	filter:	the	number	1,
measuring	a	unit	length.	And	then	we	have	to	be	able	to	do	arithmetic	with	it—
adding	it	to	itself	any	number	of	times	to	produce	lengths	which	can	be	added
together,	subtracted	from	one	another,	multipled,	and	divided.	We’ll	also	need
(as	we	saw	in	the	pentagon)	to	construct	lengths	with	square	roots	in	them.

That	unit	length:	since	Euclid’s	structures,	as	you	know,	are	utterly
insensitive	to	scale,	pick	any	length	you	like	and	grandly	call	it	“1”.	Or,	to
satisfy	a	Formalist,	since	Hilbert’s	axioms	for	Euclid	guarantee	the	existence	of
three	non-collinear	points,	choose	any	two	of	them	to	mark	the	unit	on	the	line
through	them;	then	begin	laying	off,	with	our	compass,	this	unit	length	head	to
tail	again	and	again,	marking	points	that	stand	for	the	natural	numbers:



We	can	now	add	two	naturals	by	laying	out	the	second	after	the	first,	or	vice
versa:

Subtracting	means	laying	off	the	length	to	be	subtracted	leftward	from	the	head
of	the	first:

Multiplication	makes	clever	use	of	the	fact	that	the	sides	of	similar	triangles
are	in	proportion.	We	first	saw	it	off-handedly	at	work	in	Chapter	One	(on	pages
18–19).	To	multiply	3	·	4,	for	example,	with	compass	and	straightedge,	lay	out
four	units	on	our	number	line;	then	on	a	line	through	0	and	that	third	point	not
collinear	with	our	first	two,	draw	a	second	line:

and	on	it	lay	off	three	units.	For	convenience,	let’s	label	the	point	marking	zero
A,	the	point	at	the	end	of	those	3	units	B,	the	point	at	1	on	the	original	line	C,
and	the	point	at	the	end	of	4	units,	D.

Since	two	points	determine	a	line,	construct	the	line	through	C	and	B,	and	at
D	draw	a	line	parallel	to	CB,	meeting	AB	at	E11:



These	parallel	lines	make	ΔABC	∼	ΔAED,	so

Multiplying	both	sides	by	4,

3	·	4	=	AE	=	12.

This	same	canny	device	leads	to	division	and	therefore	to	seeing	ratios	(for	a
Pythagorean)	or	constructing	rational	numbers	(for	us):	a	length	of	 ,	say,
follows	from	this	arrangement:

Here	we	draw	BD	rather	than	BC,	then	CE	parallel	to	it.	Since	ΔACE	∼	ΔADB,

That	is,	AE	is	 	of	a	unit	long.
This	means	we	can	now	locate	any	positive	rational	 	on	our	number	line.	In

the	bliss	of	this	dawn,	and	for	the	sake	of	what	is	to	come,	let’s	continue	our



number	line	(page	184)	leftward	from	0.	The	negative	rationals	will	appear	there
as	counterparts	of	the	positives:	–	 	will	be	the	same	length	away	from	0	as	 ,	but
in	the	opposite	direction.	These	new	points,	of	course,	mark	negative	numbers	as
positions	on	the	endless	number	line:	we’re	not	talking	about	negative	lengths.

Peacock	would	have	been	pleased:	whatever	we	could	do	with	the	natural
numbers	extends	now	effortlessly	to	the	integers	and	rationals,	all	of	which—
through	the	Adam	and	Eve	of	straightedge	and	compass—obey	every	law	for
fields	on	Weber’s	tablets	for	Fields	(page	48).	We	spoke	of	these	numbers	once
as	innocents	in	Eden	but	they	seem	more	worldly	here,	standing	about	in	their
field	like	the	folk	of	Piers	Plowman’s	vision,	which	William	Langland	wrote
five	centuries	before	Weber.

A	fair	field	full	of	folk	I	found
With	all	manner	of	men,	the	meaner	and	the	richest,
Walking	and	wandering	as	the	world	demanded.

This	multitude	we	used	to	call	Q	(the	rationals);	but	with	this	vision	in	mind,
let’s	rechristen	it	F,	for	field.

Our	aim	is	to	find	out	what	can	and	can’t	be	made	with	Euclidean	tools.
Where	are	the	irrationals?	We	have	seen	so	recently	how	to	construct	 	with
straightedge	and	compass,	yet	it	is	nowhere	here,	neither	among	those	who,	as
Langland	said,	put	them	to	the	plough	and	practiced	hardship	in	setting	and
sowing,	nor	with	those	who	practiced	pride	and	quaint	behavior,	and	came
disguised	in	clothes	and	features.

Let	us	invite	them	in,	as	the	Old	Masters	would	bring	saints	and	angels	(only
a	little	estranged	by	their	lighting	and	bearing)	into	mortal	discourse	on	their
canvases.	We	simply	construct	(as	on	page	178)	a	line-segment	of	irrational
length—let’s	begin	with	that	anchor	of	chaos,	 —

and	drop	it	in	amidst	all	the	rational	lengths	of	F.	There	let	it	go	forth	and
multiply,	divide,	add,	and	subtract	with	all	those	established	lengths	and	now
with	these	new	ones	too,	making	every	possible	arithmetic	combination.	These
will	make	up	a	new	and	larger	field,	which	contains	F	as	a	subfield:	a	“square



root	extension	field”	of	F,	as	it’s	called,	and	written	 .	Since	this	is	our	first
field	extension,	we	refer	to	it	as	F1:

F1	=	F[ ].

Notice	that	closure,	which	we	dismissed	in	Chapter	Two	as	almost	infra	dig,
turns	out	to	be	what	matters	here:	F1	is	closed	under	all	the	arithmetic	operations
and	square-rooting	of	2	as	well.

Every	creature	in	this	field	will	therefore	have	the	two-part	name	 —
even	though	some	may	not	at	first	seem	to.	“17”	is	17	+	0	 	in	disguise;	“17 ”
is	0+17 	when	it	is	at	home.	And	 	It	takes	a	little	clever	encouragement	to
make	it	tell	us	its	name.	Multiply	this	quotient	by	 	and	look	what	we	get:

a	is	5	and	b	is	–1.
Although	F1	contains	everything	in	F	and	an	infinite	number	of	other

creatures	besides—all	of	which	we	now	see	are	constructible— 	is	not	among
them.	Why	not?	Because	 ,	like	 ,	is	irrational,	so	cannot	lie	in	F.	Nor	can	any
arithmetic	combination	of	rationals	with	 	produce	it	(if	in	doubt,	see	the
Appendix).	That	can’t	stop	us,	however,	from	building	 	in	now.	Since	we	know
we	can	construct	 ,

we	act	as	we	did	before	and	adjoin	it	to	F1,	to	make	the	yet	larger	extension	field
	that	is,	has	all	the	rationals	in	it,	along	with	 ,	 ,	and	all	possible

arithmetic	combinations	of	these,	with	more	or	less	obvious	examples,	like	



,	which	we	know	we	can	construct.
Since	we	can	construct	the	square	root	of	any	already	constructed	number	by

the	semicircle	method,	the	program	is	clear.	Whenever	we	find	a	number	that
was	in	a	previous	field	but	whose	square	root	wasn’t,	adjoin	this	square	root	to
the	later	field,	just	as	we	have	done,	to	make	a	new	field	that	will	be	the	next
link	in	our	chain	of	fields—whose	folk	are	constructible	lengths.	This	means	that
if	a	number	is	in	F	or	any	square	root	extension	field	of	F,	then	we	can	construct
a	line	segment	of	that	length	with	Euclidean	tools.

How	like	the	medieval	notion	of	the	Great	Chain	of	Being	this	is!	Any	length
in	a	square	root	extension	field	has	been	brought	into	existence	by	straightedge
and	compass.	If	it	lies	in	F,	the	length	is	rational;	if	in	F1,	it	is	an	arithmetic
combination	of	rationals	and	 	(or	people	say,	 ;	if	in	F2,	of	these	and	
(that	is,	 ).	We	continue	like	this	every	time	we	find	a	rational	whose
square	root	is	irrational	yet	lies	in	no	previous	field	( 	is	irrational	but	belongs,
as	you	saw,	to	F2,	since	 	=	 ;	but	 ,	for	example,	requires	a	new	link).	In
harmony	with	the	medieval	conception,	this	chain	is	infinitely	long,	since	each
prime	has	an	irrational	square	root	which—like	 —can’t	be	derived	from
combinations	of	rationals	with	the	square	roots	of	other	primes.	In	the	language
of	a	medieval	metaphor,	F	begets	F1,	which	in	turn	begets	F2	which	is	 —and
so	on:

Is	it	awful	or	awesome	that	there	are	other	links	than	these?	For	go	back	to
F1,	containing	all	the	rationals	and	all	the	arithmetic	combinations	with	 .
Another	length	we	could	make,	which	isn’t	among	them,	is	 ,	commonly
called	the	fourth	root	of	2,	or	 .12	We	can	construct	it	out	of	old	material	in	the
usual	way:

We	therefore	need	a	new	link,	which	is	F1	with	 	adjointed;	and	then	that	will
call	up	another,	since	now	we	can	construct	 ,	and	then	 ,	and	in	fact	a
link	for	each	2nth	root	of	2,	 .



The	same	will	be	true	for	 	and	so	on,	and	the	2nth	root	of	any	prime.
Our	vision	is	turning	nightmarish:	infinitely	long	chains	now	hang	down	from

each	link	of	our	infinitely	long	chain:

The	bookkeeper	closeted	in	every	brain	clutches	his	forehead	and	cries	out,
“How	shall	I	ever	arrange	all	these	in	order?”	We’ll	mail	him	the	astonishing
directions	in	Chapter	Nine.	What	matters	here	is	that	we	don’t	require	his	skills:
these	fields	needn’t	be	stood	to	attention	before	our	undertakings,	but	can	be
marshalled	on	demand	to	suit	our	needs.

Say,	for	example,	that	you	have	to	construct	an	awkward	length	such	as	
.	To	start	with,	we	know	that	745	and	 	lie	in	Q,	our	base	field	F.

Suiting	our	actions	to	our	needs,	let’s	first	adjoin	 	to	F,	so	that	this	time	around
F1	will	be	 .	We	need	to	work	our	way	down	to	 :	F1,1	will	be	 ,	F1,2
will	be	 ,	F1,3	will	be	 ,	and	finally	F1,4	will	be	 .	Now	all
we	need	do	is	adjoin	 ,	so	this	time	 —and	it	is	in	this	F2	that	the
required	length	can	be	constructed.	What	happened	to	 	and	 ,	you	might	ask,
and	 ,	and	 ?	We	never	needed	them,	and	therefore	built	this	chain
of	extensions	from	F	without	them.	So	a	carpenter,	with	his	templates	and	tools
laid	out	in	order,	need	only	choose	this	one	or	that	for	the	job	at	hand;	he	doesn’t
have	to	run	through	them	all.

Lest	you	think,	by	the	way,	that	every	possible	real	number	lies	in	some
square	root	extension	of	F,	notice	that	some	don’t:	 	isn’t	rational	(so	it	isn’t	in
F)	nor	is	it	the	square	root,	4th,	8th,	16th,	or	any	2nth	root	of	any	members	in	the
square	root	extension	chain	from	F.	In	fact,	most	of	the	cube	roots	of	numbers
lie	outside	our	fields.	This	is	true	too	of	most	5th	roots,	6th,	7th,	9th,	10th,	and
other	roots	not	of	the	form	2n—not	to	mention	numbers	like	π,	which	aren’t	any
sort	of	root	at	all.	Populous	though	the	links	in	our	chain	are,	a	vast	array	of
numbers	swarms	outside	them.



What	matters	to	us,	however,	is	that	we	have	found	our	filter.	Any	length	that
lies	in	a	square	root	extension	field	of	F	can	be	constructed.	But	this	criterion
will	help	only	if	its	converse	is	true	as	well:	that	any	length	which	can	be
constructed	lies	in	such	a	square	root	extension	field.	This	is	the	second	phase	of
our	strategy	and	asks	us	to	understand	just	what	it	means	to	construct	with
straightedge	and	compass.	Fortunately	the	answer	is	clear:	what	we	construct
into	existence	are	only	the	points	where	two	lines	or	two	circles,	or	a	line	and	a
circle,	intersect.	The	particular	points	we	have	made	thus	far	(in	the	pentagon,
for	example)	have	been	so	constructed—and	have	lain	in	F	or	one	of	its	square-
root	extension	fields	(t—the	side-length	of	a	pentagon—is,	as	you	remember
from	page	176,	 ,	an	element	of	that	simple	extension,	 ).

How	can	we	be	sure,	however	that	all	the	points	made	in	one	of	these	three
ways	will	belong	to	a	square	root	extension	field	of	F?	Let’s	allow	ourselves	a
luxury	Euclid	never	had:	the	coordinate	plane	that	glimmered	in	ancient	Egypt
and	Greece,	and	that	Fermat	and	Descartes	brought	fully	to	light	in	the
seventeenth	century.	We	simply	set	up	a	second	number	line	perpendicular	to
the	first,	on	each	of	which	we	can	mark	any	point	whose	distance	from	the	zero
where	they	cross	is	a	number	belonging	to	F.

It	is	as	if	we	had	first	moved	from	a	map	that	showed	only	how	to	go
eastward	from	home	to	one	that	extended	westward	as	well;	and	here	added	a
north	and	south	to	give	us	the	world	on	a	plane.	Any	point	on	this	plane	whose
horizontal	and	vertical	addresses	both	belong	to	F	can	now	be	located	(and	we’ll
always	give	the	horizontal	coordinate	first).



The	words	“plane”	and	“field”	call	up	such	similar	images	that	you	might
think	every	point	of	the	first	belonged	to	the	second.	But	keep	in	mind	that	the
coordinate	plane	contains	every	single	point	that	has	real	coordinates,	while	our
square	root	extension	fields	are	as	exclusive	as	the	parklands	of	great	estates.
You	could	think	of	it	this	way.	The	field	of	rationals,	F,	lies	like	a	transparency
on	the	Cartesian	plane,	with	points	all	over	it,	corresponding	to	points	with
rational	coordinates.	 	is	on	it,	but	neither	 	nor	 .	The	extension
field	 	is	a	second	transparency,	with	all	the	points	of	the	first	and	now
many	more—all	those	that	have	at	least	one	coordinate	with	a	 	in	it.	 	is
here,	but	 	is	still	missing.	In	fact,	 	won’t	be	in	any	of	the	subsequent
transparencies	corresponding	to	links	in	the	chain	shown	on	page	190.

Nevertheless,	the	luxury	of	the	coordinate	plane	will	soon	prove	a	necessity
to	us,	and	the	power	of	algebra	will	lift	us	up	above	field	after	field,	to	see	their
ordered	array.	For	it	will	let	us	find	the	form	common	to	all	points	on	a	given
line,	and	in	particular	a	line	through	two	points	in	one	of	our	fields,	and	then	the
form	common	to	all	points	on	another	such	line.	This	will	let	us	see	the	form	of
the	one	point	on	both	lines—their	point	of	intersection—and	discover	that	it
must	have	the	form	of	a	point	in	the	field.	We	will	do	the	same	for	a	circle,	then
for	its	intersection	with	another	circle	or	line	built	in	the	same	field;	and	those
points	they	have	in	common	(their	intersections)	will	turn	out	to	be	either	in	that
field	or	in	a	square	root	extension	of	it.	This	will	bring	our	strategy’s	second
phase	to	an	end,	showing	that	our	criterion	was	all	we	had	hoped	for:	precisely
those	points	that	lie	in	F	or	some	square	root	extension	field	of	it	can	be
constructed	with	Euclidean	tools.

“The	form	of	all	points	on	a	line”:	what	does	this	mean?	Not	their	visual
form,	which	dots,	no	matter	how	small,	approximate,	so	badly,	but	the	form
which	is	exact	because	abstract:	their	numerical	coordinates	(so	far	has	our
thought	evolved	from	Chapter	One).	We	want	to	be	able	to	derive	these
coordinates	from	those	of	the	two	points	the	line	was	originally	drawn	through.

Take	for	example	the	line	through	the	points	(2,6)	and	(4,12).	What	form
have	the	coordinates	(x,y)	of	any	point	on	this	line	in	terms	of	2	and	6,	4	and	12?



We	notice	for	a	start	that	this	line	rises	steadily,	with	a	constant	slope—call	it	m
—which	is	described	by	how	far	it	moves	vertically	over	a	given	horizontal
stretch:

Since	the	vertical	distance	is	the	difference	in	the	y-coordinates,	and	the
horizontal	the	difference	in	x-coordinates,

Hence	the	y-coordinate	of	any	point	on	this	line	will	be	three	times	its
corresponding	x-coordinate:

y	=	3x.

This	particular	line	goes	through	the	point	(0,0).	Any	other	line	parallel	to	it
must	have	the	same	slope,	m	=	3,	but	the	y-coordinate	of	a	point	on	it	will	be
increased	or	decreased	from	y	=	3x	according	to	where	such	a	line	passes
through	the	y-axis.	The	parallel	line	passing	through	(0,2),	for	example	(2	units
above	our	original	line),	will	have	points	whose	y-coordinates	are	given	by

y	=	3x	+	2.

The	parallel	through	(0,–3)	will	give	us

y	=	3x	–	3.



In	general,	then,	the	y-coordinate	of	any	point	(x,y)	on	a	line	with	slope	m,
which	intersects	the	y-axis	at	k,	will	be

Now	let’s	apply	these	results	to	any	two	points	with	coordinates	in	our	field.
Call	these	points	(a,b)	and	(c,d).	We	can	calculate	m	by	taking	the	difference	in
y-coordinates	(d	–	b)	over	the	difference	in	x-coordinates	(c	–	a):

You	might	be	tempted	to	interrupt,	saying	that	we’re	just	lucky	to	have
natural	numbers	for	our	initial	coordinates:	instead	of	a,	b,	c,	and	d	we	could
have	had	rationals	like	 	in	F,	or	hideous	combinations	in	a	square	root	extension
field:	a	could	have	been	 ,	and	c,	d,	and	e	as	bad.	What	an	atrocious	mess	m
would	then	be!	But	even	were	such	intricacies	lovely,	dark	and	deep,	the
promise	we	have	to	keep	is	simply	to	show	that	two	lines	through	points	in	a
field	intersect	in	another	point	of	the	field,	and	we	still	have	some	way	to	go.
Benign	neglect	is	called	for	here	to	avoid	being	sidetracked:	a	sort	of	blessed



ignorance	in	which	mathematics	(which	would	know	all	things)	thrives.	What
we	care	about	is	that	m	arises	through	some	arithmetic	combination	of	elements
in	the	field;	in	this	case,	we	have	used	subtraction	and	division.	Let	a,	b,	c,	and	d
therefore	stand	for	whatever	those	elements	are;	we	need	look	no	more	closely
in	order	to	gain	our	end.

We	now	have

and	need	to	express	k	also	in	terms	of	our	original	four	coordinates.	We	do	this
simply	by	turning	the	game	around	on	itself	(will	the	upcoming	manipulations	be
exhausting	or	dreary?	Neither:	they	afford	the	clockmaker’s	pleasure	of
watching	the	gears	mesh).	Since	this	equation	puts	y	in	terms	of	x	for	any	point
(x,y)	on	the	line,	it	certainly	does	so	as	well	for	the	original	points	(a,b)	and
(c,d).	Choose	one	of	them—say	(a,b)—and	in	the	equation	above	replace	x	by	a
and	y	by	b,	giving	us

Solving	for	k	with	just	a	touch	of	algebra,

Hence

We	won’t	let	these	ugly	expressions	rattle	us;	the	only	message	we	want	to
carry	away	is	that	 	·	a,	like	 	itself,	is	firmly	within	the	field	we
started	with.	This	means	that	given	an	x	in	that	field,	y	(which	is	of	course	on	the
plane)	will	be	in	the	field	too.	With	this	in	mind,	we	can	return	with	confidence
to	the	more	congenial	form



y	=	mx	+	k,

knowing	that	m	and	k	are	just	arithmetic	combinations	of	elements	in	our	field.
We	ask:	if	two	lines	arising	from	points	of	our	field	intersect,	will	their

intersection	lie	in	the	field	as	well?	Let	that	second	line	give	the	y	coordinate	of
any	point	(x,y)	on	it	by

A	firmer	application	of	algebra	will	tell	us	the	answer,	since	its	aim	is	to
extract	the	unknown	from	whatever	circumstances	it	finds	itself	in.	This	is	no
trivial	aim:	“All	the	business	of	life,”	said	Napoleon’s	conqueror,	the	Duke	of
Wellington,	“is	the	endeavour	to	find	out	what	you	don’t	know	by	what	you	do;
that’s	what	I	call	‘guessing	what	was	at	the	other	side	of	the	hill.’”

Our	hill	here	has	y	=	mx	+	k	on	one	side	of	it,	y	=	nx	+	g	on	the	other.	We	are
interested	in	the	point	(x,y)	at	the	crest,	where	these	two	lines	meet.	It	is	the
same	point	(x,y)	on	both	lines,	so	that	y	=	y;	by	transitivity,

mx	+	k	=	nx	+	g.

We	want	to	find	out	the	unknown,	x,	in	terms	of	what	we	know:	m,	k,	n,	and	g.
Well,

mx	–	nx	=	g	–	k

so



(m	–	n)x	=	g	–	k

and

This	is	just	an	arithmetic	combination	of	elements	in	the	field,	so	x	must	be	in	it
as	well;	and	we	have	already	seen	that	if	x	is	on	a	line	derived	from	our	field,	so
is	the	y	coordinated	with	it.	The	point	made	by	intersecting	two	lines	of	the	field
lies	in	the	field	too.

We’ve	now	found	that	the	form	of	a	line	is	approximately

but	is	exactly	y	=	mx	+	k.
We	next	need	to	find	the	exact	form	of	a	circle.	Our	thanks	for	this	go	back

through	Descartes	and	Fermat	to	Pythagoras,	since	his	theorem	holds	the	key	to
its	equation.

Say	we	have	a	circle	of	radius	2	with	its	center	at	(0,0)	and	want	to	know	how
the	x-	and	y-coordinates	of	any	point	on	it	are	related.	As	you	(wearing	the
spectacles	of	Pythagoras)	see	in	the	drawing,

x2	+	y2	=	22

that	is

x2	+	y2	=	4

or



The	adjustment	is	easy	should	the	circle	have	radius	r	instead	of	2:

x2	+	y2	=	r2

or

The	final	modification	displaces	the	circle’s	center	from	(0,0)	to	some	other
point	(h,k)	on	the	plane:

Now	the	circle’s	equation	is

(x	–	h)2	+	(y	–	k)2	=	r2

so

(y	–	k)2	=	r2	–	(x	–	h)2

which	gives	us



or

This	is	the	algebraic	form	of	a	circle.	It	is	the	form	latent	in	all	the	circles
drawn	in	sand,	on	paper,	or	on	your	thigh.	Without	sweating	any	details	we	see
that	if	x,	r,	h,	and	k	lie	in	some	square	root	extension	field	Fi,	y	will	lie	in	at
worst	the	next	link	from	it.

Now	we	can	take	on	the	intersection	of	a	circle	and	a	line	that	both	arise	from
some	Fi.	We	hope	that	what	points	they	have	in	common	are	in	Fi	too,	or	in	a
square	root	extension	link	from	it.

Because	the	equation	for	a	circle	is	more	complicated	than	that	of	a	line,	the
tactics	for	doing	this	will	be	more	intricate	than	they	were	when	we	looked	at	the
intersection	of	two	lines—but	the	strategy	remains	exactly	the	same:	to	show
that	whatever	happens,	no	more	than	arithmetic	combinations	and	square	rooting
will	be	involved.

By	transitivity	(in	the	specific	form	of	substituting	the	second	expression	for	y
into	the	first	equation),

(x	–	h)2	+	(nx	+	g	–	k)2	=	r2.

Whatever	we	will	now	do	to	free	x	from	its	entanglements,	we	won’t	go	beyond
adding,	multiplying,	subtracting,	dividing,	and	taking	square	roots.

Like	the	sons	of	King	Gama	in	Gilbert	and	Sullivan’s	Princess	Ida	who
found	their	armor	too	heavy,	we	begin	to	remove	the	parts	piece	by	piece.
Squaring	the	two	terms	on	the	left	makes	things	look	temporarily	worse:

x2	–	2xh	+	h2	+	n2x2	+	2ngx	+	g2	–	2knx	–	2gk	+	k2	=	r2;



but	collecting	like	terms	together,

(1	+	n2)x2	+	(–2h	+	2ng	–	2kn)x	+	(h2	+	g2	–	2gk	+	k2)	=	r2,

we	see	that	each	of	these	expressions	in	parentheses	is	some	arithmetic
combination	of	elements	in	the	field	we	began	with,	hence	is	in	this	field	too—
so	call	these	three	expressions	A,	B,	and	C,	and	off	goes	that	helmet:

Ax2	+	Bx	+	C	=	r2,

or	simply

Ax2	+	Bx	+	C	–	r2	=	0,

and	since	C	–	r2	is	also	some	element	of	the	field—call	it	D—

Ax2	+	Bx	+	D	=	0.

In	steps	the	Quadratic	Formula,	and	off	goes	that	cuirass:

The	same	move	repeated:	B2	–	4AD	is	also	some	element	in	the	field—call	it	E
—so

x,	stripped	of	its	brassets	and	greaves,	stands	revealed	in	a	square	root	extension
field	of	the	Fi	we	began	with,	namely	

If	you	have	been	dreading	the	final	case—the	points	where	two	circles
intersect—have	no	fear,	but	put	yourself	far	enough	above	the	battle	to	enjoy	it;
or	succumb	to	the	song	of	the	sirens	that	invited	Odysseus	to	their	remote	island:

Here	may	we	sit	and	view	their	toil
That	travail	in	the	deep	…

This	travail	is	to	solve	“simultaneously,”	as	timeless	algebra	so	coyly	puts	it,



the	two	equations

(x	–	h)2	+	(y	–	k)2	=	r2

and

(x	–	j)2	+	(y	–	q)2	=	s2

for	the	points	(x,y)	that	are	common	to	both.
Expand	each	equation,	subtract	the	second	from	the	first,	carefully	collect

like	terms	together	(as	we	did	on	page	201)	and	discover	the	form	of	a	line
hiding	here:

A	line?	Where	did	that	come	from?

It	is	the	“common	chord”	of	the	two	circles,	passing	through	their	points	of
intersection;	its	constants	(h,	j,	q,	k,	and	their	arithmetic	combinations)	lie
wholly	within	the	field	we	began	with.	So	we	are	in	the	very	situation	we	found
ourselves	in	before,	looking	for	the	intersection	of	a	line	with	a	circle	(here



either	circle)—and	can	confidently	declare	that	we	know	those	intersections	will
lie	in	that	field	or	a	square	root	link	from	it.

We	are	done.	It	has	been	like	an	exhilarating	three-mile	run—uphill.	What	we
come	away	with	is	the	certainty	that	the	algebraic	form	of	whatever	we	can
construct	with	Euclid’s	tools	has	as	its	components	only	rationals	and	their	2nth
roots.	You	won’t	find	cube	roots,	fifth	roots,	or	such	there	(unless,	exceptionally,
one	of	those	was	a	square	root	all	along—as	 ;	or	masquerades	as	a	more
complicated	member	of	a	square	root	extension	field.	So	for	example	 	is
1	+	 	in	disguise).	Now	we	see	from	aloft	what	we	saw	close	at	hand	before:	the
pentagon	could	be	constructed	precisely	because	the	lengths	of	the	five	sides
involved	nothing	more	exotic	than	 .

It	was	Gauss—once	again	Gauss,	whose	name	runs	through	the	last	two
centuries	of	mathematics	like	Louis	Armstrong’s	through	the	evolution	of	jazz—
who	on	March	30,	1796,	when	he	was	still	eighteen,	discovered	how	to	construct
the	17-gon.	No	one	had	seen	a	way,	or	was	even	sure	that	it	could	be	done,	in	the
two	thousand	years	of	thinking	about	it	before	him.

By	concentrated	analysis	I	succeeded,	during	a	vacation	in	Braunschweig,	in	the
morning	of	the	day,	before	I	got	up,	to	see	[the	general	idea	so]	clearly	that	I	was	able
to	make	the	specific	application	to	the	17-gon	and	to	confirm	it	numerically	right
away.

A	proof,	if	one	is	needed,	that	adolescents	should	be	allowed	to	get	up	late
during	vacations.

We	needed	 	to	construct	the	pentagon.	For	the	17-gon	Gauss	needed

The	 	hidden	here	looks	more	frightening	than	Frankenstein’s	monster
(which	was	born	from	Mary	Shelley’s	pen	only	twenty	years	later).	But	if	you
look	at	the	whole	expression	structurally,	you	see	it	belongs	to	some	square	root
extension	field	not	very	far	from	F—and	that	is	what	matters.

It	was	this	breakthrough	that	decided	Gauss	once	and	for	all	to	become	a
mathematician	(he	had	been	equally	attracted	to	philology,	and	wrote	such
beautiful	Latin	that	some	regret	his	nationalist	friends	having	persuaded	him	to
write	in	German	rather	than	the	lingua	franca	of	scholarship).



He	published	his	result	two	months	later:

Besides	the	usual	polygons	there	is	a	collection	of	others	which	are	constructible
geometrically,	for	example	the	17-gon.	This	discovery	is	properly	only	a	corollary	of
a	not	quite	completed	discovery	of	greater	extent	which	will	be	laid	before	the	public
as	soon	as	it	is	completed.

How	near	to	glory	we	seem:	for	each	of	the	regular	polygons	not	yet
constructed	we	need	only	show	that	its	side-length	lies	in	some	square	root
extension	field	of	F.	Gauss	tells	us	his	construction	of	the	17-gon	is	only	a
corollary	of	a	much	greater	discovery.	You	may	think	that	this	bell	of	“only”	is
pealing—but	it	is	tolling:	Gauss’s	discovery,	which	he	published	in	1801,	was
that	in	fact	not	all	regular	polygons	can	be	constructed	with	Euclidean	tools:	he
found	that	the	only	ones	which	can,	have	a	number	of	sides	of	a	rather	peculiar
sort.	When	you	break	this	number	down	into	its	prime	factors,	each	one	will
appear	only	once;	moreover,	these	primes	will	have	a	striking	family
resemblance:	each	will	be	of	the	form	22

k
	+	1,	for	some	natural	number	k.	Of

course	once	you	construct	a	polygon	you	can—as	we	saw—construct	another
with	twice	as	many	sides,	and	twice	again,	and	so	on;	hence	some	power	of	2
will	also	be	a	factor	(perhaps	just	20	=	1).13	Any	polygon	whose	number	of	sides
doesn’t	fit	this	bill	will	have	side-lengths	whose	equations	will	involve
irreducible	cube	or	higher	roots,	and	so	be	unconstructible.	What	an	astonishing
and	well-hidden	unity	behind	the	diversity	of	appearances.14

Which	polygons	do	spring	from	primes	of	the	form	22
k
	+	1?	The	triangle:	3	=

22
0
	+	1,	and	the	pentagon:	5	=	22

1
	+	1;	and,	as	we	know,	any	polygon	with	a

repeated	doubling	of	3	or	of	5	sides,	or	with	2n	·	3	·	5	sides	(such	as	the	15-gon,
the	30-gon,	etc.)	can	be	constructed.	Next	comes	Gauss’s	17	=	22

2
	+	1	.	And

then?	22
3
	+	1	=	257,	which	is	prime.	In	1832	two	people	named	Richelot	and

Schwendenwein	put	in	a	little	bid	for	immortality	by	showing	how	to	construct
the	257-gon.

22
4
	+	1	is	also	prime:	it	has	in	fact	made	several	appearances	in	this	book

already,	disguised	as	an	arbitrary	number	no	one	would	have	thought	about
once,	much	less	twice:	65,537.	From	Olympus	a	Mr.	Johann	Hermes	delivered
the	construction	of	the	65,537-gon	to	the	University	of	Göttingen,	in	1879,
wrapped	up	in	a	weighty	manuscript	written	in	the	most	admirable	hand	and
filled	with	delicate	drawings	and	cumbersome	tables.	It	cost	him	ten	years	of	his
life	and	is	there	in	its	suitcase	to	this	day,	the	most	looked	at	and	least	read	of	all
dissertations	(as	the	curator	of	the	University’s	collection	of	mathematical



models	remarks;	you	can	see	something	of	the	puzzles	it	presents	in	the
Appendix).	How	petty	for	any	to	scorn	it	as	adding	not	a	jot	to	progress.	Do	we
dismiss	the	painstaking	miniatures	of	the	insane,	or	the	ideal	palaces	built	by
provincial	postmen?	Where’s	your	Forth	Rail	Bridge	made	out	of	toothpicks	or
your	basement	re-creation	of	the	Battle	of	Gettysburg	now?

Fermat	thought	that	all	numbers	of	the	form	22
k
	+	1,	called	in	his	honor

“Fermat	Numbers”,	were	prime.	But	22
5
	+	=	4,294,967,297	isn’t	prime	(641	is

one	of	its	factors);	nor	is	22
6
	+	1	nor	22

7
	+	1	nor	in	fact	any	22

k
	+	1	for	k	from	5

to	32.	As	of	May	28,	2001,	190	Fermat	numbers,	including	this	run	from	k	=	5
to	32,	have	been	checked,	and	none	were	prime.	The	largest	number	checked
(you’ll	be	flabbergasted	to	learn)	is	k	=	382,447.	To	keep	up	to	date,	look	from
time	to	time	at	Wilfrid	Keller’s	excellent	website:
www.prothsearch.net/Fermat.html.

Is	there	another	Fermat	number	out	there	which	is	prime?	We	just	don’t
know,	for	we	have	suddenly	arrived	at	a	frontier	of	mathematics.	If	there	are	no
more,	then	except	for	multiples	of	those	we	have,	Hermes	constructed	the	largest
regular	polygon	possible.	If	there	is	a	prime	Fermat	number	22

k
	+	1	for	some	k

beyond	32,	no	Hermes	nor	any	Olympian	will	construct	it	in	this	universe,	the
number	of	whose	particles	to	make	anything	with	is	significantly	less	than	(the
non-prime)	22

11
	+	1.	Yet	in	the	infinite	universe	of	the	mind	we	may	someday

discover	larger—or	perhaps	ever	larger	and	larger—Fermat	primes,	or	prove
that,	unlike	the	totality	of	primes	themselves,	these	dwindle	and	die	out,	so	that
the	species	of	constructible	polygons	are	rarer	than	days	in	June.

What	are	we	left	with?	The	heptagon	can’t	be	constructed	with	straightedge
and	compass,	although	we	can	sketch	it	wonderfully	well,	see	it	approximated	in
hubcaps	and	coins,	and	seem	to	picture	it	perfectly	with	eyes	closed.	We	may
build	a	nine-sided	city	like	Palmanova	in	Italy,	but	cannot	construct	its	Platonic
original.

http://www.prothsearch.net/fermat.html


We	are	left	with	a	puzzle—it	may	even	be	a	problem—about	the	-ible	in
“constructible”:	able	how,	when	possible	in	theory	but	not	in	the	physical	world?
Existing	how,	with	singular	points	and	special	properties,	when	not	even
constructible	theoretically?	Embodied	how,	on	the	abstract	Euclidean	plane,
when	deposited	there	(as	the	heptagon	is)	by	means	less	fundamental	than
Euclid’s—such	as	marked	straightedges	slid	along	sophisticated	curves?	And
does	the	ancient	conviction	echo	here	that	thoughts	are	as	real	as	or	even	more
real	than	deeds	(so	that	either	might	have	been	In	the	Beginning,	and	sinful
thoughts	now	must	as	much	be	atoned	for	as	sinful	acts)?	Or	do	constructions
and	constructing	belong	to	the	imagination,	that	messenger	between	the	world
and	the	mind,	beholden	to	neither?





Chapter	Seven

Into	the	Highlands

The	motto	which	I	should	adopt	against	a	course	calculated	to	stop	the	progress	of
discovery	would	be—remember	

—Augustus	de	Morgan

The	Scottish	chieftain	Calgacus	said	of	his	country	that	it	was	“defended	by	its
remoteness	and	obscurity.”	The	complex	plane	is	the	Scotland	of	mathematics.
The	countryside	we	have	passed	through	has	been	hilly,	but	cities	habitable	for
the	mind	of	man	have	dotted	it:	the	familiar	integers	here,	triangles	there
(although	once	in	them,	the	ways	have	often	turned	mazy).	Narrow	all	our	roads
down	to	the	line	of	real	numbers,	cross	it	with	the	line	of	the	imaginaries,	let	it
fade	endlessly	off	in	every	direction,	and	we	are	all	at	once	in	the	Cairngorms.

What	are	we	doing	here?	Many	a	climber	has	found	that	the	little	chaos	of
life	grows	ordered	and	makes	a	new	sense	when	seen	from	afar,	just	as	writers
like	James	Joyce	discover	in	exile	the	vivid	structure	of	home,	concealed	by	its
cluttered	presence.	Complex	events	in	simple	contexts	become	simple	when	the
context	grows	sophisticated.	So	on	this	complex	plane,	exceptions	and
peculiarities,	such	as	those	we	recently	met,	will	all	at	once	be	seen	as
outcroppings	of	deeper	symmetries.

Simplicity	and	symmetry:	how	often	the	impulse	toward	understanding	takes
its	bearings	from	these	two	markers,	in	the	belief	that	ultimate	answers	lie	just
beyond	them	(we	lust	after	the	subtle	and	singular	as	openings	into,	rather	than
from,	mystery).	The	complex	plane	promises	symmetry	too,	satisfying	that	old
mathematical	itch	so	well	described	by	William	Rowan	Hamilton:

The	algebraicist	complains	of	imperfection,	when	his	language	presents	him	with	an
anomaly;	when	he	finds	an	exception	disturbs	the	simplicity	of	his	notation,	or	the
symmetrical	structure	of	his	syntax;	when	a	formula	must	be	written	with	precaution,
and	a	symbolism	is	not	universal.

Here	is	a	striking	sort	of	anomaly	rectified	on	the	complex	plane.	On	the	real
plane,	those	quadratic	functions	we	once	had	so	much	to	do	with	come	in	three



varieties.	Roots—places	at	which	the	value	of	the	function	is	zero—lie,	naturally
enough,	on	the	x-axis,	where	y	=	0.	Some	quadratics	don’t	touch	the	x-axis	at
all,	like	f(x)	=	x2	+	3;	some	at	one	place,	like	f(x)	=	x2	−	8x	+	16,	whose	only
root	is	4;	and	some	in	two	places,	and	so	have	two	roots,	like	f(x)	=	x2	–	5x	+	6,
whose	roots	are	2	and	3.

Cubic	functions	can	have	one,	two,	or	three	roots,	but	the	shape	of	their	graphs
forbids	their	having	none.

Quartic	functions	can	have	no,	one,	two,	three,	or	four	roots,



and	so	on	for	higher	degrees,	needing	a	Linnaeus	to	classify	them	all.	But	if	we
allow	complex	roots,	quadratics	always	have	two,	cubics	three,	quartics	four—
and	nth	degree	polynomials	always	have	n	complex	roots.15	This	truth	(once
again,	proved	by	Gauss)	is	so	important	that	it	is	called	the	Fundamental
Theorem	of	Algebra.	Roots	are	buried	all	over	the	complex	plane,	there	for	our
extracting.

Is	unreality	the	price	we	must	pay	for	this	tidying	up?	You	have	already
heard	the	square	roots	of	negative	numbers	called	impossible	as	well	as
imaginary;	but	John	Wallis,	who	had	never	studied	math	formally	before	he
became	Savillian	Professor	at	Oxford	in	1649,	was	less	prejudiced.	He	saw	a
negative	area	as	the	spatial	equivalent	of	a	negative	length:	both	represent	loss.
You	can	go	into	debt,	and	the	sea	can	overwhelm	your	fields;	and	if	a	square	has
area	–1600,	it	can	only	have	a	side	of	 ,	or	40i.	Let’s	see	how	they	behave
when	the	usual	demands	are	made	on	them.

Adding	is	straightforward:

so	too	is	subtraction:

The	important	point	to	notice	here	is	that	arithmetical	combinations	of	complex
numbers	keep	real	parts	with	real,	imaginary	with	imaginary.
So	in	multiplying,



but	i2	=	–1,	so	–10i2	is	–10	·	(–1)	=	10	in	disguise,	and	our	product	is	12	–	7i	+
10	=	22	–	7i.

The	complex	numbers,	then,	remain	closed	under	addition,	subtraction,	and
multiplication.	Might	division	suddenly	force	them	to	open	into	yet	more
fantastic	forms?	What	if

were	no	longer	of	the	form	a	+	bi,	where	a	and	b	are	real	numbers	(one	or	both
possibly	0)?	Since	it	isn’t	at	all	obvious	how	to	go	about	answering	this,	we
should	look	back	in	admiration	at	Rafael	Bombelli,	strolling	in	the	garden	of	his
patron’s	Roman	villa.

Our	miniature	view	is	of	the	mid-sixteenth	century.	A	war	has	interrupted
Bombelli’s	draining	of	the	Pontine	marshes.	He	is	puzzling	over	having	to	find
the	three	roots	of	certain	cubics	and	announces	that	he	has	“found	another	sort	of
cubic	radical	which	behaves	in	a	very	different	way	from	the	others.”	He	has	to
make	sense	of	expressions	like	 ,	which	are,	he	says,	neither	positive	nor
negative.	Bombelli	thought	he	had	come	on	novel	creatures;	how	was	he	to
guess	that	they	were	the	very	imaginaries	that	Cardano,	the	mathematician
whose	work	he	so	much	admired,	had	wrestled	with	a	generation	before?	What
we	call	bi	and	–bi	Bombelli	calls	“more	than	minus”	(piu	di	meno)	and	“less
than	minus”	(meno	di	meno).	Names	only,	like	“Unicorn”	and	“Gandalf,”	of
creatures	that	don’t	exist?	He	too	thought	them	merely	sophistic	until	he	began
watching	them	combine	(“More	than	minus	times	less	than	minus	makes	plus
…”)—as	if	antic	figures,	even	more	mysterious	than	J.	B.	Brown’s,	were
materializing	in	the	umbrella	pines	behind	him	and	were	then	fixed	there
through	the	solidity	of	geometric	proofs.

Seeing	that	bi	and	–bi	always	appeared	yoked	together	in	his	calculations
gave	him	his	clue:	since	(a	+	bi)	·	(a	–	bi)	=	a2	+	b2—a	real	number—he	took	a
quotient	like	our



and	multiplied	it	by	1,	in	the	guise	of

(the	same	tactic	we	used	on	page	187	to	reveal	the	true	identity	of	
This	would	leave	its	value	unchanged	but	convert	its	form	to

a	perfectly	good	complex	number.
Complex	numbers,	then,	remain	closed	under	all	four	arithmetic	operations:

C	is	a	field.	But	square-rooting	took	us	out	of	fields	before.	Perhaps	here	too	the
square	root	of	a	complex	number	will	no	longer	be	complex	but	something
richer	and	stranger.	Let’s	experiment	with	i	itself	and	see	if	 	lies	beyond	the
complex	numbers.	In	Alcibiadean	spirit	we’ll	bet	that	it	is	complex.	When	we
roll	the	dice,	either	a	contradiction	will	get	the	better	of	us,	or	we	will	win.

In	its	official	form,	i	is	0	+	1i.	Our	claim	is	that

for	some	real	numbers	a	and	b,	which	we	want	to	find.	We	resort	to	the	tactics
familiar	from	Chapter	One	and	square	both	sides:

0	+	1i	=	a2	+	2abi	+	(bi)2

or,	since	(bi)2	=	–b2,

0	+	1i	=	a2	–	b2	+	2abi.

Since	3	+	2i,	for	example,	isn’t	5	of	anything,	when	two	complex	numbers	are
equal	(as	here),	remember	that	the	two	real	parts	must	be	equal,	and	the	two
imaginaries	must	be	also.	We	therefore	have

0	=	a2	–	b2

and



1	=	2ab.

We	want	to	solve	these	equations	simultaneously,	and	to	do	this	dip	into	the
algebraist’s	bag	of	tricks.

Since	0	=	a2	–	b2,

a2	=	b2	;

and	that	is	only	possible	if	b	=	a	or	b	=	–a.
In	the	second	case,	however,	ab	=	a	·	(–a),	which	is	negative,	so	2ab	would	be

negative,	and	couldn’t	equal	1;	hence,	we’d	lose	on	that	roll	of	the	dice.	We	can
only	hope	that	we	will	succeed	with	the	other	possibility,	b	=	a.

This	means	we	substitute	a	for	b	in	the	second	equation,	and	get

1	=	2a2,

that	is,

or

We	can	metamorphose	this	answer	a	bit:

and	multiplying	this	last	by	 	for	the	sake	of	a	rational	denominator,

so



When	 ,	since	b	=	a,	b	is	 	and	we	get	the	unlikely	looking	result

Very	dubious—but	look	what	happens	when	we	test	it:	if	this	creature	really	is
the	square	root	of	i,	then	squaring	it	should	give	us	i:

It	does!	And	if	a	=	 ,	then	again,	since	b	=	a,	b	will	be	 	also.
Is	 	another	square	root	of	i?

Two	square	roots—just	as	the	Fundamental	Theorem	of	Algebra	predicted.
Alcibiades’s	gamble	has	paid	off:	no	contradiction,	but	instead	two

complicated	as	well	as	complex	square	roots	of	i	stand	revealed.	The	first	person
to	see	that	any	algebraic	operation	on	the	complex	numbers	left	them	closed	was
Jean	le	Rond	d’Alembert	in	1747—a	man	who,	although	his	life	was	polarized,
was	convinced	that	all	knowledge	was	unified.	He	had	been	abandoned	by	his
unmarried	socialite	mother	on	the	steps	of	St.	Jean-le-Rond	in	Paris	and	raised
by	a	poor	glazier’s	family.	His	noble	father	later	paid	for	his	education,	but
d’Alembert	kept	his	allegiance	to	his	stepparents.	If	this	timeless	story	leads	you
to	think	that	now	and	then	or	here	and	there	are	the	same,	consider	how	strange
past	styles	and	customs	seem	to	us:	the	work	in	which	d’Alembert	proved	his
result	was	his	“Reflections	on	the	General	Cause	of	Winds.”



D’Alembert	(1717–1783)

A	broader	revelation	comes	with	our	two	roots	of	i:	their	wholly	unexpected
(counter-intuitive?)	form	means	that	the	terrain	hasn’t	yet	fully	coalesced,
having	been—as	a	historian	says	of	Virginia—an	idea	before	it	was	a	place.	If
you	find	yourself	in	a	country	“fained	by	Imagination”	(Virginia	as	described	by
Sir	Humphrey	Gilbert),	the	solution	is	to	let	imagination	do	what	fantasy	cannot:
focus	in	on	detail,	so	that	we	can	end	up	navigating	as	confidently	as	we	do	in
the	reals.

Algebra	helped	geometry	in	the	last	chapter:	here	geometry	will	repay	the
debt.	Since	addition	of	complex	numbers	was	straightforward,	let’s	see	what	it
looks	like	on	the	complex	plane	which	we	first	saw	on	page	33,	looking	just	like
the	real	plane,	but	with	the	y-axis	occupied	by	imaginaries.	How	did	the
ingenious	Wallis	come	up	with	that	image?	He	realized	that	i	was	the	mean
proportional	between	1	and	–1,	because

and	therefore,	like	the	mean	proportional	we	constructed	on	page	179,	should
rise	perpendicular	to	the	real	number	line,	halfway	between	1	and	–1.

We	were	adding	(3	+	2i)	+	(4	–	5i)—but	where	are	these	two	numbers?	We
have	the	point	(3,2)	standing	for	the	pair	“3	of	the	reals,	2	of	the	imaginaries”—



but	how	should	we	represent	the	one	complex	number	3	+	2i?
Once	again,	the	simplest	inventions	often	have	the	most	profound

consequences.	In	order	to	appreciate	this	one,	savor	the	childhood	revelation	of
one	of	our	leading	mathematicians,	William	P.	Thurston.	In	the	fifth	grade	he
realized	to	his	amazement	that	the	answer	to	134	divided	by	29	was	 	.	“What	a
tremendous	labor-saving	device!”	he	later	wrote.	“To	me,	‘134	divided	by	29’
meant	a	certain	tedious	chore,	while	 	was	an	object	with	no	implicit	work.	I
went	excitedly	to	my	father	to	explain	my	major	discovery.	He	told	me	that	of
course	this	is	so,	 	and	a	÷	b	are	just	synonyms.	To	him	it	was	just	a	small
variation	in	notation.”	Looking	at	one	thing	in	two	ways—here	Euler	simply	set
the	two	expressions	equal:	he	let	the	point	(3,2)	on	the	complex	plane	stand	for
the	complex	number	3	+	2i.	So	small	a	step	over	so	deep	a	chasm.	Here	then	are
3	+	2i,	4	–	5i,	and	their	sum,	7	–	3i:

This	picture	doesn’t	seem	to	tell	us	anything.	Try	another:	(2	+	5i)	+	(8	+	3i)
=	10	+	8i:



Again,	neither	Cassiopeia	nor	Orion	shapes	itself	from	these	stars.	Perhaps	we
have	been	spoiled	by	the	constellations	we	found	in	Chapter	Five,	and	the
skeptic	who	walks	in	every	optimist’s	shadow	will	rightly	now	step	out	into	the
sun.

It	took	a	Norwegian	surveyor	to	find	the	sight-lines.	In	1797,	Caspar	Wessel
—modest,	self-taught,	barely	able	to	scrape	a	living	from	the	maps	he	made	of
towns	and	coastlines	and	islands—published	his	paper	“On	the	Analytic
Representation	of	Direction;	an	Attempt.”	Why	not	think	of	these	islanded
points	as	the	ends	of	arrows	shot	out	from	the	origin,	(0,0):	directed	line-
segments,	that	is—or	vectors,	as	we	now	call	them.	This	is	an	idea	that	would
come	naturally	to	a	sailor	and	chart	maker	thinking	of	the	different	forces	of
wind	and	current	on	a	ship.	An	image	begins	to	develop.	Our	first	sum	now
looks	like	this:

The	same	urge	to	symmetrize	that	we’ve	felt	again	and	again—the	urge	to
complete	the	picture,	the	child’s	delight	in	connecting	the	dots—comes	on	us
here:	we	sketch	in	the	two	missing	lines	that	are	longing	to	be	found:

A	parallelogram	whose	long	diagonal	is	the	sum!	Has	this	homely	shape,	that
played	so	important	a	part	in	Chapter	Five,	come	to	our	aid	far	from	home—or
was	it	just	a	coincidence	here?	Examples	may	prove	nothing	but	they	do
strengthen	resolve,	so	let’s	try	it	again	with	(2	+	5i)	+	(8	+	3i):



Once	more	it	works!	It	must:	adding	(a	+	bi)	to	(c	+	di)	means	moving	the	first
arrow,	parallel	to	itself,	a	units	over	and	b	units	up,	so	that	its	tail	begins	at	the
head	of	the	second:	and	this	gives	us	our	parallelogram.	Again,	this	is	a	notion
congenial	to	anyone	working	with	charts	and	the	parallel	rulers	that	transfer
bearings	from	the	compass	rose	to	bearings	from	one’s	location.

And	subtraction?	Here,	with	Wessel’s	arrows,	is	(3	+	2i)	–	(4	+	5i)	=	–1	–3i:

No	parallelogram	leaps	to	the	eye.	Yet	something	here	is	waiting	to	be	born.	If
you	draw	the	line	connecting	the	first	two	arrowheads,	it	looks,	oddly	enough,
parallel	to	and	the	same	length	as	the	arrow	of	their	difference:



Perhaps	this	isn’t	so	odd	after	all,	if	you	think	about	what	subtraction	means:	(a
+	bi)	–	(c	+	di)	=	(a	+	bi)	+	(–c	–	di).	Once	we	locate	–c	–	di,	our	parallelogram
incarnation	of	addition	will	give	us	the	vector	we	want,	with	–c	–	di	the	same
length	as	c	+	di	but	pointing	180°	away	from	it.	Hence	the	sum	arrow	of	(a	+	bi)
and	(–c	–	di)	will	be	parallel	to	the	other	diagonal	of	the	parallelogram	made
from	(a	+	bi)	and	(c	+	di):

You	might	have	thought	that	so	stunning	an	insight	as	Wessel’s	would	have
been	flashed	around	the	world	on	the	mathematical	telegraph—had	there	been
one.	Instead,	word	from	Norway	languished	in	Scandinavia	for	a	hundred	years,
during	which	time	Wessel	was	knighted	for	his	contribution	to	surveying.	But	in
1806,	a	self-taught	Swiss	bookkeeper	named	Jean	Robert	Argand	rediscovered
the	idea	(and	so,	inevitably,	did	Gauss	in	1831).	Why	are	these	parallelograms
now	universally	known	as	Argand	diagrams?	Perhaps	because	Argand’s	name
came	into	such	prominence	when	arguments	raged	over	the	validity	of	his
figures.	Servois—the	man	who	coined	the	terms	“commutative”	and
“distributive”—insisted	that	what	was	algebraic	must	be	dealt	with
algebraically.	The	movement	of	Argand’s	thought	from	algebra	to	geometry,	of
Wessel’s	from	geometry	to	algebra,	shows	once	more	how	central	to
mathematical	invention	is	fetching	from	afar	(the	analogue	of	metaphor	in	poetic
invention).

We	can	now	move	about	the	complex	plane	as	blithely	as	a	summer	visitor.
How	will	multiplication	look?	(3	+	2i)	·	(4	–	5i)	=	22	–	7i	:



This	is	perplexing.	Another	example	may	shake	our	confidence	further:	(2	+	5i)
·	(1	+	2i)	=	–8	+	9i.

What	is	the	product	arrow	doing	so	far	away	from	those	of	its	components?	We
seem	to	be	faced	with	a	truth	we	have	confronted	before:	multiplication	isn’t
some	sort	of	shorthand	for	addition.

Now,	however,	we	have	accumulated	enough	experience	to	be	sure	that
problems	will	have	solutions—but	to	be	sure	as	well	that	the	way	to	them	may
be	intricate.	Finding	the	solution	will	show	what	multiplication	“means”—and
the	intricacy	of	finding	might	make	the	pleasures	of	mathematics	even	more
meaningful.	For	certainly	what	the	twentieth-century	mathematician	Paul
Halmos	once	said	is	true:	“The	major	part	of	every	meaningful	life	is	the
solution	of	problems.”	Not	only	is	life,	and	the	life	of	our	imagination,	thus
enriched,	but	the	world	changes	in	ways	we	have	yet	to	fathom.	Hilbert	once
said:	“There	is	the	problem.	Seek	its	solution.	You	can	find	it	by	pure	reason,	for
in	mathematics	there	is	no	ignorabimus	[we	shall	not	know].”	Answering
Hilbert’s	call	brings	into	existence	numbers	no	longer	imaginary,	and
constructions	that	dovetail	with	those	of	ancient	reality.

An	important	step	in	visualizing	how	complex	numbers	add	was	rethinking
the	point	(a,b)	on	the	complex	plane	as	a	+	bi,	and	then	once	again	as	a	vector:
an	arrow	from	the	origin.	Yet	another	metaphor	will	carry	the	nature	of
multiplication	across	to	us.

Look	first,	in	our	troubling	diagrams	for	multiplication,	at	the	lengths	of	the



arrows.	For	3	+	2i,	the	arrow	is	the	hypotenuse	of	a	right	triangle:

so	its	length	is	 .	For	4	–	5i	we	have

and	the	arrow’s	length	is	
The	arrow	of	the	product	of	2	+	3i	and	4	–	5i—namely,	22	–7i—

has	length	 16

In	other	words,	for	the	complex	number	a	+	bi	the	length	of	its	vector	is
.	This	real	number	is	called	its	modulus.



We	have	seen	a2	+	b2	before,	on	page	213.	It	is	the	number	Bombelli	came	up
with	in	making	sense	of	division:	the	product	of	a	complex	number	a	+	bi	and	its
yoke-mate	a	–	bi,	called,	therefore,	its	conjugate.	What	would	Pythagoras	have
thought	about	his	theorem	reappearing	to	make	sense	of	numbers	so	very	remote
from	his	own?

Now	observe:	13	×	41	=	533:	so	 	For	complex	numbers,	the
modulus	of	the	product	is	the	product	of	the	moduli!	If	this	fails	to	reverberate
harmoniously	then	look	at	this	flow-chart:

Half	of	our	mystery	is	solved:	we	now	understand—as	Wessel	and	Argand
and	mathematicians	like	Euler	before	them	did—the	length	of	the	product
vector.	But	exactly	where	has	this	vector	swung	around	to?	Swung	around:	we
can	only	come	to	grips	with	swinging	in	terms	of	angles.	It	was	Euler	who	did
this	by	wheedling	from	complex	numbers	the	fourth	of	their	names.	He	looked
again	at	the	line-segment	from	(0,0)	to	(a,b)—let’s	call	its	length	r—and	saw	it
as	rotated	counterclockwise	from	the	horizontal	by	a	certain	angular	amount	ϕ
(Greek	letters	once	more	for	angles—this	time	phi):

The	length	r	and	that	angle	ϕ	determine	the	segment’s	endpoint	as	surely	as	do
the	coordinates	(a,b),	so	he	could	now	rethink	a	+	bi	in	terms	of	r	and	ϕ:

a+bi	=	(a,b)	=	(r,ϕ).

We	know	how	to	derive	the	modulus	r	from	a	and	b:	 	But	how	can
we	derive	the	angle	ϕ?	The	way	passes	through	the	parkland	of	trigonometry
(first	cultivated	by	such	Alexandrian	mathematicians	as	Hipparchus,	Menelaus,



and	Ptolemy	two	thousand	years	ago):	a	charming	landscape,	once	you	become
familiar	with	its	features.	Here	are	a	few	pages	from	the	guide	to	its	flora	and
fauna.	Keep	in	mind	that	our	aim	is	to	grasp	the	multiplication	of	complex
numbers	all	at	once:	seeing	it;	and	that	angles	will	play	an	important	role	in	this
seeing.

The	story	is	once	again	Pythagorean	in	spirit.	As	a	line-segment	of	a	fixed
length—let’s	simply	make	it	1—rotates	counterclockwise	from	horizontal	to
vertical,	it	draws	right	triangles	up	with	it,	whose	vertical	sides	grow	in	length
from	0	to	1:

This	is	where	sin	enters	math,	as	an	abbreviation	for	sine	(from	the	Latin	sinus,
for	gentle	curves	from	bend	of	bay	to	your	brow’s	forecastle).	The	sine	of	angle
ϕ,	sin	ϕ,	is	just	the	ratio	of	this	opposite	side’s	length	to	that	of	the	hypotenuse:

Since	the	hypotenuse	here	is	1,	the	opposite	side’s	length	in	our	triangle	is	just
sin	ϕ.	So	sin	0°	=	0,	sin	90°	=	1,	and	sin	45°	=	 	since	both	legs	are	equal	and
their	squares	add	up	to	1.

Any	value	of	sin	ϕ	for	ϕ	between	0°	and	90°	can	be	figured	out	with	more	or	less
effort	(your	pocket	calculator	will	do	at	once	what	cost	men	of	the	Renaissance,
like	Copernicus,	hours	and	eyesight).	The	results	produce	a	curving	graph	like
this,	when	we	relabel	our	axes	from	x	and	y	to	the	angle	ϕ	plotted	horizontally,
and	sin	ϕ	vertically:



As	ϕ	goes	on	from	90°	to	180°	the	side	opposite	ϕ	decreases	from	1	to	0	in	the
same	way	and	at	the	same	rate	that	we	saw	it	grow:

And	if	you	attend	to	the	plusses	and	minuses	in	the	next	two	quadrants	(180°	to
270°,	then	270°	to	360°)	and	attach	the	relevant	sign	to	the	side-length,	the	graph
of	sin	ϕ	will	go	on	to	look	like	this:

When	you	increase	ϕ	beyond	360°	the	pattern	will	repeat	exactly	(so	sin	370°	=
sin	(360°	+	10°)	=	sin	10°,	for	example),	giving	us	the	sine	waves	that	once
dazzled	adolescents	on	their	basement	oscilloscopes,	before	the	Internet	took
them	upstairs:

The	side	adjacent	to	ϕ	will	change	as	the	opposite	side	did,	but	in	reverse:
shrinking	from	1	to	0	as	ϕ	increases	from	0°	to	90°.



The	ratio	of	this	side’s	length	to	the	hypotenuse	is	called	cosine	ϕ:

so	that	here,	where	the	hypotenuse	is	1,	the	adjacent	side	is	just	cos	ϕ.	The	graph
of	cos	ϕ	is	the	same	shape	as	that	of	sin	ϕ,	but	shifted	left	by	90°:

Looked	at	together,	these	two	trigonometric	functions	braid	perfectly:

The	braiding	is	even	more	apparent	to	the	mind’s	eye	focussed	by	Pythagoras:

Now	we	see	how	to	relate	the	angle	ϕ	to	our	coordinates	a	and	b	on	the
complex	plane:	If	the	modulus	is	1,	a	is	just	cos	ϕ,	and	b	is	i	sin	ϕ:



If	the	triangle	is	scaled	up	or	down	by	a	modulus	r,	each	of	its	lengths	is
multiplied	by	r,	and

What	was	(a,b)	is	now	(r	cos	ϕ,	r	i	sin	ϕ),	so

a	+	bi	=	r	cos	ϕ	+	r	i	sin	ϕ

or	more	economically,

a	+	bi	=	r	(cos	ϕ	+	i	sin	ϕ)

“Mathematicians	are	like	Frenchmen,”	Goethe	once	said;	“whatever	you	say	to
them	they	translate	into	their	own	language	and	forthwith	it	is	something	entirely
different.”	Nothing	is	sacred.	Here	they	have	even	translated	from	one	of	their
own	languages	into	another.

We	now	have	almost	all	we	need	in	order	to	make	visual	sense	of	multiplying
two	complex	numbers,	a	+	bi	and	c	+	di,	together.	c	+	di	will	have	its	own
modulus—let’s	say	s—and	its	own	angle,	theta:	θ.	So

a	+	bi	=	r	(cos	ϕ	+	r	i	sin	ϕ)

a	+	bi	=	r	(cos	θ	+	r	i	sin	θ)

and	(a	+	bi)	·	(c	+	di)	now	becomes

r	(cos	ϕ	+	i	sin	ϕ)	·	s	(cos	θ	+	i	sin	θ)	=	r	·	s	(cos	ϕ	+	i	sin	ϕ)(cos	θ	+	i	sin	θ).

Look!	We	see	here	what	we	saw	before:	the	modulus	of	the	product	will	be	the



product	of	the	moduli.	But	what	about	those	terms	in	parentheses?	Carrying	out
the	multiplication,	being	good	about	our	bookkeeping	and	bearing	in	mind	that	i2
=	–1,	we	get	the	mantic

cos	ϕ	cos	θ	+	i	cos	ϕ	sin	θ	+	i	sin	ϕ	cos	θ	–	sin	ϕ	sin	θ	.

Collecting	real	terms	together	at	the	front	and	the	terms	with	i	in	them	after,
this	becomes:

(cos	ϕ	cos	θ	–	sin	ϕ	sin	θ)	+	i	(cos	ϕ	sin	θ	+	sin	ϕ	cos	θ)

so	that	altogether,

(a	+	bi)	(c	+	di)	=

rs	[(cos	ϕ	cos	θ	–	sin	ϕ	sin	θ)	+	i	(cos	ϕ	sin	θ	+	sin	ϕ	cos	θ)].

This	is	neater,	but	certainly	not	very	neat;	and	no	dazzling	insight	leaps	from
it	to	our	minds.	Beauty	is	truth,	truth	beauty,	and	both	are	mathematics.
Something	must	be	done	about	that	clumsy,	prowling	quadruped.

The	first	thing	to	do	is	cage	it.	Let’s	take	the	triangle	representing	c	+	di,	with
angle	θ,	and	move	it	temporarily	to	the	real	plane,	so	we	can	ignore	the	fact	that
its	vertical	side	is	in	units	of	i,	and	call	its	length	simply	d.	While	we	are	at	it,
let’s	consider	its	modulus,	s,	to	be	1.	We’ll	bring	back	s	and	i	after	these
simplifications	have	shown	us	the	structure	behind	the	symbols.

Now	rotate	the	entire	triangle	counterclockwise	by	the	angle	ϕ	belonging	to	the
triangle	for	a	+	bi:



We’ll	want	to	refer	to	this	triangle’s	sides	from	time	to	time,	so	label	its
vertices	O,	A,	and	B	as	here,	and	prop	it	up	with	a	vertical	line-segment	from	A,
meeting	the	x-axis	at	C.

Finally,	let’s	package	our	construction	in	a	rectangular	box:

How	long	is	AC?	Since	 	OAC	is	a	right	triangle	with	hypotenuse	cos	θ,	and
sin	 ,	solving	for	AC	gives	us

AC	=	sin	ϕ	cos	θ,

and	a	tense	stillness	passes	through	our	tiger.
By	the	same	reasoning,	cos=	



OC	=	cos	ϕ	cos	θ.

We	need	two	more	lengths:	AE	and	BE.	Since	∠C	is	a	right	angle	and	∠AOC
=	ϕ,	∠OAC	=	180°	–	(90°	+	ϕ)	=	90°	–	ϕ.

But	∠OAB	is	also	90°,	and	since	∠EAC	is	a	straight	angle	(180°),	∠BAE	=
180°	–	((90°	–	ϕ)	+	90°)	=	ϕ.

In	ΔABE,	therefore,	sin	 ,	so

BE	=	sin	ϕ	sin	θ;

and	cos	 ,	hence

AE	=	cos	ϕ	sin	θ.

Why	have	we	been	playing	musical	chairs	with	these	line-segments?	For	the
sake	of	our	long-sought	insight.	If	you	now	drop	a	perpendicular	from	B,
meeting	OC	at	F,



then	ΔOBF	has	an	angle	at	O	of	θ	+	ϕ,	and	sin(θ	+	ϕ) .	=	BF,	and	cos	(θ	+	ϕ)	=	
	=	OF.
But	BF	=	EC	=	cos	ϕ	sin	θ	+	sin	ϕ	cos	θ,	while	OF	=	OC	–	FC	=	OC	–	BE	=

cos	ϕ	cos	θ	–	sin	ϕ	sin	θ:	so	that—gazing	through	the	bars—

cos	(θ	+	ϕ)	=	cos	ϕ	cos	θ	–	sin	ϕ	sin	θ

sin	(θ	+	ϕ)	=	cos	ϕ	sin	θ	+	sin	ϕ	cos	θ.

When	we	substitute	these	telling	expressions	for	their	mute	equivalents	on
page	231	we	have:

(a	+	bi)	(c	+	di)	=	rs	[cos	(θ	+	ϕ)	+	i	sin	(θ	+	ϕ)].

The	two	terms	added	up	in	the	brackets	mean	that	to	reach	the	point	represented
by	(a	+	bi)	·	(c	+	di),	we	have	swung	through	(θ	+	ϕ)	degrees	and	travelled	rs
from	the	origin.	In	other	words,	to	multiply	two	complex	numbers	graphically,
on	the	complex	plane,	multiply	their	moduli	and	add	their	angles!

We	have	fought	with	demons	of	detail	and	triumphed.	The	sword	of
transitivity	has	worked	its	wonders.	By	passing	from	one	way	of	expressing
complex	numbers	to	another,	a	key	insight	into	how	they	behave	has	opened	up.
When	Wittgenstein	dismisses	mathematics	as	nothing	more	than	a	string	of
tautologies,	the	mathematician	answers:	nothing	less!



From	the	sixteenth	through	the	eighteenth	centuries,	even	the	best
mathematicians	had	used	complex	numbers	covertly:	as	a	means	to	be	hidden	or
discarded	before	announcing	the	end	they	achieved.	(In	the	same	way,
Archimedes	apparently	kept	to	himself	his	method	of	drawing	mathematical
insights	from	physical	analogies,	and	Newton	concealed	under	Euclidean
geometry	his	radical	ideas	about	calculus.)	Even	as	late	as	1825	Gauss	wrote
that	“the	true	metaphysics	of	 	is	elusive.”	Making	the	operations	involving
“imaginaries”	visible,	as	we	just	did,	gave	them	respectability	at	last.	In	1831
Gauss	wrote	that	their	geometrical	representation	“completely	established	the
intuitive	meaning	of	complex	numbers,	and	more	is	not	needed	to	admit	these
quantities	into	the	domain	of	arithmetic.”

How	can	a	meaning	be	established	by	a	new	representation,	if	it	is	already
intuitive?	We	have	suddenly	spiralled	back	to	the	concerns	of	Chapter	Two:
what	is	this	intuition	which	some	appeal	to	as	a	court	of	first,	others	of	last,
resort?	If	common	law	can	change,	why	cannot	that	of	the	intuition	too?	The
numbers	once	stigmatized	as	impossible	we	now	see	behaving	among
themselves	and	the	reals	in	a	perfectly	possible—in	fact,	cogent	and	attractive—
manner,	with	a	visual	embodiment	as	well.	Once	again	what	was	newfangled
has	become	old	hat,	as	habit	fits	its	shape	to	our	nature.	Have	we	succeeded,
then,	in	peeling	off	a	layer	that	helped	hide	the	endlessly	deep	core	of	our
intuition—or	only	added	one	more	colorful	wrapping	to	an	empty	box?

We	have	just	made	a	long	excursion	into	trigonometric	functions	in	order	to	feel
at	home	with	the	complex	numbers.	Before	settling	in	to	enjoy	our	hard-won
discoveries,	we	would	like	to	take	one	more	excursion	to	a	mountaintop	where
an	astonishing	view	opens	up.	From	it	we	will	see	that	our	new	functions	are	the
polynomials,	familiar	from	Chapter	Six,	when	spun	out	into	infinite	series	like
those	we	know	from	Chapter	Four.	Even	more:	the	constant	π,	familiar	since
childhood,	will	connect	to	 ,	that	mysterious	constant	which	lurks	everywhere
(surfacing	momentarily	in	Chapters	Three	and	Four)—and	these	two	constants
will	be	tied	in	a	golden	knot	with	i,	as	if	in	the	welter	we	had	caught	a	glimpse	of
unity.

“No	great	thing	comes	without	a	curse,”	said	Sophocles.	To	reach	this	height
we	will	have	to	avoid	the	gaping	crevasse	of	calculus,	as	beautiful	as	it	is	deep,
whose	descent	we	could	make	had	we	the	time.	Instead	we	will	follow	the	Greek
precedent	and	set	a	sibyl	over	it,	to	speak	oracles	from	its	exhalations	when	we
need	them.



Like	all	good	travelers	we	pack	a	bilingual	dictionary	in	our	knapsack.	This
one	lets	us	convert	the	arbitrary	degrees,	with	which	we	have	up	to	now
measured	angles	(only	ancient	arithmetic	convenience,	after	all,	broke	circular
measure	into	360	equal	shares),	into	the	more	natural	radians,	defined	this	way.
Think	of	the	radius	as	a	short	length	of	spaghetti,	boil	it	for	six	minutes	and	you
will	find	that	you	can	lay	it	off	along	the	curve	of	the	circumference.	Now	since
the	circumference	is	2πr	long,	precisely	2π	radians	(boiled	radii)	will	lie	around
it.	If	we	operate	in	our	unit	circle,	where	the	radius	is	1,	our	circumference	will
be	2π—that	is,	it	will	take	2π	radians	to	complete	the	task	we	previously
described	as	a	360°	tour.	π	radians	will	take	us	halfway	round	and	 	radians	will
give	us	a	90°	angle.	In	general,	x	degrees	 	x	radians.	By	convention,	positive
angles	rise	up	from	the	x-axis;	a	picture	will	make	all	clear:

Not	only	are	radians	a	more	intrinsic	measure	of	angles	than	degrees	were,
but	they	let	trigonometric	functions	like	f(x)	=	sinx	or	g(x)	=	cosx	act	as
functions	usually	do,	not	with	special	“degree”	inputs,	but	the	normal	real
numbers	that	come	from	measuring	distances	around	the	circumference	(reals
between	0	and	2π	if	we	go	once	around	a	circle,	those	between	2π	and	4π	if	we
wrap	around	it	a	second	time,	and	so	on).	Negatives	are	defined	as
corresponding	to	angles	measured	clockwise	from	the	x-axis.

A	table	of	some	outputs	for	sine	and	cosine	will	act	as	a	rough	guide	to	the
region:



Indian	mathematicians	(probably	before	1500),	discovered	wonderful	infinite
polynomial	equivalents	of	sine	and	cosine	and	Newton	rediscovered	them
independently	in	the	seventeenth	century.	Here	they	are	(the	angle	x	is	from	now
on	measured	in	radians):

The	triple	dots	at	the	end	of	each	line	mean,	as	always,	that	the	series	continue	in
this	pattern	forever,	with	strict	equality	only	after	infinitely	many	terms.	A	few
terms,	however,	give	remarkably	good	approximations.	 ,	for
example,	and	the	first	five	terms	of	the	series	for	sin	 	yield



Taking	π	as	approximately	3.1415926535,	 	would	be	.785398163,	and	five
terms	of	our	series	would	give	us

only	a	few	steps	toward	infinity	give	us	an	accuracy	of	eight	decimal	places!
What	have	these	two	series	to	do	with	 ,	that	constant	of	exponential	growth,

which	is	approximately	2.718281828459045?	We	can	raise	 	to	various	powers
—even	rational	numbers	and	(with	the	help	of	calculus)	any	real	number	x,
giving	us	a	function

The	infinite	series	equivalent	of	 	was	also	discovered	by	Newton:

Look	at	our	three	series	together:

The	mind	reaches	out	a	hand,	longing	to	add	the	first	two	series	in	order	to	get
the	third—but	the	signs	don’t	work	out,	with	pairs	of	negatives	after	each	pair	of
positive	terms.	In	this	cave	of	the	sibyl,	the	ghost	of	Alcibiades	calls	out
hollowly:	“Make	them	work	out!”

How?	“Rely	on	your	faith	in	pattern	and	readiness	to	see	askew.”	But	from
what	hills	will	the	justification	of	this	faith	come?

“We	are	here	in	the	Highlands	of	imaginary	numbers:	look	to	them.”
This	is	what	Euler	did	around	1740,	experimenting	with	a	mathematician’s

boldness.	The	functions	sin	x,	cos	x,	and	ex	are	functions	of	a	real	variable	x.
But	what	if	sense	could	somehow	be	made	of	putting	in	imaginary	values,	ix?
Then	since	i2	=	–1,	i3	=	–i,	i4	=	1	and	so	on,	we	would	have



He	then	regrouped	these	terms.17

In	other	words,

Amazing,	and	too	good	not	to	be	true—and	although	it	took	more	than	a
hundred	years	for	others	(such	as	Gauss	and	Cauchy)	to	make	the	sense	Euler
wanted	of	fitting	in	a	complex	variable	where	the	real	one	had	been,	he	was—
like	all	mathematicians—easy	with	delay.

Here	was	a	reward	for	such	insouciance.	sin	π	=	0	and	cos	π	=	–1,	as	you	can
see	in	the	picture:

If	we	therefore	let	x	=	π	in

we	get

Blink	twice	and	look	again:	 ,	i,	and	π,	those	three	remote	peaks,	have
shimmered	together	to	yield	the	barely	more	familiar	mystery	of	–1.
“Gentlemen,”	said	Benjamin	Peirce	to	his	students	at	Harvard	University	one
day	late	in	the	nineteenth	century,	“that	is	surely	true,	it	is	absolutely
paradoxical;	we	cannot	understand	it,	and	we	don’t	know	what	it	means,	but	we
have	proved	it,	and	therefore,	we	know	it	must	be	the	truth.”



Now	that	we	are	at	home	in	this	land	where	hidden	veins	of	gold	surface,	what
pleasures	and	palaces	will	be	ours!	Look,	for	example,	at	the	comfortable	fact
that	any	number	will	have	two	square	roots.	Those	of	1,	for	example,	are	both
itself	and	–1.	But	how	many	cube	roots	will	it	have?	Since	we	are	asking	for	the
solutions	of	the	equation

x3	=	1

or

x3	–	1	=	0,

the	Fundamental	Theorem	of	Algebra	(stated	on	page	211)	assures	us	that
three	answers	are	growing	on	the	complex	plane.

Three?	Other	than	1	again	(13	=	1),	what	could	they	possibly	be?	We	saw
how	unintuitive	and	downright	ugly	the	two	square	roots	of	i	turned	out	to	be.
Will	we	fare	any	better	here?	It	seems	not:	solving	by	the	method	we	used	on
page	214,	the	three	cube	roots	of	1	we	come	up	with	are

(you	may	convince	yourself	of	this	awkward	truth	by	carefully	cubing	each,	or
looking	up	the	full	story	in	the	appendix	for	this	chapter).

i	will	have	four	complex	fourth	roots,	five	complex	fifth	roots,	and	so	on—
but	if	they	are	all	going	to	be	as	unattractive	as	these,	do	we	really	want	to	meet
them?	The	walking	bass	of	our	music	has	been:	if	it	isn’t	beautiful,	it	isn’t
mathematics;	and	it	sounds	again	through	the	overlaid	voices	here.	The	classical
design	of	these	“complex	roots	of	unity”	was	uncovered	by	the	work	of	a
sequence	of	mathematicians,	in	which	the	first	term	was	a	man	who	correctly
predicted	the	day	of	his	death.

Abraham	de	Moivre	was	born	in	1667	in	France,	fled	to	England	when	the
Huguenots	were	expelled	in	1685,	and	fell	the	further	into	poverty	the	higher	he
rose	in	the	academic	world.	He	studied	annuities	and	mortality	statistics;	and
perhaps	with	his	thoughts	so	framed,	noticed,	they	say,	that	he	was	sleeping	each
night	fifteen	minutes	longer	than	the	night	before.	From	this	arithmetical
progression	he	calculated	that	on	November	27,	1754,	he	would	sleep	for
twenty-four	hours,	deduced	that	this	would	be	the	day	he	died,	and	did	so.	Prior



to	that	he	observed	the	immortal	play	of	the	complex	numbers,	all	dressed	in
their	new,	trigonometric,	finery.	What	he	(and	others	after	him,	notably
Newton’s	meticulous	editor,	Roger	Cotes)	saw	was	this.

The	translation	we	made	with	much	effort	on	page	234:

(a	+	bi)(c	+	di)	=	rs	[cos(ϕ	+	θ)	+	i	sin	(ϕ	+	θ)]

takes	on	a	nicely	trimmed-down	form	when	the	two	numbers	are	the	same:

(a	+	bi)(a	+	bi)	=	rr	[cos(ϕ	+	ϕ)	+	i	sin	(ϕ	+	ϕ)]

which	is

(a	+	bi)2	=	r2	[cos	2ϕ	+	i	sin	2ϕ]	.

Similarly

(a	+	bi)3	=	r3	[cos	3ϕ	+	i	sin	3ϕ]

and	in	general,

(a	+	bi)n	=	rn	[cos	nϕ	+	i	sin	nϕ]	.

This	has	come	to	be	called	de	Moivre’s	Formula.	Stunning	in	its	simplicity,	it
has	a	knockout	consequence	when	we	come	to	the	roots	of	1.	If	we	want	the	two
square	roots	(we	know	in	advance	that	the	answers	are	1	and	–1),	we	just	recall
that	any	complex	number	x	satisfying	x2	=	1	will	have	the	form	r	(cos	ϕ	+	i	sin
ϕ)	for	an	r	and	ϕ	yet	to	be	found.

Since	1	=	1	+	0i	has	the	trigonometric	form	1	·	[cos	0	+	i	sin	0],



r	=	1	and	ϕ	=	0

we	must	have

and	de	Moivre	lets	us	rewrite	the	left-hand	side,	giving	us

r2	[cos	2ϕ	+	i	sin	2ϕ]	=	1	[cos	0	+	i	sin	0].

So	r2	=	1	(just	as	with	real	and	imaginary	parts,	real	moduli	and	these	complex
coordinates	do	not	intermingle).	If	r2	=	1,	the	modulus	r	=	1,	because	lengths
can’t	be	negative.	And	if

cos	2ϕ	+	i	sin	2ϕ	=	cos	0	+	i	sin	0,

then	2ϕ	=	0,	or	any	equivalent	of	0	radians	as	we	wrap	around	the	circle	again
and	again:	0,	0	+	2π,	0	+	4π,	0	+	6π,	…	:	in	general,	0	+	k	·	2π	radians,	where	k	is
a	natural	number.	So

2ϕ	=	0	+	k	·	2π,

hence

for	any	natural	number	k.
When	k	=	1,	ϕ	=	π,	and	we	get	the	–1	we	expected:

when	k	=	2,	ϕ	=	2π,	which	thus	takes	us	to	the	other	square	root	of	1,	namely	1:



What	about	k	=	3,	4,	and	so	on?	3π,	4π,	5π,	…	just	keep	taking	us	back	and	forth
between	these	two	square	roots	of	1:	–1	and	1.

Interesting:	they	lie	at	opposite	ends	of	this	diameter.
What	then	of	the	three	cube	roots:	will	de	Moivre	help	us	transform	the	frogs

of	page	241	into	handsome	princes?	Let’s	just	repeat	what	we	did	with	square
roots.	The	complex	numbers	x	satisfying	x3	=	1	have	the	form	r	[cos	ϕ	+	i	sin	ϕ],
with	now

r3	[cos	3ϕ	+	i	sin	3ϕ]	=	1	[cos	0	+	i	sin	0]

once	again	the	modulus	r	=	1,	but	now

3ϕ	=	0	+	k2π

so

For	k	=	0	we	get	0	radians:	the	perennial	root	1.
For	k	=	1,	 	gives	us	an	angle	in	the	second	quadrant,
and	for	k	=	2,	 	an	angle	in	the	third	quadrant.



k	=	3	yields	2π	again	(the	root	1	we	have	already),	and	from	3	on	we	will	only
cycle	through	the	roots	already	found.

Our	geometric	instinct	springs	awake:	the	three	distinct	cube	roots	of	1	are
the	vertices	of	an	equilateral	triangle!

And	the	four	fourth	roots	(oh,	of	course:	1,	i,	–1,	–i)	lie	at	the	vertices	of	a
square:

the	fifth,	sixth,	seventh	roots	at	the	vertices	of	pentagon,	hexagon,	heptagon—



each	of	the	regular	n-gons,	in	fact,	is	reincarnated	by	de	Moivre’s	Formula	as
an	unexpected	bearer	on	the	complex	plane	of	the	n	nth	roots	of	unity.

The	n	nth	roots	of	unity,	making	angles	of	 	from	the	horizontal	root	at	1,	for
each	k	from	0	to	n	–	1.

On	this	plane	we	can	even	prove	what	we	only	asserted	before—that	the
heptagon,	for	example,	can’t	be	constructed	with	straightedge	and	compass	(see
the	Appendix).

All	the	peculiarities	of	the	previous	chapter	dwindle	away	in	this	new	dawn.
There	Euclid	sought	simplicity	via	his	compass	and	straightedge,	yet	these	led	to
intricate	patterns	with	Fermat	numbers,	still	tinged	with	mystery.	Here	the
regular	polygons	make	easy	sense	of	puzzling	complex	roots.	The	way	of
mathematics	is	always	to	spiral	up	its	widening	tower	to	greater	generality	and
higher	simplicity.	At	these	heights	new	objects	and	old	interact	and	so	give	each
other	a	different	order	of	reality	from	that	conferred	by	construction.	For	the
ultimate	atoms	of	mathematics	are	relations,	not	things,	which	therefore	become
more	vivid	the	more	they	interplay.	William	Blake	wasn’t	always	right.	“To
Generalize,”	he	said,	“is	to	be	an	Idiot.	To	Particularize	is	the	Alone	Distinction
of	Merit.”	Yet	he	was	right	to	continue:	“All	Sublimity	is	founded	on	Minute
Discriminations.”	What	singles	out	mathematics	is	the	way	that	its	minute
discriminations	lead	to	ever	greater	generalities,	as	climbers	reach	their	dazzling



vistas	by	attending	to	the	piton	in	the	cleft.



Interlude

The	Infinite	and	the	Unknown

Mystery	stories	leave	a	flat	aftertaste,	because	before	the	solution,	anyone	might
have	done	it;	after,	it	turns	out	to	have	been	only	a	certain	someone.	But	the
infinite	and	the	unknown	endlessly	call	each	other	up,	letting	imagination	loose.

We	love	to	live	on	frontiers	that	enclose	a	polite,	finite	world	but	look	out
toward	the	ever	unexpected.	Is	this	mere	romantic	exuberance	or	the	tinkering
curiosity	of	our	kind	carried	to	its	inevitable	extreme?	Whatever	the	cause,	how
refreshingly	courteous	of	the	world	to	oblige,	always	playing	the	tortoise	to	our
Achilles	by	keeping	a	step	ahead	of	all	we	ask.	The	hook	of	a	question	mark
can’t	but	snag	more	than	it	can	bear.

Yet	why	should	this	be,	especially	if	Spinoza	was	right	in	saying	that	the
order	of	the	world	and	the	order	of	the	mind	are	the	same?	It	must	involve	a
deep	trait	of	our	thinking,	that	no	sooner	do	we	make	sense	of	this	or	that	hang
of	things	then	all	the	intricate	net	shrinks	down	to	a	knot,	just	as	a	word	comes
to	condense	great	stretches	of	feeling	and	event.	That	knot	now	sits	among	other
abbreviations,	demanding	new	ties	among	them	in	a	more	rarified	net:	and	this	is
where	our	renewed	explorations	take	place.

So	when	the	universe	seems	to	conclude	in	a	Theory	of	Everything,	a
window	will	open	up	in	the	far	wall	onto	a	landscape	unguessed	at	until	then.
Paradigms	busily	tidy	up	their	last	details	just	before	they	shake	and	shift.

Here	we	have	seen	the	vivid	complexity	of	triangles	shrunk	to	no	more	than	a
point	among	the	vaster	collection	of	polygons	which	has	its	own	ecology;	and
polygons	are	in	two	dimensions	what	polyhedra	are	in	three	and	polytopes	in
four	dimensions,	and	limitlessly	beyond,	O	brave	new	worlds!	And	this
unknown	we	step	into	is	at	least	partly	of	our	own	making.

Mathematics	builds	upward	by	taking	as	stones	what	were	structures	before,
gaining	new	heights	from	which	to	survey	the	way	things	are.	How	staggeringly
far	it	has	come	in	five	thousand	years—but	for	every	answer	found,	a	flurry	of



new	questions	arises.	In	the	sequence	of	ratios	of	what	we	don’t	yet	know	to
what	at	any	moment	we	do,	the	terms	grow	to	infinity.





Chapter	Eight

Back	of	Beyond

This	has	been	the	romance	of	imagination	and	the	infinite.	Like	the	beloved	in
tales	as	old	as	time,	the	infinite	keeps	escaping	imagination’s	stratagems,
drawing	it	on	through	intrigues	that	must	any	moment	surely	untangle.
Mathematics	being	the	stuff	of	invention	and	mathematicians	each	Alcibiades	in
disguise,	why	not	just	declare	(since	faint	heart	never	won	fair	lady):	here	is	the
infinite,	right	here,	in	your	midst.	You	have	only	to	recognize	it	to	make	it	yours.

Easily	said,	but	how	is	it	to	be	done?	Think	of	Euclid’s	plane	everywhere
stretching	away,	with	its	parallel	lines	that	meet	at	no	“here”	you	can	picture—
unless	it	be	through	Alberti’s	Veil.

That	wonderful	Florentine,	Leon	Battista	Alberti,	shared	the	Renaissance
eagerness	to	translate	the	beauties	of	the	visible	world	into	painting—to
represent	its	depth	on	the	plane—and	saw	how	to	do	it	by	making	“a	veil,
loosely	woven	of	fine	thread,	dyed	whatever	color	you	please,	divided	up	by
thicker	threads	into	as	many	parallel	squares	as	you	like,	and	stretched	on	a
frame.	I	set	this	up	between	the	eye	and	the	object	to	be	represented,	so	that	the
visual	pyramid	passes	through	the	loose	weave	of	the	veil.”

This	notion	of	the	visual	pyramid	(we	might	say	“visual	cone”)	was	the	key
for	turning	three	dimensions	into	two—a	pair	of	pyramids,	really,	with	our	eye
at	the	near	apex,	the	“vanishing	point”	ordering	pictorial	space	at	the	far,	and	the
veil	in	between	changing	one	image	into	another:



What	was	that	vanishing	point	if	not	where	the	parallels	receding	from	us
palpably	met?

The	principles	of	perspective	drawing	developed	with	Italian	gusto.	How,	for
example,	should	a	receding	tiled	floor	be	correctly	drawn?	Alberti’s	answer	was
ingenious:	space	the	lines	of	the	receding	edges	equally	far	apart:

then	put	the	nearest	pair	of	horizontal	edges	where	you	will,

draw	a	diagonal	through	the	left-handmost	tile,	and	continue	it	to	the	horizon	on
which	the	vanishing	point	lies.

Where	this	diagonal	crosses	the	other	perspective	lines	shows	where	to	draw	the
rest	of	the	horizontals:



This	was	Alberti’s	“legitimate	construction”	(costruzione	legittima).	It	was
neither	the	first	nor	the	last	time	that	the	asymmetry	of	a	diagonal	would	win	the
day.

All	through	the	Renaissance,	artistic	practice	begot	a	flurry	of	mathematical
insights	to	support	and	extend	it,	but	not	until	the	early	years	of	the	nineteenth
century	was	an	organic	geometry	developed	which	added	as	many	vanishing
points	to	the	Euclidean	plane	as	there	are	directions,	and	a	circumscribing
horizon	as	well,	a	“line	at	infinity”	for	all	those	“points	at	infinity”	to	lie	on.
What	the	eye	proposes,	Mind	disposes—but	it	is	always	Mind	incarnated	in
some	particular	mind.

The	mind	in	this	case	belonged	to	a	young	French	lieutenant	of	engineering
in	Napoleon’s	army.	Jean-Victor	Poncelet	was	a	man	of	extraordinary	willpower
and	character	(at	fifteen	he	had	trained	his	dog	to	wake	him	at	dawn	so	he	could
get	back	to	his	studies;	the	dog	often	found	him	asleep	at	his	desk).	At	twenty-
four	he	marched	into	Russia	with	the	Grande	Armée	and	was	left	for	dead	at	the
battle	of	Krasnoi,	near	Smolensk,	in	November	1812.	The	soldiers	of	the
victorious	Field	Marshal	Prince	Miliradovitch	recognized	his	officer’s	insignia
and	carried	him	off	for	interrogation,	which	saved	him	from	death	but
condemned	him	to	walking	four	months,	and	six	hundred	frozen	miles,	over	the
silent	long	plains	to	prison	at	Saratov,	on	the	Volga.	To	keep	up	his	spirits
during	the	two	years	there,	he	tried	to	remember	the	mathematics	he	had	studied,
in	a	different	life,	just	a	few	years	before,	at	the	Ecole	Polytechnique	in	Paris.
But	the	spiny	demonstrations,	the	abstractions	and	generalizations,	had	perished
with	his	comrades	in	the	cold.

He	began	to	build	mathematics	up	from	fundamentals	again,	trading	his
scanty	rations	for	paper,	making	his	own	ink,	and	using	the	walls	of	his	cell	as	a
blackboard.	Soon	he	found	his	mind	moving	over	vaster	plains	than	those	of
Russia,	and	beyond	the	geometry	he	had	been	taught.	“Oh	God!”	said	Hamlet,	“I
could	be	bounded	in	a	nutshell	and	count	myself	a	king	of	infinite	space.”
Perhaps	being	so	bound	in	Saratov	was	what	made	Poncelet	the	king	of
projective	geometry.

What	sort	of	geometry	can	this	be,	where	parallels	meet?



Poncelet	(1788–1867).	Loyal	to	his	youth,	he	published	in	age	his	early	work
unedited	by	hindsight;	loyal	to	France,	he	wasted	his	geometric	foresight	on	its

bureaucracy.

How	can	we	picture,	or	even	conceive	of,	a	plane	on	which	Alberti’s	horizontals
also	meet	at	a	vanishing	point—where	no	matter	which	way	you	look	parallel
lines	converge,	so	that	in	fact	there	are	no	parallels	at	all?	Isn’t	such	an	idea
repellent	to	thought	and	repugnant	to	the	world?

It	certainly	was	to	the	world	of	Euclidean	geometry.	Some	of	the	best
mathematicians	had	tried	for	two	millennia	to	prove	what	must	be	more	than	a
mere	postulate:	that	on	a	plane	there	is	one	and	only	one	line,	m,	parallel	to
another	line,	 ,	through	a	point	P	not	on	 	.

Gerolamo	Saccheri	(1667–1733)	spent	years	trying	to	vindicate	Euclid	and,
ironically,	developed	without	realizing	it	most	of	the	ideas	of	a	geometry	with
many	parallels	to	a	given	line	though	a	point	P	not	on	it.	Johann	Heinrich
Lambert,	a	generation	later,	tried	to	solve	the	parallel	problem	by	looking	at
polygons	on	an	unimaginable	sphere	of	imaginary	radius.	The	failure	of	all	these
attempts	led	even	Gauss	to	speak	of	the	parallel	issues	as	the	shameful	part	of
mathematics,	and	to	suspect,	as	did	others,	that	if	the	existence	and	uniqueness
of	parallels	was	merely	postulated,	the	opposite	could	be	postulated	as	readily.
There	was,	besides,	a	certain	irritating	asymmetry	to	Euclidean	geometry:	some
lines	had	a	point	in	common,	others	had	none:



Why	not	restore	symmetry	by	adding	in	the	missing	points:	for	all	lines	on	the
plane	parallel	to	one	another	in	a	fixed	direction,	add	just	one	point	“at	infinity”
where	they	all	meet:

(the	shape	resulting	from	trying	to	picture	this	may	have	led	to	the	bundle	of
lines	being	called	a	pencil)18	We	don’t	add	two	points	at	infinity	for	a	pencil—
one	left,	one	right,	or	one	west,	one	east—in	order	to	preserve	the	postulate	that
two	lines	can’t	meet	more	than	once.	Along	with	these	special	points,	add	in	the
special	line	we	spoke	of	on	page	253:	the	line	at	infinity	on	which,	like	an
ultimate	horizon,	these	special	points	glitter.	This	completes	the	Euclidean	to	the
Projective	plane,	which	you	might	try	to	picture	like	this:

The	pencils,	swung	through	180°,	trace	out	the	curve	of	the	far	horizon.
After	mathematicians	had	spent	a	long	time	looking	at	it	this	way	and	that,

the	Projective	plane	turned	out	to	be	much	simpler	than	Euclid’s,	with	a	packet
of	axioms	even	smaller	than	it	seems:

P1:	Any	two	points	lie	on	exactly	one	line.
P2:	Any	two	lines	meet	at	exactly	one	point.
P3:	There	are	(at	least)	three	non-collinear	points.
P4:	At	least	three	points	lie	on	every	line.

(Those	last	two	axioms	are	to	satisfy	the	inner	Hilbert:	“Does	it	exist?”)
How	can	we	look	on	the	plane	these	axioms	create	and	see	it	as	it	really	is,



without	having	to	peer	through	a	veil,	or	put	up	with	such	distortions	as	those
playful	“pencils”?	You	can	no	more	expect	to	invite	the	infinite	into	your	cozy
world	with	impunity	than	hope	that	Alcibiades	won’t	carry	off	half	the	silver
from	your	feast.	What	we	can	do,	however,	is	incarnate	the	projective	plane	in
different	ways,	and	by	savoring	the	oddities	of	each,	come	better	to	appreciate
its	character.

There	are	several	models	of	the	four	axioms:	here	is	a	surprising	one.	The
objects	themselves	aren’t	surprising:	the	points	are	the	familiar	dots	and	the	lines
the	conventional	streaks—but	there	will	turn	out	to	be	very	few	of	each.	Start
with	the	three	non-collinear	points	that	the	third	axiom	demands—call	them	A,
B,	and	C:

Now	to	fulfill	P1	make	lines	through	each	pair	of	points,

and	in	a	dream	of	Euclid	construct	another	line	through	A,	as	if	it	were	to	be
parallel	to	BC:

But	P2	says	it	can’t	be:	the	new	line	must	meet	line	BC	in	a	new	point	D:

What	begins	as	a	parallel	to	AB	through	C	must	meet	it	in	a	point	E,	intersecting



AD	at	F	along	the	way

and	satisfying	P1	again	with	a	line	through	B	and	F	gives	us	a	new	point	G
where	this	line	meets	AC:

You	probably	think	that	this	process	of	adding	new	points	at	the	urging	of	P2
and	new	lines	at	the	behest	of	P1	will	go	on	forever,	generating	a	model	with	an
infinite	number	of	points	and	lines—but	in	fact	we	have	all	the	points	we	need
and	all	but	one	of	the	lines.	D	and	E	need	to	be	collinear,	as	do	E	and	G—and	so
do	D	and	G.	Why	not	satisfy	all	three	demands	at	once	with	the	drunken	“line”
DEG?

If	you	object	that	DEG	is	no	line	at	all	but	a	wandering	path,	remember	that
“line”	is	an	undefined	term:	only	custom	(and	Euclidean	custom	at	that)	asks	that
lines	be	straight.	What	matters	here	is	simply—and	startlingly—this:	our	model
with	its	seven	points	and	seven	lines	fulfills	the	four	axioms	of	the	projective
plane	(we	met	the	requirements	of	P4	without	even	having	to	think	about	them).



This	model	may	satisfy	the	axioms	but	it	hardly	satisfies	the	mind.	Weren’t
we	supposed	to	acknowledge	that	if	it	wasn’t	beautiful	it	wasn’t	mathematics?
Very	well.	Recall	that	in	Chapter	Five	we	found	the	incenter	of	any	triangle:	the
point	where	the	angle	bisectors	meet,	which	is	the	center	of	the	“incircle”
tangent	to	the	triangle’s	three	sides:

Can’t	we	now	freshly	see	this	triangle	with	its	angle	bisectors,	incenter,	and
inscribed	circle	as	the	seven	point	and	seven	line	projective	plane?	True,	one	of
the	“lines”	looks	like	a	circle,	but	that	is	only	because	the	doors	of	our	projective
perception	have	not	yet	been	thoroughly	cleansed.

How	could	such	a	cramped	figure	embody	a	geometry	of	spatial	infinity?
Other	models	are	slightly	larger,	but	finite	too.	We	can	construct	one	with
thirteen	points	and	thirteen	lines,	but	if	we	start	as	we	just	did,	putting	down	dots
and	running	streaks	through	them,	we	will	quickly	get	into	a	tangle	resembling
nothing	so	much	as	the	web	of	a	spider	on	LSD.	The	visual	has	always	helped	us
—but	our	stubbornly	Euclidean	intuition	means	that	it	hinders	us	here.	On	the
premise	that	what	the	eye	can’t	see,	the	heart	won’t	grieve	for,	let’s	turn
momentarily	away	from	sight	altogether	and	think	of	our	points	as	letters	and	the
lines	as	their	combinations.	We	will	number	these	lines,	only	asking	that	each
have	exactly	four	“points”	on	it	(that	is,	four	different	letters	in	its	set).

Line	1	=	{a,	b,	c,	d}.

Now	P3	requires	that	there	be	a	point—a	letter—not	in	this	set:	make	it	the
letter	e.	Then	we	must	have	a	new	line	with	a	and	e	on	(or	in)	it:	P1	tells	us	that
none	of	b,	c,	or	d	can	be	on	this	line	as	well—so	we	need	two	fresh	points,	f	and
g:

Line	2	=	{a,	e,	f,	g}.

We	will	go	on	systematically	in	this	way,	making	sure	that	any	two	letters	lie
in	a	unique	set	and	that	each	set	contains	four	letters.	The	fear	that	the



bookkeeping	will	lead	us	to	infinite	excess	is	gradually	put	to	rest	as	the
combination	both	needed	and	possible	converge:

These	letters	and	sets	of	letters	obey	each	of	our	four	axioms	and	so	constitute	a
model	of	the	projective	plane.

Such	a	combinatorial	exercise	may	lead	you	to	agree	with	the	nineteenth-
century	mathematician	J.	J.	Sylvester:	“Brindley,	the	engineer,	once	said	that
rivers	were	made	to	feed	navigable	canals;	I	feel	almost	tempted	to	say	that
space	was	made	for	feeding	mathematical	invention.”	Or	it	may	cause	you
suddenly	to	reconsider	the	projective	plane:	it	isn’t	a	kind	of	space	after	all.	It	is
a	structure,	a	system	of	relations,	which	we	could,	if	we	chose,	embody	in	space
—but	it	is	no	more	native	to	space	than	is	the	transmigrating	soul	to	a	particular
creature’s	body.	Must	this	then	not	be	true	of	Euclidean	“space”	as	well,	or	of
anything	generated	by	a	collection	of	axioms?

We	could	go	on	to	accountants’	heaven	with	projective	planes	having	21
points	and	21	lines,	each	with	5	points,	or	31	of	each	(6	points	on	a	line)—in	fact
n2	–	n	+	1	for	any	number	n	that	works	(but	some	don’t,	like	7	and	11,	and	we
aren’t	yet	sure	about	13:	this	sea	has	yet	to	be	fully	explored)—and	so	create	an
infinite	number	of	finite	models	of	the	projective	plane!	But	to	nourish	our
starving	intuition,	let’s	look	at	one	last	visual	model	of	this	geometry,	as	wildly
different	from	any	of	these	as	each	is	from	its	siblings:	the	thistle.

Picture	the	thistle’s	spines	radiating	out	from	a	common	core	in	every
direction—or	if	that	is	too	prickly,	turn	it	into	a	Kooshball,	but	with	infinitely
many	rubber	threads	rather	than	a	mere	5000.	The	spines	or	threads	may	be	as



long	as	you	choose—infinitely	long,	if	you	wish.	You	probably	think	that	these
will	be	the	lines	of	our	projective	plane—but	the	surprise	is	this:	they	represent
the	points.	Recall	once	more	that	“point”	and	“line”	are	undefined	terms,	so	we
may	model	them	as	perversely	as	we	will,	if	only	they	behave	according	to	the
four	axioms.

What	then	will	stand	for	lines?	Any	two	of	these	spines	intersect	at	the	center:

and	back	in	the	bucolic	days	of	Euclidean	geometry,	two	intersecting	lines
defined	a	plane.	Each	such	plane	will	act	as	a	line	here.	This	makes	sense:	if	our
points	look	like	lines,	our	lines	must	look	like	planes.

We	now	have	to	check:	do	any	two	points	lie	on	exactly	one	line?	That	is,	do
any	two	spines	or	threads	lie	on	a	distinct	plane?	Yes,	as	you	saw	above,	or	as
reinterpreted	here:

Do	two	lines	meet	in	exactly	one	point?	Our	translator	interprets:	do	two	planes
meet	in	exactly	one	line	through	the	center?	Again,	yes:

Are	there	three	non-collinear	points?	That	is,	are	there	three	threads	of	the
Kooshball	that	aren’t	all	on	the	same	plane?	Here	is	an	example:



Three	concurrent	lines	not	all	in	the	same	plane—i.e.,	three	“points”	not	all	on
the	same	“line.”

And	finally,	has	every	line	(that	is,	plane)	at	least	three	points	(i.e.,	lines	through
the	center)	on	it?	Of	course:

“Koosh”	may	be	the	sound	that	it	makes	when	it	lands	in	your	hand—but
what	the	Kooshball	tells	us	is	that	we	need	three	Euclidean	dimensions	to
represent	two	of	projective	space;	and	that	a	model	as	far-fetched	as	this
captures	the	structure	latent	in	those	four	axioms	as	fully	as	does	the	seven-	or
thirteen-point	plane,	or	the	Euclidean	plane	completed	with	points	and	the	line
they	lie	on	at	infinity.	When	next	you	see	the	soft	explosion	of	chrysanthemum
fireworks	in	the	summer	night,	or	pick	a	humble	burr	off	the	hem	of	your	coat,
remember	the	projective	plane.

If	you	are	tempted	to	ask	about	any	of	these	models:	“Which	is	that	special
line	at	infinity	in	it,	and	which	the	special	points?”	we	return	the	question	to	you
with	interest.	Go	back	to	our	first	model	on	page	256	(though	it	deserves	a	more
dignified	name	than	that,	being	no	mere	example	but	a	very	exemplar):	the
completed	Euclidean	plane.	After	it	was	completed—once	any	two	lines	met	in	a
point	and	any	two	points	lay	on	a	line—could	we	really	pick	out	the	points	or
the	line	at	infinity?	The	projective	axioms	have	homogenized	everything:	these
are	all	just	points,	just	lines,	obeying	four	laws.	The	desire	to	bring	the	infinite
into	our	garden	has	had	the	unexpected	consequence	of	giving	all	our	plants
double	names.	As	we	trim	and	tend	the	growths	and	watch	patterns	emerging
among	their	patterns,	novelties	will	merge	into	a	new	familiarity	that	satisfies
desires	we	don’t	yet	know	we	have.	It	isn’t	that	we	get	what	we	want,	as	Proust
once	remarked,	but	that	we	come	to	want	what	we	get.

We	begin	to	acclimate	ourselves	to	this	landscape	by	first	observing	that
there	must	be	three	non-concurrent	lines	in	it:	for	the	three	non-collinear	points



that	axiom	P3	gave	us	will	have	lines	through	each	pair	of	them	by	P1;

these	can’t	all	concur	if	P1	is	still	to	hold.	This	is	one	of	those	truths	you	may
think	too	trivial	to	mention,	but	we	will	soon	profit	from	it	in	an	unexpected
way.

Slightly	less	obvious	is	a	second	observation	of	the	same	figure:	at	least	three
lines	must	meet	at	every	point,	for	there	will	always	be	two	points,	such	as	A
and	B,	which	aren’t	both	collinear	with	C	(the	point	in	question),	and	given	the
usual	three	lines	through	the	pairs,

we	will	get	two	meeting	at	C.	But	P4	gives	us	another	point	D	somewhere	on
AB,	and	DC	is	the	third	line	going	through	C.

Having	warmed	up	with	these	two	exercises,	look	again	at	that	packet	of	four
axioms	we	said	might	be	even	smaller	than	it	seemed.	P1	and	P2	oddly	echo
each	other:

P1:	Any	two	points	lie	on	exactly	one	line.
P2:	Any	two	lines	meet	at	exactly	one	point.

Our	two	observations	now	allow	us	to	echo	P3	and	P4:
P3: There	are	at	least	three	non-collinear	points.

Observation	One: There	are	at	least	three	non-concurrent	lines.

P4: At	least	three	points	lie	on	every	line.

Observation	Two: At	least	three	lines	meet	at	every	point.



Step	back	for	a	moment,	as	geometers	after	Poncelet	finally	managed	to	do,
in	order	to	view	these	paired	statements	from	the	right	vantage	point.	What	we
see	is	something	uncanny.	Take	any	true	statement	in	this	projective	geometry
and	exchange	the	nouns	“point”	and	“line”	for	one	another	wherever	they	occur,
and	also	their	appropriate	verbs,	“lie	on”	and	“meet	at.”	Call	this	new	statement
the	dual	of	the	first.	It	will	clearly	be	a	different,	but	equally	true,	statement!

Why?	Because	a	statement	is	true	if	it	follows	from	the	axioms—but	as	we
have	seen,	the	dual	of	each	axiom	is	either	another	axiom	or	(as	with	the	two
observations)	follows	immediately	from	the	axioms.	This	means	that	any
theorem	about	some	configuration	of	lines	and	points	will	yield	another	theorem
with	an	identical	structure	about	points	and	lines!	Or	to	put	it	with	disturbing
vividness:	if	Euclidean	custom	leads	you	to	picture	your	points	like	this: 	and
your	lines	like	this: ,	well	and	good;	but	if,	in	projective
geometry,	you	choose	to	draw	your	points	thus: 	and
your	lines	so: ,	nothing	will	be	amiss.	We	found	that	we	couldn’t	tell	finite	and
infinite	apart—now	we	can’t	even	make	out	what	are	lines,	what	points!	A
mathematician	named	C.	J.	Keyser	wrote	in	1908:	“Projective	Geometry:	a
boundless	domain	of	countless	fields	where	reals	and	imaginaries,	finites	and
infinites,	enter	on	equal	terms,	where	the	spirit	delights	in	the	artistic	balance
and	symmetric	interplay	of	a	kind	of	conceptual	and	logical	counterpoint—an
enchanted	realm	where	thought	is	double	and	flows	throughout	in	parallel
streams.”

Rather	than	sharing	Keyser’s	enthusiasm,	you	may	feel	the	sort	of	queasiness
that	comes	with	the	first	imperceptible	tremors	of	an	earthquake.	We	need	to
bring	some	sort	of	order	by	focusing	on	the	core	of	this	geometry:	perspective
and	projection.	In	Euclidean	geometry	similarity	and	congruence	were	the	key
relations	among	triangles.	Let’s	see	how	two	triangles	are	most	naturally	related
here.	Alberti’s	Veil	gives	us	the	answer	at	once:

If	you	look	at	ΔABC	from	a	point	of	view	O,	ΔA´B´C´	is	its	image:	or	think	of
O	as	a	light;	then	ΔA´B´C´	is	its	shadow.	ΔA´B´C´	is	in	perspective	with	ΔABC.
Of	course	in	this	land	of	doubles,	ΔABC	is	just	as	much	the	image	or	shadow	of



ΔA´B´C´—but	that’s	all	right:	the	two	triangles	are	in	perspective	when	viewed
from	O,	their	center	of	perspectivity	(just	as	on	the	Euclidean	plane,	the	relations
of	similarity	and	congruence	are	symmetrical).	Let’s	write:

to	mean	that	the	two	are	perspective	from	O;	that	is,	the	paired	vertices	are	lined
up	on	rays	from	O:	O,	A,	A´	are	collinear,	as	are	O,	B,	B´,	and	O,	C,C´.

We	might	even	do	one	perspectivity	after	another:

Here, 	but	also .This	chain	of	two
perspectivities	(from	different	points	of	view)	we’ll	call	a	projection,	and	say	we
have	projected	ΔABC	onto	ΔA″B″C″	(or	vice	versa)	via	this	chain.	A	projection
can	have	as	many	links	as	you	choose—and	we’ll	grant	the	title	“projection”
even	to	the	single	link	of	one	perspectivity.

Where	has	this	gotten	us?	Aren’t	things	worse	than	ever?	Two	triangles	in
perspective	certainly	needn’t	be	congruent—nor	even	similar;	they	probably
haven’t	the	same	area	and	one	triangle	might	even	be	acute	and	the	other	obtuse!

With	such	a	feeble	relation	between	them,	how	could	we	hope	to	have	anything
as	interesting	as	the	collinearities	and	concurrencies	of	Chapter	Five?	What	shall
abide	the	coming	of	projection?	Is	not	all	changed	in	the	twinkling	of	an	eye?
We	relied	on	congruence	in	geometry	and	equality	in	algebra	in	order	to
transform	one	thing	into	another	and	see	what	nevertheless	remained	invariant;



yet	here	all	is	seeming	and	shadow,	with	no	objective	form.19
Let	the	light	of	the	golden	seventeenth	century	organize	these	seemings	into

sense.	A	self-taught	French	architect	and	engineer,	Girard	Desargues,	discovered
a	new	and	even	more	profound	invariant	of	the	projective	plane.

He	leads	us	to	look	once	more	at	the	simple,	defining	situation	in	this
geometry:	two	triangles	in	a	perspective	drawing	on	a	plane:

But	you	are	seeing	them	only	in	part,	he	says:	line-segments,	not	lines.	Extend,
for	example,	sides	AB	and	A´B´	until	they	meet	(as	they	must)	at	some	point	P.

We	are	in	danger	of	cluttering	up	the	picture	with	too	many	lines—but	go	on,	he
says,	and	find	where	the	other	paired	sides	meet	at	Q	and	R:

We	have	been	in	a	situation	like	this	before:	those	three	centers	of	a	triangle,	in
Chapter	Five,	that	had	to	be	collinear.	Is	it	an	accident	that	P,	Q,	and	R	seem	to
be	collinear	too?20



To	show	that	in	fact	they	must	be,	we	travel,	as	always,	elsewhere:	not	back
to	Euclid	now	but	ahead	into	three-dimensional	projective	space,	P3,	whose	six
axioms—aimed	at	preventing	parallels—are	as	straightforward	as	those	of	the
projective	plane.	They	include	such	assertions	as	that	a	line	must	intersect	any
plane	in	a	point,	and	any	two	planes	must	meet	in	a	line,	and	that	there	must	be
four	non-coplanar	points.	Here	is	Desargues’s	gem	of	a	proof	that	the	paired
sides	of	two	triangles,	perspective	from	a	point,	meet	in	three	points	that	are
collinear.

If	the	two	triangles	ΔABC	and	ΔA´B´C´	lie	on	different	planes,	N	and	M,	and
are	perspective	from	some	point	O	on	neither	plane,	then	their	paired	sides	when
extended	must	meet	in	three	points	that	lie	on	the	line	 	where	the	planes	M	and
N	intersect.

the	Euclidean	plane	shows	that	once	more	we	are	entertaining	a	visitor	there	who
has	traveled	from	his	projective	home.

Why?	Because	lines	OAA´	and	OBB´,	for	example,	intersect	(at	O)	and	hence
form	a	plane—call	it	T.	AB	and	A´B´	are	two	lines	on	this	plane	and	so	must
intersect	at	a	point—call	it	P.	Since	AB	is	on	N	and	A´B´	on	M,	P	is	on	each	of
these	planes	and	so	must	lie	on	their	intersection,	the	line	 ,	which	is	the	hinge
between	the	two	planes.	The	same	argument	works	for	Q	and	R,	so	that	all	three
lie	on	 	.

This	is	all	very	well,	but	not	quite	what	we	wanted.	We	need	to	deduce	the



same	result	when	ΔABC	and	ΔA´B´C´	are	on	the	same	plane.	Here’s
Desargues’s	architectural	masterpiece.

We	have	ΔABC	and	ΔA´B´C´	on	one	plane—call	it	V—and	perspective	from
a	point	O	on	this	plane.

We	know	(from	the	axioms	for	projective	space)	that	there	is	a	point	S	not	on
the	plane,	so	consider	the	line	on	which	S	and	O	lie	(any	two	points	lie	on	a
line).	Every	line	in	projective	geometry	has	at	least	three	points,	so	there	is
another	point—call	it	S´—on	this	line.

Now	we	will	simply	build	Alberti’s	visual	pyramids.	Construct	lines	of	sight
from	S	to	A,	B,	and	C,	and	from	S´	to	A´,B´,	and	C´.



What	may	look	confusing	is	really	two	pyramids	intersecting,	since	SA,	for
example,	and	S´A´	must	meet	at	some	point—call	it	A″Why	must	they	meet?
Because	lines	OSS´	and	OAA´	meet	at	O,	and	once	more,	two	intersecting	lines
form	a	plane.	SA	and	S´A´	are	lines	on	this	plane,	so	must	intersect.

Again	the	same	kind	of	thinking	shows	us	that	SB	and	S´B´	intersect	(at	B″)
and	SC	and	S´C´	(at	C″).	A″,	B″,	and	C″	are	the	vertices	of	that	small	triangle
floating	above	plane	V—the	intersection	of	the	two	pyramids	from	S	and	S´.21

Now,	with	Desargues’s	eye,	look	steadily	at	what	he	has	built	and	remember
the	fundamental	power	of	transitive	thinking.	The	floating	triangle	ΔA″B″C″
and	ΔABC	are	on	different	planes	but	perspective	from	point	S—hence,	by
Desargues’s	proof	for	triangles	on	different	planes,	their	paired	sides,	when
extended,	meet	at	three	points	on	one	line:	the	line	 	where	plane	V	intersects
the	plane	(which	we	haven’t	drawn	in)	of	ΔA″B″C″.	Call	those	points	P,	Q,	and
R.

The	floating	triangle	ΔA″B″C″	and	ΔA´B´C´	are	also	on	different	planes,	but
perspective	from	point	S´—hence,	again	their	paired	sides,	when	extended,	meet
at	three	points	on	line	 	.These	must	be	the	same	three	points,	since	ΔA´B´	for
example,	intersects	 	with	AB	at	P	and	intersects	it	again	with	A´B´—but	one
line	cannot	intersect	another	in	more	than	a	single	point.

By	going	up	into	a	third	dimension	and	returning,	Desargues	has	shown	that
two	coplanar	triangles,	perspective	from	a	point,	are	also	“perspective	from	a
line”	(a	condensed	way	of	phrasing	his	conclusion).	This	line	on	which	the
paired	sides	meet	is	called	the	axis	of	perspectivity.	We	can	relish	his	insight
now	as	if	it	lay	wholly	on	the	plane.



This	being	projective	geometry,	we	are	enticed	into	looking	at	Desargues’s
configuration	from	several	different	points	of	view.	The	first	is	duality.	Since	we
now	have	the	theorem:	“If	two	triangles	are	perspective	from	a	point,	then	they
are	perspective	from	a	line,”	its	dual	must	also	be	true:	“If	two	triangles	are
perspective	from	a	line,	then	they	are	perspective	from	a	point.”

This	dual	is	by	no	means	as	obvious	as	the	original	statement,	but	its	proof
grows	beside	the	double	river	that	waters	this	land.

At	least	as	remarkable	is	the	following	exercise	in	looking	at	things	askew.
We	will	draw	once	more	the	“Desargues	configuration”	of	ten	points	and	ten
lines.	ΔABC	and	ΔA´B´C´	are	perspective	from	O	and	hence	from	line	PQR.
Now	blink,	and	settle	your	seeing	on	any	point	other	than	O:	choose,	for
example,	C,	and	call	it	the	center	of	perspectivity.	Look—a	new	planet	swims
into	our	ken:	ΔOAB	and	ΔQRC´	are	perspective	from	point	C,	and	also	from
line	A´B´P!

Choose	another	one	of	the	ten	points	in	this	configuration	as	the	center	of
perspectivity:	again	two	triangles	line	up	with	it,	and	a	fresh	axis	of
perspectivity.	Just	as	no	point	turned	out	to	be	a	special	“point	at	infinity,”	so
none	is	a	special	“center	of	perspectivity”.	There	are	ten	distinct	“Desarguean



configurations”	compiled	in	this	one—more	collinearities	and	concurrencies
than	in	all	of	Chapter	Five,	more	ambiguities	than	in	the	most	hypermodern
novel.

Perhaps	the	most	disconcerting	reflection	is	this.	We	proved	Desargues’s
theorem	about	the	projective	plane	by	moving	into	projective	three-space.	We
had	to:	there	can	be	no	proof	of	it	confined	to	the	plane	itself,	making	this
particular	fetching	from	afar	not	a	jeu	d’esprit	but	a	necessity.	People	therefore
tend	to	speak	not	of	Desargues’s	theorem	but	Desargues’s	“theorem,”	since	it	is
a	theorem	(as	is	its	dual)	only	for	projective	planes	when	they	are	thought	of	as
part	of	projective	three-space.	For	an	arbitrary	projective	plane,	not	similarly
ensconced,	his	“theorem”	is	only	an	axiom—whose	contrary	is	as	easily
affirmed	(though	at	first	perhaps	not	as	cordially	deemed	worthy	of	belief).	It	is
as	if	Desargues’s	conclusion	were	the	shadow	cast	on	the	plane	by	a	proof
elsewhere.	The	union	which	set	out	against	Euclid	has	loosened	into	a
confederation	of	projective	geometries.

Projective	planes	in	projective	space—planes	on	which	Desargues’s	theorem
holds—are	so	rich	that	we	can	never	gather	up	all	their	treasures.	In	this
atmosphere	thick	with	duality,	it	will	come	as	no	surprise	to	find	that	what	were
ends	soon	turn	into	means.	Take,	for	example,	the	theorem	in	Chapter	Five	for
which	we	had	a	whole	volley	of	proofs:	the	medians	of	a	triangle	are	concurrent.
Let	us	bring	yet	one	more	proof—perhaps	the	most	beautiful—from	the	distant
projective	plane.

Instead	of	drawing	in	any	of	the	medians	(so	artful	is	this	proof),	let’s	just
mark	the	midpoints	D,	E,	and	F	of	ΔABC’s	three	sides:

the	line	joining	the	midpoints	we	know	(by	similar	triangles)	is	parallel	to	the
base:	so	FE	 	BC,	FD	 	AC,	DE	 	AB:



But	parallel	lines	meet	on	the	line	at	infinity—that	is,	FE	coincides	with	BC	at
some	point	P	there,	FD	with	AC	at	a	Q,	DE	with	AB	at	some	R.	In	other	words,
triangles	ABC	and	DEF	are	perspective	from	a	line	(at	infinity	though	it	may
be).	Hence	by	the	dual	of	Desargues’s	“theorem,”	these	two	triangles	are
perspective	from	a	point—that	is,	there	is	an	O	at	which	AD,	BE,	and	CF	are
concurrent—as	we	wished	to	show.	We	are	looking	straight	down	on	Alberti’s
visual	pyramid.

As	J.B.S.	Haldane	once	almost	said:	Mathematics	is	not	only	queerer	than	we
suppose,	but	queerer	than	we	can	suppose.

We	will	end	this	chapter	on	the	endless	with	a	magic	trick.	The	best	of	these
give	the	audience	so	much	freedom	to	choose	that	you	can’t	believe	they	could
ever	work—or	if	they	do,	it	must	be	because	of	hidden	accomplices.	We	love	our
freedom	until	it	verges	on	an	almost	synonymous	lawlessness	at	one	extreme,	a
hint	of	subversive	powers	at	the	other.

So	pick	a	line,	any	line,	as	the	card	sharpers	say—and	then	pick	another.

Next,	choose	any	three	points	you	like	on	the	first,	and	any	three	on	the	second.



Please	label	the	points	on	the	first	line	A,	B,	and	C—but	again,	in	any	order	you
choose;	and	(in	any	order),	A´,B´,C´	on	the	second	line.

Now	(while	our	assistant	dusts	off	the	vanishing	points)	connect	A	to	B´	and
B	to	A´,	and	call	P	the	point	where	AB´	and	A´B	cross	(we	are	still	on	the
projective	plane,	so	these	lines	will	cross).

Let	AC´	intersect	A´C	at	Q,	and	BC´	meet	B´C	at	R.

Abracadabra!	P,	Q,	and	R	will	be	collinear.	Should	you	care	to	redraw	or	relabel
to	see	if	this	still	looks	true,	we	will	entertain	you	the	while	with	Hilbert’s
remark	that	a	mathematical	problem	should	be	clear	and	easy	to	understand,



since	complication	is	abhorrent;	should	be	difficult	enough	to	entice	us	but	not
completely	inaccessible	(“lest	it	mock	our	efforts”);	and	should	be	significant:	“a
guidepost	on	the	tortuous	path	to	hidden	truths.”

Once	you	have	convinced	yourself	experimentally	that	our	claim	is	just,	we
can	indulge	in	the	different	sort	of	conviction	that	comes	from	a	proof—and	its
very	different	sort	of	pleasure	as	well:	experiments	generate	wonder;	proofs
conclude	with	awe.	Let’s	begin	by	adding	to	our	diagram	the	point	O	where
lines	 	and	m	meet.	We	will	draw	the	line	PQ	and	prove	that	R	is	on	it.

This	is	where	the	magician	lets	out	the	rabbit	that	was	all	the	time	in	his	hat:
take	that	line	PQ	as	the	line	at	infinity.	What	have	we	just	done,	and	who	said
we	could	do	it?	Remember	that	once	the	Euclidean	plane	is	completed	by	adding
to	it	(along	with	special	points)	the	line	at	infinity,	all	lines	look	and	behave
alike,	so	any	one	can	now	be	rechristened	the	line	at	infinity!	This	move	is	like	a
modulation	in	a	late	Beethoven	quartet:	inspired,	outrageous,	transforming.	It
trumps	the	original	freedom	of	choice	with	a	freedom	of	its	own.

Since	P	is	now	the	point	at	infinity	where	AB´	and	A´B	meet,	they	are	in	the
old	Euclidean	sense	parallel;	as	are	AC´	and	A´C,	since	they	meet	at	Q	on	the
line	at	infinity.	If	you	like,	you	may	think	of	what	we’ve	done	this	way:	we	have
taken	advantage	of	being	on	the	projective	plane	by	choosing	our	point	of	view
so	that	these	pairs	of	lines	are	parallel.	Our	configuration	would	now	look	like
this:

To	prove	that	R	(where	BC´	and	B´C	meet)	is	on	this	line	now	amounts	to
proving	BC´	 	B´C.

Let’s	assign	lengths	q,	s,	t,	u,	v,	and	w	to	segments	in	the	diagram	as	follows:



Since	ΔOAB´	~	ΔOBA´,	the	sides	are	in	proportion:	that	is,

so

or

And	since

and

or

Hence	we	can	write:

Let’s	simplify	this	ungainly	double-decker	by	dividing	both	its	numerator	and
denominator	by	q(u	+	v	+	w).	We	will	then	have



But	this	implies	that	ΔOBC´	~	ΔOCB´,	so	that	C´B	 	B´C,	and	their	meeting
point,	R,	is	indeed	collinear	with	P	and	Q	on	the	line	at	infinity.

It	would	be	nice	to	end	with	a	fanfare—an	illustration	of	these	similar
triangles	revealing	the	collinearity	of	P,	Q,	and	R.	But	notice	that	AB´	and	A´B
must	be	simultaneously	parallel	and	convergent	at	P.	Since	P	is	the	point	at
infinity,	the	mind	can	see	it—but	the	hand	trembles	too	much	to	make	a
drawing.

What	we	have	just	done	is	as	neat	a	piece	of	cross-ruffing	as	you	are	likely	to
see	(if	you	object	to	such	playing	off	of	one	kind	of	plane	against	another,	a
different	proof	of	this	theorem,	wholly	in	the	projective	idiom,	is	in	the	on-line
Annex).

Which	was	more	magical,	the	theorem	or	its	proof?	In	either	case	the	show
isn’t	over.	This	theorem	was	first	discovered	by	the	witty	Alexandrian	geometer,
Pappus,	whom	you	may	already	have	met	in	the	appendix	to	Chapter	Five	(page
352):	the	man	who	proved	the	base	angles	of	an	isosceles	triangle	congruent	by
thinking	of	the	triangle	as	congruent	to	its	mirror	image.	A	thousand	years	later,
Pascal	discovered	that	if	you	sprinkle	these	two	triples	of	points	anywhere	on	a
circle’s	circumference,	the	same	result	holds:

P,	Q,	and	R	are	still	collinear,	no	matter	where	you	put	them	or	how	you	label
them.

Shall	we	push	incredulity	further	toward	the	brink?	Distort	that	circle	into	any
sort	of	ellipse	and	P,	Q,	and	R	remain	stubbornly	perched	on	a	single	line:



What	about	a	parabola?

Dare	we	go	to	the	extreme	of	a	hyperbola’s	two	branches?

Could	we	risk	even	thinking	about	the	duals	of	each	of	these	theorems?
Hard	to	swallow	as	the	proof	of	Pappus’s	theorem	was	with	a	pair	of	straight

lines,	won’t	trying	to	prove	it	in	any	of	these	four	new	configurations	mock	our
efforts?	Not	at	all.	They	will	now	be	simplicity	itself	and	a	guidepost	on	the
tortuous	path	to	hidden	truths	(indeed,	Hilbert	called	Pappus’s	theorem	the	most
important	in	all	of	plane	geometry,	because	Desargues’s	theorem,	or	any
theorem	about	lines	meeting	on	the	plane,	can	be	derived	from	it).	The
simplicity	comes	from	noticing	that	a	pair	of	lines,	a	circle,	an	ellipse,	a
parabola,	and	a	hyperbola	are	all	conic	sections:	slices,	not	through	Alberti’s
visual	pyramid,	but	through	a	palpable	cone.	They	are	projective
transformations,	therefore,	of	one	another,	when	seen	from	the	cone’s	apex	(the
hyperbola’s	second	branch	lies	up	in	the	cone’s	mirror	image:	extending,	as
always,	the	known	into	the	new).	A	projective	invariant	of	one	will	be	invariant
for	all.



Projective	geometry—so	sprightly	in	its	approaches,	so	profound	in	its	results
—is	the	contemplation	of	permanence	behind	change,	animating	the	sculptural
beauty	of	Euclid	in	a	world	of	transformations.	Peacock	fumbled	at	this	with	his
Principle	of	Permanence.	The	new	and	deeper	sense	it	makes	here	was	expressed
as	a	Principle	of	Continuity	by	Poncelet	in	1822:	“If	one	figure	is	derived	from
another	by	a	continuous	change	and	the	latter	is	as	general	as	the	former,	then
any	property	of	the	first	figure	can	be	asserted	at	once	for	the	second.”	This
principle,	and	the	subsequent	algebraic	approach	to	projective	geometry,
underlie	our	modern	facility	for	moving	from	one	coordinate	system	to	another
—a	facility	that	underlies,	for	example,	Einstein’s	understanding	of
measurements	made	by	observers	differently	situated	and	in	motion	relative	to
one	another.



Interlude

The	Infinite	There—But	the	Finite	Here

It	is	the	immediate,	the	close	at	hand,	the	precious	moments	that	most	matter	to
us.	What	then	keeps	calling	us	away?	Perhaps	what’s	oddest	about	our	human
condition	is	that	each	least	in	it	seems	netted	in	a	gauzy	infinite:	explanations
never	end,	every	hill	has	its	other	side,	if	is	not	followed	by	then	but	by	a	further
if.

Change,	for	example,	pervades	our	lives;	but	to	understand	and	master	it,	we
must	plunge	at	once	into	the	tumbling	infinities	of	calculus.	Are	these	infinities
mere	fictions?	If	so,	they	are	fictions	we	can’t	do	without.	You	want	to	grasp	the
rate	at	which	a	process	is	changing	at	this	very	moment?	So	draw	a	graph	of	the
function	describing	the	process	and	ask	about	its	slope	at	the	point	representing
this	moment.

But	how	can	a	curved	line	have	a	slope,	when	slopes	belong	to	straight	lines?
It’s	the	brilliance	of	Newton,	Leibniz,	and	their	near-contemporaries:	draw	a
straight	line-segment	from	the	point	you	want	to	one	nearby,	calculate	its	slope,
then	let	that	nearby	point	slide	steadily	toward	the	one	in	question.	As	the	sliding
point	approaches	the	fixed	one,	the	slope	of	the	line	between	them	approaches



the	slope	of	the	curve	at	the	desired	point—and	is	the	curve’s	slope	at	the	limit
of	this	infinite	shortening,	when	the	secant	line	becomes	a	tangent!

The	limit?	Is	this	a	conceptual	nonsense	that	lets	us	make	sense	of	what	really
happens?	What	must	we	be	thinking	in	order	to	take	the	immensely	long	step
across	this	infinitesimal	gap?	We	have	to	think:	what	approximations	arrow
toward	their	target—even	though	that	target	is	so	different	from	anything	along
the	way	(each	secant	is	defined	by	two	points,	as	a	line	must	be—but	the	tangent
line	is	defined	into	existence	by	them	at	only	one!).
Of	course,	there	are	all	sorts	of	barriers	we	have	to	get	over	on	the	way	to	taking
this	limit.	We	have	to	make	sure	that	the	series	of	steps	actually	converges
(remember	from	Chapter	Four	that	not	all	do),	and	what’s	more,	converges	to	the
same	value	from	both	directions.	We	may	have	to	juggle	our	algebra	and	come
up	with	all	kinds	of	clever	subterfuges	to	find	out	what	that	limit	is,	such	as
adding	and	subtracting	balanced	terms	to	let	others	cancel	out:	picklocks	and
jimmies	in	the	skilled	practitioner’s	back	pocket.
What	compounds	this	oddity	is	that	we	have	come	to	take	these	intrusions	of	the
infinite	for	granted.	Our	eye	being	always	on	the	end,	the	means	to	it	have
slipped	into	acceptable	convenience	(just	as	with	ethical	decisions,	we	wink
away	dubious	practices	so	long	as	they	achieve	their	purpose).
But	are	these	practices	in	calculus	dubious?	Let’s	look	more	closely	at	them.	If
our	graph	represents	distance	traveled	over	time,	its	slope	at	a	point	will	tell	you
how	that	rate	is	changing:	the	velocity	which	lies	at	the	heart	of	understanding
motion.	Since	the	slope	of	a	line	is	rise/run,	if	we	want	the	slope	of	our	function
f(x)	at	the	point	(a,	f(a)),	we	mark	a	point	a	distance	h	to	the	right,	say,	of	a,
giving	us	the	point	(a+h,	f(a+h))	on	the	graph.	The	slope	of	the	secant	line	now
drawn	between	these	two	points	is	therefore

simplified	to

Now	we	let	h	shrink	to	nothing,	or	in	the	language	of	the	craft,	take	the	limit	of
this	ratio	as	h→0:



But	of	course	you	can’t	divide	by	0.	What	if,	however,	you	could	somehow
factor	an	h	out	of	the	numerator,	cancel	the	h’s	first,	and	then	take	the	limit?	As
with	the	best	jokes,	timing	is	all.	Since	we	don’t	want	the	dubious	replaced	by
the	comic,	the	canny	nineteenth-century	Frenchman	Augustin-Louis	Cauchy
restored	propriety	to	the	idea	of	taking	a	limit	by	giving	us	an	operational	way	to
think	about	it.	To	claim	that	the	outputs	of	the	function	f	approach	the	limit	/	at	a
means,	he	said,	that	for	any	degree	of	tolerance	you	name,	we	can	find	an	input	d
sufficiently	near	a	to	produce	an	f(d)	which	falls	within	that	tolerance	of	/.	This,
as	they	say,	takes	the	fear	out	of	being	close.
Cauchy	made	limits	respectable,	but	taking	them	(or	in	an	evasive	language	that
signals	residual	doubts,	“letting	h	go	to	0”—as	if	the	burden	were	on	the
variable,	not	on	us)	is	an	act	of	the	imagination	that	carries	us	beyond	the	present
and	time	itself,	to	focus	our	tunnel	vision	on	the	infinite.	When	we	write	such
infinite	series	as

1/2	+	1/4	+	1/8	+	1/16	+	…	=	1,

the	world	has	become	not	vaguer	but	more	precise;	the	ellipsis	is	an	inclusion	by
omission,	and	fiction	is	our	ultimate	reality.





Chapter	Nine

The	Abyss

If	you	stare	too	long	into	an	abyss,	the	abyss	will	stare	back	into	you.
—Nietzsche

We	would	now	spiral	back	to	the	counting	with	which	the	art	of	the	infinite
began,	were	it	not	that	a	little	cloud	on	the	mind’s	horizon—no	bigger,	really,
than	a	man’s	hand—has	from	time	to	time	troubled	people	telling	their	numbers.
In	the	ninth	century	the	star	worshipper	Thabit	ibn	Qurra,	from	Harran,	argued
that	infinity	could	be	split	into	two,	three,	or	any	number	of	parts,	each	of	which
would	then	have	the	same	size	as	the	whole:	there	is,	for	example,	an	infinite
number	of	evens,	but	also	of	odds,	so	each	half	of	infinity	is	infinity—and	so	on.
In	1638	Galileo	argued	that	“equal,”	“greater,”	and	“less”	can’t	apply	to	infinite
quantities	because	a	line-segment	contains	an	infinity	of	points,	so	a	longer
segment	would	have	to	contain	more	than	that	infinity,	which	is	impossible.	And
again,	each	natural	number	has	its	square	matched	with	it:

Hence	there	must	be	exactly	as	many	square	numbers	as	there	are	naturals.
Clearly,	however,	there	are	fewer,	since	the	squares	grow	ever	sparser	as	you	go
along.

Putting	the	question	aside	seemed	for	a	long	time	the	best	way	of	coping	with
it.	Infinite	collections	of	numbers	were	too	slippery	to	try	comparing,	as	if	we
were	being	warded	off	from	these	higher	mysteries	by	their	power	to	confuse.
We	could	speak	negatively	of	approaching	but	never	reaching	a	limit,	or	of	there
not	being	a	last	prime;	and	positively	about	what	must	be	true	for	any	(or	was	it



every?)	number—we	could	even	make	finite	models	of	infinite	planes.	But	how
could	a	mind	tucked	into	a	little	skull	possibly	grasp	the	infinite	as	such,	or
count	its	way	through	infinite	multitudes?

The	work	of	a	single	man	utterly	changed	our	glib	know-nothingness	forever.
What	was	to	follow	would	be	colored	by	the	strengths	and	weaknesses	of	his
particular	personality,	rather	than	having	the	impersonal	air	we	tend	to	associate
with	mathematics	and	collective	work.

Cantor	as	a	young	man.

Georg	Cantor	must	have	been	born	in	the	imperative	mood.	This	mattered	at
least	as	much	as	the	intellectual	climate	of	Germany	in	1845.	He	was	propelled
through	his	youth	by	a	torrent	of	a	father
(“Now	my	dear	son!	Believe	me—to	prevent	the	slander	of	open	or	secret
enemies	you	need	to	acquire	the	greatest	amount	possible	of	the	most	basic
knowledge.	Whatever	one	neglects	through	premature	extravagance	is
irretrievably	lost,	like	lost	innocence	…	Your	father,	your	family,	have	their	eyes
on	you	…”).	Even	more	compelling	was	what	he	described	throughout	his	life	as
a	secret	voice—within,	above,	unknown—a	“more	powerful	energy”	that	spoke
through	him.	He	always	looked	for	the	face	behind	the	mask	and	then	for	the
mask	behind	that.	Docile	at	home,	domineering	among	colleagues,	playful	in
mathematics	and	humorless	in	his	wrangles	with	mathematicians,	he	was	as
close	to	a	reincarnation	of	Alcibiades	as	nineteenth-century	Germany	could
produce—not	only	in	his	enthusiastic	energy	and	wild	daring,	but	in	the
ferocious	way	he	fought	when	cornered—Alcibiades	by	Phrygians,	Cantor	by
ideas.



Let’s	return,	with	Cantor’s	inflexible	will	and	malleable	imagination	speaking
within	us,	to	Galileo’s	problem	of	the	natural	numbers	and	their	squares.	Since
each	number	has	its	unique	square	and	each	square	corresponds	to	a	single
natural,	it	certainly	seems	right	that	there	are	just	as	many	squares	as	there	are
naturals,	for	all	that	the	squares	are	scattered	among	them.	Let	skepticism	give
way	to	astonishment	and	astonishment	to	experimental	candor:	let’s	follow
where	this	observation	leads.

Other	such	correspondences	come	trooping	after.	Although	only	every
second	natural	number	is	even,	there	must	nevertheless	be	exactly	as	many	of
them	as	naturals,	since	each	natural	is	perfectly	matched	with	its	double:

To	say	these	matchings-up	show	that	there	are	as	many	of	one	kind	as	of	the
other	needs,	of	course,	a	very	bold	leap	of	thought.	We	are	taking	each	sort	as	a
completed	whole:	all	the	naturals	match	up	perfectly	with	all	the	evens,	or	with
all	the	odds.	Stop	short	and	the	correspondence	breaks	down:	there	are	only	50
evens	among	the	first	100	naturals,	for	example,	and	50	odds.

The	multiples	of	3	are	even	thinner	on	the	ground	than	those	of	2—and	yet
once	again,	there	are	just	as	many	of	them	as	of	the	naturals	they	are	selected
from:

We	could	walk	over	 	in	seven	league	boots	and	take	just	as	many	paces	as
the	numbers	we	stride	through:



How	little	a	step	now	for	the	mind	to	invoke	its	own	sort	of	infinity	and
declare:	for	any	natural	number	m,	there	are	just	as	many	multiples	of	m	as	there
are	natural	numbers	altogether:

If	you	ask:	how	many	is	that?	we	could	answer	in	terms	of	cardinal	numbers,
which	read	off	what	the	size	of	a	set	is—that	is,	how	many	elements	(in	whatever
order)	it	contains.	The	set	with	a	cabbage,	a	goose,	and	a	fox:

{cabbage,	goose,	fox}

has	cardinality	three	(and	the	problem	is	to	keep	it	that	way).	So	has	the	set

{13,	−8,	251}	.

The	set	with	the	first	million	counting	numbers	has	cardinality	one	million.	Here
we	could	say:	the	sets	 	and	m 	have	the	same	cardinality,	as	established	by	the
one-to-one	correspondence	we	made.	Since	we	count	by	means	of	the	natural
numbers,	we	could	also	say	that	both	sets	are	countable.

Had	Cantor	done	nothing	else,	this	insight	would	still	have	revolutionized	our
understanding	of	the	infinite.	What	was	a	paradox	could	now	be	seen	as	a
peculiar	truth	suggestive	of	truths	perhaps	yet	more	peculiar:	the	hallmark	of
mathematics	at	work.	To	say	that	Cantor	did	infinitely	more	would	be	an
understatement.	In	Chapter	One	we	remarked	that	matching	up	separate	things



with	a	sequence	of	numbers	might	seem	of	little	consequence,	but	would	take	us
beyond	the	moon.	With	the	set	of	all	the	natural	numbers	(or	all	the	multiples,	if
you	wish,	of	65,537),	we	are	already	well	past	it,	yet	hardly	any	distance	along
the	path	that	Cantor	took:	as	winding,	as	steep,	as	exhilarating	as	those	he
walked	in	the	Harz	mountains.

The	crucial	ideas	in	mathematics	are	always	so	simple	as	to	seem	intuitively
clear:	sets	and	making	1–1	correspondences	between	their	members.	You
needn’t	even	know	how	to	count	to	do	this,	and	the	effect	has	always	been
spectacular.	In	the	fourth	century	a	nomadic	army	from	the	East	rode	through
the	Caucasus	into	Armenia.	“No	one	could	number	the	vastness	of	the	cavalry
contingents,”	wrote	a	contemporary	chronicler,	“so	every	man	was	ordered	to
carry	a	stone	so	as	to	throw	it	down	…	so	as	to	form	a	mound	…	a	fearful	sign
left	for	the	morrow	to	understand	past	events.	And	wherever	they	passed,	they
left	such	markers	at	every	crossroad	along	their	way.”	In	Scotland	the	Cairn	of
Remembrance	still	stands	at	Invercauld,	where	the	Farquharsons	each	set	down
a	stone	before	battle—and	those	who	survived	took	each	his	stone	back	home.

Although	the	word	“set”	first	took	on	its	technical	meaning	with	Cantor,
surely	it	stands	for	what	we	are	all	born	knowing,	as	we	observed	in	Chapter
Two.	Sords	of	mallards	and	prides	of	lions	tickle	our	easy	aptitude	for	making	a
many	into	a	one.	It	is	almost	more	comfortable	to	think,	for	example,	of	your	old
gang	taking	on	a	bunch	of	hoodlums	than	having	to	deal	with	single	people	who
have	faces	and	friends.	If	counting,	as	mathematicians	know	from	bitter
experience,	is	harder	even	than	hitting	a	round	ball	with	a	round	bat	(which	Ted
Williams	said	is	the	hardest	thing	there	is),	certainly	the	young	Cantor	made	it
significantly	easier	by	recognizing	“set”	as	the	central	noun	of	the	new	language
he	was	inventing.	Its	central	verb	was	“to	correspond.”	The	correspondence
between	the	members	of	the	sets	might	be	hard	to	find;	the	way	you	made	it
might	seem	artificial	or	bizarre—but	once	revealed,	the	two	sets	between	which
it	ran	had	to	have	the	same	cardinality.	Conversely,	you	must	agree,	if	somehow
you	proved	that	no	1–1	correspondence	could	exist	between	the	members	of	the
two	sets,	then	their	cardinalities	would	have	to	be	different.	On	such	casual
agreements	momentous	conclusions	hang.

Let	us	continue,	with	Cantor,	to	learn	again	how	to	count—which	may	make
us	sympathize	with	birds	and	chimpanzees.	Having	found	that	any	infinite
sequence	of	the	naturals	is	countable	(not	as	great	a	surprise	as	it	first	seemed,	if
you	think	about	it,	since	such	a	sequence	will	have	a	first	term,	then	a	second,
third,	and	so	on—and	ordering	them	thus	in	effect	counts	them),	we	are	tempted
to	look	in	the	opposite	direction:	not	at	subsets	of	 	but	at	a	set	that	includes	it.



This	is	the	set	 	of	integers,	with	zero	and	the	negatives	of	the	naturals	as	well.
Is	it	possible	to	put	this	set	too	in	one-to-one	correspondence	with	its	subset	 ?

Yes,	but	with	a	slightly	greater	effort	of	the	imagination.	After	starting	with
0,	just	hop	back	and	forth	between	the	naturals	and	their	negatives:

This	establishes	the	match-ups:

We	have	thus	shown	that	the	integers	have	the	same	cardinality	as	the
naturals.

Such	a	clever	way	of	pairing	gives	us	the	confidence	now	to	think	the
unthinkable	and	face	what	Galileo	shied	away	from:	a	more	than	infinity.	For	if
you	look	at	all	the	rational	numbers	Q,	or	even	at	just	the	positive	rationals—the
set	of	all	these	fractions—there	are	obviously	more	of	them	than	there	are
natural	numbers,	since	between	any	two	fractions	will	lie	another,	until	what
was	the	space	from	one	natural	to	the	next	will	be	crammed	to	bursting	with
them.	You	could	look	at	it	this	way:	any	set	as	numerous	as	the	naturals	is
countable,	but	how	could	you	possibly	count	the	positive	rationals?	How	say,
given	one	of	them,	which	is	the	next,	or	even	which	is	the	first	of	them	all?
Between	0	and	any	candidate	you	name,	another	will	crop	up—and	another	…

If	it	is	hard	to	conjure	up	the	entrenched	determination	of	Alcibiades,	imagine
Cantor	prowling	the	margins	of	the	forest	of	fractions,	certain	that	they	could	be
counted	if	only	looked	at	from	the	right	angle.	So	the	chaos	of	an	orchard	seen
from	a	passing	train	resolves	itself	for	a	moment	into	ordered	rows.

Clearly	their	obvious	order,	from	smaller	to	larger,	doesn’t	help,	because	of



the	ceaseless	in-betweens.	They	would	have	to	be	rearranged,	like	an	orchard:

Rethinking	the	divisions	on	a	line	as	this	two-dimensional	grid	is	the	turn	of
thought	we	have	met	again	and	again:	leaving	the	familiar	and	nearby	to	return,
enlightened,	from	a	distant	land.	Now	at	least	we	have	what	looks	like	a
beginning:	 	pinned	in	the	upper	left-hand	corner.	But	next?	to	move	steadily	to
the	right,	clicking	off	 	…	will	count	the	top	row	but	leave	the	vast	acres	of
fractions	beneath	it	untouched.	To	move	steadily	down	from	 	will	number	
,	and	all	the	Egyptian	fractions	at	the	expense	of	the	endless	columns	to	their
right.

Let	these	two	necessities	mother	invention	by	scratching	the	eternal	itch	of
asymmetry.	Go	neither	exclusively	across	nor	exclusively	down,	but	zigzag
along	diagonals	through	the	planting:

This	is	the	path	that	will	count	the	positive	rationals,	so	long	as	it	is	walked
judiciously.	Each	fraction	must	appear	once—but	only	once—on	our	list,	but	the
fifth	entry	here,	 ,	is	the	first,	 ,	in	disguise.	Very	well:	starting	at	 	follow	this
maze	and	count	each	entry	in	order,	so	long	as	it	hasn’t	appeared	before.	Then
we	have	a	1–1	correspondence	between	 	and	the	positive	rationals—Q+.	It
begins:



The	eccentricity	of	this	sequence	makes	sense	only	when	you	see	from	above	the
map	of	its	two-dimensional	source—but	since	each	positive	rational	appears
precisely	once	here,	the	sense	beyond	sense	it	conveys	is	that	the	set	of	positive
rationals	contains	no	larger	an	infinity	than	that	of	the	natural	numbers.	“How
many”	must	have	nothing	to	do	with	“how	dense.”

Three	thoughts	come	tumbling	all	in	a	rush.	First,	notice	how	the	need	for
imagination	has	increased	by	quantum	jumps	through	our	three	problems.	To
show	that	the	squares	or	the	evens	or	the	multiples	of	any	number	m	were
countable	took	steadfast	looking:	letting	the	world	instruct	the	eye.	To	count	the
integers	we	needed	to	free	ourselves	from	thinking	via	succession	so	as	to	come
up	with	the	pert	invention	of	hopping	back	and	forth.	To	count	the	positive
rationals	we	had	to	shake	off	linear	thinking	altogether	and	devise	a	two-step	as
precariously	balanced	as	Harold	Lloyd	on	an	I-beam.	The	questions	we	ask
beget	means	to	answer	them	that	grow	past	all	expectation	in	refinement,	and
develop	an	arcana	of	their	own.

Second,	you	now	can	see	why	we	said,	in	Chapter	Six,	that	if	the	bookkeeper
in	the	brain	really	insisted	on	putting	in	order	all	those	links	in	the	infinite	chains
hanging	down	from	the	infinitely	long	chain	of	square	root	extension	fields,	he
could	do	so:	just	diagonalize	through	them	as	Cantor	inspired	us	to	do.

Third,	not	just	the	positive	but	all	the	rationals	are	crying	out	for	us	to	count
them.	It	only	takes	combining	our	second	and	third	techniques.	Make	the	zigzag
through	the	positive	rationals	and	then	make	another,	independently,	through	the
negatives:



We	know	we	can	put	each	of	these	sets,	Q+	and	Q–,	in	1–1	correspondence	with	
.	We	also	know	that	the	set	of	evens,,	and	the	set	of	odds,	O,	are	in	1–1

correspondence	with	 .	Transitivity	and	interleaving	to	the	rescue:	match	the
positive	rationals,	Q+,	with	the	even	naturals,	 ,	by	way	of	that	zigzag;	and	the
negative	rationals,	Q–,	with	the	odds,	O,	in	the	same	way.	Then	shuttling	back
and	forth	between	odds	and	evens	will	put	the	totality	of	Q+	and	Q–	in	1–1
correspondence	with	 .

We	have	left	out	zero,	and	make	good	our	omission	by	bumping	the
correspondence	of	Q–	with	the	odds	over	one,	leaving	the	natural	number	1	with
no	partner.	Pair	it	up	now	with	0.	This	counts	all	of	Q,	as	desired:

No	matter	how	far-flung	the	rational	you	name,	it	will	eventually	put	in	an
appearance	on	this	list.

You	will	appreciate	the	exhilaration	Cantor	must	have	felt	in	winning	such



striking	insights	as	this	by	going	against	the	authority	of	the	demigods	Aristotle,
Gauss,	and	his	own	contemporary	Kronecker,	who	said	that	it	was	illegitimate	to
think	of	or	deal	with	completed	infinities.	For	them,	as	for	almost	all	the	world
before	Cantor,	the	infinite	was	potential.	By	making	it	actual	he	put	infinite
ensembles	on	a	par	with	finite	ones,	rethinking	“number”	altogether	in	terms	of
“sets”—and	so	laid	the	foundations	of	modern	mathematics.	He	also	apparently
put	to	rest	the	paradox	people	had	somehow	managed	to	live	with,	of	seeing	how
absurd	it	must	be	to	have	a	“more	than	infinity,”	yet	being	sure	at	the	same	time
that	there	were	more	fractions	than	naturals.	Keeping	your	thought
compartmentalized	helps	to	hold	two	such	incompatibles	in	it,	and	will	get	you
through	many	a	difficult	day.

Pick	up	your	neo-Pythagorean	talisman	again	to	see	what	Cantor	achieved.
He	matched	up	the	members	of	the	inner	circle	 	with	those	of	its	surrounding	
and	now	with	all	the	elements	of	the	wider	enclosure	 ,	so	that	“infinity”	had
not	many	vague	meanings	but	one,	thanks	to	the	notions	“set”	and	“1–1
correspondence.”	 	was	the	next	candidate,	with	all	of	the	rationals	in	it,	but	all
the	irrationals	too.	The	irrationals:	it	was	these,	you	recall,	whose	existence
shattered	the	Pythagorean	order	of	things.	Once	again	we	are	about	to	fall	off	the
edge	of	the	world.

In	1872,	while	Cantor	was	on	holiday	in	the	Swiss	village	of	Gersau—
mountains	before	it,	ravine	behind—he	chanced	to	meet	Richard	Dedekind.
They	recognized	at	once	the	affinity	of	their	thought	and	continued	the
conversations	begun	there	in	an	exchange	of	letters.	On	November	29,	1873,
Cantor	wrote	to	Dedekind	that	it	seemed	impossible	to	match	up	the	naturals
with	the	reals	because	the	former	were	discrete	and	the	latter	made	a	continuum
—“…	but	nothing	is	gained	by	saying	so,	and	as	much	as	I	incline	to	this
opinion,	I	haven’t	been	able	to	find	the	reason,	which	I	keep	working	at;	perhaps
it	is	really	very	simple.”	On	December	2,	he	added	that	he	had	been	trying	to
deal	with	this	for	years	and	couldn’t	decide	whether	the	difficulties	were	his	or
lay	in	the	problem	itself.

Then	suddenly—on	December	7—he	wrote	again:	he	had	found	a	proof	that
the	real	numbers	couldn’t	in	any	way	be	put	into	a	1–1	correspondence	with	the
naturals—they	were	uncountable.	Since	the	real	numbers	contain	the	naturals	as
a	proper	subset	(every	natural	is	a	real,	that	is,	but	not	every	real	is	a	natural),
this	suggests	that	in	fact	there	are	more	of	them:	a	larger	infinity	than	that	of	
or	the	equinumerous	 	and	 .

You	probably	expect	that	so	shattering	a	conclusion	follows	from	a	proof
whose	subtlety	or	abstruseness	could	never	be	contained	in	these	pages—yet



here	it	is,	in	a	version	Cantor	came	up	with	later:	the	most	stunning	work	in	the
gallery	of	nineteenth-century	art,	and	built	once	again	on	the	strut	of	a	slender
diagonal.

Cantor	had	to	show	that	there	was	no	1–1	correspondence	between	the	sets	
and	 —not	just	that	he	couldn’t	find	one.	The	only	logical	approach	to	such
negative	statements	was	a	proof	by	contradiction.	His	strategy	would	be	to
assume	that	a	1–1	correspondence	had	been	made,	and	then	to	reduce	this
assumption,	as	they	dismissively	say,	ad	absurdum.	His	tactics	involve	first
restricting	his	attention	to	a	small	subset	of	the	reals:	all	those	greater	than	0	and
less	than	1.	We	write	(0,	1)	to	stand	for	this	“open	interval	from	0	to	1,”	which
you	may	picture	as	a	segment	of	the	real	line	without	its	end-points:

Any	of	these	reals	can	of	course	be	written	as	a	decimal	beginning	“0.”,	and
continuing	with	a	string	of	digits.	As	we	found	in	Chapter	One,	a	pattern	will
emerge	among	those	digits	for	any	rational,	but	not	for	any	irrational.	In	either
sort,	however,	one	of	the	ten	digits	from	0	to	9	will	occupy	each	of	its	countably
many	decimal	places.	Cantor’s	proof	turns	on	this	banal	observation.

For	assume,	now,	that	all	of	these	decimals	are	in	a	1–1	correspondence	with
the	naturals,	so	that	we	can	list	them.	Since	the	aim	is	to	contradict	this
assumption,	we	can’t	specify	how	the	listing	is	to	be	carried	out:	any	possible
way	of	arranging	them	must	conclude	against	the	same	wall.	We	therefore	need
neutral	markers	to	stand	for	whatever	the	digits	in	any	entry	may	be.	Since	we
are	on	better	terms	with	subscripts	after	the	adventures	of	Chapter	Six,	let	a11
stand	for	the	digit	in	the	first	decimal	place	of	the	first	entry,	a12	for	the	second
digit	there,	and	so	on:

The	decimal	matched	up	with	2	in	our	puzzling	list	will	have	entries	a21,	a22,
and	so	on:

so	that	the	supposed	one-to-one	pairings-up	of	all	the	naturals	with	all	the	reals
in	(0,	1)	will	look	like	this:



Each	entry	continues	forever	(i.e.,	with	as	many	decimal	places	as	there	are
counting	numbers),	and	there	will	be	as	many	entries	on	the	list	as	there	are
counting	numbers.

We	are	supposing	that	this	list	is	complete:	every	real	in	(0,	1)	is	somewhere
on	it,	hence	there	are	no	forgotten	or	neglected	real	numbers	in	this	interval	that
can	be	added	on	at	the	end—and	a	good	thing	too,	since	the	list	has	no	end.	We
are	also	supposing	that	no	entry	appears	here	twice:	any	two	decimals	listed
must	differ	in	at	least	one	decimal	place	( 	for	example,	is	listed	somewhere:	its
decimal	form	is	0.1	that	is,	0.11111	…	forever;	and	here	too	is	the	decimal	with
1	in	every	decimal	place—except	for	a	0	in	the	93,247th	place).

Now	comes	the	diagonal	stroke	of	genius.	That	first	decimal	place	in	the
list’s	first	entry,	a11,	must,	of	course,	be	one	of	the	digits	from	0	to	9:	for
example,	it	is	either	5,	or	not.	Cantor	asks	us	to	create	our	own	decimal	number
between	0	and	1	as	follows.	Like	those	on	the	list,	it	too	will	begin	“0.”,	but	its
first	decimal	place	will	be	determined	by	what	a11	is.	If	a11	is	5,	our	number	will
have	a	6;	but	if	a11	isn’t	5,	we	put	a	5	in	the	first	place	of	ours.

So	far	our	decimal	looks	either	like	this:	“0.6”	or	like	this:	“0.5”.
To	decide	whether	to	put	a	5	or	a	6	in	the	second	decimal	place	of	ours,	look

at	the	second	entry	in	the	second	decimal	on	the	list:	a22.	Again	we	act
contrariwise:	if	a22	is	5	we	will	have	6	in	our	second	decimal	place;	but	if	a22
isn’t	5,	5	goes	there	in	ours.	We	thus	have	0.65,	0.66,	0.55,	or	0.56,	depending
on	what	a11	and	a22	were.

Continue	filling	the	successive	decimal	places	of	our	number	with	5	or	6	in
this	mechanical	way,	looking	at	a33	for	our	third	place,	a44	for	our	fourth,	and	in
general,	sliding	gracefully	down	this	diagonal:



whatever	fills	the	nth	decimal	place	of	the	nth	entry,	ann,	determines	whether	we
put	5	or	6	in	the	nth	place	of	ours.

The	real	number	we	are	building	up	has	only	5s	and	6s	in	its	decimal	places,
and	might	begin	like	this:

0.55666565656656555	…

Whatever	it	looks	like,	it	is	a	perfectly	good	real	number,	somewhere	to	the	right
of	center	in	(0,	1):	more	precisely,	it	will	be	between	 	and	 .

Notice,	however,	that	it	can’t	possibly	be	the	first	entry	on	the	list,	since	it
differs	from	that	entry	at	least	in	the	first	decimal	place.	It	can’t	be	the	second
entry	either,	differing	as	it	does	from	it	in	at	least	the	second	decimal	place;	nor
the	third,	for	the	analogous	reason,	nor	the	fourth—nor	the	nth.	It	cannot,	in	fact,
be	anywhere	on	this	list	that	was	supposed	to	contain	all	of	the	reals	in	(0,1)
because	it	differs	from	every	entry	on	it	in	at	least	one	decimal	place—and	that
is	the	contradiction.



Cantor	in	middle	age.

This	proof—as	simple	and	subtle	as	all	great	art—throws	open	the	gates	to
what	Hilbert	called	Cantor’s	Paradise.	If	we	can	compare	infinite	cardinalities—
if	we	understand	the	proof	to	show	that	there	are	more	real	numbers	in	(0,1)	than
there	are	naturals	altogether—then	we	have	just	found	a	second	and	larger	size
of	infinity	(and	the	hairs	on	the	back	of	the	neck	stand	up	at	the	hint	of	perhaps
more).	It	is	hard	to	think	of	a	comparable	shock	to	the	life	of	the	mind	(unless	it
be	the	revelation	that	others	think	“I”).

Now	we	can	return	to	Galileo’s	shorter	and	longer	line-segments.	The	open
interval	(0,	1)	has	more	points	on	it	than	all	the	counting	numbers	in	the	world,
although	there	is	no	end	of	them.	What	about	the	longer	segment	(0,	2)?	An
astonishingly	simple	proof—another	“Look!”—shows	that	this	longer	segment
contains	just	as	many	points	as	the	first:	there	is	a	1–1	correspondence	between
them.

Center	the	first	segment	above	the	second,	and	for	the	sake	of	the	proof	put
on	their	missing	end-points:

We	know	from	the	previous	chapter	what	to	do	with	these	two	lines:	find	their
center	of	perspectivity,	P:

Now	project	the	smaller	interval	onto	the	larger	from	P:	each	point	in	it	matches
up	with	a	unique	point	on	the	other—and	vice	versa:



This	projection	establishes	a	1–1	correspondence	between	them:	the	midpoint,	
of	the	first	segment	matches	up	with	the	midpoint,	1,	of	the	second,	and
trigonometry	will,	if	you	want,	give	you	the	rest	of	the	match-ups—but	de
minimis	non	curat	Cantor.	You	may	now	eliminate	the	end-points	of	each,	but
leave	the	P	they	created:	it	still	shows	that	the	cardinality	of	(0,	1)	and	of	(0,	2)
are	the	same.

Why	stop	here?	Take	some	very	short	open	interval,	like	(5,	5.1)	and	some
very	big	one:	(–3,000,	1,000,000).	The	same	projection	establishes	the	1–1
correspondence	between	their	elements:

The	number	of	points	on	the	horizontal	bar	of	the	t	in	“horizontal”	has	exactly	as
many	points	on	it	as	the	line	from	the	earth	to	Alpha	Centauri.	“How	many”	has
nothing	to	do	with	“how	long.”

If	space	was	created	for	feeding	the	imagination	of	geometers,	counting	was
created	for	feeding	Cantor’s.	The	points	on	any	line-segment	are	gigantically
equinumerous	with	those	of	any	other—but	what	about	the	points	on	the	entire
real	line,	disappearing	to	negative	and	positive	infinity?	How	can	we	show	that
the	entire	line	has	as	many	points	altogether	as	even	on	the	merest	smudge	of
one	of	its	segments—or	that	it	has	more?	The	proof	by	projection	no	longer
works	because	the	real	line	lacks	end-points	to	pull	up	the	sight-lines	from.	Here
is	ingenuity	raised	to	the	13th	power	(“What	lack	we	yet,”	as	Cardano	said	of
another	ingenious	contrivance,	“unless	it	be	the	taking	of	Heaven	by	storm?”).
Bend	the	open	interval	(0,	1)	up	into	a	semicircle	and	let	the	real	line	lie
somewhere	below	it:



Now	place	your	light	source,	or	point	of	view,	in	that	hollow	bowl,	midway
between	its	missing	end-points.

Each	point	of	the	open	interval	will	correspond	to	a	unique	real,	each	real	to	a
unique	point	of	the	interval.	Since	the	interval	and	the	real	line	are	open	(have	no
end-points),	this	match-up	will	work	for	every	point	on	each.	The	cardinality	of
the	reals	is	the	same	as	that	of	any	open	interval	of	the	reals.

The	countably	infinite	was	exemplified	by	many	sets	besides	the	eponymous
counting	numbers:	the	evens	and	odds,	the	multiples	of	any	number,	the	integers
and	the	rationals.	Now	this	larger	infinity	is	developing	an	entourage	of	its	own:
continuous	open	intervals	of	any	size	(analogous	to	those	multiples	of	N)	as	well
as	the	reals	altogether.

You	need	to	pick	out	faces	in	the	crowding	natural	numbers	to	jog	your
imagination	into	glimpsing	just	how	very	big	their	infinity	is.	Think	of	those
largest	known	twin	primes,	with	29,603	digits	in	each;	remember	that	there	are
primes	thirty	quintillion	numbers	apart	with	not	another	prime	between	them—
yet	there	will	be	one	further	on.	The	number	of	naturals	isn’t	just	sickeningly
huge:	it	is	infinite.	And	yet,	compared	to	the	number	of	reals	in	the	interval	

	it	doesn’t	amount	to	a	hill	of	beans.	Worse:	you’ve	now	seen	that	there	are
hills	of	reals	in	that	narrow	range	compared	to	which	all	the	hills	of	naturals	look
like	valleys.

Does	it	take	the	courage	of	Daedalus	or	the	foolishness	of	Icarus	to	ask	now:
“Is	there	a	greater	infinity	still	than	those	of	the	naturals	and	the	reals?”	Does	the
asking	imply	a	sort	of	imagination	in	whose	presence	ours	shrivels	to	a	dot?	Or
has	abstraction	somehow	insulated	the	mind	against	the	reality	it	calls	up,	so	that
the	imagination	we	rightly	praise	is	one	of	intuiting	relationships	and	devising



ways	of	rigorously	proving	that	they	hold?
On	January	5,	1874,	Cantor	wrote	to	Dedekind:	“Could	the	points	of	a	plane

possibly	be	in	a	1–1	correspondence	with	those	on	a	line?	Although	the	answer
here	too	seems	so	obviously	to	be	‘no’	that	you	might	almost	think	a	proof
superfluous,	it	seems	to	me	that	major	difficulties	stand	in	the	way	of	an
answer.”

If	he	could	only	prove	this,	then	a	third	size	of	infinity	would	be	revealed—
and	then	in	all	likelihood	the	points	in	space	would	constitute	a	yet	larger,	those
in	four	dimensions	a	larger	still,	and	so	on	forever,	each	higher	dimension
containing	a	greater	infinity	of	points	than	the	one	before,	as	the	spiral	of
counting	widens	and	carries	our	thought	out	of	the	universe	with	it.

If	he	could	only	prove	this	…	but	no	proof	was	forthcoming.	What	you	often
do	in	such	a	fix	is	to	work	simultaneously	on	proving	and	disproving	your
conjecture:	one	approach	may	suddenly	prosper,	or	as	each	inches	forward	the
odds	against	the	other	may	suddenly	lengthen.	Picture,	then,	trying	to	set	up	a
one-to-one	correspondence	between	the	points	on	the	plane	and	those	of	the	line
—or	to	use	the	successful	earlier	tactic,	between	all	the	points	in	some	neatly
confined	corner	of	the	plane	and	part	of	the	line—the	“open	unit	square,”
perhaps,	tucked	into	the	first	quadrant:	all	the	points,	that	is,	above	the	x-axis
and	below	the	line	y	=	1,	and	to	the	right	of	the	y-axis	and	left	of	the	line	x	=	1:

could	these	be	unequivocally	corresponded	to	the	points	in	(0,	1)	that	this	open
square	rests	on?

The	difficulty	that	seems	insuperable	is	that	each	point	of	the	square	has	two
coordinates,	and	each	point	of	the	line	only	one.	How	could	you	find	a	unique
point	in	(0,	1)	to	match	up	with	a	point	in	the	square	such	as	( ,
0.9140286…)?	You	clearly	couldn’t	send	this	pair	of	reals	just	to	its	x-
coordinate,	for	then	every	point	in	the	square	with	the	same	x-coordinate	would
go	there	too	and	the	correspondence	would	be	far	from	one-to-one.

You	couldn’t	send	the	two	coordinates	to	their	sum,	since	again	many	other



points	in	the	square	would	have	coordinates	that	added	up	to	the	same	value.
Subtraction,	multiplication,	division	of	one	coordinate	by	the	other,	or	raising
one	to	the	power	of	the	other	all	had	the	same	fatal	flaw.

Pressing	the	other	line	of	attack	seemed	much	more	promising:	assume	a	1–1
correspondence	and	let	it	lead	you	to	a	contradiction.	But	this	too	went	nowhere.
Half	a	year	later	Cantor	wrote	to	Dedekind	again,	asking	him	if	he	too	was
having	difficulties	with	this—and	adding	that	friends	in	Berlin	said	the	whole
business	was	absurd,	since	obviously	two	coordinates	couldn’t	be	matched	up
with	one.

Three	years	went	by.	Cantor	married,	pushed	his	thoughts	forward	here	and
there,	walked	in	the	mountains—but	this	problem	remained	like	a	rock	in	a	river,
deflecting	its	currents	without	suffering	any	apparent	erosion.

Then	all	at	once,	on	June	20,	1877,	he	wrote	to	Dedekind	that	“despite
believing	the	opposite	for	years,”	he	had	found	a	one-to-one	correspondence
between	the	points	of	a	square	and	those	of	an	interval.	“Je	le	vois	mais	je	ne	le
crois	pas,”	he	added	nine	days	later:	I	see	it	but	I	don’t	believe	it.	Why	did	he
declare	this	to	his	German	friend	in	French?	Was	it	ironic	disarming,	the	way
Beethoven	called	his	most	difficult	and	experimental	efforts	“Bagatelles”?	Or
was	it	meant	to	distance	and	elevate	the	revelation?	Could	it	have	been	a	tip	of
the	hat	to	Descartes’s	staunch	separation	of	seeing	from	believing?	Or	must	we
leave	this	as	Churchill	left	Russia:	a	riddle	wrapped	in	a	mystery	inside	an
enigma?

Once	again	you	might	reasonably	expect	that	the	correspondence	Cantor
found	(or	made)	after	so	much	time	and	with	so	much	effort	would	be	arcane
almost	to	incomprehensibility,	so	that	the	marvel	but	not	the	meaning	would
reach	us,	as	it	would	a	medieval	congregation	listening	to	the	Latin	Mass.	But
his	proof	came	from	reaching	backward	rather	than	ahead:	back	to	the	idea	of
interleaving	that	let	us	count	the	integers,	and	back	to	a	way	of	thinking	so	much
younger	than	the	sophistications	of	arithmetic	as	to	be	almost	nonmathematical.
He	asks	you	to	interleave	the	two	coordinates	of	a	point	on	the	plane	to	find	the
one	and	only	point	of	the	line	it	will	correspond	to!	So	our	example,	( ,
0.91402686…),	would	go	to	the	single	decimal	whose	odd-numbered	places	are
filled	by	the	digits	of	 	and	whose	even-numbered	places	by	those	of	the	y-
coordinate,	0.9140286	…	:



(Notice	that	we	need	the	bar	on	the	0	of	the	x-coordinate	in	order	to	know
that	there	will	be	only	zeroes	in	all	its	decimal	places	from	the	fourth	on.)

The	correspondence	Cantor	made	works	in	both	directions,	since	any	point	in
the	interval	(0,	1)	will	go	to	that	point	on	the	plane	whose	x-coordinate	comes
from	the	original	point’s	odd-numbered	decimal	places,	the	y-coordinate	from
the	even-numbered.	So	0.29476583	corresponds	to	the	point	with	coordinates
(0.2468,	0.9753).

Dedekind	wrote	back	immediately,	congratulating	his	friend,	but	pointing	out
a	technical	problem	which	Cantor	was	later	able	to	overcome	(see	the	Appendix
for	the	difficulty	and	its	resolution).	Diagnostic	of	the	mathematician’s	faith	in
pattern	was	Cantor’s	postcard	reply	to	Dedekind	on	June	23:	“Unfortunately
your	objection	is	correct;	fortunately	it	affects	only	the	proof,	not	the
conclusion.”	Aren’t	conclusions	supposed	to	follow	from	proofs?	Not	if	seeing
has	now	replaced	believing,	making	you	know	you	are	right.	Proofs,	like	coats,
can	always	be	cut	to	fit	your	cloth.	So	in	1919,	when	Einstein	received	a
telegram	saying	that	astronomical	observations	had	confirmed	his	theory	of
relativity,	a	doctoral	student	asked	what	he	would	have	done	had	his	predictions
been	refuted?	“In	that	case,”	Einstein	replied,	“I’d	have	to	feel	sorry	for	God,
because	the	theory	is	correct.”

When	Cantor	published	his	revised	proof,	some—like	the	French
mathematician	Paul	Du	Bois-Reymond—objected	that	it	was	“repugnant	to
common	sense.”	But	Cantor	had	long	since	left	the	hearth	of	common	sense	to
watch	the	aurora	borealis	of	a	distant	sky,	and	brave	were	those	both	willing	and
able	to	follow	him.

Since	we	know	that	(0,	1)↔R,	Cantor’s	proof	meant	that	the	cardinality	of
the	square	isn’t	greater	than	but	the	same	as	that	of	the	reals.	And	larger	open
squares?	As	before,	projection	gives	the	1–1	correspondence	between	all	their
points	and	those	of	the	open	unit	square:

As	for	the	open	unit	square	and	the	whole	two-dimensional	plane,	or	R2,	the



cupping	technique	used	in	one	dimension	generalizes	here:

What	then	of	all	the	points	in	three-dimensional	space?	Each	such	point	has
three	coordinates	(length	and	width	away	from	the	origin	and	height	above	it).
Simply	weave	those	three	coordinates	together	in	a	triple	braid:

So	all	of	three-dimensional	space	has	the	same	cardinality	as	the	line.	There	are
just	as	many	points	in	the	infinite	universe	as	on	the	horizontal	bar	of	this	t.

And	what	about	the	imaginable	but	ungraspable	points	of	four-,	five-,	…,	n-
dimensional	space:	you	can	weave	the	four,	five,	or	n	coordinates	of	each	of
their	points	into	a	braid	with	the	appropriate	number	of	plaits,	to	get	the	same	1–
1	match-up	with	the	points	on	a	line.	“How	many”	has	nothing	to	do	with	“how
many	dimensions.”

This	revelation	startled	Cantor	as	much	as	it	does	us.	He	had	found	two	sizes
of	infinity,	and	as	anyone	who	indulges	in	counting	expects,	where	there	are	two
there	must	be	many	more.	Yet	if	the	mind	and	the	universe	were	divided,	like
Gaul,	into	three	parts,	he	had	conquered	them	all:	the	finite,	the	countable,	and
the	continuous.	You	see	why	we	said	before	that	Cantor	had	done	infinitely
more	than	make	sense	of	pairing	numbers	with	their	squares.

If	you	pause	now	to	ask	how	he	won	his	insights,	the	answer	must	surely
involve	a	pioneer’s	love	of	freedom	more	than	comfort.	Three	years	of
unrelenting	work	to	prove	the	cardinality	of	the	plane	greater	than	that	of	the
line—then	giving	it	up	on	the	spot	because	it	wasn’t	true.	He	had	freed	himself
from	one	more	tenet	of	common	sense,	thanks	to	having	already	ruptured	so
many	ligatures	to	traditional	ways	of	thinking.	Imagination	is	explosive—but	if
its	explosions	are	to	propel	thought	forward,	they	need	to	be	confined,	as	are	the



explosions	in	an	engine’s	cylinder.	The	best	restraints	aren’t	opinion	but
necessity:	here,	the	need	to	replace	belief	by	proof.	“Mathematics	is	freedom!”
Cantor	later	proclaimed—and	freedom	is	where	“what	if”	meets	“what	then.”

You	have	probably	come	to	terms	with	this	about	infinity:	just	when	you
think	there’s	no	more—there’s	more.	In	looking	to	higher	dimensions	for	larger
sizes,	Cantor	had	turned	in	the	wrong	direction.	What	if	greater	cardinalities	lay
hidden	back	in	the	fundamental	notion	of	set	itself?	He	plunged	into	that	mixture
of	doubting,	defining,	speculating,	inventing,	experimenting,	redefining,	and
suddenly	seeing	one’s	work	from	afar,	eternally	there	but	newly	discovered,
which	is	the	artist’s	inferno	and	paradiso.	He	emerged	with	the	alephs.

For	while	a	set	is	too	primitive	a	notion	to	have	any	structure,	with	its
elements	just	rattling	around	in	it	like	marbles	in	a	box,	there	is	a	shred	of
implicit	architecture	almost	invisibly	there	too:	the	collection	of	its	subsets.	So	a
set	S	with	three	elements—call	them	a,	b,	and	c—

S	=	{a,	b,c}

brings	with	it	the	single-member	subsets	{a},	{b},	and	{c},	and	the	three	subsets
with	two	elements	each:	{a,	b},	{a,	c},	{b,	c}.	Since	a	subset	of	S	is	any	set	T	all
of	whose	members	are	also	in	S,	we	should	by	courtesy	include	in	this	list	Ø,	the
empty	set	(because,	after	all,	whatever	is	in	it	is	certainly	also	in	S);	and	the	set	S
itself,	since	it	fits	this	definition.	These	last	two	subsets	will	remind	you	of	the
way	definitions	have	stretched	before,	as	in	calling	a	single	dot	·	a	triangular,
square,	or	any	n-gonal	number.

This	set	with	three	elements,	then,	has	eight	subsets:

and	eight	is	greater	than	three.
Is	it	always	true	that	a	set	has	more	subsets	than	it	has	elements?	Let’s	step

back	before	leaping	forward.	If	S	=	{a,	b{	it	has	four	subsets:

and	if	it	has	just	one	element,	S	=	{a},	then	it	has	two	subsets:



Even	the	empty	set,	with	no	elements	whatsoever,	has	one	subset,	namely,	the
set	itself:

(people	bothered	by	thinking	of	the	whole	set	as	a	subset	of	itself	sometimes
distinguish	this	courtesy	case	by	calling	all	the	others	“proper	subsets”).

If	we	put	our	results	in	order,	what	begins	to	take	shape	is	the	triangle	Pascal
invented	to	count	combinations	(though	it	was	Jia	Xian’s	triangle,	six	centuries
before	it	was	Pascal’s—and	al-Karaji’s	before	Jia’s	…):

Here—if	we	call	the	top	row	row	zero—the	entries	in	the	nth	row	add	up	to
the	number	of	subsets	of	a	set	with	n	elements.

A	set	with	four	elements,	S	=	{a,	b,	c,	d},	will	have	1	empty	set,	4	subsets
with	a	single	element	in	each,	6	with	two	members	each,	4	with	three,	and	the	1
“improper”	subset	with	all	the	four	elements:

1	4	6	4	1	=	16	subsets.

You	notice	that	if	a	set	has	n	elements	it	will	have	2n	subsets—and	2n	is	always
greater	than	n.	You	notice	too	that	these	are	all	the	possible	subsets	of	S.	If	you
made	up	a	peculiar	rule	for	picking	out	some	of	its	elements	(such	as	choosing
only	those	whose	names	begin	with	“v”),	the	subset	they	form	will	already	be
one	of	those	we	have	listed	by	number	of	elements.

The	pattern	is	beautiful	in	itself	and	spoke	to	Cantor	in	terms	of	cardinality:
what	he	saw	was	that	the	cardinality	of	any	finite	set	is	less	than	that	of	the	set	of
its	subsets.	This	new	set	he	called	the	power	set	of	S,	written	 ,	in	honor	of	2n,



its	cardinality.
If	this	were	true	of	infinite	sets,	a	cardinality	greater	than	any	he	had	so	far

discovered	would	spring	out,	and	a	greater	after	that,	and	a	yet	greater,	forever:
reviving	the	dream	lost	when	spaces	of	higher	dimension	turned	out	to	have	the
same	cardinality	as	that	of	the	real	line.	For	the	power	set	 	of	the	reals—the
set	of	all	its	subsets—would	have	more	things	in	it	than	the	uncountable	number
of	reals;	and	then	the	set	of	all	subsets	of	this	new	set	 ,	the	power	set	of	the
power	set	of	the	reals—would	have	more	members	still—world	without	end.

But	why	should	the	power	set	pattern	continue	for	infinite	sets—and	even	if	it
were	to	do	so,	how	could	we	ever	know	it?	In	the	face	of	such	abstraction	our
capacities	to	prove	seem	(in	the	words	of	Daisy	Ashford)	as	piffle	before	the
wind.	That	Cantor	in	fact	came	up	with	a	proof	makes	you	wonder	again	about
how	impersonal	the	works	of	mathematics	are.	If	the	theorem	is	out	there,	is	its
proof	out	there	too?	Could	anyone	have	discovered	it,	is	it	part	of	our	common
heritage?	Or	is	the	proof	and	what	it	establishes	now	a	part	of	our	thinking	the
way	the	Mona	Lisa	is—but	needn’t	have	been:	necessary	after	the	fact?

Once	again	Cantor	approached	his	conjecture	through	a	proof	by
contradiction—and	once	again	he	used	his	diagonal	idea,	but	now	etherealized
to	suit	the	unearthly	remoteness	of	its	subject.
The	spirit	of	this	diagonal	came	to	haunt	all	of	his	subsequent	work—and	after
him	became	the	controlling	presence	behind	the	foundations	of	modern
mathematics.

We	have	just	seen	that	the	number	of	subsets	outraces	the	number	of
elements	in	any	finite	set—but	what	if	S	were	infinite?	Well,	assume	that	S	in
fact	has	exactly	as	many	subsets	as	it	has	elements.	That	means	you	can	make	a
1-1	correspondence	between	them.	Just	as	in	the	proof	that	the	reals	were
uncountable,	we	can’t	specify	beforehand	what	this	correspondence	is,	since	the
proof	must	work	for	any	possible	correspondence.	We	are	simply	assuming	that
somehow	each	element	of	S	matches	up	with	one	and	only	one	of	the	subsets	of
S,	and	likewise	that	each	of	these	subsets	corresponds	to	a	unique	element	of	S.
This	will	be	true,	we	are	assuming,	whether	S	has	as	many	elements	in	it	as	do
the	naturals,	or	as	many	as	the	reals—or	in	fact,	has	any	cardinality	whatever.

The	empty	set	will	appear	in	the	list	of	subsets,	of	course,	as	will	the	whole
set	S,	and	the	“singleton”	subsets	each	with	only	one	element,	the	subsets	of	all
possible	pairs,	triples,	and	so	on:	they	will	all	be	there,	along	with	the	subsets
formed	in	any	way	at	all.

Trying	to	imagine	such	a	correspondence	is	more	mind-expanding	than	any
drug	in	the	hippie	pharmacopoeia,	but	as	a	feeble	help	you	might	picture	part	of



such	a	list	as	looking	like	this:

However	the	inventory	is	made,	you	will	observe	that	an	element	of	S	either	is
or	is	not	matched	up	with	a	subset	of	S	that	contains	it	(this	is	the	same
“diagonal”	trope	that	lay	behind	the	decimal	made,	in	the	earlier	proof,	of	5s	and
6s).	In	our	example,	h,	j,	and	k	are	matched	with	subsets	containing	them;	f,	g,	i,
and	l	aren’t.

Now,	says	Cantor,	all	the	elements	of	S	that	aren’t	in	the	subsets	they
correspond	to	on	this	putative	list	constitute	a	subset	of	S!	They	must:	they	form
a	collection	drawn	from	the	elements	of	S—and	any	such	collection	(no	matter
by	what	clear	rule	it	is	made)	is	a	subset	of	S.	Call	this	subset	M.	M	must
therefore	appear	somewhere	on	the	list,	matched	up	with	some	element	of	S:	call
it	w.

w	must	be	a	member	of	M	or	not;	there	is	no	third	possibility.
But	if	w	is	an	element	of	M,	then	it	is	in	the	subset	it	is	matched	up	with.	Yet

M	is	the	subset	only	of	those	elements	in	S	that	aren’t	in	the	subset	to	which
they	correspond.	Hence	w	cannot	be	in	M.

If	it	isn’t	in	M,	however,	it	isn’t	in	the	subset	to	which	it	corresponds	on	this
list—and	so	it	must	be	in	M!

This	contradiction	shows	that	M	(which	seems	like	a	perfectly	good	subset	of
S)	isn’t	anywhere	in	the	supposed	1–1	correspondence;	yet	it	must	be.	That
contradiction	shows	that	such	a	correspondence	is	impossible,	so	the	cardinality



of	 	can’t	be	the	same	as	that	of	S.	Since	 	contains	at	least	as	many	subsets	as
there	are	elements	in	S	(the	singleton	subsets	in	 	are	equinumerous	with	those
elements),	we	can	only	conclude	that	the	cardinality	of	 	is	greater	than	that	of
S	(with	2n	in	mind,	we	could	write	the	cardinality	of	 	as	2	cardinality	of	S).

There	are	infinitely	many	counting	numbers.	There	are	yet	more	reals.	Now
there	are	more	subsets	of	the	reals	than	reals	themselves.	Take	this	new	set	 	it
begets	a	set	with	higher	cardinality	still—the	set	of	all	its	subsets—and	this
iteration	won’t	stop.	Cantor	had	found	new	kinds	of	numbers	and	now	needed	to
learn	how	they	behaved.	Each	larger	number	is	as	perplexing	as	7	is	to	the
toddler	who	has	just	barely	managed	to	distinguish	2	from	1.	Is	the	next
cardinality	after	that	of	a	set	S	the	size	of	its	power	set,	 ,	and	 	after	that?
Or	are	other	infinite	multitudes	sprawled	everywhere	here,	like	titans	grappling
with	primeval	chaos?

Cantor’s	first	task	was	to	put	his	infinite	cardinals	in	order,	saying	which	was
the	least,	which	next—or	to	show	that,	like	the	fractions,	none	had	a	next	larger
after	it.	To	do	this	he	turned	away	from	his	cardinal	numbers	for	more	than	a
decade,	working	to	find	the	calm	mask	of	reason	behind	their	unreadable	faces.
He	still,	as	ever,	acted	with	characteristic	hubris.
Cardinal	numbers	tell	us	“how	many”;	ordinal	numbers	say	where	we	are	in

an	ordered	sequence.	So	1	is	the	smallest	ordinal	(think	of	it	as	“first”)	and	the
next	comes	by	adding	to	it	the	unit	“1”,	giving	us	2	(“second”).	The	ordinals
now	go	on	sequentially	by	adding	a	unit	to	the	latest	one,	making	the	third,
fourth,	and	so	on.	It	is	a	pleasant	coincidence	that	each	natural	number	plays	two
roles:	as	a	cardinal	it	tells	us	how	many;	as	an	ordinal	it	tells	us	how	far	along
the	counting	row	we	have	come.	This	coincidence	may	disappear	when	we	come
to	infinite	sets.

Cantor	looked	at	the	endless	sequence	of	finite	ordinals	and	gave	it	a	name:
the	last	letter	of	the	Greek	alphabet,	omega:	ω.	More	than	naming	it,	he	thought
of	ω	as	the	first	ordinal	number	after	all	of	the	finite	ordinals!	Going	in	order	he
therefore	counted:	first,	second,	third	…	ωth—or	as	he	wrote	with	forgivable
ambiguity:

1,	2,	3,	…,	ω

where	ω	comes	after	every	finite	ordinal.	This	is	somewhat	beyond	the	wunnery
tooery	which	came	first	for	us.	If	you	like,	you	may	make	his	notion	a	little	less



uncomfortable	by	thinking	of	ω	as	standing	for	the	natural	order	of	the	whole	set
of	finite	ordinal	numbers.	As	such,	it	must	come	next.

Why	not	apply	the	generative	principle	of	adding	units	once	again,	this	time
to	ω,	to	get	the	next	ordinal	number,	ω	+	1?	This	is	reminiscent	of	the
schoolyard	exchange:	“This	is	the	gazillionth	time	I’ve	won!”	“Well,	it’s	the
gazillion	and	oneth	time	I’ve	won!”	“It’s	the	infinitieth	time	I’ve	won!”	“Well,
it’s	the	infinity	and	oneth	time	I’ve	won!”	ω	+	1	is	the	ordinal	number	of	a
sequence	with	all	the	natural	numbers	in	it	(arranged,	of	course,	in	order),	and
then	one	element	more—call	it	a	fox	or	a	cabbage	or	a	goose,	or	simply	“a”—
which	gets	listed	only	after	all	the	naturals:

1,	2,	3,	…,	fox

or

1,	2,	3,	…,	a

(this	means	that	you	take	“2”	out	of	the	box	after	you’ve	taken	out	“1”,	and	“3”
after	“2”	and	so	on—and	take	out	the	fox,	or	“a”,	only	after	you’ve	taken	out	all
the	natural	numbers.	The	mind	reels).	If	instead	we	put	in	two	extra	elements,
fox	and	goose	or	a1	and	a2,	after	the	natural	numbers	(with	the	understanding
that	a1	<	a2),	then	ω	+	2	would	be	the	ordinal	number	of	the	new	sequence

1,	2,	3,	…,	a1	<	a2	.

We	could	go	on	like	this—and	Cantor	did—getting	in	order	the	next	ordinals	ω
+	3,	ω	+	4,	and	so	on—until	we	come	to	a	sequence	made	by	inserting,	after	all
the	natural	numbers,	the	elements	a1,	a2,	a3,	…—with	as	many	subscripts	as
there	are	natural	numbers.	The	ordinal	number	of	this	sequence

1,	2,	3,	…,	a1,	a2,	a3,	…

would	be	ω	+	ω.
You	notice	that	ω	and	ω	+	ω	weren’t	themselves	formed	by	adding	a	unit	“1”

to	the	ordinal	immediately	prior	to	each	(since	there	wasn’t	one).	What	Cantor
had	done,	really,	was	to	bring	in	a	second	way	of	making	ordinals	alongside	the
normal	one	of	adding	a	unit	to	the	last	so	as	to	form	the	next.	This	second	way



took	a	great	leap	of	the	imagination—the	very	same	leap	that	brought	him	to
completed	infinities.	If	the	line	of	all	the	finite	ordinals	could	be	thought	of	as
coiled	in	a	box,	then	ω	was	the	lid	on	this	box.	He	spoke	of	ω	in	terms	of	limit,
and	from	this	point	of	view	the	new	ordinals	may	now	seem	more	comfortable
still.	ω	is	the	limit	which	the	finite	ordinal	numbers	increase	toward	but	never
reach	(just	as	 	…	approaches	but	never	reaches	1).	And	in	fact,
whenever	there	is	no	largest	member	in	a	succession	of	ordinal	numbers,	“then	a
new	number	is	created,”	Cantor	wrote,	“which	is	thought	of	as	the	limit	of	those
numbers,	i.	e.,	it	is	defined	as	the	next	number	larger	than	all	of	them.”	Surely
one	of	the	most	understated	uses	of	“i.	e.”	on	record.

Now	he	could	play	his	two	generative	principles	off	against	one	another	to
extend	the	ordinal	numbers	boundlessly	beyond	the	finite	into	what	he	called	the
Transfinite.

But	where	are	the	cardinal	numbers	in	all	this	splendor?	We	warned	you	that
once	past	the	finite,	the	pleasing	coincidence	of	ordinal	and	cardinal	might	peter
out—and	it	has.	Every	one	of	these	infinite	sequences	is	countable:	it	can	be	put,
that	is,	into	a	1–1	correspondence	with	the	natural	numbers!	How	can	this	be?

Take,	for	example,	ω	+	1,	which	is	the	next	number	in	order	after	ω—itself
the	first	ordinal	after	the	finite	ordinals.	ω	+	1	therefore	stands,	as	you	saw,	for	a
set	with	all	the	natural	numbers	in	it—and	one	element	more.	But	counting
“how	many”	is	no	respecter	of	order,	so	we	may	match	up	the	elements	in	the
sequence

1,	2,	3,	…,	a



with	the	counting	numbers	by	starting	with	a:

The	sequence	whose	ordinal	number	is	ω	+	ω	we	could	count	this	way:

The	reason	for	Cantor’s	dozen-year	digression	into	ordinal	numbers	was	to
bring	order	to	the	cardinals.	What	he	discovered	was	that	the	whole	set	{ω,	ω	+
1,	…,	ω	+	ω,	…,	ω	+	ω	+	ω,	…,	ω2,	…,	ω3,	…,	ωΩ,	…}	was	not	countable—
and	it	was	the	first	uncountable	set	after	each	of	its	countable	members	(just	as	ω
was	the	first	countably	infinite	ordinal	after	each	of	the	finite	ordinals	1,	2,	3,
…).

It	was	now	that	he	reached	for	a	name	to	distinguish	these	plateaus,	these
sizes,	of	ordinal—

and	having	used	up	the	last	Greek	letter	ω	for	them,	he	turned	back	for	these
transfinite	cardinals	to	the	first	letter	of	the	Hebrew	alphabet,	aleph:	 .	As	with
everything	he	did,	there	were	reasons	behind	the	reasons	for	his	choice.	Aleph,
as	he	said,	itself	represented	“one”	in	Hebrew,	and	these	new	symbols	marked	a
new	beginning	for	his	own	work	and	for	mathematics.	Was	there	also	here	a
private	nod	toward	what	he	took	to	be	the	divine	source	of	his	inspiration?	And
was	drawing	from	the	language	of	the	Old	Testament,	after	borrowing	from	the
Greek	of	the	New,	also	a	private	acknowledgment	of	the	Jewish	background
both	of	his	converted	ancestors	and	of	his	own	Lutheranism?

The	smallest	transfinite	cardinal—the	size	of	such	sets	as	 	(or	of	a	sequence
like	1,	2,	3,	…,	a1,	a2)—he	called	aleph	null:	 0.	The	next—for	this	ordinal



substrate	we	have	watched	him	rely	on	assured	him	that	there	would	be	a	next—
was	 1:	the	size	of	the	uncountable	set	{ω,	ω	+	1,	…,	ωΩ	…).	The	sequence	of	all
these	omegas	Cantor	denoted	by	an	upper-case	omega:	Ω.	He	then	considered
the	sequence

Ω,	Ω	+	1,	…,	Ω	+	Ω,	…,	ΩΩ,	…

This	is	the	first	sequence	to	have	more	than	 1	terms,	so	its	cardinality	is	 2.	Thus
the	Tower	of	Babel	rises,	calling	forth	on	each	new	spiralled	ledge	names
incomprehensible	on	the	lower	levels:	 3,	 4,	and	so	on.	Have	you	fully
appreciated	what	“and	so	on”	must	mean?	There	will	be	an	 4,	and	an	
and	an	 	How	puny	seem	those	infinitely	large	and	larger	fleas	of	Chapter
Two:

For	at	the	gates	that	Cantor	flung
Apart	(and	Hilbert	later)
Angelic	fleas	cavort	in	hosts
Inordinately	greater.

Once	again	Cantor’s	faith	in	his	ability	to	make	sense	of	this	new	world	had
been	justified.	Whenever	he	had	needed	an	insight	or	a	proof,	his	inner	voice
had	always	accommodated.	But	supernatural	helpers	are	notoriously	unreliable:
as	the	fisherman’s	wife	in	the	fairy	tale	found	out,	ask	once	too	often	and	the
earth	will	tremble,	the	sky	darken,	and	the	sea	run	in	mountainous	black	waves.

The	first	tremors	that	Cantor	felt	came	from	his	colleagues.	In	France,
Poincaré	grew	disgusted	with	set	theory,	which	he	thought	pathological:	he
wrote	that	later	generations	would	regard	Cantor’s	work	as	a	disease	from	which
they	had	recovered.	Closer	to	home,	Kronecker,	the	most	powerful	figure	in	the
German	mathematical	establishment,	had	been	opposed	to	Cantor’s	ideas	from
the	beginning,	calling	the	work	humbug	and	the	man	himself	a	charlatan	and
corrupter	of	youth.	Kronecker	tried	repeatedly	to	prevent	the	publication	of
Cantor’s	papers,	and	his	enmity	kept	Cantor	in	provincial	isolation.	An	intellect
focused	on	the	infinite	may	overlook	temporal	indignities,	but	the	psyche	that
intermediates	between	the	intellect	and	the	world	cannot,	and	Cantor	wrote	that
poverty	and	recrimination	were	the	price	he	paid	for	his	radical	views.
Mathematicians	usually	enjoy	generalizing	their	observations,	but	seeing	plots
everywhere	brought	Cantor	suffering.	He	alienated	some	friends,	discarded



others	and	had	his	first	serious	breakdown	when	he	was	thirty-nine.
It	wasn’t	just	scurrying	intrigue	or	furtive	academic	cabals	that	the	sky	was

darkening	over,	but	the	massive	sliding	and	grinding	of	his	thought’s	tectonic
plates.	When,	a	generation	before,	Schopenhauer	had	been	dragged	through	long
and	embarrassing	legal	battles	after	throwing	a	seamstress	down	a	flight	of
stairs,	he	consoled	himself	by	reflecting	that	he	was,	after	all,	the	author	of	The
World	as	Will	and	Idea.	But	when	Cantor	looked	at	the	world	his	will	had
created,	he	saw	coastlines	eroding.

There	were	fissures	here	and	there	that	others	would	fill	in	time,	such	as
proving	that	two	sets	have	the	same	cardinality	if	and	only	if	each	is	in	1–1
correspondence	with	a	subset	of	the	other.	Cantor	had	to	know	such	criteria	if	he
were	to	arrange	the	alephs	in	order.	And	there	was	a	problem	he	hardly	noticed
but	which	grew	to	monstrous	prominence:	even	to	show	that	 0	(the	size	of	the
set	of	counting	numbers)	was	the	smallest	transfinite	cardinal,	an	axiom	was
needed	that	sounds	as	innocent	as	the	fisherman’s	appeal	to	the	flounder	for	a
pretty	cottage	by	the	sea	instead	of	his	hovel.

This	Axiom	of	Choice	asserts	that	given	any	collection	of	distinct,	non-empty
sets,	if	you	need	to	(as	Cantor	did),	you	can	always	choose	an	element	from
each.	It	doesn’t	tell	you	how	to	do	this,	but	you	can	imagine	a	jackdaw	plucking
a	shiny	trinket	from	each	of	a	possibly	infinite	row	of	boxes.22	The	problem	with
the	Axiom	of	Choice	is	that	it	lets	the	Four	Horsemen	loose	in	the	land:	it	allows
an	initiate,	for	example	(by	an	ingenious	train	of	reasoning),	to	cut	a	golf	ball
into	a	finite	number	of	pieces	and	put	them	together	again	to	make	a	globe	as	big
as	the	sun.	Not	only	are	its	results	an	affront	to	intuition,	but	by	not	requiring	us
to	know	how	we	do	the	choosing,	it	adds	to	the	Formalist	shift	of	mathematics
sideways.	No	longer	do	we	construct	objects	cleated	to	their	locales,	but	now
rest	content	(like	Hilbert	and	the	Hungarian)	with	the	bald	assertion	that	they
exist.

These	commotions	in	the	air	were	nothing	compared	to	the	mountainous
clash	of	the	waters	that	threatened	to	drown	his	world.	For	the	whole	point	of
propping	up	the	cardinals	on	the	ordinals	was	to	find	how	the	cardinals	were
arranged.	Yet	in	doing	so	he	might	only	have	made	a	different	sort	of	cardinal:
those	that	corresponded	to	the	ordinal	plateaus.	What	had	these	to	do	with	the
cardinals	that	arose	from	the	endless	sequence	of	power	sets?	The	problem	is
familiar:	when	Bombelli	had	come	up	with	his	“new	kinds”	of	imaginary
numbers,	like	 	he	had	no	guarantee	that	these	were	of	the	same	species
as	a	+	bi.

Stubborn,	God-driven,	isolated,	heir	of	Alcibiades,	Cantor	insisted	(proof



came	much	later)	that	all	transfinite	cardinals	were	alephs—that	is,	they
measured	some	stage	in	the	growth	of	ordinals.	He	proved	that	the	set	of	all
subsets	of	 	had	the	same	cardinality	as	the	set	of	the	reals	(the	continuum)—for
a	proof,	see	the	Appendix—and	then	claimed	that	this	power	set	was	the	next
aleph	in	order	after	 0.	This	was	his	famous	Continuum	Hypothesis:	the
cardinality	of	the	continuum	is	 1.

Everything	began	to	come	apart.	The	Continuum	Hypothesis	obsessed	him
through	recurrent	breakdowns	which	took	him	in	and	out	of	sanitoria	and	his
university’s	Nervenklinik.	But	the	Continuum—for	which	a	gothic	 ,	as	angular
as	his	personality,	has	become	the	symbol—resisted	his	best	efforts.

Some	mathematicians	thought	there	might	be	many	alephs	between	 0	and
the	cardinality	of	 .	Others	attacked	the	whole	ordinal	enterprise:	why	must
every	infinite	set	have	an	aleph	as	its	cardinal	at	all?	And	of	those	that	did,	how
did	we	know	that	any	two	could	be	compared	in	terms	of	size?	Jules	König,
renowned	for	his	acuteness	and	reliability,	announced	at	an	International
Congress	in	Heidelberg	that	he	had	proved	the	continuum	had	no	aleph	whatever
corresponding	to	it.	Cantor	felt	publicly	humiliated,	and	although	within	a	day
König’s	proof	was	shown	to	rest	on	faulty	assumptions,	there	was	no	still	center
now	left	to	Cantor’s	turnings.	When	some	colleagues	met	a	few	days	later	at
Wengen	to	discuss	the	events	of	the	congress,	Cantor	burst	into	the	dining	room
of	their	hotel	to	explain	excitedly	to	them—and	everyone	else	at	breakfast—just
what	had	been	wrong	with	König’s	proof.

It	takes	an	inhuman	force	of	character	to	make	the	beds	while	your	house	is
falling	down.	At	the	same	time	that	Cantor	was	trying	desperately	and
unsuccessfully	to	prove	the	Continuum	Hypothesis	(if	his	theory	couldn’t	even
locate	the	cardinality	of	the	reals	in	the	hierarchy	of	the	alephs,	what	good	was
it?),	he	went	about	the	beginner’s	business	of	learning	how	to	do	arithmetic—but
this	time	with	transfinite	cardinal	numbers:	the	most	radical	extension	of	the
franchise	we	have	seen.

	the	cardinality	of	the	evens	plus	the	cardinality	of	the	odds	is
the	same	as	the	cardinality	of	the	naturals.	In	fact—shades	of	Thabit	ibn	Qurra—
any	finite	number	of	aleph	nulls	adds	up	to	aleph	null.

What	was	 	Cantor	knew	the	answer	from	the	square	array	of	the
rationals,	which	he	had	shown	was	countable:	 	rows	with	 	entries	in	each
produced	 .	Since	you	could	likewise	zigzag	your	way	through	a	3-dimensional
array	of	rationals—or	for	that	matter,	an	n-dimensional	array— .	The	size	will



increase	when	you	move	to	the	power	set,	 	or	to	the	next	ordinal
plateau—if	those	moves	were	different.

The	same	laws	of	addition	and	multiplication	hold	for	any	of	the	alephs:	if	k
is	any	common	ordinal,	like	3	or	19—or	even	an	infinite	ordinal,	like	
remains	 	when	added	to	or	multiplied	by	itself	any	number	of	times	up	to
and	including	 .	Did	Cantor’s	results	come	directly	from	his	intuition,	or	from
an	abstract	play	of	forms?	“Is	a	man	to	follow	rules—or	rules	to	follow	him?”
asks	Tristram	Shandy,	but	assumes	we	know	the	answer.	Cantor	replied	with	a
passage	from	Sir	Francis	Bacon:	“We	do	not	arbitrarily	give	laws	to	the	intellect
or	to	other	things,	but	as	faithful	scribes	we	receive	and	copy	them	from	the
revealed	voice	of	Nature.”

This	comes	within	an	iota	of	the	Intuitionist	position	that	Brouwer	was	soon
to	establish.	Was	the	iota	that	separated	them	no	more	than	a	different	sense	of
“I”—Brouwer’s	the	creator	of	mathematical	reality,	while	Cantor	(as	he	wrote	to
a	friend	in	1883)	thought	of	himself	as	only	a	messenger,	not	the	true	discoverer
of	transfinite	set	theory?	Yet	no	two	mathematicians	could	be	more	unlike,	since
Cantor	establishes	existence	on	the	basis	of	those	proofs	by	contradiction	that
Brouwer	abhorred.	No	wonder	Hilbert	so	warmly	defended	Cantor’s	work:	“No
one	shall	drive	us	from	the	Paradise	that	Cantor	has	created	for	us!”

But	was	Cantor	a	Formalist?	He	never	presented	his	results	in	the	formal
context	of	stripped-down	deductions	from	axioms.	His	mathematics	isn’t	about
symbols	that	could	mean	this	or	that,	but	about	what	he	saw	as	real	ideas	in	the
divine	intellect,	and	corporeal	objects	in	the	world.	Completed	infinities	were,
for	him,	actual,	not	like	the	formless	and	merely	potential	apeiron	of	the	Greeks.
Hilbert	purged	mathematics	of	meaning;	Cantor	flooded	his	mathematics	with
metaphysics	and	theology.

Was	this	dissonance	in	his	approach	like	trying	both	to	prove	and	disprove	a
conjecture?	Is	his	work	the	arena	where	revelation	collides	with	language?	Or
was	it	once	more	a	question	of	masks	behind	masks?	For	while	the	form	of
Formalism	was	absent	from	Cantor’s	writing,	we	see	its	spirit	in	his	every	line
once	we	recall	that	this	spirit	is	expressed	by	the	Great	Converse	described	in
Chapter	Two:	what	is	consistent	must	exist.

“Mathematics,”	as	Cantor	had	famously	said,	“is	freedom!”	But	this	motto	is
as	ambiguous	as	it	is	bold,	since	there	is	freedom	from	as	well	as	freedom	of.	For
Cantor	as	for	Hilbert,	mathematics	was	free	from	contradiction:	the	coherence	of
its	parts	in	a	consistent	whole	was	all	the	proof	you	needed	that	the	whole
existed.	Should	intuition	give	out	(as	it	does	when	we	think	about	the	higher
alephs),	proofs	by	contradiction	would	take	us	to	results	purified	of



contradictions.
A	foolish	consistency	may	be	the	hobgoblin	of	little	minds,	but	consistency

itself	of	great	ones.	What	if	irreparable	paradoxes	were	now	to	open	up	in	the
fabric	of	Cantor’s	work?	Then	the	mountains	would	fall	and	the	sea	roll	over	the
land.

The	melodiously	named	mathematician	Cesare	Burali-Forti,	at	the	Military
Academy	in	Turin,	discovered	in	1897	a	curious	consequence	of	the	new	set
theory.	Take	the	sequence	of	all	the	ordinal	numbers.	Since	this	sequence	is
itself	ordered,	it	must	have	an	ordinal	number—let’s	call	it	J.	J	would	have	to	be
greater	than	any	of	the	ordinals	in	the	sequence	(it	is	their	successor	or	limit)—
yet	these	are	all	the	ordinals,	so	J	must	both	be	and	not	be	among	them.	There
this	paradox	squats,	as	complete	and	immovable	as	the	sphinx	with	its	riddle.
You	can’t	get	under,	over,	or	around	it.

The	repercussions	of	Burali-Forti’s	paradox	were	immediate,	far-reaching,
and	devastating.	Nothing	had	been	more	certain	than	mathematics;	now,	said	a
contemporary,	nothing	had	become	so	uncertain.	The	only	certainty,	surely,	was
that	this	blow	would	definitively	topple	Cantor’s	precarious	mental	balance.	Far
from	it.	He	announced	that	he	had	discovered	this	paradox	two	years	before,	and
thought	of	it	as	a	positively	beneficial	result.	In	fact	he	added	another	to	it:	the
set	of	all	sets—call	it	S—would,	being	a	set,	have	a	certain	cardinality.	But	the
set	of	all	its	subsets,	 ,	would	have	a	greater	cardinality	still.	Since	S	is	the	set
of	all	sets,	 ,	must	be	an	element	of	it,	so	that	a	set	of	higher	cardinality	would
be	contained	in	a	set	of	lower	cardinality.

You	may	think	Cantor’s	welcoming	of	the	paradoxes	was	either	bravado	in
the	face	of	defeat,

Thought	shall	be	harder,	heart	the	keener,
Courage	the	greater,	as	our	might	lessens

(as	the	Anglo-Saxon	writer	of	the	Battle	of	Maldon	put	it),	or	a	sign	indeed	of
breakdown.	But	there	were	always	masks	behind	his	masks.	It	is	telling	that	on
the	terrible	day	of	public	shame,	when	it	seemed	that	König	had	destroyed	any
hope	for	the	Continuum	Hypothesis,	Cantor	thanked	God	for	reproving	him	for
his	errors	and	at	the	same	time	asserted	that	König’s	demonstration	would	be
found	erroneous.

Cornered	by	the	paradoxes,	Cantor’s	thought	twisted	and	turned	them
seemingly	to	his	advantage.	He	made	out	a	new	distinction	between	consistent
and	inconsistent	collections:	only	the	former	were	sets;	the	latter	(such	as	the



collection	of	all	sets	or	of	all	the	ordinals)	were	not.	Whatever	they	were,	their
existence	at	last	let	him	prove	(he	wrote	to	Dedekind)	what	he	vitally	needed	to
know:	that	sets	could	have	no	cardinality	other	than	the	alephs.	This	meant	that
his	two	different	ways	of	making	larger	and	larger	sets—via	power	sets	or	via
the	cliffs,	no-man-fathomed,	among	the	ordinals—coincided	in	what	mattered:
the	way	their	size	was	measured.

You	will	find	the	proof	he	sent	to	Dedekind	in	the	Appendix.	Consider	here,
instead,	the	implications	of	his	decision	to	use	the	very	inconsistency	of
collections	that	were	“too	large”	in	order	to	establish	facts	about	consistent
collections—that	is,	about	sets.	These	inconsistent	collections	Cantor	calls	the
absolutely	infinite:	it	was	the	infinite	that	God	alone	could	know,	as	if	our	seeing
it	as	inconsistent	was	a	reproach	to	our	feeble	humanity	for	daring	to	extend	its
thought	so	far.23	The	hierarchy	of	larger	and	larger	infinities	that	Cantor	had
reported	on	he	called	only	Transfinite,	precisely	to	distinguish	such	things	that
humans	could	think	of	(approaches	to	the	Throne)	from	what	lay	exclusively	in
the	mind	of	God.

Yet	at	the	same	time	that	Cantor’s	piety	and	humility	showed	themselves	in
this	distinction,	he	pushed	his	own	thought	past	that	brink	to	make	the	absolutely
infinite	reveal	new	truths	about	the	transfinite:	to	guarantee	the	validity	of	his
discoveries.

His	leap	upward	from	towering	heights	to	bring	back	knowledge	of	the	lower
structure	has	characterized	subsequent	work	in	set	theory,	a	century	now	and
more	after	that	moment.	An	active	research	program	strives	to	gain	insight	into
very	finite	situations	by	invoking	transfinite	numbers	that	dwarf	even	Cantor’s
remoter	alephs.	There	is	the	First	Inaccessible	Cardinal	and	after	it,	Hyper-
Inaccessibles;	then	the	First	Mahlo	Cardinal	(sounding	more	like	a	medieval
grandee	than	a	size	past	the	Hyper-Inaccessibles	themselves).	There	are
Cardinals	Indescribable,	Huge,	Supercompact;	Rowbottom	and	(it	may	be)
Ramsey	Cardinals,	and	then	the	Extendible	and	perhaps	the	Ineffable	Cardinals,
not	to	mention	those	that	are	Inexpressible.	Devising	them	isn’t	only	a	game	of
one-upmanship	on	a	gigantic	scale,	but	a	serious	attempt	to	prove	important
theorems	which	are	unprovable	without	their	condescending	help:	fetching	from
afar	carried	to	its	logical	extreme.

In	the	fairy	tale	the	sky	had	turned	as	black	as	pitch	and	the	fisherman	had	to
shriek	out	to	make	the	flounder	hear	that	his	wife	now	wanted	to	be	Lord	of	the
Universe.

“Now	she	must	go	back	to	her	old	hovel,”	said	the	flounder,
“and	there	she	is!”	So	there	they	are	to	this	very	day.



In	what	passes	for	the	real	world,	no	one	could	make	sense	of	Cantor’s	proof.
Long	after,	Zermelo	said	of	it	that	“the	intuition	of	time	is	applied	here	to	a
process	that	goes	beyond	all	intuition,	and	a	fictitious	entity	is	posited	of	which
it	is	assumed	that	it	could	make	successive	arbitrary	choices”—over	a	span
longer	than	time’s.

And	now	it	wasn’t	just	that	certain	collections	were	simply	too	large	to	be
consistent:	in	1901	Bertrand	Russell	showed	that	set	theory	generated	paradoxes
that	hadn’t	anything	to	do	with	alephs	or	ordinals	at	all.	He	had	found	that
legitimate	ways	of	defining	a	set	(via	the	properties	shared	by	its	members)	led
to	nonsense.	Take,	for	example,	the	set	of	all	those	sets	which	aren’t	elements	of
themselves	(an	example	of	one	of	those	sets	would	be	the	set	of	all	apples,
which	isn’t	itself	an	apple).	Is	the	set	of	all	such	sets	an	element	of	itself?	If	it	is,
then	(by	its	very	definition)	it	isn’t;	but	if	it	isn’t,	then	(again	by	the	way	it	is
defined)	it	is.

Sets	were	so	intuitively	clear	when	we	began	that	we	were	happy	to	reduce
the	mysteries	of	number	to	them.	Now	they	have	uncontrollably	swollen	and
multiplied,	and	which	are	consistent,	which	inconsistent,	and	for	whom?	Their
very	nature	has	grown	incoherent.

Cantor	asked	Dedekind	how	he	thought	of	a	set.	Imagine	them	walking
together	in	their	beloved	Harz	mountains,	where	new	and	wonderful	vistas
opened	at	every	bend.	Dedekind	said	that	for	him	a	set	was	a	closed	bag	with
specific	things	in	it	which	you	couldn’t	see	and	knew	nothing	about,	except	that
they	were	distinct	and	really	there.	A	few	minutes	passed.	Cantor,	immensely
tall,	flung	out	his	arm	toward	the	wild	landscape:	“A	set,”	he	said,	“I	think	of	as
an	abyss.”

The	question	of	infinity	had	brought	mathematics	to	the	edge	of	uncertainty.
—Joseph	Warren	Dauben

Cantor	struggled	doggedly	to	prove	his	Continuum	Hypothesis,	that	the
cardinality	of	the	continuum	was	 1.	Elation	alternated	with	longer	and	longer
depressions	lit	fitfully	by	promising	strategies	that	one	after	another	flickered
out.	He	was	hospitalized	again	and	again.	Why	had	he	ever	as	a	young	man
given	up	music	for	mathematics,	he	now	wondered,	recalling	the	days	when	he
had	played	the	violin	and	formed	his	own	string	quartet.	Having	broken	with	so
many	of	his	colleagues	over	the	years,	he	continued	to	thank	his	wife	for	each
dinner	she	provided	and	to	ask	her	at	its	end	whether	she	still	loved	him.



He	began	to	concern	himself	with	the	Rosicrucians,	and	Theosophy,	and
Freemasonry—and	with	proving	that	Shakespeare’s	plays	had	really	been
written	by	Sir	Francis	Bacon.	He	hinted	darkly	that	he	had	made	certain
discoveries	concerning	the	first	king	of	England	“which	will	not	fail	to	terrify
the	English	government	as	soon	as	the	matter	is	published.”

Cantor,	a	few	months	before	his	death.

Form	always	seeks	substance,	and	in	doing	so	begets	ever	more	shadowy
forms.	Sets	behind	numbers,	inconsistent	collections	behind	sets,	ordinals
behind	cardinals,	the	absolutely	infinite	behind	the	transfinite,	his	father’s	voice
in	the	background	and	a	secret,	divine	voice	behind	that	…	Cantor	published	a
pamphlet,	“Ex	Oriente	Lux,”	revealing	that	Christ	was	the	natural	son	of	Joseph
of	Arimathea,	and	in	this	confusion	of	mask	after	mask	died,	aged	seventy-three,
in	1918.	His	great	work	on	set	theory	of	1883	was	prefaced	with	three
quotations,	the	last	of	which	was,	“The	time	will	come	when	these	things	which
are	now	hidden	from	you	will	be	brought	into	the	light.”

What	has	since	been	revealed	about	Cantor’s	Continuum	Hypothesis	is	of	a
piece	with	this	endless	and	endlessly	surprising	drama,	shaped	by	spiral	returns
to	the	earliest	days	of	our	story.	Then,	you	recall,	Hippasus	took	the	very	means
created	by	his	teacher,	Pythagoras,	to	undermine	the	Pythagorean	cosmos.	His
readiness	to	see	askew	what	others	had	looked	at	head-on	led	him	to	find	in	the
diagonal	of	a	square	the	irrationals	that	now	swarmed	among	the	ratios	which
alone	were	supposed	to	resound	in	the	physical,	mental,	and	moral	order	of
things.	It	was	precisely	Cantor’s	daring	diagonal	which	Kurt	Gödel	turned	round



to	prove	that	there	were	more	true	propositions	than	proofs:	that	in	any
sufficiently	rich	formal	system	there	would	be	statements	which	could	neither	be
proved	nor	refuted.	Gödel’s	own	later	work,	and	that	of	the	American	logician
Paul	Cohen,	then	showed	that	the	Continuum	Hypothesis	was	one	of	these
statements.	It	wasn’t	just	that	Cantor	couldn’t	prove	it;	this	time	the	difficulty
did	lie	in	the	problem	itself:	no	proof	or	disproof	lodged	anywhere	within	the
arcaded	city	of	formal	set	theory.	It	was	forever	undecidable.

Mathematics	is	permanent	revolution.	Gödel’s	inevitably	followed	from	the
radical	mathematics	invented	by	Cantor.

Revolutions	still	more	remote	appeared	in	the	distance	of	this	extraordinary
perspective.	The	mind	seemed	to	grow	giddy	by	looking	so	far	into	the	abyss	of	time
…	and	we	became	sensible	how	much	further	reason	may	sometimes	go	than	the
imagination	can	dare	to	follow.

John	Playfair	wrote	this	at	the	beginning	of	the	nineteenth	century	about	the
Great	Unconformity	at	Siccar	Point,	which	the	geologist	James	Hutton	had	all	at
once	seen	as	slanted	layers	of	time,	thus	changing	forever	our	view	of	the	earth’s
evolution	and	ultimately	ours.	Cantor’s	transfinite	arithmetic	is	this
Unconformity	on	a	universal	scale.	It	has	disrupted	our	sedate	understanding	of
the	mind	and	its	world,	and	from	its	fracture	a	new	understanding	has	yet	fully	to
emerge.	When	it	does—when	the	doors	of	our	perception	are	finally	cleansed,	as
William	Blake	promised—then	everything	will	appear	as	it	is:	infinite.

But	which	infinity	will	we	see?
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Appendix

To	Chapter	Two

1.	[to	page	57]	An	inductive	proof	that	the	sum	of	the	first	n	odd	integers
is	n2.

To	prove	that	1	+	3	+	5	+	…	+	(2n	–	1)	=	n2
1.	Prove	that	the	statement	is	true	for	n	=	1.	If	n	=	1,	the	only	odd	integer	to
consider	is	the	first:	1.	And	is	it	true	that	when	n	=	1,	n2	=	1?	Yes.

2.	Assume	the	statement	is	true	for	n	=	k.
Easily	done.	Since	when	n	=	k	the	kth	odd	number	is	2k	–	1,	we	will	be
assuming	that

1	+	3	+	5	+	…	+	(2k	–	1)	=	k2.

3.	Now,	using	this	assumption,	prove	that	the	statement	is	true	for	k’s
successor,	k	+	1.

Since	the	(k	+	1)th	odd	number	is	2	more	than	the	kth	odd	number,	we	know	that
it	is	2k	+	1.	So	we	want	to	prove	that

1	+	3	+	5	+	…	+	(2k	–	1)	+	(2k	+	1)	=	(k	+	1)2.

But	we	know	from	our	assumption	in	step	2	that	everything	on	the	left-hand	side
up	through	(2k	–	1)	is	equal	to	k2,	so	that	all	we	have	left	to	prove	is	that

k2	+	(2k	+	1)	=	(k	+	1)2.

Squaring	the	right-hand	side	gives	us	k2	+	2k	+	1,	so	whipping	the	parentheses
off	the	left-hand	side	reveals	that	we	do	indeed	have	our	equality.

2.	[to	page	63]	Models	and	consistency.

An	accurate	model	will	have	the	same	structure	as	what	it	represents,	even	if	its



size,	appearance,	and	material	are	entirely	different.	So	Hilbert’s	last	broadcast
words	and	his	laugh	at	the	end	of	them	are	faithfully	modelled	by	the	bumps	and
dips	of	the	grooves	in	the	recording	made	at	the	time.

Hilbert	made	inspired	use	of	this	simple	idea.	He	borrowed	or	built	within
Euclidean	geometry	an	accurate	model	of	each	of	its	rivals.	Hence,	if	Euclidean
geometry	turned	out	to	have	no	contradictions	in	it,	neither	could	they.	And	then
he	showed	how—as	with	Descartes’s	coordinate	geometry—to	make	a	model	of
Euclidean	geometry	within	arithmetic.	Everything	therefore	now	hinged	on
showing	arithmetic	to	be	consistent.

You	may	wonder	how	a	model	could	be	made	within	Euclid’s	of	a	geometry
that	violated	his	parallel	postulate—one	in	which	there	were	many	parallels,	for
example,	to	a	given	line	through	a	point	not	on	it,	rather	than	one.	The
cleverness	lay	in	thinking	of	familiar	objects	in	unfamiliar	ways.	Take	the
interior	of	a	circle	as	this	non-Euclidean	geometry’s	whole	two-dimensional
universe,	and	some	chord	in	it	as	the	“given	line.”	Through	some	point	inside
the	circle	but	not	on	this	line	there	will	be	many	chords	that	never	within	the
circle	intersect	the	given	one,	and	are	therefore	parallel	to	it—in	this	model.

As	a	step	toward	proving	that	the	Peano	axioms	for	arithmetic	were
consistent,	Hilbert	proved	that	the	field	axioms	on	page	48	were.	This	again	he
did	by	making	an	elegant	little	model	of	them.	Since	this	microcosm	existed—
there	it	was,	right	under	the	mathematical	eye—and	nothing	that	exists	can
harbor	a	contradiction	(nothing	can	both	be	and	not	be	in	something	that	is),	the
field	axioms	had	to	be	consistent.



This	was	his	model.	The	only	numbers	it	contained	were	0	and	1,	and
addition	and	multiplication	were	defined	by	the	following	tables	(since
“addition”	and	“multiplication”	are	primitive	terms,	we	can	model	them	as	we
will—so	long	as	they	still	obey	the	axioms):

If	you	check	you	will	see	that	this	two-element	universe	satisfies	all	of	the	field
axioms.

Such	a	universe	cannot,	however,	satisfy	the	more	demanding	Peano	Axioms
(look	at	axiom	5).	Hilbert’s	vain	attempts	to	model	those	turned	out	not	to	be	a
personal	but	a	formal	failing,	which	was	what	Gödel	showed	in	1931	(a	logician
named	Post	was	in	fact	prior,	but	hadn’t	published	his	results):	induction	made	it
impossible	to	prove	within	such	a	system	that	it	was	both	consistent	and
complete—and	that	is	pretty	much	how	things	still	stand.

It	was	ingenious	to	think	of	making	models	for	a	world	that	is	generated	by	a
set	of	axioms,	in	order	to	show	that	these	models	were	machines	that	would	go
of	themselves.	It	may	lead	you,	however,	to	a	curious	speculation.	Aren’t	the
axioms	supposed	to	catch	the	essence	of	whatever	piece	of	mathematics	they
describe?	If	the	real	numbers,	for	example,	are	truly	real—part	(or	all!)	of	the
one	and	only	universe—how	could	they	have	many	models	which	are	all	but
structurally	different:	different	in	material,	appearance,	and	even	in	their	number
of	parts?	The	one	shown	above	comes	from	a	crowd	more	numerous	and	motley
than	any	that	surges	through	one’s	minimalist	imaginings.	It	is	the	Schumann
problem	come	back	to	haunt	us:	you	feel	the	utter	uniqueness	of	your	true,	your
subjective	self	(apprehended	perhaps	by	intuition),	distinct	from	the	body	it
happens	to	inhabit—a	body	whose	form	(even	to	fine	details)	you	share	with
billions	of	different	members	of	our	species.	If	mathematics	is	formal	through
and	through,	then	it	will	be	no	surprise	(only	a	disappointment)	that	it	doesn’t
pick	out	or	point	to	what	really	exists,	in	the	sense	of	being	uniquely	distinct	in
time.

In	an	ancient	tale	from	India,	the	gods—each	eager	to	win	the	hand	of
beautiful	Damayant—turn	themselves	into	perfect	simulacra	of	Nala,	her	human
beloved,	and	stand	in	an	endless	row	with	him	in	their	midst.	She	may	marry
him	only	if	she	can	single	him	out	from	the	models.	This	she	does	in	an	instant,
since	his	feet	alone	touch	the	earth.	No	formal	incarnation	of	an	axiom	system



seems	to	be	similarly	grounded.	True	to	its	Romantic	origins,	Formalism	lets
loose	doubles	and	doppelgängers,	mimics	and	masks,	in	a	fun-house	of	distorted
reflections.

If	rather	than	being	formal	itself,	mathematics	is	about	form—about	the
unique	patterns	into	which	relations	must	fall—then	any	approach	to	it	that	blurs
this	uniqueness	must	be	at	best	a	sort	of	scaffolding	trundled	up	by	one	of	the
blind	sages	against	some	part	of	the	elephant—the	combinatorial	play	of	too	few
assertions	launched	against	the	world’s	endless	subtlety.

That	laugh	of	Hilbert’s	happened	at	an	instant	of	time.	Models	of	it	may	soon
make	their	way	to	you,	via	http://topo.math.u-psud.fr/~lcs/Hilbert/HlbrtKD.htm.

To	Chapter	Three

1.	[to	page	71]	Proofs	of	some	fundamental	propositions.

We’ll	prove	that	0	is	the	only	additive	identity.	The	proofs	of	the	other
statements	have	the	same	form.

Assume,	as	now	seems	the	natural	way	to	begin,	that	there	is	another	additive
identity—call	it	ö.	Then	ö	+	a	=	a	and	0	+	a	=	a	also.
Hence	ö	+	a	=	0	+	a.

Now	add	–a	to	both	sides	of	the	equation:

(ö	+	a)	+	–a	=	(0	+	a)	+	–a	.

Group	together	the	second	and	third	terms	(by	Associativity):

ö	+	(a	+	–a)	=	0	+	(a	+	–a)

and	a	+	–a	=	0	by	the	Additive	Inverse	Axiom,	giving	us

ö	+	0	=	0	+	0.

By	the	Additive	Identity	Axiom,	this	becomes

ö	=	0,

so	ö	was	just	0	wearing	a	mask.

http://topo.math.u-psud.fr/~lcs/Hilbert/HlbrtKD.htm


2.	[to	page	74]	A	more	rigorous	proof	that	a	negative	times	a	positive	is
negative.

Put	(–a)	·	b	in	a	helpful	context:

(–a)	·	b	+	a	·	b	=	b	·	(–a	+	a)

by	the	Commutative	and	then	the	Distributive	Axiom.	But	b	·	(–a	+	a)	is	b	·	0,
which	we	now	know	is	0.	So

(–a)	·	b	+	a	·	b	=	0	.

This	means	that	(–a)	·	b	is	the	additive	inverse	of	a	·	b.	But	the	additive	inverse
of	a	·	b	is	–(a	·	b):	hence,

(–a)	·	b	=	–(a	·	b),

since	each	number	has	a	unique	inverse.	This	brief	whirl	around	the	floor	brings
us	to	the	conclusion	that	a	negative	times	a	positive	is	negative.

3.	[to	page	75]	A	visual	proof	that	a	negative	times	a	negative	is	positive.

The	following	visual	proof	that	(–a)(–b)	=	ab	relies	on	the	properties	of	similar
triangles	we	spoke	of	on	page	19,	when	we	showed	how	to	think	of
multiplication	visually	on	the	Euclidean	plane.	Here,	however,	the	picture	lies	on
the	somewhat	more	artificial	coordinate	plane,	where	negative	numbers	are
represented	by	horizontal	lengths	in	the	second	and	third	quadrants	and	vertical
lengths	in	the	third	and	fourth.



Lay	off	a	line	of	length	1	on	the	x-axis,	from	(0,	0)	to	(1,	0),	and	call	the	end-
points	O	and	R.	Now	draw	a	perpendicular	from	R	down	into	the	fourth
quadrant,	ending	at	S,	representing	the	number	–a;	and	on	the	x-axis,	from	O
leftward	to	T,	lay	off	a	segment	representing	–b.
Draw	a	line	through	S	and	O	upward	into	the	second	quadrant,	meeting	the
perpendicular	from	T	at	U.	Since	ΔORS	~	ΔOTU,	 ,	so	that	TU	=	(–a)(–b),
but	is	positive,	since	it	is	a	vertical	in	the	second	quadrant.

4.	[to	page	84]	Factors	of	terms	in	the	sequence	2,	5,	8,	11,	14,	…
To	ask	about	which	primes	are	in	the	sequence

2,	5,	8,	11,	14,	17,	…

means	asking	about	what	factors	each	term	in	it	could	have.	The	choices	can
only	have	the	form	3n	–	1,	3n,	or	3n	+	1.	The	factors	of	any	term	here	couldn’t
all	have	the	form	3n,	because	if	you	multiply	such	numbers	together	you	would
get	another	of	the	form	3n,	not	3n	–	1:

3a	·	3b	·	3c	=	(27	·	abc)	=	3	·	(9abc)	.

Nor	could	the	factors	all	be	of	the	form	3n	+	1,	because

which	is	another	number	of	the	form	3n	+	1.	Were	some	factors	of	the	form	3n
and	the	rest	3n	+	1,	their	product	would	again	be	of	the	form	3n.	We	have	found,
therefore,	that	since	the	numbers	in	our	sequence	have	the	form	3n	–	1,	at	least
one	of	the	prime	factors	of	any	number	in	our	sequence	must	have	the	form	3n	–
1.

5.	[to	page	87]	e	and	its	logarithm.
Some	functions	may	never	stop	growing,	but	grow	at	different	rates	from	one
another.	Among	the	rapid	risers	are	the	exponential	functions,	where	the	variable
is	used	as	an	exponent,	like	f(x)	=	10x:	as	x	increases,	the	output	of	10x	rockets



away.	Here	are	2x	and	3x;	try	graphing	10x	yourself,	and	be	daring	about	which
values	for	x	you	use	as	inputs:	your	calculator	will	let	x	take	on	any	real	value,
not	just	integers.

As	you	can	see,	3x	rises	more	steeply	than	2x:	it	grows	more	rapidly.	Between	2
and	3	lies	a	remarkable	number,	named	e	by	Euler	in	1728	(e	is	irrational,	and	is
approximately	2.718281828459045…),	which	has	the	important	property	that	ex
grows	at	precisely	the	rate,	for	any	x,	of	the	function’s	output	at	that	x.	While
with	all	such	exponential	functions	the	more	you	have,	the	more	you	get;	with	ex
how	much	you	have	is	exactly	how	fast	you	grow.	Since	this	so	well	describes
organic	growth,	f(x)	=	ex	shows	up	everywhere	in	the	biological	world,	from	the
growth	of	cells	to	the	growth	of	animal	populations.	Its	graph	looks	like	this:

The	output	of	f(x)	=	ex	tells	you	how	big	ex	is	for	a	given	input	x.	What	if	you
wanted	to	answer,	however,	the	paired	question:	what	x	must	I	put	in	to	get	a
certain	output	from	this	function?	This	is	answered	by	its	paired	function,	g(x)	=



ln	x	(which	stands	for	“the	logarithm,	with	base	e,	of	x”:	ponderous	name	for	a
svelte	idea).

Since	you	need	to	raise	e	to	about	2.30258…	to	get	10	(so	f(2.30258)	=
e2.30258	≈	10,	where	“≈”	means	“is	approximately”),	we	would	say:

ln	10	≈	2.30258

The	graph	of	this	“natural	logarithm”	function	is	the	mirror-image	of	the
graph	of	f(x)	=	ex,

where	the	mirror	is	the	line	slanted	at	45°	between	them:	the	line	y	=	x	(because
we’re	exchanging	the	roles	of	input	and	output;	and	since	this	line	is	where	they
are	equal,	the	two	graphs	will	be	symmetrical	around	it):

Not	the	least	surprising	thing	about	the	relevance	of	ex	and	ln	x	to	the	world	of



primes	is	this	importing	of	the	organic	into	what	seemed	mechanical.	Are	the
two	more	intercalated	than	we	supposed,	the	distinction	between	them	as
artificial	as	that	between	the	animal	and	vegetable	kingdoms	has	turned	out	to
be?

To	Chapter	Four

1.	[to	page	120]	The	series	of	reciprocals	of	primes.

Euler’s	proof	that	this	series	in	fact	diverges	makes	use	of	sophisticated
techniques.	We	will	follow	instead	a	delightful	proof	from	1966	by	James
Clarkson.

The	effort	it	will	take	here	and	there,	and	the	overall	pull,	can	only	strengthen
your	muscles	for	mathematics.	Since	the	chief	difficulty	will	be	keeping	the	gist
of	the	proof	in	focus	at	times	when	the	point	of	particular	moves	isn’t	clear,
patience	is	at	a	premium.	It	will	also	help	to	step	back	from	it	now	and	then	and
review	in	your	mind	what	has	already	happened	and	what	the	grand	design	is.
As	Brouwer	knew,	most	mathematics	is	done	with	the	eyes	closed—or	as	people
in	math	libraries	can	tell	you,	when	someone	is	staring	at	a	book,	he	isn’t	doing
mathematics;	when	he	is	staring	at	the	ceiling,	he	is.

You	know	from	Chapter	Two	that	every	natural	number	n	has	a
multiplicative	inverse,	 ,	also	called	its	reciprocal.	The	series	we	want	to
consider	is	the	sum	of	the	reciprocals	of	all	the	primes:

Since	2	is	the	first	prime,	let’s	call	it	p1;	3	is	the	second	prime,	p2;	p3	=	5,	p4	=
7,	and	so	on.	The	subscripts	correspond	to	the	order	the	primes	come	up	in.	We
can	therefore	write:

It	will	be	handy	to	abbreviate	this	infinite	sum	by	a	concise	symbol,	since	we
will	have	much	to	do	with	it.	The	pleasant	convention	is	to	use	the	upper-case
Greek	sigma,	∑,	for	“sum,”	followed	by	what	it	is	a	sum	of—in	this	case—
where	that	index	i	runs	from	1	through	all	the	natural	numbers:



To	show	that	i	begins	at	1	and	goes	on	to	infinity,	we	decorate	Σ	with	i	=	1
below	and	∞	above,	so	that

Clarkson’s	strategy	is	to	assume	that	this	sum	converges	and	then	to	get	a
contradiction:	namely,	that	another	series	which	we	know	diverges	would	then
have	to	converge	too.	That	other	series	is	based	on	the	harmonic	series:

(which	we	can	now	abbreviate	 ).	We	saw	on	page	117	that	this	series
diverges.

A	clever	tactic	Clarkson	uses	depends	on	noticing	that	a	divergent	series
multiplied	by	a	positive	fraction	still	diverges:	since	 	grows	greater	than	any
particular	number,	so	will	a	third	or	a	fourth	of	it,	or	 	times	it	(where	A	is	some
positive	constant),	that	is,

Since	 	means	 	multiplied	by	each	of	the	terms	in	the	series,	we	can	write
it	as:

The	trick	is	to	find	the	right	A	which	will	tie	the	reciprocals	of	primes	to	the
terms	of	the	harmonic	series.	Here	he	makes	use	of	a	very	nice	idea.	If	you	have
two	fractions,	like	 	and	 	the	new	fraction	 	will	be	less	than	
because



In	the	same	way,	given	three	fractions,	say	 	and	 ,

since	 	will	be	among	the	terms	that	arise	from	cubing	the	sum	of	those
three	fractions.

In	fact,	and	for	the	same	reason,	if	you	have	r	different	fractions	
	then

	will	be	even	less,	of	course,	than	that	sum	plus	a	great	many	more
fractions,	raised	to	the	power	r.	So	for	example	 	will	be	very	much	less
than	the	sum	of	all	the	reciprocals	of	primes	from	the	eighth	prime	on,	cubed:

This	idea	is	one	of	the	two	sticks	Clarkson	will	rub	together	to	spark	into
existence	that	A	he	needs.

The	other	stick	is	this.	If	 	converges	(as	we	are	assuming),	then	its	limit

—its	total	sum—will	be	a	certain	number	L.	As	the	terms	of	the	series	add	up,
their	sum	will	get	closer	and	closer	to	L—and	as	it	does,	it	will	grow	to	within	1
of	that	limit,	and	then	to	within	 	of	it.	In	other	words	(and	this	is	what	he	is
after),	there	will	be	some	prime—the	kth	along	the	way,	pk—such	that

will	be	less	than	 	away	from	L:



This	means	that	the	sum	of	all	the	rest	of	the	terms,	from	the	next	one,	 	on,
will	add	up	to	less	than	 :

Why	choose	 	Why	does	 	matter?	Because	Clarkson	has	in	the	back	of	his
mind	something	else	that	we	discovered	in	Chapter	Four:

converges	(in	fact,	it	converges	to	1:	see	page	111).
Now	we	can	start	to	rub	his	two	sticks	together.	The	first	task	is	to	find	that	A

we	need.
Assuming	that	 	converges	meant	that	there	would	be	a	k	such	that	

	Well,	take	those	first	k	primes	and	multiply	them	together—let’s
call	their	product	Q:

p1	·	p2	·	…	·	pk	=	Q.

Since	every	one	of	these	k	primes	is	a	factor	of	Q,	it	is	a	factor	as	well	of	nQ,
where	n	is	any	positive	integer.	This	means	that	none	of	the	first	k	primes	can	be
a	factor	of	1	+	nQ	(for	if	it	were,	it	would	have	to	be	a	factor	of	1	as	well,	which
is	impossible—an	echo	of	Euclid’s	proof	that	there	is	no	last	prime).

So	the	factors	of	1	+	nQ	must	lie	among	the	primes	beyond	pk:	among	pk	+	1,
pk	+	2,	and	so	on.	In	other	words,	1	+	nQ,	for	each	integer	n,	is	a	product	of
primes	of	the	form	pk+m	(where	m	is	an	integer	≥	1).

If,	for	a	particular	n,	1	+	nQ	is	a	product	of	s	different	primes	of	this	form,

then



Does	this	look	familiar?	Yes;	we	saw	something	very	much	like	it	on	page
340,	where	we	found	(in	terms	of	r	different	numbers	n1,	n2,	…,	nr)	what	we
could	here	express	in	terms	of	s	different	primes	pk+a,	pk+b,	…,	pk+s	:

As	we	said	before,	this	will	be	even	less	than	the	sum	of	all	the	reciprocals	of
primes	from	 	on,	that	sum	raised	to	the	power	s:

This	gives	us	the	A	we	want:	let	A	=	1	+	Q.	For	then	watch	what	happens
(keep	in	mind	that	if	x	>	y	then	 :	if	 ,	then

But	2	+	2Q	>	1	+	2Q	and	3	+	3Q	>	1	+	3Q—in	fact,

(with	equality	only	when	n	=	1),	so



Adding	them	all	up,

We	know	that	the	harmonic	series	diverges.	We	know	that	this	divergent
series	times	a	constant,	 	still	diverges.	Now	we	have	another	series,	
which	is	term	by	term	greater	than	that	divergent	series—so	it	must	diverge	too.
That	is,	if	we	assume	that	our	series	 	converges	(so	that	Q	exists),	the	series	

	must	diverge.

We	will	quickly	show,	however	(again	using	our	assumption),	that	
can’t	diverge:	it	must	converge—and	this	will	be	the	desired	contradiction.

Why	must	 	converge?	Look	first	at	all	n	for	which	1	+	nQ	has	only
one	factor	among	the	primes	which	are	greater	than	pk.	For	each	of	those	n’s,	

	for	some	prime	pv	>	pk.	So	if	we	add	together	all	such	cases	(even	if
there	are	infinitely	many	of	them)	n1,	n2,	…,	each	with	its	separate	pv,	pw,	…,
we’ll	get

(by	our	definition).
Now	look	at	all	those	n	for	which	1	+	nQ	has	two	prime	factors,	each	greater

than	pk.	For	each	of	these,	 	for	some	pv	and	pw.	Adding	them	all
together,



(for	each	 	comes	up	somewhere	in	that	squared	term).

The	n’s	for	which	1	+	nQ	has	three	prime	factors	will	give	us

and	so	on.
If	we	now	add	up	all	these	 	for	every	possible	n,	we	will	get	some	

some	 	others	 	still	others	 	and	so	on,	so	that

and	that	right-hand	sum,	remember,	converges.	But	a	series	with	no	negative
terms	and	less	than	a	convergent	series	must	converge	too—hence	 	both
converges	and	diverges!	This	is	the	contradiction	we	sought,	which	proves	that
the	sum	of	the	reciprocals	of	the	primes	diverges.

This	wonderfully	acrobatic	proof	tells	us	something	else:	the	number	of
primes	is	infinite.	For	were	there	only	a	finite	number,	this	series	would	have	to
converge.	It	also	reminds	us	not	only	that	dealing	with	primes	is	always	difficult,
but	that	there	is	no	problem	that	cannot	be	solved.
2.	[to	page	121]	The	tower	of	x’s.

The	solution	given	only	works	if	(as	you	saw)	we	understand	the	tower	of	x’s	via
“associativity	to	the	right”:	i.e.,	as	x(x(x	…))—rather	than	“associativity	to	the
left”:	((xx)x)x	…	and	so	on.



To	Chapter	Five

1.	[to	page	134]	Why	the	circumcenter	of	a	right	triangle	is	the	midpoint	of
the	hypotenuse.

1.	Drop	a	perpendicular	from	the	midpoint,	D,	of	the	hypotenuse,	meeting	the
opposite	side	at	E.

2.	Since	ΔABC	∼	ΔDEC,	and	the	ratio	of	similitude	is	2:1,	CE	is	half	of	CB
—that	is,	CE	=	EB.

3.	Draw	DB.	Then	(by	SAS)	ΔDEB	≅	ΔDEC,	so	DB	=	DC.
4.	Since	CD	=	AD,	D	is	equidistant	from	A,	B,	and	C;	hence,	D	is	the
circumcenter.

2.	[to	page	140]	Why	every	triangle	has	a	centroid.

Theorem:	If	in	a	triangle	ABC	two	mass-balancing	knife-edges	AD	and	BE
intersect	at	a	point	O,	then	every	mass-balancing	knife-edge	passes	through	O,
the	centroid.

Proof:
1.	Number	the	four	regions	into	which	these	lines	divide	the	triangle	1,	2,	3,
and	4.	We	will	now	use	these	numbers	to	stand	for	the	masses	of	their
regions.



2.	Since	the	median	AD	divides	the	triangle	into	two	equal	masses,	1	+	3	=	2
+	4.

3.	Likewise,	since	BE	is	a	median,	1	+	2	=	3	+	4.
4.	So	1	+	2	=	3	+	4

5.	hence	1	=	4	and	2	=	3.
6.	Now	assume	there	is	a	mass-balancing	knife-edge	k	that	doesn’t	pass
through	O.	Several	situations	are	possible,	of	which	we	show	one	(proofs
for	the	others	are	similar).	Here	k	meets	AB	at	Q,	AD	at	a	point	P	between
A	and	O,	AC	at	R.

7.	k	creates	regions	5	and	6,	as	shown,	leaving	region	1	–	5	and	2	–	6	below
them.

8.	Since	k	is	mass-balancing,	5	+	6	=	1	–	5	+	3	+	2	–	6	+	4.
9.	After	the	appropriate	subtractions	and	substitutions,	from	step	5,	2(5	+	6)	=
2(1	+	2);

10.	That	is,	5	+	6	=	1	+	2.
11.	But	this	is	impossible,	since	5	+	6	is	a	proper	part	of	1	+	2.	Therefore	k

passes	through	O.



Corollary:	Since	this	theorem	is	true	for	every	mass-balancing	line,	it	is	true	for
the	median	from	C;	hence	the	three	medians	coincide	at	the	centroid	O.

3.	[to	page	154]	The	nine-point	circle,	with	the	new	tenth	point	on	it.

This	point	P	is	where	the	three	Euler	lines	(marked	“e	ΔKLC”,	etc.)	of	their
relevant	triangles	concur.

4.	[to	page	162]	A	proof	that	there	is	no	shortest	path	in	an	obtuse	triangle.

We	first	need	an	auxiliary	theorem,	often	called	a	lemma.	This	one	was	devised
by	the	ingenious	Jim	Tanton.

Lemma:	If	in	ΔABC,	with	∠B	>	90°,	there	is	a	shortest	path	XYZ,	then	this	path
meets	and	leaves	each	side	at	equal	angles.

Proof:
1.	Reflect	XZ	in	AC	to	ZX´	and	draw	XX´,	meeting	AC	at	T.
2.	ΔXZT	≅	ΔX´ZT	(SSS),	so	∠1	=	∠2.



3.	Likewise	reflect	XY	in	AB	to	YX″.	X″Y	=	XY	(from	congruent	triangles,
as	in	step	2).

4.	If	XYZX	is	shortest,	then	X″YZX´	is	shortest,	and	hence	is	a	straight	line,
so	∠2	=	∠3.

5.	Then	by	transitivity,	∠1	=	∠3,	as	desired.

The	same	argument	applies	to	the	other	sides.

Theorem:	There	is	no	shortest	path	in	an	obtuse	triangle.

Proof:	1.	For	any	candidate	XYZ	the	angles	(by	our	lemma)	would	be	as	lettered,
and	since

3.	And	since	∠a	+	∠b	+	∠c	=	180°,	∠x	+	∠y	+	∠z	=	180°.
4.	But	∠b	>	90°,	so	∠x	+	∠y	<	90°,	hence	∠z	>	90°,	and	at	vertex	Z,	2(∠z)	>
180°,	which	is	impossible.

Hence	there	is	no	shortest	path	in	an	obtuse	triangle.

5.	[to	page	163]	The	Fermat	Point.

Here	is	that	promised	marvel	of	an	example.	The	question	itself	seems	innocent
enough—a	twin	of	the	one	at	the	end	of	Chapter	Five.	Is	there	a	point	P	in	a
triangle	such	that	the	sum	of	its	distances	to	the	three	vertices	A,	B,	and	C	is
minimal?



We	want	to	minimize,	that	is,	the	sum	of	PA,	PB,	and	PC,	as	anyone	would	who
wanted	to	lay	pipes	most	economically	from	a	central	pumping	station	to	three
consumers.	Having	learned	our	lesson,	we	will	be	more	cautious	this	time	and
consider	both	acute	and	obtuse	representative	triangles.

Shortest	distance—straight	line.	Like	an	apprentice	chess	player,	we	are
beginning	to	recognize	the	combinations.	Remembering	the	gambit	of	false
position,	we	let	P	be	any	point.	But	now	what?	Extending	PA,	PB,	and	PC	their
own	lengths	to	new	points	X,	Y,	and	Z	gives	a	triangle	similar	to	ΔABC,	which
is	simply	our	old	problem	drawn	larger.



We	need	a	zigzag	line	made	up	of	segments	equal	to	PA,	PB,	and	PC,	so	that
when	we	pull	it	taut,	P	will	pop	into	the	right	place.

Perhaps	thoughts	like	these	went	through	Pierre	de	Fermat’s	mind	when	in
the	mid-seventeenth	century	he	started	work	on	this	problem	between	his	law
cases.	They	may	also	have	struck	J.	E.	Hofmann	three	centuries	later	when	he
came	up	with	a	solution	(Torricelli,	to	whom	Fermat	had	sent	the	problem,
devised	a	different	one	around	1640	or	so,	as	have	others	since).	But	how	can	we
possibly	reconstruct	the	steps	that	led	him	to	look	at	ΔAPC	and	rotate	it	60°
counterclockwise	around	A,	to	make	the	new	ΔAP'C'?



We’ll	try	to	retrieve	his	insight	by	thinking	backwards	while	following	his	steps
forward.	He	next	draws	P´P	(ah—part	of	the	broken	line	that	will	eventually	be
straightened)	and	notes	that,	since	AP´	is	just	AP	swivelled	through	60°,	AP´	=
AP.

He	knew	the	early	theorem	in	Euclid—another	result	that	Thales	may	first
have	seen—that	if	two	sides	of	a	triangle	are	equal,	so	are	the	angles	opposite
them:

Euclid’s	proof	involves	a	construction	sufficiently	difficult	for	beginners,	and
looking	enough	like	a	trestle	bridge,	to	have	earned	the	title	pons	asinorum:	if
you	can	cross	it,	you	are	a	fool	no	longer.	Six	centuries	later	another
Alexandrian,	Pappus,	came	up	with	a	proof	so	elegantly	simple	that	you	may



wonder	if	it	is	a	proof	at	all.	Since	SR	=	TR,	∠R	=	∠R,	and	TR	=	SR,	ΔSRT	≅
ΔTRS	by	SAS.	Hence	the	corresponding	parts	are	equal,	among	them	∠S	=	∠T.
Is	this	one-liner	a	joke	or	a	proof	that	deserves	to	be	in	The	Book?	Notice	that
Pappus	didn’t	prove	a	triangle	congruent	to	itself—rather,	two	different	triangles
inhabiting	the	same	body.

Here,	then,	since	AP	=	AP´,	the	base	angles	of	ΔAP´P	are	equal:	∠AP´P	=
∠APP´.	Each	is	therefore	 ,	and	ΔGAP´P	is	equilateral:	all	its	angles
and	all	its	sides	are	equal.	That	means	AP	also	equals	P´P—and	now	we	see
what	Hofmann	was	up	to:	that	mysterious	60°	rotation	was	just	to	achieve	this
equality!	(How	could	the	Formalist	account	possibly	include	this	feel	for	the	lay
of	the	land,	which	leads	to	discovery?)

For	Hofmann	was	interested	in	minimizing	the	sum	of	three	lengths:	AP	+	PB
+	CP.	But	AP	=	P´P,	PB	is	equal	to	itself,	and	CP	is	equal	to	C´P´,	since	it	was
rotated	into	it	by	our	60°	swing.	So	AP	+	PB	+	CP	=	PP´	+	PB	+	C´P´,	or,	to	put
those	in	a	more	useful	order,

C´P´	+	P´P	+	PB.

That	crooked	line,	C´P´PB,	is	the	one	he	wants	to	straighten.	It	will	be	straight
when	the	angles	at	P´	and	P	are:	that	is,	when	∠C´P´P	and	∠P´PB	are	each	180°.
We	know	part	of	each	of	these	angles:	∠AP´P	is	60°	and	so	is	∠P´PA;	so	the
remaining	angles—∠C´P´A	and	∠APB—each	have	to	be	120°.	But	∠C´P´A	=
∠APC	(the	first	is	just	the	second	rotated).	This	means	that	back	in	our	original
ΔABC,	the	angles	around	P	made	by	PA,	PB,	and	PC	are	each	120°!

The	point	P,	then,	from	which	the	sum	of	the	distances	to	the	triangle’s	three
vertices	is	least,	is	the	point	from	which	those	three	lines	meet	in	pairs	at	120°
angles.	You	might	think	of	the	lines	from	P	to	vertices	A,	B,	and	C	as	being
elastic	cords,	and	as	you	move	P	around	(with	the	cords	lengthening	and
shortening)	the	angles	around	it	change	too;	and	you	stop	when	they	are	all
equal.



You	may	find	this	vaguely	disappointing,	because	it	doesn’t	really	tell	you
how	to	find	P.	A	beautiful	solution,	however,	is	hiding	just	around	the	diagram’s
corner.	Look	at	it	again

and	draw	in	one	more	line:	C´C.

Why?	Because	wonderfully	enough,	ΔAC´C	is	equilateral	too:	AC´	is	just	AC
rotated,	so	AC´	=	AC,	hence	the	angles	∠AC´C	and	∠AC´	are	equal—and	since
the	hinge	angle	∠C´AC	is	60°,	each	of	these	is	 .	We	know	we	have
our	point	P	when	C´,	P´,	P,	and	B	are	collinear;	so	if	we	simply	construct	an
equilateral	triangle	on	side	AC,	with	new	vertex	C´,	and	then	connect	C´	and	B,
P	must	lie	somewhere	on	this	line.

And	now	we	have	an	endgame	like	that	in	Fagnano’s	Problem:	there	was



nothing	special	about	side	AC,	so	build	an	equilateral	triangle	on	another	side	of
ΔABC,	such	as	BC,	with	vertex	A´:

P	must	lie	on	A´A	also—so	where	A´A	and	C´B	cross	is	the	P	we	want,	called
the	Fermat	Point.

This	very	surprising	simplification	came	from	the	previous	hard	work,	the
way	a	finished	building	emerges	from	its	scaffolding.	At	least	we	were	careful
this	time	to	test	what	we	did	on	a	representative	obtuse	as	well	as	acute	triangle
—but	were	we	careful	enough,	or	has	the	Protean	nature	of	things	once	again
caught	us	off	guard?	Were	those	triangles	sufficiently	representative?	Let’s	look
at	a	very	obtuse	triangle,	such	as	this:

If	we	make	our	construction,	we	see	that



P	has	escaped!	Our	construction	fails	when	an	angle	of	our	triangle	is	greater
than	or	equal	to	120°.	When	that	happens,	we	must	make	do	with	the	vertex	A	as
the	Fermat	Point:	one	of	those	solutions	that—like	altitude	AF	in	Fagnano’s
Problem	or	(back	in	Chapter	One)	calling	a	single	dot	a	triangular	or	square
number—pushes	the	envelope	of	definition.

To	Chapter	Six

1.	[to	page	176]	Solving	quadratic	equations.
(a)	Completing	the	square.
Our	first	method	is	called	“completing	the	square.”	Starting	from

0	=	t2	+	t	–	1,

just	for	the	sake	of	neatness	store	all	the	terms	with	unknowns	on	one	side	of	the
equation,	the	known	quantities	on	the	other:



t2	+	t	=	1	.

Were	that	left-hand	side	less	messy—were	it	something	squared—then	we	could
take	the	square	root	of	both	sides	and	be	just	about	done.

Well,	says	the	voice	of	Alcibiades,	make	it	so:	add	whatever	is	needed	to	t2	+
t	so	that	it	becomes	some	expression	squared.	This	is	where	algebra’s	stored	up
experience	with	factoring	quadratics	pays	off.	If	you	add	 24	to	t2	+	t,	you	get	

,	which	is	 .

But	Alcibiades!	You	can’t	arbitrarily	add	something	on	to	an	expression—
that	changes	its	value!

You	can,	he	answers,	if	you	have	an	equation,	as	we	do	here.	You	keep	the
see-saw	balanced	by	adding	the	same	 	to	the	other	side:	the	mathematician’s
twitchiness	about	asymmetry	once	more	soothed.

Our	original	equation	t2	+	t	=	1	has	now	turned	into	the	equivalent

Now	we	can	take	the	square	root	of	both	sides	(since	that	was	the	reason	for	all
these	gymnastics)	and	we’ll	consider	only	the	positive	square	root,	since	lengths
can’t	be	negative.	We	get
which	simplifies	to	

Hence

More	simply,



or,	if	you	like	your	numbers	arranged	so	that	you	can	see	in	order	the	geometric
operations	that	will	happen	to	them:

(b)	The	Quadratic	Formula,	which	formalizes	the	technique	of	completing	the
square.
To	solve	for	x	in	ax2	+	bx	+	c	=	0,	we	have	to	keep	freeing	x	from	its	various
bonds	(other	numbers	added	to	and	multiplied	by	it,	and	being	squared).

Begin	by	subtracting	the	constant	c	from	both	sides:

ax2	+	bx	=	–c	.

To	keep	things	as	simple	as	possible,	divide	by	a:

Now	ask	yourself	(as	in	the	first	approach)	what	needs	to	be	added	to	the	left
side	of	this	equation	in	order	to	turn	it	into	a	perfect	square.	This	is	the	key	piece
of	the	puzzle,	because	finding	it	will	allow	us	to	take	the	square	root	of	both
sides	and	so	free	x	from	its	exponent.	Those	who	found	it,	like	Bhāskara	(in
twelfth-century	India),	are	immortalized	in	the	mathematical	Pantheon.	With
some	trial	and	error—or	insight—you	come	up	with	 :	for	then

Adding	 :	then,	to	both	sides,	we	have

and	putting	the	right-hand	side	over	the	common	denominator	of	4a2,



Now	we	can	take	the	square	root	of	both	sides:

so	that

If	you	put	the	coefficients	a,	b,	and	c	of	any	quadratic	equation	ax2	+	bx	+	c	=	0
into	this	Quadratic	Formula,	the	equation’s	two	roots	will	come	out.

2.	[to	page	188]	Why	 	is	not	in	F1.
Suppose	there	were	rationals	 	and	 	such	that

Remembering	what	we	did	in	Chapter	One,	we	square	both	sides	and	rearrange,
getting

2(ad)2	=	3(bc)2.

Since	ad	is	some	natural	number—call	it	r—and	bc	a	natural	number	s,	this
simplifies	to

2r2	=	3s2.

If	we	break	r	and	s	down	to	their	ultimate,	prime	factors,	each	of	these	primes
will	appear	twice	on	each	side	(since	r	and	s	are	each	squared);	so	on	the	left-
hand	side,	2	will	appear	an	odd	number	of	times	(possible	pairs	from	the	factors
of	r2,	and	that	solitary	initial	2)	but	an	even	number	of	times	(none	or	pairs)	on
the	right.	Divide	both	sides	by	2	as	many	times	as	you	can,	and	you’ll	be	left
with	one	surviving	2	on	one	side	of	the	equation	or	the	other—which	will	make
its	side	even	and	the	other	side	odd.	But	an	odd	number	can’t	equal	an	even
number,	so	we	never	had	a	true	equation.	This	proof	by	contradiction	shows	that	
	cannot	belong	to	F1’s	society.



3.	[to	page	205]	On	Hermes’s	work.
The	Diarium,	in	which	Hermes	wrote	up	his	ten	years	of	work,	comes	with
peculiar	puzzles.	Anyone	undertaking	to	show	just	how	to	construct	the	65,537-
gon	would	of	course	know	that	Gauss	had	proved	it	to	be	constructible	(since
65,537	=	224	+	1,	a	Fermat	prime)—and	after	constructibility,	actual	construction
is	something	of	an	anticlimax.	Why	did	Hermes	spend	a	decade	on	what	could
only	be	uninformative	details?

One	possibility	is	that	the	devil	in	these	details	really	does	conceal	something
interesting.	Hermes	may	(as	Paddy	Patterson	at	Göttingen	conjectures)	have
been	using	the	many	different	ways	of	expressing	65,537	as	a	sum	of	two
squares,	in	order	to	determine	the	square	roots	he	needed.	If	this	were	so,
however,	he	would	have	had	no	need	to	express	his	square	roots	numerically—
certainly	not	to	ten	or	more	decimal	places,	as	he	did.
Another	possible	answer	might	follow	from	his	title	page,	which	has	a	drawing
showing	the	segment	midway	along	(between	vertices	32,768	and	32,769)	and
about	11.3	cm	(≈	4.5	inches)	long,	and	states	that	to	have	the	polygon’s	side-
lengths	this	size	would	require	it	to	be	inscribed	in	a	unit	circle	of	radius
1,168.32	meters	(≈	3,797	feet	or	about	seven	tenths	of	a	mile).	Was	Hermes
planning	to	have	his	model	actually	constructed—as	a	great	monument,	perhaps,
to	Gauss?	We	know	that	Gauss	had	hoped	(in	vain)	that	the	17-gon	would	be
inscribed	on	his	tombstone.	Did	Hermes	wish	to	make	up	for	such	a	slight?	He
lived	at	a	time	when	making	physical	models	of	geometrical	objects	was
commonly	carried	out,	with	great	skill	and	patience.	As	late	as	1951	a	book	of
instructions	for	making	immensely	complicated	models	of	polyhedra	was
published,	and	a	wire	model	of	one	with	720	faces	and	1200	edges	had	been
built.	The	virtue	of	such	models	lies	in	their	giving	romantic	reality	to
imagination,	though	their	particularity	draws	thought	away	from	its	proper,
relational,	realm.

Yet	if	making	a	physical	model	had	been	Hermes’s	intent,	why	did	he	carry
his	calculations	out	so	far?	Three	decimal	places	rather	than	ten	would	have
been	more	than	wood	or	wire	could	tolerate.

His	title	page	contains	another	clue,	however.	There	at	the	hub	of	the
circumcircle	is	his	dedication:	to	the	Manes	(the	Roman	equivalent	of	soul)	of
Richelot—the	man	who,	with	Schwendenwein,	had	forty	years	before	calculated
how	to	construct	the	257-gon.	Had	he	set	Hermes	this	doctoral	task,	thinking	it
commensurate	with	his	dogged	skills—and	had	the	student	stuck	to	it	through	a
decade	of	work,	in	homage	to	the	spirit	of	his	master	that	now	lay	entangled
within	it?	Read	so,	the	story	rings	with	not	Roman	but	Wilhelmine	virtue.25



A	more	cynical	view	can	be	found	in	this	curious	passage	by	the	English
number	theorist	J.	E.	Littlewood	(from	the	“Cross-Purposes”	section	of
Littlewood’s	Miscellany,	ed.	B.	Bollobás,	Cambridge	University	Press,	1986,	p.
60):

A	too-persistent	research	student	drove	his	supervisor	to	say	“Go	away	and	work	out
the	construction	for	a	regular	polygon	of	65537	sides.”	The	student	returned	20	years
later	with	a	construction	(deposited	in	the	Archives	at	Göttingen).

Some	credence	is	given	this	version	by	Littlewood’s	near	contemporaneity
with	the	event,	but	diminished	by	his	parodic	intent	and	what	may	have	been	the
different	bien	entendus	of	English	academic	life.

Might	the	answer	not	lie	at	some	point	inside	the	triangle	whose	vertices	are
the	romance	of	numbers,	of	obligation,	and	of	obsession?	Hermes	wouldn’t	have
been	alone	in	lowering	himself	down	into	an	irrational	crevice	in	the	number
line,	only	to	be	drawn	ever	deeper,	by	the	promise	of	some	conclusive	revelation
only	a	decimal	place	further	on.	Was	this	promise	not	the	devil	who	dances	our
souls	away	in	detail?

To	Chapter	Seven

1.	[to	page	241]	The	three	complex	roots	of	1.

In	their	street	clothes,	algebraists	calculate	with	patience	and	accuracy.	When
they	change	from	Clark	Kent	in	a	phone	booth,	they	emerge	eager	to	spark	an
insight	through	equating	very	different-seeming	expressions.	We	will	need	both
of	their	embodiments	in	order	to	find	the	three	cube	roots	of	1:	that	is,	the	real
numbers	a	and	b	such	that	(a	+	bi)3	=	1	+	0i.	Spelling	this	out,

a3	+	3a2bi	–	3ab2	–	b3i	=	1	+	0i	.

Equating	real	part	with	real	part,	imaginary	with	imaginary,	we	find	that

a3	–	3ab2	=	1

and

3a2b	–	b3	=	0.



Since	1	(that’s	1	+	0i)	is,	after	all,	a	cube	root	of	1,	a	=	1	and	b	=	0	must	be	one
of	the	three	solutions.	To	find	the	other	two	we	may	therefore	assume	b	≠	0.	That
lets	us	divide	by	b	in	this	last	equation,	giving	us

3a2	–	b2	=	0

or

b2	=	3a2.

Taking	the	square	root	of	both	sides,

Now	substitute	 	into	the	first	equation

a3	–	3ab2	=	1	,

to	get	a3	–	9a3	=	1;	in	other	words,

–8a3	=	1.

This	gives	us

so

Hence



giving	us	the	second	cube	root	of	1:

Faster	than	a	speeding	bullet,	the	other	possible	choice	for	 ,	yields	the
third	root,

2.	[to	page	247]	The	non-constructibility	of	the	heptagon.

You	may	have	felt	short-changed	when,	in	the	previous	chapter,	we	only	stated
but	didn’t	prove	Gauss’s	conclusion	about	what	kinds	of	polygon	can	be
constructed.	Let’s	atone	for	that	now	by	showing	why	the	heptagon,	at	least,
can’t	be:	paradoxically,	its	emergence	far	away	on	the	complex	plane	both	hints
that	it	might	be	constructible	and	proves	that	it	isn’t.

The	strategy	is	this.	x7	=	1,	or	x7	–	1	=	0,	is	the	equation	for	the	seven	roots	of
unity,	and	hence	(on	the	complex	plane)	for	the	vertices	of	the	heptagon,	as	we
saw	at	the	end	of	the	chapter.

By	a	series	of	deft	moves	we’ll	make	this	equation	yield	a	cubic	involving	the
cosine	of	the	angle	( 	radians)	at	the	center	of	each	of	the	heptagon’s	pie-
slices.	The	length	cos	Φ	is	involved	with	the	length	of	the	heptagon’s	side,	so	if
it	can’t	be	constructed,	neither	can	that	side:

If	x	could	be	constructed,	so	could	ΔABC,	whose	other	sides	are	the	radii	(length
1)	of	the	circumscribed	circle.	So,	therefore,	could	the	perpendicular	CD	to	AB,
and	thus	AD	=	cos	Φ	could	be	constructed	too.	If	x	could	be	constructed,	then

cos	Φ	could	be—but	cos	Φ	cannot,	so	neither	can	x.



This	is	what	we	will	show,	by	discovering	that	the	cubic	which	follows	from	the
heptagon’s	equation	has	no	roots	in	a	square	root	extension	field,	where	(as	we
know	from	Chapter	Six)	the	only	constructible	lengths	lie.

Our	order	of	operations	will	be	first	to	find	out	what	sort	of	cubics	don’t	have
roots	in	square	root	extension	fields—and	only	then	to	reduce	the	heptagon’s
equation	to	a	cubic,	and	see	that	it	is	of	this	sort.

(a)	Cubics	and	their	roots.
Think	of	yourself	as	a	traveler	in	a	medieval	landscape.	There	are	six	castles
ahead,	guarding	the	route.	It	won’t	take	trials	of	strength	to	get	past	them,	but
resoluteness	in	the	face	of	their	equations—which	only	look	like	portcullises:
they	turn	out	to	be	drawbridges.	A	morning	sort	of	optimism	will	help	too,	since
we	tend	to	tolerate	only	a	few	unaccustomed	turns	of	thought	in	a	day.	Each
leaves	a	residue	of	discomfort:	did	it	really	work?	Did	I	really	understand	it?	Too
many	such,	and	a	sense	of	the	whole,	along	with	self-confidence,	topples
(doesn’t	the	solution	to	the	riddle	of	intuition	lie	here?	We	take	as	intuitive
whatever	use	has	made	so	familiar	that	we	casually	apply	it	to	other	ends).

The	first	of	these	six	castles	contains	The	Factor	Theorem,	which	Descartes
came	up	with	in	1637.	We	know	how	helpful	it	is	to	break	down	numbers	into
their	prime	factors	(such	as	6	=	2	·	3)	and	so	can	imagine	that	it	must	be	equally
valuable	to	factor	polynomials.

If	t	is	a	root	of	a	polynomial,	f(x),	by	definition

f(t)	=	0.

We	should	like	to	prove	that	(x	–	t)	is	a	factor	of	f(x)—that	is,	that	(x	–	t)	divides
f(x),	with	no	remainder.

Look	at	the	worst	case.	You	divide	(x	–	t)	into	f(x)	and	get	a	quotient,	Q,	and
a	remainder,	R.	When	you	divide	7	into	45,	for	example,	the	quotient	is	6	and
the	remainder	is	3.	Notice	that	you	can	write

45	=	7	·	6	+	3.

In	the	same	way,	you	can	write

f(x)	=	(x	–	t)	·	Q	+	R.



When	x	=	t,	you	get

f(t)	=	(t	–	t)	·	Q	+	R.

But	f(t)	=	0	(since	t	is	a	root),	and	(t	–	t)	=	0,	so

0	=	0	·	Q	+	R,

which	means	R	=	0	.
There	is	no	remainder,	so	(x	–	t)	is	indeed	a	factor	of	f(x).
Descartes	is	also	the	keeper	of	the	second	castle,	which	contains	his	Rational

Roots	Theorem:	if	a	polynomial	f(x)	has	a	rational	root,	this	theorem	gives	us	a
list	of	the	possible	candidates.

Early	in	our	algebra	careers	we	learn	that	given,	say,

(2x	–	3)(x	+	4)	=	2x2	+	5x	–	12,

i.e.,	that	(2x	–	3)	and	(x	+	4)	are	the	factors	of	2x2	+	5x	–	12—then,	if

2x2	+	5x	–	12	=	0,

it	must	be	true	that	(2x	–	3)(x	+	4)	=	0.
Since	the	only	way	to	have	the	product	of	two	factors	equal	to	zero	is	to	have

at	least	one	of	them	be	zero,

either	2	x	–	3	=	0,	so	x	=	

or				x	+	4	=	0,	so	x	=	–4,

and	we	have	solved	our	polynomial.	Note	the	parallel	to	the	Factor	Theorem:
there	Descartes	saw	that	if	t	is	a	root,	(x	–	t)	is	a	factor.	Here	we	discover	that	if
(x	–	t)	is	a	factor,	t	is	a	root.
The	only	difficult	part	of	this	technique	for	solving	polynomials	by	factoring	is
finding	the	factors—but	a	moment’s	thought	shows	us	that	the	possible
candidates	for	factors	are	determined	by	the	polynomial	itself.	Look	again	at



2x2	+	5x	–	12	=	0

and	set	up	dummy	parentheses	to	signify	its	factors:

(cx	+	d)(ex	+	g)	=	0.

What	could	c	and	e	possibly	be?	They	would	have	to	be	integers	which	multiply
together	to	make	2—so	can	be	only	±1	or	±2.	Similarly,	d	and	g	have	to	multiply
together	to	make	12,	so	can	be	only	(±)	1,	2,	3,	4,	6,	and	12.

Now,	take	any	polynomial

f(x)	=	axn	+	bxn–1	+	…	+	j

and	set	up	even	one	dummy	factor

(mx	+	n);

m	would	have	to	be	a	factor	of	a,	n	would	have	to	be	a	factor	of	j.

f(x)	might,	of	course,	have	no	factors,	but	if	(mx	+	n)	is	a	factor	of	f(x),	then	 ,	a
rational	number,	is	a	root.

So	we	can	say	that	any	rational	root	has	to	have	a	denominator	which	is	a
factor	of	the	coefficient	of	the	highest	term	of	the	polynomial,	and	a	numerator
which	divides	the	polynomial’s	constant	term.

Since	both	the	Factor	Theorem	and	the	Rational	Roots	Theorem	are	true	for
any	polynomial,	they	are	certainly	true	for	the	cubics	we	are	interested	in.

Girolamo	Cardano—one	of	the	strangest	figures	in	all	of	mathematics—lives
in	the	third	castle	(he	flickered	briefly	past	us	on	page	213).	A	century	before
Descartes,	this	thoroughly	Renaissance	man	boasted,	cringed,	calculated,
cheated,	invented,	and	lied	his	way	through	Italian	life.	His	uncle,	daughter-in-
law,	and	protégé	were	all	poisoned,	his	son	beheaded,	and	he	himself	thrown	in
prison	for	blasphemously	casting	the	horoscope	of	Christ.	He	cured	Scotland’s
Archbishop	of	asthma	by	sheer	reason	and	wrote	seven	thousand	pages	on
everything	from	navigation	to	the	black	arts.	You	may	take	the	man’s	curious
measure	from	this	passage	in	his	autobiography,	on	the	marvel	of	movable	type:
“What	lack	we	yet	unless	it	be	the	taking	of	Heaven	by	storm!	Oh,	the	madness
of	men	to	give	heed	to	vanity	rather	than	the	fundamental	things	of	life!	Oh,



what	arrogant	poverty	of	intellectual	humility	not	to	be	moved	to	wonder!”
Cardano	was	the	first	to	reckon	odds;	he	worked	on	the	construction	of	the
pentagon,	on	cubic	and	quartic	equations—and	found	that	if	x3	+	bx2	+	cx	+	d	=
0,	then	the	sum	of	the	polynomial’s	three	roots	will	be	equal	to	–b.	This	is	the
result	we	will	need,	and	here	is	how	he	got	it.

Girolamo	Cardano	(1501–1576),	a	man	whose	modesty	modestly	made	way	for
his	self-confessed	excellence.

Let’s	call	the	three	roots	of	this	cubic	t,	u,	and	v.	By	the	factor	theorem,	we	now
know	that	(x	–	t),	(x	–	u),	and	(x	–	v)	will	each	be	a	factor	of	the	polynomial.
They	must	also	be	its	only	factors,	because	a	cubic	has	exactly	three	roots.	There
can’t	be	a	constant	multiplier,	because	our	polynomial	starts	“x3”,	not	“ax3”.
This	means	that

(x	–	t)	(x	–	u)	(x	–	v)	=	x3	+	bx2	+	cx	+	d.

It	may	seem	like	twiddling	your	thumbs	while	waiting	for	inspiration,	but	let’s
multiply	out	the	left-hand	side:

x3	–	(t	+	u	+	v)	x2	+	(tu	+	tv	+	uv)	x	–	tuv	=	x3	+	bx2	+	cx	+	d.

This	can	only	mean	that	the	two	different-looking	coefficients	of	x2	are	the



same:

–(t	+	u	+	v)	=	b,

or

t	+	u	+	v	=	–b

and	that	is	just	what	Cardano	proved,	between	bouts	of	necromancy	and
vituperation.	One	more	instance,	then,	of	the	algebraist	giving	depth	to	an	object
by	looking	at	it	from	two	different	standpoints.
At	the	fourth	castle	we	take	a	refreshing	pause.	If	a	complex	number	x	is
trigonometrically	cos	Φ	+	i	sin	Φ,	what	will	 	that	is:	 ,	look	like?
We’ll	use	once	again	the	conjugacy	tactic	of	pages	187	and	213:

But	cos2	Φ	+	sin2	Φ	=	1	(as	you	saw	on	page	229),	so

Graphically:

Each	of	our	four	brief	visits	abbreviates	long	swathes	of	time	when	people
puzzled	over	what	we	now	take	for	granted,	just	as	each	of	our	words	condenses



receding	landscapes	of	thought.	At	least	in	mathematics,	ontogeny	recapitulates
phylogeny.

Take,	for	example,	a	neat	technique	which	will	help	in	the	castle	ahead.	Its
inventor	is	no	more	remembered	than	whoever	first	thought	of	putting	in	a	little
cream	and	reducing	it	when	making	a	beurre	blanc,	to	keep	the	sauce	from
breaking	down.	Here,	if	you	have	a	polynomial	equation	with	rational
coefficients,	such	as

ax3	+	rx2	+	sx	+	v	=	0,

you	can	divide	the	equation	by	a	without	changing	its	nature	and	still	leave	its
coefficients	rational:

For	ease,	let	 	=	b,	 	=	c,	and	 	giving	us

x3s	+	bx2	+	cx	+	d	=	0.

As	you’ve	seen,	it’s	just	that	much	easier	to	handle	polynomials	whose	highest
coefficient	is	1—our	gratitude,	then,	for	such	ball-bearing	ingenuities	on	which
grand	enterprises	glide.

The	fifth	castle	is	larger	than	the	others:	it	houses	an	insight	into	the	roots	of
a	cubic	equation	with	rational	coefficients,	like	x3	+	bx2	+	cx	+	d	=	0.	For	we
want	to	show	that	the	paired	forms	you	have	already	seen	several	times	reappear
here:	namely,	if	 	should	happen	to	be	one	root	of	this	polynomial,	then	

	would	have	to	be	another	( 	first	appears	in	some	square	root	extension
field,	Fk,	of	the	rationals,	F;	but	p,	q,	and	w	are	in	Fk–1).

This	pairing	of	roots	seems	a	likely	proposition.	Since	a	cubic	has	three	roots,
if	we	had	found	one	that	was	rational,	r,	then	(x	–	r)	would	be	a	factor	of	the
polynomial,	and	its	paired	factor	would	have	to	be	a	quadratic:

p(x)	=	(x	–	r)	(x2	+	bx	+	c).

The	other	two	roots	would	then	come	out	of	the	quadratic	formula:



so	that	if	one	root	was	 ,	its	mate	would	have	the	paired	sign:	 .
Unfortunately	we	haven’t	yet	found	one	of	the	roots	so	we	don’t	know	that	it	is	a
rational	number,	r.

Or	you	might	think	that	since	we	now	know	that	the	sum	of	the	three	roots	is
equal	to	the	rational	number	–b,	the	only	way	to	rid	ourselves	of	the	irrational	

	in	one	root	must	be	to	add	– 	in	another.	This	is	very	reasonable	(and
turns	out	to	be	true)—but	we	just	don’t	know	enough	about	irrationals	at	this
point	to	be	certain	that	some	quite	different	irrational	added	to	 	might	not
yield	a	rational	sum	(after	all,	the	two	irrationals

0.10110111011110	…

0.01001000100001	…

add	up	to	the	rational	0.111…	=	 ).
Not	proven,	but	hunch	rallies	our	hopes	high	enough	to	make	our	way	though
the	delicate	negotiations	ahead.	We’ll	simply	find	out	what	f(p	+	 )	is,	and
follow	the	consequences.	Then	we’ll	go	back	and	replace	x	by	p	–	 	and
follow	its	consequences:	p	–	 	will	also	turn	out	to	be	a	root	(and	as	a	final
flourish,	a	different	root	from	p	+	 ).

Here	we	go.	Putting	p	+	 	for	x	in

x3	+	bx2	+	cx	+	d	=	0

gives	us

We	must	spell	this	all	out	in	order	to	regroup	and	see	what	we	have:

Rearranging	and	giving	the	names	m	and	n	to	our	clusters,



we	arrive	at

where	m	and	n	both	belong	to	Fk–1.
Both	m	and	n	must	be	0.	Why?	Because	if	n	weren’t,	we	could	divide	by	it,

so

or

which	is	impossible:	 	is	rational	and	 	isn’t	(remember	that	w	belonged	to
Fk–1	but	 	didn’t:	it	is	in	its	own	square	root	extension	field).	So	we	can’t
divide	by	n:	hence	n	=	0.	This	means	that

that	is,	m	=	0	too.
If	we	now	replace	x	by	p	–	 ,	we	will	get	the	same	polypedalian	creature	as

before	(what	might	not	Nichomachus	have	called	it?),	but	with	minus	signs
instead	of	plus	signs	wherever	q	appears	to	an	odd	power,	which	will	be	in	the
coefficient	of	 .

Our	polynomial	turns	into	m	–	n	 ,	and	since	these	are	the	same	m	and	n	which
we	just	proved	were	0,



hence	p	–	 	is	a	root	of	the	polynomial	too—and	a	different	root	at	that:	for	if
p	+	 	=	p	–	 ,	then	 ,	which	would	make	q	=	0,	so	the	original	root	p	+

	would	have	been	just	p,	which	is	in	Fk–1	(contrary	to	our	assumption	that	this
root	first	appeared	in	Fk).

We	have	come	to	the	last	castle,	which	guards	the	pass	to	the	heptagon.	In	it
is	the	secret	of	which	cubics	lack	roots	in	square	root	extension	fields	of	the
rationals.	The	secret	(whose	clues	lay	in	the	previous	castles)	is	this:	if	a	cubic
equation	with	rational	coefficients	has	no	rational	roots,	then	in	fact	none	of	its
roots	lie	in	any	square	root	extension	field,	Fk,	of	the	rationals.	For	assume	that
b,	c,	and	d	are	rational,	and	that	one	of	the	roots	of

x3	+	bx2	+	cx	+	d	=	0

does	indeed	appear	for	the	first	time	in	some	Fk,	and	so	looks	like	p	+	 .	The
fifth	castle’s	guardian	assures	us	that	p	–	 	is	also	a	root;	the	Fundamental
Theorem	of	Algebra	(page	211)	that	there	must	be	a	third	root—call	it	v;	and
Cardano	then	exclaims	that	these	three	roots	must	add	up	to	–b:

in	other	words,

2p	+	v	=	–b

or

v	=	–b	–	2p.

But	–b	–	2p	appears	in	Fk–1	(since	b	is	rational	and	hence	is	in	F	and	every
square	root	extension	field	of	F,	and	p	was	explicitly	stated	on	page	369	to	be	in
Fk–1),	contradicting	our	assumption	that	no	root	of	our	equation	appears	until	Fk.
The	sixth	castle	has	yielded	up	its	secret	and	we	are	through	the	pass.	Now	we
need	only	reduce	the	heptagon’s	equation	to	a	cubic	and	find	that	it	has	rational
coefficients	but	no	rational	roots.



(b)	Reducing	the	heptagon’s	equation.
Watch	how	all	the	parts	now	click	into	place.	x7	–	1	=	0	is	indeed	an	equation
with	rational	coefficients—but	it	isn’t	a	cubic.	A	sequence	of	really	artful	moves
(Renaissance	born,	in	the	spirit	of	projecting	the	vast	down	to	human	scale)	will
draw	a	cubic	out	of	it.

We	know	that	1	is	a	root	of	this	equation,	so	by	our	first	discovery,	(x	–	1)	is
a	factor	of	x7	–	1.	Since	it	is	a	factor,	we	can	find	the	other	factor	by	dividing:

(you	can	verify	this	by	multiplying	the	right-hand	side	by	x	–	1).
The	six	other	roots	of	x7	–	1	will	come	from

X6+	X5+	X4+	X3+	X2+	X	+	1	=	0.

The	need	for	a	cubic,	along	with	informed	tinkering,	leads	to	the	next	step:
dividing	both	sides	of	this	new	equation	by	x3	(secure	in	the	knowledge	that	x	≠
0:	since	if	it	were,	the	equation	above	would	tell	us	that	1	=	0).	This	gives	us:

The	first	four	terms	are	comfortable,	the	last	three	disturbing.	To	deal	with	them,
here	is	a	cunning	but	legitimate	rearrangement:

Why	do	this?	Because—and	this	was	an	innovation	as	slick	as	the	curve	ball—
this	equation	can	in	turn	be	transformed	into

If	you	expand	the	terms	that	need	expansion,	you	will	see	that	the	cancellations
and	sums	of	like	terms	return	us	to	the	previous	equation.	Easy	to	check—but



how	did	anyone	ever	think	of	doing	it?	One	of	the	trade	secrets	of	mathematics
is	to	add	zero	to	an	expression	in	the	useful	form	of	what-you-want	plus	its
additive	inverse.

Simplify	and	rearrange	once	more:

Still	too	bulky	for	comfort,	but	squint	your	eyes	to	see	a	simple	cubic	with
rational	coefficients,	disguised	by	a	complicated	variable.	All	we	really	have
here	is

y3	+	y2	–	2y	–	1	=	0

where	 .
In	all	of	these	contortions,	we	don’t	want	to	lose	sight	of	what	matters:	the

latent	heptagon.	We	have	just	arrived	at	 :	that	x	is	still	a	vertex	of	our
heptagon	and	that	x	in	trigonometric	form	is	still	cos	φ	+	i	sin	φ

We	brought	along	from	the	fourth	castle	the	little	plaything

so

If	we	can’t	construct	y,	then	we	can’t	construct	the	length	2	cos	Φ,	and
therefore	can’t	construct	cos	Φ	through	bisecting,	and	so	cannot	construct	the



heptagon	with	Euclidean	tools.
So	it	all	comes	down	to	showing	that

y3	+	y2	–	2y	–	1	=	0

has	no	rational	root.
Suppose	it	had.	Were	 	(a	rational	in	lowest	terms)	a	root	of	this	equation,	then,
from	the	second	castle,	r	must	be	a	factor	of	–1	and	s	of	1:	in	other	words,	r	must
be	1	or	–1	and	so	must	s,	so	that	 	=	1	or	 =	–1.	Those	are	the	only	possible
rational	roots	of	our	latest	equation.

Yet	if	you	try	each,	you	find

f(1)	=	13	+	12	–	2	·	1	–	1	=	–1;	which	isn’t	0,

f(–1)	=	(–1)3	+	(–1)2	–	2	·	(–1)	–1	=	1;	which	also	isn’t	0.

Neither	is	a	root;	hence,	our	equation	has	no	rational	root—and	on	this	slender
outcome	of	a	long	campaign,	the	battle	is	won:	the	heptagon	cannot	be
constructed	by	straightedge	and	compass.	As	Wellington	said	of	Waterloo:	“It
has	been	a	damn’d	nice	thing—the	nearest-run	thing	you	ever	saw	in	your	life
…”

Afterthoughts	in	the	tent,	or	You	Can’t	Get	There	from	Here.	Why	do	some
parts	of	mathematics	need	so	much	more	work	than	others?	Why	was	our	route
to	this	result	so	devious	(all	those	facts	about	cubics	to	capture	a	general	result),
when	some	that	seem	equally	inaccessible	turn	out	to	be	next	door,	and	others
that	ought	to	be	neighbors	have	still	to	be	reached?	We	hardly	yet	grasp	the	lay
of	the	land.	The	long	frontier	of	mathematics	expands	like	the	Roman	Empire’s,
through	a	shapeless	unknown.	The	Teutoberg	Forest	may	be	just	over	the
horizon.

To	Chapter	Eight

1.	[to	page	267]	Finding	invariants	on	the	projective	plane.

To	gauge	just	how	bad	things	are	on	the	projective	plane,	notice	that	we	can
even	project	any	three	points	on	one	line	onto	any	three	points	of	your	choice	on
another!	Let	A,	B,	and	C	be	arbitrary	points	on	a	line	l



and	A´,	B´,	C´	equally	arbitrary	points	on	another	line	m:

With	the	aid	once	again	of	a	subtle	diagonal,	a	chain	of	two	perspectivities	will
do	the	work.	Draw	this	diagonal	n	from	A´	to	C,	then	construct	the	lines	A´A
and	B´B,	which	will	meet	at	some	point	O	(this	is	projective	geometry:	any	two
lines	must	meet):

That	line,	OB´B,	must	also	meet	the	diagonal	line	n	somewhere:	call	it	B”.

Next	construct	the	lines	OC	and	CC´.	Line	CC´	will	meet	BB´	at	a	point	P:



Finally,	draw	PA.

With	O	as	our	first	center	of	perspectivity,	the	points	A,	B,	and	C	on	 	are	sent
to	A´,	B”,	and	C,	respectively,	on	n.	Let’s	write—as	if	O	were	a	function—
O(ABC)	=	A´B”C.	Now	with	P	as	the	second	center	of	perspectivity,	the	points
A´,	B”,	and	C	on	n	go	to	A´,	B´,	and	´	on	m:	P(A´B”C.)	=	A´B´C´.	Do	O,	then	P,
and	we	send	A,´	B,´	and	C´	to	A´,	B´,	and	C´—as	desired.	We	could	also	write:
P(O(A,	B,	C))	=	A´,	B´,	C´.

Clever,	but	dreadful.	The	line	n	stands,	like	Schumann,	between	form	and
shadow,	and	only	confirms	our	suspicion	that	nothing	on	the	projective	plane	is
stable.	But	to	indulge	in	mathematics	is	to	have	faith	in	pattern:	faith	that	with
enough—or	the	right	kind	of—probing,	fixity	will	emerge	from	change.

The	very	nature	of	perspectivity	means	there	can	be	no	similar	triangles	on
the	projective	plane:	angles	won’t	stay	the	same	under	projection,	nor	lengths,	so
there	can	be	no	question	of	equal	ratios.	But	take,	as	Melville	suggests	in	Moby
Dick,	a	deeper	cut.	Let’s	look	not	at	three	but	at	an	arbitrary	four	points	on	a	line
.	Send	 	to	any	other	line	m	by	a	perspectivity	from	some	point	O,	 	m,	so	that
A,	B,	C,	and	D	go	to	four	points	A´,	B´,	C´,	and	D´	on	m:	O(A,	B,	C,	D)	=	A´,	B
´,	C´,	D´.



Is	anything	invariant	here,	no	matter	how	far	apart	 	and	m	may	be,	or	how
differently	inclined	to	one	another?	As	long	ago	as	the	fourth	century	A.D.,
Pappus	of	Alexandria	(whom	you	saw	fleetingly	in	Chapter	Five)	uncovered	a
buried	relation—in	the	context,	however,	of	Euclidean	geometry,	with	its	native
angles,	lengths,	and	areas.	Let’s	descend	from	the	projective	plane	to	the
Euclidean	to	see	what	he	found—though	we	will	put	it	(as	did	the	nineteenth-
century	German	mathematician	Augustus	Ferdinand	Möbius)	in	terms	of	the
trigonometry	we	mastered	in	Chapter	Seven.

Extract	from	our	diagram	ΔOAC,	for	example:

Its	area	is	half	the	base,	CA,	times	the	altitude	h	to	that	base	from	O.

We	would,	of	course,	have	gotten	the	same	area	had	we	chosen	OA	as	the	base,
with	the	altitude	k	to	it	from	C:



Trigonometry	reminds	us	that	the	sine	of	an	angle	is	the	ratio	of	the	lengths:	
,	in	a	right	triangle,	so	that	here	sin	 	This	means	that	k	=	OC	·

sin	∠AOC,	so	that	we	could	if	we	wanted	rewrite	the	triangle’s	area	as

The	two	expressions	for	area	must	be	equal:

From	this	equation	it	follows	that

CA	·	h	=	OA	·	OC	·	sin	∠AOC.

Go	through	precisely	the	same	maneuvers	for	ΔOCB	to	get

CB	·	h	=	OB	·	OC	·	sin	∠COB.

Should	we	then	care	to	find	the	ratio	of	CA	to	CB,	we	would	get

Past	adventures	will	give	you	confidence	that	we	are	winding	our	way	into
the	heart	of	a	labyrinth	for	the	sake	of	coming	out	enriched	on	the	other	side.

Repeat	these	operations	for	 	ODA	and	 	ODB:



and

So	that—as	before—

No	gap	in	the	hedge	appears—until	we	take	the	ratio	of	our	two	ratios:

This	double	abstraction	has	vaporized	the	lengths,	leaving	only	the	sines	of
angles	behind—but	all	these	angles	at	O	were	determined	by	the	original	four
points	on	line	 :	they	won’t	change	no	matter	what	line	m	we	draw,	and	neither
will	their	sines.	That	ratio	of	ratios,	or	cross	ratio,	as	it	is	called,	is	a	constant!	It
is	the	same	whether	we	look	at	A,	B,	C,	D	on	 	or	at	A´,	B´,	C´,	D´	on	m,	hence

We	have	found	the	hidden	invariance	in	projecting	an	arbitrary	four	points	on
one	line	to	another	perspective	with	it.	What’s	more,	this	invariance	carries
through	however	long	a	chain	of	perspectivities	we	wish	to	make:	if	

,	then,



Not	ratios,	then,	as	with	similar	triangles,	but	a	ratio	of	ratios	is	what	remains
constant	in	these	projective	transformations	within	Euclidean	geometry.	It
suggests	that	the	cross	ratio	is	a	native	of	the	projective	plane,	glimpsed	here	in
its	travels	abroad.	The	hidden	connection	it	makes	(as	Heraclitus	told	us)	is
stronger	than	one	we	can	see,	but	might	stand	out	clearly	in	its	natural	setting.
To	bring	it	out	there,	a	wonderfully	clever	way	arose	of	importing	coordinates	to
the	projective	plane—but	to	fetch	from	that	far	away	would	need	another
voyage.

To	Chapter	Nine

1.	[to	page	307]	The	problem	with	terminating
decimals.

Dedekind	pointed	out	a	problem	with	the	1–1	correspondence	that	Cantor	had
proposed	between	the	points	of	the	square	and	those	on	the	line.	It	involved	the
awkward	fact	that	“terminating	decimals,”	such	as	0.3 	(for	 	can	always	be
represented	in	another	way—in	this	case,	0.3 	=	0.2

Why	is	this	so?	Let’s	look	at	a	straightforward	instance:	the	number	1.
Written	in	full,	this	is	1. .	We	claim,	however—farfetched	as	it	may	seem—that

A	delightful	proof	follows	just	from	asking	what	0.9	is—or	to	put	it
mathematically:	solve	for	x	when



Multiply	each	side	of	this	equation	by	10.	Since	multiplying	by	10	shifts	the
digits	one	unit	to	the	left,

we	therefore	have

Now	subtract	the	first	equation	from	the	latest	one:

and	dividing	both	sides	by	9	reveals	that	x	=	1.
This	ambiguity	in	the	naming	of	a	point	on	the	line	could	be	simply	resolved

by	always	choosing	the	“non-terminating”	form	(in	our	example,	 ).	But	this
choice	led	to	a	subtle	dilemma.	What	if	the	point	on	the	line	which	we	want	to
match	with	a	point	in	the	square	is,	say,	 	By	Cantor’s	proposed
correspondence	this	would	go	to	 	But	since	 	written	so:

that	point	must	in	its	turn	be	sent	to	the	point	on	the	line

a	very	different	point	from	the	one	originally	sent	to	the	point	on	the	plane,
destroying	the	1–1	correspondence.	Since	↔	runs	in	both	directions,	you	must
return	to	the	point	you	started	out	from.	But	here	you	don’t;	you	end	up	quite	far
away:

It	looked	as	if	in	all	his	exertions,	Cantor	had	momentarily	but	disastrously
fallen	asleep,	and	as	Maurolico	commented	centuries	before:	“A	little	sleepiness
and	old	errors	are	propagated,	new	ones	introduced.”	But	Cantor	awoke	with	an



evasion	to	equal	the	snare	his	friend	had	discovered.	Instead	of	making	the	x-
and	y-coordinates	of	the	point	on	the	plane	from	the	odd	and	even	entries,
respectively,	of	the	decimal	expression	for	the	point	on	the	line,	he	preprocessed
that	expression	into	strings:	any	non-zero	digit	is	a	string,	all	by	itself,	and	when
a	zero	first	appears	it	begins	a	new	string	which	ends	as	soon	as	a	non-zero	digit
appears.	Then	send	alternate	strings	to	these	two	coordinates.

If	the	point	on	the	line	is,	for	example,	 	it	breaks	up	into	strings	like
this:

and	it	would	be	matched	to	the	point	in	the	square	with	coordinates

Try	your	hand	at	finding	the	coordinates	of	the	point	that	corresponds	to
0.3040005678095…
Solution:	breaking	the	decimal	into	strings	gives	us

and	this	would	be	sent	to	the	pair	of	coordinates

x	=	0.30005709…

y	=	0.04685…

2.	[to	page	320]	The	set	of	all	subsets	of	 	has	the	same	cardinality	as	the	set
of	real	numbers.

In	order	to	show	that	these	two	sets	have	the	same	cardinality,	we	need	to	make
a	1–1	correspondence	between	their	members.

One	of	the	artful	dodges	you	learn	in	the	guild	is	to	keep	simplifying	until
you	actually	have	to	do	some	work.	We	can	certainly	simplify	our	problem	here
by	recalling	(from	page	303)	that	there	is	a	1–1	correspondence	between	 	and
the	elements	of	the	open	interval	(0,	1)—so	we	need	only	try	to	match	up	the
elements	of	(0,	1)	and	those	of	 .

The	theorem	on	page	319,	proved	by	Schroeder	and	Bernstein	in	1898,
allows	us	to	simplify	further.	They	proved	that	two	sets,	A	and	B,	have	the	same



cardinality	if	and	only	if

card	A	≤	card	B

and

card	B	≤	card	A.

Taking	A	as	(0,	1),	B	as	 ,	the	set	of	all	subsets	of	 ,	this	means	that	we	need
only	find	some	way	of	making	a	correspondence	between	each	decimal	in	(0,	1)
and	a	different	subset	of	 ;	then	making	a	correspondence	between	each	subset
of	 	and	a	distinct	decimal	in	(0,	1).

We	can	no	longer	put	off	the	actual	work,	but	as	often	happens,	find	it
attractive	once	begun.	You	probably	know	that	any	number	can	be	written	with
just	0s	and	1s	(this	is	what	your	computer	does,	for	which—or	whom—0	is	a
switch	in	the	“off”	and	1	in	the	“on”	position).	So	0	is	0	and	1	is	1,	but	2	is	10,	3
is	11,	4	is	100,	because	each	number	is	made	up	by	adding	together	no	or	one	of
the	successive	powers	of	2	(17,	for	example,	is	16	+	1,	i.e.,	24	+	20,	or	1	·	24	+	0
·	23	+	0	·	22	+	0	·	21	+	1	·	20,	so	10001).	The	Rosetta	Stone	begins	like	this:

Numbers
base	10

Numbers	in	Binary

0 0
1 1
2 10	(i.e.,	1	·	21	+	0	·	20)
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010



You	can	even	use	this	binary	notation	for	decimals:

It	may	take	some	work	to	re-express	any	decimal	in	terms	of	fractions	whose
denominators	are	successive	powers	of	2,	but	it	can	always	be	done.	We’ll	need
this.

Finally,	we	need	to	think	of	any	subset	S	of	 	from	a	rather	interesting	point
of	view.	S	has	various	numbers	in	it:	perhaps	none,	if	S	=	Ø;	perhaps	all,	if	S	=	
—but	empty,	finite,	or	infinite,	we	can	always	say	for	any	natural	number	n

whether	n	is	in	S	or	not.	If	n	is	in	S,	we’ll	assign	it	the	number	1;	if	it	isn’t,	it
must	bear	the	mark	0.

This	means	that	to	any	subset	S	of	 	corresponds	an	infinite	sequence	of	0s
and	1s.	Take	the	set	S	=	{3,	5,	10},	for	example.	Here	only	3,	5,	and	10	have	the
number	1	assigned	to	them—all	the	rest	of	the	naturals	get	0.	This	means	that	to
S	=	{3,	5,	10}	corresponds	to	the	infinite	sequence

0,	0,	1,	0,	1,	0,	0,	0,	0,	1,	0,	0,	0,	…

We’re	now	ready	for	the	first	of	our	two	steps:	to	show	that	card	(0,	1)	≤	card	
.	We’ll	do	this	by	sending	each	decimal	in	(0,	1)	to	a	different	subset	S	of	 ,

as	follows.	First	rewrite	the	decimal	in	binary	form;	then	look	at	that	binary	form
as	a	sequence	of	0s	and	1s,	and	match	this	sequence	to	the	unique	subset	S	of	
in	the	way	described.	So	 ,	for	example,	is	.010101	…	in	binary:	the	sequence,
that	is,

0,	1,	0,	1,	0,	1,	…

which	corresponds	to	the	set	{2,	4,	6,	8,	…}.	In	other	words,	the	element	 	in	(0,
1)	corresponds	to	the	set	of	even	numbers.	 ,	you’ll	find,	is	matched	to	the	subset
{2}.	In	this	way,	every	decimal	in	(0,	1)	corresponds	to	a	different	subset	of	 ,
so



card	 	=	card	(0,	1)	≤	card	 .

It	only	remains	(thanks	to	Schroeder	and	Bernstein)	to	show	that	card	 	≤
card	(0,	1).	But	we	really	already	know	how	to	do	this:	the	subset	{3,	5,	10}
corresponds,	as	we	saw	above,	to	the	infinite	sequence

0,	0,	1,	0,	1,	0,	0,	0,	0,	1,	0,	0,	0,	…

so	it	is	the	most	natural	thing	in	the	world	(once	you	have	accustomed	yourself
to	this	world)	to	match	that	sequence	to	the	ordinary	decimal

.0010100001

In	this	way,	each	and	every	subset	of	 	corresponds	to	a	different	decimal
made	up	exclusively	of	0s	and	1s—that	is,	a	decimal	between	0.0	and	0.1,	which
is	contained	in	the	interval	from	0	to	1—hence,	we	have	card	 	≤	card	(0,	1).
These	two	parts	establish	that

card	 	=	card	(0,	1)	=	card	 :

there	are	exactly	as	many	real	numbers	as	there	are	subsets	of	the	naturals.
Two	slight	technicalities	may	be	sticking	in	your	throat,	which	we	will

remove	by	passes	more	canny	than	the	Heimlich	Maneuver.	We	had	been
dealing	throughout	with	the	open	interval	(0,	1):	the	set	of	all	decimals	between
0	and	1	but	not	including	either	0	or	1.	In	our	last	series	of	steps,	however,	the
empty	set	would	correspond	to	the	sequence

0,	0,	0,	…

and	hence	to	the	decimal	 ,	which	isn’t	in	(0,	1).
We	will	simply	show	(using	Schroeder-Bernstein	again)	that	adding	this	extra

element	changes	nothing,	as	far	as	the	cardinality	goes:

card	[0,	1)	=	card	(0,	1)

(where	“[0,	1)”	means	the	set	of	all	decimals	from	0	to	1,	including	0	but
excluding	1).	We	therefore	need	to	show:



card	(0,	1)	≤	card	[0,	1)

and

card	[0,	1)	≤	card	(0,	1).

The	first	inequality	obviously	holds:	every	element	in	(0,	1)	is	also	in	[0,	1).
As	for	the	second,

card	[0,	1)	≤	card	 	=	card	(0,	1).

Since

card	(0,	1)	≤	card	[0,	1)	≤	card	(0,	1),

by	Schroeder-Bernstein	the	two	sets	have	the	same	cardinality,	which	is	also
card	 .	Hence

card	 	=	card	 .

The	other	technicality	concerns	the	terminating	and	the	nonterminating	forms
of	binary	decimals:	the	same	sort	of	problem	we	found	and	solved	in	the	first
part	of	this	chapter’s	appendix.

The	point	0.1 	in	(0,	1)	can	also	be	written	0.0 .	What	subset	in	 	do	we
match	it	up	with?	Let’s	just	convene	(as	we	did	before)	always	to	choose	the
“non-terminating”	form—so	here,	0.01;	and	this	is	unambiguously	matched	with
the	subset	of	 	containing	every	natural	number	except	1.	Thus	indeed

card	(0,	1)	=	card	 .

3.	[to	page	324]	Cantor’s	“proof”	that	every	cardinal	number	is	an	aleph.
Having	distinguished	“consistent	collections,”	or	sets,	from	collections	that	were
in	some	sense	“too	large”	to	be	sets—the	inconsistent	collections—Cantor
thought	he	could	use	the	latter	to	prove	what	had	until	then	eluded	him:	that	his
alephs	were	the	only	kinds	of	cardinals	there	were.	This	would	mean	that	the
cardinality	of	power	sets	too	must	be	alephs,	so	that	they	sat	ranged	in	ordered
tiers	with	other	sets;	and	the	continuum	in	particular,	which	corresponded	to	the



set	of	all	subsets	of	the	natural	numbers,	would	have	an	aleph	for	its	size—
though	which	aleph	this	was	(perhaps	the	cherished	ℵ1,	as	he	hoped)	was	still
elusive.

To	carry	through	his	proof	Cantor	had	to	make	three	assumptions.

Assumption	One:	Only	sets	(that	is,	only	consistent	collections)	have	cardinal
numbers.

As	assumptions	go,	this	one	seems	plausible	enough.	It	bars	from
consideration	such	monsters	as	the	cardinality	of	the	“set”	of	all	sets.	You	may
feel	that,	in	the	absence	of	intuition,	this	kind	of	assumption	has	a	merely	legal
air	to	it,	like	a	stipulation	that	asks	all	parties	to	the	discussion	for	agreement,
just	so	as	to	move	on	to	matters	more	important.

Assumption	Two:	Two	collections	with	a	1–1	correspondence	between	their	members
are	either	both	sets	or	both	inconsistent	collections.

If	we	are	going	to	introduce	a	distinction	into	the	kinds	of	collection	and	still
keep	the	notion	of	1–1	correspondence	intact,	this	assumption	seems	both
reasonable	and	necessary.

Assumption	Three:	If	a	collection	V	has	no	aleph	as	its	cardinal	number,	then	the
whole	of	Ω	(the	collection	of	all	the	ordinals)	corresponds	to	some	subcollection	V´
of	V.

When	Cantor	wrote	to	Dedekind	on	July	28,	1899,	detailing	his	proof,	he
introduced	this	assumption	with	the	words	“We	readily	see	…”	Such	a	phrase	is
notorious	among	mathematicians	as	are	its	companions	in	infamy,	“It	is	obvious
that	…”	and	“Now	clearly	…”;	they	mean	that	the	reader	has	hours	or	days	of
head-splitting	labor	ahead	to	bring	light	to	this	darkness—after	which	he	may
learn	that	the	writer	himself	no	longer	remembers	why	it	was	obvious.

In	addition	to	these	assumptions,	Cantor	drew	on	Burali-Forti’s	result	that	the
collection	Ω	was	inconsistent,	and	on	the	reasonable	observation	(which	we
have	been	taking	for	granted	all	along)	that	every	subcollection	of	a	set	is	again
a	set	(in	fact,	a	“subset”).	Hence	if	a	subcollection	isn’t	a	set,	neither	can	be	that
collection	of	which	it	is	a	part.	This	means	that	if	a	collection	X	contains	a
subcollection	which	is	in	1–1	correspondence	with	Ω,	then	by	Assumption	Two
this	subcollection	of	X	is	inconsistent—and	hence	so	is	X.

Here	then	is	Cantor’s	brief	proof	of	the



“Theorem”:	Every	cardinal	number	is	an	aleph.

Proof:

1.	If	a	collection	V	has	no	aleph	as	its	cardinal	number,	then	(by	Assumption
Three)	the	whole	of	Ω	is	in	1–1	correspondence	with	some	subcollection	V
´	of	V.

2.	Hence	(by	what	we	just	remarked),	V	is	inconsistent.
3.	The	contrapositive	is:	if	V	is	a	set	(a	consistent	collection),	then	V	has	an
aleph	as	its	cardinal	number.

4.	Hence	(by	Assumption	One),	all	cardinal	numbers	are	alephs.

In	mountains,	as	Nietzsche	pointed	out,	the	shortest	way	is	from	peak	to	peak
—but	for	that	you	need	long	legs.	Whose	are	adequate	for	this	crevasse-ridden
landscape?	Cantor’s	assumptions	in	his	valiant	effort	have	been	thought	through
and	modified	since.	His	“inconsistent	collections”	are	now	“classes”:	collections
too	big	to	be	sets.	Does	this	make	them	more	thinkable?	As	you	saw,	Zermelo’s
Axiom	of	Choice	is	an	attempt	to	bridge	all	at	once	over	Cantor’s	third
assumption.	Would	you	buy	it?	A	number	of	axioms	have	been	marshalled	from
which	to	derive	modern	versions	of	Cantor’s	proof.	How	are	we	to	hold	their
unintuitive	truths?

A	work	of	art	needn’t	be	finished	to	be	great:	“Tell	me	if	ever	anything	was
done!”	We	are	all	part	of	this	one’s	onward	expansion.



Annex

1.	[to	“An	Invitation,”	page	2]	Mahāvīrā’s	problem	Letting	x	=	the	total
number	of	pearls,	we	have:

1/3x	+	1/6	x	+	1/2(1/2	+	1/4	+	1/8	+	1/16	+	1/32	+	1/64)x	=	x	–	1161,

or

1/2	x	+	1/2(63/64)x	=	x	–1161,	so

(1/2	+	63/128)x	=	x	–	1161,	i.e.,	1/128x	=	1161	and	x	=	148,608.

As	David	Keegan,	one	of	the	book’s	readers,	pointed	out,	taking	the	average
pearl	to	have	a	diameter	of	1/4",	the	young	lady’s	necklace	would	have	been
more	than	a	mile	long.	This	may	account	for	the	quarrel,	or	for	a	pearl	necklace
also	being	called	a	choker.

2.	[to	Chapter	Three,	page	83]	The	discovery	of	the	largest	twin-primes	to
date.

David	Underbakke	and	Phil	Carmody	found	these	titanic	twins	on	March	27,
2001,	in	Minnesota.	The	work	involved	sieving	on	several	machines	for	many
gigaherz-months—but	the	sieving	was	much	more	sophisticated	than	that	of
Eratosthenes,	and	the	cleverness	lay	in	knowing	where	to	look,	how	to	search
economically,	and	how	to	test	whether	a	candidate	was	prime.	Their	research,	in
contemporary	style,	is	compounded	with	that	of	many	others.

Here	is	the	announcement	they	e-mailed	out.

X-External-Networks:	yes
Precedence:	bulk
Approved-By:	“Victor	S.	Miller”	<victor@IDACCR.ORG>
Date:	Thu,	29	Mar	2001	13:33:58	-0500
Reply-To:	Phil	Carmody	<fatphil@altavista.com>
Sender:	Number	Theory	List	<NMBRTHRY@LISTSERV.NODAK	.EDU>
From:	Phil	Carmody	<fatphil@altavista.com>



Subject:	Worlds	largest	twins	found	in	Minnesota
To:	NMBRTHRY@LISTSERV.NODAK.EDU

Four	months	ago,	to	the	day,	David	Underbakke	was	pleased	to	announce[1]	the
discovery	of	the	largest	known	twin	primes[2],	665551035*2^80025+/–1,	with
24099	digits.	The	above	was	achieved	after	searching	less	than	the	expected
search-space,	so,	feeling	encouraged	by	that,	we	decided	to	collaborate	again	to
attack	a	higher	target.

The	target	has	finally	been	reached:	at	29603	digits	each,	1807318575	*
2^98305	+/–	1	are	twin	primes.

One	of	the	lessons	learnt	from	the	former	search	was	the	importance	of
thorough	pre-sieving	of	the	ranges	to	remove	all	candidates	with	small	(<10^14
or	similar	magnitude)	prime	factors.	Pre-sieving	reduced	the	number	of	lengthy
probable-primality	tests	required.	This	is	doubly	effective	when	searching
specifically	for	twin	primes,	as	the	density	improvement	#twins/PrP-test	is
squared	(e.g.	sieving	further	to	increase	the	single-prime	PrP	density	by	10%
increases	the	twin	density	by	21%).

After	some	discussion,	we	came	to	the	conclusion	that	we	could	get	the	most
from	the	sieving	stage	by	again	looking	at	primes	of	the	form	K.2^N+/–1,	and
by	choosing	an	exponent	N	optimised	for	the	sieving	stage.	Phil	had	in	the	past
used	this	technique,	and	we	decided	to	simply	use	the	same	exponent,	N	=
98305	=	0x18001.	As	before,	a	dedicated	twin	sieve	was	used,	using	Phil’s	own
code	on	his	Alpha	21164	(which	was	hand-optimised	specifically	for	this
exponent)	and	using	Paul	Jobling’s	NewPGen[3],	a	general-purpose	pre-siever.

An	arbitrary	odd	number	of	this	size	(assuming	the	mean	K	tested	is	of	order
K=10^9)	is	prime	with	probability	P(single)	=	2/ln(10/9.2/98305)	=	1/34080

Therefore	the	probability	of	finding	a	twin	prime	was	>P(Twin)	=	P(single)^2
*	1.32	=	1/880M	where	the	adjustment	factor	1.32	is	twice	the	twin	prime
constant[4]	(and	M	is	million).

Therefore	an	odd	K	range	of	1	.	.	.	2.09G	(i.e	1045M	candidates)	could	be
expected	to	yield	one	twin.	(In	retrospect,	it	appears	our	failure	potential	was	a
bit	high	perhaps!)

We	sieved	for	about	2GHz-months	on	several	machines,	until	we	had	sieved
up	to	p=50T.	Using	Merten’s	theorem[5],	we	can	predict	that	a	simple	sieve	to
p=50T	increases	the	density	for	arbitrary	numbers	by	1.781*ln(50*10^12)	=
56.2,	but	a	twin	sieve	increases	the	density	by	56.2^2/1.32	=	2390.	However,	we
were	not	checking	even	numbers	anyway,	by	the	construction	of	our	expression,
so	the	real	density	increases	ought	to	be	1:28.1	and	1:1195,	respectively.



This	predicts	a	candidate	count	within	.1%	of	what	we	ended	up	with	–
875000	candidates.

After	that	it	was	‘simply’	a	matter	of	distributing	the	work	across	the	various
machines.	The	probable	primality	tests	were	done	using	George	Woltmann’s
PRP	program.	In	order	to	give	Phil’s	Alpha	something	to	do	once	the	sieving
was	complete,	we	opted	to	do	the	+1	test	first	(for	the	Alpha	to	prove	formally)
and	only	perform	the	–1	test	on	PrPs	from	the	+1	test.

As	hinted	at	before,	the	bulk	of	the	work	began	about	four	months	ago	(Phil
started	the	sieve	in	advance).	David	was	able	to	put	between	10	and	15GHz	onto
the	project	on	average,	and	Phil	about	half	that.	During	the	search	we	found
many	hundred	solo	primes,	but	a	few	weeks	ago,	as	we	started	handing	out	the
final	blocks	>to	the	various	PCs,	it	looked	as	if	the	twin	search	would	be
fruitless.	However,	yesterday,	with	perfect	thriller	timing,	PRP	provided	a
positive	result	to	the	–1	test	on	one	of	David’s	machines.	It	was	a	very	quick
matter	to	then	prove	the	–1	case	formally[6]	using	Yves	Gallot’s	Proth,	and	the
+1	case[7]	using	Phil’s	own	code.

Our	thanks	go	to	the	authors	of	the	software	mentioned	above	and	to
Professor	Caldwell	for	the	Prime	Pages	website,	without	which	we’d	not	have
been	equipped	to	make	our	predictions	(and	thus	know	where	to	aim).

David	Underbakke,
Phil	Carmody	–	28/03/2001
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3.	[to	Chapter	Four,	page	104]	The	formula	for	the	nth	k-gonal	number.

For	our	proof	that	the	nth	k-gonal	number,	 ,	is

we’ll	go	back	to	our	study	of	how	a	pentagonal	number	grew	from	the	one
before	it— 	from	 —and	notice	that	what	was	structurally	true	there	remains
true	for	any	k-gon:	the	number	of	dots	on	a	side	will	increase	by	1	in	this	growth.
	has	n	dots	on	a	side,	 	has	n	+	1.	Since	the	new	figure	is	made	from	the	old

by	extending	two	old	sides	and	then	completing	the	circuit	of	sides	to	the	total	k,
it	must	always	be	that	k	–	2	new	sides	are	made	for	the	new	figure.

That	means	we	are	adding	(k	–	2)(n	+	1)	new	dots—but	with	the	same
qualification	as	in	the	text	on	page	100	about	shared	dots	at	corners—of	which
there	will	be	k	–	3	new	ones.	The	number	of	dots	in	Pk	therefore	is:



Too	much	is	happening	here	too	fast.	We	need	any	help	we	can	get	to	make
sense	of	it	all.	Let’s	simplify	a	bit	by	letting	g	stand	for	k	–	2,	as	it	did	before.
This	gives	us

and	since	k	–	3	=	k	–	2	–	1,	which	is	g	–	1,	this	artful	flick	of	the	wrist	gives	us

or	just

This	tells	us	how	the	(n	+	1)th	k-gonal	number	grows	from	the	next	smaller.
What	we’d	like	to	do,	however,	is	watch	this	clamber	up	from	the	very	first	k-
gonal	number,	Pk	(which	is	always	1:	the	single	dot	·).

Here	is	the	tower	of	gymnasts:

It	is	tempting	now	to	add	them	all	together,	but	one	last	bit	of	juggling	will	save
us	a	lot	of	work.	Let’s	just	rearrange	our	tower	by	moving	the	first	term	on	the
right	of	each	equation	to	the	left,	via	subtraction.	In	this	way	all	but	two	of	the
terms	on	the	left	will	cancel	out	when	we	add	(the	canceling	occurs	“on	the
diagonal”):



Now	add:

Re-adding	 	to	the	right-hand	side	and	undoing	the	last	contortions,	this	is

Since	 	is	1,	and	g	is	k	–	2,	we	have

which,	with	a	final	trumpeting	from	the	elephants,	becomes

just	as	we’d	hoped.	Our	intuition	may	have	leapt	at	the	infinite	from	the	corner
of	a	table,	but	our	proof	has	encompassed	it	smoothly	through	the	flexible	power
of	thought.

4.	[to	Chapter	Four,	pages	20–21]:	To	see	how	different	these	two	ways	of
grouping	are,	notice	that	34

5
,	read	with	associativity	to	the	right,	is	3(4

5
),	or

31024;	but	(34)5	=	815—a	much	smaller	number.

Terry	McIntyre,	one	of	our	readers,	calculated	the	values	of	left-	and	right-
associativity	for	the	tower	of	x’s,	with	x	=	√2,	to	various	iterations	(using	a	C++
program),	with	these	interesting	results:

Right	association:	x(x(x	.	.	.))



Tower	of	2	x’s:	1.632527
Tower	of	3	x’s:	1.760840
Tower	of	4	x’s:	1.840911
Tower	of	5	x’s:	1.892713
Tower	of	6	x’s:	1.927000
Tower	of	7	x’s:	1.950035
Tower	of	8	x’s:	1.965665
Tower	of	9	x’s:	1.976342
Tower	of	10	x’s:	1.983668
Tower	of	11	x’s:	1.988712
Tower	of	12	x’s:	1.992191
Tower	of	13	x’s:	1.994594
Tower	of	14	x’s:	1.996257
Tower	of	15	x’s:	1.997407
Tower	of	16	x’s:	1.998203
Tower	of	17	x’s:	1.998755
Tower	of	18	x’s:	1.999137
Tower	of	19	x’s:	1.999402
Tower	of	20	x’s:	1.999586
Tower	of	21	x’s:	1.999713
Tower	of	22	x’s:	1.999801
Tower	of	23	x’s:	1.999862
Tower	of	24	x’s:	1.999904
Tower	of	25	x’s:	1.999934
Tower	of	26	x’s:	1.999954
Tower	of	27	x’s:	1.999968
Tower	of	28	x’s:	1.999978
Tower	of	29	x’s:	1.999985
Tower	of	30	x’s:	1.999989
Tower	of	31	x’s:	1.999993
Tower	of	32	x’s:	1.999995
Tower	of	33	x’s:	1.999996
Tower	of	34	x’s:	1.999998
Tower	of	35	x’s:	1.999998
Tower	of	36	x’s:	1.999999
Tower	of	37	x’s:	1.999999



Tower	of	38	x’s:	1.999999
Tower	of	39	x’s:	2.000000
Tower	of	40	x’s:	2.000000
Tower	of	41	x’s:	2.000000

Left	association:	((xx)x)x…

Tower	of	2	x’s:	1.632527
Tower	of	3	x’s:	2.000000
Tower	of	4	x’s:	2.665144
Tower	of	5	x’s:	4.000000
Tower	of	6	x’s:	7.102993
Tower	of	7	x’s:	16.000000
Tower	of	8	x’s:	50.452514
Tower	of	9	x’s:	256.000000
Tower	of	10	x’s:	2545.456153
Tower	of	11	x’s:	65536.000000
Tower	of	12	x’s:	6479347.024952
Tower	of	13	x’s:	4294967296.000087
Tower	of	14	x’s:	41981937869758.133000
Tower	of	15	x’s:	18446744073710412000.000000
Tower	of	16	x’s:	1762483107300247500000000000.000000

5.	[to	Chapter	Five,	page	131]	Constructing	a	perpendicular	to	a	line.

Euclid	gives	us	(l.	11)	an	easy	way	to	construct	a	perpendicular	to	a	line	 	at	a
point	P	on	it.	With	your	compass	strike	an	arc	from	P	intersecting	 	at	A	to	its
left	and	B	to	its	right;	then	with	radius	AB,	arcs	from	A	and	B	meeting	at	C.
Draw	PC.	 	APC	 	BPC	(by	SSS),	hence	 	CPA	 	CPB;	and	since	their	sum
is	a	straight	angle,	each	is	a	right	angle:	CP	 	 .

Behind	this	construction	lies	the	question:	why	not	use	a	rightangle,	as
carpenters	do,	to	draw	the	line	at	P	perpendicular	to	 ?	Why	this	Greek
prejudice	against	tools	other	than	the	conceptual	and,	for	that	matter,	against
measuring	lengths	with	a	ruler	and	angles	with	a	protractor?

Part	of	the	answer	is	that	it	clarifies	the	mind	and	its	view	of	the	world	to	see
the	hierarchy	of	truths	built	up	from	the	least	foundations.	If	angles	can	be



copied	and	perpendiculars	and	parallels	drawn	with	compass	and	straight-edge
alone,	we	then	know	that	these	constructions	lie	on	a	more	fundamental	level
than	where	measuring	takes	place.	The	vast	array	of	Euclid’s	results	depend	only
on	these	two	non-metric	tools.

There	is	more,	however.	Measuring	ever	approximates	to	an	ideal,
mathematical	construction	is	of	the	ideal	itself.	These	objects	of	Euclid’s,	or	of
any	part	of	mathematics,	lie	not	in	but	behind,	or	below,	or	beyond	the	sensed
world:	we	invent	them	as	the	limits	toward	which	our	strivings	converge.

6.	[to	Chapter	Five,	page	144]	A	proof	via	infinite	sequences	that	the	medians
of	a	triangle	concur.

Let’s	take	our	 	ABC,	put	in	the	three	midpoints	D,	E,	and	F	of	its	sides,	and
connect	them.

Because	the	line	joining	midpoints	is	parallel	to	the	base	(result	(1)	on	page
142),	 	EFD	is	an	upside-down,	half-size	copy	of	 	ABC:	similar	to	it,	that	is	(in
symbols,	 	ABC	~	 	EFD,	where	the	order	of	letters	represents	the	paired,
similar	parts).	We’ll	call	 	EFD	the	“midpoints-triangle.”

Construct	the	median	CD	of	 	ABC,	intersecting	EF	at	S.

What’s	really	nice	is	that	DS	is	a	median	of	the	midpoints-triangle	too.	Why?
Because	on	the	diagram’s	right-hand	side,	 	CSE	~	 	CDB	(they	share	the	top
angle,	and	the	parallel	lines	SE	and	DB	make	the	angles	formed	with	the



transversal	CSD	the	same).	Since	CE	is	half	of	CB,	SE	must	be	half	of	DB.	On
the	diagram’s	left-hand	side	 	CSF	~	 	CDA	for	the	same	reasons,	so	FS	is	half
of	AD.	Since	AD	=	DB	(D	is	a	midpoint),	FS	=	SE—that	is,	S	is	the	midpoint	of
FE,	so	DS	is	a	median.

When	we	construct	the	median	AE	of	the	big	triangle,	intersecting	DF	at	R,
again	ER	will	be	the	median	of	this	midpoints-triangle.

Where	is	this	proof	going?	We	want	to	prove	that	the	three	medians	of	a
triangle	are	concurrent	at	some	point	G,	and	so	far	have	two	of	them	meeting
inside	the	midpoints-triangle—where	parts	of	the	medians	turn	out	to	be	the	full
medians	of	that	half-size	triangle.

By	the	way,	how	do	we	know	(other	than	by	looking)	that	the	medians	AE
and	CD	have	to	meet	inside	 	DEF?	Basically	because	each	must	first	pass
through	a	different	side	of	the	midpoints-triangle.

Now	when	we	draw	the	big	triangle’s	median	from	B,	going	through	DE	at	T,
the	worst	case	scenario	would	be	that	it	miss	G	and	instead	intersect	AE	in	some
other	point	W,	and	CD	in	a	third	point	V:

But	even	were	this	to	happen,	all	three	points—G,	V,	and	W—would	have	to	lie
in	the	confined	space	of	 	DEF	(a	space	one-fourth	the	area	of	the	original
triangle).

The	touch	of	magic:	repeat	the	argument	exactly	for	the	new,	tiny	midpoints-
triangle	 	RST	(with	 	DEF	playing	the	role	of	the	larger	triangle).	Again,	the



supposedly	different	points	G,	V,	and	W	must	now	lie	in	the	cramped	quarters	of
this	new	 	RST	(one-sixteenth	the	area	of	 	ABC).	Keep	doing	this	(the
midpoints-triangles	flipping	up	and	down	as	they	diminish),	getting	an	infinite
sequence	of	nested	triangles	each	a	quarter	the	area	of	the	preceding,	with	G,	V,
and	W	running	around	inside	them.	But	this	sequence	of	areas	approaches	zero
—so	that	what	might	have	been	three	different	points	collapses	into	one:	the
centroid	G	we	sought.

7.	[to	Chapter	Six,	page	204]	A	Companion	Miracle,	which	will	appear	at	the
end	of	a	journey	through	thickets	of	square	roots.

If	we	draw	a	square	in	a	circle	of	radius	1	(a	unit	circle),	the	Pythagorean
Theorem	tells	us	that	the	square’s	sides	will	each	be	 	long:

The	perimeter	of	the	square	will	therefore	be	4 	 5.657	—well	short	of	the
circle’s	circumference	(2πr,	which	with	r	=	1	is	2π≈	6.283)	as	we	would	expect,
since	the	square	fits	inside	the	circle	with	space	left	over.

We	know	how	to	build	from	the	square	to	an	octagon,	and	doing	this	will,	we
know,	increase	its	perimeter;	and	were	we	to	double	the	octagon	to	a	16-gon,	its
perimeter	would	creep	even	closer	to	the	circle’s	circumference	as	the	polygon
fits	ever	more	snugly	inside	it.



Clearly	the	length	of	the	circle’s	circumference	will	be	the	limit	which	these
increasing	perimeters	approach.	Let’s	find	a	way	of	expressing	what	the	side-
length	at	the	kth	stage	of	this	doubling	will	be	(since	from	side-length	and
number	of	sides	we	can	quickly	find	perimeter).	As	always,	we	will	bring	back
what	we	need	from	a	remoter	kingdom:	we	shall	ask	how	to	express	the	side-
lengths	of	any	2n-gon	in	terms	of	the	n-gon’s	side-length.	The	safari	begins.

Let	Sn	stand	for	the	side-length	of	an	n-gon	inscribed	in	the	unit	circle.
Because	it	is	a	unit	circle,	all	its	radii	are	1:	OA	=	OB	=	OD	=	OE	=	1,	and	DE	is
the	n-gon’s	side,	of	length	Sn.

DE	crosses	OB	at	C	and	DE	=	2DC	( 	OCD	 	OCE	by	SAS,	so	CD	=	CE).
Hence	CD=	 ,	which	is	 .

Now	let’s	draw	in	a	side	of	the	2n-gon;	it	will	be	BD,	since	OB	is	the	bisector
of	 	DOE	(from	those	congruent	triangles,	 	DOB	=	 	BOE).	So	the	length	of
BD	is	S2n;	we	also	know	that	AB	=	OA	+	OB	=	2.	Now	construct	AD.



Reaching	back	to	Thales,	we	know	that	 	ADB	is	a	right	angle,	and—fetching
from	afar—we	decide	to	make	use	of	the	fact	that	the	area	of	 	ADB	=	

,	which	here	would	be	 .
On	the	other	hand,	the	area	of	 	ADB	is	also	(using	another	choice	of	base

and	height)	 .
We	have	found	two	different	ways	of	expressing	the	same	quantity—always

a	promising	step,	because	now	we	have	an	equality:

or,

BD	·	AD	=	AB	·	CD.

But	we	already	know	that	AB	=	2,	BD	=	S2n	and	CD	=	 ;	so

Now,	by	the	ever-valuable	Pythagorean	Theorem,

We	said	above	that	S2n	·	AD	=	Sn,	or	writing	it	backwards,

Sn	=	Sn2n	·	AD,

and	our	new	expression	for	AD	transforms	that	into

If	we	lift	the	lid	of	the	radical	by	squaring	both	sides,	we	get:

This	looks	a	little—but	only	a	little—better.	Remember	that	what	we	are
looking	for	is	a	way	of	expressing	S2n	in	terms	of	S	n,	and	we	have	it	almost	in
our	grasp.	For	when	we	multiply	out	the	last	equation	we	get



(Sn)2	=	4	(S2n)2	–	(S2n)4.

The	notation	that	helped	us	this	far	is	now	standing	in	our	way,	with	all	those
subscripts	and	exponents.	Let’s	simplify	by	taking	a	daring	step,	and	letting	x
stand	for	(S2n)2.	Then	the	last	equation	looks	like	this:

(Sn)2	=	4x	–	x2

or

x2	–	4x	+	(Sn)2	=	0,

which	is	a	quadratic	equation	of	the	form	ax2	+	bx	+	c,	and	we	can	solve	it	by
the	Quadratic	Formula:

In	our	equation	we	have	a	=	1,	b	=	–4,	and	c	=	(Sn)2,	so	we	get

which	reduces	to

Algebra	has	produced	two	possibilities	for	x:

But	the	geometry	of	our	diagram	shows	us	that	x,	which	is	(S2n)2(that	is,	the
length	[BD]2),	must	be	significantly	less	than	2,	since	BD	is	less	than	1.	So	the
only	possibility	is

Now	replace	x	by	the	(S2n)2	it	masked:



so

We	have	come	back	with	a	way	of	expressing	S2n	(the	side-length	of	the
doubled	polygon)	in	terms	of	Sn,	the	side-length	of	the	polygon	it	doubled.	Was
it	worth	the	voyage,	as	Michelin	might	ask?	Watch.

For	a	square,	as	we	saw,	S4	=	 .
So	
Then	

Next,	
and	so	(strangely)	on.
This	means	that	the	side-length	of	S2n,	when	we	start	with	a	square	is

To	get	the	total	perimeter	of	the	2n-gon	we	have	to	multiply	S2	by	2n,	so	that	its
perimeter	is

(for	the	32-gon	we	get	P	≈	6.273)	and	P,	as	we	said,	approaches	2π	as	a	limit:

or,	dividing	both	sides	by	2,

We	have	an	infinite	expression	made	up	of	two	of	the	most	fundamental	and
elusive	building	blocks	of	mathematics:	 	and	π.



8.	[to	Chapter	Six,	page	205]	On	Quadratic	Reciprocity.

Gauss’s	great	discovery	of	the	criterion	for	polygon	constructibility	had	an
even	greater	offspring:	it	led	to	his	Golden	Theorem	(Theorema	Aureum),	and
two	of	its	proofs.	This	theorem	concerns	small	universes	of	natural	numbers,
like	those	on	a	clock-face,	where	1	through	12	are	all	you	have	and	all	you	need
(13	o’clock	is	1	o’clock	again,	28	o’clock	is	4	o’clock,	and	any	natural	number	n
appears	in	this	world	as	the	remainder	you	get	on	dividing	n	by	12).	Any	natural
number,	not	just	the	clock	cycle	of	12,	or	the	week	cycle	of	7,	can	set	the	limits
to	such	a	universe.	In	a	5-based	world,	for	example,	2	+	2	=	4,	but	2	+	11	=	3:
the	remainder	on	dividing	13	by	5.

We	can	have	equations	in	such	a	world	just	as	in	the	world	of	all	the	naturals:
in	the	5-based	world,	7x	=	2	has	the	lowest	solution	x	=	1,	because	7	·	1	=	7	and
7	leaves	a	remainder	of	2	when	divided	by	5.	Of	course	x	=	6	is	also	a	solution:
7	·	6	=	42	which	also	leaves	a	remainder	of	2	when	divided	by	5.	Indeed,	11,	16,
and	any	number	of	the	form	1	+	5k	will	do	the	trick.	If	7x	=	2	in	the	12-based
world,	however,	x	can	be	2	and	its	relatives,	14,	26—any	number	of	the	form	2
+	12k.	In	general,	once	you	have	one	solution	to	ax	=	b	in	an	m-based	world,	an
infinite	number	of	other	solutions	roll	out—namely,	the	solution	you	found	with
any	multiple	of	m	added	to	it.

In	these	miniature	worlds,	as	in	the	large	one,	some	equations	are	harder	to
solve	than	others:	so	with	some	effort	we	can	solve	x2=	13	in	a	17-based	world
(x	=	8	will	work,	since	82	=	64,	which	leaves	a	remainder	of	13	when	divided	by
17).	Some,	however,	are	not	just	harder	but	in	fact	insoluble:	x2	=	5	has	no
solution	in	the	world	of	17.

The	most	interesting	worlds	are	those	with	primes	as	their	bases;	since	all	the
natural	numbers	can	be	expressed	as	the	product	of	primes,	worlds	based	on
composites	atomize	to	worlds	based	on	primes.	A	major	question,	then,	is	when
will	there	be	a	solution	for	x2	=	q	in	a	p-based	world	(where	both	p	and	q	are
prime)?	What	Gauss	was	able	to	prove—only	four	and	a	half	months	after
coming	up	with	the	criterion	for	polygon	constructibility—was	that	if	x2	=	q	has
a	solution	in	a	p-based	world,	then	x2	=	p	will	have	a	solution	in	a	q-based	world
—or	if	one	hasn’t,	the	other	won’t	either—unless	p	and	q	each	leave	a	remainder
of	3	when	divided	by	4	(such	as	p	=	11	and	q	=	19).	In	this	case,	one	of	the	two
equations	will	have	a	solution	and	the	other	won’t.	This	is	the	famous	Law	of
Quadratic	Reciprocity.

9.	[to	Chapter	Eight,	page	279]	Another	proof	of	Pappus’s	Theorem.



Magical	as	was	the	proof	on	pages	274–80	of	Pappus’s	famous	theorem,	it
leaned	a	little	out	of	the	projective	plane	into	the	Euclidean.	Here	is	a	proof	that
enters	fully	into	the	projective	spirit.

You	saw	in	the	first	section	of	the	appendix	to	this	chapter	how	an	arbitrary
triple	of	points	ABC	on	a	line	 	could	be	sent	to	an	equally	arbitrary	triple
A′B′C′	on	a	line	m	by	a	projection—a	chain	of	perspectivities	(in	this	case,	two):

with

O(ABC)	=	A′B″C

and

P(A′B″C)	=	A′B′C′,

so	that	altogether	(writing	the	first	perspectivity	closest	to	what	it	worked	on):

PO(ABC)	=	A′B′C′.

You	also	saw,	thanks	to	the	cross	ratio,	that	four	points	on	a	line	can’t	be	sent
to	an	arbitrary	four	on	another,	no	matter	how	many	or	few	perspectivities	are	in
your	chain.	The	segments	made	by	the	four	points	resulting	from	a	projectivity
must	always	have	the	same	cross	ratio	as	those	made	by	the	points	they	came
from.

These	observations	led	to	the	Fundamental	Theorem	for	Projectivity	on	a
Line,	which	we	will	put	this	way:	If	ABC	is	a	triple	of	points	on	line	 ,	and
A′B′C′	a	triple	on	line	 ′,	then	there	is	one,	but	only	one,	projectivity	which
sends	A	to	A′,	B	to	B′,	and	C	to	C′.

Rather	than	tracing	out	the	proof	of	this	key	theorem,	we	will	simply	use	it	as
an	axiom	in	our	new	proof	of

Pappus’s	Theorem:	If	A,	B,	C	are	on	line	 	and	A′,	B′,	C′	on	line	 ′,	and	AB′
meets	A′B	at	P,	AC′	meets	A′C	at	Q	and	BC′	meets	B′C	at	R,	then	P,	Q,	and	R
are	collinear.



The	strategy	of	this	proof	will	be	to	draw	the	line	 ″	through	PQ	and	prove
that	R	is	on	it.	The	tactics	involve	a	series	of	perspectivities	between	the	three
lines,	and	proving	(by	means	of	the	Fundamental	Theorem)	that	a	point	R′	that
arises	on	 ″	from	these	perspectivities,	is	in	fact	R.

Proof:

1.	Construct	the	line	 ″	through	P	and	Q,	and	lines	AA′	and	BB′,	meeting	 ″
at	A″	and	B″	respectively.

2.	Look	first	at	 :	A'(ABC)	=	A"PQ.

Then	look	at	 :	A(A"PQ)	=	A′B′C′.
Doing	A′	followed	by	A	therefore	gives	us:	AA′(ABC)	=	A′B′C′.

3.	 	and	 ′	meet	at	a	point—call	it	Y:	and	 ″	meets	 ′	somewhere—call	it
Y′.

Let’s	see	what	our	projectivity	AA′	does	to	Y:	A′(Y)	=	Y′,	and	A(Y′)	=	Y′.
Putting	this	all	together:	A′(ABCY)	=	A″PQY′,	A(A″PQY′)	=	A′B′C′Y′.	That	is,



AA′(ABCY)	=	A′B′C′Y′.

4.	The	time	has	come	to	construct	B′C.	Let	it	intersect	 ″	at	R′.	Now
construct	BR′	and	extend	it	to	meet	 ′	at	C″	(we	are	given	that	B′C	and
BC′	meet	at	R	but	don’t	know	that	R	is	on	 ″.	Our	hope	is	to	show	that	R′
is	R	in	disguise,	by	proving	that	C″	is	really	C′).

5.	Look	now	at	the	perspectivity	 :	B′(ABCY)=PB″R′Y′,	and	now	at	 :
B(PB″R′Y′)	A′B′C″Y′.	Doing	first	B′,	then	B,	to	ABCY	therefore	gives	us
BB′(ABCY)	=	A′B′C″Y′.

6.	Comparing	steps	3	and	5,	you	see	that	two	different	projectivities—AA′
and	BB′—have	identical	results	on	the	three	points	A,	B,	and	Y.	By	the
Fundamental	Theorem,	these	projectivities	must	be	the	same;	hence,	they
must	agree	on	the	remaining	point,	which	is	C′	in	one	and	C″	in	the	other.

This	can	only	mean	that	C′	=	C′,	hence	R′	must	be	R,	and	therefore	R	is
on	line	 ″:

P,	Q,	and	R	are	collinear,	as	desired!



Notes

2:	[Proof	of	general	formula]	Ross	Honsberger,	Ingenuity	in	Mathematics
(Mathematical	Association	of	America,	1970),	pp.	117–19.

4:	[Proof	via	diminishing	midpoint-triangles]	We	first	heard	this	proof	from
one	of	our	Math	Circle	students,	Jenny	Chen.	It	may	have	been	original
with	her.

5:	[A	companion	miracle]	Our	appendix	is	based	on	the	clear	exposition
given	in	Richard	Courant	and	Herbert	Robbins,	What	Is	Mathematics?
(Oxford	University	Press,	1941),	pp.	124–25.

6:	[Quadratic	reciprocity]	Euler	and	Lagrange	first	came	up	with	this
conjecture,	but	Gauss	was	the	first	to	prove	it	(Goldman,	p.	184).
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Footnotes

1	These	diagrams	given	in	silence	have	the	air	of	a	rite	of	passage.	The	initiate	must	first	remark	that	since
the	two	squares	are	the	same	size,	their	areas	are	equal;	then,	that	the	four	triangles	in	each,	although
differently	situated,	are	all	identical—hence	the	area	remaining	in	each	square	after	removing	them	is	the
same.	But	that	area	is	made	up	in	the	first	diagram	of	two	squares,	one	on	each	of	the	triangle’s	legs;	and	in
the	second,	of	a	square	on	its	hypotenuse—so	that	the	sum	of	the	areas	of	the	two	squares	equals	the	area	of
the	third.

2	The	fact,	for	example,	that	there	are	exactly	ten	pairs	of	integers	(x,	y)	that	satisfy	this	equation	is	a	hard-
won	twentieth-century	surprise.	You	might	have	guessed	that	one	pair	is	x	=	0	and	y	=	0	(0	·	(0	+	1)	=	(0	–
1)	·	0	·	(0	+	1))	and	another	is	x	=	1	and	y	=	–1:	((–1)	·	(–1	+	1)	=	(1	–	1)	·	(1)	·	(1	+	1)).	But	would	you
have	come	up	with	x	=	6	and	y	=	14:	that	is,	5	·	6	·	7	=	14	·	15?

3	Looking	back	over	the	rhythms	in	this	history	you	might	think	that	we	shuttled	between	a	few	opposed
positions.	But	the	course	of	thought	seems	more	of	a	spiral	than	a	circle:	new	experiences	and	insights
return	us	always	above	the	positions	we	held	and	abandoned.

4	We	omit	1	because	although	it	fits	the	definition	of	“prime”—a	natural	number	divisible	just	by	itself	and
1—it	would	only	clutter	up	the	uniqueness	of	prime	factorization:	24	could	be	written	as	1	·	23	·	31	or	1	·	1
·	1	·	1	·	23	·	31	or	any	number	of	useless	1s	scattered	among	the	substantial	factors	of	2	and	3.

5	Leopardi,	“The	Infinite,”	in	John	Heath-Stubbs’s	translation.

6	 	is	by	no	means	the	only	irrational	that	lives	with	the	primes.	The	π	of	geometry,	which	is	an	irrational
beginning	3.14159	…	.,	has	pitched	its	tent	in	their	midst.	For	if	p1,	p2,	p3	and	so	on	are	the	primes	in
order,	then	the	infinite	product,

and	π2	is	irrational	too.	Euler	first	miracled	this	up.	We	still	hardly	understand	all
it	implies.

7	This	idea	of	closing	in	on	the	limit	from	both	sides	suggests	that	in	our	geometric	series	we	could	let	r	be
negative,	as	long	as	it	is	greater	than	–1:	a	geometric	series	with	ratio	r	converges	as	long	as	–1	<	r	<	1.

8	For	a	proof	that	any	triangle	has	a	centroid,	through	which	all	such	mass-balancing	knife-edges	must	pass,
see	the	Appendix.

9	Having	seen	that	false	assumptions	may	lead	to	false	conclusions,	we	look	much	more	suspiciously	on	the
claims	to	generality	of	our	old	ΔABC.	Should	you	take	our	word	that	the	other	properties	we’ve	proved	are
true	for	all	triangles?

10	Could	one	hope	to	go	further?	We	have	unfortunately	not	yet	been	able	to	read	Juan	Caramuel



Lobkowitz’s	Mathesis	Audax	(1642),	in	which	that	Vicar	General	of	England,	Scotland,	and	Ireland	seems
to	have	resolved	the	major	problems	of	logic,	physics,	and	theology—above	all,	the	issues	of	Grace	and
Free	Will—by	ruler	and	compass	construction.

11	The	easiest	way	to	construct	a	line	 ´	through	a	point	D,	parallel	to	a	given	line	 ,	is	to	construct	a
perpendicular	m	from	D	to	 	and	then	a	perpendicular	 ´	to	m	at	D.

12	Why	is	 ?	Whatever	 	is,	it	is	a	number	which,	times	itself,	is	 .	Four	copies	of	it	multiplied
together	will	make	 ;	hence	 .

13	Easy	as	doubling	the	number	of	sides	is,	it	can	have	surprising	consequences.	You	saw	at	the	end	of
Chapter	Four	how	an	infinitely	towering	sequence	of	 	was	miraculously	equal	to	a	finite	2.	If	you
would	like	to	witness	a	companion	miracle,	brought	to	you	by	the	repeated	doubling	of	a	square’s	sides,
turn	to	the	on-line	Annex.

14	See	the	on-line	Annex,	too,	for	another	surprise:	a	consequence	Gauss	drew	from	this	criterion.

15	This	is	counting	“multiplicities”:	if	the	same	factor	occurs	twice,	for	example,	in	the	polynomial,	it	is
thought	of	as	having	two	roots—or	one	root	of	multiplicity	two—at	that	point.	So	x2	–	8x	+	16	=	0	has	a
root	of	multiplicity	2	at	x	=	4,	since	it	is	(x	–	4)(x	–	4)	=	0	in	disguise.

16	Why	does	 	Why,	in	general,	is	 	if	neither	a	nor	b	is	negative?	The
full	answer	relies	on	Dedekind	Cuts	and	how	to	multiply	them.	An	example	such	as	 	and	

	makes	it	reasonable	to	expect	that	the	general	rule	holds.

17	You	may	recall	from	page	119	that	we	rearrange	infinite	series	at	our	peril.	If,	however,	a	series
converges	when	all	its	terms	are	positive,	then	we	can	legitimately	rearrange	its	terms	no	matter	how	we
change	their	signs.	In	the	example	on	page	118,	the	series	did	not	converge	when	all	of	its	terms	were
positive.

18	How	far	toward	pure	formalism	are	you	willing	to	go?	Would	you	agree	to	having	the	“point”	at	infinity
added	to	this	pencil	of	lines	be	nothing	other	than	that	pencil	itself?

19	If	you	worry	about	how	much	things	seem	to	be	slatting	around	on	the	projective	plane,	a	theorem	lurks
in	the	Appendix	through	which	they	are	miraculously	made	fast.

20	We	needn’t	have	pictured	the	line	that	these	three	points	lie	on	as	“straight”	but	do	so	to	accommodate
our	Euclidean	vision.	That	what	is	to	come	also	works	on

21	If	A″,	B″,	and	C″were	collinear,	A,	B,	and	C	would	be	too—and	we	began	with	them	forming	a	triangle.

22	So	to	prove	that	there	could	be	no	transfinite	cardinal	less	than	À,	Cantor	pictures	any	infinite	subset	A
of	 	and	asks	us	to	go	steadily	through	 	until	we	come	to	the	first	element	of	A;	then	go	through	the
subset	of	 	made	up	of	what’s	left	until	you	come	to	A’s	second	element—and	so	on.	This	1–1	match-up
with	the	counting	numbers	shows	that	A	has	cardinality	À	also.

23	Doesn’t	“the	heaven	of	heavens”	re-echo	in	the	set	of	all	sets?	“But	will	God	in	very	deed	dwell	with
men	on	the	earth?	Behold,	the	heaven	of	heavens	cannot	contain	Thee;	how	much	less	this	house	which	I
have	built!”	(2	Chron.	6:18).	Awe,	and	its	obverse,	humility,	give	religion	its	endlessly	ordinal	impulse.

24	How	did	the	algebraist	come	up	with	1/4?	He	needed	some	number	w	so	that	(t	+	w)2	=	t2	+	2wt	+	w2

would	in	fact	yield	t2	+	t	+	some	number:	that	is,	2w	must	be	1	(the	coefficient	of	t),	so	w	must	be	 ;	and	



.	A	choice	instance	of	moving	forward	by	thinking	backward.

25	Under	the	Prussians,	discipline	was	so	prized	that	even	soldiers	killed	in	battle	were	reputed	to	snap	to
attention	at	the	trumpet’s	call:	Kadavergehorsamkeit,	“corpse	obedience,”	described	this	dedication	to	duty.



Notes

Frontispiece:	The	Tower	of	Mathematics	is	the	Tower	of	Babel	inverted:	its
voices	grow	more	coherent	as	it	rises.	This	image	of	it	is	based	on	Pieter
Brueghel’s	painting	“Little	Tower	of	Babel”	(1554).

AN	INVITATION

1:	[Passage	from	Blake]	This	is	from	Proposition	V	in	the	Second	Series	of
Blake’s	There	Is	No	Natural	Religion,	which	reads	in	full:	“If	the	many
become	the	same	as	the	few	when	possess’d,	More!	More!	is	the	cry	of	a
mistaken	soul;	less	than	All	cannot	satisfy	Man.”

1:	[Baudelaire]	“Berçant	notre	infini	sur	le	fini	des	mers”:	Le	Voyage,	I.	8.
1:	[Mahāvīrā	passage]	Quoted	in	Katz,	p.	219.
2:	[Hawking]	“Someone	once	told	me	that	each	equation	I	included	in	my
book	would	halve	the	sales.”	Apparently	in	the	preface	to	the	first	edition
of	his	Brief	History	of	Time.

ONE:	TIME	AND	THE	MIND

5:	[Number	knowledge	among	animals]	See	Paul	Recer,	“Monkeys	Show
Number	Sense,”	in	Abcnews.com	Science,	Oct.	23	1998
(http://abcnews.go.com/sections/science/DailyNews/monkeys981022.html).

6:	[Wunnery	tooery]	From	James	T.	R.	Ritchie’s	Golden	City:	Scottish
Children’s	Street	Games	and	Songs	(Edinburgh:	Mercat	Press,	1999),	p.
39.	There	are	numerous	counting-out	rhymes	here,	almost	all
demonstrating	at	the	same	time	a	mastery	of	counting	and	the	mystery	of
our	numerals.	See	too	Peter	and	Iona	Opie’s	wonderful	Language	and	Lore
of	Schoolchildren	(Oxford,	1959).

6:	[Burla,	ùù]	James	R.	Hurford,	Language	and	Number	(Blackwell,	1987),
pp.	51,	54.

7:	[Passage	from	Stevenson]	From	his	essay	“Pulvis	et	Umbra”	in	the
collection	Across	the	Plains.

7:	[Housman]	Last	Poems,	XXXV.
9:	[Oksapmin	counting]	Hurford	(op.	cit.),	p.	81.	See	too	G.	B.	Saxe,	“Culture

http://abcnews.go.com/sections/science/DailyNews/monkeys981022.html


and	the	Development	of	Numerical	Cognition:	Studies	Among	the
Oksapmin	of	Papua	New	Guinea,”	in	Children’s	Logical	and
Mathematical	Cognition,	B.	Brainerd	(ed.;	Springer	1982),	pp.	157–76.

10:	[Figures	in	Proust	appearing	first	in	asides]	So	Charlus	is	first	seen	by	the
narrator	(in	Combray)	a	little	way	off:	“.	.	.	a	gentleman	dressed	in	a	suit	of
linen	‘ducks’,	whom	I	didn’t	know	either,	stared	at	me	with	eyes	which
seemed	to	be	starting	from	his	head.”	(Pleiade	edition,	i,	p.	141).	Swann’s
Way,	translated	by	C.	K.	Scott	Moncrieff	(Modern	Library,	1928),	p.	202.

12:	[Light	precedes	use]	From	Bacon’s	preface	to	his	The	Great	Instauration:
“And	there	is	another	thing	to	be	remembered—namely,	that	all	industry	in
experimenting	has	begun	with	proposing	to	itself	certain	definite	works	to
be	accomplished,	and	has	pursued	them	with	premature	and	unseasonable
eagerness;	it	has	sought,	I	say,	experiments	of	fruit,	not	experiments	of
light,	not	imitating	the	divine	procedure,	which	in	its	first	day’s	work
created	light	only	and	assigned	to	it	one	entire	day	.	.	.”	(pp.	11–12	in	the
Library	of	Liberal	Arts	edition	of	The	New	Organon	and	Related	Writings,
Fulton	H.	Anderson,	ed.,	[Bobbs-Merrill,	1979]).

12:	[Nameless	mathematician]	Theon	of	Smyrna,	who	reported	this	insight,
may	have	been	its	discoverer.	See	Heath,	i,	p.	83.

13:	[Heraclitus]	Fragments	54:	άρµονίη	άφανής	φανερηĉς	κρείττων.
14:	[Twitchiness	about	asymmetries]	Gerald	Holton,	on	pp.	363–66	of	his

Thematic	Origins	of	Scientific	Thought:	Kepler	to	Einstein	(Harvard
University	Press,	1973),	points	out	that	it	was	precisely	the	discomfort
Einstein	felt	at	the	asymmetry	between	the	calculation	of	current	when	the
conductor	moves	with	respect	to	a	stationary	magnet,	and	when	the
conductor	is	held	still	and	the	magnet	moves,	that	led	him	to	the	key	notion
of	relativizing,	and	later	to	his	General	Theory	of	Relativity.	He	quotes
from	a	1919	ms.	of	Einstein’s:	“.	.	.	The	thought	that	one	is	dealing	here
with	two	fundamentally	different	cases	was	for	me	unbearable.	The
difference	between	these	two	cases	could	not	be	a	real	difference	but
rather,	in	my	conviction,	only	a	difference	in	the	choice	of	reference	points
.	.	.	A	kind	of	objective	reality	could	only	be	granted	to	the	electric	and
magnetic	fields	together	.	.	.”	Holton	remarks	that	Einstein’s	“desire	to
remove	an	unnecessary	asymmetry	was	not	frivolous	or	accidental,	but
deep	and	important,”	and	connects	his	aesthetic	need	to	simplify	to	the
man’s	own	legendary	simplicity	in	life.

16:	[Yesterday	upon	the	stair]	This	verse	is	almost	not	there	itself.	It	appears
(under	the	rubric	“Rootless	Rhymes”)	in	Roger	Lancelyn	Green’s	A



Century	of	Humorous	Verse	(London:	Dent	and	Sons,	1959)	in	this	form:

As	I	was	coming	down	the	stair
I	met	a	man	who	wasn’t	there.
He	wasn’t	there	again	to-day:
I	wish	that	man	would	go	away!

In	fact,	however	(if	“fact”	is	the	apposite	word),	the	verse	isn’t	anonymous
and	its	sense	is	reversed.	It	is	by	Hughes	Mearns	(1875–1965),	is	called
“The	Psychoed,”	and	reads:

As	I	was	walking	up	the	stair
I	met	a	man	who	wasn’t	there.
He	wasn’t	there	again	today—
I	wish,	I	wish	he’d	go	away.

The	psychotic	element	referred	to	in	the	title	is,	of	course,	the	wish	to
avoid	this	man,	since	it	is	widely	believed	unlucky	to	meet	someone	on	the
stairs	(see	the	article	“Stairs”	in	Opie	and	Tatem’s	A	Dictionary	of
Superstitions);	hence	Mr.	Mearns	should	have	thanked	his	(missing)	stars.

17:	[Nichomachus’s	imagination]	The	“tongueless	animals	with	but	a	single
eye”	were	numbers,	like	15,	the	sum	of	whose	proper	divisors	was	less	than
the	number	itself;	the	second	sort—like	12—had	proper	divisors	that
summed	to	more	than	the	number.	For	more	on	Nichomachus,	see	Heath,	i,
pp.	97–112;	Kline,	pp.	135–38;	and	the	St.	Andrews	website.

17:	[Kronecker]	“Die	ganzen	Zahlen	hat	der	liebe	Gott	gemacht,	alles	andere
ist	Menschenwerk.”	From	a	letter	of	Kronecker’s,	quoted	in	Meschkowski,
p.	136,	footnote	187.

18:	[Ox	for	loincloths,	chicken	for	cowrie	shells]	Georges	Ifrah,	From	One	to
Zero:	A	Universal	History	of	Numbers	(Penguin	Books,	1987),	p.	100.

20:	[Pythagorean	secrets,	universal	harmony]	Kirk	and	Raven,	p.	329:
fragment	430	(Aristotle,	Meta.	A5	985b23).	For	a	fuller	treatment,	see
Heath,	i,	p.	86,	and	Christopher	Scriba,	Mathematics	and	Music	(Normat,
1990),	who	thinks	that	the	germ	of	the	idea	of	these	musical	divisions	was
Babylonian.

20:	[Greek	merchant	fractions]	Kline,	p.	32;	Kaplan,	The	Nothing	That	Is
(Oxford	University	Press,	2000),	Chapter	2.

20:	[The	eye	of	Horus]	According	to	Ifrah	(op.	cit.,	p.	168),	in	Egyptian



mythology	Seth	ripped	out	the	eye	of	Horus	and	tore	it	into	six	pieces,	each
of	which	stood	for	one	of	the	special	fractions	used	in	Egyptian	measures.
These	pieces,	and	the	numerical	values	they	stood	for,	were:	the	eyebrow
(1/8);	the	pupil	(1/4);	the	white	of	the	eye	toward	the	nose	(1/2);	the	white
of	the	eye	toward	the	ear	(1/16);	the	curling	diagonal	below	the	eye	(1/32);
and	the	vertical	line	below	the	eye	(1/64).	A	doubly	visual	mnemonic?

21:	[Great	fleas	.	.	.]	These	lines	appear	in	Augustus	de	Morgan’s	A	Budget	of
Paradoxes	(Dover	reprint,	1954,	of	the	second	(1915)	edition,	vol.	2,	p.
191)	with	this	note	of	the	author’s:	“As	Swift	gave	it	in	his	Poetry,	A
Rhapsody,	it	is	as	follows:

So,	naturalists	observe,	a	flea
has	smaller	fleas	that	on	him	prey;
And	these	in	turn	have	smaller	still	to	bite	’em,
And	so	proceed	ad	infinitum.

The	art	of	acknowledging,	with	improvements,	is	among	those	that	are	in
decline.

22:	[Pythagorean	ratios	and	tetractys]	Kirk	and	Raven,	pp.	233–34,	frag.	229
(Sextus	Empiricus).

22:	[Pythagorean	significance	of	the	first	four	numbers]	Not	only	do	the	ratios
of	these	numbers	provide	the	fundamental	musical	intervals,	but	the
individual	numbers	are	fraught	with	significance.	So	1	is	the	point,	2	the
line,	3	the	plane	and	4	the	solid	(Heath,	i,	76,	citing	Speusippus).	And
again,	1	is	both	even	and	odd	(for	being	the	principle	of	all	number,	it
cannot	be	exclusively	odd	or	even),	2	the	principle	of	even,	3	of	odd	and
also	the	first	triangular	number,	4	the	first	square,	etc.	(see	Heath,	i,	pp.	67–
77).

22:	[Fount	and	root	of	ever-flowing	nature]	Kirk	and	Raven,	p.	233,	note	1.
23:	[Hippasus]	Kline,	p.	32.	See	Heath,	i,	pp.	154–55,	168	in	general;	and	i,	p.

154	on	irrationality	of	√2;	i,	p.	155	on	its	irrationality	first	discovered	by
Pythagoreans;	i,	p.	60	for	story	of	shipwreck	of	Hippasus	and	of	first
discoverer	of	irrationality	of	√2.	For	more,	see	below,	note	to	p.	236.

24:	[√2	clumsy	as	a	symbol]	For	the	remarkable	variety	of	attempts	to	make
this	symbol	less	clumsy—resulting	only	in	stragglers	limping	across	the
snowy	page—see	Cajori,	i,	§316–38,	and	Smith,	ii,	pp.	407–10.

26:	[√3	irrational]	To	show	√2	wasn’t	rational	we	thought	of	the	naturals	as
coming	in	two	flavors:	even	and	odd—or	you	could	say,	as	leaving



remainders	of	0	or	1	when	divided	by	2.	To	show	√3	irrational	we	need
correspondingly	to	classify	the	naturals	into	three	sorts:	those	leaving
remainders	of	0,	1	or	2	on	division	by	3.	Then,	arguing	as	before,	if	√3	=
a/b	(in	lowest	terms),	then	3b2	=	a2	so	a2	is	divisible	by	3:	a	remainder	of	0,
that	is,	is	left	on	dividing	it	by	3.	We	then	need	to	show	that	a	is	therefore
divisible	by	3	also,	and	we	do	this	by	showing	that	if	it	weren’t—if	a	was
of	the	form	3n	+	1	or	3n	+	2—then	so	would	a2	have	been.	The	proof	then
follows	the	now	familiar	format,	reaching	the	contradiction	that	a	and	b
both	have	3	as	a	common	factor	(contradicting	a/b	having	already	been	in
lowest	terms).	To	prove	√5	irrational	we	argue	similarly	but	now	think	of
the	five	possible	remainders	on	division	by	5;	and	so	on	for	√p,	where	p	is
prime.

28:	[Ever	narrowing	cracks]	Such	an	infinity	as	appealing	rather	than	appalling
was	seen	by	the	twelfth-century	mathematician	Al-Samaw’al,	who
invented	an	algorithm	for	better	and	better	approximating	various	roots.
“We	are	able	by	this	method,”	he	wrote,	“to	obtain	answers	infinite	in
number,	each	of	which	is	more	precise	and	closer	to	the	truth	than	that
which	precedes	it.”	Katz,	p.	228.

30:	[von	Neumann]	See	David	Wells,	The	Penguin	Book	of	Curious	and
Interesting	Mathematics	(Penguin,	1997),	p.	259.

30:	[Bringing	up	the	ruler]	Compare	Wittgenstein,	Tractatus	Logico-
Philosophicus	2.1511:	“That	is	how	a	picture	is	attached	to	reality;	it
reaches	right	out	to	it.”	And	2.1512:	“It	is	laid	against	reality	like	a
measure.”	(“Es	ist	wie	ein	Masstab	an	die	Wirklichkeit	angelegt.”)

31:	[‘One’	seems	there	in	the	mind	and	its	world]	Many	have	argued	that	zero
isn’t	a	number	(see	Kaplan,	The	Nothing	That	Is,	passim)	and	some	even
denied	this	status	to	one.	Thales	seems	to	have	thought	that	since	number	is
defined	as	a	collection	of	units,	the	unit	itself	could	not	be	a	number
(Heath,	i,	p.	69).	Aristotle	(Meta.	N.	1	1088a6)	said	that	since	one	is	the
measure	of	number	it	can’t	be	a	number	itself;	and	this	view	is	implied	in
Euclid	(VII,	defs.	1,	2)	and	may	even	have	been	held	by	the	Pythagoreans
(Heath,	i,	p.	69).	In	the	third	century	B.	C.	Chrysippus	made	a	brave
attempt	to	make	One,	so	understood,	nevertheless	a	number,	by	calling	it	a
‘multitude	one’:	πλ θοςἕν	(Heath,	i,	p.	69).	This	is	pre-reminiscent	of
Fregean	attempts	to	define	a	number	n	as	the	set	of	all	collections	of	n
objects.

32:	[Alcibiades	and	the	carter]	Plutarch’s	Lives:	Alcibiades,	II.
32:	[The	power	of	the	saved	remnant]	The	origin	of	the	tradition	of	a	saved



remnant	is	perhaps	Rom	9:27:	“Esaias	also	crieth	concerning	Israel,
Though	the	number	of	the	children	of	Israel	be	as	the	sand	of	the	sea,	a
remnant	shall	be	saved.”	Compare	Isaiah	6:13.	Stories	of	such	a	saved
remnant	occasionally	become	confused	or	conflated	with	those	of	the
Lamed	Wuvniks,	the	thirty-six	(because	of	the	numerical	values,	30	for
lamed,	6	for	vuv)	righteous	pillars	of	the	universe,	unknown	to	themselves
or	to	others,	often	poor,	it	is	said,	and	deranged.	Perhaps	they	are	paralleled
by	the	Kutb	in	Islam.	They	are	certainly	well	savored	by	Borges	in	his
Book	of	Imaginary	Beings.	For	more,	see	Tractate	Sanhedrin,	97b.	The
immense	power	of	reasoning	in	mathematics	via	the	saved	remnants	of
residues	was	invented	by	Gauss,	and	is	known	as	modular	arithmetic.

34:	[Imaginaries	as	sophistic]	Bombelli	spoke	of	them	so	before	understanding
how	to	manipulate	them.	Kline,	p.	253.

34:	[Descartes	coining	the	name	‘imaginary’]	Kline,	p.	253.
34:	[Newton	calling	imaginary	numbers	‘impossible’]	Kline,	p.	254.
34:	[Leibniz	calling	imaginaries	‘amphibians’]	Kline,	p.	254.
34:	[Passage	from	Girard]	Kline,	p.	253.

TWO:	HOW	DO	WE	HOLD	THESE	TRUTHS?

37:	[Proofs	of	the	Pythagorean	Theorem]	Both	the	Indian	and	Chinese	proofs
are	in	Howard	Eves,	Great	Moments	in	Mathematics	(Before	1650)
(Mathematical	Association	of	America,	1980),	pp.	27–32.	Now	see	our
Hidden	Harmonies:	The	Lives	and	Times	of	the	Pythagorean	Theorem
(Bloomsbury	2011),	Chapter	Five.

39:	[Ligature	way	of	summing]	You	hit	a	bit	of	a	snag	if	you	try	this	when	the
last	number	is	odd:

1	+	2	+	3	+	4	+	5	+	6	+	7

1	+	7	=	2	+	6	=	3	+	5	=	8	(that	is,	7	+	1,	or	n	+	1),	with	a	solitary	4	left	in
the	middle.	So	4,	which	is	8/2,	plus	3	pairs	of	8.	That	is

But	this	simplifies	to	 ,	as	before.



39:	[Mind	of	ten-year-old	Gauss]	Bell,	p.	221.
40:	[Eudoxus]	Kline,	pp.	48,	50.
40:	[Axioms]	‘Axiom’	is	from	the	Greek	άξίωµα,	“something	thought	worthy

or	fit,”	built	on	a	lost	noun	ak-tis:	weight,	from	ἀγειν	=	weigh	or	pull,	and
ultimately	from	the	Indo-European	‘ag’.

40:	[Aristotle	hedging	bets]	Kline,	p.	52.
40:	[Stoics]	The	Greek	καταληπτικὴ	φαντασία	has	been	variously	translated	as

“recognizable	presentation,”	“cognative	presentation,”	“apprehension	by
the	imagination,”	etc.	The	core	of	the	Stoic	idea	(as	in	Zeno,	Chrysippus
and	Sextus	Empiricus)	is	that	the	external	object	causes	this	impression,
which	is	imaged	and	stored	in	the	perceiver.	See	Problems	in	Stoicism,	A.
A.	Long,	ed.	(The	Athlone	Press,	1971),	pp.	9–21,	and	J.	M.	Rist,	Stoic
Philosophy	(Cambridge,	1969),	pp.	133–51.

40:	[Clenched	fist]	Long	(op.	cit.),	p.	11.	Note	that	in	his	Inaugural
Presidential	Address	to	the	Mathematical	and	Physical	Section	of	the
British	Association,	in	August	of	1869,	J.	J.	Sylvester	said:	“Mathematical
analysis	is	constantly	invoking	the	aid	of	new	principles	springing	from
continually	renewed	introspection	of	the	inner	world	of	thought	(analysis
may	be	conceived	to	stand	to	the	outer	physical	world	as	the	hollow	palm
of	one	hand	to	the	closed	fist	which	it	grips	of	the	other)	.	.	.”

40:	[Inner	or	natural	light]	Descartes,	pp.	295–302.
41:	[Descartes’s	dream]	Kline,	p.	306.
41:	[Descartes’s	life]	Kline,	p.	304.
41:	[What	Descartes	said	in	the	Règles]	This	is	a	précis	of	Descartes’s	Rules	3,

7,	and	9.	How	to	translate	the	word	“intuere”	is	the	subject	of	much	debate.
J.-L.	Marion,	ed.	René	Descartes,	Règles	Utiles	et	Claires	pour	la
Direction	de	l’Ésprit	en	la	Recherche	de	la	Verité	(Nijhoff,	1977),	pp.
295ff,	insists	on	avoiding	“intuit”	because	of	its	non-Cartesian	associations,
using	instead	“regarder”	in	his	French	translation	from	Descartes’s	Latin.
Marion	points	out	that	Descartes,	following	St.	Thomas,	deliberately	makes
a	passivity	into	an	activity:	“Il	transforme	consciemment	ainsi	une
passivité	en	une	activité	pour	rester	en	accord	avec	le	principe	augustinien
de	‘absence	d’action	des	sens	sur	l’esprit.’	”

41:	[Portrait	of	Descartes]	Based	on	the	Louvre	portrait.
41:	[Gergonne]	Quoted	in	Novy,	p.	185,	citing	Annales	de	mathematiques	pur

et	appliqués,	Tome	I	(1810–11),	pp.	815–16:	“.	.	.	dont	il	suffit	de
connaître	l’énoncer	pour	en	apercevoir	la	verité.”



41:	[Rimbaud]	The	passage	is	from	the	last	section,	“Adieu”:	“.	.	.	nous
sommes	engagés	à	la	découverte	de	la	clarté	divine	.	.	.	Tous	les	souvenirs
immondes	s’effacent	.	.	.	il	me	sera	loisible	de	posséder	la	verité	dans	une
âme	et	un	corps.”

42:	[Locke	and	self-evident	truth]	Locke’s	1690	is	the	first	use	quoted	in	the
NED.

42:	[Kant	on	the	peculiarity	of	mathematics]	Prolegomena,	1783.
43:	[Ohm]	Novy,	p.	87.
43:	[Peacock’s	Principle]	Kline,	p.	773;	Novy,	pp.	190–96.	Certainly	this

principle	would	have	grown	in	the	congenial	company	of	Charles	Babbage,
with	whom	(among	others)	Peacock	formed	the	Analytical	Society	in
Cambridge,	England,	in	1812	(Katz,	p.	678).	Certainly	Babbage	would
have	endorsed	the	idea	of	feeding	any	sort	of	number	into	a	machine	and
then	simply	cranking	a	handle,	since	he	himself	had	invented	“the
analytical	engine”	(Kline,	p.	259),	an	early	calculating	machine	run	whirr
whirr	all	by	steam.

43:	[Portrait	of	Peacock]	Based	on	portrait	on	St.	Andrews	website.
44:	[Schumann’s	diary	entry]	The	original,	from	Robert	Schumann’s

Tagebücher	(entry	of	June	8,	1831,	I,	p.	339)	reads:	“Mir	ist’s	manchmal.
als	wolle	sich	mein	objectiver	Mensch	von	subjectiven	ganz	trennen	oder
als	ständ’	ich	zwischen	meiner	Erscheinung	u.	meinen	Syn,	zwischen
Gestalt	und	Schatten.”

44:	[Pascal]	Pensées,	p.	340.
44:	[Folded	in	a	tin	box]	J.	Franklin	Jameson,	An	Introduction	to	the	Study	of

the	Constitutional	and	Political	History	of	the	United	States	(Baltimore,
1886),	quoted	in	Michael	Kammen,	A	Machine	That	Would	Run	of	Itself
(Vintage,	1987),	p.	127.	Kammen	takes	his	title,	he	says	(p.	125),	from
James	Russell	Lowell,	1888.

44:	[Distributive	and	Commutative	Laws]	These	laws	were	first	given	their
names	in	1814	by	François-Joseph	Servois	(Kline,	p.	774).

44:	[Precious	only	endless	world]	From	Robert	Graves’s	poem	“Warning	to
Children.”

45:	[Russia,	Hungary	and	Germany]	Kline,	pp.	870ff.	The	Frenchmen	included
Jean-Victor	Poncelet,	whose	projective	geometry	we	will	explore	in
Chapter	Eight;	Nicolai	Ivanovitch	Lobachevsky	in	Russia,	János	Bolyai	in
Hungary,	and	Bernhard	Riemann	in	Germany	came	up	with	other
approaches	to	non-Euclidean	geometry	as—inevitably—did	Gauss.

45:	[One	attempt	followed	another]	See	Kline,	pp.	862–67	for	details.



45:	[Scandal]	So	d’Alembert	in	1759,	who	“called	the	problem	of	the	parallel
axiom	‘the	scandal	of	the	Elements	of	Geometry.’	”	(Kline,	p.	867).

45:	[Un	pur	.	.	.]	Cited	by	Richard	Cobb	in	one	of	his	New	College	lectures,	as
noted	by	Michael	Kaplan.	Possibly	said	in	reference	to	Robespierre	and	his
fate.	In	any	case,	the	aphorism	is	based	(as	Jon	Tannenhauser	astutely
points	out)	on	lines	from	the	end	of	the	first	Canto	in	Boileau’s	Art
Poetique:	“Un	sot	trouve	toujours	un	plus	sot	qui	l’admire.”

45:	[An	existence	haunted	by	existence]	Reid,	p.	154.
45:	[Hungarian	anecdote]	Paraphrased	from	Reid,	pp.	154–55.
47:	[How	‘Körper’	became	‘field’]	See	http://members.aol.com/jeff570/f.html.

From	the	website	“Earliest	Known	Uses	of	Some	of	the	Words	in
Mathematics”	(http://members.aol.com/jeff570/f.html):	“Julio	González
Cabillón	believes	that	Eliakim	Hastings	Moore	(1862–1932)	was	the	first
person	to	use	the	English	word	field	in	its	modern	sense	.	.	.”

47:	[Mathematicians	evolving	from	sensation	toward	abstraction]	Sylvester
(op.	cit.,	p.	105,	footnote)	speaks	of	“.	.	.	sensation,	perception,	reflection,
abstraction	as	the	successive	stages	or	phases	of	protoplasm	on	its	way	to
being	made	perfect	in	Mathematical	Man	.	.	.	We	should	then	have	four
terms	.	.	.	the	Vegetable,	Animal,	Rational,	and	Supersensual	modes	of
existence.”

48:	[Tablets	of	the	law	delivered	by	Weber]	Weber’s	version	of	the	field
axioms	followed	on	earlier	approaches,	from	different	standpoints,	by
Galois,	Abel,	Dedekind,	Kronecker,	and	others.	They	appeared	almost	in
this	form	in	Dedekind’s	Supplement	X	to	his	edition	of	Dirichlet’s	Lectures
on	Number	Theory,	in	1871	(see	Katz,	pp.	676–77).	In	his	axioms	for	the
real	numbers	of	1899	Hilbert	incorporated	these	axioms,	protesting	against
Peano’s	“genetic	approach”	of	building	the	axioms	up	from	those	of	the
naturals.	See	Kline,	pp.	990–92.

49:	[Hamilton	and	pinning	down	irrationals]	Kline,	p.	983.
49:	[Dedekind’s	diary]	St.	Andrews	website:	Dedekind.
49:	[Dedekind	cut]	Edwards,	“Dedekind’s	Invention	of	Ideals”	(in	Phillips,	pp.

15–17).	John	Stillwell	points	out	(personal	communication)	that	Eudoxus’s
treatment	of	rationals,	in	fourth	century	B.C.	Greece,	lies	in	the	background
of	Dedekind’s	cut	notion,	which	Dedekind	himself	acknowledges	in	the
preface	to	the	first	edition	of	his	Was	sind	und	was	sollen	die	Zahlen?
(trans.	W.	W.	Beman):	“.	.	.	if	.	.	.	one	regards	the	irrational	number	as	the
ratio	of	two	measurable	quantities,	then	is	this	manner	of	determining	it
already	set	forth	in	the	clearest	possible	way	in	the	celebrated	definition

http://members.aol.com/jeff570/f.html
http://members.aol.com/jeff570/f.html


which	Euclid	gives	of	the	equality	of	two	ratios	(Elements,	V,	5).”	See
Stillwell,	p.	62.

49:	[Portrait	of	Dedekind]	Based	on	photograph	of	Dedekind	in	Walter	Purkert
and	Hans	Joachim	Ilgauds,	Georg	Cantor,	1845–1918	(Leipzig:	B.	G.
Teubner,	1895),	p.	52.

50:	[Boston	detective]	Paraphrased	from	BBC	television	program	“Boston
Law,”	February	7,	2001.

52:	[Cubic	curve]	We	are	indebted	to	Barry	Mazur	for	calling	our	attention	to
this	beautiful	example	of	modern	number	theory.

53:	[Democritus]	Fragment	9,	Sextus,	Adv.	Math.	VII,	135	(Kirk	and	Raven,	p.
410).

53:	[Ampliatio]	See	the	1856	edition	of	Bouvier’s	Law	Dictionary,	¶	8	in	the
definition	of	“Postulatio.”

55:	[Magical	but	watertight]	Working	out	the	inductive	step	isn’t	always	easy;
it	can	at	times	be	very	hard,	as	in	the	first	of	Gauss’s	six	proofs	of	the	Law
of	Quadratic	Reciprocity	(see	the	Annex	to	Chapter	Six).

56:	[The	empty	form]	Van	Stigt,	pp.	153,	306.
56:	[Two-ity]	Van	Stigt,	pp.	302–3.
56:	[Maurolico]	Details	of	Maurolico’s	life	are	from	The	Dictionary	of

Scientific	Biography,	ix,	pp.	190–94;	Kline,	p.	223;	St.	Andrews	website.
See	too	G.	Vacca,	“Maurolico,	the	First	Discoverer	of	the	Principle	of
Mathematical	Induction,”	in	the	American	Mathematical	Society	Bulletin
16	(1909–10),	pp.	70–73.

57:	[Maurolico’s	proof	for	the	sum	of	the	first	n	odds]	Kline,	p.	272.
57:	[Levi	ben	Gerson]	Katz,	p.	279;	Stillwell,	p.	136.
57:	[Abu	Bakr	and	others	on	early	notions	of	induction]	Katz,	pp.	235,	238–41.
57:	[Ibn	al-Haytham	and	al-Samaw’al]	Katz,	pp.	238–39.
58:	[The	pearl	of	price]	To	us	it	seems	odd	that	they	prove	a	proposition	for

the	values	1,	2,	3,	4,	5	and	then	say	that	you	could	go	on	in	this	way.	Was
the	distinction	between	the	potential	and	actual	infinite,	which	will	become
so	important	in	Chapter	Nine,	even	more	vivid	to	them	than	it	is	to	us?

58:	[Through	Euclid]	See	Euclid	VII,	13.
58:	[Peano’s	symbols	and	his	students]	Kline,	p.	988.
58:	[Peano’s	Axioms]	Peano	acknowledged	in	1891	(“Sul	concetto	de

numero,”	in	Rivista	di	Matematica)	that	he	had	gotten	his	axioms	from
Dedekind’s	Was	sind	und	was	sollen	die	Zahlen?	of	1885.

59:	[Riemann]	Imre	Lakatos,	in	his	Proofs	and	Refutations	(Cambridge



University	Press,	1976,	p.	9n)	gives	this	quotation	as:	“If	only	I	had	the
theorems!	Then	I	should	find	the	proofs	easily	enough.”	There	is	a	sharp
irony	in	this,	since	Riemann’s	great	insight	of	1859,	known	as	the	Riemann
Hypothesis,	is	still	unproven.

59:	[Psychology	of	Military	Incompetence]	This	delightful	book	is	by	Norman
Dixon	and	was	published	by	Jonathan	Cape	in	1976.	The	characteristics
listed	here	are	on	p.	347.

59:	[Language	only	touches	the	outside]	Van	Stigt,	pp.	135–45,	especially	p.
144.

59:	[Soul	taken	from	its	deepest	home]	Van	Stigt,	p.	137.
59:	[Enforcing	our	wills	via	language]	Van	Stigt,	p.	144.
60:	[Truths	fascinating	by	their	immovability]	Van	Stigt,	p.	25.
60:	[Mathematics	rooted	in	life]	Van	Stigt,	pp.	x	and	vii.
60:	[Intuition	from	primordial	elements]	Van	Stigt,	p.	xi.
60:	[Limitless	unfolding]	Van	Stigt,	p.	157.
60:	[Individual	mind	mattered]	Van	Stigt,	p.	x.
60:	[Enrolled	in	1897]	Van	Stigt,	p.	23.
60:	[Couldn’t	stand	others]	Van	Stigt,	pp.	23,	32.
60:	[Pilgrimages	to	Italy]	Van	Stigt,	p.	26.
60:	[Hut]	Van	Stigt,	p.	35.
60:	[Motley	plurality]	Van	Stigt,	p.	138.
60:	[Eyes	closed]	Van	Stigt,	p.	45.
60:	[As	Weyl	put	it]	Reid,	p.	270.
60:	[Xenophanes]	From	fragments	26	and	25,	Simplicius	in	Phys	23:	ούδὲ

µετέρχεσθαί	µιν	ἐπιπρέπει	ἄλλοτε	ἄλλη,	ἀλλ’	ἀπάνευθε	πόνοιο	νόου	φρενὶ
πάντα	κραδαίνει.	“Fitting	in”	for	Brouwer	(Du.	inpassen)	is	different	in
etymology	and	flavor	from	Xenophanes’s	“fitting”	=	ἐπιπρέπει,	but	their
images	of	the	unmoved	mover	are	remarkably	similar.	On	Brouwer’s	view
of	constructive	fitting	together	via	1–1	correspondences,	see	Van	Stigt,	pp.
240–41.

60:	[Portrait	of	Brouwer]	From	a	photograph	in	Van	Stigt,	p.	51.
60:	[Causal	thinking	is	low	cunning]	Van	Stigt,	p.	31.
61:	[“Go	completely	crazy”]	Van	Stigt,	pp.	31,	32.
61:	[Passage	on	air	and	mud-bathing]	Van	Stigt,	p.	34.
61:	[Lost	friends]	Van	Stigt,	pp.	107–9.
61:	[Secretary]	Van	Stigt,	p.	110.



61:	[Long	haired,	lean,	and	fit]	See	photograph	in	Van	Stigt,	p.	108.
61:	[Wordsworth	on	Newton]	From	The	Prelude,	Book	III.
61:	[Self-evident]	It	is	worth	noting	that	for	Brouwer,	‘selfevident’	meant

‘meaningless’	(cf.	Wittgenstein	and	‘tautology’).	See	Van	Stigt,	p.	157.
61:	[Regress	of	justifications]	The	same	dilemma	confronted	the	Stoics	in

trying	to	explain	what	made	their	φαντασία	καταλεπτική	“evident.”	See
Long	(op.	cit.),	p.	19.

61:	[Tower	of	turtles]	Turtles,	tortoises,	elephants,	or	some	interleaving	of
them?	See	D.	Panda,	The	Rationale	for	Astrology	(Bhubaneswar).

62:	[Portrait	of	Hilbert]	From	a	photograph	in	Reid,	p.	71.
63:	[Hilbert	and	consistency	of	geometry]	Reid,	p.	64.
63:	[Hilbert’s	plan	for	the	new	century]	Reid,	p.	71.
63:	[Postulates	and	petitioning]	Barnhardt’s	Dictionary	of	Etymology	suggests

that	postulate	“.	.	.	probably	borrowed	from	meaning	in	mediaeval	Latin
postulatus,	ppp	of	postulare	=	to	nominate	to	a	bishopric.	Also	petition	or
request,	from	Latin	postulata	=	things	requested,	from	poscere	=	woo.	I.E.
prk-ske	(therefore	related	to	pray).”

63:	[Free	play]	Reid,	p.	63	quoting	Max	Dehn	on	Hilbert’s	Foundations	of
Geometry:	“.	.	.	the	characteristic	Hilbertean	spirit	.	.	.	taking	advantage	to
the	fullest	of	the	freedom	of	mathematical	thought!”

63:	[Plato	on	noblest	games]	Laws,	vii.
64:	[Poincaré	on	formalism]	Reid,	p.	63.
64:	[Poincaré’s	own	suggestion]	Reid,	pp.	99,	186.
64:	[Brouwer	on	existence]	Van	Stigt,	p.	133.
64:	[Brouwer:	a	false	theory	is	false]	Kline,	p.	1208.
64:	[Brouwer	on	constructed	truths	alone	existing]	Van	Stigt,	pp.	266–67.
64:	[Working	the	miracles	of	mathematics]	The	issue	that	no	foray	into	or	with

language	ever	seems	to	resolve	is	how	to	explain	existence.	Aristotle	had
long	since	pointed	out	that	defining	something	doesn’t	make	it	exist.	This
shows	the	fatal	split	of	language	away	from	ontology.	Neither	Formalism
nor	Intuitionism	answers	Leibniz’s	hollowly-resounding	question:	“Why	is
there	something	rather	than	nothing?”

64:	[The	Great	Converse]	This	is	an	argument	that	has	itself	taken	on	a	whole
gamut	of	forms.	What	was	“compossibility”	in	Leibniz	is	the	“possible
worlds”	argument	now.	It	is	an	argument	you	would	think	Cantor	would
have	found	congenial.	Why,	then,	does	he	so	rail	against	the	suggestions
made	by	Du	Bois-Reymond,	Stolz,	and	Vivanti	that	infinitesimals	could	be



made	via	his	cardinals?	Because,	it	seems	(see	Dauben	pp.	128–32),	such
would	have	threatened	the	simplicity	of	the	real	line,	and	his	Continuum
Hypothesis.

64:	[Hilbert	to	Frege]	This	letter	of	Dec.	29,	1899,	is	quoted	from	Gregory	H.
Moore’s	“First-Order	Logic	as	the	Basis	for	Mathematics,”	in	Phillips,	pp.
109–10.	Moore	quotes	from	G.	Frege,	Philosophical	and	Mathematical
Correspondence	(ed.	Gabriel	et	al.,	trans.	H.	Kraal,	University	of	Chicago
Press).

65:	[Axioms	begetting	no	contradictions]	In	1840	Duncan	Gregory	wrote:	“.	.	.
the	step	which	is	taken	from	arithmetical	to	symbolic	algebra	is	that	.	.	.	we
suppose	the	existence	of	classes	of	unknown	operations	subject	to	the	same
laws.”	(Kline,	p.	774).	Hilbert’s	advice	is	to	leave	out	of	question	what
these	operations—or	the	objects	they	are	performed	on—are,	and	try	to
guarantee	by	their	mere	form	the	consistency	of	the	results	of	operations	on
symbols	emptied	of	meaning.

65:	[Brouwer	walked	out	of	a	dinner]	Reid,	p.	187.
65:	[Hilbert	threw	Brouwer	off	board]	Reid,	p.	187;	Van	Stigt,	p.	101.
65:	[Conference	in	Bologna]	Reid,	p.	188;	Van	Stigt,	p.	101.
66:	[Kant	on	mathematics	from	‘intuition’]	Prolegomena,	Part	I,	especially

§10.
66:	[Gauss	spotting	that	Kant	was	wrong	on	details]	Kline,	p.	872.
66:	[Hilbert’s	doctoral	exam]	Reid,	p.	17.
66:	[Hilbert’s	farewell	address]	Reid,	pp.	194–95.
66:	[Hilbert	on	intuitive	insight]	On	the	importance	of	intuition	to	Hilbert,	see

Reid,	pp.	60,	62,	64,	184,	186,	194–96.	In	his	great	paper,	“David	Hilbert
and	his	Mathematical	Work”	(Bulletin	of	the	American	Mathematical
Society	50	(1944),	pp.	612–54—reprinted	in	a	shortened	version	in	Reid),
Weyl	says	tellingly:	“[Hilbert]	becomes	strict	formalist	in	mathematics,
strict	intuitionist	in	metamathematics.”	Reid,	p.	270.

66:	[Hamilton	and	the	intuition	of	time]	Sir	William	Rowan	Hamilton,
“Theory	of	Conjugate	Functions,	or	Algebraic	Couples;	with	a	Preliminary
Essay	on	Algebra	as	the	Science	of	Pure	Time”	(1833,	1835),	in	The
Mathematical	Papers	of	Sir	William	Rowan	Hamilton,	ed.	H.	Halberstam
and	R.	E.	Ingram,	(Cambridge	University	Press,	1967,	vol.	III,	3–99):	pp.
5–6.

66:	[Asymmetry	took	hold	of	Brouwer]	Van	Stigt,	p.	159.
66:	[Brouwer	defended	the	remaining	bastion]	Van	Stigt,	p.	151.



66:	[Intuition	from	passive	stamp	to	active	agent]	Van	Stigt,	pp.	150–51.
66:	[Primordial	Happening]	Van	Stigt,	xi,	pp.	147–53.
66:	[Aware	of	existing	in	time]	Mathematics	ever	anticipates	philosophy.

Brouwer’s	thoughts	about	the	Primal	Happening	long	predate	Heidegger
and	Sartre.

66:	[Silent	reflection]	Van	Stigt,	p.	158.
66:	[Two	species	of	time]	Van	Stigt,	pp.	xi,	153–56.
67:	[Germs	caught	from	others]	Van	Stigt,	p.	159.
67:	[Constructional	beauty]	Van	Stigt,	p.	139,	and	see	pp.	137–38,	143	and

124–25.
67:	[Mathematics	sinful]	Van	Stigt,	p.	400.
67:	[Functions	worked	accurately	on	numbers]	Van	Stigt,	pp.	91–93,	379–85.
67:	[Brouwer’s	fundamental	theorem]	The	following	passages,	paraphrased

from	Van	Stigt	(with	page-references	to	him),	spell	out	this	theorem	and	its
background	more	fully.	(pp.	298,	381–84):	The	Fundamental	Theorem	of
Finite	Spreads	(or	Fan	Theorem),	along	with	the	Bar	Theorem,	with	which
its	proof	begins,	were	conceived	by	Brouwer	in	1924	as	lemmas	of	the
Uniform	Continuity	Theorem.	The	Fan	Theorem	states	that	if	to	every
element	e	of	a	finite	set	M	a	natural	number	βe	can	be	assigned,	then	a
natural	number	z	can	be	determined	such	that	for	every	e,	βe	is	completely
determined	by	the	first	z	choices	generating	e.	Brouwer	said	that	this	is	“.	.
.	a	wonderful	theorem	whose	importance	would	justify	to	call	it	the
fundamental	theorem	of	intuitionism.”

The	Bar	Theorem	states:	If	to	each	element	of	a	set	M	a	natural	number
β	is	assigned,	then	M	is	split	by	this	assignment	into	a	well-ordered
species	S	of	point-sets,	Mα,	each	of	which	is	determined	by	a	finite
number	of	choices,	and	to	each	element	of	one	Mα	the	same	natural
number	βα	is	assigned.	Its	proof,	says	Van	Stigt,	was	metamathematical
even	in	the	Brouwer	sense.	(p.	298):	The	Uniform	Continuity	Theorem
states	that	every	function	defined	on	the	closed	unit	interval	is	uniformly
continuous.	It	follows	directly	from	the	definition	of	“full	function”	and
the	Fan	Theorem.
It	may	help	to	read	what	Weyl	said	in	1920	in	defense	of	Brouwer’s

continuum,	along	with	Brouwer’s	comments	on	his	lecture	(p.	379):	“It	is
clear	that	one	cannot	explain	the	concept	‘continuous	function	in	a
bounded	interval’	without	including	‘uniform	continuity’	and
‘boundedness’	in	the	definition.	Above	all,	there	cannot	be	any	function	in
a	continuum	other	than	continuous	functions.	When	the	Old	Analysis



introduced	‘discontinuous	functions’	it	showed	most	clearly	how	far	it	had
departed	from	a	clear	understanding	of	the	essence	of	the	continuum.
What	is	nowadays	called	a	discontinuous	function	is	in	reality	no	more
than	a	number	of	functions	in	separate	continua	[Brouwer:	“Better	to	say
‘the	function	is	not	everywhere	defined’”].	Take	for	example	the	continua
C,	C+	(x	>	0)	and	C–	(x	<	0)	...	If	we	consider	the	two	functions	+1	in	C+
and	–1	in	C–	then	there	does	not	exist	a	function	defined	for	the	whole	C
equivalent	with	the	one	value	for	C+	and	the	other	value	for	C–.”
[Brouwer:	“Very	fine!	Underline	because	this	is	the	main	and	most
important	point.”]

67:	[Hopes	lie	scattered]	Van	Stigt,	p.	298	on	loss	of	confidence;	p.	379	on
proofs	eluding	him;	pp.	93,	98	on	unfinished	work.

67:	[Melancholia’s	tools]	The	reference	is	to	Dürer’s	great	engraving	of	1514,
“Melencholia	I.”

67:	[Silence]	Van	Stigt,	pp.	ix,	103–10.
68:	[And	the	great	fleas	.	.	.]	These	lines	of	De	Morgan’s	follow	those	quoted

on	p.	21.
68:	[Out-flanking	maneuver]	Gödel’s	Theorems	came	as	a	shock—not	only	on

general	grounds,	but	because	Hilbert	had	so	triumphantly	succeeded	in
proving	the	consistency	and	completeness	of	Propositional	Calculus,	a	tidy
domain	of	logic.	While	Gödel	turned	mathematics	away	from	consistency
proofs,	these	seem	to	linger	on	in	physics,	interestingly	enough.

68:	[Neith]	In	Proclus,	In	Timaeum	I.	30.	His	description	agrees	with
Plutarch’s	account	(in	his	essay	on	Isis	and	Osiris)	of	the	attributes	of	this
very	ancient	Egyptian	goddess	of	(it	may	be)	hunting.

68:	[Hilbert’s	last	public	words]	Reid,	p.	196.

THREE:	DESIGNS	ON	A	LOCKED	CHEST

71:	[Row]	This	may	not	have	been	exactly	a	row,	and	considerable	opportunity
beckons	to	find	just	the	right	word	for	it	in	the	vocabularies	of	the	people
attuned	to	subtle	distinctions	in	this	area	of	human	endeavor.	Scots	offers
possibilities	in	‘ramie’	and	‘stuchie’	(the	latter,	our	informants	tell	us,	is
often	heard	but	never	written;	the	former—also	‘rammy’—is	in	other
circumstances	‘linen	and	cotton’).	We	shouldn’t	forget	‘shindy’.	What	is
needed	is	not	only	a	connoisseur’s	ear	for	shades	of	distinction	but	a
connoisseur’s	eye	for	how	much	intellectual	posturing	here	elbows	out
actual	intellectual	violence.



73:	[J.	B.	Brown’s	poem]	We	give	the	first	and	last	verses	in	the	text.	Here	are
the	middle	four	verses:

I	have	broadened	and	strengthened	a	mind
With	zeal	ever	burning	more	fiercely	for	learning
Of	every	conceivable	kind.
In	divers	directions	my	knowledge—since	college—
Has	grown	to	be	quite	“omnibus,”
But	I’m	still	more	or	less	in	the	dark,	I	confess,
Why	–	plus	–	makes	–
But	–	times	–	makes	+

I	have	lapped	up	the	learning	of	Livy,
Have	battled	with	Caesar	in	Gaul,
To	practice—in	Attic—the	Method	Socratic
Does	not	incommode	me	at	all;
I	have	plumbed	all	the	pages	of	Plato	and	Cato
And	Varro	and	Vergilius,
But	I’m	forced	to	admit	that	I	can’t	see	a	bit
Why	–	plus	–	is	–
But	–	times	–	is	+

The	Aristotelian	viewpoint
The	critical	croakings	of	Kant,
The	racy	remarks	of	both	Engels	and	Marx,
And	Lubbock,	and	Fabre	on	The	Ant,
Pirandello	and	Browning’s	odd	fellow	“Sordello,”
I’m	fully	equipped	to	discuss,
But	I’m	sorry	to	say	that	I’m	still	not	au	fait	
Why	–	plus	–	is	–
But	–	times	–	is	+

I	have	read	all	the	writings	of	Rousseau,
I	have	mastered	the	musing	of	Mill,
I	find	joy	unalloyed	in	the	fancies	of	Freud
And	the	carvings	of	Epstein	and	Gill;
I	am	strong	on	the	coaching	of	Cotton	and	hot	on
The	heresies	horrid	of	Huss,
But	although	I	still	try,	I	can’t	understand	why



A	–	plus	–	is	–
But	–	times	–	is	+

“Limitation”	is	in	Punch,	vol.	CXC,	March	25,	1936,	p.	350.	Would	Brown	have
been	helped—would	you?—by	this	sonnet	of	Thomas	Harriot’s,	written	three
centuries	before	him:

If	more	by	more	must	needs	make	more
Then	lesse	by	more	makes	lesse	of	more
And	lesse	by	lesse	makes	lesse	of	lesse
If	more	be	more	and	lesse	be	lesse

Yet	lesse	of	lesse	makes	lesse	or	more
Use	which	is	best	keep	both	in	store
If	lesse	of	lesse	you	will	make	lesse
Then	bate	the	same	from	that	is	lesse.

But	if	the	same	you	will	make	more
Then	add	to	it	the	signe	of	more.
The	rule	of	more	is	best	to	use
Yet	for	some	cause	the	other	choose.
So	both	are	one,	for	both	are	true
Of	this	inough	and	so	adieu.

Fauvel	and	Gray	(from	p.	292	of	whose	anthology	this	comes)	remark	that
Harriot	took	great	pains	over	this	sonnet.	Certainly	its	readers	do.

74:	[Proof	that	(–a)(–b)	=	ab]	William	Rowan	Hamilton	tried	to	embody	this
argument	when	he	made	his	plea	for	taking	the	intuition	of	time	as	the
source	of	mathematics.	He	had	already	freed	himself	from	our	accustomed
“number	line”	during	his	traffic	with	complex	numbers,	which	broadened
out	to	a	plane	(as	you	will	see	in	Chapter	Seven).	Here	that	freedom	took	a
different	form	(the	following	paraphrases	Hamilton,	op.	cit.,	pp.	27–28):

Time	flows	inevitably	from	past	to	future,	through	the	present.	Take	“–”
to	mean	reversing	your	direction	in	time	(once	again,	mathematics	is
freedom—even	from	such	an	iron	necessity	as	this).	So	“5”	means	moving
forward	five	units	from	the	present,	0,	to	the	future.	“–5”	means	moving
backward	from	0	to	the	past	(you	might	say	“5	ago”).	If	you	have	this
‘reversing	of	direction	of	time’	well	in	mind	as	the	meaning	of	“–”	(call



time	machines	to	your	aid	if	you	wish),	what	comes	next	will	be	clear.
(+3)·(+4)	means	taking	a	length	4	units	of	future	time	long	and	tripling

it	forward	in	time:	so	to	+12.
(+3)·(–4)	means	taking	the	–4	length—i.e.,	4	units	in	the	past	(“4	ago”)

and	tripling	it;	so	back	to	–12.
(–3)·(–4)	means	taking	that	–4	length,	then	reversing	your	direction	in

time	(this	is	–3,	not	+3),	hence	toward	the	future.	Tripling	brings	you	to
+12.
Hamilton	was	a	classicist	as	well	as	a	mathematician.	He	would	have

been	thoroughly	familiar,	from	Greek	and	Latin	as	well	as	English,	with
the	tense	called	“future	perfect”:	putting	yourself	in	the	position	of	future
time	and	looking	back	at	an	event	which	would	then	be	past,	although
from	the	point	of	view	of	the	present,	might	still	be	future	(“You	will	have
understood	this	explanation	by	the	time	it	is	over”).	Perhaps	this	gave	him
the	background	for	his	image.

75:	[Undeserving	A	and	meritorious	B]	They	appear	as	such	in	Gilbert	and
Sullivan’s	Mikado,	in	the	song	“See	How	the	Fates	Their	Gifts	Allot,”	sung
by	Pitti-Sing,	Pooh-Bah,	and	the	Mikado	himself.

76:	[Euclid’s	floruit]	Heath,	i,	p.	354.
77:	[Euclid’s	proof]	Euclid,	IX,	20.
77:	[Erdos	on	believing	in	The	Book]	Quoted	in	the	preface	to	Martin	Aigner,

and	Günter	M.	Ziegler	Proofs	from	the	Book	(Springer,	1999).
77:	[Portrait	of	Erdos]	From	a	photograph	(one	of	his	mother’s	favorites)	in

Paul	Hoffman’s	The	Man	Who	Loved	Only	Numbers	(Fourth	Estate,	1999).
78:	[Date	of	Eratosthenes]	Heath,	ii,	p.	104.
79:	[A	beta	mind]	Heath,	ii,	p.	104.
82:	[Octillion]	The	truth	of	these	statements	holds	whether	you	reckon	your

octillions	American	style	(1027)	or	by	the	more	generous	British	measure
(1048).

83:	[Leopardi]	The	translation	by	John	Heath-Stubbs	is	from	his	Giacomo
Leopardi:	Selected	Prose	and	Poetry	(Oxford	University	Press,	1966).	The
original	is:

L’Infinito
Sempre	caro	mi	fu	quest’ermo	colle,
E	questa	siepe,	che	da	tanta	parte
Dell’ultimo	orizzonte	il	guardo	eclude.



Ma	sedendo	e	mirando,	interminati
Spazi	di	là	da	quella,	e	sovrumani
Silenzi,	e	profondissima	quiete.
lo	nel	pensier	mi	fingo;	ove	per	poco
Il	cor	non	si	spaura.	E	come	il	vento
Odo	stormir	tra	queste	piante,	io	quello
Infinito	silenzio	a	questa	voce,
Vo	comparando:	e	mi	souvien	l’eterno,
E	le	morte	stagioni,	e	la	presente
E	viva,	e	il	suon	di	lei.	Così	tra	questa
Immensità	s’annega	il	pensier	mio:
E	il	naufragar	m’è	dolce	in	questo	mare.

84:	[Biographical	details	of	Dirichlet]	From	the	St.	Andrews	website.
85:	[Russians	and	time-tables]	in	Yevgeny	Zamyatin’s	We,	the	Time-Tables	of

All	the	Railroads	was	“the	greatest	of	all	the	monuments	of	ancient
literature.”	Certainly	Nabokov	testifies	to	this	obsession	(as	in	the	first
pages	of	his	Pnin),	and	any	reader	of	English	country-house	mysteries
knows	the	importance	of	the	shadowy	Bradshaw.

85:	[Portrait	of	Gauss]	Based	on	J.	B.	Listing’s	sketch	and	Bendixen’s	1828
portrait.

86–91:	[Graphs]	Zagier,	pp.	9,	10.
90:	[Where	Li(x)	and	π(x)	cross]	Zagier,	p.	18.
91:	[Prime-free	gaps]	Zagier,	pp.	11–12.
91:	[Quotation	from	Zagier]	Zagier,	p.	8.
91:	[Palindromic,	counting,	and	topping	and	tailing	primes]	For	these	and

other	such,	browse	through	David	Wells’s	The	Penguin	Dictionary	of
Curious	and	Interesting	Numbers	(Penguin	Books,	1987).

91:	[Modern	work	on	twin	primes,	and	1.3a]	Zagier,	p.	17,	note	9.
92:	[Autists]	Consider	this	passage	from	Oliver	Sacks’s	An	Anthropologist	on

Mars	(Vintage	Books,	1995,	pp.	269–70):	“I	was	struck	by	the	enormous
difference,	the	gulf	between	Temple’s	immediate,	intuitive	recognition	of
animal	moods	and	signs	and	her	extraordinary	difficulties	understanding
human	beings,	their	codes	and	signals,	the	way	they	conduct	themselves	.	.
.	When	she	was	younger,	she	was	hardly	able	to	interpret	even	the	simplest
expression	of	emotion;	she	learned	to	‘decode’	them	later,	without
necessarily	feeling	them	.	.	.	Lacking	[implicit	knowledge	of	cultural
presuppositions],	she	has	instead	to	‘compute’	others’	intentions	and	states



of	mind,	to	try	to	make	algorithmic,	explicit,	what	for	the	rest	of	us	is
second	nature.”

INTERLUDE:	THE	INFINITE	AND	THE	INDEFINITE

93:	[Solon]	Fr.	24,	Diehls,	lines	5–7.
93:	[Anaximander	and	the	apeiron]	Kirk	and	Raven,	pp.	105–17.
93:	[Onlie	begetter]	The	original	onlie	begetter	was,	of	course,	Shakespeare’s

Mr.	W.	H.
94:	[da	Vinci]	“Di	mi	se	mai	fu	fatto	alcuna	cosa.”	Quoted	in	Kenneth	Clark’s

wonderful	essay	“The	Concept	of	Universal	Man,”	in	his	Moments	of
Vision	(John	Murray,	1981),	p.	98.

FOUR:	SKIPPING	STONES

95:	[Passage	from	Newton]	Bell,	p.	90.
98:	[Weil	and	proven	conjectures]	Weil	was,	of	course,	as	alive	as	anyone	to	a

conjecture’s	implications—all	the	more	so,	once	it	was	proven.	The
theorem	itself	and	its	proof,	however,	no	longer	interested	him.	“One
achieves	knowledge	and	indifference	at	the	same	time,”	he	wrote	to	his
sister	Simone	(André	Weil	Oeuvres	scientifiques	[Springer,	1979]	i,	pp.
244–55,	“Une	lettre	et	un	extrait	de	lettre	Simone	Weil”),	in	what	seems	a
parody	of	Buddhist	doctrine.	See	his	“De	la	metaphysique	en
mathematique”	(ibid.,	ii,	pp.	408–12).

101:	[Eureka!	num	=	Δ	+	Δ	+	Δ]	Gauss’s	diary	for	July	10,	1796.	From	Bell,	p.
228.

105:	[Hobbes	and	Wallis]	Quoted	in	Fauvel	and	Gray,	p.	316,	from	Hobbes,
“Six	Lessons	on	the	Professors	of	Mathematics”	(Collected	Works,	VII,
1839–45,	pp.	315–16),	and	J.	Wallis,	“Due	Correction	for	Mr.	Hobbes,	or
Schoole	Discipline,	for	not	Saying	His	Lessons	Right”	(1656),	p.	50.

108:	[The	elusive	she]	She	was	once	spotted	by	Swann,	disappearing	in	a
crowd;	prior	to	that,	by	Goethe,	in	the	form	of	the	ewig	Weibliche.

108:	[On	the	way	to	Moscow]	This	mood	of	always	being	on	the	way	but
perhaps	never	getting	there	seems	built	into	Russian	verbs,	in	their
imperfective	aspect—as	so	charmingly	explained	in	Alexander	Lipson’s	A
Russian	Course,	which	metonymously	never	quite	made	it	to	publication
(the	preliminary	edition	appeared	in	1968	under	the	imprint	of	Slavica
Publishers	Inc.,	Cambridge,	Mass.).



109:	[Brouwer’s	fundamental	sequence]	Van	Stigt,	pp.	305,	312.
109:	[For	Brouwer,	objects	are	sequences	of	sequences]	Van	Stigt,	p.	189.
110:	[Euclid’s	differently	elegant	proof]	Euclid,	IX,	35.
111:	[Visual	proof]	This	wonderful	proof	is	due	to	J.	H.	Webb,	in	Roger	B.

Nelsen’s	Proofs	Without	Words	(Mathematical	Association	of	America,
1993),	p.	119.

112:	[Critics	of	proof	by	picture]	James	Robert	Brown,	in	the	last	chapter	of	his
Philosophy	of	Mathematics	(Routledge,	1999),	collects	and	criticizes
positions	taken	against	visual	proofs,	which	include:	an	apparent	lack	of
rigor;	mathematics	seen	as	arising	essentially	from	the	manipulation	of
verbal	or	logical	symbols;	and	pictures	as	a	source	of	error	(although	he
doesn’t	mention	that	algebraic	manipulations	can	make	transparent	what
pictures—as	in	knot	theory—may	obscure).	He	tellingly	quotes	(p.	173)
Pierre	Cartier,	a	member	of	Bourbaki	(the	group	of	primarily	French
mathematicians	who	vigorously	promulgated	rigor	in	the	mid-twentieth
century),	who,	when	asked	why	there	were	no	diagrams	in	Bourbaki,
answered:	“The	Bourbaki	were	Puritans,	and	Puritans	are	strongly	opposed
to	pictorial	representations	of	truths	of	their	faith.”

112:	[Littlewood]	A	Mathematician’s	Miscellany	(Methuen,	1953),	p.	35,	on	the
diagram	illustrating	that	if	f(x)	is	an	increasing	function,	then	for	any	x	in
[0,	1]	the	sequence	x,	f(x),	f(f(x)),	.	.	.	has	a	fixed	point.

113:	[Powers	read	as	greater	because	they	work	with	the	unembodied]	You
could	read	the	ancient	edict	against	graven	images	as	Freud	did,	in	his
otherwise	discredited	Moses	and	Monotheism,	a	call	to	thought	which	is
deeper	because	more	abstract.	Even	in	cultures	as	tied	to	the	visual	as	the
Greek,	you	find	Aristotle	in	effect	warning	that	the	diagrams
accompanying	proofs	are	only	aids	to	memory	(De	Memoria,	450a).
Certainly	memory	plays	an	interestingly	intermediate	role	in	recursive
abstraction	(as	memory	palaces	testify):	somewhere	between	the	visual	and
the	structural,	and	curiously	out	of	time.

113:	[On	Nicole	d’Oresme]	Kline,	p.	437;	Stillwell,	p.	119.
114:	[Toricelli’s	trumpet]	The	volume	of	this	infinite	trumpet	is,	astonishingly,

π.
114:	[Toricelli	and	Oresme]	The	connection	between	Oresme’s	tower	and

Torricelli’s	trumpet	was	pointed	out	by	John	Stillwell,	p.	119.	There	too	(p.
103)	is	the	Hobbes	quotation	from	his	“Considerations	upon	the	Answer	of
Dr.	Wallis.”

114:	[Peacock’s	third	impossible	thing]	Kline,	p.	974.



115:	[Peacock’s	fourth	impossible	thing]	Kline,	pp.	974–75.
116:	[Laws	in	the	wilderness]	The	comparison	to	statute	and	common	law	might

be	worth	pursuing.	We	tend	to	invent	our	axioms	only	when	need	requires,
as	in	common	law—and	then	come	to	see	them	as	having	an	aura	even
more	golden	than	do	statute	laws—that	is,	as	pro-	rather	than	re-active.

116:	[Nicole	d’Oresme	and	the	harmonic	series]	Kline,	p.	437.
117:	[Minkowski	anecdote]	Reid,	p.	102.
117:	[Portrait	of	Minkowski]	From	an	unattributed	photograph	on	the	St.

Andrews	website.
118:	[Poincaré	and	logical	monsters]	Kline,	p.	973.
118:	[Abel	on	divergent	series]	Kline,	p.	973.
118:	[1	–	1/2	+	1/3	–	.	.	.	converges]	Entertainingly	enough,	it	converges	to	ln	2,

an	irrational	that	begins	.693	.	.	.
121:	[The	tower	of	xs]	Be	careful	when	trying	this	at	home	with	numbers	other

than	2	to	the	right	of	the	equals	sign.	The	expression

turns	out	to	be	meaningful	only	when	y	lies	between	1/e	and	e:

1/e	≤	y	≤	e

that	omnipresent	e,	the	base	of	the	natural	logarithms,	which	we	have	now	met
for	the	third	time.

FIVE:	EUCLID	ALONE

123:	[Graves]	Goodby	to	All	That	(London:	Cassell	and	Co.,	1958),	p.	260.
124:	[Euclid’s	Fifth	Postulate]	What	Euclid	has	is:	“If	a	straight	line	falling	on

two	straight	lines	makes	the	interior	angles	on	the	same	side	less	than	two
right	angles,	then	the	two	straight	lines,	if	indefinitely	produced,	will	meet
on	that	side	on	which	are	the	angles	less	than	the	two	right	angles.”	The
form	given	in	the	text,	known	as	Playfair’s	Axiom,	is	equivalent	to
Euclid’s.	By	putting	the	matter	negatively	Euclid	may	have	been	trying	to



do	an	end-run	around	the	infinite.
124:	[Greek	uneasiness	with	fifth	postulate]	Euclid	invoked	the	infinite

(τὸἄπειρον)	not	only	in	the	fifth	but	in	earlier	postulates,	as	in	granting	that
we	may	construct	a	line	through	any	two	points	and	a	circle	with	any
radius.	As	Heath	observes	(Euclid,	i,	p.	200),	“The	circle	may	be
indefinitely	large,	which	implies	the	fundamental	hypothesis	of	infinitude
in	space.	This	.	.	.	is	essential	to	the	proof	of	l.16	[the	exterior	angle	of	a
triangle	is	greater	than	either	opposite	interior	angle],	a	theorem	not
universally	valid	in	a	space	unbounded	in	extent	but	finite	in	size.”	It
wasn’t	just	invoking	the	infinite	in	the	fifth	postulate	that	disturbed	his
contemporaries	and	successors,	but	Euclid’s	insistence	on	assuming	what
they	thought	should	and	might	yet	be	proved	(his	genius,	says	Heath,	is
shown	by	his	choice).	For	as	Proclus	remarked	(Euclid,	i,	p.	203),
asymptotes	showed	that	certain	converging	lines	won’t	meet,	so	we	really
need	to	prove	that	converging	straight	lines	must.

128:	[Pythagoreans	and	a	triangle’s	angle-sum]	Heath,	i,	p.	135.
128:	[Hobbes]	Aubrey’s	Brief	Lives,	ii,	pp.	220,	221.
142:	[Archimedes	looked	to	physics	for	his	insights]	Heath,	in	his	excellent

edition	of	Archimedes’s	Method	(The	Works	of	Archimedes	[Dover	reprint
of	the	1897	Heath	edition,	with	1912	Supplement],	says	that	the
mechanical	method	used	by	Archimedes	“.	.	.	and	shown	to	be	so	useful	for
the	discovery	of	theorems	is	distinctly	said	to	be	incapable	of	furnishing
proofs	for	them;	and	Archimedes	promises	to	add	.	.	.	the	necessary
supplement	in	the	shape	of	the	formal	geometrical	proof”	(p.	7).

142:	[Two	early	results	from	Euclid]	That	the	line	joining	the	midpoints	of	a
triangle’s	sides	is	parallel	to	its	base	follows	from	VI,	6	and	I,	28;	that	this
line	is	half	the	length	of	the	base,	from	VI,	6	and	VI,	4.	The	second	result
—that	the	diagonals	of	a	parallelogram	bisect	each	other,	follows	from	1,	4,
8,	26,	29,	and	34.

148:	[Portrait	of	Euler]	From	an	unattributed	portrait	on	the	St.	Andrews
website.	For	details	of	his	life,	see	Stillwell,	pp.	132–34,	and	Kline,	pp.
401–3.

151:	[Thales’s	theorem	on	an	inscribed	triangle]	Heath,	i,	p.	131;	on	Pamphile,	i,
p.	133	(her	date	under	Nero,	54–68	A.D.).

151:	[Feuerbach]	A	recluse:	St.	Andrews	website.	See	too	Kline,	p.	837.	This
proof	was	first	published	in	1821	by	Gergonne	and	Poncelet.

155:	[Euclid	alone]	Millay’s	sonnet	(from	The	Harp-Weaver)	reads:



Euclid	alone	has	looked	on	Beauty	bare.
Let	all	who	prate	of	beauty	hold	their	peace,
And	lay	them	prone	upon	the	earth	and	cease
To	ponder	on	themselves,	the	while	they	stare
At	nothing,	intricately	drawn	nowhere
In	shapes	of	shifting	lineage;	let	geese
Gabble	and	hiss,	but	heroes	seek	release
From	dusty	bondage	into	luminous	air.
O	blinding	hour,	O	holy,	terrible	day,
When	first	the	shaft	into	his	vision	shone
Of	light	anatomized!	Euclid	alone
Has	looked	on	Beauty	bare.	Fortunate	they
Who,	though	once	only	and	then	but	far	away,
Have	heard	her	massive	sandal	set	on	stone.

155:	[L’art	de	bien	raisonner	.	.	.]	The	passage	occurs	in	Poincaré’s	article
“Analysis	Situs,”	Journal	de	l’école	polytechnique	(1895)	t.	1,	pp.	1–121.
It	can	also	be	found	in	volume	vi	of	his	Oeuvres	(Paris,	1953),	p.	194.

155:	[Portrait	of	Poincaré]	From	an	unattributed	photograph	in	Stillwell,	p.	310.
156:	[Fagnano]	Kline,	p.	413.
157:	[Polonius’s	advice	to	Laertes]	Hamlet,	ii.1.	66.
157:	[Rhind	Papyrus]	Katz,	pp.	3,	13–14.
159:	[Fejér]	St.	Andrews	website.

INTERLUDE:	LONGING	AND	THE	INFINITE

165:	[Saladin’s	army]	Cited	in	Erik	Durschmied’s	The	Hinge	Factor	(Arcade,
2001),	p.	13.	In	modern	set	theory	“uncountable”	can	mean	simply	that	the
set	cannot	within	the	model	be	put	into	a	1–1	correspondence	with	the
counting	numbers.

165:	[Crowds	at	football	stadia]	Michigan,	Tennessee,	and	Penn	State	can
accommodate	over	100,000	fans;	98,000	can	watch	rivetting	cricket	in
Melbourne.

165:	[All	the	leaves	on	all	the	trees]	This	echoes	two	lines	of	Charles	Elton’s
“Luriana	Lurilee,”	quoted	to	such	effect	in	Virginia	Woolf’s	To	the
Lighthouse.

165:	[Kenneth	Clark]	“Iconophobia,”	in	his	Moments	of	Vision	(op.	cit.),	p.	33.
166:	[The	expansion	of	infinite	things]	“Ayant	l’expansion	des	choses	infinies”:



from	Baudelaire’s	“Correspondences.”
166:	[Michael	Atiyah]	“Mathematics	in	the	Twentieth	Century,”	MAA	Monthly

(August–September	2001,	vol.	108,	no.	7),	p.	659.
166:	[Aspiring	to	the	condition	of	mathematics]	This	is	meant	to	echo	Walter

Pater’s	“All	art	constantly	aspires	towards	the	condition	of	music”	(in	his
essay	“The	School	of	Giorgione,”	in	The	Renaissance).

SIX:	THE	EAGLE	OF	ALGEBRA

167:	[Title]	In	the	background	of	this	title	lies	a	passage	from	J.	J.	Sylvester’s
“On	a	new	Class	of	Theorems	in	Elimination	Between	Quadratic
Functions,”	Philosophical	Magazine	XXXVII	(1850),	pp.	363–70	(also	in
Sylvester’s	Collected	Works,	i,	pp.	145–51):	“Aspiring	to	these	wide
generalizations,	the	analysis	of	quadratic	functions	soars	to	a	pitch	from
whence	it	may	look	proudly	down	on	the	feeble	and	vain	attempts	of
geometry	proper	to	rise	to	its	level	or	to	emulate	it	in	its	flights.”

167:	[God	and	compasses]	For	a	study	of	the	theme	of	God	holding	a	compass,
see	J.	B.	Friedman’s	“The	Architect’s	Compass	in	Creation	Miniatures	of
the	Later	Middle	Ages,”	Traditio,	Studies	in	Ancient	and	Medieval	History,
Thought	and	Religion	(New	York,	1974),	pp.	419–29.

167:	[Euclid	and	subtle	devices]	Katz,	pp.	61–62.
168:	[Lobkowitz]	This	enticing	information	comes	from	James	Franklin’s	The

Science	of	Conjecture:	Evidence	and	Probability	Before	Pascal	(Johns
Hopkins,	2001),	p.	89.

172:	[Childe	Roland]	He,	as	Child	Rowland,	and	his	tower	appear	in	Lear,	iii.	4.
187,	then	in	Robert	Browning’s	“Childe	Roland	to	the	Dark	Tower	Came.”

172:	[Golden	Ratio]	The	term	“golden	ratio”	or	“golden	mean”	may	first	appear
in	Kepler	(passage	quoted	on	p.	173).	It	is	the	“divine	proportion”	in	Luca
Pacioli’s	De	divina	proportione,	published	in	1509.

172:	[Euclid’s	definition]	This	appears	as	Definition	3	in	Book	VI	of	the
Elements.

173:	[The	beauty	of	the	major	sixth]	See	H.	E.	Huntley,	The	Divine	Proportion
(Dover,	1970),	pp.	51–53.

173:	[Kepler	on	extreme	and	mean	ratio]	Kepler,	Harmonices	Mundi.
173:	[Pentagram	called	“Health”]	Heath,	i,	161;	Euclid,	ii,	99.
177:	[Hippasus	and	the	incommensurable]	Was	it	the	irrationality	of	√2	or	of	φ,

the	golden	mean,	that	Hippasus	is	supposed	to	have	discovered?	This	is	the



kind	of	grist	that	keeps	the	mills	of	scholarship	grinding	slow	but
exceeding	fine.	Such	scanty	evidence	as	we	have	is	indirect	or	from
untrustworthy	sources.

Kurt	von	Fritz,	in	his	striking	essay	“The	Discovery	of
Incommensurability	by	Hippasus	of	Metapontum”	(Annals	of
Mathematics,	no.	46	(1954),	pp.	249–64,	reprinted	in	David	J.	Furley	and
R.	E.	Allen	(eds.),	Studies	in	Presocratic	Philosophy	(Humanities	Press,
1970–1975,	I,	pp.	382–412),	says	(p.	386)	that	tradition	is	unanimous	in
attributing	the	discovery	of	the	former	to	Hippasus,	and	brings	indirect
evidence	to	bear	from	Plato’s	Theaetetus	and	the	unreliable	lamblichus.
Heath	(i,	p.	27)	asserts	that	the	proof	was	“doubtless”	the	one	we	gave	in
our	first	chapter.
Von	Fritz	declares	that	Hippasus	devised	a	proof	that	the	side	and

diagonal	of	a	pentagram	were	incommensurable,	tracing	his	approach	back
perhaps	centuries	before	the	mid-fifth	century	B.C.	to	a	rule	of	thumb	well
known	to	craftsmen.	For	if	you	wish	to	find	the	greatest	common	measure
of	two	lengths	s	and	l,	simply	lay	the	shorter	one	s	off	on	l	until	no	or
some	remainder	0	<	r1	<	s	is	left.	If	none	remains,	s	is	their	greatest
common	measure.	Given	r1,	however,	lay	it	off	in	turn	on	s	until	some	r2
with	0	≤	r2	<	r1	remains.	If	r2	=	0,	r1	is	the	greatest	common	measure;	if
not,	continue	in	this	way,	obtaining	successively	smaller	remainders	r3,	r4,
.	.	.	until	the	process	terminates—and	when	it	does,	that	last	remainder	is
the	greatest	common	measure	of	s	and	l.
Yet	what	if	the	process	never	ends?	Then	indeed	s	and	l	are

incommensurable,	and	if	s,	say,	is	an	integer	or	rational,	I	must	be
irrational.	How	could	you	prove,	however,	that	the	process	would	never
end?	Here	is	where	the	brilliant	insight	appears.	If	each	“laying	off”
operation	is	similar	to	the	previous	one,	then	the	process	must	continue
forever.	Now	when	you	draw	in	all	the	diagonals	of	a	pentagon,	another,
similar	and	smaller	pentagon	appears	upside-down	within	it.	By	isosceles
triangles,	the	diagonal	of	this	inner	pentagon	will	be	congruent	to	the
remainder	r1	=	l	–	s	of	the	original	pentagon;	hence	the	same	process	will
yield	an	r2,	and	so	on.	The	pentagons	may	shrink	in	size	but	by	similarity
can	never	disappear—hence	the	sequence	of	remainders	continues	forever
and	s	and	l	are	incommensurable.	Their	ratio	φ	is	irrational.
Scholarly	grinding	pulped	von	Fritz’s	paper	as	soon	as	its	ink	was	dry.

So	J.	A.	Philip,	in	Pythagoras	and	Pythagoreanism	(University	of	Toronto



Press,	1966),	finds	his	thesis	“untenable”	(p.	30)	because	his	sources	are
notoriously	corrupt.	For	a	subsequent	defense	of	von	Fritz,	see	D.	H.
Fowler,	The	Mathematics	of	Plato’s	Academy	(Oxford:	Clarendon	Press,
1999).
And	Hippasus?	He	may	have	been	drowned	by	the	Pythagoreans	or	by

the	gods	themselves	for	his	impiety	in	discovering—or	perhaps	making
public	the	discovery—of	the	irrational;	or	he	may	have	been	the	figment
of	an	ancient	imagination;	or	a	peg	(as	Philip	says)	on	which	historians	of
mathematics	have	hung	their	hypotheses.	He	is	certainly	farther	out	than
we	thought	in	the	turbulent	waters	of	academic	debate.

186:	[Piers	Plowman’s	Vision]	These	lines	are	from	the	Induction,	17–18,	as
translated	by	Henry	W.	Wells.

187:	[“Put	them	to	the	plough	.	.	.”]	Piers	Plowman,	lines	19–21.
187:	[Making	a	quotient	tell	us	its	name]	This	technique—called	multiplying	by

the	conjugate	a	–	b√c	of	a	number	a	+	b√c—is	in	Euclid	X,	112,	although
done	geometrically,	in	terms	of	the	areas	of	rectangles.	It	may,	says	Heath,
stem	from	the	later	work	of	Apollonius.	Heath	comments	on	this
proposition:	“The	proof	is	a	remarkable	instance	of	the	dexterity	of	the
Greeks	in	using	geometry	as	the	equivalent	of	our	algebra.	Like	so	many
proofs	in	Archimedes	and	Apollonius,	it	leaves	us	completely	in	the	dark	as
to	how	it	was	evolved.	That	the	Greeks	must	have	had	some	analytical
method	which	suggested	the	steps	of	such	proofs	seems	certain;	but	what	it
was	must	remain	apparently	an	insoluble	mystery”	(Euclid,	ii,	p.	246).

191:	[Glimmerings	of	the	coordinate	plane]	Smith	(ii,	p.	316)	sees	the	Egyptian
glimmerings	in	their	surveying	practices,	pointing	out	that	their	hieroglyph
for	a	district	(hesp)	was	a	grid.	Among	the	Greeks,	he	says,	Hipparchus	(c.
150	B.C.)	used	longitude	(µήκος)	and	latitude	(πγάτος)	to	locate	earthly
and	celestial	objects.	Stillwell	(p.	16)	points	out	that	Nicole	d’Oresme	in
the	fourteenth	century	took	a	step	beyond	the	Greeks	by	setting	up
something	of	a	coordinate	system	before	determining	a	curve—but	it	took
the	algebraic	skills	and	insights	of	Fermat	and	Descartes,	working
independently	on	a	problem	of	Apollonius,	fully	to	develop	the	coordinate
plane.

199:	[Passage	from	Wellington]	quoted	in	Dixon,	op.	cit.,	p.	324.
200:	[Princess	Ida]	These	lines	are	from	the	song	sung	by	Arac,	Guron,	and

Scynthius,	in	Act	III.
202:	[“Here	may	we	sit	.	.	.”]	From	Samuel	Daniel’s	“Ulysses	and	the	Siren.”
204:	[Passage	from	Gauss]	Quoted	in	Goldman,	p.	203.



204:	[Passage	from	Gauss]	Fauvel	and	Gray,	p.	492;	translation	by	J.	Gray.
205:	[Irreducible	cube	or	higher	roots]	If	the	number	of	sides	of	a	polygon	is	a

prime	p,	then,	Gauss	wrote,	“as	often	as	p	–	1	contains	other	prime	factors
besides	2,	we	arrive	at	higher	equations,	namely	to	one	or	more	cubic
equations	if	3	enters	once	or	oftener	as	a	factor	of	p	–	1,	to	equations	of	the
fifth	degree	if	p	–	1	is	divisible	by	5,	etc.”	(Kline,	p.	753).

206:	[Remark	of	curator	of	models]	In	a	personal	communication	from	S.	J.
Patterson,	August	23,	2001.	That	a	dissertation	on	a	mathematical	topic
should	be	so	little	read	is	no	surprise;	that	it	should	have	been	so	much
looked	at,	is.	Alf	van	der	Poorten	(Notes	on	Fermat’s	Last	Theorem
[Wiley-Interscience	1996],	p.	42)	says:	“It	appears	that	the	average
[mathematical]	paper	is	read	by	some	0.76	mathematician,	including
author,	referee,	and	reviewers,”	and	in	a	footnote	adds	a	“.	.	.	dictum	that
one’s	Ph.	D	thesis	should	be	readable	by	at	least	two	people,	one	of	them
by	preference	being	the	author.”

206:	[Ideal	palaces]	The	Palais	Idéal,	built	over	many	years	by	le	facteur
Cheval	of	Hauterives,	south	of	Louhans—vaut	le	voyage,	especially	in	the
rain.

206:	[Palmanova]	This	geometric	abstraction	materialized	thirteen	miles	from
Udine,	in	the	Friulian	plain,	in	1593,	to	keep	off	the	Turks	and	Austrians.
The	complicated	fields	of	fire	afforded	by	its	nine	bastions	seem	never	to
have	sprouted	a	single	battle.

207:	[Puzzle—or	problem?]	The	reduction	of	philosophy’s	problems	to	the
puzzles	of	a	game	(or	is	it	the	elevation	of	puzzles	to	philosophical
problems?)	runs	like	a	red	thread	through	the	later	writings	of	Wittgenstein,
unifying	their	apparent	diversity.	From	Philosophical	Investigations,	p.	109
(trans.	Anscombe):	“.	.	.	[philosophical]	problems	are	solved,	not	by	giving
new	information,	but	by	arranging	what	we	have	always	known.
Philosophy	is	a	battle	against	the	bewitchment	of	our	intelligence	by	means
of	language.”

SEVEN:	INTO	THE	HIGHLANDS

209:	[De	Morgan]	Kline,	p.	975,	quoting	from	his	Differential	and	Integral
Calculus.

209:	[Calgacus]	Tacitus,	Agricola	30.	As	Simon	Shama	points	out	in	his	history
of	Britain:	in	keeping	with	the	Roman	tradition	of	historical	writing,
Tacitus	undoubtedly	put	these	words	into	Calgacus’s	mouth.



209:	[Writers	in	exile]	All	writers,	of	course,	are	in	exile,	since	that’s	what	it
means	to	write.	It	is	this	combination	of	the	vivid	and	the	abstract	that
makes	autobiography	so	enthralling.	The	French	understood	this	well,
calling	their	historic	past	tense	the	passé	simple	because	it	enhances
poignancy	through	distancing.

210:	[Passage	from	Hamilton]	Hamilton	(op.	cit.),	p.	3.
211:	[Wallis	and	passage	paraphrased	from	him]	David	Eugene	Smith,	A	Source

Book	in	Mathematics	(McGraw-Hill,	1929),	pp.	46–48.
213:	[Bombelli]	Fauvel	and	Gray,	p.	264.
213:	[Cardano]	For	his	life,	see	p.	366	and	the	note	to	it.
213:	[Bombelli’s	ideas]	See	Federica	La	Nave	and	Barry	Mazur,	“Reading

Bombelli”	in	The	Mathematical	Intelligencer	(January	2002),	pp.	12–26.
216:	[d’Alembert]	Kline,	p.	595;	Bell,	p.	156;	Stillwell,	pp.	201–2.
216:	[Portrait	of	d’Alembert]	From	an	unattributed	engraving	in	Stillwell,	p.

201.
217:	[Historian	on	Virginia]	David	Hackett	Fischer	and	James	C.	Kelly,	Bound

Away:	Virginia	and	the	Westward	Movement	(University	Press	of	Virginia,
2000),	p.	14	(it	is	also	here	that	the	quotation	from	Sir	Humphrey	Gilbert
appears).

217:	[The	ingenuity	of	Wallis]	Wallis	says:	“.	.	.	where	√	implies	a	Mean
Proportional	between	a	Positive	and	a	Negative	quantity”	(Smith,	ii,	pp.
263–64).	He	doesn’t	state	explicitly	that	his	axes	represent	that	mean
proportional	geometrically,	but	the	conclusion	is	unmistakable.

218:	[Thurston]	William	P.	Thurston,	“Mathematical	Education,”	Notices	of	the
American	Mathematical	Society	37:	7,	(September	1990),	pp.	55–60.

218:	[Euler	equating	two	expressions]	Kline,	p.	629,	who	points	out	that	Cotes,
De	Moivre,	and	Vandermonde	probably	made	the	same	identification.

218:	[Wessel]	St.	Andrews	website:	Caspar	Wessel.
218:	[Wessel’s	paper]	Kline,	p.	629.
222:	[Argand]	St.	Andrews	website:	Argand.
222:	[Servois	on	algebra]	St.	Andrews	website:	Argand.
223:	[Paul	Halmos]	“The	Heart	of	Mathematics,”	The	American	Mathematical

Monthly	87	(1980),	pp.	519–24.
223:	[Hilbert	passage]	Reid,	p.	81.
225:	[Wessel,Argand,	Euler	on	length	of	product	vector]	Kline,	p.	629.
226:	[Hipparchus,	Menelaus	and	Ptolemy]	Kline,	pp.	119ff.
226:	[Etymology	of	sine]	Following	Smith	(ii,	pp.	615–16),	the	contorted



history	of	the	word	for	this	smooth	curve	begins	in	India,	where	around
510	Āryabhaṭa	called	it	“chord-half”	(jyā-ardhā),	abbreviated	jyā.	This
turned	in	Arabic	hands	into	jîba,	and	since	only	the	consonants	“j	b”	were
written,	it	also	came	to	be	read	by	later	Arabic	writers	as	“jaib,”	“bosom,
breast	or	bay.”	Hence	in	1150	Girardus	of	Cremona	translated	the	Arabic
into	“sinus”:	“bosom,	bay,	curve,	fold	of	toga	about	the	breast,	land	about	a
gulf,	fold	in	land.”

230:	[Goethe	passage]	Passage	813	in	Robert	Edouard	Moritz,	On	Mathematics
and	Mathematicians	(Dover,	1958),	translated	from	Goethe,	Maximen	und
Reflexionen,	Sechste	Abtheilung.

233:	[Visual	proof	of	the	sine	and	cosine	addition	laws]	This	nifty	proof	is	due
to	Roger	B.	Nelsen,	in	his	Proofs	Without	Words	II:	More	Exercises	in
Visual	Thinking	(Mathematical	Association	of	America,	2000),	p.	46.

235:	[Wittgenstein	on	mathematics]	See,	for	example,	Tractatus	Logico-
Philosophicus	6.22.

235:	[The	concealments	of	Archimedes	and	Newton]	See	Kline,	p.	595;
Stillwell,	pp.	188,	194.	On	Archimedes	in	particular,	consider	this,	from
Heath’s	introduction	to	his	translation	of	Archimedes’s	Method	(op.	cit.,	p.
6):	“Nothing	is	more	characteristic	of	the	classical	works	of	the	great
geometers	of	Greece,	or	more	tantalizing,	than	the	absence	of	any
indication	of	the	steps	by	which	they	worked	their	way	to	the	discovery	of
their	great	theorems.”	On	Newton,	see	J.	M.	Keynes’s	fascinating
“Newton,	The	Man,”	reprinted	in	The	World	of	Mathematics,	ed.	J.
Newman	(Simon	and	Schuster,	1956),	i,	pp.	277–85,	in	which	he	says:
“Certainly	there	can	be	no	doubt	that	the	peculiar	geometrical	form	in
which	the	exposition	of	the	Principia	is	dressed	up	bears	no	resemblance	at
all	to	the	mental	processes	by	which	Newton	actually	arrived	at	his
conclusions”	(p.	279).

235:	[Gauss	in	1825	and	1831]	Kline,	pp.	631–32.
236:	[“No	great	thing	comes	without	a	curse”]	Sophocles,	Antigone,	613	(ούδὲν

ἓρπει	θνατῶν	βιότῳ	πάµπολύ	γ	έκτὸς	ἄτας).
238:	[Indian	mathematicians]	Stillwell,	p.	120.
239:	[Newton’s	discovery	of	trigonometric	polynomials]	Stillwell,	p.	108.
239:	[Exponential	series	discovered	by	Newton]	Kline,	p.	438.
239:	[Euler’s	boldness]	Stillwell,	p.	221.
240:	[Gauss	and	Cauchy]	Gauss	clarified	the	meaning	of	complex	numbers	in

1811	(Stillwell,	p.	221,	and	see	Kline,	ch.	27	passim);	on	Cauchy’s	paper



of	1851,	see	Kline,	p.	642.
240:	[Benjamin	Peirce]	Edward	Kasner	and	James	Newman,	Mathematics	and

the	Imagination	(Simon	and	Schuster,	1940),	p.	104.
241:	[de	Moivre]	St.	Andrews	website:	De	Moivre.
242:	[Cotes	and	de	Moivre]	Stillwell,	pp.	193–95.
247:	[Passage	from	Blake]	Quoted	in	Kenneth	Clark	(op.	cit.),	p.	9.

EIGHT:	BACK	OF	BEYOND

251:	[Alberti]	Alberti’s	dates	are	1404–1472.	The	passage	is	from	his	De
Pictura	(ed.	Cecil	Grayson),	Book	I,	¶31:	“Id	istiusmodi	est:	velum	filo
tenuissimo	et	rare	textum	quovis	colore	pertinctum	filis	grossioribus	in
parallelas	portiones	quadras	quot	libeat	distinctum	telarioque	distentum.
Quod	quidem	inter	corpus	repraesentandum	atque	oculum	constituo,	ut	per
veli	raritas	pyramis	visiva	penetret.”	Although	perspective	drawing	was
first	described	by	Alberti	and	perfected	by	Piero	della	Francesca,	it
probably	originated	with	Brunelleschi.	See	Panofsky,	“Dürer	as
Mathematician,”	in	Newman	(op.	cit.)	i,	p.	605.

254:	[Poncelet]	Details	of	his	life	from	H.	Tribout,	Un	grand	savant:	Le	général
Jean-Victor	Poncelet	(Paris,	1936);	and	J.	Bertrand,	“Eloge	historique	de
Jean	Victor	Poncelet,”	in	Eloges	académiques	(Paris,	1890),	pp.	105–29.
Stillwell	(p.	83)	points	out	that	it	was	Poncelet	who	introduced	the	line	at
infinity,	and	Kline	(p.	842)	says	that	he	was	the	first	fully	to	appreciate	that
projective	geometry	was	a	new	branch	of	mathematics.

254:	[Portrait	of	Poncelet]	From	an	unattributed	photograph	on	the	St.	Andrews
website.

254:	[Quotation	from	Hamlet]	Is	it	Hamlet	whom	Tribout	echoes	in	his	life	of
Poncelet	(op.	cit.)	when	he	writes	of	his	stay	in	prison:	“Car	que	faire	en
un	gîte,	à	moins	que	l’on	ne	songe?”

255:	[Two	millennia	of	attempts	to	prove	the	parallel	postulate]	See	the
excellent	discussion	in	Euclid,	i,	pp.	202–20.

255:	[Saccheri	and	Lambert]	In	addition	to	the	discussion	in	Heath’s	Euclid	(see
previous	note),	on	Saccheri,	see	Kline,	p.	866,	and	Stillwell,	p.	257.	On
Lambert,	see	Kline,	p.	868,	and	Stillwell,	p.	258.

255:	[Gauss	on	the	shameful	part]	On	the	‘partie	honteuse,’	see	Jeremy	Gray,
“The	Discovery	of	Non-Euclidean	Geometry,”	in	Phillips,	p.	45.

256:	[Pencil]	For	the	origin	of	this	term,	see	Desargues,	Oeuvres	(ed.	Poudra),
(Paris,	1864)	i,	pp.	135–36,	§4.	It	is	worth	remarking	that	ideals	as	pencils



of	lines	apparently	gave	Hilbert	his	idea	for	proving	consistency	and
completeness	by	adjoining	ideal	numbers,	each	standing	for	infinitely
many	numbers—and	so	getting	around	Kronecker’s	ban	on	the	infinite	by
being	utterly	finite	in	method.	See	Reid,	p.	269.

257:	[Without	having	to	peer	through	a	veil]	Cf.	Corinthians	3:	13–18.
261:	[Finite	projective	planes]	The	accountants	must,	oddly	enough,	be

somewhat	constrained	in	their	exuberance:	not	every	natural	number	in	fact
will	work.	We	know	that	we	can	have	finite	projective	planes	with	n	points
on	each	line	if	n	is	a	prime	number	to	any	power.	If	it	isn’t	we	may	not	be
able	to,	for	subtle	combinatorial	reasons.	6	and	10	won’t	work	and	12	may
not.	Which	n	(if	any)	work,	other	than	prime	powers,	is	still	an	intriguing
open	question.

261:	[5000	rubber	threads	in	a	Kooshball]	This	information	appears	on	the	web
at	www.drtoy.com.

263:	[“Koosh”	from	the	sound	of	ball	landing]	See	entry	“Kooshball”	on
www.yesterday-land.com.	For	more	on	its	nature	and	history,	see
www.genuineideas.com,	
www.bodfods.com,	www.cni.org	(which	explains	that	the	copyright	office
refused	registration	of	“Kooshball”	because	its	tactility	could	not	be
considered	in	judging	its	creativity),	and	
www.isaac.exploratorium.edu	(where	you	will	learn	that,	as	Newton
predicted,	a	spun	Koosh	has,	like	a	planet,	an	equatorial	bulge).

265:	[Duality]	Katz,	p.	786,	points	out	that	Poncelet	used	the	Principle	of
Duality	as	a	tool	but	never	established	it	as	a	theorem.

265:	[Passage	from	Keyser]	In	Moritz	(op.	cit.),	passage	1880.
267:	[Desargues]	(1591–1661).	Son	of	a	well-off	Lyonnais	family,	he	wrote	on

stone-cutting	and	sundials,	designed	an	elaborate	spiral	staircase,	an
ingenious	pump,	and	the	beginnings	of	projective	geometry.	A	crater	on	the
moon	and	a	street	in	Paris	are	named	for	him.	See	the	St.	Andrews	website.

275:	[Haldane]	According	to	Kenneth	Clark	(Civilization,	ch.	13),	what	Haldane
did	say	was:	“My	own	suspicion	is	that	the	universe	is	not	only	queerer
than	we	suppose,	but	queerer	than	we	can	suppose.”

276:	[Hilbert’s	remark]	Reid,	p.	31.
281:	[Hilbert	on	Pappus’s	theorem]	D.	Hilbert	and	S.	Cohn-Vossen,	Geometry

and	the	Imagination	(Chelsea,	1952)	p.	132.	The	implicational	relations
among	the	key	theorems	of	the	projective	plane	are	these:	The
Fundamental	Theorem	(along	with	axioms	P1	–	P4,	of	course)	implies
Pappus’s	theorem,	which	implies	Desargues’s	theorem;	and	conversely,	all

http://www.drtoy.com
http://www.yesterday-land.com/
http://www.genuineideas.com
http://www.bodfods.com/
http://www.cni.org
http://www.isaac.exploratorium.edu/


of	these	taken	together	imply	the	Fundamental	Theorem.	See	Robin
Hartshorne’s	Foundations	of	Projective	Geometry	(Benjamin,	1967),	ch.	5,
for	a	lucid	exposition.

281:	[Principle	of	Continuity]	Kline,	p.	843.

NINE:	THE	ABYSS

287:	[Nietzsche]	Beyond	Good	and	Evil,	Aphorism	146:	“Und	wenn	du	lange	in
einer	Abgrund	blickst,	blickt	der	Abgrund	auch	in	dich	hinein.”

287:	[A	little	cloud]	I	Kings	18:44.
287:	[Thabit	ibn	Qurra]	See	A.	I.	Sabra,	“Thabit	ibn	Qurra	on	the	Infinite	and

Other	Puzzles,”	in	Zeitchrift	für	Geschichte	der	Arabisch-Islamischen
Wissenschaften	11	(1997),	pp.	1–33.

287:	[Galileo]	Two	New	Sciences:	Day	One	(pp.	31–33	in	the	Dover	edition).
288:	[Glib	know-nothingness]	This	is	the	ignorabimus	which	Hilbert	said

doesn’t	exist	in	mathematics.
288:	[Letter	from	Cantor’s	father]	This	is	condensed	from	the	letter	Georg

Waldemar	Cantor	wrote	to	his	son	in	1860	(Dauben,	pp.	274–76).
288:	[Secret	voice]	Dauben,	pp.	277,	283,	289–91.
288:	[Portrait	of	Cantor	as	a	young	man]	From	a	photograph	in	Purkert,	p.	30,

titled	“Cantor	am	Beginn	seiner	Hallenser	Zeit”.
291:	[Nomads	in	the	Caucasus]	For	this	passage	see	The	Epic	Histories

Attributed	to	P’awstos	Buzand;	trans.	and	commentary	Nina	Garsoian
(Harvard	University	Press,	1989),	Book	III,	ch.	7,	p.	73.	“They	themselves
could	not	number	their	own	army,”	wrote	Buzand.	Counting	was	and
remains	the	most	formidable	of	human	undertakings.

291:	[Cairn	of	Remembrance]	On	the	Cairn	na	Cuimhne	see	Charles	Maclean,
Romantic	Scotland	(Cassell,	2001),	p.	65.

297:	[Aristotle,	Gauss	and	Kronecker	on	completed	infinities]	Aristotle:
Dauben,	pp.	122–25.	See,	for	example,	Meta.	IX.	vi.	5.	Gauss,	writing	to
Schumacher	on	July	12,	1831,	said:	“So	protestiere	ich	gegen	den
Gebrauch	einer	unendlichen	Grösse	als	einer	vollendeten,	welches	in	der
Mathematik	niemals	erlaubt	ist”	(Meschkowski,	p.	65).	Kronecker:
Dauben,	pp.	66–70,	and	in	particular	p.	68.

297:	[Almost	all	the	world]	Notable	exceptions	included	Leibniz	and	Bolzano.
Leibniz	wrote	in	a	letter	(Opera	Omnia,	Studio	Ludov.	Dutens.	ii	part	i,	p.
243),	“Je	suis	tellement	pour	l’infini	actuel,	qu’au	lieu	d’admettre	que	la



nature	l’abhorre,	comme	on	dit	vulgairement,	je	tiens	qu’elle	l’affecte
partout,	pour	mieux	marquer	la	perfection	de	son	auteur.	Ainsi	je	crois	q’il
n’y	a	aucune	partie	de	la	matière,	qui	ne	soit,	je	ne	dis	pas	divisible,	mais
actuellement	divisée;	et	par	consequent	la	moindre	particule	doit	être
considérée	comme	un	monde	plein	d’une	infinité	de	créatures	différentes.”
In	his	Paradoxes	of	the	Infinite	(published	in	1851),	Bernhard	Bolzano	also
asserted	the	existence	of	the	actual	infinite	and	pointed	toward	the	idea	of
1–1	correspondences	between	sets	(Kline,	p.	994).	He	anticipated
Kronecker’s	claim	that	God	made	the	natural	numbers	but	claimed	that	he
had	made	infinite	numbers	as	well.	Zero,	however,	wasn’t	a	natural	number
for	him	(Novy,	pp.	90–91).

297:	[Gersau]	Purkert	(op.	cit.),	p.	43.
297:	[Letter	of	Nov.	29,	1873]	Noether,	p.	12.
297:	[Letter	of	Dec.	2,	1873]	Noether,	p.	13.
298:	[Cantor’s	later	proof]	The	original	proof	dates	from	Dec.	7,	1873;	the	later

version	from	1890.
301:	[Portrait	of	the	middle-aged	Cantor]	From	a	portrait	in	the	possession	of

Wilhelm	Stahl	(Dauben,	p.	121).
304:	[Hills	looking	like	valleys]	As	the	Red	Queen	said	to	Alice	in	the	garden.
304:	[Letter	of	Jan.	5,	1874]	Noether,	pp.	20–21.
305:	[Cantor	asks	Dedekind	if	he	too	is	having	problems]	Letter	of	May	18,

1874:	Noether,	p.	21.
306:	[Letter	of	June	20,	1877]	Noether,	pp.	25–26.
306:	[Churchill	on	Russia]	Broadcast	of	Oct.	1,	1939.
307:	[Postcard	to	Dedekind]	Noether,	p.	34.
307:	[Exchange	about	Dedekind’s	objection]	Noether,	pp.	27–28.
307:	[Einstein	and	confirmatory	observations]	This	anecdote	appears	in

Albrecht	Folsing’s	Albert	Einstein,	a	Biography	(Viking,	1997),	p.	439.
Compare	this	remark	about	Crick	and	Watson,	from	Jim	Holt’s	review	of
Brenda	Maddox’s	Rosalind	Franklin:	The	Dark	Lady	of	D.N.A.	(New
Yorker,	Oct.	28,	2002,	p.	106):	“Watson	and	Crick’s	method	was	the
opposite	of	Rosalind’s:	trust	no	datum	until	it	had	been	confirmed	by
theory.	They	were	determined	to	solve	the	structure	of	DNA	with	as	few
empirical	assumptions	as	possible.”	The	elevation	of	deduction	over
observation	has	a	venerable	history.	In	Galileo’s	Dialogues,	Simplicio	is
made	to	ask	whether	an	experiment	had	been	made.	“No,”	Galileo	replies,
“and	I	do	not	need	it,	as	without	any	experience	I	can	confirm	that	it	is	so,
because	it	cannot	be	otherwise	(Kline,	p.	331,	who	adds:	“Newton	.	.	.	too



says	that	he	used	experiments	to	make	his	results	physically	intelligible	and
to	convince	the	common	people.”)

307:	[Objection	of	Du	Bois-Reymond]	Kline,	p.	998.
309:	[“Mathematics	is	freedom”]	Cantor,	Collected	Works,	p.	182.
310:	[Jia	Xian’s	triangle,	and	al-Karaji’s]	On	Jia	Xian’s	(mideleventh	c.),	see

Katz,	p.	202;	on	al-Karaji’s	(d.	1019),	Katz,	p.	258.
311:	[Piffle	before	the	wind]	The	words	are	from	Daisy	Ashford’s	immortal

novel,	The	Young	Visiters.
316:	[Passage	from	Cantor]	Dauben,	p.	98	(quoting	from	the	Grundlagen).
317:	[Cantor’s	dozen-year	digression]	In	1885	Cantor	began	to	suspect	that	a

more	fruitful	approach	to	the	continuum	problem	might	lie	through	a	study
of	order	(Dauben,	p.	150).	He	published	the	results	of	this	approach	in	his
last	major	work,	the	Beiträge.	Part	I,	on	simply-ordered	sets,	appeared	in
1895;	Part	II,	on	well-ordered	sets,	in	1897.	See	Dauben,	chs.	8	and	9.

317:	[Cantor’s	reasons	for	choosing	aleph]	For	other	possible	reasons,	see
Dauben,	p.	179.

318:	[Cantor’s	Jewish	ancestry]	Because	the	Nazis	stigmatized	set	theory	as
“Jewish	mathematics”	(see	Purkert,	op.	cit.,	pp.	13–16),	much	work	had
been	done	in	the	thirties	to	prove	that	Cantor’s	lineage	wasn’t	Jewish	at	all.
This	work	may	well	have	been	aided	by	attempts	of	the	family	itself	to
disguise	its	origins.	Here,	however,	is	a	sentence	from	a	letter	written	by
Cantor’s	brother	Ludwig	to	his	mother	in	1869:	(nr.	36	in	Cod.	Ms.	Georg
Cantor	[Niedersächsische	Staats-und	Universitätsbibliothek,	Göttingen]):
“Mögen	wir	zehnmal	von	Juden	abstammen	und	ich	im	Prinzip	noch	so
sehr	für	Gleichberechtigung	der	Hebräer	sein,	im	socialen	Leben	sind	mir
Christen	lieber.”	That	is:	“Even	were	we	ten	times	descended	from	Jews	.	.
.”—an	odd	expression,	by	the	way,	since	he	doesn’t	say	“ten	times	more
(than	we	are)	descended	.	.	.”—and	of	course	such	descent	tends	to	come	in
powers	of	2.	The	Cantors	as	a	family	seem	to	have	had	a	special	relation	to
counting.	Cantor’s	biographer	Joseph	Dauben	emphatically	says	(p.	315):
“In	fact,	Cantor	was	not	Jewish.”	He	adds	in	a	footnote	(p.	315,	n.	4):	“.	.	.
the	matter	is	not	as	clear	as	it	might	be,	considering	a	reference	Cantor
once	made	to	his	Israelitische	grandparents	in	a	letter	to	P.	Tannery	on
January	6,	1896.”

318:	[For	at	the	gates	.	.	.]	You	will	not	find	this	improvement	on	Swift	in	De
Morgan.

318:	[The	Fisherman	and	his	Wife]	The	similarity	of	Cantor’s	fate	to	that	of
Virginia	Woolf	’s	Mr.	Ramsey,	in	To	the	Lighthouse,	makes	this	Grimm



tale	especially	apposite.
318:	[Poincaré	on	the	pathology	of	set	theory]	Dauben,	p.	1:	“Poincaré	thought

set	theory	and	Cantor’s	transfinite	numbers	represented	a	grave
mathematical	malady,	a	perverse	pathological	illness	that	would	one	day	be
cured.”	Ibid.,	p.	268:	“Poincaré	(1908)	said	that	most	of	the	ideas	of
Cantorian	set	theory	should	be	banished	from	mathematics	once	and	for
all.”	See	too	Kline,	p.	1003.

318:	[Kronecker’s	attacks	on	Cantor]	Dauben,	p.	134,	p.	1,	on	Cantor	as	a
humbug	and,	respectively,	a	charlatan.

319:	[Cantor’s	complaints	about	poverty	and	recrimination]	Dauben,	p.	162.
319:	[Cantor’s	sense	of	persecution]	Dauben,	p.	286.
319:	[First	breakdown]	Dauben,	p.	135.
319:	[Schopenhauer’s	consoling	himself]	“If	at	times	I	have	felt	unhappy,	that

has	been	due,	after	all,	only	to	a	blunder,	to	a	personal	confusion;	I	have
mistaken	myself	for	someone	else	and	complained	of	his	woes:	for
instance,	a	Privatdozent	who	has	not	obtained	his	professorship	and	who
gets	no	students;	or	for	one	maligned	by	a	certain	Philistine	or	gossiped
about	by	a	certain	scandal-monger;	or	for	the	defendant	in	a	lawsuit	for
assault;	or	for	a	lover	disdained	by	his	precious	maiden;	or	for	a	patient
kept	at	home	by	his	illness;	or	for	such	other	persons	afflicted	with	such
miseries.	But	I	myself	have	been	none	of	all	these;	that	was	all	alien	fabric
of	which,	let	me	say,	my	coat	was	made,	which	I	wore	for	a	while	and	then
discarded	for	another.	Who	am	I,	then?	The	author	of	The	World	as	Will
and	Idea,	who	has	given	the	solution	of	the	great	problem	of	existence,	a
solution	which	perhaps	displaces	all	previous	ones,	and	which	at	any	rate
will	keep	busy	the	thinkers	of	ages	to	come.	I	am	that	man,	and	what	can
trouble	him	during	the	years	that	he	still	has	to	breathe?”	From
Schopenhauers	Gespräche	und	Selbstgespräche	(ed.	E.	Griesebach,	1902,
p.	133f.).

319:	[When	two	sets	have	the	same	cardinality]	The	theorem	that	two	sets	A	and
B	have	the	same	cardinality	if	and	only	if	each	can	be	put	into	1–1
correspondence	with	a	subset	of	the	other,	was	proven	by	Schroeder	and
Bernstein	in	1898.

319:	[Axiom	of	Choice]	Zermelo	stated	the	Axiom	of	Choice	on	Sept.	14,	1904
(Dauben,	pp.	250–51).

320:	[König’s	announcement]	Dauben,	pp.	248–50.
321:	[Cantor	at	breakfast]	Dauben,	pp.	249–50.
321:	[Passage	from	Sterne]	Tristram	Shandy,	iv,	ch.	x.



321:	[Passage	from	Bacon]	Quoted	in	Dauben,	p.	238.
322:	[Cantor’s	letter	to	a	friend]	This	was	his	letter	to	Mittag-Leffler.	Dauben,	p.

351,	note	85.
322:	[Hilbert]	“On	the	Infinite,”	Math.	Ann.	95	(1926),	pp.	161–90.
322:	[Was	Cantor	a	formalist]	Hallett,	p.	19:	Cantor	“.	.	.	had	no	idea	of	a

formally	presented	theory.”
322:	[Cantor	on	real	ideas	in	the	divine	intellect]	Hallett,	p.	21,	quoting	from	a

1895	letter	of	Cantor’s	to	Fr.	Ignatius	Jeiler.	Dauben	(p.	238)	puts	it	well:
“Cantor	regarded	the	reality	of	the	possible	as	guaranteed	by	its
consistency	.	.	.”

322:	[Corporeal	objects	in	the	world]	See	Hallett,	p.	23,	on	Cantor’s	ideas	about
“aether	monads”	and	(hence)	“monads	of	matter.”

322:	[Cantor	and	the	apeiron]	Dauben,	p.	170.
323:	[Burali-Forti]	Because	he	was	turned	down	as	a	doctoral	candidate,	he

spent	his	life	teaching	in	a	military	academy.	The	reason	he	was	turned
down	was	that	he	was	a	great	defender	of	using	those	vectors	we	saw
Euler,	Wessel,	and	Argand	invent;	but	vector	methods	were	frowned	on	at
the	time.	His	vector	carried	him	off	into	fierce	independence	from	the
conventional	bases	of	Italian	life,	so	that	he	even	asked	that	he	not	be	given
a	religious	funeral.	See	the	St.	Andrews	website:	Burali-Forti.

323:	[Nothing	now	more	uncertain	than	mathematics]	J.	Thomae	(Dauben,	p.
242).

323:	[Cantor	sees	paradox	as	beneficial]	Dauben,	pp.	242–43.
323:	[Battle	of	Maldon]	the	original	(lines	296–97)	is:

Hige	sceal	the	heardra,	heorte	the	cenre,
mod	sceal	the	mare,	the	ure	maegen	lytlath.

323:	[Cantor’s	simultaneous	humility	and	arrogance]	Meschkowski,	p.	165.
324:	[Consistent	and	inconsistent	sets]	Cantor	called	a	multiplicity	inconsistent

if	“the	assumption	that	all	of	its	elements	‘are	together’	leads	to	a
contradiction,	so	that	it	is	impossible	to	conceive	of	[it]	as	a	unity	.	.	.”	But
if	“the	totality	of	elements	of	a	multiplicity	can	be	thought	of	without
contradiction	as	‘being	together’,	so	that	they	can	be	gathered	together	into
‘one	thing’,	I	call	it	a	consistent	multiplicity	or	a	‘set’.”	Cantor,	letter	to
Dedekind	of	July	28,	1899,	in	Jean	van	Heijenoort,	From	Frege	to	Gödel:
A	Source	Book	in	Mathematical	Logic,	1879–1931	(Harvard	University
Press,	1971),	p.	114.



324:	[The	absolutely	infinite]	See	Hallett,	pp.	42–45,	on	the	meanings	of	“the
absolutely	infinite”	for	Cantor.

324:	[Names	of	large	cardinals]	You	will	find	many	of	these	imaginative	names
in	modern	books	on	set	theory	(or	as	it	is	also	sometimes	called,
Combinatorics),	such	as	Thomas	Jech’s	Set	Theory	(Academic	Press,
1978).

325:	[On	the	devising	of	these	cardinals	as	a	game]	See	Kenneth	Kunen,
“Combinatorics,”	in	Jon	Barwise,	Handbook	of	Mathematical	Logic	(North
Holland,	1983),	p.	396:	in	this	game	“my	goal	is	to	try	to	completely
demolish	your	ego	by	transcending	your	number	via	some	completely	new
principle.”

325:	[Large	cardinals	enabling	proofs	of	finite	events]	So,	for	example,	Stephen
Simpson	(“Unprovable	Theorems	and	Fast-Growing	Functions,”	Penn
State	University,	Department	of	Mathematics	Research	Report,	1985)
discusses	three	theorems,	each	of	which	“is	simple	and	elegant	and	refers
only	to	finite	structures.	Each	of	these	three	theorems	has	a	simple	and
elegant	proof	.	.	.	each	of	the	proofs	uses	an	infinite	set	at	some	crucial
point.	Moreover,	deep	logical	investigations	have	shown	that	the	infinite
sets	are	indispensable.	Any	proof	of	one	of	these	finite	combinatorial
theorems	must	involve	a	detour	through	the	infinite.”	See	too	Hallett,	pp.
101–3.

325:	[Cantor’s	proof	and	Zermelo’s	critique	of	it]	It	was	the	improbability	of
such	successive	arbitrary	choices	that	led	Zermelo	to	formulate	his	Axiom
of	Choice,	where	the	arbitrary	choices	are	made	all	at	once—as	if	that	were
any	more	palatable.	See	Hallett,	p.	170.

325:	[Russell’s	paradoxes]	Dauben,	p.	262.
326:	[Cantor	on	set	as	abyss]	From	Oskar	Becker’s	Grundlagen	der	Mathematik

in	geschichtliche	Entwicklung	(Verlag	Karl	Alber,	Freiburg/München,
1954),	p.	316:	“Zum	Schluss	sei	noch	eine	hübsche	Anecdote	mitgeteilt,	die
nach	F.	Bernsteins	Zeugnis	Emmy	Noether	berichtet:	sie	kennzeichnet	in
sehr	anschaulicher	Weise	die	verschiedene	gefühlmässige	Haltung
Dedekinds	und	Cantors	zu	der	Vorstellung	einer	aktual	unendlichen
Menge.
“F.	Bernstein	übermittelt	noch	die	folgenden	Bemerkungen,	.	.	.	‘Von

besonderen	Interesse	dürfte	folgende	Episode	sein:	Dedekind	äuserte,
hinsichtlich	des	Begriffes	der	Menge:	er	stelle	sich	eine	Menge	vor	wie
einen	geschlossenen	Sack,	der	ganz	bestimmte	Dinge	enthalte,	die	man
aber	nicht	sehe,	und	von	denen	man	nichts	wisse,	ausser	dass	sie



vorhanden	und	bestimmt	seien.	Einige	Zeit	später	gab	Cantor	seine
Vorstellung	eine	Menge	zu	erkennen:	Er	richtete	seine	kolossale	Figur
auf,	beschrieb	mit	erhebenem	Arm	eine	grossartige	Geste	und	sagte	mit
einem	ins	Unbestimmte	gerichteten	Blick:	“Eine	Menge	stelle	ich	mir	vor
wie	einen	Abgrund.’	”

326:	[Quotation	from	Dauben]	Dauben,	p.	266.
326:	[Cantor	and	the	violin]	Dauben,	p.	283.
326:	[Cantor’s	string	quartet]	Dauben,	p.	278.
326:	[“Do	you	still	love	me?”]	Dauben,	p.	288.
326:	[Rosicrucians,	Theosophy,	Free	Masonry]	Dauben,	p.	281.
326:	[Shakespeare’s	plays	written	by	Bacon]	Dauben,	pp.	281–83,	286.
326:	[Discoveries	concerning	the	first	king	of	England]	Dauben,	p.	282,	quoting

a	letter	of	Cantor’s.
326:	[Portrait	of	the	old	Cantor]	From	a	photograph	in	the	possession	of	Helga

Schneider	and	Sigrid	Lange	(Dauben,	p.	273).
327:	[Ex	Oriente	Lux]	Dauben,	p.	289.
327:	[“The	time	will	come	.	.	.”]	I	Corinthians	(Dauben,	p.	239).
327:	[Passage	from	Playfair]	John	Playfair,	“Life	of	Dr.	Hutton,”	in

Transactions	of	the	Royal	Society	of	Edinburgh,	v,	part	iii	(1805),	p.	73.
328:	[A	new	understanding	.	.	.]	Consider	this	passage	from	Stillwell,	pp.	328–

29:	“Gödel’s	theorem	shows	that	something	is	missing	in	the	purely	formal
view	of	mathematics	.	.	.	Despite	this,	the	official	view	still	seems	to	be	that
mathematics	consists	in	the	formal	deduction	of	theorems	from	fixed
axioms.	As	early	as	1941	[the	logician	Emil]	Post	protested	against	this
view:

“.	.	.	It	has	seemed	to	us	to	be	inevitable	that	[Gödel’s	Theorem]	will
result	in	a	reversal	of	the	entire	axiomatic	trend	of	the	late	nineteenth
and	early	twentieth	centuries,	with	a	return	to	meaning	and	truth.”	.	.	.

“I	believe	that	what	Post	was	saying	was	this.	Before	Gödel	.	.	.	it	was
expected	that	all	of	number	theory,	for	example,	could	be	recovered	by
formal	deduction	from	[the	Peano	Axioms],	that	is,	by	forgetting	that
[these]	axioms	had	any	meaning.	Gödel	showed	that	this	was	not	so	.	.	.
But	it	is	precisely	by	knowing	the	meaning	of	[these]	axioms	that	one
knows	they	are	consistent:	contradictory	statements	cannot	hold	in	the
actual	structure	of	N	with	+	and	·.	Thus	it	is	the	ability	to	see	meaning	in
[the	Peano	Axioms]	that	enables	us	to	see	the	truth	of	[their	consistency]



and	hence	to	transcend	the	power	of	formal	proof.”
328:	[Blake	on	the	doors	of	perception]	From	The	Marriage	of	Heaven	and

Hell,	“A	Memorable	Fancy.”	The	passage	is:	“If	the	doors	of	perception
were	cleansed	every	thing	would	appear	to	man	as	it	is,	infinite.”

APPENDIX	To	Chapter	Two

330:	[Many	models]	It	is	intriguing	to	find	how	blithely	mathematical	logicians
recognize	that	the	slew	of	models	they	come	up	with	are	counter-intuitive
and	the	‘model’	of	the	numbers	as	we	intuit	them	is	of	course	The	Real
Thing.	So	Paul	Cohen,	in	Set	Theory	and	the	Continuum	Hypothesis
(Benjamin,	1966)	says	of	a	certain	model:	“Since	the	construction	of	the
model	was	rather	indirect,	we	do	not	expect	that	the	objects	of	the	model
will	be	identifiable	with	‘real’	sets	.	.	.	in	the	case	of	set	theory,	or	number
theory,	or	the	real	number	system,	we	have	in	mind	one	particular	model,
and	we	are	primarily	interested	in	it	.	.	.”	How	we	‘have	it	in	mind’	is	left
unexplored.

The	chain	of	mental	events	seems	to	be	this.	We	grasp	numbers	and
their	doings	through	intuition	and	practice,	then	realize	that	our	grasp	isn’t
strong	enough,	so	replace	it	by	the	tighter	hold	that	formalizing	gives.	This
approach	then	yields	one	model	(or	instantiation)	after	another	of	that
form,	with	the	result	that	what	it	was	meant	to	clarify	is	rethought	as	no
more	than	another	model	of	the	now	seemingly	prior	or	deeper	or
generative	form.	So	Schumann	sensed	his	‘subjective	self’	to	precede	and
be	more	authentic	than	the	flurry	of	likenesses	launched	on	the	world	by
the	split	between	form	and	shadow;	yet	at	the	same	time	grew	so
engrossed	in	the	play	of	appearances	that	all	these	selves	came	to	seem
just—on	a	par.

332:	[Nala	and	Damayanti]	This	story,	the	Anabasis	of	Sanskrit	students,	is	in
the	third	book	of	the	Mahābhārata.

332:	[Gödel,	doppelgängers	and	the	scaffolding]	The	difficulty	mathematics
finds	itself	in	is	this.	Its	axioms	are	expressed	in	terms	of	sets	and	their
behavior.	If	the	formal	language	containing	these	expressions	is	made	up	of
logical	connectives	(such	as	“and”),	symbols	for	members	of	sets	(“x”,	“y”)
and	quantifiers	(“there	exist,”	“for	all”)	that	refer	to	these	members,	the
language	is	called	fi	rst-order	logic.	If	there	are	also	symbols	for	sets	and
the	quantifiers	are	allowed	to	refer	as	well	to	these,	the	language	is	called
second-order	logic.	The	distinction	seems	as	trivial	as	a	trip-wire.



Gödel	showed	that	any	formal	system	expressed	in	second-order	logic
must	be	incomplete:	it	will	contain	true	statements	which	cannot	be
proven	true	within	the	system.	This	unsatisfactory	situation	threw	the
burden	back	on	first-order	logic.	A	Norwegian	mathematician	named
Thoralf	Skolem	showed	that	set	theory	can	be	formulated	in	first-order
logic.	He	and	others	also	showed,	however,	that	neither	the	system	of	real
nor	of	natural	numbers	can	be	uniquely	characterized	in	first-order	logic:
each	will	now	have	endlessly	different	models,	so	that	we	can	no	longer
speak	of	“the”	reals	or	“the”	naturals.	Damayantï	must	marry	them	all.
For	a	superb	exposition	of	these	matters,	see	Gregory	H.	Moore’s	“A

House	Divided	Against	Itself:	The	Emergence	of	First-Order	Logic	as	the
Basis	for	Mathematics,”	in	Phillips,	pp.	98–136.

332:	[Hilbert’s	voice]	Our	thanks	to	John	Stillwell	for	calling	our	attention	to
this	website.

To	Chapter	Three
336:	[Euler	named	e	in	1728]	Kline,	p.	258.

To	Chapter	Four
338:	[Euler’s	proof]	You	will	find	it	in	(for	example)	Goldman,	pp.	36–37.
338:	[Clarkson’s	proof]	From	James	A.	Clarkson,	“On	the	Series	of	Prime

Reciprocals,”	in	Proceedings	of	the	American	Mathematical	Society	17:
541:	MR32	(1966),	#5573.

To	Chapter	Five
346:	[Tenth	point	on	nine-point	circle]	A	proof	by	W.	Weston	Meyer	is	in	The

American	Mathematical	Monthly	108,	no.	6	(June–July	2001),	p.	569.
There	are	a	few	more	significant	points	on	this	circle.	Draw	any	line	k
through	the	orthocenter	H	of	 	ABC,	and	drop	perpendiculars	to	it	from	A,
B,	and	C,	meeting	k	at	L,	M,	and	N.	If	you	now	draw	a	perpendicular	from
L,	M,	and	N	to	the	sides	(perhaps	extended)	BC,	AC,	and	AB	respectively,
these	three	perpendiculars	will	be	concurrent—at	a	new	point	(called	the
orthopole)	on	the	nine-point	circle!	For	a	proof,	see	Ross	Honsberger,
Episodes	in	Nineteenth	and	Twentieth	Century	Euclidean	Geometry	(New
Mathematical	Library,	#37,	1995),	p.	127.	Since	this	is	true	for	any	of	the
infinitely	many	lines	through	H,	we	have	just	added	infinitely	many	more
points	to	the	nine-point	circle.	There	are	more,	as	David	Wells	remarks
(The	Penguin	Dictionary	of	Curious	and	Interesting	Geometry	[Penguin,



1991],	p.	76).	Here	are	some	of	them.	The	nine-point	circle	also	has	points
of	tangency	with	each	of	 	ABC’s	three	exocircles,	and	with	its	incircle.
Since	this	nine-point	circle	is	also	the	nine-point	circle	of	triangles	AHB,
BHC,	and	CHA,	it	has	points	of	tangency	with	each	of	these	three
triangles’	in-	and	exo-circles—a	total	of	25	new	points,	therefore.	And	.	.	.

350:	[Hofmann]	Coxeter	(p.	21)	dates	his	proof	to	1929.	There	are	also	proofs
by	Cavalieri	(1647),	Simpson	(1710–1761),	Crelle	(1816),	Heinen	(1834)
and	Steiner	(1842).	See	Kline,	pp.	837,	839	and	the	St.	Andrews	website:
Torricelli.

351:	[Pons	asinorum]	Heath	(Euclid,	i,	p.	415)	gives	us	a	little	Sunday
morning’s	puzzle	in	this	earliest	occurrence	of	the	name,	from	an	epigram
of	1780	(recorded	in	Murray’s	English	Dictionary):

If	this	be	rightly	called	the	bridge	of	asses,
He’s	not	the	fool	that	sticks	but	he	that	passes.

Why?	Was	its	author	a	proto-intuitionist,	recognizing	that	the	more
intricate	the	proof,	the	more	seductive	would	Formalism	appear?	Was	his
objection	to	the	way	‘of’	is	used,	implying	that	those	who	cross	it	are
asses?	Was	he	one	of	those	beef	and	beer	Englishmen	who	knows	that
damned	brains	only	get	in	the	way	of	action,	and	that	purus	mathematicus
purus	asinus	(as	J.	J.	Sylvester	wryly	recalled	in	his	Inaugural	Address	to
the	British	Association	in	1869)?	Or	was	it	just	written	reeling?	Heath
soberly	comments	that	its	writer’s	view	is	not	too	clear.

357:	[Bhāskara	and	the	quadratic	formula]	Brahmagupta	(b.	598)	gave	the
quadratic	formula	in	just	about	the	form	we	know	it,	but	only	mentions	one
solution.	Bhāskara	(1114–	1185)	deals	with	two,	although	he	is	hesitant
about	negative	solutions	to	real	problems,	and	gives	no	examples	of
quadratics	with	two	negative	or	any	irrational	roots.	(Katz,	pp.	226–27).

359:	[Hermes	and	his	Diarium]	We	are	immensely	grateful	to	Paddy	Patterson,
at	the	Mathematische	Institut	in	Göttingen,	for	his	help	in	tracking	down
some	of	the	stories	about	this	curious	affair.	See	too	Hermann	Tietze’s
Gelöste	und	Ungelöste	Mathematische	Probleme	aus	Alter	und	Neuer	Zeit
(1946),	ii,	p.	15	(translated	as	Famous	Problems	of	Mathematics	by	B.	K.
Hofstadter	and	H.	Komm	in	1965).

To	Chapter	Seven
366:	[Biographical	details	of	Cardano]	Kline,	pp.	221–22;	Stillwell,	pp.	61–62;



Katz,	p.	330.
366:	[Passage	from	Cardano]	Fauvel	and	Gray,	p.	263.
367:	[Portrait	of	Cardano]	From	an	unattributed	engraving	in	Stillwell,	p.	61.
375:	[Wellington]	Creevey	Papers,	x,	p.	236.
378:	[Pappus’s	proof]	Kline,	pp.	127–28.
378:	[Möbius’s	proof]	Stillwell,	p.	85.
381:	[Importing	coordinates	to	the	projective	plane]	In	1847	Karl	Georg

Christian	von	Staudt	devised	the	needed	analogues	of	length	on	the
projective	plane	through	his	“Algebra	of	Throws.”	See	Kline,	pp.	850–
51.Angle-measure	was	imported	to	the	projective	plane	by	Edmond
Laguerre	in	1853	(Kline,	pp.	906–7).	Julius	Plücker	introduced	the	idea	of
homogeneous	coordinates	in	1831.

390:	[Nietzsche]	This	is	from	Thus	Spake	Zarathustra,	First	Part,	section	7:	“On
Reading	and	Writing.”
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