SlideShare a Scribd company logo
1 of 41
Zero Point Energy and Vacuum Fluctuations Effects Ana Trakhtman Department of Physics Ariel University Center of  Samaria
Table of Content ,[object Object]
 Zero Point Energy – a new friend or an old acquaintance?
 Vacuum Fluctuations – what is it?
 Spontaneous Emission and what it has to do with ZPE
 Casimir Effect or Van der Waals Attraction
 The Lamb Shift
 The Beam Splitter
 Science Fiction or is it?
 Conclusion,[object Object]
Zero Point Energy The origin of zero-point energy is the Heisenberg uncertainty principle. It is the lowest possible energy that a quantum mechanical system may have; it is the energy of its ground state.  The most famous such example of zero-point energy is 𝐸=12ℏ𝜔 associated with the ground state of the quantum harmonic oscillator. It is the expectation value of the Hamiltonian of the system in the ground state.  
Zero Point Energy 𝐻=ℏ22𝑚 ∇2+𝑉(𝑟,𝑡) 𝑍𝑃𝐸=𝐻=Ψ𝑔𝑟𝑜𝑢𝑛𝑑𝐻Ψ𝑔𝑟𝑜𝑢𝑛𝑑  
Vacuum Fluctuations In quantum field theory, the fabric of space is visualized as consisting of fields, with the field at every point in space and time being a quantum harmonic oscillator. The zero-point energy is again the expectation value of the Hamiltonian; here, however, the phrase vacuum expectation value is more commonly used, and the energy is called the vacuum energy. Vacuum energy can also be thought of in terms of virtual particles (also known as vacuum fluctuations) which are created and destroyed out of the vacuum. The concept of vacuum energy was derived from energy-time uncertainty principle.
Vacuum Fluctuations The vacuum state |𝑣𝑎𝑐> of the field is the state of the lowest energy. The expectations values of both 𝑎𝑘𝑠 and 𝑎𝑘𝑠+ vanish in the vacuum state, because: 𝑎𝑘𝑠|𝑣𝑎𝑐> =0=<𝑣𝑎𝑐|𝑎𝑘𝑠+ Vector 𝐹(𝑟,𝑡), which may be the electric or magnetic or the vector potential, having a mode expansion of the general form: 𝐹𝑟,𝑡=1𝐿32𝑘,𝑠𝑙𝜔𝑎𝑘𝑠𝜀𝑘𝑠𝑒𝑖𝑘∙𝑟−𝜔𝑡+h.𝑐  
Vacuum Fluctuations Where 𝑙𝜔 is some slowly varying function of frequency which is different for each field vector. Expectation value of 𝐹𝑟,𝑡 in the vacuum state: <𝑣𝑎𝑐𝐹𝑟,𝑡𝑣𝑎𝑐> =0 However, the expectation of the square of the field operator does not vanish, as we will show soon. This implies that there are fluctuations of the em field, even in its lowest energy.  
Vacuum Fluctuations If we use the mode expansion and make use of the fact that: 𝑣𝑎𝑐𝑎𝑘𝑠+𝑎𝑘′𝑠′𝑣𝑎𝑐=0 𝑣𝑎𝑐𝑎𝑘𝑠+𝑎𝑘′𝑠′+𝑣𝑎𝑐=0 𝑣𝑎𝑐𝑎𝑘𝑠𝑎𝑘′𝑠′𝑣𝑎𝑐=0 We find that: 𝑣𝑎𝑐𝐹2(𝑟,𝑡)𝑣𝑎𝑐==1𝐿3𝑘𝑠𝑘′𝑠′𝑙𝜔𝑙∗(𝜔′)𝑣𝑎𝑐𝑎𝑘𝑠𝑎𝑘′𝑠′+𝑣𝑎𝑐(𝜀𝑘𝑠∙𝜀𝑘′𝑠′∗)∙𝑒𝑖[𝑘−𝑘′𝑟−𝜔−𝜔′𝑡]  
Vacuum Fluctuations 𝑎𝑘𝑠𝑡, 𝑎𝑘′𝑠′+(𝑡)=𝑎𝑘𝑠∙𝑎𝑘′𝑠′+−𝑎𝑘′𝑠′+∙𝑎𝑘𝑠=𝛿𝑘𝑘′3𝛿𝑠𝑠′ With the help of the commutation relation we have: 𝑣𝑎𝑐𝑎𝑘𝑠𝑎𝑘′𝑠′+𝑣𝑎𝑐=𝑣𝑎𝑐(𝑎𝑘′𝑠′+∙𝑎𝑘𝑠+𝛿𝑘𝑘′3𝛿𝑠𝑠′)𝑣𝑎𝑐=𝛿𝑘𝑘′3𝛿𝑠𝑠′  
Vacuum Fluctuations So that: 𝑣𝑎𝑐𝐹2(𝑟,𝑡)𝑣𝑎𝑐=1𝐿3𝑘,𝑠𝑙𝜔2=2𝐿3𝑘𝑙𝜔2  ⟶ 22𝜋3𝑙𝜔2𝑑3𝑘 This is clearly non-zero, and indeed is infinite for an unbounded set of modes. As it is know: 𝑣𝑎𝑐∆𝐹2𝑣𝑎𝑐=𝑣𝑎𝑐𝐹2𝑣𝑎𝑐   ,    ∆𝐹=𝐹−𝐹 ∆𝐹 – the deviation from the mean This shows us that the field fluctuates in the vacuum state.  
Vacuum Fluctuations The effects of vacuum energy can be observed in various phenomena such as spontaneous emission, the Casimir effect and the Lamb shift, and are thought to influence the behavior of the Universe on cosmological scales.
Spontaneous Emission Quantum electrodynamics shows that spontaneous emission takes place because there is always some electromagnetic field present in the vicinity of an atom, even when a field is not applied. Like any other system with discretely quantized energy, the electromagnetic field has a zero-point energy. Quantum electrodynamics shows that there will always be some electromagnetic field vibrations present, of whatever frequency is required to induce the charge oscillations that cause the atom to radiate 'spontaneously'.
The Casimir Effect One of the more striking examples is the attractive force between a pair of parallel, uncharged, conducting plates in vacuum. This force is also referred to as a Van der Waals attraction and has been     calculated by Dutch physicists Hendrik B. G. Casimir and     Dirk Polder (1948).
The Casimir Effect One can account for this force (also known as Casimir force), and obtain an approximate value of its magnitude, by assuming that the force is a consequence of the separation-dependent vacuum field energy trapped between the two plates. If the plats are squares of side L and are separated by a distance z, we may suppose that the system constitutes a “cavity” that supports modes with wave number k down to about 1/z. the vacuum field energy trapped between the plates may therefore be written approximately as: 𝑈=𝑘,𝑠12ℏ𝜔≈𝐿2𝑧1𝑧𝐾ℏ𝑐𝑘 𝑘2𝑑𝑘≈14𝐿2ℏ𝑐𝑧𝐾4−1𝑧3=𝑈𝑢𝑝𝑝𝑒𝑟−𝑈𝑙𝑜𝑤𝑒𝑟  
The Casimir Effect we have introduced a high frequency cut-off K to make the energy finite. We can think of the negative rate of change of the lower cut-off energy 𝑈𝑙𝑜𝑤𝑒𝑟 with separation z as constituting a force of attraction, whose magnitude F per unit are is given by: 𝐹=−1𝐿2𝑑𝑈𝑙𝑜𝑤𝑒𝑟𝑑𝑧~ℏ𝑐𝑧4  
The Casimir Effect It is interesting to note from the structure of F that the force is proportional to ℏ and is therefore quantum mechanical. Because the strength of the force falls off rapidly with distance, it is only measurable when the distance between the objects is extremely small.  On a submicrometre scale, this force becomes so strong that it becomes the dominant force between uncharged conductors.   
The Casimir Effect At separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of 1 atmosphere of pressure (101.325 kPa), the precise value depending on surface geometry and other factors. In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; and in applied physics, it is significant in some aspects of emerging micro technologies and nanotechnologies.
The Lamb Shift The Lamb shift, named after Willis Lamb (1913–2008), is a small difference in energy between two energy levels 2S1 / 2 and 2P1 / 2 of the hydrogen atom in quantum electrodynamics. According to Dirac, the 2S1 / 2 and 2P1 / 2 orbitals should have the same energies. However, the interaction between the electron and the vacuum causes a tiny energy shift on 2S1 / 2. Lamb and Robert Retherford measured this shift in 1947. Lamb won the Nobel Prize in Physics in 1955 for his discoveries related to the Lamb shift.
The Lamb Shift
The Lamb Shift In 1948 Welton succeeded in accounting for the Lamb shift between the s and p energy levels of atomic hydrogen in terms of the perturbation of the electronic orbit brought about by vacuum fluctuations.  A perturbation 𝛿𝑟 in electronic position in general causes a change of potential energy 𝛿𝑉 given by: 𝛿𝑉=𝑉𝑟+𝛿𝑟−𝑉𝑟=∇𝑉∙𝛿𝑟+12𝜕𝜕𝑟𝑖𝜕𝜕𝑟𝑗𝑉𝛿𝑟𝑖𝛿𝑟𝑗+⋯  
The Lamb Shift When we average this over the random displacements 𝑟, the term in 𝛿𝑟2 is the leading non-zero term and we find that: 𝛿𝑉=16∇2𝑉 𝛿𝑟2 In order to calculate the value of 𝛿𝑟2 resulting from the fluctuations of the vacuum field, we observe that, under the influence of an electric field 𝐸𝜔 of frequency 𝜔, the electronic position r obeys the equation of motion: 𝑚𝑟=−𝑒𝐸𝜔cos𝜔𝑡  
The Lamb Shift And this results in a mean squared displacement about its equilibrium value of: 𝛿𝑟𝜔2=12𝑒2𝑚2𝜔4 𝐸𝜔2𝑣𝑎𝑐=ℏ𝑒22𝜋3𝜀0𝑚2𝑑3𝑘𝜔3=ℏ𝑒22𝜋2𝜀0𝑚2𝑐3𝜔0Ω𝑑𝜔𝜔  
The Lamb Shift The integral diverges logarithmically at the upper end, and had to be provided with a cut-off Ω, which is usually chosen to be of order 𝑚𝑐2/ℏ.  When this expression for 𝛿𝑟2 is inserted in 𝛿𝑉, and we average ∇2𝑉(𝑟) over the electronic orbit with the help of the wave function 𝜓(𝑟), we obtain finally for the perturbation of the atomic energy level: 𝛿𝑉=ℏ𝑒212𝜋2𝜀0𝑚2𝑐3 𝑑3𝑟 ∇2𝑉𝑟𝜓𝑟2𝜔0Ω𝑑𝜔𝜔  
The Lamb Shift If we take the potential energy 𝑉(𝑟) to be: 𝑉𝑟=−𝑒24𝜋𝜀0𝑟   then:			∇2𝑉𝑟=𝑒2𝜀0𝛿3(𝑟) and the volume integral reduces to: 𝑒2𝜀0𝜓02  
The Lamb Shift This vanishes for a p-state but gives a finite value for an s-state.  The difference between the s and p energy levels is therefore: ∆𝐸=ℏ𝑒412𝜋2𝜀02𝑚2𝑐3𝜓𝑠02ln𝑚𝑐2ℏ𝜔0  
The Lamb Shift This leads to: ∆𝐸ℏ~1040 𝑀𝐻𝑧 For the 2s-state of hydrogen, and is in reasonable agreement with measurements by Lamb and Retherford (1947).  
The Beam Splitter
The Beam Splitter After decomposing all fields into plane-wave modes in the usual way, we consider a single incident mode labeled 1, which gives rise to a reflected mode 2 and a transmitted mode 3.  r, t are the complex amplitude reflectivity and transmissivity for light incident from one side. 𝑟′, 𝑡′ for light coming from the other side there are no losses in the beam splitter  
The Beam Splitter Then these parameters must obey the following reciprocity relations (due to Stokes, 1849): 𝑟=𝑟′  ,  𝑡=𝑡′ 𝑟2+𝑡2=1 𝑟𝑡∗+𝑟∗𝑡=0  
The Beam Splitter It follows that an incoming classical wave of complex amplitude 𝜐1 gives rise to a reflected wave 𝜐2, and a transmitted wave 𝜐3 such that: 𝑣2=𝑟𝑣1   ,   𝑣3=𝑡𝑣1 From these relations it follows immediately that: 𝑣22+𝑣32=𝑡2+𝑟2𝑣12 So that the incoming energy is conserved.  
The Beam Splitter Now suppose that we wish to apply a similar argument to the treatment of a quantum field.  Then 𝑣1, 𝑣2, 𝑣3 have to be replaced by the complex amplitude operators 𝑎1, 𝑎2 , 𝑎3 , which obey the commutation relations: 𝑎𝑗, 𝑎𝑗+=1,  𝑗=1, 2, 3 𝑎2, 𝑎3+=0  
The Beam Splitter if we simply replace 𝑣1, 𝑣2, 𝑣3 by the operators 𝑎1, 𝑎2 , 𝑎3 , we readily find that the commutation equations do not hold for 𝑎2 , 𝑎3. Instead we obtain: 𝑎2 , 𝑎3+=𝑟2𝑎1 , 𝑎1+=𝑟2 𝑎3 , 𝑎3+=𝑡2𝑎1 , 𝑎1+=𝑡2 𝑎2 , 𝑎3+=𝑟𝑡∗𝑎1 , 𝑎1+=𝑟𝑡∗  
The Beam Splitter The reason for the discrepancy is that we have ignored the fourth beam splitter input port, which is justifiably ignored in the classical treatment because no light enter that way. However, even if no energy is flowing through the mode labeled 0, in a quantized field treatment there is a vacuum field that enters here and contributes to the two output modes.

More Related Content

What's hot

Quantum Mechanics Presentation
Quantum Mechanics PresentationQuantum Mechanics Presentation
Quantum Mechanics PresentationJasmine Wang
 
Quantum Chemistry
Quantum ChemistryQuantum Chemistry
Quantum Chemistrybaoilleach
 
Born-Oppenheimer approximation.pptx
Born-Oppenheimer approximation.pptxBorn-Oppenheimer approximation.pptx
Born-Oppenheimer approximation.pptxNGokila1
 
Solid state physics (schottkey and frenkel)
Solid state physics    (schottkey and frenkel)Solid state physics    (schottkey and frenkel)
Solid state physics (schottkey and frenkel)abi sivaraj
 
Classical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsClassical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsZahid Mehmood
 
Frankel and schottky defects
Frankel and schottky defectsFrankel and schottky defects
Frankel and schottky defectsGurpreet Singh
 
Engineering physics 2(Electron Theory of metals)
Engineering physics 2(Electron Theory of metals)Engineering physics 2(Electron Theory of metals)
Engineering physics 2(Electron Theory of metals)Nexus
 
Particle in a Box problem Quantum Chemistry
Particle in a Box problem Quantum ChemistryParticle in a Box problem Quantum Chemistry
Particle in a Box problem Quantum ChemistryNeel Kamal Kalita
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
 
Rasonance raman specroscopy
Rasonance  raman specroscopyRasonance  raman specroscopy
Rasonance raman specroscopytidke123
 
Classification of nuclei and properties of nucleus
Classification  of nuclei and properties of nucleusClassification  of nuclei and properties of nucleus
Classification of nuclei and properties of nucleushemalathasenthil
 
Rotational Spectra : Microwave Spectroscopy
Rotational Spectra : Microwave SpectroscopyRotational Spectra : Microwave Spectroscopy
Rotational Spectra : Microwave SpectroscopyKhemendra shukla
 
The Nuclear Shell Model
The Nuclear Shell ModelThe Nuclear Shell Model
The Nuclear Shell ModelMohammedFox
 

What's hot (20)

Quantum Mechanics Presentation
Quantum Mechanics PresentationQuantum Mechanics Presentation
Quantum Mechanics Presentation
 
Quantum Chemistry
Quantum ChemistryQuantum Chemistry
Quantum Chemistry
 
The Variational Method
The Variational MethodThe Variational Method
The Variational Method
 
POTENTIAL ENERGY SURFACE. KINETIC ISOTOPE EFFECT AND THEORIES OF UNI MOLECULA...
POTENTIAL ENERGY SURFACE. KINETIC ISOTOPE EFFECT AND THEORIES OF UNI MOLECULA...POTENTIAL ENERGY SURFACE. KINETIC ISOTOPE EFFECT AND THEORIES OF UNI MOLECULA...
POTENTIAL ENERGY SURFACE. KINETIC ISOTOPE EFFECT AND THEORIES OF UNI MOLECULA...
 
Born-Oppenheimer approximation.pptx
Born-Oppenheimer approximation.pptxBorn-Oppenheimer approximation.pptx
Born-Oppenheimer approximation.pptx
 
Solid state physics (schottkey and frenkel)
Solid state physics    (schottkey and frenkel)Solid state physics    (schottkey and frenkel)
Solid state physics (schottkey and frenkel)
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
Classical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsClassical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanics
 
Frankel and schottky defects
Frankel and schottky defectsFrankel and schottky defects
Frankel and schottky defects
 
Mesons
Mesons Mesons
Mesons
 
Engineering physics 2(Electron Theory of metals)
Engineering physics 2(Electron Theory of metals)Engineering physics 2(Electron Theory of metals)
Engineering physics 2(Electron Theory of metals)
 
Eigenvalues
EigenvaluesEigenvalues
Eigenvalues
 
Particle in a Box problem Quantum Chemistry
Particle in a Box problem Quantum ChemistryParticle in a Box problem Quantum Chemistry
Particle in a Box problem Quantum Chemistry
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Rasonance raman specroscopy
Rasonance  raman specroscopyRasonance  raman specroscopy
Rasonance raman specroscopy
 
Classification of nuclei and properties of nucleus
Classification  of nuclei and properties of nucleusClassification  of nuclei and properties of nucleus
Classification of nuclei and properties of nucleus
 
Origin of quantum mechanics
Origin of quantum mechanicsOrigin of quantum mechanics
Origin of quantum mechanics
 
Rotational Spectra : Microwave Spectroscopy
Rotational Spectra : Microwave SpectroscopyRotational Spectra : Microwave Spectroscopy
Rotational Spectra : Microwave Spectroscopy
 
The Nuclear Shell Model
The Nuclear Shell ModelThe Nuclear Shell Model
The Nuclear Shell Model
 
Non Rigid Rotator
Non Rigid RotatorNon Rigid Rotator
Non Rigid Rotator
 

Viewers also liked

Suppressed Inventions Water Disassociation Zero Point Energy
Suppressed Inventions Water Disassociation Zero Point EnergySuppressed Inventions Water Disassociation Zero Point Energy
Suppressed Inventions Water Disassociation Zero Point EnergyJohn Kuhles
 
Pitch Deck Energy Floors - Zero Point Energy Pvt Ltd
 Pitch Deck Energy Floors - Zero Point Energy Pvt Ltd Pitch Deck Energy Floors - Zero Point Energy Pvt Ltd
Pitch Deck Energy Floors - Zero Point Energy Pvt LtdMandar Tulankar
 
The Biophysical Effects of Heavy Water
The Biophysical Effects of Heavy WaterThe Biophysical Effects of Heavy Water
The Biophysical Effects of Heavy WaterAnthony Salvagno
 
Supercritical Fluid Chromatography
Supercritical Fluid ChromatographySupercritical Fluid Chromatography
Supercritical Fluid ChromatographyBHARATH_B
 
Tritium isotope separation
Tritium isotope separationTritium isotope separation
Tritium isotope separationVasaru Gheorghe
 

Viewers also liked (7)

Suppressed Inventions Water Disassociation Zero Point Energy
Suppressed Inventions Water Disassociation Zero Point EnergySuppressed Inventions Water Disassociation Zero Point Energy
Suppressed Inventions Water Disassociation Zero Point Energy
 
zero point energy
zero point energyzero point energy
zero point energy
 
Pitch Deck Energy Floors - Zero Point Energy Pvt Ltd
 Pitch Deck Energy Floors - Zero Point Energy Pvt Ltd Pitch Deck Energy Floors - Zero Point Energy Pvt Ltd
Pitch Deck Energy Floors - Zero Point Energy Pvt Ltd
 
The Biophysical Effects of Heavy Water
The Biophysical Effects of Heavy WaterThe Biophysical Effects of Heavy Water
The Biophysical Effects of Heavy Water
 
Supercritical Fluid Chromatography
Supercritical Fluid ChromatographySupercritical Fluid Chromatography
Supercritical Fluid Chromatography
 
Heavy water production
Heavy water productionHeavy water production
Heavy water production
 
Tritium isotope separation
Tritium isotope separationTritium isotope separation
Tritium isotope separation
 

Similar to Discover Zero Point Energy and Vacuum Fluctuations Effects

Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdifififif
Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdififififElectrodynamics ppt.pdfgjskysudfififkfkfififididhxdifififif
Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdififififMAINAKGHOSH73
 
Lecture 14 on Blackbody Radiation.pptx
Lecture 14 on Blackbody Radiation.pptxLecture 14 on Blackbody Radiation.pptx
Lecture 14 on Blackbody Radiation.pptxTheObserver3
 
Fundamental Concepts on Electromagnetic Theory
Fundamental Concepts on Electromagnetic TheoryFundamental Concepts on Electromagnetic Theory
Fundamental Concepts on Electromagnetic TheoryAL- AMIN
 
Easy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdfEasy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdfAreeshaNoor9
 
Electricity Full lecture.pptx
Electricity Full lecture.pptxElectricity Full lecture.pptx
Electricity Full lecture.pptxAdnan al-emran
 
Class_12-Physics_ Alternating current and Electromagnetic Waves_ PPT-3 of 3.pdf
Class_12-Physics_ Alternating current and Electromagnetic Waves_ PPT-3 of 3.pdfClass_12-Physics_ Alternating current and Electromagnetic Waves_ PPT-3 of 3.pdf
Class_12-Physics_ Alternating current and Electromagnetic Waves_ PPT-3 of 3.pdfMuskanShrivastava15
 
Spin_Explained_As_Two_Rotating_Rings.pdf
Spin_Explained_As_Two_Rotating_Rings.pdfSpin_Explained_As_Two_Rotating_Rings.pdf
Spin_Explained_As_Two_Rotating_Rings.pdfSergio Prats
 
Elaborato Luca Rapacchiani
Elaborato Luca RapacchianiElaborato Luca Rapacchiani
Elaborato Luca RapacchianiLucaRapacchiani2
 
An apologytodirac'sreactionforcetheory
An apologytodirac'sreactionforcetheoryAn apologytodirac'sreactionforcetheory
An apologytodirac'sreactionforcetheorySergio Prats
 
RADIATION OF AN ACCELERATED CHARGE
RADIATION OF AN ACCELERATED CHARGERADIATION OF AN ACCELERATED CHARGE
RADIATION OF AN ACCELERATED CHARGEijeljournal
 
RADIATION OF AN ACCELERATED CHARGE
RADIATION OF AN ACCELERATED CHARGERADIATION OF AN ACCELERATED CHARGE
RADIATION OF AN ACCELERATED CHARGEijeljournal
 
Field energy correction with discrete charges
Field energy correction with discrete chargesField energy correction with discrete charges
Field energy correction with discrete chargesSergio Prats
 
Radiation of an Accelerated Charge
Radiation of an Accelerated ChargeRadiation of an Accelerated Charge
Radiation of an Accelerated Chargeijeljournal
 
Radiation of an accelerated charge
Radiation of an accelerated chargeRadiation of an accelerated charge
Radiation of an accelerated chargeijeljournal
 
Radiation of an Accelerated Charge
Radiation of an Accelerated Charge  Radiation of an Accelerated Charge
Radiation of an Accelerated Charge ijeljournal
 

Similar to Discover Zero Point Energy and Vacuum Fluctuations Effects (20)

Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdifififif
Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdififififElectrodynamics ppt.pdfgjskysudfififkfkfififididhxdifififif
Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdifififif
 
Lecture 14 on Blackbody Radiation.pptx
Lecture 14 on Blackbody Radiation.pptxLecture 14 on Blackbody Radiation.pptx
Lecture 14 on Blackbody Radiation.pptx
 
Fundamental Concepts on Electromagnetic Theory
Fundamental Concepts on Electromagnetic TheoryFundamental Concepts on Electromagnetic Theory
Fundamental Concepts on Electromagnetic Theory
 
Easy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdfEasy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdf
 
Electricity Full lecture.pptx
Electricity Full lecture.pptxElectricity Full lecture.pptx
Electricity Full lecture.pptx
 
Class_12-Physics_ Alternating current and Electromagnetic Waves_ PPT-3 of 3.pdf
Class_12-Physics_ Alternating current and Electromagnetic Waves_ PPT-3 of 3.pdfClass_12-Physics_ Alternating current and Electromagnetic Waves_ PPT-3 of 3.pdf
Class_12-Physics_ Alternating current and Electromagnetic Waves_ PPT-3 of 3.pdf
 
Physics
PhysicsPhysics
Physics
 
Electrostatics in vacuum
Electrostatics in vacuumElectrostatics in vacuum
Electrostatics in vacuum
 
L2 electric field, dipoles
L2  electric field, dipolesL2  electric field, dipoles
L2 electric field, dipoles
 
Spin_Explained_As_Two_Rotating_Rings.pdf
Spin_Explained_As_Two_Rotating_Rings.pdfSpin_Explained_As_Two_Rotating_Rings.pdf
Spin_Explained_As_Two_Rotating_Rings.pdf
 
Elaborato Luca Rapacchiani
Elaborato Luca RapacchianiElaborato Luca Rapacchiani
Elaborato Luca Rapacchiani
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
An apologytodirac'sreactionforcetheory
An apologytodirac'sreactionforcetheoryAn apologytodirac'sreactionforcetheory
An apologytodirac'sreactionforcetheory
 
RADIATION OF AN ACCELERATED CHARGE
RADIATION OF AN ACCELERATED CHARGERADIATION OF AN ACCELERATED CHARGE
RADIATION OF AN ACCELERATED CHARGE
 
RADIATION OF AN ACCELERATED CHARGE
RADIATION OF AN ACCELERATED CHARGERADIATION OF AN ACCELERATED CHARGE
RADIATION OF AN ACCELERATED CHARGE
 
Field energy correction with discrete charges
Field energy correction with discrete chargesField energy correction with discrete charges
Field energy correction with discrete charges
 
B0330107
B0330107B0330107
B0330107
 
Radiation of an Accelerated Charge
Radiation of an Accelerated ChargeRadiation of an Accelerated Charge
Radiation of an Accelerated Charge
 
Radiation of an accelerated charge
Radiation of an accelerated chargeRadiation of an accelerated charge
Radiation of an accelerated charge
 
Radiation of an Accelerated Charge
Radiation of an Accelerated Charge  Radiation of an Accelerated Charge
Radiation of an Accelerated Charge
 

Recently uploaded

Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfjimielynbastida
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 

Recently uploaded (20)

Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdf
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 

Discover Zero Point Energy and Vacuum Fluctuations Effects

  • 1. Zero Point Energy and Vacuum Fluctuations Effects Ana Trakhtman Department of Physics Ariel University Center of Samaria
  • 2.
  • 3. Zero Point Energy – a new friend or an old acquaintance?
  • 4. Vacuum Fluctuations – what is it?
  • 5. Spontaneous Emission and what it has to do with ZPE
  • 6. Casimir Effect or Van der Waals Attraction
  • 7. The Lamb Shift
  • 8. The Beam Splitter
  • 10.
  • 11. Zero Point Energy The origin of zero-point energy is the Heisenberg uncertainty principle. It is the lowest possible energy that a quantum mechanical system may have; it is the energy of its ground state. The most famous such example of zero-point energy is 𝐸=12ℏ𝜔 associated with the ground state of the quantum harmonic oscillator. It is the expectation value of the Hamiltonian of the system in the ground state.  
  • 12. Zero Point Energy 𝐻=ℏ22𝑚 ∇2+𝑉(𝑟,𝑡) 𝑍𝑃𝐸=𝐻=Ψ𝑔𝑟𝑜𝑢𝑛𝑑𝐻Ψ𝑔𝑟𝑜𝑢𝑛𝑑  
  • 13. Vacuum Fluctuations In quantum field theory, the fabric of space is visualized as consisting of fields, with the field at every point in space and time being a quantum harmonic oscillator. The zero-point energy is again the expectation value of the Hamiltonian; here, however, the phrase vacuum expectation value is more commonly used, and the energy is called the vacuum energy. Vacuum energy can also be thought of in terms of virtual particles (also known as vacuum fluctuations) which are created and destroyed out of the vacuum. The concept of vacuum energy was derived from energy-time uncertainty principle.
  • 14. Vacuum Fluctuations The vacuum state |𝑣𝑎𝑐> of the field is the state of the lowest energy. The expectations values of both 𝑎𝑘𝑠 and 𝑎𝑘𝑠+ vanish in the vacuum state, because: 𝑎𝑘𝑠|𝑣𝑎𝑐> =0=<𝑣𝑎𝑐|𝑎𝑘𝑠+ Vector 𝐹(𝑟,𝑡), which may be the electric or magnetic or the vector potential, having a mode expansion of the general form: 𝐹𝑟,𝑡=1𝐿32𝑘,𝑠𝑙𝜔𝑎𝑘𝑠𝜀𝑘𝑠𝑒𝑖𝑘∙𝑟−𝜔𝑡+h.𝑐  
  • 15. Vacuum Fluctuations Where 𝑙𝜔 is some slowly varying function of frequency which is different for each field vector. Expectation value of 𝐹𝑟,𝑡 in the vacuum state: <𝑣𝑎𝑐𝐹𝑟,𝑡𝑣𝑎𝑐> =0 However, the expectation of the square of the field operator does not vanish, as we will show soon. This implies that there are fluctuations of the em field, even in its lowest energy.  
  • 16. Vacuum Fluctuations If we use the mode expansion and make use of the fact that: 𝑣𝑎𝑐𝑎𝑘𝑠+𝑎𝑘′𝑠′𝑣𝑎𝑐=0 𝑣𝑎𝑐𝑎𝑘𝑠+𝑎𝑘′𝑠′+𝑣𝑎𝑐=0 𝑣𝑎𝑐𝑎𝑘𝑠𝑎𝑘′𝑠′𝑣𝑎𝑐=0 We find that: 𝑣𝑎𝑐𝐹2(𝑟,𝑡)𝑣𝑎𝑐==1𝐿3𝑘𝑠𝑘′𝑠′𝑙𝜔𝑙∗(𝜔′)𝑣𝑎𝑐𝑎𝑘𝑠𝑎𝑘′𝑠′+𝑣𝑎𝑐(𝜀𝑘𝑠∙𝜀𝑘′𝑠′∗)∙𝑒𝑖[𝑘−𝑘′𝑟−𝜔−𝜔′𝑡]  
  • 17. Vacuum Fluctuations 𝑎𝑘𝑠𝑡, 𝑎𝑘′𝑠′+(𝑡)=𝑎𝑘𝑠∙𝑎𝑘′𝑠′+−𝑎𝑘′𝑠′+∙𝑎𝑘𝑠=𝛿𝑘𝑘′3𝛿𝑠𝑠′ With the help of the commutation relation we have: 𝑣𝑎𝑐𝑎𝑘𝑠𝑎𝑘′𝑠′+𝑣𝑎𝑐=𝑣𝑎𝑐(𝑎𝑘′𝑠′+∙𝑎𝑘𝑠+𝛿𝑘𝑘′3𝛿𝑠𝑠′)𝑣𝑎𝑐=𝛿𝑘𝑘′3𝛿𝑠𝑠′  
  • 18. Vacuum Fluctuations So that: 𝑣𝑎𝑐𝐹2(𝑟,𝑡)𝑣𝑎𝑐=1𝐿3𝑘,𝑠𝑙𝜔2=2𝐿3𝑘𝑙𝜔2  ⟶ 22𝜋3𝑙𝜔2𝑑3𝑘 This is clearly non-zero, and indeed is infinite for an unbounded set of modes. As it is know: 𝑣𝑎𝑐∆𝐹2𝑣𝑎𝑐=𝑣𝑎𝑐𝐹2𝑣𝑎𝑐   ,    ∆𝐹=𝐹−𝐹 ∆𝐹 – the deviation from the mean This shows us that the field fluctuates in the vacuum state.  
  • 19. Vacuum Fluctuations The effects of vacuum energy can be observed in various phenomena such as spontaneous emission, the Casimir effect and the Lamb shift, and are thought to influence the behavior of the Universe on cosmological scales.
  • 20. Spontaneous Emission Quantum electrodynamics shows that spontaneous emission takes place because there is always some electromagnetic field present in the vicinity of an atom, even when a field is not applied. Like any other system with discretely quantized energy, the electromagnetic field has a zero-point energy. Quantum electrodynamics shows that there will always be some electromagnetic field vibrations present, of whatever frequency is required to induce the charge oscillations that cause the atom to radiate 'spontaneously'.
  • 21. The Casimir Effect One of the more striking examples is the attractive force between a pair of parallel, uncharged, conducting plates in vacuum. This force is also referred to as a Van der Waals attraction and has been calculated by Dutch physicists Hendrik B. G. Casimir and Dirk Polder (1948).
  • 22. The Casimir Effect One can account for this force (also known as Casimir force), and obtain an approximate value of its magnitude, by assuming that the force is a consequence of the separation-dependent vacuum field energy trapped between the two plates. If the plats are squares of side L and are separated by a distance z, we may suppose that the system constitutes a “cavity” that supports modes with wave number k down to about 1/z. the vacuum field energy trapped between the plates may therefore be written approximately as: 𝑈=𝑘,𝑠12ℏ𝜔≈𝐿2𝑧1𝑧𝐾ℏ𝑐𝑘 𝑘2𝑑𝑘≈14𝐿2ℏ𝑐𝑧𝐾4−1𝑧3=𝑈𝑢𝑝𝑝𝑒𝑟−𝑈𝑙𝑜𝑤𝑒𝑟  
  • 23. The Casimir Effect we have introduced a high frequency cut-off K to make the energy finite. We can think of the negative rate of change of the lower cut-off energy 𝑈𝑙𝑜𝑤𝑒𝑟 with separation z as constituting a force of attraction, whose magnitude F per unit are is given by: 𝐹=−1𝐿2𝑑𝑈𝑙𝑜𝑤𝑒𝑟𝑑𝑧~ℏ𝑐𝑧4  
  • 24. The Casimir Effect It is interesting to note from the structure of F that the force is proportional to ℏ and is therefore quantum mechanical. Because the strength of the force falls off rapidly with distance, it is only measurable when the distance between the objects is extremely small. On a submicrometre scale, this force becomes so strong that it becomes the dominant force between uncharged conductors.  
  • 25. The Casimir Effect At separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of 1 atmosphere of pressure (101.325 kPa), the precise value depending on surface geometry and other factors. In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; and in applied physics, it is significant in some aspects of emerging micro technologies and nanotechnologies.
  • 26. The Lamb Shift The Lamb shift, named after Willis Lamb (1913–2008), is a small difference in energy between two energy levels 2S1 / 2 and 2P1 / 2 of the hydrogen atom in quantum electrodynamics. According to Dirac, the 2S1 / 2 and 2P1 / 2 orbitals should have the same energies. However, the interaction between the electron and the vacuum causes a tiny energy shift on 2S1 / 2. Lamb and Robert Retherford measured this shift in 1947. Lamb won the Nobel Prize in Physics in 1955 for his discoveries related to the Lamb shift.
  • 28. The Lamb Shift In 1948 Welton succeeded in accounting for the Lamb shift between the s and p energy levels of atomic hydrogen in terms of the perturbation of the electronic orbit brought about by vacuum fluctuations. A perturbation 𝛿𝑟 in electronic position in general causes a change of potential energy 𝛿𝑉 given by: 𝛿𝑉=𝑉𝑟+𝛿𝑟−𝑉𝑟=∇𝑉∙𝛿𝑟+12𝜕𝜕𝑟𝑖𝜕𝜕𝑟𝑗𝑉𝛿𝑟𝑖𝛿𝑟𝑗+⋯  
  • 29. The Lamb Shift When we average this over the random displacements 𝑟, the term in 𝛿𝑟2 is the leading non-zero term and we find that: 𝛿𝑉=16∇2𝑉 𝛿𝑟2 In order to calculate the value of 𝛿𝑟2 resulting from the fluctuations of the vacuum field, we observe that, under the influence of an electric field 𝐸𝜔 of frequency 𝜔, the electronic position r obeys the equation of motion: 𝑚𝑟=−𝑒𝐸𝜔cos𝜔𝑡  
  • 30. The Lamb Shift And this results in a mean squared displacement about its equilibrium value of: 𝛿𝑟𝜔2=12𝑒2𝑚2𝜔4 𝐸𝜔2𝑣𝑎𝑐=ℏ𝑒22𝜋3𝜀0𝑚2𝑑3𝑘𝜔3=ℏ𝑒22𝜋2𝜀0𝑚2𝑐3𝜔0Ω𝑑𝜔𝜔  
  • 31. The Lamb Shift The integral diverges logarithmically at the upper end, and had to be provided with a cut-off Ω, which is usually chosen to be of order 𝑚𝑐2/ℏ. When this expression for 𝛿𝑟2 is inserted in 𝛿𝑉, and we average ∇2𝑉(𝑟) over the electronic orbit with the help of the wave function 𝜓(𝑟), we obtain finally for the perturbation of the atomic energy level: 𝛿𝑉=ℏ𝑒212𝜋2𝜀0𝑚2𝑐3 𝑑3𝑟 ∇2𝑉𝑟𝜓𝑟2𝜔0Ω𝑑𝜔𝜔  
  • 32. The Lamb Shift If we take the potential energy 𝑉(𝑟) to be: 𝑉𝑟=−𝑒24𝜋𝜀0𝑟  then: ∇2𝑉𝑟=𝑒2𝜀0𝛿3(𝑟) and the volume integral reduces to: 𝑒2𝜀0𝜓02  
  • 33. The Lamb Shift This vanishes for a p-state but gives a finite value for an s-state. The difference between the s and p energy levels is therefore: ∆𝐸=ℏ𝑒412𝜋2𝜀02𝑚2𝑐3𝜓𝑠02ln𝑚𝑐2ℏ𝜔0  
  • 34. The Lamb Shift This leads to: ∆𝐸ℏ~1040 𝑀𝐻𝑧 For the 2s-state of hydrogen, and is in reasonable agreement with measurements by Lamb and Retherford (1947).  
  • 36. The Beam Splitter After decomposing all fields into plane-wave modes in the usual way, we consider a single incident mode labeled 1, which gives rise to a reflected mode 2 and a transmitted mode 3. r, t are the complex amplitude reflectivity and transmissivity for light incident from one side. 𝑟′, 𝑡′ for light coming from the other side there are no losses in the beam splitter  
  • 37. The Beam Splitter Then these parameters must obey the following reciprocity relations (due to Stokes, 1849): 𝑟=𝑟′  ,  𝑡=𝑡′ 𝑟2+𝑡2=1 𝑟𝑡∗+𝑟∗𝑡=0  
  • 38. The Beam Splitter It follows that an incoming classical wave of complex amplitude 𝜐1 gives rise to a reflected wave 𝜐2, and a transmitted wave 𝜐3 such that: 𝑣2=𝑟𝑣1   ,   𝑣3=𝑡𝑣1 From these relations it follows immediately that: 𝑣22+𝑣32=𝑡2+𝑟2𝑣12 So that the incoming energy is conserved.  
  • 39. The Beam Splitter Now suppose that we wish to apply a similar argument to the treatment of a quantum field. Then 𝑣1, 𝑣2, 𝑣3 have to be replaced by the complex amplitude operators 𝑎1, 𝑎2 , 𝑎3 , which obey the commutation relations: 𝑎𝑗, 𝑎𝑗+=1,  𝑗=1, 2, 3 𝑎2, 𝑎3+=0  
  • 40. The Beam Splitter if we simply replace 𝑣1, 𝑣2, 𝑣3 by the operators 𝑎1, 𝑎2 , 𝑎3 , we readily find that the commutation equations do not hold for 𝑎2 , 𝑎3. Instead we obtain: 𝑎2 , 𝑎3+=𝑟2𝑎1 , 𝑎1+=𝑟2 𝑎3 , 𝑎3+=𝑡2𝑎1 , 𝑎1+=𝑡2 𝑎2 , 𝑎3+=𝑟𝑡∗𝑎1 , 𝑎1+=𝑟𝑡∗  
  • 41. The Beam Splitter The reason for the discrepancy is that we have ignored the fourth beam splitter input port, which is justifiably ignored in the classical treatment because no light enter that way. However, even if no energy is flowing through the mode labeled 0, in a quantized field treatment there is a vacuum field that enters here and contributes to the two output modes.
  • 42. The Beam Splitter Accordingly, we need to rewrite the commutation relations: 𝑎2=𝑟𝑎1+𝑡′𝑎0   ;   𝑎3=𝑡𝑎1+𝑟′𝑎0 𝑎2 , 𝑎2+=𝑟2𝑎1 , 𝑎1++𝑡2𝑎0 , 𝑎0+=𝑟2+𝑡2=1 𝑎2 , 𝑎3+=𝑟𝑡∗𝑎1 , 𝑎1+𝑟′∗𝑡′𝑎0 , 𝑎0+=𝑟𝑡∗+𝑟′∗𝑡′=0  
  • 43. Science Fiction or is it? As a scientific concept, the existence of zero point energy is not controversial although the ability to harness it is. Many claims exist of ''over unity devices'' (gadgets yielding a greater output than the required input for operation) driven by zero-point energy. Zero-point energy is not a thermal reservoir, and therefore does not suffer from the thermodynamic injunction against extracting energy from a lower temperature reservoir.
  • 44. Science Fiction or is it? In 1993 Cole and Puthoff published a thermodynamic analysis, ''Extracting energy and heat from the vacuum'' (see below), in which they concluded that ''extracting energy and heat from electromagnetic zero-point radiation via the use of the Casimir force'' is in principle possible without violating the laws of thermodynamics.
  • 45. Science Fiction or is it? A thought experiment for a device that readily demonstrates how the Casimir force could be put to use in principle was proposed by physicist Robert Forward in 1984 . A ''vacuum fluctuation battery'' could be constructed consisting of stacked conducting plates. Applying the same polarity charge to all the plates would yield a repulsive force between plates, thereby opposing the Casimir force which is acting to push the plates together. Adjusting the electrostatic force so as to permit the Casimir force to dominate will result in adding energy to the electric field between the plates, thereby converting zero-point energy to electric energy.
  • 46. Science Fiction or is it? In spite of the dubious nature of these claims (to date no such device has passed a rigorous, objective test), the concept of converting some amount of zero-point energy to usable energy cannot be ruled out in principle.
  • 47. Conclusion In all the examples above (not the science fiction part of course) we see that the vacuum field plays a fundamental role and is required for internal consistency. The vacuum has certain consequences in quantum electrodynamics that have no counterpart in the classical domain and it cannot be ignored.
  • 48. Bibliography “Optical Coherence and Quantum Optics” by Leonard Mandel and Emil Wolf “Zero Point Energy and Zero Point Field” – Calphysics Institute Zero Point Energy and Vacuum Energy – Wikipedia General Interest Articles by Matt Visser, Victoria University of Wellington