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Abstract

The adenine nucleotide translocase (ANT) mediates the exchange of ADP and ATP across the inner mitochondrial
membrane. The human genome encodes multiple ANT isoforms that are expressed in a tissue-specific manner. Recently a
novel germ cell-specific member of the ANT family, ANT4 (SLC25A31) was identified. Although it is known that targeted
depletion of ANT4 in mice resulted in male infertility, the functional biochemical differences between ANT4 and other
somatic ANT isoforms remain undetermined. To gain insight into ANT4, we expressed human ANT4 (hANT4) in yeast
mitochondria. Unlike the somatic ANT proteins, expression of hANT4 failed to complement an AAC-deficient yeast strain for
growth on media requiring mitochondrial respiration. Moreover, overexpression of hANT4 from a multi-copy plasmid
interfered with optimal yeast growth. However, mutation of specific amino acids of hANT4 improved yeast mitochondrial
expression and supported growth of the AAC-deficient yeast on non-fermentable carbon sources. The mutations affected
amino acids predicted to interact with phospholipids, suggesting the importance of lipid interactions for function of this
protein. Each mutant hANT4 and the somatic hANTs exhibited similar ADP/ATP exchange kinetics. These data define
common and distinct biochemical characteristics of ANT4 in comparison to ANT1, 2 and 3 providing a basis for study of its
unique adaptation to germ cells.
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Introduction

The adenine nucleotide translocase (ANT) mediates the

exchange of ADP and ATP across the inner mitochondrial

membrane. Therefore, proper function of ANT is essential for the

transfer of ATP synthesized in mitochondria to the cytoplasm.

Most eukaryotes from yeast to humans have multiple ANT

isoforms [1]. Unicellular organisms utilize different ANT isoforms

depending on the availability of external nutrients and aeration.

Multicellular organisms, express different ANT isoforms in a

tissue-specific manner that are apparently adapted to the unique

metabolic demands of the various tissues.

Recently, we and others identified a novel member of the ANT

family, ANT4 (SLC25A31, AAC4, SFEC) in both humans and

mice [2,3,4]. ANT4 is evolutionarily conserved in mammals and

exclusively expressed in male germ cells of adult animals [5].

Although the previous gene knock-out study in mouse revealed that

ANT4 was essential for the process of male germ cell meiosis in mice

[6], neither the function of ANT4 in male germ cells nor the reason

why ANT4 exists only within a limited spectrum of species is known.

The human ANT4 gene (hANT4) is predicted to encode a 315

amino acid protein. The protein contains the characteristic amino

acid sequence (RRRMMM) shared by all known ADP/ATP

carriers. hANT4 was demonstrated to possesses bona fide ADP/

ATP transport upon reconstitution and assay of recombinant

protein from E. coli into proteo-liposomes [3]. The reported

kinetics of hANT4 were distinct from previously reported kinetics

of other somatic hANTs, with comparatively lower affinity for

adenine nucleotides and a higher Vmax. Unfortunately, the kinetics

of ADP/ATP transport through hANT4 and somatic hANTs were

not compared under comparable experimental conditions. There-

fore, it is important to evaluate the differing biochemical

characteristics of hANT4 and the somatic hANTs to elucidate

the functional role of hANT4.

In order to determine the biochemical properties of the hANT4,

we have chosen to heterologously express each hANT isoform in

yeast and analyze their biochemical properties in parallel. Baker’s

yeast, Saccharomyces cerevisiae contains three paralogous genes

encoding ADP/ATP carriers: AAC1, AAC2 and AAC3. Yeast

AACs have been extensively studied, taking advantage of the

myriad molecular and genetic tools available in this organism [7].

The mitochondrial ADP/ATP exhange acitivity is not essential for

cell growth under fermentation culture conditions and becomes

essential only under non-fermentation conditions. This unique

system provided the means to knock-out all three native AAC

genes and insert heterologous hANT genes. The function of ADP/

ATP exhange acitivity can be readily determined by following

growth on non-fermentable carbon sources. Moreover, the
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hANT1, 2, 3 proteins have all been functionally expressed in yeast

mitochondria [8,9].

Here we expressed hANT4 protein in AAC- deficient yeast

mitochondria along with somatic hANTs for parallel comparison.

Using a similar methodology to that required for functional

hANT1, 2 and 3 expression in yeast, hANT4 failed to complement

the respiratory defect of yeast lacking the endogenous AAC genes.

Moreover, overexpression of hANT4 led to deleterious effects on

yeast cell growth. However, mutant forms of hANT4 protein were

isolated that facilitated proper mitochondrial localization and

complementation of AAC-deficient yeast. The ADP/ATP ex-

change kinetics of those modified hANT4 proteins compared

favorably to the kinetics of the somatic hANTs expressed and

analyzed under identical experimental conditions.

Results

Introduction of the human ANT gene into the AAC2
locus

We initially attempted to insert the full length hANT4 coding

sequence into AAC-deficient yeast by homologous recombination

at the AAC2 locus. The idea was to select transformants based on

their ability to grow on media requiring a functional mitochondrial

respiratory system by providing sufficient adenine nucleotide

transport activity to support growth of yeast on nonfermentable

carbon sources as described previously [10]. A codon-optimized

hANT4 ORF was amplified by PCR with primers that provided

50 bp of identity to the sequences immediately 59 and 39 of the

AAC2 start and stop codons. The amplified DNA was transformed

into the AAC-deficient yeast strain bearing the KAN-MX6 genetic

marker at the AAC2 locus. All yeast strains in this study bear

deletions of the AAC1 and AAC3 and are derived from strain

TCY119 (Table 1). As controls, either AAC2 or hANT2 sequences

were similarly prepared by PCR and used to generate knock-ins at

the same locus. Only the AAC2 knock-in transformants appeared

and grew on nonfermentable media (YPEG), suggesting that

neither hANT2 nor hANT4 knocked-in at this locus supported

respiratory growth. Previously, it was found that addition of the

N-terminal sequence from yeast AAC2 to the cognate position of

bovine ANT1 significantly increased expression in yeast [11].

Therefore, we constructed chimeric hANT genes in which N-

terminal sequences were replaced with the AAC2 N-terminal 25

amino acids (yNhANTs) and repeated the knock-in protocol.

Using this methodology, the yNhANT2 knock-in transformant

clones could be isolated, and these yeast grew on YPEG. In

contrast, yNhANT4 knock-in transfomants again failed the

selection protocol.

To insert the hANT4 gene into the yeast AAC2 independent of

its ability to complement the ATP/ADP exchange function, a two-

step strategy was adopted (Fig. 1). First, the KAN-MX6 marker

present at the AAC2 locus of TCY119 was replaced with the

common yeast selectable marker URA3 (‘‘URA3-AAC2’’ in

Fig. 1). In the second step, each hANT knock-in construct was

transformed into the URA3-AAC2 strain to allow homologous

recombination at URA3-AAC2 site. Transformants were identi-

fied by selecting for 5-FOA resistance on rich glucose media. Yeast

lacking the URA3 gene are resistant to the cyotoxic effects of 5-

FOA [12]. In this way, yeast strains carrying yNhANT4 gene at

the AAC2 locus were successfully isolated and propagated

(yNhANT4). yNhANT1, 2, 3 and AAC2 expressing strains were

similarly generated (Fig. 2A). All yeast strains were capable of

growth on fermentable carbon sources (YPD, rich-glucose media)

(Fig. 2B). AAC2 and yNhANT1, 2, 3 knock-in yeast displayed

abundant growth on nonfermentation culture conditions (YPEG).

However, yNhANT4 did not grow on YPEG when directly

streaked from YPD grown cells (Fig. 2C). Even after incubation for

over 1 week, yNhANT4 strain did not grow on YPEG (Fig. 2D).

We concluded that modifying the N-terminus of hANT4 with

AAC2 N-terminal sequences was not sufficient to provide adequate

translocator activity for growth of yeast on nonfermentable carbon

sources.

Effects of excessive expression of hANT4
We suspected that hANT4 expression from a single copy at the

AAC2 locus might be insufficient to compensate for the loss of

Table 1. Yeast strains used in this study.

Straina Genotypeb

TCY119c MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::kanMX6 aac3-D1::hisG [r+, TRP1]

URA-AAC MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::URA3 aac3-D1::hisG [r+, TRP1]

yAAC2 MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-AAC2 aac3-D1::hisG [r+, TRP1]

yNhANT1 MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-yNhANT1 aac3-D1::hisG [r+, TRP1]

yNhANT2 MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-yNhANT2 aac3-D1::hisG [r+, TRP1]

yNhANT3 MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-yNhANT3 aac3-D1::hisG [r+, TRP1]

yNhANT4 MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-yNhANT4 aac3-D1::hisG [r+, TRP1]

yNhANT4 A30V MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-yNhANT4 (A30V) aac3-D1::hisG [r+, TRP1]

yNhANT4 P95S MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-yNhANT4 (P95S) aac3-D1::hisG [r+, TRP1]

yNhANT4 P95L MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-yNhANT4 (P95S) aac3-D1::hisG [r+, TRP1]

yNhANT4 S202L MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-yNhANT4 (S202L) aac3-D1::hisG [r+, TRP1]

yNhANT4 V5 MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-yNhANT4-V5::KanR aac3-D1::hisG [r+, TRP1]

yNhANT4 A30V V5 MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-yNhANT4-V5 (A30V)::KanR aac3-D1::hisG [r+, TRP1]

yNhANT4 S202L V5 MATa ura3–52 leu2–3, 112 trp1-D1 ade2 his3-D1::hisG aac1-D1::hisG aac2-D1::6xHis-yNhANT4-V5 (S202L)::KanR aac3-D1::hisG [r+, TRP1]

aUnless indicated, all strains were created in this study.
bMitochondrial genome is bracketed.
cStrain source: [10].
doi:10.1371/journal.pone.0019250.t001
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endogenous ATP/ADP translocators. Therefore, hANT4 gene

expression was increased by transforming yeast with a high-copy

plasmid, pESC-Leu2d [13] bearing the yNhANT4 gene. This

plasmid, pESC-Leu2d::yNhANT4, is maintained both at high

copy and expresses the gene under control of the strong Gal1

promoter. pESC-Leu2d::yNhANT2, a similarly constructed con-

trol plasmids with yNhANT2, or the empty vector were

introduced into the triple AAC knock-out yeast (URA3-AAC2)

(Fig. 3). The transformed yeast were incubated on glucose media

lacking leucine (Fig. 3A), galactose media which induces

expression of the respective ANT genes (Fig. 3B), and media

containing a nonfermentable carbon source (Fig. 3C). When

yNhANT4 expression was induced by addition of galactose, yeast

cell growth was suppressed (Fig. 3B). Overexpression of yNhANT2

did not affect the growth on the fermentable carbon source

galactose, and indeed yNhANT2 overexpression supported growth

on nonfermentable carbon sources (Fig. 3C). These observations

led us to conclude that the overexpression of yNhANT4 was

unfavorable, and that further modification of yNhANT4 or the

yeast genome would be required for functional reconstitution of

yNhANT4 in yeast.

EMS mutagenesis and functional screening of yNhANT4
yeast

The AAC2 promoter is highly induced when yeast are

transferred from fermentable to nonfermentable carbon sources

[14]. Therefore, we hypothesized that while the lower yNhANT4

expression of glucose grown cells does not adversely affect cell

growth, higher expression in YPEG may be inhibitory. To combat

this putative intolerance to the heterologous protein, we isolated

mutant forms of yNhANT4 that allowed yeast to grow on

nonfermentable carbon sources. After treating yNhANT4 yeast

strains with the mutagen EMS, four independent mutant strains

were isolated that were capable of respiratory growth. The AAC2/

yNhANT4 locus of each was subjected to DNA sequencing and

each contained a point mutation in the yNhANT4 ORF that

changed a single amino acid (Table 2). Alignment of the human

ANT isoforms, yeast AAC isoforms and bovine ANT1 revealed

that the hANT4 amino acid sequence is more than 70% identical

to other mammalian ANT isoforms and more than 50% identical

to the yeast AACs. The putative substrate binding sites as well as

the signature RRRMMM motif are highly conserved between the

isoforms and across species (Fig. 4). The three amino acid residues

that were the sites of mutation in hANT4 that allowed

complementation of AAC-deficient yeast varied in their degrees

of conservation. A30 of hANT4 is conserved among mammals

across all ANT isoforms but not conserved in yeast. P95 of hANT4

is conserved in all ANT related sequences. S202 of hANT4 is

unique to ANT4 protein in all mammalian species examined

(chimpanzee, cow, dog, mouse, rat and opossum) (data not shown).

We determined that the mutations in yNhANT4 were indeed

responsible for the growth complementation on YPEG by

reintroducing the mutated yNhANT4 alleles back into the

parental strain. All the four alleles supported yeast growth on

YPEG. The A30V mutation of yNhANT4 proved the strongest

allele by showing rapid growth on nonfermentable carbon sources

comparable to that of yeast bearing the wild-type yeast allele AAC2

(Fig. 5). Although each amino acid mutation within yNhANT4

was sufficient to complement growth on nonfermentable carbon

sources, the mutant yeasts that were originally recovered from

EMS mutagenesis might have contained additional mutations

outside of the yNhANT4 that also contributed to improved growth

on nonfermentable carbon sources. To test this hypothesis, the

mutant yNhANT4 locus for three of the isolates was first replaced

by URA3, and then wild type yNhANT4 was reintroduced using 5-

FOA selection as described above. None of the mutants bearing

the non-mutated yNhANT4 allele could support growth on

nonfermentable carbon sources. Therefore, we concluded that the

A30V, P95S and S202L amino acid substitutions were sufficient

for functional expression in yeast.

Improved mitochondrial expression in hANT4 mutant
strains

To further investigate the role of amino acid residues A30, P95

and S202 in yNhANT4, we analyzed yNhANT4 transcript and

protein levels in isogenic parent and mutant yeast strains. The V5-

tag was added to the C-terminus of yNhANT4 and mutant

yNhANT4 genes to allow detection of yNhANT4 protein. The

presence of the V5-tags did not alter the growth characteristics on

YPD or YPEG in comparison to the parental untagged strains.

The yNhANT4-V5 yeast strains were cultured using the same

media, rich glucose-containing media (YPD). When the transcript

levels of the yNhANT4 gene from each strain were compared by

real-time PCR, there were no significant differences between the

parent and mutants (Fig. 6A). However, western blot analysis using

anti-V5 antibody on whole cells and isolated mitochondria

revealed that the amount of yNhANT4 protein in mitochondria

was lower in the native yNhANT4-V5 strains than the A30V and

S202L mutant strains (Fig. 6B). We also confirmed that yNhANT4

protein expression levels in P95S and P95L strains were similar to

those in A30V and S202L strains in western blot analysis using

anti-His antibody (data not shown). Based upon these observa-

tions, the increased amount of yNhANT4 protein found in

Figure 1. Strategy for introduction of hANTs into the AAC2
locus. Step1: KAN-MX6 cassette at the AAC2 locus in AAC triple mutant
yeast (TCY119) was replaced with URA3 to establish the parent stain
(URA-AAC2). Step2: PCR-generated N-terminal AAC + hANTs ORF
fragments (yNhANTs) were used for transformation of URA-AAC2, and
transformants were selected on rich glucose media containing 5-FOA.
doi:10.1371/journal.pone.0019250.g001
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mitochondria of mutant strains is likely due to a post-transcrip-

tional event.

ADP/ATP exchange kinetics of hANT4
The ADP/ATP exchange kinetics of hANT4 was compared to

the other somatic hANT isoforms. Mitochondria were prepared

from hANT expressing yeast grown on nonfermentable carbon

sources, and the efflux rate of ATP was measured as a function of

changes in external ADP concentration. A representative hANT4

A30V kinetic curve is shown in Fig. 7 and the kinetic parameters

obtained from each hANT are summarized in Table 3. All ATP/

ADP translocators tested (hANT1, 2, 3, 4 and yeast AAC2) have a

KM for ADP in the micromolar range, consistent with previously

reported values [8]. The hANT4 KM values varied several fold

depending on the particular allele of hANT4, with two of the three

mutant proteins (A30V and S202L) showing lower KM values for

ADP than hANT1, 2 and 3. Interestingly, the difference found in

the kinetic parameters of the mutant hANT4 proteins correspond-

ed to the relative growth rates of yeast on nonfermentable carbon

sources (Figure 5). The hANT4 bearing the A30V mutant form

was fastest growing and has a low KM and high Vmax. Mutant

hANT4 proteins that supported growth less well on nonfermen-

table carbon sources had either a greater KM (P95S) or smaller

Vmax (S202L).

Discussion

Saccharomyces cerevisiae has proven to be a useful experimental

system for investigating the fundamental biochemical properties of

ADP/ATP exchange across the inner mitochondrial membrane

[7]. Since mitochondrial ADP/ATP exhange acitivity in yeast is

not essential during fermentative growth but is essential for growth

using nonfermentable carbon sources, it was possible to introduce

and biochemically analyze nonfunctional or sub-functional ANTs.

Consequently, we were able to knock-out all three native AAC

genes and insert heterologous genes corresponding to hANT1, 2,

3, and 4 at the yeast AAC2 locus.

There are some limitations of this heterologous expression

method. Several previous reports as well as data presented here

demonstrated that the N-terminal sequence greatly influences the

functional localization of ANT proteins [15]. Apparently the

mammalian ANT proteins lack a necessary signal for compatibility

with the yeast mitochondrial inner membrane protein transport

Figure 2. Characterization and growth of humanized-ANT yeast strains. (A) Confirmation of hANT gene insertion by PCR-restriction
fragment length analysis. AAC2 locus was PCR amplified by primers positioned 59 and 39 of ORF. The fragments were digested with BglII and EcoRI,
and separated on a 2% agarose gel. (B) Growth of hANT yeast on complete glucose medium (YPD). (C) Growth of hANT yeast on complete ethanol-
glycerol medium (YPEG). (D) Growth curves of hANT yeast in YPEG determined by turbidity (O.D.600).
doi:10.1371/journal.pone.0019250.g002
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machinery. Interestingly, hANT4 required additional mutations

for functional expression in yeast mitochondria. These mutations

were all missense mutations affecting A30, P95 or S202 in hANT4

protein and improved yeast mitochondrial expression. Without

these modifications, hANT4 protein was unstable in yeast (Fig. 6).

Accumulation of excess unfolded protein could be the reason that

over-production of the yNANT4 protein suppressed the yeast cell

growth (Fig. 3).

It remained unclear how the specific amino acid substitution at

the residues (A30, P95 and S202) allowed functional expression in

yeast mitochondria. Therefore, we mapped these amino acids onto

a three-dimensional structure of hANT4, using the sequence

alignments and the crystal structure of bovine ANT1 [16] as a

guide (Fig. 4 and 8). Interestingly, all three mutation sites were

located in transmembrane domains and are predicted to be

located at similar levels with respect to the mitochondrial

membrane. All three sites are oriented towards solvent, and two

of the sites (P95S and S202L) are located in positions that may

permit interaction with lipid since these residues are in close

proximity to the LAPAO detergent in the crystal structure of

ANT1 [16]. Indeed, both substitutions of A30V and S202L

increase hydrophobicity of these sites. The substitution of P95S

might impose flexibility to fit the yeast lipid environment. It should

be noted that the substitution of P89L in AAC1 that corresponds to

the P95L substitution in hANT4 has shown to alter functionality of

the protein in the native phospholipid environment of yeast [17].

A previous study demonstrated that modifications of amino acids

of somatic hANT proteins near a putative cardiolipin interaction

site improved yeast growth in reduced oxgen conditions, and

suggested that differences of lipid composition between the

mitochondrial inner membranes of yeast and mammals might

limit proper function [18].

Since ANT4 is exclusively found in mammalian germ cells and

sperm mitochondria, it is reasonable to speculate that hANT4 may

have evolved to adapt to the lipid environment of those cell types.

Interestingly, the relatively subtle amino acid changes isolated in

hANT4 influenced the ADP/ATP exchange kinetics even though

those changes occurred far from the substrate binding site (Table

3). This may also suggest that subtle changes in lipid composition

of inner membrane may alter hANT function. Indeed, cardiolipin

is a critical component for exchange activity in both yeast and

mammalian ANT [19,20]. Levels of phospholipids and cholesterol

have also been shown to affect the exchange function of

mammalian ANTs [21]. In the case of ANT4, oxidation or other

damage to lipids could alter the exchange function of ANT4, and

potentially affect male germ cell meiosis or sperm motility.

It is technically challenging to determine the ADP/ATP

exchange kinetics of ANT proteins, which are influenced by

various factors depending on the methodology. Therefore, the

kinetic values vary considerably in literature [7]. The previously

reported transport kinetics of hANT4 had higher KM values,

72 mM for ADP and 120 mM for ATP in a liposome reconstitution

system using purified hANT4 [3]. In the present study, we found

that the KM values were much lower in all three mutant hANT4

Figure 3. Over-production of yNhANT4 by high-copy plasmid inhibits yeast cell growth. Both yNhANT4 and yNhANT2 ORF were cloned
into a high-copy plasmid and expressed under the control of the GAL1 promoter. Three independent isolates, each transformed with one of the
indicated plasmids (Empty plasmid, yNhANT4, and yNhANT2) were streaked on medium as indicated. (A) glucose medium, (B) galactose medium,
and (C) YPEG + 0.1% galactose.
doi:10.1371/journal.pone.0019250.g003

Table 2. Summary of mutation sites that facilitate functional expression of yNhANT4 in yeast.

No. Strain Nucleotide change Amino acid change Corresponding position in

hANT 1, 2 and 3 AAC2

1 yNhANT A30V GCT to GTT A30V A18 S33

2 yNhANT P95S CCA to TCA P95S P83 P99

3 yNhANT P95L CCA to CTA P95L P83 P99

4 yNhANT S202L TCA to TTA S202L A190 L206

doi:10.1371/journal.pone.0019250.t002

Functional Expression of Human ANT4 in Yeast
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proteins that are compatible with those of somatic hANTs (Table

3). Although our hANT4 peptides contain mutations required for

proper assembly and stability of the proteins in yeast mitochon-

drial membrane, these mutation sites are distant from the ADP/

ATP binding pocket and unlikely to substantially change the

substrate binding affinity per se. Indeed, the substitution of A18V in

hANT2 protein, corresponding to A30V in hANT4, did not

significantly change the kinetics of ADP/ATP in yeast mitochon-

dria (data not shown). To this end, our data suggest that properly

assembled hANT4 protein may have similar ADP/ATP exchange

kinetics with those of the somatic hANTs.

In this study, native AAC2 ORF was replaced with hANT

sequences by homologous recombination. There is a distinct

advantage to having a chromosomally borne transgene as an

expression system as compared to a plasmid-based system. Using

the experimental design described here, all cells in the culture

contained the transgene and expressed it at the same level. In

contrast, plasmid numbers vary from cell-to-cell with as many as

50% of cells in a culture under selection lacking the plasmid. This

is particularly important for physiological studies of carbon source

utilizations, studies that require transitions between growth

conditions or media, and purification of proteins from large batch

cultures. This yeast expression system can be used as a starting

source to obtain structural information of hANT proteins.

Additionally, these yeast strains will be a useful tool for high-

throughput screening in drug discovery [22]. Small compounds

identified in this way that specifically inhibit hANT4 function may

have use as male contraceptives.

To date, there is no evidence of hANT4 gene mutations

associated with a human disease. However, recent advances in

sequencing technology have documented millions of novel SNP

variants from large populations [23]. So far 18 hANT4 variants

have been archived in the database, including 6 non-synonymous

variants in the coding region. It will be interesting to see if any of

those variants correlate with pathology. Association of any of these

variants with a particular diseases must await further progress on

genome-wide association studies and whole genome sequencing

projects for specific diseases [24]. If a certain hANT4 variant is

found to be associated with a human disease, functional

Figure 5. Growth of various yNhANT4 mutant yeasts on
nonfermentable carbon sources. The hANT4 mutant alleles that
complemented the aacD yeast were re-introduced into the parent yeast
(URA-AAC2). The yeast strains were cultured in rich nonfermentable
carbon source media (YPEG) at 30uC for the indicated time. Growth was
monitored by turbidity (O.D.600).
doi:10.1371/journal.pone.0019250.g005

Figure 4. Primary amino acid sequence alignment of various ANTs. A30, P95 and S202 of hANT4 are indicated by arrow. Transmembrane
domains are shown as shaded sequences.
doi:10.1371/journal.pone.0019250.g004
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consequences of the variant is readily testable using the expression

system and techniques described here.

Materials and Methods

Strains and media
All S. cerevisiae strains were derived from D273-10B and the

genotypes of strains used in this study are summarized in Table 1

[10]. Yeast strains were grown in a variety of media. Complete

glucose medium (YPD) contained 2% glucose, 2% bacto peptone,

1% yeast extract, 40 mg/liter adenine, 40 mg/liter tryptophan.

Complete ethanol-glycerol medium (YPEG) contained 3%

glycerol, 3% ethanol, 2% bacto peptone, 1% yeast extract, 40

adenine, 40 mg/liter tryptophan. Synthetic dextrose medium (SD)

was 2% glucose, 6.7 g/liter yeast nitrogen base without amino

acids (Difco), supplemented with yeast synthetic drop-out media

and/or appropriate amino acids, adenine, and uracil (Sigma). For

solid media, bacto agar (Difco) was added at 18 g/liter. 5-

fluoroorotic acid (5FOA) was added as appropriate at 1 g/liter

(Zymo) or geneticin (G418) was added at 200 mg/ml.

Insertion of URA3 gene into the AAC2 locus
Generation of triple null mutations of AAC1, AAC2 and AAC3

(TCY119) was previously described [10]. In TCY119, the AAC2

locus was disrupted by a KAN-MX6 cassette imparting resistance

to geneticin. We replaced the KAN-MX6 cassette with the URA3

to allow knock-in hANT genes via homologous recombination

using 5-FOA selection. To target the URA3 gene to the AAC2

locus, a URA3 cassette was generated containing DNA fragment

flanked by sequence homologous to the ,200 bp immediately up-

and downstream of the AAC2 ORF [25]. Briefly, AAC2 ORF

upstream and downstream sequences were amplified by PCR

using primer set F1+R1 and F2+R2 separately. The URA3 was

amplified using primer set U1+U2, which contained the reverse

complement sequence of either R1 or F2. Purified PCR fragments

were annealed and amplified by the primer set F1+R2. The PCR-

generated DNA fragments were used to transform TCY119 by the

LiAc/SS Carrier DNA/PEG method [10]. Transformants were

selected on SD plates lacking uracil. Insertion of URA3 into the

AAC2 locus of the yeast (URA-AAC2) was verified by PCR and

subsequent sequencing. Primer sequences denoted above are listed

in supplemental Table S1.

hANT1, 2, 3 and 4 knock-ins in the AAC2 locus
All hANT knock-in DNA fragments were constructed using the

same PCR strategy described above. To amplify ORFs for

hANT1, 2 and 3, human cDNAs were used as the PCR template.

For the hANT4, a codon-optimized hANT4 ORF for expression

in yeast was synthesized (MR. GENE GmbH) and used as a

template. The hANT4 ORF sequences used in this study are

shown in supplemental Figure S1. For making the 6X histidine

tagged yeast AAC2, genomic DNA (TCY122) was amplified by

PCR with primer sets F1+HisR and HisF+R2. Purified products

were combined and further amplified using primer set F1+R2.

The PCR products were transformed into URA-AAC2 followed

Figure 6. Mutations increase mitochondrial ANT4 protein levels. The V5-tag was introduced at the C-terminus of yNhANT4 in yeast strains as
shown. All yeasts were cultured in rich glucose media (YPD). (A) hANT4 mRNA level determined by real time PCR. ALG9 expression level was used to
normalize hANT4 expression. (B) hANT4 protein level in whole cells and isolated mitochondria was determined by western blotting using an anti-V5
epitope antibody. As a loading control, the membrane was immunostained with an anti-yeast porin antibody. WT: unmutated strains.
doi:10.1371/journal.pone.0019250.g006

Figure 7. ADP/ATP exchange kinetics of yNhANT4 A30V in
yeast mitochondria. The exchange reaction was initiated by adding
various concentrations of ADP to freshly isolated mitochondria. The
initial linear part of the kinetic curve was used as the initial velocity for
the ATP efflux rate. The initial velocity was plotted against the substrate
concentration [free ADP] using a 4-parameter logistic fit to describe the
data shown here.
doi:10.1371/journal.pone.0019250.g007
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by 5FOA selection to generate the His-tagged AAC2 knock-in

strain (yAAC2). For making the chimeric DNA fragment of

containing the 59His-AAC2 N-terminal with hANTs, genomic

DNA from (yAAC2) was used as the PCR template and amplified

with primer sets F1+yNR. Each hANT ORF was amplified with

primers that contained the reverse complement sequence of yNR

for the forward primer (yNRhANTs-F) and F2 as a reverse

primer (F2ANTs-R). Three of the PCR products (HisAAC2 N-

terminus with 59 arm, each hANT ORF and F2+R2 fragment for

39 arm) were combined and amplified using primer set F1+R2.

The PCR generated knock-in constructs were transformed into

AAC null yeast (URA-AAC2). Transformants were selected on 5-

FOA plates. Insertion of the targeted DNA construct into AAC2

was verified by PCR and the ORF of the locus was sequenced.

Primer sequences denoted above are listed in supplemental

Table S1.

Plasmid constructions
pESC-Leu2d empty vector was obtained from Jay D. Keasling

(U of California) (Addgene plasmid 20120) [26]. The yNhANT4

and yNhANT2 ORFs were PCR amplified with the following

primers containing Xho1 and Nhe1 sites: forward Xho1yNF for

both yNhANT4 and yNhANT2; reverse Nhe1hA4R for yN-

hANT4, Nhe1hA2R for yNhANT2. PCR fragments were cloned

into pESC-Leu2d empty vector using the Xho1 and Nhe1 sites.

Primer sequences denoted above are listed in supplemental

Table S1.

Ethyl methanesulfonate (EMS) mutagenesis
Yeast cells were washed with 0.1 M sodium phosphate (pH 7.0),

and resuspended in 1.7 ml of this buffer supplemented with 50 ml

EMS (Sigma). After one hour of incubation at 30uC, 50% of the

cells were still alive, and mutagenesis was stopped by adding 8 ml

of 5% w/v sodium thiosulfate. Cells were plated on YPEG media

at a variety of dilutions and incubated at 30uC until colonies

appeared.

V5 tagging hANT4
The V5-tag epitope (GKPIPNPLLGLDST) [27] was intro-

duced at the C-terminus of yNhANT4 by homologous recombi-

nation. First, the ADH1 terminator sequence and KanR cassette

were PCR amplified with a forward primer containing the V5-tag

sequence (V5F) and a reverse primer containing the immediate

downstream sequence of the AAC2 ORF (V5R). Plasmid

pKT0127 was used as a template DNA (kind gift of Kurt S.

Thorn (Harvard U) (Addgene plasmid 8728)). To add the 59

homologous arm, the PCR product was further amplified with a

forward primer containing 40 bp of 39 sequence of hANT4 ORF

excluding stop codon (hANT4V5F). PCR generated DNA

fragments were transformed into yNhANT4 yeast and each of

Table 3. ADP/ATP exchange kinetics of hANTs measured on
isolated yeast mitochondria.

Strain KM Vmax

mM [free ADP] nmolATP/min/mg ANT

yAAC2 1.1 1430

yNhAnt1 2.7 1190

yNhAnt2 5.5 1640

yNhAnt3 7.6 1300

yNhAnt4 A30V 1.9 950

yNhAnt4 P95S 10 1650

yNhAnt4 S202L 0.96 270

The given values are the average of at least two independent experiments. The
standard error values were less than 10% for KM and 20% for Vmax.

doi:10.1371/journal.pone.0019250.t003

Figure 8. Location of hANT4 mutation sites in the bovine ANT1
structure. Based on primary amino acid sequence alignment (Fig. 4),
A30, P95 and S202 of hANT4 correspond to A18, P83 and A190 of
bovine ANT1, respectively. Those sites are highlighted in yellow on the
bovine ANT1 structure (Protein Data Bank ID: 1OKC). The ANT1 crystal
structure is oriented to show the inter membrane space at the top and
the mitochondrial matrix at the bottom (A). Panel B is rotated 90
degrees about a horizontal axis in the plane of the page compared to
panel A to show the ANT1 region facing the cytoplasm. Panel C shows
how fatty acid detergent elements are in close proximity to a specific
position in the ANT1 crystal structure (S202 in ANT4, A190 in ANT1).
doi:10.1371/journal.pone.0019250.g008
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the mutants. Transformants were selected by plating onto YPD

containing G418. The V5-tagged hANT4 ORF in each clone was

verified by sequencing. Primer sequences denoted above are listed

in supplemental Table S1.

Isolation of yeast mitochondria
Mitochondrial isolation was performed by standard protocols

[28,29]. Yeast strains were treated with zymolyase (Seikagaku

America) to generate spheroplasts, and then broken with a Dounce

homogenizer. Mitochondria were collected by differential centri-

fugation.

Western blotting
Total protein was separated with sodium dodecyl sulfate–12%

polyacrylamide gel electrophoresis and then transferred to a

nitrocellulose membrane. The following were used as primary

antibodies: anti V5-tag (Invitrogen), anti Porin (Invitrogen) and

anti His-tag (Cell Signaling). Peroxidase-conjugated immunoglob-

ulin G (Cell Signaling) was used as the secondary antibody

followed by enhanced chemiluminescence (ECL) detection

(Thermoscientific).

Real-time PCR
Total RNA was isolated from spheroplasts using the RNA

aqueous kit (Ambion) and treated with DNAase I using Turbo

DNA free kit (Ambion). cDNA was synthesized using a high

capacity cDNA archive kit (Applied Biosystems). Real time PCR

was performed using SYBR green master mix (Applied

Biosystems) with gene specific primers; for hANT4, primer set

hANT4F and hANT4R and for ALG9, primer set ALG9F and

ALG9R were used. ALG9 expression was used as reference gene

to normalize hANT4 expression level [30]. Normalized expres-

sion was calculated by formula:{(EfficiencyhANT4) CT hANT4/

(EfficiencyALG9) CT ALG9} using qGene software [31]. Primer

sequences denoted above are listed in supplemental Table S1.

ADP/ATP exchange assay in isolated mitochondria
The ADP/ATP exchange assays were performed essentially as

described [8] with a slight modification. Briefly, freshly isolated

mitochondria were added to reaction buffer (0.6 M mannitol,

0.1 mM EGTA, 2 mM MgCl2, 10 mM KPi, 5 mM a-ketogluta-

rate, 0.01 mM Ap5A, 10 mM Tris-HCl, pH 7.4) containing the

ATP detection system (2.5 mM glucose, hexokinase (2 E.U.),

glucose-6-phosphate dehydrogenase (2 E.U.), 0.2 mM NADP).

The exchange reaction was initiated by adding various concen-

trations of ADP. The ATP efflux rate was monitored continually

by monitoring the rate of NADPH formation (increase in

absorbance at 340 nm). The initial linear part of the kinetic curve

(first 3 minutes) was used to calculate the initial velocity, and the

substrate concentrations [free ADP] were calculated using the

program Win MAXC v2.51 created by Chris Patton (http://

stanford.edu/,cpatton/). The reactions volume was 200 ul, and

reactions were carried out in 96 well microtiter plates and read by

Synergy HT plate reader (BioTek). Kinetic parameters were

obtained by 4-parameter logistic fitting using Gen5 Data analysis

software (BioTek). The amount of ANT protein in the reaction

was quantified by western blotting using recombinant human His-

tagged ANT proteins as a standard. The density of the blot was

measured by using NIH ImageJ software (http://rsbweb.nih.gov/

ij/index.html).

Supporting Information

Figure S1 Codon-optimized hANT4 sequence for yeast expres-

sion used in this study.

(DOC)

Table S1 Primer sequences used in this study.

(DOC)
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