

RAJEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS), NANDYAL – 518501, A.P.

DEPARTMENT OF CIVIL ENGINEERING

Subject: GEOTEHNICAL ENGINEERING – II (A0118156)

Faculty: C Krishnama Raju

Associate Professor

Department of Civil Engineering RGMCET(Autonomous)

INDEX

SNo	Торіс	Page Numbers
1	Vision, Mission of department, List of PEO's,	1
	PO's and PSO's	
2	Academic Calendar 2020-21	2
3	Time Table	3
4	Roll List	4-7
5	Syllabus with CO-PO Mapping	8-9
6	Lesson plan	10-11
7	Course Delivery method	12
8	Topics covered beyond Syllabus	13-17
9	Assignment-1	18-21
10	Assignment -2 with sample of student	22-34
	submitted copy	
11	MID-1 Question Paper & Solution	35-41
12	MID-2 Question Paper & Solution	42-45
13	SEE Question Paper & Solution	46-62
14	CO-PO Attainment for GE-II subject for A.Y.	63-68
	2019-2020	
15	Performance Quality of POs and PSOs	69
16	Sample Lecture Notes	
-	1. Unit 1 Soil Exploration	70-73
	2. Unit 2 Earth Pressure Theories & Retaining Walls	74-77
	3. Unit 3 Earth Slope Stability	78-81
4	4. Unit 4 Shallow Foundations	82-85
	5. Unit 5 Allowable Bearing Pressure	86-89
(5. Unit 6 Pile Foundation & Well Foundations	90-91

Department of Civil Engineering RGMCET(Autonomous), NANDYAL

VISION

• To be an outstanding department devoted to provide value based education in Civil Engineering which will produce socially aware professionals to provide solutions of global standards.

MISSION

- To impart quality education that develops innovative professionals with research orientation and entrepreneurs.
- To prepare professionals with emphasizes on leadership, team work and ethical conduct.
- To undertake collaborative projects and consultancy works with academia and industry.

PRGRAM EDUCATIONAL OBJECTIVES

- PEO-1: Assessing societal needs and plan suitable infrastructure
- PEO-2: Excel in Civil Engineering and in other allied fields
- PEO-3: Develop team spirit and inter personal dynamics for effective execution and management of projects
- PEO-4: Adhering life-long learning skills and adopt to changing professional and societal needs

PROGRAM SPECIFIC OUTCOMES

- PSO1 Capability to investigate, plan, analyze and design buildings for different purposes such as residential, commercial, public office, recreational etc. using STAAD Pro and relevant software
- PSO2 Competency in preliminary engineering surveys, planning and design of infrastructure viz. roads, bridges and designing traffic control systems etc. using Mx-Roads and other relevant software programs
- PSO3 Conduct field and laboratory tests for analysis and quality control of civil engineering projects

School of Civil Engineering Rajeev Gandhi Memorial College of Tech. (Autonomous) NANDYAL-518 501.

RAJEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

Academic Diary for II & III-B.Tech., II-Semester (R15) Academic Year: 2019-20

		Dec-19	1 marsh	Jan-20	T	Pat 20				
Day	Date	Class	Date	Class	Data	Clean		arr-20		Apr-20
Sun	E			And Street Property of Concession in Street, Street, Street, Street, Street, Street, Street, Street, Street, St	Date	CIRSS	Date	Class	Date	Class
Mon	2	1	and some	an and the state of the second s		-	1		- Chinese	Carlo participante
Tue	2	2			-		2	67	A CONTRACTOR	and the second second second
Wed	4	3	1	26	-	A Contraction of the second		68	free and the second	
Thu	P. P. p. c.			and a second	- france		4	69	1	Mid-II
Fri	5	4	2	27			5	70	2	Sri Rama Navami
Rat	5	*	3	-28			6	71	3	Mid-II
SAL	T	6	4	29	1	Mid-I	7	72	4	Mid-II
Sun	N	1 Caller State	5		2	Part Contract	a di man		R	BJR's B'Day
aion	9	7	6	30	3	Mid-I	9	73	Ū.	Mid-II
Tue	10	8	7	31	-4	Mid-I	10	74	7	Mid-II
Wed	11	9	8	32	5	46	11	75	8	Mid-II
Thu	12	10	9	33	6	47	12	76	9	Preparation
Fri	13	11	10	34	7	48	13	77	10	Good Friday
Sat	14	12	11	35	8	49	14	78	11	11-11
Sun	15		12		1 -5		16		12 1	
Mon	16	13	13	36	10	50	16	79	13	fil-H
Tue	17	14	14	Bhogi	11	51	17	80	14	BRA's B'Day
Wed	18	15	15	Sankranti	12	52	18	81	15	11-11
Thu	19	16	16	Kanuma	13	53	1 19	82	16	111-11
Fri	20	17	17	37	14	54	20	83	17	11-11
Sat	21	18	18	38	15	55	21	84	18	111-11
Sun	22		19	115. B	16		22		191	
Mon	23	19	20	39	17	56	23	85	20	11-11
Tue	24	20	21	40	18	57	24	86	21	111-11
Wed	25	Chirstmas	22	41	19	58	25	Ugadi	22	11-11
The	26	21	23	42	20	59	26	87	23	111-11
Fri	27	22	24	43	21	Sivaratri	27	88	24	11-11
Sat	28	23	25	44	22	60	28	89	25	TT II IEI-II
Sun	29		26	Republic Day	23	A	29	12.0	26	
non	30	24	27	45	24	61	30	90	27	11-11
Tue	31	25	28	Mid-I	25	62	31	Mid-U	28	Labs
Wed			29	Mid-I	26	63	an Concernant		29	Lahs
Thu	1	States and States	30	Mid-I	27	64			30	Labs
Fri			31	Mid-I	28	65	Contraction of the local division of the loc			LINALOD
Sat					20	66			2012	and the second se

1. First Spell of Instructions 02/12/2019 - 27/01/2020 2. Slot for Assignment-I 20/01/2020 - 27/01/2020 3. Mid-I Examinations 28/01/2020 = 04/02/2020 4. Second Spell of Instructions 05/02/2020 - 30/03/2020 5. Slot for Assignment-II 23/03/2020 - 30/03/2020 6 Mid-II Examinations 31/03/2020 - 08/04/2020 7. Preparation 09/04/2020 - 10/04/2020 8. End Examinations 11/04/2020 - 27/04/2020 28/04/2020 - 30/04/2020 9. End Practical Examinations 10. Commencement of Class Work for I-Sem 12/06/2020 Onwards

C.E.

C

Date: 23-11-2019

https://mail.google.com/mail/u/0/?tab=rm&ogbl#inbox?projector=1

PRINCIPAL

School of Civil Engineerin Rajeev Gandhi Memorial Colle Engg. & Tech. (Autonomo NANDYAL-518 501.

۲		1	1
	E	1	
		4	

RAJEEV GANDHI MEMORIAL COLLEGDE OF ENGINEERING AND TECHNOLOGY::NANDYAL

109 8159 E	em inbried Apart 8.0	Vije Viječe Drije	GE-II	DSS	EE-11	AB	lB T						. 1										
Engineer	Sol of Civil	DSS	II-5	EE-11	P&S	AB/EEL/	<u>е</u>			Period						ſ	4				ł	٦	БL
2.10	3.00	P&S	WRI	P&S	DSS	TEL	GAT		, Eiret Cat	unselling	d at									t. 19	Link	ш	ngineeri
V2.1	To 2.10	1 · · · ·	LI	UNCHI	BREAK					nth is Co									(Z		EAD - SC	of Civil E
11411 1.1117) uti	12.20 To 1.10		EE-11	EE-II		1.4	Ŧ		7th Dorio	of the Mo												Ŧ	School
	11.30 To 12.20	LAB	P&S	WRE-II	ocs	/ EE LAB	GE			Note:									A				
ATT ATT	11.10 To 11.30	CAD	BRE	AK	МО	TE LAB	BREA K	Y	4		We we t			N 13.	-		1	1	- 1			4 78 -	
2019 # H	10.20 To 11.10		SSD	WRE-II			SS	SEC)	ldy			Robert St.		1	al e la		20 K			ki lurel		2.11	the second
e.f. 09.12. HALL: CB	9.30 To 10.20	EE-II	GE-II	CE-II	WRE-II	SSQ	PE	aculty (B-	nadha Red		L	eyulu	th	Reddy							a Murthy	a Murthy	
VGINEERAN W.	PERIOD» (AM/PM) WEEK↓	NOM	TUE	WED	ТН	FRI	SAT	Name of F	P. Pramadha	S. Talha Zald	C Gangadha	C. Ramanjan	GN. Sreekan	r. Raja Obul	M. Aparna		/ AM/ GS	/ MPK/BLE	/ VNS/GK		M.P. Krlshna	M.P. Krishn	
F CIVIL EI 20 tion	° 1°			=				-	Mr. I	Mr. 3	Mr. J	Mr.	Mr.	Mr.	Mrs	_	YTK	PLR	GNS		Mr.	Mr.	
CHOOL 0 OR 2019- A See	To 3.50 4.5	GE-II	AB	WRE	E LAB	S	LIB	SEC	·		N	-							212,6			I FILM	- who
S ESTER F	o 3.00 3.50		CAD L	E-II	E LAB / E	MOOK	ATE	culty (A	-			rthy		-	teddy							rthy	
CH II -SEM	2.10 To 3.00	EE-11			T I I I I I I I I I I I I I I I I I I I	-	0	ame of Fa	nnama Rajı	Int	anl	rishna Mu	eekanth	tagiri Babu	n Kumar R		/ VNR	/Dr. KM	NS/Dr.BLA		anl	rishna Mui	
III B.TEC	1.10 To 2.10	1		LUNCH	I BREA	K cen			Mr.C.Krisl	Ms. B. Rol	ds. J. Srav	Mr. M.P. K	dr. GN. Sr	dr. D. Das	Dr. G. Klra		3NK / AM	APK / KG	JJS / V	-	As. J. Srav	Ar. M.P. K	ur ka d
TABLE FOR	12.20 To 1.10	S	P&S	SS	-	E-II	SS	The second second		1 Nota:	~		-		nt					-	4	V	
TIME.	11.30 To 12.20	Pa a	PESS	ă	EE LAB	WR	Ĕ	- where not -		PROLEMP					Developme		-						
	11.10 To 11.30		BREAL	K TRA	TE LAB	BF	REAK			lements	ering-II	-=		S	kills (Skill		Lab	de			1	and a	F
010	10.20 To 11.10	PESS	WRE-II	WRE-II		CE-II	GE-II		gineering-l	tructural E	ces Enginet	ngineering		y & Statisti	ics & Soft S.		gineering	igineering L		ľ			
	9.30 To 10.20	SSD	EE-11	PESS	GE-II	P&S	EE-II (schnical En	th of Steel S	Iter Resource	onmental E	MOOC	Probability	ssional Eth		portation Er	nmental En			ler:	DT:	
TECTURE	PERIOD» (AM/PM) WEEK↓	MON	TUE	WED	THU	FRI	SAT		E-II: Geote	SSE: Desig	WRE-II: Wa	E-II:Envir	slective-I:	slective-II:	ESS: Profe ourse)	RACTICAL	EL: Transp	EL: Enviro	AD Lab	eminars:	lass Teach	o-Ordinati	

Students Roll List

III B. Tech II Semester (AY: 2019-2020)

S.No	Branch	REGD. No	NAME
1	CVL	16091A0104	NAYAKALLU AKHIL RAJ
2	CVL	16091A0134	JANGAM JAYANNA
3	CVL	16091A0137	V KALYAN KUMAR
4	CVL	16091A0143	YALAMANDA MAHA DATTATREYA
5	CVL	16091A0150	SHAIK MANSOOR HUSSAIN
6	CVL	16091A0189	CHINNAMADUGULA SIVA
7	CVL	17091A0101	SHAIK AKBARVALI
8	CVL	17091A0102	PALLEKKAGARI ANIL KUMAR
9	CVL	17091A0103	MEKALA ANOOSHA
10	CVL	17091A0104	BAVANASI ASWINI
11	CVL	17091A0105	MULLA AZHARUDDIN
12	CVL	17091A0106	BILAVATH BALAJI NAIK
13	CVL	17091A0107	MULINTI BHAGYA SREE
14	CVL	17091A0110	JAKKAPOGU CHANDRAKALA
15	CVL	17091A0111	K DINESH
16	CVL	17091A0112	DORNALA DIVYA JYOTHI
17	CVL	17091A0113	PANDIKONA GOUTHAM GANGADHARA HARA
18	CVL	17091A0114	KARNATI GURUPRASAD REDDY
19	CVL	17091A0115	KORA HARATHI
20	CVL	17091A0116	SURE HARITHA
21	CVL	17091A0118	PARA HEMANTH CHOWDARY
22	CVL	17091A0119	RANGAM HEMANTH KUMAR
23	CVL	17091A0120	SHAIK HUSSAIN ABBAS
24	CVL	17091A0121	SHAIK HUSSAIN BASHA
25	CVL	17091A0122	SHAIK HUSSAIN VALI
26	CVL	17091A0123	SHAIK JAKEER HUSSAIN
27	CVL	17091A0124	MULLAPALLI JANARDHAN
28	CVL	17091A0125	M JYOTHSNA
29	CVL	17091A0126	SHAIK KARISHMA BEGUM
30	CVL	17091A0127	DHANIREDDY KAVYA
31	CVL	17091A0128	PALAMARI KESHAVULU
32	CVL	17091A0129	JANGLISAGARI SHAIK KHAJA MOHIDDIN
33	CVL	17091A0133	MARKAPURAM LAKSHMIMADHURYA
34	CVL	17091A0138	PERAPOGU MADHU
35	CVL	17091A0139	MURTHATI MAHESH
36	CVL	17091A0141	VADDE MEENAKSHI
37	CVL	17091A0142	K MOHAMMED SOHAIL
38	CVL	17091A0143	KURUVA MOHANAKRISHNA
39	CVL	17091A0144	MD MOIN AHAMMAD
40	CVL	17091A0145	MANGALI NAGA PAVAN

School of Civil Engineering Rajeev Gandhi Memorial College of Engg. & Tech. (Autonomous) NANDYAL-518 501.

41	CVL	17091A0146	NUGGU NAGA PHANEENDRA
42	CVL	17091A0147	SAGALA VENKATA NAGA SUMANTH KUMAR
43	CVL	17091A0148	GOLLA NAGARAJU
44	CVL	17091A0149	MEENUGA NAGESH
45	CVL	17091A0150	CHAVVA NARAYANA REDDY
46	CVL	17091A0151	B NAVEEN KUMAR
47	CVL	17091A0154	BHEEMASENI NIHARIKA
48	CVL	17091A0155	LEKKALA NITHISH KUMAR REDDY
49	CVL	17091A0156	ERAGANABOINA PAVAN KUMAR
50	CVL	17091A0157	T PAVAN KUMAR
51	CVL	17091A0160	RAMAJI PRAVEEN
52	CVL	17091A0162	NATTI RAJA SEKHAR
53	CVL	17091A0163	ASWANI RAJESH VARMA
54	CVL	17091A0164	KUCHI RAJESH
55	CVL	17091A0165	MACHA RAJESH
56	CVL	17091A0166	BANTROTH RAMAKRISHNA
57	CVL	17091A0167	MUPPASANI RAMESH
58	CVL	17091A0168	VALMIKI RAVI TEJA
59	CVL	17091A0169	DUDEKULA RIYAZ AHMED
60	CVL	17091A0170	KOTTAM ROHITH
61	CVL	17091A0171	KACHANA ROHITHESWARA REDDY
62	CVL	17091A0172	SHAIK SAFIYA BEGAM
63	CVL	17091A0173	SAI CHARAN KUMAR REDDY YEDDULA
64	CVL	17091A0174	PATURU SAI KUMAR REDDY
65	CVL	17091A0176	PHATAN SALMAN
66	CVL	17091A0178	VADITE SHILPA
67	CVL	17091A0180	BUJALA SHIVANI REDDY
68	CVL	17091A0182	KADIRI SIVA PRIYA
69	CVL	17091A0183	CHERUKU SRAVANI
70	CVL	17091A0184	KONDREDDY SREEDHAR REDDY
71	CVL	17091A0185	KUNCHALA SREEKANTH REDDY
72	CVL	17091A0186	RAMAVATHU SRIKANTH NAIK
73	CVL	17091A0187	BELLAM SUDHAKAR REDDY
74	CVL	17091A0188	YARAVA SUDHARSAN REDDY
75	CVL	17091A0189	MOTA SUNIL
76	CVL	17091A0190	VADDE SURENDRA
77	CVL	17091A0191	SIVARAM UPENDRA
78	CVL	17091A0193	METIKALA UPENDRANATH
79	CVL	17091A0194	BOMMASANI VAMSI KALYAN YADAV
80	CVL	17091A0195	SAMPANGI VASU
81	CVL	17091A0197	RAJAVOLU VEERA PRATHAP REDDY
82	CVL	17091A0198	T VENKAT SUJITH KUMAR
83	CVL	17091A0199	MADALA VENKATASUBBAIAH
84	CVL	17091A01A0	MURAHARI VIJAY KUMAR
85	CVL	17091A01A1	DINNE VIJAYKUMAR
		•	

School of Civil Engineering Rajeev Gandhi Memorial College of Engg. & Tech. (Autonomous) NANDYAL-518 501.

86	CVL	17091A01A2	PATIL VINAY KUMAR REDDY	
87	CVL	17091A01A3	THOOMALA VINEETH	
88	CVL	17091A01A5	BOOSA VISWANATHA REDDY	
89	CVL	17091A01A6	BHUMIREDDYCHINNAMADANNAGARI YASASWINI	
90	CVL	17091A01A7	PALLOLI YASWANTH	
91	CVL	17091A01A8	SALUGARI VENKATA YATHISH CHANDRA	
92	CVL	17091A01A9	MANAPATI YELLAIAH YADAV	
93	CVL	18095A0101	SHAIK ABDUL RAFI	
94	CVL	18095A0103	M ANUPAMA	
95	CVL	18095A0104	DEVAGUDI BRAHMAIAH	
96	CVL	18095A0105	S CHAITANYA SHIVA	
97	CVL	18095A0106	AVULA CHANDRA SEKHAR REDDY	
98	CVL	18095A0107	DURGAM CHANDRAKALA	
99	CVL	18095A0108	GUMMALA CHARAN KUMAR	
100	CVL	18095A0109	MALKARE CHATRAPATHI SIVAJI	
101	CVL	18095A0110	OUKURU CHOUDAIAH	
102	CVL	18095A0111	RAMAVATH DEVENDRA NAIK	
103	CVL	18095A0113	PALLE DIVAKAR	
104	CVL	18095A0115	JANGAM KARTHIK	
105	CVL	18095A0116	KAKANURU KIRAN KUMAR REDDY	
106	CVL	18095A0117	BUSIREDDY KUMAR REDDY	
107	CVL	18095A0118	KAPPETA KUMAR REDDY	
108	CVL	18095A0119	BOYA LAKSHMI NARAYANA	
109	CVL	18095A0120	GARE MADHU SUDHAKAR	
110	CVL	18095A0121	YENAKANDLA MAHENDRA REDDY	
111	CVL	18095A0122	RAMATHEERTHAM VENKATA MANIKANTA SAI	
112	CVL	18095A0123	MANISH KUMAR REDDY D	
113	CVL	18095A0124	MULLA MANSOOR	
114	CVL	18095A0125	SHAIK MOHAMMAD	
115	CVL	18095A0126	DEVADURGAM NAVEEN KUMAR	
116	CVL	18095A0127	MACHANI NAVEEN KUMAR	
117	CVL	18095A0128	MARTHA NAVEEN KUMAR	
118	CVL	18095A0129	NANNURU RAHUL	
119	CVL	18095A0130	BONALA RANGASWAMY RAJAVARDHAN	
120	CVL	18095A0131	BOYA RAJU	
121	CVL	18095A0132	SONTI RAVI KIRAN REDDY	
122	CVL	18095A0133	ENJETI RAVI KUMAR	
123	CVL	18095A0134	GOVINDUGALLA RAVI TEJA	
124	CVL	18095A0135	MANIYAR SHAKEER	
125	CVL	18095A0136	KUDUMULA SIVA PRAKASH REDDY	
126	CVL	18095A0137	JULAKUNTA VADIRAJ SREEVASTAV	
127	CVL	18095A0138	ALIGOTI SRUTHI	
128	CVL	18095A0139	GADDAM SUMANTH REDDY	
129	CVL	18095A0141	UNDALA SURESH KUMAR	
130	CVL	18095A0142	MARELLA SURYA TEJA	dol
				N. Man Ch. Mc

School of Civil Engineering Rajeev Gandhi Memorial College of Engg. & Tech. (Autonomous) NANDYAL-518 501.

131	CVL	18095A0143	GANNE THEJESWAR NAIDU
132	CVL	18095A0144	GUJJARLA UDAY KUMAR
133	CVL	18095A0145	KOMMOJI VANI
134	CVL	18095A0146	MALASALAVADI VASANTH KUMAR
135	CVL	18095A0147	SIGARAMBOTLA VASAVIPRANATHI
136	CVL	18095A0148	POSA VENKATA AKANKSHA
137	CVL	18095A0149	POREDDY VIJITHA
138	CVL	18095A0150	BHUMANAPALLE VISHNUKANTH REDDY

Read Vead School of Civil Engineering Rajeev Gandhi Memorial College of Engg. & Tech. (Autonomous) NANDYAL-518 501.

RGM-R-2015

RAJEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING AND TECHNOLOGY

Autonomous

CIVIL ENGINEERING

III B. Tech, II-Sem (CE)

T C 3+1* 3

(A0118156) GEOTECHNICAL ENGINEERING – II

OBJECTIVES:

- Provide knowledge in soil exploration methods.
- Provide knowledge about various types of foundations and various bearing capacity equations.
- Provide knowledge about deep & well foundations.
- Learn various slope stability methods

OUTCOMES:

At the end of the course student is able to

- Determine the earth pressures on foundations and retaining structures
- Analyze shallow and deep foundations (including well foundations)
- Calculate the bearing capacity of soils and foundation settlements
- Able to design & execute the soil exploration scheme
- Able to perform the stability analysis of given slope

00	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POIL	PO12	PSO1	PSO2	PSO3
001	101	2	2	1					-	-	-	-	3	2	1
COI	1	3	2	1	-	-	-						3	2	1
CO2	1	3	2	1	-	-	-	-	-	-	-	-		2	1
CO3	1	3	2	1	-	-	-	-	- 1	-	-	-	3	2	1
CO4	1	3	2	1	-	-	-	-	-	-	-	-	3	2	1
004	1	2	2	1				_	-	-	-	-	1	2	1
COS	1	3	2	1	-	-							2	2	1
Avg.	1	3	2	1	-	-	-	-	-	-	-	-	5	2	•

UNIT – I

SOIL EXPLORATION: Need – Methods of soil exploration – Boring and Sampling methods – Field tests – Penetration Tests – Plate load test – Pressure meter – planning of Program and preparation of soil investigation report.

UNIT - IV

SHALLOW FOUNDATIONS: Types – choice of foundation – Location of depth – Safe Bearing Capacity – Terzaghi's, Meyerhoff's and Skempton's Methods

UNIT-V

ALLOWABLE BEARING PRESSURE: Safe bearing pressure based on N- value – allowable bearing pressure; safe bearing capacity and settlement from plate load test – allowable settlements of structures – Settlement Analysis.

UNIT – II

EARTH SLOPE STABILITY: Infinite and finite earth slopes – types of failures – factor of safety of infinite slopes – stability analysis by Swedish arc method, standard method of slices, Bishop's Simplified method – Taylor's Stability Number- Stability of slopes of earth dams under different conditions.

UNIT – III

EARTH PRESSURE THEORIES: Rankine's theory of earth pressure – earth pressures in layered soils – Coulomb's earth pressure theory – Rebhann's and Culmann's graphical method

RETAINING WALLS: Types of retaining walls - stability of gravity retaining walls.

UNIT-VI

Detailed Syllabus

PILE FOUNDATION: Types of piles – Load carrying capacity of piles based on static pile formulae – Dynamic pile formulae – Pile load tests – Load carrying capacity of pile groups in sands and clays – Settlement of pile groups.

WELL FOUNDATIONS: Types – Different shapes of wells – Components of wells – functions and Design Criteria – Sinking of wells – Tilts and shifts.

Note: Relevant IS: codes and tables are permitted for examination

RAJEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING AND TECHNOLOGY

Autonomous CIVIL ENGINEERING

TEXT BOOKS:

- 1. Soil Mechanics and Foundation Engineering by Arora, Standard Publishers and Distributors, Delhi
- 2. Foundation Engineering by Varghese, P.C., Prentice Hall of India., New Delhi.
- Bowles, J.E., (1988) Foundation Analysis and Design 4th Edition, McGraw-Hill Publishing company, Newyork.

REFERENCES:

- Das, B.M., (1999) Principles of Foundation Engineering -6th edition (Indian edition) Thomson Engineering
- Bowles, J.E., (1988) Foundation Analysis and Design 4th Edition, McGraw-Hill Publishing company, Newyork.
- Analysis and Design of Substructures Swami Saran, Oxford and IBH Publishing company Pvt Ltd (1998).
- Geotechnical Engineering by S K.Gulhati& Manoj Datta Tata Mc.Graw Hill Publishing company New Delhi. 2005.
- 5. Teng, W.C Foundation Design, Prentice Hall, New Jersy
- 6. Geotechnical Engineering by C. Venkataramaiah,
- 7. Foundation Engineering by V.N.S. Murthy, CRC Press, New Delhi.
- 8. Soil Mechanics and Foundations by by B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain, Laxmi, publications Pvt. Ltd., New Delhi

RGM-R-2015

School of Civil Engineering Rajeev Gandhi Memorial Coller Engg. & Tech. (Autonomou NANDYAL-518 501.

RGM COLLEGE OF ENGINEERING AND TECHNOLOGY(AUTONOMOUS) NANDYAL-518501 School Of Civil Engineering

LESSON PLAN

Name of the Faculty	: C. Krishnma Raju		
Class & Semester	: III B.Tech II semester	Academic Year	: 2019 - 2020
Subject	: Geotechnical Engineering - II	Total Hours	: 60
Semester start date	: 02-12-2019	Semester end date	: 30 -03 -2020

*	UNIT	TOPIC	HOURS	Total Periods /unit	Dates Planned	Dates Executed
	I	SOIL EXPLORATION: Need – Methods of soil exploration Boring and Sampling methods Penetration Tests- SPT, CPT, DCPT Plate load test – Pressure meter Planning of Programme and preparation of soil investigation report	1 2 2 2 1	8	02-12-2019 to 16-12-2019	
	II	EARTH SLOPE STABILITY: Introduction-Types of failures Factor of safety of infinite slopes Stability analysis by Swedish arc method Friction Circle method Bishop's Simplified method Taylor's Stability Number- Stability of slopes of earth dams under different conditions, Problems	1 2 1 2 2 3	11	17-12-2019 to 03-01-2020	
	III	EARTH PRESSURE THEORIES: Introduction Rankine's theory of earth pressure Earth pressures in layered soils Coulomb's earth pressure theory Rebhann's and Culmann's graphical method, Problems RETAINING WALLS: Types of retaining walls Stability of retaining walls Problems	1 2 1 1 1 2 1 2	11	04-01-2020 To 25-01-2020	

Cb 2/12/19

•

UNIT	TOPIC	HOURS	Total Periods /unit	Dates Planned	Dates Executed
IV	SHALLOW FOUNDATIONS: Types -choice of foundation -Location of depth - Safe Bearing Capacity - Terzaghi's, Meyerhoff's, Skempton's Methods Problems	2 3 2 3	10	26-01-2020 to 18-02-2020	
V	ALLOWABLE BEARING PRESSURE : Safe bearing pressure based on N= value SBC and settlement from plate load test Allowable settlements of structures -Settlement Analysis Problems	1 2 2 3	08	19-02-2020 to 02-03-2020	
VI	 PILE FOUNDATION: Types of piles Load carrying capacity of piles based on static pile formulae Dynamic pile formulae – Pile load tests Load carrying capacity of pile groups in sands and clays Settlement of pile groups, Problems WELL FOUNDATIONS: Types – Different shapes of wells Components of wells – functions and Design – Design Criteria Sinking of wells – Tilts and shifts. 	1 2 2 2 1 1 2 1	12	03-03-2020 to 23-03-2020	
	Total number of periods in semester		60		

Signature of the Faculty

Signature of H.O.D.

School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

Course Delivery Method

Name of the Subject: Geotechnical Engineering – II Subject Code: A0118156 Year & Sem: III B.Tech II Semester

Course Delivery Plan

Delivery Methods: Chalk & Talk, Power Point Presentation, Tutorials, Video Lecturers, Interactive Sessions, Group Discussions

Coverage of

Unit-I : Chalk & Talk, Power Point Presentation, Tutorials, Interactive Sessions Unit-II : Chalk & Talk, Power Point Presentation, Tutorials Unit-III : Chalk & Talk, Power Point Presentation, Tutorials Unit-IV : Chalk & Talk, Power Point Presentation, Tutorials Unit-V : Chalk & Talk, Power Point Presentation, Tutorials Unit-VI : Chalk & Talk, Power Point Presentation, Tutorials

Department Civil Engineering RGMCET(Autonomous), Nandyal-518501

Topic Covered Beyond Syllabus

2.

Name of the Faculty: C Krishnama Raju Class & Sem : III B. Tech & II Semester Subject: Geotechnical Engineering –II Credits: 4 AY: 2019- 2020 Designation: Associate Professor Section: A Code: A0118156 Regulations: R15

SNo	Topic Covered	Strengthening of CO, PO & PSO				
		CO	PO & PSO			
1	Case Study: Site Investigation Work at Kallang Pudding Road,	Able to design & execute the soil exploration scheme	PO3, PO11, PSO1, PSO3			
	By Kwang Sing Engineering Pte Ltd, Singapore	Calculate the bearing capacity of soils and foundation settlements				

el= 106/01/20

Signature of Faculty

School of Civil Engineering Rajeev Gandhi Memorial College Engo * Tech. (Autonomo DYAL-518 5

School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

CASE STUDY ON SITE INVESTGATION

27 Foch Road #02-06 Hoo Nam Building, Singapore 209264

KWANG SING ENGINEERING PTE LTD Tel: 6291 3218 Fax: 6467 7309 E-mail: kse2000@singnet.com.sg

Rajeev Gandhi Memorial Col Engg. & Tech. (Autonom NANDYAL-518 501.

Company Reg No. 198300405C GST Reg No. M2-0050746X

REPORT

ON

SOIL INVESTIGATION WORKS

AT

KALLANG PUDDING ROAD

TERM CONTRACT NO. URA 000/ CS/ 0706

PO NO. URA000EP008000080/0

CLIENT URBAN REDEVELOPMENT AUTHORITY •

JOB NO. KS07 / URA - 017 :

DATE 4th April 2008 :

Soil Investigation ... Environmental Engineering ... Nicropile ... Rock/Soil Anchor ... Slope Stabilization ... Concrete Coriga... Soil Investigation... Environmental Engineering... Nicropse... Hocersoil Ancion... Supe Stabilitation... Prestressing Bar. Preseyre Grouting Chemical Grouting... Recair/Renovation... Waterproofing.., Epoxy Injection... Prestressing Bar. School of Civil Engineeri

14

1.

2.

KWANG SING ENGINEERING PTE LTD

CONTENTS

	DETRODI	ICTION	1			
1.	INTRODUCTION					
2.	SCOPE OF WORK					
3.	METHO	DD STATEMENT				
	3.1	Site Investigation	2			
	3.1.1	Drilling	2.			
	3.1.2	Standard Penetration Test	2			
	3.1.3	Undisturbed Sample Sampling	2			
	3.2	Laboratory Testing	3			
	3.2.1	Moisture Content and Bulk Density Test	3			
	3.2.2	Unconsolidated-Undrained Shear Strength Test	3-4			

4.

5.

RESULT OF SOIL INVESTIGATION

4.1	Sub-soil Condition	5
4.2	Water Level Monitoring	5
4.3	Laboratory Test Result	5

CONCLUSION

APPENDICES

Appendix A		Location Plan / Borehole Location Plan
Appendix B	-	Probable Soil Profile / Borelog
Appendix C	***	Laboratory Soil Test Report

CIVI 34

Endorsed by P.E.

KS07/URA-017

6

Page

School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

LOCATION PLAN SCALE: 1:5000

BOREHOLE LOCATION PLAN (Indicative Only) SCALE: 1:1000

School of Civil Engineering School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

) J

GEOTECHNICAL ENGINEERING-II

Assignment -I (10/01/2020)

		a	For a Shelby tube, given outside diameter = 5.08 cm, inside diameter=4.7625 cm find the area ratio of the tube. Is it a good sampling tube?
10101	0110VI	b	Determine the factor of safety with respect to cohesion for a submerged embankment 25 m high whose upstream face has an inclination of 45°. The soil has the following properties $c = 40 \text{ kN/m}^3$, $\Phi = 10^\circ$, $\gamma = 18 \text{ kN/m}^3$. The relevant stability number is equal to 0.108.
	5021	С	Calculate the factor of safety of a slope of infinite extent when slope angle is 20° . The properties of the soil are c= 25 kPa and $\Phi = 20^{\circ}$
		d	What is earth pressure at rest? Derive an expression for it in terms of Poisson's ratio.
		a	What are the sources of sample disturbance?
-	19	b	Explain the standard penetration test. Explain the corrections to be applied for standard penetration test N value. Write the limitations of standard penetration test.
110	A01.	c	State the critical conditions for analysis of earth dam slopes.
17001	160/1	a	A masonry retaining wall of trapezoidal section has its top width equal to 0.75 m and height 5 m. Its face which is in contact with the retained earth is vertical. The earth retained is level at top. The soil weights 16 kN/m ³ and its $\Phi = 30^{\circ}$. The masonry weighs 24 kN/m ³ . Determine the minimum width of the base to avoid tensile stresses and also determine the maximum and minimum compressive stresses for this base width. If the μ between base and soil is 0.60, check the stability of the retaining wall against sliding.
. 0	27	a	A slope is to be constructed at an inclination of β =30° with the horizontal. Determine the safe height of slope at a factor of safety of 1.5. The soil has the following properties: c= 15 kN/m ² , Φ =22.5°, and γ = 19 kN/m ³ . [For β =30°, Φ =22.5°, Stability Number, S _n =0.02; For β =30°, Φ =15°, Stability Number, S _n =0.046
7091A012	[709 I A01	b	Determine the factor of safety with respect to cohesion for a submerged embankment 25 m high whose upstream face has an inclination of 45°. The soil has the following properties $c = 40 \text{ kN/m}^3$, $\Phi = 10^\circ$, $\gamma = 18 \text{ kN/m}^3$. The relevant stability number is equal to 0.108.
1		с	Calculate the factor of safety of a slope of infinite extent when slope angle is 20° . The properties of the soil are c= 25 kPa and $\Phi = 20^{\circ}$.
		d	What is earth pressure at rest? Derive an expression for it in terms of Poisson's ratio.
		a	Describe SPT test. Explain the corrections to be applied for SPT data?
01A0128	9140143	b	Two test plates are loaded at a site are 60×60 cm and 75×75 cm. The smaller supports a load of 11450 kgf at 12.5 mm settlement and the larger supports 15,000 kgf at the same settlement. Determine the bearing capacity of a footing 3 m square for a maximum settlement of 12.5 mm.
1705	170	c d	How a slope is analyzed using Swedish circle method? Derive an expression for the factor of safety.
		4	sketch.

Greater School of Civil Engineerin Rajeev Gandhi Memorial Colli Engg. & Tech. (Autonomo NANDYAL-518 501.

School of Civil Engineer Rajeev Gandhi Memorial Co Engg. & Tech. (Autonon NANDYAL-518 501

10	a	Describe the SPT. Explain the correction to be applied for SPT data.								
10	b	A retaining wall with a vertical back 6 m high supports cohesion less heal-61								
54		(with unit weight 19.6 kN/m ²). The upper surface of the backfill rises at an angle								
60		of 10° with the horizontal from the crest of the wall. The angle of internal friction								
18		for the soil is 35° and angle of wall friction is 20°. Find the total active earth								
		pressure per meter length of the wall using Rebhann's graphical method and								
•		mark the direction, point of application of the resultant earth pressure.								
01	с	Explain the friction circle method of finding the stability of slope.								
101	d	An embankment is to be made using a soil with $c = 18 \text{ kN/m}^2$, $\Phi = 10^\circ$ and $v = 10^\circ$								
54		18.5 kN/m ³ . The desired factory of safety with respect to cohesion as well as								
502	-	with respect to friction is 1.4. Find i) the safe height if the desired slope is 2								
18	e	Clearly explain the difference between the active earth pressure and passive								
		earth pressure. What is meant by the "critical depth of vertical cut" for a soil?								
24	a	Explain what is meant by disturbed and undisturbed samples. How the degree of								
01:		disturbance is measured?								
5 A (b	A masonry retaining wall of trapezoidal section has its top width equal to 0.75 m								
60		The earth retained is level at the minimum contact with the retained earth is vertical.								
18		masonry weighs 24 kN/m ³ Determine the minimum of kN/m ³ and its $\Phi = 30^{\circ}$. The								
		tensile stresses and also determine the maximum and minimum								
•		stresses for this base width. If the µ between base and soil is 0.60, check the								
17		stability of the retaining wall against sliding.								
10	с	What is sheet pile wall? Explain the sheet pile wall analysis.								
95A	d	What is bore log? Give a typical example.								
803	e	Match List -I and List -II.								
1		List –I List –II								
		A) Modulus of sub grade reaction i) Cyclic pile load test								
		B) Relative density and strength ii)Pressure meter test								
		C) Skin friction & point bearing resistance iii)Plate Load test								
		b) Elastic Constants iv) SPT								
		v) DCPT								

GEOTECHNICAL ENGINEERING-II

Assignment -II (06/03/2020)

School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501. Following are the results of a standard penetration test in the field (sandy soil):

Depth (m)	Field
	value of
1.5	IN O
1.5	9
3.0	12
4.5	11
6.0	7
7.5	13
9.0	11
10.5	13

17091A0120-125

Estimate the net allowable bearing capacity of a mat foundation 6.5 m x 5 m in plan. Here, $D_f = 1.5$ m, and allowable settlement 20 mm. assume that the unit weight of soil γ =16.5 kN/m³.

The section of a 3×4 group pile in layered saturated clay is shown in figure. The piles are square in cross section (14 *in.*×14 *in.*). the center-to-center spacing (d) of the piles is 40 in. Determine the allowable load-bearing capacity of the pile group. Use FS=4.

School of Civil Engineering Rajeev Gandhi Memorial Colleg Engg. & Tech. (Autonomous NANDYAL-518 501.

17091A0133- 139	Explain the methods of estimating the foundation settlements.					
17091A0143- 146	 a) List the methods of estimation of settlements and explain one method briefly stating its utility. b) A 1.8 m side square column is founded at a depth of 1.8 m in sand, for which the corrected N value is 24. The water table is at a depth of 2.7 m. Determine the net allowable bearing pressure for a permissible settlement of 40 mm and with a factor of safety of 3 against shear failure 					
17091 A 0147- 149	 a) A square file group of 9 piles of 25 cm diameter is arranged with a pile spacing of 1 m. The length of piles is 9 m. Unit cohesion of clay is 75 kN/ m². Neglecting bearing at the tip of the piles, determine group capacity. Assume adhesion factor of 0.75. b) Classify the pile foundations on the basis of i) material ii) load transfer iii) method of installation. 					
17091 A 0150- 151	A strip footing of 2 m width is founded at a depth of 4 m below the surround surface. Determine the net ultimate bearing capacity using a) Terzaghi Equation b) Skempton's Equation c) IS code. The soil is clay ($\Phi=0$, $c=10KN/m^2$). The unit weight of clay is 20 kN/m ³ .					
17091A0155- 18095A0103	Explain what is mean by Tilts and shifts in well foundation. Explain the various methods to rectify the Tilts and shifts. A 3m thick layer of a fill material ($\gamma_{bulk} = 20 \text{ kN/m}^3$) is to be laid instantaneously on the top surface of a 10 m thick clay layer. If the coefficient of volume compressibility (m_v) and saturated unit weight (γ_{sat}) for clay are $2.2 \times 10^{-4} \text{ m}^2/\text{kN}$ and 18 kN/m ³ respectively, calculate the consolidation settlement of the clay layer (in mm) due to placing of fill material. (a) 75 (b) 123 (c) 132 (d) 278					

L

18095A0107- 108	What are mat/raft foundation. How do you estimate the bearing capacity and settlement of mat foundations							
18095A0115-116	 (a) Discuss the various forces acting on a well foundation. (b) Explain the process of sinking of an open well. (c) A soft normally consolidated clay layer is 8 m thick with natural moisture content of 45%. The clay has saturated unit weight 18.0 kN/m³, a particle specific gravity of 2.1 and a liquid limit of 65%. A foundation will subject the middle of the clay layer to vertical stress increase of 15 kN/m². Determine the approximate value of the consolidation settlement of the foundation (in mm) if the ground water table is at the ground level. Take unit weight of water is 10 kN/m³. 							
	(a) 448 (b) 355 (c) 322 (d) 298							
18095A0117-118	 a) What is the basis on which the dynamic formulae are derived? Mention two well known dynamic formulae and explain the symbols involved? (b) A 4x4 pile group in square pattern consists of 400mmx400mmx20m long concrete piles placed at 1.0m centers. The soil profile consists of 8m of soft clay (c=25 kPa, adhesion factor = 0.9) underlain by 20m of medium silty clay (c=50kPa, adhesion factor = 0.8). Estimate the safe bearing capacity of the pile group with a factor of safety of 3.0. 							
18095A0 119-121	 (a) What are the limitations of plate load test? (b) A square footing is required to carry a net load of 1200 kN. Determine the size of the footing if the depth of foundation is 2m and tolerable settlement is 40mm. The soil is sandy with N=12, F.S=3, water table is very deep. Use Teng's equation. 							
18095A0122-123	 a) Define gross pressure intensity at the base of the foundation and safe bearing capacity of soil. b) Differentiate between strip footing, combined footing, strap footing and mat foundation. c) Find the group efficiency of 4x3 pile group with 2 m spacing and diameter 0.5 m using Converse Laborre formula. d) A 30 cm diameter pile is driven 10 m into a homogeneous consolidated clay deposit. Find the safe load when the factor of safety is 2.5, unit cohesion is 40 kN/m² and adhesion factor is 0.70. e) List the methods commonly used for calculation of settlement of foundations. 							

School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

 a) Explain the estimation of settlement from Meyerhof's method and De Be method for cohesionless soils. b) A 1.8 m side square column is founded at a depth of 1.8 m in sand, f which the corrected N value is 24. The water table is at a depth of 2.7 the Determine the net allowable bearing pressure for a permissible settlement 40 mm and with a factor of safety of 3 against shear failure. a) List the factors affecting the bearing capacity of foundations. b) Classify the pile foundations.
 a) List the factors affecting the bearing capacity of foundations. b) Classify the pile foundations.
 C) A 30 cm diameter pile is driven 10 m into a homogeneous consolidated cl deposit. Find the safe load when the factor of safety is 2.5, unit cohesion is 4 kN/m² and adhesion factor is 0.70. d) Find the group efficiency of 4x3 pile group with 2 m spacing and diamet 0.5 m using Converse Laborre formula. e) With sketch explain negative skin friction.
a) Estimate the gross and net safe bearing capacity of 2.5 m x 3.5 m footing placed at a depth of 1.7 m on a strata of soil of unit weight 20 kN/m ² . The depth of water table is 1.2 m from the ground level. Assume soil properties of 3 kN/m ² , and $\phi = 27^{\circ}$. Assume General shear failure. (N _c = 27, N _q = 13.2, N 9.3). b) A square column foundation has to carry a gross allowable load of 180 kN (FS=3). Given: $D_f=1.5$ m,=15.9 kN/m ³ , $\phi=34^{\circ}$, and $c=0$. Use Terzaghi equation to determine the size of the foundation (<i>B</i>). Assume general shear failure. (N _c = 27, N _q = 13.2, N _y = 9.3).
 a) A strip footing 1.2 m wide is located at a depth of 1.5 m in a non-cohesive soil deposit for which the corrected N value of SPT is 20. Water table located at depth of 2 m below the ground surface. Find allowable bearing pressure for the soil. b) Static cone penetration test was conducted in dry sand formation and the average cone resistance was found to be 50 kg/cm². Estimate the safe bearing pressure for the strip footing of width 1.5 m and depth 1.5 m for a permissible settlement of 25 mm. use factor of safety of 3 for shear failure. The soil has unit weight of 17 kN/m³.
a) Discuss the various remedial measures that can be adopted to rectify the tilts in well foundation. (b) A concrete pile 20 m long having a cross section of 381 $mm \times 381 mm$ fully embedded in a saturated clay layer. For a clay, $\gamma_{sat}=18.5 \ kN/m^3$, $\phi=0$, and $c_u=70 \ kN/m^2$. Assume that the water table lies below the tip of pile. Determine the allowable load that the pile can carry (FS=3). Use the α method to estimate the skin friction.

School of Civil Engineering Rajeev Gandhi Memorial Colleg Engg. & Tech. (Autonomou NANDYAL-518 501.

L

17091A0183-188	 a) Discuss the various methods of estimating pile capacity. b) a) A square file group of 9 piles of 25 cm diameter is arranged with a pile spacing of 1 m. The length of piles is 9 m. Unit cohesion of clay is 75 kN/ m². Neglecting bearing at the tip of the piles, determine group capacity. Assume adhesion factor of 0.75. c) The following data are given for the laboratory sample: σ₀' = 160 kPa; e₀ = 1.1; σ₀' + Δσ₀' = 300 kPa; e = 0.8 If the thickness of the clay specimen is 45 mm, the value of coefficient of volume compressibility is 							
	(a)	12.3	(b)	10.2	(c)	9.4	(d)	8.6
17091A0193- 199	 a) List the factors affecting the bearing capacity of foundations? b) A 30 cm diameter pile is driven 10 m into a homogeneous consolidated clay deposit. Find the safe load when the factor of safety is 2.5, unit cohesion is 40 kN/m² and adhesion factor is 0.70. c) Differentiate between strip footing, combined footing, strap footing and mat foundation. d) List the methods commonly used for calculation of settlement of foundations. 							
17091A01A3-1A5	a)A corr fully en and c_u = Determ method b) Expl various c) Dete footing when p $\Phi = 30^{\circ}$ Terzagh	icrete pile nbedded i =70 kN/m ine the a l to estimate a methods for a m since the of 3 m since a the placed at a $^{\circ}$, N _c = 37 hi's theory	20 m k in a satu i^2 . Assum allowable ate the sl is mean to rectify e ultimat ize with a a depth o 7.2, N _q =2 y.	ong havin rated clay ne that the load the kin frictio by Tilts y the Tilts e load in an eccent f 1.0 m in 22.5 and	ng a cross y layer. Fo he water at the pile n. and shifts and shifts kN which ricity of 0. h a soil wit N_{γ} =19.7.	section r a clay, table lie e can ca in well s. an ecce 3 m (in h $\gamma = 18$ Ignore	of 381 mm $\gamma_{sat}=18.5 k$ s below the arry (FS=3) foundation. entrically lo one-direction kN/m ³ , c e water tail	$m \times 381 mm$ is $\alpha N/m^3$, $\phi_u = 0$, $\phi_u = 0$, $\phi_u = 0$, $\phi_u = 0$, $\phi_u = 0$, $\omega = 0$

School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

17091A01A6-1A9	a) A 2.5 square footing is located in a dense sand at a depth of 1.5m, the shear strength parameters being c'=0, d'=38°. Determine the Ultimate bearing capacity for the following water table conditions. a) At ground surface b) At 1m below the ground surface c) At footing level d) At 0.5m below the footing, and at a depth greater than B below the footing. The moist unit weight of sand above water table is $18KN/m^3$ and the saturated unit weight is $20KN/m^3$. For d'=38°, Nq=48.9, Nr=58.9. b) A layer of normally consolidated, saturated silty clay of 10 m thickness is subjected to one dimensional consolidation under a pressure increment of 5 kPa. The properties of the soil are: initial void ratio (e_0) =1.325, compression index (C_c) = 0.45. The initial average effective stress within the layer is 50 kPa. Assuming Terzaghi's theory to be applicable, the primary consolidation settlement (rounded off to the nearest mm) is							
18095A0127-128	a) Discuss the various methods of estimating pile capacity. b) A square footing 2.5 m x 2.5 m carries a load of 2000 kN. Find the factor of safety against bearing failure, if the soil below the foundation has following values- $c = 50 \text{ kN/m}^2$, $\phi = 15^\circ$, $\gamma = 17.5 \text{ kN/m}^3$ and foundation is taken to a depth of 1.5 m. Take N _c = 12.5, N _q = 4.5, N _y = 2.5. c)							
18095A0129-130	 a) Exp method b) A 1 the control the netwith an operation of the netwide of t	plain the est of for cohesic .8 m side squer prected N va et allowable t factor of saf ted footing has medium dense ity of $B/10$ alc load Q_{ult} $\phi = 3$ c = 0. Neglect 107.6 MN	imation onless so dare colu- lue is 24 bearing fety of 3 a a size 6 f se sand ong one of 3° , $\gamma = 18$, the water (b) 16	of settler ils. Imn is for 4. The way pressure against sin $m \times 6 m$ for The footing f the axis. 5 kN/m^3 , in table effect 55.5 MN	ment fro unded at ater tabl for a pe hear fail ounded at ng is sub Using Mo $N_q = 26.3$, t. (c)	m Meyerho a depth of e is at a de missible sure. a depth of 3 jected to a eyerhof's exp $N_{\gamma} = 26.55$, s 213.5 MN	of's method 1.8 m in septh of 2.7 settlement m below the vertical loa pression, estimation $s_7 = s_q = 1.27$ (d) 134	A and De Be and, for which m. Determined of 40 mm (a) e ground d at an mate the $d_1 d_7 = d_q$ 4.5 MN

A soil profile is shown in figure along with the standard penetration numbers in the clay layers. Determine and plot the variation of c_u and OCR with depth. Hara et al. (1971) also suggested that $c_u(kN/m^2)=29N^{0.72}$ $OCR = 0.193 \left(\frac{N}{\sigma'v}\right)^{0.689}$ Where σ'_v = effective vertical stress in MN/m² Dry sand $\gamma = 17 \text{ kN/m}$ 18095A0131-135 Sand 1.5 m γ.,, = 18.5 kN/m² N 5 m 6 Clay 1.5 m $\gamma_{m} = 19.6 \, \text{kN/m}^4$ 4 1.5 m 3 1.5 m a) Enumerate and reflect through sketches the various components of a 18095A0137-Discuss briefly the function and design of each of these foundation well. 138 components. b) Discuss the various remedial measures that can be adopted to rectify the tilts in a well foundation

	1.	A strip footing of width 1.0 m in the first for the first footing of width 1.0 m in the first footing of the first
		m The angle of internal for its resting on a soft clay strata at a depth of 1 of
N		In the angle of internal friction is aero, and cohesion is 20 kN/mm^2 The
4		water table is at a great depth. Find the ultimate bearing capacity of any
		according to Terzaghi's equation
14	2.	A rectangular footing 1 m x 2 m is plosed at a doubt of 0
H		clay having an upconfined
2		Skempton find the second compressive strength of 100 kN/m ² . According to
2	2	The ultimate bearing capacity.
6	J.	The ultimate bearing capacity of a soil is 300 kN/m^2 and unit weight of z_2 it
8		20 kN/m ³ . Find the net safe bearing capacity at 1 m hal
		surface taking a $FOS = 2.5$
	4.	Name the two criteria for the data
		foundation
	5	Two footing
	0.	Two lootings one circular and the other square, are founded on the square squa
		a purely cohesionless soil. The diameter of the singular f
1		of the side of the square footing. Find the circular footing is same as that
14		loads as per IS 6403-1981
က်	6.	What uniform surcharge interior
4		pressure intensity at the time should be applied to have zero active
Ö	7.	The width and de it of a wall in a cohesive soil
V		table at the side depth of a footing are 2 and 1.5 m respectively m
6		table at the site is at a depth of 3 m below the ground has a line water
8		table correction factor for the calculation of h
F		third term in bearing capacity equation of bearing capacity of the soil in
	8.	Two circular footings of diameters D
		same purely cohesive soil \mathbf{D}_1 and \mathbf{D}_2 are resting on the surface of the
		capacities.
	2.	a) Estimate the group in the second sec
		placed at a double of the safe bearing capacity of 2.5 m m 2.5
		depth of water (11,7 m on a strata of soil of unit mainly 0, 2.5 m footing
		3 kN/m^2 is 1.2 m from the ground level A:
		0 kH/m^2 , and $\phi = 27^\circ$. Assume General shoar f it
		9.5). $N_c = 27$, $N_q = 13.2$, $N_s = 13.2$
6		D) A square column foundation has to
4		kN (FS=3). Given: $D_f=1.5$ m = 15.0 the start a gross allowable load of 1805
5		equation to determine the size $f(m^3, \phi=34^\circ)$, and $c=0$. Use Torgent 1005
4		failure.
01		Φ N _c
A		$\Lambda_q N_q \Phi N_c N_r$
6		
8		19 12 02 L c N _c
1		20 14.02 5.80 4.68 0.42 0.34 45 133.90 133.60
		21 15 02 5.39 0.43 0.36 46 152 10 154.88 271.76 1.01 1.00
		22 16 20 7.07 6 20 0.45 0.38 47 172 54 158.51 330.35 1.04 1.04
		22 10.88 7.82 7.13 0.46 0.40 48 100.26 121 403.67 1.08 1.07
		23 18.05 8.66 8.20 0.48 0.42 49 220 222.31 496.01 1.12 1.11
		24 19.32 9.60 9.44 0.50 0.45 50 265.51 613.16 1.15 1.15
		25 20.72 10.66 10.88 0.51 0.47 762.89 1.20 1.15
		After Vesic (1973)

School of Civil Engineerin Rajeev Gandhi Memorial Colle Engg. & Tech. (Autonomo NANDYAL-518 501.

	a) A 20 m thick clay layer is sandwitched between a silty sand layer and a gravelly
	sand layer. The layer experiences 20 mm settlement in 2 years. Given
18095A0150	$T_{\nu} = \begin{cases} \frac{\pi}{4} \left(\frac{U}{100}\right)^2 & \text{for } U \leq 60\% \\ 1.781 - 0.933 \log_{10}(100 - U) & \text{for } U > 60\% \end{cases}$ If the coefficient of consolidation of the layer is $0.003 \text{ cm}^2/\text{s}$, find the time in years for 30 mm settlement. b) A 3 m thick layer of a fill material ($\gamma_{bulk}=20 \text{ kN/m}^3$) is to be laid instantaneouly on the top surface of a 10 m thick clay layer. If the coefficient of volume compressibility (m_{ν}) and saturated unit weight (γ_{sat}) for clay are 2.2 x 10 ⁻⁴ m ² /kN and 18 kN/m ³ respectively, calculated the consolidation settlement of the clay layer(in mm) due to

placing of fill material.

2

-Read Viead School of Civil Engineering Rajeev Gandhi Memorial Colleg Engg. & Tech. (Autonomous NANDYAL-518 501. -

Tichandrakald
GECTECHNICAL ENGINEERING -IT ITOGIAOUD
ASSIGNMENT - IT Cruti-3A
A concrete pue 20 m iong having a cross section of 381 mm×381 mm is fully
embedded in a saturated clay layer. For a clay,
$$y_{a=18.5}$$
 kN/m², $\phi_{a=0,0}$ and
 $c_{a=70}$ KM/m² Assume that the water table lies below the tip of pile. Determine
the allowable load that the pile can carry (FS=3). Use the *a* method to estimate
the skin friction.
Solt-
Given data,
 $L = 2000$
Size = 381 mm ×381 mm
 $= 0.381 \times 0.381$
 $S_{at} = 18.5 \text{ KN } \text{Im}^3$
 $c_u = 10 \text{ KN}/\text{Im}^3$
 $Q_u = 0$
 $F_3 = 3$
 M_{11}/Im^4
 $M_c = \text{Bearting copacity}$
 $Depends (B/B = 5.0) value - factor
 $Q_a = 9 \times 10 \times (0.381 \times 0.381)$
 $Stin - friction - kc T AB$
 $= 1 \times 10 \times 4 \times 0.381 \times 20 = 2153 \text{ GKN}$
 $Huze$
 $k = 1 \text{ K} \times 0.381 \times 0.381 \text{ K} = 225.05 \text{ KN}$
 $P_u = \text{Nc} \times (2 \times Ap + x T As$
 $= 9 \times 10 \times (0.381 \times 0.381) + 2133.6$
 $= 22.25 \cdot 0.5 \text{ KN}$$

College Code: 09

Rajeev Gandhi Memorial College of Engineering & Technology Autonomous NANDYAL-518501 III B. Tech. II-Semester(R15) MID – I Examinations Geotechnical Engineering – II CE Max. Marks: 25 Date: 28.01.2020 Set: A **Time: 2 Hours** Note: 1.Answer FIRST question compulsorily. $(5 \times 2 = 10 \text{Marks})$ 2. Answer Any THREE from 2 to 5 questions. (3 x 5 = 15 Marks) C.1 a) For a Shelby tube, given outside diameter = 5.08 cm, inside 2M CO4 diameter=4.7625 cm find the area ratio of the tube. Is it a good sampling tube? Determine the factor of safety with respect to cohesion for a 2M CO5 b) submerged embankment 25 m high whose upstream face has an inclination of 45° . The soil has the following properties c^{-} 40 kN/m^3 ; $\Phi=10^\circ$, $\gamma=18 kN/m^3$. The relevant stability number is equal to 0.108. Calculate the factor of safety of a slope of infinite extent when slope C) 2M CO5 angle is 20°. The properties of the soil are c= 25 kPa and Φ =20°. What is earth pressure at rest? Derive an expression for it in terms d) 2M CO1 of Poisson's ratio. What are the sources of sample disturbance? e) 2M CO4 Q.2 a) Explain the standard penetration test. Explain the corrections to be 2M CO4 applied for standard penetration test N value. Write the limitations of standard penetration test. Explain the plate load test with neat sketch. How do you estimate b) 3M CO4 the settlement and bearing capacity from plate load test? Q.3 a) Explain the Culmann's method for the determination active earth 2M CO1 pressure with neat sketch. A masonry retaining wall of trapezoidal section has its top width b) 3M CO1 equal to 0.75 m and height 5 m. Its face which is in contact with the retained earth is vertical. The earth retained is level at top. The soil weights 16 kN/m³ and its $\Phi = 30^{\circ}$. The masonry weighs 24 kN/m³. Determine the minimum width of the base to avoid tensile stresses and also determine the maximum and minimum compressive stresses for this base width. If the μ between base and soil is 0.60, check the stability of the retaining wall against sliding. Q.4 a) 2M CO5 How a slope is analyzed using Swedish circle method? Derive an expression for the factor of safety. Find the factor of safety against sliding for the slope shown in b) 3M CO5 figure using Bishop's simplified method? The weight of each slice is shown in figure. 0

School of Civil Engineerin Rajeev Gandhi Memorial Colle Engg. & Tech. (Autonomot NANDYAL-518 501. Page 1 of 2

- Q.5 a) A 4 m wall retains a dry sand backfill with unit weight of 18.3 5M CO1 kN/m^3 , angle of internal friction of 36° and a porosity of 31%. The backfill is fully drained through weep holes.
 - a) What is the magnitude of the backfill force on a 1 m wide slice of wall, if it is not allowed to deflect?
 - b) What is the magnitude of the backfill force on the same 1 m wide slice, if the wall does deflect enough to develop a Rankine's active earth pressure condition?
 - c) What is the new force on the wall, and its location from its heel, if the wall's weep holes are clogged and the water table now rises to within 1 m of the ground surface behind the wall?

$$RFH CET (Advanced): Normhyd: 51850) 37$$

$$II B: Tech II Sematha (RIS) H:d-I Examinations
AECTECHNICAL EMINIEERING-II
CE
Schowe & Viduation
$$CKRISHNAMA RATU$$

$$CKRISHNAMA RATU$$

$$(A) Shelly Tube D_0 = 5:03 om D: = 4:7125 m
Area Raho, $A_n = \frac{D_0^2 - D_1^2}{D_1^2} = \frac{3:125}{22:451}$ No = 12:787.
Area Raho, $A_n = \frac{D_0^2 - D_1^2}{D_1^2} = \frac{3:125}{22:451}$ No = 12:787.
Area Raho, $A_n = \frac{D_0^2 - D_1^2}{D_1^2} = \frac{3:125}{22:451}$ No = 12:787.
Area Raho, $A_n = \frac{D_0^2 - D_1^2}{D_1^2} = \frac{3:125}{22:451}$ No = 12:787.
Area Raho, $A_n = \frac{D_0^2 - D_1^2}{D_1^2} = \frac{3:125}{22:451}$ No = 12:787.
Area Raho, $A_n = \frac{D_0^2 - D_1^2}{D_1^2} = \frac{3:125}{22:451}$ No = 12:787.
Area Raho, $A_n = \frac{D_0^2 - D_1^2}{D_1^2} = \frac{3:125}{22:451}$ No = 12:787.
Area Raho, $A_n = \frac{D_0^2 - D_1^2}{D_1^2} = \frac{3:125}{22:451}$ No = 12:787.
Area Raho, $A_n = \frac{D_0^2 - D_1^2}{D_1^2} = \frac{3:125}{22:451}$ No = 12:787.
Area Raho, $A_n = \frac{D_0^2 - D_1^2}{D_1^2} = \frac{40}{-1.08 \times 8:19} \times 25 = 1:807$ -21
 $f = 18:9, 11 = 8:19$
C) Individe d_1d_2e , $\beta = 2e^{e}$, Sol Rafakist C=25KRs, $d=2e^{e}$
 $F = \frac{c!}{12} = \frac{4x^2}{4m_1^2} + \frac{4m_1^2}{4m_1^2} = \frac{2.5}{72} + \frac{6t^220}{14m_1^2} + \frac{6m_120}{2m_1^2} = \frac{77.8}{12} + 1$
Advining pink dig Advalid (cl. A partial pression of the form of the pression of the pression of the form of the distribution of the form of the distribution of the distrib$$$$

Rajeev Gandni M. (Autonomo Engg. & Tech. (Autonomo NANDYAL-518 501.

School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

slot Ja 39 Plate Lord Ful-M Hupphi Jut Anche Antho Talf Rit HZ B plu DalGage Forting Lival Test Plate Plate load full with machin A seating load Toslom & settlement recorded. I adding. Tut land applied: In incumments of the ulimated allocable bearing top Capacity. But not more than lot upto month 12 Dr. Sett diment recorded by the delsauser for each load increment of intervaling 1, 4, 10, 20, 41, 60 min and Minighton at hoordy interval. clayer Sala: min faced in owned time 24h my apt Spf FA outrepolations the load test adult 12.5m to prototype forting Sefflort Vuj = Vyt - Fn clay1 Cohe Sive Site Vut = Vit (It) FA cohesimilar long. Estimation of sufficient: $FA \ clay1 \ S_F = S_F \left(\frac{R_F}{R_{10}}\right)$ 2 FA cohumus side, $df = dp \left[\frac{Bf (Bp + 0.3)}{Bp (Bf + 0.3)} \right]$ - 31 I when on t Catical Failure Plane q-line School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) d-5) NANDYAL-518 501. y-bou

26)

3 a)

2

$$\begin{array}{c} P = 3t^{*}, y = 16k \text{ M} \text{ m}^{7} \\ K_{R} = \left[- \frac{5}{8} \text{ m}^{2} \right] = \frac{1}{3} \\ W_{R} = \frac{1}{1 + \frac{5}{8} \text{ m}^{2}} \\ W_{R} = \frac{1}{2} \text{ K} \frac{1}{8} \text{ m}^{2} \\ W_{R} = \frac{1}{2} \text{ K} \frac{1}{8} \text{ m}^{2} \text{ m}^{2} \\ W_{R} = \frac{1}{2} \text{ K} \frac{1}{8} \text{ m}^{2} \text{$$

Swe dish cincle Method:
The sloke is divided into number of
slices. Taking moments about the
centur & notation for all the aestheins pres
and slicing boncy.
Factor of Scholy,
$$F = \frac{\text{Reshving moment}}{\text{Scholy rement}} = \frac{cn0}{\text{Scholof of CivilEngineering
Rajeer Gandhi Memorial College
Rajeer Gandhi Memoria$$

ЗЬ)

	The	facto	of safe	fy m	the sli	pe by	Bishop's	simplified .	me the of	41			
	i1	given	by the	- en pre M	h M			€ Exp? 12 C	AT				
	$z \left[\frac{s'b}{b} + W(1 - n_w) \tan q' \right] $												
		F	= W	Sind		1+	(fand fan	¢')/F					
	Fam	the	anin k	isvu b	= 6m	for bringt a	v = b = 5	6 m q.	6 94 = 30	σ			
	C	= 4	o KMm	r, c'k	,= 240	κN,	N=0, n,	u=o d	$P_f = 2i^\circ$				
					>				1	-			
						Enpr Val	ve						
	stu	ð	WKN	W Sind KN	F=1.0	F=1.25	F21.32	F=1:326	Cb+Nb	marcus			
	1	-2	305.8	-10.67	180.28	179.55	179.34	179.38	176.55	176.65			
	2	9	831-6	130.09	445.37	452.96	454.61	454.74	480.12	486.10			
	3	23	1191-6	465.60	600.27	624.87	630.35	630.80	687.97	747-38			
- 1								10 17					
	4	37	1290	776.34	649.84	691.78	701.40	-102.11	744-78	932-56			

5	55	129-6	597,65	5-79.94	622 - 33	632:38	633 - 19	505,55	881.40
		2	1959.01	2455.7	2571.69	2598.08	2600.28		

$$F = \frac{2455 \cdot 7}{1959 \cdot 01} = 1.25$$

$$F = \frac{2571 \cdot 69}{1959 \cdot 01} = 1.32$$

$$F = \frac{259808}{1959 \cdot 01} = 1.326$$

· , b)

$$F = \frac{2600.28}{1959.01} = 1.327$$

/				
ł			R-15]
	Colle	ege Code: 09 Rajeev Gandhi Memorial College of Engineering & Technolog (Autonomous) NANDYAL-518501	;y	_
		III B. Tech. II-Semester mid II <i>Examinations</i>		
		(Civil Engineering)		
	Max	. Marks: 25 Date: 16-11-2020 Ti	me: 2 Ho	urs
	Note:	1. Answer first question compulsory. (2 x 5 = 10Marks)		
Q.1	a)	2. Answer any <i>three</i> from 2 to 5 questions (5 x 3 = 15Marks) Define ultimate bearing capacity?	2M	CO3
	b)	What are the conditions where pile foundation is more suitable than a shallow foundation?	2M	CO2
	c)	What do you understand by grip length?	2141	002
	d)	Sketch the pressure distribution beneath a rigid footing on cohesive soils and cohesion less soils?	2M	CO3
	e)	Define safe bearing capacity?	2M	CO3
Q.2		Explain the effect of water table on the bearing capacity of soil.	5M	CO3
Q.3		A strip footing 2m wide is to be laid at a depth of 4m in a purely cohesive so $(C = 150 \text{kN/m}^2; \gamma = 19 \text{kN/m}^2)$. Determine the ultimate bearing capacity from (i) Terzagbi's theory (ii) Skempton's theory	il 5M 1:	CO3
Q.4	a)	What are the different types of settlements which can occur in a foundation?	2M	CO3
	5)	How are these estimated?	214	CO2
	D)	Using Terzagni's Theory determine the ultimate bearing capacity of a strip f_{active} 4. For width resting on a seturated alow (Q_{active} 2014)/ r_{active}^{2} 4 = 0. r_{active}	2141	003
		footing 1.5m width resting on a saturated ciay ($C_u = 30$ kiN/m ² , $\phi = 0$, $\gamma_{sat} = 0.01$ M/m ² , $\phi $		
		20kN/m ³) at a depth of 2m from the ground level. If the VV. I rises by 1m.	Asivin	
		Calculate the % Reduction in the ultimate bearing capacity. $\mathfrak{Aph} \mathfrak{f} \mathfrak{f} \mathfrak{k} \mathfrak{f} \mathfrak{f} \mathfrak{k} \mathfrak{f} \mathfrak{f} \mathfrak{f} \mathfrak{f} \mathfrak{f} \mathfrak{f} \mathfrak{f} f$		
Q.5	a)	Write brief critical note on engineering news formula.	2M	CO2
	b)	A pile group consists of 9 friction piles of 30cm diameter and 10m length	3M	CO2
		driven in clay (C_u = 100kN/m ² , γ = 20kN/m ³), the c/c spacing between the		
		piles is 0.75m, Determine the safe load for the group (FS = $3,\alpha = 0.6$)		

@@@@@@@@@@@

 ϵ

School of Civil Engine Rajeev Gandhi Memorial C Engg. & Tech. (Autono NANDYAL-518 50 Page 1 of 1

RGHCET (Autonomous), Nandyal

I B.Tich I Semula Mid-I Examination

16/11/2020 Geotechnical Engineering -II (CE) Scheme of Valuation

Ultimate Bearing Capacity: Maximum pressure the soil can withstand (a) Pile foundations are more suitable i) where the structure are larsed heavy. without shear failure. ii) sal underlying is weak. Iii) where sufflement invesore common due to b) soil l'avefaction of water table. hip Longh: The depth of well foundation, below the lowest scan level is Known is the grip limith. Well found in should be provided with adequate C) Only longth wich the required pathive registance of the soil ion the rem tide of the will is seminated to regist lateral leads. Pressure distribution beneath nigid footing d) Footing Codesive Soil Cohemonders Soil Safe bearing capacity: Ollimate bearing capacity divided by facta of sabity of the manisour grad prettine, the said can e) carry satury without shen failure. Tensashi's Bearing Capacity equation to ship tooking 2. $\Psi_{j} = CN_{c} + \sqrt{D_{j}}N_{\gamma} + \frac{1}{2}\sqrt{B_{j}}N_{\gamma}$ Effect is on chd, V. But effect on chof is small here ismoud. But effective unit wight of is northly half Vist, lonce a sof reduction in the value of the consulponding turn in Bening capacity fimile. School of Civil Engineeri Rajeev Gandhi Memorial Coll Engg. & Tech. (Autonom NANDYAL-518 501.

49)

i) vnipm uttloount ii) Offermtel uttloorunt. 45

$$\begin{aligned} \begin{array}{l} (4) \\ (4)$$

School of Civil Engineering Rajeev Gandhi Memorial Colleg Engg. & Tech. (Autonomous NANDYAL-518 501.

RGM COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) 16th November 2020 III B.Tech II Semester (R15) End Examinations (Regular) **GEOTECHNICAL ENGINEERING -II**

CE

Time: 3 Hrs **Total Marks: 70**

Note 1: Answer Question No.1 (Compulsory) and 4 from the remaining 2: All Questions Carry Equal Marks

- Write equation for ultimate bearing capacity of circular footing in general shear la failure and local shear failure.
- b Write the uses of stability charts.
- What is the effect of differential settlements on the structures? с
- d What is sub-surface profile?
- What is the function of well curb? e
- A 3 m high retaining wall, is supporting a saturated sand (saturated due to f capillary action) of bulk density 18 kN/m³ and Φ =30°. Find the change in magnitude of active earth pressure at the base due to rise in ground water table from the base of the footing to the ground surface.
- g General failure occurs in cohesion-less soils, if density index is more than
- Figure shows the geometry of a strip footing supporting the load bearing walls of a 2 three storied building and the properties of the clay layer. If the pressure acting on the footing is 40kPa, find the consolidation settlement of the footing. If the elastic modulus and the Poisson's ratio of the clay layer are respectively 50 MPa& 0.4 and if the influence factor for the strip footing is 1.75, find the elastic settlement of the footing.

Hard Stratum

a) Discuss the various methods of improving the stability of slopes. 3

b) Determine the factor of safety with respect to cohesion for a submerged embankment 25 m high whose upstream face has an inclination of 45°. The soil has the following properties c= 40 kN/m³, Φ =10°, γ = 18 kN/m³. The relevant stability number is equal to 0.108.

Page: 1 of School of Civil Engine Rajeev Gandhi Memorial C Engg. & Tech. (Auton NANDYAL-518 5

a) Explain criteria for the selection of piles.
b) A 30cm concrete pile was driven in to homogenous consolidated clay deposit (cu=40 kN/m²), adhesion factor=0.7. If the embedded length is 10m, estimate the safe load, factor of safety of 2.5.

a) A retaining wall 8 m high with its back face inclined at 80° with the horizontal retains a silty clay backfill having c= 0.1 kg/cm², Φ =15° and γ =1.76 g/cc. The backfill slopes 15° to the horizontal and the wall friction is 10° while the adhesion between the backfill and the wall 0.15 kg/cm². Determine the lateral thrust and its point of application. What will be the lateral thrust and its point of application if the tension crack is assumed to be filled with water?

b) A retaining wall with a vertical back 6 m high supports cohesion less backfill of unit weight 19.6 kN/m². The upper surface of the backfill rises at an angle of 10° with the horizontal from the crest of the wall. The angle of internal friction for the soil is 35° and angle of wall friction is 20°. Find the total active earth pressure per meter length of the wall using Rebhann's graphical method and mark the direction, point of application of the resultant earth pressure.

- a) What is boring/bore log? Explain with a neat sketch? (8)
 b) Describe the salient features of a good sub-soil investigation report. (6)
- 7 a) What are the general requirements of shallow foundation?b) Write in detail about the factors influencing bearing capacity.

- XXX -

Page 2 of 2 School of Civil Engineerin Rajeev Gandhi Memorial Colle Engg. & Tech. (Autonomo NANDYAL-518 501.

1. conge of Eigineering & Technology (Autonomous) 16th November 2020. III. B. Tech II Semester (RIS) End Examinations (Regular). Geotechnical Engineering-II. 1/14 A0118156R1120 1. 3 The eauation of ultimate Bearing capacity FSI circular Fooling in case of General Shear. Failure as 9/11-1-2CN2+80Ng+0.38BN8 > Mlocal shear failure:- $C_m = \frac{2}{3}C$ Pm = Tan' (2/3 tanp) us es 1) The stability number can be used to determine He facted of safety of a given slope. For the known values of i and \$m, The value of stability number (Sn) is detamined. -> IM. i) The stability charts an also be used todated mine the steepest slope for a given factor of s Engg. & Tech. (Autonom NANDYAL-518 501

2/14

uncould and non-uniform settlement is called Cdifferential settlement and occurs when the soil 0) benealth the stancture expands, contracts & shifts These effects one a Result of increased Oscial Force, shear force and Bending momentes in the structure -> 2M. A subswiface Profile is a vertical section Through the Ground along the line of exploitation. it inducates boundaries of different stoate, along with their classification. $\rightarrow 2M$. ; The Tapered Polloon of the well above the cultury known as well work. it is designed for Suppading the weight of the well. -> 2m. F @ top 5v=0. X Given data:-@ Bottom Soli-Height = 3m. GJ = 18×3 3m = SYKN/m Seat = 18KN/mis Active conth pressure @ \$= 30°. Ka= 1-sing Bokkom 12 ->IM. Pa-School of Ch Engg. & Tech. (Autonom NANDYAL-518 501.

3/14 50

4/14

Considiable on settlement:

$$SF = Ho \cdot CC \qquad log_{10} \left(\frac{\sigma l^{2} + \Delta \sigma^{-1}}{\sigma \sigma^{-1}} \right) = \frac{18 \pm 30}{18 \pm 30}$$

$$= \frac{6 \times 0.08}{1 \pm 0.40} \log_{10} \left(\frac{48 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{48 \times 0100}{1 \pm 0.40} \log_{10} \left(\frac{48 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{6}{1 \pm 0.40} \log_{10} \left(\frac{48 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{6}{1 \pm 0.40} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{1 \pm 0.40} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{148 \pm 40}{48} \right) \cdot \frac{1}{2} = \frac{1}{10} \log_{10} \left(\frac{1$$

. . .

.

School of Civil Engine Rajeev Gandhi Memorial Engg. & Tech. (Auton NANDYAL-518 5

.....

۰. ۱

5/14 52

NANDYAL-518 501

30) The slopes which are susceptible to failure by Sliding can be imposed and made usable and safe. vous methods are used to stabilize the slopes. The methods Generally involve one & mole of the Following measures, which eibleg Reduce the mass which may cause sliding of improve the shear strength of soil in failure zone. I) Slope flattening Reduces the weight of the manstending to slide. it can be used wherever possible. 2) Pouviding the beam below the loc of the slope increases the Resistance to movement. ____ 3m. 3) Doainage helfs in Reducing the seepage forces and hence incroses the stability. The zone of subscaface asarter is lowered and infilleration of surface asater is Poevented. 4) Pensification by use of explosives, vibro flotation, 81 toola Poobe helps in increasing the sheat strength of cohesionless Scills and thems increasing. Stability. 3) considuction by surcharging, electro-osomosis or other methods helps in increasing the stability of slopes in cohesive soils. $\rightarrow 2M$. School of Civil Enginee Rajeev Gandhi Memorial Co Engg. & Tech. (Autonon

School of Civil Engineerin Rajeev Gandhi Memorial Colle Engg. & Tech. (Autonomo NANDYAL-518 501.

7/14 Piles may be classified in a number of casys based on 4 a) different arteria:a) Function & Action. In. b) composition and matarial. (c) Installation. * classification bosed on Function of Action:-(i) End - becoming piles. (i) Foiction Piles. (iii) Tension & whift Piles. 21 (iv) compaction piles. 1) Anchol Piles. (i) Fender piles. (vii) sheet piles. (viii) Batter Piles. (ix) labolly-loaded piles. clossification boxed on material and composition:-(i) Timber piles. (ii) steel piles. 2m (iii) concoche piles. (iv) composite files. classification based on method of metallation:-D proven piles. 2m. (i) cost-insitu-piles. iii) power and and the insitu piles. School of Civil Engineer Rajeev Gandhi Memorial Co Engg. & Tech. (Autonom NANDYAL-518 501

55 8/14 46) Given datai-201:-Diameter = 30cm. Cu= 40kn/m2 IM. x= 0.7; Embedded length = lom; fos = 2.5. Qu = Ab.fb+ As.fs. > 1M. Ab = End base area. As - Sulface orea. $f_{b=c.N_{c}}$; $f_{s=\alpha.c.} \rightarrow 2M$. $90 = \frac{\pi}{4} \times (0.3)^2 \times 40 \times 9 + (\pi \times 0.3 \times 10) \times 0.7 \times 40$ = 289.34 kN. $q_a = \frac{q_0}{f_{os}} = \frac{289.34}{3.5} = 115.73 \text{ km}.$ 60) A boing log gives the description of classification of tno:-Various strata encountered at different depths. Any additional information that is obtained in the field, as soil consistency, unconfined compression st

School of Civil English Rajeev Gandhi Memorial Engg. & Tech. (Autono NANDYAL-518 5

9/14 cone Penetración Test, is also inducated on the baing log. it should also show the water table. if the laboratory Tests have been anducted, The information about index polabies, compressibility, shear strength, permeability, etc., should also be ->4m. foovided. Depth (m) au 0.0 N S LL **1**9 1005C 15 Eand 1.0 20% 50%. 20% 30% 60%. 20% Sandy silt SOKN/m2 10 4.0 Dense 40 Sand 6.0 Govel 50 9.0 Hoord ROCK. 10.01 \rightarrow 3M. Baing log. 6.6) A Good sub soil investigation Repart should warmally Andi compoise the following:-1. Introduction, ashich includes the score of the investigation. 11. Description of the proposed standure, The boation and the Geological conditions at the site. 72m. iii Details of the field captulation programme, of boings, Their location and depthes. School of Civil Engineer Number Rajeev Gandhi Memorial Col Engg. & Tech. (Autonom NANDYAL-518 501.

ii) Details of the methods of explosation. sub-soil anditions as obtained descorption of the V) General from insitu Tests, such as drandard Penelization Test, cone vi) Details of the laboratory rest conducted on the soil obtained and the Results obtained. vi) Depth of the Goound could table and the changes in 72M water levels. VIII) Recommendation about the allocattle bearing Pressure, The type of foundation Standture. ->>IM. 7a) General Requirements of shallow foundations:-15: 1904: 1986; minimum depth of foundation= 0.5m. Placed below the zone > foundation shall be Escressive volume change due to moisture volution. · Topsoil & organic material. ->2M. > Foundations adjacent to Flocing water, shall be Scolaing. against Protected -> A Raised asatel table may cause damage to the foundation $\rightarrow 2M$. by:-Floating the structure. Reducing the effective storess benealth the Foundation. system around the foundation m · Proper Doainage School of Civil Engineer Rajeev Gandhi Memorial Co Engg. & Tech. (Autonom NANDYAL-518 501

11/14 58

Engg. &

Reasured So that asater does not Accumulate.

> minimum housantial distance Yus the foundations shall not be leasthan the aidth of longer fooling. Otheranise, The principal of 2H: IV distribution be used to minimize influence to old stoucture.

76)

The becaung capacity of soil is influenced by many factors for instance soil strength, foundation cidth and depth, soil acight and surcharge, and Spacing between foundations. These factors are related to the loads exabed on the soil and considerably offect the bearing capacity. 32M. Soul strength:-Bearing capacity of cohesionless soils and mixed soil increases unpropolationally with the increase of in the effective boildion angle. $\rightarrow 1 m$. Foundation width:-Foundation width affects bearing capacity of cohesionless soils. The bearing capacity of Fooling Placed at the surface of cohesionless 0 soil, what the soil shear strength is considerably School of Cl ≥ 10 Tech. (Auton

12/14

on internal forction, is propational to be anabhof dependent Foundation. Foundation depth:-The Gratel the bearing capacity the the foundation. This is specifically obvious in a uniform cohesionless soil. In contracty, if foundation is assured down to a weak soil layof, The bearing capacity is declined. ->IM soil weight and surchooger-The contribution of subsurface and suchas soil, which are influenced by water table, to be bearing afacily Cannot be ignored. The coated table should not be above the base of the foundation to avoid construction, seepage, uplift ->IM Problems. Spacing between foundations:it is Recommended to consider minimum Spacing between footings, ashich 1.5 times foundation arialty, the design of Foundation in Sider to avoid Reduction in becoing cafacity. ->IM. School of Civil Engine Rajeev Gandhi Memorial (Engg. & Tech. (Auton

NANDYAL-518 5

5. a) angoin = 8
a =
$$\frac{8}{6 ng_{1}} = 8 \cdot 123 \text{ m}$$

 $a = \frac{8}{6 ng_{1}} = 8 \cdot 123 \text{ m}$
 $c = \sqrt{64} 8 \cdot 123 - 2 \times 6 \times 8 \cdot 123 \text{ rs} g_{1} \text{ m}}$
 $a = \sqrt{64} 8 \cdot 123 - 2 \times 6 \times 8 \cdot 123 \text{ rs} g_{1} \text{ rs}}$
 $a = \sqrt{64} 8 \cdot 123 - 2 \times 6 \times 8 \cdot 123 \text{ rs} g_{1} \text{ rs}}$
 $a = \sqrt{64} 8 \cdot 123 - 2 \times 6 \times 8 \cdot 123 \text{ rs} g_{1} \text{ rs}}$
 $a = \sqrt{64} 8 \cdot 123 - 2 \times 6 \times 8 \cdot 123 \text{ rs} g_{1} \text{ rs}}$
 $a = \sqrt{64} 8 \cdot 123 - 2 \times 6 \times 8 \cdot 123 \text{ rs} g_{1} \text{ rs}}$
 $a = \sqrt{64} 8 \cdot 123 - 2 \times 6 \times 8 \cdot 123 \text{ rs} g_{1} \text{ rs}}$
 $a = \sqrt{64} 8 \cdot 123 - 2 \times 6 \times 8 \cdot 123 \text{ rs} g_{1} \text{ rs}}$
 $a = \sqrt{64} 8 \cdot 123 - 2 \times 6 \times 8 \cdot 123 \text{ rs} g_{1} \text{ rs}}$
 $a = \sqrt{64} 8 \cdot 123 - 2 \times 6 \times 8 \cdot 123 \text{ rs} g_{1} \text{ rs}}$
 $a = \sqrt{12 \cdot 713 \times 4 \cdot 164 \times 6 \cdot 317 \times 1 \cdot 866} = \sqrt{589 \cdot 337} = 24 \cdot 28 \text{ m}}$
 $W = \sqrt{2} \times 4 \times 1 = 1760 \times 24 \cdot 28 \times 1 = 42, 733 \text{ rs}}$
 $W = \sqrt{2} \times 4 \times 1 = 1760 \times 24 \cdot 28 \times 1 = 42, 733 \text{ rs}}$
 $The Trues 1, R, Pa, W_1 C, f(C_{1} 7 \text{ rb} 1 \text{ rs})$
 $a = \sqrt{12} 8 \cdot 123 \times 1500 = 12, 184 \cdot 1 \text{ rs}}$
 $a = \sqrt{12} 8 \cdot 123 \times 1500 = 12, 184 \cdot 1 \text{ rs}}$
 $The Trues 1, R, Pa, W_1 C, f(C_{2} 7 \text{ rb} 1 \text{ rs})$
 $a = \sqrt{13} 4 \sqrt{13} 8 \sqrt{13} \sqrt{13} \sqrt{13} \sqrt{13} 8 \sqrt{13} \sqrt{13$

#

723/11/2023

-

Scheme Poerboed by. Mr. C. Knishnama Reju Mr. P. Promadhenathe Reddy.

RGMCET, Nondyal.

School of Civil Engineer Rajeev Gandhi Memorial Co Engg. & Tech. (Autonom NANDYAL-518 501

9c

School of Civil Engineering RGMCET(Autonomous): Nandyal 2019-2020 (2017 Batch) III B. Tech II Semester Geotechnical Engineering -II

Caluculati	on of CC	Attainment o	f Subj	ect				
Total	134		CO-1	CO-2	CO-3	CO-4	CO-5	and the second
Above 50%	3		74	83	70	80	80	
30% to 50%	2		50	40	53	44	44	
Below 30%	1		10	11	11	10	10	
CO Score	Value		2.48	2.54	2.44	2.52	2.52	
CO Atta	inment		55	62	52	60	60	Ĩ
CO Thre	shold		55	55	55	55	55	1
CO Atta	ined or	Not (Yes/N	Y	Y	N	Y	Y	

Caluculat	Caluculation of PO Attainment of Subject									_						
	cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	2.48	1	3	2	1									3	2	1
CO2	2.54	1	3	2	1									3	2	1
CO3	2.44	1	3	2	1									3	2	1
CO4	2.52	1	3	2	1									3	2	1
CO5	2.52	1	3	2	1									1	2	1
Total PO		5	15	10	5	0	0	0	0	0	0	0	0	13	10	5
PO Attain	A	2.50	2.50	2.50	2.50									2.50	2.50	2.50

. 21 -School of Civil Engineer School of Givil Engineer Rajeev Gandhi Memorial Col Engg. & Tech. (Autonom NANDYAL-518 501-

School of Civil Engineering RGMCET(Autonomous): Nandyal 2019-2020 (2017 Batch) III B. Tech II Semester Geotechnical Engineering -II

							Mid-II							
			Mid -		- IT IT IT		TINO	CO-1	00-2	00-3	00-4	00-5		
QNO	CO-T	CO-2	CO-3	CO-4	00-0		(1a)			2				
1 a)				2			1 b		2					-
1 b)					2		10)							
1 0)					2		1 c)		2	0				1
1 c	2						1 d)			2				1
1 a	4			2			1 e)			2				1
				2			2 a)			5				1
2a				3			2 b)							1
20	2						3 a)			5				1
3 h)	3						3 b)							
4 2)					2		4 a)			2				
$\frac{4 \text{ h}}{4 \text{ h}}$					3		4 b)			3				
5 3)	5						5 a)		2					
5 h							5 b)		3			0.00	0.00	100 0
50	40.00	0.00	0.00	30.00	30.00	0.00	100.0	0.00	30.00	70.00	0.00	0.00	0.00	100.0
	10.00	Er	d Exa	am		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.								
O No	co-i	CO-2	CØ-3	(COM)	C.C.S									
1 a)			2											
$\frac{1}{1}$ b)					2						1 00			
$\frac{1}{1}$ c)			2				Exam	weig	htages	to Ea	ch CU			
1 d)				2				th. or This and	-			20 4		
1 e)		2					Asses	<u>CO-1</u>	CO-2			16.0	0.0	100 0
1 fl	2						COiFE	16.3	23.5	27.6	16.3	10.3	0.0	100.0
1σ			2				COiIM	20.0	15.0	35.0	15.0	15.0	0.0	100.0
2 a)			14				COiA	20.0	20.0	20.0	20.0	20.0	0.0	100
2 h						(COiWA	17.43	21.18	29.04	16.18	16.18	0	100.0
3 2)					7		Note:	FE	Final	Exam	Mark	S		
3 h					7			IM	Interr	nal Ma	rks			
4 a)		7						Α	Assig	nment				
(4 h)		7						WA	Weigh	ted A	verage			
5 9)	7													
5 h)	7													
50	'			8										
6 h				6										
7 c)		7												
$\frac{1}{7}$ a)			7											
/ 0]	16.32	23 47	27.55	16.33	16.33	0.00	100.00							
	10.55	23.77	21.00	10.00										

School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

School of Civil Engineering **RGMCET(Autonomous):** Nandyal 2019-2020 (2017 Batch) III B. Tech II Semester Geotechnical Engineering -II

CO Attinment Calculatior ((COiFE*FE)+(COiIM*IM)+(COiA*A))/COiWA Caluculation of CO Attainment of Subject

A: Assignment N	larks,	IM: I	nterna	al Ma		(1 206)		Cxam	Ma
Reg No	IM	Α	FE	CO-1	CO-2	0-3	'C'0-4	CO-5	
16091A0104	8.25	3.5	33.3	45	46	44	46	46	
16091A0134	8.25	3.5	37.3	48	50	48	50	50	
16091A0137	1.5	3.5	0.0	6	4	4	6	6	
16091A0143	8.75	4	27.3	40	40	39	41	41	
16091A0150	9	4	52.0	64	68	63	66	66	
16091A0189	9.5	3.5	34.0	47	48	46	47	47	
17091A0101	10	2	48.0	59	62	59	60	60	
17091A0102	15	2	37.0	54	54	55	54	54	
17091A0103	11	4	46.0	60	63	60	62	62	
17091A0104	10.5	4	37.5	52	53	51	53	53	
17091A0105	4	4	27.0	34	37	33	36	36	
17091A0106	9	4	54.0	66	70	65	68	68	
17091A0107	6.75	4	51.3	60	65	60	63	63	
17091A0110	15.5	4	58.5	77	80	77	78	78	
17091A0111	7	4	1.0	14	10	12	12	12	
17091A0112	8.75	4	48.3	60	63	59	62	62	
17091A0113	8.25	4	41.8	53	56	52	55	55	
17091A0114	7.75	4	39.3	50	53	49	52	52	
17091A0115	13.25	4	50.8	67	69	67	68	68	
17091A0116	9.5	4	55.5	67	72	67	70	70	
17091A0118	11.75	4	38.3	54	54	53	54	54	
17091A0119	11.75	4	48.3	63	66	63	65	65	
17091A0120	4.5	2	0.5	8	6	7	7	7	
17091A0121	2.25	2	35.8	38	43	38	41	41	
17091A0122	4	3.5	37.5	44	48	43	46	46	
17091A0123	7	3.5	43.5	53	56	52	55	55	
17091A0124	5.25	3.5	42.3	50	54	49	52	52	
17091A0125	8	2	49.0	57	62	58	59	59	
17091A0126	9.25	4	43.8	56	59	55	58	58	
17091A0127	11.25	4	49.8	64	67	64	66	66	
17091A0128	6.5	4	0.5	13	9	11	11	11	
17091A0129	5.75	3.5	40.8	49	53	48	51	51	
17091A0133	12	4	53.0	68	71	68	70	70	
17091A0138	5	3.5	38.5	46	50	45	48	48	
17091A0139	4.75	4	38.3	46	50	45	48	48	
17091A0141	6.75	4	49.3	58	63	58	61	61	

rks

School of Civil Engineerin Rajeev Gandhi Memorial Colle Engg. & Tech. (Autonomo NANDYAL-518 501.

17091A0142	3.75	3.5	0.8	9	7		- 9	9
17091A0143	7.75	4	48.3	59	63	58	61	61
17091A0144	3	3	0.0	7	5	6	6	6
17091A0145	8.25	4.5	40.3	52	55	51	54	54
17091A0146	15.5	4	59.5	78	81	78	79	79
17091A0147	13.75	4	41.3	59	59	58	59	59
17091A0148	5.5	4	45.5	54	58	53	56	56
17091A0149	7.5	4	44.5	55	58	54	57	57
1709140150	11	4	44.0	58	60	58	60	60
17091A0150	8 75	2	34.3	44	46	44	45	45
1709140151	7 75	-	55 3	65	70	65	68	68
17091A0154	7.75		21.2	40	42	39	42	42
17091A0155	5.75	4	51.5	40	40	20	41	41
17091A0156	4.5	3.5	32.0	39	42	30	40	10
17091A0157	6.5	4	36.5	46	49	45	48	40
17091A0160	6	3.5	18.5	28	28	27	29	29
17091A0162	7.25	4.5	46.3	57	61	56	59	59
17091A0163	15	4.5	59.5	78	81	78	80	80
17091A0164	7.75	4	44.3	55	58	54	57	57
17091A0165	10	4	46.0	59	62	58	61	61
17091A0166	11.25	4	51.8	66	69	65	68	68
17091A0167	5	4	27.0	36	37	34	37	37
17091A0168	7.5	3	39.5	49	52	49	51	51
17091A0169	7.75	3.5	40.8	51	54	50	53	53
17091A0170	6.75	3.5	31.8	42	43	41	43	43
17091A0171	7.5	4.5	44.0	55	58	54	57	57
17091A0172	5	4	35.0	43	46	42	45	45
17091A0173	8	3.5	44.5	55	58	54	57	57
17091A0174	7.25	3.5	34.3	44	46	44	46	46
17091A0176	7.5	2	37.5	46	49	46	47	47
17091A0178	9.75	3.5	58.8	70	75	70	73	73
17091A0180	17.75	4.5	50.8	73	73	13	60	60
17091A0182	10.5	4.5	53.0	67	70	00	51	51
17091A0183	11.25	4.5	20.0	40	12	49	42	43
17091A0184	1.75	3.5	30.8	42	43	61	64	64
17091A0185	9.75	25	49.3	15	14	13	15	15
17091A0186	3.5	5.5	39.0	50	53	49	52	52
17091A0187	ŏ ٥ د	4	34.5	48	49	47	49	49
1709140188	9.5 6 75	7	48.8	56	61	56	59	59
1709140189	0.25	25	37 5	47	50	46	49	49
1709140190	7 75	د.د ۵	43 3	54	57	53	56	56
1709140191	<i>در. ر</i>	45	41.5	53	56	52	55	55
1/03140132	0	J	11.5	00				

-

School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

	17091A0194	10.25	3.5	36.3	50	51	49	50	50	
	17091A0195	8.5	4	49.5	61	65	60	63	63	
	17091A0197	1.5	3	0.5	6	4	4	6	6	
	17091A0198	8.75	4	34.3	47	48	46	48	48	
	17091A0199	16	4.5	43.5	64	64	64	64	64	
	17091A01A0	7.25	4	28.8	40	41	39	41	41	
	17091A01A1	10.75	4.5	45.8	60	63	59	62	62	
	17091A01A2	7.25	3.5	40.3	50	53	49	52	52	
	17091A01A3	11.25	2	32.8	46	46	46	46	46	
	17091A01A5	16.25	4.5	46.3	67	67	67	67	67	
	17091A01A6	10.75	4.5	50.8	65	68	64	67	67	
	17091A01A7	8.25	3	37.8	48	51	48	49	49	
	17091A01A8	7.25	3	29.8	40	41	39	40	40	
ļ	17091A01A9	19	4.5	27.5	53	48	52	51	51	
	18095A0101	8.5	3.5	37.0	48	50	48	50	50	
	18095A0103	9.5	4	39.5	52	54	52	54	54	
	18095A0104	8	4	31.0	43	44	42	44	44	
	18095A0105	6.75	3.5	19.8	30	30	29	31	31	
	18095A0106	12	4.5	25.5	43	41	42	42	42	
	18095A0107	5.75	4	36.3	45	48	44	47	47	
	18095A0108	5.25	2	42.8	48	53	48	50	50	
	18095A0109	10	4	31.0	45	45	44	45	45	
	18095A0110	5.25	4	30.8	39	42	38	41	41	
	18095A0111	6.25	3.5	46.3	55	59	54	57	57	
	18095A0113	10.25	3.5	12.3	27	24	26	26	26	
	18095A0115	8.75	4	35.3	48	49	47	49	49	
	18095A0116	21	4	51.0	76	75	76	76	76	
	18095A0117	8.25	4	32.8	45	46	44	46	46	
	18095A0118	13.5	4	46.5	64	65	63	64	64	
	18095A0119	8.5	4	41.5	53	56	52	55	55	
Ŀ	18095A0120	4.75	3.5	34.8	42	45	41	44	44	
Ŀ	18095A0121	7.75	4	43.3	54	57	53	56	56	
ŀ	18095A0122	8	4	44.0	55	58	54	57	57	
Ŀ	18095A0123	10.5	2	35.5	48	49	48	48	48	
Ŀ	L8095A0124	6.75	4	20.3	31	31	30	32	32	
Ŀ	L8095A0125	8.75	3.5	37.8	49	51	49	51	51	
1	8095A0126	8.25	4	27.8	40	40	39	41	41	
1	8095A0127	21	4.5	47.5	74	72	73	73	73	
1	8095A0128	5.75	4	37.3	46	49	45	48	48	
1	.8095A0129	13	2.5	42.5	58	59	58	58	58	
1	8095A0130	5.25	2	23.8	31	32	30	31	31	
1	8095A0132	10.5	4	45.5	59	62	59	61	61	
1	8095A0134	8.25	4	49.8	61	65	60	63	63	
1	8095A0135	12	4.5	57.5	73	76	72	75	75	
1	8095A0136	8.25	5	45.8	58	61	57	60	60	
1	8095A0137	10.75	4.5	53.8	68	71	67	70	70	
-		· · · · ·								

School of Civil Engineerin Rajeev Gandhi Memorial Coll Engg. & Tech. (Autonomo NANDYAL-518 501.

	5							
18095A0138	10.5	4.5	54.0	68	72	67	70	70
18095A0139	8	4.5	31.5	44	45	43	45	45
18095A0141	14.25	4.5	25.3	45	42	44	44	44
18095A0142	8.5	4	39.5	51	54	50	53	53
18095A0143	11.5	4.5	50.0	65	68	64	67	67
18095A0144	4.75	4	39.3	47	51	46	49	49
18095A0147	10.5	4.5	46.0	60	63	59	62	62
18095A0148	12.25	4.5	44.3	61	62	60	62	62
18095A0149	14.5	4.5	41.0	60	60	59	60	60
18095A0150	10.5	4.5	45.0	59	62	58	61	61

. dead Weat School of Civil Engineerin Rajeev Gandhi Memorial Collo Engg. & Tech. (Autonomo NANDYAL-518 501.

POs/PSOs Performance Quality Levels

Division of Performance Quality Levels based on Attainment levels of POs and SOs

Sl No.	Levels	Performance quality
1	$PO/PSO \le 1.5$	Unsatisfactory/ Does Not Meet Expectations
2	$1.5 \le (PO/PSO) \le 2.25$	Satisfactory/ Marginal Expectations
3	$2.25 \le (PO/PSO) \le 2.7$	Good/ Meets Expectation
4	$2.7 \le (PO/PSO) \le 3$	Excellent/ Exceeds Expectations

Performance Quality of POs and PSOs of Geotechnical Engineering -II

			0 0
SNo	POs and PSOs	Attainment	Performance Quality
1	PO1, PO2, PO3, PO4, PSO1, PSO2,	>2.25	Good/Meets Expectation
	PSO3		

School of Civil Engineering Rajeev Gandhi Memorial College of Engg. & Tech. (Autonomous) NANDYAL-518 501.

factor of Ignorance!!) > less cost of construction

2,460	1052.53	
	-98	S/VA CopyrightD2001
The con	178	Estimating K ₀
		G0
en la sua	-	 Empirical correlation between the coefficient of
W.C.	1999 1999	lateral earth pressure K_0 and the plasticity of
∩~~~ ~~		normally consolidated clay is proposed by Alpan
	-	(1967) $K_0 = 0.19 + 0.233 \log(PI)$
	100	✓ Where PI is the plasticity index of the soil, other empirical
	133	conclations were proposed by Mayne and Kulhawy (1982)
ie.s	100 100	$K_0 = 0.4 + 0.007(PI)$ for $0 < PI < 40$
	-194 -194	
-	() ()	$K_0 = 0.64 + 0.001(PI)$ for $40 < PI < 80$
		Department of Civil Engineering. ROMCFT(Autonomous) New Key
	1. 9.0	(interiority), (variayai

	consistency	D, (%)	consistency
12.5	very soff	0-15	varvionea
5-25	soft	2	non line
50	medium	15-35	loose
100	stiff	35-65	medium
0-200	very stiff	65-85	dense
200	hard	85-100	very dense

Shape	Fle	l, for zible Founda	tion	I, for Rigid
	Center	Corner	Average	Foundation
Circle	1.0	0.64	0.85	0.86
òquare	1.12	0.56	0.95	0.82
Rectangle				
/B =1.5	1.36	0.68	1.20	1.06
J/B =2.0	1.52	0.76	1.30	1.20
/B =5	2.10	1.05	1.83	1.70
/B =10	2.52	1.26	2.25	2.10
/B =100	3.38	1.69	2.96	3.40

CER DE LA CE F: initial officies overburden pressure before applying foundation load b = Vertice strass of the lambe due to 5e = G H 10 (A + A) or S = mu H A thicknoss of soil layor c= Compression Index imiting usid ratio Fill is compressibility Consolidium Settlement applied load -

D CET Eary = 24500 × 4.5+ 14000×12 = 16864 with 5: = 2mB (1- Juy) 5p Given E = 700 Ck E = 700 × 35 = 24530 KNm = 20 9m = 50 kWm, 3= 10m, 1= 0.5 1 = 1.36 9) Immediate Suttlement E = 12 = 1.5

IS: 8009, Part I (1976) 0.6 0.4 89 Fox's depth correction factor 0.8 UB (FB 50 0.6 0.8 NPTEL 6.0 Depth factor

E CET (-- SIST . m S.C = JC Total sallla V= 17 Kelm3 Cu = 20 Kelm 1+10 . 0.15 tt = 0.06 4 = 35k SOKNIM Firsteri A 12 4 -161-El ie T ----い

Rigitif Conversion Jacher = 0.8 Rigitif Conversion Jacher = 0.8 Depth Conversion Jacher = ?? $U|B = \frac{1}{10} = 1.5$; $\frac{D}{11.3} = \frac{2.5}{\sqrt{10 \times 15}} = 0.2$ ($v_1 = \frac{3.5}{7}$) 5.06F Si (Hithout Conscheres) = 30.24 m. 5i(Luxueld) = 30.24 × 0.97 × 0.8 = 23.47 mm. Depth factor = 0.97 $\mathbf{ }$ School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

= (52.4 + 66.35) mm = (52.4 + 66.35) mm = 13.8.7 mm = 13.8.7 mm = 13.8.7 mm = 2.9.9 = 12.0 meden fich = 0.8 = 0.97 = 0.972 - 0.06 × 4.5+ 10 + (63+35)

 $= (52.4 \pm 66.35) \text{ mm}$ $= (52.4 \pm 66.35) \text{ mm}$ = (38.7 mm) = (38.7 mm) = (38.7 mm) = (38.7 mm) = (39.7 mm) = (45.7 mm)O CUT 11 T. KOP + 0.15 × 12 × 10/10 (123+14.35) t = 51 + 50 = 23.47 + 87.2 = 110.7 5 - 0.06 x 4.5 x 10 1 + (63 + 35.5) R.

CCT NOP at print 8. $\beta_{2} = 16 \times 3.5 + 4.5 \times 8 + 7 \times 6 = 12.3 \times 10^{10}$ $\delta p = \frac{50 \times 10 \times 15}{(10 + 10.5)(15 + 10.5)} = 14.35 \times 10^{10}$ Ab = 50 × 10 × 15 (18-10) = 35.5 Kulm 8) Emsellidation settlement.

Uses of piles

1. To carry vertical load

If all the (majority amount) loads are transferred to the pile tips

↓ End bearing pile

If all the (majority amount) loads are transferred to the soil along the length of pile

Friction pile

Compaction pile: Short piles used for compacting loose sand.

2. To resist uplift load

Tension pile or Uplift: Below some structures such as transmission tower, offshore platform which are subjected to tension.

 To carry inclined and horizontal load (foundation for retaining wall, bridge, abutments and wharves) Laterally loaded piles: Horizontal load acts perpendicular to the pile axis.

Batter piles: Driven at an angle

Carry large horizontal load

School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

		Based on displacement of soll • Displacement piles • Non displacement piles
		thod of ming e-cast e-stressed st in situ
		d d c A
		Metho fer Install Drive Bore - Jette
	_	Mode of load trans • End beari • Friction • Combined
		Shape • Cylindrical • Tapered • Under-reamed
-		Cross-section • Circular • Square • Hexagonal • I-section • H- section • Pipe
		Material used • Steel pile • Timber pile • Composite pile

-

https://www.slideshare.net/shivamsgandhi/pile-foundation

http://www.reidmiddleton.com/reidourblog/timberpile-removal-and-the-benefits-to-our-environment/

Timber pile: suitable for light loads varies from 100 to 250 kN per pile. Suitable for soft cohesive soil.

Concrete Pile: all load condition. Most frequently used piles. Strong, durable.

Steel pile: Used to carry heavy load

http://www.86steelpipe.com cs/gr-50-steel-pipe-piles.html

Steel Pile

Based on crosssection:

https://www.dreamstime.com/stock-photo-pile-hexagon-

mage55167024

concrete-foundation-piles-

a second

http://www.soilmanagementindia.com/pilefoundations/classification-of-pile-foundations-9-criterions-soilengineering/14179

.cz/en/piles

a) circular, b) square, c) rectangular, d) hexagonal,
 A) H- section, f) pipe

http://www.ffgb.be/Business-Units/Piles/Stalen-profiel-paal.aspx?lang=en-US

Under the vertical load, the type of pile cross section does not play a important role. However, under horizontal load, square and H section pile perform well as compared to circular pile

> School of Civil Engineering Rajeev Gandhi Memorial College Engg. & Tech. (Autonomous) NANDYAL-518 501.

al.aspx?lang=en-US

R