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Abstract  

The 3D Network-on-Chip (NoC) data acquisition system utilizes NoC technology to establish a 
time-interleaved data acquisition system The mapping scheme determines the location of each Intellectual 
Property (IP) node in the NoC topology. The optimization of the mapping algorithm is one of the important 
means to reduce the communication delay of the acquisition system. The abundance of functional IP nodes in 
the 3D NoC data acquisition system creates a mapping challenge. To address this, we propose a mapping 
algorithm called Reinforcement Learning and an improved Attention Mechanism Mapping algorithm 
(RA-Map). The RA-Map mapping algorithm employs node function encoding and node position encoding to 
express the properties of an IP node in the task graph preprocessing. The local attention mechanism is used in 
the mapping network encoder, and the fusion of dynamic key node information is proposed in the decoder. The 
mapping result evaluation network achieves unsupervised training of the mapping network. These targeted 
improvements ultimately lead to an enhancement in mapping quality. Experimental results demonstrate that 
when compared to the discrete particle swarm algorithm and simulated annealing algorithm, the RA-Map 
mapping algorithm reduces the average communication cost by 6.5% and 8.5%, respectively. Furthermore, 
while ensuring mapping quality, it also shortens the mapping time. 

Keywords: data acquisition; 3D network-on-a-chip; NoC mapping; reinforcement learning; attention 
mechanism 

1. Introduction 

With the rapid development of electronic information technology, the demand for data acquisition speed in 
electronic equipment status monitoring is increasing. Currently, System-on-Chip (SoC) faces bottlenecks such 
as low communication bandwidth and difficult clock synchronization, which affect the performance of the 
acquisition system[1]. To overcome these problems, NoC uses routing technology to replace bus structures for 
communication, thereby overcoming the limitations of traditional SoC. Data acquisition, storage, and 
transmission IP nodes are designed as resource nodes in a 3D NoC, achieving a high sampling rate and low 
latency time-interleaved data acquisition system[2]. 

The mapping scheme determines the location of each IP node in the NoC topology, and the mapping 
algorithm is one of the important means to achieve low latency in NoC[3]. Currently, mapping algorithms 
include exhaustive traversal and heuristic algorithms. For data acquisition systems, as the sampling rate 
increases and the number of IP nodes increases, exhaustive traversal becomes very time-consuming. Heuristic 
algorithms may get stuck in locally optimal solutions during iterative searches. NoC mapping can be viewed as 
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selecting optimal decision variables in a discrete decision space, similar to the "action selection" in 
reinforcement learning in artificial intelligence[4]. Therefore, this paper proposes the RA-Map mapping 
algorithm, which consists of task graph preprocessing, mapping network, and mapping result evaluation 
network. 

Based on the characteristics of the acquisition system task graph, this paper proposes an encoding method 
consisting of node function encoding and node position encoding to express all the properties of an IP node. In 
the encoder of the mapping network, a local attention operation is proposed based on the communication 
relationship between IP nodes to generate intermediate action vectors. In the decoder of the mapping network, a 
mapping environment is proposed that integrates global information, local information, and dynamic key node 
information of the task graph. Finally, the mapping result evaluation network is used to overcome the problem 
of difficult access to high-quality datasets and achieve unsupervised training of the mapping network. 

The structure of this paper is as follows: Section 2 analyzes and discusses relevant work; Section 3 defines 
the task graph of the data acquisition system based on time-interleaved sampling and its mapping process; 
Section 4 proposes a data acquisition system mapping algorithm based on reinforcement learning and improved 
attention mechanism; Section 5 analyzes and compares mapping results; Section 6 summarizes this paper. 

2. Related Works 

For the small-scale NoC mapping problem with a small number of IP cores, several methods have been 
proposed, including Integer Linear Programming (ILP) and Branch and Bound algorithms. Ostler proposed a 
two-stage ILP-based strategy to map applications to complex multiprocessor, multithreaded network processors. 
This method effectively utilizes the parallel processing and multithreading capabilities of the target architecture, 
mitigating the high computational complexity of ILP [5]. Ghosh addressed the mapping problem on 
heterogeneous NoC platforms by minimizing energy consumption and maximizing system performance. They 
proposed a unified approach using mixed integer linear programming and random rounding instead of solving 
these subproblems sequentially. Although this method can obtain the optimal solution, its practical complexity 
is high [6]. Huang introduced an energy-aware and task allocation mapping algorithm based on heterogeneous 
multiprocessor systems. This algorithm extends the ILP formulation by explicitly considering the trade-off 
between processor and communication power consumption. To address the long execution time, the author 
optimized the mapping algorithm using simulated annealing, but the quality of the mapping solution was 
compromised [7]. Tosun proposed a clustering-based mapping method to map applications onto NoC 
architectures. This method divides tasks into small regions or grids called clusters, which are mapped onto 
smaller topological grids. The final result is obtained by combining all the smaller grids. Compared to 
ILP-based methods, this method has a faster execution speed but may increase communication costs [8]. 
Aravindhan introduced the KL algorithm to optimize the clustering-based mapping method. Experimental 
results showed that this method reduced communication costs and partitioning degree compared to the 
clustering method, improving the solution speed [9]. Lin proposed a new network interface and traffic 
balancing mapping algorithm based on an improved Branch and Bound algorithm. This method disperses traffic 
load to avoid router congestion caused by high traffic IP cores, but it may lead to high communication costs 
[10]. Reshadi proposed the Elixir algorithm, a minimum power mapping algorithm based on bandwidth 
constraints and Branch and Bound method. It consists of two steps: the first step calculates the mapping with 
the minimum communication cost using the concept of a search tree, and the second step selects the best 



 

mapping with minimum power consumption and delay using the Polaris toolchain. Compared to the original 
Branch and Bound algorithm, this method reduces both network delay and power consumption [11]. Khan 
proposed a multi-objective segmented brute-force mapping algorithm based on bandwidth constraints. This 
algorithm divides the application into multiple segments to achieve efficient mapping of embedded applications 
on NoC system processing units. However, it has a longer execution time [12]. 

The above exact mapping algorithms have high time complexity and are inefficient for large-scale NoC 
mapping problems. When solving large-scale NoC mapping problems, heuristic search algorithms are more 
efficient as they can find relatively optimal solutions within a limited time. Chatterjee proposed a reliability 
model that considers the thermal effects of computing and communication nodes to mitigate hotspot formation. 
The author implemented this model using both mixed integer linear programming and Particle Swarm 
Optimization (PSO) methods. Experimental results showed that the PSO-based heat reliability model can 
handle large-scale mapping problems and overcome the convergence issue faced by ILP methods for 
large-scale mapping [13]. Upadhyay proposed a mapping algorithm based on a reconfigurable architecture, 
which reduces communication costs for different applications using a two-stage PSO algorithm. The first stage 
combines multiple applications to achieve global mapping, and the second stage uses multiplexers to switch IP 
cores to nearby routers for reconfiguration. Although this method has a longer execution time, it reduces the 
system’s communication costs [14]. Seidipiri proposed a mapping method that sorts IP cores based on their 
communication requirements. This method maps high-traffic nodes to the central part of the grid topology and 
further optimizes the mapping results by repeating this process. Experimental results showed that this method 
can reduce network communication costs, power consumption, and network latency [15]. Sahu proposed a 
performance-aware mapping algorithm based on Particle Optimization. Compared to ILP-based mapping 
algorithms that are close to the optimal solution, this method effectively reduces communication costs and 
improves both system energy consumption and performance [16]. Tosun proposed a low-complexity heuristic 
algorithm that maintains a priority list of tasks based on communication bandwidth and selects the initial IP 
core to be mapped based on this priority list. This process is repeated during mapping, and the priority list is 
updated after each mapping. Finally, the best mapping solution is selected from a set of mapping solutions as 
the final application mapping solution [17]. These heuristic algorithms provide solutions for large-scale NoC 
mapping problems, but their performance is closely related to their ability to avoid local optima.. 

In recent years, reinforcement learning methods have provided new research perspectives for NoC 
mapping. Some researchers have used reinforcement learning methods to solve NoC mapping problems. Chen 
proposed a mapping algorithm based on the combination of Graph Neural Networks and Pointer Networks [17]. 
However, the quality of the mapping solution of this algorithm is limited by the quality of the training dataset. 
Therefore, the author used Reinforcement Learning (RL) methods to train the mapping model and improve the 
quality of the solution [18]. However, due to the long short-term memory network used as the encoder in the 
mapping algorithm, there is a problem of long sequence forgetting. When dealing with large-scale NoC 
mapping problems, the quality of the mapping solution is limited. Therefore, other heuristic algorithms are used 
for secondary optimization of the mapping solution. Jagadheesh was inspired by neural network solutions to the 
Traveling Salesman Problem (TSP) and proposed a NoC mapping algorithm based on the actor-critic structure. 
Additionally, the 2-opt local search algorithm was used to improve the quality of the mapping sequence [19]. 

These algorithms provide different approaches and solutions for NoC mapping problems. The time 
complexity of exact mapping algorithms, such as ILP and Branch and Bound, is high. Heuristic algorithms may 



 

get trapped in local optima when solving large-scale mapping problems. Existing deep learning mapping 
solutions have not been optimized for specific mapping problems. This paper aims to optimize the mapping 
problem of high-speed data acquisition systems using reinforcement learning methods to improve the quality of 
the mapping solution. 

3. Mapping problem definition for NoC data acquisition systems 

3.1 Time interleaved data acquisition system architecture 

The time interleaved data acquisition system can be divided into four parts according to functions: data 

acquisition, memory, transmission interface, and acquisition system controller. In Figure 3-1, the acquisition 

system controller is responsible for clock calibration and system cooperative control; the data acquisition ADC 

is controlled by the system controller to acquire data; the memory is used to realize data storage and forwarding; 

the transmission interface is responsible for uploading the acquired data and receiving commands from the host 

computer. 

Figure 3-1 Block diagram of time interleaved data acquisition system 

Based on the temporal interleaved data acquisition system model, all IP cores in the system are abstracted 

as task nodes.The data communication relationships between IP cores are then mapped as connection 

relationships between task nodes. This approach is used to build the task graph of the NoC data acquisition 

system to support the optimization of the data acquisition system. The task diagram of the data acquisition 

system is in Figure 3-2. In the acquisition system based on the time interleaving technique, all acquisition nodes 

have the same sampling rate, but the time when each node starts sampling varies periodically. The data 

acquisition process has the same amount of communication, data transmission bandwidth requirements, and 

latency limits between each acquisition node and storage node. 



 

Figure 3- 2 Data Acquisition System Task Map 

3.2 NoC data acquisition system mapping architecture 

The task graph to be mapped is a directed graph G (C, W) where each vertex ci ∈ C represents an IP core 

and the edge wi,j ∈ W represents IP cores ci to the IP core c j  the amount of data communication. 

Target NoC topology A(R, L) with each vertex rk ∈ R denotes a routing node and the edge lk,l ∈ L 

denotes a routing node rk to the routing node rl communication, the 3DMesh NoC is in Figure 3-3. 

 

Figure 3-3 3D Mesh NoC 

Task map to be mapped G(C, W) to the target NoC A(R, L) The mapping is defined by the mapping 

function f  defined by  C → R  , for example  ∀ci ∈ C  , and ∃rk ∈ R  and  f(ci) = rk  and  ∀ci ≠ cj , the 

mapping f(ci) ≠ f(cj). The mapping function f is a probabilistic model that, given a task mapG under the 

probability distributionpθ(M|G) from which the mapping solution is sampled. 

IP core to topology router is a one-to-one mapping that satisfies |C| ≤ |R|. If|C| < |R|, then add |C| − |R| 
a virtual IP core to the task graph to satisfy|C| = |R| =  n[20]. The IP core mapping can be described by the 

following equation: 

 ∀ci ∈ C, f(ci) = rk ∈ R (3-1) 

 ∀cj ∈ C, f(cj) = rl ∈ R (3-2) 

 ∀ci ≠ cj, ∀rk ≠ rl (3-3) 

 |C| = |R| =  n (3-4) 

The mapping solution reflects the mapping of IP cores in the task graph to router node locations in the 



 

network topology. Assuming that the indexes of the network topology are numbered hierarchically from top left 

to bottom right, the mapping solution can be expressed as from1 to n in a numerical arrangement 𝑀 ={mi}i=1n , where each element represents an IP core in the task graph and the index, represents a router node on 

the corresponding network topology. This numerical arrangement forms the mapping solution sequence, which 

corresponds to the router arrangement in the NoC topology. In Figure 3-4, a task graph of a data acquisition 

system containing eight IP cores is mapped onto a 3D Mesh structure, where a set of optimal mapping solutions 

are M = {1, 3, 2, 4, 8, 6, 5, 7}, where the second element is 3, indicating that the second IP core in the task 

graph is mapped onto the third router node in the NoC topology. 

 

Figure 3-4 Mapping results of eight-node data acquisition system 

3.3Evaluation metrics for NoC data acquisition systems 

The evaluation metrics of NoCs are latency, throughput rate, etc. Both latency and throughput rate in data 

acquisition systems are related to the distance between any two functional nodes with data communication in 

the NoC architecture[21-23], so the mathematical model for the communication of NoC data acquisition 

systems in 3D Mesh architecture is defined as follows: 

 t = ta + tl + ts + tw (3-5) 

whereta is the time taken by the resource node to transmit the data to the network;tl is the time it takes 

for the data to pass through all channels; ts means the time to be spent on the communication nodes; tw refers 

to the blocking time. 

From equation (3-5), it can be seen that the delay of the communication task is closely related to the 

chosen communication path. To facilitate the calculation of the communication delay, it is assumed that when 

communicating, the path with the shortest distance between two nodes in the network is always selected. 

Using ci = (xs, ys, zs) and cj = (xd, yd, zs) denote the coordinates of the source and target nodes, respectively, 

and based on the XYZ routing algorithm[24] it is known that such that dx = |∆x| = |xs − xd|, dy = |∆y| =|ys − yd| and dz = |∆z| = |zs − zd|, then the number of hops between the source routing node and the 

destination routing node is : 

 ℎopi,j = dx + dy + dz (3-6) 

Assuming that all available channels are idle, the transmission time of the shortest path is given by tl =



 ℎopi,j × (wi,j/s) × t1. where the constant wi,j is the number of ci node to cj the amount of data transferred 

from node to node, and a fixed value then denotes the size of a unit information packet, and t1 denotes the 

time required for a unit information packet of data to pass through a single channel and communication node 

when the channel and communication node are in the idle state. 

If only the delay model under congestion-free conditions is considered, due to s and t1 being constants, 

the transmission delay of the shortest path is proportional to the number of transmission hops. Therefore, 

the 𝑡𝑙 ≈ ℎ𝑜𝑝𝑖,𝑗 × 𝑤𝑖,𝑗. 

The overall communication latency of the data acquisition system is 

 T = ∑ ∑ 𝑤𝑖,𝑗 × ℎ𝑜𝑝𝑖,𝑗𝑛𝑗=1𝑛𝑖=1   (3-7) 

According to equation (3-7), it is known that the communication delay of the data acquisition system is 

related to the communication volume of the overall acquisition system and the number of routing hops between 

communication nodes after mapping. As in equation (3-8), the communication cost independent of the 

communication volume of the acquisition system is obtained by normalizing the overall communication 

volume of the acquisition system for different acquisition data task graphs Tnorm, the communication delay of 

the acquisition system is positively correlated with the communication cost. The communication cost represents 

the average number of communication hops between any two nodes and its ideal value is 1. In this paper, 

the Tnorm is the objective function for optimization. 

4. Mapping algorithm based on reinforcement learning and improved attention mechanism 

4.1 The mapping scheme for the 3D NoC data acquisition system 

The essence of the mapping problem is the NP-hard problem, when the number of IP nodes to be mapped 

is n, there are n! number of solutions[24]. In NoC data acquisition systems, as the number of data acquisition 

ADCs and matching memories increases, the number of IP cores involved in the mapping problem increases, 

the solution space of the problem is huge, and it is difficult to obtain the optimal solution quickly, and the 

training set composed of the best instances is also difficult to obtain. Reinforcement learning does not require 

the training set composed of the best instances, but the optimal mapping strategy is finally obtained through 

continuous trial and error. First, the NoC mapping process is modeled as a Markov process, where the state s of 

the NoC mapping consists of the input sequence of task graph nodes and the mapped nodes, and the actions are 

the nodes selected in t step at, and all actions in sequence form the solution of the NoC mapping problem. The 

reward r is the negative value of the communication cost of the data acquisition system, the communication 

cost of the data acquisition system needs to be minimized. The policy is then the mapping of state s to action a, 

 𝑇𝑛𝑜𝑟𝑚 = ∑ ∑ 𝑤𝑖,𝑗𝑛𝑗 =1𝑛𝑖 = 1 × ℎopi,j∑ ∑ ℎ𝑜𝑝𝑖,𝑗𝑛𝑗 =1𝑛𝑖 = 1    

 

(3-8) 

 



 

the probability of selecting the node to be mapped pθ(a|s): 

 pθ(a|s) = ∏ pθ(at|s, a1:t−1)nt=1   (4-1) 

The NoC data acquisition system mapping strategy is represented by a neural network with parameters θ 

The neural network is represented by the probability of each action step as pθ(at|s, a1:t−1), the probability of 

selecting the node to be mapped based on the mapped nodes a1:t−1 and the input node sequence s to calculate 

the probability of selecting the node to be mapped. The sequence of input nodes can be obtained according to 

the chain rules to the final mapped node sequence π The mapping probability of pθ(π|s) Therefore, a 

neural network model with parameter θ A neural network model with parameters[18] can be built to 

represent this mapping strategy. 

The reinforcement learning algorithm in which the intelligence continuously performs actions until the end 

of the round. After a round ends, the intelligence calculates the total feedback reward for that round and then 

uses that reward to update the parameters of the policy. the total feedback reward in the NoC mapping problem 

is the negative value of the communication cost of the data acquisition system. Reinforcement learning is based 

on equation (4-2) to calculate and update the gradient of the mapping strategy to obtain the appropriate 

parameters θ and thus the solution to the NoC mapping problem. ∇ℒ(θ|s)  = Ep
θ

(a|s)[(L(a|s) − b(s))∇ ln pθ(a|s)] , 
θ ←θ+ ∇ℒ(θ|s) 

(4-2) 

Calculating the mapping model parameters according to the chain rule θ the partial derivative of the 
gradient value can be obtained ∇ ln pθ(π|s), and (L(π|s) − b(s)) This gradient value determines the 
direction of gradient descent. Where L(a|s) is the performance of the current strategy, and b(s) reflects the 
average performance of the strategy. If the current strategy performs better than the "average", it is motivated in 
the positive direction, and vice versa. For this purpose, a Critic neural network is introduced b(s) to predict the 
communication cost of the data collection task graph to be mapped. 

 

Figure 4-1 Block diagram of RA-Map data acquisition system mapping algorithm 

In this thesis, an NoC mapping algorithm RA-Map based on reinforcement learning[25] and an improved 



 

attention mechanism[26] is proposed, In Figure 4-1. The algorithm contains three parts: task graph 

preprocessing, mapping network (Actor), and mapping result evaluation network (Critic). The task map 

preprocessing uses the graph convolution method to extract node features and graph structure features in the 

task map to generate node embedding vectors. The mapping network consists of two parts, the encoder, and the 

decoder. The encoder performs local attention operations on the task graph node embedding vectors to generate 

node action vectors. The decoder combines the task graph global information, local information, and key node 

information as the current environment state, and calculates the probability of each unmapped node as the next 

mapped node based on the mapping policy to obtain the mapping solution sequence and calculate the 

communication cost of the data acquisition system. The higher the probability of the mapping solution 

sequence, the lower the overall communication cost[19]. In addition, the Critic network is introduced to 

estimate the communication cost of the data acquisition system and guide the Actor network to update the 

mapping strategy. 

4.2 Task map pre-processing 

Task graph preprocessing generates node embedding vectors. In the task graph of the data acquisition 

system, each functional node consists of two parts: node function coding and node position coding. For 

example, in the data acquisition system, one-hot coding is used to classify the node functions as acquisition 

node [1, 0, 0, 0], transmission node [0, 1, 0, 0], storage node [0, 0, 1, 0] and control node [0, 0, 0, 1]. However, 

with such an encoding method, the encoding results of functional nodes of the same type are consistent, and it 

is impossible to distinguish the different numbers of each functionally identical node. Therefore, to distinguish 

the same type of functional nodes, an encoding (Pos) representing the location information of each functional 

node is added to the one-hot encoding of that node. The encoding method of Pos adopts the absolute position 

encoding method, and its expression is: Posi(t) =  sin( t100i/d) , i ∈ d (4-3) 

where the symbol t represents the ordinal number of a functional node in the task graph. The symbol d is 

the dimension of the position encoding vector, and in this paper, four elements of the vector are used to 

represent the position information of a functional node. The symbol i denotes the ith element in the position 

vector, the encoding value of the ith dimension. Specifically, taking the acquisition nodec3 As an example, the 

acquisition nodec3 is coded as [1, 0, 0, 0] and the location is coded as [0.812, -0.988, 0.095, 0.030], so the full 

encoding of the acquisition nodec3 of the complete code is [1, 0, 0, 0, 0, 0.812, -0.988, 0.095, 0.030]. 

First, the one-hot encoding vector of each functional node is stitched with the position encoding vector to 

form the node feature vector X = (x1, ⋯ , xn) ∈ ℝn×8. Then, the node feature vector is used as the initial node 

feature and the initial node feature matrix and the task graph adjacency matrix are used as inputs. Finally, the 

connections between nodes are captured by a 3-layer Graph Convolutional Network (GCN)[27] to obtain a 

more comprehensive embedding representation of each node in the task graph E = (e1, ⋯ , en) ∈ ℝn×de to be 



 

used as input for the subsequent mapping model. 

4.3 Actor Network 

The mapping network completes the mapping of IP cores and is a typical sequence input to sequence 

output (Seq2Seq) structure. In Figure 4-2, the input of the encoder consists of the embedding vector of the task 

graph nodes E = (e1, ⋯ , en) ∈ ℝn×de and the adjacency matrix of the task graph D ∈ ℝn×n . The encoder 

converts each node in the task graph into an intermediate action vector A = (a1, ⋯ , an) ∈ ℝn×da which is used 

as the input of the decoder. The decoder generates a sequence of mapping solutions based on the intermediate 

action vectors according to the mapping probability model. 

 

Figure 4-2 Block diagram of RA-Map data acquisition system mapping algorithm 

4.3.1 Encoder 

The mapping network encoder retains the useful part of the input information and generates intermediate 

action vectors. In a data acquisition system, the data flow between nodes follows the sequence of data 

collection, storage, and forwarding, and there is no direct connection between two nodes without data 

transmission. Therefore, to avoid introducing useless information in the intermediate action vector A, the 

encoder uses a multi-head local attention mechanism to generate the intermediate action vector. The structure of 

the encoder is shown in Fig. and consists of six identical blocks, each of which contains a multi-head local 

attention layer and a feed-forward fully connected layer. In addition, the blocks are connected in the form of 

residual connections to further improve the performance and stability of the model. 



 

 

Figure 4-3 Encoder structure 

In the local multi-head attention operation, the Mask matrix reflecting the connection relationship between 

nodes is obtained based on the adjacency matrix of the task graph, which is calculated as follows: {x = 1, x > 0x = 0, x ≤ 0 (4-4) 

For each node in the task graph, the multi-head local attention operation aggregates the information of that 

node and its neighbor nodes and calculates the intermediate action vector of that node by weighted 

summation A . where the weighting factor is determined by both the relationship between nodes and the Mask 

matrix. Specifically, a position of 1 in the Mask matrix indicates the existence of a connection relationship 

between two nodes, while a position of 0 indicates the absence of a connection relationship between two nodes. 

The local multi-head attention operation is calculated as follows: 

A = softmax (QKT⨀Mask√d ) V  (4-5) 

where Q = (q1, ⋯ , qn) ,K = (k1, ⋯ , kn) , and V = (v1, ⋯ , vn) denote the matrices of query, key and 

value respectively. Specifically, each element of the input sequence is represented as a vector. For each element, 

three weight matrices are constructed Wq , and Wk and Wv and mapping the element vectors to the new query 

vector, by matrix multiplication Q , the key vectorK, and the value vector K respectively. When calculating the 

attention score, the query vector Q and key vector K matrix multiplication are performed to obtain the 

similarity score of each query vector with all key vectors. The similarity scores are multiplied with the 

corresponding elements of the Mask matrix to determine which similarity scores should be set to zero, which in 

turn is used as a weighting factor to calculate the weighted sum of the value vectors. 

The output of the multi-head local attention operation is normalized by the feed-forward fully connected 

layer with: FFN(x) = max (0, xW1 + b1)W2 + b2 (4-6) 

Where x is the output of the multi-head local attention operation, the W1 and b1 are the weight matrix 

and bias vector of the first linear transformation, max(0, X) is the ReLU activation function, and W2 and b2 



 

are the weight matrices and bias vectors of the second linear transformation. 

4.3.2 Decoder 

The mapping network decoder implements the mapping of IP cores. In the data acquisition system, the 

storage node plays a top-down role and is responsible for receiving data from the acquisition node on the one 

hand and forwarding the stored data to the transmission node on the other hand. Therefore, the storage node is 

the key node in the data acquisition task graph. To address this feature, in the decoder, the task graph key 

information is introduced to solve the mapping sequence based on considering the task graph's global 

information and local information. At the t = 4 step, the structure of the decoder is shown in Fig 4-4. 

 

Figure 4-4 Decode structure 

In the decoder, the intermediate action vector output by the encoder 𝐴 = (a1, ⋯ , an) ∈ ℝn×da and the 

node feature vector X = (x1, ⋯ , xn) ∈ ℝn×4 as inputs. In which, the global information of the task graph is 

obtained by averaging the intermediate action vectors Agobal and the intermediate action vectors of the three 

most recently mapped nodes are used as the local information of the task graph Alocal When the number of 

mapped nodes is less than three, the global information is obtained. When the number of mapped nodes is less 

than three, a mapping model learnable occupancy vector is introduced a0. The global and local information of 

the task graph is stitched together and transformed by the fully connected layer to obtain ad dimensional Query 

vector. Among all the stored nodes, the two stored nodes with the largest probability values are dynamically 

selected as the key information of the task graph by the single-head attention operation with mask, which is 

calculated as 𝑎𝑖 = QA𝑇⨀𝑀𝑎𝑠𝑘 ， 𝑖 ∈ {1 ⋯ 𝑛}  (4-7) 𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑖) = exp(𝑎𝑖)∑ exp(𝑎𝑗)𝑁𝑗=1  ，𝑖 ∈ {1 ⋯ 𝑛}  (4-8) 

where Q denotes the Query vector obtained by aggregating the global and local information of the task 



 

graph, A is the intermediate action vector, and the Mask matrix is generated from the node feature matrix.⨀ 

denotes the corresponding elements of the matrix are multiplied, andpi  denotes the probability of each stored 

node. 

In the decoder, the global information of the task graph is first splicedAgobal , local informationAlocal and 

dynamic key node information Akey  and then a fully connected layer transformation generates a d 

dimensionalQuery’vector. The action encoding vectors of unmapped nodes are used as Key vector, and the 

probability of each unmapped node being the next mapped node is calculated using a single-head attention 

mechanism with a mask P, and at the t = 4 at the step Pt=4 = {p4, p5, p6, p7, p7} . In the model training 

process, a polynomial sampling method is used to sample each node to be mapped according to the probability P sampling, the higher the probability that the unmapped node with a higher probability value is selected as the 

next mapped node, thus enhancing the diversity of model mapping results. When testing the model, the 

unmapped node with the highest probability value is selected as the next mapped node to achieve the best 

results. In the figure, the action vector a4 has the highest probability value, so the acquisition node c4 is the 

next mapping node. 

The decoder is autoregressive and achieves a complete mapping of task graph nodes by cyclically 

executing the decoding process. When all nodes are finished mapping, a sequence of mapping solutions is 

obtained M = {mi}i=1n [18] , which is a numerical arrangement from 1 to n, where the index indicates the 

routing nodes on the architecture and the elements indicate the IP cores in the task graph. Finally, the 

communication cost of this solution sequence is calculated by Tnorm to evaluate the performance of the 

mapping network. 

4.4 Critic Network 

The Critic network predicts the communication cost for a given graph of data collection tasks to be 

mapped. In the training phase, if the mapping network generates a sequence of mapping solutions M the 

communication cost of Tnorm  is smaller than the communication cost estimated by the Critic network Tnorm_estimate. The input to the Critic network is a task graph node embedding vector obtained by graph 

convolution preprocessing E(e1, ⋯ , en) , similar to the Actor network, which employs a three-level multi-head 

attention block to extract sequence features. Each attention block consists of a multi-head attention sub-layer 

and a feed-forward fully connected sub-layer, using IN to normalize the node sequences output from each layer. 

In addition, the network layers are connected to each other using residual networks to prevent gradient 

disappearance or explosion. Then, all node information in the task graph to be mapped is averaged. Finally, a 

two-layer linear transformation is used to obtain the predicted value of the communication cost of the data 

acquisition system to be mapped. 



 

4.5 Model Training 

Monte Carlo sampling is a random sample-based estimation method that can be used to approximate the 

expectation in the strategy gradient formula, thus avoiding the complexity and difficulty associated with the 

direct calculation of the expectation. Therefore, Monte Carlo sampling is used to approximate the strategy 

gradient formula (3-10) for effective strategy optimization in reinforcement learning[19]. 

 ∇ℒ(θ|s) ≈ 1B ∑ (L(ai|si) − b(si))Bi=1 ∇ ln pθ(ai|si)  (4-9) 

where 1B ∑ (L(ai|si) − b(si))Bi=1  denotes the actual communication cost of the mapping network solution 

sequence at the end of a round Tnorm and the critic predicted communication costTnorm_estimate which 

determines the direction of gradient descent. The reinforcement learning algorithm calculates the mapping 

network by equation (4-2) Pθ(ai|si) parameters in θ and implements updates to obtain a more accurate 

mapping strategy. 

The Critic network is trained simultaneously with the NoC mapping network (Actor network), where the 

strategy network outputs the mapping solution sequence communication cost as the actual value and Critic's 

estimated communication cost as the predicted value, and the Critic network is trained by minimizing the mean 

square error between the actual and estimated values to improve its prediction accuracy. In this way, the Critic 

network can more accurately evaluate the performance of the mapping solution sequences generated by the 

policy network and thus guide the update of the policy network. 

RA-Map uses the steps in Algorithm 1 to train the parameters in the network. The training dataset was 

randomly generated by the data acquisition system model containing 8, 12, 27, 31, 46, 50, 73, 106, and 124 IP 

nodes constituting the task maps of the data acquisition system, and a total of 25,600 different task maps were 

generated as the training set. In the model training phase, the mapping network uses Adam optimizer[28] and 

learning rate 1e-5 to tune the network parameters and a gradient cropping strategy to limit the magnitude of the 

gradient to 1.0 to avoid the problem of gradient explosion. The Critic network was trained using the Adam 

optimizer and a learning rate of 1e-3. The whole training process took about 43 hours. 

Algorithm 1: RA-Map data acquisition system mapping algorithm 

Input: Task graph 

Output: Trained model 

  Training procedure: 

1  Initialize training set S. 

2  number of epochs e. 

3  batch size B. 

4  Initialize actor network parameters 𝜃 

5  Initialize critic network parameters 𝜑 



 

6  for epoch = 1 to e do 

7  Generate B Task Graph {𝑠𝑖}𝑖=1𝐵  

8  Sample a mapping solution 𝜋𝑖 for each Task graph 𝑠𝑖, calculate communication cost 𝐿(𝜋𝑖),  
obtain{𝐿(𝜋𝑖)}𝑖=1𝐵  

9  Calculate a base function 𝑏(𝑠𝑖) for each Task graph 𝑠𝑖 , obtain {𝑏(𝑠𝑖)}𝑖=1𝐵  

10  ∇ℒ(𝜃|𝑠) ≈ 1𝐵 ∑ (𝐿(𝜋𝑖|𝑠𝑖) − 𝑏(𝑠𝑖))𝐵𝑖=1 ∇ ln 𝑝𝜃(𝜋𝑖|𝑠𝑖) 

11  𝜃 ← Adam(𝜃 + ∇ℒ(𝜃|𝑠) ) 

12  𝜑 ← Adam(𝑑𝜑 ) 

  end for 

5. Experimental results and discussion 

The RA-Map data acquisition system mapping algorithm is programmed in Python 3.9, using a third-party 

machine learning framework, PyTorch 1.11. Simulation validation is performed based on an Intel Gold 6258R 

CPU, 192GB of RAM, and an NVIDIA Quadro RTX 8000 GPU. 

5.1 Experimental procedure and validation results 

According to the data acquisition system model, the task map of the data acquisition system with the 

number of IP nodes 8, 12, 27, 31, 46, 50, 73, 106, 124 is randomly generated and used as a benchmark to test 

the effectiveness of the proposed RA-Map algorithm. In Table 5-1, the changes in the communication cost of 

the mapping solution sequence are compared for the RA-Map mapping algorithm before and after the encoder 

and decoder improvements. While keeping the other parts of the mapping algorithm unchanged, changes are 

made to two aspects: change 1 is to replace the multi-head local attention operation in the encoder part of the 

RA-Map algorithm with a multi-head global attention operation; change 2 is to remove the dynamic key node 

information fused in the decoder part of the RA-Map algorithm and retain only the global and local information 

of the task map as the current environment to complete decoding. 

Table 5-1 Comparison results of the RA-Map mapping algorithm before and after improvement 

IP 
cores  

RA-Map RA-Map(No Local Att-Encoder) RA-Map (No key-Decoder) 𝑇𝑛𝑜𝑟𝑚 

(hop) 
Time 

(s) 
𝑇𝑛𝑜𝑟𝑚 

(hop) 
Cost normalized  

to RL-MAP 

Time 

(s) 
𝑇𝑛𝑜𝑟𝑚 

(hop) 
Cost normalized  

to RL-MAP 

Time 

(s) 

8 1.294 0.53 1.294 1.0  0.53 1.294 1.0 0.53 12 1.375 0.62 1.375 1.0  0.61 1.375 1.0 0.62 18 1.293 2.18 1.426 1.103  2.1 1.304 1.009  2.18 27 1.368 5.39 1.652 1.208  5.14 1.403 1.026  5.36 31 1.345 6.47 1.949 1.449  6.07 1.458 1.084  6.42 46 1.594 9.64 2.173 1.363  9.21 1.789 1.122  9.58 50 1.754 10.04 2.279 1.299  8.86 1.983 1.131  9.081 



 73 1.921 12.58 2.739 1.426  11.94 2.368 1.233  12.31 106 2.106 20.56 2.869 1.362  19.74 2.468 1.172  20.27 124 2.508 28.28 3.368 1.343  27.31 2.964 1.182  27.85 

Average 1.255    1.096  

In Table 5-1, when the number of IP cores in the data acquisition system is less than or equal to 12, there is 
no difference in the communication cost of the mapping solution sequence before and after the improvement of 
the RA-Map mapping algorithm. However, when the number of IP cores is greater than 12, and when the 
number of IPs is higher, the use of the multi-head local attention mechanism in the encoder and the inclusion of 
dynamic key node information in the decoder both help to improve the quality of the model mapping solution. 
Overall, based on benchmark tests with different numbers of IP cores in 10 groups, the RA-Map mapping 
algorithm reduces the average communication cost by 25.5% compared to the mapping model before the 
improvement of the encoder coder, and the RA-Map mapping model reduces the average communication cost 
by 9.6% compared to the decoder mapping model without incorporating dynamic key node information. 
algorithm, there is almost no difference in running time, so it is not discussed separately. 

To evaluate the performance of the proposed RA-Map algorithm, it is compared with the particle swarm 

algorithm and simulated annealing algorithm of the heuristic algorithm on the 3D NoC data acquisition system 

mapping problem. Table 5-2 shows the results of the proposed RA-Map algorithm compared with other 

heuristic algorithms in terms of mapping solution communication cost and running time based on benchmark 

tests with different numbers of IP cores in 10 groups. 

Table 5-2 Comparison results between RA-Map mapping algorithm and heuristic algorithm 

IP 
cores 

RA-Map DPSO SA 𝑇𝑛𝑜𝑟𝑚 

(hop) 
Time 

(s) 
𝑇𝑛𝑜𝑟𝑚 

(hop) 
Cost normalized  

to RL-MAP 

Time 

(s) 
𝑇𝑛𝑜𝑟𝑚 

(hop) 
Cost normalized  

to RL-MAP 

Time 

(s) 

8 1.294 0.53 1.294 1.0  0.87 1.294 1.0  0.66 12 1.375 0.62 1.375 1.0  1.04 1.375 1.0  1.473 18 1.293 2.18 1.334 1.032  47.05 1.293 1.0  46.16 27 1.368 5.39 1.449 1.059  83.48 1.492 1.091  81.44 31 1.345 6.47 1.406 1.045  115.2 1.479 1.100  112.3 46 1.594 9.64 1.638 1.028  320.3 1.727 1.083  318.2 50 1.754 10.04 1.891 1.078  388 1.904 1.086  386.2 73 1.921 12.58 2.219 1.155  8897 2.321 1.208  8104 106 2.106 20.56 2.359 1.120  13073 2.396 1.138  11895 124 2.508 28.28 2.834 1.130  18436 2.883 1.150  16042 

Average  1.065    1.085   

From Table 5-2, it can be concluded that when the number of IP cores in the data acquisition system is less 

than or equal to 12, there is no difference between the mapping results of the RA-Map algorithm and the 

discrete particle swarm algorithm and simulated annealing algorithm. However, when the number of IPs is 

greater than 12, and when the number of IP cores is higher, the communication cost of the data acquisition 

system is smaller for the RA-Map mapping algorithm solution sequence compared with the mapping solution 



 

sequence of the discrete particle swarm algorithm and the simulated annealing algorithm. the average 

communication cost of the data acquisition system is reduced by 6.5% and 8.5% for the RA-Map mapping 

algorithm compared with the discrete particle swarm algorithm and the simulated annealing algorithm, 

respectively. 8.5%. In addition, in data acquisition task maps with a high number of IP cores, the RA-Map 

algorithm has a much shorter running time compared to other heuristics. 

6. Conclusion 

This article proposes a 3D NoC data acquisition system mapping algorithm based on reinforcement 

learning and improved attention mechanisms. Firstly, the algorithm improves the encoding method of nodes in 

the task graph. Secondly, the local attention mechanism is used in the mapping network encoder to overcome 

the problem of unnecessary information introduced by global attention mechanisms in the intermediate action 

vector. The mapping environment of the mapping network decoder is composed of global information, local 

information, and dynamic key node information of the task graph, to complete the selection of unmapped nodes. 

Finally, reinforcement learning is utilized to solve the challenge of obtaining high-quality training sets for the 

data acquisition system. Experimental results show that the RA-Map mapping algorithm reduces the average 

communication cost by 25.5% and 9.6%, respectively, compared to the encoder using global attention 

operations and the decoder not incorporating dynamic key node information into the mapping environment. 

Compared with the discrete particle swarm algorithm and simulated annealing algorithm, the communication 

cost of the RA-Map algorithm is reduced by 6.5% and 8.5%, respectively. The running time of the RA-Map 

algorithm is significantly reduced compared to other heuristic algorithms. Future work includes expanding the 

algorithm to different NoC topologies and implementing real-time communication energy, congestion, thermal 

sensing, and fault-tolerant application mapping. 
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