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Abstract
AI-based solutions for automated Gleason grading have been developed to assist pathologists to make
rapid and quantitative assessments, but the generalization across various scanners and updating AI
models continuously using new annotated data from end users remains a key bottleneck in the field. We
proposed an comprehensive digital pathology workflow for AI-assisted Gleason grading, incorporating an
image quality check software A!magQC, a cloud-based annotation platform A!HistoNotes and
Pathologist-AI Interaction (PAI) strategy. To demonstrate and validate the pipeline, we employed it on
prostate samples obtained from 5 scanners for Gleason grading. After training on 132 prostatectomy
specimens scanned by an Akoya Biosciences scanner, validation on 55 prostatectomy specimens and
156 biopsy specimens yielded a sensitivity of 85%, specificity of 96% and F1 score of 78% on Gleason
grading for prostatectomy specimens, and 96% sensitivity on tumor detection for biopsy specimens. For
images scanned by other 4 scanners, the average F1 score increased from 67% to 75% on Gleason
pattern detection after adopting our generalization solution. In clinical experiments conducted with 5
pathologists from Singapore and China, our pipeline accelerated Gleason scoring by 43%.  Furthermore, it
reduced annotation time by 60% via semi-automatic annotation, leading to improved model performance
through incremental learning.

Introduction
Prostate cancer (PCa) is the second most common cancer of males worldwide, accounting for 15.1% of
all male cancers diagnosed in 2020 [1]. The Gleason grade is the well-established histological
parameter used to assess the aggressiveness of PCa. Accurate Gleason grading is crucial to establish a
patient’s prognosis and determine the appropriate treatment. Large numbers of tissue samples generated
by prostatectomy and routine core biopsy need to be carefully inspected under the microscope by
experienced pathologists to detect malignancies. When PCa is detected, pathologists grade the tumor
based on microscopic identification of histological characteristics, which is highly dependent on the skill,
training and experience of the operator. To assess tumour load, the pathologist needs to measure the
relative proportion of tumour by Gleason grade. This process is time-consuming and labor-intensive,
especially when the number of samples is large, as with saturation prostatic biopsies. Misdiagnoses can
result in preventable morbidity and mortality, whilst over-diagnosis can cause patient anxiety and lead to
unnecessary procedures, including surgery. A better solution that leverages on technology is required to
improve the efficiency, accuracy, and consistency of Gleason grading. 

Recent advances in histology scanning technology and Artificial Intelligence (AI) offer great opportunities
to improve the fidelity of Gleason grading. As shown in Figure 1A, the advent of different slide scanners
has enabled the rise of digital pathology (DP) and the tantalizing promise of computational assessment.
The use of Whole-Slide Image (WSI) has significantly expanded the volume of DP data by enabling
digitalization of whole slides at high resolution. Meanwhile, AI holds the potential to improve the
efficiency of pathological assessment by reducing turnaround time and enhancing detection consistency
[2]-[5], as shown in the DP workflow in Figure 1A and 1B. Several traditional Machine Learning (ML)



Page 4/22

algorithms were investigated in gland segmentation and Gleason score by extracting morphological,
textual, color, and other features to identify PCa within WSIs [6]-[10].

To fully utilize such massive data sets, deep learning (DL) has been adopted and shown to have superior
performance in automatic feature extraction and pattern recognition, leading to widespread applications
in detection, classification, and segmentation of tissues in WSIs [3]-[5]. Compared to traditional ML
approaches, DL based methods can learn more complex Gleason patterns from histopathological
images. Recent research focus on applying DL to alleviate pathologists’ workloads, improve diagnostic
accuracy, and reduce observer variations have shown promise [11]-[25]. For example, Paige Prostate
Alpha is a PCa detection system based on a weakly-supervised DL algorithm. Independent studies on it
focused on comparing the accuracy and efficiency of PCa detection with and without AI assistance [20]-
[25] have shown that the sensitivity for pathologists increased from 74% to 90%, with reduction of
diagnostic time by 65.5%. It is worth noting that Paige Prostate Alpha is classified as a Class II device by
the U.S. Food and Drug Administration (FDA), the first FDA-approved AI product in the field of DP.

 Despite substantial achievements, we still face challenges with development and deployment of AI
technology in histopathology practice. First, the variation and quality of images acquired from different
scanners may profoundly affect AI models [26], which is an unrecognized key variable that impacts the
first step in DP pipelines as shown in Figure 1A. Some quality issues, such as out-of-focus and artifacts,
may impair the database and bias the resulting AI-model. Currently, we lack a standard by which to select
scanned images for AI training. Furthermore, the impact of scanners on WSI analysis and AI models has
not been systematically studied. Most previous studies [11]-[25] only assessed the performance of AI
models on images scanned by one or two scanners. For example, Paige Prostate Alpha was validated on
images scanned by Leica and Philips only. Second, large quantities of annotated data are essential for
training DL models [5], but acquiring such annotations is expensive. It requires experienced pathologists
to take time from their heavy clinical workload to manually perform detailed annotations. Last, the
feasibility of  updating existing AI-based methods with more data should be investigated since the
performance of models can be improved by increasing the amount of training data without completely
retraining the models, thereby improving their cost-effectiveness and reducing validation time [27][28]. 

To meet these challenges, we have developed and validated a pipeline as conceptually illustrated in
Figure 1A-C. Given the expense of generating a large, highly curated and annotated database, it should be
developed based on the highest quality WSIs available. As shown in Figure 1B, the A!MagicQC quality
control software package was developed for DP image quality control to ensure that the Hematoxylin and
Eosin (H&E) WSIs used in this study are of high quality (details of A!MagicQC described in Supplementary
Section 1). We also quantified the image quality characteristics of several popular scanners.  To address
the need for an integrated and user-friendly annotation platform, we developed A!HistoNotes, a cloud-
based tool that allows pathologists worldwide to perform annotations or view the predictions generated
by the AI model in a web browser. To facilitate rapid incorporation of new data and incremental learning,
we closely integrated A!HistoNotes with our AI model in a feedback loop we have termed Pathologists-AI
Interaction (PAI) [29][30]. This closed loop enabled semi-automatic annotation to ease the annotation
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burden and facilitate AI model development, as demonstrated in Figure 1C. After training, the AI model
was first validated on a prostatectomy and biopsy dataset scanned by Akoya Sciences for tumor
identification and grading. Subsequently, the model was extended to images scanned by multiple
scanners through normalization methods, which enabled consistent performance of our model across
different scanners. Additional clinical validation, which included AI-assisted diagnosis and semi-
automatic annotation followed by incremental learning, was conducted with pathologists from Singapore
and China to evaluate the proposed method in a real-world application. 

Materials And Methods

Sample preparation 
Prostatectomy and biopsy formalin-fixed paraffin-embedded (FFPE) tissue specimens were collected
from the Department of Pathology, National University of Singapore Hospital (NUHS) approved by the
NHG Institutional Review Board (DSRB study reference number: 2018/01186). The samples were
prepared in accordance with the standard operating procedures of a CAP-accredited histopathology
laboratory. 4μm sections were cut and stained with hematoxylin and eosin from tissue blocks of radical
prostatectomy and biopsy specimens. In total there were 187 prostatectomy specimens (tissue area
112,400mm2) and 156 biopsy specimens (tissue area 7,723mm2) from 214 patients. The profiles of
patients involved in the study are listed in Supplementary Table 1.  

WSI Scanning and Image Quality Control using A!magQC
Images were initially acquired using Vectra ® Polaris™ from Akoya Bioscicences with bright-field imaging
at 0.5μm × 0.5μm per pixel resolution (20× magnification). Typical image size is approximately 85,000 ×
40,000 pixels for prostatectomy specimens and 25,000 × 15,000 pixels for biopsy specimens. Since
annotation quality and subsequent model development are ultimately dependent on the quality of
scanned WSIs, it is critical to have a robust QA system to control for the variation of sample preparation
and tissue types. Furthermore, image appearance and quality might significantly vary among different
scanners, leading to differences in color, brightness, and contrast for the same samples. Different
pathology laboratories may also use other brands of scanners, such as Olympus, Leica, KFBio, and
Philips. To address these variables, we developed an image quality control software named A!magQC to
identify common image quality issues for images acquired from various scanners. A!magQC is a fully
automated histology image quality assessment tool to identify five common categories of WSI quality
issues: out of focus, low contrast, saturation, artifacts, and texture uniformity, etc.[31]-[36]. Details of
A!magQC are described in Supplementary Section 1. To study the characteristics of images scanned by
different scanners and their impact on AI model performance, 38 prostatectomy specimens were
randomly selected and scanned using 4 other scanners. 
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Structured Image Data Annotation using A!HistoNotes
With our image quality control tool, we ensured the scanned images for annotation are of high quality. A
user-friendly, easily accessible, and efficient annotation solution is desired for structured and detailed
annotation for AI model development and validation. To this end, we developed a cloud-based annotation
platform, called A!HistoNotes. It provides a region of interest (ROI) management system and can create
an adjustable ROI on top of the image viewer. Details of A!HistoNotes can be found in Supplementary
Section 2. 

After we uploaded WSIs to A!HistoNotes, three experienced pathologists from NUH in Singapore manually
annotated the images independently to yield total annotation areas of 22,148 mm2 (12,630 instances) on
187 prostatectomy specimens and 2,223 mm2 (2,852 instances) on 156 biopsy specimens, as illustrated
in Figure 2A-B. Class labels include Gleason pattern 3 (GP3), Gleason pattern 4 (GP4), Gleason pattern 5
(GP5), benign, and stroma tissue. For binary classification, we further grouped the GP3, GP4, and GP5
tissue as “Malignant,” whereas benign and stroma tissue comprise the “Non-malignant” group.

Patch Extraction and Preparation
The annotations of different classes were extracted from A!HistoNotes and organized, as illustrated in
Figure 2C. Pathologists make diagnoses by examining specimens under a microscope at different
magnifications, suggesting that the AI model might also have an optimal magnification for patch
classification. To study and optimize patch scale factors, image patches were cropped into different sizes
of overlapping patches using a sliding window approach, with side length = x and stride = (x-1)/2, where x
= 251px (~125µm), 501px (~250µm), 1001px (~500µm), and 2001px (~1000µm), as illustrated in Figure
2D. The patches were then resized to 224 × 224 pixels to fit the input layer, resulting in a resolution of
0.56 (extra high resolution), 1.12 (high resolution), 2.24 (medium resolution), and 4.47 (low resolution)
µm/pixel for patches whose original side length was 251, 501, 1001, and 2001 pixels, respectively. The
overlap ratio between adjacent image patches is (x +1)/2x. To ensure validity, image patches were
extracted only when more than 70% of the area was annotated. 

Considering that prostatectomy specimens are much larger and thus contain more information than
biopsies, we used the annotations in prostatectomy WSIs to train our models. The 187 radical
prostatectomy WSIs were split into training and testing sets, whilst the annotated biopsy images were
used for testing only. The training and testing set split ratio of prostatectomy WSIs is 7:3 for the number
of WSIs, evenly divided to ensure the same ratios of areas for each annotated class in both training and
testing since the annotated area of different classes may vary significantly from slide to slide. The
process of train-test splitting is described in Supplementary Table 2. Figure 2E shows the number of
patches of high resolution in the training and testing datasets for each class.
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Scale optimization and AI model development
To determine the structure of the AI model, we first chose three of the most widely used network
architectures in the field, namely, ResNet50, VGG16, and NasNet Mobile, to compare their performance at
high resolution. Thereafter, the scale factor was optimized by training models built on the selected
structures using images of the different resolutions from scratch. After the image patches for the training
were organized as shown in Figure 3A, random data augmentation such as rotation and flipping were
applied to each image patch prior to training as shown in Figure 3B. The classification layer in the
network was replaced with a Weighted Classification Layer as a class rebalancing strategy, as
demonstrated in Figure 3C, where the weights are inversely proportional to the number of image patches
to mitigate imbalance in the dataset.

In the testing process, the trained model was applied to every sliding window on test images within the
tissue region. The testing returned a list of scores that indicate the predicted probabilities of class labels
for each patch, as demonstrated in Figure 3 D-E. We designed a voting policy to determine the predicted
label of the overlapping region based on the predictions of neighboring patches. The final decision is
either the class with highest votes (if there is any) or based on the highest average scores. Details of the
voting policy are described in Supplementary Table 3. A final output was generated after the voting policy
and compared to the ground truth annotation for performance evaluation, as shown in Figure 3F and G.
Details of evaluation on testing images are described in Supplementary Section 3.

We performed AI model training and testing on MATLAB 2021a (Mathworks Inc., USA) with its Deep
Learning and Image Processing toolboxes on the Windows 10 x64 operating system. The computer
specifications are RAM: 1.0TB, CPU: Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz, and GPU: single NVIDIA
Tesla V100-PCIE-16GB.

Model Generalization Across Different Scanners
Since a variety of scanners are used in hospitals and laboratories with potential differences in  resultant
images, we investigated the generalizability of the optimal AI model on WSI images from 5 major
commercially available scanners as shown in Figure 1A. 

To normalize images across scanners and reduce the inconsistencies of image appearances, 132
patches of 2000 × 2000 pixels were randomly extracted from 66 Akoya-scanned WSIs in the training set
as references. We transformed the images from other scanners by mapping the histogram of the
references. Next, we enlarged the training data set using color augmentation as shown in Figure 3B to
train a more generalizable model. By color argumentation, the resulting patches simulated the range of
appearances acquired by different scanners. Three configurations are applied to each original image
patch, and the details are described in Supplementary Table 4. 
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The images scanned by the 4 other scanners were not annotated, and the annotations on images
scanned by the Akoya Biosciences scanner cannot be directly applied to them since the images were not
aligned with each other. We applied image registration to migrate the annotations to the images of other
scanners. After registration, images scanned by other scanners have corresponding ground truth
annotations and, therefore, can be compared with the prediction results to evaluate the performance
before and after model generalization. The average structural similarity index measure (SSIM) is 0.99
between original annotations and registered annotations, indicating accurate image registration. 

Results

Scale optimization, tumor detection and Gleason grading
Architectures of different models were first trained using high resolution patches (1.12µm/ pixel).
Comparing the model performances on image patch level (as shown in Supplementary Figure 3), NasNet
Mobile is slightly inferior in terms of F1 score, whilst the differences between vgg16 and ResNet 50 are
subtle. Given that the network size of ResNet50 is smaller, it was selected for faster deployment.

Using structures based on Resnet 50, models were trained at four different scales and applied to test
images to compare their performance and optimize the scale factors. A representative image and the
results of different scales are shown in Figure 4A. As demonstrated in Figure 4B, the resolution/scale will
affect the performance of the AI model, and we found the scale factors have less impact on the detection
of G3, G4, and non-Malignant classes. However, at high resolution, the F1 score of G5 increased more
than 2-fold from low resolution as shown in Figure 4B. These findings correspond to the fact that most
benign and malignant tissues can be easily identified at low magnification based on glandular
architecture, whereas pathologists need higher magnification for determination of Gleason grading. We
therefore selected the model trained using high-resolution patches (1.12µm/ pixel) to process
prostatectomy specimens in the following study. The specificity of predicting GP3, GP4, Gp5 and non-
malignant tissue is each greater than 0.9. Of note, the precision, sensitivity and F1 score of predicting
non-malignant tissue is 0.99, which means the model rarely misclassified tumor as benign tissue. The
training performance of high-resolution patches is demonstrated in Supplementary Figure 4.

Besides grading tumor on prostatectomy specimens, another key purpose of the AI model is to pre-screen
the biopsy sample to highlight potential malignancies for pathologists before their review. For this
screening, we applied the optimized model to test the performance of tumor detection (binary
classification) on the biopsy specimens. Considering that the size of each biopsy is much smaller than
that of prostatectomy specimen, and biopsy shapes are more elongated, biopsy specimens were
processed at high and extra high resolution to determine if the model requires higher resolution to
interpret biopsies. As shown in Figure 4C, results at extra high resolution are more detailed and consistent
with ground truth annotation. As shown in Figure 4D, the differences of specificity and PPV between the
two models are small, but the extra high resolution achieved significantly higher sensitivity and NPV.
Therefore, the model using extra high-resolution images is more desired for biopsy specimens as the
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model can process the smaller tissue with irregular shape and achieved better performance. The
precision of predicting benign tissues (NPV) was 0.96 for 156 biopsy samples, meaning that tumors are
very unlikely to exist when the AI model has classified as non-malignant. This binary model can thus be
applied as a pre-screening tool, confidently identifying malignancies from a large number of otherwise
benign cases before manual screening by pathologists so that they can spend less time examining cases
reported as benign and devote more attention to potential malignancies. 

Model Generalization across different scanners
Images acquired from different scanners do have substantial variation, as demonstrated in Figure 5A.
Using A!magQC to analyze image quality, we also found that images scanned by these scanners have
varying quality issues, as shown in Figure 5B. Although images acquired from KFBio and Olympus
scanners had more artifacts, the general quality of all images scanned by different scanners are
satisfactory. 

The generalizability of AI models across image scanners is a crucial consideration when deploying the AI
model for diagnosis in hospitals using existing pathology workflows and scanners, ideally without the
need to retrain the model. There is currently scarce data on the impact of different scanners on AI-
enhanced digital pathology.  Our data showed that uncompensated variations in the intensity and color
of commonly used scanners will lead to inconsistent predictions, as shown in Figure 5C.   In this study,
normalization and color augmentation were applied to improve the generalizability of our model for
different scanners. As demonstrated in Figure 5D, the appearance of image output by the existing AI
model is more consistent after the generalization method had been applied. For quantification, the overall
sensitivity, specificity, and F1 score for tumor grading significantly increased after generalization, as
shown in Figure 5E-G. For images scanned by KFBio (III), and Leica (IV), the improvement is even more
apparent, as the difference between these images and those scanned by the Akoya scanner is more
dramatic. Although the training data was derived from only a single scanner, image normalization and
color augmentation effectively improved the model consistency and performance across different
scanners.

3-phase clinical validation of AI-assisted diagnosis
We conducted clinical validation in 3 phases involving 5 pathologists from China and Singapore to
assess if the AI model can improve the accuracy, efficiency, and consistency of Gleason grading in
histopathology departments, as shown in Figure 6A. Phase 1 was the conventional microscopic
examination, while phase 2 was WSI examination without AI-assistance. In phase 3, annotations
generated by the AI model, which we called pseudo annotations, as well as Gleason score and tumor
percentages generated by the AI model are provided as references for pathologists. It should be noted
that the displayed pseudo annotations have been simplified for easier interpretation and quicker
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diagnosis based on pathologists’ feedback prior to the experiment, as shown in Figure 6B. Details of this
experiment are described in Supplementary Section 4.

We first assessed the accuracy of Gleason grading by pathologists across the 3 phases, as indicated in
Figure 6C. The average accuracy of pathologists in phase 1-3 is 0.67, 0.52 and 0.62, respectively,
compared with an overall AI model accuracy of 0.68. With AI-assistance, the accuracy of three
pathologists (B, D and E) vastly increased, while pathologists A remained highly accurate at all phases. 

As for time taken for histological examination, almost no difference was observed between phase 1 and
2 among pathologist A, B and C, as shown in Figure 6D. Nevertheless, there was significant improvement
for all 5 pathologists in phase 3, especially for pathologists A, D and E, whose average examination time
was reduced by 41%-58%. The average examination time of pathologists decreased from 148s (phase 1)
and 147s (phase 2) to 84s (phase 3), after AI-assistance was introduced in the final phase. These results
show that WSI examination without AI-assistance is comparable to microscopic examination for Gleason
grading as neither efficiency nor accuracy improved.  However, WSI examination enhanced by the AI
model accelerated Gleason grading time by 43% while maintaining the same high accuracy as with
conventional microscopic examination, suggesting a role as physician extender to assist pathologists in
their diagnostic work. 

A common challenge for pathologists is inconsistency in classifying Gleason patterns among
practitioners, as diagnosis may be influenced by the training, experience, and attentiveness of
pathologists, leading to considerable inter-observer variability. As demonstrated in Figure 6E, compared to
phase 1. the intraclass correlation coefficient (ICC) of three pathologists in phase 2 decreased slightly.
However, comparing phases 2 and 3, where all 5 pathologists participated, the ICC increased from 0.78 to
0.84, indicating higher agreement among 5 pathologists when AI-assistance was provided based on
improved accuracy and efficiency. 

From the result of these experiments, we demonstrated that using WSI examination with AI-assistance
significantly improved the accuracy, efficiency, and consistency of Gleason grading.

Pathologist-AI Interaction via A!HistoNotes: semi-automatic
annotation and incremental learning
Repeated rounds of AI model training with new data progressively optimizes the model’s performance.
During this training, pathologists can leverage the existing model’s classifications to generate pseudo
annotations, which serve as a starting point for further refinement by pathologists. We have termed this
iterative training Pathologist-AI Interaction (PAI) and implemented it in A!HistoNotes, where pathologists
can correct pseudo annotations generated by the AI model and these annotations can be directly applied
to the model for further training. Details of Pathologist-AI Interaction study are described in
Supplementary Section 5.
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To validate this PAI, we conducted a round of iterative training. First, we compared annotated areas
before and after pathologists’ corrections to quantify the quality of pseudo annotations generated by the
AI model. Pathologists were asked to delete the instances they consider invalid. As shown in Figure 6F,
most of the pseudo annotations of GP3, GP4, normal, and stroma were preserved, while many
annotations of GP5 were removed by the pathologists. These findings were consistent with the image
dataset’s validation results, where the performance on identifying GP 3, GP 4 and non-malignant is
satisfactory but relatively poor for GP5 due to the limited amount of GP5 data available. Regarding the
time required for annotations by pathologists, the average annotation speed decreased from 1267s /per
image for fully manual annotation, to 508s /per image for semi-automatic annotations (see Figure 6G),
showing that semi-automatic annotations is about 60% faster than fully manual annotations. These
findings are in line with the pathologists’ preservation of most of the pseudo annotations generated by
the models as the pathologists did not need to spend much time and effort to delete the annotations.
From this perspective, semi-automatic annotations supported by our AI model greatly improve a
pathologist’s efficiency to iteratively integrate new data into the model. 

More importantly, the overall performance improved after feeding the corrected annotations directly into
the existing model for further training, as illustrated in Figure 6H. All metrics increased after the first round
of PAI interactions although only a small set of data was added, demonstrating our model’s capacity for
incremental learning ability. This feature enables us to iteratively update the AI model without the need
for complete retraining. As the performance of this AI model will be improved continuously by learning
from pathologists’ corrections, we also expect that pathologists will require substantially less time and
effort to perform semi-automatic annotation and the accuracy of pseudo-annotations will gradually
increase. 

Conclusion And Discussion
Training multiple models with different resolutions performed well at identifying benign tissue, whereas
ability to identify GP5 varied significantly. For GP5, we found that, the higher the image resolution yielded
a more sensitive model but at the expense of specificity. The reason might be that GP 5 needs
examination at high magnification to be identified, while benign tissue can be easily confirmed at lower
magnification. Another possible reason explanation may be that, in our data set, the average size of GP5
annotations is much smaller than others, thereby requiring smaller image patches to process.

After selecting the optimal scale, we demonstrated that our AI model achieved high performance on
tumor detection and grading on both biopsy and prostatectomy specimens. For prostatectomy
specimens, our AI model provided pseudo annotations, tumor identification and percentage of various
Gleason patterns as references for pathologists. In particular, the more abundant GP3 and GP4 samples
afforded a specificity of more than 95%, which is clinically relevant because GP3 and GP4 are the most
prevalent Gleason grades in most PCa in Singapore. For biopsy specimens, pathologists need to be
extremely careful to identify even a small amount of tumor even though most cases are benign in
practice. Our AI model can be used as a pre-screening tool to filter out suspicious cases and allow



Page 12/22

pathologists to review benign specimens quickly with greater confidence, which will reduce their workload
and improve clinical turnaround times. 

Of the Gleason grades, our model encountered the greatest difficulty with precise identification of GP5.
GP5 is relatively rare, in keeping with it being the smallest group in our data, which adversely impacts our
AI model’s ability to differentiate it from other patterns. However, as more GP5 data is collected in future,
it will enhance and validate this performance.

In addition, we have demonstrated that our model retains consistent and satisfactory performance across
a range of major scanners, even though it had been trained using images scanned by Akoya Bioscience
only. It is crucial that the model should be validated on images acquired from different scanners as the
variation caused by image scanning can greatly affect the AI model performance unless a generalization
approach is applied, as demonstrated in the results section (see Figure 5). The ideal AI model should be
agnostic to the type or brand of scanner, allowing the DP solution to be implemented in different
hospitals and labs without requiring replacement of existing equipment. In theory, a generalizable model
would also be more tolerant of changes in imaging parameters that will likely occur in real-world usage,
including suboptimal tissue processing and scanning conditions. 

In the 3-phase experiment conducted with five pathologists from Singapore and China, we demonstrated
that the AI model helped to increase the accuracy and efficiency of Gleason grading, whilst reducing inter-
observer variation. This is particularly true in the efficiency analysis, where all five pathologists achieved
faster times without a reduction in accuracy compared to microscopic examination and WSI examination
without AI-assistance. Even though pathologists were familiar with microscopic examination and are new
to WSI examination with AI-assistance, they still benefited greatly from the information provided by our AI
model integrated with A!HistoNotes.

Results of the PAI experiment show that AI assistance significantly increases the speed of annotations by
60% compared to conventional manual annotation, which can lighten pathologists’ workload. This
feature is critical, since the training of AI models typically requires large amounts of annotated data, and
researchers are unlikely to collect sufficient data to train a perfect model in a short period, especially
given the cost of manual annotations. By enabling an iterative feedback loop between AI model and
pathologists through the annotation platform provided by A!HistoNotes and incremental learning, the AI
model can be further trained and validated in a more efficient way whilst building a larger, generalizable
database. 

In this study, all our annotations and clinical assessments were performed using A!HistoNotes.
Pathologists used A!HistoNotes to performed manual annotation initially, and semi-automatic annotation
after the first model was built. This cloud-based and user-friendly platform is easy for pathologist to
access and annotate from different countries. In the 3-phase clinical validation study, the results show
that the AI-assistance implemented in A!HistoNotes enables pathologists to locate and grade tumors,
thereby greatly reducing the time required for pathologists’ evaluation. 
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It is noteworthy that the format of AI-assistance was adjusted several times prior to this experiment
according to pathologists’ feedback. In the beginning, a more exhaustive list of pseudo annotations and
Gleason score calculated by the model was presented to pathologists. However, they provided feedback
that there was too much information to be interpreted in a timely manner, and that they were unlikely to
benefit from such assistance as it was much more tedious and time-consuming than microscopic
examination. After adjusting the pseudo annotations by applying morphological operations and adding
more statistical measurements such as tumor and Gleason pattern percentage, we finally came up with a
method to provide AI-assistance that pathologists considered useful. As this solution is meant to assist
pathologists, it is crucial to design a user-friendly platform to connect the AI model with pathologists. 

For the researchers’ perspective, the ground truth annotation visualized in A!HistoNotes is an important
reference to develop AI models as it allows them to quickly gain a brief understanding of many annotated
structures. Therefore, A!HistoNotes may serve not only pathologists, but also researchers in the field of
DP to develop and deploy AI solutions efficiently. 

Future work will focus on integrating the inter-observer variations in annotation of Gleason Patterns into
model training. Furthermore, it will be necessary to validate and optimize our model for a broader range
of clinical scenarios, including varying tissue thickness, a wider variety of staining, and a broader array of
scanners. Last but not least, the existing workflow of AI model development including A!magQC and
A!HistoNotes can be applied to the development and validation of AI-based diagnostics for other types of
cancer.
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Figure 1

See image above for figure legend.
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Figure 2

See image above for figure legend.
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Figure 3

See image above for figure legend.
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Figure 4

See image above for figure legend.
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Figure 5

See image above for figure legend.
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Figure 6

See image above for figure legend.
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