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Abstract

How do our brains make us live our lives? Despite the tremendous
progress life sciences have made in the last decades we have no con-
clusive answer to this question. Today we are, however, able to build
machines that outperform us in many ways. We can’t calculate as fast as
our machines do, nor can we win against them when playing Backgam-
mon, Chess, or Jeopardy. The paradigms upon which they function are
fundamentally different from what we know about neural computation.
Not only the computational substrate, but the very nature of human in-
telligence seems fundamentally different from the artificial intelligence
(AI) we put into our machines.

Existing computational models can be subdivided in two broad classes:
(i) top-down models like the AI examples mentioned above that aim to
reproduce high-level abilities, without worrying whether the model is in
any way similar to the implementation in our brains, and (ii) bottom-up
models that focus on using biologically plausible modules that are based
on established neurophysiological and neuroanatomical knowledge. The
ultimate goal is to understand the detailed neural correlates of cogni-
tion – a goal that is currently out of reach.

In the first part of this thesis we use classical models for cortical compe-
tition to build adaptive systems that are capable of learning the relation
between two input modalities. We go on to show that a similar system
can be used to sharpen the connectivity in a network of interconnected
areas.

xi
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In the second part of this thesis we replace the classical competition
models used so far by a class of recurrent networks that we call Recur-
rent Competitive Networks (RCNs). After a thorough literature review
to deduce biologically plausible parameter regimes for spiking network
simulations we study the dynamics of spiking RCNs and show that some
features of classical competition models (CCMs) happen to arise natu-
rally in RCNs.

For the sake of faster simulations we introduce and switch to a suitable
higher level of abstraction on the basis of rate coded Siegert neurons.
After we show that the dynamics of spiking RCNs are well conserved
when using Siegert neurons, we reintroduce plasticity mechanisms like
the ones used in the first two chapters.

In the third part of this thesis we show that adaptive, plastic RCNs are
capable of learning the topology of their inputs, a feature that distin-
guishes these networks from CCMs, which are by design predetermined
for one fixed topology. In the last chapter we finally describe a system
of coupled RCNs that is capable of learning and using (i) the relation
between previously unknown inputs, presented to different parts of the
network, and (ii) the input encoding (input topology) simultaneously.

In summary we present novel bottom-up models that are capable of
adapting to a-priori unknown environments with unknown input encod-
ings. The proposed networks do not have to be tuned in order to make
sense of their inputs – they just do what they are supposed to do. The
type of networks we propose are likely to exist in many places in the
brains of many species, but we tend to see them as models of localized
structures in mammalian cortices.

Although we are not yet at the point where we have a scalable, cognitive
model that can learn to solve complex real-world problems, we believe
this thesis makes concrete contributions that bring us one step closer to
this goal.



Zusammenfassung

Auf welche Weise hilft uns unser Gehirn erfolgreich durchs Leben zu ge-
hen? Trotz des unglaublichen Fortschritts der Biowissenschaften in den
letzten Jahrzehnten können wir diese Frage nicht zufriedenstellend be-
antworten. Dennoch sind wir heute in der Lage Maschinen zu bauen, die
uns selbst in vielen Dingen überlegen sind. Diese können diese schneller
rechnen als wir, sie schlagen uns auch beim Backgammon, Schach, und
sogar beim Jeopardy. Da wir wissen, wie diese Maschinen arbeiten, ist
uns aber auch klar, dass die Paradigmen, auf denen ihr Erfolg beruht,
fundamentale Unterschiede zur Funktionsweise unseres Gehirns aufwei-
sen. Nicht nur die eingesetzte Hardware, auch die Natur menschlicher
Intelligenz an und für sich scheint sich grundsätzlich von der künstlichen
Intelligenz (KI), die wir unseren Maschinen beizubringen vermögen, zu
unterscheiden.

Existierende Herangehensweisen können in zwei Klassen unterteilt wer-
den: (i) top-down Modelle, wie die eben genannten KI Ansätze, mit
denen versucht wird, eine bestimmte Fertigkeit zu erlangen, ohne dar-
auf Rücksicht nehmen zu müssen, ob die dem System zugrundeliegende
Funktionsweise jener unseres Gehirns entspricht sowie (ii) bottom-up
Modelle, deren Ziel es ist, ausschliesslich biologisch plausible Bausteine
miteinander zu kombinieren. Das ultimative Ziel dabei ist, ein detail-
liertes Verständnis über das neuronale Korrelat menschlicher Kognition
zu erlangen – ein Ziel, dem wir nicht sehr nahe zu sein scheinen.

Im ersten Teil dieser These benutzen wir klassische Modelle kortikaler
Konkurrenz (KKM), die den Wettbewerb von Nervenzellen, im neurona-
len Verbund aktiv zu sein, modellieren. Wir benutzen diese, um adaptive
Systeme zu bauen, die Relationen zwischen zwei Inputsignalen zu lernen
vermögen. In einem zweiten Ergebnis zeigen wir, dass ein ähnliches Sys-
tem die biologisch gewachsenen Verbindungen zwischen Gehirnarealen
präzisieren kann.

xiii
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Im zweiten Teil dieser Arbeit ersetzen wir die bisher verwendeten KKM
mit Instanzen einer bestimmten Klasse rekurrenter Netze (RN). Nach
einer detaillierten Besprechung der verfügbaren Literatur leiten wir bio-
logisch plausible Wertebereiche für die in unseren Simulationen benö-
tigten Parameter ab. Diese benutzen wir dann, um die Dynamiken von
feuernden RN zu studieren. Wir zeigen, dass gewisse Dynamiken von
RN denen der klassischen Konkurrenzmodelle ähneln. 1

Um unsere Simulationen zu beschleunigen, führen wir ein höher abstra-
hiertes Neuronenmodell ein: das Siegert neuron. Nachdem wir zeigen,
dass die Dynamiken feuernder RN mit denen von Siegert-RN sehr gut
übereinstimmen, benutzen wir dieses abstrahierte Modell und erwei-
tern es um Lern- und Plastizitätsmechanismen, die wir in sehr ähnlicher
Form bereits in den ersten Kapiteln angewandt haben.

Wir zeigen, dass adaptive, plastische RN in der Lage sind, die Topolo-
gie, der ihnen zugeführten Inputs, zu erlernen, ein Feature, welches diese
Netzwerke auszeichnet und stark von KKM abhebt. Letztere obliegen
per Definition einer fixen, zum Erzeugungszeitpunkt festzulegenden To-
pologie.

Im letzten Kapitel beschreiben wir ein System, welches mehrere plasti-
sche RN miteinander kombiniert und in der Lage ist, zur gleichen Zeit
(i) die Relation zwischen zuvor unbekannten Inputs, sowie (ii) die Ko-
dierung dieser Inputs (deren Topologie) zu verstehen und nutzen zu
lernen.

Zusammenfassend präsentieren wir neuartige bottom-up Modelle, die in
der Lage sind, sich an a-priori unbekannte Umgebungen anzupassen. Die
vorgeschlagenen Netzwerke müssen nicht speziell für bestimmte Umge-
bungen gebaut werden, sondern sie passen sich selbständig an diese an.
Die Klasse von Netzwerken, die wir dazu benutzen, kann in Gehirnen
vieler Arten gefunden werden. Wir tendieren jedoch dazu, unsere Netze
als Modelle für lokale, kortikale Strukturen in Gehirnen von Säugetieren
zu sehen.

Obwohl wir noch nicht an dem Punkt angelangt sind, ein skalierbares,
kognitives Modell zu haben, welches von sich aus in der Lage ist, kom-
plexe realweltliche Probleme zu lösen, sind wir uns sicher, mit dieser
Arbeit einen wertvollen Schritt in diese Richtung zu machen.
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CHAPTER 1

Introduction and Overview1

Artificial Intelligence

How do we think, reason, love, or write a thesis? How do our brains
make us live our lives?

Many of us are interested in these types of questions, but nobody has yet
found answers to them. However, life sciences have made tremendous
progress within the last couple of years. Every single day we accumulate
more knowledge about the unsolved mysteries of our bodies and minds.

Our brains have amazing computational abilities. With ease they inter-
pret the vast amount of sensory data flowing into them, and in fractions
of seconds they react to the ever-changing world around us. Researchers
around the globe are building machines that appear to have similar ca-
pabilities. Supercomputers have beaten the best human Backgammon2,
Chess3, and even Jeopardy 4 players. The paradigms upon which they
function seem, unfortunately, fundamentally different from how humans
think and reason.

Deep Blue, the digital Chess master, can only play Chess. Watson, the
digital Jeopardy champion, can only play Jeopardy. Both of them could
never figure out by themselves how to play Chutes and Ladders. Some-
thing seems fundamentally broken in our most “intelligent” machines.

1Several text passages in this chapter are taken and modified from papers I have
co-authored and my research plan.
2BKG 9.8, written in the late 1970s on a DEC PDP-10 was the first computer
program to defeat a ruling world champion, Luigi Villa (7:1).
3The IBM supercomputer Deep Blue won on May 11th 1997 against world champion
Garry Kasparow in a six game match 3.5:2.5 (with 3 draw games).
4Watson is an AI system capable of finding the right questions to answers posed in
natural language. It was built by IBM and won on February 14th−16th 2011 against
Bratt Rutter and Ken Jennings, two of the best Jeopardy players of all time.

1



2 Introduction and Overview

The State of the Art. Existing computational models of cognitive
processes can be subdivided in two broad classes: (i) top-down models
like the mentioned machine-learning examples that aim to reproduce
high-level abilities, without worrying whether the model is in any way
similar to the implementation in our brains, and (ii) bottom-up models
that focus on using biologically plausible modules that are based on
established neurophysiological and neuroanatomical knowledge. The
ultimate goal is to understand the detailed neural correlates of cognition
– a goal that is currently out of reach.

This thesis takes some steps towards this ultimate goal: we present novel
bottom-up models that are capable of adapting to a-priori unknown
environments. Although we are not yet at the point where we can scale
our models to become cognitive systems that solve complex real-world
problems, we are convinced that our contribution is a step in the right
direction.

A Short Tour Through this Thesis

In this thesis we present bottom-up models and learning procedures.
They cannot (yet) play Backgammon or Chess, but they use novel
strategies for how simple, brain-like systems can adapt to an a-priori
unknown world around them. Once they have “understood” the struc-
ture of their environment they can use this learned knowledge to solve
simple tasks like inference, cue-integration, biased and unbiased deci-
sion making, and signal restoration in a way that can also be observed
in brains.

We hope that the network dynamics and learning strategies presented
in this thesis will turn out to be adequate, though simplified, models of
important computational primitives for cortical computation.

We are of course not the first to build biologically inspired networks
performing brain-like tasks. In Chapter 2 we will lay out the scientific
context of our own work and mention previous results that motivated
and inspired us.

Part 1. In this part of this thesis we use what we call “classical com-
petition models” (CCMs) as central building blocks. CCMs are systems
with “soft winner-take-all” (WTA) dynamics [DM07] like the ones de-
scribed by Amari [Ama77] or Heeger [Hee92].
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In Chapter 3 we consider one of the key properties of our brains, the abil-
ity to notice and learn the relations between perceived entities [CHK83,
Pav60, RW72, WLHP68]. It is believed that this is achieved by mod-
ifying the structure [BK93, BC83, BC88] and the dynamics [KS61,
SS01, RRMS10] of biological neural networks, for example through
the plasticity of synapses or other neural processes [BBK06, Kan91,
MGM00].

We present a model that can learn the relationships between inputs in an
unsupervised way (that is, without externally supplied error signals). In
fact, our model is purely based on biologically motivated building blocks
like population coding, Hebbian learning, and homeostatic activity reg-
ulation. After learning the relationship, our model can use the learned
relation to improve its population code representations: the network
will produce population codes for missing inputs based on supplied in-
puts (inference), will smooth noisy population codes (denoising), will
adjust population codes to be more consistent with each other (cue-
integration), and will choose between alternative population code repre-
sentations when faced with inconsistent data (decision making). A key
feature of our network is that its dynamics do not have to be modi-
fied from the outside in order to switch between these tasks, or even to
re-learn the relationship when it changes.

In Chapter 4 we ask a more developmental question. It is known
that inter-areal projections are often topographic in nature [PKD+06,
EZ78], meaning that the relative positions of the terminal axonal ar-
bors in the target area are arranged similarly to the relative positions
of the somas in the source area. However, the terminal arbors often
overlap significantly, with a single arbor covering from 5% to 30% of
the total target area [KSBH94]. The question is whether the synaptic
connections might provide more precise topographic connectivity than
one would assume just by examining the morphology and assuming ran-
dom connectivity [BS91] within the axonal and dendritic arbor regions.

We find that the same combination of mechanisms we used in Chap-
ter 3 is capable of sharpening inter-areal projections in a variety of
network architectures. Furthermore, in networks with recurrently con-
nected areas, these mechanisms result in sharpened back-projections
being aligned with sharpened forward projections.

Although we use CCMs as a central building block in Chapters 3 and 4,
we are not fully satisfied with some of their properties. We used them
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because they are well known, standard models that offer the WTA dy-
namics we wanted to exploit for building the proposed systems. Unfor-
tunately, CCMs are fairly rigid beasts that cannot easily be mapped onto
the anatomy of cortical structures. This also means that every system
based on CCMs inherits this problem and is also not easily mappable
onto cortical anatomy. This is a problem insofar as the cortex is the
structure these systems attempt to model.

As a logical consequence we asked ourselves how networks that are likely
to exist in the cerebral cortex could create WTA dynamics. In the
second part of this thesis we develop one possible answer.

Part 2. We start by using a very general, recurrent network motif that
appears in similar forms in many places in the central nervous system of
various species [ASLB07, PMBA+09, BDM04, BS91]. The basic
idea is that neural populations consist of excitatory and inhibitory neu-
rons that, in their initial, ‘tabula-rasa’ like configuration are essentially
randomly connected [KSM05, PBM11]. The canonical microcircuit
[BDM04], for example, contains several places where this motif can be
found.

In Chapter 5 we introduce “Recurrent Competitive Networks” (RCNs).
We argue about their relevance as cortical models and analyze some of
their rich dynamics. We then show in detail how RCNs respond to ex-
ternal input and point at similarities and differences to WTA dynamics.

The networks we discuss in this chapter consist of spiking neurons5

with fairly detailed synaptic dynamics. Since it is surprisingly difficult
to ascertain biologically plausible parameter ranges for leaky integrate-
and-fire (LIF) neurons we include a literature review in Chapter 6. This
chapter also contains a fairly detailed explanation of the LIF neuron
model itself.

This in-depth look at spiking RCNs points to a common difficulty of
spiking simulations: spike patterns of cells in a network tend to synchro-
nize, eventually showing barely plausible, erratic activities. In Chapter 7
we tackle this problem by analyzing synchronization and desynchro-
nization of spike events in RCNs. We find setups that can control the
synchronization dynamics for a wide variety of input distributions and
input strengths. A key insight in this chapter is that the variabilities of

5In this thesis we use leaky integrate-and-fire (LIF) neurons for all spiking
simulations.
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biological neurons that we saw in Chapter 6 is not affecting the obtained
simulation results. Networks of “unreliable” components do even show
improved stability to degraded input patterns and are therefore able to
propagate information at least as reliable as networks that consist of
‘neuronal monocultures’.

Spiking simulations such as the ones in Chapters 5 and 7 use biologically
plausible neuron and synapse models, but they come with a tremendous
drawback in terms of simulation complexity. Studying learning in large
networks takes an exorbitant amount of simulation time (at least on the
type of hardware that is naturally available to most scientists).

In Chapter 8 we discuss this misery and suggest possible ways to dodge
the problem. Finding a suitable higher level of abstraction that makes
simulations faster without affecting the properties of the modeled system
is one way out. By introducing the Siegert neurons [RBH+11, OB11,
Bur06, Ric77, Sie51] in Chapter 8 we prepare ourselves for precisely
that: using a suitable higher level of abstraction for RCNs.

Part 3. In Chapter 9 we describe a learning system built with Siegert
neurons. We show that an RCN is capable of learning the topology (the
population code structure) of typical inputs that are fed to the network.
In case the inputs are structured like one-dimensional population codes,
a trained RCN will respond to further stimulation like a one-dimensional
WTA network does. If we instead feed a two-dimensional population
code to the very same network, the learned connections cause this net-
work to behave like a two-dimensional WTA.

The initial question, of how networks that are likely to exist in the
cerebral cortex could create WTA dynamics, is thereby finally answered
in this chapter. But trained RCNs do not only offer an alternative
implementation of CCMs, they also come with an important additional
feature of being able to learn the topology, the encoding of their inputs.
This is an important step towards systems that can adapt to complex,
a-priori unknown environments.

We push this ansatz even further in Chapter 10, where we describe larger
networks that couple trainable RCNs. These coupled RCN layers can
exchange information about the input they receive via sparse excitatory
connections. The network’s task is, very much in the spirit of Chapter 3,
to figure out and remember how these population-encoded input values
relate to each other.
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The differences from the system described in Chapter 3 are that (i) we
use RCNs rather than CCMs for getting the desired WTA dynamics,
and (ii) the neuron model we use is not an artificial sigmoidal threshold
unit, but a rigorous abstraction from leaky integrate-and-fire neurons,
the Siegert neurons, and most important (iii) the coupled RCNs are
able to adapt to the input structure given by the a-priori unknown
environment the system is thrown into.

We believe that these differences will turn out to be crucial modifica-
tions necessary for building large-scale models that will eventually solve
complex real world learning tasks.The results collected in this thesis are
a step towards our ultimate goal of building artificial neural systems
that can adapt to dynamic environments.



CHAPTER 2

Background and Related Work1

Our work is inspired by (i) models which we refer to as cortical field
models, (ii) factor graphs and other graphical models used to build
inference systems, and (iii) a series of anatomical, physiological, and
modeling work on recurrent neural networks. This chapter will look
at each of these in more detail. All these results and models explore
in different ways the question of how neural architecture relates to the
sort of computation that we see evidence of in the brain. The results
contained in this thesis do not follow directly from any particular one
of these models, but do follow the intellectual tradition of all of them,
including an emphasis on using large simulations as a window to gain
insight into how theoretical principles may play out in the brain.

2.1. Cortical Field Models

In the following we use the term "cortical field" in a quite general way. It
denotes a layered system with feed-forward and possibly also feed-back
connections between these layers. Each layer consists of a large array
of units, which may represent neurons, small constellations of neurons,
or even cortical columns. Within a layer, we have lateral connections
between neighboring units, and possibly also different classes of units
such as excitatory and inhibitory cells, or simple cells and complex cells,
or some other local division of labor. However, each layer is homogenous
in the sense that this structure is the same throughout the layer.

Plastic cortical fields come with a learning rule that describes the nature
of their plasticity. This learning rule ought to be biologically plausible
in the sense that the learning that occurs at each synapse (or more
generally, at each connection between units) must depend only on in-
formation that is locally available at that synapse; i.e., the activity of

1Several text passages in this chapter are taken and modified from papers I have
co-authored and my research plan.

7



8 Chapter 2. Background and Related Work

the presynaptic and postsynaptic units, and possibly a global signal
corresponding to a neuromodulatory signal.

The attraction of cortical field models is that they show us how in-
teresting non-homogeneous characteristics can arise from an initially
homogeneous substrate. Below we give a list of models that inspired us
most.

LISSOM: (laterally interconnected synergetically self-organizing map)
is an approach by Miikulainen et al. [MBCS05] to construct an
abstract model of the early visual system (up to V1) that exhibits
more elements of the structure found in the visual cortex than
the "simple" self-organizing maps of Kohonen [Koh97] do. The
LISSOM model consists basically of a two-dimensional matrix of
computational units, each corresponding to a vertical column in
the cortex. These units are, on the one hand, laterally connected
to other units in the surrounding area and receive input from the
retina. The main ability of the LISSOM model is the generation
of cortical maps that appear very similar to the ones found in
primary visual cortex, in particular, orientation preference maps
[BZSF97] or ocular dominance maps [BG92].

Suarez, Koch and Douglas: [SKD95] created a functioning model
of direction selectivity in visual cortex based directly on the lam-
inar anatomy. They modeled multiple layer networks consisting
of integrate-and-fire-neurons and associative synaptic connections
between stages. Their findings from the investigation of informa-
tion retrieval suggest that recurrent circuits can support cortical
information processing under certain conditions.

TRN: Dominey [Dom06] has developed the recurrent network model
TRN (Temporal Recurrent Network) that is able to encode the in-
teraction between serial order and temporal structure, similar to
the Liquid State Machines of Maass [Maa07] (see also below).
Based on the temporal organization of sentences the model is ca-
pable of discriminating different syntactic structures.

HMAX: was developed by Riesenhuber and Poggio [RP99]. It re-
flects the hierarchical organization of the visual cortex in a series
of layers. These layers can be divided into two different types. The
first performs a convolution operation on the input using a certain
kernel, for instance, the 2D-Gabor-function. The second type of
layer performs a soft maximum operation on its input in order to
provide position invariance. These two types of layers are arranged
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in an alternating order starting with a convolution layer. HMAX
is good at position and scale invariant object recognition and has
been applied to a number of problems.

TELOS: Yet another cortical model. TELOS, created by Brown,
Bullock, and Grossberg [BBG04], is formulated according to sev-
eral computational hypotheses which specify how strategy priming
and action planning are dissociated from movement execution by
assigning different functional properties to different layers in mod-
eled cortex.

Haeusler and Maass: have explored the idea that the laminar ar-
chitecture serves simply as a slightly better alternative to a com-
pletely random architecture [HM07], as measured by considering
the information present in the emergent dynamics of a simulation.

LAMINART: [Gro99] extends Grossberg’s well known Adaptive
Resonance Theory (ART) model in a way that it provides clear
functional roles for its layers for purposes of visual perception, and
it suggests that similar functional roles may be at work in sensory
and cognitive processing.

Treves: showed in [Tre03], that the use of laminar model structures
can allow networks to represent positional information through cor-
tical maps while simultaneously representing identity information
through firing patterns.

2.2. Factor Graphs

Factor graphs are a well-known formalism encompassing many mod-
els that were independently invented in the fields of artificial intel-
ligence, signal processing, coding theory, and statistical mechanics
[AM00, FJ01, KFL01, Pea88, YFW05]. The appeal of factor
graphs, from our point of view, is that they have several properties
which point to the possibility of a neurobiologically plausible imple-
mentation.

• Information is stored in a distributed manner, integrated into the
computing elements.

• Computations are performed locally using locally available infor-
mation.

• Learning can occur via local mechanisms based on locally available
information.
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None of these features were intentionally built into the factor graph
model. Factor graphs in their various forms were constructed inde-
pendently by engineers in several fields simply to help solve complex
probabilistic problems involving many interrelated correlations. They
chose their models simply as the best existing way to solve the problem.
Most applications do not involve a learning stage.

Recently, factor graphs have started to attract the attention of some
neuroinformaticists. Cook and Bruck have shown how factor graphs
can be used not only as a probabilistic representation of complex data,
but also for nonprobabilistic purposes such as real-time robotic control,
and solving the inverse/forward model problem [CB04]. Thus, there is
hope that models of this sort can close the loop from analysis of sensory
input to production of motor output, forming a complete system out of
a uniform substrate. These ideas are still in their infancy, but this thesis
contains attempts to implement factor graph like inference mechanisms
using neuronal modules.

It is interesting that there also exist papers outside the factor graph
literature which find neural implementations of computations that in
our view closely resemble the computation performed by a factor in a
factor graph. This variety of neurally implemented factor-like models,
such as for example [WW07] or [DLP01], reaffirms our conviction that
there is enough flexibility in this approach to implement neural factors
which can be combined to form practical factorizations of complex real-
world problems.

2.3. Recurrent Neural Networks

The term Recurrent Neural Network is very general and fits most neu-
robiologically relevant networks. In this thesis it will usually refer
to a specific line of research on cortical models of recurrently con-
nected excitatory and inhibitory neurons that exist in very similar
forms in many places in the central nervous system of various species
[ASLB07, PMBA+09, BDM04, BS91]. The canonical microcircuit
[BDM04], for example, contains several places where such structures
can be found.

Recurrent networks like the ones we use in this thesis are rela-
tively common. It is therefore not very surprising that a plethora
of theoretical work on such networks can be found in the literature
[HRB11, RRWF10, VA09, KRA08, BSF07, VA05, DGFM03,
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BW03, Bru00, AB97]. The following paragraphs introduce some key
results that inspired our working and thinking.

Roughly 15 years ago, Amit and Brunel [AB97] started to look at net-
works like the one shown in Figure 5.1. This and subsequent work
contains detailed mathematical analysis of dynamics in such networks.
[Bru00, HRB11]. The input to their networks is assumed to be Pois-
son distributed, which is not necessarily the case in real world scenarios
[BMS07, DCM09, DCM11]. Each population of cells they use in
their studies consists of a monoculture of cells, where each cell is a
perfect copy of every other.

A large body of work is available on synfire chains (or synfire braids)
[KRA10, DC06, Izh06, DGA99, Abe82]. These models investigate
how small, synchronously active cell populations can transmit activity
throughout large networks and how interactions between such chains
has the potential to perform neural computations. Since synchrony is
essential for this kind of model, conditions for synchronous spike- vs.
asynchronous rate transmission were investigated [KRA08]. One ob-
servation is that the spiking activity in recurrent networks tends to
synchronize as it propagates through a network, indicating that asyn-
chronous spiking is not always easy to achieve in recurrent feed-forward
networks of spiking neurons [KRA08, Rey03].

Although these works offer intriguingly intuitive ideas of how synchrony
might be a fundamental concept of neural computation, there is exper-
imental evidence that suggests the opposite. It appears as if nearby neu-
rons in cortical networks might even be actively de-correlated [EBK+10].

Gutkin et al. [GLC+01] showed that in a recurrent network model
capable of sustaining activity, asynchronous firing is necessary to sustain
it as long as the network is in the memory state. The sustained activity
can in fact be switched off by inducing the network to synchronize.

It seems that science has not yet identified the fundamental computa-
tional principles used by cortical structures in our brains. Many promis-
ing and conflicting ideas do exist, but more ideas will be needed to
complete the picture.
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Learning in Classical
Competition Models





CHAPTER 3

Unsupervised Learning of Relations1

3.1. Introduction

One of the key properties of the brain is the ability to notice and
learn relationships between inputs in an unsupervised manner [CHK83,
Pav60, RW72, WLHP68]. It is believed that this is achieved by mod-
ifying the structure [BK93, BC83, BC88] and the dynamics [KS61,
SS01, RRMS10] of biological neural networks, for example through
the plasticity of synapses or other neural processes [BBK06, Kan91,
MGM00].

Phenomenologically, the ability of brains to discover relationships be-
tween otherwise independent events has been known since the pioneering
work by Pavlov [Pav60]. His work on dogs showed that a neutral stimu-
lus (the ringing of a bell) can be induced to elicit an associated reaction
(production of saliva) by ringing a bell every time the dog gets food.
After training, the link between the bell and salivation may be due to
the food representation being activated by the bell representation.

In the following decades, it became clear that the ability to learn re-
lations between different sensory inputs is in fact omnipresent in our
brains. As an example of an inference task, when we hear a sound,
we can use the audio input to estimate the visual location of the corre-
sponding visual input. This process is continually maintained by learn-
ing mechanisms: if we wear prism glasses that shift the visual input, it
is possible to re-learn the correspondence. Or, given uncertain visual
and audio cues about the location of a stimulus, we can combine these
cues (cue-integration) to get a better estimate of the location. If visual
and audio cues differ so much as to be inconsistent, for example due to
light or sound being reflected so as to appear to have a different source,

1The content of this chapter is published in [CJK10].
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then we simply base our position estimate on the stronger of the two
competing inputs (decision).

Biological data shows that neural populations, regions and areas en-
code specific sensory, motor, and cognitive modalities (see e.g. [FvE91,
SA01] and contained references). Connected regions exchange signals
and thus influence their mutual activity [FvE91], and simulations have
also exhibited such interactions in networks with hand-crafted connec-
tivity [SS01, SA01, PS97]. Simulations such as these have shown
how inference, denoising, cue-integration, or decision tasks can be per-
formed on input received from different visual, motor, or other sources,
for complex problems like coordinate transformations. However, ex-
hibiting these abilities in networks that learn the relationships, rather
than using hand-crafted weights, has remained a challenge.

Given the presence of such abilities in the brain, the question that im-
mediately arises is how the brain implements them. A major step in
this regard was achieved by Zipser and Andersen [ZA88], who trained
an artificial neural network with simulated biological data using the
backpropagation algorithm [RHW86]. In their network, hidden nodes
developed gain field properties [ZA88]. While their result shows that
neural networks are able to learn such tasks in principle, the learning
strategy they used seems unlikely to be the one used in our brains: the
back-propagation algorithm is a supervised learning scheme, using an
externally generated error signal, and it is generally considered to be
biologically implausible [Cri89, ZR93].

Our goal is to exhibit the ability to learn arbitrary relationships using
biologically plausible learning. We present a model that can learn the
relationships between inputs in an unsupervised way (that is, without
externally supplied error signals). In fact, our model is purely based on
biologically motivated building blocks like population coding, Hebbian
learning, and homeostatic activity regulation. After learning the rela-
tionship, our model can use the learned relation to improve its popula-
tion code representations: the network will produce population codes for
missing inputs based on supplied inputs (inference), will smooth noisy
population codes (denoising), will adjust population codes to be more
consistent with each other (cue-integration), and will choose between al-
ternative population code representations when faced with inconsistent
data (decision). A key feature of our network is that its dynamics do
not have to be modified from outside in order to switch between these
tasks, or even to re-learn a relationship when it changes.
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3.2. The Network and Its Dynamics

In this paper we consider the following network (see Figure 3.1) to
demonstrate how relations between two sets of parameters X and Y
can be learned. The network consists of two populations, A and B,
consisting of n rate coded units each.

3.2.1. The Network. The units in A get input from an external
source X by point-to-point connections, i.e., each unit in A receives
input from exactly one unit in X and each unit in X sends input to
exactly one unit in A. Similarly, a second input Y , is connected to B
by point-to-point connections. X and Y are supposed to encode one
single scalar value each. To realize this encoding we use what is known
as population coding, see e.g. [DLP01]. Intuitively, this means that
each unit in X has one preferred value and that its firing rate depends
on how close its preferred value is to the actual value. In Figure 3.1
we illustrated this encoding by representing X and Y by two (noisy)
population codes.

B	  A	  

fully	  connected	  

fully	  connected	  

Y	  X	  

Figure 3.1. Projection diagram of the sample network
discussed in the text: two populations with bidirectional
connectivity. Labeled ellipses represent populations of neu-
ral nodes. Dark gray arrows depict directed, full connec-
tivity, light gray arrows indicate point to point connections
used to feed population-coded input into the network. Blue
dots show one possible input of this kind.

The units within each of the populations A and B are laterally inter-
connected such that each population is effectively a soft winner-take-all
circuit [DM07]. The connection weight wi,j between units i and j is
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defined as:

wi,j = γ · e− 1
2 (d(i,j)/σ)2 − δ . (3.1)

The distance d between i and j is d(i, j) = min{|i − j|, n − |i − j|}.
In order to avoid boundary effects we let the distance measure wrap
around.

Besides being laterally connected, the units in A and B are also inter-
connected. Effectively we connect each unit i ∈ A to all units j ∈ B and
vice versa. The initial connection weights wi,j are set to values chosen
randomly in [0, 1].

Learning the relations between the inputs X and Y is done by adapting
the connections between the populations A and B using a Hebbian
learning rule [Heb49].

3.2.2. The Dynamics. We simulate our network over discrete time
steps. At time t the rate-coded units in A and B each have a real-
valued activity level a, which we denote with a superscript as at. At
each time step t each unit j updates its activity level atj . This update is
influenced by (i) the activities of the neurons in the same populations
(via the lateral connections), (ii) the activities of the units in the other
population (via the connections between A and B), and (iii) a homeo-
static activity regulation term htj (used to keep the activity level of each
unit roughly constant over time).

We explain the details of the update below. Here we just outline the
interplay between the main ingredients. The lateral connections imple-
ment soft winner-take-all dynamics (WTA) [DM07]. Essentially, they
are used to “clean-up” noisy or multi-modal input. The weights wti,j be-
tween the populations A and B are updated by a Hebbian learning (HL)
scheme, eventually encoding the learned relationship. The homeostatic
activity regulation (HAR) [TN04] forces units to regulate themselves
so that each unit is active roughly a given proportion of the time. This
makes sure that every unit is used, and that each unit is used in mod-
eration.

It is worth noting that the presented components work on quite different
time scales. The WTA dynamics operate on a short time scale, allowing
the network to converge quickly. HAR and HL operate on a much
longer time scale, averaging over a much larger sample of inputs. A
sketch of how Hebbian learning (HL), soft winner-take-all (WTA) and
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homeostatic activity regulation (HAR) play together is illustrated in
Figure 3.2.

Hebbian Learning. The update of the weights wti,j depends on (i) the
activities ati and atj of units i and j at time t, and (ii) two global
parameters αl and αd. The Hebbian learning rate αl regulates the speed
at which connections get learned and was in our simulations usually set
to the same value as αd, the Hebbian decay rate. The weights are
updated according to:

wt+1
i,j = (1− αd) · wti,j + αl · ati · atj . (3.2)

To speed up the running time of simulations it suffices to do these
updates only after the WTA has converged.

Figure 3.2. The presented mechanism is a combination
of three strategies. Synaptic connections between areas
are controlled by Hebbian learning (HL). Local connections
within an area support soft winner-take-all (WTA) dynam-
ics, so nearby units within an area exhibit similar activity
patterns. Homeostatic activity regulation (HAR) within
each unit modulates the Hebbian learning so that a unit
does not become permanently active or inactive, but main-
tains a desired average activity level.

Homeostatic Activity Regulation. We use the following update formula
for the homeostatic activity terms:

htj = −c · (ātj − atarget) , (3.3)

where c is a scaling constant, atarget sets the desired activity level, and
ātj is a running average of the activity of unit j, defined by

ātj = (1− ω)āt−1
j + ωatj (3.4)
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where ω is the inverse time constant of the averaging.

Neural Units and Update Dynamics. At each discrete time step t
each unit j updates its activity level atj . To compute it we first take
the weighted sum over the activity levels of all units connected to unit
j. This includes both the lateral connectivity within the population
as well as the connections coming from other populations. This sum
is corrected by the homeostatic activity regulation term htj . Finally we
apply a non-linear function θ that restricts the activity level to the range
[0, 1]. Formally the update rule is defined as

at+1
j = θ(htj +

∑

i∈Γj

wti,j · ati) , (3.5)

where Γj is the set of units connected to unit j, and

θ(x) =
1

1 + e−m(x−s) (3.6)

and m and s are parameters that determine the slope and the shift of
θ(x).

3.3. Results

In the following we present our experimental results. Note that the
network dynamics introduced in the previous section remains unchanged
throughout all experiments that we present. In order to switch from one
task to another we only change the input fed to the network.

3.3.1. Learning and Re-learning. In order to feed interpretable in-
put we have set a preferred stimulus pi for each node i in A and B. To
encode the value v in X (or Y ) we set the input xi (yi) for node i in A
(B) according to:

xi(v) = C · e−(v−pi)2/(2σ2) . (3.7)

This enables us to feed arbitrary scalar values to populations A and B.
If these values satisfy any functional relation, the network will learn the
relationship hidden in a sequence of input pairs. Note that the weights
between populations A and B are constantly changing over time. If
after a certain relationship was learned the input changes and a different
relation is presented, the weights will change to reflect the new relation.
Figure 3.3 shows how the weight matrices WAB and WBA change in the
course of learning and re-learning.
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Figure 3.3. The time course of learning and relearning in
the sample network. Each plotted subfigure shows a snap-
shot of the connection weights WAB (top row) and WBA

(bottom row) for different times during learning and re-
learning. The weights are color coded (black for strong,
white for weak connections). (a) Initial random weights.
(b) Weights during learning. (c) Weights after the relation
y = x3 was learned. (d) Weights during relearning. (e)
Weights after the relation y = x2 was learned.

3.3.2. Inference Tasks. After the network has learned a relation we
can then also omit one of the inputs and infer the other value. This is
done as follows. We only feed input in X (or in Y ) and let the network
converge. After convergence one can use the activities in A and B to
compute the population vector [GKCM82] giving us the values vA and
vB encoded by A and B.

Figure 3.4 shows the result of such inference tasks. We tested the infer-
ence accuracy by encoding all values vi ∈ {pi|i ∈ A} in X (respectively
all values vj ∈ {pj |j ∈ B} in Y ) and observing the values vB (respec-
tively vA) computed by the network.

3.3.3. Denoising and Cue-Integration Tasks. In all of the follow-
ing examples we add some noise on top of the activations computed
with Equation (3.7). Figure 3.5(a) shows how the network performs
inference with noisy input.

In addition to such noisy input signals our network can also cope with
noisy values vX and vY . Figure 3.5(b) is an example for the case when
the inputs in X and Y are not in line with the learned relation R. The
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B

(a)
B

A

(b)

Figure 3.4. Simple inference in sample network after the
network has learned the relation y = x3 (green thin line
in both plots). (a) shows the results of the inference tasks
(thick blue line) for a set of population codes fed to A (hor-
izontal axis). (b) like (a) but for the opposite inference
direction.
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X A
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(b)
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X A

B

Y

Figure 3.5. Inference and denoising. In each subfigure,
the inputs are given in X and Y , the results can be seen
in A and B. (a) An example of inference from X to B
which shows also the denoising properties of the network
with respect to noise in the firing rates of the units. (b)
When two inputs are presented which are inconsistent with
the learned relation the network shifts both peaks until their
positions are in accordance with the relation. (c) The same
as (b) but with unequal reliability of the inputs (unequal
input strength); note that the larger (more reliable) peak is
much less shifted than in (b).

network settles in a state where the computed values vA and vB are
again consistent with R. Figure 3.5(c) shows the same experiment but
with different input strengths in X and Y . Note that the population
receiving the stronger input gets significantly less shifted towards a place
consistent with R than the other one.
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Note that the soft winner-take-all implemented in our populations A
and B is the reason why the described phenomena work.

Clearly, a cue-integration task (like in Figure 3.5 (b)) gets more and
more difficult (and unreliable) depending on “how much” the value fed
into Y differs from the “true” value that is consistent with the input in
X. Eventually, if this difference gets too large, then the system will stop
finding a compromise between these two values and instead will start to
neglect one of the inputs. That is, the network will decide between the
two values.

(a)

X A

B

Y

(b)

X A

B

Y

(c)

X A

B

Y

(d)

X A

B

Y

Figure 3.6. Decision tasks. (a) When the peaks of the
inputs are not close to the learned relationship the network
uses one of the inputs and infers the other one. (b) When
in X there are two contradicting inputs present, while one
is being supported by the input in Y , the network decides
for that combination of peaks. (c) In the case of a non-
invertible function like y = x2 there exist two possible peak
positions and the system decides for one of the two. (d)
The same as (c) but the network’s decision is biased by a
very small input fed to X.

3.3.4. Decision Tasks. As indicated at the end of the previous sec-
tion, the network can be forced to decide whether to follow input X
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or input Y . Figure 3.6 shows the input and the settled state for four
decisions being performed by the network.

Given inputs of similar strength the noise determines how the network
will decide. If the inputs are of equal strength the network will essen-
tially decide on one of them “randomly”, meaning that small artifacts
from the learning history will be responsible for the decision.

Figure 3.6(b) illustrates another, more complicated decision task. In
this example the input in X actually contains two peaks. If the second
input relates to one of these two peaks (with respect to R), the network
will reinforce this peak and settle in a state consistent with R.

If the learned relation R corresponds to a non-invertible function (like
y = x2 for x in [−1, 1]) then, clearly, an input in Y may be in correspon-
dence with more than one consistent X-value. The network will then
have to pick one of the possible solutions. This example is illustrated
in Figure 3.6(c). In addition, Figure 3.6(d) illustrates that already a
seemingly small “noise” in the input in X suffices to move the generated
value to the one that has a higher consistency with the input.

3.4. Discussion

In this chapter we showed that it is possible to set up the dynamics
of a simple network in such a way that it can learn the relation be-
tween two inputs X and Y . After learning, that is, after presentation
of sufficiently many related input pairs, the network is then able (i) to
infer missing input, (ii) to clean up noisy population codes (denoising),
(iii) to mediate between slightly conflicting inputs cue-integration, and
(iv) to decide between strongly conflicting inputs. If one continues to
present strongly conflicting inputs, the system will gradually change and
eventually learn the new relation.

The building blocks of our network, namely population coding, soft
winner-take-all, Hebbian learning, and homeostatic activity regulation,
are all biologically well motivated.

A aim for future research is to learn higher order relations between
more than two input signals. To achieve this it will be necessary to
replace the effectively one-dimensional populations used in our network
by more complex recurrent networks capable of encoding these higher
order relationships. Indeed, the internal connectivity of the areas, re-
flecting the topology of the input space, would ideally be learned based
on the observed inputs themselves (a system like this will be presented
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in Chapter 9). This would allow both higher dimensional transforma-
tions (such as those related to gain fields [SS01]) and more abstract
relationships to be learned with the same mechanisms.





CHAPTER 4

Competition During Development: Sharp
Learning of Neural Projections1

4.1. Introduction

A recurring theme of inter-areal projections is that they are topographic
in nature [PKD+06, EZ78], meaning that the relative positions of the
terminal axonal arbors in the target area are arranged similarly to the
relative positions of the somas in the source area. However, the terminal
arbors often overlap significantly, with a single arbor covering from 5%
to 30% of the total target area [KSBH94].

A natural question is whether the synaptic connections might provide
more precise topographic connectivity than one would assume just by
examining the morphology and assuming random connectivity [BS91]
within the axonal and dendritic arbor regions.

Note that a precise projection does not necessarily imply small arbors.
Even if non-precise connections are pruned during development, the re-
maining, precise synapses will still be distributed throughout the area
where the original axonal arbor overlapped with dendritic arbors of
target cells, as in Fig. 4.1(a,b). Thus the morphology alone cannot
indicate whether such a sharpening process has occurred or not, and
current anatomical knowledge does not yet include sufficient informa-
tion on synaptic specificity of inter-areal projections [BDM04, OF05],
leaving the question open.

1The content of this chapter is published in [CJK11].
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The biologically plausible mechanisms that we use are Hebbian learn-
ing at synapses, continuous winner-take-all circuitry within areas, and
homeostatic long-term activity regulation within neurons, as shown in

(a) (b)

(c) (d)

Figure 4.1. (a) A precise projection between two areas (grey el-
lipses) without small arbors. The synapses (black dots) can be dis-
tributed throughout the area where the projecting cell’s axonal arbor
(left, red) overlaps with the dendritic arbor (right, blue) of the target
cell. Although the arbors have a chaotic and unfocused morphology,
the projection is in fact perfectly topographic, one-to-one connectiv-
ity. (b) The same picture with most arbors grayed out. Here it
is easier to see how the synaptic connections are providing a per-
fectly precise projection. (c) When one area projects to another, the
terminal axonal and dendritic arbors (symbolized as shaded trian-
gles) allow each projecting neuron to reach a range of targets (three
shown). (d) Learning mechanisms can effectively sharpen the projec-
tion by strengthening some synapses and weakening others. This is
symbolized here by showing the connection of the most-aligned units
as strengthened, while other connections are weakened, yielding the
connectivity of (a). For visual clarity, these diagrams (a)-(d) are vast
simplifications of real arbors, which contain thousands of synapses in
three dimensions, often centered around the target soma. In reality a
projection would not have to be one-to-one to be considered precise,
but it would need to use synaptic specificity to prefer localized targets.



4.2. Methods 29

Fig. 4.4. We find that this combination of mechanisms, which we refer
to collectively as sharp learning, is capable of sharpening inter-areal pro-
jections in a variety of network architectures, such as those in Fig. 4.2.
Furthermore, in networks with recurrently connected areas, sharp learn-
ing results in sharpened back projections being aligned with sharpened
forward projections, as shown in Fig. 4.3(c,d).

Over the last decades, there have been countless models examining the
training of weights between layers in a network. Our results are most
closely related to the pioneering work of Willshaw and Malsburg, who
modeled the development of unidirectional topographic retino-tectal
projections in the frog [WvdM76].

4.2. Methods

Sharp learning takes place in the context of interacting groups of units
that we refer to as populations or areas. The large-scale architecture
of a network lies in the projections between these populations. These
projections can be shown in a projection diagram, such as those shown
in Fig. 4.2. One well-known projection diagram is that of Felleman and
van Essen, showing the connectivity between cortical areas in the visual
pathway of the macaque [FvE91].

The populations are composed internally of units, which can be consid-
ered as corresponding either to an individual neuron, to a small neural
microcircuit in the cortex [BDM04], or to a tightly connected group of
cells such as a cortical microcolumn [Mou57].

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h) (i)

Figure 4.2. Examples of inter-areal architectures where
sharp learning is successful, including feed-forward paths
and cycles (a,c,g,d,h), bidirectional paths and cy-
cles (e,b,f), and an arbitrary complex structure (i).
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(a) (b) (c) (d)

Figure 4.3. Various types of connections. (a) Shows dis-
ordered connectivity, as would be expected with randomly
connected synapses. Such randomness is often assumed
when considering connectivity on a scale smaller than a
dendritic arbor [BS91, BDM04]. (b) Shows skewed con-
nectivity, as would be almost inevitable from a develop-
mental program of chemotaxic axon growth attempting to
form reciprocal connections. (c) Shows reciprocal connec-
tivity, which is achieved by sharp learning. (d) Shows how
this idea can be generalized to cycles of length three or
more. Again, aligned connectivity is shown, as achieved by
sharp learning. The arrows in each diagram represent the
strongest connection. Nearby connections (not shown) are
also present but weaker.

Sharp learning is a combination of three strategies, as shown in Fig. 4.4
and Fig. 4.5. Synaptic connections between areas are controlled by
Hebbian learning (HL), so that the weights reflect the correlation of
typical network activity [Heb49]. Local connections within an area (lat-
eral connections) support continuous winner-take-all (WTA) dynamics
[DM07], so neighboring units within an area exhibit similar activity
patterns and noisy input is smoothed. Homeostatic activity regulation
(HAR) within each unit modulates the Hebbian learning so that a unit
does not become permanently active or inactive, but maintains a desired
average activity level [TN04]. This makes sure that every unit is used,
and that each unit is used in moderation.

It is worth noting that the presented components work on quite different
time scales. The WTA dynamics operate on a short time scale, allowing
the network to converge quickly. HAR and HL operate on a longer time
scale, averaging over many inputs.
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Winner-Take-All. The units within each of the populations are later-
ally interconnected so that each population is effectively a continuous
winner-take-all circuit [DM07], meaning that the dynamics lead to a
localized region of activity, similar to the encoding of a value by a pop-
ulation code [GKCM82]. The connection weight wi,j between units i
and j is defined as

wi,j = γ · e− 1
2 (d(i,j)/σ)2 − δ , (4.1)

where d(i, j) = min{|i − j|, n − |i − j|} gives the distance d between i
and j, with n being the number of units in the population. In order to
avoid boundary effects we let the distance measure wrap around. The
parameters γ, σ, and δ specify the amplitude, the width, and the vertical
displacement (i.e. the amount of lateral inhibition) of the Gaussian
shape of the connection weights profile.

Hebbian Learning. The update of the weights wti,j depends on (i) the
activities ati and atj of units i and j at time t (incremented in the outer
loop of Fig. 4.5), and (ii) two global parameters αl and αd. The Hebbian
learning rate αl regulates the speed at which connections get learned
and is here usually set to a value smaller than αd, the weight decay rate.
The weights are updated according to:

wt+1
i,j = (1− αd) · wti,j + αl · ati · atj . (4.2)
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Figure 4.4. Components of sharp learning: Hebbian
learning (HL) between areas, winner-take-all (WTA) within
areas, and homeostatic activity regulation (HAR) within
units.
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We perform Hebbian learning only on inter-areal weights. To speed up
the running time of simulations it suffices to do these updates only after
the WTA converges.

Homeostatic Activity Regulation. We use the following update for-
mula for the homeostatic activity terms:

htj = −c · (ātj − atarget) , (4.3)

Sharp Learning Algorithm
1: initialize inter-areal weights randomly
2: loop
3: initialize units with random activity
4: add input activity to population A
5: draw and feed noisy input to A
6: repeat
7: do WTA update (eq. 4.1)
8: until change in unit activities < ε
9: do HL (eq. 4.2) and HAR (eq. 4.3)

10: end loop

Figure 4.5. The main loops in the sharp learning algo-
rithm. The three-population ring architecture of Fig. 4.2(d)
is shown, but the procedure is the same for all architec-
tures. If lines 8 and 9 are swapped, then we refer to the
modified algorithm as the “continuous learning” form of the
algorithm.
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where c is a scaling constant, atarget sets the desired activity level, and
ātj is a running average of the activity of unit j, defined by

ātj = (1− ω)āt−1
j + ωatj (4.4)

where ω is the inverse time constant of the averaging.

Neural Units and Update Dynamics. At each discrete time step
τ in the inner loop of Fig. 4.5, we update the activity level aτj of each
unit j. To do this, we first sum the activity levels of all units connected
to unit j, weighted by their connection strengths. This sum includes
both the lateral connectivity within the population as well as the con-
nections coming from other populations. This sum is regularized by the
homeostatic activity regulation term htj . Finally we apply a non-linear
function θ that restricts the activity level to the range [0, 1]. This yields

aτ+1
j = θ(htj +

∑

i∈Γin
j

wti,j · aτi ) , (4.5)

where Γin
j is the set of units connected to unit j, and θ is a logistic

function
θ(x) =

1

1 + e−m(x−s) (4.6)

parameterized by m and s.

Note that the time τ in Equation 4.5 refers to iterations of the inner
loop (lines 6-8 of Fig. 4.5), while the time t in Equations 4.2-4.5 refers
to iterations of the outer loop (lines 2-10 of Fig. 4.5).

4.3. Results

We show in Fig. 4.6 the results of sharp learning applied to the network
of Fig. 4.2(d) as described in Fig. 4.5. Below each connection matrix
shown in Fig. 4.6 is a diagram of the projection represented by that ma-
trix, showing an arrow to the strongest target for each projecting unit.
As described above, the populations in the simulation use a wrap-around
topology for the lateral connectivity (the continuous winner-take-all),
which is the only place we induce any topology into the network. Us-
ing a wrap-around topology allows an arbitrary displacement to arise in
each projection, while still being precisely topographic. One can also see
that the second and third matrices, once sharp learning has progressed,
invert the ordering of the units within the population. The apparent
discontinuities in the pattern of paths shown in Fig. 4.6(d) are in fact
continuous, due to the wrap-around nature of the populations.
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In Table 4.1 we compare the results of sharp learning for the network
architectures shown in Fig. 4.2, with each population containing 200
units. The q-values in the table give the mean squared error compared
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Figure 4.6. The weight matrices of the example network of
Fig. 4.5. (a) shows the random initial state of the network,
(b) and (c) show the state of the network during learning, and
(d) shows the state after learning has converged. The matrices
are shown with low values dark and high values white. Below
each matrix is a mapping showing which target element each
source element is most strongly connected to. In (a-d), the
first matrix shows the weights from population A (row) to
population B (column), the second from B to C, and the third
from C to A. The goal of our algorithm, as reached in (d), is
that neighbors within a source population should project to
neighboring destinations, and the circular path starting from
any unit should come back to that unit. Three examples of
such paths are highlighted in different colors.
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Figure 4.7. Evolution of quality value q for the network of
Fig. 4.5. The q-values give the mean squared error compared
to a perfect topographic mapping between all connected pop-
ulations of a network.

to a perfectly topographic mapping between all connected populations
of a network.

Fig. 4.7 shows how the q-value evolves over the course of sharpening
the projections in a network, for the network shown in Fig. 4.5. Other
networks, even with layers of unequal size, behave comparably (data
not shown).

Table 4.1. Quality of sharp learning for the network architectures shown
in Fig. 4.2. The quality q of a result is the root-mean-squared error in the
position of the activity in each layer of the network, averaged over all possible
positions of the peak of the input acitvity. The position of the activity in a
layer is determined by considering the position of best fit of a Gaussian kernel,
measured such that the size of the entire layer is 1. Due to the wrap around
topology of the populations, the error is always between 0 and 0.5.
Networks (a) (b) (c) (d) (e) (f) (g) (h) (i)
Quality (q) 0.006 0.013 0.005 0.012 0.014 0.011 0.010 0.023 0.025

4.4. Discussion

We have shown that sharp learning is able to effectively sharpen inter-
areal projections in a variety of circumstances, using a combination of
biologically plausible mechanisms.

To further confirm the biological plausibility of sharp learning it will be
necessary to investigate the robustness of sharp learning with respect
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to inhomogeneities in the lateral connectivity within an area, as well as
with respect to inhomogeneities in the homeostatic activity regulation
and other parameters.

Another step towards biological plausibility would be to replace the
mean-rate nodes used in our simulations by spiking units. In Part 2
we will discuss a model that does precisely this. Part 3, finally, will
use a approximation introduced in Part 2 to simulate an adaptive spik-
ing network in a rate-based setup. An entirely spiking implementation
would require the transformation of the learning rules into a spike based
equivalent.

We treat sharp learning here as a developmental process. We have
also shown in Chapter 3 that a very similar procedure can learn data
relationships fed to two populations.

Since sharp learning can (i) help to create precise topographic connec-
tions, and (ii) subsequently be used to learn relationships by simply
observing input fed to the network, we believe that sharp learning is a
capable model of learning whose power has only started to be explored.
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Networks (RCNs)





CHAPTER 5

Introduction to Recurrent Competitive
Networks (RCNs)

5.1. RCN Basics

Recurrent networks, such as the one shown in Figure 5.1, can be found
in different places in the central nervous system of many species. It is
therefore not very surprising that a plethora of investigations on such
networks can be found in the literature [HRB11, RRWF10, VA09,
KRA08, BSF07, VA05, DGFM03, BW03, Bru00, AB97].

Unfortunately we do not yet understand them well enough to be able
to build artificial networks with brain-like data processing abilities. A
key problem is that these systems are highly self-referential (recurrent)
and cannot easily be tackled analytically. Although a mathematical
description of the network dynamics is often possible using coupled dif-
ferential equations, finding closed-form solutions for these is generally
impossible.

The networks under investigation are very general and exist in very
similar forms in many places in the CNS of various species [ASLB07,
PMBA+09, BDM04, BS91]. The canonical microcircuit [BDM04],
for example, contains several places where RCN-like structures can be
found. We expect that these biological architectures exploit very similar
dynamics to what we investigate here.

5.1.1. Related Work. Here we do not attempt to give a thorough
literature review, but whenever helpful, we will reference experimental
work that points to anatomical and physiological knowledge about the
brain.

Roughly 15 years ago, Amit and Brunel [AB97] started to look at net-
works like the one shown in Figure 5.1. This and subsequent work
contain detailed mathematical analysis of dynamics in such networks

39
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Figure 5.1. An RCN network. The left side shows
a digram of the chaotic distribution of cell bodies in
euclidian brain space. The right side shows the same
network, this time with excitatory and inhibitory cells
visually separated. Solid arrows symbolize a set of ran-
domly drawn connections between cells of the intercon-
nected or recurrent populations. The number of con-
nections can be controlled by {pip, pib, ppp, ppb, pbb, pbp},
the set of connectivity parameters.

[Bru00, HRB11]. The input to their networks is assumed to be Pois-
son distributed, which is not necessarily the case in real world scenarios
[BMS07, DCM09, DCM11]. In their work, each cell population
consists of a monoculture of cells that are perfect copies of each other.
Although this is a reasonable assumption in order to allow mathemat-
ical analysis, it is not clear how a heterogeneous network, such as the
ones found in biological brains, would synchronize or desynchronize its
activities. (In Chapter 7 we will have a closer look at related topics.)

Various people looked at how recurrent networks of the kind shown
in Figure 5.1 can be used for various computational tasks [RRWF10,
BSF07, DGFM03]. Although very interesting we can not deepen our
discussion about these here, but we would like to single out a fairly suc-
cessful approach, Liquid Computing. Liquid State Machines [Maa07]
are maybe the most extreme attempt to use recurrent, random networks
(the reservoir) for computation and learning. The reservoir and a set of
trainable readout units are used to discriminate properties of the input
fed to random nodes in the network. Besides working well as a model
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there are even attempts to realize Liquid State Machines with biological
neurons in culture [DPH+09].

Concerning the anatomical plausibility of RCNs, studies like [KSM05,
KHP+11, PBM11] show that randomly connected, tabula rasa like
networks can be found in local cortical structures. The RCNs we de-
scribe here are, in first approximation, like the networks described in
these publications. Also other studies like the work by Konnerth and
colleagues (see e.g. [CLR+11] or [VJSK11]) suggests that neural con-
nectivity is not targeted in an obvious way. They show that the excita-
tory input to cortical cells comes from many other cells that are tuned
to a wide variety of features. Although it does not necessarily mean that
the local connectivity is random, a random connectivity would also come
with such diversity properties.

5.1.2. Anatomy of Recurrent Competitive Networks. The an-
atomy of the simulated networks presented here is shown in Fig-
ure 5.1(a). The connections in one such network or layer are highly re-
current, introducing positive (excitatory) as well as negative (inhibitory)
coupling among the cells. The inhibitory coupling makes the excitatory
cells compete, letting only the ones with more excitatory than inhibitory
inputs remain active. These characteristics motivate the name “Recur-
rent Competitive Networks”, or RCNs. We call the multi-layer RCN
setup shown in Figure 7.1(b) “feed-forward RCN chain”. In Chapter 7
we will use such feed-forward RCN chains in order to show how activity
propagates from layer to layer.

We introduce parameters pαβ for α ∈ {i,p,b} and β ∈ {p,b}, with
subscripts denoting the input population (i), the excitatory (pyramidal
cell) population (p), and inhibitory (basket cell) population (b). For
each potential connection between two cells in the entire network pαβ
is the probability for the connection from α to β to exist independent
of each other.

Peter’s rule [BS91], the Canonical Microcircuit [BDM04], and more
recent results like [KSM03, KHP+11, PBM11] tell us to expect (lo-
cally) only little variability for the connection probability pαβ between
cells after normalizing for their size (spatial extent).

Although it is known that the connection probability between two cells
within a cortical column depends on somatic distance [KSM03, PBM11]
and is roughly between 0.1 and 0.2, we use purely random networks,
thereby neglecting these geometric aspects.
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Random graphs of this kind are called Erdős-Renyi graphs and have
been extensively studied for decades [Bol01, ER60].

Neurons in our simulations are either modeled by conductance based
or by voltage based leaky integrate-and-fire (LIF) neurons [Tuc88,
DA01]. In Chapter 6 we review the dynamics of LIF neurons in detail.

Parameters like synaptic strength and transmission delays were chosen
to be biologically plausible. The justification of these parameter sets
can be found in Section 6.3.

The Network Used in this Chapter. We want to fix an RCN setup
for later use in this chapter. Let us, first of all, fix a network size. (In
other chapters of this thesis we will use RCN setups of different sizes.)

We build a network that is large enough to be roughly comparable to
its bio-anatomical counterparts. A network of 1000 excitatory and 250
inhibitory neurons is roughly as large as the neural population found in
one layer in a cortical mini-column of cats or rats [BDM04, LF07].

The remaining, free parameters in the RCN setup are: (i) The connec-
tion probabilities pαβ for α ∈ {i,p,b} and β ∈ {p,b} as mentioned in
Section 5.1.2, (ii) the synaptic weights wi,j between connected pairs of
cells i and j, and (iii) the transmission delays di,j between connected
pairs of cells i and j.

Although important in general, let us for now set all values di,j to 0
or some small value ε � 1ms. In later chapters we will reintroduce
non-zero and non-uniform transmission delays. Note that there are also
other neuronal properties that introduce a notion of time, like the post-
spike refractory periods and synaptic rise and decay times. For details
see Chapter 6. There we present in great detail the neuron model and
its parameterization.

We also set all connections between a source population α ∈ {i, p, b}
and a target population β ∈ {p, b} to the same, fixed value wαβ , giving
us 6 such weight values for all synaptic connections in the network.

This leaves us with 6 + 6 = 12 remaining, free parameters. Note that
many pairs pαβ and wαβ are similar from a certain point of view: if a
cell j receives excitatory input from twice as many cells, but with only
half the effective synaptic weight, the total amount of input may likely
stay the same.
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The precise input characteristics do of course matter. As we will see
in Chapter 8, Siegert’s formula [Sie51] gives a detailed description of
how the response of LIF neurons changes based on such changes in input
distributions (see also Figure 8.1). For small changes the computed rates
are similar, usually giving us some freedom in increasing (decreasing) the
connection weight wαβ a bit and counterbalancing that by decreasing
(increasing) the corresponding connection density pαβ . Taking this into
account it seems plausible that many sets of parameter can potentially
lead to the the same, or at least similar, overall dynamics. Our empirical
observations also support this claim.

The complete set of parameters for an RCN network with 1000 + 250
neurons is given in Table 5.1.

Table 5.1. A set of parameters for an RCN setup contain-
ing 1000 excitatory and 250 inhibitory neurons. We used these
parameters for all simulation results presented in this chap-
ter. (The weight values wαβ are expressing the integral over
the post-synaptic currents a single synapse contributes at the
soma of the receiving neuron. See page 66 in Chapter 6 for a
detailed explanation.)

RCN parameters

np nb
pip pib pbp ppb ppp pbb
0.10 0.10 0.06 0.06 0.06 0.16

1000 250
wip wib wbp wpb wpp wbb
1.90 7.50 −1.80 7.50 0.90 −1.80

5.1.3. Population-Coded Input Patterns. Wemodel a population-
coded input as follows: (i) We fix an arbitrary ordering of the input
neurons Ninp, giving us an additional suffix x. (ii) We choose a position
c at which we want to center the population-coded activity profile and a
spacial extent τ . (iii) We let all input neurons Ninp,x generate Poisson
spike trains with parameters:

λc(x) = S · e−|c−x|/τ , (5.1)

a Laplacian function or, motivated by the visual appearance if you plot
this function, double exponential.

In Chapter 7 we will change the Poisson spike event distribution of the
input neurons in order to test how RCNs deal with more homogeneous
or synchronized input patterns.
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5.2. Results

Figure 5.2 shows how the network we have specified in Section 5.1.2
responds to a population-coded input pattern.

In the left column of Figure 5.2 we can see that the input neurons around
the neuron with ID 350 produced the most input. In the second row,
which shows the exact same data as the first row, but sorted by output
activities, we see that these activities decay exponentially across the
population. The other two columns show that the activities of the RCN
cells are clustered in a similar way. Since the network connections are
drawn uniformly at random, and there is no geometry or topology on
which we have based the creation of individual connections, the subplots
in the first row appear fairly messy.

But why does the network response look like this and how would the
activity profile change by changing the fed input pattern? In this chap-
ter we will give an intuition for this. A more detailed, mathematical
analysis of the response properties of RCN networks can be found in
the thesis of my colleague Christoph Krautz [Kra12].

5.2.1. Sparse Responses Due to Feed-Forward Inhibition (FFI).

The FFI Subnetwork. Let us first consider the subnetwork of the com-
plete RCN shown in Figure 5.3. If we remove the self-loops from the
excitatory and inhibitory subpopulations to themselves (connections of
type pp and bb) as well as the connections from the excitatory subpop-
ulation to the inhibitory subpopulation (pb), a feed-forward inhibition
network remains. Biological evidence for the existence of FFI networks
in cortex are given for example in [PMBA+09].

Let us describe the network structure and introduce some nomenclature.
Each excitatory (pyramidal) cell and inhibitory (basket) cell receives
input from nip and nib input neurons, respectively. The input neurons
fire with rate λc(x), as described in Section 5.1.3. The synaptic weights
from input neurons to pyramids and baskets are wip and wib, respec-
tively. Each pyramidal cell is inhibited by nbp interneurons. It is this
source of inhibition that motivates the name feed-forward inhibition.

Before a cell creates output spikes, it is necessary to receive enough
input. If synaptic weights are fixed, thresholds λminp and λminb ex-
ist. These values denote the minimal rate at which Poisson distributed
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Figure 5.2. The characteristic response pattern of an
RCN consisting of 1000 input neurons, 1000 excitatory,
and 250 inhibitory cells. The precise network param-
eters used for the present simulation are given in Ta-
ble 5.1. The left column shows the activity of the in-
put cells, the center column the resulting activity of
the 1000 excitatory neurons, and the right column the
activity of the inhibitory cell population. Each figure
in the upper row contains a plot showing the spike rate
in Hz on the y-axis, and the neurons, in order of their
creation by the simulation environment, on the x-axis.
The lower row contains the same data as the upper one.
The y-axis is now labeled to show total spike events
recorded during the simulation time of 1.0 seconds, and
the neurons along the x-axis were sorted such that the
most active neuron gets displayed to the very right.
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Figure 5.3. The FFI-subnetwork within the full
RCN. See text for a discussion of the functional
significance of this network.

inputs are sufficient to let the receiving pyramid or basket cell fire at
all.

For the moment let us assume that this threshold is smaller for pyrami-
dal cells than for basket cells (λminp < λminb). If we slowly increase the
input fed into the network, the pyramids are the first to become active.
When the input increases further the basket cells become active as well.
This causes the pyramids, due to FFI, to lower their activities.

But the inhibitory subpopulation does not only lower the output rate
of the pyramidal cells. As suggested in [PMBA+09], basket cells that
create spike events due to received feed-forward excitation will make it
harder for all laterally connected cells in the entire network to become
activated themselves. This is because they not only have to get an
total input larger then λminp , but the total excitatory input has also
to compensate for the inhibition they receive. (Note that this intuitive
reasoning, although basically correct, draws a slightly simplified picture.
The author and his colleagues are currently working on a more detailed,
mathematical description of precisely these phenomena. Some of these
results are contained in the thesis of Christoph Krautz [Kra12].)

If, in contrast to our previous assumption, basket cells are more eas-
ily excited by the external input stimulus than the pyramidal cells are
(λminp < λminb), the story is still quite similar. Now inhibitory cells are
the first to become active, making it already initially slightly harder for
all other cells to become active. As long as the inhibition is not too
strong, the pyramidal cells receiving most of the excitatory input will
still start producing spike events. This, in turn, will engage even more
inhibitory cells until no excitatory node gets excited enough to join the
subset of activated pyramids. In Chapter 7 we will see an example of
such a setup.
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The FFI-Subnetwork in the RCN Context. Above we saw that once the
pyramids and baskets are activated, every bit of additional input to
the network makes the baskets more and the pyramids either more or
less active, depending on the strength and excitability of the inhibitory
subpopulation. This can lead to situations where (i) additional input
makes the amount of recurrent inhibition so large that the total amount
of excitatory output decreases, or to a situation where (ii) the input
becomes so large that the refractory period of the baskets prevents a
further increase of the inhibitory signal, resulting in a rapid increase of
pyramidal activity. The second possibility is unlikely to play a crucial
role in biological networks, sincethe natural operating range of neurons
does not come anywhere close to output rates that make the refractory
period be the limiting factor.

In general, an FFI network with large dynamical range [PMBA+09]
can only be built if the parameters are chosen to balance excitation
and inhibition. Intuitively this means that the effective input current
(total excitatory currents minus total inhibitory currents) has to be
small. This might, in biological brains, be achieved by synaptic scaling,
a process that is not yet fully understood but has been observed [Tur08,
GA00].

The network dynamics are more involved if all connections shown in
Figure 5.1 are present. The pb-connections can be seen as an additional
mechanism to prevent run-away excitation – the inhibitory population is
now not only sensitive to external excitation but strengthens inhibition
even in response to strong internal excitation.

The pp connections, as we will see in detail in Chapters 9 and 10, can
be used to make RCNs learn certain reoccurring input features and
relations, but can also lead to a series of problems and clustering effects
(that will not be explicitly shown in those chapters).

The use of the bb connections is less obvious. In Chapter 7 we will see
that these connections are crucial for synchronization and desynchro-
nization of population spike patterns.

Figure 5.4 shows the response of a complete RCN to a fixed input pat-
tern of increasing input frequencies λc(x). We can see that sparse,
random networks of roughly the size and structure that exist in cor-
tex, simulated using a fairly detailed LIF neuron, show very reliable
output statistics that can precisely be controlled by a couple of intu-
itive parameters. Compared to simpler FFI-networks, the additional
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Figure 5.4. Response of an RCN to input patterns of increasing
strength. The solid curve shows a setup where external excitation
and internal (feed-forward) inhibition are almost perfectly bal-
anced. We can see that once the input pattern is strong enough
to elicit a population response, the output strength is basically
independent of the input strength. Dashed and dotted curves
show the response of two other RCN setups with weaker and
stronger FFI, respectively. The insets show the sorted popula-
tion activities as introduced in the second row in Figure 5.2.

recurrent connections in RCNs do not significantly change the observed
phenomena.

The robustness of these phenomena suggest that FFI dynamics like the
ones shown here could easily have been chosen by evolution to play a
role in the type of computations performed in our brains.

5.2.2. Similar Input Patterns Give Rise to Similar Output Pat-
terns. Figure 5.5 was created with the same very RCN that we used
to create Figure 5.2. Only two things are different compared to Fig-
ure 5.2: (i) The input pattern is now centered at c = 400 (before it was
c = 350), and (ii) the second row is not sorted by the response of this
input (λ400(x)), but the neuron ordering of Figure 5.2, based on the
response to input λ350(x), was retained.

It is easy to see that the activity pattern, although slightly noisy, is
quite similar to the one shown in Figure 5.2. Another way of visualizing
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Figure 5.5. Same setup as for Figure 5.2. The differ-
ences are: (i) The input pattern is now not centered
at c = 350, but rather at c = 400, and (ii) the second
row is not sorted by the response of the given input
λ400(x), but is still ordered as in Figure 5.2 according
to the activities of the network in response to input
λ350(x).

this effect is given in Figure 5.6. In this figure we show the input prefer-
ence of the receptive fields [HW62] of 10 arbitrarily chosen pyramidal
neurons. In order to create this figure we presented 1000 different input
stimuli of the kind described in Section 5.1.3. Table 5.2 contains the
set of parameters that fully describe these inputs. In total we showed
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Figure 5.6. Tuning of 10 arbitrarily chosen pyramidal cells from the
RCN used throughout this chapter. Almost every cell in the network
shows strong preferences to certain input locations (x-axis), although
the network’s connectivity is purely random. It is interesting to see
that a neuron’s preferred input location(s) have some spacial extent
along the x-axis.



5.2. Results 51

10 different input patterns (see Table 5.2) centered at 100 different lo-
cations. Each of the subfigures in Figure 5.6 shows the tuning of one
pyramidal cell in the RCN to these 100 locations.

Table 5.2. Parameters for all inputs used to generate Fig-
ure 5.6 and the preliminary cluster-test described in Sec-
tion 5.2.3. Each combination of the given parameter values
was presented to the very same RCN, giving a total of 1000
different input patterns at 100 different locations c. Note that
many of these inputs are overlapping each other.

Parameter (see S. 5.1.3) values used for cluster-test
max rate (S) {30 Hz, 60 Hz}
input width (τ) {40, 60, 80, 100, 120}
input position (c) {10 · x | for x from 1 to 100}

We want to provide a more quantitative way of looking at the similarity
of input and output patterns. For this purpose we have to define a
measure of similarity between population activation patterns.

5.2.2.1. A Similarity Measure for Input and Output Patterns. An input
pattern, as well as an output pattern, can be seen as a high dimensional
vector. The spike rate of each cell in a given input or pyramidal popu-
lation corresponds to one dimension in such an output vector pattern.
(This is precisely the kind of data we visualized in Figures 5.2 and 5.5.)

The similarity of two vectors x and y of dimensionality d can be mea-
sured in many ways. One possibility is to compute the angle between
the vectors. By standard geometry, the angle satisfies cos(x,y) = x·y

|x|·|y| ,
where:

x · y =

d∑

i=1

xiyi

is the dot product and |x|, |y| are the length of x and y, respectively.

Two identical, length normalized vectors give a value (X ·Y) = 1, two
orthogonal, length normalized vectors have a dot product (X ·Y) = 0
(which in our case is very unlikely given that all our vectors do only
have non-negative entries).

The angle gives us a very natural and easy to compute measure of
similarity between two normalized population activity patterns.
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Figure 5.7. Visualization of a series of simulations per-
formed with the RCN network defined in Table 5.1. Each
data point represents two successive simulations where two
different inputs were fed to the network. The position on the
x-axis shows the similarity (angle) of the two inputs λc1(x)
and λc2(x). The y-axis shows the similarity of the two output
patterns elicited by these two inputs. The data shows that
similar inputs give rise to similar output patterns. More dis-
similar inputs lead to more dissimilar outputs. For orthogonal
inputs the RCN response diverges systematically from the di-
agonal, meaning that the responses elicited by the two inputs
are partially overlapping even when the inputs are not.

We can use this similarity measure to show how similar the response
of an RCN to two stimuli is, compared to the similarity of these stim-
uli. (Note that this comparison works well even if the number of input
neurons and pyramidal neurons do not match in number.) Figure 5.7
contains similarity tests performed on a series of simulations. (Again
we have used the RCN network defined in Table 5.1.) Each data point
represents two successive simulations where two different inputs were
fed to the network. The position on the x-axis shows the similarity of
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the two inputs λc1(x) and λc2(x). The y-axis shows the similarity of
the two output patterns elicited by these inputs.

For data points on the diagonal, the similarity of the inputs matches the
similarity of the outputs. We can see that very similar input patterns
lead to very similar outputs. If the two inputs become more distinct, the
output patterns start to systematically diverge from the diagonal: the
output patterns become more similar than the input patterns. (Note
that the similarity of two random vectors is also not 0.)

The major reason for the values in Figure 5.7 to be placed above the
diagonal can be explained by the distance measure we have used: the
dot product (X ·Y). The dot product equals 0 if and only if the vectors
(X and Y) are orthogonal, i.e. only if these vectors do not share non-
zero dimensions. (Note that this is only true because our activity vectors
cannot contain negative values.) In Figure 5.2 we see that our network’s
activity vector has nonzero entries for more then half its dimensions
already. Hence we cannot find two such vectors with (X ·Y) = 0.

Besides that, some of the pyramidal cells do, by chance, have more
excitatory connections (or maybe also less inhibitory inputs from the
basket cells) and are therefore more active on average than all the others.
This uneven activation of the neurons in an RCN gives rise to the higher
degree of similarity in resulting output patterns.

Note that all this does not necessarily mean that similar input patterns
cannot be distinguished. Two vectors with a dot product well above
zero can still be quite different and easy to discriminate at a subsequent
processing stage.

5.2.3. Different Inputs Remain Distinguishable. Since the con-
nectivity in RCN networks is stochastic, one might be concerned that
different input patterns could lead to similar output activities. If this
would be the case, we might lose information and could at later pro-
cessing stages not distinguish similar but different inputs any more.

Although we see in Figures 5.5 and 5.6 that similar inputs have the
tendency to excite the network in similar ways we cannot be satisfied
with the relatively informal, visual clues we get from these figures. The
question is how well inputs could be discriminated if all you have is the
activities of the RCN’s pyramidal population.

We think that this boils down to the question of how well tabula rasa
[KSM05, KHP+11, PBM11] type networks can discriminate inputs.
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If the “tabula rasa” hypothesis in [KSM05] holds it seems highly desir-
able that the initial sensory networks should not lose information about
the inputs they receive. If a quantitative analysis of RCNs would show
that they can indeed distinguish even fairly similar input patterns, then
the tabula rasa hypothesis could at least in principle be correct.

Although we are working on such a rigorous quantitative analysis we
are not yet able to present clear-cut results. Instead we will report on
preliminary tests we performed on the dataset created for Figure 5.6.

In order to demonstrate the robustness and reliability of RCNs, we
created a set of 1000 input patterns (see Table 5.2). We fed each of these
1000 patterns in 10 consecutive runs to the RCN defined in Table 5.1.
Note that each of these 10 individual simulations per input pattern are
not identical. This is because input patterns are only defined in terms
of Poisson rates rather than precise spike timings and spike counts.

For each input we collected the elicited outputs into a vector of length
1000. We then used a k-means classifier to see whether all 1000 ten-point
clusters were stable under the k-means algorithm, or whether these clus-
ters would turn out to intersect in the 1000-dimensional vector-space.
In order to do so we initialized the 1000 clusters by labels representing
the 1000 different input patterns.

The result of this clustering test was clear-cut. We could classify 100% of
the input patterns correctly. This means that the 1000 clouds containing
10 points each were embedded in the RCN-output-space in such a way
that each point was closest to the center of its own cluster. In other
words: each input pattern was causing a distinct output pattern without
giving rise to any confusion between them.

5.2.4. A Superposition of Inputs Is a New Input Pattern. What
might happen if we not only show one of the inputs described in the
last section but instead combine two of them? Since we know about
the FFI-aspects of RCNs we know how the overall network activity will
change (Figure 5.4), but how would this activity be distributed?

Figure 5.8 shows the responses of an RCN (i) to an input stimulus
A, (ii) to an input stimulus B, and (iii) to the superposition (sum of
individual Poisson rates) of the stimuli A and B, stimulus AB.

We see that the responses to all three input patterns are quite different.
The pairwise similarity (dot-product) of the normalized output patterns
is 0.25 for patterns A and B, 0.70 for patterns A and AB, and 0.58
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Figure 5.8. Response of an RCN (i) to an input stimulus A, (ii) to
an input stimulus B, and (iii) to the superposition of the stimuli A and
B, stimulus AB. For all subfigures, the pyramidal cells along the x-axis
are sorted according to the activities elicited by the last-mentioned input
in the title. The output pattern corresponding to input A is shown in
red, the one for input B in blue. Stimulus AB is shown in green. We
can see that the responses to all three input patterns are quite different.
The pairwise similarity (dot-product) of the normalized output patterns
is 0.25 for patterns A and B, 0.70 for patterns A and AB, and 0.58 for
patterns B and AB. )
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for patterns B and AB (see Section 5.2.2 for an explanation of this
similarity measure), showing that the response to a superposition of
two inputs gives rise to an output that shares a certain similarity with
both of them but is still very well distinguishable from both of them.

5.3. Discussion

In this chapter we introduced Recurrent Competitive Networks (RCNs).
We have seen that these networks are inspired by our current anatomical
knowledge [PBM11, KHP+11, PMBA+09, CLR+11, VJSK11,
ASLB07, KSM05, BDM04, BS91] and that it is likely to find RCNs
in different places in the CNS of various species.

We then fixed a representative instance, for which we have provided a
complete set of parameters. We used this model throughout the chapter
to demonstrate typical RCN dynamics.

Comparing these dynamics with those of classical competition models
(like the ones we used in Part 1 of this thesis), we can see both, simi-
larities and differences.

5.3.1. Similarities Between RCNs and CCMs. In Section 5.2.1
we showed that the output of an RCN is sparse, meaning that
most cells show below-average activity levels. This, in fact, is sim-
ilar for population-coded cell assemblies, first described by Geor-
gopoulos [GKCM82]. For further details on population codes see
[DLP99, PDDL99, DLP01].

Each cell in a population-coded cell assembly has a preferred input
stimulus. For stimuli that are similar to the preferred stimulus, the
cell responds quite actively. This characterization is nicely modeled by
CCMs like divisive inhibition or convolution based models (see Part 1).

Cells in RCNs also have the property that they are activated by similar
input patterns (see Section 5.2.2). Later, in Chapter 9, we will show
that RCNs can be modified by a simple learning rule so that they learn
the topology of the input space, making them even more similar to the
CCMs of Part 11.

Another similarity of CCMs and RCNs is that the output strength
of many CCMs, like divisive inhibition or convolution based methods,

1 This, as we will see in Chapters 9 and 10, is true even though the topology had to
be hard-wired into the CCMs.
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scales sub-linearly with the input strength (this follows e.g. from the
model descriptions given in [DLP01] and [Ama77]).

Not only do the dynamics of RCNs match fairly well with biophysical
results like the ones in [PDDL99], by design also the network structure
of RCNs reasonably matches the known anatomy of local cortical circuits
[KSM03, PBM11, BDM04].

5.3.2. Differences between RCNs and CCMs. The biggest differ-
ence between CCMs and RCNs is in their response to a superposition
of inputs. There is not yet a scientific consensus for how biological cell
populations respond to the superposition of two inputs-

Classical competition models come with diverse responses to input pat-
terns like the ones we used to create Figure 5.8. To our knowledge there
is no alternative model described in the literature that shows response
patterns qualitatively similar to RCNs. (But mind the plethora of re-
lated work we cited in the introduction of this chapter. Most of this
work had a different scientific focus, but we expect that basically all of
them show comparable dynamics to what we have described here.)

Nevertheless, we think that the RCN type of network response to a
superposition of individual input patterns is remarkably similar to ex-
perimental data obtained in the Institute of Neuroinformatics (data not
published when this thesis was finalized).

It is very interesting to see how recurrent networks that may be
quite similar to real brain networks respond to external stimulation.
Still, the question of how such modules could collaborate and interact
in our heads in order to let us think and reason remains a challenging,
largely unanswered scientific quest.

In the following chapters we elaborate on possible answers to this ques-
tion. We discuss possible extensions and couplings of RCNs to build
systems that show richer dynamics, being capable of performing learn-
ing, inference, cue-integration, and decision tasks.

Before building larger networks, though, we will review biologically
plausible parameter regimes for leaky integrate-and-fire neurons.





CHAPTER 6

Biologically Plausible Integrate and Fire
Parameters

6.1. Introduction

When building a neural network, especially when attempting to model
biological networks, one needs to choose one of many possible neu-
ron models. Within the last decades many such models have been
used, ranging from simplistic units such as McCulloch-Pitts neurons
[WL90, Ros58, MP43] up to complex, multi-compartmental models
as described and used in [YKA89, EWL+91, HC97, BB03].

While simple models do not capture the dynamics of real neurons very
well, complex neurons can be so computationally expensive that efficient
simulation of large neural networks is simply not feasible. Which neuron
model to pick depends very much on the modeling task at hand [Izh04].

Since we are interested in biologically plausible, recurrent networks like
the recurrent competition networks (RCNs) introduced in the previous
chapter, we want to pick a neuron model that describes biological neu-
rons as well as possible, while allowing us to efficiently simulate networks
that consist of several hundred or even thousands of neurons. A natu-
ral choice is the so-called leaky integrate-and-fire neuron (LIF-neuron)
[RLCL+03, Tuc88, DA01].

But the need for design decisions does not end here. In order to instan-
tiate and later also simulate our network of choice we have to decide
which simulation environment to use or if we want to go and build one
ourselves. Since there are many such tools available [EHM08, BB03,
DG02, WJW+02, HC97] it is most likely a good idea to pick one of
those.

59
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In our case we chose the Neural Simulation Tool, NEST [EHM08,
DG02] for most of our simulations. NEST already contains a LIF-
neuron model, but we extended their implementation significantly in
order to include additional parameters and synaptic dynamics.

A very nice and quite detailed review of existing neural simulation
strategies and tools can be found in [BRC+07]. Rudolph and Des-
texhe elaborate in [RD06] on whether or not neural simulations can
mimic the dynamics of real neural networks and what has to be con-
sidered in order for them to do so. Izhikevich offers a nice overview of
the most important spiking neuron models and lists their main features
and limitations in [Izh04].

6.2. The Neuron Model

All model neurons used in the simulations performed here are leaky
integrate-and-fire (LIF) neurons [Tuc88, DA01]. It is known that LIF
neurons can match cortical cell physiology quite well [RLCL+03]. We
have implemented them to be compatible with the NEST framework
[EHM08, DG02].

In the following sections we will briefly describe the basic concepts of
LIF neurons. A detailed, well written introduction to LIF neurons, and
other neuron models, can be found in the book by Gerstner and Kistler
[GK02].

6.2.1. Leaky Integrate and Fire Dynamics. A LIF neuron is mod-
eled by a fluctuating membrane potential Vm that decays exponentially,
with decay rate τm, to its resting potential Vrest. Synaptic inputs can
raise or lower Vm. (How synaptic inputs precisely influence the mem-
brane potential can be found in Sections 6.2.3 and 6.2.4.) If Vm rises
above the threshold potential Vth, the cell elicits an action potential
(spike) and sends this event to all neurons along its axon. The trans-
mission delay, i.e. the time it takes to transmit this event to the soma of
the receiving cell, can be set individually for each receiving cell. After
generating an action potential, a neuron enters the so called absolute
refractory period – a phase that lasts tref milliseconds. During this time
the LIF neuron is not integrating synaptic input and is therefore guar-
anteed not to generate further action potentials. After the absolute
refractory period the cell’s membrane potential is reset to Vreset.
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The dynamics of a standard leaky LIF model can be described by the
following differential equation:

τm
dVm(t)

dt
= −(Vm(t)− Vrest) +RmI(Vm, t) , (6.1)

where Rm is the membrane resistance and I(Vm, t) the received synaptic
current at time t. Note that the synaptic current can depend on Vm,
the current membrane potential.

6.2.2. Synaptic Integration and Transmission Delays. Every con-
nection ci,j from neuron i to neuron j has a transmission delay δi,j as-
signed to it. Precisely δi,j milliseconds after neuron i generated an action
potential, the synaptic input I(t) starts arriving at the soma of cell j.
I(t) can be model in different ways. The two most common models sim-
ulate the current flow directly by specifying the current or indirectly by
changing the conductance of a cell j’s membrane (see e.g. [GK02] for a
detailed explanation). These two models can lead to different network
dynamics [DRFS01, MBG04]. The conductance based model often
provides a better fit to biological neural dynamics.

Let us have a closer look at current and conductance based synaptic
integration.

6.2.3. Current Based Synaptic Input Integration. If synaptic in-
put is modeled on the basis of current given by the function I(t), the
total change of the postsynaptic membrane potential Vm depends only
on I and τm. This means that the influence of one synapse on Vm is
always the same, independent of the current value of Vm.

The synaptic currents in biological neurons depend on the types of recep-
tors that are activated by the released types of neurotransmitters. Each
receptor evokes synaptic currents of different amplitudes and durations
and therefore has to be modeled by a separate term in Equation 6.1.

We explicitly model two excitatory receptor types, AMPA receptors and
NMDA receptors, and one inhibitory receptor, the GABAA receptor.
The next paragraphs will give all necessary details about the precise
dynamics of these three receptor types.

6.2.3.1. Excitatory Post-Synaptic Currents (EPSCs). The EPSC is the
sum of two separate currents IAMPA and INMDA, corresponding to the
currents from the glutamatergic receptors α-Amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA).
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We model IAMPA(t) currents by a single exponential:

IAMPA(t) =

{
cAMPAe

−(t−t0)/τAMPA , t ≥ t0
0 , otherwise

, (6.2)

as for example described in [Wan99, RBS+67]. The factor cAMPA =
αAMPA
RτAMPA

is chosen such that the total evoked voltage is αAMPA, the
parameter for the synaptic efficacy with respect to AMPA.

The NMDA contribution, in contrast, is modeled by a double expo-
nential1 with parameters τNMDA,rise and τNMDA for rise and decay time
constants respectively. (See again [Wan99, WvRM+00] for further
details.) The area under the function INMDA(t) is similarly normalized
to be αNMDA, the parameter for the synaptic efficacy with respect to
NMDA.

In total, a single presynaptic spike induces a total potential change of
αex = αAMPA + αNMDA, αexusually being called the synaptic weight or
total synaptic efficacy. Synaptic currents of multiple synaptic spikes are
summed up linearly.

6.2.3.2. Mixing of AMPA and NMDA Currents. We used data of the
compound postsynaptic currents (PSC) of excitatory cells [MLF+97,
BGC03, TWWB02] to deduce the relative contributions of AMPA
and NMDA currents at single synapses. We did so by finding the best
fit to measurements published in these papers.

In Section 6.3 (Table 6.1) we show the results of our data-fitting analysis.

6.2.3.3. Inhibitory Post-Synaptic Currents (IPSCs). IPSCs are modeled
by a GABA current. This current is, like the AMPA current discussed
before, modeled by a single exponential with one parameter (τGABA)
and a total synaptic efficacy of αin [Wan99, GH98, WGTR+02,
BCHS95].

In biological systems GABA currents are further subdivided into GABAA
and GABAB currents, which operate like AMPA and NMDA on slightly
different timescales. For simplicity we do not model these two currents
explicitly.

1 Double exponential, in this context, denotes a fast exponential rise time and a
slower exponential decay. Mathematically this can be expressed by f(t) = cNMDA ·
(1− e−(t−t0)/τNMDA,rise ) · e−(t−t0)/τNMDA .
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6.2.4. Conductance Based Synaptic Input Integration. The as-
sumption that the influence of a synapse on the membrane potential Vm
of the postsynaptic cell is always the same, independent of the actual
value of Vm, is not true for real neurons. Since synapses do not actively
transmit currents, but rather influence the permeability of the postsy-
naptic cell to certain positively or negatively charged ions, the effective
current flow depends on the concentration difference of these ions in
the intracellular and extracellular fluid (see e.g. [GK02] for a detailed
explanation).

The model can account for this if the function describing the synaptic
currents that flow into the postsynaptic cell depends not only on t but
also on Vm, as seen in Equation 6.1. In such a model the synaptic
current I is given by

τmI(Vm, t) = −Gex(t)(Vm(t)− Eex)−Gin(t)(Vm(t)− Ein) , (6.3)

where Eex and Ein are the reversal potentials of positively charged
(sodium) ions and negatively charged (potassium) ions, respectively.

An excitatory synaptic event contributes a relative conductance Gex(t),
modeled by a single exponential for AMPA and by a double exponen-
tial for NMDA. The parameters τAMPA, τNMDA, and τNMDA,rise are
the same as for the current-based synapse model (see Section 6.2.3).
We normalize the area under Gex(t) and Gin(t) to ĝAMPA and ĝNMDA,
respectively. In this way ĝAMPA and ĝNMDA become the parameters
for the relative contribution of AMPA mediated versus NMDA medi-
ated excitatory synaptic input. The total excitatory synaptic efficacy is
ĝex = ĝAMPA + ĝNMDA, the sum of these two values.

An inhibitory synaptic event contributes a relative conductance Gin(t)
modeled by a single exponential transmitted by GABA. The parame-
ter for the exponential, τGABA, is the same as for the current model
(Section 6.2.3). The area under the function Gin(t) is normalized to be
ĝin, the parameter for the synaptic efficacy with respect to inhibitory
NMDA currents. The total inhibitory conductance is given by the sum
of all GABA contributions of all active synaptic events.

6.3. Bio-plausible Parameters

Biophysical experiments usually show huge variances on many measur-
able properties of single neurons and neural populations. In this section
we review the literature, finding many examples of this variance. Of
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course we cannot cover the vast amount of existing biophysical and
anatomical data, so we choose a representative sample.

6.3.1. Neuronal Properties. Setting up a leaky integrate-and-fire
(LIF) neuron to behave like a real cortical cell is difficult. Besides the
fact that LIF neurons can only model regular spiking cells [Izh04], there
is currently no consensus on what parameters should be used when one
wants to model cell type X of brain area Y , for any X or Y .

We provide an overview of experimental data on cortical pyramidal cells
and cortical basket cells that gives indications for how to set the LIF
neuron’s parameters. All the collected animal data was measured in
cats, ferrets, and rodents.

6.3.1.1. The Resting Potential. There is a long list of publications
containing in vitro resting potential data in various animals [Sch78,
CGP82, MCLP85, DP89, TW93, BCHS95, SS95, BSHS96,
FVM99, GH01, WGTR+02, BGC03, GWGR03, GBKU+04,
GBKU+04, RMAH07, KHOC07, KO08, LL10]. The in vitro
spectrum of measured resting potentials in pyramidal cells ranges from
−84 ± 7 mV to −61.0 ± 5.4 mV, and for inhibitory cells from −73 ± 2
mV up to −64.0± 5.5 mV.

In vivo experiments are less frequent. For inhibitory cells they tend to
show slightly lower resting potentials. This offset to the in vitro values
can possibly be explained by tonic background noise present in vivo
(but not in vitro) [LRDL06].

In vivo data from cat is, for example, available in Baranyi et al. [BSW93].
Margrie et al. [MBS02] provide in vivo data in mouse and rat so-
matosensory cortex, and Degenetais et al. [DTGG02] in rat prefrontal
cortex. [DTGG02] also classify the cells they are recording from on
the basis of their spiking properties.

The in vivo spectrum of measured resting potentials in pyramidal cells
is remarkably high, ranging from −83.8 ± 5.2 mV to −64.2 ± 3.9 mV.
Note that not only do different studies show very different parameter
ranges, but each individual study comes already with remarkably high
standard deviations.

For inhibitory cells Fricker et al. [FVM99] give a detailed analysis.
They measure an in vitro resting potential of −74 ± 9 mV, but argue
that the technique they use might yield values about 13 ± 6 mV more
negative compared with whole cell recordings of the same neurons. This
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would, as before, hint at a lower resting potential for inhibitory cells in
vivo.

In spiking neuronal network models values close to −65 mV are most
frequently used [BDMK91, LRDL06, Wan99, BMS07] for modeled
pyramidal neurons. Inhibitory (basket) cells are usually set to similar
values. Lansner and colleagues (in [LRDL06] as well as in preceding
publications) distinguish between resting potentials with tonic back-
ground noise and in its absence (−75 mV vs. −60 mV).

6.3.1.2. The Threshold Potential. In vitro data for the threshold poten-
tial of individual excitatory or inhibitory neurons can, for example, be
found in [SS95, FVM99, FM00, RMAH07, KO08, LL10].

Detailed in vivo data in rat prefrontal cortex can be found in Degenetais
et al. [DTGG02]. For pyramidal cells they find parameter ranges from
−50.8± 5.8 mV to −48.5± 3.9 mV.

In vitro data for basket cells can be found in [FVM99] (−49 ± 8 mV)
or [FM00] (−38± 6 mV).

For pyramidal cells in spiking neuronal network models values around
−52 mV are often used [LRDL06, HT05, Wan99]. For basket cells
values used in models can also be around −52 mV (e.g. [Wan99]).

6.3.1.3. Sub-Threshold Range. In order for a model neuron to follow
the dynamics of its biological counterpart the absolute values of resting
and threshold potential are less influential than their relative distance
to each other. The distance A = |Vrest − Vth| indicates how much input
has to be integrated by a neuron in order to generate a spike.

The high variability in all mentioned measurements gives us a fairly
broad range of potentially plausible values for A.

For pyramidal neurons the reviewed literature allows values in the large
range of A ∈ [10, 35] mV. For basket cells this range is slightly different
but even larger: A ∈ [11, 44] mV.

Most modeling work we found is using setups within the plausible ranges
for A. Heinzle et al. [HH07], just to mention one example, use a value
of A = 20 mV for pyramidal as well as for basket cells.

6.3.1.4. Membrane Time Constant (Leakage). A vast amount of data
can be found for membrane time constants in various places in differ-
ent animals and cell types. For excitatory cells we reviewed [Sch78,
CGP82, MCLP85, TW93, BCHS95, BGC03, GBKU+04,
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PGBZ+06, KHOC07, KO08, LL10], for inhibitory cells [MCLP85,
TDW93b, BCHS95, BSHS96, WGTR+02, PHT03, BGC03,
GBKU+04, GBKP+05, PGBZ+06, KHOC07]

For pyramidal cells the cited studies offer values ranging from 6.83 ±
1.59ms [TW93] to 30 ± 6ms [KHOC07]. A majority of this data
supports a membrane time constant of about 17.4±4.5 to 22.3±3.6 ms:
[PGBZ+06, GBKU+04] in monkey, [MCLP85, Sch78] in guinea
pig, and [PGBZ+06, BGC03] in rats.

For inhibitory cells values range from 4.2±2.1ms [TDW93b] to 20.41±
8.25ms [WGTR+02].

In spiking neuronal network models like [HH07] or [Wan99] values of
roughly 20 ms for pyramidal cells and 10 ms for inhibitory cells are used.

6.3.1.5. Refractory Period. The reviewed literature did not contain de-
finitive statements about refractory times. Many LIF-models use 2 ms
for pyramidal cells and 1 ms for basket cells.

6.3.2. Synaptic Properties. We not only want the parameters of
our model neuron to match physiological data, but also the synaptic
dynamics should be modeled as well as possible. In this section we will
continue our literature review focusing on synaptic properties.

The “strength” of a synaptic connection, often called its “synaptic ef-
ficacy” depends on multiple factors. Cortical excitatory synapses use
mostly glutamate as the neurotransmitter. On the postsynaptic site,
glutamate reacts with two receptor types, (i) AMPARs (α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors) and (ii) NMDARs
(N-methyl-D-aspartate receptors). These receptors, once activated, lo-
cally change the permeability of the membrane such that positively
and/or negatively charged ions can pass. It is this ion flow that gives
rise to the post-synaptic currents (PSCs) we will describe below slightly
more detail.

Inhibitory synapses, using GABA or Glycine as their neurotransmitter,
function in a very similar way. The relevant receptors are GABAA
receptors and GABAB receptors and these will also be discussed in
more detail below.

In order for a synapse in our simulations to have a well-defined synaptic
efficacy, we use the total synaptic current that flows into the postsynapic
soma after this synapse receives an action potential. We denote this
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value as the synaptic efficacy w. Dependent on the nature of the synap-
tic currents, w will be denoted with appropriate suffixes like wAMPA,
wNMDA,wGABA, or wex and win for total excitatory and inhibitory cur-
rents.

6.3.2.1. AMPA mediated PSPs and PSCs. AMPA mediated currents
are fast currents. They are usually modeled by a instantaneous rise to
a maximum initial current followed by an exponential decay controlled
by the parameter τAMPA.

In [KHOC07, WvRM+00, HNPS90a, HSN90] we found measure-
ments of AMPA mediated excitatory postsynaptic currents (EPSC) in
rats, and [BGC03] measure directly the resulting change in excitatory
postsynaptic potential (EPSP).

Reported EPSC amplitudes for pyramidal cells range from 25.5±2.0 pA
[WvRM+00] to 40.7±5.5 pA [KHOC07], for interneurons (inhibitory
neurons) 75.2 ± 10.2 pA [KHOC07]. Values for τAMPA range from
3.1± 0.8 ms [HNPS90a] to 7.11± 0.93 ms [KHOC07] for pyramidal
neurons, and 2.68± 0.27 ms [KHOC07] for interneurons.

The EPSP properties reported in [BGC03] (rat, barrel cortex) show
1.1±1.1 mV amplitudes (ranging from 0.2 to 4.1 mV) with a 0.88±0.26
ms 20 − 80% rise time and a 12.3 ± 2.2 ms half-width for pyramidal
neurons. For fast spiking interneurons they report EPSP amplitudes
of 2.2 ± 2.2 mV (ranging from 0.2 to 10.1 mV) with a 0.37 ± 0.11 ms
20−80% rise time and a 4.9±1.9 ms half-width. For cat (visual cortex,
Layer 4), [THMSJ99] report, depending on the type of the targeted
excitatory neuron class and the origin of the input, EPSP amplitudes
between 0.214 ± 0.138 mV and 1.018 ± 0.768 mV, with rise times of
1.1 ± 0.3 ms and 1.2 ± 0.4 ms, and 12.3 ± 5.0 ms and 11.4 ± 4.3 ms
half-widths respectively.

This data is interesting because it can be used to cross validate the com-
bined dynamics of our LIF-neuron with the used synaptic parameters.

A model by Wang et al. [Wan99] uses AMPA currents with a rise time
of roughly 0.2 ms, and a decay time τAMPA = 2 ms.
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6.3.2.2. NMDA mediated PSCs. NMDAmediated currents are slow cur-
rents. They are usually modeled by a double exponential2 with pa-
rameters τNMDA,rise (parametrizing the current rise time) and τNMDA
(parametrizing the current decay).

In [WvRM+00, KY96, HNPS90a, HSN90] we found measurements
of NMDA mediated EPSCs in mouse and rat.

Reported EPSC amplitudes for pyramidal cells range from 6.0 ± 0.6
pA [WvRM+00] to 45.9 ± 17.3 pA [KY96]. In general we observed
a tendency for higher values in older animals. Values for τNMDA,rise
should be chosen to match rise times between 11.8±4.9 ms [HNPS90a]
and 15.5 ± 2.5 ms [WvRM+00]. Decay rates τNMDA are reported
in the range between 93 ± 38 ms [HNPS90a] and 163.7 ± 50.9 ms
[WvRM+00]. Hestrin et al. report in [HSN90] that the decay phase
of NMDA currents might contain two separate exponential components,
a fast component with a decay rate around 23.5 ± 3.8 ms, and a slow
component with a decay rate of about 123± 38 ms.

A model by Wang et al. [Wan99] uses NMDA currents with a rise time
of roughly 8 ms, and a decay time constant τNMDA of 80 ms.

6.3.2.3. AMPA / NMDA Ratio. The postsynaptic process contains both
receptor types: AMPARs and NMDARs. The precise EPSP’s time
course depends on the absolute and relative quantities of the present
receptors. Here we are mainly interested in finding biologically plausi-
ble values for the ratio of AMPA and NMDA (ρAMPA = wAMPA

wAMPA+wNMDA
)

receptors in the postsynaptic membrane.

We found data about this ratio for synapses onto pyramidal neurons in
[WvRM+00, MLF+97, MSTN03], and in a review by Thomson et
al. [TD94] for synapses onto inhibitory neurons. For pyramidal neurons
ρAMPA ranges from 69 ± 7% [MLF+97] to 81.3% [WvRM+00]. For
excitatory connections onto inhibitory neurons the NMDA component
seems to be much smaller or even absent [TD94].

6.3.2.4. Mixed AMPA / NMDA PSPs and PSCs. Mixed EPSCs are
given in [GH01, GH98, HNPS90b, SS95, MSTN03], while data
about mixed EPSPs can be found in [TDW93a, TW93, TWWB02,
PGBZ+06, HHSZ03, GH01, FM00, MLF+97, STHM+96]. The
data given in these publications is important to validate the combined

2 Double exponential, in this context, denotes a fast exponential rise time and a
slower exponential decay. Mathematically this can be expressed by f(t) = cNMDA ·
(1− e−(t−t0)/τNMDA,rise ) · e−(t−t0)/τNMDA .
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dynamics of our modeled AMPA and NMDA currents and the parame-
ters used for describing die LIF neuron itself.

In [THMJS98] we found layer 4 in-vitro data obtained in slices of cat
visual cortex regarding mixed EPSPs from local (layer 4) excitatory cells
on to basket cells. At −60 mv the EPSP amplitude was 1.471 ± 1.321
mv at a half-width of only 3.0± 1.1 ms.

The model by Hill and Tononi [HT05] uses AMPA amplitudes of 0.1
pA and AMPA rise and decay rates of 0.5 ms and 2.4 ms, respectively.
For NMDA currents they use amplitude values of 0.075 pA and rise and
decay rates of 4 ms and 40 ms.

6.3.2.5. GABA mediated PSPs and PSCs. As mentioned before, there
are fast and slow GABA currents. Although we do review both types
of currents, our model will only contain fast GABA currents, since slow
GABAB currents are slowing down simulations significantly without
influencing the type of network interactions we are interested in. Fast
GABA mediated currents are usually modeled like AMPA currents, by
an instantaneous rise to a maximum initial current and an exponential
decay controlled by the parameter τGABA.

In [GH98, BCHS95, WGTR+02] we found measurements of GABA
mediated inhibitory postsynaptic currents (IPSC) in rats. IPSP data
was given in [BGC03, PBD+99, PHT03, PGBZ+06, TWWB02]
for rats, in [GWGR03] for ferrets, and in [TSB98] for cats. In these
publications the change of the inhibitory postsynaptic potential (IPSP)
was measured.

Reported IPSC amplitudes range from 8.6 pA [WGTR+02] to 32.4±
18.0 pA [BCHS95] in rat somatosensory and hippocampus, respec-
tively.

Available data of IPSP dynamics in pyramidal neurons mention observed
IPSP amplitudes ranging from 0.65 ± 0.44 mV [TWWB02] to 1.1 ±
0.8 mV [BGC03]. Corresponding rise times range from 1.5 ± 0.7 ms
[BGC03] (20−80%) to 6.8±2.7 ms (10−90%) [PBD+99], respectively.
PSP decay times are usually given by the half-width of the potential
change and are ranging from 21.5± 1.9 ms [TWWB02] to 47.2± 16.9
ms [PBD+99].

For visual cortex in cat (Layer 4) we found in [THMJS98] IPSP am-
plitudes of 0.808± 0.448 mV at a half-width of 21.3± 7.4 ms.
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Available data of IPSP dynamics in inhibitory neuronal targets men-
tion IPSP amplitudes ranging from 1.2 ± 0.7 mV [PHT03] to 2.0 mV
[TWWB02]. Corresponding rise times range from 1.51 ± 0.53 ms
[TSB98] (10 − 90%) to 3.9 ms (10 − 90%) [TWWB02], respectively.
PSP decay time, given by the half-width of the potential change and
are ranging from 6.66± 1.24 ms [TSB98] to 13.3± 3.4 ms [PHT03].

Modeling work in [HT05] uses GABA currents with a rise times of
1.0 ms and 60.0 ms for GABAA and GABAB , respectively. The cor-
responding decay times in their model are 7.0 ms and 200 ms. In
[LRDL06] only GABAA currents are used. They use instantaneous
rise time (0.0 ms) and a decay time of 6.0 ms.

6.4. Conclusion and Discussion

After reviewing the literature we assembled a set of seemingly reasonable
parameters for spike based simulations. The neuronal and synaptic
parameters shown in Table 6.1 are the ones we used in Chapter 5 and
are the basis for the simulations in Chapter 7.

Given the wide ranges of plausible parameter regimes and the large stan-
dard deviations for individual experiments it is impossible to assemble
the correct set of bioplausible parameters. The data in Section 6.3 sug-
gests that even two neighboring neurons of the same type are likely to
use different parameters. We think that neural networks in our brain
are likely to have found a way to deal with such vast heterogeneities. It
seems therefore desirable to study artificial neural networks that (i) are
able to deal with this heterogeneity among their computational units
[RHK+11], and (ii) turn out to work even more reliably because of
this heterogeneity.

We think that the variability in the instantiation of biological processing
units will finally be understood to be a feature, not a bug. In Chapter 7
we will see one way this might be true.
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Table 6.1. Default LIF parameters used in spiking simula-
tions in Chapters 5 and 71. Plausibility of these parameters
are discussed in Section 6.3. The parameters and LIF neu-
rons themselves are described in Section 6.2.

Excitatory Cells Inhibitory Cells
parameter default unit parameter default unit
Vrest −65.0 mV Vrest −60.0 mV
Vreset −65.0 mV Vreset −60 or −451 mV
Vth −52.0 mV Vth −40.0 mV
τm 20.0 – τm 10.0 –
tref 2.0 ms tref 1.0 ms
ρAMPA 0.5 – ρAMPA 1.0 –
τAMPA 1.52 ms τAMPA 1.5 ms
τNMDA,rise 10.02 ms τGABA 5.5 ms
τNMDA 100.02 ms
τGABA 5.5 or 11.01 ms
1 In Chapter 7 we use the parameters in Table 6.1 to define parameter ranges
from which neurons and synapses are assigned values.

2 Values for τAMPA, τNMDA,rise, and τNMDA where chosen to fit the mixed
AMPA+NMDA EPSPs reported in [BGC03].





CHAPTER 7

Avoiding and Inducing Oscillations in
Recurrent Networks of Excitatory and

Inhibitory Neurons

7.1. Introduction

Recurrent networks, such as the one shown in Figure 7.1(a), can be
found in different places in the central nervous system of many species.
It is therefore not very surprising that a plethora of investigations on
such networks can be found in the literature [HRB11, RRWF10,
PMBA+09, VA09, KRA08, BSF07, ASLB07, VA05, BDM04,
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Figure 7.1. An RCN and a chain of RCNs. (a) An Recurrent Competitive
Network (RCN). The left side shows a diagram of the chaotic distribution of
cell bodies in Euclidian brain space. The right side shows the same network,
this time with excitatory and inhibitory cells visually separated. Solid arrows
symbolize a set of randomly drawn connections between cells of the source
and target populations. The number of connections can be controlled by
the parameters set {pip, pib, ppp, ppb, pbb, pbp}. (b) A feed-forward network
containing three RCN layers like the one shown in (a). In green we show a
set of input neurons used to feed activity into the first layer.
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DGFM03, BW03, Bru00, AB97, BS91]. The canonical microcir-
cuit [BDM04], for example, contains several places where RCN-like
structures can be found. We expect that these biological architectures
exploit very similar dynamics to what we investigate here.

Unfortunately we do not yet understand these circuits well enough to
be able to build artificial networks with brain-like data processing abil-
ities. A key problem is that these systems are highly self-referential
(recurrent) and cannot easily be tackled analytically. Although a math-
ematical description of the network dynamics is often possible using
coupled differential equations, finding closed-form solutions for these is
generally not possible.

Synchrony and Asynchrony in Neural Networks. The spike pat-
tern of a single cell can, depending on the distribution of its inter-spike
intervals (ISI), be categorized as having either regular or irregular spik-
ing. Most cortical cells show an ISI distribution that is roughly Poisson-
distributed, which makes the individual spikes appear to be generated
at “random” points in time [SK93].

At the level of neural populations we can distinguish synchronous and
asynchronous population spike patterns. This distinction can be made
on the basis of temporal proximity of the spikes generated by the mem-
bers of the cell population.

Proximal cells in cortical networks do not usually fire in tight synchrony,
but their firing can be correlated. Although synchronization seems to be
an ubiquitous feature in central nervous systems [OL08, SK08, Buz06,
BZN01, LRF99], data recorded from nearby cells in cortex often does
not show synchronized spiking [SM10, EBK+10, RMV01]. Such cells
might, on a timescale of seconds, be active at similar times without their
spike times matching on a timescale of tens of milliseconds or less. The
RCN structure shown in Figure 7.1(a) is capable of generating both,
synchronous as well as asynchronous spike patterns.

Simulated recurrent networks have the strong tendency to synchronize
[KRA08, Rey03] and it can be difficult to overcome this effect. The
computational primitives of synfire chains [KRA10, DC06, Izh06,
DGA99, Abe82], for example, are based on the synchronization prop-
erties of spiking network models.

Our Contribution. We explore the synchronization properties in two
simulated networks of the type shown in Figure 7.1(a). While the first
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example network shows reliable synchronization properties, the second is
very reliable in desynchronizing even synchronized inputs and generates
almost perfect Poisson distributed population ISIs.

This proves the existence of desynchronizing RCNs and shows that they
can reliably cope with a wide range of input frequencies and input dis-
tributions.

A third example network is similar to the desynchronizing setup we
have just mentioned. The difference is that all neurons and synapses
contained in the network are no longer perfect copies of each other. In-
stead we build a heterogeneous network where the parameters for each
cell and synapse are randomly drawn from some predefined parameter
range or parameter distribution. We can show that the third example
network, although it consists of very diverse components having differ-
ent integration and spiking properties, does not qualitatively change its
overall dynamics and still behaves very much like its “monocultured”
equivalent (the second example network).

As a last result we show that heterogeneous networks do not necessarily
desynchronize population spiking. We modify the first example network
in the same way we have modified the second example network and show
that its synchronization properties are resistant to the diversity of the
components in the heterogeneous network.

The dynamics of the example networks show that reliably synchronizing
as well as reliably desynchronizing recurrent networks can be built using
biologically plausible parameters or parameter ranges.

Related Work. Related work mentioned in Chapter 5 (page 39), is
mostly also relevant for this chapter. Mainly the work of Brunel and his
collaborators [HRB11, Bru00, AB97] motivated us to have a closer
look at synchronization and desynchronization in networks of spiking
neurons.

Synchronous firing can be important for cortical computations. The
effect of weak inputs can be significantly enhanced if they arrive syn-
chronously, so that the EPSPs can combine to reach the threshold before
the membrane leakages makes the transmembrane potential decay to-
wards its natural resting state. For weak sensory stimuli it might even
be necessary to receive synchronized input to reliably excite cortical
cells [BMS07, BS06, WSFS10].
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7.2. Methods

7.2.1. Model Neurons. Neurons in our simulations are modeled by
leaky integrate-and-fire (LIF) neurons [Tuc88, DA01]. Details about
this model neuron and a biologically plausible parameterization can be
found in Chapter 6.

7.2.2. Heterogeneous Populations. Biophysical experiments con-
firm that individual cells or synapses show huge variances for basically
all their measurable parameters. In Chapter 6 we have reviewed the lit-
erature for biologically plausible parameters for LIF neurons. The data
we collected there strongly supports the claim that neural populations
in real cortical tissues are fairly heterogeneous.

In this chapter we will use “heterogeneous populations”, which are cell
assemblies where each neuron and synapse is not a perfect copy of an
archetypical blueprint1. Instead we define value ranges for many pa-
rameters of LIF neurons and the synapse model we use. Every time
we instantiate a neuron or synapse to incorporate it in a heterogeneous
network we draw random values from these ranges to parameterize the
newly created network element. This leads to networks where each ele-
ment’s parameterization is unique.

7.2.3. The Example Networks. All example networks have the prin-
ciple structure shown in Figure 7.1(b). All results shown here were ob-
tained in networks of 5 layers. Each layer in this feed-forward network
is an RCN. See chapter Chapter 5 for a detailed introduction to this
type of network.

Example Network 1. Table 7.1, shown below, contains all network pa-
rameters needed to build one “monocultured”2 RCN layer of the first
example network. All neuronal and synaptic parameters for this net-
work are collected in Table 6.1 on page 71.

Example Network 2. Table 7.2, shown below, contains all network pa-
rameters needed to build one monocultured RCN layer of the second
example network. All neuronal and synaptic parameters for this net-
work are collected in Table 6.1 on page 71.

1The thesis of my colleague Christoph Krautz [Kra12] does also contain interesting
work on heterogeneous RCNs.
2We use this term for homogeneous network, networks that consists only of cells that
parametrized in the exact same way.



7.2. Methods 77

Table 7.1. The set of parameters to build a monocultured,
synchronizing RCN setup containing 1000 excitatory and 250
inhibitory neurons. The given values d denote the ranges of
transmission delays (in milliseconds) a synapse draws its value
from when created.

Example Network 1: a chain of monocultured RCNs

np nb
pip pib pbp ppb ppp pbb
0.10 0.10 0.10 0.10 0.10 0.10

1000 250

wip wib wbp wpb wpp wbb
3.50 4.00 −3.00 3.00 0.50 −1.00
dip dib dbp dpb dpp dbb
[4,7] [1,2] [1,7] [0.1,2] [1,0] [0.1,1]

Table 7.2. The set of parameters to build a monocultured,
desynchronizing RCN setup containing 1000 excitatory and
250 inhibitory neurons. The given values d denote the ranges
of transmission delays (in milliseconds) a synapse draws its
value from when created.

Example Network 2: a chain of monocultured RCNs

np nb
pip pib pbp ppb ppp pbb
0.10 0.10 0.10 0.10 0.10 0.15

1000 250

wip wib wbp wpb wpp wbb
2.50 4.00 −2.50 2.00 1.00 −1.00
dip dib dbp dpb dpp dbb

[0.1,10] [0.1,1.0] [0.1,1.0] [0.1,1.0] [0.1,10] [0.1,1.0]

Example Network 3. Table 7.3, shown below, contains all network pa-
rameters and parameter ranges needed to build one RCN layer of the
third example network. All neuronal and synaptic parameters and pa-
rameter ranges for this heterogeneous network are collected in Table 7.5.

Example Network 4. Table 7.4, shown below, contains all network pa-
rameters and parameter ranges needed to build one RCN layer of the
fourth example network. All neuronal and synaptic parameters and pa-
rameter ranges for this heterogeneous network are collected in Table 7.5.
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Table 7.3. The set of parameters to build a heterogeneous, desynchro-
nizing RCN setup containing 1000 excitatory and 250 inhibitory neurons.
The given values d denote the ranges of transmission delays (in millisec-
onds) a synapse draws its value from when created.

Example Network 3: a chain of heterogeneous RCNs

np nb
pip pib pbp ppb ppp pbb
0.10 0.10 0.10 0.10 0.10 0.15

1000 250

wip wib wbp wpb wpp wbb
[1.25,3.75] [2.0,6.0] [-3.75,-1.25] [1.0,3.0] [0.5,1.5] [-1.5,-0.5]

dip dib dbp dpb dpp dbb
[0.1,10] [0.1,1.0] [0.1,1.0] [0.1,1.0] [0.1,10] [0.1,1.0]

Table 7.4. The set of parameters to build a heterogeneous, synchro-
nizing RCN setup containing 1000 excitatory and 250 inhibitory neurons.
The given values d denote the ranges of transmission delays (in millisec-
onds) a synapse draws its value from when created.

Example Network 4: a chain of heterogeneous RCNs

np nb
pip pib pbp ppb ppp pbb
0.10 0.10 0.10 0.10 0.10 0.10

1000 250

wip wib wbp wpb wpp wbb
[1.75,5.25] [2.0,6.0] [-4.5,-1.5] [1.5,4.5] [0.25,0.75] [-1.5,-0.5]

dip dib dbp dpb dpp dbb
[4,7] [1,2] [1,7] [0.1,2] [1,0] [0.1,1]

7.2.4. Fed Input. External input is fed to the first layer in a chain
of individual RCNs. This input can be of various types, ranging from
asynchronous, Poisson-like input patterns to highly synchronous popu-
lation bursts. Figure 7.2 shows three examples of such inputs – each of
them is in some way an extreme example.

A useful measure of synchronous or asynchronous population spiking is
the coefficient of variation (CV), which is defined as the ratio of the
standard deviation σ, and the mean µ of the distribution of inter-spike
intervals (ISIs) of individual neurons, or in our case of the ISIs between
all spike times generated by the entire (input) population (in which case
most ISIs are between spikes generated by different neurons).
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Table 7.5. LIF parameter ranges used in Example Net-
works 3 & 4. Plausibility of these parameters is discussed in
Section 6.3. The parameters and LIF neurons themselves are de-
scribed in Section 6.2.

Excitatory Cells Inhibitory Cells
parameter unit parameter unit
Vrest [-67.5, -62.5] mV Vrest [-62.5, -57.5] mV
Vreset [-67.5, -62.5] mV Vreset [-47.5, -42.5] mV
Vth −52.0 mV Vth −40.0 mV
τm [17.5, 22.5] – τm [7.5, 12.5] –
tref [1.5, 2.5] ms tref [0.75, 1.25] ms
ρAMPA [0.25, 0.75] – ρAMPA 1.0 –
τAMPA 1.5 ms τAMPA 1.5 ms
τNMDA,rise 10.0 ms τGABA 5.5 ms
τNMDA 100.0 ms
τGABA 11.0 ms

CV =
σISI
µISI

(7.1)

Figure 7.2 also gives some clues about the values we would expect for
the three kinds of inputs. Since very uniformly distributed spike times,
as in the interleaved example of Figure 7.2(a), have a very small variance
(σISI < ε), the CV value for such inputs will be very small as well.

If, in contrast to that, the spike times are synchronized, as in Fig-
ure 7.2(c), we will have many very small ISIs between the synchronous
spike times, and then a fairly large one between such synchronous events.
This leads to a relatively large σISI compared to the small µISI.

For Poisson distributed ISIs the CV is precisely 1. This is because the
standard deviation for a Poisson distribution coincides with its mean,
which makes σISI = µISI.

7.3. Results

As described in Section 7.2.4, we tested the synchronization properties
of the four sample networks by feeding them the three types of input
patterns shown in Figure 7.2. These inputs were chosen to be extreme
instances in terms of their synchronization statistics.
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Figure 7.2. Three types of inputs that can be fed to the sim-
ulated networks. The desired feature of the network (synchrony
or desynchronization) should be robust enough to be able to deal
with inputs of all three kinds. (a) Spike events are uniformly inter-
leaved. The ISI variance between all consecutive spikes is almost
zero, hence the CV value (coefficient of variation) of the entire in-
put population is much less than 1. (b) Spike events are roughly
Poisson distributed, hence the CV value is close to 1. (c) Spike
events are almost synchronous. The ISI variance is a multiple of
the mean time between all consecutive spike events, hence the CV
value is much bigger than 1.

In the introduction to this chapter we mentioned that synchronous as
well as asynchronous population spiking seems to be relevant for neural
computation. The dynamics shown in the example networks show that
reliably synchronizing as well as reliably desynchronizing recurrent net-
works can be built using biologically plausible parameters or parameter
ranges.

7.3.1. Example Network 1: Synchronized Spiking in a Homo-
geneous Network. The first example network is built by using a fixed
set of parameters for all cells in the entire network3.

In Figure 7.3 we show how Example Network 1 deals with a wide range
of different inputs. Each subfigure contains data for (i) uniformly inter-
leaved, (ii) Poisson, or (iii) synchronized input patterns.

3For excitatory and inhibitory cells we use different parameters, but each excitatory
(resp. inhibitory) cell is created with precisely the same parameterization.
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(a)

(b)

(c)

Figure 7.3. Simulation results for Example Network 1. The plots
are explained in detail in Section 7.3.1. The last plot in each row shows
that this network reliably generates synchronized population outputs.
Raster plots of the raw spike-data can be found in Figure 7.4. (a) For
uniformly interleaved input as in Figure 7.2(a). (b) For Poisson input
as in Figure 7.2(b). (c) For synchronized input as in Figure 7.2(c).

For each type of input we set 250 input neurons to generate a fixed
spike rate for several seconds and recorded the output spike rates of all
pyramidal cells in all 5 layers of the network. We repeated this procedure
for different spike rates ranging from 0Hz up to 80Hz. Since the input
layer contains 1000 neurons in total this corresponds to average input
rates of 0Hz to 20Hz (because only one quarter of all input neurons
generate this rate).

The x-axes in all plots in Figure 7.3 show the average rate of the input
layer. The y-axes, in order of appearance from left to right, show (i)
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the average rate of the pyramidal population for all 5 layers and the
input layer, (ii) the average rate of the basket cell population for all 5
layers, (iii) the number of pyramidal cells in each layer that is active
with a higher rate than the average rate of all pyramidal cells of that
layer, and (iv) the population CV value for the pyramidal population
in each of the 5 layers of the network.

(a) (b)

Figure 7.4. Raster plots for two rates of uniformly distributed in-
put fed to Example Network 1. (a) For 7.5Hz, which is an average of
slightly below 2Hz. (b) For 40.0Hz, which is an average of 10.0Hz.

Figure 7.4 shows raster plots of raw spike-data for two input rates. One
fairly low input rate of x = 7.5 Hz (corresponding to an average rate of
≈ 2 Hz), and a higher rate x = 40 Hz (corresponding to an average rate
of 10 Hz). Raster plots of higher input rates do not look considerably
different.

We show the raster plots for uniformly interleaved input ISIs, since it is
the most challenging one for the network to synchronize.
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The data shown in Figures 7.3 and 7.4 shows that Example Network 1
creates synchronized population spiking for all fed inputs. The mea-
sured CV values become lower for higher input rates (last column in
Figures 7.3), but they do increase, and the raster plots in Figure 7.4
show that the population ISIs are still far away from being Poisson
distributed.

7.3.2. Example Network 2: Desynchronized Spiking in a Ho-
mogeneous Network. The second example network is again built by
using a fixed set of parameters for all cells in the entire network. We
show the same kind of data we have shown for Example Network 1 in
Figures 7.5 and 7.6.

The input classes as well as the rates of the input layer in Figures 7.5
are as explained in Section 7.3.1 for Example Network 1.

Figure 7.6 shows raster plots of raw spike-data for two input rates x =
30.0 Hz (corresponding to an average rate of 7.5 Hz), and x = 50 Hz
(corresponding to an average rate of 12.5 Hz). Raster plots of higher
input rates do not look considerably different.

We show the raster plots for synchronized spiking input, since it is the
most challenging for the network to desynchronize.

The data shown in Figures 7.5 and 7.6 shows that Example Network 2
creates desynchronized population spiking for all fed inputs. The mea-
sured CV values are very close to 1 for basically all input rates (last
column in Figure 7.5). Also the raster plots in Figure 7.6 show that
the population ISIs in later layers are evenly distributed, not clustering
much in time.

7.3.3. Example Network 3: Desynchronized SpikingWith Het-
erogeneity. The third example network is similar to Example Net-
work 2. The biggest difference is that the network no longer consists of
cells and synapses that use the same parameter values, but each neu-
ron and each synapse draws its parameters uniformly at random from
predefined parameter ranges (see Section 7.2).

Again we show the same kind of data we have shown for Example Net-
works 1 & 2 in Figures 7.7 and 7.8.

The input classes as well as the fed input ranges in Figures 7.5 are just
as explained in Section 7.3.1 for Example Network 1.
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(a)

(b)

(c)

Figure 7.5. Simulation results for monocultured Example Network
2. The plots are explained in Section 7.3.1 and discussed in Sec-
tion 7.3.2. The last plot in each row shows that this network reliably
generates desynchronized, Poisson-like population outputs. Raster
plots of raw spike-data can be found in Figure 7.4. (a) For uniformly
interleaved input as in Figure 7.2(a). (b) For Poisson input as in
Figure 7.2(b). (c) For synchronized input as in Figure 7.2(c).

Figure 7.8 shows raster plots of raw spike-data for two input rates:
35.0 Hz (corresponding to an average rate of 8.25 Hz), and 50 Hz (cor-
responding to an average rate of 12.5 Hz). Raster plots of higher input
rates do not look considerably different.

We show the raster plots for synchronized spiking inputs, since it is the
most challenging for the network to desynchronize.
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(a) (b)

Figure 7.6. Raster plots for two rates of synchronous input fed to
Example Network 2. (a) For 30.0Hz, which is an average of 7.5Hz.
(b) For 50.0Hz, which is an average of 12.5Hz.

The data shown in Figures 7.7 and 7.8 shows that Example Network 3
creates desynchronized population spiking for all fed inputs. The mea-
sured CV values are very close to 1 for basically all input rates (last
column in Figure 7.7). Also the raster plots in Figure 7.8 show that
the population ISIs in later layers are evenly distributed, not clustering
much in time.

7.3.4. Example Network 4: Synchronized Spiking With Het-
erogeneity. The fourth and last example network is similar to Exam-
ple Network 1 of Section 7.3.1. The biggest difference is that the network
no longer consists of cells and synapses that use the same parameter val-
ues, but each neuron and each synapse draws its parameters uniformly
at random from predefined parameter ranges (see Section 7.2).
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(a)

(b)

(c)

Figure 7.7. Simulation results for the heterogeneous Example Net-
work 3. The plots are explained in Section 7.3.1 and discussed in Sec-
tion 7.3.3. The last plot in each row shows that this network reliably
generates desynchronized, Poisson-like population outputs. Raster
plots of raw spike-data are shown in Figure 7.8. (a) For uniformly
interleaved input as in Figure 7.2(a). (b) For Poisson input as in
Figure 7.2(b). (c) For synchronized input as in Figure 7.2(c).

Again we show the same kind of data we have shown for Example Net-
works 1-3 in Figures 7.9 and 7.10.

The input classes as well as the fed input ranges in Figures 7.7 are just
as explained in Section 7.3.1 for Example Network 1.

The data shown in Figures 7.10 and 7.8 shows that Example Network 4
creates synchronized population spiking for all fed inputs. The mea-
sured CV values become lower for higher input rates (last column in
Figures 7.7), but they do increase, and the raster plots in Figure 7.8
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(a) (b)

Figure 7.8. Raster plots for two rates of synchronous input fed to
Example Network 3. (a) For 35.0Hz, which is an average of 8.75Hz.
(b) For 50.0Hz, which is an average of 12.5Hz.

show that the population ISIs are still far away from being Poisson
distributed.

Figure 7.10 shows raster plots of raw spike-data for two input rates:
7.5 Hz (corresponding to an average rate of ≈ 2 Hz), and 40 Hz (cor-
responding to an average rate of 10 Hz). Raster plots of higher input
rates show similar behaviour.

Like for Example Network 1 we decided to show the raster plots for
uniformly interleaved input ISIs, because it is the most challenging for
the network to synchronize.



88 Chapter 7. Avoiding and Inducing Oscillations

(a)

(b)

(c)

Figure 7.9. Simulation results for the heterogeneous Example Net-
work 4. The plots are explained in Section 7.3.1 and discussed in Sec-
tion 7.3.4. The last plot in each row shows that this network reliably
generates synchronized population outputs. Raster plots of raw spike-
data are shown in Figure 7.10. (a) For uniformly interleaved input as
in Figure 7.2(a). (b) For Poisson input as in Figure 7.2(b). (c) For
synchronized input as in Figure 7.2(c).

7.4. Discussion

Synchronous as well as asynchronous spiking seems to be relevant for
neural computation (see Section 7.1). In this chapter we showed exam-
ples for synchronizing as well as desynchronizing layered feed-forward
networks, where each layer was a very general recurrent network of the
type we have introduced in Chapter 5.
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(a) (b)

Figure 7.10. Raster plots for two rates of uniformly distributed
input fed to Example Network 4. (a) For 7.5Hz, which is an average
of slightly below 2Hz. (b) For 40.0Hz, which is an average of 10.0Hz.

In previous work by Brunel and others, see for example [AB97, Bru00,
HRB11], different spike regimes for RCN networks were analyzed.
These publications provide bifurcation diagrams showing how their net-
works transition between these regimes. To avoid confusion between
their findings and the results presented here, we hint at two important
differences. (i) The networks studied in [AB97, Bru00, HRB11] con-
sist of homogeneous populations, i.e. all neurons in them are identical
copies, only differing in the connection to their peers. Exchanging these
homogeneous populations by heterogeneous cell assemblies would lead
to spike patterns which they would classify as asynchronous. This is be-
cause of (ii), a difference in the sematics of the terms “synchronous” and
“asynchronous”. These are often used without defining exaclty how close
in time spikes have to be in order to be considered synchronous. Often
only spikes within very short time windows, in the order of millisecond,
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are considered to be synchronous. In [Bru00], for example, large areas
in their bifurcation diagrams are labeled asynchronous, although spike
patterns of such networks show irregular oscillation patterns (see Figure
8(c) in [Bru00]), which others might consider as being synchronous.

7.4.1. The Coefficient of Variation for Single Cells. In this chap-
ter we used the coefficient of variation (CV), see Equation 7.1, to de-
scribe the synchrony and asynchrony for entire cell populations.

This statistical measure is often used to quantify the regularity or ir-
regularity of spike patterns of single cells. In [SK93], for example, one
can find CV values for recordings from single cells in cortical areas V1
and MT of awake behaving macaque monkeys.

In Figures 7.11 and 7.12 we plot the distribution of single cell CV values
measured in 3 of the simulations described in the results section of this
chapter. The measured values are in agreement with the data reported
in [SK93].

7.4.2. Comparision of Monocultured and Heterogeneous Net-
works. It might be surprising that Example Networks 1 & 4 as well
as Example Networks 2 & 3 generate such similar output patterns and
output statistics. We are currently working on a more detailed com-
parison between monocultured and heterogeneous RCNs, but we can
already say that RCNs cope very well with “unreliable”, heterogeneous
components.

When comparing Figure 7.3 and Figure 7.9 we can even see that the
heterogeneous network seems to show smoother input response curves
(leftmost column; see also Figure 7.10).

We think that heterogenous network models can not only work reliable,
but that heterogeneity can often be a feature that can make networks
more robust and reliable.
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(a) (b) (c)

Figure 7.11. Single cell CV distributions at low input rate. The
measured values are in agreement with the data reported in [SK93].
(a-c) Top row contains CV distributions of the input layer (green),
further below each pair of rows contains the data of RNC layers 1 to 5.
Pyramid data is shown in red, basket cell data in blue. (a) Shows the
CV values for all active cells in Example Network 1. The input rate
of the 250 active input neurons is 7.5Hz, which is an average activity
of slightly below 2Hz. (b) Shows the CV values for all active cells in
Example Network 2. The input rate of the 250 active input neurons is
30Hz, which is an average activity of 7.5Hz. (c) Shows the CV values
for all active cells in Example Network 3. The input rate of the 250
active input neurons is 35Hz, which is an average activity of 8.75Hz.
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(a) (b) (c)

Figure 7.12. Single cell CV distributions at slightly higher input
rate than in Figure 7.11. The measured values are in agreement with
the data reported in [SK93]. (a-c) Top row contains CV distributions
of the input layer (green), further below each pair of rows contains
the data of RNC layers 1 to 5. Pyramid data is shown in red, basket
cell data in blue. (a) Shows the CV values for all active cells in
Example Network 1. The input rate of the 250 active input neurons is
40Hz, which is an average activity of 10Hz. (b) Shows the CV values
for all active cells in Example Network 2. The input rate of the 250
active input neurons is 50Hz, which is an average activity of 12.5Hz.
(c) Shows the CV values for all active cells in Example Network 3.
The input rate of the 250 active input neurons is 35Hz, which is an
average activity of 12.5Hz.



CHAPTER 8

Rate Coded RCNs Using Siegert neurons

8.1. Introduction to the Misery of Simulations

Chapters 5 and 7 introduced and investigated spiking Recurrent Com-
petitive Networks (RCNs). Chapter 6 reviewed the literature on biologi-
cally plausible parameter ranges for the RCN models we have examined.
The simulations in Chapters 5 and 7 were based on leaky integrate-and-
fire (LIF) neurons that made use of fairly detailed synaptic dynamics.

Such spiking simulations use detailed models of biological neurons and
synapses, and with this comes a tremendous drawback in terms of sim-
ulation time. Although we have used well established, state of the art
simulation tools, pushed all self-developed algorithms to maximum per-
formance, and used fast multi-core computers, simulation times hardly
permit building larger networks consisting of two or more RCNs as in-
teracting modules. But even if further hard- and software enhancements
would make it possible to scale our simulations up by an order of mag-
nitude, every attempt to study learning processes in such networks (as
opposed to just network dynamics) would still need an almost unbear-
able amount of simulation time.

Let us consider a short example. Regardless of the time to build the
network, the simulation of 1 second of simulated time might on average
take 5 seconds on a purely hypothetical system. If our simulated net-
work would like to learn something by seeing a training data set that
consists of say 200 data points that are each presented 5 times during
learning, the simulation of this process would take 5000 seconds, which
is roughly 1 hour and 20 minutes. Even if this seems to be an accept-
able duration at first, the problem is that we do not only want to run an
already existing neural system – we want to find one. Although we have
a concise idea about the way it should and will work, we will most likely
have to iterate the simulation multiple times to work out the details.

93
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If it takes 1 hour and 20 minutes every time one wants to check the
influence of even tiny changes to the system, you had better already
have a good publication record, because your next one might take a
while.

There are several ways out of this misery. We will pursue one solution
in this chapter.

8.1.1. How We Make Simulations Fast. Let us quickly collect
some possible ways out of the “simulation misery”.

Theoretical Analysis. The simulation misery is immediately void if we
can get rid of the necessity for simulations in the first place. Unfortu-
nately, a thorough theoretical analysis of dynamic, self-referential sys-
tems is often infeasible.

Supercomputer. We could leave our multi-core hosts and GPUs behind
us and use clusters or supercomputers to simulate our state of the art
neural networks. Supercomputer cycles can be affordable and are avail-
able for many scientific projects. Unfortunately all algorithms have to
be developed and tuned for such architectures and not every computa-
tional neurobiologist can or wants to invest the necessary time to develop
for supercomputers. Dependency on the availability of supercomputing
time for running research projects and the little influence many people
most likely have on the provided infrastructure might be an additional
problem.

Special-purpose Hardware. Some very interesting alternatives come
from the neuromorphic community [IH11, RGD+11, BPV+11].
Special-purpose hardware currently offers different philosophies, but all
of these paradigms promise to solve simulation issues regarding simula-
tion time and network size.

We think that this movement will impact the field significantly. Cur-
rently it is unfortunately not easy to (i) get such hardware prototypes
in your own lab, and (ii) get it to do exactly what you want without
(or even with) the help of an expert.

Collaboration with the developers of a suitable neuromorphic type of
hardware seems to be the most feasible solution for now. For this to
be successful, however, it might be necessary to already have a very
detailed idea and a bunch of preliminary results that prove that the
suggested network and its dynamics are understood and under control.
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Higher Level of Abstraction. Finding a suitable, higher level of abstrac-
tion is in general a difficult problem that we can not always hope to
solve. This approach is possible whenever (i) the system of interest is
suitable to be lifted to a higher level of abstraction, (ii) we happen to
know enough about it to understand how this can be done, and (ii) the
dynamics of the abstracted system remain similar enough1 to the dy-
namics of the original system. In the case that both the mentioned
conditions hold true, the proposed abstraction has the potential to offer
complexity and performance improvements.

For the simulations of interest in the remaining chapters of this thesis
it turns out to be possible to find a suitable higher level of abstraction.
In preparation for Chapters 9 and 10 we will introduce the necessary
abstractions here. Further we will argue that using these models does
not fundamentally alter the observed network dynamics.

8.2. Siegert neurons: a Reasonable LIF Abstraction

The abstract neuron model we are going to use is not new [RBH+11,
OB11, Ric77, Sie51]. Burkitt, only some years ago, published a re-
view paper describing how leaky integrate-and-fire (LIF) neurons re-
spond to Poisson distributed, spiking inputs [Bur06].

His analysis makes use of results like the ones by Siegert [Sie51] and
Ricciardi [Ric77]. Siegert’s seminal achievement was the mathemati-
cal analysis of an Ornstein-Uhlenbeck process with boundary conditions
[Sie51], which was subsequently used to describe the sub-threshold dy-
namics of LIF-neurons when receiving many independent Poisson spike
trains. (The sub-threshold dynamics of LIF-neurons can be seen as be-
ing a continuous random walk with a drift, parametrized by τm, and
boundary conditions at Vrest and Vth.)

These mathematical advances made it possible to describe the evolution
of the membrane potential Vm precisely enough to compute the number
of times Vm ‘hits’ the threshold potential Vth. This value is effectively
the neuron’s firing rate λ.

Figure 8.1 shows the necessary evaluation sequence in order to compute
the output firing rate of a current based LIF-neuron. We denote the
shown module as either “Siegert node” or “Siegert neuron”.

1 What “similar enough” actually means depends very much on the details of a
concrete abstraction candidate.
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Figure 8.1. The Siegert node. The diagram shows the nec-
essary steps for a Siegert neuron to compute its output rate
λout. It receives excitatory and inhibitory inputs where ~λe (~λi)
are incoming excitatory (inhibitory) rates and ~we ( ~wi) are the
corresponding synaptic weights. The formulas in (A), (B), and
(C) are sequentially evaluated, where τm, Vrest, Vreset, Vth, and
tref are the same parameters used for leaky integrate-and-fire
(LIF) neurons (see Chapter 6). The interpretation of synaptic
weights is also analogous to Chapter 6. Note that ~v2 denotes
the element-wise square (v2
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For conductance based LIF-neurons it is possible to deduce a Siegert-
style formalization as well. In this case the formulas in Step 2 of Fig-
ure 8.1 become a bit more involved. Although we sometimes use the
conductance based version in our research, we will not use it in this
thesis. A detailed overview of the history as well as the mathematical
analysis of current and conductance based LIF neurons can be found
in the doctoral thesis of Krautz [Kra12]. We suggest that interested
readers start their journey there.

8.2.1. From Single Cells to Entire Networks. Figure 8.1 gives us
a formula that can be use to compute how an LIF neuron responds to
many independent Poisson spike trains. It gives us the opportunity to
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compute the output spike rate of an LIF neuron without any need of
simulating one.

Predicting the activity of a singe LIF neuron is of course not very inter-
esting. Simulating a single LIF neuron is so fast that there is no need
to use a Siegert neuron to replace the simulation. However, if we would
build an entire network consisting of interconnected Siegert neurons, the
speed advantage of evaluating only the equations shown in Figure 8.1
instead of doing the LIF network simulation has the potential to save a
significant amount of simulation time.

In this thesis we will build an RCN built from Siegert neurons. After
building a network we want to check whether the Siegert-simulation
leads to results comparable to the corresponding spiking simulation.
The Siegert formula describes the activity of single cells very well, but
without any notion of individual spike times the Siegert-network can
clearly not replicate its LIF equivalent in all its fine details.

In Sections 8.2.2 and 8.3 we compare the results of a Siegert-RCN with
the ones obtained using spike based RCNs (LIF-RCNs). Although we
will see that the abstraction, as expected, does not lead to the exact
same network activations, all the basic properties of RCNs (as described
in Chapter 5) are retained.

8.2.2. Building and Evaluating Siegert-RCNs. An RCN built from
Siegert neurons is in some ways fundamentally different from the same
network using LIF neurons. LIF simulations need a globally consistent
notion of time. The communication between LIF neurons is based on
discrete spike events and their precise timing is in general very impor-
tant.

Siegert neurons, on the other hand, live on a higher level of abstraction
where time is no longer explicitly modeled. The communication between
Siegert nodes is based on spike rates and not individual spike times.

The instantiation of an RCN using either of the two neuron models is of
course not a problem. Evaluating the network (running the simulation)
is very different. While we usually use NEST [EHM08, DG02] for
spiking simulations, we implemented a simulation strategy for Siegert-
Networks ourselves.

Function EvaluateNetwork (network, input_rates, input_weights)
on page 98 shows how an arbitrary network of Siegert nodes is evaluated.
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In subsequent chapters we will extend this algorithm, but the basic ideas
will remain unchanged.

Function EvaluateNetwork (network, input_rates, input_weights):
1: /* we perform kupd iterated evaluations */
2: for step = 1→ kupd do

3: /* collect current inputs for all neurons n */
4: for each n in network.neurons do
5: n.inputRates.append(input_rates(n))
6: n.inputWeights.append(input_weights(n))
7: for each (sender,weight) in n.incoming_connections do
8: n.inputRates.append(sender.rate)
9: n.inputWeights.append(weight)

10: end for
11: end for

12: /* compute new output firing rates */
13: for each n in network.neurons do
14: newRate = Siegert(n.inputRates, n.inputWeights)
15: n.rate = (1− τrate) · n.rate + τrate · newRate
16: end for

17: /* reset values for next round of input */
18: for each n in network.neurons do
19: empty lists n.inputRates, n.inputWeights
20: end for
21: end for

In the following we will provide some additional explanations that might
help readers to better understand the pseudo-code description:

Line 2-21 : The main loop. Each cycle updates the entire network.
We usually use a value of kupd = 10.

Line 4-11 : Here we collect for each neuron a list of all rates and a
list of corresponding weights of all inputs to this neuron, which
encodes the current dendritic input. External inputs are given by
the parameters input_rates and input_weights.

Line 13-16 : This code-block uses the dendritic input collected in
lines 4-11 to compute the next output rate for each neuron in the
given network.
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Line 14 : Here the Function Siegert(. . . ) is called in order to com-
pute the output rate of an LIF neuron receiving the collected input
rates with the corresponding synaptic weights. See Figure 8.1 for
a description of what this function computes. See the thesis of
Chrisoph Krautz [Kra12] for a profound summary of the mathe-
matical deduction of these formulas.

Line 15 : Here, finally, we update the output rate of neuron n. The
parameter τrate determines how quickly we approach newRate, the
firing rate computed in line 20. In order to avoid oscillations we
usually use values for τrate between 0.25 and 0.5.

Line 18-20 : This code-block resets all temporal variables. This has
to be done before the main loop can be re-iterated.

8.3. Results: Siegert-RCNs vs. LIF-RCNs

In the previous section we have essentially given a description for how
to build arbitrary networks consisting of Siegert neurons and how such
networks can be evaluated.

Our main interest in the context of this thesis is to build RCNs as we
have introduced them in Chapter 5. In this section we want to compare
the dynamics of RCNs built from LIF-neurons with the dynamics of
RCNs that consist of Siegert nodes.

Figure 8.2 shows both, the activation of an LIF-RCN (gray) as well as
the activation of a Siegert-RCN (green). The simulated activities are
very similar, showing us that the abstraction from a spiking model to a
rate-coded Siegert-network can lead to almost identical results.

Unfortunately not every set of RCN parameters leads to such a tight
fit. Note that the network in Figure 8.2 consisted of 3000 excitatory
neurons, hence being even larger then the RCN networks discussed in
Chapters 5 or 7.

Larger networks often give better matching results because random fluc-
tuations are smaller. Not only the network size matters: if a set of
parameters for a certain size leads to well matching results, the activa-
tion of Siegert-RCNs and LIF-RCNs can be significantly less similar for
other, seemingly similar parameter sets.
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Figure 8.2. Activation of the excitatory subpopula-
tion of an LIF-RCN and an equivalent Siegert-RCN.
The used network is described in detail in the Thesis
of Christoph Krautz [Kra12]. The gray area shows
the sorted activities of the RCN simulated using LIF
neurons (see Chapter 5). In green we have plotted the
sorted activation profile of an equivalent Siegert-RCN
evaluated using the method described in Section 8.2.
The activation profile of these two simulations is very
similar for a wide range of possible inputs.

One of the main reasons for mismatching results are synchrony issues
(see also Chapter 7). While synchronization of spike times is a fun-
damental feature in spiking networks, a Siegert-network operates on a
level of abstraction that cannot capture such synchronization aspects.

An ongoing research project by the author and his collaborators is to
better understand and quantify the reasons for mismatching network
activities in spiking networks and isomorphic networks of Siegert neu-
rons.

Does the Shape of the Activation Profile Really Matter? In full
generality the only possible answer is of course “YES”. However, when
looking at specific network tasks or learning tasks the answer might be
a different one.
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Figure 8.3. RCN properties are retained in Siegert-RCNs.
(a) Sparse responses to inputs. The left half of the plot shows
the activity of the input layer, the right half the activity of the
Siegert-RCN itself. Individual rates of the 1000 pyramids and the
250 baskets is shown in light blue. The bold, red curve shows
the same activation data sorted ascending. The figure was cre-
ated using the RCN parameters given in Table 5.1. The input
was chosen to be the same as in Figure 5.2. (b) High dynamic
range due to feed-forward inhibition [PMBA+09] in a network
of Siegert nodes. As we have shown in Figure 5.4 for spike based
RCNs, excitation and inhibition in Siegert-RCNs can also be bal-
anced such that a large range of input patterns leads to similar
total output rates.
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In Chapters 9 and 10 we will see that it is possible (maybe even desir-
able) to build systems that do not care about the precise activation of
the nodes in its RCN-layers. In these chapters we will see that, as long
as the RCN dynamics described in Chapter 5 are retained, the network
adapts its own activation patterns to the ones fed to it from the out-
side. Nothing about this adaption or learning mechanism prefers one
RCN activation to a slightly different one, as long as the response to
external input leads to sparse activation and feed-forward inhibition as
in Figure 5.2.

RCN properties do not change when using Siegert nodes. We
instantiate a Siegert-RCN using the parameters of Table 5.1 on page 43.
Using this Siegert-equivalent of the spiking network used in Chapter 5
we can show that all properties of RCNs are well conserved.

Figure 8.3 shows that, although the activation of single units is different
from e.g. the one in Figure 5.2, the network as a whole follows the same
types of dynamics as spiking RCNs. Although it is important to keep in
mind that although switching from LIF-neurons to Siegert neurons or
vice versa will usually make a difference for individual nodes, the overall
picture does not change.

The networks we are interested in are usually not sensitive to the activity
of single nodes or the precise average rate of simulated populations
of neurons. One of the reasons why the proposed type of network is
interesting is its robustness to such variabilities.

Such robust phenomena could easily be chosen by evolution to play a
significant role in the type of computations performed in our brains.

8.4. Discussion: Is there Potential for Siegert Nodes?

We think that the development of spiking neural networks will benefit
from the possibility to run quick, prototypic trials on the level of Siegert-
networks.

The previous section did not include a quantitative analysis of simu-
lated Siegert-RCNs versus their spiking equivalents. A more complete,
comparative analysis of Siegert-RCNs and LIF-RCNs is currently in
preparation and will hopefully be published soon. Our current experi-
ence in using Siegert-RCNs makes us believe that this approach is useful
for certain kinds of investigations.
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Besides the question of the circumstances under which a Siegert-network
performs like its spiking equivalent, Siegert neurons are in any case a
potent alternative to other rate-coded neuron models like linear thresh-
old units with linear or sigmoidal activation functions [WL90, Ros58,
Abr02, MP43].

The primary reason to prefer Siegert nodes to other rate-coded units is
their similarity to LIF-neurons. Where other rate-coded neuron models
come with an incompatible set of parameters as compared with LIF
models, Siegert- and LIF-neurons have the same ones. This makes a
transition between these two neuron models much faster and easier.

Chapters 9 and 10 will show two types of networks in which Siegert-
RCNs are used as central building blocks. The proposed systems can
perform interesting learning tasks, and the learned weights can then be
used in neuro-computationally interesting ways, much like the network
of Chapter 3, but more flexible.
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CHAPTER 9

Topology Learning With Recurrent
Competitive Networks

9.1. Introduction

In Chapter 5 we introduced RCNs and had a first look at their dynamics
and response properties to population-coded inputs.

In this chapter we introduce a biologically plausible, Hebbian learn-
ing mechanism that alters the recurrent, excitatory RCN connections.
In Section 5.3 we have already summarized the similarities and differ-
ences between RCNs and classical competition models (CCMs) like the
winner-take-all (WTA) strategies used in Part 1 of this thesis. The
learning procedure described here further increases the similarity be-
tween RCNs and CCMs.

The main result is that an RCN is capable of learning the input-topology.
If the input is a one-dimensional population code, a trained RCN re-
sponds to complex stimuli very much like one-dimensional WTA net-
works do. On the other hand, if we feed a two-dimensional population
code to the same network, the topology-learned connections causes this
network to behave like a two-dimensional WTA.

An RCN’s ability to learn the input topology (input encoding) is an
important step in order to build systems that can adapt to complex
inputs of a-priori unknown dimensionality or structure.

In contrast to that, systems that use CCMs can only work well if the
person designing it has the right prior knowledge or makes some correct
assumptions about the input the network will finally have to process.

107
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9.2. Methods

9.2.1. Network Structure and Network Simulation.

Model Neurons. The model neuron we will use in this chapter is the
Siegert node introduced in Chapter 8. We have seen that these nodes
show input-response properties like leaky integrate-and-fire (LIF) neu-
rons, but their big advantage is a significant computational speedup.

Another reason to use this neuron model is that the parameters of
Siegert nodes and LIF neurons are identical. This offers the possibil-
ity of switching back and forth between a network of Siegert nodes or
spiking LIF units.

Synaptic Connections. Synaptic connections between Siegert nodes are
set to the biologically plausible parameter regime described in Chap-
ter 6. (With the only that Siegert nodes cannot take slow NMDA or
GABAB currents into account.) The only free parameter per synapse is
its weight, which denotes the total post-synaptic current (PSC) received
at the soma of the receiving cell.

Network Structure. The RCN setup introduced in Chapter 5 is the basis
for the simulations in this chapter. Figure 9.1 shows the entire network.
It consists of an RCN-layer (A) and an input population (X). The
sparse recurrent connections between the pyramidal nodes (WAA) of A
are also shown in the figure.

Table 9.1 gives the parameters needed to fully specify the recurrent net-
work structure. In addition to this RCN we have a population of input
neurons. All of these input neurons, lets call them ci, are excitatory.
Their output rate can be clamped to some fixed rate ci.rate from outside
the network.

Table 9.1. The set of parameters for an RCN setup con-
taining 256 input-, 256 excitatory- and 64 inhibitory neurons.

RCN parameters

ni, np nb
pip pib pbp ppb ppp pbb
− − 0.25 0.25 0.50 0.50

256 64
wip wib wbp wpb wpp wbb
1.25 3.00 −2.00 3.00 1.25 −2.00
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X

A

WAA

Figure 9.1. Network structure used for topology
learning. It consists of an RCN-layer (A) and an in-
put population (X). The sparse matrix (WAA) shows
the connection weights of the recurrent connections be-
tween the pyramidal cells of A.

The input population consists in total of np groups of ni input neurons
each. Each of the np pyramidal neurons in the RCN is assigned to
exactly one of these groups, receiving input from exactly all these ni
nodes. A detailed explanation of the kind of input patterns we use in
this chapter can be found in Section 9.2.3.

FFI Properties of this Setup. Figure 9.2 shows the FFI properties of
the RCN setup given in Table 9.1. For a large range of different in-
put strengths the output spike count stays basically the same. This is
helpful for learning and using larger networks that contain RCNs, be-
cause (i) the learning dynamics can operate on a wide input range with-
out the RCN’s output activities degenerating, (ii) once the RCNs are
trained their input will be complemented by increased lateral weights,
so response stability during training requires robustness to input mag-
nitudes, and (iii) trained RCNs need to be able to respond to very
different input levels depending on how many neighboring RCNs are
currently actively contributing input.

Homeostatic Activity Regulation (HAR). It is known that neurons ac-
tively regulate their spiking activity in order to maintain a certain ac-
tivity level or activity range [TN04, GA00, TN00].
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Figure 9.2. Demonstrates the capability of the network to gener-
ate sparse output patterns of similar total strengths for a fairly wide
spectrum of input patterns. (a) The average output rate of all 256
pyramidal cells (color coded) when y ∈ {1..127} of them receive an
external input signal of x ∈ {1..50} Hz. (b-g) Siegert-predictions (see
text) of output distribution for different values of x and y. (b) x = 25
Hz, y = 32 cells receiving input; (c) x = 25 Hz, y = 64 cells receiving
input; (d) x = 25 Hz, y = 127 cells receiving input; (e) x = 40 Hz,
y = 32 cells receiving input; (f) x = 40 Hz, y = 64 cells receiving
input; (g) x = 40 Hz, y = 127 cells receiving input.
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In order to include HAR in our simulations we model a mechanism
known as Synaptic Scaling. The basic idea is that a neuron which is
too active (resp. not active enough), will scale down (resp. up) all its
incoming synaptic connection weights by the same factor fHAR. This
causes the neuron’s postsynaptic currents to be similarly scaled, thereby
affecting its overall activity.

For convenience we actually do not change the individual synaptic
weights in our simulations. Instead we give each neuron n a state
variable n.har that is initialy set to be 1.0. Before using a synaptic
weight w we will always compute the effective weight weff = w · n.har,
which is equivalent to the effect described above. (See e.g. line 20
in function learnTopology().) The Hebbian dynamics include weight
normalization so the overall weight sum is thus fully controlled by the
HAR dynamics.

Network Update Cycles. The Function learnTopology() shown below
gives a detailed pseudo-code description of the activity updates. In
line 28 we call the function learnWeights() that performs the Hebbian
weight changes as described in Section 9.2.2.

Function learnTopology() provides an in-depth description of the train-
ing procedures we use. Here we provide some additional explanations:

Line 1-2 : Set up the RCN network given in Table 9.1 and a popu-
lation of ni · np input neurons. Each group of ni input nodes then
gets connected to exactly 1 of the np pyramidal cells in the RCN.
Each of the nb basket cells receives connections from nb

np
· ni uni-

formly sampled cells in each of these np input groups. This way of
connecting the input population to the RCN follows Peters’ rule
[BS91].

Line 3-36 : The main loop. This loop is run once per input pattern.
Line 5-8 : A random input pattern is created and the input rates are

assigned to the ni ·np input neurons. See Section 9.2.3 for detailed
descriptions of used input patterns.

Line 10-35 : The inner loop. Each cycle updates the entire network
while keeping the same input pattern active. For all simulations
performed in this chapter we used a value of kupd = 10.

Line 12-17 : Here we collect for each neuron a list of all rates and
a list of corresponding weights of all inputs to this neuron, which
encodes the current dendritic input. This is equivalent to the com-
putation of the weighted sums of all inputs in classical rate-coded
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Function learnTopology ():
1: create inputPopulation and network
2: connect inputPopulation to network

3: loop
4: /* draw and feed input pattern */
5: input = draw random input pattern
6: for each n in inputPopulation.neurons do
7: set n.rate to corresponding value in input
8: end for

9: /* per input we perform kupd update steps */
10: for step = 1→ kupd do

11: /* collect input to neuron n */
12: for each n in network.neurons do
13: for each (sender,weight) in n.WAA do
14: n.inputRates.append(sender.rate)
15: n.inputWeights.append(weight)
16: end for
17: end for

18: /* compute firing rates */
19: for each n in network.neurons do
20: newRate = Siegert(n.inputRates, n.inputWeights · n.har)
21: n.rate = (1− τrate) · n.rate + τrate · newRate
22: /* update har-value */
23: if n is an excitatory neuron then
24: n.har += char · (n.desiredRate− n.rate)
25: end if
26: end for

27: /* call learning procedure */
28: if step ≤ klrn then
29: call learnWeights(network,WAA)
30: end if

31: /* reset values for next round of input */
32: for each n in network.neurons do
33: empty lists n.inputRates, n.inputWeights
34: end for
35: end for
36: end loop
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network simulations. Note that Siegert nodes need more informa-
tion than the weighted sum. (See Chapter 8 for details.)

Line 19-26 : This code-block uses the dendritic input collected in
lines 12-17 and the neurons internal homeostatic state to compute
the next output rate of each neuron in the RCN.

Line 20 : Here the function Siegert(. . . ) is called in order to com-
pute the output rate of an LIF neuron receiving the collected in-
put rates with the corresponding synaptic weights. (See Chapter 8
for a detailed description of this function.) Note that the input
weights are multiplied with the neuron’s internal HAR-value. See
Section 9.2.1 for further details on this homeostatic mechanism.

Line 21 : Here, finally, we update the output rate of neuron n. The
parameter τrate determines how quickly we approach newRate, the
firing rate computed in line 20. In the simulations performed in
this chapter we used the value τrate = 0.25.

Line 24 : Depending on how much the current activity is off the de-
sired average activity level (n.desiredRate) we increment or decre-
ment n.har. Recall that we used this variable to alter the input
to function Siegert(. . .) in line 20. All simulation results for this
chapter used the value char = 0.0025.

Line 28 : Here, for the first klrn ≤ kupd update steps after a new
input is presented to the network and after all firing rates of all
neurons in the network have been updated, we call function learn-
Weights(). This function modifies synaptic weights between indi-
vidual pyramidal cells in our network. See Section 9.2.2 for further
details. All simulation results in this chapter were created using
the value klrn = 0.3 · kupd = 3. The motivation for klrn to exist in
the first place is discussed in Section 9.2.2

Line 32-34 : This code-block resets all temporary variables. This has
to be done before the inner loop can be re-iterated.

9.2.2. The Learning Rule. All RCNs used in previous chapters where
non-plastic, meaning that all connection weights where fixed throughout
the duration of the entire simulation. Here we finally introduce plas-
tic weights. More specifically, the recurrent weights among excitatory
(pyramidal) cells is modified by a Hebbian learning rule.

The function learnWeights (network,W ) describes the used learning
rule by giving an intuitive pseudo-code language. The weight modifi-
cation happens in line 6. The expressions c.pre and c.post denote the
presynaptic and postsynaptic neuron, respectively.
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Function learnWeights (network,W ):
1: for each n in network.neurons do
2: oldSum = newSum = 0

3: /* compute new weights */
4: for each c in n.W do
5: oldSum += c.weight
6: c.weight = c.weight + α · (c.pre.rate · c.post.rate)k
7: newSum += c.weight
8: end for

9: /* normalize weights */
10: for each c in n.W do
11: c.weight = c.weight · oldSumnewSum
12: end for
13: end for

This learning procedure does not have to be called after each update
step in function learnTopology (). Only the first klrn of the kupd steps
are used for learning. The smaller the ratio klrn

kupd
, the more the final

weight matrix will be influenced by the input itself. It turns out that in
cases where the recurrent excitatory connections (WAA, WBB) are rela-
tively strong, all learned weight matrices have the tendency to become
block matrices, which leads to leads to slightly different dynamics from
the ones we aim for in this chapter. More precisely, recurrent block ma-
trices make the system settle in one of several discrete states. Although
this can be a desirable behavior for some systems, here we aim for a
continuous solution where the learned matrices are smooth.

Even from a biophysiological point of view it might be possible to in-
fluence the ratio klrn

kupd
. Experimental evidence suggests that backprop-

agating action-potentials (BAPs) are necessary for LTP [FFdSCB10].
The propagation of these BAPs are based on a chain reaction that is
much less reliable than the one used for action potential propagations in
axons. Inhibitory currents (GABA currents) in dendritic branches can
disrupt this chain reaction [WSS05], which in turn renders the synapses
along subsequent branches unable to perform further LTP. This effect
grows with GABA-currents transmitted between the cells in a neural
population. It is initially low but increases after stimulus onset.
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With the constant k used in line 6, we can control whether the weight
changes are linear (k = 1), superlinear (k > 1), or supralinear (k < 1)
with the product of c.pre.rate and c.post.rate, the rates of the presy-
naptic and postsynaptic neuron, respectively. For k = 1 this rule is a
classical Hebbian learning rule with learning rate α. In the simulations
performed in this chapter we used the values α = 0.04 and k = 2. Using
k = 1 leads to very similar simulation results where the strong weights
along the diagonal of Figure 9.4 would be a bit wider (data not shown).

Currently, the most prominent biological learning rule is spike time
dependent plasticity (STDP) [DP92, MLFS97, AN00]. The reason
to use a value k > 1 is motivated by neurophysiological findings (see
e.g. [ID03]).

The loops in line 1 and 4 iterate over all synapses in the network. The
third loop in lines 10-12 normalizes all incoming weights to a given neu-
ron in order to maintain the same sum. This allows the HAR dynam-
ics to have full control over the effective weight sum, as described on
page 111.

9.2.3. Input Patterns. To demonstrate topology learning in RCNs
we feed three kinds of inputs to three identical copies of the same net-
work. For all results shown here neither the network nor any other
simulation parameter was modified between these three cases. The only
difference between the subsequently presented results is the input itself.

All inputs we use are wrapping around in order to avoid border effects.
In other words, all input topologies we use are tori, where the smallest
and largest values in each dimension coincide. For better readability,
this wrap-around nature is omitted from the mathematical description
given below.

After choosing which type of input to use, we start the function learn-
Topology (), which first sets up the network and connects ni ·np input
neurons to the np + nb many neurons in the RCN (in lines 1-2). Each
presented input is then drawn uniformly at random from the input class
we choose (lines 5-8).

In this section we define these input classes and show how to draw
random instances uniformly at random from those.
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Figure 9.3. The three types of input used throughout this
chapter. The left sides show the input rates fed from the ni = 256
input neurons groups Gi to the pyramidal and basket cell popu-
lation. The right sides show the same data by color-encoding the
input rate (white being highest rate, black being zero). In addi-
tion we rearranged these 256 values in a 2-dimensional grid of size
162. (a) A one-dimensional (1D) population-coded input pattern
centered at x = 0.5. (b) A two-dimensional (2D) population-
coded input pattern centered at v = (0.5, 0.5)T . (c) Two one-
dimensional (2x1D) population-coded input patterns, one at po-
sition x = 0.5, the other at position y = 0.5.
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9.2.3.1. One-Dimensional Input (1D). This input type is similar to the
kind of input we used in Part 1 of this thesis. The input population
encodes a single scalar value x ∈ [0, 1] using a population code.

There are np groups of input neurons. Each group Gg, g ∈ {1, . . . , np},
consists of ni individual cells. Every cell cg,i ∈ Gg has a preferred input
stimulus value xpref(g) = g

np
assigned to it.

We use a gaussian function fσ,rmax(x) as the population activation pat-
tern:

fσ,rmax(x) = rmax · e−( x2

2·σ2
) (9.1)

The peak of f is at rmax, which corresponds to the maximum input
frequency in Hz.

For input x, each input cell’s output rate is then given by:

r(cg,i, x) = fσ,rmax(xpref(g)− x), (9.2)

the gaussian function applied to the difference between x and the cells
preferred value xpref(g). Figure 9.3(a) shows an example of a 1D-input
for x = 0.5.

We choose a random input pattern by drawing a random value x uni-
formly at random from the unit interval. All results shown below are
obtained using the parameters σ =

np
8 = 32 and rmax = 40 Hz.

9.2.3.2. Two-Dimensional Input (2D). This type of input encodes two
independent scalar values x ∈ [0, 1] and y ∈ [0, 1].

To each of the np input neuron groups Gg, g ∈ {1, . . . , np}, np being a
square number, we assign a vector:

vpref(g) =

(
xpref(g)
ypref(g)

)
,with (9.3)

xpref(g) =
g mod

√
np√

np
, and

ypref(g) =
bg/√npc√

np
.

This assigns the np input groups to the points in a quadratic, regular
grid, spanning the unit square.
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Since we have a two-dimensional input space, we use a two-dimensional
gaussian function:

f2
σ,rmax

(v) = rmax · e−( x
2+y2

2·σ2
), (9.4)

with v = (x, y)T as population activation pattern.

Each input cell’s output rate is then given by:

r(cg,i,v) = f2
σ,rmax

(vpref,g − v) (9.5)

the value of f2, shifted by v, at the cells preferred value vpref(i). Fig-
ure 9.3(b) shows an example of a 2D-input for v = (0.5, 0.5)T .

Random input patterns are created by drawing a random vector v uni-
formly at random from the unit square. All results shown below are
obtained using the parameters σ =

√
np
5 = 3.2 and rmax = 40 Hz.

9.2.3.3. Two One-Dimensional Inputs (2x1D). This type of input, like
the previous one, encodes two independent scalar values x ∈ [0, 1] and
y ∈ [0, 1].

To each of the np input neuron groups Gg, g ∈ {1, . . . , np}, np being
a square number, we assign a vector vpref(g) = (xpref(g), ypref(g))T as
follows:

vpref(g) =

(
xpref(g)
ypref(g)

)
,with (9.6)

xpref(g) =
g

np

ypref(g) =
(g mod

√
np) · √np + bg/√npc

np
.

Although we have a two-dimensional input-space, we use two one-
dimensional gaussian functions fσ,rmax(x) and fσ,rmax(y) (see Equa-
tion 9.1) as population activation patterns.

Each input cell’s output rate is then given by:

r(ci,j ,v) = fσ,rmax/2(xpref(g)− x) +

fσ,rmax/2(ypref(g)− y), (9.7)

the sum of the 2 gaussian functions, one fed to the unit square in y-
direction at height x, the other fed to the unit square in x-direction
at height y. Figure 9.3(c) shows an example of a 2x1D-input for v =
(0.5, 0.5)T .
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Random input patterns are created by drawing a random vector v uni-
formly at random from the unit square. All results shown below are
obtained using the parameters σ =

√
np
8 = 32 and rmax = 40 Hz.

9.3. Results

In the previous sections we have set the stage for learning the input
topology by modifying an RCN based only on the fed inputs. We de-
scribed the simulation’s update routine in the Function learnTopol-
ogy() on page 112 and the learning dynamics in Function learnWeights()
on page 114. The three types of input we use were described in Sec-
tion 9.2.3.

Here we will first have a look at the weights resulting from the learning
procedure. In a second step we show that the dynamics of such topology-
learned RCNs are changing significantly, eventually getting very close to
the dynamics of CCMs such as the WTA-networks used in Chapters 3
and 4.

9.3.1. Learned Input-Topologies. We create the exact same RCN
for each type of input described in Section 9.2.3. After letting Func-
tion learnTopology() run for a couple of hundred iterations, the re-
current weights among the pyramidal cells converge to a quasi-stable
state. We use the term quasi-stable, because each additional input pre-
sentation still slightly modifies the weights, which have therefore not
mathematically converged to a stable value. However, doing several
thousand additional iterations shows that this quasi-stable weight dis-
tribution does not significantly change any more.

Figure 9.4 shows the connection matrix containing the plastic weights
wpp between all pairs of pyramidal cells.

Although the weight matrix does, of course, contain all the data we are
interested in, it is not so easy to interpret the results for 2-dimensional
inputs (Figure 9.4(c,d)). Each line l of these matrices contains all out-
going weights coming from pyramidal cell cl. A column m, in contrast,
contains all incoming synapse weights cell number cm receives from all
its peers. For 2-dimensional inputs it is easier to interpret this data in
a de-linearized visualization, where this kind of data is made consistent
with the 2D-grid the input is based upon.
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Figure 9.4. Learned topologies. Each plot shows the learned
recurrent weights among the pyramidal cells (wpp). The weights
are color coded (white encoding the strongest weight and black
encoding zero). Red markers indicate the largest wpp-value in
each matrix row. (If there are multiple maxima, the red dot
marks the first one occurring in each row.) The faint green line
marks the diagonal. (a) The initial weights (before topology-
learning). All non-zero weights are equal. (b) Quasi stable
weight matrix after some hundred random 1D-inputs have been
presented to the network. (c) Quasi stable weight matrix after
some hundred 2D-inputs have been presented to the network.
(c) Quasi stable weight matrix after some hundred 2x1D-inputs
have been presented to the network.
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(a) (b)

(c) (d)

Figure 9.5. Learned topologies (weights grouped to 2D-tiles). Each plot
shows the same wpp-data as Figure 9.4(a-d). The weights shown in one tile
correspond to the weights coming from one row in these weight matrices.
This alternative visualization is mainly useful for two-dimensional topologies
because it shows well how the strong inputs distribute over this 2D space (see
text for details). (a) Initial weights. Weights are uniformly distributed across
the entire population. The network itself does not offer any useful notion
of proximity among its units. (b) Weights learned from 1D-inputs. Weights
are tuned to only one of the two input dimensions. Note that the inputs
to neurons tuned for a certain input value (vertical position of a tile in the
16× 16 grid of tiles) are from other neurons that are tuned to similar values
(vertical position of the strong weights inside the tile). (c,d) Weights learned
by observing 2-dimensional input encodings (2D-inputs and 2x1D-inputs).
Also here we can see that the strong inputs to a neuron (white clusters inside
the tiles) come from its neighbors. That is, the relative position of the tile in
the array of tiles coincides with the strongest weights inside the tile.



122 Chapter 9. Topology Learning With RCNs

This kind of re-grouping of weights wpp is shown in Figure 9.5. The
data from each of the np = 256 rows from Figure 9.4 is rearranged (de-
linearized) onto a grid of size 162. We call one such small square a tile.
The 256 resulting tiles we arrange another time on a grid of size 162.
The tiles show in an intuitive way from where in the layer each node
gets most of its input.

It can be seen that for all three types of input the strongest weights in
the learned weight matrices are coming from cells with similar preferred
input tuning (places that are close to each other with respect to the
input topology).

It is important to step back and acknowledge the fact that the learned
weights reflect the topology of the input, although the RCN initially
only contains randomly drawn connections. Hence the network’s initial
connectivity and the topology of the input are very different in nature.

These results show that random networks, structurally similar to net-
works known to exist in local cortical structures (see Chapter 5), are ca-
pable of dealing with diverse input topologies of fundamentally different
nature from the network’s inherent “tabula rasa” topology [KSM05].

In the next section we will have a look at the dynamics of topology-
learned RCNs when slightly more complex input patterns are being fed.

9.3.2. Using the Learned Topologies. Already in Chapter 5 we
have seen that untrained RCNs containing only random connections
share some features with CCMs. Section 5.3 contains a compact sum-
mary of similarities and differences between CCMs and RCNs.

Here we show how trained RCNs change their dynamics in compari-
son to untrained networks. All network effects we have mentioned in
Chapter 5 are retained and emphasized. The main difference is that the
inhibition in trained networks is operating on a pattern level and not
only on the level of single cells. This means that competition between
two simultaneously presented inputs, highly nonlinear winner selection,
and partial pattern completion all become part of a trained RCN’s net-
work dynamics.

Figures 9.6-9.9 show the initial and settled network activities in an un-
trained as well as in a trained 1D-RCN when two inputs are fed si-
multaneously. The network fuses the inputs if they are similar enough
(Figures 9.6 and 9.7). In cases where the given inputs are still similar
enough to be fused, but one of the two inputs is weaker than the other,
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the network strongly emphasizes this difference (Figure 9.8). These dy-
namics are very similar to the competition mechanisms proposed to exist
in biological neural circuits [DM07] and also has striking similarities to
the dynamics in CCMs [Ama77, Hee92].
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Figure 9.6. Initial responses (left) and settled responses
(right) of two RCNs that were (a) untrained, and
(b) trained using a sequence of randomly placed 1D-
inputs. The population encoded values range from 0
(where the pyramidal cell with ID 0 is activated strongest)
to 1 (where the pyramidal cell with ID 256 is activated
strongest). Rows (a,b) are both generated by simultane-
ously feeding two inputs A (left grey curve) and B (right
grey curve) to the network (total shown in red). In (a) the
network responds by basically reproducing the shape of
the input pattern (blue). In (b) we can see that the net-
work activity is much sharper, almost as concentrated as
the response to a single 1D-input would be.

Figures 9.10-9.13 show similar results to Figures 9.6-9.9, but in these
cases the RCN was exposed to 2D inputs during the training phase of
the network.
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Figure 9.7. Initial responses (left) and settled responses
(right) of two RCNs that were (a) untrained, and
(b) trained using a sequence of randomly placed 1D-
inputs. In contrast to Figure 9.6, inputs A (left grey
curve) and B (right grey curve) encode more distant val-
ues, hence their peaks are further apart. In (a) the net-
work responds by basically reproducing the bimodal input
pattern. In (b) the network activity becomes unimodal,
expressing a single peak of activity roughly at the cen-
ter between the peaks of inputs A and B. The trained
network has fused the two similar input patterns.

As already mentioned above, trained RCNs are capable of partial pat-
tern completion. If a fed input pattern is incomplete, the lateral (recur-
rent) input from highly correlated pyramidal cells will help to restore
the pattern. Figure 9.14 shows initial and settled network activities for
partially omitted inputs for both, 1D and 2D.

9.3.3. Learning With Noisy Data. A striking feature of RCNs and
the proposed training methods is the network’s ability to cope with high
levels of noise. The input patterns we fed up to now were all very clean
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Figure 9.8. Initial responses (left) and settled responses (right) of two
RCNs that were untrained (A-a,B-a), and trained using a sequence of ran-
domly placed 1D-inputs (A-b,B-b). In contrast to Figure 9.7, inputs (left
grey curve and right grey curve) do not have equal peak hight. Only the
trained network in (A-b) and (B-b) inhibits the weaker input, picking the
stronger input to win the competition.
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Figure 9.9. Initial responses (left) and settled responses (right) of two
RCNs that were untrained (A-a,B-a), and trained using a sequence of ran-
domly placed 1D-inputs (A-b,B-b). In contrast to Figure 9.8, the inputs (left
grey curve and right grey curve, close to red sum) do encode two antipodal
input values (as far apart as possible). As in Figure 9.8, only the trained
networks in (A-b) and (B-b) inhibit the weaker input, picking the stronger
input to win the competition.
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Figure 9.10. Input and settled response of an RCN
that was trained using a sequence of randomly placed
2D-inputs. Here, two inputs encoding the values vA =
(0.4, 0.4)T and vB = (0.6, 0.6)T are simultaneously fed.
The network fuses the two inputs, treating them like one
larger input encoding a value right between the individual
inputs, roughly at vA+B = (0.5, 0.5)T , shown in right-
most subfigure in red.

Figure 9.11. Input and settled response of an RCN
that was trained using a sequence of randomly placed
2D-inputs. Here, two inputs encoding the values vA =
(0.35, 0.35)T and vB = (0.65, 0.65)T are simultaneously
fed. The network fuses the two inputs, treating them like
one larger input encoding a value right between the in-
dividual inputs, roughly at vA+B = (0.5, 0.5)T , shown in
rightmost subfigure in red.

and smooth. In the following section we will show that this is absolutely
not necessary. In fact we chose to show the results of experiments using
noise free inputs mainly to give visually cleaner figures to the reader.
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Figure 9.12. Input and settled response of an RCN
that was trained using a sequence of randomly placed
2D-inputs. Here, two inputs encoding the values vA =
(0.35, 0.35)T and vB = (0.65, 0.65)T are simultaneously
fed. In contrast to Figure 9.11, the amplitudes of these in-
puts are set differently (the difference in amplitude height
is 33%). Like in Figure 9.8 we see that the network non-
linearly inhibits the weaker input. The red circles indicate
the location of the stronger input.

9.3.3.1. The Noise Model. The network can cope with many types of
noise. Here we show results for a relatively simple, gaussian noise model
with uniform variance across the entire layer. After an input pattern is
created as explained in Section 9.2.3, we use the peak input rate rmax
and perturb each rate ri to become

ri,noisy = max(0.0,N (ri,
1

4
rmax)) (9.8)

The homeostasis (HAR) used in our model enables this method even
to deal with some amount of non-symmetric, dependent noise. If, for
example, each cell would be exposed to a noise source that does not
depend on the current input but on the identity of this very cell, the
input topology could still be learned (data not shown).
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Figure 9.13. Input and settled response of an RCN
that was trained using a sequence of randomly placed
2D-inputs. Here, two inputs encoding the values vA =
(0.0, 0.0)T and vB = (0.5, 0.5)T are simultaneously fed.
In contrast with Figure 9.12, these locations are chosen
to be as far apart as possible. As in Figure 9.9, we see
that the network nonlinearly inhibits the weaker input.

9.4. Discussion

When introducing RCNs in Chapter 5 we saw in Section 5.3.1 that
these networks show dynamics that share some features with CCMs.
Although the connections in RCNs are sparse and drawn uniformly at
random, we saw that the the network’s response to a fixed input pattern
is stable and robust. We also saw that the strength of the output can
be controlled by balancing excitation and inhibition.

Since we know that cortical synapses are plastic, it was a natural step to
let the excitatory connections in RCNs be plastic as well. A combination
of Hebbian learning and homeostatic activity regulation turned out to
be suitable for learning the input topology, just by observing a stream
of input patterns (Figures 9.4 and 9.5).

The main difference between trained and untrained networks is that
recurrent excitatory inputs to a cell ci are no longer sampled uniformly
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Figure 9.14. Signal restoration capabilities of trained and untrained
RCNs. Initial responses (left) and settled responses (right) of two RCNs
that were untrained in (A-a,B-a), and trained with 1D-inputs in (A-b)
and 2D-inputs in (A-b). (A-a,B-a) show that the untrained networks
do not fill in missing parts of the input. (A-b) Although some of the
inputs are set to zero (ditches along red curves), the recurrent excitation
within the trained RCN partially fills in these gaps. (B-b) Restoration
of 2D-input. Although the input pattern is missing a vertical stripe, the
settled network activity does not drop to zero at these locations as it
did in the untrained network.
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Figure 9.15. 1D topologies learned with continuous and noisy
inputs. (a,b) Learned recurrent weights among the pyramidal
cells (wpp). The weights are color coded (white encoding the
strongest weight and black encoding zero). Red markers indicate
the largest wpp value per matrix row. (a) Quasi stable weight ma-
trix after some hundred smooth 1D-inputs have been presented to
the network. (Same data as shown in Figure 9.4(b).) (b) Quasi
stable weight matrix after some hundred noisy 1D-inputs have
been presented to the network. The learned weight matrices turn
out to be very similar although the inputs used to learn subfig-
ure (b) were exposed to a high level of noise. (c) Example of a
smooth, continuous input pattern. (d) Example of a noisy input
pattern (see Equation 9.8).
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Figure 9.16. Settled responses of an RCN that was trained using
a sequence of noisy 1D-inputs. (a-f) Noisy inputs (red curves) and
corresponding outputs (blue curves). (a) Noisy equivalent to the data
shown in Figure 9.6. (b) Noisy equivalent to the data shown in Fig-
ure 9.7. (c) Noisy equivalent to the data shown in Figure 9.8(A).
(d) Noisy equivalent to the data shown in Figure 9.8(B). (e) Noisy
equivalent to the data shown in Figure 9.9(A). (f) Noisy equivalent
to the data shown in Figure 9.9(B).
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from all its peers. The inputs are now clustered among fewer cells
that define the learned neighborhood for ci. This, in turn, defines a
low-dimensional topology and a notion of expected population activity
shape.

This shift from sparse, random connectivity to topology-based weights
enables RCNs to introduce competition on the level of output patterns.
Although competition (inhibition) was present also before the topology
of the input was learned, it could only operate on the level of single
cells. (This was visible in Figures 9.6-9.9(a)) The untrained network
did not have any notion of frequently seen input or output patterns and
therefore could not take them into account.

Since information about the type of input patterns and the correspond-
ing network responses (output patterns) is encoded after training in the
recurrent excitatory connections, activity patterns in the network start
to compete on this higher semantical level. Not only do trained RCNs
show a nonlinear winner selection similar to WTA networks [DM07],
they are also capable of partially restoring fragmented input signals (see
Figures 9.6-9.9 and Figure 9.14).

This makes RCNs, after learning the topology of the input, behave very
much like CCMs [Ama77, Hee92].

9.4.1. A Probabilistic Interpretation of Trained RCNs. There
are important differences between the dynamics of trained RCNs and
the dynamics of most CCMs. In the following paragraphs we will see
how an RCN’s WTA dynamics can be interpreted as being probabilistic
in nature.

A probabilistic interpretation of population-coded activity is getting
more widely accepted [MBLP06, BD11, DLP01, DLP99]. In such
a context, a population code is not assumed to only encode one of
d scalar values but carries some kind of credibility or certainty value
encoded in the way the activity is distributed over the population of
neurons. If the population code was known the properties of a typical
activity profile could be derived. However, we usually face the inverse
problem of deriving the distribution from sample activity profiles.

9.4.1.1. Normalization of the Output Activities. Although a population
code is not an arbitrary probability distribution but comes in general
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with unknown constraints that can not easily be formalized1, a pop-
ulation’s total activity should not increase if it broadens its profile.
Figures 5.4 and 9.2 show that RCNs come with exactly this output
normalization feature when recurrent inhibition balances recurrent ex-
citation.

In Figure 5.4 and Figure 9.2 we have seen that the total input strength to
an RCN, once it passes some minimal input strength needed to excite the
receiving population, can be increased multiple times without changing
the RCNs output strength and output distributions all that much. Of
course this is not the same as a normalization in a mathematical sense,
but it might very well suffice for some kinds of neural computations
[CH11].

9.4.1.2. How Input and Output Activities Relate to Each Other. In Fig-
ures 9.6-9.9 we saw that the activity patterns in untrained RCNs follow
the given input distributions very well. This was not the case for trained
RCNs, where the output lump could be sharpened, widened or shifted
to other peak positions.

In Bayesian terms this is because the training samples introduced a
prior to the RCN that is influencing the relaxation of the network to a
population-coded output.

This prior could be formalized as a learned probability distribution on
the set of all outputs. Then a Bayesian approach might define the de-
sired output σ = (σ1, σ2, · · · , σne), ne being the number of excitatory
neurons in the RCN, as the unit vector that maximizes the joint prob-
ability Pr(σ, α), where α = (α1, α2, · · · , αni) is the activity of the ni
input neurons.

The latter expression, Pr(σ, α), can be computed as:

Pr(σ, α) = Pr(α | σ) · Pr(σ). (9.9)

The probabilities on the right hand side can be modeled in many ways.
For our approach we assume conditional independence of the input ac-
tivity α, given by

Pr(α | σ) =
∏

i

Pr(αi | σ). (9.10)

1One attempt to formalize probabilistic population codes can be found in [MBLP06]
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We model input activities to be less likely when deviating away from
the corresponding output activity, as

Pr(αi | σ) = c1 · exp(−|αi − σi|k1), (9.11)

with k1 being a constant determining the used distance measure and c1
being a normalization constant.

The prior on the output activity, influenced by the learned correlation
between αi and αj , Ci,j , is given by

Pr(σ) = c2 · exp


−κ

∑

i,j

|Ci,j − f (σi, σj)|k2

 , (9.12)

where κ determines the influence of the prior, k2 is a constant defin-
ing the used distance measure, and c2 is a normalizing constant. The
prior ensures that pairs of output activities (σi, σj), with high learned
correlations Ci,j , have similar values.

One possible formalization for f , the similarity measure for output ac-
tivities, is

f(x, y) = 1− |x− y|. (9.13)
Here we assumed that desired outputs (σi) and the activity of input
neurons (αj) are given as values ∈ [0, 1].

Eventually we would like to maximize the left hand side of Equation 9.9
with respect to σ:

σ∗ = argmax
σ

Pr(σ, α) = argmin
σ


− ln Pr(σ, α)︸ ︷︷ ︸

E(σ,α)


 . (9.14)

with the error function E(σ, α) being

E(σ, α) =
∑

i

|αi − σi|k1 + κ ·
∑

i,j

|Ci,j − f (σi, σj) |k2 . (9.15)

The first term punishes outputs that deviate too strongly from the input,
while the second term punishes outputs that are not compatible with
the prior knowledge.

Hence, E formalizes a tradeoff between the input pattern α and the
system’s learned knowledge C, previously called the prior. The dynamics
of a trained RCN can now be understood as finding an energy minimum
given in Equation 9.14.
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Of course, the output generated by an RCN is not rigorously speaking
the precise solution of such a minimization problem (or distributed ac-
cording to Equation 9.9). However, qualitatively an RCN appears to
compute a solution along the lines we have outlined here.

We have already mentioned before that the nonlinear effects (WTA
dynamics) of trained RCNs can be controlled by the strength of the
recurrent weights (wpp). In light of the above mentioned probabilis-
tic interpretation this is equivalent to being able to adjust the relative
influence of the learned prior knowledge with the currently seen input
distribution (κ).

Figure 9.16(a-f) provides a nice overview of single RCN dynamics un-
der a series of different input patterns (mind that already the input
strengths for different sub-figures are not strictly normalized).

Like before we can immediately see that the probabilistic computations
are most likely not precise in a mathematical sense, but the observable
dynamics are going in a good direction. We think that the remaining er-
ror is tolerable and large scale systems of coupled RCNs may be capable
of approximating probabilistic computations.

In the next chapter we will first discuss how two trainable RCNs
can be coupled in a way that can still learn the topology of the in-
dividual input patterns, while also learning the relation between these
inputs. At the end of the next chapter we will continue the probabilistic
interpretation we have started here.



CHAPTER 10

Relation Learning With Rate Coded
Recurrent Competitive Networks

10.1. Introduction

In Chapter 9 we saw how an untrained, tabula rasa RCN can learn the
topology of population encoded inputs. By learning the input topology
the network obtained a notion of what an input pattern usually looks
like, which enabled the trained RCN to let superimposed input values
compete with each other.

In this chapter we are going to extend the network of Chapter 9. We
will study the learning and evaluation dynamics of two coupled RCN
layers. The coupling, as shown in Figure 10.1, is realized using sparse,
random, excitatory connections.

These connections are, like the recurrent connections in each individual
RCN layer, plastic. The weights of these connections are trained using
exactly the same Hebbian learning procedure used in Chapter 9.

10.1.1. The Learning Task in a Network of Coupled RCNs.
The network has to simultaneously accomplish two tasks: the first one
is the adaption to the input encoding. This is, the network should
maintain the topology learning capabilities of the individual RCN layers,
which we studied in Chapter 9. Additionally we want the two layers
to use their coupling to exchange information about the input each
of them receives. The network should figure out how the population
encoded input values relate to each other, and encode this relation in
the afferent (coupling) weight matrices.

The second learning task is similar to the unsupervised learning of re-
lations discussed in Chapter 3. Differences include: (i) the coupled

137
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X A YBWAB

WBA

Figure 10.1. Network structure used for learning a
relation. Populations X and Y are used to feed input
to the network which consists of two layers A and B.
A and B are each Siegert-RCNs set up in exactly the
same way as the Siegert-RCN used in Chapter 9 to
learn the topology of the input space. The activities
of the pyramidal subpopulation of A are sent to layer
B and vice versa, through weight matrices WAB and
WBA. Both, the recurrent and inter-layer connectivities
are sparse with only a fraction ppp (resp. ppb) of all
possible connections present. All existing connections
are initialized with the same weight wpp for connections
from pyramids to pyramids, and wpb for connections
from pyramids to basket cells.

RCNs are able to adapt to the input encoding received from the envi-
ronment of the system, (ii) we use RCNs rather than CCMs for getting
the desired WTA network dynamics, thus improving the neuroanatom-
ical plausibility of the system, and (iii) the neuron model we use is not
an artificial sigmoidal threshold unit, but a useful abstraction of leaky
integrate-and-fire neurons (the Siegert neuron described in Chapter 8),
which will eventually help to ease the transition back to a spiking neural
network.
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We believe that these differences, besides being interesting by them-
selves, will proove to be crucial modifications for building large-scale
models that solve complex learning tasks.

10.1.2. Related Work. In Section 5.1.1 we placed our work on RCNs
in relation to existing work. Since RCNs are the central module in the
type of networks we are presenting here, the citations given in Sec-
tion 5.1.1 also apply here.

In Chapter 9 we showed that trained RCNs and CCMs show very similar
dynamics when fed with population-coded inputs. In this chapter we
build larger networks that consist of such WTA-like modules. The same
is true for the work by Rutishauser et al. [RDS10, RD09]. They show
that CCM-like building blocks made of spiking units can be used to build
arbitrary finite state machines. Their system follows quite different
computational strategies, but is an interesting and very reliable way
to build large and robust system that consist of modules having WTA
dynamics.

Yet another, more theoretical approach to building larger systems out of
WTA modules can be found in [Maa00]. However, we can not directly
apply the results by Maass to our own systems because his understand-
ing of a soft winner-take-all module differs significantly from ours.

Besides the work mentioned in the last paragraphs, the pointers given
in Chapter 2 also contribute to a more complete picture of the scientific
context of our work.

10.2. Methods

10.2.1. Network Structure and Network Simulation.

Model Neurons. The model neurons we use in this chapter are again
the Siegert nodes introduced in Chapter 8. We have seen that these
nodes show input-response properties like leaky integrate-and-fire (LIF)
neurons while providing a significant computational speedup.

A reason to use this neuron model instead of other rate-coded neurons
is that the parameters of Siegert neurons and LIF neurons coincide.
This offers the possibility to switch back and forth between a network
of Siegert nodes and spiking LIF units relatively easily.
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Synaptic Connections. Synaptic connections between Siegert neurons
are set to the biologically plausible parameter regime described in Chap-
ter 6. (With the caveat that Siegert nodes cannot take slow NMDA or
GABAB currents into account.) The only free parameter per synapse is
its weight, which denotes the total post-synaptic current (PSC) received
at the soma of the receiving cell.

Network Structure. The RCN setup introduced in Chapter 5 is the basis
for all simulations in this chapter. Figure 10.1 shows how the network
is structured. It consists of two coupled RCN-layers (A and B) and two
input populations (X and Y ). The sparse recurrent connections between
the pyramidal nodes within A (WAA) and B (WBB) are plastic1, just as
they were in Chapter 9. They allow the network to dynamically adapt
to the topology of the fed inputs.

Layers A and B are coupled by the sparse random connections stored
in WAB and WBA. These newly introduced connections will be trained
using the same learning procedure as the one introduced in Chapter 9.
Since these connections are not recurrent, but mediate the activities
between layers, they learn the correlation between the activities in A
and B. We will refer to the correlation in the data simply as the “relation”
or “hidden relation”.

Table 10.1 contains all parameters needed to fully specify the network.
All input neurons ci in X and Y are excitatory. Their output rate can
be clamped to any fixed poisson rate ‘ci.rate’ from outside the network.

The input population consists of np groups of ni input neurons each.
Each of the np pyramidal neurons in the RCN is assigned to exactly
one of these groups, receiving input exactly from these ni neurons. A
detailed explanation of the kind of input patterns we use can be found
in Section 9.2.3 in the previous chapter.

Note that the parameters we use here are the same as the ones we used
to learn the topology within a single layer in Chapter 9 (see Table 9.1).
The only difference is that the total strength of the recurrent connections
is now divided in two halves. One is still learning the input topology,
while the other half is now concerned with the relation between layers
A and B.

1The weight matrices WAA and WBB are only symbolized as red arrows in Fig-
ure 10.1. They are like the weight matrix shown in Figure 9.1, fulfilling the same
purpose as in Chapter 9.
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Table 10.1. The set of parameters for a coupled RCN setup con-
taining 256 excitatory and 64 inhibitory neurons per layer. All pa-
rameter names are as in Table 9.1. The new parameters ppo, pbo, wpo,
and wbo (‘o’ as in output) are describing the weight of all connections
in WAB and WBA.

Coupled RCNs: all parameters

ni,np nb
pip pib ppo pbo pbp ppb ppp pbb

− − 0.50 0.50 0.25 0.25 0.50 0.50

256 64
wip wib wpo wbo wbp wpb wpp wbb

1.25 3.00 1.25
2

3.00
2 −2.00 3.00

2
1.25

2 −2.00

FFI Properties of this Setup. Since we are using the same RCN setup as
in Chapter 9, Figure 9.2 also applies to the setup given in Table 10.1. For
a large range of different input strengths the output spike count stays
basically the same. This is helpful for learning and using larger networks
that contain RCNs, because (i) the learning dynamics can operate on
a wide input range without the RCN’s output activities degenerating,
(ii) once the RCNs are trained their input will be complemented by
increased lateral weights, so response stability during training requires
robustness to input magnitudes, and (iii) trained RCNs need to be
able to respond to very different input levels depending on how many
neighboring RCNs are currently actively contributing input.

Homeostatic Activity Regulation (HAR). It is known that neurons ac-
tively regulate their spiking activity in order to maintain a certain ac-
tivity level or activity range [TN04, GA00, TN00].

In order to include HAR in our simulations we model a mechanism
known as Synaptic Scaling. The basic idea is that a neuron which is
too active (resp. not active enough), will scale down (resp. up) all its
incoming synaptic connection weights by the same factor fHAR. This
causes the neuron’s postsynaptic currents to be similarly scaled, thereby
affecting its overall activity.

For convenience we actually do not change the individual synaptic
weights in our simulations. Instead we give each neuron n a state
variable n.har that is initialy set to be 1.0. Before using a synaptic
weight w we will always compute the effective weight weff = w · n.har,
which is equivalent to the effect described above. (See e.g. line 20
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in function learnTopology().) The Hebbian dynamics include weight
normalization so the overall weight sum is thus fully controlled by the
HAR dynamics.

Network Update Cycles. Function learnRelation() shown below gives
a detailed pseudo-code description of the activity updates. In lines 29-33
we call the function learnWeights() that performs the Hebbian weight
changes as described in Section 9.2.2 of the previous chapter.

Function learnRelation() provides an in-depth description of the train-
ing procedures that we use to learn the relation between two inputs of
unknown topology. The algorithm is basically the same as the one on
page 111, which we have explained in great detail there.

The biggest differences are (i) the input given to the network (see next
section) and (ii) lines 29-33, where the learning procedure is called sep-
arately for each of the connection matricesWAA, WBB, WAB, andWBA.

10.2.2. The Learning Rule. The function learnWeights (. . .) de-
scribed in the previous chapter in Section 9.2.2 is used to learn the local
recurrent connections (WAA, WBB) as well as the efferent connections
(WAB, and WBA) between layers A and B.

This learning procedure does not have to be called after each update
step in function learnTopology (). Only the first klrn of the kupd steps
are used for learning. The smaller the ratio klrn

kupd
, the more the final

weight matrix will be influenced by the input itself. It turns out that in
cases where the recurrent excitatory connections (WAA, WBB) are rela-
tively strong, all learned weight matrices have the tendency to become
block matrices, which leads to leads to slightly different dynamics from
the ones we aim for in this chapter. More precisely, recurrent block ma-
trices make the system settle in one of several discrete states. Although
this can be a desirable behavior for some systems, here we aim for a
continuous solution where the learned matrices are smooth.

Even from a biophysiological point of view it might be possible to in-
fluence the ratio klrn

kupd
. Experimental evidence suggests that backprop-

agating action-potentials (BAPs) are necessary for LTP [FFdSCB10].
The propagation of these BAPs are based on a chain reaction that is
much less reliable than the one used for action potential propagations in
axons. Inhibitory currents (GABA currents) in dendritic branches can
disrupt this chain reaction [WSS05], which in turn renders the synapses
along subsequent branches unable to perform further LTP. This effect
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Function learnRelation ():
1: create X,Y and A,B
2: connect X → A, Y → B, A→ B, B→ A

3: loop
4: /* draw and feed input pattern */
5: inputs = draw random input pattern for X and Y
6: for each nX in X.neurons and nY in Y .neurons do
7: set nX .rate to corresponding value in inputs.X
8: set nY .rate to corresponding value in inputs.Y
9: end for

10: /* per input we perform kupd update steps */
11: for step = 1→ kupd do

12: /* collect input to neuron n */
13: for each n in (A.neurons+B.neurons) do
14: for each (sender,weight) in n.inConns do
15: n.inputRates.append(sender.rate)
16: n.inputWeights.append(weight)
17: end for
18: end for

19: /* compute firing rates */
20: for each n in (A.neurons+B.neurons) do
21: newRate = Siegert(n.inputRates, n.inputWeights · n.har)
22: n.rate = (1− τrate) · n.rate+ τrate · newRate

23: /* update har-value */
24: if n is an excitatory neuron then
25: n.har += char · (n.desiredRate− n.rate)
26: end if
27: end for

28: /* call learning procedure */
29: if step ≤ klrn then
30: call learnWeights(network,WAA)
31: call learnWeights(network,WBB)
32: call learnWeights(network,WAB)
33: call learnWeights(network,WBA)
34: end if

35: /* reset values for next round of input */
36: for each n in (A.neurons+B.neurons) do
37: empty lists n.inputRates, n.inputWeights
38: end for
39: end for
40: end loop
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grows with GABA-currents transmitted between the cells in a neural
population. It is initially low but increases after stimulus onset.

10.2.3. Input Patterns. All inputs to the individual RCN layers are
of the 1D and 2D types introduced in Section 9.2.3 on page 117.

10.2.3.1. The Relations Used to Test our Method. We use two functional
relations to test the proposed network. We will interpret all variable
values for both relations to be in the range [0, 1]. Note that this is really
only a matter of interpretation since network activities and the position
of population encoded activity lumps are only meaningful through their
relation to other populations.

The first relation we use is y = x2, for which we need one-dimensional
population-coded values in X and Y .

The second relation we will test the network with is formally described
by (y1, y2) = (1− x1, 1− x2) and will use two-dimensional population-
coded inputs in X and Y . Since this relation takes a coordinate in the
unit square and projects it across (0.5, 0.5) to the opposite side we call
this relation the “inversion relation”.

When the function learnRelation () is called it instantiates the net-
work and starts feeding data drawn uniformly at random from one of the
mentioned example relations. (A description of the detailed input struc-
ture can be found in Section 9.2.3.) Note that neither network creation
nor the choice of any parameter depends on the relation the network
is finally exposed to. The strength of this network is its flexibility and
robustness.

10.3. Results

Let’s have a look how the proposed learning method affects (i) the
recurrent weight matrices WAA and WBB, which are supposed to learn
the topology of the input space as they did in Chapter 9, and (ii) the
afferent weight matrices WAB and WBA that connect layers A and B
with each other and are supposed to capture the hidden relation.

We will see that the network is capable of learning relations using one-
as well as two-dimensional population codes. We want to stress once
again that the network does not have to be altered in any way when
changing the relation or population code structure of the input.
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After training the network we will see that the learned connection
weights enable the network to perform inference tasks, biased decision
making, cue integration, and even solving constraint satisfaction prob-
lems.

All experiments of this chapter were repeated after adding a significant
amount of noise to the training data. The results show that learning as
well as the successive computational tasks are robust to noise.

The flexibility to adapt to different input topologies (input encodings),
the robustness to noise, and the fact that coupled RCNs only consist
of locally operating, biological concepts makes this kind of network an
interesting model for cortical computation.

10.3.1. Learning a Nonlinear Relation. First we let the network
learn a quadratic relation and see how the plastic random connections
change. After that we will show some computationally interesting ways
that the learned network can be used. At the end of this section we will
elaborate on some difficulties in learning nonlinear relations.

We will train the network with the functional relation: y = x2, where
x and y are both single scalar values in [0, 1]. The activities in both
input layers (X and Y ) are encoded using one-dimensional population
codes. A value fed to the network is encoded by an activity lump in
X and Y , centered at position x and y, respectively. To make this
clear let us consider an example. In case x = 0.5, the lump of activity
in layer X will be at the center of the layer X (with respect to the
ordering of the neurons in our figures, see also Section 9.2.3 on page 117).
According to the relation y = x2 we know that y = 0.25, meaning that
Y ’s activity profile will peak around the cell with ID 64 (since there are
256 excitatory cells in total and 256 · 0.25 = 64).

Already after training on a few hundred examples that are drawn uni-
formly at random from all pairs (v, v2) (v ∈ [0, 1[), the weight matrices
WAA, WBB, WAB, and WBA are as shown in Figure 10.2.

In Figure 10.2 we can see that the recurrent matricesWAA andWBB did
successfully learn the one-dimensional input topology. Further we see
that the weights in WAB and WBA are describing the quadratic relation
in the training data fairly well.

10.3.1.1. How to Make Use of the Learned Relation. It is natural to ask
how the learned weights can be utilized after being trained.
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Figure 10.2. Learned lateral (topology) connections and affer-
ent (relation) connections. The weights are color coded with
white encoding the strongest weight and black encoding zero.
Red dots indicate the largest weight in the corresponding ma-
trix row. (If there are multiple maxima, the red dot marks the
first one occurring in each row.) The plotted weights show the
results of learning a quadratic relation. See text for further de-
tails. (A→A) The weights that learned the topology of the in-
put X provided to layer A. (B→B) The weights that learned the
topology of the input Y provided to layer A. (A→B) The weights
from A to B. For reference, the faint green line shows the y = x2

relation. (B→A) The weights from B to A. For reference, the
faint blue line shows the inverse of the y = x2 relation.



10.3. Results 147

0 64 128 192 256
0

25

50

75

100

R
a
te

 [
H

z]
Pop. value: 0.59

Inp. value: 0.59

Pyramids

0 3264

50

100

150

200
B.

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

A: 2D Input

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

A: 2D Activity

0 64 128 192 256
0

25

50

75

100

R
a
te

 [
H

z]

Pop. value: 0.40

Inp. value: 0.00

Pyramids

0 3264

50

100

150

200
B.

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

B: 2D Input

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

B: 2D Activity

(a)

0 64 128 192 256
0

25

50

75

100

R
a
te

 [
H

z]

Pop. value: 0.55

Inp. value: 0.00

Pyramids

0 3264

50

100

150

200
B.

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

A: 2D Input

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

A: 2D Activity

0 64 128 192 256
0

25

50

75

100

R
a
te

 [
H

z]

Pop. value: 0.35

Inp. value: 0.35

Pyramids

0 3264

50

100

150

200
B.

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

B: 2D Input

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

B: 2D Activity

(b)

Figure 10.3. Inference in a network trained with 1D-inputs.
The training inputs followed a quadratic relation (y = x2), which
led to the weight matrices shown in Figure 10.2. (a,b) Input (red
curve) and settled activity (blue curve) in layer A (top) and layer
B (bottom). The red dashed lines (vertical) show the encoded
input value, and the gray dashed lines show, with respect to
the relation, which value should be inferred. (a) Inference of B
when the only external input (X) is fed to layer A. This is like
computing the square of X. (b) Inference of A when the only
external input (Y ) is fed to layer B. This is like computing the
square root of Y .

A straight-forward answer is to use them to compute either the square
or the square root of some scalar value v. This can be done by encoding
v in population X (for computing the square) or population Y (for com-
puting the square root). Figure 10.3 shows how the network performs
on such inference tasks.

If not only one, but both input populations are activated by popula-
tion encoded values v1 and v2, interesting network dynamics can be
observed. Figure 10.4 shows that a fairly unspecific (wide) activation
of layer X can lead to very different, settled activation patterns in A.
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Figure 10.4. Biased decisions (or cue-integration) in a network
trained with 1D-inputs. The training inputs followed a quadratic
relation (Y = X2), which led to the weight matrices shown in
Figure 10.2. (a,b) Input (red curve) and settled activity (blue
curve) in layer A (top) and layer B (bottom). The red dashed
lines (vertical) show the encoded input value, while the gray
dashed lines show, with respect to the learned relation, which
value the given input would correspond to in the opposite layer.
(a) Layer A “decides”, influenced by the activity in layer B, that
an activation encoding a value around 0.7 is better in line with
the learned relation. (b) Now, after the input to layer B changed
from 0.56 to 0.25, layer A “decides” differently. With this very
different input coming from layer B an activation of A encoding a
value around 0.5 is in better agreement with the learned relation.

The difference in how A “decides” to be activated comes through the
afferent input of layer B. Layer B gives some additional input to A,
which effectively breaks the symmetry of the equilibrated lateral inputs
in A. We say that A performs a “biased decision”. Note that the set-
tled network response is in both examples in good agreement with the
learned relation.
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Figure 10.5. Cue integration in a network trained with 1D-
inputs. The training inputs followed a quadratic relation (Y =
X2), which led to the weight matrices shown in Figure 10.2. In-
put (red curves) and settled activity (blue curves) in layer A (top
row) and layer B (bottom row). The red dashed lines (vertical)
show the encoded input value, while the gray dashed lines show,
with respect to the relation, which value the given input would
correspond to in the opposite layer. The left side shows the layer
activities right after stimulus onset. The right side shows the
settled activities. Input patterns X and Y , which are fed to A
and B respectively, encode the values X = 0.64 and Y = 0.29.
Note that these values are not in line with the learned relation.
The network, influenced by these conflicting inputs, shifts the
lumps of activation in both layers to be more in line with the
learned relation.

If, on the other hand, the inputs given in X and Y do not satisfy
the learned relation, the settled activities in layer A and B will find
a compromise between the currently fed data and a nearby datapoint
satisfying the learned relation. We call this “cue integration”, because
the influences of both input cues are integrated with the learned relation.
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Figure 10.5 shows such a case. How far the settled activities move from
the given input values toward a nearby learned datapoint satisfying the
learned relation can be controlled by the amplitude (the strength) of
the fed inputs.

In similar scenarios, where the input amplitudes in X and Y are not
equal (as opposed to Figure 10.5 where they are actually the same), the
cue integrated compromise would be closer to the stronger of the two
inputs. This, as we will see below in Section 10.4.2, is an important
property of trained networks.

10.3.1.2. Sampling a Nonlinear Relations. As we have mentioned be-
fore, the training data was sampled uniformly at random from all pairs
(v, v2) for v ∈ [0, 1[. This implies that the distribution of the total input
given to the pyramidal cells in populations A and B during the training
phase is non uniform. To see this imagine that values v are unform sam-
ples. This implies that v2 is not uniform in [0, 1]. The same argument
also applies the other way round and we can conclude that v’s and v2’s
cannot both be sampled uniformly at random at the same time.

This non-uniformity can cause problems for learning smooth connec-
tion matrices. The two most important factors to prevent clustering
of weights in the weight matrices are the homeostatic activity regula-
tion (see Sections 9.2.1 and 10.2.1), and a relatively low value for klrn, so
that only input driven, early network responses are learned (see line 29 in
Function learnRelation() on page 143 and discussion in Section 9.2.2).

Another influential factor is the total strength of all recurrent and af-
ferent connections. The stronger these connections are, the more likely
it is that weights begin to cluster during learning.

Although our goal was to learn smooth weight distributions, one might
also like to learn clustered weight matrices. While the dynamics of
our results lead to continuous activation dynamics, clustered weight
matrices would lead to discrete activation dynamics. Such a network
would always settle in one of several well defined, discrete states.

10.3.2. Learning a Relation Between Two-Dimensional Inputs.
Having seen how the network learned a nonlinear relation between two
scalar values, we will now learn a relation defined on two scalar value
pairs.
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A→A B→B

A→B B→A

Figure 10.6. Learned lateral (topology) connections and afferent (re-
lation) connections. The weights are color coded with white encoding
the strongest weight and black encoding zero. Since the topology of
the inputs fed to the network in this example was 2-dimensional we
have regrouped the weights so that they reflect the topology of the in-
put space. (See Figure 9.5 for further explanation of this visualization,
and Section 10.2.3 for details on the relation presented to the network.)
(A→A) The weights that learned the topology of the input X to layer
A. (B→B) The weights that learned the topology of the input Y to layer
B. (A→B) The weights that learned the values of B that correspond
to values in A. (B→A) The weights that learned the values of A that
correspond to values in B.
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To demonstrate that coupled RCNs can learn relations of such higher
dimensional input encodings, we will learn the relation: (y1, y2) = (1−
x1, 1− x2).

Figure 10.6 shows the learned 4D weight tensors using the type of plots
we introduced in Chapter 9. By looking at the learned connections we
can see that (i) the recurrent connections learned the two-dimensional
input topologies well, and (ii) the afferent connections are in-line with
the learned relation.

As we did for the previous example we again want to look at the com-
putational abilities of the trained network.

10.3.2.1. Making Use of the Learned Relation. Here we basically repeat
the same experiments we performed for the first example, the nonlinear,
squared relation y = x2, but now in the two-dimensional context of the
inversion relation.

(a) (b)

Figure 10.7. Inference in a network trained with 2D-inputs.
The 2D-encoded training inputs followed the “inversion relation”
(y1, y2) = (1−x1, 1−x2), which led to the weight matrices shown
in Figure 10.6. (a,b) Input (left column) and settled activity
(right column) in layer A (top row) and layer B (bottom row).
Red and white circles show the location of the encoded input
pattern and the corresponding location in the opposite layer with
respect to the inversion relation. (a) Inference of B when the only
external input (X = (x1, x2)) is fed to layer A. (b) Inference of
A when the only external input (Y = (y1, y2)) is fed to layer B.
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Figure 10.7 shows both directions of an inference task. By giving ex-
ternal input to either A or B we can infer an activity pattern in the
other layer that satisfies the learned inversion relation defined in Sec-
tion 10.2.3.

(a) (b)

Figure 10.8. Biased decisions in a network trained with 2D-
inputs. The 2D-encoded training inputs followed the “inversion
relation” (y1, y2) = (1− x1, 1− x2), which led to the weight ma-
trices shown in Figure 10.6. (a,b) Input (left column) and settled
activity (right column) in layer A (top row) and layer B (bottom
row). Red and white circles show the location of the encoded
input pattern and the corresponding location in the opposite
layer with respect to the inversion relation. Input to layer A
is potentially activating a large region. Depending on the input
given to layer B the actual region of activation can be influenced.
(The network makes a “decision” for an activation pattern that is,
with respect to the learned relation, more likely.) (a) Influenced
by the input vY = (0.75, 0.5) to B, the network “decides” that
an activation of A encoding a value around (0.25, 0.5) is likely.
(b) Influenced by the input vY = (0.5, 0.25) to B, the network
chooses an activation of A encoding a value around (0.5, 0.75).

Figure 10.8 shows, similar to Figure 10.4, that diffuse activation in one
layer can be tightened considerably by feeding some tie-breaking input
to the second layer. Different amplitudes of the activities fed to either
of the two layers can slightly change the settled network state in favor
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of the stronger input. (The notion of stronger is not very well defined
and is in general a combination of input width and amplitude.)

Figure 10.9. Cue integration in a network trained with 2D-
inputs. The 2D-encoded training inputs followed the relation
(y1, y2) = (1 − x1, 1 − x2), which led to the weight matrices
shown in Figure 10.6. Input (left column) and settled activity
(right column) in layer A (top row) and layer B (bottom row).
Red and white circles show the location of the encoded input
pattern and the corresponding location in the opposite layer with
respect to the learned input relation. Inputs values to layer A
and B (vX = (0.75, 0.5) and vY = (0.5, 0.75)) are not satisfying
the learned relation. The network, influenced by these conflicting
opinions, shifts the lumps of activation in both layers toward a
nearby data point that follows the learned relation (roughly at
vA = (0.62, 0.38) and vB = (0.38, 0.62)).

If both inputs are fairly sharp (focused), but do not satisfy the trained
relation, the networks integrates the conflicting cues with the learned
knowledge, as can be seen in Figure 10.9.

A slightly different network computation is performed when inputs to A
and B are both very wide. If one of the two RCNs would be activated by
a tight lump of activation we would see the biased decision dynamics we
have seen in Figure 10.8, but since both layers can now pick from a wide
range of potential states, the network will pick the one that best satisfies
both the inputs and the learned relation, as shown in Figure 10.10. This
works because the afferent connections will reinforce mutually consistent
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(a) (b)

Figure 10.10. Constraint satisfaction in a network trained with
2D-inputs. The 2D-encoded training inputs followed the “inver-
sion relation” (y1, y2) = (1− x1, 1− x2), which led to the weight
matrices shown in Figure 10.6. (a,b) Input (left column) and
settled activity (right column) in layer A (top row) and layer B
(bottom row). Blue circles show the only solution compatible
with both, the given input and the learned relation. (a) Inputs
to layer A and B are more diffuse than the input lumps used for
learning. Blue circles mark the spots that match these diffused
inputs and are in-line with the learned relation. (b) Inputs to
layer A and B are spread over large parts of the individual lay-
ers, effectively providing constraints on X and Y . Blue circles
mark the spot that matches both, the given input regions and
the learned relation.

parts more strong than all other places in A and B. If the broad inputs
are thought of as constraints, the network is performing a constraint
satisfaction task.

10.3.3. Relation Learning in Noisy Environments. As mentioned
in the introduction we want to show that the proposed network is robust
to noise in the training data.

We repeat both learning examples presented above. This time we add
a significant amount of noise to all input patterns in both, the training
and test data.
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Figure 10.11. Smooth vs. noisy training data. (a,b) Learned lat-
eral (topology) connections and afferent (relation) connections. The
weights are color coded with white encoding the strongest weight and
black encoding zero. Red dots indicate the largest weight in the cor-
responding matrix row. (If there are multiple maxima, the red dot
marks the first one occurring in each row.) In both cases we used a
quadratic relation to learn the weight matrices shown above. See text
for further details. (a) Weights learned with smooth, continuously en-
coded inputs as shown in (c). (b) Weights learned with noisy inputs
as shown in (d).

Similar to the results in Chapter 9, where we have shown that single
RCNs can cope with fairly high levels of noise, the performance for
coupled RCNs is also convincing.
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Figure 10.12. Smooth vs. noisy 2D training data. (a,b) Learned lat-
eral (topology) connections and afferent (relation) connections. The weights
are color coded with white encoding the strongest weight and black encod-
ing zero. (See also Figure 9.5 for further explanation of this visualization.)
(a) Weights learned with smooth, continuously encoded 2D-inputs as shown
in (c). (b) Weights learned with noisy 2D-inputs as shown in (d).

10.3.3.1. The Noise Model. Although the network can cope with dif-
ferent types of noise, the only results we show here are for a relatively
simple, gaussian noise model. After an input pattern is created, as ex-
plained in Section 9.2.3, we use the peak input rate rmax and perturb
each rate ri to become

ri,noisy = max(0.0,N (ri,
1

4
rmax)) (10.1)
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The homeostasis (HAR) used in our model enables the network to deal
with a certain amount of non-symmetric and or dependent noise. If,
for example, each cell would be exposed to a noise source that does not
depend on the current input but rather on the identity of this very cell,
the input topology can still be learned. (Data not shown.)

10.3.3.2. Results with Noisy Environments. Figure 10.11 and Figure 10.12
compare the weight matrices we have learned before with non-noisy in-
puts with the weight matrices learned in noisy environments.

The results are so similar that the matrices are barely distinguishable
by eye. Not only do the learned connections look almost the same, but if
we test the network by feeding the noisy equivalents to the test instances
used in Sections 10.3.1.1 and 10.3.2.1, the observable dynamics are also
very similar.

Figures 10.13 and 10.14 show these results in the following order: (i) in-
ference, (ii) biased decisions, (iii) cue integration for both example
relations, and (iv) constraint satisfaction, for the noisy relation on 2D-
inputs.

10.4. Discussion

In Chapter 9 we saw how an untrained, tabula rasa like RCN can learn
the topology of population encoded inputs. By learning the input topol-
ogy, the network obtained a notion of what typical input patterns tend
to look like. This enabled the trained RCN to let multiple input values
compete with each other.

In this chapter we have extended the network by a second RCN layer.
Both layers are bidirectionally coupled. The coupling is modeled by
independent, excitatory random connections, as shown in Figure 10.1.
These connections are plastic, being learned in precisely the same way
we learn the recurrent connections within the RCN layers.

It is desirable to use the same learning procedure for the newly added
connections, because in this way a cell does not have to distinguish the
incoming connections by the connections’ origin. The neuron uses a
single, local rule.

By feeding different input streams we showed that the network is able to
learn the hidden relation and the input encoding (the input topology)
at the same time. We did not have to artificially introduce an ordering
such as first learning the input topology and then learning the relation.
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Figure 10.13. Settled responses of the network when trained with
noisy 1D-inputs drawn from a quadratic relation (see text for details).
Learned weights are shown in Figure 10.11. (a-e) Noisy inputs and
corresponding outputs of RCNs A (top) and B (bottom). The red
dashed lines (vertical) show the encoded input value, while the gray
dashed lines show, with respect to the relation, which value the given
input would correspond to in the opposite layer. (a) Noisy equivalent
to Figure 10.3(a). (b) Noisy equivalent to Figure 10.3(b). (c) Noisy
equivalent to Figure 10.4(a). (d) Noisy equivalent to Figure 10.4(b).
(e) Noisy equivalent to Figure 10.5.
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(a) (b)

(c) (d)

(e) (f)

Figure 10.14. Settled responses of the network when trained with noisy
2D-inputs drawn from the “inversion relation”. Learned weights are shown
in Figure 10.12. (a-f) Noisy inputs and corresponding outputs of RCNs A
(top row) and B (bottom row). Colored circles are as in previous figures.
(a-f) Noisy equivalents to Figures 10.7(a), 10.7(b), 10.8(a), 10.8(b), 10.9, and
10.10.
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The ability to learn everything at the same time is a desirable feature for
many learning tasks, because we do not need any higher order process
that takes care of switching between multiple learning rules or phases –
in our example the network just learns what it has to learn using a set
of simple, local, biologically plausible principles.

Last but not least we have shown that the proposed network can deal
with a significant amount of noise. Because the training data consists of
several hundred example inputs, the ability to deal with symmetric noise
follows directly from the dynamics. Although we did not show these
results here we want to mention that training sessions that included
biased, non-symmetric noise also led to good results.

We did not include any quantitative analysis of how different noise mod-
els reduce the learnability or usability of this approach. Such evaluations
are left for the future.

The flexibility to adapt to different input topologies (input encodings),
the robustness to noise, and the fact that coupled RCNs only consist
of locally operating, biological concepts makes this kind of network an
interesting model for cortical computation.

10.4.1. Learning Relations That are not Functions. Both exam-
ple relations used in this chapter are functions. How would the pro-
posed network deal with relations that is not a function? In Chapter 3
we trained non-invertible functions and showed that learning in such
networks can work well. All examples contained in Chapter 3 work well
in the network given in this chapter (data not shown).

Next we want to discuss some slightly more extreme cases than the ones
mentioned before.

Let us consider a relation like x ≤ y. Giving one value for either x or
y does not restrict the possibilities for the second variable to only one
(or maybe two or three values as in Chapter 3), but offers a continuous
range of permitted values.

Since the data we train our network with would always show random
but valid examples, the recurrent connections can learn the used input
topology without problems. However, the afferent connection weights in
this case need to spread or distribute across a much larger area, basically
covering the entire range of permitted values.

Although the network we described does a fairly good job learning pre-
cisely this weight distribution, the results are less useful than for the
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other examples before. In large parts this problem arises by reason of
the overly simplistic learning rule that keeps the sum of all weights in
each weight matrix constant. We believe this problem can be addressed
by finding a better and perhaps more realistic normalization mechanism.

Learning and using such diffuse weight matrices for inference, decision
making, cue-integration, and solving constraint-satisfaction problems
will be the subject of future research. Preliminary results show inter-
esting and useful dynamics, and we believe that they will prove to be
useful in building large scale computational models and cognitive rea-
soning systems.

10.4.2. A Probabilistic Interpretation of Coupled RCNs. In
Section 9.4.1 on page 133 we have already given a probabilistic inter-
pretation of single RCNs. There we argued that a population encoded
input pattern α as well as the output activity σ can be interpreted as
being a sort of restricted probability distribution.

Another interesting observation of Section 9.4.1 is that learning the
structure of typical inputs (C) biased the output activity patterns σ.
We argued that the dynamics of a trained RCN can be understood as
finding an energy minimum of an energy or error function like

E(σ, α) =
∑

i

|αi − σi|k1 + κ ·
∑

i,j

|Ci,j − f (σi, σj) |k2 . (10.2)

We concluded that the activities in trained RCNs settle qualitatively to
an output activity σ that is approximating

σ∗ = argmin
σ

(E(σ, α)) . (10.3)

In this chapter we used networks of two coupled RCNs. We will now
extend the probabilistic interpretation of Chapter 9 to include also the
second RCN layer and the mutual interaction between the two layers in
the network. Consider

ERL(σ1, α1, σ2, α2) = E(σ1, α1)+E(σ2, α2)+κ2 ·
∑

i,j

|Ri,j−g (σi, σj) |k3 ,

(10.4)
with k3 being a constant controlling the dynamics of the affected sum-
mands in ERL, and κ2 being a constant tradeoff factor. The first two
terms are given in Eq. 10.2, while the last term punishes outputs that
are not compatible with the learned relation.
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One possible formalization for g, the similarity measure for output ac-
tivities, is

g(x, y) = 1− |x− y|. (10.5)
As for Equation 9.13 we assumed that desired outputs (σi) and the
activity of input neurons (αj) are given as values ∈ [0, 1].

Hence, ERL formalizes a tradeoff between (i) the input patterns α1 and
α2, (ii) the system’s learned topological knowledge C within each layer,
and (iii) the system’s learned relational knowledge R between those.

The dynamics of two trained, coupled RCNs can now, similarly to how
we have seen previously in Eq. 9.14 on page 135, be understood as
finding an energy minimum by relaxing to output activities (σ1, σ2)
that are roughly

(σ∗1 , σ
∗
2) = argmin

σ1,σ2

(ERL(σ1, α1, σ2, α2)) . (10.6)

In this context we see all the abilities of the learned network, inference,
decision making, cue-integration, and signal restoration simply as the
network’s attempt to relax to a consistent, minimal energy state.
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