

European Commission

COST European cooperation in the field of scientific and technical research

COST 507

Definition of thermochemical and thermophysical properties to provide a database for the development of new light alloys

Thermochemical database for light metal alloys

Volume 2

EUR 18499 EN

EUROPEAN COMMISSION

Édith CRESSON, Member of the Commission responsible for research, innovation, education, training and youth

DG XII/B.1 — RTD actions: Cooperation with non-member countries and international organisations — European Economic Area, COST, Eureka and international organisations

Contact: Mr Peter Lobotka Address: European Commission, rue de la Loi 200 (SDME 1/44), B-1049 Brussels — Tel. (32-2) 29-65512; fax (32-2) 29-65925

COST European cooperation in the field of scientific and technical research

European Commission

COST 507

Definition of thermochemical and thermophysical properties to provide a database for the development of new light alloys

Thermochemical database for light metal alloys

Volume 2

Edited by I. Ansara, A. T. Dinsdale, M. H. Rand

July 1998

EUR 18499 EN

LEGAL NOTICE

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int).

Cataloguing data can be found at the end of this publication.

Luxembourg: Office for Official Publications of the European Communities, 1998

Volume 2: ISBN 92-828-3902-8 Volumes 1 to 3: ISBN 92-828-3900-1

© European Communities, 1998 Reproduction is authorised provided the source is acknowledged.

Printed in Belgium

COST 507 COORDINATION GROUP C

Final Report Round 2 July 1998

Partners in Coordination Group C, whose results are presented in the pages of this report, are:

Lehrstuhl für Theoretische Hüttenkunde und Metallurgie der Kernbrennstoffe, RWTH Aachen, Germany

Max-Planck-Institut für Metallforschung, PML, Stuttgart, Germany

Laboratoire de Thermodynamique et Physico-Chimie Métallurgiques, INPG - ENSEEG, St.Martin - d'Hères, France

Istituto di Chimica Generale, Università di Genova, Genova, Italy

Senter for Industriforskning, Blindern, Oslo, Norway

Division of Physical Metallurgy, Royal Institute of Technology, Stockholm, Sweden

Laboratory of Materials Processing and Powder Metallurgy, Helsinki University of Technology, Espoo, Finland

Centre for Materials Measurement and Technology, National Physical Laboratory, Teddington, U.K.

Institut für Physikalische Chemie, Universität Wien, Austria

GTT - Technologies, Herzogenrath, Germany

INTRODUCTION

The COST-Action 507 has the official title:

Measurement and Evaluation of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys

There are 14 signatory countries to the Action, which had an official commencement date on January 1, 1990.

The countries concerned are:

Austria	Germany	Norway	Switzerland
Belgium	Greece	Portugal	United Kingdom
France	Italy	Spain	
Finland	Netherlands	Sweden	

In addition, the Baikov Institute of Metallurgy, Moscow (Russia) is taking part in the Action.

The work of COST 507 is shared amongst partners in 4 Coordination Groups whose areas of interest are:

Coordination Group A	:	Experimental measurement of thermochemical properties
Coordination Group B	:	Critical compilation and assessment of constitutional data prior to thermodynamic calculation
Coordination Group D	:	Experimental measurement and compilation of thermophysical data

Coordination Group C, whose work is presented in this report, is concerned with the general theme:

Critical thermodynamic evaluation of relevant binary, ternary and higher-order alloy systems to produce a set of optimized coefficients for the light metal alloy database.

The evaluations of Group C incorporate experimental data from Group A and Group D partners, and use the critically compiled constitution data from Group B as basis for the evaluation work.

Using this computer database, which is now in an impressive state of development, it will be possible to calculate the phase equilibria to be expected in complex light alloy systems as a function of a wide range of compositions and temperatures. For example calculation can be made of liquidus and solidus temperatures, crystallization paths for equilibrium and non-equilibrium conditions, nature and amounts of precipitated phases, enthalpy effects associated with phase transformations, etc.

The rapid accessibility of such information will considerably assist the design, manufacture and utilization of a wide range of different alloy types.

The alloy systems towards which the experimental and evaluation work is being directed, together with some major applications, are listed below:

Al-Mg-Mn-Fe-Si	:	cans
Al-Mg-Si-Cu (-Fe)	:	extrusions, automobiles
Al-Zn-Cu-Mg (-Zr,Cr,rare earth metals)	:	aerospace, transport
Al-Li-Cu-Mg-Zr (-H)	:	airframes
Ti-Al-Mo-Zr (Cu,B,C,N,O,Si)	:	gas turbines
Ti-Al (-V,Cr,Mn,Ni,Fe,Nb), (B,C,N,O,Si)	:	gas turbines

EVALUATION PROCEDURE

Bearing in mind the alloy categories defined by industrial partners at the beginning of the Action, a matrix was drawn up to define the binary systems forming the building blocks for the evaluation of higher-order systems. These binaries were then allocated to the different partners in Group C for evaluation.

All partners made use of the selected data for the elements published by A.T. Dinsdale 1 on behalf of SGTE.

There was also agreement amongst partners with respect to the modelling of particular phases so that consistency could be maintained on proceeding from binary to higher-order systems combining evaluations originating from different laboratories. All results were prepared in exactly the same format to facilitate exchange of data and to provide a standard format for computer storage of the data by the database manager, Dr.Ansara, in Grenoble.

Evaluations to produce optimized sets of coefficients were carried out using one or

¹A.T. Dinsdale, Calphad, 15, 4, 317-425 (1991).

both of the two programs Bingss/Tergss written by Lukas² and Parrot developped by Jansson³ contained in the *Thermo-Calc* databank system⁴.

These programs make use of experimental thermodynamic and phase diagram data, which are fed in as measured values with error limits. Using defined models for the different phases of the systems concerned, optimized coefficients are produced which permit a self-consistent description of the thermodynamic properties and the phase boundaries of the alloys.

For some alloy systems the available experimental information is very scarce or unreliable. In such cases, only a part of the system may have been dealt with. In other cases, recourse may have had to be made to estimation procedures to obtain input data for the optimization process. The accuracy of the calculations involving these data will consequently be reduced.

The following pages present in summarized form a complete description of the evaluation work carried out by the partners in Coordination Group C during the course of Round 1 and 2 of COST 507. The brief reports for each system contain a calculated phase diagram, information on the structures of the phases in the system. The thermodynamic coefficients used to produce the calculated information are also given.

²H.L. Lukas, J. Weiss, and E.-Th. Henig, Calphad, 6, 229-251 (1982)

³B. Jansson, Ph. D. Thesis, (1984), Div. Phys. Met., Royal Inst. Tech., Stockholm, Sweden.

⁴B. Sundman, B. Jansson, and J.-O. Andersson, Calphad, 2, 9, 153-190 (1985).

ACKNOWLEDGEMENTS

The members of Coordination Group C express their sincere thanks to the following sponsors of their work:

- A : Austrian Ministry of Science, Research and Traffic
- D : Bundesministerium für Forschung und Technologie
- F : Pechiney, Centre de Recherches de Voreppe Ministère de la Recherche et de la Technologie
- N : Hydro Aluminium A/S ELKEM Aluminium A/S Norsk Hydro A/S NFR
- S : NUTEK, Swedish Board for Industrial and Technical Development
- SF : Tekes (Technical Development Centre) Outokumpu Research
- UK : Rolls Royce plc Alcan International - Banbury Laboratories DERA AEA Technology, Harwell T & N Technology Ltd. Department of Trade and Industry Anglo Blackwells Ltd.

Table of Contents

Thermodynamic Modelling1
Binary Alloy Systems
Al-B
Al-C (revised)
Al-Ce (revised)
Al-Cr
Al-Cu
Al-Fe
Al-Li
Al-Mg (Round 1)
Al-Mg (revised)
Al-Mn (revised)
Al-Mo
Al-N
Al-Nb (new)
Al-Nd (revised)
Al-Si (revised)
Al-Sn
Al-Ta (new)
Al-Ti
AI-V
AI-Y
Al-W (new) 103
AI-Zn109
AI-Zr
B-C
B-Ht (new)
B-N
В-51 120
B=11
C-SI (revised)
0-11
Ce-Mg
Cr-Cu (revised)
Cr-Mg
Cr-Mil
۲۹۶ (۲۰۰۱) ۲۰۰۰ ۲۵ ۲۶۹ (۲۰۰۲) ۲۹۶ (۲۰۰۱) ۲۹۶
Cr-V 156
C_{r-7n} 158

-Fe -Li	165 168 170 175
-Li	168 170 175
-Mg (revised) ·Ni ·Si (revised) ·Y ·Zn (revised)	170 175
-Ni Si (revised) Y Zn (revised)	175
Si (revised) Y Zn (revised)	
Y Zn (revised)	178
Zn (revised)	182
	186
Zr	192
Mg	195
Mn	197
Si	200
Ti (new)	205
Ti (new)	208
Mg	210
Zr	213
-Mn	215
-Ni	218
-Si (revised)	221
-Y `í	224
-Zn (revised)	227
-Zr	234
-Si	236
-Ті	241
-Zr	245
-Ti (new)	249
l'i (revised)	253
-Ti (new)	256
v	261
Sn	264
Γι	266
۰	270
۴ ۲	274
۲n	278
Sr	280
Ті	284
Zn	288
Zr	290
Ti (new)	293
V	297
W (new)	299
и (new)	303

Ternary Alloy Systems

Al-C-Si
Al-Cu-Li
Al-Cu-Mg
Al-Cu-Si
Al-Fe-Mn
Al-Fe-Sì
Al–Li ₇ Mg
Al-Mg-Mn
Al-Mg-Si
Al-Mg-Zn
Al-Mn–Si
Al-Mo-Ti
Al-N-Ti
Al-Nb-Ti
Al-Si-Zn
Al-Sn-Zn
Al-Sn-Zr
Al-Ta-Ti
Al-Ti-W
3-Hf–Ti
Cu-Mg-Y
Cu-Mg-Si
Cu-Mg-Zn

Appendices

Appendix I: Thermodynamic properties	of the Pure Elements
Appendix II: Magnetic Properties of the	Elements

Thermodynamic Modelling

I. Ansara and N. Dupin

Introduction

Standard CALPHAD procedures were used to assess the binary and ternary systems defined in the COST507 project. In Round 1, binary systems have been assessed. Several ternary systems have been analysed during Round 2.

In many ternary systems, the three pure elements exhibit different stable crystal structure. Hence data for metastable binary solutions have been obtained and are presented in the tables.

In these systems, there are also many binary phases stable on one binary edge which extend into the ternary system but not all the way across to the other binary edges. (for example, the Laves-C15 in the Cu-Mg-Zn system or the AlM- $D0_{19}$ in the Al-Ti-X (X=Mo, Nb, Ti, W) systems). Thus to model the intrusion of these phases into the ternary systems, the Gibbs energies of the metastable counterparts of the intruding phase must be defined in the other binary system(s). This means that when the data of these binary systems are retrieved, there will be data for these metastable "counterparts".

As the number of ternary systems increases, the number of metastable solution phases or counterphases will increase sharply and this may lead to increasing computing time and possible problems due to metastable equilibria which may appear during the calculation.

The main characteristics of each system are given in individual chapters which include:

- a summary of the various stable and metastable phases defined in the system, the thermodynamic model used to decribe their thermodynamic properties, the name of the assessor and the reference of the publication in which the evaluation is described,
- the thermodynamic properties of the compound and solution phases,
- for the binary systems: the phase diagram,
- for the binary systems: a table giving the invariant reactions,
- a table presenting the crystal structure for each phase in a given system, the structural type, the Pearson Symbol and space group as well as the occupation of the sublattices and comments when necessary. This information is taken from Massalski *et al.* [90Mas] and Villars *et al.* [91Vil].

In Appendix I, the thermodynamic functions for the elements in stable or metastable states are listed as a function of temperature. For magnetic ordering the functions are given in Appendix II.

Thermodynamic Description

<u>Elements</u>

The Gibbs energy of the pure element i, ${}^{\circ}G_{i}^{\phi}(T)$, referred to the enthalpy for its stable state ϕ at 298.15 K, ${}^{\circ}H_{i}^{\phi}(298.15\text{K})$, is denoted by GHSER_i. This quantity is described as a function of temperature by the following equation:

GHSER_i =
$${}^{\circ}G_{i}^{\phi}(T) - {}^{\circ}H_{i}^{\phi}(298.15 \text{ K})$$

= $a + b T + c T \cdot \ln T + d T^{2} + c T^{3} + f T^{-1} + g T^{7} + h T^{-9}$ (1)

The first and second derivatives of this quantity with respect to temperature are related to the absolute entropy and heat capacity of the compound at the same temperature. Experimental values for heat capacities can thus be directly used in the optimisation and will be related to the coefficients c, d, e, f, g and h.

For elements which display a magnetic ordering (Cr, Fe, Ni and Mn), the term GIISER will be referred to a para-magnetic state. The magnetic contribution is treated explicity. An additional term is thus added to the molar Gibbs energy of the magnetic phase.

For elements as well as for solutions, this term is equal to:

$$G^{\text{mag}} = RT\ln(\beta + 1)f(\tau) \tag{2}$$

where τ is T/T^* , T^* being the critical temperature for magnetic ordering (Curie temperature T_c for ferromagnetic materials or the Néel temperature T_N for antiferromagnetic materials), and β the average magnetic moment per atom of the alloy expressed in Bohr magnetons.

The function $f(\tau)$ is given as:

$$\tau < 1 \quad : \quad f(\tau) = 1 - [79\tau^{-1}/140p + (474/497)(1/p - 1)(\tau^3/6 + \tau^9/135 + \tau^{15}/600)]/A$$

$$\tau > 1$$
 : $f(\tau) = -[\tau^{-5}/10 + \tau^{-15}/315 + \tau^{-25}/1500]/A$

with
$$A = 518/1125 + (11692/15975)(1/p - 1)$$
.

These equations were derived by Hillert *et al.* [78Hil] from an expression of the magnetic heat capacity C_p^{mag} proposed by Inden [81Ind].

The value of p depends on the structure. For example, p is equal to 0.28 for fcc and hcp metals and 0.40 for bcc metals [81Ind].

2

For each element, equation 1 is taken from the SGTE database [91Din]. These equations and the magnetic parameters for pure elements are given in Appendices I and II.

The function GHSER_i is also often used to express the thermodynamic functions of a structure φ^* different from the stable structure of the pure element. The expression $G_i^{\circ,\varphi^*}(T) - H_i^{\circ,\phi}(298.15\text{K})$ is equivalent to $G_i^{\circ,\varphi^*}(T) - G_i^{\circ,\phi}(T) + \text{GHSER}_i$. The term $G_i^{\circ,\varphi^*}(T) - G_i^{\circ,\phi}(T)$ is often called the lattice stability of element *i*.

Binary Compounds

The Gibbs energy of formation of the compound A_aB_b is expressed as:

$$G^{\circ}_{A_{\bullet}B_{b}}(T) - a \ H^{\circ,\phi}_{A}(298.15 \text{ K}) - b \ H^{\circ,\phi}_{B}(298.15 \text{ K}) = f(T)$$
 (3)

The expression for f(T) is identical to that given by equation 1.

Equation 3 can be transformed by applying equation 1 for each component

$$f(T) = G^{\circ}_{A_{\circ}B_{b}}(T) - a \ G^{\circ,\phi}_{A}(T) - b \ G^{\circ,\phi}_{B}(T) + a \ \text{GHSER}_{A} + b \ \text{GHSER}_{B}$$
$$= \Delta_{f} G^{T}_{A_{\bullet}B_{b}} + a \ \text{GHSER}_{A} + b \ \text{GHSER}_{B}$$
(4)

The term $\Delta_f G_{A_{\bullet}B_{\bullet}}(T)$ is the Gibbs energy of formation of the compound referred to the stable elements at temperature T.

Gaseous species

An expression identical to equation 3 is used to describe the Gibbs energy of formation of the gaseous species with the additional $RT \ln P$ term, where P is the total pressure. The gas phase is assumed to form an ideal solution. The reference state for each vapor species is taken to be the pure component at 0.1 MPa pressure.

Condensed phases

1: Substitutional solutions:

For the substitutional solution ϕ , the Gibbs energy of mixing is expressed as follows:

$$G_m = G^{\phi, \mathrm{id}} + G^{\phi, \mathrm{xs}} \tag{5}$$

with

$$G^{\phi, \mathrm{id}} = R T \sum_{i} x_{i} \mathrm{ln} x_{i}$$
(6)

The Redlich - Kister equation [48Red], a power series expansion, is used to express the excess Gibbs energy, $G_m^{\phi,xs}$, as follows:

$$G_m^{\phi,xs} = x_i x_j \sum_{\nu=0} L_{ij}^{\nu,\phi} (x_i - x_j)^{\nu}$$
(7)

 x_i is the molar fraction of component i with $\sum_i x_i = 1$. The model parameter L_{ij}^{ν} can be temperature dependent as follows:

$$L_{i,j:i} = y'_i y'_j [a_0 + b_0 T + c_0 T \cdot \ln T (a_1 + b_1 T) (y'_i - y'_j)]$$
(8)

For a ternary solution, the excess Gibbs energy is expressed as follows:

$$G^{\phi, xs} = \sum_{i} \sum_{j>i} x_{i}^{\phi} x_{j}^{\phi} \sum_{\nu} L^{\nu, \phi} - (x_{i}^{\phi} - x_{j}^{\phi})^{\nu}$$
(9)

If experimental information relative to ternary solutions are available then an extra term can be added to 9. For a ternary system A-B-C, this term is equal to:

$$x_A x_B x_C (\alpha_1 x_A + \alpha_2 x_B + \alpha_3 x_C.) \tag{10}$$

For magnetic alloys, the composition dependence of T_c and β are expressed by:

$$T_{c}^{*}(x) = \sum_{i} x_{i} T_{c,i}^{o,*} + T_{c}^{*,xs}$$
(11)

$$\beta(x) = \sum_{i} x_{i} \beta_{i}^{\circ} + \beta^{xs}$$
(12)

where $T^{*,xs}$ and β^{xs} are both represented by an equation similar to 7.

2: Ordered Phases:

The use of the sublattice model, developed by Hillert and Staffansson [70Hil] based on Temkin's model for ionic solutions [45Tem] and extended by Sundman and Ågren [81Sun], allows a variety of solution phases to be treated, in particular ordered phases.

As non-stroichiometric phases are formed by several sublattices, they can be schematically described as follows:

$$(\mathbf{A}_{\mathbf{y}_{\mathbf{A}}^{\prime}}\mathbf{B}_{\mathbf{y}_{\mathbf{B}}^{\prime}}...)_{p}(\mathbf{A}_{\mathbf{y}_{\mathbf{A}}^{\prime\prime}}\mathbf{B}_{\mathbf{y}_{\mathbf{B}}^{\prime\prime\prime}}...)_{q}...$$

where the species A, B, ... can be atoms, vacancies or ions on the different sublattices ', ", The number of sites are p, q, ... If p + q + ... = 1, then the thermodynamic quantities are referred to one mole of sites.

For each sublattice s, the site fraction of the species i is equal to

$$y_i^s = \frac{n_i^s}{\sum_j n_j^s} = \frac{n_i^s}{n^s} \qquad \text{with} \qquad \sum_i y_i^s = 1 \qquad \text{and} \qquad \sum_s n^s = n \quad (13)$$

where n_i^s is the number of species *i* in sublattice *s*, *n*^s the number of sites in sublattice *s*, and *n* the total number of sites. *n*^s is related to *n* by $n^s = n \cdot p/(p+q+...)$. The

number of sublattices and the species occupying them, is generally obtained from crystallographical information.

This model also describes stoichiometric phases, in which case the sublattices are occupied by a single atom, and substitutional phases which only contain one sublattice.

The molar Gibbs energy expressed by the sublattice model is equal to

$$G_m = G^{\text{ref}} + G^{\text{id}} + G^{\text{ex}} \tag{14}$$

For a two sublattice phase taken as an example, with two elements A and B in each of the sublattices, the term G^{ref} , which defines a surface of reference, is equal to

$$G^{\text{ref}} = y'_{A}y''_{A}G^{\circ}_{A:A} + y'_{A}y''_{B}G^{\circ}_{A:B} + y'_{B}y''_{A}G^{\circ}_{B:A} + y'_{B}y''_{B}G^{\circ}_{B:B}$$
(15)

The terms $G^{\circ}_{A:A}$ and $G^{\circ}_{B:B}$ represent the Gibbs energy of formation of the constituent elements A and B. The colon separates the different sublattices.

The terms $G_0^{\circ}A : B$ and $G_{B:A}^{\circ}$ represent the Gibbs energy of formation of the stoichiometric compounds A_pB_q and B_pA_q , which may be stable or metastable.

The term G^{id} is related to the molar configurational entropy and is equal to:

$$G^{id} = R T[p(y'_{A}lny'_{A} + y'_{B}lny'_{B}) + q(y''_{A}lny''_{A} + y''_{B}lny''_{B})]$$
(16)

Finally, the excess Gibbs energy G^{xs} is equal to

$$G^{xs} = y'_{A} y'_{B} [y''_{A} L_{A,B;A} + y''_{B} L_{A,B;B}] + y''_{A} y''_{B} [y'_{A} L_{A;A,B} + y'_{B} L_{B;A,B}] + y'_{A} y'_{B} y''_{A} y''_{B} L_{A,B;A,B}$$
(17)

The terms $L_{i,j:i}$ and $L_{i:i,j}$ represent the interaction parameters between the atoms on one sublattice for a given occupancy of the other, and can be described by a polynomial, as follows:

$$L_{i,j:i} = y'_i y'_j [a_0 + b_0 T + (a_1 + b_1 T)(y'_i - y'_j)]$$
(18)

The above equations can be expressed for ternary systems and they become more complicated when the number of species increases in each sublattice.

3. Order-disorder transformation:

For the COST project, only the order-disorder transformation relative to the bcc-A2 and bcc-B2 was considered. A unique function representing the Gibbs energy is used to describe the thermodynamic properties of both phases as follows:

$$G_m = G_m^{dis}(x_i) + \Delta G_m^{ord}(y_i^s) \tag{19}$$

where $\Delta G_m^{ord}(y_i^s)$ and $G_m^{dis}(x_i)$ are respectively the ordering energy, equal to zero in the disordered state, and $G_m^{dis}(x_i)$ the molar Gibbs energy of the disordered phase. $\Delta G_m^{ord}(y_i^s)$ is equal to:

$$\Delta G_{m}^{ord}(y_{i}^{s}) = \sum_{i} \sum_{j} y_{i}^{i} y_{j}^{i} \Delta^{0} G_{i:j}^{ord} + RT \left(a \sum_{i} y_{i}^{i} \ln y_{i}^{i} + b \sum_{i} y_{i}^{i} \ln y_{i}^{i} \right) + y_{A}^{i} y_{B}^{i} \sum_{i} y_{i}^{i} L_{A,B:i}^{0,ord} + y_{A}^{i} y_{B}^{i} (y_{A}^{i} - y_{B}^{i}) \sum_{i} y_{i}^{i} L_{A,B:i}^{1,ord} + y_{A}^{i} y_{B}^{i} \sum_{i} y_{i}^{i} L_{i:A,B}^{0,ord} + y_{A}^{i} y_{B}^{i} (y_{A}^{i} - y_{B}^{i}) \sum_{i} y_{i}^{i} L_{i:A,B}^{1,ord} + y_{A}^{i} y_{B}^{i} y_{A}^{i} y_{B}^{i} L_{A,B:A,B}^{0,ord} + y_{A}^{i} y_{B}^{i} (y_{A}^{i} - y_{B}^{i}) \sum_{i} y_{i}^{i} L_{i:A,B}^{1,ord}$$

$$(20)$$

 $G_m^{dis}(x_i)$ is given in the Redlich-Kister formalism by equation 7. x_i and y_i^s are the molar fraction of element i in the phase and its site fraction in sublattice s respectively.

To ensure stability of the disordered phase, the first derivative of G_m with respect to the site occupation must be zero for any given composition. This condition and the fact that the ordering energy is zero for disorder leads to constraints between the thermodynamic parameters describing ordering [88Ans]. Using these constraints and converting the Gibbs energy of the disordered state into the sublattice formalism, allows to express the whole Gibbs energy of both phases (A2 and B2) in the sublattice formalism as follows:

$$G^{\circ}(T) - H_{A}^{\circ,ref}(298.15 \text{ K}) = G(A:A) = GREF_{A}$$

$$G^{\circ}(T) - 0.5 H_{A}^{\circ,ref}(298.15 \text{ K}) - 0.5 H_{B}^{\circ,ref}(298.15 \text{ K}) = G(A:B) = 0.5 \text{ GREF}_{A} + 0.5 \text{ GREF}_{A} + \Delta^{\circ}G_{A:B}^{\circ,ref} + \frac{1}{4} {}^{0}L_{A,B}^{o,is}$$

$$G^{\circ}(T) - 0.5 H_{A}^{\circ,ref}(298.15 \text{ K}) - 0.5 H_{B}^{\circ,ref}(298.15 \text{ K}) = G(B:A) = 0.5 \text{ GREF}_{A} + 0.5 \text{ GREF}_{A} + \Delta^{\circ}G_{A:B}^{\circ,ref} + \frac{1}{4} L_{A,B}^{0,dis}$$

$$G^{\circ}(T) - H_{B}^{\circ,ref}(298.15 \text{ K}) = G(B:B) = \text{ GREF}_{B}$$

$$L_{A,B:A}^{0} = L_{A:A,B}^{0} = -\Delta^{\circ}G_{A:B}^{\circ,ref} - L_{A,B:A}^{1,ord} + \frac{1}{4} L_{A,B}^{0,dis} + \frac{3}{8} L_{A,B}^{1,dis} + \frac{3}{16} L_{A,B}^{2,dis}$$

$$L_{A,B:A}^{1} = L_{A:A,B}^{1} = L_{A,B:A}^{1,ord} + \frac{1}{8} L_{A,B}^{1,dis} + \frac{4}{16} L_{A,B}^{2,dis}$$

$$L_{A,B:B}^{0} = L_{B:A,B}^{0} = -\Delta^{\circ}G_{A:B}^{\circ,ref} + L_{A,B:B}^{1,ord} + \frac{1}{4} L_{A,B}^{0,dis} - \frac{3}{8} L_{A,B}^{1,dis} + \frac{3}{16} L_{A,B}^{2,dis}$$

$$L_{A,B:A}^{0} = L_{B:A,B}^{0} = L_{A,B:B}^{0} + \frac{1}{4} L_{A,B}^{1,ord} - \frac{4}{8} L_{A,B}^{2,dis}$$

$$L_{A,B:A,B}^{1} = L_{B:A,B}^{1,ord} - 4L_{A,B:B}^{1,ord} - \frac{24}{16} L_{A,B}^{2,dis}$$

$$L_{A,B:A,B}^{1} = 4L_{A,B:A}^{1,ord} - 4L_{A,B:B}^{1,ord} - \frac{24}{16} L_{A,B}^{2,dis}$$

$$(21)$$

where $\Delta \mathcal{C}_{A;B}^{ord}$, $L_{A,B;A}^{1,ord}$, $L_{A,B;B}^{1,ord}$ are the independent ordering parameters and $L_{A,B}^{0,dis}$, $L_{A,B}^{1,dis}$, and $L_{A,B}^{2,dis}$ ^[1] are parameters of the disordered state.

In the binary systems Al-Fe, Cu-Mg, Cu-Zn, Fe-Si and Mg-Zn, the equations 21 were used with $L_{A,B:A}^{1,ord}$ and $L_{A,B:B}^{1,ord}$ equal to zero.

In a ternary system A-B-C, the relations 21 stand for each binary system. Moreover, the following constraints have to be fulfilled:

$$\begin{split} L^{0}_{C:A,B} &= L^{0}_{A,B;C} &= L^{0,ord}_{A,B;C} + \frac{1}{4} L^{0,dis}_{A,B} - \frac{1}{8} \left(L^{1,dis}_{A,C} + L^{1,dis}_{B,C} \right) \\ &+ \frac{1/2}{16} \left(L^{2,dis}_{A,C} + L^{2,dis}_{B,C} \right) \\ L^{0}_{B:A,C} &= L^{0}_{A,C;B} &= L^{0,ord}_{A,C;B} + \frac{1}{4} L^{0,dis}_{A,C} - \frac{1}{8} \left(L^{1,dis}_{A,B} - L^{1,dis}_{B,C} \right) \\ &+ \frac{1/2}{16} \left(L^{2,dis}_{A,B} + L^{2,dis}_{B,C} \right) \\ L^{0}_{A,B,C} &= L^{0}_{B,C;A} &= L^{0,ord}_{A,B;C} + \frac{1}{4} L^{0,dis}_{B,C} + \frac{1}{8} \left(L^{1,dis}_{A,B} + L^{1,dis}_{A,C} \right) \\ &+ \frac{1/2}{16} \left(L^{2,dis}_{A,B} + L^{2,dis}_{B,C} \right) \\ L^{1}_{C;A,B} &= L^{1}_{A,B;C} &= L^{1,ord}_{A,B;C} + \frac{1}{8} L^{1,dis}_{A,B} \\ &- \frac{1/2}{16} \left(L^{2,dis}_{A,B} + L^{2,dis}_{A,C} \right) \\ L^{1}_{B;A,C} &= L^{1}_{A,C;B} &= L^{1,ord}_{A,C;B} + \frac{1}{8} L^{1,dis}_{A,C} - \frac{1/2}{16} \left(L^{2,dis}_{A,B} - L^{2,dis}_{B,C} \right) \\ L^{1}_{A;B,C} &= L^{1}_{B,C;A} &= L^{1,ord}_{B,C;A} + \frac{1}{8} L^{1,dis}_{B,C} - \frac{1/2}{16} \left(L^{2,dis}_{A,B} - L^{2,dis}_{A,C} \right) \\ L^{2}_{C;A,B} &= L^{2}_{A,B;C} &= \frac{1}{16} L^{2,dis}_{A,B} \\ L^{2}_{B;A,C} &= L^{2}_{A,C;B} &= \frac{1}{16} L^{2,dis}_{A,C} \\ L^{2,dis}_{A,B} - L^{2,dis}_{A,C;B} &= \frac{1}{16} L^{2,dis}_{A,C} \\ L^{2,dis}_{A;B,C} &= L^{2}_{B,C;A} &= \frac{1}{16} L^{2,dis}_{A,C} \\ L^{2,dis}_{A,B} - L^{2,dis}_{A,C;B} &= \frac{1}{16} L^{2,dis}_{A,C} \\ L^{2,dis}_{A;B,C} &= L^{2}_{B,C;A} &= \frac{1}{16} L^{2,dis}_{A,C} \\ L^{2,dis}_{A;B,C} &= L^{2}_{B,C;A} &= \frac{1}{16} L^{2,dis}_{A,C} \\ L_{A,B;A,C} &= L^{2}_{A,C;A,B} &= -\Delta \mathcal{C}^{ord}_{A;B} - \Delta \mathcal{C}^{ord}_{A;C} - \Delta \mathcal{C}^{ord}_{B;C} - L^{0,ord}_{A,C;B} \\ - L^{0,ord}_{B;C;A} + L^{1,ord}_{A,B;A} - L^{1,ord}_{A,B;C} + L^{1,ord}_{A,C;B} \\ - \frac{1}{16} \left(5 L^{2,dis}_{A,B} + 5 L^{2,dis}_{A;C} + 2 L^{2,dis}_{B,C} \right) \end{split}$$

¹In the tables, the following substitutions were made: $\Delta^{\circ}G_{A:B}^{ord} = G_{A:B:D}^{\bullet}, \frac{1}{4} L_{A,B}^{0,dis} = L_{A,B}^{0}, \frac{1}{8} L_{A,B}^{1,dis} = L_{A,B}^{1}, \frac{1}{16} L_{A,B}^{2,dis} = L_{A,B}^{2}$

$$L_{A,B;B,C} = L_{B,C;A,B} = -\Delta G_{A;B}^{ord} - \Delta G_{A;C}^{ord} - \Delta G_{B;C}^{ord} - L_{A,B;C}^{0,ord} - L_{A,C;B}^{0,ord}$$

$$- L_{B,C;A}^{0,ord} + L_{A,B;B}^{1,ord} - L_{B,C;A}^{1,ord} - L_{B,C;B}^{1,ord}$$

$$- \frac{1}{16} \left(5 L_{A,B}^{2,dis} + 2 L_{A,C}^{2,dis} + 5 L_{B,C}^{2,dis} \right)$$

$$L_{B,C;A,C} = L_{A,C;B,C} = -\Delta G_{A;B}^{ord} - \Delta G_{A;C}^{ord} - \Delta G_{B;C}^{ord} - L_{A,B;C}^{0,ord} - L_{A,C;B}^{0,ord}$$

$$- L_{B,C;A}^{0,ord} + L_{A,C;B}^{1,ord} - \Delta G_{B;C}^{ord} - \Delta G_{B;C}^{ord} - L_{A,B;C}^{0,ord} - L_{A,C;B}^{0,ord}$$

$$- L_{B,C;A}^{0,ord} + L_{A,C;B}^{1,ord} - \Delta G_{B;C}^{ord} - L_{A,B;C}^{0,ord} - L_{A,C;B}^{0,ord}$$

$$- L_{B,C;A}^{0,ord} + L_{A,C;B}^{1,ord} - \Delta G_{B;C}^{ord} - L_{A,B;C}^{0,ord} - L_{A,C;B}^{0,ord}$$

$$- L_{B,C;A}^{0,ord} + L_{A,C;B}^{1,ord} - L_{A,B;C;A}^{0,ord} - L_{A,C;B}^{0,ord} - L_{B,C;C}^{0,ord} + L_{A,C;B}^{1,ord} - L_{B,C;C}^{0,ord} + L_{A,C;C}^{1,ord} + L_{B,C;A}^{1,ord} - L_{B,C;C}^{1,ord} + L_{A,C;B}^{1,ord} - L_{B,C;C}^{0,ord} + L_{A,C;B}^{1,ord} + L_{A,C;C}^{1,ord} + L_{B,C;C}^{1,ord} + L_{B,C;C}^{1,ord} + L_{B,C;C}^{1,ord} + L_{B,C;C}^{1,ord} + L_{B,C;C}^{1,ord} + L_{B,C;C}^{1,ord} + L_{A,C;A}^{1,ord} + L_{B,C;C}^{2,dis} + 3 L_{A,C}^{2,dis} + 3 L_{B,C}^{2,dis} + 3 L_{A,B,C;A}^{2,dis} + 3 L_{A$$

where $L_{A,B:C}^{0,ord}$, $L_{A,C:B}^{0,ord}$, $L_{B,C:A}^{0,ord}$, $L_{A,B:C}^{1,ord}$, $L_{B,C:A}^{1,ord}$ are the independent ternary parameters of ordering.

In the ternary system Cu-Mg-Zn, the regular interaction parameters $L_{A,B:C}^{0,ord}$, $L_{A,C:B}^{0,ord}$ and $L_{B,C:A}^{0,ord}$, were taken respectively identical to $-\Delta \mathcal{C}_{A:C}^{ord}$, $-\Delta \mathcal{C}_{A:C}^{ord}$ and $-\Delta \mathcal{C}_{B:C}^{ord}$, and the sub-regular terms $L_{A,B:C}^{1,ord}$, $L_{A,C:B}^{1,ord}$ and $L_{B,C:A}^{1,ord}$ equal to zero like in the corresponding binary systems.

Neverthless, the use of this sublattice formalism to describe the order – disorder transformation requires the conversion of the parameters of the disordered state into the sublattice model which is cumbersome. A new treatment of the order-disorder transformation was introduced later on by Sundman [91Sun] where G_m is expressed as follows :

$$G_m = G_m^{dis}(x_i) + \Delta G^{ord}(y_i, y_i) - \Delta G^{ord}(x_i, x_i)$$
(23)

with

$$G_{m}^{dis}(x_{i}) = \sum_{i} x_{i} G_{i}^{dis} + RT \sum_{i} x_{i} \ln x_{i} + x_{A} x_{B} \sum_{\nu} L_{A,B}^{\nu,dis} (x_{A} - x_{B})^{\nu} (24)$$

$$\Delta G^{ord_{\bullet}}(y_{i}^{*}, y_{i}^{*}) = \sum_{i} \sum_{j} y_{i}^{*} y_{j}^{*} \Delta^{\circ} G_{i;j}^{ord_{\bullet}} + RT \left(a \sum_{i} y_{i}^{*} \ln y_{i}^{*} + b \sum_{i} y_{i}^{*} \ln y_{i}^{*} \right) + y_{A}^{*} y_{B}^{*} \sum_{i} y_{i}^{*} L_{A,B;i}^{0,ord_{\bullet}} + y_{A}^{*} y_{B}^{*} (y_{A}^{*} - y_{B}^{*}) \sum_{i} y_{i}^{*} L_{A,B;i}^{1,ord_{\bullet}} + y_{A}^{*} y_{B}^{*} \sum_{i} y_{i}^{*} L_{i;A,B}^{0,ord_{\bullet}} + y_{A}^{*} y_{B}^{*} (y_{A}^{*} - y_{B}^{*}) \sum_{i} y_{i}^{*} L_{i;A,B}^{1,ord_{\bullet}} + y_{A}^{*} y_{B}^{*} y_{A}^{*} y_{B}^{*} L_{A,B;A}^{0,ord_{\bullet}} + y_{A}^{*} y_{B}^{*} (y_{A}^{*} - y_{B}^{*}) \sum_{i} y_{i}^{*} L_{i;A,B}^{1,ord_{\bullet}} + y_{A}^{*} y_{B}^{*} y_{A}^{*} y_{B}^{*} L_{A,B;A}^{ord_{\bullet}} + RT \left(a \sum_{i} x_{i} \ln x_{i} + b \sum_{i} x_{i} \ln x_{i} \right) + x_{A} x_{B} \sum_{i} x_{i} L_{A,B;i}^{0,ord_{\bullet}} + x_{A} x_{B} (x_{A} - x_{B}) \sum_{i} x_{i} L_{A,B;i}^{1,ord_{\bullet}} + x_{A} x_{B} \sum_{i} x_{i} L_{i;A,B}^{0,ord_{\bullet}} + x_{A} x_{B} (x_{A} - x_{B}) \sum_{i} x_{i} L_{A,B;i}^{1,ord_{\bullet}} + x_{A} x_{B} x_{A} x_{B} L_{A,B;A}^{ord_{\bullet}}$$
 (26)

Hence, the disordered and ordered phases can be treated separately. The parameters of the disordered phase, $L_{A,B}^{\nu,dis}$, and those describing the ordering $\Delta^{\circ} G_{A,B}^{ord*}$, $L_{A,Bi}^{\nu,ord*}$, and $L_{A,Bi}^{ord*}$, are introduced as usual thermodynamic parameters of the sublattice model and a special command then allows their combination to define the expression of the order-disorder sublattice following equation 23.

Constraints must still be introduced between the thermodynamic parameters of the function $\Delta G(y_i^*, y_i^*)$ to ensure stability of the disordered state. But the value zero for the ordering energy is now built in. This allows to simplify the expression of the constraints linking the ordering parameters.

The ternary systems Al-Ti-(Mo,Nb,Ta,W) were assessed with equation 23 assuming

$$\Delta^{\circ} G_{i:j}^{\text{ord}\bullet} = \Delta^{\circ} G_{j:i}^{\text{ord}\bullet} = -L_{i,j:i}^{0,\text{ord}\bullet} = -L_{i,j:j}^{0,\text{ord}\bullet} = -L_{i,j:k}^{0,\text{ord}\bullet} = -L_{i:i,j}^{0,\text{ord}\bullet} = -L_{j:i,j}^{0,\text{ord}\bullet} = -L_{k:i,j}^{0,\text{ord}\bullet} = \alpha_{ij}$$
(27)

These relations are identical to 21 and 22 when disordered parameters are not considered and sub-regular ordering terms are zero. The use of equation 23 allows a simpler but mathematically equivalent description with only two ordering parameters:

$$\Delta^{\circ} G_{iij}^{\text{ord}\bullet} = \Delta^{\circ} G_{jii}^{\text{ord}\bullet} = 2\alpha_{ij}$$
(28)

When such simplication is possible, the two descriptions (the original using equations 27 and the modified using equations 28) are presented in this report.

For sake of uniformity, the descriptions using the sublattice model with the constrainsts 21 and 22 were also converted for use of equation 23 in the simpler way possible.

Only the parameters derived from the simpler description are in the database. In this report, they are presented in a frame. An example is shown hereunder for a binary system.

Phase bcc-B2 $G^{\circ}(T) - H_{A}^{\circ,ref}(298.15 \text{ K}) = G(A:A) = 0.0$ $G^{\circ}(T) - 0.5 H_{A}^{\circ,ref}(298.15 \text{ K}) - 0.5 H_{B}^{\circ,ref}(298.15 \text{ K}) = G(A:B) = 2.0 G_{A:B}^{ord*}$ $G^{\circ}(T) - 0.5 H_{A}^{\circ,ref}(298.15 \text{ K}) - 0.5 H_{B}^{\circ,ref}(298.15 \text{ K}) = G(B:A) = 2.0 G_{A:B}^{ord*}$ $G^{\circ}(T) - H_{B}^{\circ,ref}(298.15 \text{ K}) = G(B:B) = 0.0$ Phase bcc-A2 $G^{\circ}(T) - H_{A}^{\circ,ref}(298.15 \text{ K}) = GREF_{A}$ $G^{\circ}(T) - H_{B}^{\circ,ref}(298.15 \text{ K}) = GREF_{B}$ $L_{A,B:\Omega}^{0,dis} = 4 L_{A,B}^{0}$ $L_{A,B:\Omega}^{1,dis} = 8 L_{A,B}^{1}$ $L_{A,B:\Omega}^{1,dis} = 16 L_{A,B}^{2}$

Bibliography

[45Tem]	M. Temkin, Acta Phys. Chim., 20, 411 – 420 (1945).
[48Red]	O. Redlich, and A. Kister, Ind. Eng. Chem., 40, 345 - 348 (1948).
[70Hil]	M. Hillert, and L. – I. Staffanson, Acta Chem. Scand., 24, 3,
	618 - 3626 (1970).
[78Hil]	M. Hillert, and M. Jarl, Calphad, 2, 3, 227 – 238 (1978).
[81Ind]	G. Inden, Physica, 103B, (1981) 82 - 100 (1981).
[81Sun]	B. Sundman, and J. Ågren, J. Phys. Chem. Solids,
	42, 297 - 301 (1981).
[88Ans]	I. Ansara, B. Sundman, and P. Willemin, Acta Metall.,
	36 977 – 982 (1988).
[91Din]	A.T. Dinsdale, Calphad, 15, 4, 317 – 425 (1991).
[90Mas]	T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak,
	"Binary Alloy Phase Diagrams", (1990), 2nd. Edition,
	ASM International, Metals Park, U.S.A.
[91Sun]	B. Sundman, ThermoCalc Newsletter, 12, Division of Physical
	Metallurgy, KHT,§ – 100 44 Stockholm, Sweden (1991).
[91Vil]	P. Villars, and L.D. Calvert, "Pearson's Handbook of
	Crystallographic Data for Intermetallic Phases", (1991), ASM
	International, Materials Park, Ohio, U.S.A.

BINARY SYSTEMS

•

System Al–B

Solution P	hases:	
Compound	ls:	Liquid, fcc-A1
Modelling:		$A B_2, A B_{12}-L, A B_{12}-H$
Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
AlB ₂	:	Stoichiometric, (Al)(B) ₂
$AlB_{12}L$:	Stoichiometric, (Al)(B) ₁₂
AlB ₁₂ -II	:	Stoichiometric, (Al)(B) ₁₂

Assessor and Date:

II.L. Lukas 1992

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase AlB₂

 $G^{\circ}(T) - H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 2.0 \quad H_{B}^{\circ, \beta-\text{rhombo}-B}(298.15 \text{ K}) = -85808.76 + 45.46923 \quad T + \text{GHSER}_{Al} + 2.0 \quad \text{GHSER}_{Bl}$

Phase AlB₁₂-L

 $G^{\circ}(T) - \mathcal{H}_{AI}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) - 12.0 \quad \mathcal{H}_{B}^{\circ,\beta-\text{rhombo}-B}(298.15 \text{ K}) = -198290.69 + 33.68638 \quad T + \text{GHSER}_{AI} + 12.0 \quad \text{GHSER}_{B}$

Phase AlB₁₂-H

 $G^{\circ}(T) - H_{AI}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) - 12.0 H_{B}^{\circ,\beta-\text{rhombo}-B}(298.15 \text{ K}) = -75292.23 - 33.66376 T + \text{GHSER}_{AI} + 12.0 \text{GHSER}_{B}$

Phase fcc-A1

 $L_{AI,B;\Box}^{0,fcc-A1} = 12242.44 - 1.74891 T$

 $L_{\rm Al,B}^{0,{
m liquid}}$ -12671.16 + 1.81016 T $L_{\rm AI,B}^{1,{
m liquid}}$ 31988.28 - $L^{2,{
m liquid}}_{{
m AI},{
m B}}$ - 15873.74 = 3000 Liquid 2500 Temperature / K AIB , 2-H 2000 AIB , 2-L 1500 (B) 1000 AB, -fcc-A1 500· 0.2 0.3 0.4 0.7 0.0 0.1 0.5 0.6 0.8 0.9 1.0 A X₈ → В 1000 990 980 Temperature / K Liquid Liquid + AlB₂ 970· 960· 950· 940 **B**30 920 $fcc-A1 + AB_2$ fcc-A1 910-900-2 3 ò i Å 5 $x_{B} 10^{3}$ A →

Reaction	Туре	Compositions $x_{\rm B}$			Т / К
Liquid + AlB ₂ \rightleftharpoons fcc-A1	Peritectic	.003	.667	.0007	935.0
Liquid + AlB ₁₂ -L \rightleftharpoons AlB ₂	Peritectic	.019	.923	.667	1245.8
AlB ₁₂ -L \rightleftharpoons AlB ₁₂ -H	Polymorphic	.923	.923		1826.2
Liquid \rightleftharpoons AlB ₁₂ -H + β -rhombo-B	Eutectic	.988	.923	1.000	2336.0
AlB ₁₂ -H \rightleftharpoons Liquid	Congruent	.923	.923		2448.0

Table I - Invariant Reactions.

•

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sut latti	o– ces	Comments
Al-B	(AI)	Cu	cF4 Fm3m	м	4	
	(B)	β-rhombo-B				
	AlB ₁₀	AIB ₁₀	o <i>C88</i> Cmcm			not assessed
	AlB ₁₂ -L	AlB ₁₂	0P384 P212121			AlB ₁₂ -α in [90Mas]
	AlB ₁₂ -H	AlB ₁₂	tP216 P41212			AlB ₁₂ -β in [90Mas]
	AlB ₂	A1B2	hP3 P6/mmm	Al B	1 2	

-

System Al-C

Solution	Phases:				
		Liquid, fcc-A1			
Compour	nd:				
		Al₄C₃			
Modellin	<u>g:</u>				
Liquid	:	Substitutional, Redlich-Kister			
fcc-A1	:	Sublattice model , (Al)(C,□)			
Al₄C ₃	:	Stoichiometric, (Al) ₄ (C) ₃			
Assessor	and Date:				
		J. Gröbner, H. L. Lukas, and F. Aldinger.			
<u>Publicati</u>	<u>on:</u>				
		Calphad, 20 , 2 (1996) 247-254.			

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Al_4C_3

 $G^{\circ}(T) - 4.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 3.0 \quad H_{C}^{\circ, \text{graphite}}(298.15 \text{ K}) = -286002.0 + 1030.273 \quad T - 161.709142 \quad T \cdot \ln T - 0.011523 \quad T^{2} + 2450000 \quad T^{-1} + 7E - 07 \quad T^{3}$

Phase fcc-A1

 $G^{\circ}(T) - II_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) - II_{C}^{\circ,graphite}(298.15 \text{ K}) = 80 T + \text{GHSER}_{A1} + \text{GHSER}_{C}$

 $L_{A1:C,\Box}^{0,fcc-A1} = 80 T$

Phase graphite

 $L_{\rm Al,C}^{0,{\rm graphite}} = 80 T$

Phase liquid

 $L_{AI,C}^{0,\text{liquid}} = 40861.02 - 33.21138 T$

Table I - Invariant Reactions.

Reaction	Туре	Compositions $x_{\rm C}$	Т / К
Liquid + graphite \rightleftharpoons Al ₄ C ₃	Peritectic	.198 1.000 .429	2429.0
Liquid \rightleftharpoons fcc-Al + Al ₄ C ₃	Degenerate	.000 .000 .429	933.5

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices
Al-C	(Al)	Cu	cF4 Fm3m	M 4
	(C)	graphite		
	Al₄C₃	Al4C3	hR7 R3m	$\begin{array}{ccc} AI_1 & 2 \\ AI_2 & 2 \\ C_1 & 1 \\ C_2 & 2 \end{array}$

System Al-Ce

Solution F	hases:	
		Liquid, bcc-A2, fcc-A1
Compounds:		
		Al ₁₁ Ce ₃ , Al ₃ Ce, AlCe, AlCe ₂ , Al ₂ Ce
Modelling	<u>:</u>	
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-Al	:	Substitutional, Redlich-Kister
Al ₁₁ Ce ₃	:	Stoichiometric, (Al)11(Ce)3
Al ₃ Ce	:	Stoichiometric, (Al) ₃ (Ce)
Al ₂ Ce	:	Stoichiometric, (Al) ₂ (Ce)
AlCe	:	Stoichiometric, (Al)(Ce)
AlCe ₂	:	Stoichiometric, (Al)(Ce)2
Assessor a	nd Date:	
		G. Cacciamani, G. Borzone, R. Ferro
Publication:		
		revised 1997

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Al₁₁Ce₃

 $G^{\circ}(T) - 11.0 \ H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 3.0 \ H_{Ce}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = -574000 + 179.3087 \ T + 11.0 \ \text{GHSER}_{Al} + 3.0 \ \text{GHSER}_{Ce}$

Phase Al₃Ce

 $G^{\circ}(T) - 3.0 \quad H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Ce}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = -176000 + 54.97964 \quad T + 3.0 \quad \text{GHSER}_{AI} + \text{GHSER}_{Ce}$

Phase AlCe

 $G^{\circ}(T) - H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Ce}^{\circ,fcc-A1}(298.15 \text{ K}) =$ - 92000 + 33.90118 T + GHSER_{Al} + GHSER_{Ce}
Phase AlCe₃

 $G^{\circ}(T) - H_{AI}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) - 3.0 \quad H_{Ce}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) = -108000 + 41.3726 \quad T + \text{GHSER}_{AI} + 3.0 \quad \text{GHSER}_{Ce}$

Phase Laves-C15

 $G^{\circ}(T) - 2.0 \quad H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Ce}^{\circ,fcc-A1}(298.15 \text{ K}) = -150000.0 + 45.66405 \quad T + 2.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Ce}$

Phase bcc-A2

 $L_{\rm Al,Ce:\square}^{0,{\rm bcc}-A2} = 80 T$

Phase fcc-A1

 $L^{0,\text{fcc}-A1}_{A1,Ce;\Box} = 80 T$

Phase Liquid

$$L_{\rm Al,Ce}^{0,{\rm liquid}} = -167593.1 + 84.87628 T$$

 $L_{\rm Al,Ce}^{1,{\rm liquid}} = -36060 + 5.89346 T$

Reaction	Туре	Com	position	s I _{Ce}	Т / К
Liquid \rightleftharpoons fcc-A1 + Al ₁₁ Ce ₃	Eutectic	.028	.000	.214	902.6
Liquid + Laves-C15* \rightleftharpoons Al ₁₁ Ce ₃	Peritectic	.179	.333	.214	1497.1
Liquid + Laves-C15* \rightleftharpoons AlCe	Peritectic	.619	.333	.500	1116.9
Liquid \rightleftharpoons AlCe + AlCe ₃	Eutectic	.704	.500	.750	911.3
Liquid \rightleftharpoons AlCe ₃ + fcc-A1	Eutectic	.854	.750	1.000	852.2
Liquid \rightleftharpoons bcc-A2 + fcc-A1	Polymorphic	.956	1.000	1.000	1000.0
Al ₁₁ Ce ₃ + Laves-C15* \rightleftharpoons Al ₃ Ce	Peritectoid	.214	.333	.250	1408.0
Laves-C15* \rightleftharpoons Liquid	Congruent	.333	.333		1752.0

Table I - Invariant Reactions.

• Laves- $C15 \equiv Al_2Ce$

Table II - Crystal Structure and Phase Descript

System	Phase	Structural Type	Pearson Symbol Space Group	Sub- lattic es		Comments
Al Ce	(Al)	Cu	cF4 Fm3m	м	4	
	(Ce)	Cu	cF4 Fm3m	М	4	
	(Ce)	w	c12 Im3m	М	2	
	$Al_{11}Ce_3 - \alpha$	Al _{i1} La ₃	Immm o128			polymorphic trans. not considered
	$Al_{11}Ce_3 - \beta$	Al₄Ba	<i>I₄/mmm</i> tI10			
	Al3Ce	Ni ₃ Sn	hP8 P6 ₃ /mmc			
	Al2Ce	Cu ₂ Mg	cF24 Fd3m	Ce Al	8 16	
	AlCe	AlCe	oC16 Cmcm	Al ₁ Al ₂ Ce	4 4 8	
	AlCe3 – a	Ni ₃ Sn	hP8 P6 ₃ /mmc	Al Ce	2 6	polymorphic trans. not considered
	$AlCe_3 - \beta$	AuCu3	cP4 PmĪm	Al Ce	1 3	

System Al-Cr

Solution Pl	nases:	
		Liquid, bcc-A2, fcc-A1
Compound	s:	
		AlCr ₂ , Al ₄ Cr, Al ₈ Cr ₅ -L, Al ₈ Cr ₅ -H, Al ₉ Cr ₄ -L, Al ₉ Cr ₅ -H, Al ₉ Cr ₄ -L,
Modelling:		Auger4 11, Augre2, Auger2
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
AlCr ₂	:	Stoichiometric, (Al)(Cr)₄
Al ₄ Cr	:	Stoichiometric, (Al) ₄ (Cr)
Al ₈ Cr ₅ -L	:	Stoichiometric, (Al) ₈ (Cr) ₅ -L
Al ₈ Cr ₅ -H	:	Stoichiometric, (Al) ₈ (Cr) ₅ -H
Al ₉ Cr₄−L	:	Stoichiometric, $(Al)_9(Cr)_4-L$
Al ₉ Cr₄-H	:	Stoichiometric, (Al) ₉ (Cr) ₄ -H
Al ₁₁ Cr ₂	:	Stoichiometric, $(Al)_{11}(Cr)_2$
$Al_{13}Cr_2$:	Stoichiometric, (Al) ₁₃ (Cr) ₂

Assessor and Date:

N. Saunders, 1991

Publication:

based on the publication of N. Saunders and V.G. Rivlin in Z. für Metallkde, 78, (11) 795-801 (1987).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase AlCr₂

 $G^{\circ}(T) - H^{\circ, \text{fcc}-A1}_{AI}(298.15 \text{ K}) - 2.0 \quad H^{\circ, \text{bcc}-A2, \text{para}}_{Cr}(298.15 \text{ K}) = -32700.0 - 8.79 \quad T + \text{GHSER}_{AI} + 2.0 \quad \text{GHSER}_{Cr}$

Phase Al₄Cr

$$G^{\circ}(T) - 4.0 \quad H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) = -89025.0 + 19.05 \quad T + 4.0 \quad \text{GHSER}_{A1} + \text{GHSER}_{Cr}$$

Phase Al₈Cr₅-L

 $G^{\circ}(T) = 8.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = 5.0 \quad H_{Cr}^{\circ, \text{bcc}-A2, \text{para}}(298.15 \text{ K}) = -229515.0 + 8.0 \quad \text{GHSER}_{Al} + 5.0 \quad \text{GHSER}_{Cr}$

Phase Al₈Cr₅-H

 $G^{\circ}(T) = 8.0 \quad H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) = 5.0 \quad H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) = -147732.0 = 58.5 \quad T + 8.0 \quad \text{GHSER}_{A1} + 5.0 \quad \text{GHSER}_{Cr}$

Phase Al₉Cr₄-L

 $G^{\circ}(T) - 9.0 \quad H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - 4.0 \quad H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) = -230750.0 + 16.094 \quad T + 9.0 \quad \text{GIISER}_{A1} + 4.0 \quad \text{GIISER}_{Cr}$

Phase $Al_9Cr_4 - H$

 $G^{\circ}(T) - 9.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 4.0 \quad H_{Cr}^{\circ, \text{bcc}-A2, \text{para}}(298.15 \text{ K}) = -134433.0 - 56.16 \quad T + 9.0 \quad \text{GHSER}_{Al} + 4.0 \quad \text{GHSER}_{Cr}$

Phase Al₁₁Cr₂

 $G^{\circ}(T) - 11.0 \quad H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 2.0 \quad H_{Cr}^{\circ, \text{bcc}-A2, \text{para}}(298.15 \text{ K}) = -175500.0 + 25.805 \quad T + 11.0 \quad \text{GHSER}_{AI} + 2.0 \quad \text{GHSER}_{Cr}$

Phase Al₁₃Cr₂

 $G^{\circ}(T) - 13.0 \quad H_{AI}^{\circ, fcc-A1}(298.15 \text{ K}) - 2.0 \quad H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) = -174405.0 + 22.2 \quad T + 13.0 \quad \text{GHSER}_{AI} + 2.0 \quad \text{GHSER}_{Cr}$

Phase bcc-A2

 $L_{AI,Cr:\Box}^{0,bcc-A2} = -54900 + 10 T$

Phase fcc-A1

 $L_{Al,Cr:\Box}^{0,fcc-Al} = -45900 + 6.0 T$

Phase liquid

 $L_{Al,Cr}^{0,liquid} = -29000.0$ $L_{Al,Cr}^{1,liquid} = -11000.0$

25

Reaction	Туре	Compositions x_{Cr}			Т / К
Liquid + $Al_{13}Cr_2 \rightleftharpoons fcc-A1$ Liquid + $Al_{11}Cr_2 \rightleftharpoons Al_{13}Cr_2$ Liquid + $Al_4Cr \rightleftharpoons Al_{11}Cr_2$ Liquid + $Al_9Cr_4-L \rightleftharpoons Al_4Cr$ $Al_9Cr_4-H \rightleftharpoons Al_9Cr_4-L$ Liquid + $Al_8Cr_5-II \rightleftharpoons Al_9Cr_4-H$ Liquid $\rightleftharpoons Al_8Cr_5-II \Rightarrow Al_9Cr_4-H$ Liquid $\rightleftharpoons Al_8Cr_5-II \Rightarrow bcc-A2$ $Al_8Cr_5-H \rightleftharpoons Al_8Cr_5-L$ $bcc-A2 \rightleftharpoons Al_8Cr_5-L + AlCr_2$ $AlCr_2 \rightleftharpoons bcc-A2$	Peritectic Peritectic Peritectic Peritectic Polymorphic Peritectic Eutectic Polymorphic Eutectoid Congruent	.002 .009 .066 .137 .158 .225 .385 .385 .633 .667	.133 .154 .200 .308 .158 .385 .385 .385 .385 .667	.003 .133 .154 .200 .307 .558 .667 	934.8 1042.9 1214.6 1298.1 1333.0 1443.1 1597.0 1398.0 1139.3 1181.0

Table I - Invariant Reactions.

Table	II:a -	Crystal	Structure	and	Phase	Description.
-------	--------	---------	-----------	-----	-------	--------------

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices		Comments	
Al-Cr	(Al)	Cu	cF4 Fm3m	м	4		
	(Cr)	w	c12 Im3m	м	2		
	AlCr2	MoSi ₂	116	Al	2		
	Al₄Cr	Al₄Cr	14/mmm mP180 P2/m	Cr 4			
	Al ₁₁ Cr ₂	Al₅Cr	<i>mP</i> 48 P2			also designated by Al ₅ Cr in [90Mas]	
	AlgCr5-L	Al ₈ Cr5	h R26 R3m				
	Al ₈ Cr ₅ -H	Al ₈ Cr5	hR26			indicated in [90Mas]	
	Al9Cr₄-L		c152 I43m				
	Al9Cr4-H					indicated in [90Mas]	

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
	Al ₁₃ Cr ₂ -β	Λl45V7	mC104 C2/m	Al ₁ 2 Al ₂ 4 Al ₃ 4 Al ₄ 4 Al ₅ 4 Al ₆ 4 Al ₇ 4 Al ₇ 4 Al ₇ 4 Al ₉ 4 Al ₁₀ 8 Al ₁₁ 8 Al ₁₂ 8 Al ₁₃ 8 Al ₁₄ 8 Al ₁₅ 4 Al ₁₆ 4 Cr ₁ 2 Cr ₂ 4 Cr ₃ 8	also designated by by Al ₇ Cr in [90Mas]

Table II:b - Crystal Structure and Phase Description.

System Al-Cu

Solution Phases: Liquid, bcc-A2, fcc-A1 (stable) (metastable) hcp-A3 Compounds: AlCu- δ , AlCu- ϵ , AlCu- η , AlCu- θ , AlCu- $\gamma(D8_3)$ (stable) AlCu- γ (H), AlCu- ζ (metastable) Laves-C14, Laves-C15, Laves-C36Modelling: Liquid Substitutional, Redlich-Kister : bcc-A2Substitutional, Redlich-Kister : fcc-A1 Substitutional, Redlich-Kister : hcp-A3 Substitutional, Redlich-Kister : AlCu-8 : Sublattice model, $(Al,Cu)_2(Cu)_3$ AlCu- ϵ Sublattice model, (Al,Cu)(Cu) : AlCu-n Sublattice model, (Al,Cu)(Cu) : AlCu- θ Sublattice model, (Al)(Al,Cu)₂ : AlCu- $\gamma(D8_3)$ Sublattice model, (Al)₄(Al,Cu)(Cu)₈ : AlCu- γ (H) Sublattice model, (Al)₄(Al,Cu)(Cu)₈ : AlCu-ζ : Stoichiometric, (Al)₉(Cu)₁₁ Laves–C14: Sublattice model, (Al,Cu)₂(Al,Cu) Laves-C15Sublattice model, (Al,Cu)₂(Al,Cu) : Laves-C36Sublattice model, (Al,Cu)₂(Al,Cu) :

Assessor and Date:

N. Saunders, 1991 Data relative to the Laves phases evaluated in Round II.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase AlCu- δ

 $G^{\circ}(T) - 2.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 3.0 \quad H_{Cu}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = -106700.0 + 3.0 \quad T + 2.0 \quad \text{GHSER}_{Al} + 3.0 \quad \text{GHSER}_{Cu}$

Phase AlCu- ϵ

$$G^{\circ}(T) - H_{AI}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) = G(Al:Cu) =$$

- 36976 + 1.2 T + GHSER_{A1} + GHSER_{Cu}

$$G^{\circ}(T) - 2.0 \quad H_{Cu}^{\circ,fcc-AI}(298.15 \text{ K}) = G(Cu:Cu) = 2.0 \quad GBCC_{Cu}$$

 $L_{AI,Cu:Cu}^{\circ,AICu-\epsilon} = 7600 - 24 \quad T$

 $L_{\rm Al,Cu:Cu}^{1,\rm AlCu-\epsilon} = -72000$

Phase AlCu– η

$$\begin{aligned} G^{\circ}(T) - \mathcal{H}_{Al}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) - \mathcal{H}_{Cu}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) &= \text{G}(\text{Al:Cu}) = \\ &- 40560.0 + 3.14 T + \text{GHSER}_{Al} + \text{GHSER}_{Cu} \\ G^{\circ}(T) - 2.0 \quad \mathcal{H}_{Cu}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) = \text{G}(\text{Cu:Cu}) = 2.0 \quad \text{GBCC}_{Cu} \\ \mathcal{L}_{Al,\text{Cu:Cu}}^{0,\text{AlCu}-\eta} &= -25740 - 20 T \end{aligned}$$

Phase AlCu- θ

$$\begin{array}{rcl} G^{\circ}(T) & -3.0 & H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) = \text{G}(\text{Al:Al}) = 3.0 & \text{GBCC}_{A1} \\ G^{\circ}(T) & -2.0 & H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) = \text{G}(\text{Al:Cu}) = \\ & -47406.0 + 6.75 & T + 2.0 & \text{GHSER}_{A1} + 1.0 & \text{GHSER}_{Cu} \\ L_{A1:A1:Cu}^{0,\text{AlCu}-\theta} & = & 2211 \end{array}$$

Phase AlCu- ζ

 $G^{\circ}(T) - 9.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 11.0 \quad H_{Cu}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = -420000.0 + 18.0 \quad T + 9.0 \quad \text{GHSER}_{A1} + 11.0 \quad \text{GHSER}_{Cu}$

Phase AlCu- $\gamma(D8_3)$

$$\begin{aligned} G^{\circ}(T) &= 5.0 \quad H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) = 8.0 \quad H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) = \text{G}(\text{Al:Al:Cu}) = \\ &= -300716.0 + 390.0 \quad T = 52 \quad T \cdot \ln T + 5.0 \quad \text{GHSER}_{A1} \\ &= +8.0 \quad \text{GHSER}_{Cu} \\ G^{\circ}(T) &= 4.0 \quad H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) = 9.0 \quad H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) = \text{G}(\text{Al:Cu:Cu}) = \\ &= -280501.0 + 379.6 \quad T = 52 \quad T \cdot \ln T + 4.0 \quad \text{GHSER}_{A1} \\ &= +9.0 \quad \text{GHSER}_{Cu} \end{aligned}$$

Phase AlCu- γ (H)

$$G^{\circ}(T) - 5.0 \quad H_{AI}^{\circ,fcc-AI}(298.15 \text{ K}) - 8.0 \quad H_{Cu}^{\circ,fcc-AI}(298.15 \text{ K}) = G(AI:AI:Cu) = -219258.0 - 45.5 \quad T + 5.0 \quad \text{GHSER}_{AI} + 8.0 \quad \text{GHSER}_{Cu}$$
$$G^{\circ}(T) - 4.0 \quad H_{AI}^{\circ,fcc-AI}(298.15 \text{ K}) - 9.0 \quad H_{Cu}^{\circ,fcc-AI}(298.15 \text{ K}) = G(AI:Cu:Cu) = -200460.0 - 58.5 \quad T + 4.0 \quad \text{GHSER}_{AI} + 9.0 \quad \text{GHSER}_{Cu}$$

Phase Laves-C14

$$\begin{array}{rcl} G^{\circ}(T) - 3.0 & H_{AI}^{\circ,fcc-AI}(298.15 \text{ K}) = \text{G}(\text{Al}:\text{Al}) = & & & 15000.0 + 3.0 \text{ GHSER}_{AI} \\ G^{\circ}(T) - 2.0 & H_{AI}^{\circ,fcc-AI}(298.15 \text{ K}) - H_{Cu}^{\circ,fcc-AI}(298.15 \text{ K}) = \text{G}(\text{Al}:\text{Cu}) = & & & 15000.0 + 2.0 \text{ GHSER}_{AI} + \text{GHSER}_{Cu} \\ G^{\circ}(T) - & H_{AI}^{\circ,fcc-AI}(298.15 \text{ K}) - 2.0 & H_{Cu}^{\circ,fcc-AI}(298.15 \text{ K}) = \text{G}(\text{Cu}:\text{Al}) = & & & 15000.0 + \text{ GHSER}_{AI} + 2.0 \text{ GHSER}_{Cu} \\ G^{\circ}(T) - & 3.0 & H_{Cu}^{\circ,fcc-AI}(298.15 \text{ K}) = \text{G}(\text{Cu}:\text{Cu}) = & & & 15000.0 + 3.0 \text{ GHSER}_{Cu} \\ & & & & & 15000.0 + 3.0 \text{ GHSER}_{Cu} \\ L_{AI,Cu:AI}^{0,\text{Laves}-C14} & = & -24000 + 2.44 \text{ T} \\ \end{array}$$

Phase Laves-C15

$$\begin{array}{rcl} G^{\circ}(T) & -3.0 & H_{Al}^{\circ,fcc-Al}\left(298.15 \text{ K}\right) = \text{G}(\text{Al:Al}) = \\ & & 15000.0 + 3.0 \text{ GHSER}_{Al} \\ G^{\circ}(T) & -2.0 & H_{Al}^{\circ,fcc-Al}\left(298.15 \text{ K}\right) - H_{Cu}^{\circ,fcc-Al}\left(298.15 \text{ K}\right) = \text{G}(\text{Al:Cu}) = \\ & & 15000.0 + 2.0 \text{ GHSER}_{Al} + \text{ GHSER}_{Cu} \\ G^{\circ}(T) & - H_{Al}^{\circ,fcc-Al}\left(298.15 \text{ K}\right) - 2.0 & H_{Cu}^{\circ,fcc-Al}\left(298.15 \text{ K}\right) = \text{G}(\text{Cu:Al}) = \\ & & 15000.0 + \text{ GHSER}_{Al} + 2.0 \text{ GHSER}_{Cu} \\ G^{\circ}(T) & - 3.0 & H_{Cu}^{\circ,fcc-Al}\left(298.15 \text{ K}\right) = \text{G}(\text{Cu:Cu}) = \\ & & 15000.0 + 3.0 \text{ GHSER}_{Cu} \\ L_{Al,Cu:Al}^{0,\text{Laves}-C15} & = -105000 - 1.615 \text{ T} \\ \end{array}$$

Phase Laves-C36

$$\begin{array}{l} G^{\circ}(T) - 3.0 \quad H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) = \text{G}(\text{Al:A1}) = \\ & 15000.0 + 3.0 \quad \text{GHSER}_{A1} \\ G^{\circ}(T) - 2.0 \quad H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) = \text{G}(\text{Al:Cu}) = \\ & 15000.0 + 2.0 \quad \text{GHSER}_{A1} + \quad \text{GHSER}_{Cu} \\ G^{\circ}(T) - \quad H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) - 2.0 \quad H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) = \text{G}(\text{Cu:A1}) = \\ & 15000.0 + \quad \text{GHSER}_{A1} + 2.0 \quad \text{GHSER}_{Cu} \\ G^{\circ}(T) - 3.0 \quad H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) = \text{G}(\text{Cu:Cu}) = \end{array}$$

 $15000.0 + 3.0 \text{ GHSER}_{Cu}$ $L_{
m ALCu:Al}^{0,
m Laves-C36}$ -126169 + 14.61 T = $L_{
m Al,Cu:Cu}^{0,
m Laves-C36}$ -126169 + 14.61 T = 1500-Ŧ Liquid 1400-1300 Temperature / K 1200 bcc-B 2 1100 1000 fcc-A1 ε 900 800-700 -fcc-A1 ჟ ð η 5 γ-D8 600-600-0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 AI Cu $\mathbf{X}_{\mathsf{Cu}} \ \textbf{\textbf{-}}$

Phase bcc-A2

 $L_{Al,Cu:\Box}^{0,bcc-A2} = -73554 + 4.0 T$ $L_{Al,Cu:\Box}^{1,bcc-A2} = 51500 - 11.84 T$

Phase fcc-A1

 $L_{Al,Cu:\Box}^{0,fcc-A1} = -53520 + 2 T$ $L_{Al,Cu:\Box}^{1,fcc-A1} = 38590 - 2 T$ $L_{Al,Cu:\Box}^{2,fcc-A1} = 1170$

Phase liquid

 $L_{Al,Cu}^{0,liquid} = -66622 + 8.1 T$ $L_{Al,Cu}^{1,liquid} = 46800 - 90.8 T + 10 T \cdot \ln T$ $L_{Al,Cu}^{2,liquid} = -2812$

Table I – Invariant Reactions.

Reaction	Туре	Comp	ositions	x Cu	Т / К
Liquid \rightleftharpoons fcc-A1 + AlCu- θ Liquid + AlCu- $\eta \rightleftharpoons$ AlCu- θ Liquid + AlCu- $\eta \rightleftharpoons$ AlCu- η Liquid + AlCu- $\epsilon \rightleftharpoons$ AlCu- η Liquid + bcc-A2 \rightleftharpoons AlCu- η Liquid + bcc-A2 \rightleftharpoons AlCu- η Liquid + bcc-A2 \rightleftharpoons AlCu- η (H) Liquid \rightleftharpoons bcc-A2 \rightleftharpoons AlCu- η (H) Liquid \rightleftharpoons bcc-A2 \rightleftharpoons AlCu- η (H) Liquid \rightleftharpoons bcc-A2 \Leftrightarrow AlCu- η (B ₃) + fcc-A1 AlCu- η (H) \rightleftharpoons AlCu- η (B ₃) + bcc-A2 bcc-A2 \rightleftharpoons AlCu- η (H) \rightleftharpoons AlCu- η (D8 ₃) bcc-A2 \rightleftharpoons AlCu- η (H) \rightleftharpoons AlCu- η (D8 ₃) AlCu- $\epsilon \leftrightarrow$ AlCu- η + AlCu- δ AlCu- $\epsilon \rightleftharpoons$ AlCu- η + AlCu- δ AlCu- $\epsilon \rightleftharpoons$ AlCu- η + AlCu- ζ AlCu- $\zeta \rightleftharpoons$ AlCu- ϵ	Eutectic Peritectic Peritectic Peritectic Peritectic Eutectic Eutectoid Eutectoid Peritectoid Eutectoid Eutectoid Eutectoid Eutectoid Eutectoid	.175 .319 .345 .519 .604 .678 .817 .771 .688 .625 .602 .572 .555 .543 .550	.025 .506 .541 .585 .667 .698 .807 .691 .686 .656 .580 .580 .580 .511 .550	.318 .329 .510 .576 .644 .684 .795 .732 .647 .635 .600 .600 .550	820.7 869.0 898.0 1124.0 1232.4 1293.4 1309.3 837.9 1054.2 1150.5 1109.3 959.7 855.8 852.4 861.0

Table II:a - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sul latti	୦ ୯୯୫	Comments
Al-Cu	(Al)	Cu	cF4 Fm3m	м	4	
	(Cu)	Cu	cF4 Fm3m	м	4	
	β	w	c12 Im3m	м	2	
	eta_0					not considered

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
	AlCu-ð		 R3m		
	AlCu-η1		Pban or Cmmm oP16 or oC16		high T phase
	AlCu-ŋ2	AlCu	mC20 C2/m		low T phase
	AlCu- <i>θ</i>	Al ₂ Cu	t112 14/mcm	Al 8 Cu 4	
	AlCu-ð		 R3m		
	AlCu- ϵ_1	NiAs	hP4 P63/mmc		low T phase
	AlCu- ϵ_2				not considered
	AlCu-γ(<i>D</i> 8 ₃)	Al₄Cu9	cP52 P43m	$\begin{array}{cccc} Al_{1} & 4 \\ Al_{2} & 12 \\ Cu_{1} & 4 \\ Cu_{2} & 4 \\ Cu_{3} & 4 \\ Cu_{4} & 6 \\ Cu_{5} & 6 \\ Cu_{6} & 12 \\ \end{array}$	
	AlCu- $\gamma(H)$				
	AlCu- _{\zeta1}		hP42 C2/m		ζ1
	AlCu-Z2				ζ2 not considered

Table II:b - Crystal Structure and Phase Description.

System Al–Fe

Solution Pha	ses:	
(stable)	:	Liquid, fcc-A1, bcc-A2, bcc-B2,Al5Fe4
(metastable)	:	cbcc-A12, cub-A13, hcp-A3
Compounds:		
stable	:	Al_2Fe , Al_5Fe_2 , $Al_{13}Fe_4$,
metastable	:	$Al_{11}Mn_4, Al_{12}Mn, Al_6Mn$
Modelling:		
Liquid	:	Substitutional, Redlich–Kister
cbcc-A12	:	Substitutional, Redlich–Kister
cub-A13	:	Substitutional, Redlich–Kister
fcc-A1	:	Substitutional, Redlich–Kister
hcp-A3	:	Substitutional, Redlich-Kister
bcc-A2	:	see below
bcc-B2	:	Sublattice model, $(A1,Fe)_{0.5}(A1,Fe)_{0.5}(\Box)_3$ Two descriptions of the bcc-A2:bcc-B2 order-disorder transformation are given: one which includes the parameters of the order and disordered phases in a single description (equation 21 in the thermodynamic modelling chapter), and a second one where the order and disorder contributions are expressed by equation 23. For the second case, the parameters are in a frame.
Al5Fe4	:	Substitutional, Redlich-Kister
Al₁₃Fe₄	:	Sublattice model , (Al) _{0.6275} (Fe) _{0.235} (Al,□) _{0.1375}
Al ₂ Fe	:	Stoichiometric, (Al) ₂ (Fe)
Al ₅ Fe ₂	:	Stoichiometric, $(A1)_5(Fe)_2$
Al11Mn4	:	Stoichiometric, (Al)11(Mn)4
Al ₁₂ Mn	:	Stoichiometric, (Al)12(Mn)
Al ₆ Mn	:	Stoichiometric, (Al) ₆ (Mn)

Assessor and Date:

M. Seierstein, 1991

Comments:

 $Al_{11}Mn_4$, $Al_{12}Mn$ and Al_6Mn and the hcp-A3 phase have been evaluated by Å. Jansson and T.G.Chart (1995) in the assessment of the Al-Fe-Mn system.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase fcc-A1

 $L_{Al,Fe:\Box}^{0,fcc-A1} = -76066.1 + 18.6758 T$

 $L_{Al,Fe:\Box}^{1,fcc-A1} = 21167.4 + 1.3398 T$

Phase hcp-A3

 $L_{Al,Fe:\Box}^{0,hep-A3} = -106903.0 + 20.0 T$

Phase liquid

$L_{ m AI,Fe}^{0, m liquid}$	=	-91976.5 + 22.1314 T
$L_{Al,Fe}^{1, ext{liquid}}$	=	-5672.58 + 4.8728 T
$L^{2, { m liquid}}_{{ m Al}, { m Fe}}$	=	121.9

Phase Al₂Fe

 $G^{\circ}(T) - 2.0 \quad H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Fe}^{\circ, bcc-A2, para}(298.15 \text{ K}) = -98097.0 + 18.7503 \quad T + 2.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Fe}$

Phase Al₁₃Fe₄

 $\begin{array}{l} G^{\circ}(T) - 0.765 \quad H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15 \ {\rm K}) - 0.235 \quad H_{\rm Fe}^{\circ,{\rm bcc}-A2,{\rm para}}(298.15 \ {\rm K}) = \\ {\rm G}({\rm Al}:{\rm Fe}:{\rm Al}) = - \ 30714.4 + 7.44 \quad T + 0.765 \quad {\rm GHSER}_{\rm Al} + 0.235 \ {\rm GHSER}_{\rm Fe} \\ G^{\circ}(T) - 0.6275 \quad H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15 \ {\rm K}) - 0.235 \quad H_{\rm Fe}^{\circ,{\rm bcc}-A2,{\rm para}}(298.15 \ {\rm K}) = \\ {\rm G}({\rm Al}:{\rm Fe}:\Box) = - \ 27781.3 + 7.2566 \quad T + 0.6275 \quad {\rm GHSER}_{\rm Al} + 0.235 \quad {\rm GHSER}_{\rm Fe} \end{array}$

Phase Al₅Fe₂

 $G^{\circ}(T) - 5.0 \quad H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - 2.0 \quad H_{Fe}^{\circ, bcc-A2, para}(298.15 \text{ K}) = -228576 + 48.99503 \quad T + 5.0 \quad \text{GHSER}_{Al} + 2.0 \quad \text{GHSER}_{Fe}$

Phase Al₅Fe₄

 $G^{\circ}(T) - H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = 12178.90 - 4.813 T + \text{GHSER}_{Al}$ $G^{\circ}(T) - H_{Fe}^{\circ, \text{bcc}-A2, \text{para}}(298.15 \text{ K}) = 5009.03 + \text{GHSER}_{Fe}$ $L_{Al,Fe}^{0, \text{Als}Fe_4} = -131649 + 29.4833 T$ $L_{Al,Fe}^{1, \text{Als}Fe_4} = -18619.5$

Phase bcc-B2

 $\begin{array}{l} G^{\circ}(T) - H^{\circ, {\rm fcc}-A1}_{{\rm Al}}(298.15 \ {\rm K}) = {\rm G}({\rm Al}:{\rm Al}:\square) = {\rm GBCC}_{{\rm Al}} \\ G^{\circ}(T) - 0.5 \ H^{\circ, {\rm fcc}-A1}_{{\rm Al}}(298.15 \ {\rm K}) - 0.5 \ H^{\circ, {\rm bcc}-A2, {\rm para}}_{{\rm Fe}}(298.15 \ {\rm K}) = {\rm G}({\rm Fe}:{\rm All}:\square) = \end{array}$ -37890.5 + 7.9972 T + 0.5 GBCC_{Al} + 0.5 GHSER_{Fe} $T_{c,Fe;Al;\Box}^{bcc-B_2} = 521.5$ $\beta_{\rm Fe:Al::O}^{\rm bcc-B2} = 1.11$ $G^{\circ}(T) - 0.5 \quad H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - 0.5 \quad H_{Fe}^{\circ, bcc-A2, para}(298.15 \text{ K}) = G(Al:Fe:\Box) =$ -37890.5 + 7.9972 T + 0.5 GBCC_{Al} + 0.5 GHSER_{Fe} $T_{\mathrm{c,Al:Fe:\square}}^{\mathrm{bcc}-B2} = 521.5$ $\beta_{c,Al:Fe:\Box}^{bcc-B2} = 1.11$ $G^{\circ}(T) - H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \text{ K}) = G(\text{Fe}:\text{Fe}:\Box) = \text{GHSER}_{\text{Fe}}$ $T_{c,Fe:Fe:\Box}^{bcc-B2} = 1043 K$ $\beta_{c,Al:Fe:\Box}^{bcc-B2} = 2.22$ $L_{Al,Fe:Al:D}^{0,bcc-B2}$ $= L^{0, bcc-B2}_{Al:Al, Fe:\Box}$ = -22485.07 + 7.9772 T $L^{1,bcc-B2}_{Al,Fe:Al:\square}$ $= L^{1,bcc-B2}_{Al:Al,Fe:\Box}$ 368.15 \equiv T^{0,bcc−B2} c,Al,Fe:Al:□ $T^{0,\mathrm{bcc}-B2}_{\mathrm{c,Al:Al,Fe:\square}}$ 189.0 = = $T^{1,\text{bcc}-B2}_{c,Al,Fe;Al;D} =$ $T_{c,Al:Al,Fe:\Box}^{1,bcc-B2}$ 63.0 = $\beta^{0,\text{bcc}-B2}_{\text{Al},\text{Fe:Al:D}}$ $\beta^{0,\mathrm{bcc}-B2}_{\mathrm{Al:Al,Fe:D}}$ = = 0.0 $T^{0,\text{bcc}-B2}_{c,Al,Fe:Fe:\Box} =$ $T^{0,\text{bcc}-B2}_{c,\text{Fe:Al},\text{Fe:}\Box}$ = -189.0 $T_{c,Al,Fe:Fe:D}^{1,bcc-B2}$ $T^{1,\text{bcc}-B2}_{c,\text{Fe:Al},\text{Fe:}\Box}$ 63.0 = = $\beta^{0,\mathrm{bcc}-B2}_{\mathrm{Al},\mathrm{Fe}:\mathrm{Fe}:\Box}$ $\beta^{0,\mathrm{bcc}-B2}_{\mathrm{Fe}:\mathrm{Al},\mathrm{Fe}:\Box}$ 0.0 = = $L^{0, bcc-B2}_{Fe:Al, Fe:\Box}$ $L_{Al,Fe:Fe:\square}^{0,bcc-B2}$ = -24694.0 + 7.9772 T= $L^{1,bcc-B2}_{Fe:Al,Fe:D}$ L^{1,bcc-B2} Al,Fe:Fe:D = 368.15=

 $\begin{aligned} G^{\bullet}_{Al;Fe:\square} &= -\ 860\ R \qquad (R = 8.31451) \\ L^{0}_{Al,Fe} &= -\ 30740 + 7.9972\ T \\ L^{1}_{Al,Fe} &= \ 386.15 \\ & \mathbf{Phase \ bcc} - B2 \\ G^{\circ}(T) &= H^{\circ,fcc-A1}_{Al}(298.15\ K) = \mathbf{G}(Al;Al;\Box) = 0.0 \\ G^{\circ}(T) &= 0.5\ H^{\circ,fcc-A1}_{Al}(298.15\ K) = 0.5\ H^{\circ,fcc-A1,para}_{Fe}(298.15\ K) = \mathbf{G}(Al;Fe:\Box) = 2.0\ G^{\bullet}_{Al;Fe:\Box} \\ G^{\circ}(T) &= 0.5\ H^{\circ,fcc-A1}_{Al}(298.15\ K) = 0.5\ H^{\circ,fcc-A1,para}_{Fe}(298.15\ K) = \mathbf{G}(Fe;Al;\Box) = 2.0\ G^{\bullet}_{Al;Fe:\Box} \\ G^{\circ}(T) &= H^{\circ,fcc-A1,para}_{Fe}(298.15\ K) = \mathbf{G}(Fe;Fe;\Box) = 0.0 \\ & \mathbf{Phase \ bcc} - A2 \\ L^{0,bcc-A2}_{Al,Fe:\Box} &= 4.0\ L^{0}_{Al,Fe} \\ L^{1,bcc-A2}_{Al,Fe:\Box} &= 8.0\ L^{1}_{Al,Fe} \\ T^{1,bcc-A2}_{C,Al,Fe;\Box} &= 504 \end{aligned}$

Table I - Invariant Reactions.

Reaction	Туре	Com	positior	18 XFe	Т / К
$Al_{5}Fe_{4} \rightleftharpoons bcc-B2 + Al_{2}Fe$ $Al_{5}Fe_{2} \rightleftharpoons Liquid$ $Liquid \rightleftharpoons Al_{5}Fe_{2} \Rightarrow Al_{13}Fe_{4}$ $Liquid + Al_{5}Fe_{2} \rightleftharpoons Al_{13}Fe_{4}$ $Liquid \rightleftharpoons fcc-A1 + Al_{13}Fe_{4}$ $Liquid + bcc-B2 \rightleftharpoons Al_{5}Fe_{4}$ $Al_{5}Fe_{2} + Al_{5}Fe_{4} \rightleftharpoons Al_{2}Fe$	Eutectoid	.403	.462	.333	1368.2
	Congruent	.286	.286		1434.5
	Eutectic	.316	.286	.365	1430.0
	Peritectic	.242	.286	.247	1424.4
	Eutectic	.009	.000	.237	927.1
	Peritectic	.405	.483	.425	1495.5
	Peritectoid	.286	.366	.333	1428.1

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-Fe	(Al)	Cu	cF4 Fm3m	M 4	
	(Fe)	Cu	cF4 Fm3m	M 4	
	(Fe)	W	c12 Im3m	M 2	
	AlFe	CsCl	cP2 Pm3m	M ₁ 1 M ₂ 1	
	AlFe ₃	BiF3	cF16 Fm3m	Al 4 Fe ₁ 4 Fe ₂ 8	not considered
	Al ₂ Fe	Al ₂ Fe	aP18 P1		
	Al ₃ Fe		mC102 C2/m		designated by Al ₁₃ Fe ₄
	Al ₅ Fe ₂		oC* Cmcm		
	ε		<i>c1</i> 16?		designated by Al ₅ Fe ₄
	Al ₆ Fe	Al ₆ Fe	oC28 Cmc2 ₁	Al ₁ 4 Al ₂ 4 Al ₃ 8 Al ₄ 8 Fe 4	metastable
	Al ₉ Fe ₂	Al ₉ Co ₂	mP22 P2 ₁ /c		metastable

Table II - Crystal Structure and Phase Description.

System Al–Li

Solution Phases:

(stable)	:	Liquid, bcc-A2, fcc-A1
(metastable)	:	hcp-A3

Compounds:

compounds.	
(stable)	AlLi, Al2Li3, Al4Li9
(metastable)	$AlMg-\beta, Al_2Zr, Al_3Zr, Al_3Zr_2, Al_{12}Mg_{17}$

Modelling:

:	Substitutional, Redlich–Kister
:	Substitutional, Redlich-Kister
:	Substitutional, Redlich–Kister
:	Substitutional, Redlich-Kister
:	Sublattice model, (Al,Li)(Li,□)
:	Stoichiometric, (Al)2(Li)3
:	Stoichiometric, (Al)4(Li)9
:	Sublattice model, (Li)24(Al,Li)10(Al)24
:	Sublattice model, (Al) ₂ (Zr)
:	Sublattice model, $(Al)_3(Zr)$
:	Sublattice model, $(Al)_3(Zr)_2$
	: : : : : : : : : : : : : : : : : : : :

Assessor and Date:

	N. Saunders
Publication:	Calphad, 1, (3), 237-251 (1977)
Comments:	
	Data below used to calculate the Al-Li-Mg and Al-Li-Zr systems
	in ar ar oyocino.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase hcp-A3

 $L_{A1,Li:D}^{0,hcp-A3} = -27000.0 + 8.0 T$

Phase bcc-A2

$L^{0,bcc-A2}_{AIIIIII}$	=	_	27000.0	+	8.0	T
ALLEU						

 $L_{AI,Li:D}^{1,bcc-A2} = 1.0E-06$

 $L_{Al,Li:\Box}^{2,bcc-A2} = 3000.0$

Phase fcc-A1

 $L_{Al,Li:\Box}^{0,fec-A1} = -27000.0 + 8.0 T$ $L_{Al,Li:\Box}^{1,fec-A1} = 1.0E-06$

 $L_{Al,Li:D}^{2,fcc-A2} = 3000.0 + 0.1 T$

Phase liquid

$L_{\rm AI,Li}^{0,{ m liquid}}$	=	-41500.0 + 20.96 T
$L_{\rm Al,Li}^{1,{ m liquid}}$	=	10000.0 - 5.8 T
$L^{2,{ m liquid}}_{ m Al,Li}$	=	15902.0 - 9.368 T
$L_{\rm Al,Li}^{3,{ m liquid}}$	=	- 250.0

Phase AlLi

Phase Al₂Li₃

 $G^{\circ}(T) - 2.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15\text{ K}) - 3.0 \quad H_{Li}^{\circ, \text{bcc}-A2}(298.15\text{ K}) = -89640.0 + 32.79 \quad T + 2.0 \quad \text{GHSER}_{A1} + 3.0 \quad \text{GHSER}_{Li}$

Phase Al₄Li₉

 $G^{\circ}(T) - 4.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 9.0 \quad H_{Li}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = G(\text{Al:Li}) = -185250.0 + 67.8 \quad T + 4.0 \quad \text{GHSER}_{A1} + 9.0 \quad \text{GHSER}_{Li}$

Phase Al₁₂Mg₁₇

$$\begin{array}{l} G^{\circ}(T) - 34.0 \quad H_{\mathsf{Al}}^{\circ,\mathsf{fcc}-A1}(298.15 \text{ K}) - 24.0 \quad H_{\mathsf{Li}}^{\circ,\mathsf{bcc}-A2}(298.15 \text{ K}) = \mathrm{G}(\mathsf{Li};\mathsf{Al};\mathsf{Al}) = \\ & \quad -800000 + 405 \quad T + 34.0 \quad \mathrm{GHSER}_{\mathsf{Al}} + 24.0 \quad \mathrm{GHSER}_{\mathsf{Li}} \\ G^{\circ}(T) - 24.0 \quad H_{\mathsf{Al}}^{\circ,\mathsf{fcc}-A1}(298.15 \text{ K}) - 34.0 \quad H_{\mathsf{Li}}^{\circ,\mathsf{bcc}-A2}(298.15 \text{ K}) = \mathrm{G}(\mathsf{Li};\mathsf{Li};\mathsf{Al}) = \\ & \quad -750000 + 405 \quad T + 24.0 \quad \mathrm{GHSER}_{\mathsf{Al}} + 34.0 \quad \mathrm{GHSER}_{\mathsf{Li}} \end{array}$$

Phase Al₂Zr

 $G^{\circ}(T) - 2.0 \quad H_{AI}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Li}^{\circ,bcc-A2}(298.15 \text{ K}) = G(Al:Li) = -24240 + 16.869 \quad T + 2.0 \quad \text{GHSER}_{AI} + \text{GHSER}_{Li}$

Phase Al₃Zr

 $G^{\circ}(T) - 3.0 \quad H_{AI}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Li}^{\circ,bcc-A2}(298.15 \text{ K}) = G(Al:Li) = -24400 + 16.88 \quad T + 3.0 \quad \text{GHSER}_{AI} + \text{GHSER}_{Li}$

Phase Al₃Zr₂

 $G^{\circ}(T) - 3.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 2.0 \quad H_{Li}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = G(\text{Al}:\text{Li}) = -46625 + 33.25 \quad T + 3.0 \quad \text{GHSER}_{A1} + 2.0 \quad \text{GHSER}_{Li}$

Table I - Invariant Reactions.

Reaction	Туре	Compo	osition	s x _{I,i}	<i>т </i> к
Liquid \rightleftharpoons fcc-A1 + AlLi Liquid + AlLi \rightleftharpoons Al ₂ Li ₃ Liquid + Al ₂ Li ₃ \rightleftharpoons Al ₄ Li ₉ Liquid \rightleftharpoons Al ₄ Li ₉ + bcc-A2 AlLi \rightleftharpoons Liquid	Eutectic Peritectic Peritectic Eutectic Congruent	.256 .775 .912 .989 .500	.155 .555 .600 .692 .500	.462 .600 .692 .999	868.8 793.6 607.6 447.8 978.0

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub lattic	o– ces	Comments
Al-Li	(Al)	Cu	cF4 Fm3m	м	4	
	(Li)	w	c12 Im3m	м	2	
	AlLi	NaTl	cF16 Fd3m	М ₁ М2	8 8	
	Al ₂ Li ₃	Ga₂Te₃	hR15 R3m	Al Li ₁ Li ₂	6 3 6	
	Al ₃ Li	AuCu ₃	cP4 Pm3m	Al Li	3 1	metast.
	Al4Li9	Al₄Li9	mC26 C2/m			

System Al-Mg

Version I

Solution Phases:

(stable)	Liquid, fcc-A1, hcp-A3
(metastable)	bcc-A2

Compounds:

(stable)	AlMg- β , AlMg- ϵ , Al-Mg- ζ , Al ₁₂ Mg ₁₇
(metastable)	AlLi

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
Al ₁₂ Mg ₁₇	:	Sublattice model, Mg24(Al,Mg)10(Al,Mg)24
AlMg- β	:	Stoichiometric, (Al) _{0.615} (Mg) _{0.385}
AlMg-e	:	Stoichiometric, (Al) _{0.56} (Mg) _{0.44}
AlMg-ζ	:	Stoichiometric, (Al) _{0.525} (Mg) _{0.475}
AlLi	:	Sublattice model $(Al,Mg)(Mg,\Box)$

Assessor and Date:

N. Saunders, 1991 Comments:

The data below were used for the thermodynamic assessment of the Al-Li-Mg system in COST507 Round I.

Thermodynamic properties of the solution and compound phases(J.mol⁻¹)

Phase AlMg- β

$$G^{\circ}(T) - 0.615 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 0.385 \quad H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -1000.0 - 3.017 \quad T + 0.615 \quad \text{GHSER}_{Al} + 0.385 \quad \text{GHSER}_{Mg}$$

Phase AlMg- ϵ

 $G^{\circ}(T)$ - 14.0 $H_{AI}^{\circ,hcc-A1}$ (298.15 K) - 11.0 $H_{Mg}^{\circ,hcp-A3}$ (298.15 K) = - 9275.0 - 104.0 T + 14.0 GHSER_{AI} + 11.0 GHSER_{Mg}

Phase AlMg- ζ

 $G^{\circ}(T) - 21.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 19.0 \quad H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -21040.0 - 163.76 \quad T + 21.0 \quad \text{GHSER}_{Al} + 19.0 \quad \text{GHSER}_{Mg}$

Phase Al₁₂Mg₁₇

$$G^{\circ}(T) - 34.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 24.0 \quad H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = G(\text{Mg}:\text{Al}:\text{Al}) = -36800.0 - 140.0 \quad T + 34.0 \quad \text{GHSER}_{Al} + 24.0 \quad \text{GHSER}_{Mg}$$

- $G^{\circ}(T) 24.0 \quad H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) 34.0 \quad H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Mg:Mg:Al) = -123200.0 56.26 \quad T + 24.0 \quad \text{GHSER}_{Al} + 34.0 \quad \text{GHSER}_{Mg}$
- $G^{\circ}(T) 10.0 \quad H_{Al}^{\circ,fcc-A1} (298.15 \text{ K}) 48.0 \quad H_{Mg}^{\circ,hcp-A3} (298.15 \text{ K}) = G(Mg;Al:Mg) = 151000.0 + 10.0 \quad GHSER_{Al} + 48.0 \quad GHSER_{Mg}$
- $G^{\circ}(T) 58.0 \quad H_{Mg}^{\circ,hep-A3} (298.15 \text{ K}) = G(Mg:Mg:Mg) =$ 290000 + 58.0 GHSER_{Mg}

250000 + 56.0 611515

 $L_{Mg;Al,Mg;Al}^{0,Al_{12}Mg_{17}} = -17000$

 $L_{Mg;Al,Mg;Mg}^{0,Al_{12}Mg_{17}} = -17000$

Phase AlLi

$$\begin{array}{ll} G^{\circ}(T) - & H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = \text{G}(\text{Al:}\square) = \\ & & 24000 + \text{GHSER}_{A1} \\ G^{\circ}(T) - & H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Mg:}\square) = \\ & & 50000 + \text{GBCC}_{Mg} \\ G^{\circ}(T) - & 2.0 & H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Mg:}\text{Mg}) = \\ & & 2.0 & \text{GBCC}_{Mg} \\ G^{\circ}(T) - & H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - & H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Al:}\text{Mg}) = \\ & & 2486 - 1.75 & T + \text{GBCC}_{A1} + \text{GBCC}_{Mg} \end{array}$$

Phase bcc-A2

$$L_{A1,M_{g;\Omega}}^{0,bcc-A2} = 4971.0 - 3.5 T$$

$$L_{A1,M_{g;\Omega}}^{1,bcc-A2} = 900.0 + 0.423 T$$

 $L_{Al,Mg;\Box}^{2,bcc-A2} = 950.0$

Phase fcc-A1

$L_{AI,Mg:\square}^{0,fcc-AI}$	=	4971.0 - 3.5 T
$L^{1, \text{fcc}-A1}_{A1, Mg:\Box}$	=	900.0 + 0.423 T
$L^{2,\text{fcc}-A1}_{A1,Mg:\square}$	=	950.0

Phase hcp-A3

 $L^{0,hep-A3}_{AI,Mg:\Omega} = 1950.0 - 2.0 T$ $L^{1,hep-A3}_{AI,Mg:\Omega} = 1480.0 - 2.08 T$ $L^{2,hep-A3}_{AI,Mg:\Omega} = 3500.0$

Phase liquid

 $L_{Al,Mg}^{0,liquid} = -12000.0 + 8.566 T$ $L_{Al,Mg}^{1,liquid} = 1894.0 - 3.0 T$ $L_{Al,Mg}^{2,liquid} = 2000.0$

Reaction	Туре	Compositions	x _{Mg}	Т / К
Liquid \rightleftharpoons fcc- $A1$ + AlMg- β Liquid \rightleftharpoons AlMg- β + AlMg- ϵ Liquid + AlMg- $\zeta \rightleftharpoons$ + AlMg- ϵ Liquid + Al ₁₂ Mg ₁₇ \rightleftharpoons AlMg- ζ AlMg- $\epsilon \rightleftharpoons$ AlMg- β + AlMg- ζ AlMg- $\zeta \rightleftharpoons$ AlMg- β + AlMg- ζ AlMg- $\zeta \rightleftharpoons$ AlMg- β + Al ₁₂ Mg ₁₇ Liquid \rightleftharpoons Al ₁₂ Mg ₁₇ + hcp-A3 AlMg- $\beta \rightleftharpoons$ Liquid Al ₁₂ Mg ₁₇ \rightleftharpoons Liquid	Eutectic Eutectic Peritectic Peritectic Eutectoid Eutectoid Eutectic Congruent	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.385 .440 .440 .475 .475 .513 .884 	723.3 721.5 722.0 725.0 700.0 673.0 710.0 724.1 733.3

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices		Comments
Al-Mg	(AI)	Cu	cF4 Fm3̄m	М	4	
	(Mg)	Мg	hP2 P6 ₃ /mmc	М	2	
	Al ₁₂ Mg ₁₇	α-Mn cbcc-A12	c158 I43m	Al Mg ₁ Mg ₂ Mg ₃	24 2 8 24	γ in Masl
	Al ₃ Mg ₂	Cd2Na	cF112 Fd3m			cF1832 in [91Vil] designated as AlMg- eta
	Al ₃₀ Mg ₂₃	Со5Сг2Мо3 (Мп44Si9)	hR53 R3	Al ₁ Al ₂ Al ₃ Al ₄ Al ₅ Mg ₁ Mg ₂ Mg ₃ Mg ₄ Mg ₅	18 18 18 18 18 3 6 6 18 18 18	¢
	Al49Mg32	Al ₆ Mg ₁₁ Zn ₁₁	c/162 Im3			ς

System Al-Mg

Version II

Solution Phases:

(stable)	Liquid, $fcc-A1$, $hcp-A3$
(metastable)	bcc-A2,hcp-Zn

Compounds:

(stable)	AlMg- β , AlMg- ϵ , AlMg- γ
(metastable)	Laves-C14, Laves-C15, Laves-C36, Mg2Zn11,
	Mg_2Zn_3 , $MgZn$, $arphi$ -phase, $ au$ -phase

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-Al	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich–Kister
hcp-Zn	:	Substitutional, Redlich-Kister
AlMg- β	:	Stoichiometric, (Al) _{0.615} (Mg) _{0.385}
AlMg-e	:	Stoichiometric, (Al) _{0.56} (Mg) _{0.44}
MgZn	:	Stoichiometric, (Al) ₁₃ (Mg) ₁₂
Mg2Zn3	:	Stoichiometric, (Al) ₃ (Mg) ₂
arphi-phase	:	Stoichiometric, (Al) ₅ (Mg) ₆
Mg2Zn11	:	Stoichiometric, (Al)11(Mg)2
AlMg-7	:	Sublattice model, Mg5(Al,Mg)12(Al,Mg)12
Laves- $C14$:	Sublattice model (Al,Mg) ₂ (Al,Mg)
Laves- $C15$:	Sublattice model (Al,Mg)2(Al,Mg)
Laves- $C36$:	Sublattice model (Al,Mg) ₂ (Al,Mg)
au-phase	:	Sublattice model (Mg) ₂₆ (Al,Mg) ₆ (Al,Mg) ₄₈ (Al)

Assessor and Date:

	HL.	Lukas
Comments:		

The data for the Laves-C15 phase were evaluated by T. Bühler for the thermodynamic assessment of the Al-Cu-Mg system

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase liquid

 $L_{Al,Mg}^{0,liquid} = -12000 + 8.566 T$ $L_{Al,Mg}^{1,liquid} = 1894 - 3 T$ $L_{Al,Mg}^{2,liquid} = 2000$

•

Phase AlMg- β

 $G^{\circ}(T) - 140.0 \quad H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) - 89.0 \quad H_{Mg}^{\circ, hcp-A3}(298.15 \text{ K}) = -246175 - 675.55 \quad T + 140.0 \quad \text{GHSER}_{A1} + 89.0 \quad \text{GHSER}_{Mg}$

Phase AlMg- ϵ

 $\begin{array}{rl} G^{\circ}(T) & - 30.0 & \mathrm{H}_{\mathrm{Al}}^{\circ,\mathrm{fcc}-A1}(298.15 \mathrm{~K}) - 23.0 & \mathrm{H}_{\mathrm{Mg}}^{\circ,\mathrm{hcp}-A3}(298.15 \mathrm{~K}) = \\ & & - 52565.4 - 173.1775 & T + 30.0 & \mathrm{GHSER}_{\mathrm{Al}} + 23.0 & \mathrm{GHSER}_{\mathrm{Mg}} \end{array}$

Phase AlMg- γ

$G^{\circ}(T) - 24.0$	$H_{\rm M}^{\circ,\rm fcc-A1}(298.15 \text{ K}) - 5.0 H_{\rm Mc}^{\circ,\rm hcp-A3}(298.15 \text{ K}) = G(\rm Mg;Al;Al) =$
()	97875 - 101.5 T + 24.0 GHSER _{A1} + 5.0 GHSER _{Mg}
$G^{\circ}(T) = 12.0$	$H_{Al}^{o,hcp-A1}(298.15 \text{ K}) - 17.0.$ $H_{Mg}^{o,hcp-A3}(298.15 \text{ K}) = G(Mg:Mg:Al) =$
	-52780 - 50.75 T + 12.0 GHSER _{AI} + 17.0 GHSER _{Mg}
$G^{\circ}(T) = 12.0$	$H_{Al}^{a,hep-Al}(298.15 \text{ K}) - 17.0 H_{Mg}^{a,hep-Al}(298.15 \text{ K}) = G(Mg;Al;Mg) =$
	$284124.6 - 138.069 T + 12.0 \text{ GHSER}_{A1} + 17.0 \text{ GHSER}_{Mg}$
$G^{*}(T) = 29.0$	$H_{Mg}^{(2)} = G(Mg;Mg;Mg) =$
r 0.Alia Mg17	133409.0 - 87.319 T + 29.0 GH3ChMg
L _{Mg:Al:Al,Mg}	= 113100 - 14.5 I
$L_{M_2,M_2,M_3,17}^{0,Al_{12}Mg_{17}}$	= 113100 - 14.5 T
MR NIR ALLWE	
	Phase fcc-A1
- 0 fcc - 41	

- $L_{Al,Mg;\Omega}^{0,lcc-Al} = 4971 3.5 T$
- $L_{\rm Al, Mg; \square}^{1, {\rm fcc} A1} = 900 + 0.423 T$
- $L_{{\rm AI},{\rm Mg};\Box}^{2,{\rm fcc}-A1} = 950$

Phase hcp-A3

 $L_{Al,Mg;D}^{0,hcp-A3} = 1950 - 2 T$ $L_{Al,Mg;D}^{1,hcp-A3} = 1480 - 2.08 T$

 $L_{Al,Mg:\Box}^{2,hcp-A3} = 3500$

Phase hcp-Zn

 $L_{AI,Mg:\Box}^{0,hcp-Zn} = 1950 - 2 T$ $L_{AI,Mg:\Box}^{1,hcp-Zn} = 1480 - 2.08 T$

 $L^{2,hcp-Zn}_{Al,Mg:\Box} = 3500$

Phase Laves-C14

Phase Laves-C15

$$\begin{array}{rcl} G^{\circ}(T) &-& 3.0 & H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) &=& \mathrm{G}(\mathrm{Al}:\mathrm{Al}) = \\ & & 15000 + 3.0 & \mathrm{GHSER}_{A1} \\ G^{\circ}(T) &-& H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 2.0 & H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = \mathrm{G}(\mathrm{Mg}:\mathrm{Al}) = \\ & & 104970.96 - 16.46448 & T + \mathrm{GHSER}_{A1} + 2.0 & \mathrm{GHSER}_{Mg} \\ G^{\circ}(T) &-& 2.0 & H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - & H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = \mathrm{G}(\mathrm{Al}:\mathrm{Mg}) = \\ & & 30000 + 4.0 & T + 2.0 & \mathrm{GHSER}_{A1} + \mathrm{GHSER}_{Mg} \\ G^{\circ}(T) &-& 3.0 & H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = \mathrm{G}(\mathrm{Mg}:\mathrm{Mg}) = 15000 + 3.0 & \mathrm{GHSER}_{Mg} \end{array}$$

$L^{0, Laves-C15}_{Al, Mg; Al}$	=	15000
$L_{\rm Al:Al,Mg}^{0,{\rm Laves}-C15}$	=	8000
$L_{Mg:Al,Mg}^{0,Laves-C15}$	=	8000
$L^{0, Laves-C15}_{Al, Mg:Mg}$	=	15000

Phase Laves-C36

Phase Mg₂Zn₁₁

 $G^{\circ}(T) - 11.0 \quad H_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) - 2.0 \quad H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) = + 130000 - 26.0 \quad T + 11.0 \quad \text{GHSER}_{A1} + 2.0 \quad \text{GHSER}_{Mg}$

Phase Mg_2Zn_3

$$G^{\circ}(T) - 3.0 \quad H_{AI}^{\circ, fcc-A1}(298.15 \text{ K}) - 2.0 \quad H_{Mg}^{\circ, hcp-A3}(298.15 \text{ K}) = 1000 - 0.2 \quad T + 3.0 \quad \text{GHSER}_{AI} + 2.0 \quad \text{GHSER}_{Mg}$$

Phase MgZn

 $G^{\circ}(T)$ - 13.0 $H_{A1}^{\circ,fcc-A1}(298.15 \text{ K})$ - 12.0 $H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) =$ - 10000 + 2.5 T + 13.0 GHSER_{A1} + 12.0 GHSER_{Mg}

Phase φ -phase

 $G^{\circ}(T)$ - 5.0. $H_{AI}^{\circ,hcc-A1}(298.15 \text{ K})$ - 6.0 $H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) =$ - 15400 - 16.5 T + 5.0 GHSER_{A1} + 6.0 GHSER_{Mg}

Phase τ -phase

Reaction	Туре	Com	position	s <i>x</i> Mg	Т / К
Liquid \rightleftharpoons fcc-A1 + AlMg- β Liquid \rightleftharpoons AlMg- β + AlMg- γ AlMg- β + AlMg- γ \rightleftharpoons AlMg- ϵ AlMg- ϵ \rightleftharpoons AlMg- γ \Leftrightarrow AlMg- γ Liquid \rightleftharpoons AlMg- γ + hcp-A3 AlMg- β \rightleftharpoons Liquid Al ₁₂ Mg ₁₇ \rightleftharpoons Liquid	Eutectic Eutectic Peritectoid Eutectoid Eutectic Congruent Congruent	.363 .424 .389 .434 .690 .385 .523	.166 .389 .494 .389 .601 .385 .523	.389 .480 .434 .536 .884 	723.6 722.7 682.9 523.2.0 709.4 724.7 736.3

Table I – Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase (Al)	Prototype Cu	Pearson Symbol Space Group	Sub- lattices		Comments	
Al-Mg			cF4 Fm3m	м	4		
	(Mg)	Mg	hP2 P63/mmc	м	2		
	AlMg-7	α−Mn cbcc−A12	c158 I43m	Al Mg ₁ Mg ₂ Mg ₃	24 2 8 24	designated as Al ₁₂ Mg ₁₇	
	Al ₃ Mg ₂	Cd2Na	cF112 Fd3m			cF1832 in [91Vil] designated as AlMg- eta	
	AlMg−€	Co5Cr2Mo3	hR53	Alı	18	R phase in [Mas1]	
		(Mn44Si9)	R3	Al ₂ Al ₃ Al ₄ Al ₅ Mg ₁ Mg ₂ Mg ₃ Mg ₄ Mg ₅ Mg ₆	18 18 18 18 3 6 6 18 18 18		

System Al-Mn

Solution Phases:

Liquid, bcc-A2, cbcc-A12, cub-A13,fcc-A1, hcp-A3

Stoichiometric Compounds:	
(stable)	$Al_{11}Mn_4$, Al_6Mn , Al_4Mn , $Al_8Mn_5-D8_{10}$
(metastable)	Al ₂ Fe, Al ₅ Fe ₂ , Al ₁₃ Fe ₄

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
cbcc-A12	:	Substitutional, Redlich-Kister
cub-A13	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
$Al_8Mn_5 - D8_{10}$:	Sublattice model, (Al) ₁₂ (Mn) ₄ (Al,Mn) ₁₀
Al ₂ Fe	:	Stoichiometric, $(Al)_2(Fe)_1$
Al ₅ Fe ₂	:	Stoichiometric, $(AI)_5(Fe)_2$
Al ₁₃ Fe ₄	:	Sublattice model, (Al).6275(Fe).235(Al,D).1375

Assessor and Date:

Å. Jansson

Publication:

Trita-Mac-0462, May 1991, Materials Research Center, The Royal Institute of Technology, Stockholm

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Al₁₁Mn₄

 $G^{\circ}(T) - 11.0 \quad H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - 4.0 \quad H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) = -354690.0 + 103.031 \quad T + 11.0 \quad \text{GHSER}_{A1} + 4.0 \quad \text{GHSER}_{Mn}$

Phase Al₁₂Mn

$$G^{\circ}(T) - 12.0 \quad H_{AI}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) = -125730.0 + 54.98103 \quad T + 12.0 \quad \text{GHSER}_{AI} + \text{GHSER}_{Mn}$$

Phase Al₄Mn

 $G^{\circ}(T) - 4.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \text{ K}) = -100005.0 + 30.0 \quad T + 4.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Mn}$

Phase Al₆Mn

 $G^{\circ}(T) - 6.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \text{ K}) = -124564.3 + 53.6593 \quad T + 6.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Mn}$

Phase Al₈Mn₅-D8₁₀

 $\begin{array}{ll} G^{\circ}(T)-22.0 & H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15~{\rm K})-4.0 & H_{\rm Mn}^{\circ,{\rm cbcc}-A12,{\rm para}}(298.15~{\rm K})={\rm G}({\rm Al:Mn:Al})=\\ & -308671+56.6488~T+22.0~{\rm GHSER}_{\rm Al}+4.0~{\rm GHSER}_{\rm Mn}\\ G^{\circ}(T)-12.0 & H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15~{\rm K})-14.0 & H_{\rm Mn}^{\circ,{\rm cbcc}-A12,{\rm para}}(298.15~{\rm K})=\\ {\rm G}({\rm Al:Mn:Mn})=-596867+94.612~T+12.0~{\rm GHSER}_{\rm Al}+14.0~{\rm GHSER}_{\rm Mn}\\ L_{\rm Al:Mn:Al,Mn}^{\circ,{\rm Ala}Mn_5-D8_{10}}=-546234+387.348~T \end{array}$

Phase Al₂Fe

 $G^{\circ}(T) = 2.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \text{ K}) = -14065.0 \quad T + 2.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Mn}$

Phase Al₅Fe₂

 $G^{\circ}(T) - 5.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 2.0 \quad H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \text{ K}) = 5.0 \quad \text{GHSER}_{Al} + 2.0 \quad \text{GHSER}_{Mn}$

Phase Al₁₃Fe₄

 $\begin{array}{rcl} G^{\circ}(T) & - 0.765 & H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15~{\rm K}) - 0.235 & H_{\rm Mn}^{\circ,{\rm cbcc}-A12,{\rm para}}(298.15~{\rm K}) = \\ & -2000.0 + 10.0 & T + 0.765 & {\rm GHSER}_{\rm Al} + 0.235 & {\rm GHSER}_{\rm Mn} \\ G^{\circ}(T) & - 0.6275 & H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15~{\rm K}) - 0.235 & H_{\rm Mn}^{\circ,{\rm cbcc}-A12,{\rm para}}(298.15~{\rm K}) = \\ & - 17000.0 + 10.0 & T + 0.6275 & {\rm GHSER}_{\rm Al} + 0.235 & {\rm GHSER}_{\rm Mn} \end{array}$

Phase bcc-A2

 $L^{0,\text{bcc}-A2}_{\text{Al},\text{Mn};\Omega} = -120077 + 52.851 T$ $L^{1,\text{bcc}-A2}_{\text{Al},\text{Mn};\Omega} = -40652 + 29.2764 T$

Phase cbcc-A12

 $L_{Al,Mn;\Box}^{0,cbcc-A12} = -101410 + 43.0 T$

Phase cub-A13

 $L_{Al,Mn;\Box}^{0,cub-A13} = -119022 + 52.507 T \qquad L_{Al,Mn;\Box}^{1,cub-A13} = -1763$

.

Phase fcc-A1 $L_{AI,Mn:\Box}^{0,fcc-A1} = -69300 + 25.0 T$ $L_{AI,Mn:\square}^{1,fcc-A1}$ 8800 = Phase hcp-A3 L^{0,hcp−A3} Al,Mn:□ L^{1,hcp−A3} Al,Mn:□ = -108066 + 43.83 T= -54519.8 + 40 TPhase liquid $L_{\rm AI,Mn}^{0,{
m liquid}}$ = -66174 + 27.0988 T $L^{1,{
m liquid}}_{{
m Al},{
m Mn}}$ = - 7509 + 5.4836 T $L^{2,{
m liquid}}_{{
m Al},{
m Mn}}$ = - 2639

Table I - Invariant Reactions.

Reaction	Туре	Compositions	x _{Mn}	Т / К
Liquid + Al ₄ Mn \rightleftharpoons Al ₆ Mn Liquid \rightleftharpoons fcc-A1 + Al ₆ Mn fcc-A1 + Al ₆ Mn \rightleftharpoons Al ₁₂ Mn Liquid + Al ₁₁ Mn ₄ \rightleftharpoons Al ₄ Mn Liquid + Al ₈ Mn ₅ -D8 ₁₀ \rightleftharpoons Al ₁₁ Mn ₄ Liquid + hcp-A3 \rightleftharpoons Al ₈ Mn ₅ -D8 ₁₀ hcp-A3 \rightleftharpoons Al ₈ Mn ₅ -D8 ₁₀ + cub-A13 bcc-A2 \rightleftharpoons hcp-A3 + cub-A13 fcc-A1 + bcc-A2 \rightleftharpoons cub-A13 Liquid + bcc-A2 \rightleftharpoons hcp-A3 bcc-A2 \rightleftharpoons Liquid	Peritectic Eutectic Peritectoid Peritectic Peritectic Eutectoid Eutectoid Pertitectoid Peritectoid Congruent	.021 .200 .010 .007 .002 .143 .127 .266 .205 .324 .425 .519 .551 .511 .601 .592 .913 .903 .588 .644 .816 .816	.143 .143 .077 .200 .266 .486 .590 .621 .910 .641 	978.0 931.1 817.0 1193.1 1262.4 1433.3 1143.7 1207.0 1330.9 1522.3 1582.0
AI

X_{Mn} →

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments	
Al-Mn	(Al)	Cu	cF4 Fm3m	M ₁ 4		
	α−Mn	α-Mn	c58 I43m		cbcc-Al	
	β−Mn	β-Mn	cP20 P4132		cub- <i>A</i> 13	
	γ−Mn	Cu	cF4 Fm3m		fcc-Al	
	δ−Mn	w	c12 Im3m		bcc-A2	
	AlMn	AuCu-L10	tP2 P4/mmm	M ₁ 1 M ₂ 1	metast.	
	λ	Al ₄ Mn	oP60 Pnnn		reported as Al ₄ Mn	
	Al ₆ Mn	Al ₆ Mn	oC28 Cmcm	Al ₁ 8 Al ₂ 8 Al ₃ 8 Mn 4		
	Al ₁₀ Mn ₃	Al ₅ Mn ₂	hP28 P6 ₃ /mmc	Al ₁ 2 Al ₂ 6 Al ₃ 12 Mn 6		
	Al ₁₁ Mn ₄ -L	Al ₁₁ Mn ₄	aP30 PĪ		transformation not taken into account reported as aP15 in [91Vil]	
	Al ₁₁ Mn ₄ -H		oP160 Pnma		not in [90Mas] metast.	
	Al ₁₂ Mn	$Al_{12}W$	c <i>1</i> 26 Im3		not quoted in [90Mas] metast.	
	Al ₈ Mn ₅	Al ₈ Cr5	h R26 R3m		Al ₈ Mn ₅ - <i>D</i> 0 ₈	

Table II - Crystal Structure and Phase Description.

System Al-Mo

Solution Phases:

(stable)	Liquid, bcc–A2, fcc–A1
(metastable)	bcc- $B2$, hcp- $A3$

Compounds:

(stable) $Al_{12}Mo, Al_4Mo, Al_5Mo, Al_{63}Mo_{37}, Al_8Mo_3, AlMo, cub-A15(metastable)<math>AlM-D0_{19}, AlTi-L1_0$

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
Al ₁₂ Mo	:	Stoichiometric, (Al) ₁₂ (Mo)
Al ₅ Mo	:	Stoichiometric, (Al) ₅ (Mo)
Al₄Mo	:	Stoichiometric, (Al) ₄ (Mo)
Al ₆₃ Mo ₃₇	:	Stoichiometric, (Al) ₆₃ (Mo) ₃₇
Al ₈ Mo ₃	:	Stoichiometric, (Al) ₈ (Mo) ₃
cub-A15	:	Stoichiometric, (Al)(Mo) ₃
AlMo	:	Sublattice model, (Al,Mo)(Al,Mo)
bcc-B2	:	Sublattice model, $(Al,Mo)_{0.5}(Al,Mo)_{0.5}(\Box)_3$
		The thermodynamic description of the bcc-B2 takes
		into account the ordering reaction $bcc-A2 \rightleftharpoons bcc-B2$.
		Two descriptions are given:
		one using equations 23 and 27,
		the other using equations 23 and 28.
		For the latter, the parameters are given in a frame.
AlM-D019	:	Sublattice model, $(Al,Mo)_3(Al,Mo)(\Box)_{0.5}$
AlTi-L10	:	Sublattice model, (Al,Mo)(Al,Mo)

Assessor and Date:

N. Saunders (1996)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Al₁₂Mo

 $G^{\circ}(T) - 12.0 \quad H_{AI}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Mo}^{\circ, bcc-A2}(298.15 \text{ K}) = -139100 + 26.975 \quad T + 12.0 \quad \text{GHSER}_{AI} + \text{GHSER}_{Mo}$

Phase Al₄Mo

 $G^{\circ}(T) - 4.0 \quad H_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Mo}^{\circ,bcc-A2}(298.15 \text{ K}) = -137570 + 29.69 \quad T + 4.0 \quad \text{GHSER}_{A1} + \text{GHSER}_{Mo}$

Phase Al₅Mo

 $G^{\circ}(T) - 5.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - \quad H_{Mo}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = -139104 + 30.156 \quad T + 5.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Mo}$

Phase Al₆₃Mo₃₇

 $G^{\circ}(T) - 63.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 37.0 \quad H_{Mo}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = -2268100 + 167.2 \quad T + 63.0 \quad \text{GHSER}_{A1} + 37.0 \quad \text{GHSER}_{Mo}$

Phase Al₈Mo₃

 $G^{\circ}(T) = 8.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = 3.0 \quad H_{Mo}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = -412500 + 105.05 \quad T + 8.0 \quad \text{GHSER}_{A1} + 3.0 \quad \text{GHSER}_{Mo}$

Phase cub-A15

 $G^{\circ}(T) - H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 3.0 H_{Mo}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = -89000 + 20 T - 0.003 T^2 + \text{GHSER}_{A1} + 3.0 \text{GHSER}_{Mo}$

Phase AlMo

$$\begin{array}{l} G^{\circ}(T) - 2.0 \quad H_{Al}^{\circ,lcc-A1}(298.15 \text{ K}) = \text{G}(\text{Al:Al}) = \\ 2.0 \quad \text{GBCC}_{Al} \\ G^{\circ}(T) - H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Mo}^{\circ,bcc-A2}(298.15 \text{ K}) = \text{G}(\text{Al:Mo}) = \\ - 36850 + T + \text{GHSER}_{Al} + \text{GHSER}_{Mo} \\ G^{\circ}(T) - H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Mo}^{\circ,bcc-A2}(298.15 \text{ K}) = \text{G}(\text{Mo:Al}) = \\ - 36850 + T + \text{GHSER}_{Al} + \text{GHSER}_{Mo} \\ G^{\circ}(T) - 2.0 \quad H_{Mo}^{\circ,bcc-A2}(298.15 \text{ K}) = \text{G}(\text{Mo:Mo}) = \\ 2.0 \quad + \text{GHSER}_{Mo} \end{array}$$

. ..

L^{0,AIMo} Al,Mo:Al L^{0,AIMo} Al:Al,Mo - 5000 = = L^{0,AlMo} Mo:Al,Mo L^{0,AIMo} AI,Mo:Mo = 25000= L^{1,AIMo} Mo:Al,Mo L^{1,AlMo} Al,Mo:Mo = -10000= Phase AlM-D019 $G^{\circ}(T) - 4.0 \quad H^{\circ, \text{fcc}-A1}_{Al}(298.15 \text{ K}) = G(Al:Al) =$ 4.0 GHCP_{AI} $G^{\circ}(T) - H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 3.0 \quad H_{Mo}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = G(\text{Mo:A1}) =$ $-64000 + 15.32 T + GHCP_{Al} + 3.0 GHCP_{Mo}$ $G^{\circ}(T) - 3.0 \quad \text{GHCP}_{A1} - H^{\circ,\text{bcc}-A2}_{Mo}(298.15 \text{ K}) = \text{G}(\text{A1:Mo}) = -64000 + 15.32 \quad T + 3.0 \quad \text{GHCP}_{A1} + \text{GHCP}_{Mo}$ $G^{\circ}(T) - 4.0 \quad H^{\circ, bcc-A2}_{Mo}(298.15 \text{ K}) = G(Mo:Mo) =$ 4.0 GHSER_{Mo}

Phase liquid

 $L_{Al,Mo}^{0,liquid} = -100000 + 35 T$ $L_{Al,Mo}^{1,liquid} = -15000 + 6.3 T$

Phase fcc-A1

 $L_{AI,Mo:\square}^{0,fcc-A1} = -92220 + 20 T$

Phase bcc-A2

 $L_{Al,Mo:\square}^{0,bcc-A2} = -75000 + 25 T$

Phase bcc-B2

Phase bcc-B2

$$G_{Al:Mo:\square}^{\bullet} = -7050 + T$$

 $G^{\circ}(T) - {}_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) = G(Al:Al:\square) = 0.0$
 $G^{\circ}(T) - 0.5 H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) - 0.5 H_{Mo}^{\circ,bcc-A2}(298.15 \text{ K}) = G(Al:Mo:\square) = 2.0 G_{Al:Mo:\square}^{\bullet}$
 $G^{\circ}(T) - 0.5 H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - 0.5 H_{Mo}^{\circ,bcc-A2}(298.15 \text{ K}) = G(Mo:Al:\square) = 2.0 G_{Al:Mo:\square}^{\bullet}$
 $G^{\circ}(T) - H_{Mo}^{\circ,bcc-A2}(298.15 \text{ K}) = G(Mo:Mo:\square) = 0.0$
Phase bcc-A2
 $L_{Al,Mo:\square}^{0,bcc-A2} = -75000 + 25 T$

Phase hcp-A3

 $L_{A1,Mo:D}^{0,hcp-A3} = -85570 + 25 T$

Reaction	Туре	Comp	ositions	x _{Mo}	<i>Т /</i> К
AlMo \rightleftharpoons Al ₈ Mo ₃ + cub-A15 Al ₆₃ Mo ₃₇ \rightleftharpoons Al ₈ Mo ₃ + AlMo Liquid \rightleftharpoons Al ₈ Mo ₃ + Al ₆₃ Mo ₃₇ Liquid + AlMo \rightleftharpoons Al ₆₃ Mo ₃₇ Liquid + cub-A15 \rightleftharpoons AlMo Liquid + bcc-A2 \rightleftharpoons cub-A15 Liquid + Al ₄ Mo \rightleftharpoons Al ₅ Mo Liquid + Al ₅ Mo \rightleftharpoons Al ₁₂ Mo Liquid + Al ₁₂ Mo \rightleftharpoons fcc-A1 Liquid + Al ₈ Mo ₃ \rightleftharpoons Al ₄ Mo Al ₈ Mo ₃ \rightleftharpoons Liquid	Eutectoid Eutectoid Eutectic Peritectic Peritectic Peritectic Peritectic Peritectic Peritectic Congruent	.507 .370 .333 .358 .417 .621 .0012 .0005 .0002 .028 .273	.273 .273 .273 .4955 .750 .791 .200 .167 .077 .273 .273	.750 .505 .370 .525 .750 .166 .077 .0007 .200	1745.6 1759.6 1836.4 1844.7 1983.6 2418.9 1025.2 971.6 933.8 1397.7 1850.5
		1			1

.

t

System	Phase	Prototype	Pearson Symbol Space Group	Sub lattices	Comments
Al-Mo	(Al)	Cu	cF4 Fm3m	M 4	
	(Mo)	w	c12 Im3m	M 2	
	Al ₁₂ Mo	Al ₁₂ W	c126 Im3	Al 24 Mo 2	
	Al₅Mo	Al₅W	hP12 P6 ₃		
	Al₄Mo	Al4W	m C30 Cm	Al1 2 Al2 2 Mo1 2 Al3 4 Al4 4 Al5 4 Al6 4 Al7 4 Mo2 4	
	Λl ₈ Mo ₃	Λl ₈ Mo₃	mC22 C2/m	Mo ₁ 2 Al ₁ 48 Al ₂ 4 Al ₃ 4 Al ₄ 4 Mo ₂ 4	
	Al ₂₃ V4	Al ₂₃ V4	hP54 P63/mmc		
	Al ₆₃ Mo ₃₇				
	ΛΙΜο	w	c12 Im3m	M 2	
	AlMo3	Cr₃Si	cP8 Pm 3 n	Al 2 Mo 6	cub– <i>A</i> 15

.

Table II - Crystal Structure and Phase Description.

System Al–N

<u>Solution Phases:</u> (stable) (metastable)		Liquid, fcc-A1 bcc-A2, hcp-A3
Compound:		A 1 NT
Modelling:		AIN
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Sublattice model, $(A1)(C,\Box)_3$
fcc-A1	:	Sublattice model, (Al)(C,D)
hcp-A3	:	Sublattice model, $(AI)(C,\Box)_{0.5}$
gas	:	ideal (A1,A12,N,N ₂ ,N ₃)
AIN	:	Stoichiometric, (Al)(N)
Assessor and	Date:	
		H.L. Lukas 1992

Data relative for the bcc-A2 and hcp-3 phases were evaluated by R. Fetzer and K. Zeng for the Al-N-Ti system.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase AlN

 $G^{\circ}(T) - H_{A1}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) - 2.0 \quad H_{0.5N_2}^{\circ,\text{gas}}(298.15 \text{ K}) =$ $- 338005.5 + 305.211 \quad T - 46.94867 \quad T \cdot \ln T - 0.00189068 \quad T^2 + 874528 \quad T^{-1} + 1.3756\text{E}-07 \quad T^3$

Phase bcc-A2

 $G^{\circ}(T) - H_{AI}^{\circ, fcc-A1}(298.15 \text{ K}) - 3.0 \quad H_{0.5N_2}^{\circ, gas}(298.15 \text{ K}) = 23000 + 10 \quad T + \text{GHSER}_{AI} + 3.0 \quad \text{GHSER}_{N}$

Phase fcc-A1

 $G^{\circ}(T) - H_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{0.5N_2}^{\circ,gas}(298.15 \text{ K}) = 80 T + \text{GHSER}_{A1} + \text{GHSER}_{N}$

Phase hcp-A3

 $G^{\circ}(T) - H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 0.5 H_{0.5N_2}^{\circ, \text{gas}}(298.15 \text{ K}) =$ 80000 T + GHSER_{AI} + 0.5 GHSER_N

Phase liquid

 $L_{\rm Al,N}^{0,\rm liquid} = -336826.61 + 103.22478 T$

Phase
$$gas(Al,Al_2,N,N_2,N_3)$$
 ($P = 0.1$ MPa)

 $G_{\rm Ab}^{\circ,\text{gas}}(T) - 2.0 \quad H_{\rm Al}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) = RT \ln P +$ 298.15 < T <900.00 : 496408.232 + 35.4797382 $T - 41.6397 T \cdot \ln T$ + 0.00249636 T^2 - 4.9050E-07 T^3 $+ 85390.3 T^{-1}$ $900.00 < T < 10000.00 : + 497613.221 + 17.3681302 T - 38.85476 T \cdot \ln T$ -2.249805E-04 $T^{2} - 9.49003167E-09$ T^{3} -5287.23 T^{-1} $G_{\rm N}^{\rm o,gas}(T) - H_{0.5{\rm N}_2}^{\rm o,gas}(298.15 \text{ K}) = RT \ln P +$ $298.15 < T < 2950.00 : 466446.153 + 2788.78662 T^{-1} - 13.2660528 T$ -20.8939295 $T \cdot \ln T + 8.4552092 \text{E} \cdot 05$ T^2 -1.00186856E-08 T^3 $2950.00 < T < 6000.00 : 481259.023 - 7559107.28 T^{-1} - 52.4348889 T$ -16.3761342 $T \cdot \ln T - 2.28373808E - 04$ T^2 -2.78997209E-08 T^3 $G_{N_2}^{o,gas}(T) - 2.0 \quad H_{0.5N_2}^{o,gas}(298.15 \text{ K}) = 2.0 \quad \text{GHSER}_N + RT \ln P$ $G_{N_3}^{\circ,gas}(T) = 3.0 \quad H_{0.5N_2}^{\circ,gas}(298.15 \text{ K}) = RT \ln P +$ $298.15 < T < 800.00 : 403075.636 - 14.3245228 T - 29.5595416 T \ln T$ -0.02413122 $T^{2} + 3.6156036E - 06$ T^{3} $+ 55714.144 T^{-1}$ $800.00 < T < 2000.00 : 388937.207 + 158.809275 T - 55.404528 T \cdot \ln T$ -0.0026570492 $T^{2} + 1.9365644 E-07$ T^{3} $+ 1536448.48 T^{-1}$ 2000.00 < T < 6000.00 : 380898.006 + 210.207464 T - 62.295576 T·lnT $+ 6.5726456E-06 T^{2} - 7.868012E-10 T^{3}$ $+ 3336949.2 T^{-1}$

Table I - Invariant Reactions.

Reaction	Туре	Com	position	is x _N	<i>Т </i> К
Liquid ≓ fcc-A1 + AlN	Degenerate	.000	.000	.500	933.3
Liquid + gas ≓ AlN	Peritectic-like	.001	.503	.500	2707.7

67

System	Phase	Prototype	Pearson Symbol Space Group	Comments
Al-N	(Al)	Cu	cF4 Fm3m	
	AlN	ZnS	hP4 P63mc	Wurtzite

Table II - Crystal Structure and Phase Description.

System Al-Nb

Solution Pha	ses:	
(stable)		Liquid, bcc-A2, fcc-A1
(metastable)		bcc- $B2$, hcp- $A3$
Compounds	:	
(stable)	-	AlM- $D0_{22}$, σ , AlNb ₃ -A15
(metastable)		$AITi-L1_0, AIM-D0_{19}$
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
bcc-B2	:	Sublattice model, $(Al,Nb)_{0.5}(Al,Nb)_{0.5}(\Box)_3$
		The thermodynamic description of the bcc-B2 takes
		into account the ordering reaction $bcc-A2 \rightleftharpoons bcc-B2$.
		Two descriptions are given:
		one using equations 23 and 27 ,
		the other using equations 23 and 28.
		For the latter, the parameters are given in a frame.
AlM-D022	:	Sublattice model, $(Al)_3(Nb)$
$AlNb_3 - A15$:	Sublattice model, (Al,Nb)(Nb)3
σ	:	Sublattice model, $(Al)_8(Nb)_4(Al,Nb)_{18}$
AlTi-L10	:	Sublattice model, (Al)(Nb)
$AlM - D0_{19}$:	Sublattice model, (Al,Nb) ₃ (Al,Nb)(D)

Assessor and Date:

N. Saunders, 1997.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase AlM-D022

 $G^{\circ}(T) - 3.0 \quad H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) = -136000 + 24 \quad T + 3.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Nb}$

Phase AlM-D019

 $\begin{array}{l} G^{\circ}(T) - 4.0 \quad H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = \text{G}(\text{AI:AI:}\Box) = 4.0 \quad \text{GHCP}_{AI} \\ G^{\circ}(T) - 3.0 \quad H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Nb}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = \text{G}(\text{AI:Nb:}\Box) = \\ & -98000 + 22 \quad T + 3.0 \quad \text{GHCP}_{AI} + \text{GHCP}_{Nb} \\ G^{\circ}(T) - H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 3.0 \quad H_{Nb}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = \text{G}(\text{Nb:AI:}\Box) = \\ & -98000 + 22 \quad T + 3.0 \quad \text{GHCP}_{AI} + \text{GHCP}_{Nb} \\ \end{array}$ -98000 + 10 T + GHCP_{AI} + 3.0 GHCP_{Nb} $G^{\circ}(T) - 4.0 \quad H_{Nb}^{\circ,bcc-A2}(298.15 \text{ K}) = G(Nb:Nb:\Box) = 4.0 \quad GHCP_{Nb}$ L^{0,AIM-D019} Al,Nb:Al:0 = -137400 + 60 T $L_{\rm Al:Al,Nb:G}^{0,\rm AIM-D0_{19}} = -45760 + 20 T$ L^{0,AIM-D019} Nb:AI,Nb:D = 4000 LO,AIM-DO19 = 12000Phase AlNb₃-A15 $G^{\circ}(T) - H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - 3.0 \quad H_{Nb}^{\circ, bcc-A2}(298.15 \text{ K}) = G(Nb:Al) =$ $-77920 + 4.88 T + GHSER_{AI} + 3.0 GHSER_{Nb}$ $G^{\circ}(T) - 4.0 \quad H_{\rm Nb}^{\circ, \rm bcc-A2}(298.15 \text{ K}) = G(\rm Nb:Nb) =$ $20000 + 10 T + 4.0 \text{ GHSER}_{Nb}$ $L_{\rm Nb:AI,Nb}^{0,AINb_3-A15}$ = -68000 + 20 T $L_{\rm Nb;Al,Nb}^{1,AlNb_3-AA15} = 1.0E-04$ $L_{\rm Nb;A1,Nb}^{2,\rm AINb_3-AA15} = -12000$

Phase σ

 $\begin{array}{rcl} G^{\circ}(T)-26.0 & H_{Al}^{\circ,fcc-A1}(298.15 \text{ K})-4.0 & H_{Nb}^{\circ,bcc-A2}(298.15 \text{ K})=\mathrm{G}(\mathrm{Al:Nb:Al})=\\ & & -150000+96 \ T+26.0 \ \mathrm{GHSER}_{Al}+4.0 \ \mathrm{GHSER}_{Nb}\\ G^{\circ}(T)-8.0 & H_{Al}^{\circ,fcc-A1}(298.15 \text{ K})-22.0 \ H_{Nb}^{\circ,bcc-A2}(298.15 \text{ K})=\mathrm{G}(\mathrm{Al:Nb:Nb})=\\ & & -635250+60 \ T+8.0 \ \mathrm{GHSER}_{Al}+22.0 \ \mathrm{GHSER}_{Nb}\\ L_{\mathrm{Al:Nb:Al,Nb}}^{0,\sigma}=& -990000+270 \ T\\ L_{\mathrm{Al:Nb:Al,Nb}}^{1,\sigma}=& 420000 \end{array}$

70

Phase AlTi-L10

 $L^{0,bcc-A2}_{Al,Nb;D} = -104050 + 30 T$ $L^{1,bcc-A2}_{Al,Nb;D} = 9140 - 4 T$ $L^{2,bcc-A2}_{Al,Nb;D} = 12000$

Phase bcc-B2

$$\begin{array}{rcl} G^{\circ}(T) &- H_{\rm Al}^{\circ, {\rm fcc}-A1}(298.15 \ {\rm K}) = {\rm G}({\rm Al};{\rm Al}) = 0 \\ G^{\circ}(T) &- 0.5 \ H_{\rm Al}^{\circ, {\rm fcc}-A1}(298.15 \ {\rm K}) - 0.5 \ H_{\rm Nb}^{\circ, {\rm bcc}-A2}(298.15 \ {\rm K}) = {\rm G}({\rm Al};{\rm Nb}) \\ &- 8650 + T \\ G^{\circ}(T) &- 0.5 \ H_{\rm Al}^{\circ, {\rm fcc}-A1}(298.15 \ {\rm K}) - 0.5 \ H_{\rm Nb}^{\circ, {\rm bcc}-A2}(298.15 \ {\rm K}) = {\rm G}({\rm Nb};{\rm Al}) \\ &- 8650 + T \\ G^{\circ}(T) &- H_{\rm Nb}^{\circ, {\rm bcc}-A2}(298.15 \ {\rm K}) = {\rm G}({\rm Nb};{\rm Ab}) = 0 \\ L_{\rm Al;{\rm Al},{\rm Nb};{\rm CD}}^{0, {\rm bc}-B2} &= 8650 - T \\ L_{\rm Al;{\rm Nb};{\rm Al};{\rm Nb};{\rm CD}}^{0, {\rm bc}-B2} &= 8650 - T \\ L_{\rm Al;{\rm Nb};{\rm Al};{\rm Nb};{\rm CD}}^{0, {\rm bc}-B2} &= 8650 - T \\ L_{\rm Al;{\rm Nb};{\rm Al};{\rm Nb};{\rm CD}}^{0, {\rm bc}-B2} &= 8650 - T \end{array}$$

Phase bcc-B2	
$G^{\bullet}_{\text{Al:Nb:D}} = -8650 + T$	
$G^{\circ}(T) - {}_{AI}^{\circ,fcc-A1}(298.15 \text{ K}) = G(Al:Al:\Box) = 0.0$	
 $G^{\circ}(T) - 0.5 H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 0.5 H_{Nb}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = G(Al:Nb:\Box) = 2.0$	G [∗] Al:Nb:□
$G^{\circ}(T) - 0.5 \ H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) - 0.5 \ H_{Nb}^{\circ, bcc-A2}(298.15 \text{ K}) = G(\text{Nb:A1:}\Box) = 2.0$	G [•] _{Al:Nb:D}
$G^{\circ}(T) - H_{\rm Nb}^{\circ, \rm bcc-A2}(298.15 \text{ K}) = G(\rm Nb:Nb:\Box) = 0.0$	
Phase bcc-A2	
$L_{Al,Nb:D}^{0,bcc-A2} = -104050 + 30 T$ $L_{Al,Nb:D}^{1,bcc-A2} = 9140 - 4 T$ $L_{Al,Nb:D}^{2,bcc-A2} = 12000$	

Phase fcc-A1

$L_{Al,Nb:\Box}^{0,fcc-A1}$	=	- 113500 + 21.1	T ·
$L^{1,\text{fcc}-A1}_{A1,\text{Nb:D}}$	=	5000	
$L^{2,\text{fcc}-A1}_{AI,\text{Nb:D}}$	=	10000	
			Phase hcp-A3
L ^{0,hcp−A3} Al,Nb:□	=	- 113500 + 21.1	Т
L ^{1,hcp-A3} Al,Nb:O	=	5000	
L ^{2,hcp−A3} Al,Nb:□	=	10000	
			Phase liquid
$L_{Al,Nb}^{0,liquid} =$	= -	-91000 + 25 T	
$L_{AI,Nb}^{1,liquid} =$	- 6	6000	
$L_{AI,Nb}^{2,liquid} =$	= 1	5000	

Г

Table I - Invariant Reactions.

Reaction	Туре	Composi	itions $x_{\rm Nb}$	Т / К
Liquid + Al ₃ Nb [•] \rightleftharpoons fcc-A1	Peritectic	.000 .2	50 .001 50 .596 72 .683 31 .782 50	934.2
Liquid \rightleftharpoons Al ₃ Nb [•] + σ	Eutectic	.412 .2		1832.1
Liquid + AlNb ₃ [•] \rightleftharpoons σ	Peritectic	.647 .7		2237.6
Liquid + bcc-A2 \rightleftharpoons AlNb ₃ [•]	Peritectic	.718 .8		2333.7
Al ₃ Nb [•] \rightleftharpoons Liquid	Congruent	.250 .2		1955.5

• Al₃Nb-*D*0₂₂ •• Cr₃Si-*A*15

System	Phase	Prototype	Pearson Symbol Space Group	Sul latti	b- ces	Comments
Al-Nb	(Al)	Cu	cF4 Fm3m	м	4	
	(Nb)	w	c12 Im3m	м	2	
	AlNb ₃	Cr ₃ Si	cP8 Pm3n	Al Nb	2 6	cub-A15
	AlNb ₂	σ-CrFe	tP30 P4 ₂ /mnm	Al ₁ Nb ₁ Al ₂ Nb ₂ Nb ₃	2 4 8 8 8	
	Al ₃ Nb	Al ₃ Ti	t18 14/mm3m	Nb Al ₁ Al ₁	2 2 42	AIM- <i>D</i> 022

Table II - Crystal Structure and Phase Description.

System Al-Nd

Solution Pha	ses:	
		Liquid, bcc-A2, dhcp
Compounds:		
		Al ₁₁ Nd ₃ -H, Al ₁₁ Nd ₃ -L, Al ₃ Nd, AlNd, AlNd ₂ , AlNd ₃ , Laves-C15
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
dhep	:	Substitutional, Redlich-Kister
Al ₁₁ Nd ₃ -H	:	Stoichiometric, $(Al)_{11}(Nd)_3$
Al ₁₁ Nd ₃ -L	:	Stoichiometric, $(Al)_{11}(Nd)_3$
Al ₃ Nd	:	Stoichiometric, $(A1)_3(Nd)$
AlNd	:	Stoichiometric, (Al)(Nd)
AlNd ₂	:	Stoichiometric, (Al)(Nd) ₂
AlNd ₃	:	Stoichiometric, (Al)(Nd) ₃
Laves-C15	:	Stoichiometric, (Al) ₂ (Nd)
Assessor and	Date:	
		G. Cacciamani, G. Borzone, R. Ferro
Publication:		
		G. Cacciamani, G. Borzone, R. Ferro, Anales de Fisica
		86B, 160-162 (1991)
		Revised in 1997.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Al₁₁Nd₃-H

 $G^{\circ}(T) - 11.0 \ H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 3.0 \ H_{Nd}^{\circ, \text{dhcp}}(298.15 \text{ K}) = -526776.18 + 114.5827 \ T + 11.0 \ \text{GHSER}_{Al} + 3.0 \ \text{GHSER}_{Nd}$

Phase Al₁₁Nd₃-L

 $G^{\circ}(T)$ - 11.0 $H_{AI}^{\circ,\text{fcc}-A1}(298.15 \text{ K})$ - 3.0 $H_{Nd}^{\circ,\text{dhcp}}(298.15 \text{ K}) =$ - 548308.18 + 132.1646 T + 11.0 GHSER_{AI} + 3.0 GHSER_{Nd}

Phase Laves-C15

 $G^{\circ}(T) - 2.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Nd}^{\circ, \text{dhcp}}(298.15 \text{ K}) = -158935.47 + 41.37165 \quad T + 2.0 \quad \text{GHSER}_{A1} + \text{GHSER}_{Nd}$

Phase Al₃Nd

 $G^{\circ}(T) - 3.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Nd}^{\circ, \text{dhcp}}(298.15 \text{ K}) = -181169.24 + 47.75868 \quad T + 3.0 \quad \text{GHSER}_{A1} + \text{GHSER}_{Nd}$

Phase AlNd₂

 $G^{\circ}(T) - H_{Al}^{\circ,\text{fcc}-Al}(298.15 \text{ K}) - 2.0 \quad H_{Nd}^{\circ,\text{dhcp}}(298.15 \text{ K}) = -107787.66 + 37.00017 \quad T + \text{GHSER}_{Al} + 2.0 \quad \text{GHSER}_{Nd}$

Phase AlNd

 $G^{\circ}(T) - H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Nd}^{\circ, \text{dhcp}}(298.15 \text{ K}) =$ - 99854.84 + 34.32248 T + GHSER_{AI} + GHSER_{Nd}

Phase AlNd₃

 $G^{\circ}(T) - H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 3.0 \quad H_{Nd}^{\circ, \text{dhcp}}(298.15 \text{ K}) = -107474.72 + 35.0142 \quad T + \text{GHSER}_{AI} + 3.0 \quad \text{GHSER}_{Nd}$

Phase bcc-A2

 $L_{\rm Al,Nd:D}^{0,\rm bcc-A2} = -113226 + 45.05 T$

 $L_{\rm Al, Nd: \Box}^{1, \rm bcc-A2} = 10340 - 15.93 T$

Phase fcc-A1

 $L_{\rm Al,Nd;D}^{0,{\rm fcc}-A1} = 0$

Phase Liquid

$L_{ m Al,Nd}^{0, m liquid}$	=	-125909.87 + 56.16354	T - 21805836	T^{-1}
L ^{1,liquid}	=	35170.81 - 33.34898 T	- 32643234 T ⁻	1

Table I - Invariant Reactions.

Reaction	Туре	Com	position	s I _{Nd}	Т / К
Liquid $\rightleftharpoons Al_{11}Nd_3-L + fcc-Al$ Liquid + Laves-C15° $\rightleftharpoons Al_{11}Nd_3-H$ Al ₁ 1Nd ₃ -H + Al ₂ Nd° $\rightleftharpoons Al_3Nd$ Liquid + AlNd $\rightleftharpoons Al_2Nd$ Liquid + AlNd $\rightleftharpoons AlNd_2$ Liquid + AlNd $\rightleftharpoons AlNd_3-L$ Liquid $\rightleftharpoons AlNd_3-L + bcc-A2$ bcc-A2 $\rightleftharpoons AlNd_3-L + dhcp$ Al ₂ Nd \rightleftharpoons Liquid Al ₁₁ Nd ₃ -L $\rightleftharpoons Al_{11}Nd_3-H$	Eutectic Peritectic Peritectic Peritectic Peritectic Peritectic Eutectic Eutectoid Congruent Polymorphic	.030 .170 .214 .643 .696 .780 .815 .939 .333 .214	.000 .333 .333 0.500 .500 .667 .750 .750 .333 .214	.214 .214 .250 .333 .667 .750 .920 1.000 	898.6 1506.6 1475.8 1220.3 1122.2 1037.9 1008.9 855.3 1758.0 1224.7

* Laves- $C15 \equiv Al_2Nd$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-Nd	(AI)	Cu	cF4 Fm3m	M 4	
	(Nd)	La-a	hP4 P6 ₃ /mmc	M 4	
	(Nd)	w	c12 Im3m	M 2	
	$Al_{11}Nd_3 - \alpha$	$Al_{11}La_3 - \alpha$	o128 Immm		Al ₁₁ Nd ₃ -L
	$Al_{11}Nd_3 - \beta$	Al₄Ba	t 128 14/mmm		Al ₁₁ Nd ₃ -11
	Al ₃ Nd	Ni₃Sn	hP8 P6 ₃ /mmc		
	Al₂Nd	Cu₂Mg	cF24 Fd3m	Nd 8 Al 16	Laves-C15
	AINd	AlEr	oP16 Pmmma	Al 1 Nd 1	
	AINd ₂	Co₂Si	oP12 Pnma	Al 1 Nd 3	
	AINd3	Ni ₃ Sn	hP8 P6 ₃ /mmc	Al 1 Nd 3	

Table II - Crystal Structure and Phase Description.

System Al–Si

Solution Phases:

(stable)	Liquid, fcc–A1
(metastable)	hcp-A3

Modelling:

Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
diamond	:	Substitutional, Redlich-Kister

Assessor and Date:

Publication:	J. Gröbner, HL. Lukas, and F. Aldinger.
	Calphad, 20 , 2 (1996) 247-254.

Thermodynamic properties of the solution phases(J.mol⁻¹)

Phase fcc-A1

 $L_{Al,Si;O}^{0,fcc-A1} = -3143.78 + 0.39297 T$ Phase hcp-A3 $L_{Al,Si;O}^{0,hcp-A3} = -3143.78 + 0.39297 T$ Phase diamond $L_{Al,Si}^{0,diamond} = 113246.16 - 47.5551 T$ Phase liquid $L_{Al,Si}^{0,liquid} = -11340.1 - 1.23394 T$

 $L_{\rm AI,Si}^{1,{\rm liquid}} = -3530.93 + 1.35993 T$

 $L_{\rm ALSi}^{2, \rm liquid} = 2265.39$

.

Table I - Invariant Reactions.

Reaction	Type	Compositions x_{Si}		т / к	
Liquid \rightleftharpoons fcc-A1 + diamond	Eutectic	.122	.016	1.000	850.1

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Al-Si	(Al)	Cu	cF4 Fm3m
	(Si)	diamond	cF8 Fd3m

System Al–Sn

Solution Phases:

(stable)		Liquid, fcc-A1, bct-A5
(metastable)	:	hcp-A3

Modelling:

Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
bct-A5	:	Substitutional, Redlich-Kister
հշթ- <i>A</i> 3	:	Substitutional, Redlich-Kister

Assessor and Date:

S. Fries, and H.L. Lukas,

Publication:

"Cost507 New Light Alloys", Leuven Proceedings, Ed. G. Effenberg (1991)

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase bct-A5

$L_{\rm Al,Sn}^{0,\rm bct-A5}$	=	14136.95 - 4.71231	T
		F	Phase fcc-A1
$L^{0, fcc-A1}_{AI, Sn:\Box}$	=	45297.84 - 8.39814	Т
		Р	hase hcp–A3
L ^{0,hcp−A3} Al,Sn:□	=	0.00001	
		1	Ph ase liquid
$L_{\rm Al,Sn}^{0,{ m liquid}}$	=	16329.85 - 4.98306	Т
$L_{\rm AI,Sn}^{1,{ m liquid}}$	=	4111.97 - 1.15145 <i>T</i>	,

 $L_{\rm ALSn}^{2,{\rm liquid}} = 1765.43 - 0.57390 T$

Table I – Invariant Reactions.

Reaction	Туре	Compo	sitions	x _{Sn}	<i>Т </i> К
$Liquid \rightleftharpoons fcc-A1 + bct-A5$	Eutectic	.980 .	.000	.990	502.4

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Al-Sn	(Al)	Cu	cF4 Fm3m
	(Sn)	β−Sn	t14 14 ₁ /amd

System Al-Ta

Solution Phases:

(stable) (metastable) Liquid, bcc-A2, fcc-A1bcc-B2, hcp-A3

Compounds :

(stable)	AlM- $D0_{22}, \sigma$
(metastable)	$AlTi-L1_0, AlM-D0_{19}$

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
bcc-B2	:	Sublattice model, $(Al,Ta)_{0.5}(Al,Ta)_{0.5}(\Box)_3$
		The thermodynamic description of the bcc-B2 takes
		into account the ordering reaction $bcc-A2 \rightleftharpoons bcc-B2$.
		Two descriptions are given:
		one using equations 23 and 27,
		the other using equations 23 and 28.
		For the latter, the parameters are given in a frame.
$AlM - D0_{19}$:	Sublattice model, (Al,Ta)₃(Al,Ta)(□)
AlM-D022	:	Sublattice model, (Al) ₃ (Ta)
σ	:	Sublattice model , (Al) ₈ (Ta) ₄ (Al,Ta) ₁₈
AlTi-L10	:	Sublattice model, (Al,Ta) _{0.5} (,TaTa) _{0.5}

Assessor and Date:

N. Saunders, 1997.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase AlM-D022

 $G^{\circ}(T) - 3.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Ta}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = -130456 + 23 \quad T + 3.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Ta}$

Phase Al₃Ta₂-H

 $G^{\circ}(T) - 3.0 \quad H_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) - 2.0 \quad H_{Ta}^{\circ,bcc-A2}(298.15 \text{ K}) = -145000 + 17.325 \quad T + 3.0 \quad \text{GHSER}_{A1} + 2.0 \quad \text{GHSER}_{Ta}$

Phase Al₃Ta₂-L

 $G^{\circ}(T) - 3.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 2.0 \quad H_{Ta}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = -155000 + 24 \quad T + 3.0 \quad \text{GHSER}_{A1} + 2.0 \quad \text{GHSER}_{Ta}$

Phase AlM-D019

Phase σ

 $G^{\circ}(T) - 26 \quad H_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) - 4 \quad H_{Ta}^{\circ,bcc-A2}(298.15 \text{ K}) = G(\text{Al:Ta:A1}) =$ $- 300000 + 90 \quad T + 26 \quad \text{GHSER}_{Al} + 4 \quad \text{GHSER}_{Ta}$ $G^{\circ}(T) - 8 \quad H_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) - 22 \quad H_{Ta}^{\circ,bcc-A2}(298.15 \text{ K}) = G(\text{Al:Ta:Ta}) =$ $- 657000 + 90 \quad T + 8 \quad \text{GHSER}_{Al} + 22 \quad \text{GHSER}_{Ta}$ $L_{A1:Ta:A1,Ta}^{0,\sigma} = -1230000 + 450 \quad T$ $L_{A1:Ta:A1,Ta}^{1,\sigma} = 1.0\text{E-4}$

 $L_{Al:Ta:Al,Ta}^{2,\sigma} = 300000$

Phase AlTi-L10

 $G^{\circ}(T) - 2.0 \quad H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) = G(Al;Al) = 4 + 2.0 \quad \text{GHSER}_{Al}$ $G^{\circ}(T) - H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Ta}^{\circ, bcc-A2}(298.15 \text{ K}) = G(Al;Ta) = -71000 + 15.0 \quad T + \text{GHSER}_{Al} + \text{GHFCC}_{Ta}$ $G^{\circ}(T) - H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Ta}^{\circ, bcc-A2}(298.15 \text{ K}) = G(Ta;Al) = -71000 + 15.0 \quad T + \text{GHSER}_{Al} + \text{GHFCC}_{Ta}$ $G^{\circ}(T) - H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Ta}^{\circ, bcc-A2}(298.15 \text{ K}) = G(Ta;Al) = -71000 + 15.0 \quad T + \text{GHSER}_{Al} + \text{GHFCC}_{Ta}$ $G^{\circ}(T) - 2 II_{Ta}^{\circ,bcc-A^2}(298.15 \text{ K}) = G(Ta:Ta) = 2 GFCC_{Ta}$ $L_{Al,Ta:Al}^{\circ,AlTi-Ll_0} = -56000 + 20 T$ $L_{Al,Ta;Al}^{1,AlTi-L1_0} = 30000$ $L_{\rm Al,Ta;Al}^{2,\rm AlTi-L1_0} = 20000$ $L_{\rm Al;Al,Ta}^{0,{\rm AlTi}-L_{10}} = -56000 + 20 T$ $L_{\rm Al:Al,Ta}^{1,{\rm AlTi}-L_{10}} = 30000$ $L_{\rm Al:Al,Ta}^{2,{\rm AlTi}-L_{1_0}} = 20000$ Phase bcc-A2 $L_{Al,Ta:\Box}^{0,bcc-A2} = -89000 + 30 T$ $L_{\rm Al, Ta:\square}^{1, \rm bcc - A2} = -5000$ $L_{AI,Ta:\Box}^{2,bcc-A2} = 15000$ Phase bcc-B2 $\begin{array}{l} G^{\circ}(T) - H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15 \ {\rm K}) = {\rm G}({\rm Al};{\rm Al}) = 0 \\ G^{\circ}(T) - 0.5 \ H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15 \ {\rm K}) - 0.5 \ H_{\rm Ta}^{\circ,{\rm bcc}-A2}(298.15 \ {\rm K}) = {\rm G}({\rm Al};{\rm Ta}) \end{array}$ -8250 + T $G^{\circ}(T) = 0.5 \ H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = 0.5 \ H_{Ta}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = G(\text{Ta:A1})$ -8250 + T $G^{\circ}(T) - \prod_{\text{Ta}}^{\circ,\text{bcc}-A^2}(298.15 \text{ K}) = G(\text{Ta:Ta}) = 0$ $L_{\rm Al;Al;Ta;O}^{0,\rm bcc-B2} = 8250 - T$ $L_{\text{Ta:A1,Ta:D}}^{0,\text{bcc}-B2} = 8250 - T$ $L_{AI,Ta;A1;\Box}^{0,bee-B2} = 8250 - T$ $L_{AI,Ta;AI;D}^{0,bcc-B2} = 8250 - T$

Phase bcc-B2

$$G_{A1:Ta:\Box}^{\bullet} = -8250 + T$$

 $G^{\circ}(T) - {}_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) = G(A1:A1:\Box) = 0.0$
 $G^{\circ}(T) - 0.5 H_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) - 0.5 H_{Ta}^{\circ,bcc-A2}(298.15 \text{ K}) = G(A1:Ta:\Box) = 2.0 G_{A1:Ta:\Box}^{\bullet}$
 $G^{\circ}(T) - 0.5 H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - 0.5 H_{Ta}^{\circ,bcc-A2}(298.15 \text{ K}) = G(Ta:A1:\Box) = 2.0 G_{A1:Ta:\Box}^{\bullet}$
 $G^{\circ}(T) - H_{Ta}^{\circ,bcc-A2}(298.15 \text{ K}) = G(Ta:Ta:\Box) = 0.0$
 $bcc-A2$
 $L_{A1,Ta:\Box}^{0,bcc-A2} = -89000 + 30 T$
 $L_{A1,Ta:\Box}^{1,bcc-A2} = -5000$
 $L_{A1,Ta:\Box}^{2,bcc-A2} = 15000$

Phase fcc-A1

 $L_{AI,Ta:\square}^{0,fcc-A1} = -100000 + 30 T$

Phase hcp-A3

 $L_{Al,Ta:D}^{0,hcp-A3} = -100000 + 30 T$

Phase liquid

 $L_{Al,Ta}^{0,liquid} = -108000 + 30 T$

- $L_{\rm Al,Ta}^{1,{
 m liquid}} = 6000$
- $L_{Al,Ta}^{2,liquid} = 17000$

Table I - Invariant Reactions.

Reaction	Туре	Compositions x_{Ta}			Т / К
Liquid + AlM- $D0_{22}^{\bullet} \rightleftharpoons \text{fcc}-A1$ Liquid \rightleftharpoons + AlM- $D0_{22}^{\bullet} + \text{Al}_3\text{Ta}_2$ -II Liquid \rightleftharpoons Al_3Ta ₂ -H $\rightleftharpoons + \sigma$ Liquid + bcc- $A2 \rightleftharpoons \sigma$ Al ₃ Ta [•] \rightleftharpoons Liquid Al ₃ Ta ₂ -H \rightleftharpoons Al ₃ Ta ₂ -II	Peritectic Eutectic Eutectic Peritectic Congruent Polymorphic	.00001 .366 .444 .643 .250 .400	.250 .250 .400 .877 .250 .400	.0008 .400 .576 .720 	934.0 1826.8 1819.8 2270.4 1901.0 1498.1

• AlM- $D0_{22} \equiv Al_3Ta$

System	Phase	Prototype	Pearson Symbol Space Group	Su latti	b- ces	Comments
Al-Ta	(Al)	Cu	cF4 Fm3m	м	4	
	(Ta)	w	c/2 Im3m	м	2	
	AlTa ₂	σ−CrFe	tP30 P4 ₂ /mnm	Alı Taı Al ₂ Ta ₂ Ta ₃	2 4 8 8 8	
	Al ₃ Ta	Al ₃ Ti	t18 14/mm3m	Ta Al ₁ Al ₁	2 2 42	AIM- <i>D</i> 022
	Al ₃ Ta ₂ -L		o**			
	Al ₃ Ta ₂ -H		<i>o</i> *24			

Table II - Crystal Structure and Phase Description.

System Al–Ti

<u>Solution Phase</u> (stable) (metastable)	<u>es:</u>	Liquid, bcc–A2, fcc–A1, hcp–A3, A1M–D019, A1Ti–L10 bcc–B2
Compounds:		
Modelling:		$AIM - D0_{22}, AI_2T1, AI_{11}T1_5$
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich–Kister
bcc-B2	:	Sublattice model, (Al,Ti) _{0.5} (Al,Ti) _{0.5} (□) ₃
		The thermodynamic description of the bcc-B2 takes
		into account the ordering reaction $bcc-A2 \rightleftharpoons bcc-B2$.
		Two descriptions are given: one using equations
		23 and 27 , the other using equations 23 and 28 .
		For the latter, the parameters are given in a frame.
hcp-A3	:	Substitutional, Redlich–Kister
$AlM - D0_{19}$:	Sublattice model, (Al,Ti)(Al,Ti) ₃ (□) _{0.5}
L10-AlTi	:	Sublattice model, (Al,Ti)(Al,Ti)
$A1M - D0_{22}$:	Stoichiometric, (Al) ₃ (Ti)
Al ₂ Ti	:	Stoichiometric, (Al) ₂ (Ti)
Al ₁₁ Ti ₅	:	Stoichiometric, $(Al)_{11}(Ti)_5$

Assessor and Date:

N. Saunders (1992)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase AlTi-L10

$$G^{\circ}(T) - 2.0 \quad H_{Al}^{\circ,lcc-A1}(298.15 \text{ K}) = G(Al;Al) = 2.0 \quad \text{GHSER}_{Al}$$

 $G^{\circ}(T) - H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Ti}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Ti;Al) = -79644.0 + 19.2 \quad T + \text{GHSER}_{Al} + \text{GHSER}_{Ti}$

$G^{\circ}(T) - H^{\circ,\mathfrak{l}}_{Al}$	$H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = G(\text{Al:Ti}) = -79644.0 + 19.2 \text{ T} + \text{CHSER}_{\text{Ti}} + \text{CHSER}_{\text{Ti}}$
$G^{\circ}(T) = 2.0$ $L^{0,AITi-L1_0}_{AI,Ti:AI}$	$H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Ti:Ti}) = 2.0 \text{ GFCCTi}$ = - 89892 + 44 T
$L_{\rm Al,Ti:Al}^{1,{\rm AlTi}-L1_0}$	= 30000
$L^{2,\mathrm{AlTi}-L1_0}_{\mathrm{Al,Ti};\mathrm{Al}}$	= 20000
$L^{0,\mathrm{AlTi}-L1_0}_{\mathrm{Al:Al,Ti}}$	= - 89892 + 44 T
$L_{\rm Al:Al,Ti}^{1,{\rm AlTi}-L1_0}$	= 30000
$L^{2,AITi-L1_0}_{AI:AI,Ti}$	= 20000
$L_{\mathrm{Ti:AI,Ti}}^{0,\mathrm{AITi}-L1_0}$	= -15134 - 2.36 T
$L_{\rm Al,Ti:Ti}^{0,{\rm AlTi}-L1_0}$	= -15134 - 2.36 T
	Phase AlM-D019
$G^{\circ}(T) - 4.0$	$H_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) = G(Al:Al:\Box) = 4.0 \text{ GHCPA}$
$G^{\circ}(T) - II_{Al}^{\circ,I}$	$I_{\text{Ti}}^{\text{o.hcp}-A3}(298.15 \text{ K}) - 3.0 I_{\text{Ti}}^{\text{o.hcp}-A3}(298.15 \text{ K}) = G(\text{Ti:Al:}\Box) = -110080 + 23.88 T + \text{GHSER}_{A1} + 3.0 \text{GHSER}_{\text{Ti}}$
$G^{\circ}(T) - 3.0$	$H_{AI}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Ti}^{\circ,hcp-A3}(298.15 \text{ K}) = G(AI:Ti:\Box) = -99120.0 + 32.28 T + 3.0 \text{ GHSER}_{AI} + \text{GHSER}_{Ti}$
$G^{\circ}(T) - 4.0$	$II_{Ti}^{o,hcp-A3}(298.15 \text{ K}) = G(Ti;Ti;\Box) = 4.0 \text{ GHSER}_{Ti}$

$L_{AI,Ti:AI:\Box}^{0,AIM-D0_{19}} = -298200 + 100 T$

 $L_{A1,Ti:Ti:D}^{0,AIM-D0_{19}} = 32000 - 4 T$

 $L_{\rm Al:AI,T:D}^{0,\rm AIM-D0_{19}} = -98968 + 33.3 T$

 $L_{\text{Ti:AI,Ti:D}}^{0,\text{AIM}-D0_{19}} = 10656 - 1.332 T$

Phase Al₂Ti

 $G^{\circ}(T) - 2.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Ti}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -121500 + 31.2 \quad T + 2.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Ti}$

Phase AlM-D022

$$\begin{array}{ll} G^{\circ}(T) - 3.0 & H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Ti}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Al:Ti}) = \\ & -144592.0 + 37.024 & T + 3.0 & \text{GHSER}_{A1} + \text{GHSER}_{Ti} \\ G^{\circ}(T) - 4.0 & H_{Ti}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Ti:Ti}) = \\ & \text{GFCC}_{\text{Ti}} \\ & L_{A1,\text{Ti:Ti}}^{\circ, \text{AIM}-D0_{22}} = -60000 \end{array}$$

Phase "Al₁₁Ti₅"

 $G^{\circ}(T) - 17.0 \quad H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) - 8.0 \quad H_{Ti}^{\circ, hcp-A3}(298.15 \text{ K}) = -971125.0 + 236.4 \quad T + 17.0 \quad \text{GHSER}_{A1} + 8.0 \quad \text{GHSER}_{Ti}$

Phase bcc-A2

- $L^{0,{\rm bcc}-A2}_{{\rm Al},{\rm Ti; C}} \ = \ -128500 \ + \ 39 \ T$
- $L_{\rm AI,Ti:0}^{1,\rm bcc-A2} = 6000$
- $L_{\rm AI,Ti:\square}^{2,\rm bcc-A2} = 21200$

Phase bcc-B2

$$\begin{array}{ll} G^{\circ}(T) - H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15 \ {\rm K}) = {\rm G}({\rm Al};{\rm Al};\Box) = 0 \\ G^{\circ}(T) - 0.5 \ H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15 \ {\rm K}) - 0.5 \ H_{\rm Ti}^{\circ,{\rm bcc}-A2}(298.15 \ {\rm K}) = {\rm G}({\rm Al};{\rm Ti};\Box) \\ & - 8750 + 1.25 \ T \\ G^{\circ}(T) - 0.5 \ H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15 \ {\rm K}) - 0.5 \ H_{\rm Ti}^{\circ,{\rm bcc}-A2}(298.15 \ {\rm K}) = {\rm G}({\rm Ti};{\rm Al};\Box) \\ & - 8750 + 1.25 \ T \\ G^{\circ}(T) - H_{\rm Ti}^{\circ,{\rm bcc}-A2}(298.15 \ {\rm K}) = {\rm G}({\rm Ti};{\rm Ti};\Box) = 0 \\ L_{\rm Al;{\rm Al};{\rm Al};{\rm Ti};\Box}^{0,{\rm bcc}-B2} = 8750 - 1.25 \ T \\ L_{\rm Al;{\rm Al};{\rm Ti};{\rm Al};\Box}^{0,{\rm bcc}-B2} = 8750 - 1.25 \ T \\ L_{\rm Al;{\rm Ti};{\rm Al};\Box}^{0,{\rm bcc}-B2} = 8750 - 1.25 \ T \\ L_{\rm Al;{\rm Ti};{\rm Al};\Box}^{0,{\rm bcc}-B2} = 8750 - 1.25 \ T \\ \end{array}$$

Phase bcc-B2
$G^{\bullet}_{AI:Ti:D} = -8750 + 1.25 T$
$G^{\circ}(T) - H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = G(\text{Al}:\text{Al}:\Box) = 0.0$
$G^{\circ}(T) = 0.5 \ H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = 0.5 \ H_{Ti}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = G(\text{Al}:\text{Ti}:\Box) = 2.0 \ \text{G}^{\bullet}_{\text{Al}:\text{Ti}:\Box}$
$G^{\circ}(T) - 0.5 \ H_{Cu}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 0.5 \ H_{Ti}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = G(\text{Ti}:\text{Al}:\Box) = 2.0 \ G^{\bullet}_{\text{Al}:\text{Ti}:\Box}$
$G^{\circ}(T) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = G(\text{Ti:Ti:}\Box) = 0.0$
Phase bcc-A2
$L_{\rm AI,Ti:O}^{0,\rm bcc-A2} = -128500 + 39 \ T$
$L_{\rm AI,Ti:D}^{1,\rm bcc-A2} = 6000$
$L_{\rm AI,Ti:O}^{2,\rm bcc-A2} = 21200$

Phase fcc-A1

L ^{0,fcc-A1} AI,Ti:D	=	- 128970 + 39	T
$L_{Al,Ti:D}^{1,fcc-A1}$	=	- 5000	
L ^{2,fcc-A1} Al,Ti:D	=	20000	

Phase hcp-A3

L ^{0,hcp-A3} At,Ti:0	=	-133500 + 39 T
L ^{1,hcp-A3} Al,Ti:O	=	750.0
L ^{2,hcp-A3} Al,Ti:0	=	17500.0
Phase liquid

 $L_{Al,Ti}^{0.liquid} = -108250 + 38 T$ $L_{Al,Ti}^{1.liquid} = -6000 + 5 T$ $L_{Al,Ti}^{2.liquid} = 15000$

Table I - Invariant Reactions.

Reaction	Туре	Com	Т / К		
$\begin{array}{l} \mathrm{Al}_{11}\mathrm{Ti}_5 + \mathrm{Al}\mathrm{Ti}_{1}L\mathrm{I}_0 \rightleftharpoons \mathrm{Al}_{2}\mathrm{Ti} \\ \mathrm{Al}_{11}\mathrm{Ti}_5 \rightleftharpoons \mathrm{Al}\mathrm{M}^{\bullet} + \mathrm{Al}_{2}\mathrm{Ti} \\ \mathrm{Liquid} + \mathrm{Al}_{11}\mathrm{Ti}_5 \rightleftharpoons \mathrm{Al}\mathrm{M}^{-}D\mathrm{O}^{\bullet}_{22} \\ \mathrm{Liquid} + \mathrm{Al}\mathrm{M}^{-}D\mathrm{O}^{\bullet}_{22} \rightleftharpoons \mathrm{fcc}^{-}A\mathrm{I} \\ \mathrm{Liquid} + \mathrm{Al}\mathrm{Ti}^{-}L\mathrm{I}_0 \rightleftharpoons \mathrm{Al}_{11}\mathrm{Ti}_5 \\ \mathrm{Liquid} + \mathrm{Al}\mathrm{Ti}^{-}L\mathrm{I}_0 \rightleftharpoons \mathrm{Al}_{11}\mathrm{Ti}_5 \\ \mathrm{Liquid} + \mathrm{bcc}^{-}A3 \rightleftharpoons \mathrm{Al}\mathrm{Ti}^{-}L\mathrm{I}_0 \\ \mathrm{Liquid} + \mathrm{bcc}^{-}A3 \rightleftharpoons \mathrm{ch}\mathrm{Ti}^{-}L\mathrm{I}_0 \\ \mathrm{Liquid} + \mathrm{bcc}^{-}A2 \rightleftharpoons \mathrm{bcp}^{-}A3 \\ \mathrm{bcc}^{-}A3 \rightleftharpoons \mathrm{Li}_{0}^{-}A\mathrm{l}\mathrm{Ti} + \mathrm{Al}\mathrm{M}^{-}D\mathrm{O}_{19} \\ \mathrm{Al}\mathrm{M}^{-}D\mathrm{O}_{19} \rightleftharpoons \mathrm{bcc}^{-}A3 \\ \mathrm{bcc}^{-}A2 \rightleftharpoons \mathrm{liquid} \end{array}$	Peritectoid Eutectoid Peritectic Degenerate Peritectic Peritectic Peritectic Eutectoid Congruent Congruent	.320 .320 .247 .001 .310 .436 .491 .595 .682 .788	.388 .250 .320 .250 .380 .498 .555 .518 .682 .788	.333 .333 .250 .000 .320 .459 .540 .607 	1454.3 1259.8 1627.7 934.2 1651.9 1716.7 1775.9 1384.4 1452.0 1989.0

• AIM- $D0_{22} \equiv Al_3Ti$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	
Al-Ti	(Al)	Cu	cF4 Fm3m	M 4	
	(Ti)	Mg	hP2 P6 ₃ /mmc	M 2	
	(Ti)	w	c12 Im3m	M 2	
	AITI	AuCu	tP4 P4/mmm	$\begin{array}{ccc} AI & 2\\ Ti_1 & 1\\ Ti_2 & 1 \end{array}$	AlTi-L10
	AlTi3	Ni ₃ Sn	hP8 P63/mmc		AIM- <i>D</i> 0 ₁₉
	Al ₂ Ti	Ga2III	t124 14: /amd		
	Al₂Ti−α	Ga ₂ Zr	oC12 Cmmm		transformation not taken into account in [90Mas]
	Al3Ti	Al ₃ Ti	118 14/mmm	Al ₁ 2 Al ₂ 4 Ti 2	AIM-D022
	Al₅Ti₃		tP32 I4/mbm		
	δ	Al ₃ Zr	tI16	1	Al ₁₁ Ti₅ from [91Vil]
	Al5Ti3		tP32 14/mbm		metastable

Table II - Crystal Structure and Phase Description.

System Al–V

<u>Solution Ph</u>	ases:	Liquid, bcc-A2, fcc-A1
Compounds	<u></u>	Al ₁₀ V,Al ₇ V, Al ₂₃ V ₄ , AlM-D0 ₂₂ , Al ₈ V ₅
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
$Al_{10}V$:	Stoichiometric, $(Al)_{10}(V)$
Al_7V	:	Stoichiometric, $(Al)_7(V)$
$Al_{23}V_4$:	Stoichiometric, $(Al)_{23}(V)_4$
AlM-D022	:	Stoichiometric, $(Al)_3(V)$
Al_8V_5	:	Stoichiometric, $(Al)_8(V)_5$

Assessor and Date:

N. Saunders (1991)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Al₁₀V

 $G^{\circ}(T) - 10.0 \quad H_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) - H_V^{\circ,bcc-A2}(298.15 \text{ K}) = -111221 + 18.909 \text{ T} + 10.0 \text{ GHSER}_{A1} + \text{GHSER}_V$

Phase $Al_{23}V_4$

 $G^{\circ}(T) - 23.0 \quad H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 4.0 \quad H_V^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = -430650 + 64.665 \quad T + 23.0 \quad \text{GHSER}_{AI} + 4.0 \quad \text{GHSER}_V$

Phase AlM-D022

 $G^{\circ}(T) - 3.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_V^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = -104308.0 + 15.2 \quad T + 3.0 \quad \text{GHSER}_{A1} + \text{GHSER}_V$

Phase Al_7V

 $G^{\circ}(T)$ - 7.0 $H_{AI}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{V}^{\circ,bcc-A2}(298.15 \text{ K}) =$ - 108800.0 + 16.8 T + 7.0 GHSER_{AI} + GHSER_V

Phase Al₈V₅

 $G^{\circ}(T) - 8.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 5.0 \quad H_V^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = -294320.0 - 13.0 \text{ T} + 8.0 \text{ GHSER}_{A1} + 5.0 \text{ GHSER}_V$

Phase bcc-A2

$L^{0,bcc-A2}_{Al,V:\Box}$	=	- 95000	+ 20	Т

 $L_{\rm Al,V:D}^{1,\rm bcc-A2} = -6000$

Phase fcc-A1

$L^{0,\text{fcc}-A1}_{\text{AI},\text{V}:D}$	=	- 69800	+	15	Т

 $L_{\rm AI,V:D}^{1,\rm fee-A1} = -8000$

Phase liquid

 $L_{\rm ALV}^{0, \rm liquid} = -50725 + 9 {\rm T}$

 $L_{\rm ALV}^{1, \rm liquid} = -15000 + 8 \ {\rm T}$

Table I -	· Invar	iant R	leactions.
-----------	---------	--------	------------

Reaction	Туре	Compositions x_V			Т / К
Liquid + AIM - $D0_{22}^{\bullet} \rightleftharpoons Al_{23}V_4$	Peritectic	.003	.250	.148	1007.3
Liquid + Al ₂₃ V ₄ $\rightleftharpoons Al_7V$	Peritectic	.002	.148	.125	969.0
Liquid + Al ₇ V $\rightleftharpoons Al_{10}V$	Peritectic	.001	.125	.091	945.2
Liquid + Al ₁₀ V $\rightleftharpoons fcc-A1$	Peritectic	.000	.091	.001	935.3
Liquid + Al ₈ V ₅ $\rightleftharpoons AIM-D0_{22}^{\bullet}$	Peritectic	.167	.384	.250	1640.1
Liquid + bcc-A2 $\rightleftharpoons Al_8V_5$	Peritectic	.376	.471	.384	1932.7

• AlM- $D0_{22} \equiv Al_3 V$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices		Comments
Al-V	(Al)	Cu	cF4 Fm3m	м	4	
	(V)	w	c12 1m3m	М	2	
	Al ₃ V	Al ₃ Ti	t 18 14/mmm	Al ₁ Al ₂ V	2 4 2	AlM- <i>D</i> 022
	Al ₈ V₅	Cu ₅ Zn ₈	c/52 /43m	$\begin{array}{c} A_1 \\ M_1 \\ M_2 \\ V \end{array}$	24 8 12 8	
	Al ₂₁ V ₂	Al ₂₁ V ₂	cF 176 F d3̄m	Al ₁ Al ₂ Al ₃ V	16 48 96 16	described as Al ₁₀ V
	Al ₂₃ V4	Al ₂₃ V4	hP54 P6 ₃ /mmc			
	Al ₄₅ V7	Al ₄₅ V7	mC104 C2/m			described as Al ₇ V
	AlV ₃	Cr ₃ Si	cP8 Pm3n	Al V	2 6	A ₁₅ stable?

Table II - Crystal Structure and Phase Description.

System Al-Y

Solution I	<u>Phases:</u>	
		Liquid, bcc-A2, fcc-A1, hcp-A3
Compoun	ds:	
		$Al_3Y, Al_2Y, AlY, Al_2Y_3, Al_3Y_5, AlY_2$
Modelling	<u>;:</u>	
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A	:	Substitutional, Redlich-Kister
hcp-/13	:	Substitutional, Redlich-Kister
Al ₃ Y	:	Stoichiometric, $(Al)_3(Y)$
Al ₂ Y	:	Stoichiometric, $(Al)_2(Y)$
AlY	:	Stoichiometric, (Al)(Y)
Al_2Y_3	:	Stoichiometric, $(Al)_2(Y)_3$
Al_3Y_5	:	Stoichiometric, $(Al)_3(Y)_5$
AlY ₂	:	Stoichiometric, (Al)(Y) ₂

Assessor and Date:

H.L. Lukas, 1993

Thermodynamic properties of the solution and compound phases (J.mol⁻)

Phase Al_2Y

 $G^{\circ}(T) - 2.0 \quad H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Y}^{\circ, hcp-A3}(298.15 \text{ K}) = -246018.0 + 35.32809 \quad T + 2.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Y}$

Phase Al₂Y₃

 $G^{\circ}(T) = 2.0 \quad H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = 3.0 \quad H_{Y}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -373605.0 + 84.410 \quad T + 2.0 \quad \text{GHSER}_{AI} + 3.0 \quad \text{GHSER}_{Y}$

Phase Al₃Y

 $G^{\circ}(T) - 3.0 \quad H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Y}^{\circ, hcp-A3}(298.15 \text{ K}) = -267460.0 + 46.48084 \quad T + 3.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Y}$

Phase Al₃Y₅

 $G^{\circ}(T) - 3.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 5.0 \quad H_Y^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -564479.2 + 127.7201 \quad T + 3.0 \quad \text{GHSER}_{A1} + 5.0 \quad \text{GHSER}_Y$

Phase AlY

 $G^{\circ}(T) - H_{A1}^{\circ,\text{fcc}-A1}$ (298.15 K) $- H_{Y}^{\circ,\text{hcp}-A3}$ (298.15 K) = - 173810.0 + 40.86834 T + GHSER_{A1} + GHSER_Y

Phase AlY₂

 $G^{\circ}(T) - H_{A1}^{\circ,\text{fcc}-A1}$ (298.15 K) - 2.0 $H_{Y}^{\circ,\text{hcp}-A3}$ (298.15 K) = - 190908.0 + 44.38629 T + GHSER_{A1} + 2.0 GHSER_Y

Phase bcc-A2

 $L^{0, bcc-A2}_{AI,Y;\Box} = 90 T$

Phase hcp-A3

 $L^{0, hcp-, A3}_{AI, Y: \Box} = 90 T$

,

Phase liquid

$L_{\rm AI,Y}^{0,{ m liquid}}$	=	-202611.28 + 4.63942 T
$L_{\rm Al,Y}^{1,{ m liquid}}$	Ξ	-54350.11 + 0.28402 T
$L^{2, { m liquid}}_{{ m Al}, { m Y}}$	=	83347.01 - 34.76401 T
$L_{\rm Al,Y}^{3,{ m liquid}}$	=	15488.69 - 0.7988 T
$L_{\rm AI,Y}^{4,{ m liquid}}$	=	-51205.9 + 30.2161 T

Table I - Invariant Reactions.

Reaction	Туре	Compositions x_Y		Т / К	
Liquid $\rightleftharpoons Al_3Y + fcc-A1$ Liquid $+ Al_2Y \rightleftharpoons Al_3Y$ Liquid $+ Al_2Y \rightleftharpoons Al_3Y$ Liquid $+ Al_2Y \rightleftharpoons AlY$ Liquid $\rightleftharpoons AlY + Al_2Y_3$ Liquid $+ Al_2Y_3 \rightleftharpoons Al_3Y_5$ Liquid $+ Al_3Y_5 \rightleftharpoons AlY_2$ Liquid $\rightleftharpoons AlY_2 + hcp-A3$ $hcp-A3 \rightleftharpoons bcc-A2$ Liquid $\rightleftharpoons Al_2Y$ Liquid $\rightleftharpoons Al_2Y_3$	Eutectic Peritectic Peritectic Eutectic Peritectic Eutectic Allotropic Congruent	.020 .114 .516 .581 .707 .757 .667 1.000 .333 .600	.000 .333 .330 .500 .600 .625 .783 1.000 .333 .600	.250 .250 .500 .600 .625 .666 1.000	$\begin{array}{r} 913.0\\ 1253.0\\ 1403.0\\ 1361.2\\ 1302.5\\ 1258.0\\ 1239.0\\ 1752.0\\ 1754.0\\ 1364.0 \end{array}$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-Y	(A1)	Cu	cF4 Fm3m	M 4	
	(Y)	Mg	hP2 P6 ₃ /mmc	M 2	
	(Y)	w	c12 Im3m	M 4	
	Al ₃ Υ-α	Ni ₃ Sn	hP8 P63/mmc	Al 6 Y 2	
	Al ₃ Υ-β	BaPb3	hR12 R3m	$ \begin{array}{ccc} Al_{1} & 9 \\ Al_{2} & 18 \\ Y_{1} & 3 \\ Y_{2} & 6 \end{array} $	
	Al ₂ Y	$\mathrm{Cu}_2\mathrm{Mg}$	cF24 Fd3m	Al 16 Y 8	
	Aly	CrB	oC8 Cmcm	Al 4 Y 4	
	Al ₂ Y ₃	۸l ₂ Zr ₃	1P20 P4 ₂ /mnm	$ \begin{array}{cccc} Al & 8 \\ Y_1 & 4 \\ Y_2 & 4 \\ Y_3 & 4 \end{array} $	
	AIY2	Co₂Si	oP12 Pnma	$\begin{array}{ccc} AI & 4 \\ Y_1 & 4 \\ Y_2 & 4 \end{array}$	
	AlY ₃	AuCu ₃	cP4 Pm ³ m	Al 1 V 2	L12 metastable
	Al ₃ Y ₅	Mn5Si3	hP16 P6 ₃ /mcm		impurity stabilized [91Vil]?

Table II - Crystal Structure and Phase Description.

System Al-W

Solution Phases:

(stable)	Liquid, bcc-A2, fcc-A1	
(metastable)	bcc- <i>B</i> 2, hcp- <i>A</i> 3	
Compounds:		

$\frac{\text{Compounds:}}{(\text{stable})}$

(stable)	$Al_{12}W, Al_4W, Al_5W, Al_{77}W_{23}, Al_7W_3, Al_2W$
(metastable)	$AIM-D0_{19}$, $AITi-L1_0$

Modelling:

Liquid	:	Substitutional, Redlich–Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich–Kister
$Al_{12}W$:	Stoichiometric, (Al) ₁₂ (W)
Al ₅ W	:	Stoichiometric, (Al) ₅ (W)
Al ₄ W	:	Stoichiometric, (Al) ₄ (W)
$Al_{77}W_{23}$:	Stoichiometric, (Al) ₇₇ (W) ₂₃
Al_7W_3	:	Stoichiometric, $(Al)_7(W)_3$
cub415	:	Stoichiometric, $(Al)(W)_3$
Al_2W	:	Sublattice model, $(Al)_2(W)$
bcc-B2	:	Sublattice model, $(Al,W)_{0.5}(AlW)_{0.5}(\Box)_3$
		The thermodynamic description of the bcc-B2 takes
		into account the ordering reaction $bcc-A2 \rightleftharpoons bcc-B2$.
		Two descriptions are given: one using equations
		23 and 27, the other using equations 23 and 28.
		For the latter, the parameters are given in a frame.
AlM-D019	:	Sublattice model, $(Al,W)_3(Al,W)(\Box)_{0.5}$
AlTi-L10	:	Sublattice model, (A1,W)(A1,W)

Assessor and Date:

N. Saunders, 1996.

ţ

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase $Al_{12}W$

 $G^{\circ}(T) - 12.0 \quad H_{AI}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{W}^{\circ, bcc-A2}(298.15 \text{ K}) = -62400 + 9.49 \quad T + 12.0 \quad \text{GHSER}_{AI} + \text{GHSER}_{W}$

Phase Al₄W

 $G^{\circ}(T) - 4.0 \quad H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{W}^{\circ, bcc-A2}(298.15 \text{ K}) = -57500 + 9.73 \quad T + 4.0 \quad \text{GHSER}_{A1} + \text{GHSER}_{W}$

Phase Al₅W

 $G^{\circ}(T) = 5.0 \quad H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = -58446 + 8.4 \quad T + 5.0 \quad \text{GHSER}_{AI} + \text{GHSER}_{W}$

Phase Al₂W

 $G^{\circ}(T) - 2.0 \quad H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_W^{\circ, \text{bcc}-A2}(298.15 \text{ K}) =$ 13536 - 22.38 $T + 2.0 \quad \text{GHSER}_{AI} + \text{GHSER}_W$

Phase Al₇₇W₂₃

 $G^{\circ}(T) - 77.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 23.0 \quad H_{W}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = -189300 - 400 \quad T + 77.0 \quad \text{GHSER}_{A1} + 23.0 \quad \text{GHSER}_{W}$

Phase Al₇W₃

 $G^{\circ}(T) - 7.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 3.0 \quad H_{W}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) = 34700 - 70 \quad T + 7.0 \quad \text{GHSER}_{A1} + 3.0 \quad \text{GHSER}_{W}$

Phase AlM-D019

$$\begin{array}{l} G^{\circ}(T) - 4.0 \quad H_{Al}^{\circ, lcc-Al}(298.15 \text{ K}) = \text{G}(\text{Al};\text{Al}) = \\ & 4.0 \quad \text{GHCP}_{Al} \\ G^{\circ}(T) - H_{Al}^{\circ, fcc-Al}(298.15 \text{ K}) - 3.0 \quad H_{W}^{\circ, bcc-A2}(298.15 \text{ K}) = \text{G}(\text{W};\text{Al}) = \\ & -12716 + 15.16 \quad T + \text{GHCP}_{Al} + 3.0 \quad \text{GHCP}_{W} \\ G^{\circ}(T) - 3.0 \quad H_{Al}^{\circ, fcc-Al}(298.15 \text{ K}) - H_{W}^{\circ, bcc-A2}(298.15 \text{ K}) = \text{G}(\text{Al};\text{W}) = \\ & -12716 + 15.16 \quad T + 3.0 \quad \text{GHCP}_{Al} + \text{GHCP}_{W} \\ G^{\circ}(T) - 4.0 \quad H_{W}^{\circ, bcc-A2}(298.15 \text{ K}) = \text{G}(\text{W};\text{W}) = \\ & 4.0 \quad \text{GHSER}_{W} \end{array}$$

Phase bcc-A2

 $L_{AI,W:\Box}^{0,bcc-A2} = -27000 + 25 T$ $L_{AI,W:\Box}^{1,bcc-A2} = -10000$

Phase bcc-B2

Phase bcc-B2

$$G_{A1:W:\Box}^{\bullet} = 1.0E-4$$

 $G^{\circ}(T) - {}_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) = G(A1:A1:\Box) = 0.0$
 $G^{\circ}(T) - 0.5 H_{A1}^{\circ,fcc-A1}(298.15 \text{ K}) - 0.5 H_{W}^{\circ,bcc-A2}(298.15 \text{ K}) = G(A1:W:\Box) = 2.0 G_{A1:W:\Box}^{*}$
 $G^{\circ}(T) - 0.5 H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - 0.5 H_{W}^{\circ,bcc-A2}(298.15 \text{ K}) = G(W:A1:\Box) = 2.0 G_{A1:W:\Box}^{*}$
 $G^{\circ}(T) - H_{W}^{\circ,bcc-A2}(298.15 \text{ K}) = G(W:W:\Box) = 0.0$
Phase bcc-A2
 $L_{A1,W:\Box}^{0,bcc-A2} = -27000 + 25 T$
 $L_{A1,W:\Box}^{1,bcc-A2} = -10000$

Phase fcc-A1

 $L_{A1,W;\Box}^{0,fcc-A1} = -19250 + 20.2 T$ $L_{A1,W;\Box}^{1,fcc-A1} = -10000$

Phase hcp-A3

 $L_{Al,W;\Box}^{0,hep-A3} = -19250 + 20.2 T$ $L_{Al,W;\Box}^{1,hep-A3} = -10000$

Phase liquid

 $L_{\rm ALW}^{0.{\rm liquid}} = -70000 + 35 T$ $L_{\rm ALW}^{1.{\rm liquid}} = 1.0\text{E-4}$ $L_{\rm ALW}^{2.{\rm liquid}} = 15000$

Reaction	Туре	Comp	osition	s x _W	Т / К
$Al_2 W \rightleftharpoons Al_7 W_3 + bcc-A2$ Liquid + Al_2 W \Rightarrow Al_7 W_3 Liquid + bcc-A2 \Rightarrow Al_7 W_3 Liquid + Al_7 W_3 \Rightarrow Al_7 W_{23} Liquid + Al_7 W_{23} \Rightarrow Al_4 W Al_7 T W_{23} \Rightarrow Al_4 W + bcc-A2 Al_7 W_{23} + bcc-A2 \Rightarrow Al_7 W_3 Liquid + Al_4 W \Rightarrow Al_5 W Liquid + Al_5 W \Rightarrow Al_1 W Liquid + Al_1 W \Rightarrow fcc-A Al_8 W_3 \Rightarrow Liquid	Eutectoid Peritectic Peritectic Peritectic Eutectoid Eutectoid Peritectic Peritectic Peritectic Congruent	.333 .190 .243 .172 .125 .023 .230 .0025 .0003 .0002 .273	.300 .333 .901 .300 .230 .200 .841 .200 .167 .077 .273	.847 .300 .333 .230 .200 .840 .300 .167 .077 .0003	1602.6 1706.8 1925.7 1648.2 1604.1 1571.0 1580.0 1149.6 969.4 933.6 1850.5

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-W	(Al)	Cu	cF4 Fm3m	M 4	
	(W)	w	c12 Im3m	M 2	
	$Al_{12}W$	$Al_{12}W$	c126 Im3	Al 24 W 2	
	Al₅W	Al ₅ W	hP12 P6 ₃		
	Al4W	Al₄W	m C30 Cm	$\begin{array}{cccc} Al_{1} & 2 \\ Al_{2} & 2 \\ W_{1} & 2 \\ Al_{3} & 4 \\ Al_{4} & 4 \\ Al_{5} & 4 \\ Al_{5} & 4 \\ Al_{6} & 4 \\ Al_{7} & 4 \\ W_{2} & 4 \end{array}$	
	Al ₂ W				not quoted in [Mas1] nor in [Vil1]
	Al ₇ W ₃				not quoted in [Mas1] nor in [Vil1]
	Al ₇₇ W ₂₃				not quoted in [Mas1] nor in [Vil1]

Table II - Crystal Structure and Phase Description.

System Al–Zn

(stable)	Liquid, fcc-A1, hcp-Zn
(metastable)	hcp-A3

Compounds:

(metastable)

AlCu- η , Laves-C14

Modelling:

Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich–Kister
hcp-Zn	:	Substitutional, Redlich-Kister
AlCu- η	:	Stoichiometric, (Al)(Zn)
Laves- $C14$:	Sublattice model, (Al,Zn) ₂ (Al,Zn)

Assessor and Date:

	S. an Mey (1991)
Publication:	Z. für Metallkde, 84, 7, 451-455 (1993).

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase fcc-A1

$L_{Al,Zn:\Box}^{0,fee-A1}$	=	7297.48 + 0.47512	Т
$L^{1,\text{fcc}-A1}_{A1,Zn:\Box}$	=	6612.88 - 4.59110	Т
$L^{2,\text{fcc}-A1}_{A1,Zn:\Box}$	=	- 3097.19 + 3.30635	Т

Phase hcp-A3

 $L_{Al,Zn;\Box}^{0,hep=.A3} = 18820.95 - 8.95255 T$

 $L_{A1,Zn:\Box}^{1,hcp-A3} = 1.0E-6$

 $L_{\rm AI,Zn:0}^{2,\rm hcp-A3} = 1.0\rm E~6$

 $L_{\rm Al,Zn:\square}^{3,\rm hcp-A3} = -702.79$

Phase hcp-Zn

L ^{0,hcp−Zn} Al,Zn:□	=	18820.95 - 8.95255	Т
L ^{1,hcp−Zn} Al,Zn:⊡	=	1.0E-6	
$L^{2,\mathrm{hcp}-\mathrm{Zn}}_{\mathrm{AL},\mathrm{Zn};\mathrm{D}}$	=	1.0E-6	
L ^{3,hcp−Zn} Al,Zn:□	=	- 702.79	

Phase AlCu- η

$$G^{\circ}(T) - H_{Cu}^{\circ,fee-A1}(298.15\text{K}) - H_{Zn}^{\circ,hep-Zn}(298.15\text{ K}) = 15000.0 + \text{GHSER}_{Cu} + \text{GHSER}_{Zn}$$

Phase Laves-C14

$$\begin{aligned} G^{\circ}(T) &= 3.0 \quad H_{Cu}^{\circ,fcc-A1}(298.15\text{K}) = \text{G}(\text{Al}:\text{Al}) = \\ & 15000.0 + 3.0 \quad \text{GHSER}_{Cu} \\ G^{\circ}(T) &= 2.0 \quad H_{Cu}^{\circ,fcc-A1}(298.15\text{K}) - H_{Zn}^{\circ,hcp-Zn}(298.15\text{ K}) = \text{G}(\text{Al}:\text{Zn}) = \\ & 15000.0 + 2.0 \quad \text{GHSER}_{Cu} + \text{GHSER}_{Zn} \\ G^{\circ}(T) &= H_{Cu}^{\circ,fcc-A1}(298.15\text{K}) - 2.0 \quad H_{Zn}^{\circ,hcp-Zn}(298.15\text{ K}) = \text{G}(\text{Zn}:\text{Al}) = \\ & 15000.0 + \text{GHSER}_{Cu} + 2.0 \quad \text{GHSER}_{Zn} \\ G^{\circ}(T) &= 3.0 \quad H_{Zn}^{\circ,hcp-Zn}(298.15\text{ K}) = \text{G}(\text{Zn}:\text{Zn}) = \\ & 15000.0 + 3.0 \quad \text{GHSER}_{Zn} \\ & 15000.0 + 3.0 \quad \text{GHSER}_{Zn} \\ H_{Al:\text{Al}:\text{Al}:\text{Zn}:\text{D}}^{0,\text{Laves}-C14} &= -7500 - 18 \quad T \end{aligned}$$

Phase liquid

 $L_{AI,Zn}^{0,liquid} = 10465.55 - 3.39259 T$

Table I - Invariant Reactions.

Reaction	Туре	Compositions	x_{Zn}	Т / К
Liquid \rightleftharpoons fcc-A1 + hcp-A3	Eutectic	.884 .673	.969	654.0
fcc-A1' \rightleftharpoons fcc-A1" + hcp-A3	Monotectic	.590 .141	.984	550.4

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Al-Zn	(Al)	Cu	cF4 Fm3m
	(Zn)	Мg	hP2 P6 ₃ /mmc

System Al-Zr

Solution Phases:

		Liquid, bcc-A2, fcc-A1, hcp-A3
Compoun	ds:	
		$\Lambda_{12} \land r, \Lambda_{12} \land r_3, \Lambda_{13} \land r_5, \Lambda_$
Madallina		$\Lambda I_4 \Delta r_5$, Al Δr , Al Δr_2 , Al Δr_3
wouening		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp43	:	Substitutional, Redlich-Kister
Al_2Zr	:	Stoichiometric, (Al) ₂ (Zr)
Al ₂ Zr ₃	:	Stoichiometric, (Al) ₂ (Zr) ₃
Al ₃ Zr	:	Stoichiometric, (Al) ₃ (Zr)
Al_3Zr_2	:	Stoichiometric, $(Al)_3(Zr)_2$
Al ₃ Zr ₅	:	Stoichiometric, $(A1)_3(Zr)_5$
ALZrs	:	Stoichiometric, $(\Lambda I)_4(Zr)_5$

: Stoichiometric, (Al)₄(Zr)₅ : Stoichiometric, (Al)(Zr) : Stoichiometric, (Al)(Zr)₂ : Stoichiometric, (Al)(Zr)₂ $AlZr_2$ AlZr₃ Stoichiometric, (Al)(Zr)₃ :

Assessor and Date:

AlZr

N. Saunders (1991)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Al₂Zr

 $G^{\circ}T - 2.0$ $H_{AI}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Zr}^{\circ,hcp-A3}(298.15 \text{ K}) = -137430.0 + 25.44 T + 2.0 \text{ GHSER}_{AI} + \text{GHSER}_{Zr}$

Phase Al₂Zr₃

 $G^{\circ}T - 2.0 \quad H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 3.0 \quad H_{Zr}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -192135.0 + 33.0 \quad T + 2.0 \quad \text{GHSER}_{AI} + 3.0 \quad \text{GHSER}_{Zr}$

Phase Al₃Zr

 $G^{\circ}T - 3.0 \quad H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Zr}^{\circ,hcp-A3}(298.15 \text{ K}) = -162500.0 + 28.92 \quad T + 3.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Zr}$

Phase Al₃Zr₂

 $G^{\circ}T - 3.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 2.0 \quad H_{Zr}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -234700.0 + 44.1 \quad T + 3.0 \quad \text{GHSER}_{Al} + 2.0 \quad \text{GHSER}_{Zr}$

Phase Al₃Zr₅

 $G^{\circ}T - 3.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 5.0 \quad H_{Zr}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -217488.0 + 48.72 \quad T + 3.0 \quad \text{GHSER}_{A1} + 5.0 \quad \text{GHSER}_{Zr}$

Phase Al₄Zr₅

 $G^{\circ}T - 4.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 5.0 \quad H_{Zr}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -369000.0 + 62.55 \quad T + 4.0 \quad \text{GHSER}_{A1} + 5.0 \quad \text{GHSER}_{Zr}$

Phase AlZr

 $G^{\circ}T - \Pi_{A1}^{\circ,hcc-A1}$ (298.15 K) $- H_{Zr}^{\circ,hcp-A3}$ (298.15 K) = - 89000.0 + 17.0384 T + GHSER_{A1} + GHSER_{Zr}

Phase AlZr₂

 $G^{\circ}T - \Pi_{A1}^{\circ,hcc-A1}$ (298.15 K) - 2.0 $H_{Zr}^{\circ,hcp-A3}$ (298.15 K) = - 100125.0 + 17.553 T + GHSER_{A1} + 2.0 GHSER_{Zr}

Phase AlZr₃

 $G^{\circ}T - H_{A1}^{\circ,\text{fcc}-A1}$ (298.15 K) - 3.0 $H_{Zr}^{\circ,\text{hcp}-A3}$ (298.15 K) = - 108000.0 + 22.38 T + GHSER_{AI} + 3.0 GHSER_{Zr}

Phase bcc-A2

 $L_{A1,Zr:\Box}^{0,bcc-A2} = -122300 + 32 T$

 $L_{A1,Zr:0}^{1,bcc-A2} = -11000$

 $L_{\rm Al,Zr;O}^{2,\rm bcc-A2} = 15000$

Phase fcc-A1

 $L_{\rm A1,Zr:\square}^{0,\rm fcc-A1} = -120000 + 30 T$

 $L_{\rm Al,Zr;\Box}^{1,{\rm fcc}-A1} = -10000$

 $L^{2,\text{fcc}-A1}_{\Lambda I,\text{Zr}:\Box} = 15000$

Phase hcp-A3

 $L_{AI,Zr;\Omega}^{0,hcp-A3} = -122300 + 32 T$ $L_{AI,Zr;\Omega}^{1,hcp-A3} = -8000$ -2 hcp - 43

 $L_{AI,Zr:\Omega}^{2,hcp-A3} = 17000$

Phase liquid

 $L_{A1,Zr}^{0,liquid} = -125000 + 35 T$ $L_{A1,Zr}^{1,liquid} = -10000 + 5.57 T$ $L_{A1,Zr}^{2,liquid} = 15750$

Reaction	Туре	Compositions x_{2r}		Т / К	
Liquid \rightleftharpoons fcc-A1 + Al ₃ Zr Al ₃ Zr \rightleftharpoons Liquid Liquid \rightleftharpoons Al ₃ Zr + Al ₂ Zr Al ₂ Zr \rightleftharpoons Liquid Liquid + Al ₂ Zr \rightleftharpoons Al ₃ Zr ₂ Liquid \rightleftharpoons Al ₃ Zr ₂ + Al ₄ Zr ₅ Al ₄ Zr ₅ \rightleftharpoons Liquid Liquid + Al ₄ Zr ₅ \rightleftharpoons Al ₂ Zr ₃ Liquid + Al ₂ Zr ₃ \rightleftharpoons Al ₂ Zr ₃ Liquid \rightleftharpoons Al ₃ Zr ₅ \mapsto bcc-A2	Peritectic Congruent Eutectic Congruent Peritectic Eutectic Congruent Peritectic Peritectic Eutectic Eutectic	.0002 .250 .277 .333 .410 .525 .555 .653 .693 .696 .702	.0008 .250 .333 .333 .400 .555 .556 .600 .625	.250 .333 .400 .556 .600 .625 .768	933.8 1893.0 1888.0 1907.0 1869.1 1765.3 1773.0 1701.8 1655.8 1648.7 1524.2
$\begin{array}{l} \lambda_{12}zr_{3} + bcc - A2 \rightleftharpoons A Zr_{2} \\ \lambda_{13}Zr_{5} \rightleftharpoons A_{12}Zr_{3} + A Zr_{2} \\ \lambda Zr_{2} + bcc - A2 \rightleftharpoons A Zr_{3} \\ \lambda Zr_{3} + bcc - A2 \rightleftharpoons bcp - A3 \\ \lambda_{13}Zr_{2} + Al_{4}Zr_{5} \rightleftharpoons A Zr \end{array}$	Peritectoid Eutectoid Peritectoid Peritectoid Peritectoid	.600 .625 .667 .750 .400	.801 .600 .877 .894 .556	.666 .666 .750 .879 .500	1524.2 1241.7 1252.3 1212.2 1529.5

Table I - Invariant Reactions.

Table II:a - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-Zr	(Al)	Cu	cF4 Fm3m	M 4	
	(Zr)	Mg	hP2 P63/mmc	M 2	
6	(Zr)	w	c12 Im3m	M 4	
	AlZr	BCr	oC8 Cmcm	Al 4 Zr 4	
	AlZr ₂	InNi ₂	hP6 P6 ₃ /mmc	$\begin{array}{ccc} Al & 2\\ Zr_1 & 2\\ Zr_2 & 4 \end{array}$	

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
	AlZr ₃	AuCu ₃	cP4 Pm3m	Al 1 Zr 3	
	Al₂Zr	MgZn ₂	hP12 P63/mmc		
	Al ₂ Zr ₃	Al ₂ Zr ₃	ιΡ20 Ρ42/mnm	Λ1 8 Zr1 4 Zr2 4 Zr3 4	
	Al ₃ Zr	Al ₃ r	l116 14/mmm	$\begin{array}{ccc} Al_1 & 4 \\ Al_2 & 4 \\ Al_3 & 4 \\ Zr & 4 \end{array}$	
	Al ₃ Zr ₂	Al ₃ Zr ₂	oF40 Fdd2	$\begin{array}{ccc} Al_1 & 8 \\ Al_2 & 16 \\ Al_3 & 16 \end{array}$	
	Al ₃ Zr ₄	Al ₃ Zr4	hP7 P 6		
	Al ₃ Zr ₅	Mn5Si3	hP16 P6 ₃ /mcm	Al 6 Zr ₁ 4 Zr ₂ 6	not in Masl
	Al ₃ Zr ₅	Si₃W₅	t[32 14/mcm	$\begin{array}{ccc} \Lambda l_1 & 4 \\ \Lambda l_1 & 8 \\ Zr_1 & 4 \\ Zr_2 & 16 \end{array}$	
	Al ₄ Zr ₅	Ga₄Ti5	hP18 P6 ₃ /mcm	$\begin{array}{ccc} Al_1 & 2\\ Al_2 & 6\\ Zr_1 & 4\\ Zr_2 & 6 \end{array}$	not in Masl

Table II:b - Crystal Structure and Phase Description.

System B-C

Solution Phases:

Liquid, graphite, β -rhombo-B, B₄C

Modelling:

Liquid	:	Substitutional, Redlich-Kister
graphite	:	Substitutional, Redlich-Kister
β -rhombo-B	:	Sublattice model (B)93(B,C)12
B ₄ C	:	Sublattice model (B ₁₁ ,B ₁₂)(B ₂ ,C ₂ B,CB ₂)

Assessor and Date:

B. Kasper, H.L. Lukas, (1992).

Publication:

B. Kasper, Thesis, Univ. Stuttgart (Germany).

Thermodynamic properties of the solution and compound phases $(J.mol^{-1})$

Phase B₄C

$$G^{\circ}(T) - 13.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) - H_{C}^{\circ,graphite}(298.15 \text{ K}) = G(B_{11};B_2) = -170978.12 + 22.909095 \quad T + 16.0 \quad \text{GHSER}_{B} + \text{GHSER}_{C}$$

$$G^{\circ}(T) - 14.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) = G(B_{12};B_2) = 10000 + 22.909095 \quad T + 14.0 \quad \text{GHSER}_{B}$$

$$G^{\circ}(T) - 12.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) - 3.0 \quad H_{C}^{\circ,graphite}(298.15 \text{ K}) = G(B_{11};C_2B) = -347121.82 + 22.909095 \quad T + 12.0 \quad \text{GHSER}_{B} + 3.0 \quad \text{GHSER}_{C}$$

$$G^{\circ}(T) - 13.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) - 2.0 \quad H_{C}^{\circ,graphite}(298.15 \text{ K}) = G(B_{12};C_2B) = -294040.52 + 22.909095 \quad T + 13.0 \quad \text{GHSER}_{B} + 2.0 \quad \text{GHSER}_{C}$$

$$G^{\circ}(T) - 13.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) - 2.0 \quad H_{C}^{\circ,graphite}(298.15 \text{ K}) = G(B_{11};CB_2) = -304040.52 + 22.909095 \quad T + 13.0 \quad \text{GHSER}_{B} + 2.0 \quad \text{GHSER}_{C}$$

$$G^{\circ}(T) - 14.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) - 10 \quad H_{C}^{\circ,graphite}(298.15 \text{ K}) = G(B_{11};CB_2) = -304040.52 + 22.909095 \quad T + 13.0 \quad \text{GHSER}_{B} + 2.0 \quad \text{GHSER}_{C}$$

$$G^{\circ}(T) - 14.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) - H_{C}^{\circ,graphite}(298.15 \text{ K}) = G(B_{12};CB_2) = -304040.52 + 22.909095 \quad T + 13.0 \quad \text{GHSER}_{B} + 2.0 \quad \text{GHSER}_{C}$$

$$G^{\circ}(T) - 14.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) - H_{C}^{\circ,graphite}(298.15 \text{ K}) = G(B_{12};CB_2) = -304040.52 + 22.909095 \quad T + 13.0 \quad \text{GHSER}_{B} + 2.0 \quad \text{GHSER}_{C}$$

$$G^{\circ}(T) - 14.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) - H_{C}^{\circ,graphite}(298.15 \text{ K}) = G(B_{12};CB_2) = -169978.12 + 22.909095 \quad T + 14.0 \quad \text{GHSER}_{B} + \text{GHSER}_{C}$$

$$H_{B_{11}C,B_{12};B_{2}} = 1.0E-4$$

Phase β -rhombo-B

$$G^{\circ}(T) - 105.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) = G(B:B) = \\ 105 \quad \text{GHSER}_{B} \\ G^{\circ}(T) - 93.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) - 12.0 \quad H_{C}^{\circ,\text{graphite}}(298.15 \text{ K}) = G(B:C) = \\ 1000000 + 93.0 \quad \text{GHSER}_{B} + 12.0 \quad \text{GHSER}_{C} \\ L_{B:B,C}^{0,\beta-rhombo-B} = -2769690.3$$

Phase graphite

 $L_{\rm B,C}^{0,\rm graphite} = 34385.95 + 8.6792 T$

Phase liquid

 $L_{\rm B,C}^{\rm 0.liquid} = -67045.16 + 4.46969 T$

 $L_{\rm B,C}^{1,{
m liquid}} = -36682.57 + 2.44551 T$

.

Reaction	Туре	Compositions $x_{\rm C}$		Т / К	
Liquid $\rightleftharpoons B_4C + \text{graphite}$	Eutectic	.292	.195	.977	2663.4
Liquid + $B_4C \rightleftharpoons \beta$ -rhombo-B	Peritectic	.0056	.099	.010	2375.9
$B_4C \rightleftharpoons$ Liquid	Congruent	.184	.184		2725.3

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
B-C	(B) (C) B ₄ C	β-rhombo-B graphite B₄C	hR 15 R3m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B ₁₃ C ₂ in [91Vil]

System B-Hf

Solution Phases:

Liquid, bcc–A2, hcp–A3

BHf, B₂Hf B₄Hf₃

(stable)	
(metastable)	

Compounds:

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc- <i>A</i> 2	:	Substitutional, Redlich-Kister
հշ թ- <i>А</i> 3	:	Substitutional, Redlich-Kister
BHſ	:	Stoichiometric, (B)(IIf)
B₂IIſ	:	Stoichiometric, (B) ₂ (IIf)
B₄Hſ₃	:	Stoichiometric, (B) ₄ (Hf) ₃

Assessor and Date:

II. Bitterman, Univ. Vienna, Austria

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase BHf

 $G^{\circ}(T) - H_{B}^{\circ,\beta-rhombo-B}(298.15K) - H_{Hf}^{\circ,hcp-A3}(298.15K) =$ -159810 + 4.98602 T + GIISER_B + GIISER_{Hf}

Phase B₄Hf₃

 $G^{\circ}(T) - 4.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15K) - 3.0 \quad H_{Hf}^{\circ,hcp-A3}(298.15K) = -535000 - 14.5754 \quad T + 4.0 \quad GHSER_{B} + 3.0 \quad GHSER_{Hf}$

Phase B₂Hf

Phase bcc-A2

 $\begin{array}{rl} \mathrm{G}^{\circ}(\mathrm{T}) & -3.0 & \mathrm{H}_{\mathrm{B}}^{\circ,\beta-\mathrm{rhombo-B}}(298.15\mathrm{K}) - \mathrm{H}_{\mathrm{Hf}}^{\circ,\mathrm{hcp}-A3}(298.15\mathrm{K}) = \\ & & -137926 + 3.0 & \mathrm{GHSER}_{\mathrm{B}} + \mathrm{GHSER}_{\mathrm{Hf}} \\ \mathrm{L}_{\mathrm{Hf};\mathrm{B},\mathrm{D}}^{0,\mathrm{bcc}-A2} & = & 1.0\mathrm{F}\text{-}4 \end{array}$

Phase hcp-A3

 $\begin{array}{rl} \mathrm{G}^{\circ}(\mathrm{T}) - 0.5 & \mathrm{H}_{\mathrm{B}}^{\circ,\beta-\mathrm{rhomho}-\mathrm{B}}(298.15\mathrm{K}) - \mathrm{H}_{\mathrm{Hf}}^{\circ,\mathrm{hcp}-\mathrm{A3}}(298.15\mathrm{K}) = \\ & -44765.7 + 0.5 & \mathrm{GHSER}_{\mathrm{B}} + \mathrm{GHSER}_{\mathrm{Hf}} \\ \mathrm{L}_{\mathrm{Hf};\mathrm{B};\mathrm{C}}^{0,\mathrm{hcp}-\mathrm{A3}} & = 1.0\mathrm{E}\text{-4} \end{array}$

Phase liquid

 $L_{B,Hf}^{0,liquid} = -170625 - 4.85541 T$

 $L_{B,Hf}^{1,liquid} = -39128$

 $L_{B,Hf}^{2,liquid} = 16331.1$

Reaction Type Compositions			8 XHf	Т / К	
Liquid $\rightleftharpoons \beta$ -rhombo-B + B ₂ Hf	Eutectic	.010	.000	.333	2337.9
Liquid + B ₂ Hf \rightleftharpoons + BHf	Peritectic	.780	.333	.500	2377.1
Liquid \rightleftharpoons BHf + bcc-A2	Eutectic	.850	.500	.990	2153.6
bcc-A2 + BHf \rightleftharpoons hcp-A3	Peritectic	.993	.500	.985	2063.8
B ₂ Hf \rightleftharpoons Liquid	Congruent	.333	.333		3650.0

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Suł latti)- res	Comments
B-Hf	(B)	β-rhombo-B				
	(Hf)	Mg	hP2 P63/mmc	м	2	
	(Hf)	w	c12 Im3m	м	2	
	BHf	BFe	oP8 Pnma	B Hf	4 4	
	B₂Hſ	AlB ₂	hP3 P6/mmm	B Hf	2 1	
	B₄Hf₃	B4Ta3	ol14 Immm			(metastable)

.

System B-N

Solution Phases:

Compour	nd:	Liquid, gas
		BN
Modellin	<u>g:</u>	
Liquid	:	Substitutional, Redlich-Kister
gas	:	ideal $(B, B_2, N, N_2, N_3, BN)$
BN	:	Stoichiometric (B)(N)

. .

Assessor and Date:

H. Wen, and H.L. Lukas 1992

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase BN

 $\begin{aligned} \mathrm{G}^{\circ}(T) - \ & H_{\mathrm{B}}^{\circ,\beta-\mathrm{rhombo}-\mathrm{B}}(298.15 \ \mathrm{K}) - H_{0.5\mathrm{N}_{2}}^{\circ,\mathrm{gas}}(298.15 \ \mathrm{K}) = \\ & - 250600 + 91.281942 \ T + \mathrm{GHSER}_{\mathrm{B}} + \mathrm{GHSER}_{\mathrm{N}} \end{aligned}$

Phase liquid

 $L_{\rm B,N}^{0,{\rm liquid}}$ = 30000.0 - 4.0 T

Phase $gas(B,B_2,N,N_2,N_3,BN)$ (P = 0.1MPa)

$G_B^{\circ,gas}(T)$	$- \Pi_{\rm B}^{{\rm o},\beta-{\rm rh}}$	$r^{\text{iombo}-B} = R$	$T \ln P +$
298.15	$< \overline{T} <$	700.00 :	564913.402 - 13.9693124 T + 1.6646044E-05 T^2 - 20.80858 $T \cdot \ln T$
700.00	< T <	2800.00 :	$564920.973 - 14.1156663$ T $- 20.786112$ T $\cdot \ln T$
2800.00	< <i>T</i> <	4075.00 :	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$G_{B_2}^{\circ,gas}(T)$	- 2.0 // _E	9,β-rhomho-B 3	$= R T \ln P +$
298.15	< <i>T</i> <	550.00 :	824867.604 - 125.766398 T - 8.168 $T \cdot \ln T$ - 0.0430888612 T^2 + 1.00098016E-05 T ³ - 136465.972 T^{-1}
550.00	< <i>T</i> <	2150.00 :	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2150.00	< <i>T</i> <	6000.00 :	826793.716 + 32.6504991 T - 35.6295549 $T \cdot \ln T$ - 4.58209505E-04 T^2 + 1.70149264E-10 T^3 - 3665441.32 T^{-1}
$G_N^{o,gas}(T)$	- 2.0 II°	,gas .5N ₂ (298.15	$\mathbf{K}) = R T \ln P + $
298.15	< <i>T</i> <	2950.00 :	$\begin{array}{r} 466446.153 + 2788.78662 T^{-1} - 13.2660528 \mathrm{T} \\ - 20.8939295 T \cdot \ln T + 8.4552092\mathrm{E} - 05 T^{2} \\ - 1.00186856\mathrm{E} - 08 T^{3} \end{array}$
2950.00	< <i>T</i> <	6000.00 :	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$G_{N_2}^{\circ,gas}(T)$	- 2.0 H ₀ °	,gas .5N ₂ (298.15	$K) = 2.0 GHSER_N + R T \ln P$

 $G_{N_3}^{\circ,gas}(T) - 3.0 \quad H_{0.5N_2}^{\circ,gas}(298.15 \text{ K}) = R T \ln P +$ 298.15 < T < 800.00 : 403075.636 - 14.3245228 T - 29.5595416 T $\cdot \ln T$ -0.02413122 $T^{2} + 3.6156036E-06$ T^{3} $+ 55714.144 T^{-1}$ $800.00 < T < 2000.00 : 388937.207 + 158.809275 T - 55.404528 T \cdot \ln T$ -0.0026570492 $T^{2} + 1.9365644$ E-07 T^{3} + 1536448.48 T^{-1} $2000.00 < T < 6000.00 : 380898.006 + 210.207464 T - 62.295576 T \cdot \ln T$ + 6.5726456E-06 T² - 7.868012E-10 T³ $+ 3336949.2 T^{-1}$ $G_{BN}^{o,gas}(T) - H_{B}^{o,\beta-rhombo-B}(298.15 \text{ K}) - H_{0.5N_2}^{o,gas}(298.15 \text{ K}) = R T \ln P +$ 298.15 < T < 1000.00 : 469920.773 - 57.4937871 T - 22.339422 T $\cdot \ln T$ -0.0105569014 $T^{2} + 1.41488236E-06$ T^{3} -69873.2184 T^{-1} $1000.00 \quad < T < \quad 3500.00 \quad : \quad 462619.822 \ + \ 28.1899597 \quad \mathrm{T} - \ 35.0100802 \quad T \cdot \ln T$ - 7.99851096E-04 T^2 + 1.10267925E-08 T^3 $+ 719942.972 T^{-1}$ $3500.00 < T < 6000.00 : 449529.29 + 65.7741362 T - 39.4662494 T \cdot \ln T$ -1.95814338E-04 $T^{2} - 9.14385307E-10$ T^{3} $+7491452 T^{-1}$

Table I - Invariant Reactions.

Reaction	Туре	Compositions x_N			Т / К
Liquid + gas ≓ BN	Peritectic–like	.000	1.000	.500	2670.0
Liquid ≓ BN + gas	Degenerate	.000	.000	.500	2670.0

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Comments
B-N	β−rhombo-B	β-rhombo-B	hR108 R3m	<i>hR105</i> in [91Vil]
	BN		hP4 P63 mc	

System B-Si

Solution Phases:

Liquid, diamond, β -rhombo-B, B_nSi, B₃Si, B₆Si

Modelling:

Liquid	:	Substitutional, Redlich-Kister
diamond	:	Substitutional, Redlich-Kister
eta rhombo-B	:	Sublattice model (B)93(B,Si)12
B_nSi	:	Sublattice model (B) ₆₁ (Si)(B,Si) ₈
B ₃ Si	:	Sublattice model (B) ₆ (Si) ₂ (B,Si) ₆
B ₆ Si	:	Sublattice model (B) ₂₁₀ (Si) ₂₃ (B,Si) ₄₈

Assessor and Date:

S. Fries, and H.L. Lukas,

Publication:

"Cost507 New Light Alloys", Leuven Proceedings, Ed. G. Effenberg (1991)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase B₃Si

$$\begin{aligned} G^{\circ}(T) &= 12.0 \quad H_{\rm B}^{\circ,\beta-{\rm rhombo-B}}(298.15 \text{ K}) = 2.0 \quad H_{\rm Si}^{\circ,{\rm diamond}}(298.15 \text{ K}) = {\rm G}({\rm B:Si:B}) = \\ &= 112000 + 12.0 \quad {\rm GHSER_B} + 2.0 \quad {\rm GHSER_Si} \\ G^{\circ}(T) &= 6.0 \quad H_{\rm B}^{\circ,\beta-{\rm rhombo-B}}(298.15 \text{ K}) = 8.0 \quad H_{\rm Si}^{\circ,{\rm diamond}}(298.15 \text{ K}) = {\rm G}({\rm B:Si:Si}) = \\ &= 112000 + 6.0 \quad {\rm GHSER_B} + 8.0 \quad {\rm GHSER_Si} \\ L_{\rm B:Si:B,Si}^{0.85i} &= -2400475 + 240.0475 \quad T \end{aligned}$$

Phase B₆Si

Phase B_nSi

$$G^{\circ}(T) = 69.0 \quad H_{B}^{\circ,\beta-rhombo-R}(298.15 \text{ K}) = H_{Si}^{\circ,diamond}(298.15 \text{ K}) = G(B:Si:B) = -89819.86 + 8.981986 \quad T + 69.0 \quad GHSER_{B} + GHSER_{Si}$$

 $G^{\circ}(T) = 61.0$ $H_{\rm B}^{\circ,\beta-{\rm rhombo-B}}(298.15 \text{ K}) = 9.0$ $H_{\rm Si}^{\circ,{\rm diamond}}(298.15 \text{ K}) = G(B:Si:Si) = -176659.7 + 17.66597$ T + 61.0 GHSER_B + 9.0 GHSER_{Si}

 $L_{\rm B;Si;B,Si}^{\rm 0,B_nSi}$ = -281573.6 + 28.15736 T

Phase β -rhombo-B

 $G^{\circ}(T) - 93.0 \quad H_{\rm B}^{\circ,\beta-{\rm rhombo-B}}(298.15 \text{ K}) - 12.0 \quad H_{\rm Si}^{\circ,{\rm diamond}}(298.15 \text{ K}) = {\rm G(B:Si)} = -6160.245 + 0.6160245 \quad T + 93.0 \quad {\rm GHSER_B} + 12.0 \quad {\rm GHSER_{Si}}$ $L_{\rm B:B,Si}^{0,\beta-{\rm rhombo-B}} = -725614.0 + 72.5614 \quad T$

Phase diamond

 $L_{\rm B,Si:O}^{0,{\rm diamond}} = 57978.16$

Phase liquid

 $L_{\rm B,Si}^{0,{\rm liquid}} = 17631.92 - 1.76321 T$

 $L_{\rm B,Si}^{1,{\rm Biquid}} = -3526.99 \pm 0.3527 \ T$

Reaction	Туре	Compositions x _{Si}			Т / К
$B_6Si + diamond ≠ B_3Si$	Peritectoid	.145	.993	.262	1543.0
Liquid ≠ $B_6Si + diamond$	Eutectic	.919	.146	.989	1657.6
Liquid + $B_nSi ≠ B_6Si$	Peritectic	.379	.059	.138	2123.0
Liquid + β-rhombo-B ≠ B_nSi	Peritectic	.074	.021	.033	2310.0

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices		Comments
B-Si	(B)	β-rhombo-B				
	(Si)	diamond	cF8 Fd3m	м	8	
	B _n Si	В	hR12 P3m			
	B₃Si	B₄C	hR15 R3m	B M Si ₁ Si ₂	18 18 6 3	<i>hR14</i> in [91Vil]
	B₅Si	B ₆ Si	oP280 Pnnm			<i>0P340</i> in [Vil91]
System B-Ti

Solution Phases:

Liquid, bcc-A2, hcp-A3

Compounds:

BTi, B4Ti3, B2Ti

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
BTi	:	Stoichiometric, (B)(Ti)
B₄Ti₃	:	Stoichiometric, $(B)_4(Ti)_3$
B₂Ti	:	Stoichiometric, (B) ₂ (Ti)

Assessor and Date:

Publication:

C. Bätzner, June 1994

Thesis, Univ. Stuttgart, Germany (1994)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase BTi

 $G^{\circ}(T) - H_{B}^{\circ,\beta-rhombo-B}(298.15K) - H_{Ti}^{\circ,hcp-A3}(298.15K) =$ - 166196.8 + 3.2968 T + GIISER_B + GIISER_{Ti}

Phase B_4Ti_3

 $G^{\circ}(T) - 4.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15K) - 3.0 \quad H_{Ti}^{\circ,hcp-A3}(298.15K) =$ $- 660745.8 + 4.3472923 \quad T + 2.162216 \quad T \cdot \ln T + 4.0 \quad \text{GIISER}_{B} + 3.0 \quad \text{GIISER}_{Ti}$

Phase B₂Ti

 $G^{\circ}(T) - 2.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15K) - H_{Ti}^{\circ,hep-A3}(298.15K) =$ $- 318253.47 - 2.5557 \quad T + 0.79922 + T \cdot \ln T$ $+ 0.002843367 \quad T^{2} + 2.0 \quad \text{GHSER}_{B} + \text{GHSER}_{Ti}$

Phase bcc-A2

 $G^{\circ}(T) - 3.0 \quad H_{B}^{\circ,\beta-rhombo-B}(298.15K) - H_{Ti}^{\circ,hcp-A3}(298.15K) =$ - 200000 + 14.0 T + 3.0 GIISER_B + GIISER_{Ti} $L_{Ti:B,\Box}^{0,hcc-A2} = -260162.96 + 156.48207 \quad T$

Phase hcp-A3

 $\begin{aligned} G^{\circ}(\mathrm{T}) &= 0.5 \quad H_{\mathrm{B}}^{\circ,\beta-\mathrm{rhombo-B}}(298.15\mathrm{K}) = H_{\mathrm{Ti}}^{\circ,\mathrm{hcp}-A3}(298.15\mathrm{K}) = \\ &= -50000 + 15.0 \quad T + 0.5 \quad \mathrm{GHSER}_{\mathrm{B}} + \mathrm{GHSER}_{\mathrm{Ti}} \\ L_{\mathrm{Ti;B,G}}^{0,\mathrm{hcp}-A3} &= -21213.442 \end{aligned}$

Phase liquid

 $L_{B,Ti}^{0.liquid} = -265414.4 + 15.543418 T$ $L_{B,Ti}^{1.liquid} = -134303.03 + 17.709482 T$ $L_{B,Ti}^{2.liquid} = 61691.479$ $L_{B,Ti}^{3.liquid} = 52656.13$

Reaction	Туре	Compositions x_{Ti}			Т / К
Liquid $\rightleftharpoons \beta$ -rhombo-B + B ₂ Ti Liquid + B ₂ Ti $\rightleftharpoons B_4$ Ti ₃ Liquid + B ₄ Ti ₃ $\rightleftharpoons B$ Ti Liquid $\rightleftharpoons B$ Ti + bcc-A2 bcc-A2 $\rightleftharpoons B$ Ti + hcp-A3 B ₂ Ti \rightleftharpoons Liquid	Eutectic Peritectic Peritectic Eutectic Transformation Congruent	.019 .578 .627 .931 .998 .333	.000 .333 .428 .500 .500 .333	.333 .428 .500 .997 1.000	2332.5 2474.0 2456.0 1814.1 1156.1 3490.0

Table I - Invariant Reacti	ions.
----------------------------	-------

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub– lattices
B-Ti	(B)	β-rhombo-B		
	(Ti)	Mg	hP2 P63/mmc	M 2
	(Ti)	W	c12 Im3m	M 2
	BTi	BFe	oP8 Pnma	B 4 Ti 4
	B₂Ti	AlB ₂	hP3 P6/mmm	B 2 Ti 1
	B₄Ti ₃	B₄Ta₃	oll4 Immm	

System C-Si

Solution Phases:

Liquid, diamond

Compounds: SiC, Si₄C₃ (metastable)

Modelling:

Liquid	:	Substitutional, Redlich-Kister
diamond	:	Substitutional, Redlich-Kister
SiC	:	Stoichiometric, (Si)(C)
Si_4C_3	:	Stoichiometric, $(Si)_4(C)_3$

Assessor and Date:

Publication:

J. Gröbner, H. L. Lukas, and F. Aldinger.

Calphad 20, 2 (1996) 247-254.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase SiC

 $G^{\circ}(T) - H_{C}^{\circ,\text{graphite}}(298.15 \text{ K}) - H_{Si}^{\circ,\text{diamond}}(298.15 \text{ K}) =$ $- 88583.96 + 271.1462 T - 41.27945 T \cdot \ln T$ $- 0.00436266 T^{2} + 2E-07 T^{3} + 800000 T^{-1}$

Phase Al_4C_3 (metastable)

 $G^{\circ}(T) - 3.0 \quad H_{C}^{\circ,\text{graphite}}(298.15 \text{ K}) - 4.0 \quad H_{Si}^{\circ,\text{diamond}}(298.15 \text{ K}) = -135043.86 + 949.01177 \quad T - 144.478096 \quad T \cdot \ln T - 0.01527 \quad T^{2} + 7E \cdot 07 \quad T^{3} + 2800000 \quad T^{-1}$

Phase liquid

 $L_{\rm C,Si}^{0,{\rm liquid}} = 25644.97 - 6.381115 T$

Phase diamond

 $L_{\rm C,Si}^{0,\rm diamond} = 93386.78$

Table I - Invariant Reactions.

Reaction	Туре	Compositions x_{Si}	Т / К
Liquid ≓ diamond + SiC	Degenerate	1.000 1.000 .50	0 1687.0
Liquid + graphite ≓ SiC	Peritectic	.826 .000 .50	0 3096.4

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	
C-Si	(C) (Si)	graphite diamond	cF8 Fd3m	M 8	
	SiC-B	ZuS (sphalerite)	cF8 F43m	C 4 Si 4	

1

System C-Ti

Solution Phases:

Liquid, bcc-A2, fcc-A1, hcp-A3

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Sub-lattice, (Ti)(C,□)
fcc-A1	:	Sub-lattice, (Ti)(C,□)
hcp-A3	:	Sub-lattice, (Ti)(C,□)

S. Jonsson

Assessor and Date:

Publication:

Thesis, Royal Institute of Technology, Stockholm, Sweden (1993)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase fcc-A1

$$G^{\circ}(T) - H_{C}^{\circ,\text{graphite}}(298.15 \text{ K}) - H_{Ti}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = G(\text{Ti:C}) = -207709.0 + 307.438 T - 48.0195 T \cdot \ln T - 0.00272 T^{2} -2.03\text{E}+09 T^{-3} + 819000 T^{-1} \text{ L}_{\text{Ti:CD}}^{0,\text{fec}-A1} = -85115 + 6.756 T$$

 $L_{Ti;CO}^{1,fee-A1} = -129429 + 31.79 T$

Phase bcc-A2

 $\begin{array}{rl} G^{\circ}(T) - 3.0 \ H_{\rm C}^{\circ,{\rm graphite}}(298.15 \ {\rm K}) - H_{\rm Ti}^{\circ,{\rm hcp}-A3}(298.15 \ {\rm K}) = {\rm G}({\rm Ti:C}) \\ & 2295533 \ + \ {\rm GHSER_{TiC}} + 2.0 \ {\rm GHSER_{C}} \\ {\rm L}_{{\rm Ti:CO}}^{0,{\rm hcc}-A2} = - 2590609 \end{array}$

Phase hcp-A3

 $G^{\circ}(T) - 0.5 H_{\rm C}^{\circ,{\rm graphite}}(298.15 \text{ K}) - H_{\rm Ti}^{\circ,{\rm hcp}-A3}(298.15 \text{ K}) = G({\rm Ti:C})$ - 1432 - 4.1241 T + 0.5 GHSER_{TiC} + 0.5 GHSER_C

Phase liquid

 $L_{C,Ti}^{0,liquid} = -214678 - 14.314 T$

Table I - Invariant Reactions.

Reaction	Туре	Com	position	is $\boldsymbol{x}_{\mathrm{Ti}}$	т / к
Liquid \rightleftharpoons fcc-A1 [•] + bcc-A2	Eutectic	.968	.687	.974	1925.2
fcc-A1 [•] + bcc-A2 \rightleftharpoons hcp-A3	Peritectoid	.655	.996	.984	1190.0
Liquid \rightleftharpoons graphite + fcc-A1	Eutectic	.349	.000	.515	3044.0
fcc-A1 \rightleftharpoons Liquid	Congruent	.554	.554		3338.0

• fcc-A1 \equiv Ti_rC_{1-r}

Table II:a - Crystal Structure and Phase Description.

System	Phase	Structural Type	Pearson Symbol Space Group	Sub- lattices	Comments
C-Ti	(C)	graphite			
	(Ti)	Mg	hP2 P6 ₃ /mmc	M 2	
	(Ti)	w	12 Im3m	M 2	

System	Phase	Structural Type	Pearson Symbol Space Group	Sub- lattices	Comments
	CTi CTi2	CINa Ca33Ge	cF8 Fm3m cF48 Fd3m	M ₁ 4 M ₂ 4 C 16 Ti 32	Ca ₃₃ Ge in [91Vil] ord. TiC _{1-x} phase not considered

Table	II:b -	Crystal	Structure	and	Phase	Description.
-------	--------	---------	-----------	-----	-------	--------------

System Ce-Mg

<u>Solution P</u>	hases:	
		Liquid, bcc-A2, fcc-A1, hcp-A3
Compound	ls:	
		$CeMg, CeMg_2, CeMg_3, Ce_5Mg_{41}, Ce_2Mg_{17}, CeMg_{12}$
Modelling	-	
Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
CeMg	:	Stoichiometric, (Ce)(Mg)
CeMg ₂	:	Stoichiometric, (Ce)(Mg) ₂
CeMg ₃	:	Stoichiometric, (Ce)(Mg) ₃
Ce ₅ Mg ₄₁	:	Stoichiometric, (Ce)5(Mg)41
Ce2Mg17	:	Stoichiometric, $(Ce)_2(Mg)_{17}$
CeMg ₁₂	:	Stoichiometric, (Ce)(Mg) ₁₂

Assessor and Date:

G. Cacciamani, A. Saccone, and R. Ferro, Calphad XXII - Salou, Spain (1993).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Ce₂Mg₁₇

 $G^{\circ}(T) = 2.0 \quad H_{Ce}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) = 17.0 \quad H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -217170.0 + 104.5 \quad T + 2.0 \quad \text{GHSER}_{Ce} + 17.0 \quad \text{GHSER}_{Mg}$

Phase Ce₅Mg₄₁

 $G^{\circ}(T) = 5.0 \quad H_{Ce}^{\circ,fcc-A1} (298.15 \text{ K}) = 41.0 \quad H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) = -575000.0 + 299.0 \quad T + 5.0 \quad \text{GHSER}_{Ce} + 41.0 \quad \text{GHSER}_{Mg}$

Phase CeMg

 $G^{\circ}(T) - H_{Ce}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Mg}^{\circ, hcp-A3}(298.15 \text{ K}) = -46000.0 + 23.32 T + \text{GHSER}_{Ce} + \text{GHSER}_{Mg}$

Phase CeMg₁₂

 $G^{\circ}(T) - H_{Ce}^{\circ,fcc-A1}(298.15 \text{ K}) - 12.0 \quad H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) = -139880.0 + 84.5 \quad T + \text{GHSER}_{Ce} + 12.0 \quad \text{GHSER}_{Mg}$

Phase CeMg₂

 $G^{\circ}(T) - H_{Ce}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) - 2.0 \quad H_{Mg}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = -52744.6 + 15.163 \quad T + \text{GHSER}_{Ce} + 2.0 \quad \text{GHSER}_{Mg}$

Phase CeMg₃

 $G^{\circ}(T) - H_{Ce}^{\circ,fcc-A1}(298.15 \text{ K}) - 3.0 \quad H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) = -76800.0 + 26.5 \quad T + \text{GHSER}_{Ce} + 3.0 \quad \text{GHSER}_{Mg}$

Phase bcc-A2

- $L_{\rm Ce,Mg;D}^{0,\rm hcc-A2} = -27000 + 3.3 T$
- $L_{\text{Ce,Mg;D}}^{1,\text{bcc}-A2} = 25338.56 11.86885 T$

 $L_{\rm Ce,Mg;O}^{2,\rm bcc-A2} = -15106.9$

Phase fcc-A1

 $L_{\rm Ce,Mg;D}^{0,{\rm fce}_{A}1} = -15000 + 0.5 T$

Phase hcp-A3

 $L_{\text{Ce,Mg;O}}^{0,\text{hep}-A3} = -94337.51 + 79.95155 T$

Phase Liquid

 $L_{Ce,Mg}^{0,\text{liquid}} = -39381.19 + 16.34052 T$ $L_{Ce,Mg}^{1,\text{liquid}} = 25338.56 - 11.86885 T$ $L_{Ce,Mg}^{2,\text{liquid}} = -15106.9$

Reaction	Туре	Com	osition	s x _{Mg}	Т / К
Liquid \rightleftharpoons bcc-A2 + CeMg Liquid \rightleftharpoons CeMg + CeMg ₂ Liquid \rightleftharpoons CeMg ₃ \rightleftharpoons CeMg ₂ Liquid + CeMg ₃ \rightleftharpoons CesMg ₄₁ Liquid + CesMg ₄₁ \rightleftharpoons Ce ₂ Mg ₁₇ Liquid + Ce ₂ Mg ₁₇ \rightleftharpoons CeMg ₁₂ Liquid \rightleftharpoons CeMg ₁₂ + hcp-A3 Ce ₂ Mg ₁₇ \rightleftharpoons CesMg ₄₁ + CeMg ₁₂ CeMg ₂ \rightleftharpoons CeMg + CeMg ₃ bcc-A2 \rightleftharpoons fcc-A1 + CeMg CeMg \rightleftharpoons Liquid CeMg ₃ \rightleftharpoons Liquid	Eutectic Eutectic Peritectic Peritectic Peritectic Eutectic Eutectoid Eutectoid Eutectoid Congruent Congruent	.328 .528 .620 .904 .923 .930 .960 .895 .667 .114 .500 .750	.288 .500 .750 .750 .891 .895 .923 .891 .500 .072 .500 .750	.500 .667 .891 .895 .923 1.000 .923 .750 .500	955.1 982.9 1020.1 898.1 889.6 884.7 867.9 882.0 888.0 768.7 983.8 1073.0

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Ce-Mg	(Ce)	Cu	cF4 Fm3m		
	(Ce)	w	c12 Im3̄m		
	(Mg)	Mg	hP2 P63/mmc		
	CeMg	CsCl	cP2 Pm3m	Ce 1 Mg 1	
	CeMg ₂	Cu ₂ Mg	cF24 Fd3m	Ce 8 Mg 16	
	CeMg3	BiF3	cF16 Fm3m	Ce 4 Mg ₁ 4 Mg ₂ 8	
	Ce5Mg41	Ce5 Mg41	t192 14/m		10 sublattices [91Vil]
	CeMg _{10.3}	Th ₂ Ni ₁₇	hP38 P63/mmc		6 sublattices [91Vil] Ce ₂ Mg ₁₇
	CeMg ₁₂ (I)	ThMg12	1126 14/mmm		ThMn ₁₂ in [91Vil]
	CeMg ₁₂ (II)	CeMg ₁₂ (II)	o1338 (Immm)		not considered

System Cr-Cu

Solution Phases:

(stable) (metastable) Liquid, bcc-A2, fcc-A1 hcp-A3

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister

Assessor and Date:

K. Zeng and M. Hämälainen

Thermodynamic properties of the solution phases $(J.mol^{-1})$

Phase bcc-A2

$L^{0, bcc-A2}_{Cr, Cu:\square}$	=	200000	
			Phase fcc-A1
$L^{0,\text{fcc}-A1}_{\text{Cr,Cu:}\square}$	=	88112 - 30.38315	Т
			Phase hcp-A3
L ^{0,hcp−A3} LCr,Cu:□	=	60000	
			Phase liquid

$L_{\mathrm{Cr,Cu}}^{0,\mathrm{liquid}}$	=	35495.913 - 2.958	Т
$L_{ m Cr, Cu}^{ m 1, liquid}$	=	-1001.1765	

 $L_{\rm Cr,Cu}^{2,{\rm liquid}} = 5704.648$

Table I - Invariant Reactions.

Reaction	Туре	Compositions x_{Cu}	Т / К
Liquid \rightleftharpoons bcc-A2 + fcc-A1	Eutectic	.982 .000 .992	1347.9

Table II - Crystal Structure and Phase Description.

.

System	Phase	Prototype	Pearson Symbol Space Group
Cr-Cu	(Cr)	w	c12 Im3m
	(Cu)	Cu	cF4 Fm3m

System Cr-Mg

Solution Phases:

(stable) (metastable) Liquid, bcc-A2, hcp-A3 cbcc-A12, fcc-A1, hcp-Zn

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
cbcc-A12	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
hcp-Zn	:	Substitutional, Redlich-Kister

Assessor and Date:

I. Ansara, 1991

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase bcc-A2

$L_{\mathrm{Cr},\mathrm{Mg};\mathrm{C}}^{0,\mathrm{bcc}-A2} = 80 T$	Phase cbcc-A12
$L_{Cr,Mg:\Box}^{0,cbcc-A12} = 80 T$	Phase fcc–A1
$L_{\mathrm{Cr,Mg:O}}^{0,\mathrm{fcc}-A1} = 80 T$	Phase hen-43
$L_{\rm Cr,Mg:D}^{0,hep-A3} = 80 T$	
$L_{\rm Cr,Mg;O}^{0,\rm hep-Zn} = 80 T$	Phase hcp–Zn
	Phase liquid
$L_{Cr,Mg}^{0,liquid} = 94500.0$	
$L_{Cr,Mg}^{1,liquid} = 12500.0$	

Table I - Invariant Reactions.

Reaction	Туре	Com	position	^R X _{Mg}	Т / К
Liquid' ≓ Liquid" + bcc-A2	monotectic	.000.	.003	.988	2174.9
Liquid" ≓ bcc-A2 + hcp-A3	Degenerate	.000.	1.000	1.000	923.0

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Cr-Mg	(Cr)	w	c12 Im3m
	(Mg)	Mg	hP2 P63/mmc

Solution Phases:

System Cr-Mn

		Liquid, bcc-A2, fcc-A1, hcp-A3, cbcc-A12, cub-A13, σ-L, σ-H
Compound	:	
	-	Cr ₃ Mn ₅
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc42	:	Substitutional, Redlich-Kister
fcc~.41	:	Substitutional, Redlich-Kister
cbcc-A12	:	Substitutional, Redlich-Kister
cub-A13	:	Substitutional, Redlich-Kister
$\sigma \cdot \mathbf{L}$:	Sublattice model, (Mn)8(Cr)4(Cr,Mn)18
$\sigma \in \Pi$:	Sublattice model, (Mn) ₈ (Cr) ₄ (Cr,Mn) ₁₈
$\mathrm{Cr}_3\mathrm{Mn}_5$:	Stoichiometric, Cr_3Mn_5

Publication:

Scientific Group Thermodata Europe Database

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Cr₃Mn₅

 $G^{o}(T) - 3.0 \quad H_{Cr}^{o,brc-A2,para}(298.15 \text{ K}) - 5.0 \quad H_{Mn}^{o,cbcc-A12,para}(298.15 \text{ K}) = -72550.0 + 21.1732 \quad T + 3.0 \quad \text{GHSER}_{Cr} + 5.0 \quad \text{GHSER}_{Mn}$ $Phase \ fcc-A1$ $L_{Cr,Mn:0}^{0,frc-A1} = -19088 + 17.5423 \quad T$ $Phase \ cbcc-A12$ $L_{Cr,Mn:0}^{0,cbcc-A12} = -36796 + 20.385 \quad T$ $Phase \ liquid$ $L_{Cr,Mn}^{0,liquid} = -15009 + 13.6587 \quad T$

 $L_{\rm Cr,Mn}^{1,{\rm liquid}} = 501 + 0.9479 T$

Phase of	ub−∕	113
----------	------	-----

$L_{Cr,Mn:\Box}^{0,cub-A13} =$	- :	31260 + 16.4919 T
		Phase bcc-A2
L ^{0,bcc−A2} Cr,Mn:□	=	-20328 + 18.7339 T
$L^{0,\mathrm{bcc}-A2}_{\mathrm{Cr},\mathrm{Mn:}\square}$	=	-9162 + 4.4183 T
β ^{0,bcc−A2,mag} Cr,Mn:□	=	0.48643
β ^{2,bcc−A2,mag} Cr,Mn:□	=	- 0.72035
β ^{4,bcc−A2,mag} Cr,Mn:□	=	- 1.93265
$T_{c,Cr,Mn:\Box}^{0,bcc-A2}$	=	- 1325
$T^{2,\mathrm{bcc}-A2}_{\mathrm{c},\mathrm{Cr},\mathrm{Mn}:\square}$	=	- 1133
$T_{\rm c,Cr,Mn:D}^{4, m bcc-A2}$	=	- 10294
T ^{6,bcc−A2} c,Cr,Mn:□	=	26706
$T_{c,Cr,Mn:\square}^{8,bcc-A2}$	=	- 28117

Phase σ -L

 $\begin{array}{l} G^{\circ}(T)-8.0 \quad H_{\rm Cr}^{\circ,{\rm bcc-A2},{\rm para}}(298.15 \ {\rm K})-22.0 \quad H_{\rm Mn}^{\circ,{\rm cbcc-A12},{\rm para}}(298.15 \ {\rm K})=\\ {\rm G}({\rm Mn:Cr:Cr})=65859.5+8.0 \quad {\rm GFCC}_{\rm Mn}+22.0 \quad {\rm GHSER}_{\rm Cr}\\ G^{\circ}(T)-26.0 \quad H_{\rm Cr}^{\circ,{\rm bcc-A2},{\rm para}}(298.15 \ {\rm K})-4.0 \quad H_{\rm Mn}^{\circ,{\rm cbcc-A12},{\rm para}}(298.15 \ {\rm K})=\\ {\rm G}({\rm Mn:Cr:Mn})=-172946.0+69.0245 \quad T+8.0 \quad {\rm GFCC}_{\rm Mn}+4.0 \quad {\rm GHSER}_{\rm Cr}\\ &+18.0 \quad {\rm GBCC}_{\rm Mn} \end{array}$

 $L_{\text{Mn:Cr:Cr,Mn}}^{0,\sigma-L} = -1095771 + 862.0312 T$

Phase σ -H

 $\begin{array}{l} G^{\circ}(T) - 8.0 \quad H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) - 22.0 \quad H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) = \\ G(\text{Mn:Cr:Cr}) = - 192369.0 + 152.4742 \quad T + 8.0 \quad \text{GFCC}_{Mn} + 22.0 \quad \text{GHSER}_{Cr} \\ G^{\circ}(T) - 26.0 \quad H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) - 4.0 \quad H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) = \\ G(\text{Mn:Cr:Mn}) = - 74263.0 - 10.7082 \quad T + 18.0 \quad \text{GBCC}_{Mn} + 8.0 \quad \text{GFCC}_{Mn} \\ + 4.0 \quad \text{GHSER}_{Cr} \end{array}$

 $L_{Mn:Cr:Cr,Mn}^{0,\sigma-H} = 90000$

Table I - Invariant Reactions.

Reaction	Туре	Com	position	5 <i>x</i> Mn	Т / К
bcc-A2 + σ -L \rightleftharpoons Cr ₃ Mn ₅ σ -H \rightleftharpoons bcc-A2 + σ -L Liquid + bcc-A2 \rightleftharpoons σ -H Liquid + σ -H \rightleftharpoons bcc-A2 bcc-A2 \rightleftharpoons cub-A13 + σ -H bcc-A2 + fcc-A1 \rightleftharpoons cub-A13 σ -H \rightleftharpoons σ -L + cub-A13 σ -L + cub-A13 \rightleftharpoons cbcc-A12	Peritectoid Eutectoid Peritectic Peritectoid Eutectoid Peritectoid Peritectoid	.570 .758 .813 .876 .880 .898 .815 .812	.719 .683 .717 .794 .873 .993 .811 .934	.625 .760 .755 .831 .894 .913 .910 .910	1197.8 1268.1 1598.4 1556.2 1293.6 1382.1 1264.4 1117.4

•

System	Phase	Prototype	Pearson Symbol Space Group	Comments
Cr-Mn	(Cr)	w	c12 Im3m	
	α−Mn	α-Mn	c58 IĀ.9m	cbcc-A12
	β-Mn	β−Mn	cP20 P4 ₁ 323m	cub-A13
	γ−Mn	Cu	cF4 Fm3m	fcc-A1
	δ—Mn	w	c12 Im3m	bcc- <i>A</i> 2
	α ' Cr _x Mn _{1-x} HT	α−Mn		
	α " Cr _s Mn _{1-s} LT	α−Mn		
	$\sigma \operatorname{Cr}_r \operatorname{Mn}_{1-r} \operatorname{HT}$	σ CrFe	tP30 P42/mnm	
	$\sigma \operatorname{Cr}_{r} \operatorname{Mn}_{1-r} \operatorname{MT}$	σ CrFe	tP30 P42/mnm	
	σ Cr _x Mn _{1-x} LT	σ CrFe	tP30 P42/mnm	

Table II - Crystal Structure and Phase Description.

System Cr–Si

Solution Pha	ses:	
Compounds: Modelling:		Liquid, bcc-A2 Cr ₅ Si ₃ , CrSi,, Cr ₃ Si-A15, CrSi ₂
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
Cr ₃ Si415	:	Sublattice model, (Cr,Si) ₃ (Cr,Si)
CrSi ₂	:	Sublattice model, (Cr,Si)(Cr,Si) ₂
Cr ₅ Si ₃	:	Stoichiometric, $(Cr)_5(Si)_3$
CrSi	:	Stoichiometric, (Cr)(Si)
Assessor and	Date:	
Publication:		C.A. Coughnanowr, I. Ansara, and II.L. Lukas,
		Calphad, 18, 2, 125-140 (1994).

Thermodynamic properties of the solution and compound phases $(J.mol^{-1})$

Phase liquid

$L^{0, ext{liquid}}_{ ext{Cr}, ext{Si}}$	=	-119216.90 + 16.11445 T
$L_{ m Cr,Si}^{1, m liquid}$	=	-47614.70 + 12.17363 T

Phase bcc-A2

$L_{\rm Cr,Si}^{0,{\rm bcc}-A2}$	=	- 104537.94 + 10.69527	Т
$L_{\rm Cr,Si}^{1, m bcc-A2}$	=	- 47614.70 + 12.17363	Т

Phase Cr₃Si-A15

- $G^{\circ}(T) 4.0 \quad H^{\circ, bcc-A2, para}_{Cr}(298.15 \text{ K}) = G(Cr:Cr) = 20000.0 + 10.000 \quad T + 4.0 \quad GHSER_{Cr}$
- $G^{\circ}(T) 3.0 \quad H_{Cr}^{\circ,bcc-A2,para}(298.15 \text{ K}) H_{Si}^{\circ,diamond}(298.15 \text{ K}) = G(Cr:Si) = -126369.35 + 4.15051 \quad T + 3.0 \quad GHSER_{Cr} + GHSER_{Si}$
- $G^{\circ}(T) H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) 3.0 \quad H_{Si}^{\circ, diamond}(298.15 \text{ K}) = G(Cr:Si) = 233507.47 74.15051 \quad T + GHSER_{Cr} + 3.0 \quad GHSER_{Si}$
- $G^{\circ}(T) 4.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) = G(\text{Si:Si}) = 208000.0 80.000 \quad T + 4.0 \quad \text{GHSER}_{\text{Si}}$

 $L_{\rm Cr,Si:Cr}^{0,\rm Cr_3Si} = L_{\rm Cr,Si:Si}^{0,\rm Cr_3Si} = -107840.95$

 $L_{\rm Cr:Cr,Si}^{0,{\rm Cr}_3{\rm Si}} = L_{\rm Si:Cr,Si}^{0,{\rm Cr}_3{\rm Si}} = -13020.93$

Phase Cr₅Si₃

$$G^{\circ}(T) = 5.0 \quad H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) = 3.0 \quad H_{Si}^{\circ, diamond}(298.15 \text{ K}) = -316433.0 + 1065.82816 \quad T = 182.578184 \quad T \cdot \ln T = 23.919688E - 3 \quad T^2 = 2.31728E - 06 \quad T^3$$

Phase CrSi

 $G^{\circ}(T) - H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) - H_{Si}^{\circ, diamond}(298.15 \text{ K}) =$ - 78732.28 + 311.58392 T - 51.62865 T · lnT - 4.47355E-03 T² + 391330 T⁻¹

Phase CrSi₂

$$G^{\circ}(T) - 3.0 \ H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) = G(Cr:Cr) = 10000.00 - 1.0 \ T + 3.0 \ \text{GHSER}_{Cr}$$

 $G^{\circ}(T) - H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) - 2.0 \quad H_{Si}^{\circ, diamond}(298.15 \text{ K}) = G(Cr:Si) =$ $- 96694.43 + 333.33835 \quad T - 57.855747 \quad T \cdot \ln T$ $- 13.22769E-03 \quad T^2 - 0.43203E-06 \quad T^3$

 $G^{\circ}(T) - 2.0 \quad H_{Cr}^{\circ,bcc-A2,para}(298.15 \text{ K}) - H_{Si}^{\circ,diamond}(298.15 \text{ K}) = G(Si:Cr) = 148569.93 - 12.65342 \quad T + 2.0 \quad GIISER_{Cr} + GISER_{Si}$

- $G^{\circ}(T) 3.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) = G(\text{Si:Si}) = 78860.26 15.77206 \quad T + 3.0 \quad \text{GHSER}_{\text{Si}}$
- $L_{\rm Cr;Cr,Si_2}^{0,{\rm Cr}Si_2} = L_{\rm Si;Cr,Si_2}^{0,{\rm Cr}Si_2} = -35879.97 + 7.17599 T$

Table I - Invariant Reactions.

Reaction	Туре	Com	positio	ns x_{Si}	Т / К
Liquid \rightleftharpoons bcc-A2 + Cr ₃ Si-A15 Liquid \rightleftharpoons Cr ₃ Si-A15 + Cr ₅ Si ₃ Liquid + Cr ₅ Si ₃ \rightleftharpoons CrSi Liquid \rightleftharpoons CrSi + CrSi ₂ Liquid \rightleftharpoons CrSi ₂ + diamond Cr ₃ Si-A15 \rightleftharpoons Liquid Cr ₅ Si ₃ \rightleftharpoons Liquid Cr ₂ Si \rightleftharpoons Liquid	Eutectic Eutectic Peritectic Eutectic Eutectic Congruent Congruent	.154 .364 .560 .574 .864 .025 .375 .666	.115 .272 .375 .500 .673 .025 .375 .666	.233 .375 .500 .656 1.000 	1957.4 1950.0 1718.5 1708.8 1606.7 2049.5 1951.0 1741.0

System	Phase	Prototype	Pearson Symbol Space Group	Sub lattices	Comments
Cr∋Si	(Cr)	w	c12 Im3m	M 2	
	(Si)	diamond-A4	cF8 Fd3m		
	CrSi	FeSi	cP8 P2 ₁ 3	Cr 4 Si 4	
	CrSi₂	CrSi₂	hP9 P6₂22	Cr 3 Si 6	
	Cr₃Si	Cr ₃ Si	cP8 Pm3n	Cr 6 Si 2	Cr ₃ Si-A15
	Cr5Si3	Si ₃ W5	1192 14/mcm	$\begin{array}{ccc} \mathbf{Cr_1} & 4 \\ \mathbf{Cr_2} & 16 \\ \mathbf{Si_1} & 4 \\ \mathbf{Si_2} & 8 \end{array}$	<i>t138</i> in Mas1
	Cr5Si3	Mn₅Si₃	hP16 P63/mcm		not considered

Table II - Crystal Structure and Phase Description.

.

$\mathbf{System} \ \mathbf{Cr} \textbf{-} \mathbf{Ti}$

Solution Pha	ses:	Liquid, bcc-A2, hcp-A3
Compounds:		Laves-C14, Laves-C15
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
Laves-C11	:	Sublattice model, (Cr,Ti) ₂ (Cr,Ti)
Laves $C15$:	Sublattice model, (Cr,Ti) ₂ (Cr,Ti)

Assessor and Date:

.

N. Saunders, 1992

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Laves-C14

$$\begin{aligned} G^{\circ}(T) &= 3.0 \quad H_{Cr}^{\circ,bcc-A2,para}(298.15 \text{ K}) = G(Cr;Cr) = 15000.0 + 3.0 \quad \text{GHSER}_{Cr} \\ G^{\circ}(T) &= 2.0 \quad H_{Cr}^{\circ,bcc-A2,para}(298.15 \text{ K}) = H_{Ti}^{\circ,bcp-A3}(298.15 \text{ K}) = G(Cr;Ti) = \\ &= -1440.0 - 6.75 \quad T + 2.0 \quad \text{GHSER}_{Cr} + \text{GHSER}_{Ti} \\ G^{\circ}(T) &= H_{Cr}^{\circ,bcc-A2,para}(298.15 \text{ K}) - 2.0 \quad H_{Ti}^{\circ,bcp-A3}(298.15 \text{ K}) = G(Ti;Cr) = \\ &= 15000.0 + \text{GHSER}_{Cr} + 2.0 \quad \text{GHSER}_{Ti} \\ G^{\circ}(T) &= 3.0 \quad H_{Ti}^{\circ,bcp-A3}(298.15 \text{ K}) = G(Ti;Ti) = \\ &= 15000.0 + 3.0 \quad \text{GHSER}_{Ti} \\ H_{Cr}^{0,Laves-C14} &= L_{Ti;Cr,Ti}^{0,Laves-C14} = 60000.0 \\ L_{Cr,Ti;Cr}^{0,Laves-C14} &= L_{Cr,Ti;Ti}^{0,Laves-C14} = 60000.0 \end{aligned}$$

Phase Laves-C15

 $\begin{array}{ll} G^{\circ}(T) - 3.0 & H_{\rm Cr}^{\circ, \rm bcc-A2, \rm para}(298.15 \ {\rm K}) = {\rm G}({\rm Cr}:{\rm Cr}) = 15000.0 + 3.0 \ {\rm GHSER}_{\rm Cr} \\ G^{\circ}(T) - 2.0 & H_{\rm Cr}^{\circ, \rm bcc-A2, \rm para}(298.15 \ {\rm K}) - H_{\rm Ti}^{\circ, \rm hcp-A3}(298.15 \ {\rm K}) = {\rm G}({\rm Cr}:{\rm Ti}) = \\ & - 1780.0 - 6.3 \ T + 2.0 \ {\rm GHSER}_{\rm Cr} + {\rm GHSER}_{\rm Ti} \\ G^{\circ}(T) - H_{\rm Cr}^{\circ, \rm bcc-A2, \rm para}(298.15 \ {\rm K}) - 2.0 \ H_{\rm Ti}^{\circ, \rm hcp-A3}(298.15 \ {\rm K}) = {\rm G}({\rm Ti}:{\rm Cr}) = \\ & 15000.0 + {\rm GHSER}_{\rm Cr} + 2.0 \ {\rm GHSER}_{\rm Ti} \\ G^{\circ}(T) - 3.0 \ H_{\rm Ti}^{\circ, \rm hcp-A2}(298.15 \ {\rm K}) = {\rm G}({\rm Ti}:{\rm Ti}) = 15000.0 + 3.0 \ {\rm GHSER}_{\rm Ti} \end{array}$

$$L_{\rm Cr:Cr,Ti}^{0,{\rm Laves}-{\rm C15}} = L_{\rm Ti:Cr,Ti}^{0,{\rm Laves}-{\rm C15}} = 50000.0$$

 $L_{\rm Cr,Ti:Cr}^{0,{\rm Laves}-{\rm C15}} = L_{\rm Cr,Ti:Ti}^{0,{\rm Laves}-{\rm C15}} = 10800.0 + 27 T$

 $L_{\rm Cr,Ti}^{0,{\rm liquid}} = 5250$ $L_{\rm Cr,Ti}^{1,{\rm liquid}} = 1500$

Phase hcp-A3

 $L_{\rm Cr,Ti:D}^{0,{\rm hcp}-A3} = 32500$

Phase bcc-A2

 $L_{\rm Cr,Ti:D}^{0,{\rm bcc}-A2} = 19100$

 $L_{\rm Cr,Ti:D}^{1,\rm bcc-A2} = 5500$

 $L_{\rm Cr,Ti:D}^{2,{\rm bcc}-A2} = 1750$

Table I - Invariant Reactions	Table	I	– Invariant	Reactions.
-------------------------------	-------	---	-------------	------------

Reaction	Туре	Com	position	ıs x _{Ti}	Т/К
bcc-A2 \rightleftharpoons Laves-C15 + hcp-A3 bcc-A2 + Laves-C15 \rightleftharpoons Laves-C14 Laves-C14 \rightleftharpoons bcc-A2 + Laves-C15 Laves-C14 \rightleftharpoons bcc-A2 bcc-A2 \rightleftharpoons Liquid	Eutectoid Peritectoid Eutectoid Congruent Congruent	.884 .593 .336 .333 .563	.365 .353 .027 .333 .563	.994 .362 .342 	959.7 1495.3 1093.4 1645.0 1677.0

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Comments
Cr-Ti	(Cr)	w	c12 Im3m	
	(Ti)	Mg	hP2 P63/mmc	
	(Ti)	w	c12 Im3m	
	α Cr2Ti	Cu2Mg	cF24 Fd3m	Laves-C15
	β Cr ₂ Ti	MgZn ₂	hP12 P63/mmc	Laves-C14
	$\gamma \operatorname{Cr}_2\operatorname{Ti}$	MgNi ₂	hP24 P6 ₃ /mmc	Laves-C36

System Cr-V

Solution Phases:

<u>Modelling:</u>		
		Liquid, bcc-A2
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
<u>Publicati</u>	on:	
		Scientific Group Thermodata Europe Database

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase bcc-A2

 $L_{\rm Cr,V:D}^{0,\rm bcc-A2} = -9874 - 2.6964 T$

 $L_{\rm Cr,V:D}^{1,\rm bcc-A2} = -1720 - 2.5237 T$

Phase liquid

 $L_{\rm Cr,V}^{0,{\rm liquid}} = -9874 - 2.6964 T$ $L_{\rm Cr,V}^{1,{\rm liquid}} = -1720 - 2.5237 T$

.

)

.

Table I - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Cr-V	(Cr)	w	c12 Imām
	(V)	W	c12 Im3m

System Cr-Zn

Solution Phases:

(stable) (metastable)		Liquid, bcc-A2, hcp-Zn fcc-A1	
Compounds:		C-7- C-7-	
Modelling:		Cr2n ₁₃ , Cr2n ₁₇	
bcc-A2	:	Substitutional, Redlich-Kister	
fcc-A1	:	Substitutional, Redlich-Kister	
hcp-Zn	:	Substitutional, Redlich-Kister	
Liquid	:	Substitutional, Redlich-Kister	
CrZn ₁₃	:	Stoichiometric,(Cr)(Zn)13	

Assessor and Date:

:

CrZn₁₇

I. Ansara, 1992

Stoichiometric, (Cr)(Zn)17

$L_{\rm Cr,Zn;\Box}^{0,\rm bcc-A2} = 80 T$	
	Phase fcc-A1
$L_{\rm Cr,Zn;D}^{0,{\rm fcc}-A1} = 80 T$	
	Phase hcp-Zn
$L_{Cr,Zn:\Box}^{0,hcp-Zn} = 80 T$	
	Phase liquid
$L_{\rm Cr,Zn}^{0,{\rm liquid}} = 19000$	
$L_{\rm Cr,Zn}^{1,{\rm liquid}} = -1000$	

Table I -	Invariant	Reactions.
-----------	-----------	------------

Reaction	Туре	Com	positions	3 x _{Zn}	Т / К
Liquid + bcc- $A2 \rightleftharpoons \operatorname{CrZn}_{13}^{\bullet}$	Peritectic	0.996	0.000	0.928	761.4
Liquid + CrZn ₁₃ \rightleftharpoons CrZn ₁₇	Peritectic	0.998	0.928	0.944	736.5
Liquid \rightleftharpoons CrZn ₁₇ + hcp-Zn	Degenerate	0.999	0.944	0.999	692.5

* Reaction uncertain

Phase CrZn₁₃

 $G^{\circ}(T) = H_{Cr}^{\circ, hcc-A2, para}(298.15 \text{ K}) = 13.0 H_{Zn}^{\circ, hcp-A3}298.15 \text{ K})$ = 9800.0 + GHSER_{Cr} + 13.0 GHSER_{Zn}

Phase CrZn₁₇

 $G^{\circ}(T) = H_{Cr}^{\circ, hcc-A2, para}(298.15 \text{ K}) = 17.0 H_{Zn}^{\circ, hcp-A3}(298.15 \text{ K}) = 11700.0 + \text{GHSER}_{Cr} + 17.0 \text{GHSER}_{Zn}$

System	Phase	Prototype	Pearson Symbol Space Group
Cr–Zn	(C r)	w	c12 Im3m
	(Zn)	Mg	hP2 P6 ₃ /mmc
-	CrZn ₁₃	CoZn ₁₃	
	CrZn ₁₇		

Table II - Crystal Structure and Phase Description.

System Cr-Zr

Sol	utior	h Phases:	

(stable)	Liquid, bcc-A2, hcp-A3
(metastable)	fcc-A1

Compounds:

Laves-C14, Laves-C15, Laves-C36

Modelling:

bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich–Kister
hcp-A3	:	Substitutional, Redlich-Kister
Liquid	:	Substitutional, Redlich-Kister
Laves- $C14$:	Sublattice model, (Cr,Zr) ₂ (Cr,Zr)
Laves– $C15$:	Sublattice model, (Cr,Zr) ₂ (Cr,Zr)
Laves- $C36$:	Sublattice model, (Cr,Zr) ₂ (Cr,Zr)

Assessor and Date:

K. Zeng, M. Hämäläinen, and I. Ansara (1993)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Laves-C14

$$\begin{array}{rcl} G^{\circ}(T) - 3.0 & H_{\rm Cr}^{\circ, \rm bcc-A2, \rm para}(298.15 \ {\rm K}) = {\rm G}({\rm Cr}:{\rm Cr}) = \\ & 15000.0 + 3.0 \ {\rm GHSER}_{\rm Cr} \\ G^{\circ}(T) - 2.0 & H_{\rm Cr}^{\circ, \rm bcc-A2, \rm para}(298.15 \ {\rm K}) - H_{\rm Zr}^{\circ, \rm hcp-A3}(298.15 \ {\rm K}) = {\rm G}({\rm Cr}:{\rm Zr}) = \\ & -8114 - 11.652 \ T + 2.0 \ {\rm GHSER}_{\rm Cr} + {\rm GHSER}_{\rm Zr} \\ G^{\circ}(T) - H_{\rm Cr}^{\circ, \rm bcc-A2, \rm para}(298.15 \ {\rm K}) - 2.0 \ H_{\rm Zr}^{\circ, \rm hcp-A3}(298.15 \ {\rm K}) = {\rm G}({\rm Zr}:{\rm Cr}) = \\ & 38114 + 11.652 \ T + {\rm GHSER}_{\rm Cr} + 2.0 \ {\rm GHSER}_{\rm Zr} \\ G^{\circ}(T) - 3.0 \ H_{\rm Zr}^{\circ, \rm hcp-A3}(298.15 \ {\rm K}) = {\rm G}({\rm Zr}:{\rm Zr}) = \\ & 15000.0 + 3.0 \ {\rm GHSER}_{\rm Zr} \\ L_{\rm Cr, Zr: Cr}^{\circ, \rm cr} = L_{\rm Cr, Zr: Zr}^{0, \rm Laves-C14} = 52300 \\ L_{\rm Cr: Cr, Zr}^{0, \rm Laves-C14} = L_{\rm Zr: Cr, Zr}^{0, \rm Laves-C14} = 26060 \end{array}$$

-

Phase Laves-C15

$$G^{\circ}(T) - 3.0 \quad H_{Cr}^{\circ,bcc-A2,para}(298.15 \text{ K}) = G(Cr:Cr) = 15000.0 + 3.0 \text{ GHSER}_{Cr}$$

$$G^{\circ}(T) - 2.0 \quad H_{Cr}^{\circ,bcc-A2,para}(298.15 \text{ K}) - H_{Zr}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Cr:Zr) = -87273 + 29.915 \quad T + 2.0 \quad \text{GHSER}_{Cr} + \text{GHSER}_{Zr}$$

$$G^{\circ}(T) - H_{Cr}^{\circ,bcc-A2,para}(298.15 \text{ K}) - 2.0 \quad H_{Zr}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Zr:Cr) = 387273 - 29.915 \quad T + \text{GHSER}_{Cr} + 2.0 \quad \text{GHSER}_{Zr}$$

$$G^{\circ}(T) - 3.0 \quad H_{Zr}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Zr:Zr) = 15000.0 + 3.0 \quad \text{GHSER}_{Zr}$$

$$L_{Cr,Zr:Cr}^{0,Laves-C15} = 70328$$

$$L_{Cr,Zr:Zr}^{0,Laves-C15} = 62910$$

$$L_{Zr:Cr,Zr}^{0,Laves-C15} = 62910$$

Phase Laves-C36

 $G^{\circ}(T) - 3.0 \quad H^{\circ, bcc-A2, para}_{Cr}(298.15 \text{ K}) = G(Cr:Cr) =$ 15000.0 + 3.0 GHSER_{Cr} $G^{\circ}(T) - 2.0 \quad H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) - H_{Zr}^{\circ, hcp-A3}(298.15 \text{ K}) = G(Cr:Zr) =$ -70026 + 20.901 T + 2.0 GHSER_{Cr} + GHSER_{Zr} $G^{\circ}(T) - H_{Cr}^{\circ, bcc-A2, para}(298.15 \text{ K}) - 2.0 \quad H_{Zr}^{\circ, hcp-A3}(298.15 \text{ K}) = G(Zr; Cr) =$ $100026.08 - 20.901 T + GHSER_{Cr} + 2.0 GHSER_{Zr}$ $G^{\circ}(T) - 3.0 \quad H_{\rm Zr}^{\circ,hcp-A3}(298.15 \text{ K}) = G({\rm Zr}:{\rm Zr}) =$ 15000.0 + 3.0 GHSER_{Zr} $L_{\rm Cr,Zr:Cr}^{0,{\rm Laves}-C36}$ = 52614 $L_{Cr,Zr;Zr}^{0,Laves-C36}$ = 52614 $L_{Cr:Cr,Zr}^{0,Laves-C36} = 29400$ $L^{0,\text{Laves}-C36}_{\text{Zr:Cr,Zr}} = 2940$ Phase liquid $L^{0, \text{liquid}}_{\text{Cr}, \text{Zr}}$ = -12971.34 + 1.20015 T $L^{1, ext{liquid}}_{ ext{Cr}, ext{Zr}}$ 8025.96 - 0.74259 T = $L^{2,\mathrm{Liquid}}_{\mathrm{Cr,Zr}}$ = -9984.87 + 0.92383 TPhase bcc-A2

$L^{0, bcc-A2}_{Cr, Zr:\Box}$	=	16555.47 + 4.92028	T

 $L_{\rm Cr,Zr;D}^{1,\rm bcc-A2} = 11365.57$

Phase fcc-A1

 $L_{\rm Cr,Zr;O}^{0,{\rm fcc}-A1} = 20000$

Phase hcp-A3

 $L_{\rm Cr,Zr;D}^{0,\rm hcp-A3} = 15800$

Reaction	Туре	Com	position	s z _{Zr}	Т / К
Liquid \rightleftharpoons Laves-C15 + bcc-A2 Laves-C36 \rightleftharpoons Laves-C15 + Liquid Liquid + Laves-C14 \rightleftharpoons Laves-C36 Laves-C36 \rightleftharpoons Liquid + Laves-C36 Laves-C36 \rightleftharpoons bcc-A2 + Laves-C14 Liquid \rightleftharpoons bcc-A2 + Laves-C15 bcc-A2 \rightleftharpoons Laves-C15 + hcp-A3 Laves-C14 \rightleftharpoons Liquid Laves-C15 \rightleftharpoons Laves-C36	Eutectic Metatectic Peritectic Metatectic Eutectic Eutectoid Eutectoid Congruent Congruent	.765 .359 .461 .316 .173 .314 .984 .333 .340	.359 .348 .346 .218 .014 .012 .340 .333 .340	.916 .573 .348 .321 .313 .333 .994 	1607.9 1839.6 1900.0 1895.9 1864.6 1816.1 1112.3 1946.5 1858.0

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Su latt	b ices	Comments
Cr-Zr	(Cr)	w	c12 Im3m	м	2	
	(Zr)	Mg	hP2 P63/mmc	м	2	
	(Zr)	w	c12 Im3m	м	4	
	α−Cr₂Zr	Cu2Mg	cF24 Fd3m	M ₁ M ₂	8 16	Laves-C15
	β−Cr2Zr	MgNi2	hP24 P6 ₃ /mmc	Cr ₁ Cr ₂ Zr ₁ Zr ₂	6 6 3 3	Laves-C36
	γ−Cr ₂ Zr	MgZn ₂	hP12 P6 ₃ /mmc	Cr Cr Zr	2 6 4	Laves-C14
System Cu-Fe

Solution Phases:

(stable)	:	Liquid, fcc-A1, bcc-A2
(metastable)	:	hcp-A3

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister

Assessor and Date:

Publication:

I. Ansara, and Å. Jansson

Trita-Mac-0533, Dec. 1993, Materials Research Center, The Royal Institute of Technology, Stockholm (Sweden)

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase bcc-A2

$L_{Cu,Fe;\Box}^{0,bcc-A2} = 39258.0 - 4.14983$	0,bcc− <i>A</i> 2 ′Cu,Fe:□	=	39258.0 - 4.14983	T
---	-------------------------------	---	-------------------	---

Phase fcc-A1

$L_{Cu}^{0,\text{fcc}-A1}$	=	48232.5 -	8.60954	Т

 $L_{Cu,Fe;\Box}^{1,fcc-A1} = 8861.88 - 5.28975 T$

Phase hcp-A3

 $L_{Cu,Fe;O}^{0,hep-A3} = 48232.5 - 8.60954 T$

 $L_{Cu,Fe;O}^{1,hep-A3} = 8861.88 - 5.28975 T$

Phase liquid

- $L_{Cu,Fe}^{0,liquid} = 36088.0 2.32968 T$
- $L_{Cu,Fe}^{1,liquid} = 324.53 0.03270 T$
- $L_{Cu,Fe}^{2,liquid} = 10355.40 3.60297 T$

Table I - Invariant Reactions.

Reaction	Туре	Com	position	8 IFe	Т / К
Liquid + bcc- $A2 \rightleftharpoons \text{fcc}-A1^n$	Peritectic	.880	.933	.927	1762.4
Liquid + fcc- $A1^n \rightleftharpoons \text{fcc}-A1^i$	Peritectic	.034	.936	.047	1371.4
fcc- $A1^n \rightleftharpoons \text{fcc}-A2$	Eutectoid	.975	.012	.984	1115.9

.

System	Phase	Prototype	Pearson Symbol Space Group
Cu-Fe	(Cu)	Cu	cF↓ Fm3m
	(Fe)	Cu	cF4 Fm3m
	(Fe)	w	c12 Im3m

Table II - Crystal Structure and Phase Description.

System Cu-Li

Solution Phases:

(stable)

Liquid, bcc-A2, fcc-A1

Solution Phases: (metastable)

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister

hcp-A3

Assessor and Date:

N. Saunders, 1991

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase bcc-A2

 $L_{Cu,Li:D}^{0,bcc-A2} = 50000$

Phase fcc-A1

 $L_{\rm Cu,Li:D}^{0,\rm fcc-A1} = 2750 + 13.0 T$

 $L_{\rm Cu,Li:D}^{1,{\rm fcc}-A1} = -1000$

Phase hcp-A3

 $L_{\rm Cu,Li:D}^{0,hcp+A3} = 2042 + 10.9617 T$

Phase liquid

 $L_{\rm Cu,Li}^{0,{\rm liquid}} = 66000 - 44.723 T$

Table I - Invariant Reactions.

Reaction	Туре	Com	position	s x _{Li}	Т / К
$Liquid \rightleftharpoons fcc-A1 + bcc-A2$	Degenerate	1.000	0.228	1.000	453.6

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pears. Symb. Space Group
Cu-Li	(Cu)	Cu	cF4 Fm3m
	(Li)	w	c12 Im3m

System Cu-Mg

Solution Phases:

(stable)	:	Liquid, fcc–A1, hcp–A3
(metastable)	:	bcc-B2, hcp-Zn

Compound:

(stable)	Laves– $C15$, CuMg ₂
(metastable)	Laves-C14, Laves-C36, CuZn- γ
	MgZn, Mg ₂ Zn ₃ , Mg ₂ Zn ₁₁

Modelling:

Liquid	:	Substitutional, Redlich–Kister
fcc-A1	:	Substitutional, Redlich–Kister
hcp-A3	:	Substitutional, Redlich-Kister
Laves- $C15$:	Sublattice–model, Cu,Mg)0.5(Cu,Mg)0.5(□)3
CuMg ₂	:	Stoichiometric, CuMg ₂
bc <i>c-A</i> 2	:	see below
bcc- <i>B</i> 2	:	Sublattice model, (Cu,Mg)0.5(Cu,Mg)0.5
		Two descriptions of the $bcc-A2:bcc-B2$ order-disorder
		transformation are given: one which includes the
		parameters of the order and disordered phases in a single
		description (equation 21 in the thermodynamic
		modelling chapter), and a second one where the order
		and disorder contributions are expressed by equation 23.
		For the second case, the parameters are in a frame.
hcp-Zn	:	Substitutional, Redlich-Kister
$CuZn-\gamma$:	Stoichiometric, (Cu)2(Cu)2(Cu)3(Mg)6
Mg ₂ Zn ₁₁	:	Stoichiometric, (Cu)11(Mg)2
Mg ₂ Zn ₃	:	Stoichiometric, (Cu) ₃ (Mg) ₂
MgZn	:	Stoichiometric, (Cu) ₁₃ (Mg) ₁₂
Laves-C14	:	Sublattice-model, (Cu,Mg) ₂ (Cu,Mg)
Laves- $C36$:	Sublattice-model, (Cu,Mg) ₂ (Cu,Mg)
Assessor and	Date:	
		C.A. Coughnanowr, I. Ansara, R. Luoma,
		M. Hämäläinen, and H.L. Lukas
Publication:		
		Z. für Metallkde., 82, 7, 574-581 (1991).
Comments:		

A new assessment was performed where the lattice stabilities of Cu and Mg in the Laves-C15 structure were taken equal to 15kJ/formula unit, in order to ensure consistency in the database.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase liquid

 $L_{Cu,Mg}^{0,liquid} = -36962.71 + 4.74394 T$ $L_{Cu,Mg}^{1,liquid} = -8182.19$

Phase fcc-A1

 $L_{Cu,Mg;\Box}^{0,fcc-A1} = -22059.61 + 5.63232 T$

Phase hcp-A3

 $L_{Cu,Mg:D}^{0,hep-A3} = 22500.0 - 3.0 T$

Phase hcp-Zn

 $L_{Cu,Mg;\Omega}^{0,hcp-Zn} = 22500.0 - 3.0 T$

Phase Laves-C14

 $G^{\circ}(T) - 3.0 \ H_{Cu}^{\circ,fcc-A1}(298.15 \ K) = G(Cu:Cu) = 15000.0 + 3.0 \ GHSER_{Cu}$ $G^{\circ}(T) - 2.0 \ H_{Cu}^{\circ,fcc-A1}(298.15 \ K) - H_{Mg}^{\circ,hcp-A3}(298.15 \ K) = G(Cu:Mg) = -24691.0 + 364.73085 \ T - 69.276417 \ T \cdot \ln T - 5.19246E-04 \ T^{2} + 143502 \ T^{-1} - 5.65953E-6 \ T^{3}$ $G^{\circ}(T) - H_{Cu}^{\circ,fcc-A1}(298.15 \ K) - 2.0 \ H_{Mg}^{\circ,hcp-A3}(298.15 \ K) = G(Mg:Cu) = -74970.96 - 16.46448 \ T + GHSER_{Cu} + 2.0 \ GHSER_{Mg}$ $G^{\circ}(T) - 3.0 \ H_{Mg}^{\circ,fcc-A1}(298.15 \ K) = G(Mg:Mg) = 15000.0 + 3.0 \ GHSER_{Mg}$ $L_{Cu,Mg:Cu}^{0,Laves-C14} = L_{Cu,Mg:Mg}^{0,Laves-C14} = 13011.35$ $L_{Cu;Cu,Mg}^{0,Laves-C14} = L_{Mg:Cu,Mg}^{0,Laves-C14} = 6599.45$

Phase Laves-C15

$$G^{\circ}(T) - 3.0 \ H_{Cu}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) = G(\text{Cu:Cu}) = 15000.0 + 3.0 \ \text{GHSER}_{Cu}$$

$$G^{\circ}(T) - 2.0 \ H_{Cu}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) - H_{Mg}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = G(\text{Cu:Mg}) = -54691.0 + 364.73085 \ T - 69.276417 \ T \cdot \ln T - 5.19246\text{E-}04 \ T^2 + 143502 \ T^{-1} - 5.65953\text{E-}6 \ T^3$$

$$G^{\circ}(T) - H_{Cu}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) - 2.0 \ H_{Mg}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = G(\text{Mg:Cu}) = 104970.96 - 16.46448 \ T + \text{GHSER}_{Cu} + 2.0 \ \text{GHSER}_{Mg}$$

$$G^{\circ}(T) - 3.0 \ H_{Mg}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) = G(\text{Mg:Mg}) = 15000.0 + 3.0 \ \text{GHSER}_{Mg}$$

$$L_{Cu:Mg:Cu}^{0,\text{Laves}-C15} = L_{Cu:Mg:Mg}^{0,\text{Laves}-C15} = 13011.35$$

$$L_{Cu:Cu,Mg}^{0,\text{Laves}-C15} = L_{Mg:Cu,Mg}^{0,\text{Laves}-C15} = 6599.45$$

Phase Laves-C36

 $G^{\circ}(T) - 3.0 \ H_{Cu}^{\circ,fcc-A1}(298.15 \ \text{K}) = G(\text{Cu:Cu}) = 15000.0 + 3.0 \ \text{GHSER}_{Cu}$ $G^{\circ}(T) - 2.0 \ H_{Cu}^{\circ,fcc-A1}(298.15 \ \text{K}) - H_{Mg}^{\circ,hcp-A3}(298.15 \ \text{K}) = G(\text{Cu:Mg}) = -34691.0 + 364.73085 \ T - 69.276417 \ T \cdot \ln T - 5.19246\text{E-}04 \ T^{2} + 143502 \ T^{-1} - 5.65953\text{E-}6 \ T^{3}$

 $G^{\circ}(T) - H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - 2.0 H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Mg:Cu) = 84970.96 - 16.46448 T + GHSER_{Cu} + 2.0 GHSER_{Mg}$

 $G^{\circ}(T)$ - 3.0 $H_{Mg}^{\circ,fcc-A1}(298.15 \text{ K}) = G(Mg:Mg) = 15000.0 + 3.0 \text{ GHSER}_{Mg}$

 $L_{Cu,Mg;Cu}^{0,Laves-C36} = L_{Cu,Mg;Mg}^{0,Laves-C36} = 13011.35$

 $L_{\rm Cu:Cu,Mg}^{0,{\rm Laves}-{
m C36}} = L_{{\rm Mg:Cu,Mg}}^{0,{\rm Laves}-{
m C36}} = 6599.45$

Phase CuMg₂

 $G^{\circ}(T) - H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) - 2.0 H_{Mg}^{\circ, hcp-A3}(298.15 \text{ K}) = -28620.0 + 1.86456 T + \text{GHSER}_{Cu} + 2.0 \text{ GHSER}_{Mg}$

Phase CuZn- γ

 $\begin{array}{l} \mathrm{K4} = -11552.71 - 1.67824 \ T \\ \mathrm{K5} = 15732.3 - 10.26575 \ T \\ \mathrm{K7} = 9000.0 - 1.5 \ T \\ G^{\circ}(T) - 7.0 \ H_{\mathrm{Cu}}^{\circ,\mathrm{fcc}-A1}(298.15 \ \mathrm{K}) - 6.0 \ H_{\mathrm{Mg}}^{\circ,\mathrm{hcp}-A3}(298.15 \ \mathrm{K}) = \mathrm{G}(\mathrm{Cu}:\mathrm{Cu}:\mathrm{Cu}:\mathrm{Mg}) = \\ 13.0 \ \mathrm{K4} + 2.0 \ \mathrm{K5} + 6.0 \ \mathrm{K7} + 7.0 \ \mathrm{GHSER}_{\mathrm{Cu}} + 6.0 \ \mathrm{GHSER}_{\mathrm{Mg}} \end{array}$

Phase Mg₂Zn₁₁

 $G^{\circ}(T)$ - 11.0 $H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K})$ - 2.0 $H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Mg:Cu) = 0.0 + 11.0 \text{ GHSER}_{Cu} + 2.0 \text{ GHSER}_{Mg}$

Phase Mg₂Zn₃

 $G^{\circ}(T) - 3.0 \ H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) - 2.0 \ H_{Mg}^{\circ, hcp-A3}(298.15 \text{ K}) = G(Mg:Cu) = 0.0 + 3.0 \ GHSER_{Cu} + 2.0 \ GHSER_{Mg}$

Phase MgZn

 $G^{\circ}(T)$ - 13.0 $H_{Cu}^{\circ, \text{fcc}-A1}(298.15 \text{ K})$ - 12.0 $H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = G(Mg:Cu) = 0.0 + 13.0 \text{ GHSER}_{Cu} + 12.0 \text{ GHSER}_{Mg}$

Phase bcc-B2

$$\begin{aligned} G^{\bullet}\mathrm{Cu} &: \mathrm{Mg} = 0.0 \\ L^{0}\mathrm{Cu}, \mathrm{Mg} = -2500 \\ G^{\bullet}(T) &- H^{\circ,\mathrm{fcc}-A1}_{\mathrm{Cu}}(298.15 \text{ K}) = \mathrm{G}(\mathrm{Cu}:\mathrm{Cu}) = \mathrm{GBCC}_{\mathrm{Cu}} \\ G^{\circ}(T) &- 0.5 \ H^{\circ,\mathrm{fcc}-A1}_{\mathrm{Cu}}(298.15 \text{ K}) - H^{\circ,\mathrm{hcp}-A3}_{\mathrm{Mg}}(298.15 \text{ K}) = \mathrm{G}(\mathrm{Cu}:\mathrm{Mg}) = \\ & \quad G^{\bullet}\mathrm{Cu} : \mathrm{Mg} + 0.5 \ L^{0}_{\mathrm{Cu},\mathrm{Mg}} + 0.5 \ \mathrm{GBCC}_{\mathrm{Cu}} + 0.5 \ \mathrm{GBCC}_{\mathrm{Mg}} \end{aligned}$$

 $\begin{aligned} G^{\circ}(T) &= 0.5 \ H_{\text{Cu}}^{\circ,\text{fcc}-A1}(298.15 \ \text{K}) = 0.5 \ H_{\text{Mg}}^{\circ,\text{hcp}-A3}(298.15 \ \text{K}) = \text{G}(\text{Mg:Cu}) = \\ & G^{\circ}\text{Cu} : \text{Mg} + L_{\text{Cu},\text{Mg}}^{0} + 0.5 \ \text{GBCC}_{\text{Cu}} + 0.5 \ \text{GBCC}_{\text{Mg}} \\ G^{\circ}(T) &= H_{\text{Mg}}^{\circ,\text{hcp}-A3}(298.15 \ \text{K}) = \text{G}(\text{Mg:Mg}) = \ \text{GBCC}_{\text{Mg}} \\ & L_{\text{Cu},\text{Mg:Cu:D}}^{0,\text{hcc}-B2} = L_{\text{Cu},\text{Mg:Mg:D}}^{0,\text{hcc}-B2} = -G^{\circ}\text{Cu} : \text{Mg} + L^{0}\text{Cu}, \text{Mg} \\ & L_{\text{Cu},\text{Mg:Cu:D}}^{0,\text{hcc}-B2} = L_{\text{Mg:Cu},\text{Mg:Mg:D}}^{0,\text{hcc}-B2} = -G^{\circ}\text{Cu} : \text{Mg} + L^{0}\text{Cu}, \text{Mg} \end{aligned}$

Phase bcc-B2

$$G_{Cu:Mg}^{\bullet} = 0.0$$

 $L_{Cu,Mg}^{0} = -2500$
 $G^{\circ}(T) - H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) = G(Cu:Cu) = 0.0$
 $G^{\circ}(T) - 0.5 H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - 0.5 H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Cu:Mg) = 2.0 G^{\circ}Cu : Mg$
 $G^{\circ}(T) - 0.5 H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - 0.5 H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Mg:Cu) = 2.0 G^{\circ}Cu : Mg$
 $G^{\circ}(T) - H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Mg:Mg) = 0.0$
Phase bcc-A2
 $L_{Cu,Mg:O}^{\circ,bcc-A2} = 4.0 L^{O}Cu, Mg$

Table I – Invariant Reactions.

Reaction	Туре	Com	oositions	x _{Mg}	Т / К
Liquid \rightleftharpoons fcc-A1 + Laves-C15 Liquid \rightleftharpoons Laves-C15 + CuMg ₂ Liquid \rightleftharpoons CuMg ₂ + hcp-A3 CuMg ₂ \rightleftharpoons Liquid Laves-C15 \rightleftharpoons Liquid	Eutectic Eutectic Eutectic Congruent Congruent	.209 .595 .839 0.666 0.333	.069 .356 .667 0.666 0.333	.313 .667 1.000 	998.6 825.5 759.7 841.0 1073.5

174

System Cu–Ni

Solution Phases:

(stable)	Liquid, fcc–A1
(metastable)	bcc-A2, hcp-A3

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister

Assessor and Date:

Publication:

S. an Mey

Calphad, 16, (3), 255-260 (1992).

Thermodynamic properties of the solution phases (J.mol⁻¹)

$L^{0, bcc-A2}_{Cu, Ni; \Box} =$	80	47.72 + 3.4221	7 T
$L^{1,\text{bcc}-A^2}_{\text{Cu,Ni:D}} =$	- 204	41.3 + 0.99714	Т
		Р	hase fcc-A1
$L^{0, \text{fcc}-A1}_{\text{Cu}, \text{Ni}; \Box}$	=	8047.72 + 3.43	2217 T
$L_{Cu,Ni:\Box}^{1,fcc-A1}$	= -	2041.3 + 0.997	714 <i>T</i>
$T_{\rm c,Cu,Ni:\square}^{0,{\rm fcc}-A1}$	= -	935.5	
$T_{c,Cu,Ni;\Box}^{1,fcc-A1}$	= -	594.9	
β ^{0,mag,fcc−A1} Cu,Ni:□	= -	0.7316	
β ^{1,mag,fcc−A1} Cu,Ni:□	= -	0.3174	

Phase hcp-A3

 $L_{Cu,Ni;\Box}^{0,hcp-A3} = 8047.72 + 3.42217 T$ $L_{Cu,Ni;\Box}^{1,hcp-A3} = -2041.3 + 0.99714 T$

Phase liquid

 $L_{Cu,Ni}^{0,liquid} = 12048.61 + 1.29893 T$ $L_{Cu,Ni}^{1,liquid} = -1861.61 + 0.94201 T$

Table I - Invariant Reaction.

Reaction	Туре	Compositions x_{Ni}	Т / К
$fcc-A1' \rightleftharpoons fcc-A1"$	Critical Temp.	0.600 0.600	641.0

System	Phase	Prototype	Pearson Symbol Space Group
Cu-Ni	(Cu)	Cu	cF4 Fm3m
	(Ni)	Cu	cF4 Fm3m

Table II - Crystal Structure and Phase Description.

System Cu-Si

Solution Phases:

(stable)	Liquid, bcc-A2, fcc-A1
(metastable)	hcp-A3
Compounds:	

(stable) $Cu_{56}Si_{11}-\gamma$, $Cu_4Si-\epsilon$, $Cu_{19}Si_6-\eta$, $Cu_{33}Si_7-\delta$ (metastable)Laves-C15

Modelling:

Liquid	:	Substitutional, Redlich–Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
Cu56Si11-γ	:	Stoichiometric, (Cu)56(Si)
Cu4Si-e	:	Stoichiometric, (Cu) ₄ (Si)
Cu ₁₉ Si ₆ -η	:	Stoichiometric, (Cu) ₁₉ (Si) ₆
Cu ₃₃ Si ₇ -δ	:	Stoichiometric, (Cu)33(Si)7
Laves- $C15$:	Sublattice model, (Cu,Si) ₂ (Cu,Si)

Assessor and Date:

M. Jacobs, 1991. Revised by T. Bühler et al. 1997

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase bcc-A2

 $L_{\rm Cu,Si;O}^{0,\rm bcc-A2} = -21740 + 3.9 T$

 $L_{\rm Cu,Si;O}^{1,\rm bcc-A2}$ = -40000 - 4.39 T

 $L_{\rm Cu,Si:D}^{2,{\rm bcc}-A2} = -100$

Phase fcc-A1

 $L_{\rm Cu,Si;O}^{0,\rm fcc-A1}$ = - 34105.96 - 1.908 T

Phase hcp-A3

 $L_{Cu,Si;\Box}^{0,hcp-A3} = -19948 - 2.356 T$

 $L_{\rm Cu,Si:\Box}^{1,\rm hcp-A3} = -23800 - 1.97 T$

 $L_{Cu,Si:\Box}^{2,hcp-A3} = -20$

Phase liquid

 $L_{\rm Cu,Si}^{0,{\rm liquid}} = -39688.86 + 14.27467 T$

 $L_{\rm Cu,Si}^{1,{\rm liquid}} = -49937.13 + 29.78960 T$

 $L_{\rm Cu,Si}^{2,{\rm liquid}} = -31810.16 + 18.00804 T$

Phase $Cu_{33}Si_7 - \delta$

 $G^{\circ}(T) - 33.0 \quad H_{Cu}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 7.0 \quad H_{Si}^{\circ, \text{diamond}}(298.15 \text{ K}) = -200372.4 + 4985.675 \quad T - 955.5312 \quad T \cdot \ln T - 0.101066 \quad T^2 + 4.2396\text{E} \cdot 06 \quad T^3 + 2968440 \quad T^{-1}$

Phase $Cu_{56}Si_{11}-\gamma$

 $G^{\circ}(T) - 56.0 \quad H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) - 11.0 \quad H_{Si}^{\circ, diamond}(298.15 \text{ K}) = 69000 + 405 \quad T - 107.73 \quad T \cdot \ln T + 46.0 \text{ GHSER}_{Cu} + 11.0 \quad \text{GHSER}_{Si}$

Phase Cu₄Si-e

 $G^{\circ}(T) - 4.0 \quad H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Si}^{\circ,diamond}(298.15 \text{ K}) =$ $- 39974.35 + 858.5047 \quad T - 154.6764 \quad T \cdot \ln T + 0.01074864 \quad T^2 + 5.1335E-07 \quad T^3 + 386580 \quad T^{-1}$

Phase $Cu_{19}Si_6-\eta$

 $G^{\circ}(T) - 19.0 \quad H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) - 6.0 \quad H_{Si}^{\circ, diamond}(298.15 \text{ K}) = -137488.5 + 3119.537 \quad T - 595.1259 \quad T \cdot \ln T - 0.0619575 \quad T^{2} + 2.434\text{E} - 06 \quad T^{3} + 2057075 \quad T^{-1}$

Phase Laves-C15

$$\begin{array}{rcl} G^{\circ}(T) - 3.0 & H_{C_{u}}^{\circ, frc-A1}(298.15 \ \mathrm{K}) = \mathrm{G}(\mathrm{Cu}:\mathrm{Cu}) = \\ & & 15000.0 + 3.0 \ \mathrm{GHSER}_{\mathrm{Cu}} \\ G^{\circ}(T) - 2.0 & H_{\mathrm{Cu}}^{\circ, fcc-A1}(298.15 \ \mathrm{K}) - H_{\mathrm{Si}}^{\circ, diamond}(298.15 \ \mathrm{K}) = \mathrm{G}(\mathrm{Cu}:\mathrm{Si}) \\ & & 15000.0 + 2.0 \ \mathrm{GHSER}_{\mathrm{Cu}} + \mathrm{GHSER}_{\mathrm{Si}} \\ G^{\circ}(T) - & H_{\mathrm{Cu}}^{\circ, fcc-A1}(298.15 \ \mathrm{K}) - 2.0 \ H_{\mathrm{Si}}^{\circ, diamond}(298.15 \ \mathrm{K}) = \mathrm{G}(\mathrm{Si}:\mathrm{Cu}) \\ & & 15000.0 + \mathrm{GHSER}_{\mathrm{Cu}} + 2.0 \ \mathrm{GHSER}_{\mathrm{Si}} \\ G^{\circ}(T) - & 3.0 \ H_{\mathrm{Si}}^{\circ, diamond}(298.15 \ \mathrm{K}) = \mathrm{G}(\mathrm{Si}:\mathrm{Si}) \\ & & 15000.0 + \mathrm{GHSER}_{\mathrm{Si}} \\ & & \mathrm{G}(\mathrm{Si}:\mathrm{Cu}) \\ & & 15000.0 + 3.0 \ \mathrm{GHSER}_{\mathrm{Si}} \\ & & L_{\mathrm{Cu},\mathrm{Si}:\mathrm{Cu}}^{0,\mathrm{Laves}-\mathrm{C15}} = 15305 + 20.69 \ T \end{array}$$

Reaction	Туре	Compositions x_{Si}		Т / К	
Liquid + fcc-A1 $\rightleftharpoons \beta^{\bullet}$ fcc-A1 + $\beta^{\bullet} \rightleftharpoons \beta^{\bullet \bullet}$ $\beta^{\bullet} \rightleftharpoons \beta^{\bullet \bullet} + \delta$ Liquid + $\beta^{\bullet} \rightleftharpoons \delta$ Liquid $\rightleftharpoons \delta + \eta$ $\eta + \delta \rightleftharpoons \epsilon$ $\delta \rightleftharpoons \beta^{\bullet \bullet \bullet} + \epsilon$ $\beta^{\bullet \bullet} + \delta \rightleftharpoons \beta^{\bullet \bullet \bullet}$ $\epsilon \rightleftharpoons \beta^{\bullet \bullet \bullet} + \eta$ $\beta^{\bullet \bullet} \rightleftharpoons \text{fcc-A1} + \beta^{\bullet \bullet \bullet}$ $\beta^{\bullet \bullet \bullet} \rightleftharpoons \text{fcc-A1} + \eta$ Liquid $\rightleftharpoons \eta + \text{diamond}$ $\eta \rightleftharpoons \text{Liquid}$	Peritectic Peritectoid Eutectoid Peritectic Eutectic Peritectoid Eutectoid Eutectoid Eutectoid Eutectoid Eutectoid Eutectoid Eutectoid	.154 .113 .154 .186 .191 .175 .175 .121 .200 .105 .164 .306 .240	.112 .147 .125 .169 .175 .240 .164 .175 .164 .093 .072 .240 .240	.146 .118 .175 .175 .240 .200 .200 .164 .240 .164 .240 1.000	1125.4 1115.9 1058.6 1092.7 1089.2 1077.9 955.6 1008.3 696.5 825.5 667.8 1073.7 1132.0

Table I - Invariant Reactions.

• $\beta \equiv bcc-A2$, •• $\kappa \equiv bcp-A3$, •• $\gamma \equiv cub-A13$

Ta	ble	Π		Crystal	Structure	and	Phase	Description.
----	-----	---	--	---------	-----------	-----	-------	--------------

444.1					
System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Cu-Si	(Cu)	Cu	cF4 Fm3m	M 4	
	(Si)	diamond	cF8 Fd3m	M 8	
	ĸ	Mg	hP2 P63/mmc	M 2	hcp-A3 Cu7Si in [91Vil]
	Cu ₃ Si		t		$\left \begin{array}{c} \eta, \eta', \eta^{"} \text{ in } Mas2\\ \text{denoted } Cu_4 \text{Si}-\epsilon \end{array}\right $
	δ		hP72		
	γ	β-Mn	cP20 P4 ₁ 32	M ₁ 8 M ₂ 12	
	β	w	c12 1m3m	M 2	bcc-A2
		1		1	

System Cu-Y

ses:	
	Liquid, bcc-A2, hcp-A3, Cu ₆ Y
	Cu ₄ Y, Cu ₆ Y, Cu ₇ Y ₂ , Cu ₂ Y-R, Cu ₂ Y-H, CuY
:	Substitutional, Redlich–Kister
:	Substitutional, Redlich–Kister
:	Substitutional, Redlich-Kister
:	Sublattice model, (Cu)5(Cu2,Y)
:	Stoichiometric, (Cu) ₄ (Y)
:	Stoichiometric, $(Cu)_7(Y)_2$
:	Stoichiometric, $(Cu)_2(Y)$
:	Stoichiometric, (Cu) ₂ (Y)
:	Stoichiometric, (Cu)(Y)
	ses: : : : : : :

Assessor and Date:

T. Jantzen, 1997.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase bcc-A2

$L_{ m Cu,N}^{0, m bc}$	$C^{-A2}_{Y:O} = 80.0 T$	
		Phase hcp-A3
$L^{0,\mathrm{hc}}_{\mathrm{Cu},\mathrm{V}}$	$_{f:O}^{p-A3} = 80.0 T$	
		Phase liquid
$L_{ m Cu, Y}^{0, m liq}$	$\chi^{\rm uid} = -88958.06 +$	- 21.5667 <i>T</i>
$L_{ m Cu,Y}^{1, m liq}$	$\chi^{\rm uid} = -33607.31 +$	- 3.10462 T
$L^{2, liq}_{Cu, V}$	$\chi^{\rm uid} = 8083.16 - 0.7$	74669 <i>T</i>

Phase fcc-A1

 $L_{Cu,Y}^{0,fcc-A1} = 80.0 T$

Phase Cu₂Y-R

 $G^{\circ}(T) - 2.0 \quad H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) - H_{Y}^{\circ, hcp-A3}(298.15 \text{ K}) = G(Cu:Y) = -65324.22 + 6.03462 \quad T + 2.0 \quad GHSER_{Cu} + GHSER_{Y}$

Phase Cu₂Y-H

 $G^{\circ}(T) - 2.0 \quad H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Y}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Cu:Y) = -51788.22 - 5.96538 \quad T + 2.0 \quad \text{GHSER}_{Cu} + \text{GHSER}_{Y}$

Phase Cu₄Y

 $G^{\circ}(T) - 4.0 \quad H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Y}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Cu:Y) = -89328.5 + 8.25205 \quad T + 4.0 \quad GHSER_{Cu} + GHSER_{Y}$

Phase Cu₆Y

$$G^{\circ}(T) - 7.0 \quad H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) = G(Cu:Cu_2) = 35000.0 + 7.0 \quad GHSER_{Cu} G^{\circ}(T) - 5.0 \quad H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Y}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Cu:Y) = - 89797.58 + 8.2954 \quad T + 5.0 \quad GHSER_{Cu} + GHSER_{Y} L_{Cu:Cu_2,Y}^{\circ,Cu_6Y} = - 34386.27 + 3.17656 \quad T$$

Phase Cu₇Y₂

 $G^{\circ}(T)$ - 7.0 $H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K})$ - 2.0 $H_{Y}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Cu:Y) =$ - 168519.6 + 15.56757 T + 7.0 GHSER_{Cu} + 2.0 GHSER_Y

Phase CuY

 $G^{\circ}(T) - H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - H_{Y}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Cu:Y) =$ - 44616.68 + 4.12162 T + GHSER_{Cu} + GHSER_Y

Table I - Invariant Reactions.

Reaction	Туре	Com	position	5 <i>x</i> Y	Т / К
Liquid \rightleftharpoons CuY + hcp-A3 Liquid \rightleftharpoons Cu ₂ Y-R + CuY Liquid \rightleftharpoons Cu ₂ Y-R + Cu ₇ Y ₂ Liquid \rightleftharpoons Cu ₄ Y + Cu ₇ Y ₂ Liquid \rightleftharpoons Cu ₄ Y \rightleftharpoons Cu ₆ Y Liquid \rightleftharpoons fcc-A1 + Cu ₆ Y hcp-A3 \rightleftharpoons bcc-A2 Cu ₂ Y-R \rightleftharpoons Cu ₂ Y-H Liquid \rightleftharpoons Cu ₄ Y Liquid \rightleftharpoons Cu ₄ Y Liquid \rightleftharpoons Cu ₂ Y-H Liquid \rightleftharpoons Cu ₂ Y-H	Eutectic Eutectic Peritectic Peritectic Eutectic Polymorphic Polymorphic Congruent Congruent	.646 .396 .299 .262 .133 .094 1.000 .333 .200 .333 .500	646 .333 .222 .200 .000 1.000 .333 .200 .333 .500	1.000 .500 .333 .222 .147 .129 	1070.0 1113.0 1148.6 1198.0 1184.0 1153.0 1752.0 1128.0 1224.0 1149.0 1220.0

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattice	ŭ	Comments
Cu-Y	(Cu)	Cu	cF4 Fm3m	м	4	
	(Y)	w	c12 Im3m	М	4	
	(Y)	Mg	hP2 P6 ₃ /mmc	М	2	
	Cu ₆ Y					not in [91Vil]
	Cu₅Y	CaCu5	hP6 P6/mmm	Y Cu ₁ Cu ₂	1 2 3	quoted as metastable in 90Mas]
	Cu₄Y	CaCu ₅ ?	hP6 P6/mmm			not quoted in [91Vil]
	Cu7Y2					not in [91Vil]
	Cu ₂ Y	CeCu2	oI12 Imma	Y Cu	4 8	
	CuY	CsCl	cP2 Pm3m	Cu Y	1 1	bcc- <i>B</i> 2

Table II - Crystal Structure and Phase Description.

.

System Cu-Zn

Solution Phases:		
(stable)	:	Liquid, bcc-A2, bcc-B2, fcc-A1, hcp-A3(CuZn- ϵ), hcp-Zn
	:	·
Solution Phases:		
(stable)	:	$CuZn-\gamma$
(metastable)	:	Laves- $C14$, Laves- $C15$, Laves- $C36$
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
$hcp-A3(CuZn-\epsilon)$:	Substitutional, Redlich-Kister
hcp-Zn	:	Substitutional, Redlich-Kister
$CuZn-\gamma$:	Sublattice, (Cu,Zn)2(Cu,Zn)2(Cu)3(Zn)6
bcc-A2	:	see below
bcc-B2	:	Sublattice model, $(Cu,Zn)_{0.5}(Cu,Zn)_{0.5}(\Box)_3$
		Two descriptions of the bcc- $A2:$ bcc- $B2$ order-disorder transformation are given: one which includes the parameters of the order and disordered phases in a single description (equation 21 in the thermodynamic modelling chapter), and a second one where the order and disorder contributions are expressed by equation 23. For the second case, the parameters are in a frame. Two descriptions of the bcc- $A2:$ bcc- $B2$ order-disorder
Laves– $C14$:	Sublattice model, (Cu,Zn)2(Cu,Zn)
Laves- $C15$:	Sublattice model, (Cu,Zn)2(Cu,Zn)
Laves- $C36$:	Sublattice model, (Cu,Zn) ₂ (Cu,Zn)
Assessor and Dat	:e:	
		M. Kowalski, and P.J. Spencer,
Publication:		J Phase Equil 14 4 432-438 (1993)
Comments:		
		Based on Kowalski's data, a new assessment was performed to differentiate the two hexagonal forms of Zn.

•

Phase fcc-A1

$L^{0, \text{fcc}-A1}_{\text{Cu}, \text{Zn}: \Box}$	=	- 42803.75 + 10.022	258 T
$L^{1, fcc-A1}_{Cu, Zn:D}$	=	2936.39 - 3.05323	
$L^{2, fcc-A1}_{Cu, Zn:D}$	=	9034.2 - 5.39314	Т
		P	hase hcp–A3
$L^{0, hcp-A3}_{Cu, Zn:\square}$	=	-36475 + 4.896 T	
$L^{0,hcp-A3}_{Cu,Zn:\square}$	=	24790.0 - 10.135 <i>T</i>	۲
		P)	hase hcp–Zn
$L^{0, hcp-Zn}_{Cu, Zn}$	=	- 14432.17 - 10.781	4 T
		F	Phase liquid
$L_{\mathrm{Cu,Zn}}^{0,\mathrm{liquid}}$	= -	- 40695.54 + 12.6526	59 T
$L_{\mathrm{Cu,Zn}}^{1,\mathrm{liquid}}$	=	4402.72 - 6.55425	Т

 $L_{Cu,Zn}^{2,liquid} = 7818.1 - 3.25416 T$

Phase bcc-B2

$G^*_{Cu:Zn:D}$	=	- 3085.0
$L^0_{\mathrm{Cu,Zn}}$	=	-12898.97 + 3.26598 T
$L^1_{\mathrm{Cu,Zn}}$	=	945.265 - 0.80679 T
$L^2_{\mathrm{Cu,Zn}}$	=	1921.485 - 1.86969 T
$G^{\circ}(T)$ – E	l ^{o,fcc}	$^{-A1}(298.15 \text{ K}) = \text{G} (\text{Cu:Cu:}\Box) = \text{GBCC}_{\text{Cu}}$
$G^{\circ}(T) - 0$.5 E	$I_{Cu}^{o,fcc-A1}(298.15 \text{ K}) - 0.5 H_{Zn}^{o,hcp-Zn}(298.15 \text{ K}) = G \ (Cu:Zn:\Box) =$
		$G^{\bullet}_{\mathrm{Cu};\mathrm{Zn}} + L^{0}_{\mathrm{Cu},\mathrm{Zn}} + 0.5 \ \mathrm{GBCC}_{\mathrm{Cu}} + 0.5 \ \mathrm{GBCC}_{\mathrm{Zn}}$

<i>G</i> °(<i>T</i>) – 0.5	$H_{Cu}^{o,fcc}$	- ^{A1} (298.15 K) -	0.5	$H_{\text{Zn}}^{\circ,\text{hcp}-\text{Zn}}(298.15 \text{ K}) = \text{G} (\text{Zn}:\text{Cu}:\Box) =$
	$G^{\bullet}_{\mathbf{C}}$	$C_{u:Zn:D} + L^0_{Cu,Zn}$	+ 0.	.5 $GBCC_{Cu} + 0.5 GBCC_{Zn}$
$G^{\circ}(T) - 0.5$	$H_{\rm Zn}^{o,hcp}$	^{-Zn} (298.15 K)	= G	$(Zn:Zn:\Box) = GBCC_{Zn}$
$L^{0,\mathrm{bcc}-B2}_{\mathrm{Cu,Zn:Cu:D}}$	=	$L^{0,\mathrm{bcc}-B2}_{\mathrm{Cu}:\mathrm{Cu},\mathrm{Zn}:\square}$	=	$-G^{*}_{Cu:Zn:\Box} + L^{0}_{Cu,Zn} + 3.0 L^{1}_{Cu,Zn} + 3.0 L^{2}_{Cu,Zn}$
L ^{1,bcc−B2} Cu,Zn:Cu:□	=	$L^{1,\mathrm{bcc}-B2}_{\mathrm{Cu}:\mathrm{Cu},\mathrm{Zn}:\Box}$	=	$L^1_{\mathrm{Cu,Zn}} + 4.0 L^2_{\mathrm{Cu,Zn}}$
$L^{2,\mathrm{bcc}-B2}_{\mathrm{Cu,Zn:Cu:\square}}$	=	$L^{2,\mathrm{bcc}-B2}_{\mathrm{Cu}:\mathrm{Cu},\mathrm{Zn}:\Box}$	=	$L^2_{Cu,Zn}$
L ^{0,bcc-B2 Cu,Zn:Zn:D}	=	$L^{0,\mathrm{bcc}-B2}_{\mathrm{Zn}:\mathrm{Cu},\mathrm{Zn}:\Box}$	=	$-G^{\bullet}_{Cu;Zn;O} + L^{0}_{Cu,Zn} - 3.0 L^{1}_{Cu,Zn} + 3.0 L^{2}_{Cu,Zn}$
$L^{1,\mathrm{bcc}-B2}_{\mathrm{Cu,Zn:Zn:D}}$	=	L ^{1,bcc-B2} Zn:Cu,Zn:D	=	$L^1_{\mathrm{Cu,Zn}} - 4.0 L^2_{\mathrm{Cu,Zn}}$
L ^{2,bcc−B2} Cu,Zn:Zn:□	=	$L^{2,\mathrm{bcc}-B2}_{\mathrm{Zn:Cu,Zn:D}}$	=	$L^2_{Cu,Zn}$
L ^{0,bcc-B2} Cu,Zn:Cu,Zn:	=	- 24.0 $L^{2}_{Cu,Zn}$		

Phase bcc-B2

$$G_{Cu;Zn:\square}^{\circ} = -3085.0$$

 $L_{Cu,Zn}^{0} = -12898.97 + 3.26598 T$
 $L_{Cu,Zn}^{1} = 945.265 - 0.80679 T$
 $L_{Cu,Zn}^{2} = 1921.485 - 1.86969 T$
 $G^{\circ}(T) - H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) = G(Cu:Cu:\square) = 0.0$
 $G^{\circ}(T) - 0.5 H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - 0.5 H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = G(Cu:Zn:\square) = 2.0 G_{Cu:Zn:\square}^{\circ}$
 $G^{\circ}(T) - 0.5 H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - 0.5 H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = G(Zn:Cu:\square) = 2.0 G_{Cu:Zn:\square}^{\circ}$
 $G^{\circ}(T) - H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = 0.5 H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = G(Zn:Cu:\square) = 2.0 G_{Cu:Zn:\square}^{\circ}$
 $Phase bcc-A2$
 $L_{Cu,Zn:\square}^{0,bcc-A2} = 4.0 L_{Cu,Zn}^{0}$
 $L_{Cu,Zn:\square}^{0,bcc-A2} = 8.0 L_{Cu,Zn}^{1}$

Phase CuZn- γ

$$\begin{array}{l} \mathrm{K4} = -11552.71 - 1.67824 \ T \\ \mathrm{K5} = \ 15732.3 - 10.26575 \ T \\ \mathrm{K6} = \ 37289.2 - 13.05259 \ T \\ \mathrm{G^{\circ}}(T) - 7.0 \ H_{\mathrm{Cu}}^{\circ,\mathrm{fcc}-A1}(298.15 \ \mathrm{K}) - 6.0 \ H_{\mathrm{Zn}}^{\circ,\mathrm{hcp}-\mathrm{Zn}}(298.15 \ \mathrm{K}) = \mathrm{G}(\mathrm{Cu}:\mathrm{Cu}:\mathrm{Cu}:\mathrm{Zn}) = \\ 13.0 \ \mathrm{K4} + 2.0 \ \mathrm{K5} + 7.0 \ \mathrm{GHSER}_{\mathrm{Cu}} + 6.0 \ \mathrm{GHSER}_{\mathrm{Zn}} \\ \mathrm{G^{\circ}}(T) - 5.0 \ H_{\mathrm{Cu}}^{\circ,\mathrm{fcc}-A1}(298.15 \ \mathrm{K}) - 8.0 \ H_{\mathrm{Zn}}^{\circ,\mathrm{hcp}-\mathrm{Zn}}(298.15 \ \mathrm{K}) = \mathrm{G}(\mathrm{Zn}:\mathrm{Cu}:\mathrm{Cu}:\mathrm{Zn}) = \\ 13.0 \ \mathrm{K4} + 2.0 \ \mathrm{K5} + 2.0 \ \mathrm{K6} + 5.0 \ \mathrm{GHSER}_{\mathrm{Cu}} + 8.0 \ \mathrm{GHSER}_{\mathrm{Zn}} \\ \mathrm{G^{\circ}}(T) - 5.0 \ H_{\mathrm{Cu}}^{\circ,\mathrm{fcc}-A1}(298.15 \ \mathrm{K}) - 8.0 \ H_{\mathrm{Zn}}^{\circ,\mathrm{hcp}-\mathrm{Zn}}(298.15 \ \mathrm{K}) = \mathrm{G}(\mathrm{Cu}:\mathrm{Zn}:\mathrm{Cu}:\mathrm{Zn}) = \\ 13.0 \ \mathrm{K4} + 5.0 \ \mathrm{GHSER}_{\mathrm{Cu}} + 8.0 \ \mathrm{GHSER}_{\mathrm{Zn}} \\ \mathrm{G^{\circ}}(T) - 3.0 \ H_{\mathrm{Cu}}^{\circ,\mathrm{fcc}-A1}(298.15 \ \mathrm{K}) - 10.0 \ H_{\mathrm{Zn}}^{\circ,\mathrm{hcp}-\mathrm{Zn}}(298.15 \ \mathrm{K}) = \mathrm{G}(\mathrm{Zn}:\mathrm{Zn}:\mathrm{Cu}:\mathrm{Zn}) = \\ \mathrm{G^{\circ}}(T) - 3.0 \ H_{\mathrm{Cu}}^{\circ,\mathrm{fcc}-A1}(298.15 \ \mathrm{K}) - 10.0 \ H_{\mathrm{Zn}}^{\circ,\mathrm{hcp}-\mathrm{Zn}}(298.15 \ \mathrm{K}) = \mathrm{G}(\mathrm{Zn}:\mathrm{Zn}:\mathrm{Cu}:\mathrm{Zn}) = \\ \end{array}$$

13.0 K4 + 2.0 K6 + 3.0 GHSER_{Cu} + 10.0 GHSER_{Zn}

Phase Laves-C14

$$\begin{aligned} G^{\circ}(T) &- 3.0 \ H_{Cu}^{\circ,fcc-A1}(298.15 \ K) = G(Cu:Cu) = 15000.0 + 3.0 \ GHSER_{Cu} \\ G^{\circ}(T) &- 2.0 \ H_{Cu}^{\circ,fcc-A1}(298.15 \ K) - H_{Zn}^{\circ,hcp-Zn}(298.15 \ K) = G(Cu:Zn) = \\ & 15000.0 + 2.0 \ GHSER_{Cu} + GHSER_{Zn} \\ G^{\circ}(T) &- H_{Cu}^{\circ,fcc-A1}(298.15 \ K) - 2.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \ K) = G(Zn:Cu) = \\ & 15000.0 + GHSER_{Cu} + 2.0 \ GHSER_{Zn} \\ G^{\circ}(T) &- 3.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \ K) = G(Zn:Zn) = 15000.0 + 3.0 \ GHSER_{Zn} \\ L_{Cu,Zn:Cu}^{0,Laves-C14} &= L_{Cu,Zn:Zn}^{0,Laves-C14} = -75305.48 \end{aligned}$$

Phase Laves-C15

$$G^{\circ}(T) - 3.0 \ H_{Cu}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) = G(\text{Cu:Cu}) = 15000.0 + 3.0 \ \text{GHSER}_{Cu}$$

$$G^{\circ}(T) - 2.0 \ H_{Cu}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) - H_{Zn}^{\circ,\text{hcp}-Zn}(298.15 \text{ K}) = G(\text{Cu:Zn}) = 15000.0 + 2.0 \ \text{GHSER}_{Cu} + \text{GHSER}_{Zn}$$

$$C^{\circ}(T) - H_{Cu}^{\circ,\text{fcc}-A1}(208.15 \text{ K}) = 2.0 \ H^{\circ,\text{hcp}-Zn}(208.15 \text{ K}) = G(\text{Cu:Zn}) = 0 \ \text{Gm}^{\circ,\text{hcp}-Zn}(208.15 \text{ K}) = 0 \ \text{Gm}^{$$

$$G^{\circ}(T) - H_{Cu}^{\circ,nCP-AI}(298.15 \text{ K}) - 2.0 H_{Zn}^{\circ,nCP-ZII}(298.15 \text{ K}) = G(Zn:Cu) = 15000.0 + GHSER_{Cu} + 2.0 GHSER_{Zn}$$

 $G^{\circ}(T) - 3.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \ K) = G(Zn;Zn) = 15000.0 + 3.0 \ GHSER_{Zn}$

$$L_{Cu,Zn;Cu}^{0,Laves-C15} = L_{Cu,Zn;Zn}^{0,Laves-C15} = -78824.62$$

 $L_{\rm Cu,Zn:Cu}^{1,{\rm Laves-C15}} = L_{\rm Cu,Zn:Zn}^{0,{\rm Laves-C15}} = 25529.06$

Phase Laves-C36

Table I - Invariant Reactions.

Reaction	Туре	Com	position	18 <i>X</i> Zn	Т / К
Liquid + fcc-A1 \rightleftharpoons bcc-A2	Peritectic	.373	.319	.353	1175.3
Liquid + bcc-A2 \rightleftharpoons CuZn- γ	Peritectic	.592	.558	.586	1108.3
Liquid + CuZn- $\gamma \rightleftharpoons$ bcc-A2	Peritectic	.802	.678	.719	972.5
Liquid + bcc-A2 \rightleftharpoons hcp-A3	Peritectic	.882	.773	.792	873.4
bcc-A2 \rightleftharpoons CuZn- γ + hcp-A3	Eutectoid	.748	.693	.777	831.9
Liquid + hcp-A3 \rightleftharpoons hcp-Zn	Peritectic	.983	.874	.981	694.4

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattice	s	Comments
Cu-Zn	(Cu)	Cu	cF4 Pm3m	М	4	
	(Zn)	Mg	hP2 P63/mmc	м	2	
	β	w	c12 Im3m	М	2	bcc-A2
	β'	CsCl	cP2 Pm3m	Cu Zn	1 1	bcc- <i>B</i> 2
	δ	CuZn2	hP3 P ō	Cu Zn ₁ Zn ₂	1 1 1	assumed as bcc-A2
	£	Mg	hP2 P6 ₃ mmc	М	2	CuZn-A3
	7	Cu5Zn8	c152 I43m	$\begin{array}{c} Cu_1 \\ Cu_2 \\ Zn_1 \\ Zn_2 \end{array}$	8 12 8 24	Cu₅Zn

Table II - Crystal Structure and Phase Description.

System Cu-Zr

Solution Phases: Liquid, bcc-A2, hcp-A3 Compounds: Cu₅Zr, Cu₅₁Zr₁₄, Cu₁₀Zr₇, CuZr, CuZr₂, Cu₈Zr₃ Modelling: Liquid Substitutional, Redlich-Kister : Cu₅Zr Stoichiometric, (Cu)₅(Zr) : Cu₅₁Zr₁₄ Stoichiometric, (Cu)51(Zr)14 : $Cu_{10}Zr_7$: Stoichiometric, (Cu)10(Zr)7 $\mathrm{Cu}_8\mathrm{Zr}_3$: Stoichiometric, (Cu)8(Zr)3 CuZr : Stoichiometric, (Cu)(Zr) CuZr₂ : Stoichiometric, (Cu)(Zr)₂

Assessor and Date:

K. Zeng, and M. Hämäläinen 1993

Phase bcc-A2

 $L_{Cu,Zr:D}^{0,bcc-A2} = -7381.13$

Phase fcc-A1

 $L_{Cu,Zr;D}^{0,fcc-A1} = 2233$

Phase hcp-A3

 $L_{Cu,Zr;O}^{0,hep-A3} = 11336.85$

Phase liquid

 $L_{Cu,Zr}^{0,liquid} = -61685.53 + 11.29235 T$

 $L_{\rm Cu,Zr}^{1,{\rm liquid}} = -8830.66 + 5.04565 T$

Phase Cu₁₀Zr₇

 $G^{\circ}(T) = 10.0 \quad H_{Cu}^{\circ, hcc-A1}(298.15 \text{ K}) = 7.0 \quad H_{Zr}^{\circ, hcp-A1}(298.15 \text{ K}) = -241750.0 + 10.0 \quad \text{GHSER}_{Cu} + 7.0 \quad \text{GHSER}_{Zr}$

Phase Cu₅₁Zr₁₄

 $G^{\circ}(T) - 51.0 \quad H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) - 14.0 \quad H_{Zr}^{\circ, hcp-A1}(298.15 \text{ K}) = -843412.7 + 51.0 \quad \text{GHSER}_{Cu} + 14.0 \quad \text{GHSER}_{Zr}$

Phase Cu₅Zr

 $G^{\circ}(T) - 5.0 \quad H_{Cu}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Zr}^{\circ, \text{hcp}-A1}(298.15 \text{ K}) = -61794 + 5.0 \quad \text{GHSER}_{Cu} + \text{GHSER}_{Zr}$

Phase Cu₈Zr₃

 $G^{\circ}(T) = 8.0 \quad H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) = 3.0 \quad H_{Zr}^{\circ,hcp-A1}(298.15 \text{ K}) = -148063.1 + 8.0 \quad \text{GHSER}_{Cu} + 3.0 \quad \text{GHSER}_{Zr}$

Phase CuZr

 $G^{\circ}(T) - H_{C_{u}}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Z_{r}}^{\circ, \text{hcp}-A1}(298.15 \text{ K}) =$ - 20104.24 - 7.63196 T + GHSER_{Cu} + GHSER_{Zr}

Phase CuZr₂

 $G^{\circ}(T) - H_{Cu}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 2.0 \quad H_{Zr}^{\circ, \text{hcp}-A1}(298.15 \text{ K}) = -43904.01 + 5.19051 \quad T + \text{GHSER}_{Cu} + 2.0 \quad \text{GHSER}_{Zr}$

Liquid \rightleftharpoons fcc-A1 + Cu ₅ ZrEutectic.078.001.1671240.8Liquid + Cu ₅₁ Zr ₁₄ \rightleftharpoons Cu ₅ ZrPeritectic.107.215.1671287.5Cu ₅₁ Zr ₁₄ \rightleftharpoons LiquidCongruent.215.2151386.0Liquid + Cu ₅₁ Zr ₁₄ \rightleftharpoons Cu ₈ Zr ₃ Peritectic.388.273.2151195.3Liquid \rightleftharpoons Cu ₈ Zr ₃ + Cu ₁₀ Zr ₇ Eutectic.408.273.4121164.2Cu ₁₀ Zr ₇ \rightleftharpoons LiquidCongruent.412.4121164.2Liquid \rightleftharpoons Cu ₁₀ Zr ₇ + CuZrEutectic.425.412.5001163.2CuZr \rightleftharpoons Cu ₁₀ Zr ₇ + CuZr ₂ Eutectic.500.667976.7Liquid \rightleftharpoons CuZr + CuZr ₂ Eutectic.538.500.6671196.7CuZr \rightleftharpoons LiquidCongruent.500.5001208.5Liquid \rightleftharpoons CuZr ₂ + bcc-A2Eutectic.700.666.9471269.5CuZr ₂ \rightleftharpoons LiquidCongruent.666.666127.50CuZr ₂ \rightleftharpoons LiquidCongruent.666127.50CuZr ₂ \rightleftharpoons LiquidCuZr ₃ \dotplus LiquidCuZr ₂ \rightleftharpoons	Reaction	Туре	Com	position	18 <i>I</i> Zr	Т / К
$0.00-7.2 \leftarrow 0.0212 \pm 0.00-7.5$ [Mulectoid] .915 .001 .992 [1093.2	Liquid \rightleftharpoons fcc-A1 + Cu ₅ Zr Liquid + Cu ₅₁ Zr ₁₄ \rightleftharpoons Cu ₅ Zr Cu ₅₁ Zr ₁₄ \rightleftharpoons Liquid Liquid + Cu ₅₁ Zr ₁₄ \rightleftharpoons Cu ₈ Zr ₃ Liquid \rightleftharpoons Cu ₈ Zr ₃ + Cu ₁₀ Zr ₇ Cu ₁₀ Zr ₇ \rightleftharpoons Liquid Liquid \rightleftharpoons Cu ₁₀ Zr ₇ + CuZr CuZr \rightleftharpoons Cu ₁₀ Zr ₇ + CuZr ₂ Liquid \rightleftharpoons CuZr + CuZr ₂ CuZr \rightleftharpoons Liquid Liquid \rightleftharpoons CuZr ₂ + bcc-A2 CuZr ₂ \rightleftharpoons Liquid bcc-A2 \rightleftharpoons CuZr ₂ + hcp-A3	Eutectic Peritectic Congruent Peritectic Eutectic Congruent Eutectic Eutectoid Eutectic Congruent Eutectic Congruent Eutectoid	.078 .107 .215 .388 .408 .412 .425 .500 .538 .500 .700 .666 .975	.001 .215 .215 .273 .273 .412 .412 .412 .500 .500 .666 .666	.167 .167 .215 .412 .500 .667 .667 .947 	1240.8 1287.5 1386.0 1195.3 1164.2 1164.2 1163.2 976.7 1196.7 1208.5 1269.5 1275.0 1095.2

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Cu-Zr	(Cu)	Cu	cF4 Fm3m	M 4	
	(Zr)	Mg	hP2 P63/mmc	M 2	
	(Zr)	w	c12 Im3m	M 4	
	CuZr	ClCs	cP2 Pm3m	$\begin{array}{ccc} M_1 & 1 \\ M_2 & 1 \end{array}$	bcc-B2
	CuZr2	MoSi ₂	t16 14/mmm	Cu 2 Zr 4	
	Cu ₁₀ Zr ₇	Ni10Zr7	oC68 Aba2		
	Cu9Zr2		tP24 P4/m		0** in [91Vil]
	Cu₅Zr	AuBe5	Cf24 FĀSm	Cu ₁ 4 Cu ₂ 16 Zr 4	
	Cu51Zr14	$Ag_{51}Gd_{14}$	hP65 P6/m		<i>hP68</i> in [91Vil]
	Cu ₈ Zr ₃	Cu ₈ Hf ₃	oP44 Pnma		

System Fe-Mg

Solution Phases:

Liquid, fcc-A1, bcc-A2, hcp-A3

Modelling:

Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister

Assessor and Date:

J. Tibballs (1991)

Thermodynamic properties of the solution phases $(J.mol^{-1})$

Phase bcc-A2

L ^{0,bcc−A2} Fe,Mg:□	=	65700.0
----------------------------------	---	---------

Phase fcc-A1

 $L_{\rm Fe,Mg; \square}^{0,{\rm fcc}-A1} = 65200.0$

Phase hcp-A3

 $L_{\rm Fe,Mg;D}^{0,{\rm hcp}-A3} = 92400.0$

Phase liquid

 $L_{\rm Fe,Mg}^{0,{\rm liquid}} = 61343.0 + 1.5 T$

 $L_{\rm Fe,Mg}^{1,{\rm liquid}} = -2700.0$

Table I - Invariant Reactions.

Reaction	Туре	Comp	osition	s x _{Mg}	т / к
Liquid' \rightleftharpoons bcc-A2 + Liquid" Liquid" + bcc-A2 \rightleftharpoons fcc-A1 Liquid" + bcc-A2 \rightleftharpoons fcc-A1 Liquid" + bcc-A2 \rightleftharpoons fcc-A1 Liquid" +bcc-A2 \rightleftharpoons hcp-A3	Monotectic Degenerate Degenerate Degenerate	.018 .992 .999 1.000	.008 .005 .001 .000	.987 .005 .001 1.000	1791.4 1661.6 1183.4 922.9

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol] Space Group
Fe-Mg	(Fe)	Cu	cF4 Pm3m
	(Fe)	w	c12 Im3m
	(Mg)	Mg	hP2 P6 ₃ /mmc

System Fe-Mn

<u>Solution Ph</u> (stable)	<u>ases:</u>	Liquid, bcc-A2, cbcc-A12, cub-A13, fcc-A1
<u>Solution Phases:</u> (metastable)		hcp-A3
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
bcc-A12	:	Substitutional, Redlich–Kister
cub-A13	:	Substitutional, Redlich–Kister
fcc-A1	:	Substitutional, Redlich-Kister
հշթ- <i>A</i> 3	:	Substitutional, Redlich-Kister

Assessor and Date:

Scientific Group Thermodata Europe Database

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase bcc-A2

 $L_{\rm Fe,Mn:D}^{0,\rm bcc-A2}$ = -2759 + 1.237 T $T_{c,Fe,Mn;\Box}^{0,bcc-A2}$ 123 = $\beta_{\rm Fe,Mn:\square}^{0,{\rm mag,bcc}-A2}$ 0 = Phase cbcc-A12 $L^{0,{\rm cbcc}-A12}_{{\rm Fe},{\rm Mn}:\square}$ = -10184Phase cub-A13 $L_{\rm Fe,Mn:\square}^{0,{\rm cub-A13}}$ = -11518 + 2.819 T Phase fcc-A1 $L^{0,\mathrm{fcc}-A1}_{\mathrm{Fe},\mathrm{Mn};\Box}$ = -7762 + 3.865 T $L^{1, ext{fcc} - A1}_{ ext{Fe}, ext{Mn}: \Box}$ = -259 $T_{c,\mathrm{Fe},\mathrm{Mn}:\square}^{0,\mathrm{fcc}-A1}$ = -2282 $T_{c,Fe,Mn:\Box}^{1,fcc-A1}$ = - 2068 $eta_{\mathrm{Fe},\mathrm{Mn}:\square}^{0,\mathrm{mag},\mathrm{fcc}-A1}$ 0 =

Phase liquid

 $L_{\rm Fe,Mn}^{0,{\rm liquid}} = -3950 + 0.489 \text{ T}$

 $L_{\rm Fe,Mn}^{1,{\rm liquid}} = 1145$

Phase hcp-A3

.2

 $L_{\text{Fe,Mn}}^{0,\text{hep}-A3} = -5582 + 3.865 \text{ T}$ $L_{\text{Fe,Mn}}^{1,\text{hep}-A3} = 273$

Reaction	Туре	Com	oositions	x _{Mn}	Т / К
$cub-A13 \rightleftharpoons fcc-A1 + cbcc-A12$ $fcc-A1 \rightleftharpoons bcc-A2 + cbcc-A12$ Liquid + bcc-A2 \rightleftharpoons fcc-A1 Liquid + bcc-A2 \rightleftharpoons fcc-A1 Liquid + bcc-A2 \ne fcc-A1	Eutectoid Eutectoid Peritectic Peritectic	.681 .436 .100 .867	.606 .033 .129 .877	.690 .659 .129 .875	973.2 521.3 1746.8 1507.2

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Comments
Fe-Mn	(Fe)	Cu	cF4 Pm3m	
	(Fe)	w	c12 Im3m	
	α-Mn	α-Mn	c58 I43m	cbcc-A12
	β-Mn	β−Mn	cP20 P4 ₁ 32	cub-A13
	γ−Mn	Cu	<i>cF</i> 4 <i>Fm</i> 3m	
	δ-Mn	W	c12 Im3m	

System Fe-Si

Solution P	hases:	
		Liquid, bcc-A2, bcc-B2, fcc-A1
Compound	ds:	Fe₅Si3, FeSi, Fe2Si, FeSi2-L, FeSi2-H
Modelling	:	
Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich–Kister
bcc- <i>B</i> 2	:	Sublattice model , $(Fe,Si)_{0.5}(Fe,Si)_{0.5}(\Box)_3$
		Two descriptions of the bcc-A2:bcc-B2 order-disorder
		transformation are given: one which includes the
		parameters of the order and disordered phases in a single
		description (equation 21 in the thermodynamic
		modelling chapter), and a second one where the order
		and disorder contributions are expressed by equation 23.
		For the second case, the parameters are in a frame.
bcc-A2	:	see bcc-B2
Fe ₂ Si	:	Stoichiometric, (Fe) ₂ (Si)
Fe ₅ Si ₃	:	Stoichiometric, $(Fe)_5(Si)_3$
FeSi ₂ –L	:	Stoichiometric, (Fe)(Si) ₂
FeSi ₂ -H	:	Stoichiometric, (Fe) ₃ (Si) ₇
FeSi	:	Stoichiometric, (Fe)(Si)
Assessor a	<u>nd Date:</u>	
		J. Lacaze, and B. Sundman
Publicatio	<u>n:</u>	
		Met. Trans., 22A , (10), 2211-2223 (1991).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Fe₂Si

 $G^{\circ}(T) - 2.0 \quad H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \text{ K}) - H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) = -71256.6 -10.62 \quad T + 2.0 \quad \text{GHSER}_{\text{Fe}} + \text{GHSER}_{\text{Si}}$
Phase Fe₅Si₃

 $G^{\circ}(T) - 5.0 \quad H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \text{ K}) - 3.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) = -241144 + 2.16 \quad T + 5.0 \quad \text{GHSER}_{\text{Fe}} + 3.0 \quad \text{GHSER}_{\text{Si}}$

Phase FeSi₂-L

 $G^{\circ}(T) - H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \text{ K}) - 2.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) = -82149.0 + 10.44 \quad T + \text{GHSER}_{\text{Fe}} + 2.0 \quad \text{GHSER}_{\text{Si}}$

Phase FeSi₂-H

 $G^{\circ}(T) - 3.0 \quad H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \text{ K}) - 7.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) = -196490 - 9.2 \quad T + 3.0 \quad \text{GHSER}_{\text{Fe}} + 7.0 \quad \text{GHSER}_{\text{Si}}$

Phase FeSi

 $G^{\circ}(T) - H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \text{ K}) - H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) = -72761.2 + 4.44 T + \text{GHSER}_{\text{Fe}} + \text{GHSER}_{\text{Si}}$

Phase liquid

$L_{\rm Fe,Si}^{0,{ m liquid}}$ = -164434.6 + 41.9773 T
$L_{\rm Fe,Si}^{1,{\rm liquid}} = -21.523 \ T$
$L_{\rm Fe,Si}^{2,{\rm liquid}} = -18821.542 + 22.07 T$
$L_{\rm Fe,Si}^{3, m liquid}$ = 9695.8
Phase fcc-A1
$L_{\text{Fe,Si:O}}^{0,\text{fcc-A1}} = -125247.7 + 41.166 T$
$L_{\rm Fe,Si:O}^{1,\rm fcc-A1} = -142707.6$
$L_{\rm Fe,Si:\Box}^{2,\rm fcc-A1} = 89907.3$
Phase bcc-B2
$G^{\circ}(T) - H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \text{ K}) = G(\text{Fe}:\text{Fe}:\Box) = \text{GHSER}_{\text{Fe}}$
$T_{c,Fe:Fe\square}^{bcc-B2} = 1043 \qquad \qquad \beta_{c,Fe:Fe\square}^{bcc-B2} = 2.22$
$G^{\circ}(T) - 0.5 H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \text{ K}) - 0.5 H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) = G(\text{Fe:Si:}\Box) = -48761.565 + 11.62 T + 0.5 \text{GHSER}_{\text{Fe}} + 0.5 \text{GBCC}_{\text{Si}}$

 $T_{c,Fe:SiD}^{0,bcc-B2} = 521.5$ $\beta_{c,Si:FeD}^{0,bcc-B2} = 1.11$

 $G^{\circ}(T) - 0.5 \quad H_{\text{Fe}}^{\circ,\text{bcc-A2,para}}(298.15 \text{ K}) - 0.5 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) = G(\text{Si:Fe:}\Box) =$ $-48761.565 + 11.62 T + 0.5 \text{ GHSER}_{Fe} + 0.5 \text{ GBCC}_{Si}$ $\beta^{0,\mathrm{bcc}-B2}_{\mathrm{c},\mathrm{Si:Fe:O}}=1.11$ $T_{c,Si:FeD}^{0,bcc-B2} = 521.5$ $G^{\circ}(T) - H^{\circ, diamond}_{Si}(298.15 \text{ K}) = G(Si:Si:\Box) = GBCC_{Si}$ L^{0,bcc-B2} Fe,Si:Fe:D $L^{0,bcc-B2}_{Fe:Fe,Si:\square}$ = -50771 + 11.62 T= L^{1,bcc−B2} Fe,Si:Fe:□ $= L^{1,\text{bcc}-B2}_{\text{Fe:Fe,Si:D}}$ 4016 = L^{2,bcc−B2} Fe,Si:Fe:□ $= L^{2,bcc-B2}_{Fe:Fe,Si:\square}$ 3890 = $L^{0,bcc-B2}_{Fe,Si:Si\square}$ $= L^{0,\text{bcc}-B2}_{\text{Si:Fe,Si:C}}$ 18493 + 11.62 T= $= L^{1,\text{bcc}-B2}_{\text{Si:Fe,Si:D}}$ $L^{1, ext{bcc}-B2}_{ ext{Fe}, ext{Si:Si:D}}$ = -27104 $= L^{2,\text{bcc}-B2}_{\text{Si:Fe,Si:C}}$ $L^{2,bcc-B2}_{\text{Fe},\text{Si:Si:D}}$ 3890 = L^{0,bcc-B2} Fe,Si:Fe,Si:D **=** − 93360 $T_{c,Fe,Si:Fe:\Box}^{0,bcc-B2}$ $= T_{c,Fe:Fe,Si:D}^{0,bcc-B2}$ 189 = $T^{1,bcc-B2}_{c,Fe,Si:Fe:\Box}$ $= T^{1,bcc-B2}_{c,Fe:Fe,Si:\Box}$ = 63 $T_{c,Fe,Si:Si:\Box}^{0,bcc-B2}$ $T_{c,Si:Fe,Si:\Box}^{0,bcc-B2}$ = -189= $T_{c,Fe,Si:Si:\Box}^{1,bcc-B2}$ $= T_{c,Si:Fe,Si:\Box}^{1,bcc-B2}$ 63 =

 $\begin{aligned} G_{\text{Fe};\text{Si:}\Box}^{\circ} &= -1260 \ R \qquad (R = 8.31451) \\ L_{\text{Fe};\text{Si}}^{0} &= -27809 + 11.62 \ T \\ L_{\text{Fe};\text{Si}}^{1} &= -11544 \\ L_{\text{Fe};\text{Si}}^{2} &= -11544 \\ L_{\text{Fe};\text{Si}}^{2} &= 3890 \end{aligned}$ $\begin{aligned} & \text{Phase bcc} - B2 \\ G^{\circ}(T) &- H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \ \text{K}) &= G(\text{Fe};\text{Fe};\Box) = 0.0 \\ G^{\circ}(T) &- 0.5 \ H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \ \text{K}) - 0.5 \ H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \ \text{K}) = G(\text{Fe};\text{Si};\Box) = 2.0 \ G_{\text{Fe};\text{Si};\Box}^{\circ} \\ G^{\circ}(T) &- 0.5 \ H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \ \text{K}) - 0.5 \ H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \ \text{K}) = G(\text{Si};\text{Fe};\Box) = 2.0 \ G_{\text{Fe};\text{Si};\Box}^{\circ} \\ G^{\circ}(T) &- 0.5 \ H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \ \text{K}) - 0.5 \ H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \ \text{K}) = G(\text{Si};\text{Fe};\Box) = 2.0 \ G_{\text{Fe};\text{Si};\Box}^{\circ} \\ G^{\circ}(T) &- H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \ \text{K}) = G(\text{Si};\text{Si};\Box) = 0.0 \\ \\ & \text{Phase bcc}-A2 \\ \\ L_{\text{Fe};\text{Si};\Box}^{0,\text{bcc}-A2} &= 4.0 \ L_{\text{Fe};\text{Si}}^{0} \\ L_{\text{Fe};\text{Si};\Box}^{1,\text{bcc}-A2} &= 6.3 \\ L_{\text{Fe};\text{Si};\Box}^{1,\text{bcc}-A2} &= 6.3 \\ L_{\text{Fe};\text{Si};\Box}^{1,\text{bcc}-A2} &= 16.0 \ L_{\text{Fe};\text{Si}}^{2} \\ \end{array}$

Table I - Invariant Reactions.

Liquid \Rightarrow bcc-B2 + Fe ₂ SiEutectic.273.267.3331470.6Fe ₂ Si \Rightarrow bcc-B2 + Fe ₅ Si ₃ Eutectoid.333.299.3751322.6Fe ₅ Si ₃ \Rightarrow bcc-B2 + Fe ₅ SiEutectoid.375.298.5001097.6Fe ₂ Si + FeSi \Rightarrow Fe ₅ Si ₃ Peritectoid.333.500.3751364.4Liquid \Rightarrow Fe ₂ Si + FeSiEutectic.357.333.5001475.6Liquid \Rightarrow FeSi + FeSi ₂ -HEutectic.672.500.7001477.6FeSi + FeSi ₂ -H \Rightarrow FeSi ₂ -LPeritectoid.500.700.6661275.7FeSi ₂ -H \Rightarrow FeSi ₂ -L + (Si)Eutectic.700.6671.0001232.6Liquid \Rightarrow FeSi ₂ -H + (Si)Eutectic.725.7001.0001478.5Fe ₂ Si \Rightarrow LiquidCongruent.333.3331488.0FeSi \Rightarrow LiquidCongruent.500.5001683.0	Reaction	Туре	Compositio	ons x_{Si}	Temp. / K
$FeSi_2-H \rightleftharpoons Liquid \qquad Congruent .700 .700 1482.0$	Liquid \rightleftharpoons bcc-B2 + Fe ₂ Si Fe ₂ Si \rightleftharpoons bcc-B2 + Fe ₅ Si ₃ Fe ₅ Si ₃ \rightleftharpoons bcc-B2 + Fe ₅ Si Fe ₂ Si + FeSi \rightleftharpoons Fe ₅ Si ₃ Liquid \rightleftharpoons Fe ₂ Si + FeSi Liquid \rightleftharpoons FeSi + FeSi ₂ -H FeSi + FeSi ₂ -H \rightleftharpoons FeSi ₂ -L FeSi ₂ -H \rightleftharpoons FeSi ₂ -L + (Si) Liquid \rightleftharpoons FeSi ₂ -H + (Si) Fe ₂ Si \rightleftharpoons Liquid FeSi \rightleftharpoons Liquid FeSi ₂ -H \rightleftharpoons Liquid	Eutectic Eutectoid Eutectoid Peritectoid Eutectic Eutectic Peritectoid Eutectoid Eutectoid Eutectic Congruent Congruent	.273 .267 .333 .299 .375 .298 .333 .500 .357 .333 .672 .500 .500 .700 .725 .700 .333 .333 .500 .700 .725 .700 .733 .333 .500 .700	.333 .375 .500 .375 .500 .700 .666 1.000 1.000 	1470.6 1322.8 1097.8 1364.4 1475.8 1477.2 1275.7 1232.9 1478.3 1488.0 1683.0 1482.0

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Fe-Si	(Fe)	Cu	cF4 Pm3m		
	(Fe)	w	c12 Im3m		
	(Si)	diamond	cF8 Fd3m		
	FeSi2-L		tP3 P4/mmm	Fe 1 Si 2	
	FeSi₂-H		oC48 Cmca	Fe ₁ 8 Fe ₂ 8 Si ₁ 8 Si ₂ 16	
	Fe2Si		hP6 P3m1	Fe ₁ 1 Fe ₂ 1 Fe ₃ 2 Si 2	
	FeSi		cP8 P2 ₁ 3	Fe 4 Si 4	
	Fe5Si3		hP16 P63/mmc	Fe1 4 Fe2 6 Si 6	
	bcc- <i>B</i> 2	CsCl	cP2 Fm3m		α2 in [90Mas]

Table II - Crystal Structure and Phase Description.

System Fe-Ti

Solution Phases:		Liquid, bcc-A2, fcc-A1, hcp-A3		
Compound	<u>s:</u>	FoTi Laves-C14		
Modelling:				
Liquid	:	Substitutional, Redlich–Kister		
bcc-A2	:	Substitutional, Redlich–Kister		
[cc-A]	:	Substitutional, Redlich-Kister		
hcp-///	:	Substitutional, Redlich-Kister		
Laves $-C14$:	Sublattice model, (Fe,Ti) ₂ (Fe,Ti)		
FeTi	:	Sublattice model, (Fe,Ti)(Fe,Ti)		

Assessor and Date:

M.H. Rand 1995

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase FeTi

 $G^{\circ}(T) - H_{\text{Fe}}^{\circ,\text{bcc-A2,para}}(298.15 \text{ K}) - H_{\text{Ti}}^{\circ,\text{hcp-A3}}(298.15 \text{ K}) =$ - 51584.05 + 238.686 T - 44.858 T \cdot \ln T - 0.008493 T^2 + 100500 T^{-1}

Phase Laves-C14

$G^{\circ}(T) - 3.0$	$H^{\mathbf{o},\mathbf{b}}_{\mathbf{Fe}}$	сс- <i>А</i> 3,рага(298.	15 K	$G(Fe:Fe) = 15000.0 + 3.0 GHSER_{Fe}$
$G^{\circ}(T) - 2.0$	H ^{o,b} Fe	^{cc–A3,para} (298. 1440.0 – 6.75	15 K 5 T	
$G^{\circ}(T) - H_{\mathrm{Fe}}^{\circ, \mathrm{t}}$	occ-A3	^{3,para} (298.15 K 5000.0 + GH	:) – : SER	2.0 $H_{T_i}^{\circ,hep-A3}(298.15 \text{ K}) = G(Ti:Fe) =$ Fe + 2.0 GHSER _{Ti}
$G^{\circ}(T) - 3.0$	$H_{\mathrm{Ti}}^{\circ,\mathrm{h}}$	$(p^{-A3})(298.15 \text{ J})$ 5000 + 3.0 C	K) = GHSI	= G(Ti:Ti) = ER _{Ti}
$L_{ m Fe;Fe,Ti}^{0, m Laves-C14}$	=	$L_{ m Ti:Fe,Ti}^{0, m Laves-C14}$	=	60000
$L_{ m Fe,Ti;Fe}^{0, m Laves-C14}$	=	L ^{0,Laves-C14} LFe,Ti:Ti	=	60000

Phase liquid

 $L_{\rm Fe,Ti}^{0,{\rm liquid}} = -62273.8 + 5.6939 T$

 $L_{\rm Fe,Ti}^{1,{
m liquid}} = -5491.468$

Phase fcc-A1

 $L_{\rm Fe,Ti:D}^{0,{\rm fcc}-A1} = -42000$

Phase hcp-A3

 $L_{\rm Fe,Ti:\Box}^{0,{\rm hep}-A3} = 18500 - 15 T$

Phase bcc-A2

 $L_{\text{Fe,Ti:D}}^{0,\text{bcc}-A2} = -52400.65 + 10.7268 T$ $L_{\text{Fe,Ti:D}}^{1,\text{bcc}-A2} = -7442 + 0.41968 T$

Reaction	Туре	Com	positio	ns x_{Ti}	Т / К
Liquid \rightleftharpoons FeTi* + bcc-A2	Eutectic	.712	.500	.772	1349.3
bcc-A2 \rightleftharpoons FcTi* + hcp-A3	Eutectoid	.877	.500	.999	849.4
Liquid + Laves-C14 \rightleftharpoons FcTi*	Peritectic	.506	.334	.500	1593.4
Laves-C14 \rightleftharpoons bcc-A2	Congruent	.333	.333		1707.0
Liquid \rightleftharpoons bcc-A2 + Laves-C14	Eutectic	.152	.099	0.267	1564.4

Table I - Invariant Reactions.

• FeTi \equiv bcc-B2

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Comments
Fe-Ti	(Fe)	Cu	cF4 Pm3m	
	(Fe)	w	c12 Im3m	
	(Ti)	Mg	hP2 P63/mmc	
	(Ti)	w	c 12 Im3m	
	FeTi	CsCl	cP2 Pm3m	bcc- <i>B</i> 2
	β Fe2Ti	MgZn ₂	hP12 P6 ₃ /mmc	Laves-C14

System Hf–Ti

Solution Phases:

(stable)	Liquid, bcc-A2, hcp-A3
(metastable)	fcc-A1

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister

Assessor and Date:

H. Bitterman, Univ. Wien, Austria, 1997

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase liquid

 $L_{\rm Hf,Ti}^{0,{\rm liquid}} = -4993.5 - 7.10316 T$

Phase fcc-A1

 $L_{\rm Hf,Ti:D}^{0,\rm fcc-A1} = 1.0 \text{E-4}$

Phase hcp-A3

 $L_{\rm Hf,Ti;\Box}^{0,\rm hcp-A3} = 13644 - 10.6383 T$

Phase bcc-A2

.

 $L_{\rm Hf,Ti:D}^{0,\rm bcc-A2}$ = 3003.24 -7.4114 T

Table I – Invariant Reactions.

Reaction	Туре	Compositions \boldsymbol{x}_{Ti}	Т / К
hcp- $A3$ \rightleftharpoons bcc- $A2$	Congruent	.224 .224	1063.3
bcc- $A2$ \rightleftharpoons Liquid	Congruent	.120 .120	1296.0

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Comments
IIf-Ti	(Hf)	Mg	hP2 P63/mmc	
	(Hf)	w	c12 Im3m	
	(T i)	Mg	hP2 P63/mmc	
	(Ti)	w	c12 Im3m	

System Li–Mg

Solution Phases:

(stable)Liquid, bcc-A2, hcp-A3(metastable)fcc-A1

Compounds:

(metastable)

Al12Mg17, AlLi

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich–Kister
hcp-A3	:	Substitutional, Redlich-Kister
Al ₁₂ Mg ₁₇	:	Sublattice model, (Li,Mg)24(Li,Mg)10(Mg)24
AlLi	:	Sublattice model,(Li,Mg)(Li,Mg,□)

Assessor and Date:

	N. Saunders, 1991
<u>Comments:</u>	
	The models describing the metastable phases are compatible with the ones used in the Al-Mg system(Version I).

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase bcc-A2

L ^{0,bcc-A2} Li,Mg:D	=	-18335 + 8.49 T
L ^{1,bcc-A2} Li,Mg:D	=	3481
$L_{\text{Li,Mg:D}}^{2,\text{bcc}-A2}$	=	2658 - 0.114 T

j

```
Phase fcc-A1
```

 $L_{\text{Li},\text{Mg:O}}^{0,\text{fcc}-A1} = -6856.0$

Phase hcp-A3

$L_{\rm Li,Mg:D}^{0,\rm hcp-A3}$	=	- 6856.0
L ^{1,hcp=A3} Li,Mg:O	=	4000.0
L ^{2,hcp−A3} Li,Mg:□	=	4000.0

Phase liquid

$L_{\rm Li,Mg}^{0,\rm liquid} =$	- 14935 + 10.371	Т
----------------------------------	------------------	---

- $L_{\rm Li,Mg}^{\rm 1,liquid} = -1789 + 1.143 T$
- $L_{\rm Li,Mg}^{2,{\rm liquid}} = 6533 6.6915 T$

Phase Al₁₂Mg₁₇

$$G^{\circ}(T) - 34.0 \ H_{\text{Li}}^{\circ,\text{hcc}-A^{2}}(298.15 \text{ K}) - 24.0 \ H_{\text{Mg}}^{\circ,\text{hcp}-A^{3}}(298.15 \text{ K}) = G(\text{Li}:\text{Li}:\text{Mg}) = 290000 + 34.0 \ \text{GHSER}_{\text{Li}} + 24.0 \ \text{GHSER}_{\text{Mg}}$$

$$G^{\circ}(T) - 10.0 \ H_{\text{Mg}}^{\circ,\text{hcp}-A^{3}}(298.15 \text{ K}) - 48.0 \ H_{\text{Li}}^{\circ,\text{bcc}-A^{2}}(298.15 \text{ K}) = G(\text{Li}:\text{Li}:\text{Mg}) = 290000 + 10.0 \ \text{GHSER}_{\text{Li}} + 48.0 \ \text{GHSER}_{\text{Mg}}$$

$$G^{\circ}(T) - 24.0 \ H_{\text{Mg}}^{\circ,\text{hcp}-A^{3}}(298.15 \text{ K}) - 34.0 \ H_{\text{Li}}^{\circ,\text{bcc}-A^{2}}(298.15 \text{ K}) = G(\text{Li}:\text{Li}:\text{Mg}) = 290000 + 24.0 \ \text{GHSER}_{\text{Li}} + 34.0 \ \text{GHSER}_{\text{Mg}}$$

 $G^{\circ}(T) - 58.0 \ H_{\text{Li}}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) = G(\text{Mg:Mg:Mg}) = 0.0$

Phase AlLi

$$\begin{array}{l} G^{\circ}(T) - 2.0 \quad H_{\text{Li}}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) = \text{G}(\text{Li:Li}) = \\ 2.0 \quad \text{GHSER}_{\text{Li}} \\ G^{\circ}(T) - H_{\text{Li}}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) - H_{\text{Mg}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Li:Mg}) = \\ & -9168 + 4.2 \ T + \text{GHSER}_{\text{Li}} + \text{GBCC}_{\text{Mg}} \\ G^{\circ}(T) - H_{\text{Li}}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) - H_{\text{Mg}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Mg:Li}) = \\ & -9168 + 4.2 \ T + \text{GHSER}_{\text{Li}} + \text{GBCC}_{\text{Mg}} \\ G^{\circ}(T) - 2.0 \quad H_{\text{Mg}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Mg:Mg}) = 0.0 \\ G^{\circ}(T) - H_{\text{Li}}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) - H_{\text{Mg}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Li:}\Box) = \\ & 50000 + \text{GHSER}_{Li} \\ G^{\circ}(T) - H_{\text{Mg}}^{\circ,\text{bcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Mg:}\Box) = 0.0 \end{array}$$

Table I - Invariant Reactions.

Reaction	Type	Compositions	x _{Mg}	Т / К
Liquid \rightleftharpoons bcc-A2 + hcp-A3	Eutectic	.774 .760	.834	865. 2
Liquid \rightleftharpoons bcc-A2	Congurent	.727 .727		867.4

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Li-Mg	(Li)	w	c12 Im3m
	(Mg)	Mg	hP2 P6 ₃ /mmc

System Li-Zr

Solution Phases:

(stable)	Liquid, bcc-A2, hcp-A3
(metastable)	fcc-Al

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister

Assessor and Date:

N. Saunders, 1991

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase bcc-A2

 $L_{\text{Li,Zr:O}}^{0,\text{bcc}-A2} = 100000$

Phase fcc-A1

 $L_{\text{Li,Zr:D}}^{0,\text{fcc}-A1} = 100000$

Phase hcp-A3

 $L_{\text{Li,Zr:G}}^{0,\text{hcp-}A3} = 100000$

Phase liquid

 $L_{\rm Li,Zr}^{0,{\rm liquid}} = 100000$

Table I - Invariant Reactions.

Reaction	Туре	Compositions z zr		Т / К
$hcp-A3 \rightleftharpoons bcc-A2$	Allotropic	1.000 1.000		1139.45
Liquid" \rightleftharpoons Liquid' + bcc-A2	Monotectic	.996 .003	.998	2124.9
Liquid' \rightleftharpoons bcc-A2 + hcp-A3	Degenerate	.000 .000	1.000	453.6

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Li-Zr	(Li)	w	cl2 Im3m
	(Zr)	Mg	hP2 P63/mmc
	(Zr)	w	c12 Im3m

System Mg-Mn

Solution Phases:

Liquid, bcc-A2, hcp-A3, cbcc-A12, cub-A13, fcc-A1

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
bcc-A12	:	Substitutional, Redlich-Kister
cub-A13	:	Substitutional, Redlich-Kister
hcp43	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister

Assessor and Date:

J. Tibballs 1991

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase bcc-A2

 $L_{Mg,Mn:\Box}^{0,bcc-A2} = 70000.0$

Phase cbcc-A12

 $L_{Mg,Mn:Va}^{0,cbcc-A12} = 70000.0$

Phase cub-A13

 $L_{Mg,Mn;Va}^{0,cub-A13} = 70000.0$

Phase fcc-A1

 $L_{Mg,Mn}^{0,fcc-A1} = 70000.0$

Phase hcp-A3

 $L_{Mg,Mn:Va}^{0,hep-A3} = 32985.0 + 2.5 T$

Phase liquid

 $L_{Mg,Mn}^{0,\text{liquid}} = 19125.0 + 12.5 T$

Reaction	Туре	Com	position	s r _{Mn}	Т / К
Liquid' + cbcc- $A12 \rightleftharpoons$ hcp- $A3$	Peritectic	.008	1.000	.009	923.8
cub- $A13 \rightleftharpoons$ Liquid' + cbcc- $A12$	Metatectic	.999	.012	1.000	980.5
fcc- $A1 \rightleftharpoons$ Liquid' + cub- $A13$	Metatectic	.999	.048	1.000	1351.7
bcc- $A2 \rightleftharpoons$ Liquid' + fcc- $A1$	Metatectic	.998	.057	.999	1409.6
Liquid" \rightleftharpoons Liquid' + bcc- $A2$	Monotectic	.937	.063	.998	1447.0

Table I – Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Comments
Mg-Mn	(Mg)	Mg	hP2 P6 ₃ /mmc	
	α−Mn	α−Mn	c58 I43m	cbcc- <i>A</i> 12
	β-Mn	β−Mn	cP20 P4 ₁ 323m	cub- <i>A</i> 13
	γ−Mn	Cu	cF4 Fm3m	-
	δ−Mn	w	c/2 /m3m	

System Mg-Ni

Solution Ph	ases:	
		Liquid, fcc-A1
Compounds	3:	
Modelling:		Mg2Ni, Laves-C36
Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
Mg2Ni	:	Stoichiometric, (Mg) ₂ (Ni)
Laves- $C36$:	Sublattice model, (Mg,Ni) ₂ (Mg,Ni)
<u>Comments:</u>		
		M. Jacobs assumed the Laves- $C36$ phase to be
		stoichiometric. The thermodynamic description of that phase was modified and is now consistent with the one in the database.
Assessor an	<u>d Date:</u>	
		M. Jacobs September 1991 (Laves-C36 modified by I. Ansara December 1997).

Thermodynamic properties of the solution and compound phases $(J.mol^{-1})$

Phase bcc-A2

$L^{0,\mathrm{bcc}-A2}_{\mathrm{Mg,Ni:D}}$	=	80	Т	
				Phase fcc-A1
L ^{0,fcc−A1} L ^{Mg,Ni:□}	=	80	Т	
				Phase hcp-A3
$L_{Mg,Ni:D}^{0,hcp-A3}$	=	80	Т	

Phase liquid

 $L_{Mg,Ni}^{0,liquid} = -42304.49 + 7.45704 T$ $L_{Mg,Ni}^{1,liquid} = -15611.66 + 9.11885 T$

Phase Laves-C36

Phase Mg₂Ni

$$G^{\circ}(T) - 2.0 \quad H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - H_{Ni}^{\circ,fcc-A1,para}(298.15 \text{ K}) = -82211.0 + 571.0183 \quad T - 95.992 \quad T \cdot \ln T$$

Reaction	Туре	Com	positio	ns x _{Ni}	Т / К
Liquid \rightleftharpoons Laves-C36 + fcc-A1	Eutectic	.802	.666	1.000	1366.6
Liquid \rightleftharpoons MgNi ₂	Congruent	.666	.666		1420.0
Liquid + Mg ₂ Ni \rightleftharpoons Laves-C36	Peritectic	.278	.666	.333	1032.2
Liquid \rightleftharpoons + hcp-A3 Mg ₂ Ni	Eutectic	.101	.000	.333	780.0

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Mg-Ni	(Mg)	Mg	hP2 P63/mmc	M 2	
	(Ni)	Cu	cF4 Fm3m	M 4	
	MgNi ₂	MgNi ₂	hP24 P63/mmc	Mg ₁ 4 Mg ₂ 4 Ni ₁ 4 Ni ₂ 6 Ni ₃ 6	
	Mg ₂ Ni	Mg₂Ni	hP18 P6 ₂ 22	Mg1 6 Mg2 6 Ni1 3 Ni2 3	in Mas2, Mg2Ni related to Al2Cu-C16 type according to [90Mas]

System Mg–Si

Solution Phases:

(stable)	Liquid, hcp-A3
(metastable)	fcc-A1

Compound:

(stable)	Mg2Si
(metastable)	Laves- $C15$

Modelling:

:	Substitutional, Redlich-Kister
:	Substitutional, Redlich-Kister
:	Substitutional, Redlich–Kister
:	Stoichiometric, (Mg) ₂ (Si)
:	Sublattice model, (Mg,Si) ₂ (Mg,Si)
	: : : :

Publication:

II. Heufel, T. Gödecke, H.-L. Lukas, and F. Sommer, J. Alloys and Comp., **247**, (1-2), 31-42 (1997).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase liquid

- 0 hcn 43	4	
		Phase hcp-A3
$L_{Mg,Si}^{4, ext{liquid}}$	=	-12338.84 + 1.54236 T
$L_{Mg,Si}^{3,liquid}$	=	18541.17 - 2.317664 T
$L^{2, { m liquid}}_{{ m Mg}, { m Si}}$	=	2486.67 - 0.31084 T
$L_{ m Mg,Si}^{1, m liquid}$	=	18027.41 - 19.61202 T
$L^{0, { m liquid}}_{{ m Mg}, { m Si}}$	=	-83864.26 + 32.44438 T

 $L_{Mg,Si:\Box}^{0,hcp-A3} = -7148.79 + 0.89361 T$

Phase fcc-A1

 $L_{Mg,Si;\Box}^{0,fcc-A1} = -7148.79 + 0.89361 T$

Phase Mg₂Si

$$G^{\circ}(T) - 2.0 \quad H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - H_{Si}^{\circ,diamond}(298.15 \text{ K}) =$$

- 92250.0 + 440.4 $T - 75.9 \quad T \cdot \ln T - 0.0018 \quad T^2 + 630000 \quad T^{-1}$

Phase Laves-C15

$$\begin{array}{rcl} G^{\circ}(T)-2.0 & H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K})-H_{Si}^{\circ,diamond}\left(298.15 \text{ K}\right)=G(Mg;Si)=\\ & 104970.96-16.46448 & T+2.0 & \text{GHSER}_{Mg}+\text{GHSER}_{Si}\\ G^{\circ}(T)-H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K})-2.0 & H_{Si}^{\circ,diamond}\left(298.15 \text{ K}\right)=G(Si;Mg)=\\ & 41039.0+6.25 & T+\text{GHSER}_{Mg}+2.0 & \text{GHSER}_{Si}\\ L_{Mg,Si;Mg}^{0,\text{Laves}_{C}15}=15000.0\\ & =\\ L_{Mg;Mg,Si}^{0,\text{Laves}_{C}15}=8000.0\\ & =\\ L_{Mg;Mg,Si}^{0,\text{Laves}_{C}15}=8000.0\\ \end{array}$$

Reaction	Туре	Com	positio	ns x_{Si}	Т / К
Liquid ≓ hcp-A3 + Mg ₂ Si	Eutectic	.013	.000	.333	911.8
Liquid ≓ Mg ₂ Si + diamond	Eutectic	.530	.333	1.000	1214.4
Mg ₂ Si ≓ Liquid	Congruent	.333	.333		1350.0

Table I	– Inv	ariant	React	ions.
---------	-------	--------	-------	-------

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub lattic	es
Mg-Si	(Mg)	Mg	hP2 P63/mmc	м	2
	(Si)	diamond	cF8 Fd3m	м	8
	Mg₂Si	CaF2	cF12 Fm3m	Mg Si	8 4

System Mg-Y

Solution 1	Phases:			
Compour	ds:	Liquid, bcc-A2, hcp-A3 MgY, Mg ₂₄ Y ₅ , Mg ₂ Y		
Modelling	<u>E</u>			
Liquid	:	Substitutional, Redlich-Kister		
bcc-A2	:	Substitutional, Redlich-Kister		
hcp-A3	:	Substitutional, Redlich-Kister		
MgY	:	Stoichiometric, (Mg)(Y)		
Mg ₂ Y	:	Stoichiometric, $(Mg)_2(Y)$		
$Mg_{24}Y_5$:	Sublattice model, $(Mg)_{24}(Mg,Y)_5$		

Assessor and Date:

.

H.L. Lukas, 1991

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

		Phase bcc-A2
$L^{0,\mathrm{bcc-}A2}_{\mathrm{Mg},\mathrm{Y};\mathrm{G}}$	=	-38570.0 + 15.0 T
$L^{1,\mathrm{bcc}-A2}_{\mathrm{Mg},\mathrm{Y}:\mathrm{D}}$	=	- 8204.21
		Phase hcp-A3
L ^{0,hcp−A3} Mg,Y:□	=	-16582.94 + 4.77482 T
$L^{1, hcp-A3}_{Mg, Y: \Box}$	=	- 7077.87
		Phase liquid
$L^{0,\text{liquid}}_{Mg,Y}$:	= -	25802.51 + 4.30042 T

$L_{ME,Y}^{1,liquid}$	=	- 19229.76 + 3.20497	Т
WIG, 1		• • • • • •	_

Phase fcc-A1

 $L_{Mg,Y}^{0,fcc-A1} = 0.0001$

Phase Mg₂₄Y₅

 $G^{\circ}(T) - 24.0 \quad H_{Mg}^{\circ,hep-A3}(298.15 \text{ K}) - 5.0 \quad H_{Y}^{\circ,hep-A3}(298.15 \text{ K}) = G(Mg;Y) = -227282.28 + 36.52985 \quad T + 24.0 \quad \text{GHSER}_{Mg} + 5.0 \quad \text{GHSER}_{Y}$

Phase Mg₂Y

 $G^{\circ}(T) - 2.0 \quad H_{Mg}^{\circ,hep-A3}(298.15 \text{ K}) - H_{Y}^{\circ,hep-A3}(298.15 \text{ K}) = G(Mg;Y) = -39075.78 + 6.51258 \quad T + 2.0 \quad GHSER_{Mg} + GHSER_{Y}$

Phase MgY

 $G^{\circ}(T) - H_{Mg}^{\circ,hep-A3}(298.15 \text{ K}) - H_{Y}^{\circ,hep-A3}(298.15 \text{ K}) = G(Mg;Y) =$ - 32162.76 + 8.0 T + GHSER_{Mg} + GHSER_Y

Reaction	Туре	Com	positior	18 <i>X</i> Y	Т / К
Liquid + bcc- $A2 \rightleftharpoons MgY$ Liquid + MgY $\rightleftharpoons Mg_2Y$ Liquid + Mg2Y $\rightleftharpoons Mg_2Y$ Liquid + Mg2Y $\rightleftharpoons Mg_{24}Y_5$ Liquid \rightleftharpoons hcp- $A3$ + Mg2 ₄ Y ₅ bcc-A2 \rightleftharpoons MgY + hcp-A3	Peritectic Peritectic Peritectic Eutectic Eutectoid	.466 .276 .146 .082 .717	.588 .474 .333 .042 .499	.494 .333 .163 .136 .841	1213.3 1058.5 889.4 847.6 1048.0

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Mg-Y	(Mg)	Mg	hP2 P63/mmc	M 2	
	(Y)	w	c12 Im3m	M 4	
	(Y)	Mg	hP2 P63/mmc	M 2	
	Mg _{24+x} Y ₅	α-Mn	c/58 /43m	M 2 Mg ₁ 24 Mg ₂ 24 Y 8	cbcc-A12 designated as Mg24Y5
	Mg ₂ Y	MgZn₂	hP12 P6 ₃ /mmc	Mg ₁ 2 Mg ₂ 6	
	Mg _{1+r} Y	CsCl	cP2 Pm3m	Mg 1 Y 1	bcc- <i>B</i> 2 designated as MgY

System Mg-Zn

Solution Phases:

(stable)	:	Liquid, hcp–Zn, Laves–C14
(metastable)	:	bcc- $A2$, bcc- $B2$, fcc- $A1$, hcp- $A3$

Compounds:

(stable)		Mg ₂ Zn ₁₁ , MgZn, Mg ₂ Zn ₃ , Mg ₅₁ Zn ₂₀
(metastable)	:	AlMg- β , AlMg- ϵ , AlMg- γ , AlMgZn- ϕ
(metastable)	:	Laves- $C15$, Laves- $C36$

Modelling:

Liquid	:	Substitutional, Redlich-Kister
hcp–Zn	:	Substitutional, Redlich-Kister
bcc-A2	:	see below
bcc-B2	:	Sublattice model, (Mg,Zn) _{0.5} (Mg,Zn) _{0.5} (□) ₃
		Two descriptions of the $bcc-A2:bcc-B2$ order-disorder
		transformation are given: one which includes the
		parameters of the order and disordered phases in a single
		description (equation 21 in the thermodynamic
		modelling chapter), and a second one where the order
		and disorder contributions are expressed by equation 23.
		For the second case, the parameters are in a frame.
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
Mg_2Zn_{11}	:	Stoichiometric, $(Mg)_2(Zn)_{11}$
MgZn	:	Stoichiometric, $(Mg)_{12}(Zn)_{13}$
Mg ₂ Zn ₃	:	Stoichiometric, (Mg) ₂ (Zn) ₃
$Mg_{51}Zn_{20}$:	Stoichiometric, (Mg) ₅₁ (Zn) ₂₀
AlMgZn- ϕ	:	Stoichiometric, (Mg) ₆ (Zn) ₅
AlMg- β	:	Stoichiometric, (Mg) ₈₉ (Zn) ₁₀₄
AlMg- ϵ	:	Stoichiometric, (Mg) ₂₃ (Zn) ₃₀
AlMg- γ	:	Sublattice model, (Mg) ₅ (Mg,Zn) ₁₂ (Mg,Zn) ₁₂
Laves- $C14$:	Sublattice model, (Mg,Zn) ₂ (Mg,Zn)
Laves– $C15$:	Sublattice model, (Mg,Zn) ₂ (Mg,Zn)
Laves- $C36$:	Sublattice model, (Mg,Zn) ₂ (Mg,Zn)

Assessor and Date:	
	R. Agarwal, S.G. Fries, H.L. Lukas, G. Petzow,
	F. Sommer, T.G. Chart, G. Effenberg
Publication:	
	Z. für Metallkde., 83, 4, 216–223 (1992).
Comments:	
	A reevaluation was performed in order to take into

A reevaluation was performed in order to take into account the non-stoichiometry of the Laves-C14 phase.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase fcc-A1

$L^{0, \text{fcc}-A1}_{Mg, Zn: \Box}$	=	- 3056.82 + 5.63801	Т
$L^{1,\text{fcc}-A1}_{Mg,Zn;\Box}$	=	- 3127.26 + 5.65563	Т

Phase hcp-Zn

 $L_{Mg,Zn;\Omega}^{0,hcp-Zn} = -3056.82 + 5.63801 T$

 $L_{Mg,Zn:\Box}^{1,hcp-Zn} = -3127.26 + 5.65563 T$

Phase hcp-A3

 $L_{Mg,Zn;D}^{0,hep-A3} = -3056.82 + 5.63801 T$

 $L_{Mg,Zn;\Box}^{1,hcp-A3} = -3127.26 + 5.65563 T$

Phase liquid

 $L_{Mg,Zn}^{0,liquid} = -77729.24 + 680.52266 T - 95.0 T \cdot \ln T + 0.04 T^{2}$ $L_{Mg,Zn}^{1,liquid} = 3674.72 + 0.57139 T$ $L_{Mg,Zn}^{2,liquid} = -1588.15$

Phase AlMg- β

 $G^{\circ}(T) - 89.0 \ H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - 104.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = 206100 + 89.0 \ \text{GHSER}_{Mg} + 104.0 \ \text{GHSER}_{Zn}$

Phase AlMg- ϵ

 $G^{\circ}(T) - 23.0 \ H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - 30.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = -318000 + 63.6 \ T + 23.0 \ \text{GHSER}_{Mg} + 30.0 \ \text{GHSER}_{Zn}$

Phase AlMg $-\gamma$

 $G^{\circ}(T) - 17.0 \ H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - 12.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = G(Mg:Mg:Zn) = -145000 + 58 \ T + 17.0 \ \text{GHSER}_{Mg} + 12.0 \ \text{GHSER}_{Zn}$

 $G^{\circ}(T) - 17.0 \ H_{Mg}^{\circ,hcp-A3}(298.15 \ \text{K}) - 12.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \ \text{K}) = G(Mg:Zn:Mg) = 87000 + 29 \ T + 17.0 \ \text{GHSER}_{Mg} + 12.0 \ \text{GHSER}_{Zn}$

 $G^{\circ}(T) - 5.0 \ H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - 24.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = G(Mg;Zn;Zn) = 290000.0 + 5.0 \ \text{GHSER}_{Mg} + 24.0 \ \text{GHSER}_{Zn}$

 $L_{Mg:Mg,Zn:Mg}^{0,AIMg-\gamma} = L_{Mg:Mg,Zn:Zn}^{0,AIMg-\gamma} = -116000 + 58 T$

Phase Mg₅₁Zn₂₀

 $G^{\circ}(T) - 51.0 \ H_{Mg}^{\circ,hcp-A3}(298.15 \ K) - 20.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \ K) = -335741.54 + 35.5 \ T + 51.0 \ GHSER_{Mg} + 20.0 \ GHSER_{Zn}$

Phase MgZn

 $G^{\circ}(T) - 12.0 \ H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - 13.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = -236980.84 + 59.24524 \ T + 12.0 \ \text{GHSER}_{Mg} + 13.0 \ \text{GHSER}_{Zn}$

Phase Mg₂Zn₃

 $G^{\circ}(T) - 2.0 \ H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - 3.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = -54406.20 + 13.60156 \ T + 2.0 \ \text{GHSER}_{Mg} + 3.0 \ \text{GHSER}_{Zn}$

Phase Mg₂Zn₁₁

 $G^{\circ}(T) - 2.0 \quad H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - 11.0 \quad H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = -73818.32 + 18.45457 \quad T + 2.0 \quad \text{GHSER}_{Mg} + 11.0 \quad \text{GHSER}_{Zn}$

Phase AlMgZn- ϕ

 $G^{\circ}(T) - 6.0 \quad H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - 5.0 \quad H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = -79530 + 20.9 \quad T + 6.0 \quad \text{GHSER}_{Mg} + 5.0 \quad \text{GHSER}_{Zn}$

Phase Laves-C14

 $\begin{array}{ll} G^{\circ}(T) - 3.0 \ H_{Mg}^{\circ,hcp-A3}(298.15 \ {\rm K}) = {\rm G}({\rm Mg}{\rm :Mg}) = 15000.0 + 3.0 \ {\rm GHSER}_{Mg} \\ G^{\circ}(T) - 2.0 \ H_{Mg}^{\circ,hcp-A3}(298.15 \ {\rm K}) - H_{Zn}^{\circ,hcp-Zn}(298.15 \ {\rm K}) = {\rm G}({\rm Mg}{\rm :Zn}) = \\ & 65355.45 - 8.83886 \ T + 2.0 \ {\rm GHSER}_{Mg} + {\rm GHSER}_{Zn} \\ G^{\circ}(T) - H_{Mg}^{\circ,hcp-A3}(298.15 \ {\rm K}) - 2.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \ {\rm K}) = {\rm G}({\rm Zn}{\rm :Mg}) = \\ & - 35355.45 + 8.83886 \ T + {\rm GHSER}_{Mg} + 2.0 \ {\rm GHSER}_{Zn} \\ G^{\circ}(T) - 3.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \ {\rm K}) = {\rm G}({\rm Zn}{\rm :Zn}) = 15000.0 + 3.0 \ {\rm GHSER}_{Zn} \\ G^{\circ}(T) - 3.0 \ H_{Zn}^{\circ,hcp-Zn}(298.15 \ {\rm K}) = {\rm G}({\rm Zn}{\rm :Zn}) = 15000.0 + 3.0 \ {\rm GHSER}_{Zn} \\ L_{Mg,Zn{\rm :Mg}}^{0,{\rm Laves}-C14} = L_{Mg,Zn{\rm :Zn}}^{0,{\rm Laves}-C14} = 35000.0 \end{array}$

 $L_{Mg:Mg,Zn}^{0,Laves-C14} = L_{Zn:Mg,Zn}^{0,Laves-C14} = 8000.0$

Phase Laves-C15

Phase Laves-C36

$$G^{\circ}(T) - 3.0 \quad H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Mg:Mg) = 15000.0 + 3.0 \quad \text{GHSER}_{Mg}$$

$$G^{\circ}(T) - 2.0 \quad H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = G(Mg:Zn) = 65355.45 - 8.83886 \quad T + 2.0 \quad \text{GHSER}_{Mg} + \text{GHSER}_{Zn}$$

$$G^{\circ}(T) - H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - 2.0 H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = G(Zn:Mg) = -35355.45 + 8.83886 T + GHSER_{Mg} + 2.0 GHSER_{Zn}$$

$$G^{\circ}(T) - 3.0 \quad H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = G(Zn;Zn) = 15000.0 + 3.0 \quad \text{GHSER}_{Zn}$$

 $L_{Mg,Zn;Mg}^{0,Laves-C36} = L_{Mg,Zn;Zn}^{0,Laves-C36} = 35000.0$

 $L_{Mg:Mg,Zn}^{0,Laves-C36} = L_{Zn:Mg,Zn}^{0,Laves-C36} = 8000.0$

Phase bcc-B2

Table I - Invariant Rea	ctions.
-------------------------	---------

Reaction	Туре	Compositions x_{Zn}			Т / К
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Peritectic	.295	.029	.289	614.1
	Eutectic	.281	.290	.520	614.1
	Peritectic	.196	.600	.520	620.1
	Peritectic	.356	.661	.600	688.9
	Congruent	.667	.667		864.0
	Peritectic	.913	.661	.846	654.4
	Eutectic	.926	.846	.997	637.3
	Eutectic	.282	.027	.520	598.1

System	Phase	Prototype	Pearson Symbol Space Group	Sub- Model	Comments	
Mg-Zn	(Mg)	Mg	hP2 P63/mmc	M 2		
	(Zn)	Mg	hP2 P63/mmc	M 2		
	MgZn ₂	MgZn ₂	hP12 P63/mmc	Mg 4 Zn ₁ 2 Zn ₃ 6	Laves-C14	
	Mg_2Zn_{11}	Mg ₂ Zn ₁₁	cP39 Pm3			
	MgZn					
	Mg2Zn3		mC110 B2/m			
-	Mg7Zn3	Ta₃B₄	o1142 Immm		designated as Mg ₅₁ Zn ₂₀	

Table II - Crystal Structure and Phase Description.

System Mg-Zr

Solution Phases:

(stable)	Liquid, $bcc-A2$, $hcp-A3$
(metastable)	fcc-A1

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister

Assessor and Date:

M. Hämäläinen 1991

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase bcc-A2

 $L_{Mg,Zr:\Box}^{0,bcc-A2} = 5720.44 + 50.11642 T$

Phase fcc-A1

L ^{0,fcc−A1} Mg,Zr:□	=	42063.55 + 1.01789	T
$L_{Mg,Zr:\square}^{0,fcc-A1}$	=	42063.55 + 1.01789	2

 $L_{Mg,Zr;\Box}^{1,fcc-A1} = -2885.9$

Phase hcp-A3

$$L_{Mg,Zr;\Box}^{0,hcp-A3} = 42063.55 + 1.01789 T$$

 $L_{Mg,Zr:\Box}^{1,hcp-A3} = -2885.9$

Phase liquid

 $L_{Mg,Zr}^{0,liquid} = 14003.84 + 29.34205 T$

Table I - Invariant Reactions.

Reaction	Туре	Com	position	s x _{Zr}	Т / К
Liquid' + bcc- $A2 \rightleftharpoons$ hcp- $A3$	Peritectic	.003	1.000	.993	1154.6
Liquid" \rightleftharpoons Liquid' + bcc- $A2$	Monotectic	.985	.015	.999	2104.8
Liquid' + hcp- $A3$ " \rightleftharpoons hcp- $A3$ '	Peritectic	.001	.997	.006	926.6

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Mg-Zr	(Mg)	Mg	hP2 P6 ₃ /mmc
	(Zr)	Mg	hP2 P63/mmc
	(Zr)	w	c12 Im3m

System Mn–Si

Solution Phases:

Liquid, bcc-A2, cbcc-A12, cub-A13, fcc-A1

Compounds:

(stable) (metastable) $Mn_6Si, Mn_9Si_2, Mn_3Si, Mn_5Si_3 MnSi, Mn_{11}Si_{19} Al_8Mn_5-D8_{10}$

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
cbcc-A12	:	Substitutional, Redlich-Kister
cub-A13	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
Mn ₆ Si	:	Stoichiometric, (Mn)17(Si)3
Mn ₉ Si ₂	:	Stoichiometric, (Mn)33(Si)7
Mn ₃ Si	:	Stoichiometric, (Mn) ₃ (Si)
Mn5Si3	:	Stoichiometric, (Mn)5(Si)3
MnSi	:	Stoichiometric, (Mn)(Si)
Mn11Si19	:	Stoichiometric, (Mn)11(Si)19
$Al_8Mn_5 - D8_{10}$:	Sublattice model, (Si)12(Mn)4(Mn)10

Assessor and Date:

...

.

J.E. Tibballs, 1991

Publication:

SI-report, 890221-5, 1991

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Mn₃Si

$$\begin{array}{rcl} G^{\circ}(T) & - 3.0 & H_{\mathsf{Mn}}^{\circ,\mathsf{cbcc-A12},\mathsf{para}}(298.15 \ \mathsf{K}) & - & H_{\mathsf{Si}}^{\circ,\mathsf{cbarnond}}(298.15 \ \mathsf{K}) = \\ & 298.15 & < T < & 950.00 & : & - & 124189.87 + & 782.4373 \ T & - & 131.682 \ T \cdot & \ln T \\ & & - & 0.00777 \ T^2 + & 1657200 \ T^{-1} \\ & 950.00 & < T < & 2000.00 & : & - & 119740.6 + & 777.7538 \ T & - & 131.682 \ T \cdot & \ln T \\ & & - & 0.00777 \ T^2 + & 1657200 \ T^{-1} \end{array}$$
Phase MnSi

 $G^{\circ}(T) - H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) - H_{Si}^{\circ, diamond}(298.15 \text{ K}) = -78135.144 + 308.2488 T - 52.42121 T \cdot \ln T - 0.006903355 T^{2} + 876442.9 T^{-1}$

Phase Mn₁₁Si₁₉

 $G^{\circ}(T) - 11.0 \quad H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) - 19.0 \quad H_{Si}^{\circ, diamond}(298.15 \text{ K}) = -636300.0 + 1624.93 \quad T - 378.694 \quad T \cdot \ln T - 0.16391 \quad T^2 - 15432618 \quad T^{-1}$

Phase Mn_6Si

$G^{\circ}(T) - 1$	7.0 H ^{o,c} _{Mn}	bcc-A12,para	(2)	$(98.15 \text{ K}) - 3.0 H_{\text{Si}}^{\circ, \text{diamond}}(298.15 \text{ K}) =$
298.15	< T <	1519.00	:	$-250180.6 + 84.8444 T - 12.07755 T \cdot \ln T$
				-0.02850984 $T^2 + 7514$ T^{-1}
				+ 17.0 GHSER _{Mn} $+$ 3.0 GHSER _{Si}
1519.00	< T <	3000.00	:	$-282008.6 - 32.58304 T + 12.06754 T \cdot \ln T$
				-0.05879165 $T^{2} + 3.928228E+31$ T^{-9}
				+ 17.0 GHSER _{Mn} + 3.0 GHSER _{Si}

Phase Mn₉Si₂

 $\begin{array}{rcl} G^{\circ}(T) & -33.0 & H_{\rm Mn}^{\circ, \rm cbcc-\,A12, \rm para}(298.15 \ {\rm K}) & -7.0 & H_{\rm Si}^{\circ, \rm diamond}(298.15 \ {\rm K}) = \\ 298.15 & < T < & 1519.00 & : & -578208.4 + 381.294 \ T & -56.86988 \ T \cdot \ln T \\ & & -0.0500355 \ T^2 + 1458600 \ T^{-1} \\ & & + 33.0 \ {\rm GHSER}_{\rm Mn} + 7.0 \ {\rm GHSER}_{\rm Si} \\ 298.15 & < T < & 1519.00 & : & -639992.0 + 153.3464 \ T & -10.0 \ T \cdot \ln T \\ & & -0.1 \ T^2 + 7.625384E + 31 \ T^{-9} \\ & & + 33.0 \ {\rm GHSER}_{\rm Mn} + 7.0 \ {\rm GHSER}_{\rm Si} \end{array}$

Phase Mn₅Si₃

 $G^{\circ}(T) - 5.0 \quad H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) - 3.0 \quad H_{Si}^{\circ, diamond}(298.15 \text{ K}) = -261930.32 + 1170.778 \quad T - 211.150 \quad T \cdot \ln T - 0.015293 \quad T^2 - 149263.11 \quad T^{-1}$

Phase Al₈Mn₅-D8₁₀

 $G^{\circ}(T) - 14.0 \quad H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) - 12.0 \quad H_{Si}^{\circ, diamond}(298.15 \text{ K}) = + 14.0 \quad \text{GHSER}_{Mn} + 12.0 \quad \text{GHSER}_{Si}$

Phase bcc-A2

 $L_{\text{Mn,Si:D}}^{0,\text{bcc}-A2} = -89620.7 + 2.94097 T$

 $L_{\rm Mn,Si:O}^{1,\rm bec-A2} = -7500.0$

Phase cbcc-A12

 $L^{0, cbcc-A12}_{Mn, Si:\square}$ -142743.62 + 22.3961 T

 $L_{Mn,Si:\square}^{1,cbcc-A12}$ 16440.608 - 3.5300332 T =

Phase cub-A13

$L_{Mn,Si:\square}^{0,cub-A13}$	=	- 142343.62 + 21.892610	Т
L ^{1,cub-A13}	=	16440.608 - 3.5300332	Т

Phase fcc-A1

 $L_{\mathrm{Mn,Si:D}}^{0,\mathrm{fcc}-A1}$ -95600 + 2.94097 T =

 $L^{1, \text{fcc}-A1}_{Mn, Si:\square}$ = - 7500

Phase liquid

$L_{ m Mn,Si}^{ m 0,liquid}$	=	-139817 + 29.86137 T
L ^{1,liquid} Mn,Si	=	-34917.2 + 3.20488 T
L ^{2,liquid} Mn,Si	=	46782.4 - 1.8.1897 T
L ^{3,liquid}	=	16168.2

$$L_{\rm Min,Si}^{3,\rm liquid} = 1616$$

Reaction	Туре	Com	positio	ns x _{Si}	Т / К
Liquid + bcc-A2 \rightleftharpoons cub-A13 bcc-A2 + cub-A13 \rightleftharpoons fcc-A1 Liquid + cub-A13 \rightleftharpoons fngSi2 Liquid \rightleftharpoons MngSi2 + MngSi Liquid \rightleftharpoons MngSi3 \rightleftharpoons MngSi MngSi3 \rightleftharpoons Liquid Liquid \rightleftharpoons MngSi3 \Leftrightarrow MngSi MngSi3 \rightleftharpoons Liquid Liquid \rightleftharpoons MngSi3 + MnSi MnSi \rightleftharpoons Liquid Liquid \Rightarrow MnSi \rightleftharpoons MngSi MngSi2 \Leftrightarrow MnGSi Cub-A13 + MngSi2 \rightleftharpoons MngSi cub-A13 + MngSi2 \rightleftharpoons MngSi cub-A13 + MngSi2 \rightleftharpoons MngSi Cub-A13 + MngSi2 \rightleftharpoons MngSi	Peritectic Peritectic Eutectic Peritectic Congruent Eutectic Congruent Peritectic Eutectic Peritectic Peritectoid Eutectoid	.080 .024 .191 .197 .239 .375 .439 .500 .639 .674 .096 .086	.035 .024 .140 .175 .375 .375 .375 .500 .500 .633 .170 .075	.046 .033 .175 .250 .250 .500 .633 1.000 .150	1445.3 1426.6 1312.7 1309.3 1348.0 1556.0 1513.4 1544.0 1423.4 1417.1 918.0 870.6

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Mn-Si	α-Mn	α-Mn	c58 IÃ 3m		cbcc-A12
	β−Mn	β-Mn	cP20 P4 ₁ 323m		cub- <i>A</i> 13
	γ-Mn	Cu	cF4 Fm3m		
	δ-Mn	w	c12 Im3 m		
	(Si)	diamond	cF8 Fd3m	M 8	
	MnSi	FeSi	cP8 P2 ₁ 3	Mn 4 Si 4	
	Mn3Si-a			M ₁ 4	transformation not considered
	Mn ₃ Si−β	BiF3	cF16 Fm3m	M ₁ 4 M ₂ 4 M ₃ 8	
	Mn ₅ Si ₂	Mn ₅ Si ₂	tP56 P41212		

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
	Mn ₁₁ Si ₁₉	Mn11Si19	tP120 PÅn2		MnSi _{1.75-s} in [90Mas]
	Mn44Si9	Мо	hR53 R3	M ₁ 1 M ₂ 2 M ₃ 6 M ₅ 6 M ₆ 6 M ₁ 2 M ₁₂ 6 M ₁₃ 6 M ₁₄ 6 M ₁₅ 6	approximated as Mn ₆ Si
	Mn₅Si₃	Mn₅Si₃	hP16 P63/mcm	Mn ₁ 4 Mn ₂ 6 Si 6	

System Mn–Ti

Solution Phas	es:	Liquid bcc 42 fcc 41 bcc 43 cbcc 412 cub 413	
		inquia, bee 112, ice 111, ilep 110, ebee 1112, eab 1110	
Compounds:		Mn₄Ti, Mn₃Ti, MnTi-α, MnTi-β,Laves-C14	
Modelling:			
Liquid	:	Substitutional, Redlich-Kister	
bcc-A2	:	Substitutional, Redlich-Kister	
cbcc412	:	Substitutional, Redlich-Kister	
cub-A13	:	Substitutional, Redlich-Kister	
fcc-A1	:	Substitutional, Redlich-Kister	
հcթ43	:	Substitutional, Redlich-Kister	
Laves- $C14$:	Sublattice model: (Mn,Ti)2(Mn,Ti)	
Mn ₄ Ti	:	Stoichiometric, (Mn) _{0.815} (Ti) _{0.185}	
MnTi-α	:	Stoichiometric, (Mn)(Ti)	
MnTi- <i>β</i>	:	Stoichiometric, (Mn) _{0.515} (Ti) _{0.485}	

Assessor and Date:

N. Saunders, 1993

Thermodynamic properties of the solution and compound phases $(J.mol^{-1})$

	Phase bcc-A2
$L_{Mn,Ti:\Box}^{0,bcc-A2} = -23200 + 20$	Т
$L_{\rm Mn,Ti:D}^{1,\rm bcc-A2} = -1000$	
	Phase cbcc-A12
$L_{Mn,Ti:\square}^{0,cbcc-A12} = -29500 + 20$	Т
$L_{Mn,Ti:\Omega}^{1,cbcc-A12} = -3635 - 5 T$,
	Phase cub–A13
$L_{Mn,Ti:D}^{0,cub-A13} = -34000 + 20$	Т

Phase fcc-A1

 $L_{Mn,Ti:\square}^{0,fcc-A1} = -26200 + 20 T$

Phase hcp-A3

 $L_{Mn,Ti:\Box}^{0,hcp-A3} = 22100$

Phase liquid

 $L_{Mn,Ti}^{0,liquid} = -34000 + 21.5 T$

 $L_{Mn,Ti}^{1,liquid} = 1400$

Phase Mn₄Ti

 $G^{\circ}(T) - 0.815 \quad H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \text{ K}) - 0.185 \quad H_{Ti}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -2445.0 - 2.9 \quad T + 0.815 \quad \text{GHSER}_{Mn} + 0.185 \quad \text{GHSER}_{Ti}$

Phase Mn₃Ti

 $G^{\circ}(T) - 3.0 \quad H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) - H_{Ti}^{\circ, hcp-A3}(298.15 \text{ K}) = -18552.0 - 9.12 \quad T + 3.0 \quad \text{GHSER}_{Mn} + \text{GHSER}_{Ti}$

Phase MnTi- α

 $G^{\circ}(T) - H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \text{ K}) - H_{Ti}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = -11478.0 + \text{GHSER}_{Mn} + \text{GHSER}_{Ti}$

Phase MnTi- β

 $G^{\circ}(T) - 0.515 \quad H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) - 0.485 \quad H_{Ti}^{\circ, hcp-A3}(298.15 \text{ K}) = -5540.0 - 2.29 \quad T + 0.515 \quad \text{GHSER}_{Mn} + 0.485 \quad \text{GHSER}_{Ti}$

Phase Laves-C14

 $\begin{array}{rcl} G^{\circ}(T) - 3.0 & H_{Mn}^{\circ,cbcc-A12,para}(298.15 \text{ K}) = G(Mn:Mn) = 3000.0 + 3.0 & \text{GHSER}_{Mn} \\ G^{\circ}(T) - 2.0 & H_{Mn}^{\circ,cbcc-A12,para}(298.15 \text{ K}) - H_{Ti}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Mn:Ti) = \\ & - 26400.0 + 2.0 & \text{GHSER}_{Mn} + \text{GHSER}_{Ti} \\ G^{\circ}(T) - H_{Mn}^{\circ,cbcc-A12,para}(298.15 \text{ K}) - 2.0 & H_{Ti}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Ti:Mn) = \\ & 3000.0 + \text{GHSER}_{Mn} + 2.0 & \text{GHSER}_{Ti} \\ G^{\circ}(T) - 3.0 & H_{Ti}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Ti:Ti) = \\ & 15000.0 + 3.0 & \text{GHSER}_{Ti} \\ L_{Mn:Mn,Ti}^{0,Laves-C14} = L_{Ti:Mn,Ti}^{0,Laves-C14} = 15000 \\ \end{array}$

Table I -- Invariant Reactions.

Reaction	Туре	Compositi	ons x_{Ti}	Т / К
Liquid \rightleftharpoons bcc-A2 + Mn ₄ Ti Liquid + Mn ₃ Ti \rightleftharpoons Mn ₄ Ti Liquid + Laves-C14 \rightleftharpoons Mn ₃ Ti Mn ₃ Ti \rightleftharpoons Mn ₄ Ti + Laves-C14 Mn ₄ Ti \rightleftharpoons cbcc-A12 + Laves-C14 cbcc-A12 + Mn ₄ Ti \rightleftharpoons cub-A13 bcc-A2 + Mn ₄ Ti \rightleftharpoons cub-A13 bcc-A2 \rightleftharpoons fcc-A1 + cub-A13 Laves-C14 \rightleftharpoons Liquid Liquid + Laves-C14 \rightleftharpoons MnTi- β MnTi- β \rightleftharpoons Laves-C14 \leftrightarrow MnTi- α MnTi- β \mapsto bcc-A2 \rightleftharpoons MnTi- α bcc-A2 \rightleftharpoons MnTi- α + hcp-A3 Liquid \rightleftharpoons MnTi- β + bcc-A2	Eutectic Peritectic Eutectoid Eutectoid Peritectoid Peritectoid Eutectoid Congruent Peritectic Eutectoid Peritectoid Eutectoid Eutectoid Eutectoid	.111 .08(.153 .250 .180 .300 .250 .183 .185 .124 .080 .185 .076 .185 .008 .000 .344 .344 .560 .485 .485 .369 .485 .748 .827 .500 .620 .485	3 .185 3 .250 3 .250 3 .287 4 .286 5 .110 6 .078 7 .09 5 .500 8 .500 9 10	$\begin{array}{c} 1478.0\\ 1502.8\\ 1523.5\\ 1222.3\\ 1198.4\\ 1309.3\\ 1408.6\\ 1387.6\\ 1598.0\\ 1500.2\\ 1071.3\\ 1224.0\\ 827.6\\ 1455.5\\ \end{array}$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattice	Comments
Mn-Ti	α−Mn	α-Mn	c584 I43m	-	cbcc-A12
	β−Mn	β-Mn	cP20 P4 ₁ 323m		cub-A13
	γ−Mn	Cu	cF4 Fm3m	M 4	fcc-A1
	δ-Mn	w	c12 Im3m	M 2	bcc- <i>A</i> 2
	(Ti)	Mg	hP2 P6 ₃ /mmc	M 2	
	(Ti)	w	c12 Im3m	M 2	
	MnTi-a		<i>t</i> + 58		
	MnTi-β				
	Mn ₃ Ti				
	Mn₂Ti	MgZn ₂	hP12 P6 ₃ /mmc	Mn ₁ 2 Mn ₂ 6 Ti 4	Laves-C14
	Mn₄Ti	~ δ(Mo,Ni)	hR53 R3		

Table II - Crystal Structure and Phase Description.

Solution Phases:

System Mn-Zr

		Liquid, bcc-A2, cbcc-A12, cub-A13, fcc-A1, hcp-A3
Compound	<u>:</u>	Mn ₂ Zr
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
cbcc-A12	:	Substitutional, Redlich-Kister
cub-A13	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
Mn ₂ Zr	:	Stoichiometric, (Mn) ₂ (Zr)
	_	

Assessor and Date:

K. Hack, GTT, Germany (1997).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Mn₂Zr

$G^{\circ}(T) = 3.0$	$H_{\rm Mn}^{\circ, \rm cbcc-A}$	12,para (298.15)	K) = $G(Mn:Mn)$ =
298.15	< T <	1519.00 :	$-021345.84 + 390.177 T - 70.3746 T \cdot \ln T$
			-0.02204304 $T^2 + 209481.3$ T^{-1}
1519.00	< T <	2000.00 :	$-83200.23 + 936.7944 T - 144 T \cdot \ln T$
			+ 4.970541E+30 T^{-9}
$G^{\circ}(T) - 2.0$	$H_{Mn}^{o,cbcc-A}$	^{12,para} (298.15	K) - $H_{Zr}^{o,hcp-A3}(298.15 \text{ K}) = G(Mn:Zr) =$
298.15	< T <	1900.00 :	$-79282.375 + 386.94271 T - 71.0782 T \cdot \ln T$
			-0.01907327 $T^2 + 174625.2$ T^{-1}
1900.00	< T <	2000.00 :	$-119446.65 + 750.75589 T - 120.1618 T \cdot \ln T$
			-0.00437791 $T^2 + 34971$ T^{-1}
			$+ 3.313694E+30 T^{-9}$

 $G^{\circ}(T) - H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \text{ K}) - 2.0 \quad H_{Zr}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = G(Zr:Mn) =$ 298.15 < T < 1519.00 : $-8770.8146 + 381.3571 T - 71.7818 T \cdot \ln T$ -0.0161035 $T^{2} + 139769.1$ T^{-1} $1519.00 < T < 2000.00 : -29388.945 + 563.56289 T - 96.3236 T \cdot \ln T$ $-0.00875582 T^{2} + 69942 T^{-1}$ + 1.656847E+30 T^{-9} $G^{\circ}(T) - 3.0 \quad H_{Zr}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Zr;Zr) =$ 298.15 < T < 2128.00 : -8482.785 + 376.94715 T - 72.4854 $T \cdot \ln T$ -0.01313373 $T^{2} + 104913$ T^{-1} $2128.00 < T < 6000.00 : -63257.763 + 788.17255 T - 126.432 T \cdot \ln T$ -4.028685E+31 T⁻⁹ $L^{0,Mn_2Zr}_{Mn,Zr:Mn}$ = 18442.56 + 14.090471 T $L_{\rm Zr:Mn,Zr}^{0,Mn_2Zr}$ = 18442.56 + 14.090471 T $L_{Mn:Mn,Zr}^{0,Mn_2Zr}$ = 1066.4675 + 10.504933 T $L_{Mn,Zr;Zr}^{0,Mn_2Zr}$ = 1066.4675 + 10.504933 T Phase bcc-A2 $L_{Mn,Zr:\square}^{0,bcc-A2}$ = -2135.3475 - 0.13258 TL^{1,bcc-A2} Mn,Zr:0 = -4084Phase cbcc-A12 $L_{Mn,Zr:\square}^{0,cbcc-A12}$ = 20000Phase cub-A13 L^{0,cub-A13} = 24000Phase fcc-A1 $L_{Mn,Zr:Q}^{0,fcc-A1}$ = 20000Phase hcp-A3 $L_{Mn,Zr:O}^{0,hcp-A3}$ = 25000Phase liquid $L_{
m Mn,Zr}^{0,
m liquid}$ = -35187.553 + 2.6983563 T $L_{Mn,Zr}^{1,liquid}$ = -1305.986

Table I - Invariant Reactions.

Reaction	Туре	Com	<i>Т </i> К		
Liquid \rightleftharpoons bcc-A2 + Mn ₂ Zr bcc-A2 \rightleftharpoons + cub-A13 + Mn ₂ Zr fcc-A1 \rightleftharpoons bcc-A2 + cub-A13 cub-A13 \rightleftharpoons cbcc-A2 + mn ₂ Zr Liquid \rightleftharpoons Mn ₂ Zr + bcc-A2 bcc-A2 \rightleftharpoons Mn ₂ Zr + bcp-A3 Mn ₂ Zr \rightleftharpoons Liquid	Eutectic Eutectoid Metatectic Degenerate Eutectic Eutectoid Congruent	.071 .012 .0003 .000 .694 .971 .345	.018 .000 .0002 .000 .535 .540 .345	.236 .213 .0062 .179 .911 .998	1421.9 1334.5 1359.1 980.1 1424.1 1075.4 1730.0

System	Phase	Prototype	Pearson Symbol Space Group	Sub lattic)- Ces	Comments
Mn-Zr	α−Mn	α-Mn	c58 IÄSm			cbcc-A12
	β−Mn	β-Mn	cP20 P41 3 23m			cub-A13
	γ−Mn	Cu	cF4 Fm3m			
	δ−Mn	w	c12 Im3m			
	(Zr)	Mg	hP2 P63/mmc	м	2	
	(Zr)	w	c12 Im3m	м	4	
	Mn₂Zr	MgZn ₂	hP19 P63/mmc	Mn Mn Zr	2 6 4	Laves-C14

Table II - Crystal Structure and Phase Description.

$\mathbf{System} \ \mathbf{Mo-Ti}$

Solution	Phases:
(stable)	

(stable)		Liquid, bcc-A2, hcp-A3
(metastable)		bcc- $B2$, fcc- $A1$
Compounds: (metastable)		AlM-D019, AlM-D022, AlTi-L10
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
bcc-B2	:	Sublattice model, (Mo,Ti) _{0.5} (Mo,Ti) _{0.5} (□) ₃
		The thermodynamic description of the bcc-B2 takes
		into account the ordering reaction $bcc-A2 \rightleftharpoons bcc-B2$
		Two descriptions are given: one using equations
		23 and 27, the other using equations 23 and 28.
		For the latter, the parameters are given in a frame.
fcc-A1	:	Substitutional, Redlich–Kister
hcp-A3	:	Substitutional, Redlich-Kister
AlM- <i>D</i> 0 ₁₉	:	Sublattice model, (Mo,Ti)(Mo,Ti) ₃
AlM- <i>D</i> 0 ₂₂	:	Sublattice model, (Mo,Ti) ₃ (Mo,Ti)
$AlTi-L1_0$:	Sublattice model, (Mo,Ti)(Mo,Ti)

Assessor and Date:

N. Saunders, 1995

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase liquid

 $L_{\rm Mo,Ti}^{0,{
m liquid}}$ = -9000 + 2 T

Phase fcc-A1

 $L_{\rm Mo,Ti:\square}^{0,\rm fcc-A1} = 16500$

B2.

Phase hcp-A3

 $L_{\text{Mo,Ti:}\square}^{0,\text{hcp}-A3} = 22760 - 6 T$

Phase bcc-A2

 $L_{Mo,Ti:\Box}^{0,bcc-A2} = 2000$

 $L_{\text{Mo,Ti:D}}^{1,\text{bcc}-A2} = -2000$

Phase bcc-B2

Phase bcc-B2 $G^{\bullet}_{Mo:Ti:\square} = 5000$ $G^{\circ}(T) - H^{\circ,bcc-A2}_{Mo}(298.15 \text{ K}) = G(Mo:Mo:\square) = 0.0$ $G^{\circ}(T) - 0.5 H^{\circ,bcc-A2}_{Mo}(298.15 \text{ K}) - 0.5 H^{\circ,hcp-A3}_{Ti}(298.15 \text{ K}) = G(Mo:Ti:\square) = 2.0 G^{\bullet}_{Mo:Ti:\square}$ $G^{\circ}(T) - 0.5 H^{\circ,bcc-A2}_{Mo}(298.15 \text{ K}) - 0.5 H^{\circ,hcp-A3}_{Ti}(298.15 \text{ K}) = G(Ti:Mo:\square) = 2.0 G^{\bullet}_{Mo:Ti:\square}$ $G^{\circ}(T) - H^{\circ,hcp-A3}_{Ti}(298.15 \text{ K}) = G(Ti:Ti:\square) = 0.0$ Phase bcc-A2 $L^{0,bcc-A2}_{Mo,Ti:\square} = 2000$

Phase AlM-D019

$$\begin{array}{rcl} G^{\circ}(T) & -4.0 & H_{\mathsf{Mo}}^{\circ,\mathsf{bcc}-A2}(298.15 \ \mathsf{K}) = \mathrm{G}(\mathsf{Mo}:\mathsf{Mo}) = 4.0 & \mathrm{GHCP}_{\mathsf{Mo}} \\ G^{\circ}(T) & -3.0 & H_{\mathsf{Mo}}^{\circ,\mathsf{bcc}-A2}(298.15 \ \mathsf{K}) - H_{\mathsf{Ti}}^{\circ,\mathsf{hcp}-A3}(298.15 \ \mathsf{K}) = \mathrm{G}(\mathsf{Mo}:\mathsf{Ti}) = \\ & 17072 - 4.5 \ T + 3.0 \ \mathrm{GHCP}_{\mathsf{Mo}} + \mathrm{GHSER}_{\mathsf{Ti}} \\ G^{\circ}(T) & - H_{\mathsf{Mo}}^{\circ,\mathsf{bcc}-A2}(298.15 \ \mathsf{K}) - 3.0 \quad H_{\mathsf{Ti}}^{\circ,\mathsf{hcp}-A3}(298.15 \ \mathsf{K}) = \mathrm{G}(\mathsf{Ti}:\mathsf{Mo}) = \\ & 17072 - 4.5 \ T + \mathrm{GHCP}_{\mathsf{Mo}} + 3.0 \ \mathrm{GHSER}_{\mathsf{Ti}} \\ G^{\circ}(T) - 4.0 \quad H_{\mathsf{Ti}}^{\circ,\mathsf{hcp}-A3}(298.15 \ \mathsf{K}) = \mathrm{G}(\mathsf{Ti}:\mathsf{Ti}) = 4.0 + 4.0 \ \mathrm{GHSER}_{\mathsf{Ti}} \end{array}$$

Phase AlM-D022

 $\begin{array}{ll} G^{\circ}(T) - 4.0 & H_{M_{0}}^{\circ, bcc-A2}(298.15 \text{ K}) = \text{G}(\text{Mo:Mo}) = 4.0 \quad \text{GFCC}_{\text{Mo}} \\ G^{\circ}(T) - 3.0 & H_{M_{0}}^{\circ, bcc-A2}(298.15 \text{ K}) - H_{\text{Ti}}^{\circ, hcp-A3}(298.15 \text{ K}) = \text{G}(\text{Mo:Ti}) = \\ & 3.0 \quad \text{GFCC}_{M_{0}} + \text{GFCC}_{\text{Ti}} \\ G^{\circ}(T) - H_{M_{0}}^{\circ, bcc-A2}(298.15 \text{ K}) - 3.0 \quad H_{\text{Ti}}^{\circ, hcp-A3}(298.15 \text{ K}) = \text{G}(\text{Ti:Mo}) = \\ & \text{GFCC}_{M_{0}} + 3.0 \quad \text{GFCC}_{\text{Ti}} \\ G^{\circ}(T) - 4.0 \quad H_{\text{Ti}}^{\circ, hcp-A3}(298.15 \text{ K}) = \text{G}(\text{Ti:Ti}) = 4.0 \quad \text{GFCC}_{\text{Ti}} \end{array}$

Phase AlTi-L10

Table I - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Comments
Mo-Ti	(Mo)	w	cl2 Im3m	
	(Ti)	Mg	hP2 P6 ₃ /mmc	
	(Ti)	w	c12 Im3m	

~

$System \ N{-}Ti$

Solution Pha	ses:						
Compound:		Liquid, hcp-A3, bcc-A2, fcc-A1 (Ti_rN_{1-x})					
<u> </u>		Ti2N, Ti3N2, Ti4N3					
Modelling:							
Liquid	:	Substitutional, Redlich-Kister					
bcc-A2	:	Sub-lattice, $(Ti)(N,\Box)$					
hcp-A3	:	Sub-lattice, $(Ti)(N,\Box)$					
fcc-A1	:	Sub-lattice, $(Ti)(N,\Box)$					
Ti ₂ N	:	Stoichiometric, $(Ti)_2(N)$					
Ti ₃ N ₂	:	Stoichiometric, (Ti) _{0.29} (N) _{0.71}					
Ti₄N₃	:	Stoichiometric, (Ti) _{0.315} (N) _{0.685}					
Assessor and	Date:						
		K. Zeng and R. Schmid-Fetzer, Univ. Clausthal, Germany, 1997					
<u>Comments:</u>		The value of GHSER _{TiN} is taken from S. Jonsson, Thesis, Royal Institute of Technology, Stockholm, Sweden (1993)					

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase fcc-A1

$G^{\circ}(T) - H$	0.5N2	$(298.15 \text{ K}) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = \text{GHSER}_{\text{TiN}} =$
	-	$-357905.0 + 330.498 T - 52.4587 T \cdot \ln T - 9.28E - 04 T^{2}$
L ^{0,fcc-A1} Ti:CD	=	$\begin{array}{rrrr} - 2.41 \mathrm{E}{+09} & T^{-3} + 871000.0 & T^{-1} \\ - 42704.41 \end{array}$
$L_{\text{Ti:CD}}^{1,\text{fcc}-A1}$	=	- 13989.34

Phase Ti_4N_3

 $G^{\circ}(T) - 0.315 \quad H_{0.5N_2}^{\circ,gas}(298.15 \text{ K}) - 0.685 \quad H_{Ti}^{\circ,hcp-A3}(298.15 \text{ K}) = -5956.8633 - 3.2749 \quad T + 0.37 \quad \text{GHSER}_{Ti} + 0.315 \quad \text{GHSER}_{TiN}$

Phase bcc-A2

 $G^{\circ}(T) - 3.0 \quad H_{0.5N_2}^{\circ,gas}(298.15 \text{ K}) - H_{Ti}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Ti:N) = 2604201.62 + 118.04 \quad T + \text{GHSER}_{TiN} + 2.0 \quad \text{GHSER}_{N}$ $L_{\text{Ti:N},\Box}^{0,bcc-A2} = -3215338.17$

Phase hcp-A3

 $G^{\circ}(T) - 0.5 \quad H_{0.5N_2}^{\circ,gas}(298.15 \text{ K}) - H_{Ti}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Ti:N) = -6046.53 - 2.653 \quad T + 0.5 \text{ GHSER}_{TiN} + 0.5 \text{ GHSER}_{Ti}$ $L_{Ti:D}^{0,hcp-A3} = -13501$

Phase Ti₂N

 $G^{\circ}(T) - H_{0.5N_2}^{\circ,gas}(298.15 \text{ K}) - 2.0 \quad H_{T_i}^{\circ,hcp-A3}(298.15 \text{ K}) = -67116 + 26.5395533 \quad T + \text{GHSER}_{T_i} + \text{GHSER}_{T_iN}$

Phase Ti₃N₂

 $G^{\circ}(T) - 0.29 \quad H_{0.5N_2}^{\circ,gaa}(298.15 \text{ K}) - 0.71 \quad H_{Ti}^{\circ,hcp-A3}(298.15 \text{ K}) = -8190.34 - 1.54816 \quad T + 0.42 \quad \text{GHSER}_{Ti} + 0.29 \quad \text{GHSER}_{TiN}$

Phase liquid

 $L_{N,Ti}^{0,liquid} = -376354.145$ $L_{N,Ti}^{1,liquid} = -98242.2945$

Table I - Invariant Reactions.

Reaction	Туре	Comp	osition	s z Ti	Т / К
$\begin{aligned} & \operatorname{fcc} - A1 + \operatorname{hcp} - A3 \rightleftharpoons \operatorname{Ti}_4 \operatorname{N}_3 \\ & \operatorname{Ti}_4 \operatorname{N}_3 + \operatorname{hcp} - A3 \rightleftharpoons \operatorname{Ti}_3 \operatorname{N}_2 \\ & \operatorname{Ti}_3 \operatorname{N}_2 \rightleftharpoons \operatorname{Ti}_2 \operatorname{N} + \operatorname{hcp} - A3 \\ & \operatorname{Ti}_4 \operatorname{N}_3 \rightleftharpoons \operatorname{Ti}_2 \operatorname{N} + \operatorname{Ti}_3 \operatorname{N}_2 \\ & \operatorname{fcc} - A1^{\bullet} + \operatorname{Ti}_3 \operatorname{N}_2 \rightleftharpoons \operatorname{Ti}_2 \operatorname{N} \\ & \operatorname{Liquid} + \operatorname{fcc} - A1^{\bullet} \rightleftharpoons \operatorname{hcp} - A3 \\ & \operatorname{Liquid} + \operatorname{hcp} - A3 \rightleftharpoons \operatorname{bcc} - A2 \\ & \operatorname{fcc} - A1 \rightleftharpoons \operatorname{Liquid} \end{aligned}$	Peritectoid Peritectoid Eutectoid Eutectoid Peritectoid Peritectic Peritectic Congruent	.673 .685 .710 .685 .658 .882 .967 .533	.784 .784 .667 .667 .685 .695 .863 .541	.685 .710 .787 .710 .667 .793 .932	1551.1 1376.8 1336.2 1348.5 1354.8 2618.0 2268.6 3585.0

• fcc-A1 \equiv Ti_xN_{1-x}

Tabl	e	Π	-	Crystal	Structure	and	Phase	Description.
------	---	---	---	---------	-----------	-----	-------	--------------

System	Phase	Prototype	Pearson Symbol Space Group	Sub lattic	⊢ ce	Comments
N-Ti	0.5N ₂	gas				
	(Ti)	Mg	hP2 P6 ₃ /mmc	м	2	
	(Ti)	w	c12 Im3m	м	2	
	Tin	CINa	cF8 Fm3̄m	N Ti	4 4	modelled as fcc-A1
	Ti ₂ N	anti-O2Ti (rutile)	tP6 P4 ₂ /mnm	N Ti	2 4	
	Ti₄N₃	Ti ₇ S ₁₂	h R8 R3m	N_1 N_2 N_3 Ti	3 3 6 6	
	Ti ₃ N ₂			Ti ₂	6	not indicated in [91Vil] nor in [90Mas]

System Nb–Ti

<u>Solution Phase</u> (stable) (metastable)	<u>s:</u>	Liquid, bcc-A2, hcp-A3 bcc-B2, fcc-A1
Compounds: (metastable)		AlM-D019, AlM-D022, AlTi-L10,Cr3Si-A15
Modelling:		
Liquid bcc– <i>A</i> 2 bcc– <i>B</i> 2	: :	Substitutional, Redlich-Kister Substitutional, Redlich-Kister Sublattice model, $(Nb,Ti)_{0.5}(Nb,Ti)_{0.5}(\Box)_3$ The thermodynamic description of the bcc-B2 takes into account the ordering reaction bcc-A2 \rightleftharpoons bcc-B2. Two descriptions are given: one using equations 23 and 27, the other using equations 23 and 28. For the latter, the parameters are given in a frame.
fcc-A1 hcp-A3 AIM-D0 ₁₉ AIM-D0 ₂₂ AITi-L1 ₀ Cr ₃ Si-A15	: : : :	Substitutional, Redlich-Kister Substitutional, Redlich-Kister Sublattice model, (Nb,Ti)(Nb,Ti) ₃ Sublattice model, (Ti) ₃ (Nb,Ti) Sublattice model, (Nb,Ti)(Nb,Ti) Sublattice model, (Nb,Ti) ₃ (Nb)

Assessor and Date:

N. Saunders, 1995

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase liquid

 $L_{\rm Nb,Ti}^{0,{
m liquid}}$ = 8500

Phase fcc–A1

 $L_{\rm Nb,Ti:\Box}^{1,\rm fcc-A1} = 1\text{E-04}$

 $L_{\rm Nb,Ti:D}^{0,\rm fcc-A1} = 13600$

 $L_{\rm Nb,Ti:\square}^{2,{\rm fcc}-A1} = 2500$

Phase hcp-A3

 $L_{\rm Nb,Ti:\Box}^{0,hcp-A3} = 13600$ $L_{\rm Nb,Ti:\Box}^{1,hcp-A3} = 1E-04$

 $L_{\rm Nb,Ti:D}^{2,{\rm hcp}-A3} = 2500$

Phase Cr₃Si-A15

$$\begin{array}{r} G^{\circ}(T) - 4.0 \quad H_{\rm Nb}^{\circ, \rm bcc-A2}(298.15 \text{ K}) = \mathrm{G}(\mathrm{Nb:Nb}) = \\ 20000 + 10 \quad T + 4.0 \quad \mathrm{GFCC}_{\mathrm{Nb}} \\ G^{\circ}(T) - H_{\mathrm{Nb}}^{\circ, \rm bcc-A2}(298.15 \text{ K}) - 3.0 \quad H_{\mathrm{Ti}}^{\circ, \rm hcp-A3}(298.15 \text{ K}) = \mathrm{G}(\mathrm{Ti:Nb}) = \\ 20000 + 10 \quad T + 3.0 \quad \mathrm{GFCC}_{\mathrm{Nb}} + \mathrm{GFCC}_{\mathrm{Ti}} \end{array}$$

Phase bcc-A2

 $L_{\rm Nb,Ti:O}^{0,\rm bcc-A^2} = 14000$ $L_{\rm Nb,Ti:O}^{1,\rm bcc-A^2} = 1.0 \text{E-4}$

 $L^{2,{\rm bcc}-A2}_{{\rm Nb},{\rm Ti:}\square}=2500$

Phase bcc-B2

Phase AlM-D019

 $\begin{array}{ll} G^{\circ}(T) - 4.0 & H_{\rm Nb}^{\circ,{\rm bcc}-A2}(298.15 \ {\rm K}) = {\rm G}({\rm Nb}{:}{\rm Nb}) = 4.0 & {\rm GHCP}_{\rm Nb} \\ G^{\circ}(T) - 3.0 & H_{\rm Nb}^{\circ,{\rm bcc}-A2}(298.15 \ {\rm K}) - & H_{\rm Ti}^{\circ,{\rm bcp}-A3}(298.15 \ {\rm K}) = {\rm G}({\rm Nb}{:}{\rm Ti}) = \end{array}$ $\frac{10668 + 3.0 \text{ GHCP}_{Nb} + \text{GHSER}_{Ti}}{G^{\circ}(T) - H_{Nb}^{\circ,bcc-A2}(298.15 \text{ K}) - 3.0 H_{Ti}^{\circ,bcc-A3}(298.15 \text{ K}) = G(\text{Ti:Nb}) =$ $10668 + \text{GHCP}_{Nb} + 3.0 \text{ GHSER}_{Ti}$ $G^{\circ}(T) - 4.0 \quad H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = G(\text{Ti}:\text{Ti}) = 4.0 + 4.0 \quad \text{GHSER}_{\text{Ti}}$ $L_{\rm Nb,Ti:Nb}^{0,\rm AIM-D0_{19}}$ = 30248 $L_{\rm Nb,Ti:Nb}^{1,{\rm AIM}-D0_{19}}$ = 4220 $L_{\rm Nb,Ti:Nb}^{2,\rm AlM-D0_{19}}$ = 3164 $L_{\rm Nb,Ti:Ti}^{0,{\rm AlM}-D0_{19}} = 30248$ $L_{\rm Nb,Ti:Ti}^{1,{\rm AlM}-D0_{19}}$ = -4220 $L^{2,\mathrm{AIM}-D0_{19}}_{\mathrm{Nb},\mathrm{Ti:Ti}}$ = 3164 $L_{
m Nb:Nb,Ti}^{0,
m AlM-D0_{19}}$ = 4924 $L_{
m Nb:Nb,Ti}^{1,
m AIM-D0_{19}}$ = 468 $L^{2,\mathrm{AIM}-D0_{19}}_{\mathrm{Nb:Nb,Ti}}$ -40 = $L_{\mathrm{Ti:Nb,Ti}}^{0,\mathrm{AlM}-D0_{19}}$ = 4924 $L_{\mathrm{Ti:Nb,Ti}}^{1,\mathrm{AIM}-D0_{19}}$ = -468 $L_{\rm Ti:Nb,Ti}^{2,\rm AlM-D0_{19}} = 40$

Phase AlM-D022

 $G^{\circ}(T) - H_{\rm Nb}^{\circ, \rm bcc-A2}(298.15 \text{ K}) - 3.0 \quad H_{\rm Ti}^{\circ, \rm hcp-A3}(298.15 \text{ K}) = G(\rm Ti:Nb) = GFCC_{Nb} + 3.0 \quad GFCC_{\rm Ti}$ $G^{\circ}(T) - 4.0 \quad H_{\rm Ti}^{\circ, \rm hcp-A3}(298.15 \text{ K}) = G(\rm Ti:Ti) = 4.0 \quad GFCC_{\rm Ti}$

Phase AlTi-L10

 $G^{\circ}(T) - 2.0 \quad H_{Nb}^{\circ,bcc-A2}(298.15 \text{ K}) = G(Nb:Nb) = 2.0 \quad GFCC_{Nb}$ $G^{\circ}(T) - H_{Nb}^{\circ,bcc-A2}(298.15 \text{ K}) - H_{Ti}^{\circ,hcp-A3}(298.15 \text{ K}) = G(Nb:Ti) = 13600 + GFCC_{Nb} + GFCC_{Ti}$

$G^{\circ}(T) - H^{\circ, \mathfrak{h}}_{Nb}$	occ-A	$^{2}(298.15 \text{ K}) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = G(\text{Ti:Nb}) =$
$G^{\circ}(T) = 20$	t H ^{o,t}	100 + GFCC _{Nb} + GFCC _{Ti} $^{10p-A3}(298.15 \text{ K}) = G(Ti \cdot Ti) = 2.0 \text{ GFCC}_{Ti}$
L ^{0,AlTi-L10} LNb,Ti:Nb	=	7738
L ^{1,AITi-L1} о Лув,Ti:Nb	=	1250
$L^{2,{ m AlTi}-L1_0}_{ m Nb,Ti: m Nb}$	=	312
L ^{0,AITi-L10} Nb,Ti:Ti	=	7738
$L_{ m Nb,Ti:Ti}^{1, m AlTi-L1_0}$	=	- 1250
$L^{2,\mathrm{AlTi}-L1_0}_{\mathrm{Nb},\mathrm{Ti}:\mathrm{Ti}}$	=	312
L ^{0,AITi-L10} LNb:Nb,Ti	=	7738
$L_{ m Nb:Nb,Ti}^{1, m AlTi-L10}$	=	1250
$L^{2,\mathrm{AlTi}-L1_0}_{\mathrm{Nb}:\mathrm{Nb},\mathrm{Ti}}$	=	312
L ^{0,AlTi-L10} Ti:Nb,Ti	_	7738
$L_{ m Ti:Nb,Ti}^{1, m AlTi-L_{10}}$	=	- 1250
L ^{2,AITi-L10} Ti:Nb,Ti	=	312
L ^{0,AlTi-Lio} LNb,Ti:Nb,Ti	=	- 7500

Table I - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Comments
Nb-Ti	(Nb)	w	c12 Im3m	
	(Ti)	Mg	hP2 P63/mmc	
	(Ti)	w	c12 Im3 m	

System Ni–V

Solution Phases:

Liquid, bcc-A2, fcc-A1, σ

Compounds:

Ni₂V, Ni₃V, Ni₂V₇

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
Ni ₂ V	:	Stoichiometric, (Ni) ₂ (V)
Ni ₃ V	:	Stoichiometric, $(Ni)_3(V)$
Ni_2V_7	:	Stoichiometric, $(Ni)_2(V)_7$
σ	:	Sublattice model, (Ni) ₈ (V) ₄ (Ni,V) ₁₈

Publication:

J. Korb, and K. Hack, GTT, Germany (1997).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase bcc-A2

10,bcc-A2	20512 0 1 10 6120	T
LNLV:0	 -30513.8 + 12.0138	1

Phase fcc-A1

- $L_{\text{Ni},\text{V:O}}^{0,\text{fcc}-A1} = -36365.6 + 3.75677 T$
- $L_{\rm Ni,V:D}^{1,{\rm fcc-A1}} = 11860.7 9.0302 \ T$
- $L_{\rm Ni,V:O}^{2,\rm fcc-A1} = -10647.5 + 7.00954 T$

Phase liquid

 $L_{\rm Ni,V}^{0,{\rm liquid}} = -51927 + 14.99 T$

Phase Ni₂V

$$G^{\circ}(T) - 2.0 \quad H_{\text{Ni}}^{\circ,\text{fcc}-A1,\text{para}} (298.15 \text{ K}) - H_V^{\circ,\text{bcc}-A2} (298.15 \text{ K}) = - 38032.065 + 337.2614 \quad T - 64.6973 \quad T \cdot \ln T - 0.01512 \quad T^2 - 13.75326 \quad T^{-1}$$

Phase Ni_3V

$$G^{\circ}(T) - 3.0 \quad H_{\text{Ni}}^{\circ,\text{fcc}-A1,\text{para}} (298.15 \text{ K}) - H_{\text{V}}^{\circ,\text{bcc}-A2} (298.15 \text{ K}) = -45524.96 + 529.01852 \quad T - 99.74166 \quad T \cdot \ln T - 0.00824 \quad T^2 - 13753.332 \quad T^{-1}$$

Phase Ni₂V₇

 $G^{\circ}(T) - 2.0 \quad H_{\text{Ni}}^{\circ,\text{fcc}-A1,\text{para}} (298.15 \text{ K}) - 7.0 \quad H_{\text{V}}^{\circ,\text{bcc}-A2} (298.15 \text{ K}) = \\ - 190634.14 + 1333.90548 \quad T - 233.55668 \quad T \cdot \ln T - 0.00482 \quad T^2 \\ - 5.196308 \text{F-}06 \quad T^3 + 844557.21 \quad T^{-1}$

Phase σ

$G^{\circ}(T)$ –	26.0 H ^o _N	,fcc-Al,para	(298	.15 K) - 4.0 $H_V^{o,bcc-A2}(298.15 \text{ K}) = G(\text{Ni:V:Ni}) =$
298.15	< T <	790.00	: -	$-161645.05 + 3532.8443 T - 671.032 T \cdot \ln T$
			-	$-0.1382502 T^2 + 4.87E-07 T^3 + 277840 T^{-1}$
790.00	< T <	1728.00	: -	$-161794.7 + 3572.6245 T - 678.096 T \cdot \ln T$
			-	-0.1256082 $T^2 - 2.72E-06$ T^3
$G^{\circ}(T)$ –	8.0 H _{Ni} ^{o,f}	cc-Al,para (298.1	5 K) - 22.0 $H_V^{\circ, bcc-A2}(298.15 \text{ K}) = G(\text{Ni:V:V}) =$
298.15	< T <	790.00	: -	$-663330.65 + 4012.7719 T - 707.716 T \cdot \ln T$
			-	$-0.1068816 T^2 + 2.6785E-06 T^3 + 1528120 T^{-1}$
790.00	< T <	1728.00	: -	$-664153.72 + 4231.5628 T - 746.568 T \cdot \ln T$
			-	-0.0373506 $T^2 - 1.496E-05$ T^3

Table I - Invariant Reactions.

Reaction	Туре	Com	position	16 <i>X</i> Zr	Т / К
Liquid + bcc-A2 $\rightleftharpoons \sigma$ σ + bcc-A2 \rightleftharpoons Ni ₂ V ₇ Liquid \rightleftharpoons fcc-A1 + σ fcc-A1 \rightleftharpoons Ni ₂ V + σ fcc-A1 \rightleftharpoons Ni ₃ V + Ni ₂ V Ni ₃ V \rightleftharpoons fcc-A1 Ni ₂ V \rightleftharpoons fcc-A1	Peritectic Peritectoid Eutectoid Eutectoid Eutectoid Congruent Congruent	.626 .727 .501 .368 .313 .250 .333	.769 .922 .413 .333 .250 .250 .333	.662 .778 .578 .554 .333 	1552.3 1171.9 1485.7 1150.9 1175.5 1324.0 1190.0

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub– lattices	Comments
Ni-V	(Ni) (V) Ni ₈ V Ni ₃ V Ni ₃ V Ni ₂ V σ	Cu W NbNi ₈ Al ₃ Ti MoPt ₂ σ CrFe	cF4 F:n3m c12 Im3m t118 t18 14/mmm o16 tP30 P42/mnm	M 4 Ni ₁ 2 Ni ₂ 4 V 2	High and low forms given in [90Mas]
	NiV3	Cr ₃ Si	cP8 Pm3n	Cr 6 Si 2	assumed to be Ni_2V_7 by the assessors

System Si–Sn

Solution Phases:

Liquid, diamond

Modelling:

Liquid	:	Substitutional,	Redlich-Kister
diamond	:	Substitutional,	Redlich-Kister

Assessor and Date:

H.L. Lukas 1993

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase diamond

 $L_{\rm Si,Sn}^{0,{\rm diamond}} = 25265.65 + 23.84 T$

Phase liquid

 $L_{Si,Sn}^{0.liquid} = 25364.6$ $L_{Si,Sn}^{1.liquid} = 3148.8$ $L_{Si,Sn}^{2.liquid} = 4460.9$

Table I - Invariant Reactions.

Reaction	Туре	Com	positio	is x_{Sn}	Т / К
Liquid \rightleftharpoons bct-A5 + diamond	Degenerate	.000	.000	1.000	505.1

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Si-Sn	(Si)	diamond	cF8 Fd3m
	(Sn)	β−Sn	t14 141/amd

System Si–Ti

Solution Pha	ses:	
		Liquid, bcc-A2, hcp-A3
Compounds:		
		Si2Ti, Si4Ti5, SiTi, SiTi3, Si3Ti5
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
Si ₂ Ti	:	Stoichiometric (Si)2(Ti)
Si₄Ti₅	:	Stoichiometric (Si) ₄ (Ti) ₅
SiTi	:	Stoichiometric, (Si)(Ti)
SiTi3	:	Stoichiometric, (Si)(Ti) ₃
Si3Ti5	:	Sublattice model, (Si,Ti) ₂ (Si,Ti) ₃ (Ti) ₃
	:	
Assessor and	Date:	
		H. Seifert
Publication:		
		Thesis, Univ. Stuttgart, Germany (1994)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Si₂Ti

 $G^{\circ}(T) - 2.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = -175038.5 + 4.54 \quad T + 2.0 \quad \text{GHSER}_{\text{Si}} + \text{GHSER}_{\text{Ti}}$

Phase Si₄Ti₅

 $G^{\circ}(T) - 4.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - 5.0 \quad H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = -711000.0 + 22.37355 \quad T + 4.0 \quad \text{GHSER}_{\text{Si}} + 5.0 \quad \text{GHSER}_{\text{Ti}}$

Phase SiTi

 $G^{\circ}(T) - H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) =$ - 155061.7 + 7.6345 T + GHSER_{Si} + GHSER_{Ti}

Phase Si₃Ti₅

$G^{\circ}(T) = 5.0$	$H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - 3.0 H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = G(\text{Si:Si:Ti}) = -206191.45 + 16.4953 T + 5.0 \text{GHSER}_{\text{Si}} + 3.0 \text{GHSER}_{\text{Ti}}$
$G^{\circ}(T) - 3.0$	$H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - 5.0 H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Ti:Si:Ti}) =$
$G^{\circ}(T) - 2.0$	$-583564.31 + 2.68514 T + 3.0 \text{ GHSER}_{\text{Si}} + 5.0 \text{ GHSER}_{\text{Ti}}$ $H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - 6.0 H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = \text{G(Si:Ti:Ti)} =$
	$417372.85 + 33.81017 T + 2.0 \text{ GHSER}_{Si} + 6.0 \text{ GHSER}_{Ti}$
$G^{\circ}(T) - 8.0$	$H_{\text{Ti}}^{0,\text{hep-AS}}(298.15 \text{ K}) = G(\text{Ti:Ti:Ti}) =$
$L_{ m Si,Ti:Si:Ti}^{0, m Si_3Ti_5}$	$\begin{array}{rcl} 40000.0 + 20.0 & T + 8.0 & \text{GHSER}_{\text{Ti}} \\ = & -500000 + 40.0 & T \end{array}$
$L_{ m Si,Ti:Ti:Ti}^{0,{ m Si}_3{ m Ti}_5}$	= -500000 + 40.0 T
$L_{ m Si:Si,Ti:Ti}^{0, m Si_3Ti_5}$	= 43024.29 - 3.44194 T
$L_{\mathrm{Ti:Si},\mathrm{Ti:Si}}^{0,\mathrm{Si}_3\mathrm{Ti}_5}$	= 43024.29 - 3.44194 T

Phase SiTi₃

 $G^{\circ}(T) - H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - 3.0 \quad H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = -200000.0 + 3.19924 \quad T + \text{GHSER}_{\text{Si}} + 3.0 \quad \text{GHSER}_{\text{Ti}}$

Phase bcc-A2

		D 1	
L ^{2,bcc−A2} L ^{2,bcc−A2}	=	83940.65 - 6.71526	Т
L ^{1,bcc−A2} Si,Ti:□	=	25025.35 - 2.00203	Т
$L^{0,\mathrm{bcc}-A2}_{\mathrm{Si},\mathrm{Ti:D}}$	=	-275629.1 + 42.5094	Т

Phase diamond

 $L_{\rm Si,Ti}^{0,{\rm diamond}} = 80 T$

Phase hcp-A3

L ^{0,hcp−A3} Si,Ti:□	=	- 302731.04 + 69.08469	Т
$L_{Si,Ti;\Box}^{1,hep-A3}$	=	25025.35 - 2.00203 T	

 $L_{\rm Si,Ti:D}^{2,\rm hcp-A3} = 83940.65 - 6.71526 T$

Phase liquid

 $L_{Si,Ti}^{0,liquid} = -255852.17 + 21.87411 T$ $L_{Si,Ti}^{1,liquid} = 25025.35 - 2.00203 T$ $L_{Si,Ti}^{2,liquid} = 83940.65 - 6.71526 T$

Table I - Invariant Reactions.

Reaction	Туре	Compositions x_{Ti}			Т / К
Liquid \rightleftharpoons diamond + Si ₂ Ti	Eutectic	.185	.000	.333	1604.3
Liquid \rightleftharpoons Si ₂ Ti + SiTi	Eutectic	.363	.333	.500	1747.4
Si ₂ Ti \rightleftharpoons Liquid	Congruent	.333	.333		1757.0
Liquid + Si ₄ Ti ₅ \rightleftharpoons SiTi	Peritectic	.396	.556	.500	1842.8
Liquid + Si ₃ Ti ₅ \rightleftharpoons Si ₄ Ti ₅	Peritectic	.509	.602	.555	2192.6
Si ₃ Ti ₅ \rightleftharpoons Liquid	Congruent	.625	.625		2394.0
Liquid \rightleftharpoons Si ₃ Ti ₅ + bcc-A2	Eutectic	.869	.644	.951	1613.0
Si ₃ Ti ₅ + bcc-A2 \rightleftharpoons SiTi ₃	Peritectoid	.641	.963	.750	1443.2
bcc-A2 \rightleftharpoons SiTi ₃ + hcp-A3	Eutectoid	.988	.750	.995	1139.4

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments	
Si-Ti	(Si)	diamond	cF8 Fd3m			
	(Ti)	Mg	hP2 P6 ₃ /mmc			
	(Ti)	w	cI2 Im3īm			
	TiSi2	TiSi2	oF24 Fddd			
	TiSi	TiSi	oP8 Pmm2	$\begin{array}{cccc} Si_1 & 2 \\ Si_2 & 2 \\ Ti_1 & 1 \\ Ti_2 & 1 \\ Ti_3 & 1 \\ Ti_4 & 1 \end{array}$		
	TiSi	FeB	oP8 Pnma		also given in [90Mas]	
	Ti ₃ Si	PTi ₃	t P32 P4 ₂ /n			
	Ti₅Si₃	Mn5Si3	hP16 P6 ₃ /mcm	Si 6 Ti ₁ 4 Ti ₂ 6		
	Ti₅Si₄	Si4Zr5	tP36 P4 ₁ 2 ₁ 2			

Table II - Crystal Structure and Phase Description.

System Si–V

Solution P	<u>hases:</u>				
Compounds: Modelling:		Liquid, bcc-A2 Si ₂ V, Si ₃ V5, Si5V6, SiV3			
Liquid		Substitutional Redlich-Kistor			
bcc-A2	:	Substitutional, Redlich-Kister			
SiV ₃	:	Sublattice model, (Si,V)(Si,V) ₃			
Si ₂ V	:	Stoichiometric $(Si)_2(V)$			
Si_3V_5	:	Stoichiometric $(Si)_3(V)_5$			
$\mathrm{Si}_5\mathrm{V}_6$:	Stoichiometric $(Si)_5(V)_6$			

Assessor and Date:

M.II. Rand, and N. Saunders 1994

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Si_2V

 $G^{\circ}(T) - 2.0 \quad H_{Si}^{\circ, \text{diamond}}(298.15 \text{ K}) - H_{V}^{\circ, \text{bcc} - A2}(298.15 \text{ K}) =$ - 143160.0 + 401.98 T - 67.8 T \cdot \lnT - 0.0075 T² + 330000.0 T⁻¹

Phase Si₃V₅

 $G^{\circ}(T) - 3.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - 5.0 \quad H_{\text{V}}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) =$ - 504000.0 + 1259.03 T - 211.04 T \cdot \lnT - 0.00748 T² + 1680000.0 T⁻¹

Phase Si₅V₆

$$G^{\circ}(T) - 5.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - 6.0 \quad H_{\text{V}}^{\circ,\text{bcc}-A^2}(298.15 \text{ K}) = -641675.0 + 1665.98 \quad T - 280.28 \quad T \cdot \ln T - 0.013915 \quad T^2 + 2310000.0 \quad T^{-1}$$

Phase SiV_3

$$\begin{array}{rcl} G^{\circ}(T) &- 4.0 & H_{\rm Si}^{\circ, \rm diamond}(298.15 \ {\rm K}) = {\rm G}({\rm Si}:{\rm Si}) = \\ & 208000.0 - 80.0 & T + 4.0 \ {\rm GHSER}_{\rm Si} \\ G^{\circ}(T) &- H_{\rm Si}^{\circ, \rm diamond}(298.15 \ {\rm K}) - 3.0 & H_{\rm V}^{\circ, \rm bec-A2}(298.15 \ {\rm K}) = {\rm G}({\rm Si}:{\rm V}) = \\ & - 216397.0 + 516.532 & T - 90.44 & T \cdot \ln T - 0.008346 & T^2 \\ & + 358000 & T^{-1} \\ G^{\circ}(T) &- 3.0 & H_{\rm Si}^{\circ, \rm diamond}(298.15 \ {\rm K}) - H_{\rm V}^{\circ, \rm bcc-A2}(298.15 \ {\rm K}) = {\rm G}({\rm V}:{\rm Si}) = \\ & 166000.0 - 60.0 & T + 3.0 \ {\rm GHSER}_{\rm Si} + {\rm GHSER}_{\rm V} \\ G^{\circ}(T) &- 4.0 & H_{\rm V}^{\circ, \rm bcc-A2}(298.15 \ {\rm K}) = {\rm G}({\rm V}:{\rm V}) = \\ & + 18000.0 + 10.0 & T + 4.0 \ {\rm GHSER}_{\rm V} \\ L_{{\rm Si}, {\rm V}:{\rm Si}}^{0.{\rm SiV}_3} &= 9794.5 - 21.8 \ T \\ L_{{\rm Si}, {\rm V}:{\rm V}}^{0.{\rm SiV}_3} &= -150000 \\ L_{{\rm V}:{\rm Si},{\rm V}}^{0.{\rm SiV}_3} &= 0.0 \end{array}$$

Phase bcc-A2

 $L_{\rm Si,V:D}^{0,\rm bcc-A2} = -164505 + 30.1 T$

 $L_{\rm Si,V;O}^{1,bcc-A2} = 37000$

 $L_{\rm Si,V:D}^{2,\rm bcc-A2} = 20000$

Phase liquid

Table I - Invariant Reactions.

Reaction	Туре	Compositions x_V			Т / К	
$\begin{array}{l} \text{Liquid} \rightleftharpoons \text{diamond} + \text{Si}_2 \text{V} \\ \text{Si}_2 \text{V} \rightleftharpoons \text{Liquid} \\ \text{Liquid} \rightleftharpoons \text{Si}_2 \text{V} + \text{Si}_5 \text{V}_6 \\ \text{Liquid} + \text{Si}_3 \text{V}_5 \rightleftharpoons \text{Si}_5 \text{V}_6 \\ \text{Si}_3 \text{V}_5 \rightleftharpoons \text{Liquid} \\ \text{Liquid} \rightleftharpoons \text{Si}_3 \text{V}_5 + \text{Si}_3 \\ \text{Si}_3 \rightleftharpoons \text{Liquid} \\ \text{Liquid} \rightleftharpoons \text{Si}_3 + \text{bcc}-\text{A2} \\ \text{Si}_5 \text{V}_6 \rightleftharpoons \text{Si}_2 \text{V} + \text{Si}_3 \text{V}_5 \end{array}$	Eutectic	.031	.000	.333	1675.1	
	Congruent	.333	.333		1952.0	
	Eutectic	.403	.333	.545	1923.9	
	Peritectic	.412	.625	.545	1943.1	
	Congruent	.625	.625		2284.0	
	Eutectic	.727	.625	.748	2190.8	
	Congruent	.750	.750		2196.0	
	Eutectic	.879	.799	.901	2081.1	
	Eutectic	.545	.333	.625	1434.7	
System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices		Comments
--------	--------------------------------	--------------------	-------------------------------	--	-----------------------	-----------------------------
Si-V	(Si)	diamond	cF8 Fd3m	м	8	
	(V)	w	c12 Im3m	м	2	
	SiV ₃	Cr ₃ Si	cP8 Pm3n	Si V	2 6	
	Si ₂ V	CrSi2	hP9 P6 ₂ 22	Si V	6 4	
	Si ₃ V5	Si ₃ W5	t132 14/mcm			
	Si ₅ V ₆	Nb₅Sn₅	ol44 Immm	$\begin{array}{c} Si_1\\ Si_2\\ Si_3\\ V_1\\ V_2\\ V_3\end{array}$	4 8 8 8 8	GesTi6 , Ibam in [91Vil]

Table II - Crystal Structure and Phase Description.

System Si-Y

Solution Phases:

201401011		Liquid, bcc-A2, hcp-A3
Compound	<u>ls:</u>	Si ₂ Y-R, Si ₂ Y-H, Si ₅ Y ₃ -R, Si ₅ Y ₃ -H, SiY,
Modelling	<u>.</u>	Si_3Y_5 , Si_4Y_5
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
Si ₂ Y-H	:	Stoichiometric, (Si) ₂ (Y)-H
Si ₂ Y-R	:	Stoichiometric, (Si) ₂ (Y)-R
Si ₅ Y ₃ -H	:	Stoichiometric (Si)5(Y)3-H
Si ₅ Y ₃ -R	:	Stoichiometric (Si)5(Y)3-R
SiY	:	Stoichiometric, (Si)(Y)
Si ₃ Y ₅	:	Stoichiometric, $(Si)_3(Y)_5$
Si₄Y₅	:	Stoichiometric, (Si) ₄ (Y) ₅

Assessor and Date:

H.L. Lukas 1991

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Si₂Y-H

 $G^{\circ}(T) - 2.0 \quad H_{Si}^{\circ,diamond}(298.15 \text{ K}) - H_{Y}^{\circ,hep-A3}(298.15 \text{ K}) = -21463.0 + 28.5 \quad T + 2.0 \quad \text{GHSER}_{Si} + \text{GHSER}_{Y}$

Phase Si₂Y-R

 $G^{\circ}(T) - 2.0 \quad H_{Si}^{\circ,\text{diamond}}(298.15 \text{ K}) - H_{Y}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = -219201.0 + 31.5 \quad T + 2.0 \quad \text{GHSER}_{Si} + \text{GHSER}_{Y}$

Phase Si₃Y₅

 $G^{\circ}(T) - 3.0 \quad H_{\rm Si}^{\circ, \rm diamond}(298.15 \text{ K}) - 5.0 \quad H_{\rm Y}^{\circ, \rm hcp-A3}(298.15 \text{ K}) = -588000.0 + 76.0 \quad T + 3.0 \quad \rm GHSER_{Si} + 5.0 \quad \rm GHSER_{Y}$

Phase Si₄Y₅

 $G^{\circ}(T) - 4.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - 5.0 \quad H_{\text{Y}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = -697950.0 + 86.72688 \quad T + 4.0 \quad \text{GHSER}_{\text{Si}} + 5.0 \quad \text{GHSER}_{\text{Y}}$

Phase SiY

 $G^{\circ}(T) - H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - H_{\text{Y}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) =$ - 160700.0 + 19.8 T + GHSER_{Si} + GHSER_Y

Phase Si₅Y₃-H

 $G^{\circ}(T) - 5.0 \quad H_{\rm Si}^{\circ, \rm diamond}(298.15 \text{ K}) - 3.0 \quad H_{\rm Y}^{\circ, \rm hcp-A3}(298.15 \text{ K}) = -601572.0 + 76.0 \quad T + 5.0 \quad \rm GHSER_{Si} + 3.0 \quad \rm GHSER_{Y}$

Phase Si₅Y₃-R

 $G^{\circ}(T) - 5.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - 3.0 \quad H_{\text{Y}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = -607356.0 + 84.0 \quad T + 5.0 \quad \text{GHSER}_{\text{Si}} + 3.0 \quad \text{GHSER}_{\text{Y}}$

Phase bcc-A2

 $L_{Si,Y:\Box}^{0,bcc-A2} = 80 T$

Phase hcp-A3

 $L_{{
m Si},{
m Y}:{
m O}}^{0,{
m hcp}-A3}$ = 80 T

Phase liquid

$L_{ m Si,Y}^{0, m liquid}$	=	-212656.12 + 25.83471	T
$L_{ m Si,Y}^{1, m liquid}$	=	13977.08 - 31.08941	Т
$L^{2, ext{liquid}}_{\mathbf{Si}, ext{Y}}$	=	62049.23 - 50.31476	Т

Table I - Invariant Reactions.

Reaction	Туре	Compositions x_Y			Т / К
Liquid \rightleftharpoons diamond + Si ₂ Y-R Si ₂ Y-R \rightleftharpoons Si ₂ Y-H Liquid + Si ₅ Y ₃ -H \rightleftharpoons Si ₂ Y-H Liquid + SiY \rightleftharpoons Si ₅ Y ₃ -H SiY \rightleftharpoons Liquid Liquid \rightleftharpoons SiY + Si ₄ Y ₅ Si ₄ Y ₅ \rightleftharpoons Liquid Liquid \rightleftharpoons Si ₄ Y ₅ + Si ₃ Y ₅ Si ₃ Y ₅ \rightleftharpoons Liquid Liquid \rightleftharpoons Si ₃ Y ₅ + hcp-A3 hcp-A3 \rightleftharpoons bcc-A2 Si ₅ Y ₃ -R \rightleftharpoons Si ₅ Y ₃ -H	Eutectic Polymorphic Peritectic Congruent Eutectic Congruent Eutectic Congruent Eutectic Allotropic Polymorphic	.122 .333 .244 .335 .500 .518 .556 .567 .625 .913 1.000 .375	.000 .333 .375 .500 .500 .556 .556 .625 .625 1.000 .375	.333 .333 .375 .556 .625 1.000	1485.3 1523.0 1793.2 1915.3 2108.0 2107.0 2114.5 2113.9 2132.0 1527.9 1752.0 723.0

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Si-Y	(Si)	C(diamond)	cF8 Fd3m	M 8	
	(Y)	Mg	hP2 P63/mmc	M 2	
	(Y)	w	c12 Im3m	M 2	
	Si ₂ Y-a	AlB ₂	hP3 P6/mmm		designated as Si ₂ Y–R
	Si ₂ Υ-β	Si ₂ Th	ol 12 Imma		designated as Si ₂ Y-H Gd ₂ Si ₃ -type in [91Vil]
	Si ₃ Y ₅	Mn ₅ Si ₃	hP16 P63/mcm	$ \begin{array}{cccc} Si & 6\\ Y_1 & 4\\ Y_2 & 6 \end{array} $	
	Si₄Y₅	Si₄Y₅	tP36 P41212	Si ₁ 8 Si ₂ 8 Zr ₁ 4 Zr ₂ 8 Zr ₃ 8	
	Si₅Y₃−α	AlB2	hP3 P6/mmm	Si 2 Y 1	designated as Si ₅ Y ₃ -R
	Si ₅ Y ₃ -β	ThSi ₂			designated as Si5Y3-H
	SiY	CrB	oC8 Cmcm	Si 4 Y 4	

Table II - Crystal Structure and Phase Description.

System Si-Zn

Solution Phases:

Liquid, diamond, hcp-Zn

Modelling:

Liquid	:	Substitutional, Redlich–Kister
diamond	:	Substitutional, Redlich-Kister
hcp-Zn	:	Substitutional, Redlich-Kister

Assessor and Date:

M. Jacobs 1993

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase diamond

 $L^{0,diamond}_{\rm Si,Zn} ~=~ 100 \ T$

Phase hcp-Zn

 $L_{Si,Zn}^{0,hcp-Zn} = 80 T$

Phase liquid

L ^{0,liquid} Si,Zn	=	7829.25
L ^{1,liquid} Si,Zn	=	- 3338.18
L ^{2,liquid} Si,Zn	=	- 891.33

Table I - Invariant Reactions.

Reaction	Туре	Compositions x_{2n}			Т / К
Liquid ≓ diamond + hcp–Zn	Degenerate	1.000	.000	1.000	692.1

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Si-Zn	(Si)	diamond	cF8 Fd3m
	(Zn)	Mg	hP2 P63/mmc

System Si-Zr

Solution	Phases:	
		Liquid
Compour	nds:	
		Si ₂ Zr, Si ₂ Zr ₃ , Si ₃ Zr ₅ , Si ₄ Zr ₅ , SiZr, SiZr ₂ , SiZr ₃
Modellin	<u>g:</u>	
Liquid	:	Substitutional, Redlich-Kister
Si ₂ Zr	:	Stoichiometric (Si) ₂ (Zr)
Si ₂ Zr ₃	:	Stoichiometric $(Si)_2(Zr)_3$
Si3Zr5	:	Stoichiometric (Si) ₃ (Zr) ₅
Si₄Zr₅	:	Stoichiometric (Si) ₄ (Zr) ₅
SiZr	:	Stoichiometric (Si)(Zr)
SiZr ₂	:	Stoichiometric, (Si)(Zr) ₂
SiZr ₃	:	Stoichiometric (Si)(Zr) ₃
Assessor	and Date:	
		C. Gueneau, C. Servant, I. Ansara, and N. Dupin
<u>Publicati</u>	on:	
		Calphad, 18, 3, 319-327 (1994)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase liquid

- $L_{\rm Si,Zr}^{0,{
 m liquid}}$ = -190000.0 + 16.8955 T
- $L_{\rm Si,Zr}^{1,{
 m liquid}} = 14.52575 \ T$

Phase Si₂Zr

 $G^{\circ}(T) - 2.0 \quad H_{Si}^{\circ, diamond}(298.15 \text{ K}) - H_{Zr}^{\circ, hcp-A3}(298.15 \text{ K}) =$ - 189332.0 + 354.937 T - 63.16867 T · lnT - 7.67745E-03 T² - 1.972048E-11 T³ + 139751.1 T⁻¹

Phase SiZr

 $G^{\circ}(T) - H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - H_{\text{Zr}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = -182203.4 + 258.514 T - 45.18631 T \cdot \ln T - 4.393865\text{E}-03 T^{2} + 5.49699\text{E}-11 T^{3} + 148517.5T^{-1}$

Phase Si₄Zr₅

 $\begin{aligned} G^{\circ}(T) &= 4.0 \quad H_{\rm Si}^{\circ, \rm diamond}(298.15 \text{ K}) = 5.0 \quad H_{Z_r}^{\circ, \rm hcp-A3}(298.15 \text{ K}) = \\ &= -880743.11 + 1433.658 \quad T - 240.256 \quad T \cdot \ln T - 0.0109481 \quad T^2 \\ &+ 6.591183E - 07 \quad T^3 + 2006425 \quad T^{-1} \end{aligned}$

Phase Si₂Zr₃

 $G^{\circ}(T) - 2.0 \quad H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - 3.0 \quad H_{\text{Zr}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) =$ $- 493990.62 + 844.448 \quad T - 140.103 \quad T \cdot \ln T - 0.003701 \quad T^2 + 1.028333E - 07 \quad T^3 + 1167755 \quad T^{-1}$

Phase Si₃Zr₅

 $G^{\circ}(T) - 3.0 \quad H_{Si}^{\circ,diamond}(298.15 \text{ K}) - 5.0 \quad H_{Zr}^{\circ,hcp-A3}(298.15 \text{ K}) =$ $- 685146.78 + 1044.78 \quad T - 187 \quad T \cdot \ln T - 0.0161754 \quad T^2 + 5.22283E - 08 \quad T^3 + 381210 \quad T^{-1}$

Phase SiZr₂

 $G^{\circ}(T) - H_{\text{Si}}^{\circ,\text{diamond}}(298.15 \text{ K}) - 2.0 \quad H_{2r}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) =$ $- 255317.83 + 411.767 \quad T - 72.43244 \quad T \cdot \ln T - 5.46177\text{E}-03 \quad T^2 - 4.0442633\text{E}-09 \quad T^3 + 306730.45 \quad T^{-1}$

Phase SiZr₃

 $\begin{aligned} G^{\circ}(T) &- H_{\rm Si}^{\circ, \rm diamond}(298.15 \text{ K}) - 3.0 \quad H_{\rm Zr}^{\circ, \rm hcp-A3}(298.15 \text{ K}) = \\ &- 270398.16 + 457.33 \quad T - 82.328 \quad T \cdot \ln T - 0.0263963 \quad T^2 \\ &+ 1.54326 \text{E} - 06 \quad T^3 - 34700 \quad T^{-1} \end{aligned}$

Table I - Invariant Reactions.

Reaction	Туре	Compositions $x_{\rm Zr}$			Т / К
Liquid \rightleftharpoons diamond + Si ₂ Zr Liquid + SiZr \rightleftharpoons Si ₂ Zr Liquid + SiZr \rightleftharpoons Si ₂ Zr Liquid + Si ₄ Zr ₅ \rightleftharpoons SiZr Liquid + Si ₄ Zr ₅ \rightleftharpoons Si ₂ Zr ₃ Liquid + Si ₂ Zr ₃ \rightleftharpoons Si ₃ Zr ₅ Liquid + Si ₂ Zr ₅ \rightleftharpoons SiZr ₂ Liquid + SiZr ₂ \rightleftharpoons SiZr ₃ Liquid \rightleftharpoons SiZr ₃ + bcc-A2 hcp-A3 \rightleftharpoons bcc-A2 Si ₃ Zr ₅ \rightleftharpoons Si ₂ Zr ₃ + SiZr ₂ Liquid \rightleftharpoons Si ₄ Zr ₅	Eutectic Peritectic Peritectic Peritectic Peritectic Peritectic Eutectic Allotropic Eutectoid Congruent	.073 .170 .463 .629 .677 .803 .886 .916 1.000 .625 .556	.000 .500 .555 .555 .600 .625 .666 .750 1.000 .600 .556	.333 .333 .500 .600 .675 .666 .750 1.000 	1634.6 1900.3 2477.0 2491.5 2455.4 2200.0 1927.4 1814.2 1139.4 2025.2 2527.0

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Si-Zr	(Si)	diamond	cF8 Fd3m	M 8	
	(Zr)	Mg	hP2 P63/mmc	M 2	
	(Zr)	w	c12 Im3m	M 4	
	SiZr-a	BFe	oP8	Si 4	transformation not considered
	SiZr−β	BCr	0C8 Cmcm	Zr 4	
	SiZr ₂	Al ₂ Cu	t 12 4/mcm	Si 8 Zr 4	
	SiZr3	PTi3	tP32 P42/n		
	Si ₂ Zr	Si2Zr	oC12 Cmcm	Si ₁ 4 Si2 4 Zr 4	
	Si2Zr3	Si ₂ U ₃	tP10 P4/mbm		
	Si ₃ Zr5	Mn ₅ Si ₃	hP16 P63/mcm	Si 6 Zr ₁ 4 Zr ₂ 6	
	Si₄Zr5−α	Si₄Zr₅	tP36 P41212	$\begin{array}{cccc} Si_1 & 8 \\ Si_2 & 8 \\ Zr_1 & 4 \\ Zr_2 & 8 \\ Zr_3 & 8 \end{array}$	transformation not considered
	Si₄Zr5-β	Si4Zr5			

Table II - Crystal Structure and Phase Description.

System Sn-Ti

Solution Phases:		Liquid, bcc-A2, hcp-A3, bct-A5			
Compoun	ds:	ር _ጉ ጥ: ር _ጉ ጥ: ር _ጉ ጥ: ር _ጉ ጥ:			
Modelling:		$5n_5 1i_6$, $5n_3 1i_5$, $5n 1i_2$, $5n 1i_3$			
Liquid	:	Substitutional, Redlich-Kister			
bcc-A2	:	Substitutional, Redlich-Kister			
bct-A5	:	Substitutional, Redlich-Kister			
hcp-A3	:	Substitutional, Redlich-Kister			
SnTi ₃	:	Sublattice model: (Sn,Ti)(Sn,Ti)3			
Sn5Ti6	:	Stoichiometric, (Sn) ₅ (Ti) ₆			
Sn ₃ Ti ₅	:	Stoichiometric, (Sn) ₃ (Ti) ₅			
SnTi ₂	:	Stoichiometric, (Sn)(Ti) ₂			

Assessor and Date:

F. Hayes, 1992

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase bcc-A2

$L^{0,\mathrm{bcc}-A2}_{\mathrm{Sn,Ti:D}}$	=	-115000.00 + 6.77583 T
$L^{1,\mathrm{bcc}-A2}_{\mathrm{Sn},\mathrm{Ti:D}}$	=	45000.00 + 1.58018 T
		Phase bct-A5
L ^{0,bct-A5} Sn,Ti	=	50000.0
		Phase hcp-A3
L ^{0,hcp-A3}	=	-111502.08 + 1.8068 T

 $L_{\text{Sn,Ti:D}}^{1,\text{hcp}-A3} = 43871.41 + 2.08175 T$

.

Phase liquid

 $L_{Sn,Ti}^{0,\text{liquid}} = -90206.13 - 5.55089 T$ $L_{Sn,Ti}^{1,\text{liquid}} = 44395.59 - 6.09746 T$

Phase SnTi₃

$$\begin{array}{rcl} G^{\circ}(T)-4.0 & H_{\rm Sn}^{\circ,{\rm bct}-A5}(298.15~{\rm K})={\rm G}({\rm Sn}:{\rm Sn})=\\ & 4.0~{\rm GHSER}_{{\rm Sn}}\\ G^{\circ}(T)-H_{{\rm Sn}}^{\circ,{\rm bct}-A5}(298.15~{\rm K})-3.0 & H_{{\rm Ti}}^{\circ,{\rm hcp}-A3}(298.15~{\rm K})={\rm G}({\rm Sn}:{\rm Ti})=\\ & -193466.8+35.74052~T+{\rm GLIQ}_{{\rm Sn}}+3.0~{\rm GLIQ}_{{\rm Ti}}\\ G^{\circ}(T)-3.0 & H_{{\rm Sn}}^{\circ,{\rm bct}-A5}(298.15~{\rm K})-H_{{\rm Ti}}^{\circ,{\rm hcp}-A3}(298.15~{\rm K})={\rm G}({\rm Ti}:{\rm Sn})=\\ & 300000-200~T+3.0~{\rm GLIQ}_{{\rm Sn}}+{\rm GLIQ}_{{\rm TI}}\\ G^{\circ}(T)-4.0 & H_{{\rm Ti}}^{\circ,{\rm hcp}-A3}(298.15~{\rm K})={\rm G}({\rm Ti}:{\rm Ti})=\\ & 4.0~{\rm GHSER}_{{\rm Ti}}\\ L_{{\rm Sn}:{\rm Sn},{\rm Ti}}^{0,{\rm Sn}{\rm Ti}_3}=& 400000-40.0~T\\ L_{{\rm Sn},{\rm Ti};{\rm Sn}}^{0,{\rm Sn}{\rm Ti}_3}=& 400000\\ L_{{\rm Sn},{\rm Ti};{\rm Sn}}^{0,{\rm Sn}{\rm Ti}_3}=& 200000-108.000~T\\ \end{array}$$

Phase SnTi₂

 $G^{\circ}(T) - H_{Sn}^{\circ, bct-A5}(298.15 \text{ K}) - 2.0 \quad H_{Ti}^{\circ, hcp-A3}(298.15 \text{ K}) = -152700.00 + 26.80539 \quad T + \text{GLIQ}_{Sn} + 2.0 \quad \text{GLIQ}_{Ti}$

Phase Sn₃Ti₅

 $G^{\circ}(T) - 3.0 \quad H_{Sn}^{\circ, bct-A5}(298.15 \text{ K}) - 5.0 \quad H_{Ti}^{\circ, hcp-A3}(298.15 \text{ K}) = -398000.00 + 64.8 \quad T + 3.0 \quad \text{GLIQ}_{Sn} + 5.0 \quad \text{GLIQ}_{Ti}$

Phase Sn₅Ti₆

 $G^{\circ}(T) - 5.0 \quad H_{Sn}^{\circ, bct-A5}(298.15 \text{ K}) - 6.0 \quad H_{Ti}^{\circ, hcp-A3}(298.15 \text{ K}) = -525800.00 + 77.0 \quad T + 5.0 \quad \text{GLIQ}_{Sn} + 6.0 \quad \text{GLIQ}_{Ti}$

Table I – Invariant Reactions.

Reaction	Туре	Compositions \boldsymbol{x}_{Ti}			Т / К
$bcc-A2 + SnTi_3 \rightleftharpoons hcp-A3$	Peritectic	.913 .	750	.912	1163.3
Liquid $\rightleftharpoons SnTi_3 + bcc-A2$	Eutectic	.828 .	777	.846	1879.8
SnTi_3 \rightleftharpoons Liquid	Congruent	.750 .	750		1947.0
Liquid + SnTi_3 \rightleftharpoons SnTi_2	Peritectic	.659 .	750	.667	1835.9
Liquid + SnTi_2 \rightleftharpoons + Sn_3Ti_5	Peritectic	.589 .	667	.625	1774.7
Liquid \rightleftharpoons Sn_5Ti_6 + Sn_3Ti_5	Eutectic	.561 .	545	.625	1746.9
Sn_5Ti_6 \rightleftharpoons Liquid	Congruent	.545 .	545		1750.0
Liquid \rightleftharpoons bct-A5 + Sn_5Ti_6	Degenerate	.001 .	000	.545	504.8

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Sn-Ti	(Sn)	β-Sn	t14 14 ₁ /amd	M 2	
	(Ti)	Mg	hP2 P63/mmc	M 2	
	(Ti)	w	c12 Im3m	M 2	
	Sn5Ti6-α	Nb_6Sn_5	o144 Immm3		transformation not considered
	Sn₅Ti ₆ −β		hP22 P63/mmc	Sn 3 Ti 6	
	Sn ₃ Ti ₅	Mn5Si3	hP16 P63/mcm	Sn 6 Ti 4	
	SnTi₂	InNi2	hP6 P6 ₃ /mmc		
	SnTi3	Ni ₃ Sn	hP8 P63/mmc	Sn 2 Ti 6 Si1 4 Si2 8	

Table II - Crystal Structure and Phase Description.

System Sn-Zn

Solution Phases:

(stable)	Liquid, bct-A5, hcp-Zn
(metastable)	bcc-A2

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
bct-A5	:	Substitutional, Redlich-Kister
hcp–Zn	:	Substitutional, Redlich-Kister

Assessor and Date:

Dublications	S. Fries, and H.L. Lukas
Publication:	"Cost507 New Light Alloys", Leuven Proceedings, Ed. G. Effenberg (1991)

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase bct-A5

 $L^{0,{\rm bct}-A5}_{{\rm Sn},{\rm Zn}:\Box} = 6514.76 + 25.70957 \ T$

Phase bcc-A2

 $L_{\mathrm{Sn,Zn:Cl}}^{0,\mathrm{bcc}-A2} = 6514.76 + 25.70957 T$

Phase hcp-Zn

 $L_{\text{Sn,Zn:O}}^{0,\text{hcp}-\text{Zn}} = 33433.94 - 11.14466 T$

Phase liquid

 $L_{\text{Sn,Zn}}^{0,\text{liquid}} = 19314.64 - 75.89939 T + 8.751396 T \cdot \ln T$ $L_{\text{Sn,Zn}}^{1,\text{liquid}} = -5696.28 + 4.20198 T$ $L_{\text{Sn,Zn}}^{2,\text{liquid}} = 1037.22 + 0.98362 T$

Table I – Invariant Reactions.

Reaction	Туре	Compositions x_{2n}		Т / К	
Liquid \rightleftharpoons bct-A5 + hcp-Zn	Eutectic	0.135	.006	1.000	471.7

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Sn-Zn	(Sn)	β−Sn	tI4 I4 ₁ /amd
	(Zn)	Mg	hP2 P63/mmc

System Sn - Zr

Solution	<u>Phases</u>	Liquid, bcc-A2, bct-A5, hcp-A3			
Compounds:		SnZr4, Sn3Zr5, Sn2Zr			
Modellin	<u>g:</u>				
Liquid	:	Substitutional, Redlich–Kister			
bcc–A2	:	Substitutional, Redlich–Kister			
hcp-A3	:	Substitutional, Redlich-Kister			
SnZr₄	:	Stoichiometric, (Sn)(Zr)₄			
Sn ₃ Zr ₅	:	Stoichiometric, $(Sn)_3(Zr)_5$			
Sn_2Zr	:	Stoichiometric, (Sn) ₂ (Zr)			

Asessor and date:

J. Korb, and K. Hack, GTT, Germany (1996).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase liquid

$L_{ m Sn,Zr}^{0, m liquid}$	=	- 45520 - 95.46 T
$L_{ m Sn,Zr}^{ m 1,Liquid}$	=	-80000 + 82.115 T
$L_{ m Sn,Zr}^{2, m Liquid}$	=	-120000 + 80.0273 T
		Phase bcc-A2
$L^{0,\mathrm{bcc}-A2}_{\mathrm{Sn,Zr:}\square}$	=	-101200 - 71.13 T
L ^{1,bcc−A2} Sn,Zr:□	=	55000
$L_{\operatorname{Sn,Zr}:\Box}^{2,\operatorname{bcc}-A2}$	=	26102.3

Phase hcp-A3

 $L_{\text{Sn,Zr:}\Box}^{0,\text{hcp}-A3} = -160000 - 31 T$

 $L_{\text{Sn,Zr:D}}^{1,\text{hcp}-A3} = 151800$

 $L^{2,{
m hcp}-A3}_{{
m Sn},{
m Zr};\Box}$ = 129900

Phase SnZr₄

 $G^{\circ}(T) - H_{\text{Sn}}^{\circ,\text{bct}-A5}(298.15 \text{ K}) - 4.0 \quad H_{\text{Zr}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = -270456.8 + 602.125 \quad T - 123.0 \quad T \cdot \ln T - 0.00883 \quad T^2$

Phase Sn₃Zr₅

 $G^{\circ}(T) - 3.0 \ H_{\text{Sn}}^{\circ,\text{bct}-A5}(298.15 \text{ K}) - 5.0 \ H_{\text{Zr}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = -769380 + 1131.86 \ T - 217.118 \ T \cdot \ln T - 0.02404 \ T^2 + 1648000 \ T^{-1}$

Phase Sn₂Zr

 $G^{\circ}(T) - 2.0 \quad H_{Sn}^{\circ, bct-A5}(298.15 \text{ K}) - H_{Zr}^{\circ, hcp-A3}(298.15 \text{ K}) = -267104.8 + 492.1 \quad T - 86.404 \quad T \cdot \ln T - 0.002226 \quad T^2 + 618000 \quad T^{-1}$

Reaction	Туре	Compositions $x_{\rm Zr}$			Т / К
Liquid \rightleftharpoons bcc-A2 + Sn ₃ Zr ₅ bcc-A2 + Sn ₃ Zr ₅ \rightleftharpoons SnZr ₄ bcc-A2 + SnZr ₄ \rightleftharpoons hcp-A3 Liquid + Sn ₃ Zr ₅ \rightleftharpoons Sn ₂ Zr Liquid \rightleftharpoons Sn ₂ Zr + bct-A5 Liquid \rightleftharpoons Sn ₃ Zr ₅	Eutectic Peritectoid Peritectoid Feritectoid Eutectic Congruent	.892 .891 .968 .189 .0056 .625	.844 .625 .800 .625 .333 .625	.625 .800 .941 .333 .000	1868.5 1595.5 1254.0 1433.3 502.0 2245.0

Table I - Invariant Reactions.

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub lattic) Ces
Sn-Zr	(Sn)	β−Sn	t]4]41/amd	м	2
	(Zr)	Mg	hP2 P63/mmc	м	2
	(Zr)	w	c12 Im3m	М	2
	SnZr₄	Cr ₃ Si	cP8 Pm3n		
	Sn ₃ Zr ₅	Mn5Si3	hP16 P63/mcm		
	Sn₂Zr	SiTi₂	oF24 Fddd		- 1

System Ta–Ti

Solution Phases: (stable)

(stable)		Liquid, bcc-A2, hcp-A3
(metastable)		bcc- $B2$, fcc- $A1$
Compounds: (metastable)		AlM- $D0_{10}$ AlM- $D0_{20}$ AlTi- $L1_{2}$
(1110100000)		2019, 2022, 210
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	see below
bcc-B2	:	Sublattice model, (Ta,Ti)0.5(Ta,Ti)0.5(□)3
		The thermodynamic description of the bcc-B2 takes
		into account the ordering reaction $bcc-A2 \rightleftharpoons bcc-B2$.
		Two descriptions are given: one using equations
		23 and 27, the other using equations 23 and 28.
		For the latter, the parameters are given in a frame.
fcc-A1	;	Substitutional, Redlich–Kister
hcp-A3	:	Substitutional, Redlich-Kister
AlM-D019	:	Sublattice model, (Ta,Ti)(Ta,Ti) ₃
AlM- <i>D</i> 0 ₂₂	:	Sublattice model, (Ti) ₃ (Ta,Ti)
AlTi-L10	:	Sublattice model, (Ta,Ti)(Ta,Ti)
	:	

Assessor and Date:

N. Saunders, 1997.

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase fcc-A1

 $L_{\text{Ta},\text{Ti:O}}^{0,\text{fcc}-A1} = 8500$

Phase hcp-A3

 $L_{\text{Ta,Ti:O}}^{0,\text{hcp}-A3} = 8500$

Phase liquid

 $L_{Ta,Ti}^{0,liquid} = 1000$ $L_{Ta,Ti}^{1,liquid} = -7000$

Phase AlM-D019

$$\begin{array}{rcl} G^{\circ}(T) & - 4.0 & H_{T_{a}}^{\circ,bcc-A2}(298.15 \text{ K}) = \text{G}(\text{Ta:Ta}) = 4.0 & \text{GHCP}_{\text{Ta}} \\ G^{\circ}(T) & - 3.0 & H_{\text{Ta}}^{\circ,bcc-A2}(298.15 \text{ K}) - H_{\text{Ti}}^{\circ,hcp-A3}(298.15 \text{ K}) = \text{G}(\text{Ta:Ti}) = \\ & 6376 + 3.0 & \text{GHCP}_{\text{Ta}} + \text{GHSER}_{\text{Ti}} \\ G^{\circ}(T) & - H_{\text{Ta}}^{\circ,bcc-A2}(298.15 \text{ K}) - 3.0 & H_{\text{Ti}}^{\circ,hcp-A3}(298.15 \text{ K}) = \text{G}(\text{Ti:Ta}) = \\ & 6376 + \text{GHCP}_{\text{Ta}} + 3.0 & \text{GHSER}_{\text{Ti}} \\ G^{\circ}(T) & - 4.0 & H_{\text{Ti}}^{\circ,hcp-A3}(298.15 \text{ K}) = \text{G}(\text{Ti:Ti}) = 4.0 + 4.0 & \text{GHSER}_{\text{Ti}} \\ L_{\text{Ta,Ti:Ta}}^{\circ,AIM-D0_{19}} & = L_{\text{Ta,Ti:Ti}}^{0,AIM-D0_{19}} = 19128 \\ \end{array}$$

Phase AlM-D022

$$\begin{array}{l} G^{\circ}(T) - H_{Ta}^{\circ, bcc-A2}(298.15 \text{ K}) - 3.0 \quad H_{Ti}^{\circ, hcp-A3}(298.15 \text{ K}) = \text{G}(\text{Ti:Ta}) = \\ & \text{GFCC}_{Ta} + 3.0 \quad \text{GFCC}_{\text{Ti}} \\ G^{\circ}(T) - 4.0 \quad H_{Ti}^{\circ, hcp-A3}(298.15 \text{ K}) = \text{G}(\text{Ti:Ti}) = 4.0 \quad \text{GFCC}_{\text{Ti}} \end{array}$$

Phase AlTi-L10

Phase bcc-A2

 $L_{Ta,Ti:\Box}^{0,bcc-A2} = 12000$ $L_{Ta,Ti:\Box}^{1,bcc-A2} = -2500$

Phase bcc-B2

Phase bcc-B2

$$G_{\text{Ti:Ta:D}}^{\bullet} = 2500$$

 $G^{\circ}(T) - H_{\text{Ta}}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) = G(\text{Ta:Ta:D}) = 0.0$
 $G^{\circ}(T) - 0.5 H_{\text{Ta}}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) - 0.5 H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = G(\text{Ta:Ti:D}) = 2.0 G_{\text{Ti:Ta:D}}^{\bullet}$
 $G^{\circ}(T) - 0.5 H_{\text{Ta}}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) - 0.5 H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = G(\text{Ti:Ta:D}) = 2.0 G_{\text{Ti:Ta:D}}^{\bullet}$
 $G^{\circ}(T) - H_{\text{Ta}}^{\circ,\text{hcp}A3}(298.15 \text{ K}) = G(\text{Ti:Ti:D}) = 0.0$
Phase bcc-A2
 $L_{\text{Ta,Ti:D}}^{0,\text{bcc}-A2} = 12000$

Table I - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Ta-Ti	(V)	w	c12 Im3m
	(Ti)	Mg	hP2 P63/mmc
	(Ti)	w	c12 Im3ิm

$\mathbf{System} \ \mathbf{Ti} - \mathbf{V}$

Solution Phases:

Liquid, bcc-A2, hcp-A3

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich–Kister
	:	

Assessor and Date:

N. Saunders (1990)

Thermodynamic properties of the solution phases $(J.mol^{-1})$

Phase bcc-A2

L ^{0,bcc−A2} Ti,V:□	=	10500 - 1.5	Т
$L^{1,\text{bcc}-A2}_{\text{Ti},\text{V:D}}$	=	2000	
$L^{2,\text{bcc}-A2}_{\text{Ti},\text{V}:D}$	=	1000	

Phase hcp-A3

 $L_{\text{Ti},\text{V}:\square}^{0,\text{hcp}-A3} = 20000$

Phase liquid

 $L_{\text{Ti},V}^{0,\text{liquid}} = 1400$ $L_{\text{Ti},V}^{1,\text{liquid}} = 4100$

Table I – Invariant Reactions.

Reaction	Туре	Comp	ositions	xv	Т / К
bcc-A2 ≓ Liquid	Congruent	0.333	0.333		1881.0

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Ti-V	(Ti)	Mg	hP2 P63/mmc
	(Ti)	w	c12 Im3m
	(V)	w	c12 Im3m

System Ti–W

Solution Phases:

(stable)			Liquid, bcc-A2, hcp-A3
(metastable)	`	:	bcc- $B2$, fcc- $A1$

Compounds:

 $(metastable) : AIM-D0_{19}, AlTi-L1_0$

Modelling:

Liquid	:	Substitutional, Redlich–Kister
bcc-A2	:	see above
bcc-B2	:	Sublattice model, (Ti,W)0.5(Ti,W)0.5(□)3
		The thermodynamic description of the bcc-B2 takes
		into account the ordering reaction $bcc-A2 \rightleftharpoons bcc-B2$.
		Two descriptions are given: one using equations
		23 and 27, the other using equations 23 and 28.
		For the latter, the parameters are given in a frame.
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
$AlM - D0_{19}$:	Sublattice model, (Ti,W)(Ti,W) ₃
AlTi- $L1_0$:	Sublattice model, (Ti,W)(Ti,W)
	:	

Assessor and Date:

N. Saunders, 1997.

Thermodynamic properties of the solution phases (J.mol⁻¹)

Phase fcc-A1

 $L_{Ti,W:\Box}^{0,fcc-A1} = 33825$

Phase hcp-A3

 $L_{\rm Ti,W:D}^{0,\rm hcp-A3} = 35774$

Phase liquid

.

 $L_{\mathrm{Ti},\mathrm{W}}^{0,\mathrm{liquid}} = 28392$ $L_{\rm Ti,W}^{1,{\rm liquid}} = -4282$ Phase AlM- $D0_{19}$ $G^{\circ}(T) - 4.0 \quad H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = \text{G}(\text{Ti:Ti}) = 4.0 + 4.0 \quad \text{GHSER}_{\text{Ti}}$ $G^{\circ}(T) - 3.0 \quad H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) - H_{W}^{\circ,\text{hcc}-A2}(298.15 \text{ K}) = \text{G}(\text{Ti:W}) =$ 26832 + 3.0 GHCP_w + GHSER_{Ti} $G^{\circ}(T) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) - 3.0 \quad H_{\text{W}}^{\circ,\text{hcc}-A2}(298.15 \text{ K}) = \text{G}(\text{W}:\text{Ti}) =$ $26832 + \mathrm{GHCP}_W + 3.0 \ \mathrm{GHSER}_{\mathrm{Ti}}$ $G^{\circ}(T) - 4.0 \quad H^{\circ, bcc - A2}_{W}(298.15 \text{ K}) = G(W:W) = 4.0 \quad \text{GHCP}_{W}$ $L^{0, AIM - D0_{19}}_{Ti, W:Ti} = L^{0, AIM - D0_{19}}_{Ti, W:Wi} = 80492$ $L_{\text{Ti:Ti,W}}^{0,\text{AIM}-D0_{19}} = L_{\text{W:Ti,W}}^{0,\text{AIM}-D0_{19}}$ = 8944 Phase AlTi $-L1_0$ $G^{\circ}(T) - 4.0 \quad H_{T_i}^{\circ,hep-A3}(298.15 \text{ K}) = G(T_i:T_i) = 2.0 \quad GFCC_{T_i}$ $G^{\circ}(T) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) - H_{\text{W}}^{\circ,\text{hcc}-A2}(298.15 \text{ K}) = G(\text{Ti:W}) =$ $4250 + GFCC_{Ti} + GFCC_W$ $G^{\circ}(T) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) - H_{\text{W}}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) = G(\text{W:Ti}) =$ $4250 + GFCC_{Ti} + GFCC_{W}$ $G^{\circ}(T) - 2.0 \quad H_{W}^{\circ,bcc-A^{2}}(298.15 \text{ K}) = G(W:W) = 2.0 \quad GFCC_{W}$ $L_{\text{Ti},\text{W}:\text{Ti}}^{0,\text{A}|\text{Ti}-L_{10}} = L_{\text{Ti}:\text{Ti},\text{W}}^{0,\text{A}|\text{Ti}-L_{10}} = 16914$ $L_{\text{Ti},\text{W}:\text{W}}^{0,\text{AlTi}-L_{10}} = L_{\text{W}:\text{Ti},\text{W}}^{0,\text{AlTi}-L_{10}} = 16914$ Phase bcc-A2 $L_{\text{Ti},\text{W:D}}^{0,\text{bcc}-A2} = 3957 + 13.033 \ T$ $L_{\text{Ti,W:O}}^{1,\text{bcc}-A2} = 10640-4.464 \ T$ Phase bcc-B2 $G^{\bullet}_{\mathrm{Ti:W:D}} = \mathbf{0}$

 $\begin{array}{l} G^{\bullet}(T) = 0 \\ G^{\circ}(T) = H^{\circ, hcp-A3}_{Ti}(298.15 \text{ K}) = G(\text{Ti:Ti:}\Box) = 0.0 \\ G^{\circ}(T) = 0.5 \\ H^{\circ, hcp-A3}_{Ti}(298.15 \text{ K}) = 0.5 \\ H^{\circ, bcc-A2}_{W}(298.15 \text{ K}) = G(\text{Ti:W:}\Box = G^{\bullet}_{\text{Ti:W:}\Box} \\ G^{\circ}(T) = 0.5 \\ H^{\circ, hcp-A3}_{Ti}(298.15 \text{ K}) = 0.5 \\ H^{\circ, bcc-A2}_{W}(298.15 \text{ K}) = G(\text{W:Ti:}\Box) = G^{\bullet}_{\text{Ti:W:}\Box} \\ G^{\circ}(T) = H^{\circ, hcp-A3}_{W}(298.15 \text{ K}) = G(\text{W:W:}\Box) = 0.0 \end{array}$

Phase bcc-B2

$$G_{\text{Ti:W:D}}^{\bullet} = 0$$

 $G^{\circ}(T) - H_{W}^{\circ, bcc-A2}(298.15 \text{ K}) = G(W:W:\Box) = 0.0$
 $G^{\circ}(T) - 0.5 H_{W}^{\circ, bcc-A2}(298.15 \text{ K}) - 0.5 H_{\text{Ti}}^{\circ, hcp-A3}(298.15 \text{ K}) = G(W:Ti:\Box) = 2.0 G_{\text{Ti:W:D}}^{\bullet}$
 $G^{\circ}(T) - 0.5 H_{W}^{\circ, bcc-A2}(298.15 \text{ K}) - 0.5 H_{\text{Ti}}^{\circ, hcp-A3}(298.15 \text{ K}) = G(Ti:W:\Box) = 2.0 G_{\text{Ti:W:D}}^{\bullet}$
 $G^{\circ}(T) - H_{\text{Ti}}^{\circ, hcpA3}(298.15 \text{ K}) = G(Ti:Ti:\Box) = 0.0$
 $H_{\text{Ti}}^{\circ, hcpA3}(298.15 \text{ K}) = G(Ti:Ti:\Box) = 0.0$

.

Table I – Invariant Reactions.

Reaction	Туре	Compositions x_{Wi}	Т / К
hcp-A3 bcc-A2' \rightleftharpoons bcc-A2"	Monotectoid	.002 .645 .095	1019.5

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group
Ti-W	(V)	w	c12 Im3m
	(Ti)	Mg	hP2 P63/mmc
	(Ti)	w	c12 1m3m

System V-Zr

Solution Phas	<u>ses:</u>	Liquid, bcc-A2, hcp-A3
Compound:		V ₂ Zr
Modelling:		
bcc-A2	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
Liquid	:	Substitutional, Redlich-Kister
V ₂ Zr	:	Sublattice model, $(V)_2(Zr)$

Assessor and Date:

J. Korb, and K. Hack, GTT, Germany (1995).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase V_2Zr

 $G^{\circ}(T) - 2.0 \quad H_{V}^{\circ, bcc-A2}(298.15 \text{ K}) - H_{Zr}^{\circ, hcp-A3}(298.15 \text{ K}) = -63100 + 26.83 \quad T + 2.0 \quad \text{GLIQ}_{V} + \text{GLIQ}_{Zr}$

Phase liquid

$L_{V,Zr}^{0,\text{liquid}} =$		23986	+	19.338	Т
--------------------------------	--	-------	---	--------	---

 $L_{\rm V,Zr}^{1,{\rm liquid}} = -2058.35 + 3.289 T$

Phase bcc-A2

 $L^{0,{\rm bcc-A2}}_{\rm V,Zr:\Box} \ = \ 21876 \ + \ 7.76081 \ T$

 $L_{V,Zr:\square}^{1,bcc-A2} = 8995.72 - 0.8968 T$

Phase hcp-A3

 $L_{V,Zr:\Box}^{0,hcp-A3} = 29007 - 7.2944 T$

Table I - Invariant Reactions.

Reaction	Туре	Compositions x_{Zr}	Т / К
bcc-A2 +Liquid $\rightleftharpoons V_2Zr$	Peritectic	.046 .494 .333	1552.7
Liquid $\rightleftharpoons V_2Zr$ + bcc-A2	Eutectic	.548 .333 .839	1510.2
bcc-A2 $\rightleftharpoons V_2Zr$ + hcp-A3	Eutectoid	.927 .333 .959	1062.9

Table II - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Su latt	b- ices	Comments
V–Zr	(V)	w	c12 Im3m	м	2	
	(Zr)	Mg	hP2 P63/mmc	М	2	
	(Zr)	w	c12 Im3m	М	4	
	V ₂ Zr	Cu ₂ Mg	cF24 Fd3m	M ₁ M ₂	8 16	Laves-C15

TERNARY SYSTEMS

System Al–C–Si

Ternary So	lution Phases:					
Ternary Compounds: Quasi–binary phase:		Liquid, fcc-A1				
		Al ₄ SiC ₄ , Al ₈ SiC ₇ (Al,Si) ₄ C ₃				
Modelling:						
Liquid	:	Substitutional, Redlich-Kister				
fcc-A1	:	Substitutional, Redlich-Kister				
Al_4C_3	:	Quasi–binary, (Al,Si)4(C)3				
Al ₄ SiC ₄	:	$(Al)_4(Si)_1(C)_4$				
Al ₈ SiC ₇ :		$(A1)_8(Si)_1(C)_7$				
Comments:						
		Liquid and fcc-A1 phases assumed to be ideal Al and Si behave ideally in the Al_4C_3 phase No ternary compounds				
Assessor ar	<u>nd Date:</u>					
Dublication		J. Gröbner, H. L. Lukas, and F. Aldinger.				
<u>F ublication</u>	<u>Li</u>	Calphad 20 , 2 (1996) 247-254.				

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Al₄SiC₄

 $\begin{aligned} G^{\circ}(T) - 4.0 \ H_{\rm Al}^{\circ, \rm fcc-A1}(298.15 \ {\rm K}) - 4.0 \ H_{\rm C}^{\circ, \rm graphite}(298.15 \ {\rm K}) - H_{\rm Si}^{\circ, \rm diamond}(298.15 \ {\rm K}) = \\ & - 380700.0 + 1233 \ T - 193.902723 \ T \cdot \ln T - 0.017517573 \ T^2 \\ & + 3240000 \ T^{-1} + 9E{-}07 \ T^3 \end{aligned}$

Phase Al₈SiC₇

$$G^{\circ}(T) - 8.0 \quad H_{Al}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) - 7.0 \quad H_{C}^{\circ,\text{graphite}}(298.15 \text{ K}) - H_{Si}^{\circ,\text{diamond}}(298.15 \text{ K}) = - 686400.0 + 2212.8 \quad T - 344.434112 \quad T \cdot \ln T - 0.04544832 \quad T^{2} + 5680000 \quad T^{-1} + 3.2\text{E}-06 \quad T^{3}$$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices
Al-C-Si	(Al)	Cu	cF4 Fm3m	M 4
	(C)	graphite		
	(Si)	diamond	cF8 Fd3m	
	Al₄SiC₄	Al_5C_3N	hP18 P63mc	
	Al ₈ SiC7		hP16	
	(Al,Si)₄C₃	Al₄C₃	hP7 R3m	

.

Table I - Crystal Structure and Phase Description.
System Al–Cu–Li

Ternary Soluti	on Phases:	
		Liquid, fcc-A1, bcc-A2
Ternary Compounds:		AlCuLi-R, AlCuLi-T1, AlCuLi-T2, AlCuLi-TB
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
AlCuLi-R	:	Stoichiometric, (Al) _{0.55} (Cu) _{0.117} (Li) _{0.333}
AlCuLi-T1	:	Stoichiometric, $(A1)_{0.5}(Cu)_{0.25}(Li)_{0.25}$
AlCuLi-T2	:	Stoichiometric, (Al) _{0.57} (Cu) _{0.11} (Li) _{0.32}
AlCuLi-TB	:	Stoichiometric, (Al) _{0.60} (Cu) _{0.32} (Li) _{0.08}
Assessor and I	Date:	
		N. Saunders, 1994.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase AlCuLi-R

 $\begin{array}{l} G^{\circ}(T) - 0.55 \quad H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15 \ {\rm K}) - 0.117 \quad H_{\rm Cu}^{\circ,{\rm fcc}-A1}(298.15 \ {\rm K}) \\ - 0.333 \quad H_{\rm Li}^{\circ,{\rm bcc}-A2}(298.15 \ {\rm K}) = {\rm G}({\rm Al:Cu:Li}) = \\ \quad - 20983.0 + 6.0 \quad T + 0.55 \quad {\rm GHSER}_{\rm Al} + 0.117 \quad {\rm GHSER}_{\rm Cu} \\ \quad + 0.333 \quad {\rm GHSER}_{\rm Li} \end{array}$

Phase AlCuLi-T1

 $\begin{array}{l} G^{\circ}(T) - 0.5 \quad H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15~{\rm K}) - 0.25 \quad H_{\rm Cu}^{\circ,{\rm fcc}-A1}(298.15~{\rm K}) \\ - 0.25 \quad H_{\rm Li}^{\circ,{\rm bcc}-A2}(298.15~{\rm K}) = {\rm G}({\rm Al:Cu:Li}) = \\ \quad - 24560.0 + 6.0 \quad T + 0.25 \quad {\rm GHSER_{A1}} + 0.25 \quad {\rm GHSER_{Cu}} \\ \quad + 0.25 \quad {\rm GHSER_{Li}} \end{array}$

Phase AlCuLi-T2

Phase AlCuLi-TB

$$\begin{array}{l} G^{\circ}(T) - 0.60 \quad H_{AI}^{\circ, fcc-A1}(298.15 \text{ K}) - 0.32 \quad H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) \\ - 0.08 \quad H_{Li}^{\circ, bcc-A2}(298.15 \text{ K}) \quad = \text{G}(\text{Al:Cu:Li}) = \\ \quad - 19918.0 + 4.0 \quad T + 0.60 \quad \text{GHSER}_{AI} + 0.32 \quad \text{GHSER}_{Cu} \\ \quad + 0.08 \quad \text{GHSER}_{Li} \end{array}$$

	· · · · · · · · · · · · · · · · · · ·					
System	Phase	Prototype	Pearson Symbol Space Group	Sul latti	b– ices	Comments
Al-Cu-Li	(Al)	Cu	cF4 Fm3m	м	4	
	(Cu)	Cu	cF4	м	4	
	(Li)	w	c12 Im3m	м	2	
	Al _{7.5} Cu4Li	CaF ₂	cF12 Fm3 m			AlCuLi-TB
	Al2CuLi	Al ₂ CuLi	hP12 P6/mmm			AlCuLi-T1
	Al ₆ CuLi ₃					AlCuLi-T2 quasicrystal
	Al5CuLi3	Mg ₂₃ (Zn,Al ₄₉	c/162 Im3			AlCuLi-TR

System Al–Cu–Mg

Ternary Sol	lution	Phases:
-------------	--------	---------

Liquid, fcc-A1, hcp-A3

Ternary Compounds:

Laves–C14, Laves–C15, Laves–C36, Q–Phase, S-Phase, τ , V–Phase

Modelling:

Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
Laves- $C14$:	Sublattice model, (Al,Cu,Mg)(Al,CuMg)2
Laves- $C15$:	Sublattice model, (Al,Cu,Mg)(Al,Cu,Mg)2
Laves- $C36$:	Sublattice model, (Al,Cu,Mg)(Al,Cu,Mg) ₂
au	:	Sublattice model, (Mg) ₂₆ (Al, Mg) ₆ (Al,Cu,Mg) ₄₈ (Al)
Q-Phase	:	Stoichiometric, $(Al)_7(Cu)_3(Mg)_6$
S-Phase	:	Stoichiometric, (Al) ₂ (Cu)(Mg)
V-Phase	:	Stoichiometric, $(Al)_5(Cu)_6(Mg)_2$

Assessor and Date:

T. Bühler, RWTH, Germany, (1997).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Q-Phase

$$\begin{array}{rcl} G^{\circ}(T) & -7.0 & H_{Al}^{\circ, fcc-Al}(298.15 \text{ K}) & -3.0 & H_{Cu}^{\circ, fcc-Al}(298.15 \text{ K}) \\ -6.0 & H_{Mg}^{\circ, hcp-A3}(298.15 \text{ K}) & = \text{G}(\text{Al:Cu:Mg}) = \\ & & -221500 + 18.46 & T + 7.0 & \text{GHSER}_{Al} + 3.0 & \text{GHSER}_{Cu} \\ & & + 6.0 & \text{GHSER}_{Mg} \end{array}$$

Phase Laves-C14

 $L_{Cu,Mg;Al}^{0,Laves-C14} = 13011.35$ $L_{\rm Cu:Al,Mg}^{0,{\rm Laves}-C14}$ = 8000 L^{0,Laves-C14} Al,Mg:Cu = 15000 $L_{Al:Cu,Mg}^{0,Laves-C14}$ = 6599.45L^{0,Laves-C14} Ai,Cu:Mg = -224000 + 2.44 TPhase Laves-C15 $L_{\mathrm{Cu},\mathrm{Mg:Al}}^{0,\mathrm{Laves}-C15}$ = 13011.35 $L_{\rm Cu:Al,Mg}^{0,{\rm Laves}-C15}$ = 8000 L^{0,Laves-C15} Al,Mg:Cu = 15000L^{0,Laves-C15} Al:Cu,Mg = 6599.45 $L_{\rm Al,Cu:Mg}^{0,{\rm Laves}-C15}$ = - 180000 - 1.615 T Phase Laves-C36 $L_{Cu,Mg;Al}^{0,Laves-C36} = 13011.35$ $L_{\rm Cu:Al,Mg}^{0,{\rm Laves}-C36}$ = 8000 $L^{0, Laves-C36}_{Al, Mg:Cu}$ = 15000 $L^{0, Laves-C36}_{Al:Cu, Mg}$ = 6599.45

 $L_{Al,Cu:Mg}^{0,Laves-C36} = -227442 + 14.61 T$

Phase S-Phase

 $\begin{array}{rcl} G^{\circ}(T) & -2.0 & H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) & -H_{Cu}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) \\ & -H_{Mg}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) & = G(\text{Al:Cu:Mg}) = \\ & & -63200 + 4.13 & T + 2.0 \text{ GHSER}_{A1} + \text{GHSER}_{Cu} + \text{GHSER}_{Mg} \end{array}$

Phase V-Phase

Phase τ

 $\begin{array}{rcl} G^{\circ}(T) & -7.0 & H_{\rm Al}^{\circ, \rm fcc-A1}(298.15 \ {\rm K}) & -48.0 & H_{\rm Cu}^{\circ, \rm fcc-A1}(298.15 \ {\rm K}) \\ -26.0 & H_{\rm Mg}^{\circ, \rm hcp-A3}(298.15 \ {\rm K}) & = {\rm G}({\rm Mg:Al:Cu:Al}) = \\ & & -23000 + 440 \ T + 7.0 \ {\rm GHSER}_{\rm Al} + 48.0 \ {\rm GHSER}_{\rm Cu} \\ & & + 26.0 \ {\rm GHSER}_{\rm Mg} \\ G^{\circ}(T) & - H_{\rm Al}^{\circ, \rm fcc-A1}(298.15 \ {\rm K}) & - 48.0 \ H_{\rm Cu}^{\circ, \rm fcc-A1}(298.15 \ {\rm K}) \\ & - 32.0 \ H_{\rm Mg}^{\circ, \rm fcc-A3}(298.15 \ {\rm K}) = {\rm G}({\rm Mg:Mg:Cu:Al}) = \\ & & - 220000 + 440 \ T + {\rm GHSER}_{\rm Al} + 48.0 \ {\rm GHSER}_{\rm Cu} \\ & & + 32.0 \ {\rm GHSER}_{\rm Mg} \\ L_{\rm Mg:Al:Al,Cu:Al}^{0,\tau} & = - 4649190 + 2261.86 \ T \\ L_{\rm Mg:Mg:Al,Cu:Al}^{0,\tau} & = - 220000 \end{array}$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-Cu-Mg	(Al)	Cu	cF4 Fm3m	M 4	
	(Cu)	Cu	cF↓ Fm3̄m	M 4	
	(Mg)	Mg	hP2 P6 ₃ /mmc	M 2	
	Laves-C14	MgZn ₂	hP12 P6 ₃ /mmc	Cu 2 Cu 6 Mg 4	
	Laves-C15	Cu ₂ Mg	cF24 Fd3m	Mg ₁ 8 Cu ₂ 16	
	Laves-C36	MgNi ₂	hP24 P6 ₃ /mmc	Cu ₁ 6 Cu ₂ 6 Mg ₁ 3 Mg ₂ 3	
	Al ₁₁ Cu ₁₁ Mg4	Mg ₂ Zn ₁₁	cP39 Pm3		V-phase
	Al ₇ Cu ₃ Mg ₆		c196 Pm3		Q-phase
	Al ₂ CuMg	BRe3	oC16 Cmcm	Cu 4 Mg 4 Al 8	S-phase
	(Al _x Cu _{1-x}) ₄₉ Mg ₃₂	Mg32(Al,Zn)49	c/163		

Table I - Crystal Structure and Phase Description.

.

System Al–Cu–Si

Ternary Solution Phases:

Liquid, fcc-A1, bcc-A2, hcp-A3

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
Assessor an	d Date:	
		T. Bühler, RWTH, Aachen, Germany, (1997).
Comments:		
		No coefficients for the ternary solution phases.
		No ternary compounds.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices
Al-Cu-Mg	(Al)	Cu	cF4 Fm3m	M 4
	(Cu)	Cu	cF₄ Fm3m	M 4
	(Si)	diamond	cF8 Fd3m	M 8

Table I - Crystal Structure and Phase Description.

System Al–Fe–Mn

Ternary Solution Phases:

Liquid, fcc-A1, Al₈Mn₅-D8₁₀ Quasi-binary phases: Al₁₃Fe₄, Al₂Fe, Al₅Fe₂, Al₆Mn, Al₄Mn, Al₁₂Mn Modelling: Liquid : Substitutional, Redlich-Kister Al₅Fe4 Substitutional, Redlich-Kister : fcc-A1 Substitutional, Redlich-Kister : $Al_8Mn_5 - D8_{10}$ Sublattice model, (Al)₁₂(Mn)₄(Al,Fe,Mn)₁₀ : Al₂Fe Quasi-binary, $(Al)_2(Fe,Mn)$: Al₅Fe₂ Quasi-binary, (Al)₅(Fe,Mn)₂ : Al₁₃Fe₄ Quasi-binary, (Al).6275(Fe,Mn).235(Al,D).1375 : Al₄Mn Quasi-binary, (Al)₄(Fe,Mn) : Al₆Mn Quasi-binary, (Al)₆(Fe,Mn) : Al₁₂Mn Quasi-binary, (Al)₁₂Mn : **Comments:** The data below are valid in the composition range $x_{Mn} < 0.25 \text{ (wt}\%_{Mn} < 40.0 \text{) and}$ $x_{\rm Fe} < 0.25 \ ({\rm wt}\%_{\rm Fe} < 40.0)$ No ternary interaction coefficients for the liquid phase. Interactions between Fe and Mn in Al₁₂Mn,Al₂Fe and Al₅Fe₂ assumed to be ideal. Assessor and Date: Å. Jansson, and T.G. Chart (August 1997)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase fcc-A1

L ^{0,fcc→A1} AI,Fe,Mn:□	=	0.000
	=	
L ^{1,fcc−A1} Al,Fe,Mn:□	=	- 63652
	=	
$L^{2,fcc-A1}_{A1,Fe,Mn:\square}$	=	- 26753

Phase Al₁₃Fe₄

 $\begin{array}{rcl} {}^{0,A1_{13}Fe_4}_{A1:Fe,Mn:A1} &=& -11987 + 6 & T \\ &=& & \\ {}^{0,A1_{13}Fe_4}_{A1:Fe,Mn:\Box} &=& -11987 + 6 & T \end{array}$

Phase Al₄Mn

 $L^{0,Al_4Mn}_{Al:Fe,Mn} \hspace{0.1 cm} = \hspace{0.1 cm} -\hspace{0.1 cm} 10000$

Phase Al₆Mn

 $L_{Al:Fe,Mn}^{0,Al_6Mn} = -32753 + 21 T$

Phase Al₈Mn₅-D8₁₀

 $\begin{array}{rcl} G^{\circ}(T) & -12.0 & H_{A1}^{\circ, \rm fcc-A1}(298.15 \ \rm K) - 10.0 & H_{Fe}^{\circ, \rm bcc-A2, \rm para}(298.15 \rm K) \\ & -4.0 & H_{Mn}^{\circ, \rm cbcc-A12, \rm para}(298.15 \ \rm K) = \\ & & -632544.85 + 12.0 \ \rm GHSER_{A1} + 10.0 \ \rm GHSER_{Fe} \\ & & +4.0 \ \rm GHSER_{Mn} \\ L_{A1:Mn;A1,Fe}^{\circ, \rm Alg, Mn_5-D8_{10}} & = -457832.778 \end{array}$

 $L_{Al:Mn:Fe,Mn}^{0,Al_8Mn_5-D8_{10}} = -11169.158$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-Fe-Mn	(Al)	Cu	cF4 Fm3m	M 4	
	(Fe)	Cu	cF4 Fm3m	M 4	
	(Fe)	w	c12 Im3m	M 2	
	α-Mn	α−Mn	c58 I43m		cbcc-A1
	β−Mn	β−Mn	cP20 P4132		cub-A13
	AlFe	CsCl	cP2 Pm3m	M ₁ 1 M ₂ 1	
	AlFe ₃	BiF₃	cF16 Fm3m	Al 4 Fe ₁ 4 Fe ₂ 8	not considered
	Al ₂ Fe	Al ₂ Fe	aP18 P1		
	Al ₃ Fe		mC102 C2/m		designated by Al ₁₃ Fe ₄
	Al ₅ Fe ₂		oC* Cmcm		
	Al₄Mn	Al₄Mn	oP60 Pnnn		
	Al ₆ Mn	Al ₆ Mn	oC28		
	Al ₁₂ Mn	Al ₁₂ W	c126 Im3		not quoted in [90Mas] metast.
	Al ₈ Mn ₅	Al ₈ Cr5	h R26 R3m		Al8Mn5-D08

Table I - Crystal Structure and Phase Description.

System Al–Fe–Si

Ternary Solu	ition Phases:	
		Liquid, fcc-A1, bcc-A2, bcc-B2
Quasi-binary	/ phases:	
Modelling		AlfeSi- α , AlfeSi- β , AlfeSi- γ , AlfeSi- γ , Al ₁₃ Fe ₄
modening.		
Liquid	:	Substitutional, Redlich–Kister
Al_5Fe_4	:	Substitutional, Redlich–Kister
fcc-A1	:	Substitutional, Redlich–Kister
bcc-A2	:	Substitutional, Redlich–Kister
bcc-B2	:	Sublattice model, (Al,Fe,Si) _{0.5} (Al,Fe,Si) _{0.5} (□) ₃
Al₁₃Fe₄	:	Quasi–binary, (Al).6275(Fe).235(Al,Si,□).1375
AlFeSi– α	:	Quasi-binary, (Al).6612(Fe).19(Si).0496(Al,Si).0992
AlFeSi- β	:	Stoichiometric, (AI)14(Fe)3(Si)3
$\mathrm{AlFeSi}{-\delta}$:	Stoichiometric, (Al).55(Fe).15(Si).3
AlFeSi– γ	:	Stoichiometric, (Al) ₃ (Fe)(Si)
AlFeSi $-\tau_1$:	Stoichiometric, $(Al)_2(Fe)_2(Si)$
AlFeSi $-\tau_3$:	Stoichiometric, (Al) ₂ (Fe)(Si)
<u>Comments:</u>		
Assessor and Date:		No ternary interaction coefficients for the substitutional solutions.
		P. Kolby, 1997.

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Al₁₃Fe₄

$$\begin{array}{l} G^{\circ}(T) - 0.6275 \quad H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - 0.235 \quad H_{Fe}^{\circ, bcc-A2, para}(298.15 \text{ K}) \\ - 0.1375 \quad H_{Si}^{\circ, diamond}(298.15 \text{ K}) = G(Al:Fe:Si) = \\ - 22013.336 + 0.6275 \text{ GHSER}_{Al} + 0.235 \text{ GHSER}_{Fe} + 0.1375 \text{ GHSER}_{Si} \end{array}$$

Phase AlFeSi- α

 $\begin{array}{l} G^{\circ}(T) - 0.7604 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 0.19 \quad H_{Fe}^{\circ, \text{bcc}-A2, \text{para}}(298.15 \text{ K}) \\ &\quad - 0.0496 \quad H_{Si}^{\circ, \text{diamond}}(298.15 \text{ K}) = \text{G}(\text{Al:Fe:Si:Al}) = \\ &\quad - 24920.609 + 5.4894 \quad \text{T} + 0.7604 \quad \text{GHSER}_{A1} + 0.19 \quad \text{GHSER}_{Fe} + 0.0496 \\ \text{GHSER}_{Si} \\ G^{\circ}(T) - 0.6612 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 0.19 \quad H_{Fe}^{\circ, \text{bcc}-A2, \text{para}}(298.15 \text{ K}) \\ &\quad - 0.1488 \quad H_{Si}^{\circ, \text{diamond}}(298.15 \text{ K}) = \text{G}(\text{Al:Fe:Si:Si}) = \\ &\quad - 25340.922 + 5.4894 \quad \text{T} + 0.6612 \quad \text{GHSER}_{A1} + 0.19 \quad \text{GHSER}_{Fe} \\ &\quad + 0.1488 \quad \text{GHSER}_{Si} \end{array}$

Phase AlFeSi- β

 $\begin{array}{ll} G^{\circ}(T) - 14.0 & H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - 3.0 & H_{Fe}^{\circ, bcc-A2, para}(298.15 \text{ K}) \\ & - 3.0 & H_{Si}^{\circ, diamond}(298.15 \text{ K}) = \text{G}(\text{Al:Fe:Si}) = \\ & - 391310.9 + 55.84756 \text{ T} + 14.0 \text{ GHSER}_{Al} + 3.0 \text{ GHSER}_{Fe} \\ & + 3.0 \text{ GHSER}_{Si} \end{array}$

Phase AlFeSi- δ

$$\begin{array}{l} G^{\circ}(T) - 0.55 \quad H_{AI}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 0.15 \quad H_{Fe}^{\circ, \text{bcc}-A2, \text{para}}(298.15 \text{ K}) \\ - 0.3 \quad H_{Si}^{\circ, \text{diamond}}(298.15 \text{ K}) = \text{G}(\text{Al:Fe:Si}) = \\ - 14431.105 - 2.90062 \quad \text{T} + 0.55 \quad \text{GHSER}_{AI} + 0.15 \quad \text{GHSER}_{Fe} \\ + 0.3 \quad \text{GHSER}_{Si} \end{array}$$

Phase AlFeSi $-\gamma$

$$\begin{array}{l} G^{\circ}(T) - 3.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - H_{Fe}^{\circ, \text{bcc}-A2, \text{para}}(298.15 \text{ K}) \\ \quad - H_{Si}^{\circ, \text{diamond}}(298.15 \text{ K}) = \text{G}(\text{Al:Fe:Si}) = \\ \quad - 116929.6 + 8.399833 \quad \text{T} + 3.0 \quad \text{GHSER}_{A1} + \text{GHSER}_{Fe} + \text{GHSER}_{Si} \end{array}$$

Phase AlFeSi- τ_1

$$\begin{array}{l} G^{\circ}(T) - 2.0 \quad H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 2.0 \quad H_{Fe}^{\circ, \text{bcc}-A2, \text{para}}(298.15 \text{ K}) \\ \quad - H_{Si}^{\circ, \text{diamond}}(298.15 \text{ K}) = G(\text{A1:Fe:Si}) = \\ \quad - 153000 + 2.0 \quad \text{GHSER}_{A1} + 2.0 \quad \text{GHSER}_{Fe} + \text{GHSER}_{Si} \end{array}$$

Phase AlFeSi $-\tau_3$

$$\begin{array}{l} G^{\circ}(T) - 2.0 \quad H_{Al}^{\circ, \text{fcc-A1}}(298.15 \text{ K}) - H_{Fe}^{\circ, \text{bcc-A2}, \text{para}}(298.15 \text{ K}) \\ - H_{Si}^{\circ, \text{diamond}}(298.15 \text{ K}) = G(\text{Al:Fe:Si}) = \\ - 99325.65 + 2.0 \quad \text{GHSER}_{Al} + \text{GHSER}_{Fe} + \text{GHSER}_{Si} \end{array}$$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-Fe-Si	(Al)	Cu	cF4 Fm3m	M 4	
	(Fe)	Cu	cF4 Fm3m	M 4	
	(Fe)	w	c12 Im3m	M 2	
	(Si)	diamond	cF8 Fd3m		
	Al ₃ Fe		mC102 C2/m		designated by Al ₁₃ Fe ₄
Al-Fe-Si	AlFeSi−α	Fe2Al7Si	<i>hP</i> 246		hP246 and Fe ₂ Al _{7.4} Si in [92Pet]
	AlFeSi−β	Fe2Al9Si2	m**		
	AlFeSi−γ		c**		
	AlFeSi−ð	PdGa5	<i>t1</i> 24		FeAl₄Si₂ in [91Vil] FeAl₄Si₃ in [92Pet]
	AlFeSi $-\tau_1$				Fe3Al3Si2
	AlFeSi-73				Fe5Al9Si5

Table I - Crystal Structure and Phase Description.

System Al–Li–Mg

Ternary Solution Phases:				
		Liquid, fcc- $A1$, bcc- $A2$, hcp- $A3$		
Ternary Compounds:		AlLi, AlLiMg- τ , AlMg- β , Al ₁₂ Mg ₁₇		
<u>Modelling:</u>				
Liquid	:	Substitutional, Redlich-Kister		
bcc-A2	:	Substitutional, Redlich-Kister		
fcc-A1	:	Substitutional, Redlich-Kister		
hcp-A3	:	Substitutional, Redlich-Kister		
AlLi	:	Sublattice model, (Al,Li,Mg)(Li,Mg,□)		
AlLiMg- $ au$:	Stoichiometric, (Al) _{0.53} (Li) _{0.33} (Mg) _{0.14}		
Λ lMg- β	:	Sublattice model, (Al) _{0.615} (Li,Mg) _{0.385}		
$Al_{12}Mg_{17}$:	Sublattice model, (Li,Mg)24(Al,Li,Mg)10(Al,Mg)24		
Assessor and	<u>l Date:</u>	N. Saunders, (1994).		
<u>Comments:</u>		The data below are comptatible with Version I of the Al-Mg system.		

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Liquid

L ^{0,liquid} Al,Li,Mg	=	- 20000
L ^{1,liquid} Al,Li,Mg	=	- 15000
L ^{2,liquid} Al,Li,Mg	=	- 20000

Phase bcc-A2

 $L_{Al,Li,Mg:\Box}^{0,bcc-A2} = -71200.0 + 50.0 T$

Phase fcc-A1

 $L_{\rm Al,Li,Mg:\square}^{0,{\rm fcc}-A1} = -63650.0 + 50.0 T$

Phase hcp-A3

L ^{0,hcp−A3} Al,Li,Mg:□	=	1.0E-4	
L ^{1',hcp−A3} Al,Li,Mg:□	=	1.0E-4	

 $L_{{\rm Al,Li,Mg:D}}^{2,{\rm hcp}-A3} = -80000 + 50.0 T$

Phase AlLi

$L^{0,\mathrm{AlLi}}_{\mathrm{ALMg:Li}}$	=	3300.0 - 2.0 T
L ^{0,AlLi} Al,Mg:Li,Mg	=	-43460.0 + 60.0 T
L ^{0,AlLi} Al:Li,Mg	=	-25000.0 + 10.0 T

Phase AlMg- β

 $L_{\text{Al:Li,Mg}}^{0,\text{AlMg}-\beta} = -4250$

Phase AlLiMg $-\tau$

Phase Al₁₂Mg₁₇

 $\begin{array}{l} G^{\circ}(T) - 24.0 \quad H_{A1}^{\circ, \rm fcc-A1}(298.15 \text{ K}) - 10.0 \quad H_{Li}^{\circ, \rm bcc-A2}(298.15 \text{ K}) \\ - 24.0 \quad H_{Mg}^{\circ, \rm hcp-A3}(298.15 \text{ K}) = G(Mg:Li:Al) = \\ & - 610000 + 125 \quad T + 24.0 \quad \rm GHSER_{A1} + 10.0 \quad \rm GHSER_{Li} \\ & + 24.0 \quad \rm GHSER_{Mg} \\ G^{\circ}(T) - 24.0 \quad H_{A1}^{\circ, \rm fcc-A1}(298.15 \text{ K}) - 24.0 \quad H_{Li}^{\circ, \rm bcc-A2}(298.15 \text{ K}) \\ - 10.0 \quad H_{Mg}^{\circ, \rm hcp-A3}(298.15 \text{ K}) = G(Li:Mg:Al) = \\ & - 625000 + 269 \quad T + 24.0 \quad \rm GHSER_{A1} + 24.0 \quad \rm GHSER_{Li} \\ & + 10.0 \quad \rm GHSER_{Mg} \end{array}$

 $\begin{array}{rcl} G^{\circ}(T) & -24.0 & H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) - 10.0 & H_{Li}^{\circ, bcc-A2}(298.15 \text{ K}) \\ -24.0 & H_{Mg}^{\circ, hcp-A3}(298.15 \text{ K}) & = G(\text{Li:Al:Mg}) = \\ & 1.0\text{E-4} + 24.0 & \text{GHSER}_{Al} + 10.0 & \text{GHSER}_{Li} + 24.0 & \text{GHSER}_{Mg} \\ L_{\text{Li,Mg:Al:Al}}^{0, \text{Al}_{12}\text{Mg}_{17}} & = -220000 \\ \\ L_{\text{Mg:Al,Li:Al}}^{0, \text{Al}_{12}\text{Mg}_{17}} & = -50000 \end{array}$

Table I - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-Li-Mg	(Al)	Cu	cF4 Fm3m	M 4	
	(Li)	w	c12 Im3m	M 2	
	(Mg)	Mg	hP2 P6 ₃ /mmc	M 2	
	AlLi	NaTl	cF16 Fd3m	M ₁ 8 M ₂ 8	
	AlMg−γ	α−Mn cbcc−A12	c/58 /43m	Al 24 Mg ₁ 2 Mg ₂ 8 Mg ₃ 24	designated as Al ₁₂ Mg ₁₇
	Al ₃ Mg ₂	Cd ₂ Na	cF112 Fd3 m		cF1832 in [91Vil] designated as AlMg- β
	Al ₂ LiMg		c * 456		AlLiMg-7

System Al–Mg–Mn

Ternary Solution Phases:		Liquid, fcc-A1		
Ternary Comp	ound:	AlMgMn-T		
Modelling:				
Liquid	:	Substitutional, Redlich-Kister		
bcc-A2	:	Substitutional, Redlich-Kister		
fcc-A1	:	Substitutional, Redlich-Kister		
AlMgMn-T	:	Stoichiometric, (Al) ₁₈ (Mg) ₃ (Mn) ₂		
Assessor and I	<u>Date:</u>	I. Ansara (1994).		
<u>Comments:</u>		The data are valid only in the Al-rich corner. Very little information on the phase relationships is known		

Thermodynamic properties of the solution and compound phases $(J.mol^{-1})$

Phase AlMgMn-T

$$\begin{array}{rl} G^{\circ}(T) & -18.0 & H_{Al}^{\circ, fcc-A1}(298.15 \text{ K}) & -3.0 & H_{Mg}^{\circ, hcp-A3}(298.15 \text{ K}) \\ -2.0 & H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) & = \text{G}(\text{Al:Mg:Mn}) = \\ & -206402.0 + 11.85 & T + 18.0 & \text{GHSER}_{Al} + 3.0 & \text{GHSER}_{Mg} \\ & + 2.0 & \text{GHSER}_{Mn} \end{array}$$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-Mg-Mn	(Al)	Cu	cF4 Fm3m	M 4	
	(Mg)	Mg	hP2 P6 ₃ /mmc	M 2	
	α−Mn	α-Mn	c58 I43m		cbcc-Al
	β−Mn	β−Mn	cP20 P4132		cub-A13
1 	γ−Mn	Cu	cF4 Fm3m	M 4	
	δ-Mn	w	c12 Im3m	M 2	
	Al ₁₈ Mg ₃ Mn ₂	Al ₁₈ Cr ₂ Mg ₃	cF 184 F d3̄m		designated as AlMgMn-T

Table I - Crystal Structure and Phase Description.

System Al-Mg-Si

Ternary Solution Phases:

Liquid, fcc-A1, hcp-A3, diamond

Modelling:

Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
diamond	:	Substitutional, Redlich-Kister

Assessor and Date:

Comments:

Publication:

H. Feufel, T. Gödecke, H. L. Lukas, and F. Sommer, J. Alloys Comp. 247, 31-42 (1997).

No ternary compounds or quasi-binary phases

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Liquid

H. L. Lukas (1996)

$L^{0, { m liquid}}_{{ m Al}, { m Mg}, { m Si}}$	=	4125.86 - 0.51573 T
L ^{1,liquid} Al,Mg,Si	=	-47961.64 + 5.9952 T
$L^{2, \text{liquid}}_{A1, Mg, Si}$	=	25813.8 - 3.22672 T

Johnmenus

Table I - Crystal Structure and Phase Description.

System Al–Mg–Zn

Ternary Solut	ion Phases:	
		Liquid, fcc-A1, hcp-A3, hcp-Zn, $ au, arphi$
Compounds:		
		Almg- β , Almg- γ , Laves-C14
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
hcp-Zn	:	Substitutional, Redlich-Kister
AlMg- β	:	Sublattice model, (Mg) ₈₉ (Al,Zn) ₁₄₀
AlMg- γ	:	Sublattice model, (Al,Mg,Zn) ₁₂ (Al,Mg,Zn) ₁₂ (Mg) ₅
Laves- $C14$:	Sublattice model, (Al,Mg,Zn)(Al,Mg,Zn) ₂
au	:	Sublattice model, (Mg) ₂₆ (Al,Mg) ₆ (Al,Mg,Zn) ₄₈ (Al)
arphi	:	Sublattice model, (Mg) ₆ (Al,Zn) ₅
Assessor and	Date:	
		P. Liang, H. L. Lukas (1967)
Publication:		
		P. Liang, T. Tarfa, J. A. Robinson, S. Wagner, P. Ochin, M. G. Harmelin, H. J. Seifert, H. L. Lukas, G. Effenberg,
		F. Aldinger

Thermochimica Acta, 314, 1-2, 87-110 (1998).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

-	1	- •	
	hase	1.10	ากป
	nase	PIL	uiu

 $L_{Al,Mg,Zn}^{0,liquid} = -11475 + 11 T$ $L_{Al,Mg,Zn}^{1,liquid} = -11475 + 11 T$ $L_{Al,Mg,Zn}^{2,liquid} = -11475 + 11 T$

Phase hcp-A3

$L_{Al,Mg,Zn}^{0,hcp-A3}$	=	1.0E-4
L ^{1,hcp-A3} Al,Mg,Zn	=	1.0E-4
$L^{2,\mathrm{hcp}-A3}_{\mathrm{Al},\mathrm{Mg},\mathrm{Zn}}$	=	1.0E-4
$L_{Al,Mg,Zn}^{0,hcp-Zn}$	=	1.0E-4
L ^{1,hcp-Zn} Al,Mg,Zn	=	1.0E-4
$L^{2, m hcp-Zn}_{ m Al, Mg, Zn}$	=	1.0E-4

Phase Laves-C14

Phase hcp-Zn

L ^{0,Laves-C14} Mg,Zn:Al	=	35000
$L_{\rm Zn:Al,Mg}^{0,{\rm Laves}-C14}$	Ξ	15000
L ^{0,Laves-C14} Al,Zn:Mg	=	-7500 - 18 T
L ^{0,Laves-C14} Al:Mg,Zn	=	8000
L ^{0,LavesC14} Al,Mg:Zn	=	8000

Phase AlMg- β

 $L_{AI,Mg,Zn}^{0,AIMg-\beta} = -1717500 + 343.5 T$

Phase AlMg- γ

 $L_{Mg:Mg:Al:Zn}^{0,AlMg-\gamma} = -116000 + 58 T$

 $L_{Mg:Zn:Al:Mg}^{0,AIMg-\gamma} = 113100-14.5 T$

Phase φ

 $L_{Mg:Mg:Al,Zn}^{0,\varphi} = -23100 + 11 T$

Phase τ

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattice	- es	Comments
Al-Cu-Mg	(Al)	Cu	cF4 Fm3m	м	4	
	(Mg)	Mg	hP2 P6 ₃ /mmc	м	2	
	Laves-C14	MgZn ₂	hP12 P6 ₃ /mmc	Cu Cu Mg	2 6 4	
	Al ₃ Mg ₂	Cd ₂ Na	cF112 Fd3m			cF1832 in [91Vil] designated as AlMg- β
	AlMg−γ	α−Mn	c/58 /43m ·	Al Mg1	24 2	designated as Al ₁₂ Mg ₁₇
	Φ		o*			
	τ	Mg ₃₂ (Al,Zn) ₄₉	c/162 /m3			

Table I – Crystal Structure and Phase Description.

System Al-Mn-Si

Ternary Solution	on Phases:				
		Liquid, fcc- $A1$, Al ₈ Mn ₅ - $D8_{10}$			
Quasi-binary p	hases:				
		AlMnSi- α , AlMnSi- β			
Compounds:					
		AlMnSi- <i>b</i>			
Modelling:					
Liquid	:	Substitutional, Redlich-Kister			
fcc-A1	:	Substitutional, Redlich-Kister			
$Al_8Mn_5 - D8_{10}$:	Sublattice model, $(Al,Si)_{12}(Mn)_4(Al,Mn)_{10}$			
AlMnSi- α	:	Quasi-binary, $(Al)_{16}(Mn)_4(Si)(Al,Si)_2$			
AlMnSi- <i>β</i>	:	Quasi-binary, $(Al)_{15}(Si)(Al,Si)_4(Mn)_6$			
AlMnSi-δ	:	Stoichiometric, $(Al)_2(Mn)(Si)_3$			
Comments:					
		The data below are valid in the composition			
		range $x_{Si} < 0.2$ and $x_{Mn} < 0.05$			
		The fcc- $A1$ phase is assumed to be ideal			
Assessor and D)ate:				
		P. Kolby, M.H. Rand, and T.G. Chart, 1997.			

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Liquid

 $L^{0,\mathrm{Liquid}}_{\mathrm{Al},\mathrm{Mn},\mathrm{Si}}$ = - 37000

Phase Al₈Mn₅-D8₁₀

 $\begin{array}{l} G^{\circ}(T) - 10.0 \quad H_{Al}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 4.0 \quad H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \text{ K}) \\ - 12.0 \quad H_{Si}^{\circ, \text{diamond}}(298.15 \text{ K}) = \\ 10.0 \quad \text{GHSER}_{Al} + 4.0 \quad \text{GHSER}_{Mn} + 12.0 \quad \text{GHSER}_{Si} \end{array}$

Phase AlMnSi- α

 $\begin{array}{rll} G^{\circ}(T) & -18.0 & H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 4.0 & H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \text{ K}) \\ & -H_{\text{Si}}^{\circ, \text{diamond}}(298.15 \text{ K}) = \\ & & -755772 + 3544.43 \quad T - 573.95 \quad T \cdot \ln T \\ & & -0.114419 \quad T^2 + 9.70013\text{E-}06 \quad T^3 + 3716760 \quad T^{-1} \\ G^{\circ}(T) & -16.0 & H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 4.0 \quad H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \text{ K}) \\ & -3.0 & H_{\text{Si}}^{\circ, \text{diamond}}(298.15 \text{ K}) = \\ & & -698911 + 2958.7 \quad T - 493.78 \quad T \cdot \ln T \\ & & -0.17905 \quad T^2 + 1.87237\text{E-}05 \quad T^3 + 1822810 \quad T^{-1} \\ L_{\text{Al:Mn:Si:Al,Si}}^{\circ, \text{AlMnSi-}\circ} & = 0.0001 \end{array}$

Phase AlMnSi- β

 $\begin{array}{rcl} G^{\circ}(T) & -19.0 \ H_{Al}^{\circ, \text{fcc}-A1}(298.15 \ \text{K}) & -6.0 \ H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \ \text{K}) \\ & -H_{\text{Si}}^{\circ, \text{diamond}}(298.15 \ \text{K}) = \\ & & -880648 + 3451.04 \ T - 572.75 \ T \cdot \ln T \\ & -0.201935 \ T^2 + 2.0 \text{E}-05 \ T^3 + 2184750 \ T^{-1} \\ G^{\circ}(T) & -15.0 \ H_{Al}^{\circ, \text{fcc}-A1}(298.15 \ \text{K}) - 6.0 \ H_{Mn}^{\circ, \text{cbcc}-A12, \text{para}}(298.15 \ \text{K}) \\ & -5.0 \ H_{\text{Si}}^{\circ, \text{diamond}}(298.15 \ \text{K}) = \\ & & -779980 + 3451.04 \ T - 593.657 \ T \cdot \ln T \\ & & -0.16164 \ T^2 + 1.35092 \text{E}-05 \ T^3 + 2946120 \ T^{-1} \\ L_{\text{Al:Si:Al,Si:Mn}}^{\circ, \text{AlMnSi}-\beta} & = 0.0001 \end{array}$

Phase AlMnSi- δ

 $\begin{array}{l} G^{\circ}(T) - 2.0 \quad H_{A1}^{\circ, fcc-A1}(298.15 \text{ K}) - 3.0 \quad H_{Mn}^{\circ, cbcc-A12, para}(298.15 \text{ K}) \\ - \quad H_{Si}^{\circ, diamond}(298.15 \text{ K}) = \\ \quad - \quad 70000 - 2 \quad T + 2.0 \quad \text{GHSER}_{A1} + 3.0 \quad \text{GHSER}_{Mn} \\ \quad + \quad \text{GHSER}_{Si} \end{array}$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices		Sub- Comme lattices		Comments
Al-Mn-Si	(Al)	Cu	cF4 Fm3̄m	М	4			
	(Mg)	Mg	hP2 P6 ₃ /mmc	М	2			
	α−Mn	α-Mn	c58 I43m			cbcc-A1		
	β-Mn	β-Mn	cP20 P4132			cub- <i>A</i> 13		
	γ−Mn	Cu	cF4 Fm3m	М	4			
	δ−Mn	W	c12 Im3m	М	2			
	(Si)	diamond	cF8 Fd3m					
	AlMnSi-a	Al9Mn₂Si	cP138 Pm3					
	AlMnSi−β	Al ₁₀ Mn ₃	hP26 P6 ₃ /mmc					
	AlMnSi−δ		hP100			quoted in [93Pet]		
	Al ₈ Mn ₅ -D8 ₁₀	Al ₈ Cr5	h R26 R3m					

Table I - Crystal Structure and Phase Description.

System Al-Mo-Ti

Solution Phases:

Liquid, bcc-A2, fcc-A1, bcc-B2, hcp-A3

Ternary Compounds:

AlM-D019, AlM-D022, AlTi-L10

Modelling:

Liquid	:	Substitutional, Redlich–Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp- <i>A</i> 3	:	Substitutional, Redlich–Kister
bcc-B2	:	Sublattice model, (Al,Mo,Ti) _{0.5} (Al,Mo,Ti) _{0.5} (D) ₃
		The thermodynamic description of the bcc-B2 takes
		into account the ordering reaction $bcc-A2 \rightleftharpoons bcc-B2$.
		Two descriptions are given:
		one using equations 23 and 27,
		the other using equations 23 and 28.
		For the latter, the parameters are given in a frame.
AIM-D019	:	Sublattice model, (Al,Mo,Ti)3(Al,Mo,Ti)(□)0.5
AlM-D022	:	Sublattice model, (Al,Mo,Ti) ₃ (Al,Mo,Ti)
AlTi-L10	:	Sublattice model, (Al,Mo,Ti)(Al,Mo,Ti)

Assessor and Date:

N. Saunders, 1996

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase AlM-D019

 $L_{\text{Mo:AI,Ti:D}}^{0,\text{AIM}-D0_{19}} = 10656 - 1.332 T$ $L_{\text{AI,Ti:Mo:D}}^{0,\text{AIM}-D0_{19}} = 32000 - 4 T$

Phase AlM-D022

L ^{0,AIM-D022} Al:Mo,Ti	=	- 212000 +	- 120) <i>T</i>
			F	hase AlTi – <i>L</i> 1 ₀
L ^{0,AlTi-L1} 0 Mo,Ti:Al	=	$L_{\mathrm{Al:Mo,Ti}}^{0,\mathrm{AlTi}-L1_0}$	=	- 13000
$L^{1,\operatorname{AlTi}-L_{10}}_{\operatorname{Mo,Ti}:\operatorname{Al}}$	=	$L_{\mathrm{Al:Mo,Ti}}^{1,\mathrm{AlTi}-L_{1_0}}$	=	1.0E-4
$L^{2,\mathrm{AlTi}-L_{10}}_{\mathrm{Mo,Ti:Al}}$	=	$L^{2,\mathrm{AITi}-L1_0}_{\mathrm{AI:Mo,Ti}}$	=	- 13000
L ^{0,AITi-L10} Mo:Al,Ti	=	L ^{0,AlTi-L10} Al,Ti:Mo	=	- 15134 - 2.36 T

Phase bcc-A2

L ^{1,bcc−A2} AI,Mo,Ti:□	=	0		
L ^{2,bcc−A2} Al,Mo,Ti:□	=	0		
L ^{3,bcc−A2} Al,Mo,Ti:□	=	0		
				Phase bcc-B2
L ^{0,bcc−B2} Mo,Ti:Al:□	=	$L^{0,\mathrm{bcc}-B2}_{\mathrm{Al:Mo,Ti:\square}}$	=	-5000
L ^{0,bcc−B2} Mo:Al,Ti:□	=	L ^{0,bcc−B2} Al,Ti:Mo:□	=	8750 – 1.25 T
L ^{0,bcc−B2} Ti:Al,Mo:□	=	L ^{0,bcc−B2} Al,Mo:Ti:□	=	14100 - 2 T

System	Phase	Prototype	Pearson Symbol Space Group	Sub lattic	- ез	Comments
Al-Mo-Ti	(Al)	Cu	cF4 Fm3m	м	4	
	(Мо)	w	c12 1m3m	м	2	
	bcc- <i>B</i> 2	CsCl	cP2 Pm3m	M1 M2	1 1	
	(Ti)	Mg	hP2 P63/mmc	м	2	
	(Ti)	w	c12 Im3m	М	2	
	AITi	AuCu	lP4 P4/mmm	Al Ti ₁ Ti ₂	2 1 1	AlTi-L10
	AlTi3	Ni ₃ Sn	hP8 P63/mmc			AIM- <i>D</i> 019
	Al ₃ Ti	Al ₃ Ti	LI8 14/mmm	Al ₁ Al ₂ Ti	2 4 2	AIM- <i>D</i> 022

Table I - Crystal Structure and Phase Description.

i

System Al–N–Ti

Ternary Solu	ition Phases:	Liquid. bcc-A2. hcp-A3
Ternary Compounds:		AlNTi ₂ , AlNTi ₃ , Al ₂ N ₂ Ti ₃
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
AINTi ₂	:	Stoichiometric, (Al)(Ti) ₂ (N) _{0.82}
AlNTi ₃	:	Stoichiometric, (Al)(Ti) ₃ (N) _{0.56}
Al ₂ N ₂ Ti ₃	:	Stoichiometric, $(Al)_2(Ti)_3(N)_2$

Assessor and Date:

K. Zeng, and R. Schmid-Fetzer, Univ. Clausthal, Germany, (1996).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

			Phase	bcc-A2
L ^{0,bcc-A2} AI,Ti:N	=	- 200000		
L ^{0,bcc−A2} Al,Ti:N,□	=	- 200000		
			Phase	hcp-A3
L ^{0,hcp-A3} Al,Ti:N	=	- 100000		
L ^{0,hcp-A3} Al,Ti:N,D	=	- 80000		
L ^{1,hcp−A3} Al,Ti:N,□	=	- 37300 + 100	Т	

Phase AlNTi₂

 $\begin{array}{l} G^{\circ}(T) - H_{\text{Al}}^{\circ,\text{fcc}-A1}(298.15 \text{ K}) - 0.82 \quad H_{0.5N_2}^{\circ,\text{gas}}(298.15 \text{ K}) \\ - 2.0 \quad H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) = \\ & - 389592 + 104 \text{ T} + \text{GHSER}_{\text{Al}} + 2.0 \text{ GHSER}_{\text{Ti}} + 0.82 \text{ GHSER}_{0.5N_2} \end{array}$

Phase AlNTi₃

 $\begin{array}{l} G^{\circ}(T) - H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 0.56 \quad H_{0.5N_{2}}^{\circ, \text{gas}}(298.15 \text{ K}) \\ - 3.0 \quad H_{Ti}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = \\ & \quad - 349502.5 + 92.5 \text{ T} + \text{GHSER}_{A1} + 3.0 \text{ GHSER}_{Ti} + 0.56 \text{ GHSER}_{0.5N_{2}} \end{array}$

Phase Al₂N₂Ti₃

 $\begin{array}{l} G^{\circ}(T) - 2.0 \quad H_{\rm Al}^{\circ, \rm fcc-A1}(298.15 \text{ K}) - 2.0 \quad H_{0.5N_2}^{\circ, \rm gas}(298.15 \text{ K}) \\ - 3.0 \quad H_{\rm Ti}^{\circ, \rm hcp-A3}(298.15 \text{ K}) = \\ \quad & 3405331.05 - 5217.37371 \quad T + 1.75061514 \quad T^2 + 2.0 \quad \rm GHSER_{Al} \\ + 3.0 \quad \rm GHSER_{Ti} + 2.0 \quad \rm GHSER_{0.5N_2} \end{array}$

Table I:a - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub lattic	- es
Al-N-Ti	(Al)	Cu	cF4 Fm3̄m	М	4
	(Ti)	Mg	hP2 P63/mmc	м	2
	(Ti)	w	c12 Im3m	М	2
	AINTi2	AlCCr2	hP8 P6 ₃ /mmc		
	AlNTi3	CaO₃Ti	cP5 Pm3m	M1 M2 Ti	1 1 3

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices
	Al2N2Ti3	Al ₂ N ₂ Ti ₃	hP22 P31c	$\begin{array}{cccc} Al_1 & 2 \\ Ti_1 & 2 \\ Al_2 & 2 \\ N_1 & 2 \\ N_2 & 2 \\ N_3 & 2 \\ Ti_2 & 2 \\ Ti_2 & 2 \\ Ti_3 & 2 \\ Ti_4 & 2 \\ Ti_5 & 2 \end{array}$

Table I:b - Crystal Structure and Phase Description.

System Al-Nb-Ti

Solution Phases:

Liquid, bcc-A2, fcc-A1, bcc-B2, hcp-A3

Ternary Compounds:

AlM- $D0_{19}$, AlM- $D0_{22}$, AlTi- $L1_0$, σ , AlNb₃-A15

Modelling:

Liquid	:	Substitutional, Redlich–Kister
bcc-A2	:	Substitutional, Redlich–Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich–Kister
bcc-B2	:	Sublattice model, (Al,Nb,Ti) _{0.5} (Al,Nb,Ti) _{0.5} (□) ₃
bcc-B2	:	Sublattice model, (Al,Mo,Ti) _{0.5} (Al,Mo,Ti) _{0.5} (□) ₃
		The thermodynamic description of the bcc-B2 takes
		into account the ordering reaction $bcc-A2 \rightleftharpoons bcc-B2$.
		Two descriptions are given:
		one using equations 23 and 27,
		the other using equations 23 and 28.
		For the latter, the parameters are given in a frame.
AlNb ₃ -A15	:	Sublattice model, (Al,Nb)(Nb) ₃
AlM-D019	:	Sublattice model, (Al,Nb,Ti)3(Al,Nb,Ti)(D)0.5
AlM-D022	:	Sublattice model, (Al,Nb,Ti) ₃ (Al,Nb,Ti)
AlTi-L10	:	Sublattice model, (Al,Nb,Ti)(Al,Nb,Ti)
σ	:	Sublattice model, (Al) ₈ (Nb,Ti) ₄ (Al,Nb,Ti) ₁₈

Assessor and Date:

N. Saunders, 1996

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase AlM-D022

 $L_{Al:Nb,Ti}^{0,AIM-D0_{22}} = 20000$

Phase AlM-D019

$L^{0,\text{AIM}-D0_{19}}_{\text{Nb:AI,Ti:D}}$	=	10656 - 1.333 T
$L_{\mathrm{Ti:Al,Nb:D}}^{0,\mathrm{AlM}-D0_{19}}$	=	4000
L ^{0,AIM−D0₁₉} AI,Ti:Nb:□	=	32000 - T
$L^{0,\text{AIM}-D0_{19}}_{\text{Al,Nb:Ti:D}}$	=	12000

Phase AlTi-L10

$L_{\rm Al,Nb,Ti:Al}^{0,{\rm AlTi}-L1_0}$	=	- 45000
$L_{\rm Al:Al,Nb,Ti}^{0,{\rm AlTi}-L1_0}$	=	- 45000
L ^{0,AlTi-L10} Nd,Ti:Al	=	-18076 + 12 T
$L_{ m Nb:Al,Ti}^{0, m AlTi-L1_0}$	=	-15134 - 2.36 T
$L_{\mathrm{Ti:Al,Nb}}^{0,\mathrm{AlTi}-L_{1_0}}$	=	- 37600
$L_{\mathrm{Al,Ti:Nb}}^{0,\mathrm{AlTi}-L1_0}$	=	- 15134 - 2.36 T
$L_{\mathrm{Al:Nb,Ti}}^{0,\mathrm{AlTi}-L_{1_0}}$	=	-18076 + 12 T
$L_{\mathrm{Al,Nb:Ti}}^{0,\mathrm{AlTi}-L1_0}$	=	- 37600

Phase bcc-A2

L ^{0,bcc−A2} Al,Nb,Ti:□	=	0
$L^{1,\mathrm{bcc}-A2}_{\mathrm{Al,Nb,Ti:D}}$	=	0
$L^{2,\mathrm{bcc}-A2}_{\mathrm{Al,Nb,Ti:D}}$	=	0

Phase bcc-B2

 $\begin{array}{l} G^{\star}_{\rm A1:Nb:\Box} = -8650 \, + \, T \\ G^{\star}_{\rm A1:Ti:\Box} = - \, 8750 \, + \, 1.35 \, \, T \\ G^{\star}_{\rm Nb:Ti:\Box} = \, 5500 \end{array}$

 $L_{\text{Nb},\text{Ti:Al:O}}^{0,\text{bcc}-B2} = L_{\text{Al:Nb},\text{Ti:Al:O}}^{0,\text{bcc}-B2} = -G_{\text{Nb:Ti:O}}^{\bullet}$ $L_{\text{Nb:Al},\text{Ti:O}}^{0,\text{bcc}-B2} = L_{\text{Al},\text{Ti:Nb:O}}^{0,\text{bcc}-B2} = -G_{\text{Al:Ti:O}}^{\bullet}$ $L_{\text{Ti:Al},\text{Nb:O}}^{0,\text{bcc}-B2} = -G_{\text{Al:Nb:O}}^{\bullet}$

Phase bcc-A2	
$L^{0,\mathrm{bcc}-A^2}_{\mathrm{AI},\mathrm{Nb},\mathrm{Ti}:\Box}=0$	
$L_{\rm AI,Nb,Ti:\Box}^{1,\rm bcc-A2} = 0$	
$L_{\rm AI,Nb,Ti:\Box}^{2,\rm bcc-A2} = 0$	

Phase hcp-A3

 $L_{Al,Nb,Ti:\Omega}^{0,hcp-A3} = -10 T$

Phase σ

 $\begin{array}{rcl} G^{\circ}(T) & - 8.0 \ H_{A1}^{\circ, \text{fcc}-A1}(298.15 \text{ K}) - 18.0 \ H_{Nb}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) \\ & - 4.0 \ H_{Ti}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = G(\text{Al:Ti:Nb}) = \\ & - 660000 + 79.5 \ T + 8.0 \ \text{GHSER}_{A1} + 18.0 \ \text{GHSER}_{Nb} \\ & + 4.0 \ \text{GHSER}_{Ti} \\ G^{\circ}(T) & - 8.0 \ H_{A1}^{\circ, \text{fc}-A1}(298.15 \text{ K}) - 4.0 \ H_{Nb}^{\circ, \text{bcc}-A2}(298.15 \text{ K}) \\ & - 18.0 \ H_{Ti}^{\circ, \text{hcp}-A3}(298.15 \text{ K}) = G(\text{Al:Nb:Ti}) = \\ & - 690000 + 148.5 \ T + 8.0 \ \text{GHSER}_{A1} + 4.0 \ \text{GHSER}_{Nb} \\ & + 18.0 \ \text{GHSER}_{Ti} \\ L_{A1:Nb:A1,Ti:\Omega}^{0,\sigma} & = -1680000 + 510 \ T \\ L_{A1:Ti:A1,Nb:\Omega}^{0,\sigma} & = -990000 + 270 \ T \\ L_{A1:Ti:A1,Nb:\Omega}^{1,\sigma} & = 420000 \end{array}$
System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-Nb-Ti	(Al)	Cu	cF4 Fm3m	M 4	
	(Nb)	w	c12 Im3m	M 2	
	bcc- <i>B</i> 2	CsCl	cP2 Pm3m	M ₁ 1 M ₂ 1	
	(Ti)	Mg	hP2 P63/mmc	M 2	
	(Ti)	w	c12 Im3m	M 2	
	AlTi	AuCu	tP4 P4/mmm	$\begin{array}{ccc} Al & 2\\ Ti_1 & 1\\ Ti_2 & 1 \end{array}$	AlTi-L10
	AlTi3	Ni ₃ Sn	hP8 P63/mmc		AlM-D019
	Al ₃ Ti	Al ₃ Ti	tI8 14/mmm	Al ₁ 2 Al ₂ 4 Ti 2	A1M- <i>D</i> 0 ₂₂
	AlNb3	Cr ₃ Si	cP8 Pm3n	Al 2 Nb 6	cub- <i>A</i> 15
	σ	σ CrFe	tP30 P42/mnm		

Table I - Crystal Structure and Phase Description.

System Al-Si-Zn

Ternary Solution Phases:

Liquid, fcc-A1, hcp-Zn

Modelling:

Liquid	:	Substitutional, Redlie	h-Kister
fcc-A1	:	Substitutional, Redlie	h-Kister
hcp-Zn	:	Substitutional, Redlie	h-Kister

Assessor and Date:

M. Jacobs (1992).

Comments:

No ternary interaction coefficients. No ternary compounds.

Table I - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub– lattices
Al-Si-Zn	(Al) (Si)	Cu diamond	cF4 Fm3m cF8 Fd3m	M 4
	(Zn)	Mg	hP2 P6 ₃ /mmc	M 2

System Al-Sn-Zn

Ternary Solution Phases:

Liquid, fcc-A1, hcp-A3, hcp-Zn

Modelling:

Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
hcp-Zn	:	Substitutional, Redlich-Kister

Assessor and Date:

H. L. Lukas (1991)

Publication:

N. Chakraborti, G. Effenberg, S. Fries, S. Kuang, H.-L. Lukas, and G. Petzow, Vortr. Poster Symp. Materialforsch., 1991, 2nd, 3, 2692-2693 (1991).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase Liquid

- $L_{Al,Sn,Zn}^{0.liquid} = -2777.03 + 0.59427 T$
- $L_{Al,Sn,Zn}^{1,liquid} = 15225.63 3.25821 T$
- $L_{A1,Sn,Zn}^{2,liquid} = -16198.13 + 3.46632 T$

Phase hcp-A3

 $L_{Al,Sn,Zn}^{0,hcp-A3} = 1.0E-4$

Phase hcp-Zn

 $L_{AI,Sn,Zn}^{0,hep-Zn} = 1.0E-4$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices
Al-Sn-Zn	(Al)	Cu	cF4 Fm3m	M 4
	(Sn)	β-Sn	tI4 I41/amd	
	(Zn)	Mg	hP2 P6 ₃ /mmc	M 2

.

Table I - Crystal Structure and Phase Description.

System Al–Sn–Zr

Ternary Solu	ution Phases:	
		Liquid, bcc-A2, bct-A5, fcc-A1, hcp-A3
Compound:		AlSn ₂ Zr ₅
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bct-A5	:	Substitutional, Redlich–Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
$AlSn_2Zr_5$:	Stoichiometric, $(AI)(Sn)_2(Zr)_5$
Assessor and	<u>l Date:</u>	
		J. Korb, and K. Hack, GTT, Germany (1997)

Thermodynamic properties of the compound phase (J.mol⁻¹)

Phase AlSn₂Zr₅

 $\begin{aligned} G^{\circ}(T) - H_{\rm Al}^{\circ,{\rm fcc}-A1}(298.15~{\rm K}) - 2.0~H_{\rm Sn}^{\circ,{\rm bct}-A5}(298.15~{\rm K}) - 5.0~H_{\rm Zr}^{\circ,{\rm hcp}-A3}(298.15~{\rm K}) = \\ &-58824.4 + 896.225~T - 177.0982~T \cdot \ln T - 0.0411~T^2 \\ &-8.4073{\rm E}\text{-6}~T^3 + 261079~T^{-1} \end{aligned}$

System	Phase	Prototype	Pearson Symbol	Sub- lattices	Comments
Al-Sn-Zr	(Al)	Cu	cF4 Fm3m		
	(Sn)	β-Sn	t14 14 ₁ /amd		
	(Zr)	Mg	hP2 P6 ₃ /mmc	M 2	
	(Zr)	w	c12 I m3m	M 4	
	AlSn₂Zr₅				not quoted in [91Vil] nor in [90Mas]

Table I - Crystal Structure and Phase Description.

•

System Al–Ta–Ti

<u>Solution P</u>	<u>'hases:</u>	Liquid, $bcc-A2$, $fcc-A1$, $bcc-B2$, $hcp-A3$
Ternary Compounds:		AlM- $D0_{19}$, AlM- $D0_{22}$, AlTi- $L1_0$, σ
Modelling	<u>.</u>	
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
bcc- <i>B</i> 2	:	Sublattice model, $(Al,Ta,Ti)_{0.5}(Al,Ta,Ti)_{0.5}(\Box)_3$ The thermodynamic description of the bcc-B2 takes into account the ordering reaction bcc-A2 \rightleftharpoons bcc-B2. Two descriptions are given: one using equations 23 and 27, the other using equations 23 and 28. For the latter, the parameters are given in a frame.
AlM-D019	:	Sublattice model, (Al,Ta,Ti) ₃ (Al,Ta,Ti)(□) _{0.5}
AlM-D022	:	Sublattice model, (Al,Ta,Ti) ₃ (Al,Ta,Ti)
AlTi-L10	:	Sublattice model, (Al,Ta,Ti)(Al,Ta,Ti)
σ	:	Sublattice model, $(Al)_8(Ta,Ti)_4(Al,Ta,Ti)_{18}$
	1.5	

Assessor and Date:

N. Saunders, 1996

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase hcp-A3

 $L_{AI,Ta,Ti:D}^{0,hep-B3} = -40000$

Phase AlTi $-L1_0$ $L_{\mathrm{Ta},\mathrm{Ti};\mathrm{Al}}^{\mathrm{0},\mathrm{AlTi}-L_{1_{0}}} = L_{\mathrm{Al};\mathrm{Ta},\mathrm{Ti}}^{\mathrm{0},\mathrm{AlTi}-L_{1_{0}}}$ = -11000 $L_{\mathrm{Ta:Al,Ti}}^{0,\mathrm{AlTi}-L_{1_0}} = L_{\mathrm{Al,Ti:Ta}}^{0,\mathrm{AlTi}-L_{1_0}}$ = - 15134 - 2.36 T Phase AlM-D019 $L_{\text{Ta,Ti:AI:O}}^{0,\text{AIM}-D0_{19}} = -24000$ $L_{\text{Ta:AI,Ti:O}}^{0,\text{AIM}-D0_{19}} = 10656 - 1.332 T$ $L_{\text{Ti:Al,Ta:D}}^{0,\text{AIM}-D0_{19}} = 8000$ $L_{A1,Ti:Ta:D}^{0,AIM-D0_{19}} = 32000 - T$ $L_{AI:Ta,Ti:D}^{0,AIM-D0_{19}} = 2128$ $L_{AI,Ta:Ti:D}^{0,AIM-D0_{19}} = 20000$ Phase AlM-D022 $L_{Al:Ta,Ti}^{0,AIM-D0_{22}} = 20000$ Phase bcc-A2 $L_{AI,Ta,Ti:Box}^{0,bcc-A2} = -10000$ Phase bcc-B2 $G^{\bullet}_{Al:Ta} = -8250 + T$ $G^*_{Al:Ti} = -8750 + 1.25 T$ $L_{\text{Ti:Al,Ta:O}}^{0,\text{bcc}-B2} = L_{\text{Al,Ta:Ti:O}}^{0,\text{bcc}-B2}$ $= -G^{\bullet}_{Al:Ta}$ $L_{\text{Ta:Al,Ti:O}}^{0,\text{bcc}-B2} = L_{\text{Al,Ti:Ta:O}}^{0,\text{bcc}-B2} = -G_{\text{Al:Ti}}^{\bullet}$

Phase bcc-A2	
$L_{\rm AI,Mo,Ti;O}^{0,\rm bcc-A2} = -10000$	
$L_{\rm AI,Mo,Ti:D}^{1,\rm bcc-A2} = -10000$	
$L_{\rm Al,Mo,Ti:D}^{2,\rm bcc-A2} = -10000$	

Phase σ

$$L^{2,\sigma}_{Al:Ti:Al,Ta:O} = 300000$$

Table I - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub lattic	⊢ ces	Comments
Al-Ta-Ti	(Al)	Cu	cF4 Fm3m	М	4	
	(Ta)	w	c12 Im3m	М	2	
	bcc- <i>B</i> 2	CsCl	cP2 Pm3m	М ₁ М2	1 1	
	(Ti)	Mg	hP2 P6 ₃ /mmc	м	2	
	(Ti)	w	c12 Im3m	м	2	
	AlTi	AuCu	tP4 P4/mmm	Al Ti ₁ Ti ₂	2 1 1	AITi-L10
	AlTi3	Ni ₃ Sn	hP8 P63/mmc			AIM- <i>D</i> 0 ₁₉
	Al ₃ Ti	Al ₃ Ti	t18 14/mmm	Al ₁ Al ₂ Ti	2 4 2	A1M - D022
	σ	σCrFe	1P30 P42/mnm			

System Al-Ti-W

Solution Phases:

Liquid, bcc-A2, fcc-A1, bcc-B2, hcp-A3

Ternary Compounds:

AlM-D019, AlTi-L10

Modelling:

Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp- <i>A</i> 3	:	Substitutional, Redlich-Kister
bcc- <i>B</i> 2	:	Sublattice model, (Al,Ti,W)0.5(Al,Ti,W)0.5(□)3
		The thermodynamic description of the bcc-B2 takes
		into account the ordering reaction $bcc-A2 \rightleftharpoons bcc-B2$.
		Two descriptions are given:
		one using equations 23 and 27,
		the other using equations 23 and 28.
		For the latter, the parameters are given in a frame.
AIM-D019	:	Sublattice model, (Al,Ti,W) ₃ (Al,Ti,W)(□) _{0.5}
AlTi $-L1_0$:	Sublattice model, (Al,Ti,W)(Al,Ti,W)

Assessor and Date:

N. Saunders, 1996

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase AlM-D019

L ^{0,AIM-D019} Ti,W:AI:0	=	73212
L ^{0,AIM−D0₁₉ L¹;AI,W:□}	=	- 2000
L ^{0,AIM-D019}	=	8000
$L_{A1:Ti,W:D}^{0,AIM-D0_{19}}$	=	8136

Phase AlTi-L10

 $L_{\text{Ti},\text{W};\text{Al}}^{0,\text{A}|\text{Ti}-L_{1_{0}}} = L_{\text{Al};\text{Ti},\text{W}}^{0,\text{A}|\text{Ti}-L_{1_{0}}} = 16914$ $L_{\text{W};\text{Al},\text{Ti}}^{0,\text{A}|\text{Ti}-L_{1_{0}}} = L_{\text{Al},\text{Ti};\text{W}}^{0,\text{A}|\text{Ti}-L_{1_{0}}} = -15134 - 2.36 T$ $L_{\text{Ti};\text{Al},\text{W}}^{0,\text{A}|\text{Ti}-L_{1_{0}}} = L_{\text{Al},\text{W};\text{Ti}}^{0,\text{A}|\text{Ti}-L_{1_{0}}} = -3000$

Phase bcc-A2

 $L^{1,\text{bcc}-A2}_{\text{Al},\text{Ti},\text{W}:\text{D}} = 0$ $L^{2,\text{bcc}-A2}_{\text{Al},\text{Ti},\text{W}:\text{D}} = 0$

 $L^{3,\text{bcc}-A2}_{\text{Al},\text{Ti},\text{W},\text{Ti}:\square} = 0$

Phase bcc-B2

> Phase bcc-A2 $L_{AI,Ti:W:\Box}^{0,bcc-A2} = 0$ $L_{AI,Ti:W:\Box}^{1,bcc-A2} = 0$ $L_{AI,Ti:W:\Box}^{2,bcc-A2} = 0$

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Al-Ti-W	(Al)	Cu	cF4 Fm3m	M 4	
	(W)	w	c12 Im3m	M 2	
	bcc- <i>B</i> 2	CsCl	cP2 Pm3m	M ₁ 1 M ₂ 1	
	(Ti)	Mg	hP2 P63/mmc	M 2	
	(Ti)	w	c12 Im3m	M 2	
	AlTi	AuCu	tP4 P4/mmm	Al 2 Ti ₁ 1 Ti ₂ 1	AlTi- <i>L</i> 1 ₀
	AlTi3	Ni₃Sn	hP8 P63/mmc		AIM- <i>D</i> 019

Table I - Crystal Structure and Phase Description.

System B-Hf-Ti

Ternary Sol	ution Phases:	
0 . 1 .	1	Liquid, bcc-A2, hcp-A3
Quasi-binai	ry phases:	B.M. B.M. BM
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Sublattice model (Hf,Ti)(B,□) ₃
hcp-A3	:	Sublattice model (Hf,Ti)(B,D)0.5
B ₂ M	:	Quasi-binary, (B)2(Hf,Ti)
B_4M_3	:	Quasi-binary, (B)4(Hf,Ti)3
BM	:	Quasi-binary, (B)(Hf,Ti)
<u>Comments:</u>		
		No ternary compounds
Assessor an	<u>d Date:</u>	H. Bittermann, (1997)
<u>Publication</u>	<u>:</u>	H. Bittermann, and P. Rogl, J. Phase Equil., 18 , 24–47 (1997).

Thermodynamic properties of the solution and compound phases $(J.mol^{-1})$

Phase Liquid

$L_{ m B,Hf,Ti}^{0,{ m liquid}}$	=	41733.1	
L ^{0,liquid} B,Hf,Ti	=	125.375	Т
$L_{ m B,Hf,Ti}^{ m 0,liquid}$	=	93.6697	Т

Phase B₂M

 $L_{\rm B:Hf,Ti}^{0,{\rm B}_{2}{\rm M}}$ = 7223.32 + 1.75379 T

Phase B_4M_3

 $L_{\text{B:Hf,Ti}}^{0,\text{B}_4\text{M}_3} = 115124 - 49.5166 \ T$

Phase BM

 $L_{\rm B:Hf,Ti}^{0,\rm BM}$ = 19396.7 - 6.57772 T

Table I - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sul latti	o– ces
B-Hf-Ti	(B)	β−rhombo–B			
	(Hf)	Mg	hP2 P63/mmc	М	2
	(Hf)	w	c12 Im3m	м	2
	(Ti)	Mg	hP2 P63/mmc	м	2
	(Ti)	w	c12 Im3m	м	2
	ВМ	BFe	oP8 Pnma	B Ti	4 4
	B₂M	AIB ₂	hP3 P6/mmm	B Ti	2 1
	B₄M₃	B4Ta3	ol14 Immm		
1					

System Cu–Mg–Y

Ternary Solution Phases:

Liquid, fcc-A1, bcc-A2, hcp-A3

Modelling:

Liquid	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp43 :		Substitutional, Redlich-Kister
Assessor and	Date:	
		T. Bühler, RWTH, Aachen, Germany, (1997).
Comments:		
		No coefficents for the ternary solution phases.
		No ternary compounds.

Table I - Crystal Structure and Phase Description.

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices
Cu-Mg-Si	(Cu)	Cu	cF4 Fm3m	M 4
	(Mg)	Mg	hP2 P6 ₃ /mmc	M 2
	(Y)	w	c12 Im3m	M 4
	(Y)	Mg	hP2 P6 ₃ /mmc	M 2

System Cu-Mg-Si

Ternary Sol	ution Phases:	
(stable)		Liquid, fcc-A1, bcc-A2, hcp-A3
(metastable)		hcp-Zn
Ternary Co	mpounds:	CuMgSi- σ , CuMgSi- τ , Laves- C 15
Modelling:		
Liquid	:	Substitutional, Redlich-Kister
bcc-A2	:	Substitutional, Redlich-Kister
fcc-A1	:	Substitutional, Redlich-Kister
hcp-A3	:	Substitutional, Redlich-Kister
hcp-Zn	:	Substitutional, Redlich-Kister
CuMgSi-\sigma	:	Stoichiometric, (Cu) ₁₆ (Mg) ₆ (Si) ₇
$CuMgSi-\tau$:	Stoichiometric, (Cu) ₃ (Mg) ₂ (Si)
Laves- $C15$:	Sublattice model, (Cu,Mg,Si) ₂ (Cu,Mg,Si)

Assessor and Date:

T. Bühler, RWTH, Aachen, Germany, (1997).

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase CuMgSi- σ

.

$$\begin{array}{rcl} G^{\circ}(T) &- 16.0 & H_{Cu}^{\circ, fcc-A1}(298.15 \text{ K}) &- 6.0 & H_{Mg}^{\circ, hcp-A3}(298.15 \text{ K}) \\ &- 7.0 & H_{Si}^{\circ, diamond}(298.15 \text{ K}) &= G(Cu:Mg:Si) = \\ &- 559636 + 110.94 & T + 16.0 \text{ GHSER}_{Cu} + 6.0 & \text{GHSER}_{Mg} \\ &+ 7.0 & \text{GHSER}_{Si} \end{array}$$

 $L^{2,\mathrm{hcp-Zn}}_{\mathrm{Cu,Mg,Si:D}}$ = 50000

 $L_{Mg,Si:Cu}^{0,Laves-C15} = 15000$

 $L_{\rm Si:Cu,Mg}^{0,{\rm Laves}-C15} = 6599.45$

 $L_{Cu:Mg,Si}^{0,Laves-C15} = 8000$

 $L_{Cu,Mg:Si}^{0,Laves-C15} = 13011.35$

 $L_{\rm Cu,Si:Mg}^{0,{\rm Laves}-C15} = -193131 + 20.69 T$

${\bf Phase} ~~ {\bf CuMgSi}{-}\tau$
$G^{\circ}(T) - 3.0 H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - 2.0 H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) - H_{Si}^{\circ,diamond}(298.15 \text{ K}) = G(Cu:Mg:Si) = -141720 + 20.26 T + 3.0 \text{ GHSER}_{Cu} + 2.0 \text{GHSER}_{Mg} + \text{GHSER}_{S}$
Phase Liquid
$L_{Cu,Mg,Si}^{0,liquid} = 1E-04$
$L_{Cu,Mg,Si}^{1,liquid} = -141736$
$L_{Cu,Mg,Si}^{2,liquid} = 1E-04$
Phase hcp-Zn
$L_{Cu,Mg,Si;D}^{0,hcp-Zn} = 50000$
$L_{\rm Cu,Mg,Si:D}^{1,\rm hcp-Zn} = 50000$

Phase Laves-C15

Table I:a – Crystal	Structure and	l Phase Des	scription.
---------------------	---------------	-------------	------------

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
Cu-Mg-Si	(Cu)	Cu	cF4 Fm3m	M 4	
	(Mg)	Mg	hP2 P6 ₃ /mmc	M 2	
	(Si)	diamond	cF8 Fd3m	M 8	

System	Phase	Prototype	Pearson Symbol Space Group	Sub- lattices	Comments
	Cu2Mg	Cu2Mg	cF24 Fd3m	Cu 16 Mg 8	Laves-C15
	Cu ₁₆ Mg9Si7	Mn ₂₃ Th ₆	cF112 Fm3m	$\begin{array}{cccc} Si_1 & 4 \\ Si_1 & 24 \\ Mg & 24 \\ Cu_1 & 32 \\ Cu_2 & 32 \end{array}$	CuMgSi-σ
	Cu ₃ Mg ₂ Si	MgZn ₂	hP12 P6 ₃ /mmc	Si 2 Mg 4 Cu 6	CuMgSi-7

Table I:b - Crystal Structure and Phase Description.

System Cu-Mg-Zn

Ternary Solution Phases:

Liquid, fcc-A1, bcc-A2, bcc-B2, hcp-A3, hcp-Zn

Compounds:

Laves-C14, Laves-C15, Laves-C36, CuZn- γ , MgZn, Mg₂Zn₃, Mg₂Zn₁₁

Modelling:

$ fcc-A1 : Substitutional, Redlich-Kister \\ hcp-A3 : Substitutional, Redlich-Kister \\ hcp-Zn : Substitutional, Redlich-Kister \\ bcc-B2 : Sublattice model, (Cu,Mg,Zn)_{0.5}(Cu,Mg,Zn)_{0.5} \\ Two descriptions of the bcc-A2:bcc-B2 order-disorder \\ transformation are given: one which includes the parameters of the order and disordered phases in a single description (equation 21 and 22 in the thermodynamic modelling chapter), and a second one where the order and disorder contributions are expressed by equation 23. For the second case, the parameters are in a frame. hcp-Zn : Substitutional, Redlich-Kister-Muggianu CuZn-\gamma : Sublattice model, (Cu,Zn)_2(Cu,Zn)_2(Cu)_3(Mg,Zn)_6 Laves-C14 : Sublattice model, (Cu,Mg,Zn)_2(Cu,Mg,Zn) Laves-C15 : Sublattice model, (Cu,Mg,Zn)_2(Cu,Mg,Zn) Laves-C36 : Sublattice model, (Cu,Mg,Zn)_2(Cu,Mg,Zn) Laves-C36 : Sublattice model, (Mg)_2(Cu,Zn)_{13} Mg2n : Sublattice model, (Mg)_2(Cu,Zn)_3 Mg2Zn_1 : Sublattice model, (Mg)_2(Cu,Zn)_{11} Here A = A = A =$	Liquid	:	Substitutional, Redlich-Kister
hcp-A3:Substitutional, Redlich-Kisterhcp-Zn:Substitutional, Redlich-Kisterbcc-B2:Sublattice model, (Cu,Mg,Zn)_{0.5}(Cu,Mg,Zn)_{0.5}Two descriptions of the bcc-A2:bcc-B2 order-disordertransformation are given: one which includes theparameters of the order and disordered phases in a singledescription (equation 21 and 22 in the thermodynamicmodelling chapter), and a second one where the orderand disorder contributions are expressed by equation 23.For the second case, the parameters are in a frame.hcp-Zn:Substitutional, Redlich-Kister-MuggianuCuZn-γ:Sublattice model, (Cu,Zn)_2(Cu,Zn)_2(Cu)_3(Mg,Zn)_6Laves-C14:Sublattice model, (Cu,Mg,Zn)_2(Cu,Mg,Zn)Laves-C36:Sublattice model, (Cu,Mg,Zn)_2(Cu,Mg,Zn)MgZn:Sublattice model, (Mg)_1(Cu,Zn)_3Mg2Zn_1:Sublattice model, (Mg)_2(Cu,Zn)_3	fcc-A1	:	Substitutional, Redlich-Kister
$\begin{array}{llllllllllllllllllllllllllllllllllll$	hcp-A3	:	Substitutional, Redlich-Kister
$\begin{array}{llllllllllllllllllllllllllllllllllll$	hcp-Zn	:	Substitutional, Redlich-Kister
Two descriptions of the bcc-A2:bcc-B2 order-disorder transformation are given: one which includes the parameters of the order and disordered phases in a single description (equation 21 and 22 in the thermodynamic modelling chapter), and a second one where the order and disorder contributions are expressed by equation 23. For the second case, the parameters are in a frame.hcp-Zn:Substitutional, Redlich-Kister-Muggianu Substitutional, Redlich-Kister-MuggianuCuZn- γ :Sublattice model, (Cu,Zn)2(Cu,Zn)2(Cu)3(Mg,Zn)6 Laves-C14Laves-C14:Sublattice model, (Cu,Mg,Zn)2(Cu,Mg,Zn)Laves-C36:Sublattice model, (Cu,Mg,Zn)2(Cu,Mg,Zn)MgZn:Sublattice model, (Mg)12(Cu,Zn)3Mg2Zn3:Sublattice model, (Mg)2(Cu,Zn)3Mg2Zn11:Sublattice model, (Mg)2(Cu,Zn)11	bcc-B2	:	Sublattice model, (Cu,Mg,Zn) _{0.5} (Cu,Mg,Zn) _{0.5}
$\begin{array}{llllllllllllllllllllllllllllllllllll$			Two descriptions of the $bcc-A2:bcc-B2$ order-disorder
$\begin{array}{llllllllllllllllllllllllllllllllllll$			transformation are given: one which includes the
$\begin{array}{rcl} description (equation 21 and 22 in the thermodynamic modelling chapter), and a second one where the order and disorder contributions are expressed by equation 23. For the second case, the parameters are in a frame. hcp-Zn : Substitutional, Redlich-Kister-Muggianu CuZn-\gamma : Substitutional, Redlich-Kister-Muggianu CuZn-\gamma : Sublattice model, (Cu,Zn)_2(Cu,Zn)_2(Cu)_3(Mg,Zn)_6 Laves-C14 : Sublattice model, (Cu,Mg,Zn)_2(Cu,Mg,Zn) Laves-C15 : Sublattice model, (Cu,Mg,Zn)_2(Cu,Mg,Zn) Laves-C36 : Sublattice model, (Cu,Mg,Zn)_2(Cu,Mg,Zn) MgZn : Sublattice model, (Mg)_{12}(Cu,Zn)_{13} Mg2Zn3 : Sublattice model, (Mg)_2(Cu,Zn)_3 Mg2Zn11 : Sublattice model, (Mg)_2(Cu,Zn)_{11}$			parameters of the order and disordered phases in a single
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			description (equation 21 and 22 in the thermodynamic
and disorder contributions are expressed by equation 23. For the second case, the parameters are in a frame.hcp-Zn:CuZn- γ :Substitutional, Redlich-Kister-MuggianuCuZn- γ :Sublattice model, $(Cu,Zn)_2(Cu,Zn)_2(Cu)_3(Mg,Zn)_6$ Laves-C14:Laves-C15:Sublattice model, $(Cu,Mg,Zn)_2(Cu,Mg,Zn)$ Laves-C36:Sublattice model, $(Cu,Mg,Zn)_2(Cu,Mg,Zn)$ MgZn:Sublattice model, $(Mg)_{12}(Cu,Zn)_{13}$ Mg2Zn_3:Sublattice model, $(Mg)_2(Cu,Zn)_3$ Mg2Zn_1:Sublattice model, $(Mg)_2(Cu,Zn)_{11}$			modelling chapter), and a second one where the order
For the second case, the parameters are in a frame.hcp-Zn:Substitutional, Redlich-Kister-MuggianuCuZn- γ :Sublattice model, $(Cu,Zn)_2(Cu,Zn)_2(Cu)_3(Mg,Zn)_6$ Laves-C14:Sublattice model, $(Cu,Mg,Zn)_2(Cu,Mg,Zn)$ Laves-C15:Sublattice model, $(Cu,Mg,Zn)_2(Cu,Mg,Zn)$ Laves-C36:Sublattice model, $(Cu,Mg,Zn)_2(Cu,Mg,Zn)$ MgZn:Sublattice model, $(Mg)_{12}(Cu,Zn)_{13}$ Mg_2Zn_3:Sublattice model, $(Mg)_2(Cu,Zn)_3$ Mg_2Zn_1:Sublattice model, $(Mg)_2(Cu,Zn)_{11}$			and disorder contributions are expressed by equation 23.
$\begin{array}{llllllllllllllllllllllllllllllllllll$			For the second case, the parameters are in a frame.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	hcp-Zn	:	Substitutional, Redlich-Kister-Muggianu
Laves-C14:Sublattice model, $(Cu,Mg,Zn)_2(Cu,Mg,Zn)$ Laves-C15:Sublattice model, $(Cu,Mg,Zn)_2(Cu,Mg,Zn)$ Laves-C36:Sublattice model, $(Cu,Mg,Zn)_2(Cu,Mg,Zn)$ MgZn:Sublattice model, $(Mg)_{12}(Cu,Zn)_{13}$ Mg_Zn_3:Sublattice model, $(Mg)_2(Cu,Zn)_3$ Mg_Zn_1:Sublattice model, $(Mg)_2(Cu,Zn)_{11}$	$CuZn-\gamma$:	Sublattice model, (Cu,Zn)2(Cu,Zn)2(Cu)3(Mg,Zn)6
Laves-C15:Sublattice model, $(Cu,Mg,Zn)_2(Cu,Mg,Zn)$ Laves-C36:Sublattice model, $(Cu,Mg,Zn)_2(Cu,Mg,Zn)$ MgZn:Sublattice model, $(Mg)_{12}(Cu,Zn)_{13}$ Mg2Zn_3:Sublattice model, $(Mg)_2(Cu,Zn)_3$ Mg_2Zn_1:Sublattice model, $(Mg)_2(Cu,Zn)_{11}$	Laves- $C14$:	Sublattice model, (Cu,Mg,Zn) ₂ (Cu,Mg,Zn)
Laves-C36:Sublattice model, $(Cu,Mg,Zn)_2(Cu,Mg,Zn)$ MgZn:Sublattice model, $(Mg)_{12}(Cu,Zn)_{13}$ Mg_2Zn_3:Sublattice model, $(Mg)_2(Cu,Zn)_3$ Mg_2Zn_11:Sublattice model, $(Mg)_2(Cu,Zn)_{11}$	Laves- $C15$:	Sublattice model, (Cu,Mg,Zn)2(Cu,Mg,Zn)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Laves- $C36$:	Sublattice model, (Cu,Mg,Zn) ₂ (Cu,Mg,Zn)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MgZn	:	Sublattice model, (Mg) ₁₂ (Cu,Zn) ₁₃
Mg_2Zn_{11} : Sublattice model, $(Mg)_2(Cu,Zn)_{11}$	Mg ₂ Zn ₃	:	Sublattice model, (Mg) ₂ (Cu,Zn) ₃
	Mg_2Zn_{11}	:	Sublattice model, (Mg)2(Cu,Zn)11

Assessor and Date:

Publication:

P. Liang, H. L. Lukas (1997)

P. Liang, H. L. Lukas, H. J. Seifert, G. Ghosh, G. Effenberg, F. Aldinger, in preparation for *Calphad* (1997)

Thermodynamic properties of the solution and compound phases (J.mol⁻¹)

Phase bcc-B2

 $G^{\bullet}_{\mathrm{Cu:Mg}} = 0.0$ $L_{Cu,Mg}^{0} = -2500$ $G^*_{\mathrm{Cu:Zn}} = 0.0$ $L_{Cu,Zn}^{0} = -12898.97 + 3.26598 T$ $L_{\rm Cu,Zn}^1 = 945.265 - 0.80679 \ T$ $L^2_{Cu,Zn} = 1921.485 - 1.86969 T$ $G^{\bullet}_{Mg:Zn} = 0.0$ $L_{Mg,Zn}^{0} = -2500$ L^{0,bcc−B2} Cu,Mg:Zn:□ L^{0,bcc-B2} Zn:Cu,Mg:D $= -G^{\bullet}_{Cu;Mg} + L^{0}_{Cu,Mg} - L^{1}_{Cu,Zn} + 0.5 L^{2}_{Cu,Zn}$ = $L^{1,\mathrm{bcc}-B2}_{\mathrm{Cu},\mathrm{Mg:Zn:D}}$ $L^{1,\text{bcc}-B2}_{\text{Zn:Cu},\text{Mg:D}}$ $= -0.5 L_{Cu,Zn}^2$ = L^{0,bcc-B2} Mg:Cu,Zn:D $L^{0,\mathrm{bcc}-B2}_{\mathrm{Cu,Zn:Mg:D}}$ $= -G^{\bullet}_{Cu;Zn} + L^{0}_{Cu,Zn}$ = $L^{1,bcc-B2}_{Cu,Zn:Mg:\square}$ $L^{1,\mathrm{bcc}-B2}_{\mathrm{Mg:Cu,Zn:}\square}$ $= L^1_{\mathrm{Cu,Zn}}$ = $L^{2,\mathrm{bcc}-B2}_{\mathrm{Cu,Zn:Mg:D}}$ $L^{2,\mathrm{bcc}-B_2}_{\mathrm{Mg:Cu,Zn:D}}$ $= L^2_{Cu,Zn}$ = $L^{0,\mathrm{bcc}-B2}_{\mathrm{Mg,Zn:Cu:D}}$ L^{0,bcc−B2} Cu:Mg,Zn:□ $= -G^{\bullet}_{Mg;Zn} + L^{0}_{Mg,Zn} + L^{1}_{Cu,Zn} + 0.5 L^{2}_{Cu,Zn}$ = L^{1,bcc-B2} Mg,Zn:Cu:D L^{1,bcc-B2} Cu:Mg,Zn:D $= 0.5 L_{Cu,Zn}^2$ = L^{0,bcc-B2} Mg,Zn:Cu,Zn:D $L^{0,\mathrm{bcc}-B2}_{\mathrm{Cu},\mathrm{Zn}:\mathrm{Mg},\mathrm{Zn}:\Box}$ $= -5 L_{Cu,Zn}^2$ = L^{0,bcc−B2} Mg,Zn:Cu,Mg:□ L^{0,bcc-B2} Cu,Mg:Mg,Zn:D $= -2 L_{Cu,Zn}^2$ = $L^{0,\mathrm{bcc}-B2}_{\mathrm{Cu,Zn:Cu,Mg:D}}$ $L^{0,\mathrm{bcc}-B2}_{\mathrm{Cu},\mathrm{Mg:Cu,Zn:D}}$ $= -5 L_{Cu,Zn}^2$ = $L^{0,\mathrm{bcc}-B2}_{\mathrm{Cu},\mathrm{Mg},\mathrm{Zn}:\mathrm{Cu}:\Box}$ $L^{0,bcc-B2}_{Cu:Cu,Mg,Zn:\Box}$ $= 1.5 L_{Cu,Zn}^2$ = $L^{0,\mathrm{bcc}-B2}_{\mathrm{Cu},\mathrm{Mg},\mathrm{Zn}:\mathrm{Zn}:\Box}$ $L^{0,\mathrm{bcc}-B2}_{\mathrm{Zn}:\mathrm{Cu},\mathrm{Mg},\mathrm{Zn}:\Box}$ $= 1.5 L_{Cu,Zn}^2$ =

Phase bcc-A2 $L_{Cu,Mg,Zn:\Box}^{0,bcc-A2} = 0$ $L_{Cu,Mg,Zn:\Box}^{1,bcc-A2} = 0$ $L_{Cu,Mg,Zn:\Box}^{2,bcc-A2} = 0$

Phase Mg₂Zn₁₁

 $L^{0,Mg_2Zn_{11}}_{Mg:\mathrm{Cu},\mathrm{Zn}}$ = -351000Phase Laves-C14 $L_{
m Mg,Zn:Cu}^{0,
m Laves-C14}$ = 35000.00 $L_{\mathrm{Cu:Mg,Zn}}^{0,\mathrm{Laves}-C14}$ 35000.00 = $L_{\mathrm{Zn:Cu,Mg}}^{0,\mathrm{Laves}-C14}$ 6599.45 = L^{0,Laves-C14} Cu,Mg:Zn = 13011.35 $L_{Cu,Zn:Mg}^{0,Laves-C14} = -75305.48$ Phase Laves-C15 $L_{\mathrm{Cu,Mg:Zn}}^{0,\mathrm{Laves}-C15}$ = 13011.35 $L_{\mathrm{Zn:Cu,Mg}}^{0,\mathrm{Laves}-C15}$ = 6599.45 $L_{\mathrm{Mg,Zn:Cu}}^{0,\mathrm{Laves}-C15}$ 35000.00 = $L_{\rm Cu:Mg,Zn}^{0,{\rm Laven}-C15}$ 8000.00 = $L_{\mathrm{Cu,Zn:Mg}}^{0,\mathrm{Laves}-C15}$ - 78824.62 = $L_{
m Mg:Cu,Zn}^{0,
m Laves-C15}$ = 25529.06

٠

.

Phase Laves– $C36$						
$L_{Mg,Zn:Cu}^{0,Laves-C36} = 35000.00$						
$L_{\rm Cu:Mg,Zn}^{0,{\rm Laves}-C36} = 8000.00$						
$L_{\rm Zn:Cu,Mg}^{0,{\rm Laves}-C36} = 6599.45$						
$L_{Cu,Mg;Zn}^{0,Laves-C36} = 13011.35$						
$L_{\rm Cu,Zn:Mg}^{0,{\rm Laves}-C36} = -90226.26$						
Phase Mg_2Zn_3						
$L_{Mg:Cu,Zn}^{0,Mg_2Zn_3} = -100000$						
Phase MgZn						
$L_{Mg:Cu,Zn}^{0,MgZn} = -575000$						
Phase $CuZn-\gamma$						
$\begin{array}{l} \mathrm{K4} = -\ 11552.71 - 1.67824 \ T \\ \mathrm{K5} = \ 15732.3 - \ 10.26575 \ T \\ \mathrm{K6} = \ 37289.2 - \ 13.05259 \ T \\ \mathrm{K7} = \ 9000.0 - \ 1.50000 \ T \\ \mathrm{13} \ \mathrm{K4} + \ 2 \ \mathrm{K5} + \ 2 \ \mathrm{K6} + \ 6 \ \mathrm{K7} = \ 9857.77 - \ 77.4538 \ T \\ \mathrm{13} \ \mathrm{K4} + \ 2 \ \mathrm{K5} + \ 2 \ \mathrm{K6} + \ 6 \ \mathrm{K7} = \ 9857.77 - \ 77.4538 \ T \\ \mathrm{13} \ \mathrm{K4} + \ 2 \ \mathrm{K6} + \ 6 \ \mathrm{K7} = - \ 21606.83 - \ 56.9223 \ T \\ \mathrm{13} \ \mathrm{K4} + \ 2 \ \mathrm{K6} + \ 6 \ \mathrm{K7} = - \ 21606.83 - \ 56.9223 \ T \\ \mathrm{G}^{\circ}(T) - \ 5.0 \ H_{\mathrm{Cu}}^{\circ,\mathrm{fcc}-A1}(298.15 \ \mathrm{K}) - \ 6.0 \ H_{\mathrm{Mg}}^{\circ,\mathrm{hcp}-A3}(298.15 \ \mathrm{K}) \\ - \ 2.0 \ H_{\mathrm{Zn}}^{\circ,\mathrm{hcp}-\mathrm{Zn}}(298.15 \ \mathrm{K}) = \mathrm{G}(\mathrm{Zn}:\mathrm{Cu}:\mathrm{Cu}:\mathrm{Mg}) = \end{array}$						
13.0 K4 + 2.0 K5 + 2.0 K6 + 6 K7 + 5.0 GHSER _{Cu} + 6.0 GHSER _{Mg} + 2.0 GHSER _{Zn}						
$G^{\circ}(T) - 5.0 H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - 6.0 H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) \\ - 2.0 H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = G(Cu:Zn:Cu:Mg) = \\ 13.0 K4 + 6.0 K7 + 5.0 GHSER_{Cu} + 6.0 GHSER_{Mg} \\ + 2.0 GHSER_{Zn} \\ G^{\circ}(T) - 3.0 H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) - 6.0 H_{Mg}^{\circ,hcp-A3}(298.15 \text{ K}) $						
- 4.0 $H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) = G(Cu:Zn:Cu:Mg) =$ 13.0 K4 + 2.0 K6 + 6.0 K7 + 3.0 GHSER _{Cu} + 6.0 GHSER _{Mg}						

+ 4.0 GHSER_{Zn}

.

System	Phase	Prototype	Pearson Symbol Space Group	Sub lattic	⊢ ces	Comments
Cu-Mg-Zn	(Cu)	Cu	cF4 Fm3m	М	4	
	(Mg)	Mg	hP2 P6 ₃ /mmc	М	2	
	(Zn)	Mg	hP2 P6 ₃ /mmc	М	2	
	CuMg ₂	CuMg ₂	oF48 Fddd	Cu Mg1 Mg2	16 16 16	
	Cu_2Mg	Cu ₂ Mg	cF24	Cu	16	Laves- $C15$
	Laves-C36	MgNi2	P 43m hP24 P6 ₃ /mmc	Mg Cr ₁ Cr ₂ Zr ₁ Zr ₂	8 6 3 3	Laves-C36
	Laves-C14	MgZn ₂	hP12 P6 ₃ /mmc	Cr Cr Zr	2 6 4	Laves-C14
	γ	Cu ₅ Zn ₈	c152 I43m	Cu ₁ Cu ₂ Zn ₁ Zn ₂	8 12 8 24	Cu ₅ Zn
	Mg ₂ Zn ₁₁	Mg ₂ Zn ₁₁	cP39 Pm3			
	MgZn					
	Mg ₂ Zn ₃		mC110 B2/m			

Table I - Crystal Structure and Phase Description.

APPENDICES

.

APPENDIX I: THERMODYNAMIC PROPERTIES OF THE ELEMENTS (*J.mol*⁻¹)

NOTE: The Gibbs Energies of Formation at T are relative to the Enthalpy of the Pure Elements in their Reference Phase at 298.15 K 1

ALUMINIUM

Aluminium fcc-A1 GHSER_{A1} = $G_{A1}^{fcc-A1}(T) - H_{A1}^{o,fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 700.00 : -7976.15 + 137.093038 T - 24.3671976 $T \cdot \ln T$ -1.884662E-3 $T^2 - 0.877664E-6$ T^{32} $+74092 T^{-1}$ 700.00 < T < -933.47 : -11276.24 + 223.048446 T - 38.5844296 $T \cdot \ln T$ + 18.531982E-3 T^2 -5.764227E-6 T^3 $+74092 T^{-1}$ 933.47 < T < 2900.00 : $-11278.378 + 188.684153 T - 31.748192 T \cdot \ln T$ -1230.524E25 T^{-9} Aluminium bcc-A2 $GBCC_{AI} = G_{AI}^{bcc-A2}(T) - H_{AI}^{\circ, fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 2900.00 : 10083.00 - 4.813 T + GHSER_{AI} Aluminium cbcc-A12 $G_{\rm Al}^{\rm cbcc-A12}(T) - H_{\rm Al}^{\circ, \rm fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 2900.00 : 10083.40 - 4.813 T + GHSER_{A1} Aluminium bcc-B2 $G_{Al:Al}^{bcc-B2}(T) - H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) =$ $298.15 < T < 2900.00 : GBCC_{A1}$ Aluminium bct-A5 $G_{A1}^{bct-A5}(T) - H_{A1}^{o,fcc-A1} =$ 298.15 < T < 2900.00 : 10083.0 - 4.813 T + GHSER_{A1}

¹Scientific Group Thermodata Europe (S.G.T.E.) Data for Pure Elements, A.T. Dinsdale, CAL-PHAD, 15, 4, 317 - 425 (1991).

Aluminium cub-A13 $G_{A1}^{\text{cub}-A13}(T) - H_{A1}^{\circ,\text{fcc}-A1} =$ 298.15 < T < 2900.00 : 10920.44 - 4.8116 T + GHSER_{A1} Aluminium diamond $G_{\rm Al}^{\rm diamond}(T) - H_{\rm Al}^{\circ, \rm fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 2900.00 : 30.0 T + GHSER_{A1} Aluminium hcp-A3 $GHCP_{Al} = G_{Al}^{hcp-A3} (T) - H_{Al}^{\circ,fcc-A1} (298.15 \text{ K}) =$ 298.15 < T < 2900.00 : 5481.0 - 1.8 T + GHSER_{AL} Aluminium hcp-Zn $G_{Al}^{hcp-Zn}(T) - H_{Al}^{\circ,fcc-A1}(298.15 \text{ K}) =$ 298.15 $< \overline{T} < 6000.00$: 5482 - 1.8 T + GHSER_{Al} Aluminium liquid $GLIQ_{AI} = G_{AI}^{liquid}(T) - H_{AI}^{\circ,fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 933.47 : + 11005.029 - 11.841867 T + 7.934E-20 T^7 + GHSER_{AI} 933.47 < T < 2900.00 : + 10482.382 - 11.253974 T + 1.231E + 28 T⁻⁹ + GHSERAL

BORON

```
Boron \beta-rhombo-B

GHSER<sub>B</sub> = G_{B}^{\beta-rhombo-B}(T) - H_{B}^{\circ,\beta-rhombo-B}(298.15 K) =

298.15 < T < 1100.00 : -7735.284 + 107.111864 T - 15.6641 T · lnT

- 0.006864515 T<sup>2</sup> + 6.18878E-07 T<sup>3</sup>

+ 370843 T<sup>-1</sup>

1100.00 < T < 2348.00 : -16649.474 + 184.801744 T - 26.6047 T · lnT

- 7.9809E-04 T<sup>2</sup> - 2.556E-08 T<sup>3</sup>

+ 1748270 T<sup>-1</sup>

2348.00 < T < 3000.00 : -36667.582 + 231.336244 T - 31.5957527 T · lnT

- 0.00159488 T<sup>2</sup> + 1.34719E-07 T<sup>3</sup>

+ 11205883 T<sup>-1</sup>

3000.00 < T < 6000.00 : -21530.653 + 222.396264 T - 31.4 T · lnT
```

 $GBCC_B = G_B^{bcc-A2}(T) - H_B^{\circ,\beta-rhombo-B}(298.15 \text{ K}) =$ $298.15 < T < 6000.00 : 50208.0 - 13.472 T + GHSER_B$ **Boron** diamond $G_{\rm B}^{\rm diamond}(T) - H_{\rm B}^{\circ,\beta-\rm rhombo-B} =$ 298.15 < T < 6000.00 : 20 + GHSER_B **Boron fcc**-A1 $GFCC_B = G_B^{fcc-A1} (T) - H_B^{\circ,\beta-rhombo-B}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 43514.0 - 12.217 T + GHSER_B Boron hcp-A3 $GHCP_{B} = G_{B}^{hcp-A3}(T) - H_{B}^{\circ,\beta-rhombo-B}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 50208.0 - 9.706 $T + \text{GHSER}_{B}$ **Boron** liquid $GLIQ_B = G_B^{liquid}(T) - H_B^{\circ,\beta-rhombo-B}(298.15 \text{ K}) =$ 298.15 < T < 500.00 : 40723.275 + 86.843839 $T - 15.6641 T \cdot \ln T$ -0.006864515 $T^{2} + 6.18878E-07$ T^{3} $+ 370843 T^{-1}$ $500.00 < T < 2348.00 : 41119.703 + 82.101722 T - 14.9827763 T \cdot \ln T$ $-0.007095669 T^{2} + 5.07347E-07 T^{3}$ $+ 335484 T^{-1}$ $2348.00 < T < 6000.00 : + 28842.012 + 200.94731 T - 31.4 T \cdot \ln T$

CARBON

```
Carbon graphite

GHSER<sub>C</sub> = G_{C}^{\text{graphite}}(T) - H_{C}^{\circ,\text{graphite}}(298.15 \text{ K}) =

298.15 < T < 6000.00 : -17368.441 + 170.73 T - 24.3 T · lnT

- 4.723E-04 T<sup>2</sup> + 2562600 T<sup>-1</sup> - 2.643E+08 T<sup>-2</sup>

+ 1.2E+10 T<sup>-3</sup>
```

Carbon diamond

 $\begin{aligned} G_{\rm C}^{\rm diamond}(T) &- H_{\rm C}^{\circ,{\rm graphite}}(298.15 \text{ K}) = \\ &298.15 < T < 6000.00 : -16359.441 + 175.61 T - 24.31 T \cdot \ln T \\ &- 4.723 \text{F-04} T^2 + 2698000 T^{-1} - 2.61 \text{E+08} T^{-2} \\ &+ 1.11 \text{E+10} T^{-3} \end{aligned}$

Carbon liquid

 $\begin{aligned} \text{GLIQ}_{\text{C}} &= G_{\text{C}}^{\text{liquid}}(T) - H_{\text{C}}^{\circ,\text{graphite}}(298.15 \text{ K}) = \\ 298.15 &< T < 6000.00 : 117369 - 24.63 T + \text{GHSER}_{\text{C}} \end{aligned}$

CERIUM

Cerium fcc-A1 GHSER_{Ce} = $G_{Ce}^{fcc-A1}(T) - H_{Ce}^{\circ,fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 1000.00 : $-7160.519 + 84.23022 T - 22.3664 T \cdot \ln T$ -0.0067103 $T^{2} - 3.20773 \text{E-}07$ $T^{3} - 18117$ T^{-1} $1000.00 < T < 2000.00 : -79678.506 + 659.4604 T - 101.32248 T \cdot \ln T$ + 0.026046487 T^2 - 1.9302976E-06 T^3 + 11531707 T^{-1} $2000.00 < T < 4000.00 : -14198.639 + 190.370192 T - 37.6978 T \cdot \ln T$ Cerium bcc-A2 $GBCC_{Ce} = G_{Ce}^{bcc-A2}(T) - H_{Ce}^{o,fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 1000.00 : -1354.69 - 5.21501 T - 7.7305867 $T \cdot \ln T$ -0.029098402 $T^{2} + 4.784299$ E-06 $T^{3} - 196303$ T^{-1} $1000.00 < T < 1072.00 : -12101.106 + 187.449688 T - 37.6142 T \cdot \ln T$ $1072.00 < T < 6000.00 : -11950.375 + 186.333811 T - 37.4627992 T \cdot \ln T$ -5.7145E-05 $T^{2} + 2.348$ E-09 $T^{3} - 25897$ T^{-11} Cerium dhcp $G_{Ce}^{dhcp}(T) - H_{Ce}^{\circ,fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 4000.00 : -190.0 + 0.56886 T + GHSER_{Ce} Cerium hcp-A3 $GHCP_{Ce} = G_{Ce}^{hcp-A3}(T) - H_{Ce}^{\circ,fcc-A1}(298.15 \text{ K}) =$ $298.15 < T < 4000.00 : 50000 + GHSER_{c.}$ Cerium liquid $GLIQ_{Ce} = G_{Ce}^{liquid}(T) - H_{Ce}^{o,fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 1000.00 : 4117.865 - 11.423898 T - 7.5383948 T $\cdot \ln T$ -0.02936407 $T^{2} + 4.827734E-06$ $T^{3} - 198834$ T^{-1} $1000.00 < T < 4000.00 : -6730.605 + 183.023193 T - 37.6978 T \cdot \ln T$

CHROMIUM

Chromium bcc-A2(paramagnetic) $GHSER_{Cr} = G_{Cr}^{bcc-A2, para}(T) - H_{Cr}^{o, bcc-A2, para}(298.15 \text{ K}) =$ 298.15 < T < 2180.00 : -8856.94 + 157.48 T - 26.908 $T \cdot \ln T$ + 1.89435E-3 T^2 - 1.47721E-6 T^3 + 139250 T^{-1} $2180.00 < T < 6000.00 : -34869.344 + 344.18 T - 50 T \cdot \ln T$ $-2885.26E29 T^{-9}$ Chromium cbcc-A12 $G_{C_{2}}^{\text{obcc}-A12,\text{para}}(T) - H_{C_{2}}^{\text{o,bcc}-A2,\text{para}}(298.15 \text{ K}) =$ $298.15 < T < 6000.00 : 11087.0 + 2.7196 T + GHSER_{Cr}$ Chromium cub-A13 $G_{Cr}^{\text{cub}-A13}(T) - H_{Cr}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 15899.0 + 0.6276 T + GHSER_{Cr} Chromium fcc-A1(paramagnetic) $GFCC_{Cr} = G_{Cr}^{fcc-A1}(T) - H_{Cr}^{o,bcc-A2,para}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 7284.0 + 0.163 T + GHSER_{Cr} + Chromium hcp-A3(paramagnetic) $GHCP_{Cr} = G_{Cr}^{hcp-A3}(T) - H_{Cr}^{o,bcc-A2,para}(298.15 \text{ K}) =$ $298.15 < T < 6000.00 : 4438.00 + GHSER_{Cr} +$ Chromium liquid $GLIQ_{Cr} = G_{Cr}^{\text{liquid}}(T) - H_{Cr}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \text{ K}) =$ 298.15 < T < 2180.00 : 24339.955 - 11.420225 T + 2.37615E-21 T^7 $+ GHSER_{Cr}$ $2180.00 < T < 6000.00 : 18409.36 - 8.563683 T + 2.88526E + 32 T^{-9}$ + GHSER_{Cr} Chromium Laves-C14 $G_{\rm Cr;Cr}^{\rm Cr,Laves-C14}$ - 3.0 $H_{\rm Cr}^{\rm o,bcc-A2}(298.15 \text{ K}) =$ $298.15 < T < 6000.00 : 15000.0 + 3.0 \text{ GHSER}_{Cr}$ Chromium Laves-C15 $G_{\rm Cr,Laves-C15}^{\rm Cr,Laves-C15} - 3.0 \ H_{\rm Cr}^{\rm o,bcc-A2}(298.15 \ {\rm K}) =$ $298.15 < T < 6000.00 : 15000.0 + 3.0 \text{ GHSER}_{Cr}$

Chromium Laves-C36

 $G_{Cr:Cr}^{Cr,Laves-C36} - 3.0 \quad H_{Cr}^{o,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 15000.0 + 3.0 GHSER_{Cr}

COPPER

Copper fcc-A1GHSER_{Cu} = $G_{Cu}^{fcc-A1}(T) - H_{Cu}^{o,fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 1357.77 : -7770.458 + 130.485235 T - 24.112392 $T \cdot \ln T$ -2.65684E-3 $T^{2} + 0.129223E-6$ $T^{3} + 52478$ T^{-1} $1357.77 < T < 3200.00 : -13542.026 + 183.803828 T - 31.38 T \cdot \ln T$ $+ 364.167E27 T^{-9}$ Copper bcc-A2 $GBCC_{Cu} = G_{Cu}^{bcc-A2}(T) - H_{Cu}^{o,fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 3200.00 : 4017.00 - 1.255 $T + \text{GHSER}_{Cu}$ Copper hcp-A3 $GHCP_{Cu} = G_{Cu}^{hcp-A3}(T) - H_{Cu}^{\circ,fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 3200.00 : $600.0 + 0.2 T + GHSER_{Cu}$ **Copper** liquid $GLIQ_{Cu} = G_{Cu}^{liquid}(T) - H_{Cu}^{o,fcc-A1}(298.15 \text{ K}) =$ 298.15 < T < 1357.77 : 12964.736 - 9.511904 T - 5.849E-21 T⁷ $+ GHSER_{Cu}$ $1357.77 < T < 3200.00 : 13495.481 - 9.922344 T - 3.642E + 29 T^9$ $+ GHSER_{Cu}$

IRON

Iron bcc-A2(paramagnetic) GHSER_{Fe} = $G_{Fe}^{bcc-A2,para}(T) - H_{Fe}^{o,bcc-A2,para}(298.15 \text{ K}) =$ 298.15 < T < 1811.00 : 1225.7 + 124.134 T - 23.5143 T · lnT - 4.39752E-3 T² - 0.058927E-6 T³ + 77359 T⁻¹

 $1811.00 < T < 6000.00 : -25383.581 + 299.31255 T - 46 T \cdot \ln T$ + 2296.03E28 T^{-9} Iron cbcc-A12 $G_{\rm Fe}^{\rm cbcc-A12}(T) - H_{\rm Fe}^{\circ, \rm bcc-A2, para}(298.15 \text{ K}) =$ 298.15 $< T < 6000.00 : + 4745 + GHSER_{Fe}$ Iron cub-A13 $G_{\text{Fe}}^{\text{cub}-A13}(T) - H_{\text{Fe}}^{\circ,\text{bcc}-A2,\text{para}}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 3745 + GHSER_{Fe} Iron fcc-A1(paramagnetic) $GFCC_{Fe} = G_{Fe}^{fcc-A1}(T) - H_{Fe}^{o,bcc-A2,para}(298.15 \text{ K}) =$ 298.15 < T < 1811.00 : $-1462.4 + 8.8282 T - 1.15 T \cdot \ln T$ + 0.00064 T^2 + GHSER_{Fe} 1811.00 < T < 6000.00 : -713.815 + 0.94001 T+ 0.49251 T^{-9} + GHSER_{Fe} Iron hcp-A3 $GHCP_{Fe} = G_{Fe}^{hcp-A3}(T) - H_{Fe}^{o,bcc-A2,para}(298.15 \text{ K}) =$ 298.15 < T < 1811.00 : $-3705.78 + 12.591 T - 1.15 T \cdot \ln T$ + 6.4E-04 T^2 + GHSER_F $1811.00 < T < 6000.00 : -3957.199 + 5.24951 T + 4.9251E+30 T^{-9}$ + GHSER_{Fe} Iron liquid $GLIQ_{Fe} = G_{Fe}^{liquid}(T) - H_{Fe}^{o,bcc-A2,para}(298.15 \text{ K}) =$ 298.15 < T < 1811.00 : + 12040.17 - 6.55843 T - 3.67516E-21 T^7 + GHSER_{Fe}

HAFNIUM

Hafnium hcp-A3 GHSER_{Hf} = $G_{\text{Hf}}^{\text{hcp-A3}}(T) - H_{\text{Hf}}^{\circ,\text{hcp-A3}}(298.15 \text{ K}) =$ 298.15 < T < 2506.00 : -6987.297 + 110.744026 T - 22.7075 T \cdot \nT - 0.004146145 T^2 - 4.77E-10 T^3 - 22590 T^{-1}

 $2506.00 < T < 6000.00 : -1446776.33 + 6193.60999 T - 787.536383 T \cdot \ln T$ + 0.1735215 T^2 - 7.575759E-06 T^3 + 5.01742495E+08 T^{-1} Hafnium bcc-A2 $GBCC_{Hf} = G_{Hf}^{bcc-A2}(T) - H_{Hf}^{o,hcp-A3}(298.15 \text{ K}) =$ 298.15 < T < 2506.00 : 5370.703 + 103.836026 T - 22.8995 T $\cdot \ln T$ $-0.004206605 T^{2} + 8.71923E-07 T^{3} - 22590 T^{-1}$ -1.446E-10 T⁴ $2506.00 \quad < T < \quad 6000.00 \quad : \quad + \ 1912456.77 - 8624.20573 \quad T + \ 1087.61412 \quad T \cdot \ln T$ -0.286857065 $T^{2} + 1.3427829E-05$ T^{3} -6.10085091E+08 T^{-1} Hafnium fcc-A1 $GFCC_{Hf} = G_{Hf}^{fcc-A1}(T) - H_{Hf}^{\circ,hcp-A3}(298.15 \text{ K}) =$ $298.15 < T < 6000.00 : 10000 - 2.2 T + GHSER_{Hf}$ Hafnium liquid $\text{GLIQ}_{\text{Hf}} = G_{\text{Hf}}^{\text{liquid}}(T) - H_{\text{Hf}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) =$ 298.15 < T < 1000.00 : 20414.959 + 99.790933 T -22.7075 $T \cdot \ln T$ - 0.004146145 T^2 - 4.77E-10 T^3 - 22590 T^{-1} $1000.00 < T < 2506.00 : 49731.499 - 149.91739 T + 12.116812 T \cdot \ln T$ -0.021262021 $T^{2} + 1.376466$ E-06 $T^{3} - 4449699$ T^{-1} $2506.00 < T < 6000.00 : -4247.217 + 265.470523 T - 44 T \cdot \ln T$

LITHIUM

Lithiun	ı bcc–A	2	
GHSER	$L_i = G_{Li}^{bcc}$	$^{-A2}(T)$ -	$H_{\rm Li}^{\circ, \rm bcc-A2}(298.15 {\rm K}) =$
200.00	< <i>T</i> <	453.60	: $-10583.817 + 217.637482 T - 38.940488 T \cdot \ln T$ + $35.466931E-3 T^2 - 19.869816E-6 T^3 + 159994 T^{-1}$
453.60	< <i>T</i> <	500.00	: $-559579.123 + 10547.879893 T$ $-1702.8886493 T \cdot \ln T$ $+2258.329444E-3 T^2 - 571.066077E \cdot 6 T^3$ $+33885874 T^{-1}$
500.00	< <i>T</i> <	3000.00	: $-9062.994 + 179.278285 T - 31.2283718 T \cdot \ln T$ + 2.633221E-3 $T^2 - 0.438058E-6 T^3 - 102387 T^{-1}$

Lithium fcc-A1 $GFCC_{Li} = G_{Li}^{fcc-A1}(T) - H_{Li}^{\circ,bcc-A2}(298.15 \text{ K}) =$ $200.00 < T < 3000.00 : -108 + 1.3 T + GHSER_{Li}$ Lithium hcp-A3 $GHCP_{Li} = G_{Li}^{hcp-A3}(T) - H_{Li}^{o,bcc-A2}(298.15 \text{ K}) =$ $200.00 < T < 3000.00 : -154 + 2 T + GHSER_{Li}$ Lithium liquid $GLIQ_{Li} = G_{Li}^{liquid}(T) - H_{Li}^{o,bcc-A2}(298.15 \text{ K}) =$ $200.00 < T < 250.00 : -7883.612 + 211.841861 T - 38.940488 T \cdot \ln T$ + 35.466931E-3 $T^2 - 19.869816E-6$ T^3 $+ 159994 T^{-1}$ 250.00 < T < 453.60 : 12015.027 - 362.187078 T + 61.6104424 T $\cdot \ln T$ -182.426463E-3 $T^{2} + 63.955671E-6$ T^{3} $-559968 T^{-1}$ $453.60 \quad < T < \quad 3000.00 \quad : \quad - \ 6057.31 \ + \ 172.652183 \quad T - \ 31.2283718 \quad T \cdot \ \ln T$ $+ 2.633221E-3 T^2 - 0.438058E-6 T^3$ $-102387 T^{-1}$

MAGNESIUM

 $\begin{array}{l} \textbf{Magnesium hcp-A3} \\ \textbf{GHSER}_{Mg} = G_{Mg}^{hcp-A3}(T) - H_{Mg}^{\circ,hcp-A3}(298.15 \ \textbf{K}) = \\ 298.15 < T < 923.00 : -8367.34 + 143.675547 \ T - 26.1849782 \ T \cdot \ln T \\ + 0.4858E - 3 \ T^2 - 1.393669E - 6 \ T^3 + 78950 \ T^{-1} \\ 923.00 < T < 3000.00 : -14130.185 + 204.716215 \ T - 34.3088 \ T \cdot \ln T \\ + 1038.192E25 \ T^{-9} \\ \textbf{Magnesium bcc-A2} \\ \textbf{GBCC}_{Mg} = G_{Mg}^{bcc-A2}(T) - H_{Mg}^{\circ,hcp-A3}(298.15 \ \textbf{K}) = \\ 298.15 < T < 3000.00 : 3100.00 - 2.1 \ T + \textbf{GHSER}_{Mg} \\ \textbf{Magnesium cbcc-A12} \\ G_{Mg}^{cbcc-A12}(T) - H_{Mg}^{\circ,hcp-A3}(298.15 \ \textbf{K}) = \\ 298.15 < T < 3000.00 : 4602.4 - 3.011 \ T + \textbf{GHSER}_{Mg} \\ \textbf{Magnesium cub-A13} \\ G_{Mg}^{cub-A13}(T) - H_{Mg}^{\circ,hcp-A3}(298.15 \ \textbf{K}) = \\ \end{array}$

 $\begin{array}{rcl} 298.15 &< T < & 3000.00 &: & 5000.0 - 3.0 & T + \mathrm{GHSER}_{Mg} \\ \mathbf{Magnesium \ fcc-A1} \\ \mathrm{GFCC}_{Mg} &= G_{Mg}^{\mathrm{fcc-A1}}(T) &- & H_{Mg}^{\mathrm{o},\mathrm{hcp-A3}}(298.15 \mathrm{~K}) = \\ & 298.15 &< T < & 3000.00 &: & 2600 - 0.90 & T + \mathrm{GHSER}_{Mg} \\ \mathbf{Magnesium \ liquid} \\ \mathrm{GLIQ}_{Mg} &= G_{Mg}^{\mathrm{liquid}}(T) &- & H_{Mg}^{\mathrm{o},\mathrm{hcp-A3}}(298.15 \mathrm{~K}) = \\ & 298.15 &< T < & 923.00 &: & 8202.243 - 8.83693 & T + \mathrm{GHSER}_{Mg} - 8.0176\mathrm{E-20} & T^7 \\ &+ & \mathrm{GHSER}_{Mg} \\ & 923.00 &< T < & 3000.00 &: & 8690.316 - 9.392158 & T - 1.038192\mathrm{E+28} & T^{-9} \\ &+ & \mathrm{GHSER}_{Mg} \end{array}$

MANGANESE

Manganese cbcc-A12(paramagnetic)

 $GHSER_{Mn} = G_{Mn}^{cbcc-A12,para}(T) - H_{Mn}^{o,cbcc-A12,para}(298.15 \text{ K}) =$ $298.15 < T < 1519.00 : -8115.28 + 130.059 \ T - 23.4582 \ T \cdot \ln T$ $-7.34768E-3 \ T^{2} + 69827 \ T^{-1}$ $1519.00 < T < 3000.00 : -28733.41 + 312.2648 \ T - 48 \ T \cdot \ln T$ $+ 1656.847E+27 \ T^{-9}$

Manganese bcc-A2(paramagnetic)

GBCC _{Mn}	$= G_{Mn}^{bcc-4}$	$^{12,\mathbf{para}}(T)$		$H_{Mn}^{o,cbcc-A12,para}(298.15 \text{ K}) =$
298.15	< T <	1519.00	:	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1519.00	< <i>T</i> <	3000.00	:	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Manganese fcc-A1(paramagnetic)

 $\begin{aligned} \mathrm{GFCC}_{\mathsf{Mn}} &= G_{\mathsf{Mn}}^{\mathsf{fcc-A1, para}}(T) - H_{\mathsf{Mn}}^{\mathfrak{o},\mathsf{cbcc-A12, para}}(298.15 \mathrm{~K}) = \\ & 298.15 < T < 1519.00 : -3439.3 + 131.884 T - 24.5177 T \cdot \ln T \\ & - 6\mathrm{E-3} T^2 + 69600 T^{-1} \\ & 298.15 < T < 1519.00 : -26070.1 + 309.6664 T - 48 T \cdot \ln T \\ & + 386.196\mathrm{E28} T^{-9} \end{aligned}$

Manganese Laves-C15

 $G_{\text{Mn:Mn}}^{\text{Laves}-C15} - 3.0 \quad H_{\text{Mn}}^{\circ,\text{cbcc}-A12,\text{para}}(298.15 \text{ K}) =$ 298.15 < T < 3000.00 : 3000.0 + 3.0 GHSER_{\text{Mn}}
Manganese cub-A13

 $G_{Mn}^{cub-A13}(T) - H_{Mn}^{\circ,ccbcc-A12,para}(298.15 \text{ K}) =$ $298.15 < T < 1519.00 : + 2314.88 + 5.936 T - 1.4203 T \cdot \ln T$ $+ 1.51409E - 03 T^{2} + 442.0 T^{-1} + \text{GHSER}_{Mn}$ $1519.00 \quad 3000.00 : + 442.65 - 0.9715 T + 2.3107229E + 30 T^{-9}$ $+ \text{GHSER}_{Mn}$

Manganese hcp-A3(paramagnetic)

 $\begin{aligned} \text{GHCP}_{Mn} &= G_{Mn}^{\text{hcp}-A3,\text{para}}(T) - H_{Mn}^{\text{o.cbcc}-A12,\text{para}}(298.15 \text{ K}) = \\ & 298.15 < T < 1519.00 : -4439.3 + 133.007 \ T - 24.5177 \ T \cdot \ln T \\ & -6E-3 \ T^2 + 69600 \ T^{-1} \\ & 1519.00 < T < 6000.00 : -27070.1 + 310.7894 \ T - 48 \ T \cdot \ln T \\ & +386.196E28 \ T^{-9} \end{aligned}$

Manganese liquid

 $\begin{aligned} \text{GLIQ}_{Mn} &= G_{Mn}^{\text{liquid}}(T) - H_{Mn}^{\circ,\text{cbcc}-A12,\text{para}}(298.15 \text{ K}) = \\ & 298.15 < T < 1519.00 : 17859.91 - 12.6208 \ T - 4.41929\text{E}-21 \ T^7 \\ & + \text{GHSER}_{Mn} \\ & 1519.00 < T < 3000.00 : 18739.51 - 13.2288 \ T - 1.656847\text{E}+30 \ T^{-9} \\ & + \text{GHSER}_{Mn} \end{aligned}$

MOLYBDENUM

$$\begin{split} \textbf{Molybdenum bcc-A2} \\ \textbf{GHSER}_{Mo} &= G_{Mo}^{bcc-A2}(T) - H_{Mo}^{o,bcc-A2}(298.15 \text{ K}) = \\ & 298.15 < T < 2896.00 : -7746.302 + 131.9197 \ T - 23.56414 \ T \cdot \ln T \\ & -0.003443396 \ T^2 + 5.66283E-07 \ T^3 + 65812 \ T^{-1} \\ & -1.30927E-10 \ T^4 \\ & 2896.00 < T < 5000.00 : -30556.41 + 283.559746 \ T - 42.63829 \ T \cdot \ln T \\ & -4.849315E+33 \ T^{-9} \\ \textbf{Molybdenum fcc-A1} \\ \textbf{GFCC}_{Mo} &= G_{Mo}^{fcc-A1}(T) - H_{Mo}^{o,bcc-A2}(298.15 \text{ K}) = \\ & 298.15 < T < 2896.00 : 7453.698 + 132.5497 \ T - 23.56414 \ T \cdot \ln T \\ & -0.003443396 \ T^2 + 5.66283E-07 \ T^3 + 65812 \ T^{-1} \\ & -1.30927E-10 \ T^4 \\ & 2896.00 < T < 5000.00 : -15356.41 + 284.189746 \ T - 42.63829 \ T \cdot \ln T \\ & -4.849315E+33 \ T^{-9} \end{split}$$

Molybdenum hcp-A3

 $\begin{aligned} \text{GHCP}_{M_o} &= G_{M_o}^{\text{hcp}-A3}(T) - H_{M_o}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) = \\ & 298.15 < T < 5000.00 : 11550 + \text{GHSER}_{M_o} \\ \text{Molybdenum liquid} \\ \text{GLIQ}_{M_o} &= G_{M_o}^{\text{liquid}}(T) - H_{M_o}^{\circ,\text{bcc}-A2}(298.15 \text{ K}) = \\ & 298.15 < T < 2896.00 : 34085.045 + 117.224788 T - 23.56414 T \cdot \ln T \\ & - 0.003443396 T^2 + 5.66283E \cdot 07 T^3 + 65812 T^{-1} \\ & - 1.30927E \cdot 10 T^4 + 4.24519E \cdot 22 T^7 \\ & 2896.00 < T < 5000.00 : 3538.963 + 271.6697 T - 42.63829 T \cdot \ln T \end{aligned}$

NITROGEN

Nitrogen gas

GHSER _N	$= G_{\rm N}^{\rm gas}(T)$	$(1) - H_{0.5N}^{\circ}$	N ₂ (2	298.15 K) =
298.15	< T <	950.00	:	$-3750.675 - 9.45425 T - 12.7819 T \cdot \ln T$
950.00	< T <	3350.00	:	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
3350.00	< <i>T</i> <	6000.00	:	$\begin{array}{r} - 0.0107 \pm 0.4 \ T \\ + 3.0097 \pm -08 \ T^{3} + 563070 \ T^{-1} \\ - 16392.8 + 50.26 \ T - 20.4695 \ T \cdot \ln T \\ + 2.39754 \pm -04 \ T^{2} - 8.333 \pm -09 \ T^{3} + 4596375 \ T^{-1} \end{array}$

Nitrogen liquid

 $GLIQ_N = G_N^{liquid}(T) - H^{\circ}_{0.5N_2}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 29950 + 59.02 T + GHSER_N

NEODYMIUM

Neodymium dhcp

GHSER _{Nd}	$=G_{Nd}^{dhcp}$	- H ^{o,dhep} (2	298.	15 K) =
298.15	< T <	900.00	:	$-8402.93 + 111.10239 T - 27.0858 T \cdot \ln T$
900.00	< <i>T</i> <	1128.00	:	$+ 5.56125E - 04$ $T^{2} - 2.6923E - 06$ $T^{3} + 34887$ $T^{3} - 6984.083 + 83.662617$ $T - 22.7536$ $T \cdot \ln T$
				$-0.00420402 T^2 - 1.802E - 06 T^3$
1128.00	< <i>T</i> <	1799.00	:	$-225610.846 + 1673.04075 T - 238.182873 T \cdot \ln T$
1799.00	< T <	2000.00	:	$- 25742.331 + 276.257088 T - 48.7854 T \cdot \ln T$

Neodymium bcc-A2

GBCC _{Nd} =	$=G_{Nd}^{bcc-A2}$	- H ^{o,bcc-} Nd	A2	298.15 K) =
298.15	< T <	400.00	:	$-6965.635 + 110.556109 T - 27.0858 T \cdot \ln T$
				+ 5.56125E-04 T^2 - 2.6923E-06 T^3 + 34887 T^{-1}
400.00	< T <	1128.00	:	+ 7312.2 - 153.033976 T + 14.9956777 $T \cdot \ln T$
				-0.050479 $T^2 + 7.287217 \text{E} - 06$ $T^3 - 831810$ T^{-1}
1128.00	< T <	1289.00	:	$-18030.266 + 239.677322 T - 44.5596 T \cdot \ln T$
1289.00	< T <	1800.00	:	$+ 334513.017 - 2363.9199 T + 311.409193 T \cdot \ln T$
				-0.156030778 $T^{2} + 1.2408421 \text{E} \cdot 05$ $T^{3} - 64319604$ T^{-1}

Neodymium liquid

GLIQ _{Nd} =	$G_{\rm Nd}^{\rm bcc-A2}$ -	- $H_{Nd}^{o,bcc-A}$	$^{2}(2$	98.15 K) =
298.15	< T <	300.00	:	$-3351.187 + 109.517314 T - 27.0858 T \cdot \ln T$
				+ 5.56125E-04 T^2 - 2.6923E-06 T^3 + 34887 T^{-1}
300.00	< T <	1128.00	:	+ 5350.01 - 86.593963 T + 5.357301 $T \cdot \ln T$
				-0.046955463 $T^{2} + 6.860782E-06$ $T^{3} - 374380$ T^{-1}
1128.00	< T <	1800.00	:	$-16335.232 + 268.625903 T - 48.7854 T \cdot \ln T$

NICKEL

Nickel fcc-A1(paramagnetic)

 $\begin{aligned} \text{GHSER}_{\text{Ni}} = G_{\text{Ni}}^{\text{fcc}-A1,\text{para}} - H_{Ni}^{\circ,\text{fcc}-A1,\text{para}}(298.15 \text{ K}) = \\ & 298.15 < T < 1728.00 : -5179.159 + 117.854 \ T - 22.096 \ T \cdot \ln T \\ & -0.0048407 \ T^2 \\ & 1728.00 < T < 3000.00 : -27840.655 + 279.135 \ T - 43.1 \ T \cdot \ln T \\ & + 1 \ .12754\text{E} + 31 \ T^{-9} \end{aligned}$

Nickel bcc-A2(paramagnetic)

 $\begin{array}{l} {\rm GBCC_{Ni}} = G_{\rm Ni}^{\rm bcc-A2} - H_{\rm Ni}^{\circ,\rm fcc-A1,\rm para}(298.15~{\rm K}) = \\ 298.15~< T < ~1300.00~:~+~8715.084 - 3.556~T + \rm GHSER_{Ni} \\ {\rm Nickel~hcp}-A3({\rm paramagnetic}) \\ {\rm GHCP_{Ni}} = G_{\rm Ni}^{\rm hcp-A3} - H_{\rm Ni}^{\circ,\rm fcc-A1,\rm para}(298.15~{\rm K}) = \\ 298.15~< T < ~3000.00~:~+~1046 + 1.2552~T + \rm GHSER_{Ni} \\ {\rm Nickel~liquid} \\ {\rm GLIQ_{Ni}} = G_{\rm Ni}^{\rm liquid} - H_{\rm Ni}^{\circ,\rm fcc-A1,\rm para}(298.15~{\rm K}) = \\ 298.15~< T < ~1300.00~:~16414.686 - 9.397~T - 3.82318E-21~T^7 \\ +~{\rm GHSER_{Ni}} \\ 1728.00~< T < ~3000.00~:~18290.88 - 10.537~T - 1.127554+31~T^{-9} \\ +~{\rm GHSER_{Ni}} \end{array}$

NIOBIUM

Niobium bcc-A2 GHSER_{Nb} = $G_{Nb}^{bcc-A2}(T) - H_{Nb}^{o,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 2750.00 : $-8519.353 + 142.045475 T - 26.4711 T \cdot \ln T$ + 2.03475E-04 T^2 - 3.5012E-07 T^3 + 93399 T^{-1} $2750.00 < T < 1000.00 : -37669.3 + 271.720843 T - 41.77 T \cdot \ln T$ + 1.528238E+32 T^{-9} Niobium fcc-A1 $GFCC_{Nb} = G_{Nb}^{fcc-A1}(T) - H_{Nb}^{o,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 13500 + 1.7 T + GHSER_{Nb} Niobium hcp-A3 $GHCP_{Nb} = G_{Nb}^{hcp-A3}(T) - H_{Nb}^{o,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 5000.00 : 10000 + 2.4 T + GHSER_{Nb} Niobium liquid $GLIQ_{Nb} = G_{Nb}^{liquid}(T) - H_{Nb}^{\circ,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 2750.00 : 29781.555 - 10.816417 T-3.06098E-23 T⁷ + GHSER_{Nb} 298.15 < T < 2750.00 : 30169.9 - 10.9647 T - 1.52824E+32 T⁻⁹ + GHSER_{Nb}

SILICON

Silicon diamond $GHSER_{Si} = G_{Si}^{diamond}(T) - H_{Si}^{o,diamond}(298.15 \text{ K}) =$ $298.15 < T < 1687.00 : -8162.609 + 137.236859 T - 22.8317533 T \cdot \ln T$ $-1.912904E-3 T^{2} - 0.003552E-6 T^{3} + 176667 T^{-1}$ $1687.00 < T < 3600.00 : -9457.642 + 167.281367 T - 27.196 T \cdot \ln T$ $-420.369E28 T^{-9}$ Silicon bcc-A2

 $GBCC_{Si} = G_{Si}^{bcc-A2}(T) - H_{Si}^{o,diamond}(298.15 \text{ K}) =$ $298.15 < T < 1687.00 : 47000.0 - 22.5 T + GHSER_{Si}$ Silicon cbcc-A12

 $G_{\rm Si}^{\rm cbcc-A12}(T) - H_{\rm Si}^{\circ,\rm diamond}(298.15 \text{ K}) =$ $298.15 < T < 6000.00 : 50208.0 - 20.377 T + GHSER_{Si}$ Silicon cub-A13 $G_{\rm Si}^{\rm cub-A13}(T) - H_{\rm Si}^{\rm o, diamond}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 47279.0 - 20.377 $T + \text{GHSER}_{si}$ Silicon fcc-A1 $G_{\rm Si}^{\rm fcc-A1}(T) - H_{\rm Si}^{\rm o, diamond}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 51000.00 - 21.8 $T + \text{GHSER}_{Si}$ Silicon hcp-A3 $G_{\rm Si}^{\rm hcp-A3}(T) - H_{\rm Si}^{\rm o,diamond}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 49200 - 20.8 T + GHSER_{si} Silicon liquid $G_{\rm Si}^{\rm liquid}(T) - H_{\rm Si}^{\rm o, diamond}(298.15 \text{ K}) =$ 298.15 < T < 1687.00 : 50696.4 - 30.0994 T + 2.09307E-21 T^7 + GHSER_{Si} $1687.00 < T < 6000.00 : 49828.2 - 29.5591 T + 4.20369E + 30 T^{-9}$ + GHSER_{Si}

TANTALUM

Tantalum bcc-A2

GHSER _{Ta}	$= G_{\mathrm{Ta}}^{\mathrm{bcc}}$	$^{A2}(T) - E$	$I_{Ta}^{0,bo}$	(298.15 K) =
298.15	< T <	1300.00	:	- 7285.889 + 119.139858 T - 23.7592624 $T \cdot \ln T$
				-0.002623033 $T^{2} + 1.70109$ E-07 $T^{3} - 3293$ T^{-1}
1300.00	< T <	2500.00	:	$-22389.955 + 243.88676 T - 41.137088 T \cdot \ln T$
				+ 0.006167572 T^2 - 6.55136E-07 T^3 + 2429586 T^{-1}
2500.00	< T <	3258.00	:	+ 229382.886 - 722.59722 T + 78.5244752 $T \cdot \ln T$
				-0.017983376 T^2 + 1.95033E-07 T^3 - 93813648 T^{-1}
3258.00	< T <	6000.00	:	$-963392.734 + 2773.7774 T - 337.227976 T \cdot \ln T$
				+ 0.039791303 T^2 - 9.74251E-07 T^3
				$+ 5.09949511E + 08 T^{-1}$

Tantalum fcc-A1

$$\begin{split} \mathrm{GFCC}_{\mathsf{Ta}} &= G_{\mathsf{Ta}}^{\mathsf{fcc}-A1}(T) - H_{\mathsf{Ta}}^{\circ,\mathsf{bcc}-A2}(298.15 \ \mathrm{K}) = \\ & 298.15 \quad < T < \quad 6000.00 \quad : \quad 16000 \, + \, 1.7 \ T \, + \, \mathrm{GHSER}_{\mathsf{Ta}} \end{split}$$

Tantalum hcp-A3 $GHCP_{Ta} = G_{Ta}^{hcp-A3}(T) - H_{Ta}^{o,bcc-A2}(298.15 \text{ K}) =$ $298.15 < T < 6000.00 : 12000 + 2.4 T + GHSER_{Ta}$ Tantalum liquid $\operatorname{GLIQ}_{\operatorname{Ta}} = G_{\operatorname{Ta}}^{\operatorname{liquid}}(T) - H_{\operatorname{Ta}}^{o,\operatorname{bcc}-A2}(298.15 \text{ K}) =$ 298.15 < T < 1000.00 : 29160.975 - 7.578729 T+ GHSER_{Ta} $1000.00 < T < 1300.00 : 51170.228 - 181.121652 T + 23.7872147 T \cdot \ln T$ -0.009707033 $T^{2} + 4.4449$ E-07 $T^{3} - 3520045$ T^{-1} + GHSER_{Ta} $1300.00 < T < 2500.00 : 66274.294 - 305.868555 T + 41.1650403 T \cdot \ln T$ -0.018497638 $T^{2} + 1.269735$ E-06 $T^{3} - 5952924$ T^{-1} + GHSERT. $2500.00 < T < 3290.00 : -185498.547 + 660.615425 T - 78.4965229 T \cdot \ln T$ + 0.00565331 T^2 + 4.19566E-07 T^3 + 90290310 T^{-1} + GHSER_{Ta} $3290.00 < T < 6000.00 : 1036069.47 - 2727.38037 T + 320.319132 T \cdot \ln T$ -0.043117795 $T^{2} + 1.055148$ E-06 T^{3} -5.54714342E+08 $T^{-1} + GHSER_{TA}$

TIN

Tin bcc-A2

 $GBCC_{Sn} = G_{Sn}^{bcc-A2}(T) - H_{Sn}^{o,bct-A5}(298.15 \text{ K}) =$ 100.00 < T < 3000.00 : 4400.00 - 6.0 T + GHSER_{Sn} Tin fcc-A1 GFCC_{Sn} = $G_{Sn}^{fcc-A1}(T) - H_{Sn}^{o,bct-A5}(298.15 \text{ K}) =$ 100.00 < T < 3000.00 : 5510.0-8.46 T + GHSER_{Sn} Tin hcp-A3 GHCP_{Sn} = $G_{Sn}^{bcc-A2}(T) - H_{Sn}^{o,bct-A5}(298.15 \text{ K}) =$ 100.00 T < 3000.00 : 3900.00 - 4.4 T + GHSER_{Sn} Tin liquid GLIQ_{Sn} = $G_{Sn}^{liquid}(T) - H_{Sn}^{o,bct-A5}(298.15 \text{ K}) =$ 100.00 < T < 505.078 : 7103.092 - 14.087767 T + 1.47031E-18T⁷ + GHSER_{Sn} 505.078 < T < 3000.00 : 6971.587 - 13.814382 T + 1.2307E+25 T⁻⁹ + GHSER_{Sn}

TITANIUM

Titanium hcp-A3

$\mathrm{GHSER}_{\mathrm{Ti}}$	$= G_{\rm Ti}^{\rm hcp-1}$	$^{A3}(T)$ –	H°_{T}	$_{i}^{hcp-A3}(298.15 \text{ K}) =$
298.15	< T <	900.00	:	$-8059.921 + 133.615208 T - 23.9933 T \cdot \ln T$
				$-4.777975E-3$ $T^{2} + 0.106716E-6$ $T^{3} + 72636$ T^{-1}
900.00	< T <	1155.00	:	$-7811.815 + 132.988068 T - 23.9887 T \cdot \ln T$
				$-4.2033E-3$ $T^2 - 0.090876E-6$ $T^3 + 42680$ T^{-1}
1155.00	< T <	1941.00	:	$908.837 + 66.976538 T - 14.9466 T \cdot \ln T$
				$-8.1465E-3$ $T^{2} + 0.202715E-6$ $T^{3} - 1477660$ T^{-1}
1941.00	< T <	4000.00	:	$-124526.786 + 638.806871 T - 87.2182461 T \cdot \ln T$
				+ 8.204849E-3 T^2 - 0.304747E-6 T^3
				$+ 36699805 T^{-1}$

Titanium bcc-A2

GBCC _{Ti} =	$= G_{\text{Ti}}^{\text{bcc}-A}$	$^{2}(T) - E$	$I_{Ti}^{\circ,h}$	$^{cp-A3}(298.15 \text{ K}) =$
298.15	< T <	1155.00	:	$-1272.064 + 134.71418 T - 25.5768 T \cdot \ln T$
				$-0.663845E-3$ $T^{2} - 0.278803E-6$ $T^{3} + 7208$ T^{-1}
1155.00	< T <	1941.00	:	$6667.385 + 105.366379 T - 22.3771 T \cdot \ln T$
				+ 1.21707E-3 T^2 - 0.84534E-6 T^3 - 2002750 T^{-1}
1941.00	< T <	4000.00	:	$26483.26 - 182.426471 T + 19.0900905 T \cdot \ln T$
				$-22.00832E-3$ $T^{2} + 1.228863E-6$ $T^{3} + 1400501$ T^{-1}

Titanium cbcc-A12 $G_{\text{Ti}}^{\text{cbcc-A12}}(T) - H_{\text{Ti}}^{\circ,\text{hcp-A3}}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : $4602.2 + \text{GHSER}_{Ti}$ Titanium bct-A5 $G_{\text{Ti}}^{\text{bct}-A5}(T) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : $4602.2 + \text{GHSER}_{Ti}$ Titanium cub-A13 $G_{\text{Ti}}^{\text{cub-A13}}(T) - H_{\text{Ti}}^{\circ,\text{hcp-A3}}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 7531.2 + GHSER_{Ti} Titanium diamond $G_{\text{Ti}}^{\text{diamond}}(T) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 25000.00 + GHSER_{Ti} Titanium fcc-A1 $G_{\text{Ti}}^{\text{fcc}-A1}(T) - H_{\text{Ti}}^{\text{o,hcp}-A3}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : $6000.0 - 0.1 T + GHSER_{Ti}$ Titanium Laves-C14 $G_{\text{Ti-Ti}}^{\text{Laves}-C14}(T) - 3.0 \quad H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 15000.0 + 3.0 GHSER_{Ti} Titanium Laves-C15 $G_{\text{Tirti}}^{\text{Laves}-C14}(T) - 3.0 \quad H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 15000.0 + 3.0 GHSER_{Ti} Titanium liquid $G_{\text{Ti}}^{\text{liquid}}(T) - H_{\text{Ti}}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) =$ 298.15 < T < 1300.00 : + 12194.415 - 6.980938 $T + \text{GHSER}_{\text{Ti}}$ 1300.00 < T < 1941.00 $+ 368610.36 - 2620.999038 T + 357.005867 T \cdot \ln T$ -155.262855E-03 $T^{2} + 12.254402E-06$ T^{3} $-65556856 T^{-1} + \text{GHSER}_{\text{Ti}}$ $1941.00 < T < 6000.00 : + 104639.72 - 340.070171 T + 40.9282461 T \cdot \ln T$ -8.204849E-03 $T^{2} + 0.304747E-06$ T^{3} $- 36699805 T^{-1} + \text{GHSER}_{\text{Ti}}$

TUNGSTEN

Tungsten bcc-A2 GHSER_W = $G_{W}^{bcc-A2}(T) - H_{W}^{o,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 3695.00 : -7646.311 + 130.4 T - 24.1 $T \cdot \ln T$ -0.001936 $T^{2} + 2.07E-07$ $T^{3} + 44500$ T^{-1} -5.33E-11 T⁴ $3695.00 < T < 6000.00 : -82868.801 + 389.362335 T - 54 T \cdot \ln T$ $+ 1.528621E + 33 T^{-9}$ Tungsten fcc-A1 $GFCC_W = G_W^{fcc-A1}(T) - H_W^{\circ,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 3695.00 : 11653.689 + 131.03 $T - 24.1 T \cdot \ln T$ -0.001936 $T^{2} + 2.07 \text{E} \cdot 07$ $T^{3} + 44500$ T^{-1} -5.33E-11 T⁴ $3695.00 < T < 6000.00 : -63568.801 + 389.992335 T - 54 T \cdot \ln T$ $+ 1.528621E + 33 T^{-9}$ Tungsten hcp-A3 $GHCP_{W} = G_{W}^{hcp-A3}(T) - H_{W}^{\circ,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 3695.00 : 7103.689 + 130.4 $T - 24.1 T \cdot \ln T$ -0.001936 $T^{2} + 2.07E-07$ $T^{3} + 44500$ T^{-1} - 5.33E-11 T⁴ $3695.00 < T < 6000.00 : -68118.801 + 389.362335 T - 54 T \cdot \ln T$ $+ 1.528621E + 33 T^{-9}$ Tungsten liquid $GLIQ_W = G_W^{liquid}(T) - H_W^{o,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 3695.00 : 44514.273 + 116.29001 $T - 24.1 T \cdot \ln T$ -0.001936 $T^{2} + 2.07E-07$ $T^{3} + 44500$ T^{-1} -5.33E-11 $T^{4} - 2.713468E-24$ T^{7} $3695.00 < T < 6000.00 : -30436.051 + 375.175 T - 54 T \cdot \ln T$

VANADIUM

Vanadium bcc-A2 GHSER_V = $G_V^{bcc-A2}(T) - H_V^{o,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 790.00 : -7930.43 + 133.346053 T - 24.134 T · lnT - 3.098E-3 T² + 0.12175E-6 T³ + 69460 T⁻¹

790.00 < T < 2183.00 : -7967.842 + 143.291093 T - 25.9 $T \cdot \ln T$ $+ 0.0625E-3 T^2 - 0.68E-6 T^3$ $2183.00 < T < 4000.00 : -41689.864 + 321.140783 T - 47.43 T \cdot \ln T$ $+ 644.389E29 T^{-9}$ Vanadium fcc-A1 $GFCC_V = G_V^{fcc-A1}(T) - H_V^{o,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 4000.00 : 7500.0 + 1.7 T + GHSER_V Vanadium hcp-A3 $GHCP_V = G_V^{hcp-A3}(T) - H_V^{o.bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 4000.00 : 4000.0 + 2.4 T + GHSER_V Vanadium liquid $GLIQ_V = G_V^{liquid}(T) - H_V^{o,bcc-A2}(298.15 \text{ K}) =$ 298.15 < T < 2183.00 : 20764.117 - 9.455552 T - 5.19136E-22 T^7 $+ GHSER_{v}$ 2183.00 < T < 6000.00 : 22072.353 - 10.0848 T - 6.44389E+31 T^{-9} $+ GHSER_V$

YTTRIUM

Yttrium hcp-A3

GHSERY	$= G_{\rm Y}^{\rm hcp-2}$	$^{A3}(T)$ –	$H_{\mathrm{Y}}^{\mathfrak{o},\mathfrak{l}}$	$^{hcp-A3}(298.15 \text{ K}) =$
298.15	< T <	1500.00	:	$-7347.055 + 117.532124 T - 23.8685 T \cdot \ln T$
				-0.003845475 $T^{2} + 1.1125E-08$ $T^{3} - 16486$ T^{-1}
1500.00	< T <	1799.00	:	$-15802.62 + 229.831717 T - 40.2851 T \cdot \ln T$
				+ 0.0068095 T^2 - 1.14182E-06 T^3
1799.00	< T <	3700.00	:	$-72946.216 + 393.885821 T - 58.2078433 T \cdot \ln T$
				+ 0.002436461 T^2 - 7.2627E-08 T^3 + 20866567 T^{-1}

Yttrium bcc-A2

$$GBCC_Y = G_Y^{bcc-A2}(T) - H_Y^{\circ,hcp-A3}(298.15 \text{ K}) =$$

298.15	< T <	1752.00	:	- 1861.198 + 97.522398 T - 20.940576 $T \cdot \ln T$ - 0.007995833 T^2 + 7.58716E-07 T^3 - 54349 T^{-1}
$1752.00 \\ 1799.00$	< T < < T <	1799.00 3700.00	: :	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Yttrium liquid

$$\begin{split} \mathrm{GLIQ}_{\mathbf{Y}} &= G_{\mathbf{Y}}^{\mathrm{liquid}}(T) - H_{\mathbf{Y}}^{\circ,\mathrm{hcp}-A3}(298.15 \ \mathrm{K}) = \\ & 298.15 < T < 1799.00 : 3934.121 + 59.921688 \ T - 14.8146562 \ T \cdot \ln T \\ & - 0.015623487 \ T^2 + 1.442946\mathrm{E}{-06} \ T^3 \\ & - 140695 \ T^{-1} \end{split}$$
 $1799.00 < T < 3700.00 : - 13337.609 + 258.004539 \ T - 43.0952 \ T \cdot \ln T \\ & - 0.019918739 \ T^2 + 8.41308\mathrm{E}{-07} \ T^3 \\ & - 31549963 \ T^{-1} \end{split}$

ZINC

Zinc hcp-Zn GHSER_{Zn} = $G_{Zn}^{hcp-Zn}(T) - H_{Zn}^{\circ,hcp-Zn}(298.15 \text{ K}) =$ 298.15 < T < 692.68 : -7285.787 + 118.470069 T - 23.701314 T $\cdot \ln T$ -1.712034E-3 $T^{2} - 1.264963E-6$ T^{3} $692.68 \quad < T < \quad 1700.00 \quad : \quad - \ 11070.559 \ + \ 172.34566 \quad T - \ 31.38 \quad T \cdot \ \ln T$ $+ 470.514E24 T^{-9}$ Zinc hcp-A3 $G_{\text{Zn}}^{\text{hcp}-A3}(T) - H_{\text{Zn}}^{\circ,\text{hcp}-\text{Zn}}(298.15 \text{ K}) =$ 298.15 < T < 1700 : 2970 - 1.57 T + GHSER_{Zn} Zinc bcc-A2 $GBCC_{Zn} = G_{Zn}^{bcc-A2}(T) - H_{Zn}^{o,hcp-Zn}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 2886.96 - 2.5104 T + GHSER_{Zn} Zinc bct-A5 $G_{\text{Zn}}^{\text{bct}-A5}(T) - H_{\text{Zn}}^{\text{o},\text{hcp}-\text{Zn}} =$ 298.15 < T < 6000.00 : 2886.96 - 2.5104 T + GHSER_{Zn} Zinc fcc-A1 $G_{\rm Zn}^{\rm fcc-A1}(T) - H_{\rm Zn}^{\rm o,hcp-Zn}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 2969.82 - 1.56968 $T + \text{GHSER}_{Zn}$

Zinc liquid $G_{Zn}^{\text{liquid}}(T) - H_{Zn}^{\circ,\text{hcp}-A3}(298.15 \text{ K}) =$ 298.15 < T < 692.68 : 7157.213 - 10.29299 T - 3.5896E-19 T⁷ + GHSER_{Zn} 692.68 < T < 1700.00 : 7450.168 - 10.737066 T - 4.7051E+26 T⁻⁹ + GHSER_{Zn}

ZIRCONIUM

Zirconium hcp-A3 GHSER_{Zr} = $G_{Zr}^{T,hcp-A3}(T) - H_{Zr}^{o,hcp-A3}(298.15 \text{ K}) =$ 298.15 < T < 2128.00 : -7827.595 + 125.64905 T - 24.1618 $T \cdot \ln T$ -4.37791E-3 $T^{2} + 34971$ T^{-1} $2128.00 < T < 4000.00 : -26085.921 + 262.724183 T - 42.144 T \cdot \ln T$ - 1342.895E28 T⁻⁹ Zirconium bcc-A2 $GBCC_{Zr} = G_{Zr}^{T,bcc-A2}(T) - H_{Zr}^{o,hcp-A3}(298.15 \text{ K}) =$ 298.15 < T < 2128.00 : 7302.056 - 0.70335 T - 1.445606 $T \cdot \ln T$ + 4.037826E-3 T^2 - 9.7289735E-9 T^3 -7.6142894E-11 $T^{4} - 9737.0$ $T^{-1} + GHSER_{Zr}$ 2128.00 < T < 4000.00 : -4620.034 + 1.55998 T + 1.41035E+32 T⁻⁹ Zirconium fcc-A1 $GFCC_{Zr} = G_{Zr}^{fcc-A1}(T) - H_{Zr}^{o,hcp-A3}(298.15 \text{ K}) =$ $130.00 < T < 4000.00 : 7600.00 - 0.9 T + GHSER_{2r}$ Zirconium liquid $GLIQ_{Zr} = G_{Zr}^{liquid}(T) - H_{Zr}^{o,hcp-A3}(298.15 \text{ K}) =$ $130.00 < T < 2128.00 : + 18147.703 - 9.080762 T + 1.6275E-22 T^7$ $: + GHSER_{Zr}$ 2128.00 < T < 4000.00 : + 17804.649 - 8.91153 T + 1.343E+31 T⁻⁹ + GHSER_{Zr} Zirconium Laves-C14

 $G_{Zr;Zr}^{2r,Laves-C14} - 3.0 \quad H_{Zr}^{\circ,hcp-A3}(298.15 \text{ K}) =$ 298.15 < T < 6000.00 : 15000.0 + 3.0 GHSER_{Zr}

Zirconium Laves-C15

 $G_{\text{Zr;Zr}}^{\text{Zr,Laves}-\text{C15}} - 3.0 \quad H_{\text{Zr}}^{\text{o},\text{hcp}-A3}(298.15 \text{ K}) =$ $298.15 < T < 6000.00 : 15000.0 + 3.0 \text{ GHSER}_{\text{Zr}}$ **Zirconium Laves**-C36 $G_{\text{Zr;Zr}}^{\text{Zr,Laves}-\text{C36}} - 3.0 \quad H_{\text{Zr}}^{\text{o},\text{hcp}-A3}(298.15 \text{ K}) =$ $298.15 < T < 6000.00 : 15000.0 + 3.0 \text{ GHSER}_{\text{Zr}}$

APPENDIX II: MAGNETIC CONTRIBUTION TO THE GIBBS ENERGIES OF THE PURE ELEMENTS (S.I. units) 1

	G^{mag}	=	R T	ln	(β^{mag})	+	1)g(τ)	1
--	-----------	---	-----	----	-----------------	---	---	-----	----------	---

Chromium

Chromium bcc–A2	
$T_{\rm N.}({\rm bcc-}A2,{\rm Cr}) = 311.5$	$\beta^{mag}(bcc-A2,Cr) = 0.008$
Chromium fcc–A1	
$T_{\rm N,}({\rm fcc-}A1,{\rm Cr}) = 369.667$	β^{mag} (fcc-A1,Cr) = 0.82
Chromium hcp–A 3	
$T_{\rm N,}({\rm hcp}-A3,{\rm Cr}) = 369.667$	$\beta^{mag}(hcp-A3,Cr) = 0.82$
	Iron
Iron bcc-A2	
$T_{\rm c}$,(bcc-A2,Fe) = 1043.0	$\beta^{mag}(\text{bcc-A2,Fe}) = 2.22$
Iron fcc–A1	
$T_{\rm c,}({\rm fcc-}A1,{\rm Fe}) = 1043.0$	$\beta^{mag}(\text{fcc-A1,Fe}) = 2.22$
	Manganese
Manganese cbcc-A12	
$T_{\rm N, (cbcc-A12, Mn)} = 95.0$	$\beta^{mag}(\text{cbcc-A12},\text{Mn}) = 0.22$
Manganese bcc–A2	
$T_{\rm N,}({\rm bcc-}A2,{\rm Mn}) = 580.0$	$\beta^{mag}(bcc-A2,Mn) = 0.27$
Manganese fcc-A1	
$T_{\rm N,}({\rm fcc-}A1,{\rm Fe}) = 540.0$	$\beta^{mag}(\text{fcc-A1},\text{Mn}) = 0.62$
Manganese hcp-A 3	
$T_{\rm N,}({\rm hcp-}A3,{\rm Fe}) = 540.0$	$\beta^{mag}(hcp-A3,Mn) = 0.62$

¹Scientific Group Thermodata Europe (S.G.T.E.) Data for Pure Elements, A.T. Dinsdale, Calphad, 15, 4, 317 - 425 (1991).

Nickel

Nickel bcc–A2	
$T_{\rm c,}({\rm bcc-}A2,{\rm Ni}) = 575.0$	$\beta^{mag}(bcc-A2,Ni) = 0.85$
Nickel fcc-A1	
$T_{\rm c,}({\rm fcc-}A1,{\rm Ni}) = 633.0$	$\beta^{mag}(\text{fcc-A1,Ni}) = 0.52$
Nickel hcp–A3	
$T_{\rm c.}({\rm hcp-}A3,{\rm Ni}) = 633.0$	$\beta^{mag}(hcp-A3,Ni) = 0.52$

bcc-A2

for $\tau = T < T_c$	$g(\tau) =$	$1 - 0.905299383 \ au^{-1} - 0.153008346 \ au^{3}$
		- 0.00680037095 τ^9 - 0.00153008346 τ^{15}
for $\tau = T_{\rm c} < T$	$g(\tau) =$	$-0.0641731208 \tau^{-5} - 0.00203724193 \tau^{-15}$
		$-4.27820805E-04 \tau^{-25}$

cbcc-A12

for $\tau = T < T_{\rm c}$	$g(\tau) =$	$1 - 0.860338755\tau^{-1} - 0.17449124\tau^3$
		- 0.00775516624 τ^9 - 0.0017449124 τ^{15}
for $\tau = T_{\rm c} < T$	$g(\tau) =$	$-0.0426902268\tau^{-5}-0.0013552453\tau^{-15}$
		$-2.84601512E-04\tau^{-25}$

fcc-A1

for $\tau = T < T_{\rm c}$	$g(\tau) =$	$1 - 0.860338755 \tau^{-1} - 0.17449124 \tau^{3}$
		- 0.00775516624 τ^9 - 0.0017449124 τ^{15}
for $\tau = T_{\rm c} < T$	$g(\tau) =$	$-0.0426902268\tau^{-5}-0.0013552453\tau^{-15}$
		$-2.84601512E-04\tau^{-25}$

hcp-A3

for $\tau = T < T_c$	$g(\tau) =$	$1 - 0.860338755\tau^{-1} - 0.17449124\tau^3$
		- 0.00775516624 τ^9 - 0.0017449124 τ^{15}
for $\tau = T_{\rm c} < T$	$\mathbf{g}(\tau) =$	$-\ 0.0426902268\tau^{-5}\ -\ 0.0013552453\tau^{-15}$
	••••	$-2.84601512E-04\tau^{-25}$

European Commission

EUR 18171 — COST 507

Thermochemical database for light metal alloys (Volume 2)

I. Ansara, A. T. Dinsdale, M. H. Rand

Luxembourg: Office for Official Publications of the European Communities

1998 — XI, 396 pp. — 17.6 x 25 cm

Volume 2: ISBN 92-828-3902-8 Volumes 1 to 3: ISBN 92-828-3900-1

Venta • Salg • Verkauf • Πωλήσεις • Sales • Vente • Vendita • Verkoop • Venda • Myynti • Försäljning

BELGIQUE/BELGIE Jean De Lannoy Jean De Lannoy Avenue du Roi 202 Koningslaan 202 B-1190 Bruxelles:Brussel Tei (32-2) 538 43 08 Fax (32-2) 538 08 41 E-mail: jean de Lannoy @intoboard be URL: http://www.jean-de-lannoy.be La librairle européenne/De Europese Boekhandel Boeknandel Rue de la Loi 244/Wetstraat 244 B-1040 Bruxelles/Brussel Tél. (32-2) 295 26 39 Fax (32-2) 735 08 60 E-mail @ibeurop.be URL: http://www.libeurop.be Moniteur beige/Belgisch Staatsbied Rue de Louvain 40-42/Leuvenseweg 40-42 B-1000 Bruxelley/Bussel Tél. (32-2) 552 22 11 Fax (32-2) 511 01 84 DANMARK J. H. Schultz Information A/S J. H. Schultz Information Herstedvang 10-12 DK-2620 Albertslund Tif. (45) 43 63 23 00 Fax (45) 43 63 19 69 E-mail: schultz @ schultz.dk URL: http://www.schultz.dk DEUTSCHLAND Bundesanzeiger Verlag GmbH Vernebsahleiung Amsterdamer Straße 192 D-50735 Kön Tel. (49-221) 97 66 80 Fax (49-221) 97 66 82 78 E-Mat: verneb @ bundesanzeiger.de URL: http://www.bundesanzeiger.de EAAAA/GREECE G. C. Eleftheroudakis SA L. C. Elettheroudakis SA International Bookstore Panepistmiou 17 GR-10564 Athina Tel. (30-1) 331 41 80/1/2/3/4/5 Fax (30-1) 323 98 21 E-mail: elebooks@netor.gr ESPAÑA **Bojetín Oficial del Fetado** Tralaigar, 27 E-28071 Madnd Traliaigar, 27 E-28071 Madnd Traliaigar, 27 Stal (34) 915 38 21 11 (Libros)/ 913 84 17 15 (Suscenptiones) Fraal: clientis 82 com boole as URL: http://www.boole.as Mundi Prensa Libros, SA Castelló, 37 E-28001 Madnd Tel. (34) 914 36 37 00 Fax (34) 915 75 39 98 E-mail: librena@mundiprensa.es URL: http://www.mundiprensa.com FRANCE Journal official Service des publications des CE 26, rue Desaix F-75727 Pans Cedex 15 Tél. (33) 140 58 77 31 Fax (33) 140 58 77 00 IRELAND Government Supplies Agency Publications Section 4-5 Harcourt Road Dublin 2 Tel. (353-1) 661 31 11 Fax (353-1) 475 27 60 ITALIA Licosa SpA Via Duca di Calabna, 1/1 Casella postale 552 I-50125 Firenze Tel. (39-55) 64 54 15 Fax (39-55) 64 12 57 E-mail: licosa@ftbcc.it URL: http://www.ftbcc.it/licosa LUXEMBOURG Messageries du livre SARL S, rue Raitfeisen L-2411 Luxembourg Teil. (352) 40 10 20 Fax (352) 49 06 61 E-mail: mdl @pt.lu URL: http://www.mdl.lu Abonnements: Messageries Paul Kraus 11, rue Chostophe Plantn L-2339 Luxembourg Tel. (352) 49 98 88-8 Fax (352) 49 98 88-444 E-mail: mpk@pt.lu URL: http://www.mpk.lu

NEDERLAND SDU Servicecentrum Ultgeven Chastoffel Plantynstraat 2 Postbus 20014 2500 EA Den Haag Tel. (31-70) 378 98 80 Fax (31-70) 378 97 83 E-mail: solu@sdu.nl URL: http://www.sdu.nl ÖSTERREICH . Manz'sche Verlags- und Universitätsbuchhandlung GmbH Universitätsbuchnändlung GmbH Kohlmarki 16 A-1014 Wien Tel (43-1) 53 16 11 00 Fax (43-1) 53 16 11 67 E-Mait: bestellen @manz.co.at URL: http://www.austina.EU.net:81/manz PORTUGAL Distribuidors de Livros Bertrand Ld.⁴ Distribuidora de Livros Bertr Grupo Bertrand, SA Rua das Terras dos Vales, 4-A Apartado 60037 P-2700 Arnadora Tel. (351-2) 495 90 50 Fax (351-2) 496 02 55 Imprensa Nacional-Casa da Moeda, EP Rua Marquès Sá da Bandeira, 16-A P-1050 Lisboa Codex Tel. (351-1) 353 03 99 Fax (351-1) 353 02 94 E-mail: del.incm@mail.telepac.pt URL: http://www.incm.pt SUOMI/FINLAND Akateeminen Kirjakauppa/Akademiska Bokhandeln Bokhandeln Keskuskalı //Centralgatan 1 PUPB 128 FIN-00101 Helsinku/Helsingfors P/fm (358-9) 121 44 18 F./fax (358-9) 121 44 35 Sähkoposty: Akatilaus @stockmann.ft URL: http://www.akateeminen.com SVERIGE BT.I AB Traktorvagen 11 S-221 82 Lund Tin. (46-46) 18 00 00 Fax (46-46) 30 79 47 E-post: bljeu-pub@btj.se URL: http://www.btj.se UNITED KINGDOM The Stationery Office Ltd International Sales Agency 51 Nine Elms Lane London SW8 5DR Tel. (44-171) 873 90 90 Fax (44-171) 873 84 63 E-mail: ipaenquines@theso.co.uk URL: http://www.the-stationery-office.co.uk ISLAND Bokabud Larusar Blöndal Skólavórdustig, 2 IS-101 Reykjavik Tel. (354) 551 56 50 Fax (354) 552 55 60 NORGE Swets Norge AS Ostenjovejen 18 Boks 6512 Etterstad N-0606 Oslo Tel. (47-22) 97 45 00 Fax (47-22) 97 45 45 SCHWEIZ/SUISSE/SVIZZERA Euro Info Center Schweiz Euro Info Center Schweiz c/o OSEC Stamplenbachstraße 85 PF 492 CH-8035 Zunch Tel. (41-1) 365 53 15 Fax (41-1) 365 54 11 E-mail: ecc 80 osec ch URL: http://www.osec.ch/eics BÁLGARIJA Europress Euromedia Ltd 59, bivd Vitosha BG-1000 Sofia Tel. (359-2) 980 37 66 Fax (359-2) 980 42 30 E-mail: Milena @ mbox.cit.bg **ČESKÁ REPUBLIKA** ÚSIS NIS-prodejna Havelkova 22 CZ-130 00 Praha 3 Tel. (420-2) 24 23 14 66 Fax (420-2) 24 23 11 14 E-mail: nkposp @dec.nis.cz URL: http://www.nis.cz

CYPRUS Cyprus Chamber of Commerce and Industry and Industry PO Box 1455 CY-1509 Nicosia Tel. (357-2) 66 95 00 Fax (357-2) 66 10 44 E-mail: info@ccci.org.cy EESTI Eesti Kaubandus-Tööstuskoda (Estonian Chamber of Commerce and Industry) Chamber of Commerce Toom-Kooli 17 EE-0001 Tallinn Tel. (372) 646 02 44 Fax (372) 646 02 45 E-mail: enilo@koda.ee URL: http://www.koda.ee MAGYARORSZÁG Euro Info Service Euro into Service Europa H4z Margitsziget PO Box 475 H-1396 Budapest 62 Tel. (36-1) 350 80 25 Fax (36-1) 350 90 32 E-mail: euronfo@mail.matav.hu URL: http://www.euroinfo.hu/index.htm MALTA Miller Distributors Ltd Malta International Arport PO Box 25 Luga LOA 05 Tel. (356) 66 44 88 Fax (356) 67 67 99 E-mail: gwinth@usa.net POLSKA Ars Polona Krakowskie Przedmiescie 7 Skr. pocztowa 1001 PL-00-950 Warszawa Tel. (48-22) 826 12 01 Fax (48-22) 826 62 40 E-mail: ars_pol@bevy.hsn.com.pl ROMÁNIA Euromedia Str. G-ral Berthelot Nr 41 RO-70749 Bucuresti Tel. (40-1) 315 44 03 Fax (40-1) 315 44 03 SLOVAKIA Centrum VTI SR Nám. Slobody, 19 SK-81223 Bratislava Tel. (421-7) 531 B3 64 Fax (421-7) 531 B3 64 E-mail: europ@tbbl.sitk.stuba.sk URL: http://www.sitk.stuba.sk SLOVENIA Gospodarski Vestnik Dunajska cesta 5 SLO-1000 Ljubljana Tel. (386) 611 33 03 54 Fax (386) 611 33 91 28 E-mail: repansekj@gvestnik.si URL: http://www.gvestnik.si TÜRKIYE Dünya Infotel AS 100, Yil Mahallessi 34440 TR-80050 Bagcilar-Istanbul Tel. (90-212) 629 46 89 Fax (90-212) 629 46 27 AUSTRALIA Hunter Publications PO Box 404 3067 Abbotsford, Victoria Tel. (61-3) 94 17 53 61 Fax (61-3) 94 19 71 54 E-mail: jpdavies@ozemail.com.au CANADA Renout Publishing Co. Ltd 5369 Chemin Canotek Road Unit 1 K1J 9J3 Ottawa, Ontano Tel. (1-613) 745 26 65 Fax (1-613) 745 76 60 E-mail: order.dept@renoufbooks.com URL: http://www.renoufbooks.com EGYPT The Middle East Observer 41 Shenf Street Tel. (20-2) 393 97 32 Fax (20-2) 393 97 32 HRVATSKA Mediatrade Ltd Pavia Haiza 1 HR-10000 Zagreb Tel. (385-1) 43 03 92 Fax (385-1) 43 03 92

INDIA

EBIC India

SBARI

ROY international

PO Box 19502

JAPAN PSI-Japan

MALAYSIA

EBIC Malaysia

PHILIPPINES EBIC Philippines

RUSSIA

60-lebya Oktyabrya Av. 9 117312 Moscow Tel. (70-95) 135 52 27 Fax (70-95) 135 52 27

Safto House NO 5 Esterhyzen Street PO Box 782 706 2146 Sandton Tel. (27-11) 883 37 37 Fax (27-11) 883 65 69

URL: http:/www.safto.co.za

il: emalstar @ide.co.za

Information Centre for Europe (ICE)

204 Woo Sof Parktel 395-185 Seogyo Dong, Mapo Ku 121-210 Seoui Tel. (82-2) 322 53 03 Fax (82-2) 322 53 14 E-mail: euroinfo@shinbiro.com

EBIC Thailand 29 Vanissa Building, 8th Floor Soi Chidlom Ploenchit 10330 Bangkok Tel. (66-2) 655 06 27 Fax (66-2) 655 06 28 E-mail: ebicbikk@ksc15.th.com URL: http://www.ebicbikk.org

UNITED STATES OF AMERICA

Bernan Associates

SOUTH AFRICA

SOUTH KOREA

THAILAND

EBIC Thalland

CCEC

Safto

Safto Ho

Jerusalem Tel. (972-2) 627 16 34 Fax (972-2) 627 12 19

PO Box 13056 61130 Tel Aviv Tel. (972-3) 546 14 23 Fax (972-3) 546 14 42 E-mail: royl@netvision.net.il

Index Information Services

Asahi Sanbancho Plaza #206 7-1 Sanbancho, Chryoda-ku Tokyo 102 Tel. (81-3) 32 34 69 21 Fax (81-3) 32 34 69 15 E-mail: books @psi-japan.co.jp URL: http://www.psi-japan.com

Level 7, Wisma Hong Leong 18 Jalan Perak

18 Jalan Perak 50450 Kuala Lumpur Tel, (60-3) 262 62 98 Fax (60-3) 262 61 98 E-mail: ebrc-kl@mol.net.my

EBL Printppinea Sen, Gil J, Puyat Ave. cor. Tindato St. Makab City Metro Manila Tel. (63-2) 759 66 80 Fax (63-2) 759 66 90 E-mail: eccorom @ globe.com.ph URL: http://www.eccp.com

Sub-agent for the Palestman Authority:

EBIC India 3rd Floor, Y. B. Chavan Centre Gen. J. Bhosale Marg. 400 021 Mumbai Tel. (91-22) 282 60 64 Fax (91-22) 285 45 64 E-mail: ebc:@gasbm01.vsnl.net.in URL: http://www.ebcindia.com

Bernan Associates 4611-F. Assembly Drive Lanham MD 20706 Tel. (1:800) 274 44 47 (toll free telephone) Fax (1:800) 865 34 50 (toll free tax) E-mail: query 6 benan.com URL: http://www.bernan.com ANDERE LANDER/OTHER COUNTRIES/ AUTRES PAYS

Bitte wenden Sie sich an ein Büro ihrer Wahl / Please contact the sales office of your choice / Veuillez vous adresser au bureau de vente de votre choix

NOTICE TO THE READER

Information on European Commission publications in the areas of research and innovation can be obtained from:

For more information, contact:

CORDIS Customer Service, BP 2373, L-1023 Luxembourg Tel. (352) 44 10 12-2240; fax (352) 44 10 12-2248; e-mail: helpdesk@cordis.lu or visit the website at http://www.cordis.lu/

Euroabstracts

The European Commission's periodical on research publications, issued every two months.

For more information, contact:

RTD help desk, European Commission, DG XIII, L-2920 Luxembourg Fax (352) 43 01-32084; e-mail: rtd-helpdesk@lux.dg13.cec.be

OFFICE FOR OFFICIAL PUBLICATIONS OF THE EUROPEAN COMMUNITIES

L-2985 Luxembourg

15

CG-NA-18499-EN-C