IEEE
 POWER ENGINEERING SOvIET Y

November 13, 1979

Docket Munatr PR -misc. Notice
 propose o Rule RR-Miseg. Guide

```
Secretary of the Commission
Docketing and Servise Branch
U.S. Nuclear Regulatory Commission.
Washington, DC 02555
```


Gentlemen:
SUBJECT: Draft Regulatory Guide on "Lightning Protection for Nuclear Power Plants," dated August 1979, Task RS 705-4

An Ad Hoc Working Group (3.4.13) composed of members of the Surge Protective Devices Committee (SPD) and the Nuclear Power Engineering Committee (NPEC) of the Institute of Electrical and Electronics Engineers (IEEE), and the American National Standards Institute C62 (ANSI C62) has reviewed the draft Regulatory Guide on "Lightning Protection for Nuclear Power Plants" dated August 1979, Task RS 705-4 (Guide). An extension of time for comments on this Guide from the SPD Committee to November 23, 1979, was granted by Mr. E. C. Wenzinger, Chief of Reactor Systems Standards Branch, in his letter dated September 7, 1979, to Mr. W. R. Ossman, Chairman of the Ad Hoc Working Group.

The attached comments are submitted with the intent of improving the technical content of the draft Regulatory Guide. In particular, the comments discuss lightning theory to the extent it applies to lightning stroke current magnitudes, lightning protective systems, and lightning stroke currents bypassing the protective shielding. The discussions and comments are based on the assumption that the nuclear power plant and associated substation are shielded from lightning.

For clarification and convenience we have proposed in the attachment the rewording of several sections of the draft Guide. References are included to support the technical aspects of our comments.

Acknowiedjued by card... dh...! ! 30
$\cdots \quad$.

```
Secretary of the Commission
November 13, 1979
Page 2
The technical basis of our discussion also applies to the draft
"Value/Impact Statement." Since specific comments were not made
on individual sections of the "Statement," it should not be
interpreted as concurrence.
                    Very truly yours,
```



``` Ci ,
G. S. Haralampu, Chairman Surge Protective Devices Committee - IEEE

> J. L. Koepfinger, Chairman C62 Committee - ANsI
```


J.T, Boettger by ref. dean vie. nett
 J. T. Boettger, Chairman

```
Nuclear Power Engineering Committee - IEEE
cc: C. L. Wagner, Chairman, Technical Operations Department Power Engineering Society - IEEE
```

```
            Discussion and Comments on Draft Regulatory Guide
                    Task RS 705-4, August, }1979\mathrm{ on
            Lightning Protection for Nuclear Power Plants
                    by the
                            Ad Hoc Working Group (3.4.13) on
                                    Lightning Protection for Nuclear Power Plants
                                    Ad Hoc Working Group composed of members of the:
                        Surge Protective Devices Committee -
Institute of Electrical and Electronics Engineers
    Nuclear Power Engineering Committee -
Institute of Electrical and Electronics Engineers
                            C62 Committee -
American National Standard Institute
```

1.0 Section B - Page 3 of the Guide
1.1 Line 12 - Replace the words "frequency of lightning surges"
with the words "frequency of lightning strokes"
This better describes the event and agrees with the definitions
in the IEEE Dictionary,
1.2 Line 14 - Replace the words "design basis discharge surge"
with the words "design basis stroke"
This better describes the design basis.
Line 17 - Replace the words "lightning-induced surges" with
The surges being discussed are not induced
1.4 $\frac{\text { Line } 18}{}$ - Replace the words "Lightning surges" with the words
Same comment as above
1.5 Line 19 - Complete the sentence with the words "at a lower
frequency of occurrence"
This clarifies the intent.

1.6 Discussion for paragraph beginning with 1 ine 29

Mention is made in this paragraph of the sensitivity of solid state logic systems to transient voltages generated externally to a plant. This thought is commingled with the application of surge protection to the power transformers supplying the station auxiliary power. By this action one would be led to believe that the application of surge protection to the power transformer would prevent failures of sensitive equipment.

Surge protection applied to protect transformers or switchgear insulation does not recessarily reduce surges sufficiently to protect sensitive srid state equipment. This equipment may need its own protective system. This position is supported by work which is being carried out by the IEEE Surge Protective Devices Working Group No. 3.3.6, Low Voltage Surge Protective Devices. This Working Group is producing a Standard titled "Application Guide for Low Voltage Surge Protective Devices (600 Volts or less)," IEEE Standards Project 769.
1.7 Suggested rewording starting with line 34 and continuing on page 4 of the Guide througn line 10
"For example, power to redundant on-site safety related electric distribution systems is typically supplied from the off-site transmission system through a minimum of two power transformers to provide redundancy.
"In any of these transformers, there is a very low probability that a primary to secondary insulation failure would occur for any reason. If this type of fallure does occur, it could impress the primary voltage onto the secondary windings. To avoid a "design basis event common mode failure" affecting the redundant safety systems, surge arresters or other protect-ve devices shall be applied on the transformer secondary winding system.
"If calculations indicate that the arresters located on the high voltage winding of the transformer adequately protect the insulation of the transformer low voltage winding system, surge arresters are not required on this system. Calculations are treated in the IEEE Tutorial Course Text 79EHO 144-6 PWR on Surge Protection in Power Systems.
"Additionally, a lightning caused surge entering the high voltage side of the transformer can propagate to the low voltage circuit through capacitive and magnetic coupling of the transformer. Arresters located on the transformer primary winding will provide secondary winding protection.
"Any of the above surges entering from the high voltage side of the transformer are not expected to damage any of the power plant safety related systems. These systems are low voltage systems at least two transformations from the off-site high voltage transformer."

A lightning strike to one line feeding one of the off-site transformers or a direct hit to the transformer will not disable the plant.

The NRC Regulatory Guide 1.6 entitled "Independence Between Redundant Standby Power Sources and Between Their Distribution Systems" endorses IEEE Standard 308-74, entitled "Criteria for Class IE Electric Systems for Nuclear Power Generation Station." These documents state that a minimum of two off-site independent systems have to be available to feed any class $I E$ equipment and that in addition, each system shall have an on-site power source such as diesel power. Therefore, the fallure of any off-site transformer should not affect the safe shutdown of a nuclear power plant.

In addition, a lightning surge entering the transformer primary is not expected to reach the low voltage circuits since the impedance between the transformer primary and class IE equipment is high and the surge will have dissipated before reaching the low voltage systems (600 Volt and below).

A direct hit on the lightning protective systems on the plant site will cause the ground potential to rise. It is possible that solid state electronic devices important to safety, will become stressed under this condition. To reduce the chance of damage, low voltage protective devices can be applied.

2.0 Page 4 of the Guide

2.1 $\frac{\text { Line } 24}{\text { words "surge arresters." }}$

The former term has been superceded.
2.2 Line 31 - Same comment as for 2.2.

3.0 Page 5 of the Guide

3.1 Line 10 - Same comment as for 2.1.
3.2 $\frac{\text { Lines } 10-11}{\text { standard also was no the last sentence of the paragraph: "This }}$ standard also was no ..."

We don't believe this sentence is pertinent here.
3.3 Lines $12-15$ - Suggested rewording to include additional information which is pertinent:
"The statistical data on lightning stroke and arrester discharge characteristics relied upon for development of the above standards were collected in the 1940's. Continuing studies subsequently have verified and added to this data. The most recent studies have been documented by EPRI in the report EL-1140 and by DOE, as outlined in reference 34 of the Guide."

3.4 Section C-1

3.4.1 Discussion on the Wave Shape

It is recognized that in service, the discharge currents through surge arresters seldom, if ever, have an $8 \times 20 \mathrm{microsecond}$ wave shape. Data from field studies indicates that a greater percentage of the arrester discharge currents crest in less than 8 microseconds, and exceed, 20 microseconds at half of the crest value on the wave tail. (11)

The use in Standards of the 8×20 microsecond wave shape is valid as a laboratory definer for the following reasons:
a. All laboratories are equipped with surge generators, and wave shaping parameters external to the surge generator, that readily produce the 8×20 wave shape for the range of aischarge currents considered for insulation coordination.
b. The 8×20 microsecond arrester discharge current, in the current range considered for insulation coordination produces a voltage wave that approximates the 1.2×50 microsecond wave shape that is used to determine the withstand strength of insulation. ,
It is recommended that paragraph $\mathrm{C}-1$ delete any reference to the wave shape of the stroke current. It erroneously implies that the discharge ourrent through surge arresters is the same as the stro.se current.

3.4.2 Discussion on the Design Basis

The Guide makes no distinction or difference in the terminology of stroke ur stroke current, surge or surge current or discharge current. In the electrical power industry and among practitioners of surge protection, these have distinctly different meanings and relate to different functions and times in the mechanism of generating and protecting against a lightning stroke or switching surge. In the recommencations presented, this terminology has been clarified and used in its correct meaning.

The Draft Regulatory Guide assumes a finite probability that a 200,000 ampere lightning stroke can occur. It also assumes a finite probability that this 200,000 ampere stroke will contact a protected structure or system and will discharge the full value of this stroke current through a protecting arrester. It is submitted that the second assumption is unrealistic. In fact, lightning protective systems can be and are designed so that the maximum current of 2 lightning stroke which bypasses the protective shielding and terminates on a protected conductor is limited to a lesser value by design. This lesser value is an order of magnitude less than the possible maximum stroke current. Further, the design of surge and lightning protective systems involves the use of shielding systems, grounding systems, and capacitive couplinc systems (as well as discrete protective components such as surge arresters and capacitors) to reduce, divert, attenuate, and dissipate the stroke and surge energy so that no element in the system is ever subjected to the full value of the incident stroke current. In designing the protective system, advantage is taken of the configuration, or ability to configure the protected system in order to improve the ability of the protected system to absorb or dissipate the lightning energy and thus render the protected system less vulnerable to damage.

These aspects of the design and application of lightning and surge protective systems have been excluded by the second assumption embodied in. the present Draft Guide. The IEEE Surge Protective Devices Committee stiongly urges NRC to recognize the impracticability of the second assumption, which would have a serious impact on the surge protective industry in developing a new class of arrester for the proposed 200,000 ampere discharge current, which is over three times the present capability as demonstrated by tests. Such a high discharge current can be prevented by applying the arrester in an overall protective system which has been designed to limit the surge current applied to the arrester to a lower specified value than that of the stroke current.

In making this recommendation, the IEEE Surge Protective Devices Committee fully supports the recommendation in Section 2 of Attachment A to the Draft Regulatory Guide. This recommendation would limit the maximum lightning stroke current which can bypass the station protective shielding by design of the elevations and horizontal separations between shielding conductors and protected conductors. These relationships are controlled to limit the maximum striking distance (stroke attraction distance) of a protected conductor to about 150 feet. (33)

Based on Wagner's model of strike distance and prospective stroke current, Brown developed the analytical electrogeometric model of lightning shielding (17). Both models were extensively verified in the late 1960's under the Pathfinder project which installed some 4600 lightning stroke recorders on 50 transmission lines (16) (18) (19) (20).

The electrogeometric analytical model has been extended and calibrated against actual performance by Brown to predict discharge currents, line flashovers (shielding failures), and backflashes (21) (22) (23), together with simplification of the analytical techniques (24). The application of this work to EHV transmission line performance has continued successfully (25) (26) (27).

Concurrently, there have been applications of the electrageomietric model of shielding to high voltage substations, based on the transmission line work and Sargent's ana'vsis of strokes to tall structures and to open grounc (28) (29) (30). Recently, the work on stations by Mousa (31) has shown the practicality of design to control stroke current to a bus under shielding failure conditions by limiting the maximum strike distance. Lee has shown a simplified graphical technique for desigr application (32).

There is some variation in the relationship between strike distance and prospective stroke current as reported by various investigators. However, subsequent to the early work by Golde and Wagner which was primarily based on theoretical deductions from stroke photographs, there is remarkable agreement among the five relationships in the literature which have been used in predicting transmission line performance. At 20,000 ampere prospective stroke current these have a striking distance range from 205 to 281 feet, with a mean of 235 feet and a sigma of 29 feet. At 150 foot striking distance they have a prospective stroke current range of 10,000 to 12,500 amperes with a mean of 11,000 amperes and a sigma of 1,100 amperes. A very conservative design with adequate margins can be achieved by coordinating insulation impulse withstand with a 20,000 ampere stroke reaching the protected conductor but designing the protective shielding for 150 foot maximum strike distance which would allow a probable maximum stroke to the protected structure of only 12,500 amperes.

It is recommended that the design basis event for lightning and surge protection in nuclear power plants be based on a 200,000 ampere lightning stroke reaching the lightning protective system and a lesser stroke, limited by design of that protective system (as described in Section 2 of Attachment A to the Draft Regulatory Guide) to 20,000 ampores reaching the protected structure or system. The insulation withstand capability of the protected system and the arrester discharge current capability would then be selected to protect properly, and survive without damage, whichever of these conditions produces the most severe surge stress.

By proper coordination and design of the protective and the protected systems, the system designer can control at each point in the system whichever of these design basis strokes will prevail. It is recommended that the changes proposed to accommodate this technical approach, which is the current state of the surge protective art, be adopted in the Guide.

3.4.3 Paragraph $C-1$, page 5

Based on the above discussions, we recommend that this paragraph be changed as follows:
"1. DESIGN BASIS LIGHTNING STROKE
The design basis for lightning and surge prote -tion shall be either:
a. A lightning stroke current of 200,000 amperes reaching the lightning protective system; or
b. A lightning stroke of 20,000 amperes reaching the protected structure by shielding failure (limited by design of the shielding system) which may subsequently be discharged by a surge arrester."
3.5 Section $C-2$, pages 5 and 6 - Discussion for sections $C-2.1, C-2.2$, $\mathrm{C}-2.3$, and $\mathrm{C}-2.4$

Section 2.0 , as now prepared, fails to recognize that the surge protection selected should be designed with two purposes:

1. It must provide an adequate protective margin for the insulation system it is to protect against various types of surges.
2. It must perform its protective function and then be capable of returning to normal (resealing) when the surge has been dissipated.

In Section C-2.1 the emphasis is placed upon the use of a surge arrester rated for 100% of normal line to line voltage. This emphasis falls to give recognition to the fact the modern transformer and insulation system for off-site power sources are designed to have insulation withstand levels which would not be adequately protected by a 100% rated arrester.

Abstract

Section C-2.2 is an apparent attempt to acknowledge that certain systems can and must use less than 1008 arresters to properly protect an insulation system. However, it presents an oversimplification of the application rules for surge arresters. The attempted simplification stated in Section C-2.2 relates to a rule for the acceptable application of a surge arrester rated 80% of the line-to-line voltage. If the statements given in Section C-2.3 are followed, there is no need for the inclusion of Section $\mathrm{C}-2.1$ or $\mathrm{C}-2.2$ in the Regulatory Guide.

Similarly, Section C-2.4 is unnecessary since ANSI C62.2 and the statement in Section $\mathrm{C}-2.3$ provide adequate guidance for all instances of the application of surge protection for transformers and switchgear.

4.0 Page 6 of the Guide

4.1 Sections C2.5, C-2.6, and $C-2.7$
4.1.1 Discussion - See comments made in Section 1.8.
4.1.2 Suggested Rewording of Section C-2.5
"Surge arresters with a current discharge capability at least equal to the current to which they would be subjected by a design basis stroke if exposed to lightning should be installed only on windings of startup and auxiliary transformers where the insulation withstand does not exceed by an accepted margin (per ANSI C62.2) the surge voltage at the winding terminal resulting from a design basis stroke. For redundant systems that do not share transformers, the discharge capability recommended in Section 7 of ANSI C62.1-1975 is acceptable."

4.1.3 Suggusted Rewording of Section C-2.6

"Surge arresters with a current discharge capability at least equal to the current to which they would be subjected by a design basis stroke if exposed to lightning should be installed at the electrical switchgear upstream of the feeder breaker connected to startup and unit auxiliary transformers shared by redundant systems where the switchgear insulation withstand does not exceed by an accepted margin (per ANSI C62.2) the surge voltage at the switchgear bus resulting from a design basis stroke. For redundant systems that do not share transformers, the discharge capability recommended in Section 7 of ANSI C62.1-1975 is acceptable."

4.1.4 Section C-2.7

Since the design basis will limit the arrester discharge current to 20,000 amperes, there is no need to consider paralleling surge arresters. Section C-2.7 should therefore be deleted.

5.0 Page 7 of the Guide

5.1 Section C-2.9

We recommend that this section be deleted. As has been discussed in the revised Section C-1, "Design Basis Lightning Strokes," a surge arrester when applied to an adequately shielded power system will not be exposed to a discharge current of greater than 20,000 amperes:

We interpret the reference which is made in C-2.9 to ANSI C62.11975 (Section 7.5.1) to a durability design test for a surge arrester. Currently this test specifies an artificially high arrester discharge current of 65,000 amperes. This is used in the design test of the arrester to impress upon its internal parts, voltage stresses which are considerably in excess of those which it would experience in actual use. Thus, there is no real requirement for a 200,000 ampere durability test.
5.2 Section C-2.10
5.2.1 Line 3 of the paragraph

Delete the words "design basis" to clarify the sentence.
5.2.2 Lines 4-7 (Last Sentence)

Reword the sentence as follows to include the technical basis discusesd in 3.4.2 above:
"However, for redundant systems important to safety which are electrically connected to these transformers, the surge voltage at each of the transformer torminals and for the discharge voltage of any surge arresters applied on these terminals when subjected to a discharge current of 20,000 amperes, shall be less than the transformer insulation withstand by an accepted margin per ANSI C62.2."

5.3 Section C-2.11

This entire section should be revised to include wording resulting from the following discussion:

Removal of surge arresters after a period of field service for retest does not fully accomplish the intended results. Testing at any interval without other monitoring means does not preclude the failure of an arrester within the interval between tests.

The removed arresters cannot be tested as specified in the Guide in accordance with all the performance test requirements of the Design Test section of the applicable arrester standard.

Because of the limitations of surge generators, and 60 Hertz power sources, the arrester units must be dismantled and reassembled into smaller prorated sections for a number of the tests. Noteworthy among these are the High-Current and Duty Cycle tests. It is well documented that a prorated section of an arrester can accurately represent, for a particular test, the characteristics of a complete arrester. If the testing of arresters removed from service is required, the testing of the parts f the larger unit as prorated sections must be an acceptable practice to the Nuclear Regulatory Commission. It must also be recognized that there is the possible consequnece of damaging the arrester during removal and retuilding the components into the lesser rated prorated sections. The conversion of the larger unit into a number of prorated sections will also 2 .crease the cost of retesting.

It is recommended that an alternative approach be used to determine the condition of the surge arresters rather than the specified removal and test procedure. 'The arrester's condition can be periodically monitored while energized by suitable devices in series with the arrester. With these devices, reliable information about the arrester's condition can be obtained. Proper judgement of the data from these devices can also anticipate well in advance a potential failure of the arrester.

There are recording instruments, or devices, with reliable field service records that can provide the necessary data. Surge counters are used to record the number of times the arrester has operated. A Rogowski coil, around the ground lead of the arrester, that is coupled to a recorder can determine the magnitude and wave shape of the surge current through the arrester. A current milliameter can determine the grading current through the arrester, and if suitably designed, can indicate the presence of conducting contaminant on the surface of the weather housing. A replica of the interrupting gap of the arrester can be connected into the circuit so that a judgement can be made of the condition of the arrester gaps. The voltaçe wave shape of the grading current through a noninductive resistor can be observed on an oscilloscope. The latter gives an indication of corona if present and the magnitude of the leakage current. The periodic recording of the data from suzh methods can be compared for indications of arrester change or severe duty. A judgement can then be made to remove the airester. Inspection of the unit removed will serve as an indicator for refining the decision to remove, or leave in place, arresters with similar design and duty records.

6.0 Page 8 of the Guide

6.1 Section C-3.1

Change the words "Ground wires" to the words "Shield wires." (Accepted terminology)
6.2 Section C-3.2

We recommend rewording of this section to reflect the discussion in 3.4.2 above:
"Transmission line shielding should be designed to limit shielding failure stroke current contacting the conductors to no more than 20,000 amperes."
6.3 Section C-3.3

We recommend rewording for clarification and accuracy:
"The footing resistances to ground of the towers for a sufficient distance from the station should be designed low enough to minimize the probability of backflash of the line insulation."

6.4 Section C-4

6.4.1 We recommend title be chançe vo:
"LIGHTNING SHIELDING FOR PROTECTION OE STRUCTURES"

6.4.2 Section C-4.1

We recommend the addition of the following words at the beginning of the sentence:
"Lightning shielding, including shield wires or air terminals..."

6.4.3 Section C-4.2

We recommend the beginning of the sentence read as follows:
"The protective shielding system should be connected..."
6.4.4 Section C-4.3

We recommend rewording for technical accuracy as follows:
"Lightning protective shielding systems should be designed to 1 imit the prospective stroke current of shielding failures (strokes contacting the protected structures) to no more than 20,000 amperes. A striking distance of 150 feet is recommended for conservative design."

7.0 Page 10 - Value/Impact Statement

Comments previously made for pages $3-7$ of the guide also apply to this page.

8.0 Page 11 - Value/Impact Statement

8.1 Line 3

Change the words "The frequency of induced" to the words "The frequency of occurrence of direct lightning..." for clarification purposes.

8.2 Section b starting with Line 13

Discussion of $3,4.2$ made previously applies here also. The parenthetical phrase on line 20 " (if the secondary is not properly grounded)" is not pertinent here. It makes no difference; the phrase should be deleted.
8.3 First sentence starting with Line 22

This sentence should be rewritten as follows: "Substantial effort has been expended to determine a conservative 'design basis stroke.' This work is actively continuing (Refs. 34 and 36-39)."
9.0 Page 12 - Value/Impact Statement
9.1 Line 1

Replace the word "ground" with the word "shield." This is an accepted terminology.
9.2 Line 4

Replace the word "Conventional" with the words "Protective shielding and lightning rods..."
9.3 Paragraphs c and d starting with line 8

Replace with the following:
"Installation of surge arresters to adequately protect switchyards and substation equipment in accordance with good engineering practice and existing standards."
9.4 Line 12

This line should read as follows:
"Installation of low voltage surge protectors on..."
10.0 Page 13 - Value/Impact Statement
Section 1.3.1 - Fourth Paragraph
Replace the words "surge characteristics" with the words "lightning stroke characteristics," and the words "surge amplitudes" with the words "lightning stroke amplitudes." In addition, the end of the first sentence should read "... and frequency of occurrence."
The equipment insulation tolerance to voltage surges is defined in several ANSI and IEEE Standards and Guides. The NRC should identify areas needing attention. The IEEE Technical Committees may be willing to provide the technical expertise.
11.0 General Comments on the Value/Impact Statement
All our discussions and comments on the Guide are also applicable to the Value/Impact Statement. Proper correlation should be made.

90004016

REFERENCES

(1) B. F. J. Schonland and H. Coll is, "Progressive Lightning," Proc., Royal Soc. London, Vol. 143. $\mathrm{pp} .654-74,1934$.
(2) B. F. J. Schonland, D. J. Malan and H. Collens, "Progressive Lightning If," Proc. Royal Soc. London, Series A, Vol. 152, pp. 595$625,1935$.
(3) D. J. Malan and H. Collens, "Progressive Lightning III, The Fine Structure of the Return Stroke," Proc. Royal Soc. London, Vol. 162, pp. 175-203, 1937.
(4) B. F. J. Schonland, D. B. Hodges and H. Collens, "Progressive Lightning V, A Comparison of Photographic and Electrical Studies of the Discharge Process," Proc., Royal Soc. London, Vol. 166, p. 56, 1938.
(5) I. S. Stekolnikov, "The Nature of the Long Spark," Izdatel'sivo Akademil Nauk USSR, pp. 1-272, 1960. English trans. available from Foreign Tech. Div., Air Force Systems Comnand, Wright-Patterson AFB, ohio.
(6) C. F. Wagner and A. R. Hileman, "The Lightning Stroke II," AIEE Trans., Pt. III (Power Apparatus and Systems), Vol. 80, pp. 622-42, oct. 1961.
(7) R. H. Golde, "The Attractive Effect of a Lightning Conductor," J.I.E.E., Vol. 9, p. 212, 1963.
(8) R. H. Golde, "The Lightning Conductor," J. Franklin Inst., Vol. 283, pp. 451-477, June 1967.
(9) C. E. Wagner, "Relations Between Stroke Current and Velocity of the Return Stroke," IEEE Trans. on Power Apparatus and - stems, pp. 609-17, 1963.
K. Berger, R. B. Anderson, H. Kröninger, "Parameters of Lightning Flashes," ClGRE Committee 33, Electra No. 41
C. F. Wagner, A. R. Hileman, "Surge Impedance and Its Application to the Lightning Stroke," Ibid., Pp. 1011-22, 1961 (i ob. 1962 section).
C. F. Wagner, C. M. Lane, C. M. Lear, "Arc Drop During Transition From Spark Discharge to Arc," AIEE Transactions, pt. III (Power Apparatus and Systems), Vol. 77, pp. 242-47, June 1958. Vol. 283, No. 6, June 1967

REFERENCES

(16) H. R. Armstrong and E. R. Whitehead, "A lightning stroke pathfinder," IEEE Trans. Power Apparatus and Systems, Vol. 83, Pp. 1223-1227, December 1964.
(17) G. W. Brown, "The Electrogeometry of Shielding Against Lightning," Ph.D. dissertation, Illinois Institute of Technology, Chicago, Ill., 1967.
(18) H. R. Armstrong and E. R. Whitehead, "Field and Analytical Studies of Th nsmission Line Shielding," IEEE Trans. Power Apparatus and Systems, vel. PAS-87, pp. 270-281, January 1968.
(19) Gordon w. Brown, Member, IEEE, and Edwin R. Whitehead, Fellow, IEEE, "Field and Analytical Studies of Transmission Line Shielding: Part II," IEEE Transactions on Power Apparatus and Systems, Vo1. PAS-88, No. 5, pp. 617-626, May 1969.
(20) E. R. Whitehead, "Final Report on Edison Electric Institute Research Project No. RP-50, Mechanism of Lightning Flashover on Transmission Lines," No. 72-900, EEI, 90 Park Ave., New York, NY 10017, (1972).
(21) Gordon W. Brown and Steven Thunander, "Frequency of Distribution Arrester Discharge Currents Due to Direct Storkes," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-95, No. 5, pp. 1571-1578, September/October 1976.
(22) Gordon W. Brown, "Lightning Performance II Updating Backflash Calculations," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-97, No. 1, pp. 39-52, January/February 1978.
(23) Gordon W. Brown, "Joint Frequency Distributions of Stroke Current Rates of Rise and Crest Magnitude to Transmission Lines," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-97, No. 1, pp. 53-58, January/February 1978.
(24) Gordon W. Brown, "Lightning Performance - I Shielding Failures Simplified," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-97, No. 1, pp. 33-38, January/Feburary 1978.
(25) D. W. Gilman and E. R. Whitehead, "The Mechanism of Lightning Flashover on High-Voltage and Extra-High-Voltage Transmission Lines," Electra No. 27, pp. 65-96, March 1973.
(26) E. R. Whitehead, "CIGRE Survey of the Lightning Performance of Extra-Higi-Voltage Transmission Lines," Electra, 33, pp. 63-89, (1974).
(27) E. R. Whitehead, "Analytical Speculations on Improved Electrogeometric Models of the Lightning Flash and Transmission Line Environment, with Addendum and Appendix. IWD 12 and 12a SC33, WG 33.01, (1976)

REFERENCES

(28) M. A. Sargent, "The Frequency Distribution of Current Magnitudes of Lightning Strokes to Tall Structures," IEEE Trans. PAS-91, No. 5, pp. 2224-2229, September/October 1972.
(29) M. A. Sargent, "Monte Carlo Simulation of the Lightning Performance of Overhead Shielding Networks of High-Voltage Stations," IEEE Trans., Vol. PAS-91, No. 4, pp. 1651-1656, July/August 1972.
(30) H. Linck, "Shielding of Modern Substations Against Direct Lightning Strokes," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-94, No. 5, pp. 1674-1679, September/October 1975.
(31) Abdul M. Mousa, "Shielding of High-Voltage and Extra-High-Voltage Substations," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-95, No. 41, pp. 1303-1310, July/August 1976.
(32) Ralph H. Lee, "Protection Zone for Buildings Against Lightning Strokes Using Transmission Line Protection Practice," IEEE Transactions on Industry Applications, Vol. 1A-14, No. 6, pp. 465-470, November/ December 1978.
(33) Ralph H. Lee, "Lightning Protection of Buildings," IEEE Transactions on Industry Applications, Vol. 1A-15, No. 3, pp. 236-240, May/June 1979.
red-to-plane gap upon application of a 60 . cycle voitage of an impulse having a slow front and long tail. The higher value of 160 sv pet font or 5,300 volts per cint represents the charduteristic of is sad-riad gip to wheh I regntive priteatatis Ipylted it wuid be interasting if duta pertuirusg to a rod plane gatp wers obtained in a range of +00 inches for which the applied voltage is a negative slow-front wive These dats could be compared directly with the low gradient of 1, Que voils per em ubtained with a positive wave Fig 14 of referenice 1 of Mr. Higen. guth's discussion provides some inforumatiou tuneeraing rod-fod gaps which indicates tinearaty up to 180 iacties and a gradient of shout 5.000 voles per cm

The question raised by Mr Hagenguth bettays chat we were act suthiciencly clear in the general expusition of the paper. We trief to convey that spurk over of the gap ocours in two phases, first the developinent of the spuce enarge (corons disenarge), and semont, the development of the channel (high conducting arc plasmal Only the first phuse develops below eritical voltage. Ahove critical voltage both secur in sequemes

Regarding the development of the space charge, Park and Cones stated that "in analysis of i large number of records ib. taitied with slowly rising surges indicated that the peak curfen: was approximately proportional to the anten! value of voltuge at the instant the discharge sturted Therefore, in an ambient of low free electron concentration atd with the application of a steep voitage wave, the crest value of the vottage wave is attained before tnggerang oxcurs. But if the conicentration of free electrons is thigh. trikgering may wecur an the rising portion of the wave with a cor respotiding refuetum in crest value of the eurrent. It is ta be presumied that a corrs. sponding lengthening of the current wave would ensue. According to our theory if breakdown, the substanalit development of the space charge is a preewdent so the de velopment of channel The curtent requited to develop the spour charge is small in comparisoth with the fibort circuit surtent of the surge generator shea ultimate bre sh down occurs. Therefore, when the current shunt is adjusted to read the short-circuit current, the space charge current is swamped by-the channel formatinn currents even in
the early stages of the chamnel formation and its presence is not apparent.
In reply to the comment made in the last paragraph of Mr. Hagenguth's discussion, it does not appear that a glow discharge or pilat leader without some sort of conducting core (chantuet) would possess sufficient conductivity in the form of a cylinder 10,000 or 20,000 feet in length and 100 feet in diarmeter, to upply the curtent reguired to provide the progressiug corona discharge space charge in front of the leader. Fur. thermore if the leader consisted of only Juch a slow dixcturge, the gradient per unit length must be approximately 7,000 voits per col. The trap alone in such leuder of 20,000 feet length would be 5×10 volts This would require a deposition it charge along the stroke channel that increases thearis with feighi The tesultant curtens at the earta is the return serose tupped these chatges progressively, wouid resut in I curtent it the surth that would increase progressively with time up to about 100 usec and in magritude would be many times the recorded values Thus we are of the opinion that a conducting core must exist withy the foader

The Lightning Stroke-II

C. F. WAGNER
FELLCX AEF

A. R. HILEMAN

member Aet

I- A PREVIOUS PAPER, smatarls titled, the authors undertonk to svon thesize certain characteristics of the light. ning stroke by applying and extrapolating the results of laboratory experiments. Thes were supported in this effort by data concerning the transient character istics of ares? and the properties of corona within cylindrical shells. I companion papert on this issue, discusse- the proper ties of laboratory produced Farks and the present paper applies this information, together with additiona! dats ancerrins natural lightaing to a more detalied consideration of the lightning stroke inew mechanism of the leader steps is pre sented. Also, a theory of the very im portant events that occur during the earlv stages of the return stroke is eluct dated.

General Description of the Stroke
Beiore discussing the varinus phases of the stroke, a generat description of the stroke without detalied substantia tion will be presented. The hypothesis protures the leader as comprosed of two parts a very thin good conductang care. which will be called the chantui, preceried and surrounded by a negative sifuce charze
which will be called the cotona sheath The diameter of the shamel is only about 2 mm (nullimeters) and its drop about 50 or 60 volts per cm centimeters) It has churacteristics of an arc piusma with very high temperatures and may be highly luminous. The diameter of the coroma envelope may be about 100 feet and may extend about 150 feet in front of the channel The internal gradient of the corona sheath lies betweer 5,000 and 10,000 volts per cm It has characteristics of a दुow or corona discharge, its temperature is low it is pierced by streamers; and considerable difficulty is sometimes experienced in phanstaplung it

As the chatarel of the leader if the fir at component of a struke reathes a partic uiar pomet it is momentarily arrested and streamers forge ahead into vargin air. These streamers form the corona sheuth and as they proceed distribute a space charge that has characteristics similar to a corona lischarge and to the space charge assoctated with the formative stage of the breakdown of long saps. As the space charge develons the potental fifterence actoss the conoma sheath has an mereasing effect in restrartung the prosress ot the dis charge But, betore the charge can be come fult etfective in thechins the fur
ther progress of the streamers, conditions just in advance of the tip of the channel become conducive to the initiation of a channel or arc plasma at this point. This new channel in reality merely constitutes a further extension of the leader channel. Each new channel spurt starts with a relatively low velocicy that follows a curve with time that is strongly concave upward. This continues until the channel catches up with the boundary of the cotona sheath. The channel cunmot progress into suggin air in the form of a highly conducting plasma and, there fore, ceases In the meantime the comona streamers continue to progress from the new tip of the channel and the whole process is repeated The photographic studies of Schonlandt and his associates reveal this rapid extension of the channel as a short step of very hish brilliance. And with respect to the development of the channel (which they term streamers) they say, "Definte eviderice that the streamers [channels) travel downsward is. however, afforded by the broadening of the upper part of their tracks.

According to schoniand, the lengths of the steps vary between 10 and 80 meters with a mocial value of about 50 meters or

[^0]150 feet. The corona sheath advances with an average velocity of between $1.5 \times$ 10^{7} and $3.0 \times 10^{7} \mathrm{~cm}$ per sec (second) or between $0.0005 c$ and $0.0025 c$, where c is the velocity of light. The time re. quired to develop the corona sheath beore it is again overtaken by the channel, usually ranges from 30 to $90 \mu \mathrm{sec}$ (microseconds), and the velocity of the step exceeds $5 \times 10^{\circ} \mathrm{cm}$ per sec or 0.16 c . However, more recent measurements of electric fields next to the earth ${ }^{2+7}$ indicate that as the earth is approacbed the time intervals between steps become smaller and attain a value of $13 \mu \mathrm{sec}$. Schonland and his associates ${ }^{\text {s. }}$-10 re. ported uncompleted leaders which ceased to svelop before reaching the earth. They also found that the intervals be tween steps aim the length of the steps sometimes remailed constant during a considerable portion of the leader path.

While the foregoing description applies to the more common cloud-initiated stroke, a similat phenomenon occurs with earth-initiated strokes. Hagengrth and Anderson ${ }^{11}$ presented a photograph of a stroke that was initiated from the 1,275 . foot Empire State Building. It exhibited very pronounced steps that occurred at intervals of approximately 25 $\mu \mathrm{sec}$. The explanation for the formation of steps must, therefore, be independent of polarity except in degree.

The step process of the lightning stroke, is, in some respects, simpler than labora-tory-produced discharges. The formation of the space charge in the case of the stepped stroke always emanates from an are plasma constituting a copious supply of free electrons. There is, therefore, no statistical time lag during which the initiation of the discharge awaits the propitious positioning of a free electron. The process is not complicated sy the necessity of considering the development of st.eamers from an opposing electrode until the leader nears the earth.

Analysis of the Stepped Leader

Potential and Charge Distribution

As a preliminary step in the discussion of the nature of the step mechanism, it will be necessary to establish the stroke potential and the general nature of the charge distributed along the leader. Since the potential of the channel is assumed to be the same along its entire length, then the sum of the drop across the corona sheath and the drop from the corona sheath to ground must be the same at any point. To determine this potential some assumption must be made with regard to the distribution of charge
across the lateral sections of the corona sheath. Since the charge at the very tip constitutes such a small proportion of the total charge, it cannot have a very great influence upen the potential of the corducting channel lying on the axis of the downward leader. For the moment consideration will be limited to the essentially cylindrical portion of the leader It is shown in the companion paper that in laboratory discharges, just prior to breakdown, one function of the space charge appeared to be to equalize the electric sradient so that the uniform gradient equalled the average gradient.
In a cylindrically symmetrical space charge, that distribution which leads to a uniform radial field is one for which the density varies inversely as the radius. Thus
$q=\frac{A_{e}}{r}$ in coulombs per cm^{2}
where r is the radial distance from the axis and A_{c} is a constant that represents the charge density at 1 cm . It is also true that if the charge extends to radius ro with $^{\text {o }}$ E. the radial field in volts per cm, q_{0} the tota! chitge in cuulumbs per cm length of the chamel, and 15 , the total radial potential drop, then
$r_{0}=\frac{18 \times 10^{11}}{E,} q_{0}$ in cm
and
$V_{0 t}=18 \times 10^{41} q_{0}$ in volts
Such may be the distribution of charge around the wire of a wire-plane electrode just prior to breakdown.

Since the leader tip is always in a state of incipient breakdown it is not unreasonable to assume that after the tip of the chaunel has passed a particulat point the distribution still remains somewhat the same. Furthermore, at breakdown the gradient for a negative electrode is about

Fig. 1. Approximate form of corone sheath at its most extended point beyond the channel as the head of the channel has progressed to 1,000 leet sbove the earth

Table I. Determination of Leader Potential, Charge Densities, and Corend Sheath Enveiope for Fig. 1

Row	Due to Charge Density in This Section	Contribution to Potential at These Points $\times 100$ Volta						
		1	2	3	4		5	

9,000 volts per cm , and since no branches of the stroke are init:ated from behind the tip, a somewhat smaller gradient of 7,000 vults per cm may be assumed to exist there. Thereiore, if in any section q_{o} is assumed then from equations 2 and $3, r_{0}$ and $V_{a r}$ are determined.

An instant in the progress of the leader will be chosen, showa in Fig. 1, at which the channel is just about to besin another spurt in its advance. The corona sheath along the channel and in advance of it is fully developed for that particular step. Onty that part of the vertical path below an altitude of 10,000 feet is considered. Whie there may be other collecting paths within the cloud it is tisumed that they have no effect upon the phenomenon occurring at the tip. It has been shown by Schomland. Hodges, and Collens ${ }^{\text {Do }}$ that the total charge on the first leader when it is fully extended is about 60% of the charge in the section of the cloud originally tapped by it. Calculations indicate that such a proportionate part of the charge in the cloud, because of its distance, has a negligible effect upon the phenomenon occurting at the tip. The tip of the channe! is assumed at this instant to be 1,000 feet above the earth. The leader is assumed to be divided into five cylindrical sections with a hemispherical dome at the base. The four bottom cylindrical sections and the hemispherical dome are shown in Fig. 1. The bottom cylindrical section is 50 feet long and the others in succession are 200, 250. 1,500, and 7.000 feet respectively. An infinitely small diameter, perfectly conducting core or channel is assumed to extend from point A up through the column.

In Table I, the results of a cut and try computation to determint the charge dis. tribution and the potential of the core are shown. The charge densities in the five sections are shown in tow g. Row h gives the corresponding radii of the sheaths and row ; the corona sheath potential drops.

The inset of Fig. 1 shows one of the elemental cylinders into which the corona sheath is divided. To determine the potential of a point p on the surface of the sheath midway along the cylinder, the volume charge can be assumed to be concentrated along the axis of the cylinder. The potential of this point due to the charge on the cylinder is then, from Fig. 34 of reference 12.
$\psi=9 \times 10^{41} 90 \frac{x+\sqrt{9^{3}+x^{2}}}{r_{0}}$ in voits
where q_{0} is the charge in coulombs per em. By similar expressions given in reference 12 , the potential of point p due to the
charge on the other elemental cylinders can be obtained. This also applies to the negative image charges. Rows a toe thus show the contributions to the potentials at the mid-points of the five sections due to the charges in themselves and the other four sections. Row f is the sum of the individual contributions. Adding the interual potential drops given in row ; to these values gives the potentials in row f which represent the poteutials of the points on the chamel just opposite the mid-points. These should be equal in order to satisly the condition that all points on the channel have the same potential. Thus, for this condition, the potential of the channe! is about 35×10^{3} volts. In addition to the charges in the cylinders, an approximately hemispherical bowl of charge at the end of the leader, tmust be included in the computations. The total charge within a sphere whose charge density varies as $4 / r$ is just $1 / 2$ of the total charge within a eylinder whose length is equal to its diameter and whose density is d / r. On this basis it can be estimated that, in this case, the contribution of this charge to the potential at point I would just about be equal to the contribution of the charge in element 1 , which is 4.8×10^{6} voits. This would re quire a slight modification in the charge densities and the radii of Table I. With these computations as a background the curved shape shown in Fig. 1 was drawn as being representative of the form of the chaige volume surrounding the channel in which the internal field is 7,000 volts per cm . This is only an approximate re sult but since the theory, proposed here, is not critically dependent upon the shape and distribution of the space charge it was deemed sufficiently accurate for the purpose at hand. The average density of charge over the bottom 500 feet is about 9×10^{-4} coulombs per crn. If this charge is drained to earth as a wave of current at a constant velocity of 30% that of light, then in accordance with equation 1 of reference 1 , the discharge would develop a current of 80,000 amperes or at a velocity of $10^{\circ} \%, 27.000$ amperes. Schoniand ${ }^{13}$ arrived at a value of charge density of 8×10^{-9} coulombs per cm from entirely different considerations, such as the modal values of charge lowered in a complete stroke, the number of components in a stroke and the length of the stroke. More will be said of the development of the actual current to ground.

It is of interest to onserve that for this case the potential of the channel fails within the range of 10^{+}to 10 voits accepted by the majority of the workers in this field.

Ahead of the chaunel tip the space charge density and the electric field are probably more intense than in a radial direction behind the front. The electric fie!d ahead of the channe! upproaches the critical value of about 9,000 voits per em at which the cnannel extension again commences.

Tlme for Space Charge Formation avd Veloctry of Its Formation

Very little information is availabie from laboratory data upon which to base these quantities. In reference 3 , it was shown that from the Park and Cones data ${ }^{\text {F }}$ on sphereto-plate gaps, with the sphere zegative, for an $11.5-\mathrm{cm}$ gap the time for the corona current to reach zero was 0.3 μ sec. This corresponds to an effective velocity of charge formution of 0.0006 c . With the sphere positive the velocity was 0.0013 c . The Hagenguth, Rohifs, and Degnan ${ }^{15}$ data for a 200 -iach rod rod gap with the anode grounded gave a time of formation of $9 \mu \mathrm{sec}$, which corresponds to a velocity of 0.0009 c .

Schonland's modal value of 150 -foot steps indicates a time of formation of the uegative space charge of $50 \mu \mathrm{sec}$. Since the avernge need travel only half the dis. tance, this corresponds to an average velocity of formation of

$$
\begin{align*}
\frac{1.50) \times 30+8}{2 \times 30 \times 10^{-1}} & =4.5 \times 10^{\mathrm{cm}} \mathrm{~cm} \text { per } \mathrm{sec} \tag{5}\\
& =0.0015 \mathrm{c}
\end{align*}
$$

For the positively projected steps ${ }^{\text {1 }}$ from the Empire State Bulding, cited earlier. a 30 foot step, with a time of formation of 25 usec , gives a velocity of formation of

$$
\begin{align*}
\frac{50 \times 30+8}{2 \times 25 \times 10-6} & =3 \times 10^{7} \mathrm{~cm} \text { per sec } \tag{6}\\
& =0.0016
\end{align*}
$$

The lightning and laboratory data compare favorably Not all of the step inter. val time can be attributed to the formation of the space charge as a portion is also required for the formation of the channel.

Velocity of Chinnel.

So far the comparison of the characteristics of the step of natural lightning with those of thiorstory produced sparks have shows 5 . fying agreement. However, when one compares the velocity with which tae channel advances, the agreement ceases. It was mentioned in reference 3 that in the Park and Cones experiments ${ }^{14}$ the head of the positive channel starts with an initial velocity of 4×10^{0} em per in of 0.00013 z and increases

attaining a terminal velocity of about $10^{4} \mathrm{~cm}$ per sec or 0.003 c . The negative channel seems to travel with a greater but unknown velacity. Since similar thermal processes must be involved the velocity of both polarities should be of the same order of magnitude. Schonland ${ }^{13}$ states that the steps of the downward leader complete their passage in $1 \mu \mathrm{sec}$, which for the 150 -foot step to which he was referring. Invalves a velocity of

$$
\begin{equation*}
\frac{130 \times 30.48}{10^{-1}}=4.5 \times 10^{\circ} \mathrm{cm} \text { per } \sec =0.15 \mathrm{c} \tag{7}
\end{equation*}
$$

This is a serious discrepancy but as the analysis proceeds it will be explained satisfactorily.

Development of Channel. Currents

Fig. 1 shows the column of the lightning discharge at an instant when the space charge in advance of the arrested channel has reached its point of greatest advance. Conditions just in advance of the tip, point A, of the channel are at this instant propitious for a further advance of the channel. It seems as though these conditions are related to a certain combination of high charge density and field. It certainly involves the same relations as the transition from a glow discharge to a high conducting arc plasma, for this is the essence of the phenomenon involved. This is essentially thermal in nature and involves considerations of high energy concentration. The conditions conducive to this transition are not well understood. In the companion paper it is indicated that when the anode is far removed irom the cathode, the critical gradient at which a space charge develops into an arc plasma at the cathode is in the order of 9,000 volts per cm. Fig. 2 shows another view of the tip of the leader. The density of the dots is intended to be suggestive of the charge density. From this condition it may be assumed that the conducting channel extends itseif from position A to position C and as it extends into the space charge it quickly attains a low voltage trop. Justification for this statement is prorided by Higham and Meek, ${ }^{10}$ who demionstrated that for currents in the range of 60 to 500 amperes that rose to crest in $1 / 4 \mu \mathrm{sec}$, the drop reduces to 150 volts per cm in $1 / 2 \mu \mathrm{sec}$. This drop is small in comparison with the electric field of the space charge, which had been assumed to be 0,000 volts per cm . The high initial drop may still be significant in its effect upon the phenomenon. However, for the moment assume that the drop along the channel extersion is zero.

The projected channel is it advances
forms a pencil of zero electric field along a line where previously the gradient had been constant at about 9,000 volts per cru. If the extension of the channel into the space charge is very rapid and if it is assumed that the surrounding space charge cannot change rapidly, to achieve the condition of zero gradient parallel to the axis of the extended channel, charges must be induced in this part of the channel that produce a gradient paralle! tor the channel that is just equal and opposite to that of the field before being disturbed by the projection of the channel. To form an idea of the charges and currents in the extension, two conditions should be assumed First, that no current is fed into the extension from A, that is, that the extension from i consists of an elongating conductor insulated from the main channel at A. Second, that this connection is closed and that the channel and its exterision are perfectly conducting

For the first case, the problem is the - determination of the charge distribution along a cylindrical conductor whose length is large with respect to its diameter whose total charge is zero, and whose electric gradient along the surface of the conductor parailel to the axis is known. Assum. ing a step whose length is 150 feet, whose gradient is 9,000 voits per cm , and whose radius is 0.01 foot, or 3 mm , an approximately triangular charge distribution results, as shown in Fig 3(A), whose density at the ieading tip is -1.5×10^{-4} coulombs per cm and at the trailing tip of $+1.5 \times 10^{-4}$ coulombs per cm . The resulting density is not sensitive to variations in radius; thus decreasing the radius to 0.005 font increases the density about 10% and increasing the radius to 0.03 foot decreases the density about 12%. As the head assumes intermediate positions in its travel, the distributions continue to be approximately triangular at any instant.

In justification of the diameters of the channel extensions used bere, reference is made again to the work of Higham and Meek. ${ }^{18}$ which shows that the diameist of a 500 -ampere arc grows from 1 mim at !/4 $u \mathrm{sec}$, to 2 mm at $1 . \mu \mathrm{sec}$, and 4 mm at 5 $\mu \mathrm{sec}$. This curve is reproduced in Fig 4 of reference 2.

Current must flow within the channel extension to achieve such charge redistribution. If the tip of the extension moves with constant velocity then, as it reaches a certain point, the current rises suddenly at that point and remains constant until the channel has reached its maximum extension. These relations are shown in Fig. 3(B) for an assumed travel time of the liead of $1 \ldots \mathrm{sec}$ with a
velocity of 0.15 c . While this may not be the actual travel time, it does correspond to the time indicated by Schonland. In any case, it can be used later as a basis for reference. At the very tip the current reaches a maximum value of $7,000 \mathrm{am}$ peres. At any point the product of current and duration of the flow is constant.

Now consider the case in which the extonsion is connected to the channel at A as shown in Fis 4. While the extension is traveling downward, the disturbing infuence of the sudden propagation of the downward step is also felt in the conducting leader behind point A. The velocity with which a disturbance travels along the arc plastma appears to be dependent upon the previous intensity of ionization of the plasma, as is evidenced by the velocity of propagation of dart leaders and return strokes. In this case assume that the disturbance travels up the channel at a velocity of 50% that of light. Thus, during 1 usec while the chamel is moving downward 150 foot from A to C, the influenced portion of the channel is the 500 foot above A. Let it be assumed that the radii of the leaders on both sides of

Fig. 2. Tip of the downward leader of the first component of a stroke, showing the appro-imate distribution of charge within the corana sheath and the chargas that must be induced in the channel extension and in the channel above the channel tio, for several positions of the channel extension, assuming that the channel extension occurs capidy

A

A are 0.01 foot, or 3 mm . For the tmoment assume that this movement is sc rapid that the space charge contributing to the field cannot change in intensity in the immediate space surtounding these lengths. In this case the charges induced on these lengths are approximated by the solution of the electrostatic problem, for which the potential from A downward increases tinearly to $150 \times 30+8 \times 9000$ or 41×10^{6} volts at C and upward from A the poteatial is the same is that at d . The average potential of the 650 -foot length must shift subject to the condition that the total charge is zero, Fig, + (A) shows such a distribution of potential. The decermination of charge density, in terms of known potencials, is rather diffi. cult without recourse to a digital computer, but the inverse of determining potentials, in terms of charge densities, is relatively simple. In Fig. 4 (B) the dotted lines show an assurned charge distribu. tion oi the nature expected in this case The solid lines show the corresponding potentials. It is found that the potential distribution approximates in shape the one under consideration From this solution the desired charge distribution produced by the known potential is given in $\left.\mathrm{Fig}_{\mathrm{i}}+\mathrm{C}\right)$.

This curve of charge density is replotted in Fig. 2 by the curve abc. Other curves for one fourth, one half, and three fourths of the travel distances are also shown in Pig, 2 and in Fig, $4(\mathrm{C})$. The currents re. sulting from these charge distributions are shown in Fig. 4(D). For these assumptions the maximum current is about 12,000 amperes.

The actual condition for rapid advances of the channel probably lies be tween these two cases. They will be greatly enhanced by the characteristics that influence the transtion from a glow
to an are and also by the transient characteristics of an are as the current tends to increase rapidly. In Fig 11 of reference 2, it is shown, that for an impulse current wave that rises linearly from zero to 10 . 000 amperes in 1.4μ sec the voltage drop at $1 / 4$ usec is 3,200 volts per inch or 1,250 volts per cm . For shorter instants, with the same rate of rise, the drop is even higher This is merely indicative of the voltage drops that may occur with very rapid changes in current. Because of the rapid velocity of propagation above point A, the reference point in Fig. 4, and the longer distances involved above A, it is likely that the are drop will also influence this portion of the circuit and offer additional impedance to the flow of current downward from A. Actually, the are drop tends to suppress the charges in both circuits to some extent, because whatever drop does occur reduces the need
for additional charge to annul the electric field existent before the development of the leader
The criterion that determined the wagnitucle of the induced charges was that the electric field parallel to the channel extetision produced by there charges is equal and opposite to the field into which it is projected. This results in a zero electric field paraltei to the axis of the extetision. No such caticellation exists for the radial tield along the extension of the chantel or for points in front of the extenston. If, for example, the charge density attains a value of 1.5×10^{-6} coulombs per om that is indicated in Fig, 3. the electric field 4 drm to the side or a mon in front of the sip would reach the following fantastic value; see equation 5 of Fig 5 of reference :

$$
\begin{align*}
E_{r} & =\frac{9 \times 10^{4}}{4} 40=\frac{9 \times 10^{11} \times 1.5 \times 10^{-4}}{04} \tag{8}\\
& =2+10 \times 16 \text { voits } p e r \mathrm{~cm}
\end{align*}
$$

This merely means that in the attempt to maintain a low axial field, charges of great value develup which in turn produce profuse ionization in the space surrounding the chantiel. This is merely another form of corotid of glow discharge. The radius of the corona sheath would expand to ahout 10 times 2 mm , or 2 meters. But this would not vitiate the argument concertions the axial gradiest. As the corona expands into the original space charge, equalization of charge density results which in turn decreases the field originatly respunable for the ejection of the channel In this manner the charge density below 4 in Fig 2 is gradually transformed into a charge volume density

Fig. 4. Nature of charge and current distribution induced in the extension and the channel during a apid extension of the channel when the otal induced calarge in the extension is drawn from the channel benind the tip

Fig. 5. Measurements of electric fields next to earth at points remote from the strokest

A-Raplot of cathode-ray oscillogram that illustrates relarive magnitude of fields produeed br steps and by return streke of first component of a stroke
B-Actual recsrd that shows that as earth is approsched the field procuced by the steps just shead of the return stroke become smaller and of in ir duration C-Replor a oppical section of the field record saken from the earlylife of the lesaer
remains the statement by Schonland that only 1μ sec is required to travel the length of the step. This contradicts laboratory data which show that channels start at a low velocity and increase rayidlys Su before drawing definite conelusintis, consideration will be given to additional
evidence. This evidence is discussed sideration will be given to additional
evidence. This evidence is discussed subsequently when the electric fields, aext to earth at points remote irom the stroke. are examined.

Positive Polarity Steps

The experiments of Park and Cones'4 maniest the same external characteristics for the formation of both positive and negutive space charges. Thereiore assuming that steps result ifom the same interpiay of the space charges and the chanmels, the negative channel formation should be similar in character to the positive channe! formation. Furthermore, since the channel formation and characterictics are essentially thermal phenomena invoiving the absorption and the loss of energy, one would expect the characteristics to be similar for both polarities.

Etretrictc Fietd Measurempnts Next

 TO THE EARTHIn the past this information has been analyzed in terms of the electric couple of the charges comprising the strokes ${ }^{3-7, t^{2}, i s}$ More recently Wastner ${ }^{\text {T }}$ las interpreted these measurements in terms of waves of charge and has concentrated on those phases of concern to the transmission ensineer. A definite limitation of some of these data has been the resolution of the time sweeps and the time constant of the measuring circuit Time resolutions of 1 usec have been difficult to attain. In recent work of this nature
\qquad
 -
resembling that above porrt \& The in tense field ahead of the tip just mentioned probably supplies the explanation for the high velocity with which the leaders in the steps of lightning advance

The currents described so far illustrate the assumed phenomenon that the travel time of the channel extension is 1 usec. In considering the case in which an open circuit was used at A of Fig 2, it is evident that this assumption is incorrect, for somse current must certarnly flow from above this point. In considering the other case current would cease below A aiter a time of $1 \mu s e c$, but would continue to flow above A because after a current wave is once established, it should continue to flow until its energy is absorbed by losses. Evidence to support the condi tion of Fig. 4 is offered by the photo. graphs of Schonland that show that now ouly the step and a short distance behtme it is highly luminous, but also that a fine trace of much fainter luminescence exists behind the tip of each step. This sug. gests that current such as illustrated by Fig 4 is also being supplied from a long leugth of the channel. If the channel developtrent time is 3 usec instead of 1 u sec, the currents involved would be correspondingly smaller.

In laboratory-produced sparks, as the tips of the channels approach each other the gradient between them becomes larger and larzer. This condition does not exist
is natural lightaing because the two terminals may be separated by enormous distances and the movement of the length of one sten would not make any appreciable change in gradient from this consideration alone Therefare, the induced charge in the channel extension becomes an important eiement thot only in ex plaining the movement itself but in explaining the high velocties that may be attained.

But, while the photograptic evideace of Schonland supports some sort of activity such as just outlined, there still

Fig. 6. Interplay of current supplying the corond sheath with current in the channel extension of a step that leads to the deveiopment of an electric field at the earth at a point remote from the of a step that leads to the development of an elecular to measured values stroke of a character simular to measured values

Clarence and Malan have utilized an amplifier with a high anplification and a frequency response up to 300 hc . Kitagawa and Kobayashis state that their recording equipment can measure a rise time of about I $\mu \mathrm{sec}$ and that the time resulution of the time sweep is less than $10^{-6} \mathrm{sec}$.

Fig S(A), which is a replot by Kitagawa and Kobayashis of one of their recurds, shows the electric field about 10 miles from a stroke. The field produced by the first retion strake is indicated by the first large sudden change, the R change. The small pips preceding the R change are stated by the authors to be about 30 μ sec apart: thes appreach 20 , then 13 , usec during the time fust preceding the R change and are due to the stejs in the first leader

Fig. $5(B)$ is an oscillogram which was obtained by Kitagawa and Brook in New Mexico. The fature of the field measurements preceding the R change is shown in thure detail. Fig 5C is anuther replot of a very carly portion of Fig $5(\mathrm{~B})$ by the present authurs and is inteaded unly to indicate the general nature of the field produced by the steps. The tapid chankes in Figs. 5 (A) and $\dot{s}(B)$ are fath. ful measurements but might be distorted slightly by limitations in response. The dropping portion of the large R change, is definitely affected by the time constant of the low-cut fitter used in the recording apparatus and should not be used to draw conclusions. Clarence and Malan ${ }^{3}$ observed similar field changes just preceding the return stroke and state that they consist of a "train of steep and predominantly positive pulses following each other at 5 . to $10-\mu \mathrm{sec}$ intervals."

As a result of field measurements Schonland ${ }^{\text {ts }}$ was led to conclude very early that the current in the steps is less than 10% of the current in the main return stroke. This conclusion was verified by later work and is discussed in more detail by Wagner. ${ }^{19}$ But aside from the magnitude of the ground gradient meas: urements, the shape of the records leads to important conclusions.

Mecmanism of Propagation

Fig. 6 represents an effort to show qualitatively the secquential mechanism of the step. Fundamentally it is based upon the observed facts that for laboratory gaps the formative current ${ }^{3}$ of the space charge starts at a high value and secreases somewhat exponentially with time and that the cursent ${ }^{3}$ supplying the channel during its development stage starts at a low value and increases almost as a positive exponential with time. In

Fig 6(A) the tip of the channel is shown just as the corona space charge is developed to its maximum posstion and the channel is about to start its develupment from a to c . All references to time are referred to this instant as zero. Fig o(B) shows the curtents within the newiv developed chantiel and also for points above a at different instants which start small and increase with time. At 25 μ sec the head of the chantel reaches the boundary of the space charge and must stop its progress. At this instant the character of the discharge changes suddenily from a channel extension to a corona discharge. A comber gradient tuilds up inside the corona sheath through the develugtment of the space sharce and the current begias to decrease. The manner of change is indicated in Fig. 6(C) at different instants. The solved lines in Figs. $6(D)$ and $6(E)$ show the time variation of the current at specific points.

A knowledge of the vectur potential of the current is necessary to determine the electric field at the ground at a point remote from the stroke. This is pruportional to the imtegral of the product of the curtent and the distance through which it is operative fivised by the distance to to the point of observation. Since the distance to the point of observation is substantially constant for all of the points in the step, one need only consider the area under the curves of Figs. 6(B) and $6(C)$. The dotted lines in Figs. $\delta(D)$ and $b(E)$ represent these quantities as a function of time. These are also shown by the dotted lines in Fig. $6(F)$.

Except for the slow propagation of an average charge to repienish the charge in older steps and to supply part of the rcharge in the new step, the rapid changes in charge involve equal pasitive and negative values of charge In other words. the process is largely one of rapid redistributions of cbarge mather than a translation of a charge. Such redistributions do not contribute to the develupment of an electric field at the observation point. Thus, the only contributing factor is the time rate of change of the vector potential of current. The time differential of the dotted line of Fig. $6(F)$ is indicated by the solid the of Fig. 6(F). The field at the ofservation point is proportional to this quantity. The discontinuity arises from the fact that the slope of the vector potential changes signs rapidly as the discharge transforms from a channel to a coronit discharge It cun be sem that his fieid is similar in general charucter to the electric fieids depicted in Fig. $5(\mathrm{C}$). This interpretation of the phetomenon of the
step results in an electric fieid to which the circuit of Kitagawa and Kobavashim can respond faithfutty and for which the time resolution of their films is adequate.

The time interval during which the channel current has the higher currents is small in comparison with the total duration of the step, perhaps only several microseconds. But it does appear that the duration is longer than the 1μ sec referred to by Sclionland. Perhaps the sharply rising portions of the current curves should be sharper than here indicated and that Schemland was able to record only a short interval of the very lighest curretit whth the photagraphic sensitivity of the film that he used. Perhaps also, the resulution of Schonland's film was not sufficiently fast Malan, ${ }^{21}$ it describing the type of equipment he and Schonland used in South Africa, states of the time resolution due to the velucity of the lens as "possibie to measure intervals with an accuracy of a few microsecunds."

The fuminasity of the steps should give some idea of the current carried thereby. Tncitentally Schomland ${ }^{3}$ arrived at a value of 16,000 amperes, but conctuded that the "luminosity of the step process is far too weak to make it likely that the step carries a zurrent of this magnitude." The discussion just presented is not sufficiently precise to warrant an accurate estimate of the magnitude of the current. It does, however, offer a method suggest. ing how magnitudes in the order of sever al thousand amperes might occur. This is based upon decreasing the value of 12 ,000 amperes, discussed in the development of the channel formation, somewhat in proportion to a 5 - or $10-\mu \mathrm{sec}$ channel formation period instead of the $1 \mu \mathrm{sec}$ ussumed at that point.

Further, it was assumed that the charge and channel formation periods were about equal. The time of space charge formation increases with gap spacing but the time of channel formation is independent of gap spacing. This would tend to make the time of channel formation smalter than the cime of space charge formation. It is difficult to assign a definite value for the ratio because the time of channel formation also decrease is the avervoltage increases,

The detailed oscillogram in Fig, 5(B) clearly shows that the early stages of the downward leader are much more variable than the later stages. Just prior to the R change, white periods of the steps are istill liscervible and, us stated by kitagawa and Kobayashi, Wave reduced to $13 \mu \mathrm{sec}$, the magnitude of field changes are

Fig. 7. Stages in the development of an upward thannel

negligible in compatison with the R change. Norinder and Stoffregen* also comment on the fact that in some of their measurements of ground gradients "there is a calm period before the beginning of the main discharge : The step phenomenon is only an incudemal pretiminary setting the stage for the great incident culminating in the train stroke.

The long periods of the steps during the begimning of the leader formation may be occasioned by the linvitations in the charge accumulating ability of that por. tion of the discharge within the cloud, or stated differently, by limitations of the leader's ability to maintain its potentiat as its capacitance is increased with fixed charge As the length of the leader increases, the reservoir constituting the source of the charge for the next step is greater and constitutes a thore reliabla voltage source.

It is significant that so ferv photographs are available showing steps in the latter stage of the leader development just before striking the earth. Only two or three such photographs are available and these indicate small steps. On the other hand, negative evidence is available from the work of Berger, who has photographed the last stages of the leader at a very close range of less than 1,000 feet and with the exception of two photographs has not been able to discern the presence of stens. Three explanations suggested themselves to Berger: (1) the photographic sensitivity of his films ivas not sufficiently great to penetrate the intervening atmospheric conditions; (2) the Plexigias drum (2 mm thick) through which the light must pass may have ahsorbed the light irom the steps, and (3)
the steps and cutrent variations in the leader were so small that the light appeared as a continuous beam. The third possibility is probably correct, particularly in view of the evidence afforded by the ground gradient measurements.

Current in Corona Sheath

It is pussible to estimate the magnitude of current in the leader steps by an extrapolation of the measured laboratory currents. In reference 3 the current pip for a 6 fout rod-rod gap, for a positive mpulse voltage of 300,000 volts $(90 \%$ of critical) was estimated as 25 amperes. Now apply these data to a lightning stroke in which the voltage across the space charge in its most extended position is about $30,000,000$ volts. To get an idea of the current that might be expected in a stroke to form the corona sheath at each step, simply prorate these voltages. This results in a current peak of $30,000,000,860,000 \times 25$, or 380 am peres. Park and Cones ${ }^{14}$ observed that the current pips vary over considerable limits for a given condition. Taking this factor into consideration, and prorating the data of Park and Cones (sphere plate gap) and that of Hagenguth. ?ohif, and Degnan's (horizontal rod-rod gap), it may be concluded that the cur, ent in the steps of the strokes may be in the order of 1,000 or 2,000 amperes. Although these extrapolations are quite large, they indicate that the lightning stroke channel currents taecessary to develop the corona are of a relatively modest value compared to the return stroke current

The work of Park and Cones demonstrates most clearly that the development
of the corona space charge is entirel. independent of and a precursor to the subsequent channel development, although the channel may begin before the space charge is fully developed. That this work was conclusive probably can be attributed to three condtuiftis: (1) the use of a $0.0 \pi \times 100 . \mu \mathrm{sec}$ wave that rose so rapidly that it could be regarded as a rectangular wave; (2) the choice of a sphere instead of a sharp rod; and (3) t^{1} e control of the free electrons and ions in the gap. In most cases the vollage rose to fult value and for some gap spacings the air next to the gap was stressed to as high as 150,000 volts per cm before a free electron or ion was positioned to trigger the gap. When a slower s.ave that rose to crest in $1 \mu \mathrm{sec}$ was used the results became erratic and the crest of the corona current pip was approximately proportional to the voltage at which triggering occurred. It would be expected then, that with a copious supply of free electrons the current peak would be relativeiy low and spread out ove: considerable time. This condition must have presented itself in the experiments conducted by Saxe and Mreek and possibly others in which the current in a pointed electrode over a flat plane falled to exhibit the magnitude of current peaks of Park and Cones when the applied voltage rose to crest in about $2 \mu \mathrm{sec}$.

But the magnitude of the peak corona current is also dependent upon the ratio of the time to crest of the applied voitage to the time required to develop the space charge For a lightning stroke step length of 150 feet a time of about 25 to 50 $\mu s e c$ is required to develop the corona sheath ahead of the channel tip. There.
fore, a gradual rise in potential of the point from which the corona emanates in. say, 5 usec would not have much effect upon the peak value of the corona cur. rent passing through this point because during this time the back voltage de*eloped by the space charge would not have sufficient time to build up.

Development of Return Channel

Approaching the Earth

Fig. Fis as simplified picture of the general processes that accur at successive instants as a stroke strikes a tall oivect such as a mat or a tramemession line tower. Evidence tras indicated that as the icader approaches th. a earth the steps become shorter in length and time. In order to discuss what uccurs at and near the earth, the steps will be assumed to be so small that the channel and its associated coroma sheath propagates with a constant velocsty of 1 foot per 4 sec , which is approximately what Schonland abserved as the average velocity of the downward leader. While spectio numerical salues are ascribed to the yarious stages, it should be realized that the actual values vary over the wide limits characteristic of lightning phenomenon. The mast is indicated as being 100 feet tall and the width of the heavy lines is
intended to convey an inipression of the current flowing at the instant. It is assumed that the potential of the channel, indicated by the full line on the axis of the corona sieath is $.50,000,000$ volts with respect to the earth.

Fig (A) shows the position of the Charnel at an instant where the tip. b, is otill about 400 feet above the carth. It is sursounded by its negative corona sheath. When even more renute than this a corona discharge bexins to develop from the tower and at tha inctant has aiready developed sizabie propartions. From this position the chatnel and its cotona sheath coatinue their pro ress th eurth and when thes attan the misition shown in Fig. TB in shich the ip is its feet above the tower, a Giamnel begins to develop from a

This distance is determined when the average gradient between a and b attains a value of about 6,000 volts per cm , the eritical value at which breakdown of eurs Thus
$\frac{0,000,000}{6,000 \times 3048}+225$ (eet
This imetant will be designated as the teference pount for time. Prior to this profuse corona had existed at a but the channel had not begun to develop until this instant. Four microseconds later,

90004028

Fig. B. Replot of the oscillograms of high stroke currents recorded by Berger," ttanslated with respect to time to pass through 40,000 amperes
at the same instant
as shuwn in Fig F(C), the channel from both a and b has progressed to the points indicated in TDI furthei progress has been thade and the current has grown significantly At the same time the current feeding the downwird moving channel of the last step draws current from the ald low -urrent channel feeding this "last step from above. As was explatined in the discusstion of the step process the propagation of this current is slower than the speed of lisht: it is limited primarily toy the speed with which the arc path can accummadate trself to the higher conductivity und the speed with which it can draw the chat ce from the space clatge, Corresponding fingers of the channe! must extend into the spwe charge above the last step to oullect the appropriate current And so the progress continues through (E) and (F), the instant at which cuntact is finally made between the main Channels in the last step. Fig Z(G) and (4) show later instants at which the head of the return channel has penctruted farther into the space charge and towered a substantial portion of this charge to earth.

Xote both the prugress of the upward channel of the last step and the time intervals between the indicated pusitions which have been chosen to suggest itcreasingly bigher and higher velocities of the upward channel. As the upward channel jrogresses, tentacle like streaners reach outward and upward and send to spread the positive charge over a greater area than that encompassed by the chatnel itself.

The current at the earth assoctated with the development of the corona sheath is small with respect to the current ocourting during the chaunel formation stage This statement is based tupon laboratory tests. The surge impedance of the stroke does not differ greatly from the series resistance that is usually employed in high-valtage laboratory lest circuits. so that the final reference currents should be proportiunal to the whitages in the two cases. Several sets of data. Park and Cones, ${ }^{14}$ Hagenguth. Rohlfs, and Degnan, ${ }^{16}$ and Wagner and Hileman, ${ }^{1}$ indicate magnitudes of the first current pip current that supplies the space charge less than a few per cent of the final current. The tests of Pork and Coses show that when the ertucal voltage is only shightly exceeded, even when the wave shape is aimost rectanguiar, the cartent crest is verv anall. is the slope of the applied save beownes slow, which should be the arse is the electrodes thote toward each othet shaty, the first current pip is even smaller

Fig. a. Channel formation in an arrested discharse in a 6 -foot ted-rod ga0 showing the outward formation of an+11al channels

Cirresat Curves

The most extensive $0 x-$ urements of stroke currents are those made by Berger ${ }^{77}$ in Switzerland which were collected on a 70 -meter steel tower and mast mounted atop Mount San Salvatore. The measuring shunt was located at the base of the 18 -meter mast. Berger has published 39 cathuderay oscrilograms taken from 1946 to 195 t of which the 14 that exceeded 40,000 artueres are reproduced in reference 19 Orotlograms B, C, H, I, J, and 太 from Fing of this reference are replotted it: Fig 8. They were intentionally trans lated with respect to time so a better ides of the extent to which they coordinate with each other could be seen. Oscillogram (B) is the most well-defined The others, with the exception of (C) for which the zero of time was clearly indicated, were drawn so that they coincided with (B) around 30.009 amperes They all indicate a variation with time that follows a somenhat positive exponestial curve Other available oscillogramis of stroke currents are reproduced in Fig 3 of reference 1. With the exception of the record obtained by means of a captive balloon, which is not characteristic of direct ground strokes they all exhihit this same upward concave characteristic

As shawn in the companion paper ${ }^{2}$ all of the gap eurrents for tod rod zaps exhibit the same positive exponential characteristic with time it aiso tllustrates that the cime lag of rod-rod gaps is the same expressed in microseconds for all gap spacings, and is only dependent on the
 voltage is exceeded The times to crest of the currents from Fig. 8 do not differ greatly from the laboratory curves, despite the great differance in gap lengths, if the curve for comparison is one in which the critical voltage is exceeded only slizhtly

Both the rate of current rise during the formative stage of the channel and the terminal or final values of the current are affected by the constants or impedances of the test circuits. It is shown in the comspanion paper that the current increases from zero atong a concave upward curve until it is limited by the series resistance. The Berger oscillograms of the lightning stroke current show that similar forces must be active in limiting the fow of current to an essentially constant vilue after contact of the two channels has been established. These forces probably involve such factors as the speed with which the low-current chantel of the downward ieader can be converted to 4 bighly conducting high current channel and the velocity with which the positive corotia head of the return streamer can propagate within the negative space charge cylinder that had been deposited by the head of the downward leader in its progress toward earth A substantially constant velocity is attaited and some of the factors deter mining this velocity will be discussed next

Induced Charges and Velocity of Upward Streamer

Wagner and MeCann"1 stowed that as the upward leader propagates upward within the cylindrical volume charge deposited by the downward leades in its progress earthwart by virtue of the electrostatic relationship, a positive charge is drawn upward from the earth by induction This charge may be viewed as neutralizing the negative charge of the downward leader. In the Appendix of reference 23 the following relation is de rived expressing the proportion of charge
so neutralized. This might be called the induction factor.

$$
\begin{equation*}
\frac{d q_{9}}{d Q}=\log \frac{R}{r_{1}} \log \frac{R}{r_{d}} \tag{10}
\end{equation*}
$$

where $d Q_{1}$ is the charge in an elemental ring of radius r in the downward corona sheath, $d q_{u}$ is the induced positive charge in the upward channel produced by U_{1}. r_{3} is the radius of the upward channel, and R is the radius of a tares soncentric cylinder representing earth. The potential of the upward channel is the same as that of the large cylinder representing earth. The value of the neutralizing charge so computed is dependeat upon the assumptions used For the values assumed by Wastrer and MeCanm the induced positive charge was about 70% of the negative charge. This same concept was later amplified by Wagner and Hileman Assuming R to be 500 feet, the radius of the arc channel tube 0.2 inch. and that the charge on the downward corona sheath was concentrated at a radius n equal to 200 emoro is feet, they arrived at a value of 0.42 . The factor used is thus depeadent upon the mechanism by which the neutralization takes place. On further reflection it appears that the channel probably extends upward and outwatd as indicated in Fig 7 This condition is illustrated by the last stages of the arrested discharge shown in Fig. 9, which shows the nature of the development of the channels of a vertical 6-foot rod-rod gap for which the voitage has been chopped by a parallel gap just prior to the union of the channeis extending from both electrodes. This type of mechanism indicates that the radius of the upward channe! $\%$, of equation

10 , is much larger than previously thought and that an induction factor approaching unit might well be achieved.
Whether the actual mechanism of neutralization is of this character, involving a rapid movement of positive charges into a region adjacent to the negative charges, or viether the negative charges also move in toward the positive channels is not bnown. It is probably similar to that which oceurs in the last stazes of the laboratory-ptoduced spark where high terninal velucities ar? produced.

A number of exfermenters ${ }^{\text {t }}$ to :4: 51 have measured the progress of the tip of the channel as it moves across a laboratory gap and from these measurements have computed the velocity. They all show that the channel starts at a low velocity and increases rapidly with time. The result resembles the shape of the currenttime curves.

Schomland, Malan, and Cullens, discussing the velocities of the return streamers of lightning, state that the range of variation is from 2.0 to $14.4 \times 10^{9} \mathrm{~cm} /$ sec and the mean $5.2 \times 10^{9} \mathrm{~cm} / \mathrm{sec}$, while the value indicated as most frequent is $3.5 \times 10^{9} \mathrm{~cm} / \mathrm{sec}$ or 0.12 c .

In the companion paper evidence is shown to indicate that the channel currents in rod-rod gaps bear the following relation to the instantaneous velocity:

$$
\begin{equation*}
i_{c}=32 \times 10^{\rightarrow} \rightarrow \mathrm{V} \tag{11}
\end{equation*}
$$

where i_{ε} is the current in amperes and V is the velacity in emper sec. If the most frequent return velocity of $0.12 c$ is inserted in this equation then i_{c} becomes 11,500 amperes, which is gratifyingly clos? to the most frequent mags.itude of stroke current of 14,000 amperes.

Or, viewed differently, if a rectangular wave of charge moves vertically from the earth at a constant velocity, tc. then the associated curt nt is also a sectangular wave. If the return channel can be represented by such a wave, the implication is that the bead of the wave on reaching any vertical section instantly annuls the portion of negative charge at that elevation.

Fig. 11. Boys' camera pholograph of stuoke to ground

The following simple relation then exists between the charge per unit length and the current:
$i=t c q_{0}$
If, on the other hand, the charge at any section transfers inductively to the downward channel at a constant linear rate as a function of time, with the velocity remaining constant, the current also increases at a linear rate until the crest is attained. Thereafter, the same simple relation cxists be ween the current and the linear charge lensity: If the head of the return chamm moves upoward with a veluenty that is not constant, but increases progressively with time the above cimple relation between current and clarge density continues to hold if the wave of charge remains truly rectangular. This condition also requires that the wave of current remains rectangular, that is, that it increases equally for all points belind the head of the wave, if it is accepted that the velocity of the treat of the current wave is similar in shape to the current time wave. No accurate photographs of the first few hundred feet of travel of the return chatuel are available from which the velocity can be estimated. If it is assumed that the flat portions of the stroke currents, obtained by Ferger," arise from the induced charges rising up the column after contact is made between the ward and downward channels, then it can be expected that the terminal velocity of the upward chamel on contact must be (using the most fre. quent value) in the order of 12% that of light. Fig. S(B), which is the most clearly defined of Berger's stroke cuirents, is replotted in Fig. 10. Assuming that the velocity is proportional to this curve and fixing the terminal velocity at 0.12 c, a velocity curve shown by the dotted line is obtained. Integrating this curve with time results in the dot-dash curve that gives the travel of the head. The distance traveled in the time required to attain constant velocity indicates the point above ground at which untion with the downward channel occurs. This distance, about 400 feat, falls within the range of expectancy.

Evidence of T"fakd Leaders

Fig. 11 is a photographic reproduction of a sketch showing the lower end of a Boys' camera record obtained by Dr D. J. Malan and presented in a discussion of upward leaders by Dr: R. IF. Golie."s The point x indicates where the downward leader terminated and was met by the upward chantel from the earth. Its
height is approximately 50 meters. The lengths of the last few steps before nontact with the upward channel are clearly shown.

Torthosity of Path

Setomland oliserved that successive steps do not generatly folluw the same direction. The tendency to maintain a straight line in the progress of the channel is not strong. Since the chamnel of each step starts from the center of hindh charge concentration, the direction taken by the chamel would be highly sensitive to slight differences in density: There may be many simultaneous starts in different directiuns but unly one finally duminates. The dominating the develops a lowar impedance, and in the process of forging ahead decreases the electric field parallel to its path in its vicinity, and also the tangential components of field of the lasging channels so that less charge separation is required in them to neutralize the field in which they are advaticing.

General Discussion

In laboratory gaps the space harge furms at a substantially constant velocity and thus the time of formation is proportional to the gap tencth. On the other hand. with gap lengths of at least 100 inches as shown in Fig. 10 of reference 3, the time to breakdown is suhstantally independent of gap length. Thuse relations indicate that the time of space charge formation plays a mure important part as the gap length incteases and emphasize the role of the char se formation in the step mechanism of lightning.

The forcing electric field at the earth is applied scowly in steps as the dowstuard leader approaches and then more rapidly as the tip of the last downward channel develops. In this way the positive charge at the earth has a somewhat longer time to develop than the space charge ahead of the downward channel as the latter can develop inteasively only after the channel has completed another step to a new position. Or if the head of the downward channel moves at substantially constant velocity, as the ground gradient measurement of Kitagawa and K boys-hi and others indicate, then the spact ctase is continually being formed from an electrode that moves at the averabe vilocity of about 1 foot per usec. The stace charge from the earth terminal is buing formed from a stati nary doatr ie. The current during this interwat ouptlo ins the charge in the corama heath is relatively small. The significant current only oc-
curs after the head of tie upwatd channe! has attained a high velocity, such as in exces of $002 c$

The preance of the steps in the down. warl leates should not be accepted as evidence that the space charge formation is complecely haited at any point as might be the case when a definite impulse voltage is upplied to a cylindriouf couductor and the space chatse develops to a detaice resont. Rather, it should be thouptit of is a continuing formation, and when the conditions at the terminal are faverable to the formation of a channe? the progress of the channel is renewed. These two conditions merely merge into eact other A similar phenometom is present in the leader of strakes subseguent to the tirst. These leaders had been thousht to be continuous and propagate with a velocity of about 0.01 c . Eut the electric field measurements, ${ }^{3}$ at points remote if thi the stroke, have demotsstrated that they involve fast repeating processes whith a period about 10 usec.

The co-ordination between the various compurents of the stroke can be illustrater by a numencal example. Consider a struide approaching the earth with a preant layth respeat to the earth if 5). D00, inoty volts. Assume that the averace gradic:s of the space charge berween the head of the downward channe! and the earth necessary to ititlate the chantiol from the earth is 6,000 volts per emt. As can be seen from equation 9 this determitues the beight of the downward chatuel at this instant as 273 feet. From Tabie I and स̈g in it can be estimated that the chatge distribution along the struke some distance back fom the tip is about $\$ \times 10^{-3}$ coulombs per em for a strike protestial of $30,000,000$ volts: Now if it is assumed that the velocity of the head of the upward channel at and after contact is 0.12ε, then the stroke current it which it levels off is, from equation 12

$t=012 \times 3 \times 10^{14} \times 5 \times 10^{-4}$

a $18 . \mathrm{H}_{\mathrm{h}} \mathrm{h}$ atrperes
and if the velocity is 0.3 C , the strone current is $3.5,000$ amperes

In the theory proposed here, it was assumed that the charze density varied inversely wich the ractius which results in a constart electric gradient. However, thio assamsption is not cricical. It should be recalled that ane role of this particuiar quantity is to indicate when the combination of field and charge dersity reaches such a critical value next to the arrested channel that the channel will again resurte its progress it mignt be that the actual fistribution is not of the
type assumied here but, whatever it is, the average field might constitute a measure of the conditions necessary for chanmel development. The space charge must be relsted to the total potential thereby produced as it is the quantiry whose development retards the downward prog. ress of a step. Also, it was seen to be a measure of the critical sparkover gradient. For this purpose an average gradient sould be used witt equal :ulitity os a constant gradient. The other role of the charge distributed within the downward leader is the manner in which it affects the potential of the conducting channel comprising the core. But this is only pue factor that affects the potential. The charge in ocher portions of the leader and the distance from the earth are diso important. The field outside as well as inside the space charge determines the potential of the core. Thus considerable departure from the assumed charge dis. tribution might be pertnisaible without greatly affecting the potentind

Multiple Strokes

The fact that multiple lighening strokes take the same patit to ground implies that the effects of the preceding component have not become tully dissipated by the time the charge gathering mechanism within the cloud has attained sutticient potential to break down the weakened path. The usual explamation given for the subsequent strokes seeking the same path is that some remanent ionizationt in the path which offers some sort oi directive effect still romains. McCann and Clark, ${ }^{26}$ bowever, offer an alternate explanation by stating that the main return stroke current beats a small column of air to a very high tempers. ture. Following completion of the stroke. the beated column diffuses into the surrounding air, but as it does se it formis a column with a larger and larger radius Whose density gradually approaches northal. Since the breakdown voltace de creases with decreasing density, the pre ceding path offers in easier path for the subsequent discharge

But, regardless of the explanation, it is an observed fact that the velocity of propagation of the downward leader of compnnents of a stroke subsequent to the first travel with a much highe: velocity than the first component. These are called dart leaders. They are almost free of steps, although Kitagawa and Ko. bayashit have seen indications of very high frequency steps in these discharges also. While the average velocity of propagation of the first compotient is
about 0.001 c , the velocity of the dart leader is about 0.03 c . As the dart leader approaches the earth. there must still exi.t next to the earth a simitat channet in which the satle eonditintas exist as in the chammel through witich the dart had developed. Therefore a similar dart leader should spring from the earth and meet the downward moving fart leader. If it is true, as with the con-
 with the velocity of approsch of the channels, then the cursent should have a steeper slope than the first component In Fis. 10, for example, the ourrent should tend to start form the value at which the velocity is 0.036 athl the average rate of fise should be higher. The fattee stazes of the current curve should be simatas in slope to the latter stages of the current of the first component

Recently Berger ${ }^{27}$ presented informa tion concerning the wavestrape of the curtents in components, subsegutat to the first, that were obtained an Ah unt San Salvatore. One chart shows the current in an 11 -compotrent stroke. The first component had the usual concave-upward shape and rose to 50,000 amperes in 9.9 usec The crests of the suheequent compnnents svere smalie: but the rise time was less than \& usec. In conversa tion with one of the authors Berger stated that this information was limited by the tripping time of the cathode ras oscillograph, and that the portion of the record prior to this was lost. These rates of rise are much faster than for the first component and may be sigarficant in considerations affecting transmission line performance. Both the mastitudes of the subsequent components, and their times to half-value, were less than the first component. This information is still too meager th draw general conclusions

Comparison With Other Theories

In a subject as complieuted as fibhthing discharge it is difficult to determine sho originated certain cumponent aspents of the theory. The novelty of a compicte theory resides rather in how the component characteristics are assembled and affect each other Little attentiots has been given to the behavior of the stroke fust before reaching the earth and the mechanism of the return stroke. Without attempting to cover the entire field. several cheories that have receised widespread attention will be described briefly

Schomland ${ }^{1 s}$ conclucies that the chat 2 e advances downward as a cylindrical,
weakly ionized, body whose surface gradient is 30,000 volts per cm of somewhat less to account for the lower air densities at high altitudes. This pilot leader adrances at a constant velocity. It is accompanied in steps by a highly ionized leader. The highly ionized leader cannot advance into the uncharged space whead of the weakly ionized pilot. Suppose one consiciered an instant shortly after the leader nas caught up to the pitot. They advance together in a field of about 30,000 volts per cm . But as the pilot advances the oegative charge produces a nesative gradient behind it that is directed in an opposite direction to that of the propelting teld and eventually the set feld drops belows 6,000 volts per cm at a point behind it. At this point the advance of the teader ceases. This rapidly produces a positive space charge ahead of the arrested leader because electrons cannot be furnished to replethish the space charge in the meantime, the priot advances by virtue of its self-inductive property. With the development of the positive splace charge. a gradient of 30.000 volts per cm is again quickly estatiished and the thermally ionized channel again advances.

Komelkos ${ }^{23} 29$ on the other hand, assumes as do the present authors that the channel tip is fed by a themmally ionized channel havith a drop of about 60 volts per cm and that a corona space charge having a gradient of between 6.000 and 10.000 volts per utn is produced ahead of and atound it. The stoppage of the leader, according to Komelkov, is att ibuted to a decrease in the potential of the channel tip caused by the need to charge up the new section

Brace *attributes the step formation to the rapid transtion from a glow diseharge of high grawient to an are discharge of low gradient when the low discharge current reaches the critical value of 1 ampere. He also postulates that as the are has paused and starts on its new tep a lateral flow of current to supply the slow decurs. The current at the tip increases as the length of the step increases until it reaches approximately 1 ampere.

Griscom ${ }^{23}$ has proposed another theory with a highly conducting channel that tecds the tip This theory is radicatly different from the others. His concept is that as the discharge advances a great bulbous wolume of charge is formed at the end of the conducting channel miany times sreater in diameter than the of tindrical envelope of charge belaind the up is the charge volurne grows, it mantains a suriace gradient of 30,000 volts per cm , although mention is made of
a gradient withon the spac. narze. The next step develops when the whithance, a protuberance is form ed on the envelope of the bulbous spuce charge that may occur anywhere on its surface. This produces an unstable condition and. the new protuberance is enlarged, it draw its charge by means of a plasme that of tws inward into the last bulbous tip.

The theory presented here is a combination of these theories. Cetain aspects are drawin from each and certain addftions have been made. The smalldiameter onducting core is similar to that premised by Komelkov, Grisoum, and the authors it a previnus pater The shape of the coroma fleath is some. what like Kumelkor's. All the theuries accept that the gradient in the corona space charge is in the order of several thousand volts per cm , but only Schonland recogrizes that the average value must exceed a certain critical value to encoutage the devel pment of the extension of the plasma channel. However. Schonland is somewhat vague as to the actual existeace of such a plasma channel within the pillot teader. It is probable that the actual transition from the gl w to the are is of the nature pmpused by Bruce but on a filamentary basis. Thus. the space charge in udvance of the arrested channel is fed by a host of filaments or streamers and the current at the hase of each one moreases as its length increases. At some instant, current in one of these flaments reaches the critical value of 1 ampere and at this instant an are plasma begins to grow from this point. This may occur in several flaments atmost simultaneously: But one of the filaments eventually prevails in its stowth and because of its shielding effect upon the athers robs them and eventualls emerges as the new chatnel. The direc. tinn taken is determined by chance which would explain the forked character of the stroke path. This is similar to the ex. planation of K melbov

No doubt a temporary drop in potential of the tip of the channel as the new step is formed exists just as premised by Komelkov. But the authors feel that this has a secondary rather than a primary influence The prestit cheory differs from that of Griscom but agrees with that of the other three in the assumption that the extension of the conriscting plasma begins from the tip of the last channel and grows toward the earth, rather than from some spot on the periphery of the curona theath back to the ondicting parnel. The Griscous ptestribe (heory wievs the timing of the inception of the neis step as a chance distortion occurring on the sur-
face of the envelope, and the other theories view the phenomenon as more of the mature of a triggering fhemumenon. The lung periods of rather uniform steps would seem to faver the triggeting view. point.

As was mentioned at the becinning of this paper, the real iaterest of the authors ies in studying the sequence of events as th: str the strikes the earth Aside it m the work of Bruce and Golde. ${ }^{32}$ Griseom, and the authors. Jittle has been done along this inne Golde 32 astumes that is the thankard leader apyrtaches the earth. watag atreamers develop when a dradiजnt a dbut. 10,400 walts per cm is A tained. The reduction from 30 omo volts per enn is tahen to irvilie for mitnot irregularities such as grass, shrubs, etc. This he takes as the condition for determining where a stroke will strike. The authors believe that a cor ma sheath will develop much as Gulde propurses. They do not icel, however. that the exjstence of the corona sheatis at the earth is the cons trolling crtierion They leel that the significant factor is the finstant at which the average sradient between the tip and a proint of the earth of ahout 3 Ston or 4000 wits per ctn, is attained. At this point a conducting f itma is formed if m the point on the earth which moses upward with arcelerating velocity toward the slowly moving downward conducting plasma of the teader. Griscom's prestrike theory proposes that before the developenent of the currents of the return streamer a prestrike current, from which this theory derived its name, occurs at the earth whose magnitude is about that of the return stroke current and whose duration is about 1 usec . During this micrusecond, the current jresumably rises from zero to the crest satue and returns agein to afprosimately zero before the current assoctated with the return strake oceurs.

Improvement of Line Performance

While the purpose of this pater is to analyze the lightning stroke characteristics with the aid of the availabie know! edge concerning the predischarge curtent of liburatory gaps, a knowledge of the latter sugrests a morfiticutims of the manner in which the impulie diatacter istics of insulation are applied in the oum putation of the lightning chatacteristics of lines. It is not generally apprestiated how important the predischure currents of atruin tyres of gut 5 mitht be

Fig 18 shows a or and wire ant whent to the top of a tower and a andietor suspended from a tower arm by means of
an insulatur string It is assumed that the tower top, tower arm, and ground wire are all at the same potential with respece to as auth which will be desig. nated bes to Alow
e.mpotestial if conductor at the tower $i_{0}=$ eurrent dowing ith ground wire from exet bide
ic =ourrent dowing in conductor from each side
Z-satge impo tance of ground wite and contuctirs, assumbed to be the sarthe $Z_{\mathrm{a}}^{\mathrm{d}}=$ mutial surge impelance between contuctor and sround wire

Then by applying convettional wave the ors equintions

$x_{0}=2 n+-2$ is
Elimintating i_{0} from these equations
$Z_{0}=Z_{Z}^{Z_{0}}+\frac{Z^{2}-Z_{m}^{2}}{Z} i_{0}$
and fetting the coupling factor Z_{m}, Z be desigmated by K
$e_{c}=K_{e}+1-K^{2} Z_{i_{c}}$
The voitage across the insulator string, e, is
$\varepsilon_{2}=\varepsilon_{g}-a_{c}+\left(1-Z c_{2}-\left(1-E^{\prime}\right) Z i_{s}\right.$
$=1-K ?_{2}-\left(1-K^{2} Z^{2} / 2\right.$
where i is the predischurge current taken by the insulator string

The dist term is the component of voitage that is usually considered in line calculations, but the actual roltage actoss the iasulator string is less than this by the drop through the line impedance (1 $\alpha^{2} Z_{2}$. This relation is true whether the computed value $(1-K)$ eq, neglecting the predischarge currents, is produced by the strake currencs in the tower and ground wires or by electrostatic induction from the charge in the stroke above the tower

In reality, therefore, the signifiemnt voltage that should be used with the conventionally computed values for the insulator strina is the labiratoryobtained woltage actoos the insulator string or othe: form of ins dation plus $\left(1-K^{3}\right) Z: 2$. Tests have an been made on a bare string of insulators but supperse that for is 3. Winch insulators for $+4-u s e c$ time lag the flashover voltage is about $2,000,000$ voits. then if the predischarge current is abuut 300 amperes, $Z=500$ ohms and $K=123$

or 3.9% of the flashover voltage
But if steps are taken to amplify the predischatge currents, much greater
effects can be obtained. Consider this same insulator string. Suppose that a triangular pipe pipe gap such as described for Figs. 19 and 20 of reierence 3 is used. For a breakdown at 4 usec, a charsing voltage of shout ! H 位 is required for the b-fout gap. The predischarge curtent is about 500 atrperes and for the voltage acrass the zap is about $1,000,000$ cults. Comparing Figs 19 and 20 of relerence 3 it will be seen that the sument is propurtional to the gap spacing for the same overvoltage conditions. So, if the gap is increased to 12 feet the terminal voltage will be about $2,000,000$ volts which matches the insulator string flashover soltage and the predischarge gurrent will be about 1,200 amperes. The drop through the line impelance is then (0)21) (500) 1.200$)$? or 27.3 .000 volts. This amounts to 13.6% of the insulator string voltage

Conclusions

The authors have attempted in the light of laboratory data to determine wbat happens during the ery compticated phenomenon of the ligherning stroke Because of the modest limitations of laboratory factities it is necessary to extrapulate a great deal to reach the grand scale of natural lightaing. The following is a briei summary of the theory advanced in this paper.

The downward leader of the tirst componeat of the strake consists of a cental highly conducting arc plasma chantel of about 2 twem in diameter which thas a drop of about 80 volts per cm . The conducting are plasma is surfounded by a negative space charge whose radist gradient is shout 9,000 volts per em. The radius is approximately $20-50$ feet and depends upon the potential of the stroke
2 The steps of the first component are formed by the aiternate advance of the central channel and its surrounding corona sheath. If an instant at which the central channel has just reached a point of maxithum progress in one of the steps is considered, the corona sheath advances beyoud this point in front of the channel tip Reasonable agreement is obtained by extrapolating. from laboritory data, the time of formation of coruna pulses of gaps to the time of formation of the inctement of che corona stheath When in the progress of the development of the corona sheath, the energ) concentration at the tip of the arrested chamel reaches a eritical value or possibly when individual corona streamers reach a certain ctitical current, the progress of the channel is agoin resumed The high speed of the progress of the channel step is explatmed by the high charges induced in its ip, because it constitutes an extending pencil of high conductivity that pierces the telatively stable space charge af the cornna sheath. This phenomenorn is tepested is the leader head travels
from the cloud to the earth. The curtents in the steps are stoall io comparison with the currents in the retury stroke
3. From independent measurements of electric fielids nest to the enrtly it paints rethute ifmes the strube, it has begn showa that the Frenmerice of the empulars proctured by the steps becturnes smater as the earth is approwhed: they dimimish from abous So) to 100 asec at the cloud to about 13 zsec near the earth. One might issume that the step leugthy are correwpulingty reduces. This deduction is reimfored by
 steps of shart lengths just prior to reaching the earth
4. As an approximation, it might be as. sumed that the downward leader, as it approaches the warth, moves with a constatit velocity without steps When a certing point in its pragress is reached the ctiectric gradient on objects pr fanting from the earth excenels a value of 30 moly veits pers cms and corma streamers begin to form at the earth. These streamers continue to grow and a corona sheath is formed about these objects. As such they are not important but the apace charge assocrated with them has in equalizing effece upon the field between the advancing channel and the earth. The eurrent at the earth associated with the formation of the corons sheath is small with respect to the current in the returu stroke. Only when the advancing chamnel has reached a poimt where the gradient between the chamnel tip and the earth, or profectly objects, telches an average value of 0,0 out vole per em dues an are plasma form from th object upon the earth. Prior to this in: At the entire tower top of a transtnissic. line tower might be enshrouded in cos ons without serious consequetges Thereafter, tho current at the earth increases it an ever increating rate forming a concove upward curve with time antil the maximum value is attained. At this point the channel tends to datten off

Fig. 12. Disgrammatic sketch of tower with ground wire and conductor showing nomen. clature used

The velocity of the tip of the downward channel is approximately $1 / 10$ of $1 \Gamma_{0}$ that of light or 1 foot per prec so that it might be viewed as an electrode at a constant potential of several tens of millions of volts progressing toward a flat poposing electrode or a projecting rod. As this occurs the gap length is decreased stowly. Thus, in referring io laboratory data for suidance concetring the phenoruemon, one must look to the curtent that resules when an impulse voltage that will just cause breakdown is applied to a gap. In these cases it is found that the current increases at an ever increasiog rate and exrapolating from luboratory druersions one finds an acceptable agreement in the duration of the fising portion of the current. Agsin, arguing from laburatory testults which show a corresponding increase in velocity of the tip as the curfeat increases, otre might conclude that a curresponding increase in velocity of the return chanalal also occurs. The limiting value of the velocity is that of the observed head of the brightly luminous return strake which is in the order of $10-30 \%$ of the velocity of light. This value is attained as the current becomes constant and is timnited by the punential of the stroke divided by its surge impedance. The voltage drop caused by the chimnci formation curfent being drawn through the starge impedance of the stroke slows the velucity with which the final chamnels approach eich other and conse. quently lengthens the rise time of the current at the earth.
3. For compunents of the stroke after the Sirst, the leader from the cloud adtunces at a relatively ligh velocity $(3 \%$ that of light). Since the same condition, that gave rise to the light velocity of the downward lead, exists in the channel next to the earth. it is reasonable to suppose that the return channei of components subse. quent to the first likewise develops at a more rapid rate than the return channel for the first component. In eonsequence. as observed by Berger, the rise time of the current at the earth of components subsequent to the first is much smaller than that of the first compmont.
6. A method has been presented for including the effects of the predischarge currents of the insulator string into the computation of the lightalng perf rmance of transmission lines. In this connection it will be observed that a snowledge of the woit -thee characteristic, alone, of a gap Thav be quite imatoquate to apply a pro. tective gap or to predict the performatice of a string of imbulators with its grading ring. The channei currents tnust also be known. Adjacent abjects such as the tower structure will affect these currents.

References

1. Tas Loatwing Struse, C. F. Wagner, A. R. Hileman. A/EE Trarrachons, D II Power A0faratus ind Syltems), vol. 77. Juse 195s. pp $220-42$
 C. P. Wagnet, C. M. Gas, C. M. Lear. Thd. pp $312-42$.
2. Machaniex of Branejonn up Laboknfory Caps. C. P. Wagner, A. R. Hieman. Fbid. see PD. 60 - 22 of this issue).
3. Procrresive Licutining-11, B, F. J. Schonand. D. J. Malan. F Collens. Proceedings, Royal Society of Lunton Luoden. Fagland. series A vol. 152. 1935. ip $595-625$.
5 Preliminary Dischargis Processes in Lioht. jang Flashes to Grocnd. N. D. Clatemce, D. J. Maian. Quarieriy Journal. Royal Meteorulogical Malan. Quarierty Journat, Royal setourclogical Soclety London.
1957 , ip $161-71$.
3 Fimp-Chasges ant Varbations op Lums. vonity Dee to Lumininc Flasibes N, Kilagawa. M Kobaveshi. MRecent Advanees is Atmoapheric Electricty hak. Petzmon Press. Ine New York. N Y. 1058 pp ise-501.
4. A Comparison of 1x CERCLOUD and Cluubeto Crocend JGGining Dischargrs. N. Kitagawa, M Brook Journal of Geaphysicst Reacaeth Mastincton D C vol at 19010 pp $1180-1201$
5. Progensive Ligaising B. F. J. Schoniand H. Colleas. Proceiongl, Reyal Suciesy of Leadon. vol 145 ?
9 Progetarve hohtaing $11 \mathrm{i}-\mathrm{THE}$ Fivi

10 Procketsive Ligutning $\mathrm{V} \rightarrow \mathrm{A}$ Comparison or Protocrarmic and Elsctrical Stcotes on tits Discharge Process. B. F. J. Schonland D. B. Hodges. H. Collens. tord, vol 166, 1938 p. 36.
6. Lioutwing to the Explag State Borlptso Pikt 111. J. H. Hagraguth, J, G, Anderson PiEE Trags min \rightarrow ifl Pawe Affataws an

7. A *aw Aerkoach to the Liohining Perk 12. A BW Trkoschsions Lives. C. F. Wagner

8. TaE Ptot Btreaxer in Lightatng and the Lova fpark B. F. J. Schonland. Procecilisk, keyal Coneriy of Lentiox 38.

14 Somas Volinge Briskugns if Air in A fournas of Researin, Sational Bureau of Sisndards. Wastrington, D C. vol 56 , po 4. Apr 1955. pp. 201-24.
15. Sexty-Cycle and impolse Spareover of tapoe Cap Spacings, J. H. Hagenguth, A. F Robils, W. 1. Degsan. AIEE Fransact 71 ns, pt III (P)wer Aepordius and Systems), voi. 71, jaa. 111 (P)wer Insu
16. Voltags Gradisnts in Long Gassous Ganunels. J. B. Higham. J. M. Meek. Praceed. ings phesical Socsety of London, London, Eugiand, vol. 63. pt. 9. Sept 1950.
17. Thunverstonss-Tre Electric Ftel. Gariations Raplaied prom Lightsing Dis CHARCPS, H. Morioder. Exprach rejurt of the second treeting of the foint Commessian of Radio Meteutoiogy. Aug. 16-18, 1951
18. THE Naturb and Viskation of Arming phabics CACsBo sy LIGutNING DISCHtrars. If Notnder, W. Stoftegen. Arkip /or Maronathe Arronomi OCh Fysk. Stockbolm, Sweden, vo 33A. до 16. 1045. pp. 1-44
19. Dethrmination of the Wavs Fxont of Liohtmino stroks Currlents phom Fielo Meas Wوpupte C F Wagner. A/ES Trukisifioms ot IT1 Power Aforestics and Syicmil. vol it? Oct 1000, pp $581-59$
20. Racokoing Arpararuses for Usb in Stubtes of Field Chanae Deb to Lighining Discharob. M. EObayashi, N. Kitrgame. Mriomengy ind Geophyna, Thayo, Japas, voi VIII, no 1. 1957 pR. 102-06.
21. Lagetnang. D, J. Maian. Endeubar, Luo don. Englind, vol XVili, ao 70 op 01 -io
22. MEASCRING EquifMENT AND RESITG:S OP Ligutning Risearca During ight-lu54 on "ornt San Satvatope K Berger. Bulhehin. Schwewerisotien Elektrotechnischeo Veresas. Zur ich. Switserland, wol. 16. nos 5. 9. 1955
23. Tnpucsd Votiacs on Transumsan Lines, C. P. Wagner, G. D. MaCann. A/EE fransachons. vot f1. 1942 on 976-70
 Hiak Vogtace tisutation as KMaizD ro zhe Sanpe or the Voltaus Wive A. A. Asopian, V P. Lamonot, A. S. Torosian
25. OCCURRLNCE OP UpwakD Streamers is Lightning Dischakgs. R. H. Golde. Nathere London. Fngland, vol 180, sept. 20, 1947, p 395

26 DiElzetric Rbcoveky Charactirastics op

 Laros Air Gaps. G. D. MeCana. J.J. Clark. AIFE Transations, vol 62, Jan. 1943, pp 4352.27. Discaswon by K. Berget of Report on tue WOKE OF THR INTER Mational STUDY COMMITHE on LIOHTNING AND GNROES
28 Stpuctuke asy Parambteps of The Liatigh Fiscuance. V.S. Komelkoy. Dulethe Academy

29 Tur Davmormext of Elactrac Disennage to Losij Gaps. V. S. Komelkov. /bod, do 6 1950.

30 Tue inttanon of Long Blectaical Dis
 Surgety of lionitons vol. is3, 1044.pp 225-12
 iv rus Linhriso Sitosr S. B. Guscom. ATEE
 xal $7 \rightarrow$ Dee |158 pp $310-33$
32 Tus Ligurstag Dischakos C. E. R. Bruce R. H. Goide. Journal, Listitution of Electnieal Engineets. London. Easland vol 88, pt. 111 Pbuer Encincerinz), to 6. Dec 1941 pp is7-505 33. Tus Fegquency or Occukrence And the Desinibction of Lonterng Flashes to Trans. CSston Livk R \& Goide. A/EE TCAnsaavont yot ह4, 1245 mp ins-10

90,004034

K. Berger (Association S 'ise des Elece triciens, Zurich, Swtizetland): it is of extreme value that the authors undertuok to draw a consistent picture of the lightring phenomenoth on the basis of all -vailable research work abtout lightning and in comparison with new measarements in breakdown of long laboratory gaps. This job facilitares the work the powerensinect who is unable to concern himself with the electrical details but who is interested in having a clear idea of the areas of greatest disturbance in bis high voltage transmission system. It also allows the specialist to bave an over-all view of the lightaing process so that he may discover real or apparent contradictions in the picture. The report is based on measured or noserved figures and does not lose fiself in unknown mictophysical prucesses
In the companion paper the utthurs have exanined present information of breikdown of long gaps and added some new investifations. The presentation re. sults in a two-part decelipment: of teater strokes which is composed of a cothelamely growing corona discharge with a large diameter of 10 to 20 meters and a very thin channel of 2 to 3 mm of φ that expands in very rapid steps of 10 to $\$ 00$ meters The authors compare velocity, mead gradients, and currests of artifictal purks. with those of feaders and thes woceed in showing that there is a amprising paralleliomi
Igreement charge of the leader is of spectal inturest The first current pip crates the phuce chatge of rather cosstant gratient of afout 6 ki cm. Then this growing extins space chirge bas resebed a wertarn iength. it tighly condacting charmel hegins to forms in the center of this charge. This channe
st:- ifimerlistely and resume - later in the next step

A solution should be found by the dischurge spertalists to explain the reason for the sery fuet trantition of high tield gut mus dis be ts the loty tield of the charal at fis ll ! ate discliars. When oungoring filmenent thenrics the authors 3peas of the conticeneration of entergy and the hemitios of the firie channel of of a critical cument, whikh accoeding to Bruce. is apgrovintately I imperes. In the classical opintain ai Profecmor Mt Toplet, who thale
 the Kestantaz of this century it the Univerat of Dresders, especially on Lichlenserg fignees or Chethentadangen on glass platies it was found that the transition from glow discharge "arnal discharge) to are discharge (ig trings chantiel) took place, shen a certuil ele stru eforge bis patsed within a shm -it tilds in 3 single corots streamer. Thes shtian churge amounts to approci. mately I de trustitic atrit ith $^{\text {P }}$ Aecording to Topier, the lightnatig discharge is a gliding discharge like Lichienterg figures, but is in spree, instend of on a surface of insulator.

Anorher problem wtrich has not been soluw 1 by the disehurge physicists is why the frabtly formed chanmel supplement st py inmmatitely after formation of a certain length. The uathors say that the chamael carnot expand beyond the space chatg ${ }^{\circ}$. According to Topler this is pot trwe. He found that Lichienberg tigures exp ant far out of space diatses and he staves expreasly that this is the case with lighening According to Sehoalatid, stap. pase is caused by the Beld-creatitig action of the eleptric charges of the proceeting ehantel, which correspords to the theorles of Menk and Lieb on breakdown of spliere 8 I bave verified this effect on the basis of Fig- 3 und 3 of the authurs' puper. Indeed the grallent of a 30 -mieter space charge of the densities mentioned in the paper te ufts is a value of abrut if kV ' cm existing in the corona space, and therefore cant cancul it. The velicity of electrons ate then ieureased creating a plasma, which is fust the prolongited charna! The only necessary condition to achieve this effect is that the supply of electrons from behind the sip of the channel is less rupid than the advance of electrous before the tip
I found the compurison of the smape of current tronts of artifictal sparks with the froat if lightaing ourtents of great interest. Indeed the concordance is astonlthing'y good. Furthermare, the explications of stesper curnent fronts in subwequeat strokes, as ohserved on Mount San Sulvatore, by the higher speed of the subsequent leaders is of much interest

The athors stated that they at'etmpted to presed it picture of the very complicated phemonanoo of the lightaing strobse if think is :y did this in a very clear and concise Aanner, not as physicists, but as engrneer wito are accustomed to making all the necessary observations and measure. ments. It is to be toped that the yet unanswered basic physica! problems wil! also be antved by disct g^{2} physicists

REFERENCES

M. Topler. Annuien Ser Paysik Leipeng

675, pp $1061-1080,180 \mathrm{~s}$, vol. $19, \mathrm{pp}$ 191-200t:
vol. $21, \mathrm{pp} .193-222,120+$, vol. $22, \mathrm{pp} .112-128$. vol. 23, pp 807-874, 1907 .
2. M. Topler, Physikalische Zosherith. Leipziz. Germany, val 3. pp fsk-is?, pi. 7+3-7is, 1007

 Flyeh. . Jent Gewntity 1913.
 it Arycoplyekt Pazssce: I Moek, Loeb.
 tube 1942
E. Beck C matitant, Pittaburght, Pa. This moper presents a sew sting of the fightuits str kie it is asourtic: thit the several recent papers on this subject have been mptivated by the unexpected flashovers thit have sccurted on higlt-vpltage Ines on bigh towers with ambteshivil thti At the eud of the proatn paper relesenve is made to that transmission litite pr-blems In the trarsmision tine prlticm is ha seatned to us that the profultity of lirecs taits on the towes conductors, 30-called shielding fulures, have aot been emphasized sufficiently. They are not really shtietiding failures because the shielding is prohably not gond under the cireumstances en countered.
 thenry, wish the large coroas unvelope and the Criscom thenry, with a bulge of charge which progresses by successive bursts, the chancss of stroke contact with
a conductor seem to be significunt althousth we are not able to back this up by calculation.

In the case of a high tower and with conflustors oriented besond the sthield wire, what l.es the 3trohe thlits when the leader. carmas cavelope, or buth has approachat withis ahout the soner beight of the earth and reasumitls close to the ine? It sees the earti ind it itso sees the lire conductors as well as the thield! wite and tosser. purhaps as a hulk Corona or stremmers emamate from at three, 10 d the butats it imh the $\$ 1 . g_{\text {ghe Milemarn }}$ coroms envelipe of the Griocom buib zuy go sideways Photographis are evtirnt showing almost right anges beends in a stroke The stroke has io dectile whethers to hit the earth, the fower, the shieid wire. of the line gonductor. Tais devision may be the result of relotive protions and some forturthes facturs On a 345-k: svitetn
 ky below earth putosist which is in added attrution for the attoke. What we are trying to say is that as the towe: beight increases, the strielding is less effec. tive and direct hits are promoted by this and by the bus caused by the line putential. It is ates our intentien to argue asamst the proposed att k se therry and matitant that all of the urexpected Ablinets are the result of direct bits to the line sonductors, but it is our ppinion that 1 high percentage of them are

Fig. 13. Successive positions of leader head approaching a tower, $A-D$, and concept of prestrice discharge process of leader head, E-G

Fig. 14. (A) Geometric description of an elemental hoop of charge used in deriving equation Q, and (B) the general appearance of the space charge at the earthward extremity of a lightning leader head. Note: The $x-z$ plane is about 300 mieters above the earth's surface
S. B. Griscom Westinghouse Electric Corporation, East Pittsburgh, Palf The nuthors have integrated many ftums of experimental data and theoretical arguments into a complete theory regarding the phenomena of natural lightning. In the section of their paper entitled "Comparison with Other Theories," they point out that their theory agrees with some. but disngrees with other, vews expressed in these theories. Thie prestrike theoryt written by this discusser was one examined by them. While agreeing with some elements of the prestrike theory, the authors difter regarding ceftain cructal prints This is a healthy and desirable attitute, for it is only by the expression of views and counterviews that the secrets of ligitaing eventually may be wrested from tature. I still firmly bind to the validity of the prestrike theory and its implications on the stroke mechanism, therefore, faost of the comments brought out in this discussion refer to the differences in cuncepts.

To illistrate some of the areas of agree. ment and dtsagreement, Fig. 14 of reference 31 of the paper is reproduced here as Fig 13 for comparison with the authors' Fig. 7. Agreement will be noted in that both figures show butbous ends in the space clatge polume surtounding the lower end of the leader core and the authors state eisewhere that they attribute wer three times as much charge per unit length for the tip as for the leader pruper. In their presous paper of the same title, the mathematical analysis and conclusions were entirely confined to uniformly distributed charges along geametrical lines.? Thus, thes have adopted onte of the oumponents of the prestrike theory: Further pomts brought out ongmally in the prestrike paper, and used in the authors' puper, are:
1 The bulbous volumes of space charge at the lowernost end of the leader are pulling charges of appasite 4 gn from grounded objects proiecting upward
2. There are capillarial spark tracenes cavitating charges out of the leader head space churge the discusser's stage (E) and the aththors' stages © C and D).
3. Pirese fark irnenes matertalize into highly sutductiag shasima chatnels itis. cusctis Nige G und -atltars' tage E I.
4. Culmination finally takes place as
shown in Fig 20 of refirence 31, wht bere reptuduced, and stages (F) and (C) of the wathers' Fig 7

One of the dissimilarities of viewpoints between the two figures is that the authors have assumed a volumetric distribution of space charge varying tiverselv whth dis tance from the leader tip such as to produce a radial gradient of 7.000 volts per cm . The prestrike paper used 3,000 volts per cm . This is implicit from the term $-3 \times$ 106 R in equation 1 of reference 31 . where R is in meters. Also, in describing their stepping mechanism they consider the plasma channel to grow from the leader core to the boundaries of the space charge. according to their Figs 2,3 , and 4 , whereas the prestrike theory calls for a cavitation of charge with a plasma chumel finally making a junction with the leader core. whereupon a moderately heavy current of 12,000 amperes for the average case fows down that channel, forming the bright step and re flluminating the pilot learier core upward of the junction point.

It is cunous that the suthors should show the same prestrike cavitation process in their Fig. That the discusser showed in Fig 13, but otherwise describe the stepping process as a plasma charnel growth in the reverse direction, that is, from (A) to (C) in their Fig. 2. This they justify by quating Schonland. "Defitite evidence that the streamers travel downward is however. affurded by the brodening of the upward part of their tracks." However. Schonland was relerring to the pilot leader, and not its extension, as evidenced by the fact that the foregoing quotation was taken from a section erititled "Velucity of Leader Streamers." and afso from preceding and fritwing context in the same paper. The following statement is made in the disctsser's prestrike paper: "This analysis leads to the conclusion that the pilot leader trace and the bright step start simuftane usfly and at the same point in space, the former traveling upourd, the latter downward
it appears, therefire that the atthors and t agree that the stepping process is self-triggered at the lowermost up of the leader and not at the chrud and cumse. quently we are bath in fisagreemen: with Echrmland on this particular peaint a forther interesting quowation from) Scbounland is, the tips if the troaners the channel extentions in this instance exhitnt no distortion due to lens ination
which is another way of saying that he did not have sufficient resolving powe: to determine whether they traveled is or down
It is not ton difficult to explain Schon land's expertimeztally observed "broademms of the upunted part of their the prlit leader tracks." When the step cocurs, the newlformed channei dennads charge, that is the flow if curtent. That this demond vibient and acemmpanied by a targe incre ment of current is evidenced by the photo graphic brightness of the tep, and the re Illumination of the pilht leader uack I: engineering language, a slurt-duration highomagnitude pulse of current is drass from the pilut leader eare and the puls travels up twwatd the cluud as a itacelin wtwe After a fashion, the pilat leades core acts the a transtmission time with di triluted L, C, and R ciements R is mus ligher pees unit length than for a weealti conductor so there is conside: whie enery loss, causing re-illumination of the plasm chamne! in air, a spreading in time an space of the current puise, and a reductio in current amplitude, as the pulse trave up the leader to the cloud, in its quest f. charge replemishment. This fits in pes fectly with Schontand's statement. ${ }^{3}$ bright step appears as a temtimation of fainter streamer extending the whole wa from the starting point of the diuchatg such (finter) streamers increasing brightness and decreusing in width in the earthward ends are apprasched." acceprin that Schunland was in ertor inf axtohmet that the starting point is at the chand ead

It is suggested that the apthors sonces of the ieader and its tip, or head, the Fig 2, is more nearly what womld t expected from a continuing curotha di charge, except that with the lifter, still air, further charges with fomsit varying as 1 , wrould extend hey and tt uthors arhitrary boundits gradient was assumed to be zomo orth per cm . It wotid seem that in the violet stepping of the natural lightning leade the phenomenon would be a curuma hois or impulse corona, where the sharge di placenent is rapid, producing hud urackir sounds shen a conductor is sudtealy we tutted The charge is moutly powned trated in a -hell mutside of which she slectr gradient averages 30,000 woits per ctin slightle less.

White the authors hate How +Weagrizt that the charge on a leader cannot : regarded as constant per unit of tengt they still use line charges in mmpu pritentials. Thils lo shmua beyther gett 4. Whach applies to line ctiurges The procedure is to use zunes of thatge wit the lineal density of charge increasing the earthward tip of the teader is a pruached The mavimum ratio of tine charge density used by them is $1: 8,8$ or 355 to 1.0 . There com be no to the ure of zumal wathellums in unit length when the and ase is to sut the voltage contributions 10 , Ireation remote from the leader. Hawever, Fine charge cancept dous not nve currect sontour for the cms slune of whe ther the charge is on the barface coubention of dretince It the authors embuputs

The following treatment sor charges having rotational gymmetry with respect to an axis is mote rigutus, and pertites the colltour of + volutue of charge to be de. terallect to atu iccuricy deposiabert anty
 in $\mathrm{Fiz} 1+\mathrm{B}$, let H_{4} in Fig $1+\mathrm{A} A$ beacircular hoonp of chusge, Ineated in the ith lamina and parallat to the $x \cdot 5$ plane. Let a be
 Feligeth of the houp in comtouthos pet theter potemtai in voits $d V$, of a point P it the s.y plave due to an infintesimal length of c

In determining the coatour of a leader head wherein the major portion of the charges is regarded as being on the bounding surface, the tirst approximatiotlo are directed tonard obtcining an equpatential surisue Thi menus fintiong. hy trint ant ertors charge densities x of equation 21 , such that the potentinls at purnes Pis. P\&, Po etc., on Fig $1+$ Bl are essentiaily equal by vectors searmat to the sturface fuch 7
tensities of the ordier of 100 kv per tueter for nearby strukes. Fig 15 is a typical record. Altention is called to the fact that most receiving type triodes ar pentodes will ant uccept mote than 3 voits tinjut will ant wecept more that 3 vors thigut
 aput saritige In a multariage amplitier. which is necesurty for ligh amplotionali,
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad fields due to distant chunderstorms as recorded by vacsum tube or crancistor ircuitry One need oufy contumplate

Fig. 15. Klydonogrish type record of electric field change of about 100,000 rolts per meter during thunderstorm
sirable attribute. The essential point here is that recording devices with sensitivities canable of showing field changes as low as 1 millivult per meter may produce records, particularly at night, of atmosplerics as much as 1,000 miles away, whereas devices having a range of say 6 to 100 kv per meter will most certainly only record local events.
The authors present Fig. 9 as though they regard it as the equivalent of a "snapshot" of that part of the electric discharge occurting during the interval between the application of voltag and the time of the voltage chop by a paralleling gap. Actually, such photographs are composites of the bappenings while the voltage is rising, plus the events following the chop. Merrill and von Hippel ${ }^{3}$ conclusively demonstrated that electronic charges propagated out from an electrode into a gas will rush back to the electrade when voltage is rapidy removed from it. They term the resultant Zuhtenberg.type recordings as "backfigures." Park and Cones' Fig. 1^{76} show identical results occurring three dimensionally during chops. The upward projection of charge from the negatively charged sphere is followed by the development of downwardly directed plasma channels from buth the anode plate and from local con. cemerations of charge which had been deposited in the intervering air space as the voltage whe rising The direction of travel for each of these phenemena is unquestiamable is view of the mass of eridence by many investigntors that the travel direction of gaseous electric discharges is revealed by branches which diverge in the direction of travel. The forkoing is with respect to the small electrode is negative, as is the case with trost lightning leaders. The process is slightly different when the stnall clectrode is positive It is of further interest to note that $A \cdot A^{\prime}$ and $B \cdot B^{\prime}$ in Fig 18 of the same reference, thoir voltage choppiug to result in an almost identical, but reversed displacement of charge as that which took place during the application of voltage. This near equality only exists for discharges where there are few or no plasma channels developed. The former condition approsimates the charge and discharge of a lossless capacitor; the condition involving plasma channels is more like a leaky capacitor wherein a large part of the initially stored energy is dissipated in Joulean heat and is therefore not r soverable upon discharge.
The authors misunderstand one aspect of the prestrike theory int that they state "the charge wolume grows. naintaining all the while a surface gradient of 30,000 volts per cm..." The paper dras not make such a statement. it is only when the surface gradient drops to this value, or somewhat lower, that growth ceases or becomes very slow Fig. 8 of the prestrike paperi plots charge propigation rates against gradient ratio the number of times the surface gradient exceeds 30,000 volts per cm). During most of the growth of the leader head the surface gradient greatly exceeds 30,000 volts per cm , the amount depending upon the interplay of equations 1 of the paper.
To darify the leader atenoing process of the pretrike, the folforipg three sequences ire :egarded is com-titisting a step

1. Space charge is propagated outward
until the gradient at the boundary a verages 30,000 volts per cm , or slightly less.
2. Because of a random protruding valume of space charge having a local surface gradient in excess of 30,000 volts per cm . plasma channels eat into the main volume. cavitating additional charge into the protruding charge volume.
3. The plasma channels finally eat their way to the tip of the leader core, whereupon, since the mergy available to the plama channels is now relatively anl.mited, a heavy current flows down the chinnel extension, illuminating it brightly, and projecting another volume of space charge. at a lower elevation. Then a period of relative quiescence fallows until anather protuhernice causes the sequence to reneat itself
Wagner and Hitemat's commetits on this discustion, pro and con, athould go a long way toward an understanding of this most fascinating and important subject.
I would like to repeat the appeal made in reference 1 for a standard terminology for use in describing the various phenomena of electric breakdown in gases. It may be that many of the diagreements beeween theories are due to misinterpretations of termis. In closing, 1 would lik to ac. knowledge the assistance of D. L. Griscom for his helpful suggestions, ard for his developiment of equation 21

Referevees

2. See relefence 31 of the paper
See cterence 1 of the paper.
See neference 2 of the paper
3. Scheme Erows Miga Eltetric Fiblos S. B Griscom. Elabria. Tivrid Nen Vork. N. Y Apr. 10, Imis 1
5 TRE AToM Pursten ixterpkEtation op tichtencerg Frankeand thire amlicenthin to Mernil, A. pon Hippel. Journal of Cphiled Ptysch New York. N. Y. vol. 10. Dec 1939
4. See reference 14 of the pajer.
C. F. Wagner and A. R. Hileman: We would the to thank Professur Berger for his complimentary comments, particularly with regard to bis concurrence with the authors' engineering approach in their eflor to correlate the stroke mechanism with laboratory measurements on long gaps. He has raised two very interesting points and it is hoped that turther work on these subjects will remove much of the ignorance connected with these phases of the problem

Mr. Beck has introduced an important point that worries the transmission engineer White this paper is not concurned with the arplication of the theory of the stroke. cenain characterstics of our mechamen are difectly applicable to the problem of the thelding of eanductors be arethead ground wires. This theory indicates as is illustmated by equation ? that the decisive point in the progress of the lesser to earth as to whether the ground wire, the conductur, us some point an the earth. will be the ulfimate stricken roint. will not be roarthed before a ditatace of perkups tow to 300 feet form the stricken point is attained. This is a direct conse. quence of the theary presented in the
paper. In conjunction with our associates we are working on this subject at the present time. As a result of work on the stroke mechanism we have not orily modified our ideas concerning the current at the earth and the movement of the charges athove the tower, but feel that a sigmificant number of the unexplained line flathorers on the $345 . \mathrm{bx}$ lines must be due to thielding failures. And so we agree with Mt Beck in emphasizing shiciding fatures as a possible source of trouble.

We agree wholeheartedly with Mr Griscom in the desirability of the free exprexion of views and counterviews We must adiuit that his further somtaents have not modified our own opitions te sarding the pitysteal procesies invalved in the lightning stroke. Mr. Griseom has listed four points and has precided these with in additional one in which he implies that these charnctarivtics of the divethatze were ariginal with the prestrike theory and that they were adopted from his previous paper on the subject. We have stated that it is difficult to determine the sotrce of componert aspects of this compricated ;henomenon and in replying to Mr. Griscom's comments fully we thould attempt to feview all the literature bearing on these points. Fut in comparing our own publications with the prestrike paper we lave the following comments.
It is not correct that in the previous paper reference 1 of the curtent paper that the analuais was "entirely monfined to unifi- is distributed charges along geometric lines." In Fig - of the prevous paper, the estimated vertical charge dis. tribution in a leader is shawn. It includes not only the end offect but also the effect of the voltage drop to the central channel foeding the charge. Laterally through the erocs section of the leader it was recogrized that the churge has a volume distribution. In this preciuus paper it was ussumed that the boundary of the sharge was such a कurface as to possess a gradient due to the internal charge of 30,000 wolts per cm This is the sathe assumption used by Schutand and Griscom, and probably others. We recognized that an internal gradient mu t exist within spoh a valume tnd wtimated this aflent by simply acouming that the radius was half of the value so computed. But while it was recugnized that the space charge was distributed over a volume, we never attached the same importance to its precise determination as does Griscom. While we have modified our own thinking from the a/sumption that there esicts a feld of 30,000 volts per om atound the pariphery: to the acsumption of a volume distribution that varies inversely as the distance from the conducting core, we do not believe that either one can describe the boundury precicely The aetuat physical procenes are probably :00 complex to be fatiffied by ruch asetamptions.
With renpect to Criourn's fire thane reference need only be inade to ing ! of reference 1 of the paper to indicate the reccigrtion of the production of corna space churge indixed by the domownd lender on cirione merthers

leader and the pusitive space charge extend-

Ing from the ground and also the develop. ment of the channel current. Since this prevlous papetr was written we have groctlich our previous concegt of how the dhashat de.clogh from the space chargor
 by tir G.ixcull it lise beew kiment tor a long time that space charge and upward chanacls develop from the ground as the lewter upproaches

Crficumbl revers to "capillarial spars "tacerfies" that cuvitute put of the head spate chtrise and the subacynct developthevat of the shantiels Thas language is somes iat vague and se do not iully under. stand the import of this phraseoiogy It is our understhiding of Criscoin's theory that the "eavitation" process begins from the boundions suriace of the space charge attl frofragites into the space charge Thio ernopt is entitely difetent if am that
 evocraion of the chanal decedcpa from the tip of the conducting core of the leader and in the final step from the tower top also. With this understanding of the tweatung of "cavitational" process, none of the procescs iescribed in Fig. F of the perper is a "cavitational" provesis out ate sintpots the developruetre of sharnio emanating from selatifely sond cunductag electrodes from the ieader core for the downward development and from the mast for the upward thoving channel. In reternace 1 we described the process of charge callecrion by the return atroke is a

Mr. Griacouth objects to our use oi a line charge to compute the potential whes the charse is in reality a volumetric diseribus. tion: With spherical distribution, the potenciat at any point is independent of the manmer in which the charge is dis. tributed withif the radits of the point undet consideration. This is true for inrimitely long cylindrical distributions. It is also true for the potential of the mid. point of the sulface of a cylinder of tinite length is long is the length is several times the radius of the cylinder. The cotal charge can be regarded as distributed along the axis. This assumption is vallid to axial lengths down to several times the radius. The range of validity of the use of this expression is dependent upon the actual charge distribution. For a charge distribution that varies inversely as the radius it is valid for much sthorter cylioders than for a charge concentrated on the surface. Considering the present state of the knowledge regardit? the charge distribution we feel that wur use of this expression. in this turnater, is Justiffed.

We wish to congratulate Mr Criscoti on his development of the expression for the poteatial it a point Jue to a unitorm dis tribution of charge around a loop it is a convenient expression in a practical form.

He then computes the contribution to the potemtial at point I in Fig. I of the paper, and states that the more rigorous procedur. gives 80×10^{4} voits instead of 48×100 volts obtained by us. This diference is less than $40^{\circ} \mathrm{O}$ of the total pucencual and while it might affect the shape of the space charge in the head of the leade: it would not significantly affect the potential of the leader core Any tendency to increase the radius would be partially compensuted for by the increase
in the internal drop. We do not feel that the assumptions warrant a statement of accuracy within 10 or for that the exact shape of the leader head is a significant factert In our opimion, the sigmiciont factor is the average grodieft fietobted the leaks core atd earth privir to the latatated

But while the space chatze distributlon is under disoussisn, we might mention that we fave bees unabie to deternific the reason for choosing the particutor value of 3.000 volts per cm for the graffect
 the mathematical expressions and tho mention tnade in the sert of fow thas particular number was derived

Furthermare, we would lite to comment on some aspects of Mr Cristom's cumputation) of the contour of the space charke envelope is the instant of mavimuan de velopment, As stated by thin in the puragraph of his discussiun procudhis equation 22 , the tirst approximations are directed toward obtaining an equipotentis! surface. Now let it be assumed that the leader head shown in Fig of of this prestrike paper is such a surface Furtlier, let is be assumed. as ati approvitration, that the extertal sufface gradient is hommat to the suriace and equat to 30, then voiss per cen and that the internal surface stadient is also aormal to the surfice and equal to 3.0 mo voles per cm. Sow if a smail eylis. der is thought to be situated in such a Bay that one of the f at - urfices lies in ide atti the ather out ilige of thic sorkeur sutface, the surface iatezall of the aormin component of field, around this ey tinder. is equal to $+\pi$ times the surface charge density This specifies the churge density distributed on the ervelope which is carsstant over the entire surface But such a constant suriace charge distribution upon the contour of Fig if of the prestrike paper bears no resutrablance to the type of charga density depicted in Fis $13(A)$ of the same paper

In Fig 15 of his discussion, Mr Griscom shows 1 dramatic Lichisenterg figure ob. tained by an instrument located on top of a buiding approximately within 2 mies of a lightning strowe. He states that this record represents an electric field intennity of the orJer of 100 kv per micter This is not surprising as it is known that corona discharges accur from objects close to strukes and for a corona discharge to occur the fild intensity must exceed 30,100 yoits per cti. Furthermore, this record was obtaized on the roof of 11 buikling which in itself enhances tie taagnitude of the observed field as contrasted with what would tiave occurted on level groand Untit the method of spplieatt it of data of this rature is givet one cunnot comment upon the value of such records.
Mr Griscom questions the surtability of electric field intensity theasurements for the determination of the mechanism of the fightning stroke. Based upon the papers of Brook and Kitagawa, and supported by correspondence and personal conversations of ane of the authors with these gentlemen. we have great anofidence in such measurethents for studying the mechanisin of the stroke The folloving commenss concerning the accuracy of these observations are baved in part on these persomal contacts.

The equipment be ng used by Brook and Kitagawa in New Mexicu has a that resporise out to a mirtimuth of 5 me Sirce the film is ruit contmomitify, a cotmpromise betweet filth speot? and resolutson had to be imato in the intore of temomy in the usc of bltw, a rexclouls power of the records of 3 कnmimutt of 19 wiè was ohowes. However, thas limitation does nos attect the accurnay of the recorted instantanerus valuts of the dieli intensition Wie have in our pusies :17n a reourd whtame! frote Dr. Bran's in which the Thisimum? detloction of she R chanse w.as hetil withits the scale of the oscilluscope This record provides a direct compurison betweea the magrotude of the field interisity produced by the steps and that produced by the R change which coutions the statemett that she forture uta ataifl in cuapurton ait? the lucter Whie the equapment used
 the bigh resportie ai the prosent equipmests the uscillugramb of the netv equipmeat show essentially the same results without such dejects is overstionc, eic.

Due to language diffeulty the "low out filter" mentioned in Dr Kitag ass's paper retest io a higlopas filter. The over.
 ald recurds is not caumed by rectunts/ if im a par lieliang pulse of voltage. Degend. ing apon the input time comstant, the overshowt is more or less dependont upon the duration of the pulse Dr Kitagawa. in Japin, used a Binl-mietbecond time con-
 and Browk aced i 70-neec sime coustant. Such overshowts are ant significant. The system itself, anternas, amplifiers, etc. was checked by simuluting a untiorm field above the auteana with a plate several inches sowse the antenna and to which approximately 100).velt squate waves were applied. The linearity of the equipment was excellent du so-decthet attenuator was located becween the ante ma and the preatnplifier cathode follower This was adjustable und the setting was determined by the distauce of the starth. This equip. ment has been in use and was developed, to its present degree of accuracy, after 3 years of questoning simtitar in nature to that mentioned by Mr. Griscom

Mr . Griscomt is in error in his statement thas thunderstorms, it least in New Mexico where these observations were being made, are large area affars. They were isolated and located by observers in all directions white the recordings were being thade Their computations show that the probas bility of overlapping of succeasive strokes is very low Pertwps the best evulence. according to Dr. Brook. of the exi-tenct of these pulses and their identification sith a single lightaing atroke comes from their correlation of actual stepped leader phuto. graphs with the stepped leader electric tield change. Such one-to-one correlations are very convincing

We appreciate that under certaio conditions an arrested discharge cannot be regarded is a "snapshot" of the electric discharge at the instanc of chopping. This is particularly true for applied voltages just below the critical value But for applied voltages just above critical after the channeis have had an opportumity to develop, the bright channels of hugh luminonity do represent the progress of

90004040

The Role of Grounding Cells and Similar
Devices in the Effective Cathodic Protection of Lead-Sheathed

Power Cables of Substation Exit Systems

SIDNEY E. TROUARD
MARTIN J. MAIER

The Anomaly Involved in the Cathodic Protection of Power Cable Sheaths

0

\qquad
\qquad
\qquad
\qquad
\qquad
The Lightning Comductor

by 18. A. COLDE

Thic Electrical nesearch Association
Lecatherhead, Stariy, England

Introhtrimen

 fion las been sa the bettom of all great xcieatific themerpies All groat scientists fave, in a cortain semse, been great artists: the hath with the fmagination may

Diseplined fatzinations this in fuled the alteibute which oronis beat to exphain the outatambing suceess adhioved in lit le asore than a decmie's work

 oif the mask destructive foreer of mature.

[^1]
Theoretical finsiderations

The Fintr-tion of a Lizhtming Conductor

It is a manifontation of homan weakness that a prejudice mace sequired temds to bo retanest even in the face of overvbledming factuad evidenec contradicting the basis on which it was formded. In the reatan of scienme " prejudice may be tormed a mincenception, Such a miseunception whids has persisted for over (wo) humbed years and whieh is still wide-prend is the belief that a lightumg conductor has the ability, of indeed tho promose, of dissipating silently the electric charge in a thatereloud thas preventing "he "protocted" building being struck.

How did this conception orjginate and why han it persixted for over two centuries? Briefly atated, Franklin was led to sulving the mystoy of the lightaing discharge by recognming and stresaing it- similarity with the dectric park which could be produced and studied in the labomatory. In his expeciments he frund that a conducting body which was insulated from easth and which had been charged to a high voltage from Leyden jats could be aslently disciarged over diateraens to severati inches by a painted metallic comductor which was connected to carth. It was this observation which led hmm to suggest (4) that an earthed pointed lightuing conductor might discharge it thundereloud and thus "prevent a stroke."

Ifowever, in the same lotter written in 1755 , viz. two yoars aftor the publiention in Poor liehard's Ammac, he romarked: "I have mentioned in several of my letters, and ereept ance, always in the altematiee viz, that pointed rodo erected on buildings, and commanimating with the moist earth, would either prevent a struke, or, if not orevented, wnuld conciuct it, so that the building Ahould sutfer in dantage."

Franklin continues to complain that, while the first aitemative was only "part of the ure" of a lightning condactor: the second aitemative, which was proven begond any doubt as soon as lightning eonductors had been fitted to Suilding in Smerica and Furope, "scems tas be totally forg ten." This coucise statement clearly summarizes Trankli,'s y avs on tho action of a lightning conductor. ${ }^{1}$

Franklin's warning und complaint were, however, zoon forgotten. Polksving the highly persual controversy waged by the lbbe Nollet, and possibly atimulated by it, the installation of lightning conductors mado rapid peogress in France. This development was gutided by several authomitutive statements issued by the French deademy of Sciences daring the perion 18.3 to 1867.

[^2]Litule abtemtion of antion of the licy ampecto wi thedent question of tho - p: hadgiven litite (I)

In Euglanl, 11 the putitieal clima any sumgention is) rosult, the instal Britait ath dseien able time. Hower several learted 1 received from thi porated in a heas the time. Gitided dual function of the unforti.ante which was atill se: (6)

Let the then o modern knowled field of a thunde todny. The time has beon fregut proportional
fiels of 200
a yert
by a
flack
ductors 1 son .
lightning flash.
mamner must if
whe function-t
and then to dise

As lias been troke over ope progresses from claud charge is of which remains

[^3]Little attention aqperse to have been paid in these pmblieatinas to the mode of antion of the lightome comductor; hasead emphasis wat placed on practieal aspecto of the desigu and ins adlation of protertive systems and on the important grest im of the space proteeted by a lightaing rad, a question to which Franklin had given little thmyht and to whidh further rederence will be made later.

In Bingland, the ibrochution of the lightning vod was initially hedevilled by the political elimate of the time, atrengthened by King feorge III's loathing of anv suggontion which originated from the robellisns . Imerican "ealonies." Is a peatit, the installation of lightning eonductors progeased rather sowly in Britain and seientific divetesions on its function dist not develop for is considerable time. Ifowever, in 1878 a "Saghtnity Roid Conference" was convened by several learned British societies and their dodiberations, fuelating upitions received from the Cinted Atates and several Iumpean eothtris, were incorporated in a heavily doeumented report (5) which received wide publicity at the time. Guided by the opinion, the many experts who were constilted, the dual function of a lightuing rod wats again stressed, thus contributing greatly to the unfortumate persistence in the belief of a preventive action, a possibility which was atill serionsly alvoented by su eminent a seientist as hir Oliver Lodge (0).

Let us then consider the fimetion of a lightning conductor in the light of modern knowledge. That an earthed conductor when subjected to the electric lied of a thundereloud discharges a current into the atnosphere is well known today. The time variation of the magnitude of this "point dixelarge current" has been frequently meonded (7). Its crest vatue is, as a firs approsintation, propartional on the magnitule of the elactof gradient. In an average electric tied of 200 voits/centimeter under a thundercfond the cturent flowing through a veaticul conductor 50 fect high is about 5 micmomperes. The charge dissipated by an avorage lightuing flash ${ }^{2}$ is about 30 couk ombs and, if the avernge rate of flambing is taken to be two flasties per manue, it follows that 6,000 such eonduetors would be requiren over an area of, sax, half a square nale to prevent one lightning flash. The practieal posability of lightning conductors acting in this manoer must thes be discoumed, and it is clear that a lightuing rod has only the atse function-to intereppt a lightning discharge before it ean strike is structure and then to discharge the lightuing current hamblesly to earth.

As has been established by the wotk of Schonland (8), the nowmal !ightning stroke uver open mround deschops in the form of a leader discharge which progrosses from tho cloud towsurds the ground. During this phase some of the clond chauge is deposited along the gradually estending leader channel, the tip of which remains at a polential with respert to earth which is only slightly lower

[^4]
R. II. Giohle

than that of the elowd chamge fome whel it developeal. The magnitmede of this patential ean be infored from physieal reasoning, lont the writer protere to thmk in temm of the charge 9 on the leader chamed which ean be dedued drecely from crearding of efoetrostatio fiedd changes druing the feater promes ath from axcillograythie records of lightuing curronts. (Chatges from a fraction oi a coutorai (o about ten coukonbe, with ans :veraze of about ome contomh, can thus be shown to be asenciated with the lower part of the channel of an indivilual lightning st tooke.

The distabution of the eharge along the leader chanacl must be atfeeted by the position of brameles wheh oceur in the great majomity of the laders of the fist eomponent strokes and by the etectmatatie lied befween the thundeqchoted and the lemder chamel and earth. I, the tip of the leader moses lewards the ground, the charge density mear the leader tipe mont incemse at a fister rate than the chame demsity in the upper parts of the chamel. IFweser, the effeet of this unt-miform charge diatribution cen be meglected whet determiming the eleetrostatic fietd changes during the progres ion of the leader discharge.

Catentation (10) shows that, on the simplifying itsamption of a vertical mobrached leader chanel camving I contomb and of a plane grombed suriace, the electrie field betow the leader varies acending for Fig. L(a). . Is indicated. the fied gradient is highest vertically below the leater and falls off rapidly it all directions with increasing distance. Figure 1 (b) shows how the lichit inceraves an the height of the leader t ip above ground decreases.

 finction of leader tix abave ground.

Daring the perind emsidered an far, the carent wheld flows between the ground tad the thomderstent comatitios a di-placement curnent to which are

 Santher eference to there eurents is made later. It this stage, emaderation must be given to that instant when these itparard flating earrents ate eomenttrated to such an extent into ome, of prasibly several prints, that the evorent through that proint assumes the regime of an electrie are whels, just as the leader chamet it self, becomes self-promazating amier the imbuence of the high electric fiedd to which it awes its initiation.

The loug Spati Discharge

Franklin had atready emphasized the similarity between the lightning dischange and the electric spark but, beeause of the high speeds of propagation involved, improved knowledge of the laboratory spark had to wat until very Jigh voltages became awailable to produce long apahs and until fast rotating cameras and other devices had been developed which permitted the progress of the spank diselarge to be recorded buth photogtaphieally and oseillugraphically. Tho lishtuing coment fras a undireetional wave shape which tises from zero to its crest value it a few mieroseconds and decays more showly to zero within averal tens of a few humdred mieroneconds. In the labomatory this wave shape wat reproduced by intulse generatops and the resulto of applying such voltages to fong vpark waps wem demed by the whiter (11) and others to represent, on at redured seate, the development of the piahtaing disehauge at the instont when the tip of the leader had approached the groumh, of a lishtoming condector, to within "striking diatance," a term which will bo defined more precisely later.

This mothod of approach is not quite eerreet, as can be shown by comsidering the rate of imerase with time of the voltuge to ground of the tip of the leader otroke. This ate can be expressed (11) by

$$
\begin{equation*}
\text { he } d t=\left[1.8 \times 10^{7} \text { q } \frac{\epsilon^{-B e \vec{t}}}{b t^{2}} \text { volts pet ctn. } X\right. \text { see. } \tag{1}
\end{equation*}
$$

where $q=$ the charge on the leader ehannel (1 combonb for a stroke of average intonsity)
$3=\operatorname{a~contstant~} 10^{-3}$
$u^{2}=$ velocity of bropagation of hater strohe $\left(1.5 \times 10^{-7} \mathrm{em} . /\right.$ see $)$
it $=$ lemight of tip of leaderatomse ground at time $?$.
 seen to be $2 t \mathrm{~kJ}$ miormaceond. Thik, then, is the adder of magnitude at wheh
 bave atages of a lightaug truke is to be stadiod. Asoumiug sume a mbratatory

\qquad

R. II. Gidde

 pertormed.

 waveahapeof which has beemstamdardized intematmandy-torepusent the woltage which is impreacal on an usertead line condector as the rasult of a direct lightning stroke to that conductor: Long-fronted impmion voltages have assinned imaneased impurtance in recent years since they can be usal conveniently to study problems arisimg in the insadation en-anderation of ch.v. lines due to asitching operatimas in wectrieal transanisoion -ystems.

A -rhatatetal zemenet of infomention has berome averibable wematly on the breakdown chatacteristics of long aif gups (12) buder homefronted impulse whitages. These have been dhown to be much nowe cotuptex than the characteristics of the same gaps under short-fronted impuise voltages. Igain, while the physical mechani-m of breakdonn of loug gap- undor short-fronted impulses is now reasonably woll understond (13), compermonding kmonledge relating to bous-fronted impulses is still mother rudimentay. Howerey. from some work reported by Stekohakev (14) it eas beenoluded that, an far as the intiation of this breakdonsu is enneerned (and t is is the aspeet in whels we are hore interested), there is mo bavic difference between its mechanism under short and loug-fonted impulse voltages.

Beakdoxn of a long nir gap under a stecp-fronted impolso voltnge is initiated atmost invmably at the high-voltage electrode. In the ease of a high-voltage mod electrode, breakdowts ntarts by formation of cowom which then leads to the development of a leader channel. The great mefortity if hationt lightning discharges earry negative charges from the clond to ground. They may therefore bu. simntated in the lathomatory by negative high-woltage rod clectodes, the ground being represented by an muthed plato electrule. In such a rogative mod plane arrangement the negative initial coroma atd the subseguent leader apsith eover atmont the whole gap) distance betote an upward eomona discharge and a eotuter apark aro intiated from the earthod plate. Is theec two leador sparks meet, a moturn apark eqnivalout to the retoru atroke in the lightnitig (bisehage develops and the upplied voltage collapses.

Prom Silekolnhoy's work it aypears that, if the same gup artangement is stibjected to soxty rixing inpulse soltages, the foregoing tacechaniom may be complieatod by the development, after the imital copoms stuge and the develop)men t of a short leador spark from the bigh-voltage roul electronte, of a mid-gap breakdown process which prog sais simultaneonsly and in opposite directions tonarts the high-xoltago leader channel atad the ranthed phate 'the ecommence of an upward spak diacharge frem the plane appears to ber similar to that under the influenee of a stewp-fronted impube.
 verting the rod phane into a rod rod eonfigaration, the initial ocemronec of

 and uphrand atreancer
copota and of a feader discharge at the wegative high-soltage efectrode subfocted to as stegh-frofted inputse poltage is amethaged. However, after a brief thate intorval or even - multamemaly with the onset of the high-voltage corona, cosoma aloo decelons ftom the tip of the marthat mod electomes, and the two prealischarges fotn the high-voltage electrote and fom the earthed point meet vomewhere it the mid-tegion of the gap.

No similar information is asailable on the tacchanism of breakdown of a ford-vod gap thetor slowly rising impulace poltages. Until such information beeonocs avalable, it mant be assmed that the basie mechanism is unchanged as in the case of the rod phase eleetrade system.

The Finnd stuge of a bishtuias Strolie to firound
 fegitmate to asame that the fimat atage in the development of at lightuag strake

R. II. Ciotile

Lo earth or to an carthed whect is determined by the same plowemena, thas reverting oner again to Pranklin's argenent about the similaty botween the lightumg dischage ated the ctoctrie spark. Phetographe ovidenese to support this argument is diflicult to athan" mands beeatse of the remote prosibility of sectring a photograph with a motating catara of a dow lightoing dixphacge ath
 The writer ix all the mome hapes to reproduee the still photegraph (1"ige 2) of a cluse dimelarge kitully phaced at his dizposal by Mr. Vesatuteri.

The photograph - lows the fower and of a lighoming ti chavge fo the chimney pot of a fhakling in Itekinkt taken at a distanee of about 215 teet. The dischatge must cearly have haen of low suverity as ibdicated by the small amomet of halation on the original photograplie negative ath by the absonee of danage to the claimsey put apart from at aceamblation of some. Over most of its length the photograph shows the lumanus core of the lightning chanmel, but ne:ar the contre this channel is clearly divided into foum distinct parts. Fron an analogy of sumilat photographs of long spark diacharges it is suggested that it is this point at which the downward moving leader stroke is met by the shout upward leader diseharge from the ehimuey pot.

A few other photugraphis have been pablishod shasing the ocemocnce of upward streamers from uhjects about to be struck' so that it may be accepted that a lightaing leader stroke progresens in the form of as self-propagating discharge from a charge ounter in the eloud towards ground until the grodient at a point on the ground suffec has increaved sulliciontly to cone an apwapd streamer of the type shown in Fig 2 2, to for intiatad. The questimn then artees as to the eritical value of this gradient.

Reasons have been given to show that the gradient at the ground suface below a downeoming lightoing lewder stroke increasos at a rate which is similar to that oceurting in an impulse voltage which rises to its crest within a period of a few tens to a hundred miernswonds. The breakdown voltages of long aif gaps under such long-fronted impulse valtages hase been deternined experimentally during the list fow geurs, I equtical casannastion (12) of the reaults whtamed by different investigaters drows that, while average breakdown voltages and their statiatical deviation can be establishod for positive impulse voltages, the avnilable data for negotive impulsos ase too meager and too inemasistent to permit any gemeralization.

The reason for this polatity effect is the much bigher negative, as compared with the positive, breakfoim voltage as at realt of which at impulse generator produceng a long-fonted valtage of 2 MS is eapable of eathaing a breatadown of (If) to 15 meters (20 feet) ander positive impmases, but unly up) tor 3 meters (10

[^5] sfarion that, in the rare ease of a po-itive lightnimg disetarge, d'e distance over which a lightaing conductor wank exert an attractive effeet on a downeoming leater at roke would be preater than for a negative stroke,

Configuration	Poinity	1) Witace in moters					Ref.
		1	2	3	t	5	
Prat-mal	-	6.7	6.5	5.9			15)
Itirl-rod	-	8.0	7.2				10)
Rad-rod	-		7.0		6.0		18)
Tiod plane	-	10.1	7.4	6. 4			(15)
Find-plane	\square		9.0				(16)
Tiod-phate	-	11.3	9.0				(17)
Rad-plane	\sim		8.1	73			(18)
Moul-rod	$+$	6.9	3.2	4.3	4.9	3.6	12
Pad-phate	\pm	4.5	3.7	3.3	3.0	2.8	12)

In the upper part of Tibbie I the 50 per cent breakdown woltages we collecterl thecther which have been abtaned by difteront auhors with negative impulse voltages maing to their crest withill 100 to 200 microneconds Dividing these volrages by the broakdown distancer prodaces the salues listed and these ean be iswarder as the oritical gradients capable of producing gap bromdown in 50 per cont ui all valtage applieations. The inviomation contained in this table san bo summatized is follows for breakdown distanecs from I to t meters.
P.r mod rod gapme the eritical breakdown gradient deactaxes only little with fucror-ing distance and for yups of the onder of 4 meters a value of about 6 kV am ata be accupted as repromentative. For mondphane gaps, the critical breakdomn gradiont decreases with increasing distanco and, for 3 meturs, reaches a figurs of ahout $7 \mathrm{kV} / \mathrm{cm}$.

Powitive lightming flasher constitute ouly about 20 per cent of all eath disflamgos it tentperate rapiona ard even lesa in tropieal regions. The correspotding fitemmation on the entiend bremelown gradient of long gaps under positive
 averagia of a farty latge bedy of expemocental data. It appeats that, both for

 duferme betweon theoc two configurations is greatow than for negative polarity.

R. II. Goide

 meservations. Fortanately, at uncertainty whit reapeet to the eritical beahifown
 to affect the ennelusions reached.

The scound major emanderation insolves the geonetrical repreantation of a lightting discharge to ground by a rod plane configumtion and of a lightaing diacharge to a lightaing fond by a rod rod arrangement. Comsidering liset the lightning leader channol, its tip is sumbuded by a conota anvelope and the same securs at a high-voltage rod electrode so that, electrontationtly speaking, the two arrangements eau be ergatided as simitar.

There is little objection to repreventing a single ventical lightning rod by an earthed rod electrade. On the other hand, apen ground cannot, strietly speaking, be represented by a plane clectrode. The earth's surface is uormuly eovered by small gronsth, grass blates sip stomes and every stuch projection is expable of protucing a paint disctarge, as beatifully demonstrated by sehontand's measurement of the point dischargecurrent produced by a-mall tree. similarly laboratory investigations of long rod -plane zaps have shown that, particularly for a positive plane which correoponds to the nommal condition of a negative lightuing discharge mogheres of the earth's plane or slight projections matethally wfent the break doxsu nechumism so as (1) make it mate similar to that of the rod-pod arratigement.

A third point worth meting is that the present disctsoion is conflued to the ense of a vertical unbranched leader chamact. Most lightning discharges deviate by a greater or leser degree from the vertical and buth this fact and the oecurrence of long brauches from the main leader channel nust canse a distortion of the clectric fichl about a lightning monductor: The same applies if the lightning combetor is toot placed on a thitorm plame but on a buthlitig or ots aloping mourd. These factors must clealy affect the results to be derived from laboratory urestigations of the sppe considered here

Air mearare and main fortunately exert anly a very -light effect on the breakdown voltages of long air gaps

From the foregoing eonsiderations it can be concfuded that, as a fir-t upproximation, it is legitimate to visuatize the normal attural lightaing leater -troke as : x xeff-propayating dischazge whict progreoses towards ground guded by the lacal fied dimmbution is front of the leater tipe but undffeeted by any festures of the ground until the entimal brakdown > feregth of the pomating distanee from zommed is reathed. When tris stage has beed rearhed, ate upmad stermor discharge is imitiated and the Feuder aroke is disonted tonsards it

The anly cundition in whieh the "nomal" lightning diseharge divetusod
here is thadified ari state Baideling or of fory ofl Mount 大iat of a dotwneard load that the leacer - 1 . ductor leading to
a the present ennte

The Striking Dista

It order tos deter upwand diselougge is tare, it appeass reaz that the eritieal hae: the ground configu: segutive lightning o With these values th upward streamer is ! The reaults of thives

Is indicated by t

Fic. 3 Strt:
poing on the ground thologey which was sige is a fumw fion of the is

It the present stas wheh is "tall" structare the remiter io referret to

 that the leadey strobe is freguently initiated at the tip of the latl lightring eotr-
 In the proment context this type of dischage will net be considered any further.

The Striking Distance of a Lishtning Stroke

In arter to thetemine the height above gromel of the lemter tip at which an
 ture, it appeats mazonable (10 sugges, on the batio of the data given in Table I, that the critimal breakdown gradient is, an a hirat approximation, indepemtent of the ground configuration and that its value is of the order of $5 \mathrm{kV} / \mathrm{cth}$. for the wagative lightming discharge and $3 \mathrm{kV} / \mathrm{em}$. for the positive lightning stroke. With these values the height of the tip of the leader ean be caleulated when an (upward streanes is liable to be initiated from zround of from on eafthed object. The realts of this calculation ate -hown in Figs. 3.

As indiented by the curves in Pig. 3, the licight of the leader tip at which the

proint ont the ground to be struck is determinesi of, to the the deweriptive termi-

FIr. 4. Lightring atrohe to chimneys.
pretty ubvir us if we onnsider that the electaic gradient under a leader channel is a functio a of the charge on the leader channel (as shown by Eq. 1) and that this in turt is mportiomal to the smoplitude of the current in the return stroke to which it gives rise. This striking distance is greater for the less frequent positive stroke than for the nemmal negative lightning diocharge. While this distance may amount tor 200 m or slightly mome for the rave, very intense lightaifig flashes, it amounts to mo more than about 30 meters for an arerago nogative lightoing stroke of $20 \mathrm{k.l}$.

Reverting to the photograph shown in Eig. 2, the height above the chimney *truek of the subdivision the the litning channel is abont 9 m and if it is dedueed from evidence provided by the loug laboratory spark discharge that this mecting point of the downward and upward discharges oeeurs at a height of about 60 per cent of the total striking distanee, this latter may be estimated to hase been about 15 m . From Fige a thix woudd indicate a lighoning current of about 9 kA , viz, a weak discharge, a motehesion which haul aheady been reached from ather evidence.

Tigure f show + a dightaing strike to str si-fogl high factary chinney or, to be more precise, as can be clearly seen with the and of a magnifying glass from the
arigital photograpis track of time lishtmis at whieh the downe chowge from the I. "striking diat:
above and belos.
was not much more of moderate intensit other photographas stmekes are available indieated in Fig. 3.

Several we-earch ealculating the stril the seope of this pa investigations.

The Atrective Res atud the Space Pro

The striking dist tip) of the leader ch struck is determine by the germetricad a stroke to mpor alas) indiento
stroke a:
the strok
"the attr
conductor attras constant but which

Onee tugtin it is Pramklin. In a lette The distance at il suddenty, striking it so bighly charged, is sions athd form of the This distanee, what. striking distance, is will be male."

The problem of finther questist of th Ware a clear di-finet fortical lhatuing mon by sum a combuctor.
origisal phategraphic nogative, te its lightning combene 'The darp hemed in the trawk of the lightuing channet can, in this ease, be taken to conatitute the point at which the downeoming leater stoke was first attracted by the upward dis-
 "troking diatance" Having rogand to the similan light intensitios of the track ahove :and below the knee point, it can be dedued that the atriking distance was tol much more than about 30 meters, thas once again indirating a stroke
 wher photographas showing similat, suduen changes in the tracks of lightuing atroks are available supporting the order of magnitude of the striking distances findicated in Fis. 3.

S'evonal research workers (2022) have followed the author's approach in edenditing the striking distanees of lightning strokes. However, it is beyond the scope of this paper to discoss the varring assumptions of results of these investigations.

The Atractive Range of a Lizhtning Conductor and the space Protected by it

The striking distances plutted in Fig. 3 were calculated as the height of the tip of the leader channel above ground at the instant when the point to be strock is determined. If, ats argued earlier, this striking distance is unatferted b. the geommticat configuration of the ear th electrode, oiz. it it is the same for a stroke to -pen groutm as for a stowe to a vertical lightaing conductor, then it abo indicates the raximum horizuntal distance between the tip of a leader stroke and a lightning conductor over which the latter is capable of attracting the stroke to itself. This distance may be called "the attractive distance" of "the attractive range." It thus follows from Tig. 3 that a single vertical lightning conductor attracts to itselt lightning stroken over a distanee which is not a emostant but which increases with increasing intensity of the lightning discharge.

Once again it is interesting to mote that this sidea had already necurred to Franklin. In a letter written in september 1767 from Paris he states (23) "The distance at which a body charged with chio fluid will diecharge itself suddenty, striking through theair into another body that is not charged, or now oo highty charged, in different according to the quantity of t'e fluid, tho dimensinns and form of the bodies themselves, atid the state at the air between them This distance, whatever it happens to be between any two Iradines, is calted their writhing disfance, as till they come within that distance of ench other, no stroke will be made."

The problem of the attractive range of a lightning conductor raises the further question of the apace oyer which such a combuctor will protert a building
 sertieal lightuing fod which has been discussed an far and the space protected by such a conductar, a distinction which is frequently ovethonises. The attrartize

range of a lightning rod describer the distance over which a single vertical lightinig rod of given height standing on an undisturbed plane ean be expected to attract a lightming Jeader situke to itself. Tho space praticted by stech it come ductor, on the other hand, should define the space over which a lightuing conductor crected on a buikling of given dimensions ean be relied upon to protect the building from being struck.

If a thunderstorn the suffice of such a building is wet and, just like the surffice of as tree, is capable of carrying currents which may be sufficient to eupport point discharges from earners of the ronf atrueture. To what extent this pffect can reduce the range over which a lightning conductor is capable of diverting a lightning leader atroke to itself is unknown. Fortumatels, this question is of minor practical importance since undern lightning peotection insists on litting lightning conductors along ridges or parapets of roofs so that all prominent comers are offectively pritected.

In existing publieations, the essential differcnce between the attractive range and the opace protected seens to have been whely overhobed and it is oni this understanding that historieal vieus ubout the spice protected by a lightaing conduetor may now be examined. Berond tho statement just quated, Franklin ${ }^{\text {d }}$ does not seem to have made any pronouseement on this topie. The -tatement itsolf appeas to have been completely overtooked by later investigaturs, and the first reference to the protective range of a lighting conductor

[^6]seroms to cecerr it the of Sicionees (25) whis

If that alitirat,
 -pace about it, the mater sunt (20), "the sequi it. rexults the erectir braltifuse ao ats to ines Is an interested obs ax"aplified be Fig. 5 was undeubtedty jus French Academy of vitat impentanee of fo protected by a lightai

In subsequent ed attrantive distance ti from 2 to $1-8$ and Pretece 27) it was $/$ the 19 th century on

Iat that celition, which was premented by Gay-Lossate, it was stated ". 1 Wightaing eonductor protect- offectively sugmet a lishtaing stroke a citendar space about it, the radius of which is twiou its height." As stated by IR. Ander-
 its rewits the erection of monstmonsly huge rods made to tower high whove frildings on an to increase the field of prowection to the largeat prasible extont." If an interased abserver ean still thotien on the contiment of Farope and as
 wis undembedly justifiod. Yot, bo this as it may, great erodit aeernes to the French deadens of Semeness for having first drasn wilieial attention to the vilat importance of formalating aceeptable rules on the space which is effectively protected by a light ning rod.

In subsequent edituons of the French Instructions ti.e original ration of the attactive distance to the height of a vertimal lightring eondector was redneed from 2 tu 1.75 and in the first British pronouncement on this subject mode by Preece (27) it was further reduced to unity. The various -ugyestions made it the 19ily century on this important ration are illustrated in Fig. 6.

(14. 6. Zanes of protection by vertieal lishtaing rod (after O, J. Loxke) (0).

J3CK	m-tinelar	Ginv Lasale 1823
B.1C	cone	De Fonveille 187
D) ME	cune	Puris Commisxion 187\%
LFCDS	r) linder	Chapman 1875
F.19	cune	dilams Insi
ollle	a lumer	Inspathesta
V.J:	-peretume	Precree 1851
11.11	cone	Mefants

R. II. Gootle

Credit is frequently given to Walter (28) for making the first attempt at determining the protective range of a lightung conductor by eolleoting fatual intumatish om pains atomek by lightaing in the imenediate viemity of elated atmeples equippod with lightaing emoductors. This overleok s the laet that abont

 ming had struck is buiding within the "protected" zone suggested by various anthoritios and had rathed the conclusion that, to speak of a fixed spaee of portection, was "imulminaible."

However, once agatin all this carlier work was forgutten when the introducfioth of the high-voltage impube generator made it posable to apply to a variety of test objecets very high voltages which were believed to simulate tho wave shape of that produced by a lightning stroke. This development initiated the period of labotatory model tests to determine experimentally the attractive range of a lightning conductor, thus reverting uneonsciously to the mhappy Benjamin Wilson (29) who opposed the Franklin lightning rod and who tried th) prove his point by tests earried out with an enormous battery of Leyden jars in the Pantheon, a large building in London's ()xford street.
F. IV. Pook (30), who avas the first to undertake systomatic model tests, found that the attactive monge depended on the height above a ground plane of tho high-voitage electrode chosen to represent the height of the thumderelond. Taking this height as a thousand feet, he found " "protective ratio" which varied between 2 and t. Peek's reputation was such that this figure was ineorporated if the 1932 edition of a U.S. Corie (31) in which it was retained until 1945 when it was replaced by a ratio of unity for important cases and of up to 2 for less important eases.

Ones it had been ostablished that a lightning leader stroke is "unaware" of amy feature on the ground until it has come within striking bistance, model tests were camied ont with the high-whtane electrode simulating the tip of the leader channel at a height ahove tho ground plane which wats gradually reduced (1) the hoight of the graunded rod electrode smatating the lightning conductor. Wany such test seriea have since bout peiformed (32) and the results have beon applied to detormining the attractive effect exertol by a lightning conductor.

Even with this latest refinement, there exist in the author's view several objections against the aceeptance of results from model texts th a quantitative determimation of the attractive mane of a thghtning conductor ahthongh they con be of considerable value for compantive investigations (33) such as the shickting effect of a groumed wire with bepeet to the phase comenctors of a tranmixamen syatem. Wpay from the rate of volfage rise whime sfoubd in the future be used for such tosfo and ivhich has beon discusaed eatier, the following major objections may be advaneod,

19 If it is meepted that the atriking diatmee of a lightuing divectarge is a fremetion of the deatric gradient between ita tip) and the gromed, then the attractive chfert of a lightuing conductor mont vary with the charge depmented
 Whenalt to see how this featme can to simalated in a haboratery test.
2) The breakdonst merdanism of a bong spatk gap in the laboratory is watly affected to the serien monstance in the discharge circuit. This has been

 writer is at prenent unknown. On the other hame, it is debatable to what extent A definte elfective impedanee can be afribated to a lightring leader channel.
3) Hasing regard to the very lugh negative impube voltageo required for fimpube teste on long spark gaps and the great dispersion of the results, model the to have frequently been made with positive impuke voltages and nu justifieation can be found for trying to represent the normal negative leader stroke by a pasitise rod electrode.

Tos summarize, then, the physical considerations utetined in this paper lead the author to the eonclusion that Oliser Fadye and Riclard A Inderson were vight in claming that aceeptance of a fixed value for the mea peotected by a at 1.taing anmelyetur io cumpatified. Fxpressed more pasitivels, the attractive
 peading promerily on th severity of the lightaing strake. If the curver given it
 attrocted over a distance of about twice the height of the combetor. However, oveu ahis distance might be reluced by ats unkuown amome if any umprotected part of a building was of suech a shape amel in such a poritios as to bee cupable of initiating an upward streamer diacharge.

Practical tspects of the hizhtring Protection of Structures

A lightuing conductor syatem somprises three main parts, the roof conductore, the down conductors and the earthing sumangenent; these will now bie briefly exanined.

The Roof Conductor Systern

Framklin's public introndurtion of the lightuing combector, if will he reealled, wase made in P'one Rechard's Ahmane for 1753. In this lurictoot of ancerifentions 34), Framklin *ugyesto to provide "s small itm roul" which "may be six of aight foet above the hizhost puint of the brilding." I fow somtences bater he atates: "If the homee or barn be long, theme may the a row or point at cach end ond a midaling wire alatg the ridec from one to the where"
 runst be remembered that he was largely concerned with amall dweilitgs sad

Ii. II. Gutide

 fequently destrased by fires statted hy lightiong. Jowever, even sithin this

 embluctor.

Attromgh Franklin towk a keen interot in sall casom of lightning strokom to bruiddings which had been protected by his lightaing mads, and dthough he utilized the experience at getmed in dimenaing xuch problems ax the necemary eroms anetion of a haghtaing conductor or the risk of site flathing, the experience asombled during has lifetime was reverely limited. It is, theqefore, ith the more notewnethy that abready in the firat imstruction for the protection of a "loug" bubldug he suggested that lightring conductors be installed "at ewh end" of the building.

As the knossledge of the value of the lightuing conductor spread aemes the world but before modern specifientious for the lightning protection of struetures fad been drawn up, the construction of protective systems deviated froms Framkliu's originat sugactions in saved mespects. I et us firet eotrater the "Hightming rod" or finial. Franklios had suggested to give this the form of a "brask wire the size of a eommon knitting notede shapened to a fine point.

Fii. I. Dir terminale (atter U. \&. Cude) (31).
He was clearly led to this magestion by his abservation that a pronted earthed ondentor is nore eftective in diacharging a charged benty than a rounded or blont conductor: If C now know that, wo for os listitnitig is comeomed, this argmuent is invalit, but it lod ta the witcopraded athationt of many pieturescue
 maltiplieity of spikes giving it esensiomally the entline of ath angry poreupien. some blame for the proservation of these fortmos metst be phered on the repret
 (antar, a lightuing mot was still crestited with the fotmetion of proventing the

 feyontively, a mulfeplieity of shont finiats superimposed on fonizonfal rouf statuetors for buildings of large ground surface is still recommended in the Intiot extition of anmhtor Smorican Cinde (35) (see Figh. 8)

As suggested sarlier, a lightning rod cambat be relied upon with eoptanty to betact to itseff every lightuing atome of low seserits. (Figure 40 [p, 50.i] of the e mpanion paper by Berger shows a direet lightning stroke into one of the

ball masts instatled on Mount R ou Silvatore, atad similar "failates" of at tatl If,htump ronductor invariably th atract to itatl overs lighting stome have

 length of a gatblod roof (Franklin's "middling wire") or atome the parapets or

 preseribed dimensiens. T'jpieal recenmendations for the width of such a mesh are listed in Table II.

Tar a II. Dimensions of Koof Conduelor Mesh

Fullosing the foregoing considerations to their logiead conelusions, some modern Codes hawe dispensed altogether with the provision of vertieal timials
 influonee of the stroug electuie flethls discuesed canfier, the shape if the ennductor devigned to intereopt a lightning discharge is immatorial, wonet, niot which is an, ported by the breakdown voltraes of long sparks under ang ronted
 auray of vertical lieheneng rach is ancommendeci only for s-mall danger -t tuetures while even for tall chimneys the provision of a ring couductor installed alonk the edee of the top of the atmetmo is decemod to proydde adeguate protection. Seither in the swish (36) nor in the Ciermen (37) - precifemions tre vertieal
 this development is the su-catled ration-action lightming combluetor for which it is damed that a vingle vertieal eumfuctor man protect a buikding of large surface area. Further wefornce to this deveen is mate boter.

 bublefing. This setheme is hased oin the satme prinequle as the protection of ant

It is inforesting to nete in passing that the sane prineiple las beet mbated *acosofully by sxpor (39) for the probection of suall farmhouses in Poland for
 grants thes have thatehed roofs. A large mumber of those farmateteth are datraved every your by tire started by lightning and it prowed commatically isapossible to provide all these otruetures with citcective lightaing protwetion
 Insperted in later yesms to chase dat they rematined in a satiolactory -tate sapor thus suggested a scheme which enabled the farmer to install his own lightning protective aystem and to do so at a minimal cost. Famentially his *कheme comsist of a galvanized fron wite of $10 \mathrm{~mm}^{2}(0.016 \mathrm{sc}$. ith.) erews seetion a aspondet from two wooden uprathts imstalled ut the two ends of the roof ridge arit estonding in buth directions under is sloping angle down the ground level. - Hficient lengths at cithoy end hedry harisd in the ground t, provide cfloctive wathing

Doun Conductors

 it in the twaction of the dows condactese to fransies the lightaing currout to the parth dectendes. Fion a small building in ringle down eonduetor is adequate, but for as buthing of large gromal surface and for at tall structure severat down combletoms are requinol if vide lashing to intemnt metal is to be avoided. Such dogn monductors may be instated on the onter stuftace of the buitding or, where this is anaceeptable for atosthetic reasons, along internal walls or centain service eluits.

Ifonever, for many monem indothal or flat builhats as well an for many tall -teactures such as watei twoper, cooling towers etc., the sepmate down
 4role bubdings, the intemal metal ean be afilized as part of the proteotive
 and haver ende. simdarls, boulding whth eontinnous cumtain whiling can dis-
 bond the uppor endt of the metal immework to a roof combtuetor syatent and to brow it enonected to an ctheiont cambing syatem.

 vessel." It is the develogment of such is postential difternee betwon the lightning comdetor syatem and interoal metal, carthed of otherwise, whidi las given riae bo the great majority of alfeged falures of the protective system and which bromght Frankiin's system into carly minustified dindepute.

The riak of ride flawhing can be overcame by effeient multiple bonding to the down conductors of sum extended metal fixtures or seqvices it or on the bukding. With increasing babding height such bonding must bo done hoth at the highert and lowest peomts of any extended metal compronents. This akoo stresses the need for eareful reeond keeping and perfodic dhoeking to chaure that any alterations to service piy a and other metal fixtures have not interfored adversely with the efticacy of :an ongitally sound :arangement.

Mach uninformed criticism has been voiced against the use of a right-angle bend in a donno conduetor or its connection with a ronf combetar. The bendiug
 cross section and risks of side flashing are torgfigible mulevo the comdactor is bent back so as to form a long but aurens re-chtrant boop.

Earthing System

Traaktion was well atwe of the ifaportance of a geod earth commection for a
 that the ligitaing conductos be "of sueh a length that at one end being three or four feet in the moist ground." In later publientions and tetters he reverts ropeatedly to this subject. Thus in a letter dated Febrnauy 20th Trioz, it which he commento on an account of the succestud dincharge of a liyhoning flash to the house of a Mi. West in Philadelpha, he romarks (41):
"There is one cirembstance, ciz, that the lightning was seon to diffuse itself from the foot of the rod over the wet pavenent, which seems, I think, to indicute, that the earth under the puwement wat vory diry, and that the Ped -houlil have been sumk leeper, till it came to earth moistor, athd therefore apter tor receive and disaipate the electuc fluid.'

Insdequate earthing of lidatning condectors led to meay fatures in oarts installations with the result that this matter was given smechal attention by the French deatomy of sefences whove sortes of Recommendatons have been

 buyl it not heen fitted.

Piostly atant foom the ith exmbetor, the chnase soit: sithe flathing and seromily beyt formetion of the catt many fatal aceidents for ha

Buried plates which he present time have the dr: wheth is listhle to drying botween plate and suros Whieh compress the moil a be ured berenase of the mos are effective. partionlaty their intial struge impertar

Bonding of the earth metal services such as el method unt only usoits protective syatern but it yromed. Such bondines us tion, but neatas are avail

The Protective Ran

Infomation on th lightaing conductor structures is g_{o}

Comutry
U. B

Britaits

soutli Afriea

It = malins of pot onts
उrat keta frove tines terived
xtill to miat in mationm!
 datetime is sthemoul athel
 stetmane simet tife abtty
so-called Faraday cage to ini the protected building Is, "a closed eonducting epence between the lightor otherwise, which has he protective system and disrepute.
jent multiple bonding to or hervices in of on the ig must be done both at 1 components. This also iorlic checking to ensure tures have sot interfered gement.
the thse of a right-angle - conductor. The bending fect a conductor of usual less the eonductor is bent
wl earth combection for a ixs he recommend (34) : one end being threc or ind letters he reverts roary 20 th 1762 , in which e of a lightning fash to 1):
hg was seen to diffuse , which seems, I think, rery dry, and that the moister, and theretore
many failures in early special attention by the momelations have been fyuired for two reasons.
he are immune from eleetric attention to the fart that a secherred to the sume sput

Journal of The Iranklin Instifute

Firstly, apart from the inductive voltage drop which arises across a long down conductor, the ohmie voltage drop in the earth electrode determines the risk of side flashing and secondly the potential drop across the ground surface is a direat function of the earthing resistanee. The resulting voltages have led to many fatal accidents to human beings and to quadrupeds.

Buried plates which have been widely used for earthing purposes up to the present time have the drawback that they have to be placed in made-up soil which is liable to drying out so that, in the course of time, the area of contact botween plate and surrounding soil may be materially reduced. Driven rods which compress the soil are therefore much to be preferred. When these eannot be used beeause of the rocky nature of the ground, horizontal buried conductors are effective, particularly if they are arranged in star formation so as to reduce their initial surge impedance.

Bonding of the carthing system of the lightuing conductor to all buried metal serviees such as electric eables, gas or water pipes is imperative. This method not only assists in socuring a low overall earthing resistance for the protective system but it also prevents the risk of a long are discharge in the ground. Such bonding may tend to interfere with systems of cathodic protection, but means are available to overcome these difficulties.

The Protective Range

Information on the protective range or protective angle attributed to a lightning conductor in several modern mational Codes for the protection of structures is collected together in Table III. Considerable differences are seen

Table 111. Protective Ranges (or Angles)
Adopted in National Recommendations

Country	Ref.	Ordinary structures		Danger structures	
		R / H	${ }^{\alpha}$	R/ 11	α
U. S.	(31)	2:1		$1: 1$	$\left(45^{\circ}\right)$
Britain	(38)	(1:1)	45°	$(0.58: 1)$	30°
Poland	(42)	$1.5: 1$			
South Afrien	(43)	(1:1)	45°		

$R=$ madies of protested cirenlar lase $H=$ height of lightming conductor. Figures in brackets have been derived for purposes of comparison.
still to exist in mational reommendations. The British Code is the only doenment in which the statistical aspect of the attractive range of a lightaing erniductor is stressed and in which it is stated that a single lightning eonduetor cannot be expected to provide complete protection. This fact need not eatase surprise since the author must admit it having exerted a certain influence in

Vol. 285, No. 6. June 120.7
473

R. II. Giolde

1)eqpite extatimg differences, all mational (botes agree itn axcribith to any lishtning patective syatom at limited range of offortivencos. (iomplefely different chatas are make for protertive systems conploying radir-active materials ineorporated at the tip of a conventional vertieal lightnigy fod. The sumgeation to use malo-active maternals for athes aspects of lightning protection is by no means novel, but chans have been made in secent years to the effeet that a -ingle rod of tommal height, if fitted with a radio-active tip, is capable of proteeting an entire buiding of large horizontal dimonsions.

In maler to tont the eflimey of in ralio-active lightning combetor, MafterHillebrand (44) ereeted four of these devies in aceordanee with the supplier's instructions athe, at distaners of between 31 ath 53.1 neters, he ereeted : conventional lightaing rod of the same height as the madionactive conductor. Ite

 (aradicuts (diatent thenderatoms), the rommal rod produces mo meanemate parnt direharge eurrent wherean the sabio-active lightoing conductor divehages eurrents of theowler of a fraction of a mieroampere. If wesey, as a thenderatorm
 Hilforand eonelades that this result is in full secord with theoretieal prodietion.

Thus, if it is admitted that the current diseharged into the ntumsphere by a byhtming eonductor is indicative of its attractive action, a radio-active lightning comfecter must be baken to provide the same degree of protoction as a convenfional eonductor of the sane height abo ze ground.

The only matioual Code which appears to anake apecifle reference to radioactive lightnitig conductors is that i sued in Ciermany (37). It otates "The (urovisuon of radionctive material on lightuing onds eannot produce a frates womby enfect. Tho additional ionization created by them lios, necordiong to ciontilie investigntions, several orders of magnende befors that eansed by untural innization of a lightaing rod in a thunderotom ficld wit.s no mulioantive material. The British Code (38) menely Padicatos that mo artificint mmans we known by which to increase the range of attraction afforded by a lightning eondactor.

fioncluxions

The mode of action of a lightuing conductor is now reasonably well establishod. Its sole purpuse is th intercept a lightning discharge before this can contact any point of the building to be protected and to discharge the lightning current harmbessly to ground. The risk of side flashing to internat or estemat metul em Le ovorcome by bonding and, if this is ameiently arried out, tho ri.k of stle flashing is andifected by the magnitude of the earthing resistance of the protentive sysum. Under subly conditions the main alvantage of a low eathing masistance is the reduction of the potential drop across the ground surfice abont the print of earthing In order to avoif side flowing in the ground, bonding is sacential between the lightring protective earth electrade and any abljocent buriod metal pipes or cables.

Apart from chureh steeples, vertieal fimials ean be roplaced by horizontal coof eombetors which shend be so aranged as to cover atl shatp edzes of the

 Chmons contain wallits, dexse combetors con be disponsed with, provited the * tretwrib metal is offectively earthed and, where alvisable, monected to a roof continetor aystem.

Val. 43 , Sa, 6 , Jime ing
475

The space protectod hy a lighturing comblucter is atill subjeet the fimetrer invertigntim athengh there are strong tenans to believe that the distanee oner which a lightuing eomedof is rapable of atteacting a lightming discharge is a

In conclusion, the anther wishex once mare to pay tronage to the genins of Benjemin Franklin whose lightning conductor syatem refuired only minar additions or modfleathons aince it- first ammelation in 1753. Troty, he wns overmodest in writing (45) in 176i2: "Indead, in the construction of an instrument so new, and of which we could have so little experience, it is rather lueky that we should at first be so near the truth as we seem to be, and commit so feaw ortors."

Bibliography

(1) K. Peamon, "Tho Cirunmar of Science," London, Ailam \& Charles Black, 1041.
(2) B. F. Sohomband, "The Work of Benjamin Franklin ou Thunderntornss and the Deselopment of the Lightning Rod," Jour. Fronk. Inst., Vol. 253, p. 375, 19.3.
(3) I. 13. Cohen, "Prejudice against the Introdurtion of Lightning Rods," Iover. Fronk. Inst, Vot 253, p. 393, 1052.
4) I. B. Coluen, "Beujamin Pranklin's Experiments," ITarvard Eniversity Pross, Camhridge, Mass, 1941, letter to M. D'. Nlibard, of Jute 20th 17050
5) G. J. Bymons (editor), "Lightuing Ruet Conference," E. \& F. . . Epou, Lutidon and Xew Yoth, 1882
6) Gliver 1. Todige, "Iightuing Conductors and Lightoing Cuards," Loodon, Whittaker \& Co. 1802
(7) I. Alan Chalmers, ". Stmospheric Electricity," Pargamon Press, Londou, Paris, Now Vork, 1957.
 Berlin, Now Yotk, Spriumer, 1050.
9) C. D. R. Bruce and I. II Ciotle, "The liahtning Discharge," f.I.E.F., Mol \&s, Pt II,
 Sut 1'U. 183, p 228, 1941.
10) I2. H. Gotde, "The Frequoncy of Demarrence and the Distaibution of Cighening Phaties to Transmission tines" Trans. A. / Ki.E., Vot. b4, p. $902,1045$.
 1903.
12) A. M. Thomas, The Switefing Surge ottonghth of Thathating Arrongenments for Syatems

 Heport No. 32S, Sppendix I, 1054.
(14) I. S. Stekolnkov and A. 1: Shkilev, "Thvertigation of the Merhanism of the Negative Spurk," Wouk SSSR, Vol. 151, p. 1085, 1003.

20) T. Ilorvath, FIVE it *क्thitem," blelteic, 1
21) F: schwist, Dementa AS: Yol $56, p$ in
(22) R. Itivis, "lakhtaine
(23) ज्ञाe the. 4), better :
 1). 205, 1778
(25) "finservetiones stir lom
(26) 12. Amberom, "Light1
(27) iv II Precte "0) II n. 727,18801 .
(28) Witter, "Yes wo Physik; Vot. 18, p. 11
(29) B. Whrem, "On the"
(30) V. W D Peek, "Dietrect: Hill Book Co., The, 1
(31) U.S. Department of $1012,1077,1015,105:$
(32) P. © Provoost, "Th So. 314, Appendix 11
(33) C. F. Wagner, ©. 1) Trans ifE E Vol
(34) we Ref 4, p, 120.
(35) Nicional Fire Protec!
(30) Asocintion Susse do. tion contre la foudre,
(37) Jussehues fur Blizzy Berlin, 1063.
38) Dritish stund rid. Lis don, 1065.
(39) S. Sapor, "Paratontre p. 263, 1959
40) A. Clerk 11 port, L.
(41) Seen Rof. 4), p
42) Wradawnictwa No Watein, 1930
43 South Vitionn Bureat Agrinet Cuhtninge" !
44) 1). Ahtler-Millehrand

45) See Ref. (4) , p. 373.

 D. 230, 1778.

 p. 127, 1880 .

 Hill Brok Co., Inc. 1529.
 1082, 1035, 1945, 1052.
 No. 314 , ippouli, 11, 1 (5in).
 Tyuns. I I.E.E. Yot. (60), p. 313, (0.41.
3i) Foe Ref. 4, p. 120.
35) National Eire Protertion Amodation, "Hightuing Code 1905," Benton, Mass.
 tiou contre lat Doutre," "flacich, (959.
 Dertia, toes.
 den, 1905.
 p. 263,1950
 purt, Londoth, 1877.
4) Swe Ref 4), D. 372
 Warsaw, 1930.
43) somth African Burmat af Stomdusty, "Caslo of Proutiee for the Protertion of Bualdingen Againet Tightuing," Pretorin, Le5t

(15) Sce ftof. 4), p. 373

The Relation Between Stroke Current and the Velocity of the Return Stroke

C. F. WA JNER
FELLOW IEEE

S-mary: The velocity of the retura 5 se is as important eiement in estimating (2. Se surge impedance of the return stroke. (2 we potential of the downward leader, zni- 3) the length of the last striking distave. The energy required to establish an x- plasma can be deternined from laboratry tests. By equating this quantity to the eaergy required to retard the velocity oi i traveling wave, the consequent veloc. irr f the return stroke can be evaluated in te-s of the stroke current.

1: 2955 Lundholm': presented an inter--sing relation between the current in, a: : the velocity of, the head of the return st: se Rusck ${ }^{3}$ later reviewed Lund$\mathrm{b} k=$'s derivation and, after modifying one of the constants, arrived at the follow $-z$ result
" = ! $+\frac{50 \times 104}{1}$
is xaich t is the velocity of the head of the return stroke expressed in terms of We veloctty of that of light, and I is the 50 se current in amperes (amp). This re. tion is shown in Fig. 1
Fis ? shows the distribution of occurree curve of the velocity of the retuas stroke determined by Wagner and MCann' (Fig 20 of reference 4) as a rescit of their analysis of 19 records presented by Schonland, Maian, and CoZens ' Fig 2 also shows a replot of the frequency of accurrence of strake ezrents as published by the AIEE Lishrning and Insulator Subcommittee* Rutks, accepting, a priori, that the velocity of propagation is a function of the strcke current, plotted the mutually conaected points shown by the dotted line in Fig 1 . It can be seen that the rela$u x=$ between the two curves is remarkably gad

The derivation of the Lundholm expressiva is somewhat obscure in some respects as it is based upon an empirical relation of Trepler' which states that the resist-

[^7]ance of the path of a discharge varies inversely as the charge that passes that point in the discharge path. It is the purpose of this paper to re-examine the relation between the stroke curtent and the velacity of the return stroke in terms more susceptible to physical interpretation and more readily determinable from laboratory tests.

Simplified Analysis

To develop the physical concepts, a number of simplifying assumptions will be made. Later these will be modified or eliminated by further discussion. These assumptions are as follows

1. The return stroke can be viewed as a wave of positive charge (and current) whose bead travels upward, neutralizing. as it progresses, the negative charge laid down by the downward leader. This wave moves upward trom a plane surface, which in this paper will be assumed to be perfectly conducting For the initial assumptions, however, the system of simul. taneous waves, shown in Fig. 3(A), that moves outward from 0 and ' y^{\prime}, will be premised. This is done primarily because this system, aiter the heads of the waves have progressed sufficiently, leads to a finite solution. All of the essential elements of the actual case reside in this one also
2. All of the waves of current (and charge of Fig. 3(A) are rectangular
3. The waves travel with a constant velocity $o c$, where c is the velocity of light and p a gumeric.
4. Each wave of charge go, in coulombs per centimeter (cm), bas associated with is a wave of current t_{7}, in which
$\mathrm{i}_{\mathrm{t}}=v \mathrm{vcq}_{0}$
5. The arc plasma behind the heads of the waves has a constant radius a in cent. meters; its resistivity is zero
6. All of the current flows on the surfisce of the plasma: all of the charge :esides on its surface.
7. In Fig. 21 of reference 3 it is shown that to bring a 6 -foot spark discharge to high conductivity for currents between 1,000 and $2,000 \mathrm{amp}$ requires an energy that is proportional to the final current of the discharge. This energy is approxithately equal to 0.002 watt-second per centimeter per ampere. Verification of this value is given in the Appendix.
The properties of a system of waves such as the one shown in Fig 3(A) have been discussed in connection with Fig. 12 of reference 9 , in which it is shown that to establish, as has been premised, rectangular waves of charge and current which travel with a constant velocity of vc, series-forcing voltages, as shown in Fig. 3(B), must be inserted on bath sides 0 and 0^{\prime}. In addition, a retarding voltage must be inserted that is sy mmetrical with respect to the heads of the current waves. The paths of the waves are separated a distance D; it will be shown subsequently that this system of waves is approximately equivalent to the case in which, when D is made equal to twice the distance the bead bas traveled from the earth, a wave of charge rises vertically from the earth. Fig. 3(C) shows in more detail the total voltage, using 0 and 0^{\prime} as reference points, that must be inserted progressively in series to bring about the propagation of rectangular current waves. These voltages are the inkegrals from these reference points, of the electric field's iongitudinal component, at a radius a from the axes of propagation The

Fig. 1. Relations between stroke curtent and velocity of teturn stroke

Fig. 2. Relation between frequency of accurrence of lightning stokes ($\mathrm{A} \mid E \mathrm{E}$ cur: a) and velocity of teturn stroke
forcing voltage in each conductor, after a time slightly in excess of the travel time between the conductors, attains a constant value of
$Y=60 i_{2}, \frac{1}{2} \ln \frac{D}{a}$
where D is the separation betweet the two parallel paths of waves. The retarding voltage T , has two components (a) that accasioned by the charge, which attains a limiting value of

$$
V_{c}=-\operatorname{sex}_{2} ; \frac{1}{\mathrm{t}} \ln \frac{D}{\mathrm{c}}
$$

and (b) that occasioned by the current, which attains a limiting value of
$H_{1}=60 \mathrm{i}_{2}=\ln \frac{D}{a}$
The retarding voltages are then the sum of these quantities
$V_{1}=60 i_{t}\left(v-\frac{1}{v}\right)$ in $\frac{D}{a}$
Let it be assumed that the heads of the waves have progressed to a point where the forcing and retarding electromotive forces (emi's) do not overlap. If $t=1$, the waves travel with the velocity of light; since the retardation voltage is zero and the voltage waves propagate with a vertical front, the forcing voltage is equal to $00 i_{z} \ln D / G$. For $i_{z}=10$, this expression will be recognized as the conventional surge impedance. In addition to the longitudinal electric fields at radius a, from which the forcing and retarding voltages were derived, radial electric fields which arise from the charges go also exist.

Beiore proceeding with the application of these relations, it is interesting to
develop the energy relations izvolved. For $t=1.0$, the power input in a enh conductor P_{6} is equal to V_{4}. It can be shown that this power is expended it developing the magnetic energy per unit length $P_{\text {mes }}$ which is equal to $L_{i s}{ }^{2} / 2$, and the electrostatic energy associated with the radial field P_{*}, which is equal to $C 1 / 2 / 2$. These quantities are equal. Therefore, for $\mathrm{t}=1$,
$P_{c}=P_{e c}+P_{m c}$
and
$P_{c c}=P_{m c}=P_{c} / 2$
If : $\neq 1$, for the same forcing voltage an equal charge will be distributed along the conductors, but the current will be only t times as great as for $v=1$. The
surge impedance will be $1 / t$ as greal and the power input P will be
$P=v P_{c}$
The electrostatic energy will be distributed : times as iast as for : $=1$ and, therefore,
$P_{c}=v_{c c}=\frac{t}{2} P_{c}$
The magnetic energy per unit length will be,2 times as great and will be distributed f times as fast. Therefore,
$P_{m}=v^{2} P_{1 a c}=\frac{\mu^{2}}{2} P_{c}$
The power absorbed by the retardation effect is proportional to the instantaneous back emf and the current, but since the current exists only on the left-hand side of the retardation voltage, the power absorbed by this effect is
$P_{t}=\frac{1}{2} V_{i i_{t}}$
Remembering that for $: \neq 1, i_{3}$ varies as t, then this quantity is proportional to

$$
\begin{equation*}
P_{r}=\frac{1}{2} t^{2}\left(t-\frac{1}{r}\right) P_{t} \tag{3}
\end{equation*}
$$

Equating the power input to the sum of the stored electrostatic power, the stored magnetic power, and the retardation power:
$v P_{c}=\frac{t}{2} P_{c}+\frac{t^{2}}{2} P_{c}-\frac{t}{2}\left(v-\frac{1}{v}\right) v P_{c}$
which is an identity and verifies the ultimate distribution of the power input

Returning to the application of thest relations to the immediate problem,

Fig. 3. Limiting
values of voltages which produce a system of currents
A.-5ystem of simultoneous waves B-Series - lorsing voltages. insened progressively in series, reavired to produce waves shown in (A) C-Tiotal veliage to be inserted

Fig. 4. Rectangular curtent rising from a plane of zero re. sistivity

A-Cument wave B - Longicudinal helds produced by cuttent shown in (A)

C-foreing voliage rezulred to produce current shown in (A)

(C)

$p=1 / \sqrt{\frac{2.3 \times 10^{4}}{i n}+1}$
In the foregoing it was assumed that the effective radius at which the charge might be considered concentrated and the radius of the cylinder in which the current flows are identical. This is not true. The charge is concentrated at a much larger radius than that of the cylinder along which the current flows. When this is taken into consideration and the radius of the charge concentration is represented by the symbol b, then, as shown in reference $9, a$ in equation 4 should be replaced by b. Following this change through equations 6 and 15 , it can be seen that equation 17 then becomes $30 i_{z^{2}}\left[\frac{1}{i} \ln \frac{D}{b}-v \ln \frac{D}{a}\right]=v c(0.002) i_{s}^{2}$ and
$-30\left(v-\frac{1}{v}\right)\left(\ln \frac{D}{a}\right) i_{z}^{2}=v c(0.002) i_{z}$
of

$$
\begin{equation*}
i s=\frac{a(0.002)}{30 \ln \frac{D}{a}} \frac{t^{2}}{1-v^{2}} \tag{18}
\end{equation*}
$$

and
$v=1 / \sqrt{\frac{c 0,002}{30 i_{s} \ln \frac{D}{a}}+1}$
A certain similarity in the form of this equation and that of Lundholm-Rusck (equation 1) will be observed. The author does not wish to discuss at ats point the numerical values of the "-wameters in this expression, except to state that a typical value of D would be about 600 feet, and of a about 0.1 foot. For these values equation 19 becomes

Equating equations 15 and 16
when V, is inserted from equation 6 into equation 12 ,
$P_{0}=-3 U\left(v-\frac{1}{v}\right) \ln \frac{D}{G} z^{2}$ watts
which is the power that must be absorbed by the head of each wave so that the waves are retarded to a velocity :

From assumption 7 it is revealed that the energy required to raise a spark to a conducting state within the time interval involved in the breakdown process of a rod-rod gap is 0.002 watt-second per centimeter per ampere. The power that must be absorbed by the head of the traveling wave, to bring it to a conductivity which will support the current of t_{2} amp, is proportional to the velocity. The power P, can also be expressed, therefore, as
$\left.P_{\text {. }}=\operatorname{vec} 0.002\right) i_{2}$

$$
\begin{equation*}
i_{2}=\frac{\left.t^{2} \operatorname{ccc} 0002\right)}{30\left[\frac{\ln \frac{D}{b}-t^{2} \ln \frac{D}{c}}{}\right]} \tag{22}
\end{equation*}
$$

Representation of the Return Stroke by a Conductor Rising from the Earth

Up to this point, the stroke has been represented by waves of charge (and current) propagating along parallel paths Actually, however, the downward leader distributes a negative charge that is approximately uniform along its entire length. The return streamer or stroke can be regarded as draining this charge to earth as its head moves upward, or as neutralizing the negative charge by an upward-moving positive charge. Therefore, the return stroke is represented more realistically by a wave of charge (and current) that rises' vertically from a plane of infinite extent. Again, in order to state specific conditions and to obtain precise results for these assumptions, a rectangular wave of current will be premised that extends itself above a plane of zero resistivity with a constant velocity vc. The effect of the plane can be represented by replacing its presence ty an image charge wave of opposite polarity and its associated current wave as shown in Fig. 4(A).
In passing, it should also be noted that this representation is not accurate. According to the author's viewpoint, the return-stroke channel current begins as a
current that rises from the ground; simultaneously, a corresponding current begins to flow from the end of the downward leader toward ground, this current being supplied by a wave of current that progresses upward, draining as it does so the charge laid down by the downward leader in its progress toward the earth. But for the present discussion the return current will merely be assumed to rise from the earth.
For preliminary consideration, both the charge and the current will be assumed to be concentrated at radius a As shown in reference 9, the current wave of Fig $4(\mathrm{~A})$ that flows to the right from 0 produces an electric field parallel to the path of propagation, given by the relations in Fig. 4(B), where a is the distance from the axis of propagation. The feld E develops from 0 with the speed of light and, therefore, outdistances the head of the current wave. The field E, travels with the head of the current wave and consists of two components: E_{c}, associated with the charge, and E_{1}, associated with the current. These felds are also circumscribed by the sphere that expands from 0 with the velocity of light. The image current to the left of 0 produces similar fields but, for large values of z_{0}, the instantaneous position of the head of the current wave, only that component of the field produced by the image current which expands from 0 and is equal to E is of importance.

The arc plasma that constitutes the re-
turn stroke has a very low drop (of the order of 60 volts per centimeter)- The return stroke can then be conceived as a metallic conductor of essentially zero resistivity that extends itself vertically. The field along the surface of this conductor must then be zero. To produce the currents such as premised in Fig 4(A). forcing fields equal and opposite to E and retarding fields equal and opposite to E, must be assumed to be injected into the circuit. This can best be visualized by assuming that series voltages are inserted progressively in incremental quantities in series in the conductor, so that the integrated values of these fields are equal to these series voltages. The values of these voltages are indicated in Fig. 4(C).

It is difficult to generalize and to draw conclusions from these analytical expressions. A particular case is, therefore. chosen for numerical evaluation; this is given in Fig 5. For this case : is taken as $0.3, a$ as 0.1 foot, and x_{e} as 1,000 leet of particular interest is curve D, which gives the voltage that must be inserted in series from the head of the current wave x_{0} for the wave to be slowed down to $t=$ 0.3 and the current wave to be rectangular. This shows that for unit current a total voltage of 900 volts (the value of this curve for $x=0$) is required Thus the power that must be absorbed in rt tarding the wave as determined from circuit conditions (that corresponding to equation 15) is
$P,=900 i_{2}{ }^{1}$

Fig. 5. Forcing and retarding voltages in the return stroke atter the head of the current wave has progressed to a point 1,000 feet above the earth, ecectangulat weve of current was assumed for the full-line computations and a current wave with e hont of 100 leet was essumed for the dotted-line computations (essumed velocity of propegation, 30% thet of light, rodius, 0.1 (l00t)

Fig. 6. Velocityeurtent surves com. puted from equation 30 for $y=300$ feet, $4=0.1$ foot, and different values of b

Equating this to the power determined by laboratory tests, as given in equation 16 for this particular value of v,
$900 \mathrm{ir}^{2}=(03)\left(3 \times 10^{10}\right)(0.002) i_{z}$
or
$\mathrm{i}_{2}=20.000 \mathrm{amp}$
To determine the effect of the front of the current wave, the rectangular wave of unit amplitude was replaced by a stepped wave with ten steps of 0.1 amplitude each, as shown in Fig. 5. The corresponding forcing and retarding waves are indicated by the dotted lines. It will be seen first that the amplitude of the forcing wave, which corresponds to its surge impedance, is unaffected by the front of the wave. To determine the retarding effect it is necessary to evaluate the power rather than merely the voltage For the case in which the current is rectangular, the current to the right of x_{0} is zero, and to the left it is constant. The power absorbed at the head of the wave is then the product of this constant current and the series voltage indicated by curve D. Thus for unit current, if the wave is rectangular. the power that must be absorbed at this instant within 100 feet from the head is 690 watts; within 300 feet, 800 watts; and within 100 feet, 900 watts. But if the front is stepped, the current to the left of 5_{0} between x equals 900 feet and z equals 1,000 fee: varies, and it is necessary to compute the voltage across each 10 -foot interval, multiply by the corresponding current in each element, and integrate the products. This has been done: it was found that the power that must be absorbed between x equals 900 feet and x equais 1,000 feet is $35+$ watts for a crest current of unity. Adding to this the power that must be absorbed during the interval in which the current is constant, it is found that 994 watts must be absorbed within 300 feet of the head,
and 904 watts within 1,000 feet of it. Thus it can be seen, as would be surmised, that the energy absorbed is dependent only upon the velocity, and is independent of the front.

From Fig. 4, it is shown that the retarding vaitage for the rectangular wave is equal to

$$
\begin{align*}
& 30 i=\left(\frac{1}{v}-v\right) \ln x \\
& \quad\left[\frac{y}{a \sqrt{1-v^{2}}}+\sqrt{\left(\frac{y}{a \sqrt{1-v^{2}}}\right)^{2}+1}\right] \tag{25}
\end{align*}
$$

where y is the distance measured back from the head of the wave over which the field must be integrated. The energy that must be absorbed to reduce the velocity to $:$, then, is this expression multiplied by i_{t}. Equating this expression to $P_{\text {. }}$ from equation 16,

$$
\begin{align*}
& 30 i_{7},\left(\frac{1}{v}-v\right) \ln x \\
& {\left[\frac{y}{a \sqrt{1-v^{2}}}+\sqrt{\left(\frac{y}{a \sqrt{1-v^{2}}}\right)^{2}+1}\right]} \\
& =v c(0,002)_{t_{z}} \\
& i_{2}=\frac{v^{2}}{1-v^{2}} \times \\
& \frac{a(0002)}{30 \ln \left[\frac{y}{a \sqrt{1-t^{2}}}+\sqrt{\left(\frac{y}{a v} \overline{1-v^{2}}\right)^{\prime}+1}\right]} \tag{27}
\end{align*}
$$

For the present purposes, interest will be centered on values of y greater than 300 feet. In the discussion of ere characteristics in the Appendix, it is shown that the growth of the diameter of the are requires considerable time and that, for the currents involved, the are radius will be less than 0.1 foot. Therefore, unity under the radical can be neglected. Furthermore, y / a will be so large that $1-v^{2}$ within the radical can be replaced by unity. With
$c=3 \times 10^{10}$, equation 27 then simplifies to
$i_{t}=\frac{2 \times 10^{4}}{\ln \left(\frac{2 y}{a}\right)} \frac{v^{2}}{1-v^{2}}$
This is identical to equation 18 and demonstrates the similarity of the two circuits. For y / a equal to 3,000 , this expression reduces to
$i_{2}=23 \times 10^{5} \frac{v^{2}}{1-v^{2}}$
If y / a is 30,000 instead of $3,000, i_{z}$ is onily increased 26%.

Now if the difference in charge concentration at radius b and current concentra. tion at radius a is taken into consideration and the same simplifications that led to equation 28 are included, the expression for stroke current becomes the same as equation 20 with D replaced by $2 y$. Thus
$i s=\frac{v^{2} c(0.002)}{30\left[\ln \frac{2 y}{b}-v^{1} \ln \frac{2 y}{a}\right]}$
The family of curves of Fig. 6 have been drawn from the above expression, with a equal to 0.1 foot (3.05 cm), D equal to 300 feet (91.4 meters) and different values of b This particular value of D was chosen because it was estimated to be a reasonable value that would obtain over the entire range of currents as the stroke current attained its maximum value. Further, it has already been shown that the results are not critical with respect to the choice of D. Because of the factor v^{2} for the term involving the quantity a, the Cikice of a is also not critical. The radius b is, however, critical. The distribution of the charge around the core of the downward leader is still controversial. Is the volume distribution unform within a cylinder at whose surface the gradient is 30,000 volts per centimeter? Does almost all of the

Octobar 1903
chatge reside neat the surface of this evlinder? Or does the volume distribution vary inversely as the radius to produce gradient within the corona sheath?

Perhaps none of these conditions is correct. However, for the present situation, some assumption must be made The author has made the assumption that b for the value corresponding to $100,000 \mathrm{amp}$ is 10 feet. This establishes point A on the final curve depicting the relation between t and i_{z}. It will be assumed that b is proportional to 90 From equation 2 it can be seen that b is also proportional to i_{z} / t. Therefore, to determine the point on the final curve for b equal to 5 feet, one must only draw a straight line through the origin whose slope is twice that of a straight line through A. In this way point B was obtained By similar constructions, the dotted line shown in Fig. 6, which represents the relation between v and i_{z} and which incorporates the variation in b, was determined. This curve is repiotted in Fig 1 for comparison with the curve obtained by observation and the Lund-holm-Rusck curve. The dot-dashed curve of Fig 6 shows the corresponding values of b

Relation Between Stroke Potential and Velocity of the Return Stroke

In Fig. 3 the series voltage V required to establish the current i_{t} is indicated. It can be approximated by the equation

$$
\begin{equation*}
V=60 i_{z} \frac{1}{v} \ln \frac{2 y}{b} \tag{31}
\end{equation*}
$$

The radius for the charge concentration must be used in this expression. Insert. ing is from equation 30 into equation 31

$$
\begin{equation*}
V=1.2 \times 104 \frac{1}{\left[1-v^{1} \ln \frac{2 y}{c} / \ln \frac{2 y}{b}\right]^{n}} \text { in volts } \tag{32}
\end{equation*}
$$

The main variable in this expression except for t, is b. This factor can be estimated from the curve in Fig. 6 and 1 obtained as a function of curtent (or veloctty). This procedure assumes a

Table I

In Amperes	$\begin{gathered} \mathrm{V}_{\text {in }} \\ 100^{\circ} \mathrm{Volts} \end{gathered}$	$\underset{\text { In Meiers }}{\mathrm{X}_{\mathrm{s}}}$	$\text { in }{ }_{\text {Feet }}$
20,000	28.0	50	164
40.000	40.3 .	86	222
66, 000	488	83	273
1000000	640	111	364
150,000	76.8	134	438
200.000	84.8	150	491

Fig. 7. (A) GAD voliage and (B) eurrent for sparkoret of a-foot rodzod gap. togethet with (C) their replots and instantaneous powet

knowledge of the factor a, which has been taken as constant and equal to 0.1 foot. But in actuality a varies with current as well as b. A more realistic assumption is to let b be the value given in Fig 6 and let a vary linearly with is being 0.1 foot at $100,000 \mathrm{amp}$. When this is done it is found that V can be approximated very closely by the following expression:

$$
\mathrm{V}=1.2 \times 10^{v} \frac{0}{1-2.2 v^{1}}
$$

This indicates that the stroke potential is independent of the stroke current and is a function of the velocity only. In Table I the stroke potentials are indicated for different values of v; it can be seen that they are of the order of magritude estimated by other investigators.

According to the stroke mechanism theory proposed by Wagner and Hileman, ${ }^{10}$ the length of the final striking distance as the downward leader approaches the earth is equal to the stroke potential divided by the critical breakdown gradient, which is about 3,000 or 6,000 volts per centimeter. The smaller the final striking distance, the smaller the shielding angle must be to provide adequate shielding. Therefore, to be conservative the
value of 6,000 volts per centimeter is used and the final striking distance X. becomes

$$
x_{1}=2 \times 10^{\circ} \frac{0}{1-2.2 v^{2}} \mathrm{~cm}
$$

$X_{1}=656 \frac{v}{1-2.2 \mathrm{r}^{3}}$ feet
Table I also indieates the range of these values.

General Comments

In Fig 5 the curve $A+B+D$ represents the voltages that must be inserted in series in incremental amounts at that instant so that the resulting propagated current wave will be of unit value and rectangular in shape. Previously these voltages were arbitrarily divided into two parts: (1) that from $x=0$ to the crest (1,760 volus) was regarded as the forcing voltage; and (2) that between the crest and 3,300 feet (about -1.600 volts) was regarded as the retarding voltage. So long as these net voltages are maintained the same for any two cases (but not necessarily constant with time in either case) the two current waves propagate with the same velocity

The manner in which they are distributed will affect the wave shape of the current. In devermining the retarding voltage in equation 25 , the retarding field was integrated from $x=y$ back to $x=0$. It would have been more accurate to have inte. grated from $x=y$ back to the point at which the curve $A+B+D$ crests (or 700 fee:. However, it was shown that because of the logarithmic nature of the function this limit is not critical.

While from a mathematical viewpoint it is immaterial whether the charge transported from the leader is regarded as a negative charge lowered to ground or as a positive charge rising to seutralize the negative charge, from a physical viewpoint further consideration must be given to the problem. If, as the author believes, the charge on the downward leader exists in the form of negative ions, the mobility of such ions is low enough to prohibit the explanation of the formation of the current as a flow of negative ions. The current must rather consist of a flow of positive charge drawn from the earth that oeutralizes the negative ions. If the return stroke is viewed as a highly conducting extensible conductor that rises ftom the earth, this current must rise by induction. As shown in reference 16 , the magnitude of the current that would flow in this case is determined by the relative radii of the return-stroke channel and the charge location. The more nearly equal these are, the more perfect the neutralization and the larger the current. It is probable that in its upward tra return-strckie channel branches out to collect by induction a large portion of the ionic charge. The core of the return stroke does not increase from absolute zero, but from a value existing in the core of the downward leader at the instant in which the head of the return stroke reaches that particular section of the downward leader

Regarding the downward leader as a conductor of equal potential along its entire length, the charge distributed in the charged column will be larger gear the earth than at points at higher altitudes. This shouid result in a gradually decreasing current in the return stroke after its initial crest has been attained. Since the velocity of the head varies with the current, as indicated in Fig 1, the velocity of the head as it rises should also decrease. Also, as mentioned previously, as the length of the return stroke increases, the voltage drop required to supply the thermal energy conducted and radiated to the surrounding air no longer remains negligible: it also contributes to slowing the velacity of the head of the return stroke. Furthermore, as the length of the return stroke lengthens, its surge impedance also increases, which tends to diminish the current. On the other hand, while the voltage drop along the downward leader is small and regligible during the initial stages of the return stroke, its integrated effect over the length of the downward leader results in a higher potential of the downward leader near the cloud than near the earth. Thus, as the return stroke approaches the cloud, the higher foreing potential tends to counteract somewhat the effects just enumerated.

Several of the parameters used in this study are not known precisely. They vary with time, but specific values still must be assigned to them. The author does nut, therefore, claim a prectision that does not exist. Fortunately, these parameters occur as longarithms and so they need not be known with great precision. The precision is sufficiently great to define the nature of the phenomenon. As more data become available, appropriate corrections can be made More information is desirable concerning the simultane. ous variation of the velocity of the return stroke and its current And littie inior.

Fig. 8. Experimental eveluation of energy led into rodlod gaps of 3. 10 9.foot spacings duting spaikovet at - function of the final curtent
mation is known concerning the charge distribution within the corona sheath not only during the first few microseconds (usec) of formation, but for longer times during which other factors than those dominant during formation may be active.

Conclusions

While the lightning stroke has doubtless been idealized and simplified to a considerable degree in this analysis, a number of pertinent conclusions can be drawn within the purview of these limitations:

1. The general form of the modified equation relating the stroke current and the velocity of the return stroke, first suggested by Lundholm, ${ }^{12}$ has been verified, using as a basis the energy required to establish a spark. The modified curve is shown in Fig. 1.
2. It is shown that the velocity of the return stroke is dependent only upon the energy necessary to make the arc conducting and not upon the rate of rise of the head of the current wave in the channel as it moves upward.
3. The potential of the downward leader as it nears the earth and the final striking distance are functions of the velocity of the return stroke and are given by the following relations

$$
\begin{align*}
& v=1.2 \times 10^{2} \frac{0}{1-2.2 v^{2}} \tag{33}\\
& X_{1}=656 \frac{v}{1-2.2 v^{2}} \text { feet } \tag{35}
\end{align*}
$$

Appendix. Characteristics of Sparks and Ares

Reference was made earlier to tests ${ }^{4}$ in which, from the breandown of spark gaps, the energy required to establish a given are current was determined. These data were for rod-rod gaps 6 feet in length While at the time that these tests were trade tests on gaps of other lengths had been made, the ene: हy bad not been com. puted for the gaps of other lengths. Fig 7 shows the form in which these data were collected and represents: (A) an oscillogram of the voltage across a 9 -foot rod-od gap of such a value as to produce complete breakdown in $3 \mu \mathrm{sec}$: (B) an oscillogram of the current through the gap and (C) a replot of these two records, together with a computation of the instantaneous product or power. The total energy absorbed in the gap was found by integrating this curve, which was found equal to 3 ot watt-seconds per centimeser length of gap The integration in this case was continued only to the first zero of voltage. The value of the current assigned to this test was the value obtained by extrapolating the smooth portion back to the instant at which the voitage became zero. This value was

Fig. 9. Characteristics of a 68,000 amp damped oscillating current arc ${ }^{11}$ that lose to crest in $19 \mu \mathrm{sec}$; length of $\mathrm{gap}, 51 \mathrm{~cm}$

1,590 3mp; therefore, the energy becomes equal for this case to 0.00192 watt-second per centimeter per ampere.

Fig. 8 gives the energy data for gaps 3 , 6, and feet in length. The data for the 6 font gap are those given in reference 8 In drawing the mean, the data for the g-foot gap were favored. The siope of the straight line is equal to 0002 watt-second per cestimeter per ampere. These data covered a current range up to $2,250 \mathrm{amp}$ and channel formative times from 0.4 to 6.5 usec.

While these tests indicate that the potential across the arc path drops almost immediately to zero, a drop of, for example. 60 volts per centimeter would be difficult to delect. A drop of this magritude is equiralent for a duration of 1 usec to 00005 watt-second per centimeter per ampere or 2.5% of 0.002 . For the purposes of this application, one is interested in onlr the first few microseconds after crest curtent is attained; therefore, this contizuous contribution to the energy can be neriected. It can, however, be a con tributing factor along with others in ex. plaining the decrease in velocity as the head of the return stroke rises toward the cloud

Consideration will now be given to other available data from which the energy input to bring an arc to a high conducting state can be devermined Norinder and Karsten, ${ }^{13}$ by means of a combination of impule generators, produced currents up to $18,000 \mathrm{amp}$ through gaps of 25 and 51 cm. Fig. 9 gives their results for a current that rose to a crest of $68,000 \mathrm{amp}$ in 19 $\mu \mathrm{sec}$. The current, the arc drop, and the instazianeous power are in the form given by the observers. In this paper, the author integrated the power curve and divided by the crest current to provide the curve piotted by the dotted line. Fig. 10 shom: similar information computed by the authos from the data of Norinder and Karten for different impulse currents. It is difficult to draw direct conclusions from these results, since the primary interest of this investigation lies approxi-
mately within the furst $5 \mu \mathrm{sec}$. It can be concluded that the energy input per crest ampere increases with current. It is also clear that for long times the energy per ampere is well in excess of the value of 0.002 . which again indicates that the velocity should decrease as the head of the return stroke approaches the cloud

Wagner, Lane, and Lear ${ }^{12}$ also theasured the drop across high-current impulse ares. The gaps they used were small (less than 2 inches) but the currents rose to crest in much shorter times. Fig. 11 shows some of their data reduced to evergy input.

In judging these data it is necessary to bear in mind some of the very complicated
properties of the arc Mayrin slowed that for a steady-state cundition, the current distribution within the cure of the arc falls off from the axis as a quadratic exponential function of the radius Energy lose is by conduction, although radiation also plays a part. The arc core is surrounded by a sheath of air at high temperzture, since at the core boundary the termperature is continuous. To determine the energy or "thermal content" that must be injected into the are when the current rises slowly, the energ! inparted to the surrounding air must be included Yoon and Spindle, ${ }^{14}$ in observations with an are of 1 amp, obtained a thermal content of 0.0025 watt-second for air at atmospheric pressure and showed that for a stepped incremental increase or decrease) the thertmal content should vary exponentially with a time constant of $85 \mu \mathrm{sec}$. This siou phenomenon does not include the very rapid effect associated with impulse currents. Fig. 9 shows the growth of the diameter of the arc, as obtained by a photographic process by Nonnder and Karsten. More recently Allen and Craggs. ${ }^{18}$ photographing impulse currents that rose to a crest of 185 hiloamperes in $7 .-\mu s e c$, derounstrated that the initial velocity of expansion of the arc was $1.4-31 \times 10^{-1} \mathrm{~cm}$ per second, as compared to the velocity of sound of $0.34 \times 10^{-1} \mathrm{~cm}$ per second it seems reasonable to conclude that for the rapid changes of a few microseconds in duration, the surrounding air does not participate in the heating effect; however. it does participate for slower phenomena and phenomena of longer duration, such as when the arc path of the return stroke has lengthened as its head approaches the cloud, or during the dissipation time of the stroke between components

From this brief and necessarily incum. plete discussion of the arc, the additional iuformation obtained from other than gap
breakdowns, while not contributing to a more accurate evaluation of the energy to use in the velocisy int:aula, does not contradict the value determined from the breakdown of long gaps.

References

1. Induced Overvoltages on Transmission Lines and Their Bearimg on the Liohtning Perpormance of Mbdtux Voltace NETWorks. R. Lundboim. Duplic Goteborg. Gothenburg. Sweden, 1955
2. Inducrd Onervoltabe-Surges on Transmission Lines and Tarir Braring on the Liontning Preporeance at Medion Voltace Networes. R. Lundbolm. Transactions of Chal. mer: U niversity of Technoiosy, Gothenburs. Sweden. vol. 188. 1957. PD 1-17
3. Induced Ligrtwing Over.Voltages on Power-Transmission Lines with Spechal Repbezence to the Oyer. Voltaok protection on Low Voltace Networks, Sude Rusck. Transacions of the Royal Instikite of Technology. Stockboim. Sweden, vol. 120, 1958
4. Induced Voltages on Transmission Lines, C. F Wagnet, G. D. MeCann. AIEE Transacions, vol 61, 1942. pp 916-29.

S Progressivg Liortming If. B. F. J. Schooland. D. J. Maian, H. Collens. Proceedings of ihe Royal Socsay (London) A, London, England vol 152. 1935. pp 593-625
f. A Metbod of Estimating Lightming Per. pormance of Transmisston Lings. AlEE Committee Report. AfEE Transactions, vol. 69 pt If 1950 pp 1187-96.

- Fungenkonstante Zendrumere and Winderwelle. M. Toepler. Arshis /wer Elekirolechnik Berlin, Germany vol. 14, 1924. PD 305-18 vol is 1927. PP $3+9-66$

8. Mechanisx of Brakdown of Laboratory Gaps. C. P. Wagoefi A. R. Hileman. A/EE Transactions Dt. IIt (Power Apparalus and Systemsh vol 80. Oct 1951, pp 604-22
9. SUROE IMPEDANCR and Its Application To
the LIGhtning Stroke, C. F. Wagaer, A. R. Hilemac lord 1961 Feb 1962 section). $P P$. 1011-22.
10. The Liortning Stroke-17, C. F. Wagdet, A. R. Hileman. ford. Oct 1961, DP. 822-4?
11. Experimental Tnvestigations op Re. sistance and Power Within Artificial Lichtning Current Paths. H. Norinder, O. Karsten. trehit for Malimatik. Aftronomi OfA Fysik. Sweden vol 36 A ao 16 . pp $1-48$.
12 Arc Drof Dering Transition prom Spark Discraros to Arc. C. F. Wagner, C. M. Lane, C. M. Lear. AlEE Transactions pt 111 Povet Apporatus and Sytiems, vol. 77, Jupe 1956 pp. $242-47$
13 Bettricio tua Teborie des statischey und des dymamischen Lichtbogen, O. Mayt. Archap fuet Eickirniecanik, voi. 37, ao 12. 1943, pp 388608.

14 A Stuoy of the pynamic Response on Axcs in Various Gases. K. H. Yoon, H. E. Spindie A/EE Transactiont pt It Power Apparalus and 5 ysitmf , vol 77,1958 Feb 1958 section) PP $1634-42$
15 High Current Spark Chanmelas, J.E. Alies. J. D. Craggs. Brilish fournal of Applies Paysict London England, vol 5, 195- pp 4th- 53

Discussion

J. H. Hagenguth (General Electric Company, Pittsfieid, Mass.): Much of Dr Wagner's theory of the lightning stroke is based on a leader mechanism: ${ }^{\text {i.t }}$ he has postulated, "the downward leader consists of two parts, a very thin gond-conducting

Fig. 11. Energy input into derelopment of an oscillatory eurtent are (first number represents mognitude of first eurrent erest/ second number, time to first erest)

core or channel, and a corona sheath that precedes and surrounds the channe. "'

Pbotographic evidence, mostly by Schon. land and his colleagues, does not indicate this. The corona sheath has not been pbotographed, but has been implied to be a so-called pilot leader. The pbotographs sbow that the conducting cores, which are not permanent, are formed and extinguished in a very sbort time and are reborn about every 50 usec , each time progressing further toward the earth, possibly collecting positive ions produced during the progress of the invisibie pilot leader and other positive debris in the corona sheath I ani not aware of a photograph that shows a continuous core of the downward leader. There is a photograph of an upward leader from the Empire State Building' with several portions where the core appears to be continuous. Possibly in this case the conditions postulated by Dr. Wagner existed. This one perhaps was the notable exception that proves the rule
In connection with the relation between veiocity of the return stroke and the stroke eurrent, it would be interesting to know where the field data of Fig 1 originated Has it been possible to correlate Berger's data on this basis?

References

1. Relation Betwaen Stroks Gurrent and Velocity of the Retyrn Strokn, C. F. Wagaet Thorotoa Butcerworth. Led. London. England. 1962

2 See celerence 10 of the paper
3 Lichtying to the Explaz State ButhdingPart III J. H. Hagoaguta. J. G. Aadorsors AlEE Transacfions, pt. Ill (Power Apparalu) dend Sysioms vol. 71. Aus 1952 pp 541~+9
C. F. Wagner: Mr. Hagenguth has raised a question concerning the evidence upon which I postulate that "the downward leader consists of two parts, a very thin good-conducting core or channel, and a corona sheath that precedes and surrounds the channel." There appears to be little doubt concerning the presence of a coroma space charge. The only question must refer to the presence or absence of a good. conducting core. The head of the downward leader must be fed either through a channel consisting of a thin are plasma whose voltage drop is about 60 volts per centimeter, or through a glow discharge. If the latter is true, the vertical voltage
gradient must be of the order of severa! thousand voits per centimeter. If one assumes this gradient to be 5.000 volts per centimeter and assumes that the leader length is 5,000 feet $(150,000 \mathrm{~cm})$, the drop along the leader channel caiculates to be 7.5×10^{4} volts, quite beyond any modern estimates of the cloud potential Furthermore, one would expect that the boundary of the resulting space charge (or corona) would bave the form of an inverted cone of enormous radius near the cloud. This also is contrary to all modern thinking The conducting cores to which Mr. Hagenguth refers are formed very quickly behind the steps, so quickly that their velocities approach the velocity of light Such rapid development of good conductivity can only take place if the channel already consists of a grod-conducting path The fading away of luminosity merely reflects the reduction in current. Behind that part of the path which produces a trace on the photographic film there must exist a smaller current not sufficiently photographically sensitive that 'eeds the forward progress of the leader. In this region the current should be almost constant and of such low value that it does not record on the photographic film
Mr. Hagenguth also inquires about the source of the fieid data in Fig 1 . I believe that the text explains this in detali. The original data consisted of the 19 photo. graphic records of strokes obtained by Schonland. Malan, and Colleus. Wagner and McCann then analyzed these data, from which the velocity curve in Fig 2 was obtained. The stroke current curve of Fig 2 is the AIEE curve. Then, assuming a single valued relation between the stroke current and the velocity, the feld data curve of Fig. I was obtained To be raore specific, any single value in Fig. 2 on the percentage ordinate will provide a single cutrent value and a single velocity value, plotted as constituting one point in Fig. 1

Subsequent to the preparation of this paper it came to the author's attention that Dr. Muller. Hillebrand had ploted similar. curves between the velocity of the return streamer and the current

Reference

Tha phrsies of thr Liohtming Dischangeg Muller-Hillobrand. Elellotechmuine Zemisani? Braunschweik. Cermany, vol. 82A 1961. DD 232-19

$$
\text { Tho If:rung }+\infty
$$

a relciod bo manmission-line ferizm:

$$
E \therefore O \text { : }
$$

Abstract

The mecian: of lighting-stroke fo mation is reviewed, with emphasis 3n thase aspects of pawioular interest to the transmiseson-line encinser. The eizion berween tie return-strole current and the velocity of it head is shown to be a fuction of the speed with which energy can be fed into the wommestals sianel to achieve the necessary conductivity

Ans froblems of an snyimsening mature texuire on


```
rent ascociated! with tis rcturn
```



```
approsimatei: 15ts mictavecond
a secordi sompona कi of the siacle nia
latder of this ctronvoreatt Liass not or
avaries stupe
"reont at all. are * \or: sne ratme
```



```
icaders, The time vo stest of the 1atoth
```



```
crer, that the erug of che relum?
ler tiven &r the it't gnmmown!
Acmi thwl b& foitovg.
2.c cimblir to it
    TH=, E:hur ilpes
Burge~'s \2ata" Ita'vact: vic:
high val!o: one s!lcle runctse is whate in eves
!800006 emaperes. Thes: pasitide di+c,merges
of cily cne componerit. Suecmi, inci.
that originate from the carth 0n .
```



```
discharmez 18, e
character thas originate rom
of Ulin: lesde:s as in the shse of the
initiatsd strokes
```



```
A I'hongh! ganticarn-1 wn+trowe:
the devailsd
7or :e"Ma. it::% 1,2*
!w: {'e IGwier mont:
or chan#.a! o' \hz% burat
```



```
vou*ds ,ta s sumnz%
```


 This ze：is ancil．of the orier of 2 amm，and its

 reiten ro．e is rormed by progresolicif apping

 stantialy the sims ciars．iv invoived in the forma－ tots of be iacd．．as is invo＇ved in tceding tha high－
 of the or＂As of magrust．\＆of wis dis：－iou＊2 charce．

 4\％1 日
where i is the current in amper＇s，$y \quad \therefore$ wotuciu expressed as a frection of that of igit．ath o is the charge in coulombs per cm ．This expreccior ithas gives a value of 6×10^{-6} coulemibs $m a n$ ．．． similar reasoning，the leader current，if the sư onge velocity of the downwarc leader te 0.001 c ，is inverscly proportiona！to the wo venotiks，of ： 0 amperes．Alchough the central conutaving coc：has nes actually been observed only wh are ias．an an provide the necessary consuctiof：Eight：tac Mests have shown that worn an are having of wite between 50 and 1.000 amperes is＂eatiot＇s asth． lished，the dron decreases srom on infial：hight vaiue to ！on waits fer am at 2 miuroseconis und a
 secend；They disu fount thit the divnint．e ot 150－2mpore urc is ubou：2 arr．
 associate．A．R．Filamin，have been frollota io assume that the charge Cistributut in the Aus．．．I leador vares ime－scty as the sadia distact：of

 envione utth the in of the thotant loset．． te2t trom the enati and at process a；w tich the soute

bmy io：this mit！o 2 F．．．volent
is shoun th 98 ainut！ミす

 rugtectad धometan in th

 the vartivat grasiznt progion．．． mitrin the ！oat at w wo

 5o）that the conuition apprane

 de madiolum ratigs ot te has
\qquad

mowledge of the surge imnedance of the return rearner.
According to the records of the electric field remote ifom th. stroke, made by Kitagawa and Kobayasni' and also 'by Kitagawa and Brook, ${ }^{3}$ the whe interval between stepe as the leader approaches the zarti beccules shorter and shorter. While rewote fom. .he carth, the step interval is 50 microscondi: but tiis progressively decreases to 20 and Cnaily 13 fus: bsfore the earth is reached. It would be surmies tha: the !eneths are corresoondingly hortor but, to the writer's knowledge, good evidence of the strok= phenomenon near the earth is not wuil ule. Except for the discussion that follows mmediatey, the step phatomanon will be neglected. bectuse it can lacevo oniy a secondary effect upon the fhenomenoa cocurting near the earth. Thus, as the lader approches the earth. in will be assumed to upproseli at a centant rate.
However, 'Vefore leaving the discussion of steps, one adultional abservation shestid oe made. The steps, in the writer's apinion, resuit from the contrasing thanacter of two attributes of the leader. ${ }^{7}$ it was tated in ecer.ettion with Fig: 1 that a corona space thatge ceretoon in ativarue of the arrested. highly confucting channt or core.
in the latar tour, whan an imoulse voltane ton low to earse in.a' arer is annitod acros; a rod-plane
 the charging curren is a sin t-time impule corota ce wat tha di.- 'ery ratilly 60 crest and then decrenses siover to zero. The decay of the corona crtent may be stritioud to the develonment of a cornan sn...e chate tate atatly nhitits fertis: flow of cursent. 7. Cuthion ie:-s to oceur is the case of the stote i.a i. : tut cuiore the stroke currunt is comolati's suta off, the s, ece-charge atmosphere in asuate is the areoste (of amort artested) abarnot buene ternewbe ior the develorment (or
 analogy in the luborotery rod-pians gap when a witage slightly in exuess ci the criticul snatking wituge is appilid. After the nace charge deveiopnount sta e : folmest compiued, chanmals begin to firm. The curent suphing these channe!s increases of Ant stovit and then thater at an zerer-inerensing tate.
In each stap the lightning chunne! extencis in fie form of sth a pencii an plarma and ceases when to ti, H..s enchel is cont at which the spacetheres ubntrans are to !anyer conduci e to the furthot cutumits the the mis. The fuce cherge that continde its siouzr -itance and $\%$ a process it eanantod. The evernga "ulla of the chathe! cur-
 It futia! valus is potonay mest less than this. Ind

grephically sensitive end tre on An channel current in of 1 a go nom ratus the sion ot uene tast an hating al

Fig. 2 denicts tie staves of the stioke of it :ath the oarth for the laut stan? The chatras of it leader is showa aso othin ve noel ine which - - a has its up at b, The potantill of to coutnel
 ward is atout one ico: per mierowent. is shown approaching 716
 should be realiza the the colut wata
rode limins.

C. fertan at whith tis th h is stil 40

 th³, a zo:ona Clatura begms
mot urd ot bis is. ot has a'se

Fig. ? R buhat between jreazency of occurrence of lightHhey sfods (AIDE surve) and velocity of rether stroke

 portant. I * acent un any yrijecion in tae visintty.

 15cres is

A shine + unt is renched in (B), at waich the
 This Gin2 $3.24,40.007) 6.000=8.200 \mathrm{~cm}$. or 270 tae:. Laiopracory tuis "hith red-rod gaps having long spacmy: ecicste that whon the ave:aye critical gradikn: if 5.700 oits pe: cm is ewceedad, chunncls hagin it Fi, w trem tatil nounts. This is the irstant

 the the of fig : F. Four microseconds tatan as shown
 prozices.at 10 the mbints nidicuted. in $2(D)$. further progeres has been ritedo and the current has grown shenifunrlyy Ai the same time the curtont feeding the cowne i.: movitg vinonnal below b draws curFont from the eld kw-vitrent channel sbove b.

Tha $\rightarrow+$-atation of the curtent is siower than the sFund of liant; it is limites trimari'y thy the peed

laid down by the :asder. Al:2 so the $^{\text {h }}$ 2re atose s.i. timaes through $\mid E$) and finally (F), to. i.fsian : which contact is made betwasn the alain cim? ...ts Fig $2(G)$ and (U) L.Ow beter instants at with o haad of the return charns! has penzurased fartios into the space charge and lowared z lurthe: ;-uts. in of this charge is earth. The magninade of tind current at the differcnt points is swgeested by :", intitive thickness of the lines.

Note also the piogress of the upwar-1 ehantivi, which is intended to sugges: a bigoet and it: velocity until the fast step is sompoletal estal wesine afler which the velocity shound be curactan: or C_{s}. crease as the hend af tie sititn ctenome: d.ereter toward the c'ond. As the upwar! gisonnal moxare :s tentacle-like streamers reacn outwart ir - whe et and tend to spread the positive charg: over a eres'er arca than that oncompassed by the cawnatel ins..

CREST GURRENT AND VELCCITY OF aETURN STRO:IE

Knowledge concerning the masrat: ie of
 nature. Judging from the data co. saming in - 26

 edge is euita acourate-baing bare: smen ; ho: number of wifferent stucies over tion :at.t in ccuntrics. But cn the other hand. tha stoliz Cc*:"

 of sturn: days at the observer' e logation: 2 stem: rnit

 underlaken. notakiy by E . T. Pierce. F. It. Ars.

 bur of strosies ic greand. in =
crodic mansure in terms if siorm cinfe tal has oroved auite sainsta iory itt the past: itut nins investigatore !ook forwntd with isen Hower to the developmen: of a satisfoctor: casutes.

In Fig. 3 is platis f the wrren: it or but on rur
 af: Enovm data aralabie ot tha sme. I i... is ive of the ruturn stzole is of aibe in dictorniz: :pinveical piaznomana esaceiated with , we rote sirolie. In Fig $\$$ is thown the dia it ato:
 Whatner and M,Coum (Eig. an of تferenco a restit of :heir anziysis को ! +2vordic -1.2t2r


```
    If qe Nevpt the fact that thets
```

, atued reimuon …

'. f.t.rner: of atstribution. The result is 10 n ") "he evinei curve of Fig. 4 .
 oreite as it cion? tes foum the eath can best bs 4heed 3 ; consitering Srss the system of current - ․as the a ith Fig. $5\left(\begin{array}{c}\text {. }) \text {. Theso consist of four }\end{array}\right.$ eot2ngular corrent waves that propagate with a censtant reiocliy ic along the parailel lines ad and spaced 4 chernes D. It is shown in references i2 und 13 that to essablish and maintain a set of catrents of this criuractur, an emt equal to

$$
\begin{equation*}
\because=\sin ; \frac{1}{n} \ln \frac{\ddot{D}}{\square} \tag{2}
\end{equation*}
$$

-ure: ss inserted in sach lme on each side of o at a Fuutas a and, in adowich, a setios retarding emt Nat to

$$
\begin{equation*}
\because=\operatorname{sen}\left(\frac{1}{a}-v\right) \ln \frac{D}{a} \tag{3}
\end{equation*}
$$

Thest olso be incorted ut a radius a at a point that roves arogressivaly alonz ine lires in pilase with Ah. fotids oi \&e zumont xaves. This teaves a tamanen, series voluge zqual to

$$
\begin{equation*}
\pi=60 \pi \text { in } \frac{0}{2} \tag{i}
\end{equation*}
$$

tan moves theud of the current waves with the
 27. He reman 'mt vllage: '' and voliog? !' become 46 to the cuali" rovognizable atues usus thy -f octhted with wows thti, trave! with ite velocity \% h.
"er mactuch pur-ores, the retaraing vol:age "'r ath be regarded as concentryed at a ooint hat Th:..'s with th. . 2.6 of the cutrent wave. Betvizen he uricin 0 and :he lead of the rave, the :neng-
 Cit at "ave ricos lazoly it m a wih a sloping iftht in this se. e the zeterding velages is spread out w. the gentite fro:t of the currant wave, and for the sume fina! surtent atas the same overall magnitade.

Tesis an short ares with cusceats up to tens of thousands ci amperos indicate that aitar the crest current is reano.. di ? drop oorose the are decreases ary griativ, in arobably less than a microsecend, ? folat 1.007 cult ner cm. and then more gowduWiv io mush stmathes values This sudden drop in Wing: is demon rutud in Fig. 5, which shows the sompge aeroes ond the current through a 9 -foot rodtox tup thun immutred oj a celtage sumicien: to problece spurkotio in ? inioroceconds. The actual (s.itingrams ure shev n in 'A) and (B) and thei: turwis in (C). Ti. nountry of tha voltage record is vert aniy suficionn to indicute n dron of 50 kv , whith "ortesponds to a zcucivat of :Ou velti per cm. And 10 A. sion's reas atuber to ascutl: that the gradion:

Holvever, duzing the cransition parive whto the
 the conduetivity of a current of ahoy: 200 ghtares. which is chamacteristic of the channat of He दove. ward iender. to the condactivity of tre 5.006 - m . peres or so of the return stroke. a sor; high tonsie": voltage drop must occur. The diameter of the aro itcreases from about 2 mm to about 7 cl . Durine th. puriod the arc mus: absorb an anormous monti: bi energy in increasirg this volume of zas to the bightemperature characteristic of are sonduction. If the energy requirements derived from the traveling-vave relatiuns are equated to the cnergy requisements ontamed irom laboratory tests on geps, is is \vec{p} ache. 2 to deveiop a relution hetwesel the curment in the return strike and is velocity, 12

Thus, from the circu! condilion, it can be aon from Eig. $5(3)$ that the power absorbed in the byetery occurs only during the periou duritig wheit cosrent flows (which accouts for the factor $1 / 2$ in the equation) and is consequently

$$
P_{r}=\frac{1}{2} \because_{r}=n_{3}\left(y-\frac{1}{\eta}\right) \text { in } \frac{D}{\square} z_{x a+s} \quad(z
$$

The snerzy input that will hrisg of a:c s o for

 indicate a sud on increase in currenc and at onodon decrease in voituge. This peins of ubden chongen orr taken as the instunt at which the ae chomelv eacs. to be dovsloped. The small currons prios to t...

 a by to coned carue of Fis. 4
The tisut menty of wher haprins in the rawam aif is it ciongute tiom the eath can best be chus 3 y sonsidurig fins the system of currant is tho a in Fig. S(e). These consist of four
 a tuan velocny 'o along the paratul lines aat and
solecif a distuce D. it is shown in references i? .ad is the io erabilish and maintain a set of

$$
\begin{equation*}
\because=\text { whi } \frac{1}{0} \ln \frac{0}{0} \tag{2}
\end{equation*}
$$

 Wive: a wat. in adivion, a seties retarding emt

$$
\begin{equation*}
\because=\operatorname{sen}\left(\frac{1}{a}-\theta\right) \ln \frac{D}{a} \tag{3}
\end{equation*}
$$

cha by antel at a radtus a at a poin, that

 D

 3. .anded ob somentrmed at a point hat wits the : a d of the coment wave. Detwien

 a: "ane toon llazoly Ifom o wih a sloping : In this in.e the serarding voitace is spread out wis amte feen: of the curtent wave, and tor

There ma shos ares with curcems up to tens of Ifa do ch amores incleve that after the crest - to ten. : dem nernee the are deureures widite in cotity hass than a microsezend.
 whisa cmatior malues. This sudden drop in
 [an whers a the cumzat through a 9 -foot rod-
 थ su:0 tor n ? misumetorls. The zetul Yuml at: houn if 'A) and (3) and Coit n (C) T. . " why willion so in dicute ? tton of 50 kW , which

However, dusing the tansition periba whita it are path of the stroke is aceonmouming is alt isom
 which is characteristie of the channel ob he bounward le der, to the conductivity of tre s., 000 c . peres or so of the retum stroke. a eer, high transiens voltage drop must occus. The diamsere withe of his creases from about 2 man to about 7 sh . During thes puriod the are mus: ajsorb an enormous zmourt of energy in increasirg this volume of gas to the nifor temperature characteristic of are conduction. If tix energy requirments derived from the tavalus. relations are equated to the energy tequiranotis oth tainet from laboratory twes on gops, is is \hat{r} an bla to deveion a relation hatuesen the curre: in the ros turn strike and its velocerele

Thus, from the circuit condifon, it can be sean from Fig. 5(3) that the power atsorbed in the bot. tery occurs only during the perionidering 'Wiei conrent flows (which accoums for tha ficeor $/$ /a in the equation and is consed antil:

$$
r_{r}=\frac{1}{2} \because_{n}=n\left(-\frac{1}{3}\right) n_{n} \frac{\square}{\square}
$$

 imo ise voinc. Fige phoi, the zow of on A 3

 waticate a sud en inorense in curren and it ender decrease in voitage The achat of weition hethen taken as the insaint at wnict the are chamale oegeto be divelored. The small curcens frior to time

[^8]instiont wore assumed to be associated with the develonmer: of the space charge. The current for this case vas tation as 1.700 amperes; thus the energy hecomes eçual to 0.0018 watt-second per cm per ampert. Averaging the rasults of a large number of ithuar tes a on :-, 5 , and $9-$ foot rod-rod gaps gave a resui: equal to 0.0020 watt-second per cm per ampere. Ti. dctuat power input into the arc of the ratim scovke mus: be proportional to is velocity in bm per stc, which is times c times the current. Thu
\[

$$
\begin{equation*}
\mathrm{N}=:(6(0,020) \text { i watts } \tag{b}
\end{equation*}
$$

\]

Equatin: 3 and 6.

$$
\begin{equation*}
t=\frac{20 \cos 2 v}{30 \ln \frac{D}{a}} \frac{v^{2}}{1-v^{2}} \tag{7}
\end{equation*}
$$

$0:$

$$
\begin{equation*}
y=\frac{1}{\sqrt{\frac{\operatorname{con}}{\sin \frac{D}{c} 2 n}}+1} \tag{8}
\end{equation*}
$$

 dius at which the charge might p_{2} consudared cm centrated and the radius of the cyiinder is "hich the current Hows are identical-is aromeous. The chatge is concentuated at a much larger midius b and the carrent at ancther point, such as 7. Tiun. es yous ? in references 12 and 13 , when this dirine ion is made, equatiou 7 becomes

$$
\begin{equation*}
:=\frac{\left.1 \ln \frac{D}{3}-:^{2} \ln \frac{D}{a}\right]}{30[} \tag{1}
\end{equation*}
$$

In the interesis of smpler presentation, the foregoing expression was developed for wave that :r-vit partllel to each othor, whares in fio acus ' as: Wave travel. up*and from a Sa, plate. Gowever. in reference 12 is is demon:tated that an cangresen identical to equation 9 resmlts for this case it in is regarded as the instantaneous distance fron eerth that tiee up of the return strosic hes trvelod.

To estantisi en analviced ptution t swown 1. the foll wiong onamoters *i" be nentmad

 cal sed. Aise vi the factor , atazad ef lie ers. S volving of the value of a ic no extacni and wit it

 tion is avakbla conocmint the distributter of in ?

 the raclies wn! be propotional o the chiont With these ns umptiotis. the ivithe cur is ebtained. This cuve cun be moparde curve for the feid data.
 brand" derived simitat exprestions besec ate empirical rulation of Jocflor sin thet whas resistance of the path in a spari Cliswher? varsely os the chatac passing :t.e. paimt ir
 equation 8 , in vihich a sonstant A repirems 1 tity $c(0) 0020)$ (30 in (D, a), t. aswin. $\Rightarrow=$ (91.4 me:ers) and $u=0.1 \mathrm{isw} 13 . \mathrm{o}^{*} \mathrm{c}$ $\therefore=250,000$. This ecmpares ath : 900.000 susgeve.t by Landiatm: 500 . snd 220 ros ior +1, irst 3 ricres coerg the retum atoic, and : OD.0.0 or the "? o) deval amone in the taree-ditnomionat

[^9]-avetom of the uartant of the return stroke at the Found us he thitcience of two negative exponential zurves, such as gi en by Druce and Golde ${ }^{17}$ in which the curreni rives rapidly at first. reaches a crest, and :12n decays siou'ly. FOr purposes of transmissionAe complatutions this waveform was usually apTeumatad by a linearly tising front to either 2 or 4 पutcoseconcis wath a tat ton. i. was only atter further ¿n.empiation of the rasults obtained by Bergerts in has cancful, fationt, and patastaking investization *up Mount Sen Suvarore, togzther with an effort to currefate thase rerults with those obtained in the Liburtiory, that the ariter and his associate. A. R. Whanmon, decame sorvinced that the waveshapes of ah viuir siroke currents were concave upward to the crest vilu: and then varied somewhat erratically, evding pon the complewities of branching. Iig. 7 is a repiot of the fronts of the larger ourThe reported Derger in 1055 from his results an Yount Sor Solutore. Because of the gradual tise the be, invisy of the trouts, the actual sterts were

 8 the uthe ...erct Fig. \& shows a luter serics of (4) 4 aims ab artaid by Derzer during 1959 and a. ${ }^{2}$.

Of importan>o In a discussion of this question is avduatu af curge imsciance of the stroke. a dowovard is enes in disetarging into the inal - ©e weer at 276 of Fig. 2 ofiors an impedance Whe rute st whin ofto discitatge cen occur hrougio Quait as Ahich the rewern stroke above the A 0.0 shen in Fiz. 2(F), can propagate within ase charte tat: down by the dewnward londer. 4. mened in. .as finction of the height of the tip N- 12 the atco at 1 also its velocity. in referan to the futioning apyroximate expression is

$$
V=62, \frac{1}{\ln } \frac{2 u}{4}
$$

With i equal to unity, this expression ion be used of evaluate the intperion. Fiom 17. B of i...e s...
 can be uscd to zvatuest the impedatce Z. Inva, if Z be taten tis 200 fee

i, amperas	50,	10 moz
D. feet	30\%	3e.
b, feet	0	
v. a numeric	0.3).17
2. whms	921	2.099

90004084
maturavatme
POOR ORREMAL

The saries impetance of the stroke is thus about 1.300 whens.

It is stown in reference 20 that for rod-rod gaps between 20 inches $(30.5 \mathrm{~cm})$ and 100 inches (254 ems) is leng it. the ume itg for the application of a $1.5 \times-0-m i u r$ scound wave is independent of the gap ienght. This taut glves some lustification for extrapolatieg from zops of laboratery dimensions to those of natural lightnigy dimensions.

Pig 913 sutows the waveiront of the first compowient of current of lightning strokes. The letter designations on the curves refer to the corresponding surves of F_{3}. 7. The curves in Fig. 9(A) are computed onrves based upon: (1) an extersion of the Art': of Axplian, Larionoy, and Torosian's in which ney lemonttoted that for a $125-\mathrm{cm}$ rou-rod gap. the veloce: with wiich the channe! tips from the wo elec.redes approach each other is proportional to the exces of the instar anoous ε radient in the uninded tap over the cricical sparking gradient, which I: inderasi'ne of the sao iencth; and (2) the nssumptime samporta tows, that the current taken hy ha zo if roportiorse to the vciocie\% at which the chay 6 , aproneth cach other. Figs. $2(\mathrm{C})$ and (D) ace. ite results ai actual tests. the fermer for mot- है (n an the late: for a rod-nlane gap. In

current. and time is plotted from the intan: the: crest current is reached.

It will be obrerocd that all of the zun ea hate the same general shape in that they are concave up ase. Furthermore, the time scales are of the righ onur of magnitude. it thus appear that zop discharess rot served in the laboratory can bs applied cirsat. . determine the alature of Jightnint phencmana. The excellent correlation between the of servatic: in tas latoratory ath those on Noums Sal Saivawe frovides confidence in the tact that alhough the lame: were obtained by means of a wh mast top a lig. hill. the: should be characturitic of similar ans nomema on flat terrain as well.

cchrsivent stuasournt -O ThE rurs

To this poimt, considaration hes boun guch thate to the first component of a stroke. Of possiote - - :est to the transumission engincer are the sotsequet: strokes. In Fig. 10 are shown ? aumber of owntw grom- for we wesent comphnent. deo pheninge *.

 tain the entire tr nt ion the 1089 reocrd (fom
 shimequant zaibrotion of the … atresit it an ors termired that the from muse ha e noer fo duat

The lightning stroke as related to transmission-line performance

In the conclusion of this two-part article, the efficacy of ground wires in shielding the phase conductors is described in terms of the length of the striking distance of the downward leader. Upward concave return strokes, as well as repetitive strokes, have also been studied. The use of "pipe-pipe" gaps across insulator strings effectively improves the lightning performance of the line

It has long been accepted that the principal role of the ground wire is to intercept the stroke. Then, with sufficiently low tower-footing resistances, it has always been assumed that satisfaciory transmis-sion-line performance would be attained. However, with the introduction of extra-high-voltage transmission and its higher towers, unexplained outages developed, resulting in the need for a re-evaluation of methods of computing line performance and for a more detailed study of the stroke mechanismi.

SHIEIDING

Provoost ${ }^{21}$ presented at Paris in 1960 an excellent resume of the role of the ground wire in shielding the conductors. Supplementing this review the writer wishes to make the following additions to this rather complex problem.

Some of the earliest work was done on simulated models. It was recognized that precise similitude relations might not apply to reduced scale models. The Writer, McCann, and MacLane, ${ }^{27}$ for example, in 1941 attempted to determine these relations by changing the model scale and by altering the relative cloud height. The theories of stroke propagation and spark breakdown that have been developed since that time would have provided reliable guidance on the proper cloud height or striking distances to use. Another approach to this problem is geometrical in nature, but its application is dependent upon setting up a criterion to determine the location of the lower tip of the downward leader at the instant at which the ultimate stroke termination-whether tc the conductor, to the ground wire, or to the groundbecomes decisive. Goide, ${ }^{23}$ assuming a particular

[^10]charge condition of the leader, computed the electrostatic field strengths next to earth and assumed that the point to be struck is definitely chosen as soon as upward streamers develop from the earth or earthed objects. Strokes to earth were to be des cisive when the computed gradient at the earth was 10 kv per cm . The writer followed another course and computed the critical striking distance from computation of the stroke potential and the critica breakdown gradient as determined from extrapolatis laboratory tests. Young, Clayton, and Hileman ${ }^{24}$; a recent paper also adopted this approach in dete? mining the location of the ground wire. Their analy sis will be discussed in more detail later.
It would appear that the records of actual experizem, ence on the operation of transmission lines would provide the best measure of the protective angle. is not always possible to determine precisely what 1 , faults are caused by lightning and when this fart $x+3$ is established it is not always possible to determine 4 whether the particular failure was caused by a direct stroke to a conductor or by a back flash. To supporte the conclusions reached with models, the writer, M

Fig. 12. Lightning faults as reported by W. Cassons

Cann, and MacLane ${ }^{27}$ examined the data available Fin 1940 and published, among other curves, the one ©oshown in Fig. 11. This curve was based upon the experience of a large number of lines in the voltage range between 110 and 165 kv , for which the average tower footing resistance was less than 10 ohms. In drawing the curve more weight was given to the Fpoints representing the larger circuit-years of experiFence. In 1959 Casson ${ }^{33}$ presented the results of a $\frac{5}{2}$ survey questionnaire, which has now been extended and covers the performance of 180 circuits comprising 24,197 kilometers in the range above 225 kv . Fig. 12 is taken from this report. The breakdown Finto single-circuit and double-circuit experience shows the effect of the higher towers of the latter. 5. In 1958 Burgsdorf ${ }^{56}$ showed the same effect of the height of the line, but went further in that he computed the number of expected back flashes and, s subtracting these from the actual flashovers, segregated the number of direct flashovers. This, of Course, assumes an accuracy of back-flashover com-年putation that may not be warranted in all cases. ${ }^{2}$ Kostenko, Polovoy, and Rosenfeld ${ }^{27}$ extended this work to extra-high-voltage systems and found the following empirical relation to express the quantity Woy, which is defined as the ratio of strokes hitting the phase conductors to the total number of strokes hitting the line.

$$
\begin{equation*}
\log \psi_{b}=\frac{a \sqrt{h_{i}}}{90}-4 \tag{11}
\end{equation*}
$$

$\sum_{0}^{\prime} a=$ protective angle at the tower, degrees
$k_{e}=$ ground wire height at the tower, meters
This function is plotted in Fig. 13 for three differ-整ent heights. In the United States, experience indicates ethat the number of strokes to a line is about 100 per \$100 miles per year. Taking this factor into considerEation it is found that the curve in Fig. 11 agrees *extreme y well with the curve in Fig. 13 for $h=30$ gy meters. The implication, of course, is that all of the 2 Outages for Fig. 11 were caused by shielding failures,
which might well be the case because of the low tower-footing resistances.

These conditions of shielding are quite consistent with the picture of the stroke mechanism presented earlier in this arricle. As mentioned previously, the driving potential necessary to establish a rectangular wave of charge and current that moves vertically upward from the earth is given by equation 10, where y is the distance from earth to the bead of the wave at any instant and b is the radius at which the charge can be regarded as concentrated. Inserting the value of i from equation 9 into this expression, then

The parameter a varies linearly with current and b almost linearly. If a be assumed equal to 0.1 foot and $b 10$ feet at 100,000 amperes, then equation 12 can be approximated by

$$
\begin{equation*}
V=1.2 \times 10^{4} \frac{0}{1-2.2 v^{2}} \tag{13}
\end{equation*}
$$

This equation indicates that the stroke potential is dependent upon v only. According to the stroke mechanism theory presented here, the length of the final striking distance as the downward leader approaches the earth is equal to the stroke potential divided by the critical breakdown gradient, which is about 5,000 or 6,000 volts per cm . The smaller the final striking distance, the smaller must the shielding angle be to provide adequate shielding. Therefore, to be conservative the value of 6,000 volts per cm is used and the final striking distance X, becomes

$$
\begin{align*}
x_{1} & =2 \times 10^{4} \frac{0}{1-2.20^{2}} \mathrm{~cm} \tag{14}\\
& =656 \frac{0}{1-2.20^{2}} \text { eet } \tag{15}
\end{align*}
$$

This expression indicates that the last striking distance also is a function of v alone, or since ν from

Fig. 13. Probubility of shielding failures according to Kostenko, Polovoy, und Rosenfel(${ }^{\prime \prime}$ "

attraction of the inain. This results from the lesser attraction of the earth to strokes on that side. And,
second, in terrain of ertremely as des, in terrain of extremely high resistivity, such as desert country, the protective angle should he less Thi in terrain with low or moderate soil resistivity. This likewise results from the smaller protective value of the earth, because in effect the towers appear
to be of greater height to be of greater height.
It would be highly desirable to make additional tesis on transmission lines wherein the single factor of shieiding failures is completely isolated from others and not dependent upon supplementary computations of back dashes.
The writer does not wish to imply a precision that does not exist, either with respect to a knowledge of the observations of the strokes or to the subsequent tranipulation of their parameters. He does believe that the mechanism of the stroke as presented here results in a rationalization and coordination of the stroke with the shielding failure observations on transmission lines. It has been indicated that

1. The observed phenomenon can be explained on a geometric basis through the medium of the last
c cese data as a criterion of accuracy of the method. Because the results did not agree with this criterion, they compensated the assumption of uniform stroke distribution and other assumptions by modifying the Ecurve in. Fig. 4 to obtain satisfactory agreement between computations and experience. This appears Justifiable on the basis that the values for velocity used in the production of this curve were average values over the entire return stroke path, whereas earlier values in the life of the return stroke should have been used.
Müller-Hillebrand has shown a considerable difference between the average velocity and the velocity for the first 5 microseconds of return travel. Furthermore, a modification in one of the relations, such as the velocity-current curve, is justified because in the computation of the potential, the return stroke was assumed to rise directly from the earth, whereas the phenomenon is complicated oy the simultaneous upward and downward approach of the heavy currents It. the last step. Because these modifications of the velocity-current curve were the most convenient parameter to alter, Young et al ${ }^{2+}$ obtained the results shown in Fig. 15, in which the number of shielding failures are plotted as a function of the ground wire beight at the tower and the protective angle. These may be compared with the curves of Fig. 13. Both sets of curves are, of course, based in part on data secured by assuming satisfactory ability to compute back flashes.
tw The paper, based upon model tests, ${ }^{22}$ emphasized two other points that in the light of the theory presented here may be of importance. r in hilly country, the down-slope side of the line oners greater exposure to lightning than does the same configuration in level terrain. This results from the lesser
sis on transmission lines wherein make additional

Fig. 16. Time and place variation of siroke current and
charge lust prior to and atter impast with the earsh

Fig. 17. (A) Surge-generalor circuit. (B) Voltage and (C) current oscillograms for a gap having a length of 50 teet and spacing of 6 feet, with a series resistance of 975 ohms . Siale: 369 or 345 amperes per division, 2 microseconds per division
time variations of current, velocity, and the extension of the channels from the earth and from s in (B) are shown. In (C) and (D) are shown the corresponding special distributions at the instants marked on each curve. With these approximations it is possible to compute a preliminary estimate of the effect of the time-space change in charge above the tower. Qualitative considerations indicate that the effect is not as great as with the previous assumption of stroke characteristics.

REPETITIVE STROKES

It is still controversial as to whether a current of significant magnitude, measured in several amperes or tens of amperes, continues to flow in the path of the stroke be:ween components. Berger's direct observations of current in the stroke at the earth ${ }^{18}$ indicate a value of less than one ampere in the interval between components. This factor is of interest in shedding light on the reason for components subsequent to the first seek.. the same path. A continuous flow of current may n. be a necessary condition for such discrimination. Some authors have vaguelv stated that the remanent ionization from the urst component provides the guidance for the second component, but have not stated precisely how a greater concentration of ions in the previous path provides the preference factor. McCann and Clark ${ }^{31}$ have suggested and given evidence that it is merely a thermal phenomenon. Time is required for the very hot gases comprising the are plasma of the return stroke to diffuse into the surrounding cooler air. In this process the high-temperature core develops into
drops in temperature. The density of the expanding cylinder is lower than the ambient atmosphere. Since a rarefied gas requires a lower breakdown voltage, it may be argued that this is the discriminative factor sivi

But regardless of the explanation, the second an subsequent strokes pass down the same path. It ma superficially appear that, in a sense, the flashove path of a string of insulators is merely an extensiont of the stroke path to earth. This theory is not strictly true, however, because in the carly stages of the discharge, the stroke current as it strikes the trans, mission line divides inversely as the surge impedances? of the respective paths and only a small part may traverse the insulator string. And in the later stageside the portion of the current that fiows in the conductor*t in seeking a path to earth impinges upon the inductaf tance of the transformer, whereas the portion thatry flows in the tower encounters only a very low im pedance. Thus, it does not follow that the same conit dition prevails in the arc path across the flashed insulator string as prevails in the stroke path. It mayiz be that during the interval between components th arc path across the insulator string has returned to is virgin state.

The effect of wind upon the stroke path of suib sequent components is to impart a paralle! displace ment, which does not seem to affect the breakdown characteristics. A corresponding displacement of the channel of the are that takes place across the inision lator string would carry the terminals of the are yatb away from the two ends of the insulator string influence profoundly the breakdown characteris of the string.

One would expect for the foregoing reasons fthat the factors tending to produce repetitive insulator flashovers are much less severe than those tending to produce repetitive strokes. And since the number of insulator string flashovers on high-voltage 1 is only a small percentage of the total strokes to line, it would be expected that the repetitive num of flashovers is very small indeed.

petoscharoe curemy 90004090

 amination of the lightning stroke, no discussion hef? the lightning performance of a transmission linez? complete without some reference to their influent Predischarge currents are magnified in the casef two electrodes that are physically parallel. Wagoe and Hileman ${ }^{32}$ have applied the term "pipe-pt gap" to such a gap, simply because their tests " made with pipes as the electrodes and becaus term is descriptive.

Fig. 1.7 (A) shows such a gap having a length and spacing S, both dimensions in feet. If an impur voltage below its critical breakdown value is applin to such a gap, then only a relatively small curne
the disc
discharge. However, if an impulse voltage in excess of the critical value is applied as shown in Fig. 17(B), then at some instant such as a a large current flows, as shown by (C), until finally the short-circuit current of the surge generator dows. The increase in current results in an increase drop across the "damping resistance" of the surge generator and is reflected in the sudden drop in the gap voltage. It is found that the average value of the current increases as the "formative time" of the channels, a term which is defined as the interval between a and the instant of short circuit of the gap, decreases.
Fig. 18 serves to illustrate the general relations for fa gap 50 feet in length having a spacing of 3 feet. The numbers on the curve represent the formative times. If a short-time impulse wave of a particular average voltage, but with duration of less than that negiven on the curve, is applied to the gap, then flash$8^{\text {over will not result. It has also been found that for }}$新substantially formative time, the average voltage is portional to the gap spacing. Moveover, for a paraticular formative time, the average current is proportional to the gap length and to the gap spacing It follows from these relations that the curve of Fig 18 can be used to estimate the characteristics of a ggap of any proportions.

To illustrate one application, consider how a gap Cof this nature connected acro,s a string of suspension insulators of a transmission line can decrease the ivoltage that appears across the insulators when the transmission-line tower is struck by lightning. Suppose that the computed value of voltage that appears across the insulator string, neglecting predischarge currents, is the driving voltage E_{1}. This is the quantity that is usually takin as the tower-top potential times the quantity one minus the coupling factor. 'Also, for simplicity, let it be assumed that the waves are rectangular. Let it also be assumed that the fullwave critical flashover value of the insulator string under discussion is 625 kv . This particular value is chosen so that a pipe-pipe gap of spacing 3 feet and 50 feet in length. For which experimental data are available, can be assumed to be connected across the flring. The solid line of Fig. 18 gives the relation between the average current through the gap and the average voltage across the gap. *The dots indicate the formative time, which, negfecting the time for the formation of the space charge, f approximately equal to the time to breakdown. I a voitage of 860 kv appears across the gap and nsulator string, breakdown will occur in 2 microeconds. However, in the process of breaking down, Th average predischarge or prebreakdown current of 1700 amperes must flow for this time interval. The atrent must be drawn through some sort of surge mpedance of the line. Actually, it fows through the paductor and returns through the parallel circuit
che curre die ground wire and earth. Since half the current flows from each side, the effective surge impedance will be about 150 ohms. The drop through this surge impedance is then $2,700 \times 150$ volts or 400 kv . This drop is spread out longitudinally along the transmission circuit. In other words, to produce a voitage of 860 kv across the insulator string, a driving voltage of $860+400$ or $1,260 \mathrm{kv}$ is actually required. This voltage E, is plotted in Fig. 18 as the dashed line. An alternate method of comparison is to assume that the driving voltage E, remains equal to 860 kv . Then, moving down along the E_{t} curve to 860 kv and then dropping vertically to the $E_{\text {, curve, }}$ we find that the voitage across the insulator string and the gap is now 710 kv and the voltage can appear for a period of 2.9 microseconds before flashover occurs.

The inset of Fig. 1 shows the equivalent circuit, which can be set up very easily in the laboratory. The improvement resulting from the use of the pipepipe gap can be gauged by comparing the voltage E, with the voltage $E_{\text {, }}$.
In the foregoing illustration, a line insulation of 625 kv was assumed. If, for example, a higher line insulation is involved, then the critical flashover value of the gap should be inzreased correspondingly -the equivalent of increasing the gap spacing. But the predischarge current for a specific formative time is proportional to the gap spacing. Since the surge impedance is substantially independent of the insulation level, the voltage drop through we surge impedance is proportionally higher than the assumed line insulation. It follows, therefore, that for a given length of pipe-pipe gap, the improvement is independent of the insulation level of the line. The ordinate of Fig. 18 can therefore be generalized to reflect this condition by adding the scale showing the ratio of the average gap voltoge to the critical flashover of the gap. To the extent that the insulation leve! increases in proportion to the system voltage, it may

Fig. 18. Voltage-current characieristic of a pipe-pipe gup having a length of 50 leet and a spacing of 3 leet. Dashed line represents toral voltage across the gap and a series resistance of 150 otims
be concluded that for a given gap length the improvement is independent of the system voltage.

Because the predischarge current is proportional to the gap length, it follows that the improvement should be proportionately greater or less than that indicated in Fig. 18.

An additional characteristic of pipe-pipe gaps is of importance in their application. Tests have shown that their voit-ampere characteristic is unaffected by rain.

CONCIUSION

Transmission line insulation must satisfy three requirements. It must be able to withstand

1. The power-frequency voltage and some degree of contamination. Up to now this has not been a limiting condition and when and if it does become limiting, then doubtless additional research and development will be undertaken to provide a remedy.
2. Switching surges. In some cases at present, switching surges constitute the limiting condition. This limitation can be removed either by eliminating the high surges at their source or by controlling them by adequate lightning arresters. If the latter course is pursued, then it must be remembered that the control of switching surges can be attained by a relatively few number of installations. On the other hand, the provision for the power-frequency voltage or for lightning must be incorporated at every tower.
3. Voltages produced by lightning. Although in some cases lightning does not appear to be a limiting condition, when the necessary improvements are made to withstand normal power-frequency voltage and switching surges, lightning will then become a problem. A line with a phenomenally good operating performance from all causes should be regarded as an overbuilt line. As improvements are progressively made in system design, it becomes more and more imperative that the detailed reasons for the performance be better understood. And so the electrical industry is faced with the need for greater effort to collect information concerning lightning and to understand its effects.

The question of furthering such a policy lies wos The managements of electric utilities, who are respon sible for the operation of the systems, and, to a lesjeg extent, with the managements of the manuta who must supply the equipment the respecifitit How much of the burden should groups carry? What recognition should pend titne an effort on system problems in which they have an direct interest? These are some of the questions topez must be answered by the electric utility industry There is great danger that because of the preyesa profit squeeze some of these problems default.

REFERENCES

21. Report on the Work of Study Committee No. and Surges). Appendix II. The Shielding Effect of Earth Wire, P. G. Provost. Paper No. 314 , ClGRE, Pa
1960 . 22. Shielding of Transmission Lines, C. F. Wagner, Cann. G. L. MacLane. AIEE Transactions Yol G D 313-28
22. The Frequency of Occurrence and the Distribution 1945. DD. 902-10 A. R. Hileman TEEE Paper Lines, F S. Young. J. M. Cixtiag IEEE Transactions, pt. IIf (Power Apparatus and publication is 82. 1963. 25. Report on the Work of Study Committee No. 9 (Extra. Fis) Voltage A-C Transmission) Appendix. Third Report on the Rays formance of EHV Lines Designed to Operate at Voltares ahe 225 Kv , W Casson. Report No 419. CIGRE. 1962
23. Lightning Provection of Overhead Transmistion Operating Experience in the USSR, V V. Burgsdiont 326, CIGRE. vol. III. 1958
24. The Role of Lightning Strikes to the Conductors inaji) the Ground Wires in the Protection of High-Voltage Cypacelae M. V. Kostenko, 1. F. Polovoy, A. if Rosenfeld. Eleksriehertyen Moscow, USSR, 10. 4. 1961. pp. 20-26.
25. Uber Blitzschutz durch "Fernblitzableiter," B. Wa achrift fur technische Phyaik, vol. 14. pp. 181-26. 29. A New Approach to the Calculation of the tormance of Transmission Lines III-A Simplified Method o Tower, C. F. Wagner. A. R Hileman ArFE Pronad: Shen II (Froer Apparatus and Systems) vol i9 ranactions, 589-603.
26. The Lightning Stroke with Relation to Overhead sion Line, C. F. Wagner, in "Gas Discharges and the Electringty Landon. 1962.
27. Dielectric Recovery Characteristics of Large Air Gaptath McCann. J. J. Clark. ALEE, Transections, vol. 62 . Jan. 45-52.
28. Effert of Predischarge Currents upon Line Perforinan Wagner, A. R Hileman. AIEE Paper 62-i181, scheduled tor tems), vol. 82,196

For years it h increase, swit come the dor line and appa switching surg tecent papers Switching Sur Distribution C bave the result insulation beer de is to add informed decis line insulation ing-surge duty side whether le entrance arrest more economic Although res on many EHV has shown that high-speed reck rated by a rest

COMMUNICATIONS

PARAMETRES DES COUPS DE FOUDRE

par K. Behger, R.B. Andehson
et H. KमONTNGER
du Comite d^{\prime} Etudes $u^{*} 33$

(Surtensions et coordination de l'isolement)
Rapport pubtie a la demande du President du Cornite
M. V. Pativa

1. - Introduction.

Le Comite suisse des recherches en hate tension exploite depuis 1943 une station de mesure des phenomenes de foudre an Mont San Salvatore pres de Ltigano, Suisse. L'objet principal de ces mesures etait l'earegistremeat des formes de courant des coups de foudre qui frappent deux pylônes de télévision installés sur cette montagne. Des photographies de nuit ont été prises de coups de foudre se produisant dans le voisinage ef l'on a également procede plus recemment à des enregistrements du champ bectrique au cours des orages. Des rapports déerivant l'inslallation de mesure et rendant compte des résultats obtenus ont été publies en premier lieu par Berger en 1955 [1, 2], puis par Berger et Vogelsanger en 1965 [3] et ì nouveau en 1966 [4]. En 1967 Berger a presente l'un des cinq articles sur la foudre parus dans une edition speciale du Journal du Frunhlin Institute [5].

Finalement, les résultats des mesures effectuces entre 1963 et 1971 ont été publies par Beryer en 1972 [6] et l'annee suivante [7]. At cours de l'annee 1972, the partie des donnees recueillies pendant la période $1963-1971$ a ète analysée plas en detail; un ordinateur a ete utilise cette fois pour determiner les courbes de frequences cumblees, separement pour les coups de foudre positifs, pour les premieres composantes et pour les composanies stivantes des coups de foudre négatifs, ainsi que pour calculer les correlations correspondantes. l.e présent rapport présente des formes de courant de foudre ef donne an rexume de tous les resultats obtenus.
2.1. - Definition des cutegories.

On a trouve que l'ensemble des eoups de foudre frappant les pylones du Mont San Salsatore pousait

PAPERS

PARAMETERS OF LIGHTNING FLASHES

by K. Berger, R.B. Andersun
and H. Krounivger
of Study Committee No. 33
(Overvaltages and Insuiation Co-ordination)

Paper published at the request of the Chairman of the Committee

Mr. V. Palva

1. - Introduction.

Abstract

Ever since 1943 the Swiss high-voltage research comanittee has been maintaining a lightning measurement station on the Monte San Suluatore near Lugano, Suritzerland. The main purpose of these measurements was to record current shapes of lightning flashes striking two television towers on the mountain. During the night photoyraphs were taken of lightning flashes occurring in the vicinity, and more recently recordings of the electric field during a thunderstorm were also made. Reports on the measuring installation and the results obtained were published first by Berger in 1955 (1, 2), and later by Berger and Vogelsanger in 1965 (3] and again in 1966 [4]. In 1967 Berger contributed one of the five articles on tightning for a special edition of the Frouklin Institute Journal [5].

Finally, the results of measurements between 1963 and 1971 were published by Berger in 1972 (6) and in the follouing year (7). During 1972 some of the data collected over the period 1963-1971 uwre analysed in more detait; this time a computer was used to determine cumulative distributions for positive strokes, and for negatine first and subsequent strokes separately, and to calculate relevant correlations. Representutive lightning current shapes and a summary of all results are given in this report.
2. - Parameters of lightning currents.
2.1. - Definitions of categories.

It has been found that the ensemble of liyhtning flashes strikim! the tomers G'
ètre groupe en eategories distinctes, comme il est indique ci-dessous.

Daus le present rapport, la convention adoptese est que la polarite d'un coup de foudre est eetle de la charge du nuage et etle peut facitement ètre identifiee d'apres la polarité des courants mesures. Les coups de foudre ascendants. qui constituent la majorite des coups au Mont San Sakatore, peuvent dre identifiés par te fait qu'ils se ramifient vers le haut, quand une photographie du coup a éte prise, ou, sinon, par la présence de courants de quelques centaines d'amperes se maintenant pendant des dizaines ou centaines de millisecondes et pouvant ètre suivis, soit immediatement, soit apres une breve interruption, d'une out plusieurs impulsions de courant. D'autre part, les coups de foudre descendants se ramifient vers le bas et n'engendrent pas de courants de predecharge de duree superieure à quelques millisecondes.

Etant donné qu'on pense que les coups ascendants sont essentiellement associes a l'effet des pylones de telévision installés sur le Mont San Salvatore, l'analyse présentee dans le rapport actuel traite uniquement des coups de foudre descendants, consideres conme plus representatifs de la foudre naturelle. Toutefois, dans cette categorie, un coup de foudre peut ne comporter qu'une seule impulsion de courant, ou, se composer au contraire d'une succession d'impulsions separees par des intervalles de temps aut cours desquels il ne s'écoule que pen ou pas de courant. On dit alors qu'il s'agit d'un coup de foudre multiple et, dans ce cas, la première impulsion présente des caractéristiques differant notablemient de celles des impulsions suivantes, de sorte 'que lorsqu'on détermine les parametres caracteristiques des impulsions composant les coups de foudre il est nécessaire de repartir les-ci en deux catégories au moins, à savoir :
(a) premiere composante;
(b) composantes suivantes.

A la condition qu'il n'y ait pas d'autre facteur variable exercant une influence significative sur le processus de la décharge de foudre, on devrait trouver, dans chacune de ces catégories de courants de coup de foudre, une population de courants homotène et I'on devrait pouvoir s'attendre a ce que l'ensemble des mesures fournisse des résultats uniforthes, en dehors de differences mineures attribuables a dev erreurs résiduelles. Ces résultats devraient done presenter une reppartition donnee (normale ou logonormate par exemples autour de la moyenne de ia population.

2.2. - Choir des parametres.

La forme des coups de foudre et de leurs composantes peut ètre caracterisece par un petit nombre de
may be grouped into distinct categorics as shown helous:

The convention rutopted in this report is that the polarity of flashes is taken from the polarity of the charge in the cloud and is easily identified by the polarity of the measured currents. C'purard flashes, which constitute the majority of the flashes at San Salvatore, may be idenlified by the upward branching of the flush if a photograph of the flash was taken or, fuling this, by the continuing currents of a few hurdred amps lasting tens or hundreds of milliseconds that may be followed immediately or after short current interruptions by one or severa! impuise currents. Downward flashes, on the other hand, branch downward and do not produce predischarge currents lasting more than a lew milliseconds.

Since upward flashes are thought to be primarily associated with the effect of the television towers, on Monte San Satuatore, the analysis presented in this report deals exclusively with downteard flashes which are believed to be more representative of natural lightning. In this category, however, a flash may consist of only one current stroke or a succes. sion of such strokes separated by intervals during which little, if ang, current flows. The latter is termed a multiple stroke flash and in such a flash the first stroke displays characteristics which dif. fer markedly from those of the following strokes, and thus when determining the characteristic parameters of lightning strokes, these should be separated into at least two separate categories, i.e.,
(a) first strokes, and
(b) following strokes.

Provided there are no further variable factors exercising a significont influence on the process of the lightniny discharye, there should now, within these categories of lightning flash currents, be a homoyeneous population of currents, and all measurements could be expected to yield uniform resulis apart from minor differences attributable to residutal errors. These results should therefore follow some distribution (e.g. normal or lognormal) about the papulation mean.

2.2. - Selection of parameters.

The tiathtning flosh and stroke current shape may be characterised by a lew paramelers, which are
paramétres, qui présentent également de l'intéret lorsqu'on eonsidere les dommases suseeptibles d'ère causes par int coup de foudre, les parametres mesures sont les suivants:

(a) Coup de foudre.

(i) courant de créte - pic de courant le plus èlevé du coup) de foudre;
(ii) duree do coup de foudre - durèe pendant laquelle it y a écoulement de courant ou, dans le eas d'un coup de foudre multiple, le temps qui s'ecoule jusqu'a la fin de la derniere impuision;
(iii) intervalles sans courant - intervalles de temps pendant lesquels il ne s'ecoule ancun courant nessurable;
(iv) charge du coup de foudre - charge totale transportee par un coup de foudre.
(b) Composantes d'un coup de foudre.
(i) courant de erète - pie de courant te plas devé d'une impulsion;
(ii) duree de front - intervalle de temps compris entre le point 2 kA du front et le premier pic;
(iii) durée de l'impulsion - intervalle de temps compris eutre le point 2 kA du front et le point de la queue où l'amplitude du courant est tombée à 50% de sa valeur de créte;
(iv) vitesse de montée maximale (raideur de front du courant) - tangente a plus forte pente du front d'une impulsion;
(v) charge du choc - charge électrique transportée par la partie variable de l'impulsion (le point de la queue de l'onde de courant a partir duquel la charge transportée n'a plus eté considérée comme faisant partic de la scharge du chocs a eté déterminé en examinant la forme du courant et il n'est done pas défini de façon précise);
(vi) charge de l'impulsion - charge totale de l'impulsion, c'est-à-dire la charge du choe majorée dc toute charge transportee par le courant continuant à s'écouler après la fin du choc;
(vii) énergie présumée de l'impulsion - énergie qui aurait eté dessipée par le courant de R'mpulsion s'écoulant a travers une rexistance d'un ohm, e'est-àdire fiedt Azs ou J/ohm. Cette definition fera l'objet d'une discussion ultérieure pour accord.

2.3. - Répartition des variates.

La répartition des mesures individuclles (variates) des parametres dans leurs categories respectives fone un röle important de guide dans l'estimation des valeurs à escompter pour les mesures futures. Celles-ci petterent citre déduites, soit d'une connaissance préalable du processus physique engendrant un coup de foudre, soit la repartition meme des échantillons recueillis. La prise en consideration du processus physique, dans la mesure où nous comprenons bien se dernier, ne fournit pas de raisons conduisant imperativement a admettre telle out telle
who of interest when considering the possible damaginy effect of a lightning stroke. The parameters which hate bee" measured are the following :
(a) The lightning flash.
(i) peak current - the highest current peak in the flash:
(ii) flash duration - the length of time during which there is curreal flow or, in the case of a multiple stroke flush, until the completion of the last stroke:
(iii) no-current intervals - intervals between strokes of a flush during which no detectable current is flowing:
(iv) flash charge - the tolal charge trans/erred by a flish.

(b) Lightning strokes

(i) peak cursent - the highest current peak in a stroke;
(ii) front duration - the time interval between the 2 kA point on the front and the first peak:
(iii) stroke duration - the time interval between the 2k.t point on the front and the point on the tail where the current amplitude has fallen to 30% of its peak value;
(iv) maximum rate of rise (current steepness) the steepest tangent on the front of a stroke;
(v) impulse charge - the electric charge transported by the rapidly changing part of the stroke (the point on the current tail after which the charge transported is no longer considered part of the "impulse charge " was determined by inspection of the shape and is therefore not precisely defined):
(vi) stroke charge - the total charge in the stroke, i.e. the impulse charge together with any charge transported by continuing current after the impulse;
(vii) prospective stroke energy - the energy which would be dissipated by the stroke current flowing through a one-ohm resistor, i.e. fi2dl $A^{2} s$ or J/ohm. This defintion is subject to further discussion and agreement.

2.3. - Distribution of variates.

The distribution of individnal measurements (variates) of the parameters in their respective rategories is un important gutide as to the values expected to be found in future nowasurements. It may be inferred either from a foreknouledge of the physical process leading to the lightning discharge or (rom the sample distribution itself. Cionsideration of the physical process, as far as wee understand it, does not provide compelling reasons to assume any particular distribation. The sample dato itself must therelore provide the clue to which of the known dis.
repartition particuliere. Ce sont doac les donnees efles-memes prises comme echantillons giti doivent atvir a faire decousrir celle des repartitoons connues qui peut s'atapiter if efles avec un degre de conflance suffisant. Dans le passe, la repartition logarithmique a tete generalement acceptere of des analyses anterieures (6) ont montre que to courbe des frequences eotuties sur une base logarithmique s'apparente suffisamment avec les donnees dont on dispose, a un trace rectiligne. La repartition logarithmitue a done été admise dans la presente analyse. If fawi toutefois prendre garde, dans tes deductions qui en rexultent, an fait qu'il peut tres bien y avoir d'autres repartitions convenant aussi bien ou methe mieux à ees données.

2.4. - Résultats.

Les figures 1 à 10 etablies avec une base logarithmique, montrent les courbes des friquences cumulees de dix des parametres du courant de foudre. Lat ligne droite a de tracee on minimisatit la somme des carres des distances des points (égatement reliés entre eux par des lignes droites) et elle peut done dre uthlisee pour obtenir la meilleure estimation possible de la moyenne et de l'ecart-type o des Iosarithmes des variates is la distribution de la population.

Cela implique que la foncti at de densite de probabilite $\omega(x)$ ait la forme sui ante :
tributions can be fitted to the datu with a sufficient degree of confutence. Hesturioully the lapurithmis distribution hus beewme arnerally nevepted and past amelyses is shatered that comulathe distributions oul "togarithmie base prodtace " reasamate fit of the data to a stratight lime. The logarithmie distributian has therefore also been assumed in this analysis. fantion should, howewer, be ceercised when using the implacations of this, sitnee there muly arell be other tisisibutions which fit the data just as well or beller.

2.4. - Results.

Figures 1 to to show, on a logarithmic base, the cumulative distributions of ten of the lightning current parameters. The straight line is the least squares fit to the points (which have also been connected by straight lines) and therefore may be used to obtain the best estimate of the mean is and standard deviation of the logarithums of the buriates in the population distribution.

The probability density function $w(x)$ is therefore implied to be :

$$
\begin{equation*}
w(x)=(1 / x \sigma \sqrt{2} \pi) \exp \left\{(\log x-\mu)^{2} / 2 \alpha^{2}\right\} \tag{1}
\end{equation*}
$$

it qu'elle soit donc complétement définie par les dewx parametres :s et σ.

Larsumon compare les valeurs réelles aux valeurs. thonomes par la droite de regression, il est evident पute des differences appreciables peuvent apparaitre. D) ons comtains cas, en particulier lorsqu'it s'apit des pation extremes de la repartition, on pourrait egathant premitre en consideration tes valeurs reelles twar la predetermination des Préquences doccurtotes de la variable.
It u'a pas cte trace de courbe de repartition pour letergie totale presumée du coup de foudre, ctant A. ante ytue Pencrgie des composantes consecutives A. prembere sont insignifiantes par rapport a celle A. Li promitre lies résultats sont également presen. thath le tableau 1, qui indique les valeurs corresindidant. resprectivement aux frequences cumblees ${ }^{\prime \prime}$ "' des anseaus de probabilite de $95 \%, 50$ ' $\%$ '1 a' com valeters etant lues sur la droite de

In Te qui concerne le tableau I, les valeurs des -... asta de crite de la foudre sont corroborees par - hi \& quition de frequence publiees par Popo\therefore A \&. quii a trouve une valeur mediane de \therefore A \quad athenter a partir de 624 valeurs de mesures - 'out ant fiablies effectuees sur des cheminees of
 *....it dos usais de K. Berger. Ce resultat incite - W.... toe lex parametres mesures sur des comps ... a the the imentantr atteignant ter pytones te tetea... a te la imentagne voisine de lugano preuvent
and is fully defined by the purameters in and a.
When comparing actual values with values predicted by the regression line, it is clear that sub. stantial differences muy be found. In some cases, purticularly where the extremes of the distributions are concerned, the actual values mught also be considered when predicting Prequencies of occurrence of the variable.

Abstract

No distribution of total negative flash prospective energy has been drawn since the following stroke energies ure instunificant when added to those of the first stroke. The results are also yiven in Table I showing the values for the cumulative distribulions at the 95% \% 50% and 5% probability levels respectively. (As read off against the regression (ine).

Segurding Tuble I, corrohoration of the values of peak lightning currenls are shown in the distribur. tion reparted by popelanskit is! who observes a median value of 28 ki 1 whtained from bigh values of reliable current measurements made on lall chimweys and lumers, incladiny 192 balues from biager. This result tends to sutgest that the mensured paratmeters of dommemard flushes striking the teteotision tourers on the mountatn in laymon may be compar rable with thase of lightuing strikithy tull structures if open country.

Tablean 1 - Table 1
Parametres typiques de la foudre.
Typical lightning parameters.

Fig. No.	N	Paramètre Parameter	Unité Unit	Pourcentage de cas dépassant la valeur indiquée dans le tableau Per cent of cases exceeding tabulated value		
				95%	50%	5\%
1	101	Courant de créte Peak rurrent (minimum 2 kA) premieres composantes négatives et coups de foudre négatifs negative first trokes and flashes	kA	14	30	80
1	135	composantes suivantes négatives negatite following strokes	kA	4,6	12	30
1	26	coups de foudre positifs (sans composantes suivantes) positive fashes (no following strokes)	kA	4,6	35	250
2	93	Charge premercs composantes négatives negative first strokes	C	1.1	5,2	24
2	122	composantes suivantes négatives negative following strokes	C	0,2	1,4	11
3	94	coups de foudre négatifs negatite flashes	C	1,3	7,5	40
3	26	coups de foudre positifs positive flashes	C	20	80	356
4	90	Charge du choc Impulse charge premicres composantes negatives negative first strokes	C	1,1	4.5	20
4	117	composantes suivantes f. ćgatives negatiees following strokes	C	0,22	0,95	4,0
4	25	coups de foudre positifs (une seule impulsion) positive flashes (only one stroke)	C	2.0	16	150
5	89	Durée de front Front duration premieres composantes négatives negatiee first strokes	us	- 1,8	5.5	18
5	118	composantes suivantes nequatives negative following strokes	$\mu 8$	0,22	1,1	4,5
5	19	coups de foudre positifs positioe flashes	$\mu \mathrm{s}$	3,5	22	200

Tabreau I (suite) - Tamek I (continued)

Fig. Ao.	N	Paramètre Parameter	Unité Init	Pourcentage de cas dépassant la valeur indiguee dans le tableau Per cent of cases excerding tabulated value		
				95%	50%	5%
6	92	$\begin{aligned} & \frac{\text { didt maximal }}{\text { laximum di/dt }} \\ & \text { premeres composantes } \\ & \text { negatives } \\ & \text { negafiee first strokes } \end{aligned}$	$\mathrm{kA} / \mu^{\mathrm{s}}$	5,5	12	32
6	122	composantes suivantes negatives et coups de foudre négatifs negative foillowing strokes and flashes	$\mathrm{kA} / \mu \mathrm{s}$	12	40	120
6	21	coups de foudre positifs postitice flashes	$\mathrm{kA} / \mu \mathrm{s}$	0,20	2,4	32
7	90	Durce de limpulsion stroke duration premicres composante négatives negotice first strokes	μs	30	75	200
7	115	composantes suivantes négatives negalite following strokes	$\mu \mathrm{s}$	6.5	32	140
7	16	coups de foudre positifs positive flashes	$\mu \mathrm{s}$	25		2000
9	91	Intégrale $\left(i^{2} \mathrm{dt}\right)$ Integral ($\left.1^{2} d t\right)$ premieres composantes négatives et coups de foudre négatifs negatiue first strokes and flashes	$\mathrm{A}^{2} \mathrm{~s}$	$6,0 \times 10^{3}$	5.5×10^{4}	$5,5 \times 10^{5}$
9	88	composantes suivantes negatives negatite following strokes	$\mathrm{A}^{2} \mathrm{~s}$	$5,5 \times 10^{2}$	$6,0 \times 10^{3}$	$5,2 \times 10^{4}$
a	26	coups de foudre positifs postice flashes	$\mathrm{A}^{2} 8$	2.5×10^{4}	$6,5 \times 10^{5}$	$1,5 \times 10^{7}$
10	133	Intervalle de temps entre impulfons negatives Time intertals belween negatite strokes	ms	7	33	150
8	94	Wurée du coup de foudre Flach Juration negatifs (y compris les coups de foudre a une seule impulsion) negative (including single struke flashes)	ms	0,15	13	1100
8	39	negatifs (non compris les coups de foudre a une sule impulsion) neyatize (excluding singly stroke /lashes)	ms	31	180	900
8	24	poritifs positite	ins	14	85	500

$\%$

Figure 2
Charge de l'impuision - Q (impulsion)
(1) Premieres impulsions négatives
(2) Impulsions auivantes negatives
(3) Impulsions positives

Stroke charge - Q (stroke)
(1) Negative first strokes
(2) Negative following strokes
(3) Positwe strokes

10^{-1}
10°
10^{\prime}
10^{2}
C

Figure 1
Courant de crete - 1
(1) P'remietes impulsons negatives
(2) Impulsions suivantes negatives.
(3) Impulsions positives :

Peak curtent I
(1) Negative first strokes
(2) Negotwe following strokes
(3) Positiue strokes

poos onamul

Figure 3
Charge du coup de foudre - Q (coup de foudre)
(1) Coups de fowdre negatifs
(3) Coups de fousire positifs

Flash charke - O (flash)
(1) Nrmikie flashes
(3) Positive gashes

Figure 8
Duree du coup de foudre - T (coup de foudre)
(1) Coups de foudre négatifs y compris les coups de foudre simples.
(2) Coups de foudre négatifs non compris les coups de foudre simples.
(3) Coups de foudre positifs.

Flash duration Tr (flash)
(1) Negative flashes including single strokes
(2) Negative flashes excluding single strokes
(3) Positive flashes

Figure 9
Energie presumee - $\int i^{2} d t$
(1) Premieres impulstons negatives
(2) Impulsions suivantes argatives
(3) Imputsions prostivex

Proxpectier energy - $\int i^{2} d t$
(1) Anative first stronis
(ニ) Sekatave following strokes
(3) Pouttine strokes

Figure 10
Intervalles sans courant entre impulsions négatives
No-current intervals between negative strokes
ètre comparables a ceux des coups de foudre atteignant des structures de grande hauteur ea plaine.

3. - Correlations entre les parametres du courant de foudre.

On pourrait concevoir que des proprietés importantes de la décharge de foudre puissent étre mises en lumière si certains des paramètres citês au paragraphe precedent etaient suffisamment correles. Si, par exeriple, il existait une correlation lineaire entre le courant de crete et la duree de front, on pourrait soupçonner l'existence d'une simple constante de temps, qui permettrait de calculer la vitesse de montee. Une simple analyse de régression considérant le courant de crète et les autres paramètres, puis séparement l'un apres l'autre, a eté effectuée autrefois [6] et ses résultats ont été presentés sous la forme de diagrammes de dispersion comportant mussi le tracé de la droite de régression. On a supposé une regression lineaire des logarithmes des variates, ce qui revient à dire qu'on a admis la relation $y=A x^{n}$. Une representation graphique de ce genre de régression est rassurante dans les premiers stades d'une atalyse, mais, lorsqu'il s'agit seulement de faire l'essai d'une hypothese de corrélation entre les parametres ou entre les paratnètres transformés il suffit de calculer le coefficient de correlation et de vérifier sa validite ia un niveau prèdéterminé.

Les tableaux 11, III et IV donnent les matrices des coefficients de corrélation calcules, respectivement pour les impulsions positives, pour les premières impuisions negatives et pour les impulsions suivantes négatives.
L.es ableaux de coeflicients de corrélation sont considerés, eomme pouvant apporter une aide utile à la formulation d'un modèle de décharge de foudre.
3. - Correlation between lightning current parameters.

Important properties of the lightning discharge could conceivably be brought to light if some of the parameters mentioned in the previous sections were significantly correlated. If, for instance, the peak current and front duration were linearly correlated. a simple time constant to determine the rate of rise might be suspected. Simple regression analysis of peak current and other parameters, taken one at a time has been carried out before [6] and the results have been presented in the form of scatter diagrams showing also the linear regression line. Linear regression of the loyarithms of the variates was assumed, i.e. the retationship $y=A x^{n}$. Such a pictorial view of the regression is reassuring in the initial stages of an analysis but for the purpose of merely testing the hypothesis of correlution between the parameters, or transtormed parameters, it is sufficient to compute the correlation coelficient and test its significance at a predelermined level.

Tables II, III and IV show the computed matrices of correlation corfficients in respect of positive stro. kes: neyative first and neyative following sirokes.

The tables of corrctation coefficients are considered to be usefat as an wid to the formulation of a model on the lightning disi harge. Some parameters.

Tableau II - Table II

Coefficients de corrilation entre les paramitres des premieres impulsions positives (c'est-a-dire de coups de foudre positifs, car il n 'y a pas de coups de fouder pesitifs muitiples).
Correlation coefficients between parameters of positive first strokes. (or poative fla-hes, there being no positive multiple stroke flashes)

	Courant de créte Peak current	Durée de front Front duration	Yitesse de montec max. M/ar. rate of rise	Charge de choc Impulse charge	Encrgie Einergy	Charge de l'impulsion Stroke charge	Turée de limpulanan Stroke duration	Durce du coup de foudre Flash duration	charge du coup de foudre flash charge
Courant de crète Peak current	1.00								
Durée de front Front duration	0,07	1,00							
Vitesse de montée max. Max. rate of rise	0,49	$-0,68$	1,00						
Charge de chor Impulse charge	0,77	0.27	0.23	1.00					
Energie Energ)	0,84	0,22	0.39	0,82	1,00				
Charge de l'impulsion Stroke charge	0.62	0,32	0,11	0,74	0,72	1.00			.
Durée de l'impulsion Stroke duration	0,58	0,48	0.02	0,80	0,72	0,75	1.00		
Durée du coup de foudre Flash duration	0,33	0,112	$-0,15$	0,24	0,17	0,64	0,24	1.00	
Charge du coup de foudre Flash charge	0,62	0,32	0.10	0,74	0,71	1.00	0,75	0,64	1,00

Les coefficients en caracteres gas dépaseent la valen citique au niveau de squification de 5 q
Coefficients in boidace exceed the critical oolue at the 5 矢level of sumpficance.
Degres de literte 13.
Degrees of freedom: 13

Certains des parametres, tels que la charge de choe et la charge totale d'une impulsion, sont liés I'un a lautre en vertu meme de teur deflnition et it est evident qu'il existe entre eux une bonne correlation. Néanmoins. Pexistence ou l'absence de eertaines autres correlations pent fournir des indices significatifs quant au mécanisme probable de la decharge.

4. - Formes typiques du courant de foudre.

4.1. - Géneralites.

La constatation que les formes des premiéres impulsions positives, des premieres impulsions megatives it des imputsions suisantes megatises sont nettement differentes, en ee qui concorne botamment les durees de front, nous a cobduits a detinir trois catégories d'impulsions, La bonne correlation
such as impulse charge and total stroke charge, are related as a result of their definition and a good correlation between them is self-coident. Devertheless other correlations, or the lack of such, may provide significant poitters to the probable discharge mechonism.

4. - Typical lightning current shapes.

4.1. - General.

The obseroution that pasitive first stroke, negative first stroke and arqative following stroke shapes are distinctly different, particutarty in so far as the front durations are coucerned, has led to the desiguation of three eategories of strohes, liood cor © lation between paramelers sach as peak current,

Tableau III - Tarle III
Coefficients de correlation entre les paramitres des premieres impulsions négatives.
Correlation coefficients between parameters of negative first strokes.

	Courant de crete Peak curtent	Duree de front Erant duration	Vitesse de montee max. I/ax rate of rise	Charge de choe Impulse charge	Energie Energy	Charge de l'impulsion Stroke charge	Durée de Iimpulsion Siruke duration	Durce du coup de foudre F7ash duration	charge du coup de foudre Flash charge
Courant de créte Peak current	1,00								
Durée de front Front duration	0,37	1,00							
Vitesse de montée max. Max. rate of rise	0,36	-0,21	1,00						
Charge de choc Impulse charge	0,77	0,25	0,39	1,00					
Energie Energy	0,38	0,30	0,42	0,89	1,00				
Charge de l'impulsion Stroke charge	0,61	0,29	0,19	0,91	0,78	1,00			
Durée de l'impulsion Stroke duration	0,56	0,33	0,10	0,51	0,52	0,43	1,00		
Durée du coup de foudre Flash duration	0,08	0,25	-0,02	0,14	0,10	0,23	0,11	1,00	
Charge du coup de foudre Flash charge	0,54	0,36	0,19	0,72	0,64	0,78	0,4	0,64	1,00

Les coefficients en caracteres gras dépassent la valeur critique au niveau de sagnification de 5 a
Coefficients in boidface exceed the atical walue at the $5 \mathrm{\%}$ level of nignificance
Degres de liberte: 77
Degrees of freedom : 75
observée entre les parametres tels que le courant de créte, la charge du choc et la duree de queue confirme que les formes de courant sont similaires dans chaque catégorie, ce qui incite à construire une forme typique pour chacune d'elles.

4.2. - Construction d'ane forme de courant.

Pour trouver une ordonnée i_{k} de la forme inoyenne d'un courant d'impulsion de foudre, toutes les ordonnees i_{k} du point K des courbes enregistrées séparement ont cté ajoutees of le resultat divise par m, nombre des ordonnées mesurées.

On a dóne :

$$
\begin{equation*}
i_{k}=\frac{1}{m} \sum_{j=1}^{m} i_{j}^{\text {Hence }} \tag{2}
\end{equation*}
$$

oin m est le nombre total de courbes utilisées pour la determination de τ_{k} au point k. Ce nombre est variable da fait de la difference des longueurs d'enregistrement, due aux techniques d'enregistrement et de chilfrage [3].
impulse charge and tail duralion confirm that shapes within the categories are similar, and this suggests the construction of typicat shapes for each of these categories.
4.2. - Constructing the shape.

To construct an ordinate r_{k} of the inean lightring stroke shape all ordinates i_{k} at point k on the separate curves have been atded and the result divided by m. the number of ordinates.
where m stauds for the totul number of curves contributiny to T_{k} in the point k. The namber varies as a result of different record tenyllis. caused by the recording and digitizing techniques (3).

Tableau IV - Table IV
Coefficients de corrilation entre les parametres des impulsions sutvanies negatives.
Correlation coefficients between parameters of negative following strokes.

	Courant de créte l'eak curren!	Durce de front Front duration	Vitesse de mostee max. Nax. rate of rise	Charge de choe Impulse charge	Finerge Energr	Charge de l'impulsion Stroke charge	Burée de l'impulsion Stroke duration
Courant de crecte P'cak current	1,00						
Duree de front Front duration	0,28	1,00					
Vitesse de montec max. Max. rate of rise	0,11	$-0,49$	1,00				
Charge de choc Impulse charge	0,69	0,13	0,31	1.00			
Energie Energy	0,69	0,22	0,15	0,72	1,00		
Charge de i:".......sion Stroke charge	0.43	0,26	0,28	0,62	0,54	1.00	
Durée de l'impulsion Stroke duration	0,25	-0.05	0,30	0,4	0,37	0,12	1,00

Les coefficients en caracteres gras depament la valeur entuque au nur wu de samification de 5 q .
Coefficienta in boidface ex ceed the critical value at the 5 \% ievel of rate ficance.
Degrés de libette : 73
Degrees of freedom : 73

Avant de faire la somme puis la moyenne des ordonnées i_{k}, il est necessaire de s'assurer que les courbes sont convenablement alignees, c'est-a-dire que les points $i_{j k}$ de l'écuation (2) correspondent au méme stade du developpement physique de la decharge de foudre. Le front raide des formes de courant est une caractéristique appropriée et facilement reconnaissable dans toutes les impulsions et c'est pourquoi les enregistrements ont ete alignés en faisant coincider les points d'amplitude 50% de tous les fronts. Une technique diflérente, qui calcule la fonction d'intercorrélation entre les deux courbes et déplace l'une des courbes d'une quantiie égale au retard au bout duquel ia fonction a un maximum, a abouti à une forme moyenne presque identique, ce qui prouve la valeur de la premiere méthode (beaucoup plas simple que la seconde). De plus, toutes les courbes ont été ramenes à une meme amplitude de crecte prise conme unité avant de faire les moyennes.

(a) Premieres impulsions positives.

Bien que les impulsions positives soient caracterisées par des charges plus elevees ef des fronts moins raides que leurs correspondantes negatives, elles n'ont pas entre clles suffamment de caracte. Sistiques communes pour permette d'obtenir une forme de courant moyenne aceeptable. Cest peut-itre dû aussi en partie att petit nombre de comps de foudre positifs enregistres dans la periode considérée. C'est pourquoi nous nous sommes contentés de

Before summing and averaging the points i_{k} it is recessary to ascertain that the curves are properly - ligned, i.e. the points i_{2} in equation (2) should corlespond to the same stage in the physical developizent of the lightning flash. The sharply rising front f the stroke shape is a suitable and easily recognisable feature in all strokes and the records were therefore aligned in such a way that the 50% amplitude points on the fronts coincided. A different technique, which computes the cross-correlation function between two curves and shifts one curve bf an amount equal to the lag at which the func. tion shows a maximum, produced on almost identical meon shape, proving the merit of the first (much more simple) method. In addition, all curves were converted to a unit peak amplitude before averagitng.

(a) Positive first strokes.

Athough positive strokes are characterised by greater churge's and slower fronts than their negotive counterparts, they do not have enublh common feateres to produce an acceptable mean current shape. This may! also be due partly to the small number of positive strokes which were recorded in the period. A selection of t of the most typical of 21 recorded curves is therefore shown in Figure 11.

reproduire sur la figure 11 un choix de 4 des courbes les plus typiques parmi les 21 courbes enregistrées.

(b) Forme des premieres impulsions négatives.

La figure 12 montre la moyenne des formes de premieres impulsions de courant négatives, tracéf avee deux échelles de temps differentes (A of B) Dans la zone de 120 à 160 as, le nombre de courbes utilisées pour la determination de la courbe passe de 88 (enredistrements courts et longs) a 10 (enre. gistrements longs senlement), ce qui explique l'ondulation qu'on constate dans cette zone. Un autre defaut de précision, inhérent a la technique d'enregistrement emplosee à lorigine 31, se produit dans le voisinage de 200 as et il est très probable qu'il est ici aussi une source d'erreurs residuelles.
(c) Forme des impulsions suibantes négotives.

La figure 13 montre ta moyente de 76 formes d'impulsions suivantes negatives, tracees ici aussi avec deux echelles des temps (A of B). Lin trait particuliercment frappant de ces courbes est la modification assez brutale de pente de la queue an beut d'environ 5 us, suivie d'une decroissance lente

Figure 11
Formes de courant typiques - Impulsions powtives
Typical current shapes - positive strokes

Figure 12
Forme de courant moyenne
A - echelle des temps
inferieure impulsions négatives
Mean current shape
A - lower time scale

- B - upper time scale
(b) Negative first stroke shape.

Figure 12 shows the mean nelgative first stroke current shapes on two different time scates (A and B). In the region between $120-160 \rho_{\mathrm{sec}}$. the number of curves cont tbuting to the mean curve changes from 88 (she't and lony recordings) to to conty long recordings) which explains the ripple in this area. A further inaccuracy, inherent it the original recording lechnique [3], occurs ut around 200 wsec., thast tikely ulso contributing to residuat errors here.
(c) Negative following stroke shape.

Figure 13 shows the mean of 76 nequtive following strake shapes, aqain on two time scates (A and B). A striking feature of these curves is the rather abrupt charige in slope of the tail after about insec, and the subiequent stoully decolying tail. Eirrors due to the same recordiny technique referred to above can

Figure 13
Forme de courant movenne Impulsions suivantes nékatives A - echelle des temps is -recheile des temps sapeinferieure
Mean curtent shape. A - Lower time scale
neure
Nentutive followink strokes U - upper time scale
de la queue. Des erreurs dues it la meme technique denrenistrement, anxquelles if a ete fait allusion phas lant, peovent dere temues responsables de l'ondulation observee aux environs de 20:ss. Au dela de sollas apres to dehat, If trace devient incertain. car dans la plapart des enteghtrements originamx, Wes amplitudes des courants a l'échefle arloptee sont tres faibles et ne peuvent etre bues avee preeision.
be held responsible for the ripple at approximalely 20 fisec. Alter about is gisec. Irom the start, aceurat il deteriarules since the čurrent amplitudes in most uf the wrigitul records anere bery low on the scate amd canld that be arcuralely resolved.

5. - Acknowledgements.

The authors thank the Susss Foundation for their generous support of the work on Monte San Saleme tore, without which these data could not have been compiled. Thankis are also due to the Conncil for Scientific and Industrial Research of South Ifrica for financing the work of H. Hröninger who axsisted in the atlalysis of the data over the period of one year.

Bibliographie - References

(1) K. BERGER - "Die Messeinrichtung für die Blitzforschung auf dem Monte San Salvatore". Bull. SEV, nº 5, $1955, \mathrm{p} \boldsymbol{\mathrm { H }} .193232$.
(2) K. HERGER - "Resultate der Rilitzmessungen der Jahre 1947.1954 auf dem Monte San Salvatore", BulL. SEV n $n^{\circ} 9$, 1955 . pp. 405-456.
[3] K. BERGER et E. YOGELSANGER - "Mesaingen und Reaultate der Blitzforschung der Jahre 1955.1963 auf dem Monte San Salvatore". Bull. SEV., Bd. 56 (1965) n ${ }^{\circ} 1$, pp. 2.22.
[4] K. BERGER et E. YOGFLSANGER - "Photographische Blitzuntersuchen der Jahre 1955.1965 auf dem Monte San Salvatore". Bull. SEI., Hd 57 (1966) n ${ }^{\circ} 13$, pp. 599.620.
[5] K. RERGEK - "Novel observations on lightning discharges : results of rescarch on Mount San Salvatore". Journal of the Franklin Institute, vol. 283, $n^{\circ} 6$, june 196 ?.
(6) K. RERGEK - "Methoden und Kesultate der Blitzforschung auf dem Monte San Salvatore bei lugano in den Jahren $1963-1971$ ". Bull. SEV., Bd. 63 (1972), n ${ }^{\circ} 24$. pp. 1403.1422.
[7] K. BERGER - "Oszillographische Messungen des Feldverlaufs in der Nähe des Blitzeinschlages auf dem Monle San Salvatore". Bull. SEV., Rd. $64(1973) n^{\circ} 3$, pp. 120.136.
181 F. POPOL. ANSK Y - "Distribution de fréquence des amplitudes des courants de foudre". Frequency distribution of amplitudes of lightning currents. klectra n ${ }^{\circ} 22$ (mai 1972 19 pp. 139.147.

Mechanism of Breakdown of Laboratory Gaps

C. F. WAGNER
fellow aiee

A. R. HILEMAN
MEMBER AIEE

THE AUTHORS' primary interest in the mechanism of gap breakdown is in its relation to lightring stroke phenomena. In cunsidering the effect of the lightning stroke upon transmission lines, the problem has been resolved into two parts. The first of these is the electrical respunse of the line to specific assumed stroke characteristics. A method ${ }^{1-3}$ to determine this response was recently presented before the AIEE in which it was shown that the time change in the charge in the stroke above the tower may be as important as the current fed into the transmission line. The second part of the problem is the determination of those stroke characteristics that are reguired to implement this appriach. An initial effort ${ }^{4}$ along this line was previously presented in which an attempt was made to symthesize the stroke characteristics by correlating the known stroke characteristics with laboratory determised characteristics of long sparks. A further effort ${ }^{5}$ was made to utilize the avalable information concerning the electric feld produced at remote points to determine the waveiront of the stroke current. The purpose of this paper is to present a review of available information on laboratory produced sparks, to present new data on this subject, and to co-ordinate the extermal manifestations of san break. down from an engineering point of view These results have been co-ordinated in a companion paper, ${ }^{6}$ in this issue, with similar data from natural lightning

General Phenomenon

In order to establish the general nature of the phenomenon the experiments of Park and Cones ${ }^{7}$ will be described first

[^11]Later a more detailed discussion, supported by experimental evidence, of various phases of the discharge will be undertaken. It has been known for a long time that the breakdown of long gaps procceds in several phases. These are clearly defined by Park and Cones. Their setup. Fig. $1(\mathrm{M}$. consisted of a metallic sphere of $1.6-\mathrm{cm}$ (centimeters) diameter mounted on a vertical shielded rod connected to ground which permitted measurement of the current from the sphere alone. Above the sphere at a fixed distance above ground a flat in-
sulated plate was mounted to which volt. age was upplied some of their data were obtained with a $0.00 \times 100-\mu$ see emicrosecond) wave which may for all practical purprises, be regarded as a rectangular wave. The crest of this applied wave was held constant at 145 kv , and conditions in the gap were varied by changing the gap length by raising or lowering the sphere. The current flowing from the sphere was measured by means of a cathode-ray oscillograph and the setup was housed in a black box to expedite photographing the discharge
Fig. 1 shows a replot of the current from the spaere as this substantiallv rectangular wave was applied to gaps of various lengths. Some liberty was taken by the authors to line up the large current pips as this illustrates the phenomenon more clearly, Small distortions of time scales result from this procedure. The time of application of voltage is indicated by the small curront ripple just

preceding the almost vertical current change which represents the charging curreit to supil the electrostatic field before the gaserus discharse phenomictorn occurs. The large abrugt charge is termed the "first current pip" by Fark and Cones Gemerally the curtent pip does not coincide with the instant of applicatinn of voltage but is somewhat delaved. The delay is occasiotied by the chante becurterce of a free elewron enming within the averstressed region in the vicinity of the sphere and triggering the discharge. This is usually called the "statistical time delay" as it depends upon a chance occurrence. The crest of the Lirst curtent pip for the sphere positive decreuses frotus is amperes for $L=22 \mathrm{~cm}$ as the zup is increased and for the sphere negative from 20 amperes for $L=10 \mathrm{~cm}$. The magritudes vary over wide limits. The eurrent rises to crest in about 0.01 usec and then drops somewhat exponeffially to zero in about 0.3 usec for the splice either positive or negative.

The current ceases after the disappearance of the first current pip at larger app settings but with the smaller gaps, such as $L=20 \mathrm{~cm}$, for the application of the positive potential Fig. 1(L) shows that after the current afmost decreases to zero it shwly rises again becoming more rapid and is finally limited by the constants of the circuit. The oscillogram does not
record the final current is a protective gap short-circuited the oscillograph element. This rise in current has been termed by Park and Cones the "second discharge rise."

The first curtent pip is appoosimately the same for the application of a negative impule wave, except as to magnitude, as that obtained for an applied positive impulse, but the second discharge tise is not as gradual in its change and has steeper rates of rise. In each case after the second discharge rise has begun, complete breakdown follows unless the voltage wave is chopped.

Postive Discharges

The photographs exaibit different characteristics for positive and negative discharges. Since the discharge is the simnpler with the sphere positive it will be described first. For the longer gaps the photographic evidence indicates that streamers that produce light radiate from the sphere but do not complete the passage of the gap. As the gap is reduced to 25 cm some of the streamers do complete passage but the current still drops to zero and breakdown does not occur FC. $L=$ 20 cm complete breakdown occurs. Photographs taken when the waves were chopped by means of a parallel gap show that the appearance of the discharge begins to change after the second discharge

Fig. 2. Progress of channel tip across - $20 . \mathrm{cm}$ gap for the conditions of Fig. 1 for the sphere positive The dotted line is the slope of the distance-lime (solid line) curve
rise starts. This change consizts of one or more bright discharge channels that start at or near the sphere. These discharges have been termed "chamnels" by Park and Cones to distinguish them froth the first kind of discharge whith they termed "streamers." These channels move in zigzag fashion across the gap. The length of the channel as a function of time was measured from the progress of the photographed tip and is shown in Fig. . 2.

To form a working thesis on which to base discussion the following explanation similar to Park and Cones' is offered to describe the phenomenon. There is no space charge in the interelectrode space prior to intiation of the discharge. The charge on the spaere is determined by the electrostatic solution for the particular configuration. The field is strong near the sphere and decreases as the plane is approached. If the gap spacing is sufficiently small, a zone in the vicinity of the sphere is stressed beyond the critical value of about 30,000 volts per cm. As a free electron appears in this overstressed zone, streamers form which radiate from the sphere. The streamers are not uniform in leng th and with a sufficiently large gap none reaches the plate. The net effect of the streamers is to produce a space charge that develops its own field and potential drop. Since the applied voltage across the gap is constant, as the space charge develops, less potential is available to produce the charge on the sphere. Consequently the elmotric feld adjacent to the sphere decreases until it reaches 30,000 volts per cm at which point further supply of current is ithibited. The net result is that when the gap is long, a ball of space charge forms around the sphere. A state of equilibrium is attained for which the formation of the space charge is arrested and ionization processes cense. If the gap is decreased and an impulse is reapplied a new state of equilibrium is attained for which the ball of space charge is larger. Finally, as the gap is further decreased, the space charge expands to occupy the entire interelec. trode space and, with additional reduction, conditions become conducive to the development of a channe! from the sphere. The discharge is converted from a glow discharge to an arc plasma that begins to grow from the sphere toward the plane at a rate indicated by Fig. 2. The criterion for the critical condition, next to the sphere, appears to be such that a charge distribution will produce an average gradient across the entire gap of about 6,000 volts per cm . Conditions governing the transition from curons to an are

F. 3. Current response ${ }^{13}$ of a 200 -inch rod-rod gap when a 3×50 - $\mu \mathrm{sec} 3,000,000$. volt surge is applied

A - Votuge wave
B, C, and D - Current waves
E - Timing wave of 100,000 cycles per second
are not well understood. It is nesessary to wait for further developments by the physicist before a more delinite explanation can be given. The drop along the plasma channel is very low and thus when it is initiated the effect is progressive as the channel merely constitutes in effect an elongation of the positive electrode. The continually decreasing gap length encourages all the factors originally responsible for the development of the discharge. When the bead finally reaches the plate, the channei constitutes a virtual short circuit of the surge generator and the subsequent current is dependent upon the constants of the zenerator circuit and the characteristics of the are. This effect is illustra'ed by the cursent oscillogram for the $20-\mathrm{cm}$ gap of Fig. 1.

Negative Discharges

With the sphere negative, the charge develups within the interelectrode space in a similar manner, although the actual

Fig. 4. Sparkover of a 16 -unit insulator string equipped with arcing rings of 4-inch-diameter pipe ${ }^{14}$

> A- Five successive applications at increasing voltage
> B-- Currents resulting from A
> C-Still higher voltage with corresponding current
> D- Application of voltage and resulting current with the insulators only Nate the sudden rise of the current prior to the later increase
mechanism of production may be quite different. The negative discharge is more diffuse than the positive h visually and photographically. It c.... sists of numerous streamers of fine texture White the positive dischatge consists of fewer but stronger and more crooked streamers.

In the authors' interpretation of the phenomenon just before sparkover it is assumed that the electric gradient, because of the space charge, is approximately constant across the gap although this assumption is not essential to a generai understanding of the phenomenon. For the authors' purposes it is convenient to think in terms of an average gradient across the gap. Returning to the Park and Coves exp. ments, as the gap is decreased and sufficiently small, the gradient in the inter lectrode space due to the space charge increases and the charge density next to the sphere is higher than at the plane. But the conditions necessary to initiate a channel from the positive plane are reached prior to the conditions necessary to initiate a channel from the negative sphere. So the channel starts from the plate before one starts from the sphere. But as the positive channel progre ses from the plate, conditions become more critical at the sphere and a channel is finally initiated from there also. The two channels meet
in mid gap. From this point the current is again determined by the constants of the surge generator and the characteristics of the are.

Discseses
 90004110

The general nature of the breakdown of nonhomogeneous saps, consisting of a corona discharge followed by the development of a conducting channel, has been known from the earliest days of impulve testing For example, Slepiun and Torm' in 1929 by chopping impulse waves showed by means of photographs the stages of progress of the discharge and also some indication of the maximum currents. Utilizing a rotating camera Allibone. ${ }^{3}$ in 1938 , presented an extensive study of discharges in long gaps and es. tablished the chronological sequence of the leader followed by a return stroke in the laboratory. He commented upon the absence of a discharge from the plane when the rod of a rod plane gap is positive. This distinction between the corona starting voltage and the breakdown was recognized as early as 1931 by Goadlet, Edwards, and Perry ${ }^{10}$
Komelkov ${ }^{\text {t1 }}$ in 1947 working with gaps between 10 and 100 cm concluded that the dirup in the channels was very low, sbout 35 wils per cm, and that the gradient in the corona streaniers was in the tange of 6,000 to $10,000 \mathrm{volits}$ per cm . Saxe and

Meek ${ }^{13}$ also concluded that the drop along the channe's is small.

Hagenguth, Rohils, and Degnan'" furnished limited evidence on a vaster geomecric scale which might be viewed as supporting the general nature of the discharge discussed here. They measured the current flowing in the ground electrode of a 200 - inch rod rod gap when a $3,000,000$ volt negative $3 \times 50-\mu \mathrm{sec}$ impulse was applied to the free electrode. Fig. 3 is a reproduction of Fig. 12 of their paper. Carve 1 shows the applied voitage which for this gap was just below critical. With 20 applicatious of this voltage, nine cases developed a glow that bridged only a portmon of the gap and the current in the grounded electrode was as shown by trace B; in nine cases the glow bridged the entire gap and the current was as shown by trace C, and in two cases complete sparkover occurred and the current was as shown by trace D. The magniudes of the three current pips were remarkably cousistent and averased 7.9 amperes. The duration of the pips was? $? ~ \mu \mathrm{sec}$.

As early as 1020 Torok and Pielder ${ }^{14}$ measured the predischarge currents of suspension insulators. Fig t is a reproduction of some of their oscillograms. In all of these records the negative pote was grounded. Fig: $4(\mathrm{D})$ shows the voltage and the current for flashover of a string of 16 insulators. The delay in current occasioned by the tuecessity of the correct positioning of a free electron is evident and the resultant current is typical of others that have been presented Figs. $4(A)$ and $f(B)$ are mates; the former shows the applied voltages and the latter depicts the resulting eut is as a 16 -unit insulator string with an arc...g ring of t inch pipe was flashed over. Fig. 4(C) shows the same test piece with the application of a still higher voltage. The short-circuit current of the surge generator was most likely abuut 2.000 amperes. It is not known whether the current trace recorded the crue maximum as it may have been limited by the operation of a protective zap plaved across the shunt

Thus with this geueral background of the phenomenos and limited historical review, a discussion of the component parts of the discharge will be undertaken.

Corona Streamers and Envelope

It is cleat frotn the foregoing that for impuise voltages in excess of the corona threshold voltage but less than the critical breakdown value, a self-limiting space charge is distributed throughout the interelectrode space. This charge must in
some manner produce an electric field that inhibits further growth of the discharge.

Averige Electric Gradient at Sparkover

For Positive Discharges

As has been mentioned, Allibone commented on the abseuce of an upward channel from the plane of a rod-plane gap when the rod is positive. Park and Cones also observed that for the sphere positive the channel proceeded from the sphere completely across the gap. Probably the absence of a channel arising from the plate was most dramatically confirmed by Norinder and Salka ${ }^{\text {ts }}$ in their elaborate photographic investigation of spark discharges. The absence of a complication caused by the formation of a channel from the plate insures a somewhat simpler analysis for this type of discharge and for this reason the rod-plane discharge with the rod or small sphere as positive electrode will be considered first.

After a voltage is applied across a zap. the space charge expands and becomes more intense untit the gradient tiext to the electrode drops to 30,000 volts per cm as was mentioned earlier. When the radius of the tod of a rod plane gap is small, thent only a small (in the limit zero, for a pointed electrode) potential is required to produce a charge on the electrode that will result in a gradient at the elec. trode of 30,000 volts per cml. Then practically all of the applied voltage is
available to produce the space charge. For these cases, when the gap is adjusted so that the corona space charge envelops the entire interelectrode space, the applied voltage divided by the gap length is the average gradient along the axis of the corona envelope.

Once the channel has begun to form the discharge develops to ultimate sparkover almost invariably: For the critical sparkover voltage, half of the applications of voltage produce sparkover. Consequently, this voltage constitutes a measure of the average gradient of the space charge to produce sparkover because the cases that do not cause sparkover represent the maximum development of the space charge without the formation of a channel.

In Fig 5 the average critical sparkover gradients of rod-to-plane and rod-rod gaps from different sources for both polarities are plutted. The positive polarity data are indicated by the full lines. The Bellaschi and Teagues data represented the full wave ($1.5 \times 40-\mu \mathrm{sec}$) critical sparkover values and were made on gaps up to 200 cm . Breakdown occurred at about $8 \mu \mathrm{sec}$. The Hagenguth Rohlfs, and Degnan ${ }^{13}$ data covered an even greater range up to 640 cm with an impulse wave of $3 \times 50 \mu \mathrm{sec}$. They stated further that their unpublished data, with gap spacings up to 50 feet tended to give average gradients of the same value. The Gorev, Zalesky, and Riahovit data,

Fig. 5. Average crest impulse sparkover gradient for beth positive and negative polarity for gaps of different configuration as a function of gap length
with 1.5×40 usec imp.ilse waves, agreed quite clusely with the other data. The Norinder and Salka ${ }^{\text {is }}$ curve for the rodplane sparkover was only 11% below that of the otbers. The curves marked by a small horizontal line with curled up end represent borizontal wire-to-plane data. They agree almost exactly with the rodplane curves. These curves indicate a practical wo-king average of the average crest sparkover gradient for long gaps of about 5,400 volts per cm for rod-plane gaps and about 6,000 yolts per em for rodrod gaps which can also be interpreted as the average gradient along the axis of the gap produced by the space charge

Part of the discrepancy between the laboratory data may be ascribed to differences in waveshape of the applied voltages as well as differences in methods of impulse measurements and to laboratory and observational conditions. Berger's CIGRE report, is which discussed comparative tests by 14 different laboratories, indicated that the critical sparkover voltage gradient for a 45 cm rod rod gap for positive polarity gave a range of from 6,000 to 7,600 volts per crn even after air density corrections had been taken into consideration.

For Negative Discharges

In Fig. 1 the waveform of the first discharge pip has approximately the same waveshape for both polarities but the magnitude for positive polarity is somewhat larger than for negative polarity. A corresponding difference in the relative charge for positive and negative applied voltages supplied to the corona envelope of a cylindrical conductor above a plane when impulse has also been noted by Wagner and Lloyd. ${ }^{19}$

As mentioned previously a fundamental difference does exist when a rodplane gap is impulsed by a regative potential and when impulsed by a positive potential. This difference is the appearance of local discharges at the plate after the negative corona space chatge has developed to some extent. One of the plate discharges finally develops into a plasma channel that stows toward the rod before a channel develops from the rod. Because of the presence of the discharges from the plate, the sparkover curves cannot be used directly to determine the average gradient that leads to development of a plasma channel from the rod. One wonders at what value of average gradient would a negative space charge develop into a channel from the cathode if the space charge were permitted to form from the cathode without interference of a corresponding discharge from
the anode. During the initial stages of the channel growth the velocity of the channel is small as compared with the later stages. As the head of the channel progresses, the space charge tends to deveiop ahead of it. The initial channel develonment from the anode merely serves to shorten the gap length and increases the gradient adjacent to the cathode to a point where a cathode channel will form. The influence of the anode channel on the cathode channel should be proportionately less for the long zaps than for the all gaps and should be less for a plane anode than for a rodanade So, in order to estimate the average bradient at which channels are developed, one should refer to the sparkover data for rodplate gaps for long spacings, and make some allowance for the develop. ment of the channel from the plate. From Fig. 5 the critical average gradient at which the negative channel develops is estimated to be 8,000 to 9,000 volts $/ \mathrm{cm}$.

Time to Establ 15 H the Charge

Most photographs of the predischarges (used merely to apply to that which occurs before the praduction of the conducting channels) show very pronounced streamers of high light intensity. The bead of some of these streamers travel at very high velocities. For example, Park and Cones stated that the mean streamer velocity was found to be 500 cm per $\mu \mathrm{sec}$ or 1.7% the velocity of light for the sphere negative and 800 cm per usec or 2.3% the velocity of light for the sphere positive. The average deviation was 90 for the sphere negative and 100 for the sphere positive. However, these numbers cannot be siewed as the actual rate at which charge was developed its the interelectrode space. Some other mechanism must have been present which the physicist may help to explain. As mentioned by Park and Cones, the streamers "should be thought of as a traveling wave of high charge density which is propagated by a process in sthich new charges are contimually produced at the leading surface of the ball by the high gradient there. In the path behind the ball there is left a high concentration of both positive and negative ions, with an excess of positive ions in case the sphere is positive and an excess of negative ions in case the sphere is negative." The shape of the current wave of the first discharge pip is quite repeatable for the sphere positive and somewhat less repeatable for the sphere regative. The average waveshape rises to crest in about $0008 \mu \mathrm{sec}$ and decays approximately exponentially to half value in about $0.08 \mu \mathrm{sec}$. As Fig.

1 indicates, the time to reach zero is about $0.3 \mu \mathrm{sec}$. The waveshape stays essentially constant for both polarities, for all gap spacings, and for fast and slow applied voltage waves.
Remembering that in Park and Cones experiments the applied voltage was kept constant and the gap conditions were varied by changing the gap length, the fully developed discharge will be taken as that for which a $0.07 \times 100-\mu \mathrm{sec}$ positive wave produced 50% sparkovers. From their data this was 24 cm for positive polarity: The effective velocity of charge formation for the pusitive space charge, is will then be defmed as the velucity abtained by dividing the half gap length by the sime required to produce the fully developed field. Thus

$=0.0013 c$
For the negative polarity, the effective velocity of charge formation is
$v_{1}=\frac{11.5}{2 \times 03 \times 10^{-4}}=1.9 \times 10^{\prime} \mathrm{cm}$ per sec
$=0.00066$
The paper by Hagenguth. Rohils, and Degnan ${ }^{13}$ provided another factor. At the critical sparkover pount of a 200 -inch rod gap with a negative impulse applied to the free rod, the time required to develop the space charge was about 9 $\mu \mathrm{sec}$. This corresponds to a velocity of
t, $=\frac{200 \times 2.54}{2 \times 9 \times 10^{-6}}=2.8 \times 10^{7} \mathrm{~cm}$ per sec
$=0.0009 c$
(3)

Considering the wide range in gaps, from 4.3 to 200 inches, to which these values applied it is remarkable that these rumbers are sn sery nearly equal.
Conceming the actual physical process involved in the establishment of the space charge, it will be observed that the electron drift velocity in a feld of 30,000 volts per cm and a pressure of 760 mm (millimeters) is, from Loeb, ${ }^{20}$ about 14 $\times 10^{7} \mathrm{~cm}$ per sec or 0.0005 c . This field is chosen for comparison purposes because it lies midway between the initial and final fields. This value compares favorably with the values given by equations 1,2 , and 3.

Charge and Electric Field

So far consideration bas been given to characteristics of the space charge that are subject to actual experimental determination such as the averagecriticallireakdown gradient and the exterbal current feeding it. Because of the diffculties of measure-
ment, little is known of the actual structure of the charge distribution or of the fietd distribution. Doubtless these distributions are a function of time. Photographic evidence points to the early development of streamers which may be quite independent of and unaffected by each other. They probably are responsible for ionization phemomena that produce charge separations. The speed with which the space charge develops suggests strongly that its development is associated with the movement of electrons rather thats ions for both polarities. In time the axvements of these charges produce a mass or aggregate effect it which all the streamers play a part.

In contemplating the average electric gradient just prior to breakdown, from Fig. 5 for positive polarity, one is immediately struck by the fact that it is constant over a very long range of gap lengths. What sort of charge distribution would give rise to an average gradient that is indepetident of gap length? Park and Cones suggested a charge concentration that varies inversely as the distance from the spherical electrode in their sphereplate gap. For either a truly spherical or truly cylindrical charge distribution the resultant electrio gradient is a constant. For a rod plane gap with the rod positive. such distribution can be viewed as being produced by the following mechanism. Suppose that positive ions and electrons are produced uniformly along the numerous very high-speed streamers that emanate from the positive rod. As the electrons move toward the anode, if the positive ions that are left behind have a uniform radial distribution aloug each streamer, then the volume distribution would vary inversely with the radius.

The thagnitude of the space charge current and the photographs of the discharge both indicate that the mechanism of the negative discharge differs from that of the positive discharge, but the resultant charge distribution may still result in a field that is suhstantially constant.

Interim Summary

It appears that if a rectangular voltage is applied across a nomuniform gap whose average gradient is just less than the values given in Fig. 3, a self-limiting space charge develops that inhibits further flow of current. The flow of the charge into the gap is at a rate of about 0.001 c wlich corresponds approximately to the electron drift. Park and Cones' data show that for 10. to $20 . \mathrm{cm}$ gaps this development requires about $0.3 \mu \mathrm{sec}$ for its completion and in the Hagenguth. Rohifs, and Degran data about 9 usec

Fig. 6. Velocliy of the leader development as a function of the terminal voltage, u_{s} for three different constant values of the unbridged gap for a rod-plane gap with the rod positive." Gap spacing is 150 cm and seties resistance in the circuit is 2,000 ohms

with a 200 -inch gap, With slower rates of rise and an abundance of electrons to trigger the gap, the current supply. ing the space charge is reduced in magnitude and spread out over a longer time. A considerable gradient exists within the corona envelope and for the positive discharge, just prior to sparkover, the value is about 5,400 to 6,000 volts per cm and about 8,000 to 9,000 volts per cm for the negative discharge.

Channels

It has been observed by a number of investigators that the positive discharge from a rod or sphere-plane gap is much more stable and consistent than the negative discharge. This applies particularly to the development of the cha nel Probably this explains why more data are available concerning the positive charne!

Positive Channels

Park and Cones ${ }^{7}$ presented the data shown in Fig ? concerning the progress of the bead of the brightly luminous positive chamnel as it mosed across the gap of the setup mentioned previously. The gap was set for 20 cm and a 0.07×6 wave having a crest magnitude of 145,000 volts was applied which was chopped by a parallel gap. The symbol t_{e} indicates the time after the first current pip at which the wave was chopped. Corresponding photc aphs of the discharge showed the distance that the channel had progressed during the chopping time. The slope of this curve is plotted by the dotted line and indicates that the the initial velocity is $3 \times 10^{6} \mathrm{~cm}$ per sec or 0.0001 c which rises slowly at first and
then more rapidly. According to Park and Cones, at midgap (10 cm) the rate of growth is about $20 \times 10^{6} \mathrm{~cm}$ per see or 0.0007 c .

Akopian, Larionov, and Torosian ${ }^{21}$ undertook elaborately combined oscillographic and rotating drum photographic tests on rod-plate and rod-rod gaps of $100-200 \mathrm{~cm}$ with positive impulse potentials applied to the gap. Thus, they were able to co-ordinate the travel of the head of the channel with the instantaneous value of the terminal voltage. Komelkov ${ }^{11}$ had previously demonstrated that the drop in the channel was about 50 volts per cm . Therefore, assuming the drop so be negligibly small, the voltage across the unbridged portion of the gap is identical with the terminal voltage. They showed as indicated in Fig. 6 (Fig. 8 of Akopian, et al.) that for a rod-plane gap with positive potential applied to the raf , the velocity of the head of the channel for a constant value of the unbridged gap varied linearly with the applied voltage. In this figure w_{i} is the applied voltage in kv, s is the gap length in cm , and x is the unbriaged portion of the gap in cm . Curves are drawn for three constant values of the unbridged gap The velucity rises from zeto at a value of terminal voltage u_{0} that would produce discharge when applied for some length of time ("prolonged action" according to the language in reference 21). Beyond this voltage the velocity is proportional to the excess of the terminal voltage above this value. The values of u_{o} for the three cases are indicated below the abscissa. They also showed that the positions of the straight lines are related and that for rod-plane gaps the following relation for the velocity holds.
$;=k \frac{u_{i}-u_{0}}{x-0.23 x}$ cm per $\mu \mathrm{sec}$
For a rod plane gap up $10200 \mathrm{~cm}, k$ is about 9 and for individual discharges the coefficient k may diverge from its mean value within $\pm 20 \%$. With u_{0} known as a function of x (very nearly linear), the velocity t and consequently x can be solved in tetms of the applied voltage u_{t}. Akopian, Larionov, and Torosian ${ }^{21}$ have tested this procedure with applied voltage waves of widely differing shapes with gratifying results.

Negative Ciannel.s

The nagative channel is much more erratic that the positive channel but, because the experimental results are usually complicated by the preseace of positive channels, it is difficult to diseriminate between the effects of the two polarities when both are present and in a rievelopmental state. Examination of the channel ourrents of Fig. 1 reveals that the currents rise more sharply when the spiere is negative. This may possibly indicate a bigher velocity for the channel developrag from the sphere. It has also beets obser ed photographically that the positive plate channel progressed a considerable portion of the gap before the negative channel started from the sphere. But in spite of this handicap the two chamnels met in mid-gap. This was possible only if the negative channel traveled with a bigher velocity.

Similar evidence has been provided by the experiments of Hagenguth, Rohifs, and Degnan ${ }^{13}$ which were described previously in connection with Fig. 3 . In nine out of 20 shots with the same voltage applied, the glow bridged the entire gap without sparkover. In Fig. 11 of their paper a well-defined streamer can be seen "progressing from the grounded positive rod within the glow emanating from the negative electrode." For the particular photograph sbown this streamer has progressed about one fourth or onethird the distance across the gap. "On complete breahdown of the gap (not shown) at the same voltage there is a well-defined split in the spark near the middle of the gap, indicating where the the firal streamers in present terminology, channels |emanating from both electrodes, met." This experiment also strongly indicates higher velocity of the negative channels.

Norinder and Salka ${ }^{\text {is }}$ related similar expenence with rod atsd sphere-plate gaps. The plasma chanvels began at the plate (anode) and proceeded toward the rod or sphere electrode. At a cunsiderably later time similar channels emanated
from the rod or sphere and met approximately in the middle of the gap.

Rod-RodGaps

For rod-rod gaps, channels form from bothelectrodes. Akopian, Larionov, and Torosian determined that fur an clectrode separation of 125 cm the velucity with which the channel tips approach each other can be expressed in the relation
$v=1]^{\frac{w_{1}-t_{0}}{x}} \mathrm{~cm}_{\mathrm{m}}$ per $\mu \mathrm{sec}$
where ψ_{1} is again the actual instantaneous voltage in kv across the electfudes and t_{0} is the critical voltage in kv of the unbridged gap, x in cm They generalized no further than this single gap but did show that this relation produced good results when the applied voltage was varied over a wide range of waveshapes.

Rusck, ${ }^{22}$ on the other hand, stated that this approach was not a complete solution because tests made in bis laboratory "show that the formula given in the above mentioned paper cannot be utilized on ather gaps." He cleverly obviated the complexity of taking photographs of the discharge by simply accepting two important assumptions that are also inherent in the work of Akoprian, Larionov, and Torosian. First, that the drop in the channel is negligibly small and conse quently the channels can be viewed as extensions of the electrodes, and second,
that the velocity of approach of the channel Lips is a function of the instantaneous electrode voltage and the length of the unbridged gap. As a basis for his work it was necessary to determine experimentally the time to sparkover of gaps to a rectangular applied voltage wave. He found that by applying such a wave to irradiated gaps from 10 to 70 cm the time to sparkover, 7 , could be expressed by the following formula:
$\tau=\left(\frac{20+10 s}{U}\right)^{\prime}$ in $\mu \mathrm{sec}$
Where U is the masritude of the applied rectangular wave in bv and s is the gap length in cm . Rusck also stated that because the critical sparkover voltage, U_{0}. is approximately a limear function of the distance 5, the time lag can be expressed by
$\tau=4.7\left(\frac{U_{0}}{U}\right)$ in $\mu \mathrm{sec}$
His relations were satisfactorily utilized for different types of upplied waveforms. He warned that his work should be applied to time lags less than 4 ta 5 usec, as incorrect results would be obtained for longer times.

Observations by the Authors

If u_{0} in equation 5 is explicitly defined as the critical sparkover voltage of a

Fig. 7. Time-log curves for stendard rod-rod gops in resporse to a 1.5×40 - sec voltage wave for spacings from 20 to 100 inches 13

Fig. 8. Calculated time-lag curves for rod-rod gaps for various applied voltage waveshapes
rod rod gap in response to a rectangular wave and it is assumed that this quantity is proportional to the gap length, then
$u_{v}=m x$ in $k v$
If the difference of the applied waveforms is taken into consideration the factor m corresponds approximately to the average sparkover value in Fig 5 in kv per cm Equation 5 can be rewritten as
$\frac{d x}{d t}=\cdots k\left(\frac{u_{t}}{x}-m\right)$
whicb merely states that the velocity is proportional to the excess of the average gradient across the unbridged portion of the gap over the critical sparhover gradient. Generally the factor k will vary with different gap lengths; the negative sign is inserted for analytical purposes so it may be recognized that the unbridged gap decreases when the quantity with the parenthesis is positive Further transformation of equation 9 is possible to the following
$\frac{k m}{s} d l=-\frac{\binom{x}{s}}{\frac{1}{m}\left(\frac{u_{1}}{s}\right)-\binom{x}{s}} d\binom{\left.\frac{s}{s}\right)}{s}$
The right-hand side is thus reduced to a per-unit gap length basis.

Rusck's equation " which is upplicable to rectangular voltage waves applied to $10-70 \mathrm{~cm}$ gaps shows that the time lag is independent of the gap length. The work of Mctuley ${ }^{28}$ with 1.5×40 impulse waves on gaps up to 100 inches when replotted in Fig. 7 shows a similar inde. pendence of gap length. If, in equation9,

$$
\begin{equation*}
k=K s \tag{11}
\end{equation*}
$$

then equation 10 is also independent of gap length. This simply means that the
velocities of the channel tips, as will be explained in more detail later, are proportional to the electrode spacings Some such effect can be expected from the physical considerations involved Suppose as premised earlier, that in their development the corona streamers deposit a charge density in the interelectrode space, such that at the instant of chan nel initiation the electric gradient between the electrodes is essentially constant and equal to the value m. Furthermore, if it is assumed that this space charge is relatively immobile, then as the arc plasma develops within this space,
it forms a good conductor extending as a thin pencil from each electrode. In order to satisfy the condition that the electric gradient along these good conducting pencils is zero, it is necessary that charge be induced along the pencil that will produce an electric field jusc equal and opposite to that which had existed previnusly. The induced charge will vary linearly along the pencil and will be proportional to the distance traveled by the tip. The charge density, and consequently the electric field, at the tip will be proportional to the spacing of the electrodes
Now if a new term, V, is defined as the overvoltage factor
$V=\frac{1}{m}\left(\frac{u_{i}}{s}\right)$
and equations 11 and 12 are inserted into equation 10, then
$k m d t=-\frac{x / s}{V-s / s} d(x / s)$
In this same nomenclature, equation 9 expressing the velocity can be changed to the following

$$
\begin{align*}
\frac{d x}{d t} & =-k m\left[\frac{1}{m}\left(\frac{u_{1}}{s}\right)_{s}^{s}-1\right] \\
& =-s K m\left(\frac{V}{x / s}-1\right) \tag{14}
\end{align*}
$$

Which confirms the previous statement that the velocity is proportional to gap length.

Fig. 9. Determination of the variation of channel velocity, current, and length of unabridged gap with time for an opplied $0.5 \times 5-\mu \mathrm{sec}$ voltage waveshape for 6 todrod gap. Solid line and dotted line $x /$ surves for an applied surge with crest overvoltage factors of 1.25 and 1.10 , respectively

Fig. 10. Colculated time-lag curves for a rodrod gap with an applied rectangular voltage wave as determined from equation 16 compared with Rusck's" lest data indicated by the points
X-Positive polarity

- Negotive polarity

Apfleation to Partictlar Waveshapes
With V known as a function of time, equation 13 permits solution of the determination of the diminution of x with time. Solutions will be obtained for two waveshapes.

Rectangular Wate

With V constant
$K m \int_{0}^{t} d t=-\int_{0}^{z / 4} \frac{x / s}{V-x / s} d\binom{x}{s}$
$K m t=-(1-s / s)+V \ln \frac{V-x / s}{V-1}$
and for complete sparkover, the time lag T is
$K m T=-1+V \ln \frac{V}{V-1}$
The value of T is plotted in Fig. 8 for Km equal to 0.5 but the curve is applicabie to any value of Km . This value of Km was used as it corresponds to a value that, as will be shown shortly, fits the observed test data of Rusck and of Akopian, Larionov, and Torosian.

Livearly Rising and Falling Wates

The time lag, T, for a specific overvoltage factir, V, for other shapes of the applied voltage is most conveniently determined by using a step-by-step solution of equation 14. One such solution for a $0.5 \times 50 \%$ sec surge, whase crest overvoltage factor is 1.25, is shown in Fig. 9. The guantity x / s remains at 1.0 per unit until the applied voitage exceeds an ove:
voltage ratio of 1.0 at which time the channel begins its travel across the sap. Therefore, the time denoted by the distance c is actually a "dead time", that is, during this time the voltage across the gap is not sufficient to initiate a channel. The total time, T, for the channel to complete its passage of the gap is $3.8 \mu \mathrm{sec}$.
Also, the velocity of the channel with respect to time is shown in Fig. 9. The significance of this curve is must easily visualized by rewriting equation 14 as

$$
\begin{equation*}
\frac{d x}{d t}=s K m\left(\frac{V-x / s}{x / s}\right) \tag{17}
\end{equation*}
$$

Therefore, from Fig. 9, the velocity for any specific time is the distance a divided by distance b multiplied by the constant $s \mathrm{Km}$. The current curve of Fig. 9 is discussed in a later section.

In Fig. 8 the time lag curves for several waveshapes for $K m=0.5$ are presented. The overvoltage factor is plotted for other than the rectangular wave as defined by equation 12 except that $w_{\text {}}$ is the crest voltage. At sparkover times when T is less than the front of the wave, the overvoltage facior plotied is the crest voltage actually obtained across the gap. In other words, these curves are constructed and plotted in the same manner as normal time lag curves. As noted, the time axis can be changed easily for any other value of Km .

It may be seen in Fig. 8 that the critical voltages va inversely with the wave tail but are independent of the wavefront. For example, the critical voltage for a $1.5 \times 40-\mu \mathrm{sec}$ wave is about 1.05 and for a $1.5 \times 10-\mu \mathrm{sec}$ wave is about 1.13 . However, the critical voltages for a $1.5 \times$ 40 - and a $0.5 \times 40 . \mathrm{sec}$ waves are equal. As expected, with small values of time the reverse is true; that is, the front is the
dominant characteristic. Most of the difference in time lags for short times is due to the differences in dead times.
Consider now the critical voltage for a $0.5 \times 5.0-\mu \mathrm{sec}$ wave. According to these calculations and theory, at an overvoltage factor of $1.25, T=3.8 \mu \mathrm{sec}$. It was noted in the calculations that for an overvaltage factor of 1.10 the gap did not spark over but channels were initiated. This is itlustrated by the dotted curve of Fig. 9 which shows that x / s starts to decrease when the overvoltage ratio exceeds 10. However, because the short wave tuil causes a rapid decrease of volt. age, the x / s curve reaches a minimum value, and then rises to its original value of unity.

Interpretation op Test Data

Rusck's data are convenient for tecting the validity of the relations presented here because he attempted to obtain a tectangular applied voltage wave. It tose to crest in about $0.3 \mathrm{\mu sec}$ and was flat thereafter with the absence of oscillations. Fig. 10 shows his test points for rod-rod gaps of from 10 to 70 cm . There was no appreciabie diterence between positive and negative pilarity. By choosing $K m=0.46$ and $m=6.15 \mathrm{kv}$ per cm , the curves represent the computed results for a rectangular wave. For times longer than $1 \mu \mathrm{sec}$ the agreement is very good, about as good as Rusck obtained with his expression. But below 1 цsec Rusck's relation shows a better agreement with tests.

Fig. 11 is a reproduction from the paper by Akopian, Lariunos, and Torosian showing the time lag curves for several different applied voltage waves for a 120 cm rodrod gap. The relations are the same as used here for which k or K s was

Fig. 11. Time-log curves for a $125-\mathrm{cm}$ rodrod gap cal. culated by equation 5 compared with test data for applied positive, volarity volt. age waveshopes is illustated in inset ${ }^{21}$

$$
\begin{aligned}
& 1-\text { Standard } \quad 1.5 \times 40-\mu \mathrm{sec} \\
& \text { wave, } t_{1}=8 \mu \mathrm{sec} \\
& 2-t_{2}=2.9 \mu \mathrm{sec}, \text { olcoge ratio } \\
& \mathrm{u}_{2} / \mathrm{u}_{1}=06 \\
& 3-\mathrm{t}_{2}=1.8 \mu \mathrm{sec}, \quad u_{2} / u_{1}=063
\end{aligned}
$$

11. The value of K is then $11 / 125$ or 0.088 . From the $1.5 \times 40-u \sec$ curve the value of m was estimated as $720 / 125$ or 5.76 kv per cm . The factor Km is then 0.507 which may be compared with 0.46 used in computing the curnes in Fig 12. An average value of 05 might very well have been used in both Fig. 10 and Fig. 11. The other two curves of Fig. 11 itsdicated the degree of agreement obtainable with widely diferent waveshapes, In their computation it is presumed that Akopian, Larionov, and Torosian used the experimentally observed potentials directly across the electrodes and therefore took into account any internal drop that may have existed in the surge generator.

Experiments by the Authors

The authors undertonk treasurement of the eurrent in lonig gaps under sparkover conditions in order to verify some of the discussed concepts and also to study the factors affecting the current variations, because this is the most important variable to the transmission engineers. A surge gencrator consisting of $30 \mathrm{1} / 4$ microfatad capacitors was used. Other constants of the circuit are shown in the insert of Fig. 12. In one series of tests a vertical 6 -foot $1 / 2$ - by $1 / 2$-inch rod rod gap was used. The tip of the lower gap was about if feet above the laboratory
floor. The voltage across the gap was measured with a 21,000 -ohm compensated voitage divider and the gap current was measured simultaneously by means of a shunt located about midway in the lower rod. Successively higher voltages were applied to the gap by incrensing the charging voltage of the generator. The charging voltage is an arbitrary numiver depending upon the a-c voltage applied to the low voltage winding of the transformer, which supplies the voltage that is subsequently rectified to charge the capacitors of the generator. However, while arbitrary, it is a quantity proportional to the voltage to which the generator is charged, prior to being discharged into the test circuit. For the critical voltage of the 6 -foot gap the charging voltage was 98 volts. The resultant waveshage of the critical voltage is shown in Fig. 12. Increasing the charging voltage resulted in drawing more current from the generatur during the discharge process and this current drawn through the resistance of the surge generator resulted in considerable distortion of the voltage across the gap. Figs. 13(A) and (B) are typical oscillograms of the voltage and the curtent. The inductance of the surge generator generally does not play an important roie. The oscillation in the current and voltage following completion of the passage of the gap by the are plasma is caused by the interplay

Fig. 13. Typical oscillograms of voltages across and currents through two parallel 6 -foot rod-rod gaps separated 18 leet. Charging voltage is 200 volts

A-Voliage seross zaps
B-Current through gap which sparked over C-Curtert through gap which did not spark over when other gap sparked over
of the inductance and the capacitance. Its effect has been ignoted by estimating the current, when necessary, as the average current during this period.

In Fig. 12 a number of curves of voltage and current for different charging voltages are plotted. Contrary to what might be expected from the theory just presented, current does not begin to flow at just the instant that the critical breakdown voltage is exceeded. The titme delay at which current is initiated is longer, the smaller the excess voltage over critical. The delay is made up of two components, first, the period of waiting until a free electron enters the overstressed electrical zones at the two electrodes when the corona streamers that form the space charge are released, and second, the titte required for the development of the space charge and conditions propitious for the formation of the channels from the electrodes.

It was impossible in the open conditions of the laboratory to obtain a cleancut oscillogram of current supplying the space charge just under critical voltage as obtained by Park and Cones and Degnan ${ }^{13}$ Apparently the high free electron concentration caused triggering of the gap on the rising portion of the voltage wave and prevented the sharp rise and exponential decay of the current.

The results obtained did suggest that if the discharge had been delayed a crest of about 25 amperes would have been obtained.

Current-Time Relation

Saxe and Meek ${ }^{12}$ concluded that the current "is proportional to the velocity of the leader stroke." For the present this relation will be accepted and it will be assumed that the instantaneous value of the current, i_{e}, is proportional to the instamarenus velocity: Thus,
$i_{v}=-K, \frac{d s}{d t}$
The negative sign is introduced because as the unbridged gap becomes smaller the sign of $d x / d t$ must be negative and it is desirable to consider the current as a positive quantity.

If this relation is valid, then upon integrating both sides one arrives at the relation
$\int_{0}^{T}, d t=-K \cdot \int_{1}^{0} d x$
$Q=K e t$
Thie states that for any particular value of 5. Q should be constant. The area under any one of the curves of current in Fig 15 to the instant of short circuit is the total charge fed into the channel for a 6 -foot rod rod gap. The range of values thus coltaned from Fig 15 is shown by a bar in Fig 14. Similar results obtained for a. 3 -foct and a 9 -foot rod-rod gap are also plotted. The slope of this curve gives a value of $K_{\text {}}$, equal to 32 microcoulombs fer cm or amperes pet cm per $\mu \mathrm{sec}$. This lineanty serves to confirm the propor. tionality expressed by equation 18.

Saxe and Meek presented a similar curve obtained with a positive rod-to-plate gap for gap lengths of 8 to 55.4 cm which showed a remarkable linear relation for which the slope was 0.88 mictucoulomb per cm. It also jears out the general nature of the phenomenon.

Fig. 14 (left). Relation between the charge fed into the pla:me channel and gap length for rod-rod gaps

Fig. 15 (right). Experimental time-log curves for 3., 6-, and 9 -footrod-rod gaps forapplied positive polarity voltoges as illustrated

In Fig. 9, the velocity was computed for a 0.5×5 - $\mu \mathrm{sec}$ wave and an overvoltage factor of 125 . Applying the factor $K_{c}=$ 3.2 to this velocity curve gives the current curve indicated. This should be compared with the current curve in Fig. 12 for $C V=130$. The comparison, though not perfect, shows a general agreement in nature.

Time Lag Curves

With a given surge generator setting having no adjustments made to maintain a particular waveshape, the time lag curves, according to the theory presented here, should be independent of gap length. This happens because as the gap is doubled, then with the same overvoltage factor, the surge generator voltage. the velocity of the channel, and the current and the voltage drop are doubied and the same time lag should result. Therefore, if these relations are correct. the time lag curves plotted against overvoltage factors for 3 -, 6 -, and 9 foot gaps should form a continuous curve. This is demonstrated to be the case in Fig 15.

Progress of Channels

Two vertical 6 -foot rod-rod gaps were set up 18 feet apart so as not to influence each other electrostarmaly. When properly adjusted, on application of the surge potential, one, the other, or sometimes
both would spark over A current stunt was placed in the grounded electrode of gap A oniy The upper curve of Fig. 16 shows a replot of the current when gap A sparked over and the lower curve when gap B sparked over as a voltage of 200% of critical was applied to both gaps. Fig 13 shows the oscillograms applicable to this case. Initially both a aps carried current equally but as the channels developed one traveled slightly faster and hence drew mure current. It did so at the expense of the other which then did not have quite enough current to maintain a corresponding velority: Furthemore, the first one decreased the unbridged gap and tended to travel even more rapidly than the other. The effect was cumulative and the one to spark ovet robbed more and more of the current. This effect was pronounced only after the differences in velocities and the lengths of the unbridged gaps becume great. While the phenomenon is essentially a resistive one. largely dependent on feeding an appropriate amount of energy into the channel to raise the temperature to those of an arc, undoubtedly charges also rush into the channels as they progress and the fields between the approacbing tips increase. But upon contract such charges rush toward each other from the opposing chanmels through the completed paths. Only an inappreciable amount of this

Fig. 16. Current in gap \mathbf{A} when geps A and B are impulsed simultaneously. Charg.
ing voltage is 200 volts

Fig. 17. Channel formation in an unbridged gap when the other gap of two 5 -foot parallelet rod-rod gaps sparks ovet
charge is observed externally as evidenced by the ibscnce of a negative current in the unbridged gap following sparkover of the other gap Further evidence of this progrest of the channels is offered by the still phntograph shown in Fig, 17 takes of buth gups simaltaneuusly Note the extent to which the channels in the gale that did not spurkwer have ad vanced

RINGRINGGMPs

A 72 -ind h-diatneter ring made of 2 . inch pire is is mounted 24 inches aiouve a 2h inch fing, the latter was located is feet above the lathoratory floor. Surges of pusitive palarity were applied with substantially the same surge genecator constants as shown in Fig 12. In Fig. 18 the ois iflogrami tracesof woltages and curreatas are plotted. The oritical sparkover voltage occurred with a charging voltage of 118 . The character of the predis charge currents is quite different irom and of much greater magnitude than for the 6 foot rod gaps A sery large drop occurs through the resistance of the surge
generator. Neither the K for the $K_{\text {, }}$ constants applicable to rod-rod gaps are applicable so such a gap The multiplic: itv of parallel channels apparently affects the fields near the tips of the advancing channels and retards them as compared with the few channels in the simple rod. rod gap. The K constant was determined only apticoximately and was foutd to be about 0.05 to 0.06 , which is smaller that that for rod-rod gaps No further work was done on this gap at this time.

Pipe PipE Gap

An enlorseat form of the ring gap was set up. primaril. to simmiate a long parallel pipe zap which would have been impossible because of the restricted space of the laboratory Three 3 -inch aluminum pipes each 12 feet long were arranged in triangular configuration about + feet from the laburatory flour and a similar set was arranged 3 fee: above it. Fig 19 shows correspunding voltage and current traces. The currents were even larger than for the ring ring gap. A very pronounced pip oecurs at the beginning of the voltage

Fig. 18. Voltages actoss and currents through a 94 -inch ting-ring gap
traces. These are formed because of the time required for the formation of the space charge. The channel current forms very rapidly and if there were no induc. tance in the surge generator circuit would increase almost vertically. Simultane ously a corresponding drop in gap voltage occurs. For example, consider the discharge for a charging voltage of 200 The 900 -ampere current through the surge generator produces an interna! drop of $900 \times 1,000$ or 900,000 volts. The charge drawn from the surge generator capacitor produces an additional but considerably smaller drop which is direotly calculable Because of the distortions
in the waves it was difficult to line up the reference points precisely but it can be assumed that the rapid rise of the current trace should occur simultaneously with the abrupt drop in gap voltage.

Fig 20 shows a corresponding group of curves for the same gap set for a spacing of 3 feet. Even larger currents result for a particular overvoltage factor. The channel currents were mainly limited by the surge generator's ability to deliver higher currents. The high currents are attained with only modest increases in the electrode voltages. With lower internal resistance even higher eurrents should result.

No detailed analysis was made of this type of gap at this time, but just as the characteristics of the rod-rod gaps are useful for studying the nature of the stroke proper, and will be considered in this connection in a companion paper, the characteristics of the large parallel pipe gap will be discussed further in a puler concerning the performance of the transmission line tower. The K constant was found to be approximately 0.055 to 0.065.

Evergy Ped Into the Discharge

The instantaneous values of current and voltage from Fig. 12 were multiplied and integrated to give the energy fed into the discharge during the breakdown process. The results of this computation are plotted as circles in Fig. 21 against the short-circuit current, $I_{s,}$ of the surge generator. Four additional points obtained 8 months previously, also on a 0 -foot rodrod gap, are plotted by crosses. While more than one channel is involved some portion of the time, the straight line indicates the value of are energy required to rise the temperature of a pencil of the gaps to are cemperature as 1.95×10^{-3} joules per ampere pier cm.

The energy required to develop the are should be linearly proportional to the short-circuit curtent and the length of the gap. It is interesting to contemplate whether this is cunsistent with the relation that the total charge fed into the production of the are, such as plotied in Fig. 14, is proportional to gap length only. Assuming that a rectangular voltage wave V is applied to the gap and that W is the total energy supplied to the gap, then
$W=\psi Q$
If R is the series resistance, then at short circuit

W $=R I \cdot Q$
and substituting Q from equation 19

Fig. 21. Energy fed into a 6-foot rod-rod gap
$W=R K S_{1+5} S$
which demonstrates that W is proportional to $I_{i c}$ and s. Since in equation 19 it was assumed that the current is proportional to the velocity, then the linearity of the energy current relation lends further support to this assumption for rod-rod gaps.

General Discussion

The authors have kept their conjectures concerning gaseuts electronics to a minimum and have confined themselves largely to the external manifestations of the phenomenon. The physical appearance of the corona discharge alune is ainple evidence that the gaseous clectronics phenomenon is quite different for positive and negative polarity, but externally they differ anly in degree. Nevertheless, the authors wish to comment upon some aspects of the discharge.

It was mentioned in the discussion of the space charge that over a considerahle range of gaps a rather definte average electric gradient determines the longtime applied voltage at which sparkover wecurs and it further appears that the gradient is constant alung the center lize of the gap. The work of Akopian, Larionov, and Torosian also indicated this as the channel began to develop when the corresponding to the particular gap was exceeded. By "long time" in this connection they implied a time of the order of $100 \mu \mathrm{sec}$. With longer times it is quite conceivable that other factors might enter which would alter the nature of the space charge. Thus, for a sustained and continuous potential, as in d-c coroma, the charge distribution might be quite different.
It was found by Park and Cones that when a $0.07 \times 100-\mu \mathrm{sec}$ wave was impressed across their sphere-plate gap, set for a length of between 20 and 30 cm , the current tiat supplied the space charge rose to crest very tapidly and then decaved to half salue in $008 \mu \mathrm{sec}$. So it may be said that the space charge is substantially established in 0.1 asec. This period is a
function of the phenomenon accurring within the gap, as the regulation of the cirenit is sufficiently stiff that the currents required by the space charge do not produce much drop in the external circuit. While Akopian, Larionov, and Torosian used a somewhat larger external resistance it can be assumed that for the length of gaps and for the rates of tise of voltage they used, there was very little lag between the voltage and the establishment of the space charge. This explains why in their analysis of the time to breakdown the phenomenon could be described in terms if the develop. ment of the highly conducting channels alone.

For longer gaps, such as the 200 inch rod-rod of Hagenguth, Rohlfs, and Degran, the time of space charge formation is sigrificant with respect to the total time to breakdown. It remains to be ascertained whether the time lag curves for different waveshapes for such gaps can be computed in a manner similar to that employed by Akopian, Larionov, and Torosian and amplified in this paper.

The foregoing statements may be not completely valid for conditions near the end of travel of the chantuel. Here the velocity attains very high values and the space charge may not be able to develop sufficiently to keep pace with the values corresponding to the reduced untridged gap.

As the good conducting channel advances through the relatively immobile space charge, as has been mentioned previously, charges are induced upon this pencil of are plasma. From the estimates of the current in the channel and from experiments, such as performed by Higham and Meek ${ }^{24}$ on the characteristies of rapidly developed ares, it can be concluded that the diameter of the arc plasma is approximately 2 mm and that the are is a relatively good conductor. A high charge is induced in the head of the channel that is conducive to the deselopment of a high gradient laterally as well as ahead of it. This charge and gradient, in turn, give rise to copious corona discharges. The head thus expands through the process which might be termed a counter corona discharge that takes place within the original space charge. Conditions conducive to the development of such charges are present even though the field gradient is not uniform as premised by the foregoing simplified assumptions.

More than une channel can form simultaneousty, but as they progress in parallel one will advatice somenthat farther and tends to shield the others electro-
statically and thas reduce the field in advance of them. By this process the advone of the others sefarted and this eftect becomes progrestive. For gap coufigutations that approach two gesmetric lines paraftel to each ather such as fortied by two long parillel pipes, this effect should not be as dominant as for a single rod-tod gap. The tests made with two G-foot rod-sod gaps set if feet apart as frases by the insest of Fig. 12, showed that it some cases both gaps sparked over simultaneously which indicates that for separations greater than the gap tength the shietding effect is out very great Tests with smaller separations were not made. Allibone' showed that even for two parallel plates two domitiant arc paths can for n simulane ously

While atore intormation is available concenting the propagatior of channels from the annde than fror, the cathode situce the process of charte! formation is escuttilly a therma' process, it is ex pected that the velo aty of propagation of the chmmels from the cathode should be of the sattie orde of of magnitude.

Summary

Tpon application of an impulse voltage of such value as not to cause sparkover, a rumuniform field gap, of the proportions frequently encountered in engineer. ing work, the feld at first correspouds to that which would be expected from the eonventional electrostatie solution. The fields in the vicinity of the electrodes may exceed the critical field momentarily but when this tield is exceeded and a free electron appears in the regom of the oversitested feld an electron avalance is trigreed that develops into a space harge For rod-rod gaps the space charge develaps from both electrades but for rod. plate gaps from the rad only. The flow of the charge into the intenening gap is at a rate of about 0.001 o which corresponds apprexmately to the electron drift; so that for a 10 cm gap the charge has diffued through the entire gap in about 0,3 usec and for a 200 inch gap in 9 usec . The current feeding the space charge rises very rapidly and decreases sonnew hat alung an exponential cure so that a substantial pertion of the space charge is established in slightly less time than these values.

A certain critical average gradient exists for gaps which will produce ultimate sparkover of the gap with prolonged application of the voltage There is some evidence to indicate that when the space charge is fully developed across the
gap the electric gradient in the gap between the electrodes is approximately uniform. The a erasecriticat gradients vary betweeti abutit 5,500 and 10,000 volts per con dependir, upuri gap confguration and polarity: When the critical averase gradient is exceeded a channel is initiated which usually starts from the amode. In the case of a rod plate gap with the rod positive the channel develops it o the entire length of the gap withrat the development of a plama channel from the plate. But with the rod negative a plasrna chamel is first initiated from the plate, and after progressing about halfway across the gap it is met by a $\cdots \cdots$ ray idly moving chantel, which startes at a later time, from the rod. For a rod. rod gap, the plasma channe! also starts from the anode and is met in mid-gap by a later initiated channel from the cathode. The drop in the plasma channels is so small that it is considered tealigible with respect to the applied voltages concerned in this phemomenon.

For rod-rod gapls the heads of the two channels approach cach other with a velocity that is proportional to the excess of the terminal voltage over the critical sparkover voitage for the instantaneas value of the unbridged gap, and inversely proportional to the lengtio of the unbridged gap. The channels grow with a relatively small initial velocity which is accelerated as the unbridged gap decreases. By using these selocity relations, the time lag of rod rod gaps can be comptted for any applied voltage acruss the gap. Expressing the applied voltage in terms of the critical spatkover woltage for a rectangular wave, results can be reduced to a per-unit basis that is independent of the length of the gap. The e characteristics can be completely described by two parameters

The channel current is proportional to the velocity of propagation of its head. and therefore can be determined in terms of the instantaneous velocities discussed previnust. For small avervoluages the chante urrents are usually cossave upwa but for high overvoltages and sufticienty high resstances between the applied voltage and the gap, the current is of a stepped character.

The form of the current wave feeding the initial space charge when a rectangular wave is applied to a gap and the form of the current flowing during the developglent of the channel is quite opposite the former decreases somewhat as a negative exponential with time, and the latter increases somewhat as a positive exponeritial with time it is shown in the companion paper in this issue that these
contrastiog characteristics lead to an explanation of the steps in the lightning strake.
The fact that the mastitude of the currots focdlag the initia! space charge are quite small. in comparison with the currents that oseur during the plasma changel forming plase and with the short circuit currents pernitted by the constants of the surge generators, was appreciacel quite early. As shown in the compartion paper, the currents occurring during the steps of the lightring stroke are also small in comparison with the currents in the return struke. The phetiometon appears to be essentially a thermal one: sufficient etrerg) must be injected into the gap in order to raise a thin cylfinder of air to are temiperatures.

References


```
LisEs, C. F. Wagner. AIEE Tranlabion), pt.
195%.po 123)
2. A New Apprgach to thb Calculatson op
```



```
Lfig--II, C F. Wagner, A. R. Hilmman. thid.
vot 7s, Dec 1950 R% 002-1021
3. A Nam Aprroxcif to thaf Calevtatton or
```



```
Tower, C. F. Wagoer, A. R. Hileman. lowl.,
vot 79. Oct 1940, p; 58%-503
4. Tak Ligutyino Stronv, C. F Wagner, A. R.
Hileman /bit, vol 77, June 1955, pp 229-12
5. Determesattos on Wave Front op LtGMT
```



```
w5NTS C F. Wagper tbut, vot 79 Det 1040,
p, 581-80
5. The Lroitmama Sigokis- IT. C F. Wagoer
A. R Hileman. Ibid. see pp. 629-42 of thisissue)
7. Surgb Youtagr Breaksoivn op Air in a
Non Union Fiem, J, H. Park, H. N. Cones
fon+nal of kere+t, tWastrington,o e vol bs.
1950, pp 201-22+
8. Strpever Curriath on High Vottacb
SparkuvFr, f. Slepiat, J. J. Totok. Ebatre
fournt East putrgoureh P, vot 25 1099 0%
\0%>-10.
9 The Mechisigs of th: LONG Spark. I. E.
Allibone Journa? Institution of Flectrical Engi
Allibone Sournal Institution of Flectical Eng
seces, London, Englond, vol 32, 19:8, pp 313-21.
B. L. Goodle%, F S Edwardv. F. R. Perry lbul,
vot &9 1211, pp 095-727
```



```
    THE INITIATHON NI, HeNtaM OF LONG SPAKKI
i Poisir Plask Gars. R F. Sare, I, M. Meek
Journat Instumtion if Eleutmul Eng(aters. Wol
102. pt. C. 10%h)
13 StKTY CYCLE AND {XPULSR SPARKOVRK ANO
Large Gar Spactugs, i. H. Hagenguth. A. F.
Robits,W J. Degran. AIEF Transuations
pe. Ilt Power Apoprafis and Sysken\l, val 71.
1952, pp. 455-60
```



```
op INstzatron ). .. Tarok, F. D. Fielder. Ibui,
vul +9. Jan 1930, pp 1552-68
15. Mrchanisu of Lonc-Gar Negattyes Spare
DIScharces in AIr at ATwospmevic Presburg.
# Noriniter O Salka Arkit lor Fym,G Stack
boim. Sweden, yol. 5, 1952. pp. +93-599
16. ImpLzsit and 00 CyCLe Stkengtil or Ale
```

P. L. Bellaschi, W. L. Teague. A/EE Trons. actions, vol 53, 1834. DD $10: 3845$.
17. Invizse Charactrmatics of Lakos Gaps, A. A Gorev, A. M Zaiesky, B. M Riabov. Bullelin mo. J4z, ClGRE, Paris. France, 1948
18 Repokt on the Work up tre Study Committer No 8 - Over Voltages and Lightming. K. Berger. Bullelin no 326 ClGRE, 1956
19. Eyrbcts Conona on Travbling Waves. C. F. Wagner, B. L. Lloyd. T/EE Tranigetions,

3t 111 (Power Apparalkt and Sysiems), vol. 74, wet. 1055. pp BS8-72.
20. Basic Processas or Ganeous Flectaonics (book), L. B. Loeb. Uaiversity of Califurnas Press. Berkeley and Los Angeles, Calif., 1855.
21. On Impulse Duschakos Yoltages Acruse Higil Voltace Insulation as Relatisp to the Shapr of the Voliace Wave, A. A. Akopian, V. P Larionov, A. S. Torosian. Bullelin no, +11, CIGRE, 1954
22. Efprct of Non Standard Sukce Voltages on instration, Sude Rusck. Bulielin no tor, CIGRE, 1959
23 Fiashover Characteristics of insilation, P. H. McAuley, Ele.irse Journal, July 1978, PD. $273 \quad 80$.
24. Voltage Craiolents is Lomo Casketrs Spark Chasims. J. B. Higham, J. M. Meek. Procerdings. Physical Suciely, London. Englund, pt θ, vol A3. Sept 11150 , pp $633-648$.

Discussion

H. Batz and A. Fischer (Studiengesell. shaft for Hochspannungeanlagen eV , Nellengen uber Fsslingen, Germany): The development of a discharge during the breakdown of rod-rod gaps was investigated. Voltage and current were measured simultaneously by a cathode-tay ascillograph at the bigh-voltage electrode. The high-voltage electrode was chosen as measuring point so that a single rod, without an opposite electrode, could be investigated. Various forms of rods were used; see Fig 22 The optical view of the discharge figures were takert, is are Zichtenberg figures, by photographic paper which was held axially between the electroxies.

The vertically atranged rod rod gap with a distance of 350 min was investigated mainly. The distance was always the sam's the tuenk value of the impulse voltage was varted. For all oxedlograms the timpulse voltage of $03 / 40$ was used. The the 0% breakdown voltages for the distance of 350 mm were approximately +305 kv and $-315 \mathrm{kv}$

Positive lmpllse voltage

Fig. 23 shows a characteristic oscillogram. At h_{1} the first part of the impulse generator fires, and at t_{4} the impulse voltage is applied to the gap. During the rise of the
voltage to its peak value, $u_{\text {mat }}$, the capacitive charging current with peak value i_{e} mas flows. At the moment ist a current impulse which may be called current of impulse corona appears. Its peak value is in. At $t_{\text {th }}$, the voltage at the gap is u_{6}. This value is the inception voltage of impule corona. The corona curtent, $f_{4}=:-i_{c}$. diminishes as an exponential function. It remains zero for $u_{\text {max }}$ voltages at least 20% below the 100% breakdown voltage U_{D} of the gap.

Negative Tmptrse Voltage (Fig. 24)
With $t_{\text {mas }}$ veltages $\leqq 08 \mathrm{U}_{D}$ the oscillograms are nearly the same as Fig 23 with ineeption of impulse corona it th and dimmishment of the current $i_{10}+i_{e}$ (ice capacitive current) Sometimes the current impulse of the impulse corona is totally absent. With voltages $08 U_{D}<u_{\text {max }}<U_{D}$. as shown in Fig 24. a new event which is not seen in the cutrent macilhgratm of positive elects des appears After the capacitive charging current belonging to the begtining of the impulse voltage has disappeared, sometimes, during the return of the impulse voltige at $t_{k 2}$, a very steep and high current impulse, int. appears. This occusionally is followed by another, smaller impulse. The impulses disappear as an exponential function. In every case when the discharge develops to breakdown, the current impulse, is, and
sometimes is, may be observed While they are still present the final rise of current up to the breakdown at to, follows.
The inception voltage u_{1} of impulse corona increases slightly with increasiug peak value of impulse voltage for all forms of electrodes used. Table I shows the mean ralues for the different electrodes.

Table 1

Electrode $\quad \begin{gathered}u x \\ K v)\end{gathered}$

All forms of electrodes used clearly show the growth of is with increasing $k_{\text {uns }}$ and therefore with fincreasing elecpness of the impulse voltage. With peak values up to $\mathrm{Nman}_{\text {ma }}=300 \mathrm{kv}$, ise is directly proportiomal to $\mathrm{T}_{\mathrm{mas}}$, see Tuble II

Table II

Electrode	(k)/umax (Amps 100 Ev)	
	+ Impuise	- Impulse
1.	22.	1.35
3	1.75	15 125
4	35	20

Figs. 25(A) and 25 (B) shows cosellicgratns of veltage and curtent without breakdown of the gap, and Figs 20 (A) and (B) with breakdown. The total accurrence including breakdown is shown in Figs. 27(A) and 27(B). In Figs 28 and 29 the corona streattiers bridge the whole gap without breakdown When the breakdown starts the channels liegin again at the electrodes These pictures cannot be reprivted due to blackened photographic paper. In the org. inal photos the formation of the channels is clearly seen

(B)

Fig. 25. Oscillograms wit breakdonn

(A)

(B)

Fig. 26 Oscillograms with breakdown, time scale as in Fig. 25(A)

$0 \quad 10 \cdot 10$
(B)

Fig. 27. Oxcillograms with breakdown
A-impulse positive
8-impulse negative

(A)

(8)

Fig. 28 (A) Positive and negative streamers rod-rod gap, 350 mm , impulse positive, $u_{\text {max }}=+260 \mathrm{kr}$. (B) Oscillogram for Fig

28(A), time scale as in Fig. 25(A)

The ength of the streamers was measured with one single rod as electroxde. Here the tengeth of the corma stremmers was propor. tionat to the peak value of impuise voltage (Fig. 30) Some reflections upun the possible field strength at the end of the corona streamers and the distribution of electric
(A)

(B)

Fig. 29. (A) Positive and negative streamers rod-rod gap, 350 mm , impulse negative $H_{\text {max }}=-255 \mathrm{kr}$. (B) Oscillogram for Fig. 29(A.), time scale as in Fig. 25(A)
charge are given in a publication about this subject.

The same methond was used with the rod. rod gap; see Fig 31. The corona streamets of the poricive -lectrode bridge a great part of the gap before single streathers reach the negutive electroxie

The time, $t_{L 4}$ which the corona stremers aeed to bridge the gap and the time, $f_{L 2}$. of the developtient of the channel are taken from the ascillograms, depending on the peak value $H_{\text {max }}$ of impulse voltage. Figs. $32(\mathrm{~A})$ and $32(\mathrm{~B})$ belong to electrode 1.

The main part of the delay of breakdown is given by the growth of the channels. With ircerosing impulse voltage the time, iLa. decreases vers rapidly, Nevertheless, it is at least tivice the time, $f_{L h}$.

The gap rod-plate as well as the rod-rod gap was investigated. With positive imמulses the distince was 600 mm , with begative impulses 200 tuus. Both show the same darateristics in primeiple. The inflacnse of a resistance at the high woltige etectrade was also investigated. Details will be found in a paper soom to be puthished in the Elecktrotechrische Zeitschrift.
J. H. Hagenguth General Electric Comp. pany, Pittsfield, Mass): This paper is an excellent summiary of various taboratory wotk on the sparkovet of nonumform field gaps. However, I was slightly confused by the interchangeable use of the terms space charge, corana discharge, corona streamers, channels, and discharge channels One cannot always be certain of interpreting these terms correctly

The authors dixcuss the sparkoser process of a 200 -inch rod-rod gap at $3,000 \mathrm{kv}$, as

Fig. 30 (left).
Length of posi-
tive and negative
corons streamers
measured with
one single rod
es electrode
Fig. 31 (right).
Length of posi-
tive and negative
corona streamers
in the rod-rod
gap, distance 35
sm

higher for the spark condition. For the spark condition also, the tail was slightly longer und streanier curtent started directly at the end of the current pip tail, increasing very rapidly at firt and then mare slowis. in a concave manner, to sparkove: current with spurkover being eonpleted in 15 ueec or a total of 27 asec from currebt fero. Since it was indicated that the streamers appeared to meet in mid-gap, the ground streamer velocity would be approximately $1.7 \times 10^{2} \mathrm{~cm} / \mathrm{sec}$ which is simblat to thit given by the athors' equation 2
In the imtermediate condition whete the glow bridged the gap and a streatner was seen, a second curtent pip developed about \& $\mu \mathrm{sec}$ after the first pip was reduced to zero.

In the case where the glow reached part way, abutht three-qtatters meross the gap, there was no second current pip, or if there were, it was less than 1 ampere, the limiting sensitsity of the currout measuring circuit. A very short, small glow at the grounded rod appeared.

The very hean glowing ball from quartz lens plotois arouind the excited negative electrode appeated as very thin streamers of the same lengths when photographed with a glass lens samilar to the Park-Cones' photos.

Thus it appears that this glow may be

(A)

(B)

Fig 32. Time of streamer and channel for 35 . cm rodrod gap

A Po18t1ty
8 Puloitsernusis.
sirmitar to the pilot leader postulated by Shonland From the limited data there are at texst (in) pousthie procuses for this under ctition toltine cunditions

1. The pifint tewter starts at the exulted negutive rut tamatd the grupouted positive
 ance pissuat (order of 27×10^{4} athma). bridgns the gap, and a streamer starts from the grounded rod. This streamer bridges
 is vivibie from the aegative electrode.
2. The pilot leader starts at the excised thegutive rod coward the grounded positive tod and is met by a simitit leader from the grounded rod. After contact, a streamer starts from the gretanded rod, is in 1 Hosever. it is possible that the leader from the ground t d Ol is a streatmor, altiough
 this

These interesting conclustons stace that in this 200 -inch rod gap a leader develops across the entire gap without a streame: udyancing tovard it from the ground elec. trode, aven though the electrode firs a ronunifurn tivel athostd it. The questimet then is whethes i sithiur process occurs if the lightuing attuke

With reguri to average gup gradtents. the authors arrive ist is figure betweed 5.300 and 10,000 volt $/ \mathrm{cm}$. which is correct for impulse applestion and the espers of gaps studted In a rembt papor,' 'imusarl, fors dey fashover strenghts are shawel in Fig 21 At tho inches, the average gradleut was 1,800 voltsicm. These Alashovers were otitained with slow front switching surget) pe waves and also with fast front long tail waves resembiling direet voltage The lightaing strake pilat leadet advanced at sbout $15 \times 10^{\circ} \mathrm{cm} / \mathrm{sec}$ and therefore probably resembled a direct voltage excitation rather than in impulse. Consequently, the lower eradients would prexurl This is in conformathe with gradient mexsurements under lightring conditions ${ }^{7.3}$ such as 3,400 volts cra measured on the betly of a B-25 aircruft just befure a lightning stroke

Therf is a question regirding the authots' statement that "It was impassible in the opea conditions of the latmanalary ta abtritn a clean-cut oselthgratl of current applying the space churge just under critical voleage Apparently the high tree electron concentrition cumsed trigesting of the gap on the rising portion of the voltage wave and prevented the shatp rise and exponential de. cay of the current:" Why didn't this wecut at valtugets above the critical sparkover voltage ishere tire to spatkiver was is much is 6 usec und more:

In theit zentent discussion the authors thention the pencit of are ptastata with a diameter of about 2 thet it should be noted that in the 200-inch gap there was no pencil untit the zlow dischrige or pilot lender hald develoger Thus it might be assumed that there was an permil in the lightning piont leader until the return stroke was estahlished. Dr. Flowers has irivestigated the chatnoll of the spark discharge' and found that the current density was about 1,100 amperes/an ?

Refirences

Rohifs, H E Fiegel J. Q. Anderson AiEE

2) Tris Fbrcikitas Cungor on Prectpotations AT Vakiots ALriveras whe its Relatice to

 Clonmas. Ross Guma Juand if iprilat Physal Siew York, \& Y , val th May lats.
 pp 22s 275
C. F. Waguer and A. R. Hileman: The daca presenced by Pofessut Baatz and Mr. Fisether are very illumimang and widd considerably to the knowledge of the subject. The authors look forwatd with greit interest to the Elektratechnichte Zoit. whrit? paper wherin theso test: isill be de. semiked in mare desit The folforing com. ments are directed to their very clens but aceessarily limited presmution. Since the promary purpose of the review by the authars of the availubie labotatory data was to provide a backzround upon which to base a thenfy of the lightuing disehtrage, the mumerial preserited by Profossar Boucz and Mr Fis her aill bee dixumand is spothed to this finul und.

One of the portinent questions in the de. sctiption and analysis of the steps of the tirst couponent of a lightuing struse is the electric stadient within the spoce charge surtounding the conducting core of the leader Or exruressed in another way, the gradiont abong the streatners that constitute the coromit dischurg Pis 30 provides itr formation on this peint. In the pecfirminary copy of the discussion it was stated that these dita were obturned with the rod placad 2,260 mm abwe a flot plime Consider first the case for which the rod is pasitive. To obtain ati approximate estimate of the electric gradients, let it be assumed that the elecrtic tielats betweed the upr of the streamers and the plate corresprond fo thuse that would exist berween a chargel sphere and a plate in which the rudfus of the sphere is smatl in comprerson with the disu tance to the pliste. Let E_{R} be the field next to the sphere in valts per cm and R the radius of the sphere in emn. This field is average in chirracter and noattentpt is minde to consider the higher helds that must surround the tips of individual streamers. The potential in volts becween the sphere and plate is then
$U=R^{2} E_{R}\left[\begin{array}{l}\left.\frac{1}{R}-\frac{1}{R}\right]\end{array}\right]$
If the ficld is consiont at a value of E_{R} within the sphere then the field becomes a continurus value it the odge of the sphere. The total upplied potentiat is the forexaing expresson plas the quantity $E_{A R} R$ Now if the point on the curve of Pig 32 for which $U_{\text {ana }}$ is 300 kv and R is 24 em is arbictarily chosen then solving for Esp provides a value of 3,050 volts per ems which is quite ctose to that which we used in our paper.

When this surie method is used in corses for which recuitive porentin! has beern ap. plied to the rod, unreasomably thigh values of electric fields are obtained. This raises the question of the justification of using the photograptic rearels if the discharge is a criterion of the advance of the space charge. This is aeceptable with prostive discherges
as the electrons produced by the insization procesies at the tip of the streamers ure drawn invard toward the rod and the phot igraplic tecards showed funy coustitute a tore mensure of the beundary of the less
 with nogutive potentiat, the clertoms formed in the ionization process having ligh mobitities can advance outward beyoud the bouncary indicated by the photographic record We are sommentut refurtant to es press aur opinion on the giseous electronic phenostetton and, therefote, present this point of view more in the duture of conjuc. ture rather than fact.

There is a difference af opiaton concernithg the magnitude of current involved in the steps of the lightning stroke. The diti preserated in Table 11 of the disestasion may shed some light an this poins. it is stated that for a 35ithan red rod gap for nesative appitled volt ge , fa is directy propurtiontil to Uoins up to 300 ky and less than 2 smperes per 100 kv . Extonding this linemity to a stroke pocential of $30,(\mathrm{kN}) \mathrm{kv}$ one obtains a current of 1,000 amperes, that confirms the point of vies that the current in the steps is stmall in comparison with the return ittrak astmilly reforret to ns the R. chatrge curtort

The intlurs regeet that Mr Haguogeth Was confixed by the interchange of teruls. The prublen is very complicated and we used diferent tem.s for the sattie phenomt enon in arder to differentiste hetweers two quite different phenamona.

Mr. Higetgath prewots att futerosting discusston cafncertith the secturences of streamers that appear to bridge the entire gat . We are of the opimion that this phenomenon is similar to that shown by Park and Cones and athough the latter used a ghass lens their camera ivas much closer to the disch..rge. A simitar phenomenon is shown in the britliant photographs of Prolicssor Butez and Mr Fischer As mentioned by Mr Hagenguth, one trust bear in mind that these are still photographs and not instantanmons expratures We are at a loss को explein this phenamemon but it certainly involves a trail whose impedance is so high that the streamers do not lead to ant immediute chamen fin this case meaning an are plastna chanmet).

Mr. Hagengath comments on average sparkover gradieats and mentions that in a rece-t paper a value of 1.801 voits per cm wa sh own. He mentions that these values wert obtained with slow front owitchingsurge type waves and also with fast front long-tail waves resembllig direct valtage, Examination of the reference reveats thit this value was ptained for a :ad plane for Which a pogitive $100 \times 3,2^{2} k$-asec wave was applied. In reference 13 of the paper, dita are given by Mr. Hagenguth thit the iverage gradients of rod gaps up to 250 imches approach a value of 160 kv per foot. They then say that "Other data, thot published. with gap spacings up to 50 feet between two generutors charged to opposite polurity and with wave taits of the order of 2300 usec tend to give averige gradients of the same valte " Aecording to Mr Hagenguth's data it uppears that this wave rught be described as a "Tast fromit hong tatl wave " Perhaps the significant difference in the value to which Mr Hagenguth refermed, tumely, 1,300 volts per cotl, is that it repres sented the chamuenistic or 1 dry positive

Fed-tib-glane gap upan upplicatwon of a 60 cycle voltage of an impalo busing a slow Trant and loug tail The highet valus of ithe kv per foot or 8.300 valis per vals Etpresents the charwecristic of a rud-roxi gap to which a Hegative patential is apylied It would be interastimg if data pertaming to a toid plane gup were obtained in in fange of too inclaes for which the apphied vollige is a megative siow-front wave There data cruid be compared directly with the low gradient of 1,200 valts per cri gbtanted with a pustive wave. Fig It of reforence 1 of Mr Bagnn guthis dicussion prowides summe information conceraing roxt-rod bups whet indicates infeanty up to 180 faches and a gradient of abouts 5,000 valus per cm.

The quection rassed by Nit ifagenguth betricys that we wete net snfferently clear in the geti fal exprosifion of the proper Wif tred for canvey that stathesct of the gap oceurs in tswry gibutses, first the Atevelaphatent of the spatce charge coronat diselatge), and second, the developrtient of the ctanme (high comducting are plasma) Only the first phase develops below critical voltage Above critical voltage both wour in se quence.

Regating the dovelopment of the space charge, Park and Cones stated that "An athity sis of a large number of recourds abtained with slowly rising surges indieated that the peak current was apptoximately propurtienal to the wetual salue of voltage at the instant the discharge started Therefore, in an whbunt of low frec electron coneentration and woth the applicntion of a steep weltage wave, the crest value of the voltage ikave is attained before triggering oncurs. But if the cmocontratian of free electrons is high, telggeriag tims wecur on the rising portiun of the wave isith a corresponding raduction in crest vatue of the current. It is to he prosuracd that a curre. spooding lengtiensigh of the current wave would ensue. According to aur theory of breakdown, the sthastantai developrtient of
 vedpment of chunbel. Ine curfolt kequited to develon the pater cherge is strall in of the surge getmet tor when utitnate biretk down accurs Therefore, when the current shunt is adjusted to read the short-citouit current, the space charge current is swamped by the chanmel formation currents even in
the earls asige of the channel formation atd its jpresence is thet agparent
In repily to the comment made in the last paragraph of Mr. Hagetgutit's discussion, if dies aot appeat that a glone discharge or pilut leadet withaut some sort of eonducting core (chanine!) would possess sufficient conductivity in the form of a cylinder 10,000 ot 26,000 fect in langth and 100 feet in diameter, to sapply the current reguired to prownte the pergrosing corona discharge space chatge) in front of the leader. Furthermore, if the leadet comsistud of suly such ${ }^{1}$ हो: length must be approvimately 7,000 volts pet esn. The drop alane in such leader of
 This would require a degmsition of churge along the ettoke channel that inctenses Gowaty whth beight. The resultant current af the carth, as the feturn sfroke cipped theme chatges progrtasitely, would result in a curtunt at the murth that wantd increase prigrossively ivith time up to alout 100 wste and in magtatucle would be many times the recrirded values Thus we are of the opition that a conducting core must exist

The Lightning Stroke-II

C. F. WAGNER

A. R. HILEMAN

IA A PRE: 10 TS PAEER, sitnilarl

Which will be oulled the comma sheath The diameter of the chamel is only shout thesize certait characteristics of the lighs. ning stroke by apphing and extrapolating the recults of latoratory experiments. The) were supported in whis ett rt by data conceraing the transient chatacter: istics of atcs? and the praperties of cotona within celindrical thells. A outpranion thes of laboratury procuced sparks and
\qquad
together with additional data concerming 2 mm (antlimeters) and its drop about 50 or 50 volts per etn (erntimeters) It has characteristics of an are julavna wili very high temperatures and mav be highls tuminous. The diameter of the corona envelope may be about tan feet and may extend about 150 feet in it ont of the chat ael The fntermit cudtent of the coroma sheath lies between 5000 and 10,000 volts per cm. It has characteristics of a natural lightning, to a more detathed conglow or corona discharge its temperature is low: it is piesed by streamers; and sideration of the lightning stroke. A new meclianism of the feater stens is presented. portant events that wcour duritg the early stages of the return strike is eluadated.

General Description of the Stroke
\qquad

considerable dificultr is sumetimes ex

emeneed it pinctong aplimg

exmponent of a stroke reaches a partic. ulat point it is intomitntarily irrosted and streamers forge aliead into virum air
\qquad
\qquad corana disuthatice and to the smace citat ige asanctaved with the firmutice ct are of the orenadump wi long gaps is the space harise ilevelogis the potontal filference

ther prosress of the streamers condi ting iust in untorice of the tirn of the

hammel of arc fisina at itis

 eater chantiel Each new clannel spurt - Larts with a relativelv low velucatv chat allass a curve with time that is strongly eoneave upward. This cuntinues until the chanmel cat ches un with the tomndarv of the cormas sheath. The channel cannot firngress into virgin air in the form of a limbly conducting Blasma and, there(are, ceaces in themeantime the conna treathers ofoltimue to progress from the new tip of the chumbel and the whoie
 reseal thik ratid expension of the whamel is a short step of very hish brtliance. And with respoct to the develoytment of
 streamers fichanneqal Lravel dowaward is haswever afforded by the liragdenting of the upper part of their tracks.
\qquad
\qquad
\qquad
 or :utcontation it the AIEE South Fast Suuth
it and cost reductions can be made in the core sirueture Advanoes in material develpatent partiondarly high stomath

certen: ts

Other facets of the advanced program, similaty ainted towatd increasing the reliability and decrensing the cost of high. performance sodinit graphite reactirs in the 3040 - $t 0$ 300-mike range, cover the de vehopment and test of bighecapacity sadiam partips. control and safety ruds designed to perate under hizh power density comditionts, as well as advances in the tem hadagy of liquid metal puritica tion.

Aside irom these engineoring developments, safety is an important aspect of any power reactor design. The low pres. sure minimum stored ener sy advantazes of serlimm-conled reactors have long been knorna; it has recently become appatent that sodiusm is exceptional in its whilisy
to retain fission products in the event of accidental failure of cladding, either by a nuclear excursion or by thaterial dete rication. Quartitarise ztuclies ase int proseress to verify the smatl fo ion product release from sodiumb extending to the release of fissiots products when contaminated sodium is bumed. These stadies eurrently indicate that less than $1 / 10$ of 1% of all fission products generated ure released into the eontaiment provided for sodium graphive reactors, and that no accident yet postulated releases suffieient energy to bridse this contaimment. Thus it appears that the sodium-maptite svistea is an extremely sale one from the standpoint of puhlie hazard. as well as in operational periurmance.

Application of this knowledse to the sodium-graphite concept allows the advanced system desizn to be kept un to date 30 that the most morlent system thay be avallahie to organimations cont.
cerned with the economic genteration of electric power from nuclear sources

Conclusions

It appears that the advanted SCK design has intial capital and operatims cost compoctitive with modera fos il fueled stations in many areas of tho Ünited States. This systent is cacable of prozducing superlated steam with temperatures and pressures comparahle with modern steam plant designs. The HNPF is a significant step toward realization of the capabilities of SCR systems.

References

Surge Impedance and Its Application to the Lightning Stroke

C. F. WAGNER

A. R. HILEMAN
mLmbir AlEE

Summaty: Corona effects and a tempurary high resistance introduced into the pith of the returu stroke ehirrent ate two factors that contribute to the determination of the velacity of the propagation and surge imppedance of the return strike. Using field therery concegts it is estimared that the
 ohms. This quantity is of vulue in estiniating the length of the lat step and wave frone of the strake current.

NORMALLY, the calculation and concept of surge imperlatice of conduc. tors is approached through cireuit theory Recently, surge impedances of both borizontal and vertical conductors with respect to earth were determined by use of field theory concepts. It is the purpose of this paper to (1) consider further the concept of surge impedance from the view-

[^12]point of electric fields and thus establish a more definite understanding of the aa . ture of surge impedance, and (2) estimate an approximate value of surge impedance that can be applied to the return siroke of natural lightaing.

Characteristics of Traveling Waves

Wheu it is nssumed that the wave of charge and its associated current travel with the velocity of light, certain simplifications result as compured with the aswanption that waves of charge ath lem. rent travel with a velocit: less than tha: of light. In the latter case electric fields that propagate with the speed of light excend in front of the waves of charge and current. As discussed tates, reduction in velocity can be attributed to either the effects of corona or to a high ohmic woltage drop that develops as the current it the head of the wave increases rapidly. Both of these effects can oceur slimultameorsly. The development will consider first the casc of waves that travel with the velocity of light, and them waves that travel with a velocity less than that of light

R\&F.

For cach case three different combinations of waves will be considered. The first is shown in Fig. 1(A). This is a single rectangular wave of charge (and its associated current) that is initiated at zero time and travels to the right with constant velocity: Such a wave cannot exist by itself but can constitute an elemental building block for more realistic combinations The eloctric felds produced by this wave have previously been deternined :" The wave combination of charge shown in Fig. 1(B) is more realistic and does not require a continuous source at the origin to supply the charge fed ines

Fig. 1. Combinations of traveling waver used in analysis of surge impedance

Fig. 2. Tangential component of electric field caused by o single rectangular wave of charge and cument traveling with the velocity of light
the waves. The electric field produced by this combination is identical to the fit produced aten the wave to the left is replaced by a vertical infinitely large plane of zero resistivity, shown by dotted line in Fig. 1(B). Of course, with the infinite plane, a corresponding current flows in the plane that expands radially with the velocity of light. While this case approaches the conditions of the lightning stroke, as will be demonstrated, the integrated effect of the fields increases without limit and for some purposes magnifies the difficulty of drawing precise conclusions. The combination of charge waves shown in Fig. 1(C) results in finite values of potential, and assists in the visualizadion and evaluation of the nature of surge impedance.

Waves Trayellag with the Velocity of Light

1. Single Hove. It was shown in reference 2 that when a rectangular wave of charge, go in coulombs per cm (centimeter) and its associated rectangular wave of ourrot, i_{2}, in amperes of the type shown in Fig. 1(A) are suddenly initiated and travel along a straight line with the velocity of light, an electric field is produced that expands also with the speed of light. Fig. 2 shows such a wave. At a print p located a distance x in cm along the path of travel from the point of origin and a distance a normal to the path of travel, the electric field E, parallel to the x axis is
$E_{t}=-9 \times 10^{4} q_{0} \frac{1}{\sqrt{d^{2}+x^{2}}}$ in volts per cm

For all points behind the head of the expanding electric field, the field has the shape indicated in Fig. 2. And since
$i_{z}=c g_{e}$
where c is the velocity of light in cm per second, E_{t} is also
$E_{2}=-30 i_{2} \frac{1}{\sqrt{d^{2}+x^{2}}}$
2. Opponstely Tracing Wives. When waves of charge of opposite polarity elongate along the same geometric line as shown in Fig. 3 the electric field parallel to the x axis is just twice as stat as for the pres ions case.

$$
\begin{align*}
& E_{2}=-15 \times 10^{11} 40 \frac{1}{\sqrt{a^{2}+x^{2}}} \\
&=-10 i_{5} \frac{1}{\sqrt{a^{2}+x^{2}}} \tag{4}
\end{align*}
$$

Now consider a line parallel to and at a distance a from the x-axis. Within the area bounded by a sphere laving a radius given by the expression
$\sqrt{c^{2}+\mathrm{s}^{7}}=c t$
(5)
the field is given by equation 4. Outside of this sphere the field is zero. If the cylindrical surface defined by the radius a is replaced by a tube of zero resistivity, the electric fold on its surface parallel to the x-axis must be zero. If this tube be broken up into infinitesimal clements and soirees of emf (electromotive force) be inserted between the elements whose gradient is just equal and opposite to the field given by equation 4 , then both the conditions for zero tangential field and a field necessary for the propagation of the wave are established. The inserted sources of enif will be called the "forcing emf's." These forcing emf's must be itrsetec ; progressively Just as the head of the field reaches the particular point. The gradient of the forcing emf is shown by the dotted line in Fig 3.

The total forcing emf introduced up to point x is then

$$
\begin{align*}
& V=\int_{0}^{x} 60 i_{z} \frac{1}{\sqrt{a^{2}+x^{2}}} d x \\
& =60 i_{x} \ln \left[\begin{array}{l}
\left.x \sqrt{1+\left(\frac{x}{d}\right)^{2}} \sqrt{2}\right]
\end{array}\right. \\
& =0 i_{2} \operatorname{cinh}^{-1}\binom{2}{4} \tag{5}
\end{align*}
$$

The total voltage that must be inserted to the right and left of zero is shown in Fig. 3.

For $i_{i}=1.0$, this voltage properly distribute equals the surge impedance as defined here. Thus, for $x / a=100,1,7 \pi 0$. and $10,060, V$ is 318,415 , and 505 waits. respectively. As x increases, V increases without limit.

Fig. 3 (below left), Tangentidal component of electric field, forcing emf's, and gradient of forcing emf's caused by waves of opposite polarity elongating along a conductor with the velocity of light

Fig. 4 (right). Forcing emf' necessary
conductor A in produce waves that propagate on conductors A and B with the velocity of light as shown in the

3. Tue Poralled Conductors. Fig. 4 shows two parallel conductors of radius a. separated a distance D. Assume two patiss of rectangular charge (and current) Waves thut propagate from O and from O^{\prime} The polasities are indicated in the inset. Negteatig for the pioment the fact that the fields radiate from two different points and that, therefore, the envelopes of the fields do that coincide, the forcing voltage in ena con fuctor is

$$
\begin{align*}
V=\operatorname{con}=\{ & {\left[\frac{x}{a}+1+\binom{x}{a}^{2}\right]-} \\
& \left.\ln \left[\frac{x}{D}+\sqrt{1+\left(\frac{x}{D}\right)^{2}}\right]\right\} \tag{7}
\end{align*}
$$

For : large with ternect to a and D
$V / i_{3}=00 \ln \frac{D}{a}$
Whith is identical with the conventional expres lina for surse impedance.

The rase at which this limiting value is afy iot and the nonevinotidnce of the spheres of influence are best illustrated by ariexample. Consider two conductors each hasing a ratius of 3 cm (1.18 itnches) sepmatad a distance of 30 meters (08.5 (eet). The assumed curreat waves are indicated in the inset of Fig. 4. The upfer dotted curve shows the forcing emf in conductor A due to the current and charge in A. Similarly, the lowest dotted curve shows the forcing emf in conductor A due to the current and charge in conductor B. For x large these quantities can be added algetraically and give the conventional value of surge impedance which for this configuration is 414 obms. For I less than 0.1 microsecond ($\mu \mathrm{sec}$) the presence of charge and curreat in conductor B is not felt on conductor A and the emf is simply that for conductor A. For slightly longer times, say for $t=0.15$ uses, the sum of the two fieldis is effretive up to point 3 of the inset but between point b and point a only the field due to curtent and charge in A is effective. The emif for differeat times are indicated. It can be seen that after 0.1 usec , which is equal to the cravel time between conduccors, the conventionat value of surge impedance is effective. For instants less than about one thitd the travel time between conductors the effective surge impedance is less that the conventional value it reaches a maximum at an instant equat to the travel time between conductors and then decreases rapidly.

Fig. 5 (lert). Sim. plified assumption used to represont corans atfes:

Fig. 6 (right). Tan. gential field caused by a ingle rection. gulat wave of charge and cument traveling at a velocity less than that of light

It should be recalled that thest forcing enfl's represent the voltage whome differentiul value must be prostessiv. ${ }^{\text {a }}$. inseffed in series on both sides of both cor ductors to produce the assumed recta gular traveling waves of charge and current. If these forcing emi's were concentrated at $\pi=0$ (a condition difficult of attainment even with high-voltage surge getierator:) there results a high current intush that varies about the final value in inverse propurtion of the forcing enf's.
To this point rectangular waves of charge and current only were considered. If the assumed waves pasussed stoping fronts, the effect can be determined by resolving the wave into a group of infinitesimal rectangular waves displaced appropriate distances. For such waves the surge impedance approaches the conventional value even more rapidly and smoothly than the rectangular waves, as a portion of the wave has proyressed along the line, and has already reached the conventional value before the later increments are applied to the line. An other charactaristic should be noted. Even though the froat of the waves of current and charge remain sloped as they continue to travel along the line, the tangential component of electric field is equal to zero. This may seem anomalous but it should not be confused with the matiai Geld which changes as the front of the charge wave passes a particular point in the line.

Waves Traseting wita Velocity Less Than Lieht
Two practical cases occur to the authors in which traveling waves propagate with a velocity less than that of light. One is that of corona in which the charge associated with the corona discharge takes a position more removed from the axis of propagation than the associatedcurtent. The other case is that of lightning. For the return stroke the charge again is tar ther removed from the axis than the cur rent, but, in addition, as the curreat rises rapidly, a temporary high resistance drop
that travels with the hend of the wave is inserted progressively in the path of the wave.

In this develapmeat cornna effects will be represcated by a simplified assumption. In Fig. 5, the current will be assumed to flotv through the central continuous perfectly conducting cylinder of radins a. The charge, huwever, will be assunsed to reside on the surface of short: sections of a discontinuous cylinder of radins b connected electrically to the inner cylinder. This is oversimplified for representing actual corona conditions on transmission lines, as the radius in this assumption is indegendent of the charge, whereas, on transmission lines it varies with the charge and the voltage to ground. It does serve to illustrate the fundamental principles of wave propagation.

1. Single Wate, As previously derived in reference 2, Fig. 6 shows the relations governing the tangential component of the electric feld surrounding a rectangular wave of charge, 70 , it coulortibs pet cm , and a rectangular wave of current io. in amperes, that propagate with a constant velocity $i c$, where c is the velocity of light and v is a fraction. The current and charge are related by the expression
$i=n$ vequ
Curve A is a stationary wave of electric field symmetrical about the origin produced by the charge whase head travels with the velocity of light. Curve B is likewise ussociated with the charge, but is symmetrical with respect to the head of the wave. Curve C is associated with the current and is of opposite polarity to B. Cognizance has been taken in the expressions that b might differ from a. When they are equal, curves B and C have the same shape
2. Oppositely Traveling Wares. Sehonland, among others, has shown that the head of the return stroke of tightning travels at a velocity less than that of light. Since Fig. 1(B) approaches the condition

Fig. 7. Forcing emf's necessary to produce isctangulat waves of charge and current traveling at a velocity less than that of light with no corona. Wave combination is given in the inset. Charge radiu, b-current radius a, ct a 100,000

Fig. 8. Varietion with time as parame , of forcing emf's Iot same conditions as Fig. 7 except the velocity is constant of $r=0.3$
of the return stroke the equivalent surge impedance in this case will be analyzed. Fig 7 has been computed with the assumption that the charge radius b is equal to the current radius, a. It shows the torcing emif's necessary to produce a tectangular wave of charge and current that tracels with a constant velocity equal to 01.त3a 0\% , and On5 that of light The particular inslant chovets for this figure is $a / a=100,000$. A second scale for a und b equal to 25 cm (00.052 foot) has been added to the abscissa. For this particular value, the instant corresponds to $82 \mu \mathrm{sec}$

Cunsider the curve for $y=0.3$, that shows how a positive forcing emf of 108 X $3 h_{z} / 0.3$ must be distributed between zero and about $x / a=15,(060)$, and how a negntive forcing emf of about $17.5 \times 3 \mathrm{H}_{2} /$. 03 nust be distributed between $x / a=$ 15,000 and $s, a=50,000$ so that a rectangriar wave of charge and current would reach a point $x / a=30,000$ at this instant. In general there exists a poughly rectangular wave of potential equal in length to
the elongating charge and current wave, and whose crest increases gradually as a logarithersic function of time. The manner in which the wave varies with tine is Itlustrated in Fig 8. Of course, if a be latger that this number, for the same instants of time, the forcing potentials would be correspondiugly smaller

The carnces of Fig Tate flotted to show the relative values of the forcing emf's with the charge qo kept constant. As applied to the lightning stroke the comparison is more revealing when based upon a unit of current as this reveals the surge impedance. This has been done in Fig. 9 , from which it can be seen that the effective impedarce increases almost inversely as the velocity of propagation of the head of the wave.

The foregoing curves assumed that the radius of charge concentration, b, is the same as the curment tadius, o. The sdid curves of Fig. 10 present the impedance characteristic for $t=0.1$ and 0.3 for the condition that $b=10$ feet and $a=0.082$ foot for an instant equal to 8.2 secc . It

Ghould be noted that the forcing emf's in this case are smaller than for Fig. 9 in which $a=b=0,082$ foot for the same instant. The datted curves of Fig. 10 are for the case of $d=b=10$ feet. It can he sect that the impedance characteristic is more responsive to b than to a.

Without going into detail at this point. it will be observed that the return channef of the lightring stroke possesses a characteristic of the peneral nuture deseribed in Figs , -10. The return channel tends to propagate with the velocity of light but the current, in rising rapidly at the head of the return channel, introduces into the path of the channel a high-woltage drop that corresponds to a ligh nergative forcing emf. The bigber the trausitory drop introduced by the incteasing current, the mare head of the current is retarded and its magnitude decreased.

If the wase front of the current wave is roped, then the wave can be resolved into small incremental rectangular waves and the voltages of the component elethents can be added. In this case, the voltage would be approximately proportional to the product of the instantaneous current and surge impedance, and the veltage drop along the path woutd be

Fig. 9. Curves of Fig. 7 replotted to show ielative values of impedance or forcing emt's based upon a unit current wave

Fig. 10. Impedance chutocteristics showing the effect of corona for two different velocitles
independent of the slape of the wave front, but in proportion to tie magritude of the
 ago thint swald har o fo be ingurtel io sthe froms of the the itty ware sould be the same whether the curfent atrained its maximum value in : μ sec or in 2 asec, that is, so far as the computation of the velue ity of the curtent in temes of the drop is concerned. The actual total drup is deternited by the are characteristics.
3. Twe Paralle! Canductors. Four Waves will be assumed to propagate from O to O^{\prime} as in Eig $1(C)$ and will be numbered as indicated. Just as in Fig 4, 50 in this cuse ulso for a latge in compariaon with D, the forcing enif's reach limtiting values Fig, 11 has been prepared to dilustrate the difference between coronia effects and high are drops oceasioned by rapid changes in current magnitude. In the three cases depicted here, it is assurmud that the distance between the conductors in all cases is 200 feet and that the head of the waves of chatge and carrent have traveled 1.000 fest In all three cases the electric fields tangent to the axis of propagation are plotted by the dotted eurxes. In computing the field in condice. tor I due to the charge in conductor I the radius a is used and due to the charge in B the radius D is used. For current, radius b is replaced by tadius a. The negative of thesc fields are then integrated and the results plotted by the solid-line curvics. In atl cases the forcing enfi's are cumputed for wait current

In Fig. $11(\mathrm{~A})$ the effect of corona is illustrated. The particular value of $:=$ 0.62 ivas chosen for a reason to be de veloped later, and results in a degative foreing or retardation voltage at the head of the wave that equals zero. The integrated effects of the traveling feld due to charge, Ezo, and the traveling field due to current, Esm. just cancel each other at this particular velocity and for these particular values of a and b for times greater than about the travel time be tween conductors Figs 11 (B) and 11 (C) ivere computed for a lower velocity of $v=$ 0.3. To attain the velocity, if $a=b=$ 0.082 foot would require a retardation voltage of 1,420 volts per ampere, but if a $=0.082$ foot and $b=10$ feet only 460 volts per ampere would be required. In Figs $11(\mathrm{~A}),(\mathrm{B})$, and (C), the curve V represents the integrated effect of the stationary field; V_{c}, the integrated effect of the traveling field due to the charge; V_{6}, the integrated effect of the traveling field due to the current and the dot-dash curve the total of these three values.
It should be noted that, for the config. uration used in the calculations of Fig. 11,

Fig. 11. Impedance and tangential electric fields on one conductor for wave combination of Fig. 1 (C)
A. With corena and zero retardation volage at head of wave, $v=0.62$

B- No corond but with retardation voitage, $v=0.30$
C - With corand and with retardseion voltage, $\mathrm{x}=0.30$

Fig. 12. Limiting values of forcing and retarding emf's on one conductor for wave combination of Fig. 1 (C)
if the waves traveled at the velocity of light the limiting value of surge impedance would be 468 ohms. From Fig. 11 . (A) it is shown that corona tends to decrease this value to about 290 ohms, but Fig. 11(B) shows that high are drops for retardation voltages tends to increase the surge impedance to abeut 1,300 olims. Fig. 11(C) shows that for the particular values considered, when both corona and a retardation voltage are present, the net result is to increase the surge impedance to about 600 ohms.

The limiting values of the forsing and retardation emf's can be determined as follows. The forcing emf for the stationary component, V, in conductor a of Fig. 1(C) due to waves $1-4$ is the same as equation 7 but expressed in terms of q_{0} is

$$
\begin{array}{r}
V=18 \times 10{ }^{2} 90\left\{\left[\begin{array}{l}
\ln \left[\frac{x}{b}+\sqrt{1+\left(\frac{x}{b}\right)^{2}}\right]- \\
\left.\ln \left[\frac{x}{d}+\sqrt{1+\left(\frac{x}{d}\right)^{2}}\right]\right\}
\end{array}, .\right.\right.
\end{array}
$$

and for x / b large
$\mathrm{V}=18 \times 10 \operatorname{lig}_{90} \operatorname{la} \frac{D}{b}$
From Fig. 6 it can be seen that the tangential component of electric field caused by charge in front of the biead of the wave at a tadius b dan to wave 1 is
$\theta \times 10^{11} g_{\alpha /} / \sqrt{(e d-x)^{2}+\left(1-v^{2} b^{2}\right.}$
and for wave 2 where b is small in comparison with D
$-9 \times 10^{12} \%_{0} / \sqrt{(a c t-x)^{2}+\left(1-v^{2} D^{2}\right.}$
Let tet-x=y and the tental field is
$E_{1}=9 \times 10^{14} 20\left\{\frac{1}{\sqrt{y^{2}+\left(1-v^{2}\right) b^{2}}}-\right.$

$$
\begin{equation*}
\left.\frac{1}{\sqrt{y^{2}+\left(1-4^{2} D^{2}\right.}}\right\} \tag{14}
\end{equation*}
$$

Then V for this componeat of feld upon integrating with respect to y from $y=0$ to y is

$$
\begin{aligned}
& V=-9 \times 10^{11} Q_{0}\left\{\operatorname { l n } \left[\frac{y}{b \sqrt{\left(1-v^{2}\right)}}+\right.\right. \\
& \left.\sqrt{\frac{y^{2}}{v^{2}\left(1-v^{2}\right)}+1}\right]-\ln \left[\frac{y}{D \sqrt{\left(1-v^{2}\right)}}+\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\left.\sqrt{\frac{y^{1}}{D^{2}\left(1-v^{1}\right)}}+1\right]\right\} \tag{15}
\end{equation*}
$$

and for y very large

$$
\begin{equation*}
V=-9 \times 10 \operatorname{lin}_{g} \ln (D / b) \tag{16}
\end{equation*}
$$

The integral of the component of field behind $x=$ tef has a like forcing emf. Therefore, the total retarding emf due to the charge, V_{6}, is

$$
\begin{equation*}
V_{t}=-18 \times 10^{11} q_{0} \ln (D / b) \tag{17}
\end{equation*}
$$

The expression for the retarting emf due to the current, V_{6}, bas a similar form with b replaced by a, is of opposite polarity, and has a factor $v^{\text {? }}$.
$V_{1}=18 \times 10^{11} q_{2} v^{4} \ln (D / a)$
Sisce i_{c} is related to 90 by equation 9 , equations 11,17 , and 18 become, respectively,
$\mathrm{T}=00 i_{2} \frac{1}{y} \ln \frac{D}{b}$
$\mathrm{F}_{\mathrm{i}}=60 \mathrm{H}_{2}=\frac{1}{\mathrm{~g}} \ln \frac{D}{6}$
$F_{i}=60 i_{2} v \ln \frac{D}{d}$
Fig. 12 shows graphically the relations favolved and how the forcing emf is inserted in series between the origin and elements of the conductor and the equivalent retarding emf's. In the limit the relations are given by the dotted lines.

In connection with Fig. 11(A) it was mentioned that when corona effects only are present, the retardation voltage is zero. This means that V_{c} from equation 20 must equal F_{i} from equation 21 . Then
$60 i_{3} \frac{1}{v} \ln \frac{D}{b}=60 i z v$ in $\frac{D}{a}$
and consequently
$v=1 / \sqrt{\ln \frac{D}{b} / \ln \frac{D}{a}}$
The conventional expression for the velocity of traveling waves is
$v_{5}=1 / \sqrt{C C}$
where L is the inductance in henrys per cm length and C is the capacitance per in length. This san be somn to be equal to
$=5-10 \frac{D}{b} / \ln \frac{a}{a}$
Which verifies equation 24 .

An expression for surge impedance can be obtained in a similar manner. By defnition
$Z_{5}=\frac{\mathrm{V}}{1_{4}}$
And substituting V from equation 19 and then : from equation 23

$$
\begin{align*}
z_{s} & =6 \sqrt{\left(\ln \frac{D}{a}\right)\left(\ln \frac{D}{b}\right)}-\operatorname{coln} \frac{D}{a} \sqrt{\ln D / b} \\
& =2 \sqrt{\frac{\ln D / a}{\ln D / a}} \tag{27}
\end{align*}
$$

where Z is the normal value of surge impedance for which no corona exists. This value of Z_{c} is also equal to $\sqrt{L / C}$.

Predischarge Currents of Rod-Rod
 Gaps

In the lightning stroke the leader of the first component moves earthward in halting steps, distributing as it does so a charge along its entire length. As it approaches the earth the steps become smaller, and as an approximation the leader may be regarded as moving slowly and continuously. As the tip reaches a paint such that the distance to the earth equals the breakdown value for the potential at which the strobe channel is charged, breabdown occurs much as in a very long gap. The current for the discharge is drawn from the distributed charge along the channel in the form of a traveling wave that propagates with a velocity having a modal value 0.12 that of light. It is the surge impedarice of this channel from the tip of the upkard-moving leader that is the point of this investigation. It can be seen that the discharge resembles in considerable detail the discharge of a long rod-rod gap through a series of resistance, ie, the surge impedance of the stroke, from a soutce of constant voltage, the potential of the charged leader. It is the purpose of this section to discuss the characteristics of just such a circuit.

For this development, let

$$
\begin{aligned}
& U=\text { constant voltage of the source in iv } \\
& R=\text { serics resibtance in killams } \\
& u_{i}=\text { instantaneous voltage across the gap in } \\
& \text { bv } \\
& i=\text { curfent in amperes through the gap and } \\
& \text { the sefies resistance }
\end{aligned}
$$

In referctice 4 the process of breakdonn was discussed in considerable detail. and it was shoun that it nommatly consists of the development of channels from each electrade that a_{j} prowh each other with ever incmusing selority: The voluge
 conluctisons mith the formatial setuks the gap, and, thatefure, the bannels can be regarded as extensions of the electrodes.

Fig. 13. Calculatad predischarje channel development in rod-rod gaps for different values of series resistance and overvoltage factor

> A-Channel growih
> B-Predischarge current

If x be the distance between the ends of the channels in em, that is, the length of the unbridged gap and : be the time in $\mu \mathrm{sec}$, the velocity with which the ends of the charnels approach each other is given by
$\frac{d x}{d t}=-s K^{\frac{u_{t}-m x}{s}}$
where
$s=$ original gup spacing in om
$m=$ average critical breakdown gradient in kv per cm (about 6)
$K=$ constant determined from experiment $t=$ time in $\mu \mathrm{sec}$

In reference 4 it was also shown that the current is approximately proportional to the velocity with which the channel ends approach other. Thus
$i=-K \frac{d x}{d i}$
In which R, is a constant, which for rod. rod gaps is about 3.2. The voltage across the gap is simply the source voltage minus the i \mathbb{R} drop, or
$u_{t}=U-R_{i}$
Inserting i from equation 29 into equation 30 , and using this result in eqquation 28 there results that
$d t=\frac{(x / s)+K R K_{i}}{m K[V-(s / s)]} d(s / s)$
where V is the overvoltage ratio defined by
$V=U / \mathrm{sm}$

To ohtain the progress of the channc!s as a function of time
$m R \int_{0}^{l} d^{\prime}=-\int_{1}^{s / s} \frac{(x / s)+K R K}{V-(x / s)} d(x / s)$
or

$$
\begin{array}{r}
m \AA:=-1+(x / s)+\left(V+K R K_{d}\right) \ln \\
\frac{V-(x / s)}{V-1} \tag{33}
\end{array}
$$

And for complete passage of the gap in time T
$m K:=-1+\left(V+K R K_{e}\right) \ln \frac{V}{V-1}$
This equation is of greatest interest in laboratory testing when the circut is such that the inductance can be neglected Of course, the drop in the voltage of the capacitors as they discharge must also be taken into consideration if the overvolt. age is large and considerable charge is drained from the capacitors of the surge generator. This expression is of value in studying the process of breakdown. It is interesting to observe in passing that T is a function of the product $R K_{\text {, }}$ which means that the effect of a givea applied voltage on two similar gaps can be simulated by using one gap and doubling the resistance of the surge generator. Simdarly, the breakdown characteristics of two very long parallel pipe gaps can be simulated by a gap of smailer length pipe if the same time the series resistance is increased inversely proportional to the length of the pipes.

For the lightning stroke it is important to know the current time as well as the distance-time relation.

Combining eruations 25, 29, and 30 to eiminate $4 x / f /$ and 4 , and then inserting equation 32, the resuit is
$\frac{i}{s K K_{\mathrm{c}} m}=\frac{V-(x / s)}{(x / s)+K R K_{s}}$
And sor after $(e f y)$ is determined as a function of time from equation 33 , i can be computed likewise as a function of time from equation 35

The parameters in these expressions occur in such fashion that with the selection of three of them the nature of the phenometion can be shown graghtically. In Fing 13 the three parameters $m . \tilde{A}$, and K_{c} are given specific values that have been found to lie withis the practical range. For a discussion of the determination of these values see reference 4 . The variations of (x / s) and i as the overvaltage factor and the series resistance are varied is shown in the upper and lower set of curves, respectively. To further elucidate thesc effects the total breakdown time of the gap, T, is plotted from Fig. 13 in Fig. 14 in the form of the conventional timelag curve for a rectangular applied impulse wave.
Two scales are provided for both the ordimate and the abscissa of the lower set of curves of Fig 13. For a given R, the final steady-state value of the current varies directly with the gap length s. This may seem strange at first, but it should be remmbered that the applied volt age is a rectungulat wave of aragnitude $U=m s$. Therefore, the final current is
$I_{f}=U / R=V \mathrm{~ms} / R$
Thus, I_{r} in Fig. 13 is proportional to the overvoltage factor " and inversely proportional to R.
The extension of the thagnitude of these curreats into the realm of lightning strokes may be clarified by letting s equal 100 feet (or $3,045 \mathrm{~cm}$). The length of the last step can be visualized as of this order of thagnitude. Assuming an over-

Fig. 14. Total breakdown time of rodtod gap obtained from Fig. 13 and plotted in form of conventional time-lag
curve
voltage factor of unity for this lensth, $I_{f}=$, $1 \times 6 \times 100 \times 3048 / 1$ or 18,300 amperes for a stroke surge impedance of 1.000 ohms and 6,100 amperes for a stroke surge impedance of 3,000 ohms. The corresponding stroke potential per 100 feet would be $18,300,000$ volts. Thus also for a given stroke impedance, the length of the last step, the potential and the current are all proportional.

One element in the develogment of relatiuns in Fig. 13 was the assumption that the instantaneous velocity with which the channels appreach each other is proportinnal to the instantanemus value of the curtent. This relation is espressed in etpuation 29 Designating this refneity by to
$v_{s}=-i / k$
in which i is expresed in amperes and v_{i} is expressed in cm per $\mu \mathrm{sec}$. The lower curves in Fig, 13 express the current as a function of $i / \mathrm{s} \mathrm{K} . \mathrm{Km}$. The instantanethas velocity is then given in terms of these curves as
v, =(i) $\Delta K X, m): K m \mathrm{~cm}$ per psec
or

The final value of this expression as contact is made, according to the theory adroented by the authors, should be equal to the velocity of promagation of the return stroke Observation places this salue between about 0 land 0.5 c

In the computation of Fig $13, m \mathrm{~K}$ was taken as 0.5 and (i/sK $K_{i} m$) for R between 1,000 and 5,000 ohms had a value between 1 and 5 . Now if for the moment the striking distance, which will be desigthoted as $X_{\text {, }}$ and which is equmalent to s be taken as 200 feet then v_{5} / t aiso lies between 0.1 and 0.5 c . But, of course, ii different values of X , had been chosen, the check would vary with the assumed vatue of $X_{\text {. }}$. This comparison does indicute that the relation betwem selocity atod cursent appears to apply to the leng the of gaps imvolved in lightaing
13thile at the present time no particular grouping of the parameters determinitg the stroke characteristics are known with steat precision, it is posshte through a eomparisan of the different sets of flata to arrive, through fudsment, at a set of parameters that appear reusonable. Wuch can tre determined when once the surge impedance of the stroke is known

Application to the Lightning Strake

The authors' conception of the strabe mechathistn is preseuted in ietail in refer.
ence 5. One characteristic of the strake that has not been given much consideration is its surge impedance. One application of this quanity is to co-ordinate the potential of the stroke with the resultant final current at the ground. With this factor known one can estimate the extent to which reflections within the impedance of the strickan object might affect the stroke characteristics, or with the stroke current known one can determine the stroke potential and thereby estimate the length of the lut step. These latter characteristics are also of value in estimating the number of shielding failures that may accur for a particular confluration of ground wires and conduc. tors of transmission line. This section is devated to the detormination of the stroke surge impedance from three diferent aspects.

1. A comparison of the statically deter. moned polentia! of the stroke channel toth the subsegtent corros! that fones in the stroke cheunet newt to the carth in Fip 1 of reference 5 and the diserssiun accompatyying it, a chanmel tip was assmmed to be inomemtarily halted as it upproached the earth at a point 1.010 foet abrve the earth at an instant ot which the samee charge in advance of the channel tip is folly develeped for that particular step It was assumed that the density of the space charge surrounding the channel varied inversely as the distance of the point from the channel. It was shown that for a charge distribution of 6×10^{-6} coulombs per amsome distance hack from the tip where the charge per cm length became substantially uniform, the potential of the channel with respect to the earth was about $50,000,000$ volts. This computation served to estatlish the potentral of the chamel for cuch a charge per unit length While the actual path of the stroke is cortuous and branched. this same potential and charge fistribution will be assumed to apply as the tip approaches the carth is the return channel ir ath the eath this the chare in a cross section of the dewnward leader. the current relensed to the earth is given by equation 9 If + be fet equal to 0.12. the modal velocty, then $:=0.12 \times 3 \times$ $10^{20} \times 5 \times 10^{-2}=18.000$ araperes, and if $:=03$, the stroine eartent is 45 mch arpeeres U'sing these values to determine a surge impedance of the strakie. one obtains $50,000,000 / 18,000$ or $2, i 80$
 03.
dameter of the eythitical sclume of charge deposited by the downward leader
and the volume distribution of charge are still someshat cuntroversial. They doubtless vary with the stroke potential and also with height. If it is desired to replace a charge distrihution that varies inversely as the radius from the channel core to the buundary of the corona sheath with a charge all of which is concentrated at a ziven radius, this radius is the retically equal to 37% of the radius of the boundary of the corona sheath. For the present purpose a radius of 10 feet is arbitrarily chosen as an approximate value thearing in mind that the radius doubters saties with potential, and also that use is being made of the still unproven premise that the chatge dues in fact wars inversely as the radius. Aiter the curratt in the uppard channel from the eurth has risen to crest, the highly conducting channel in its upward progress successively taps different lateral sections of this charge. The diameter of the upward datmel waries with the current in the upward chatinel. An are plasma for currents of the order off omagnitude of those thet in lightaing will have a radius of about 25 cm (0.052 foot). The resistance of such an arc chamtel attains a low drop in a fractinn of a wsec, but durity the inkeval in shich the current is fising. which at a particulat point may also be a very short time, the voltaze drop attains very high values. These high values of resistance of the ate constitute the retardation emi's discursed in connection with waves that travel with a velocity less than that of light. And so the up ward chamel as it taps the chatge from the downward leader can be conceived as a good conduetor of rudias 0002 foot exfending upward from the earth at a ve'scity of about 10 to 30% of that of light and farming out laterally at the tip to deposit a ountralizing charge at a radins of tofter At the same time a very consideratle inpedance is of. fered to the formation of the gond cunducting quality at the head of the wave.

Fig. 10 shows the impedance chatacter. istics of such wave for : $=0.1$ and for $:=0.3$ at 8.2μ uec. In the formet case the impedance is shown to be of the order of $2,400 \mathrm{oh}$ ms and in the latter about 1,000 whms.
3. Wheneshane of Ew on: in whern chamel. The shape of the quedionturge
 by the external resistance. By comtharing these curtents with the currents of those observed for thathal lightning the impectative of the stivke aris he er triated,

! Hondid

gap Hstatices of lipituing froputh is is justifiable.

Fig. 15. Evalue on of return stroke surje impedanes foon the shape of the return suroks currant wave front

A-Calculared ore. dischdize currents in cod-rod gyps B-Lighining stroke fisterls melsured by Bersen ${ }^{6}$ C-Measured predischarge currents in rod-sod gap D. Measured pre. discharge cutrents in rod-plune j土p/nesskIve polat Ty

The computed curves of Eig 13 have been reploted in Fig 15(A) together with similar curves for $V=1.05$ by using as ordinate the ratio of the instantaneous of the final current and ss abscissa the time ficcasured buchward foom the instant that the curent reaches its maximon or tinal salue. It is interesting to observe that for this range of parameterz there is tittle fifference in the curves for $Z=105$ and those for $V=125$, except for the ex. tension for low vatues of current. In Fig 15 (B) is plotted on a similar basis the three most complete curves of natural lightning curvents obtained by Berger in Switzerland," whose data had been reproduced in reference 5. The curve desiz. nations are the same as those used in Fig 8 of reterence 3. The curves of Fig 15 (A) in their comaputation invalve intermediate assumptions and evaluation of constants These interme fiate steps can be circumsented by the use of only one of the assumptions used, namely, that the time lag of rod rod gaps in independent of the gap length,' and by then obtaining experimentally the wave shape of the predis. charge currents for different series resistances. The results of such tests are ptotted in Fig. 15(C). The applied voltage in these tests rose to an effective crest in about $1 / 4 \mu \mathrm{sec}$ and the overvoltage factor was 1.10 and 1.25. In these curves the designation numbers are simply the sum of $R_{\text {ta }}+R_{z}+2 R_{\text {a }}$ It should ap-
proximate the effective resistance as R_{Δ} is large in comiparison with the other values.

It isas tound in preciuns tests on rod. rod gaps that a considerable oscillation in current resulted as the average peak of current was approached. The oscillution was decreased very greatly by placing the resistors R_{4} close to the cups. These were artanged in a vertical position and the $1 / 2 \times 1 / 2$ inch rod gaps were only about 8 inches lons Fig. 16(A) shows the nature of the resulting current

It is recognized that natural lightning to open ground would be more closely simulated in the taboratory by discharges between a rod of negative potential and a flat plate. The results of such tests with the same type of applied voltage wave are shown in Fig. $15(\mathrm{D})$. The resilts show a somen hat faster travel time, but the general shape of the curnes are the same as for rodrod zaps. A typical oscillogram from these tests is shown in Fig. 16(B).

The inductarice of the circuit doubtless has sonse effect upon retarding the rate at which the current rises. This effect is particularly important near the later stages of the current rise. And so in comparing the curves of Figs 15(A), (C), and (D) with the curves of Fig. 15(B) some consideration should be given to the effect. Greater refinements in the investigations to determine these effects would be wartanted.

Estimale of Surge Impetance of Stroke The great variation in stroke parameters enhances the dificulty of estimating the stroke surge impedance, for not anly do such guantities as currents, potentials and velocities of the return chantel vary over wide limits, but the equivalent surge im.

Fig. 16. Oscillograms showing predissharge curfents in gapsy sec insets of Fig. 15

$$
\begin{aligned}
& \text { A- Sixfoot rod-rod gaD, } v=1.10, \\
& R_{t}=3,000 \text { ohms } \\
& \text { B- Sixfloot rod.plane gap, negative } \\
& \text { Dolarty, } v=1,25, R_{2}=1,000 \text { ohms }
\end{aligned}
$$

pedance is interdependent with them. The velocity method of Fig. 10 is probably the wost accurate thethod of estimating the surge impedance, but it also requires a knowledge of the equivalent corona radius, and it varies with time. But since the corona radius enters the expression for the surge impedance as a jogatithmic relation, it may not be essential to know its value precisely. From Fig. 10 it can be estimated that for $t=0.1$ and 0.3 the surge impedance values are 2,400 and 1,000 ohms, respectively. Since 0.12 is the modal value of v, one would tean to a value of about 2.500 ohms.

From the ciectrostatically determined potential of the stohe and the resulting current that flowed to earth upon contact of the leader with the earth, it was determined that the surge impedance of the stroke was about 2,780 ohms when 2 was assumed equal to 0.12 and 1,100 ohms when t was assumed equal to 0.3. These values are not much dilferent from those just given and they involve mach the same kind of assumptions.

In comparing the analytically determined predis hate currents of Fig 15(A) with Berger's first component stroke ourtents of Fig. 15(\$), the computation of aecessity was based upon a stationary upper electrode It was necessary to extrapolate the time-lag curves from laboratory disfances to last-step stroke distances. Within these limitations the stroke impedance appears to be of the order of 4,000 to 6,000 olims. In comparing the more direct laboratory pre. discharge curves of Figs $15(C)$ and (D) with Berger's results of Fig. 15(B) which were obtained with a 230 foot mast would
indicate an even larger surge imperdance in excess of 6.000 ohms.

Thus, these methads give a wide range of surge impedances, but in judging the various methods the anthors give greatest weight to the velocity method. The values estimated from the statically determined potentials would then be next in accuracy. The curves of Figs. 15(C) and (D) are of greatest value in confirming the general shape of the current curves. If ordy one value must be chosen the authors suggest a value of about 3.000 ohms.

Conclusions

In the different approaches so diverse in character to the consideration of the surge impedance of a lightning stroke, a number of conclusions can be drawn.

1. The surge impedance of two parallel conductors is equal to its conventional value after a tore equal to the travel time of light between them, and the suge fimpednace of a conductor parallel to a perfectly conducting eanth plane is equal to its conventional value after a time equal to twice the travel time of light between the contuctor wind earth
2. The surge impedanes of a vertical conductor, ane end of which if commeted to a petfectly conducting earth phane und upori which waves of curtent and charge travel upward, increnses with time without limit. The surge impedatice also increases almost inversely as the velocity of propagation of the bead of the wave.
3. In the lightning stroke two fartors contribute to the deternination of the velocity of propagution of the return stroke and its surge impedance These are (1) the fact that the chatge distituation in the downward leader has a much greater fadius than the column of the are by which the charge is
subsequently drumed to the earth (curona effect, and (2) the temporary high resistance introduced into the path of the curreat as the current at the head tends to increase rapidly. The effects of these quantities have been analyzed in terms of observed lightring chatacteristics.
4. Corona decreases botif the velocity of propagation and aurge impedance, while the tetaporary increase in vultage drap over the nombal are drop at the head of the wave decreases the velocity of propagation, but increases the surge impedance. In a lightning stroke these effects cumbine to produce a large decrease in velocity and an therease in surge impedance
5. An expresbion has been defived for the growith of the chaunel cuttent in a gap to which a rectumbular veltage wave is applied threwh a constant resictance.
6. For gumeral purposen it is estimed that the surge mppedance of the stroke is of the order of 3,000 ohms.

References

Discussion

Charles J. Miller, Jt. (The Ohio Brass Company: Batberton. Ohio): The phesumenon of electrical breakdown of air is we whith thas attracted the attention of many farmititurs, startiag with Ponjamin Franklin in 1762 This present naper by Whager and Hileman is another milestone in their senes of important contributions to the ovecall effort being trade by contenphrary scientits around the world to wifite the themetical uspects of efectricity 4. ith breeved phemmena.

One result of prictical inportatice for labaratory impulse tusting is equation 34 which, an the authors indicnte, may be used to csiculate the time to flachover of ait gaps for cariuns onernaitage ration V. This equition bus keen checked aguinst mome
 10.38, and the poulte of the rampation on we Given in Fig. 17.
For these caleutations the following values were veed in equation 34 :
$K_{c}=32$, the value recommeaded by the authors for rod gaps.
$R=0.8$ fitchitm, the impulse generator series resistance.
$m=6 \mathrm{hv}$ per cm , the value indicuted by the authors.
$m=020$ detemin d by Guting the excu. lated curve to the dita.

Note that a value of 050 is sugsected by the authors for rodrod gres, and is the value which they used in their calculations for Fig. 13
It is recmgriked that as turpulise generator haviog a $1^{1 /} \times 40$ weec outpot wave, as was used in the 1928 rod-rod sup teats, onay not conform exactly to the simple cunstant. voltage series-tesistince circuit visualized by the authors for the derivation of equation 34, but a hatle reflection irldiea:es that for proctical purnicion, the tomple gemesator circurt apptosimates thise endetion. In any event, the cortulution betuents the fiborntory dota und she enloutated values ghtore a remartably dose errotition, and this by itself would seem to indlicate that this theo-
retical approach to the breakdown of air gaps in the laboratory warrants further study.

90004136

H. Linck and L. Lisbchyua (Ontarto Ilydro.

 Turonto, Ont., Cemada): Sparthod by the ahas lighlulig-outage rites of cettim lish. voltage transtrission lines, the authots in a very commendable way decided several years ago to undertake a thotough theoretical investigation of the chamecteritios of the lightaing diecharge and its effects. Theis present paper iudicates that they bive weanced in ther stodies to the -are where the ornelation of fivid theory and , thy wial Mracesxas in the strake foritation can be attempted in order to artive at a phintical trethod of line-ontrige ontentutions. Due to the complesity of the subfect, of blatited Atogasion of the authurs reatk antat lex ieft to thase raperssWhuthe of beob
theury and the ;
 general nature may be permitted here.

Fig. 17. Comprision of rodiod gap dets oblyined in 1938 with salculated curves oftateed by using equation 34 for the time to flashovet

In Fig 7, the forcing emf's for rectangular waves of ctarge and current at a velocity le a thon that of light and without cormat are shown. If the bead of the return stroke has progressed to a point 0.0 .1 above the ground, is it correct to assume that the forclig function for the return strobe current is composed of the integral of the electric fietli from ground to point vic: as it existen? along the stroke chamal just before the retuin stroke commenced, plus the termporary high-solage drop at the teturn strake bend ${ }^{3}$

A simptited formula for the forcing volt. age in each conductor of a traveling wave systorn of two parallel conductors is given in the paper. It is also shown that the surg thapedance of such a system is not a constatt for travel distamees from the soor - up to the equivalent of the conductor spact" 5 . The question arises how the ithpestures of a short line section should be tepresuted for the ense where lightning strikns a line 100 of 200 feet from the station entrince

The auttunts state that they are aware of two prattical cases for which traveling waves propagate with a velocity less than that of light, firstly, the propagation of charge ander coroma, and secondly, lightning A third important case can be added. naurely traveling waves in cables. It is knows that the velocity of wave propagation in a medium of permittivity k varies inversely is the square toot of the permittivizy, and it follows that reduced velocity is nat limuied to wave phenomerna in an electrically excited gus. But it would appear that basic fifferences exist in velocity teduction due to increased permuttivity and due to ionization, One difference, for instarice, would be that in the case of a cable the electromagnetic field is guided by the inner and outer conductor with losses notitully nuglected, whereas in lightning the return stroke in expanding its own conducting patis has to force its way ahead, consuming entigy it doting so. Remembering that at the begirning of their investigations the authors did not recognize as valid the consept of stroke-surge impedance, it is gratify. ing to note that now, based on a different princtpie, it may be possible to describe certaik struke chafacteristios in tertis of an
impedasse, a parameter that cun easily be fitted into conventional calculations.

There are still some areas of doubt concerains sitmpiltiol assutuptions in lightning calcutiations. It hes Skan propersed by pre of the wuthers thet the stecke potential cim be espresode as the product of stroke aurge imped.fict and current crest; considering that stroke currents in the rangy of abous 1,000 so 250,000 amperes have been meas. ufed, afd avothing an average stroke itmpedinee of 3,000 olams as sugga ted in the paper, them strolut potertills would fall between 3 to 750 Emillon volts. If, on the ofter tamu, oat argues that the devetopment of the leader depends an a eritical voltage condition, and tharefore the strone potential does not vary grently, being of the atder of 50 mition voits, thea for the currents thenthoned above the surge impedatice would be between Se, 9 th and $2 n 0$ ohtmo: the authors
 It appears that it is too early to accmpt any averige data on stroke patameters, and I agree with Mr Wagner that still further field measurements of the properties of lightning are required before we can claim to understand it fully.
C. F. Wagnes and A. R. Hileman: We wish to thank Dr. Miller for his gracious comthents. Weare particutarly pleased because he has been an outstanding contributor to the art in this partleular fieid. It is most interesting that by uring the formula givea in the puper he has been abie to determine a curve that ats the data for a 40 -inch and a 70-ineis gap that was obtained in an entirely differenc taborntiory We reallze that Dr. Miller appreciates the implications of using equation 34, that had been developed for the application of a constane valtage to a gap through a scries resifunce, to a surge generator circuit whose constants had beea set for a 15×40 wave We merely wish to corftatertit that some danges might be im. plicit in such procedure becuuse of the change in the constants of the surge generator necessary to produce such a wave.

We appreciate also the penetrating comments of Messrs. Linck and Lishchyna. They comment first upon the use of Fig. 7. In determining the forcing em? we did not use the radius of the leader as it existed along the sttoke channel just before the return stroke commenced. Had we done sn, we woutd have used a radlus of about 1 mm (millimeter) instend of the value of 25 cm that is indicated in the caption for the abscissa. Perhaps a more detaited discussion of out philosaphy might be in order. To determine the stroke potentlial as the leader of the first component ap. proaches the earth. we coutd have trade some assumption regarding the distribution of charge across the lateral sections of the leader which in the previous paper we assumed to vary inversely as the radius from the core. Then from such an assumption the leader potential could have been determined. Any such calculation would be affected both by the tortuosity of the downward leader and also by the effect of the charge on branches from the main channe! of the downward leader. By operating upon the return stroke we start with an assumption of current. of the velocity of the return stroke, of the diumecer of the piasina core of ine return struke, and
of the location of the charge thit bad to be fed into the upward leader as it taps any later If sections of the channel. In this case, the ashutption cuncorais? the lacation of the ctiorge is inst an imporzant feetor. We feel that this appriget to thadetermitution of the potential of the evre is likely to be more aceurate thun the first approwch

The discussers ask the very practical question cuacesting the reprewentation of a short line section where a lighthing stroke impinges an a fine a short distance from the station entratice Equनtior 7. which is plottod in Fig 4, shons that the sut as impedance for the syateil of waves shown in the inset does not reach the conventiona! value of surge impedance as given by equation 8 until a time equal to the travel time of the tieid betwenth the conductors. However, 15 shownin in Fig. 4, the surge firpedance is equal to about 35 of of its final value withig about $1 / 4$ of the travel titne Also, the curves of Fig t are applicable only for a rectangular wave. As discussed in the last paragraph under section 3, if the assumed waves possessed sloping fronts, the error in using the conventional surge im. pedances when exprosed in terms of the titial values beoomes stuulles. Therefors, in direct answer :o the dixcuscers' que tion, it appears that the conventional value of surge impedance should be used to represent the short line section.

The authors wholeheartedly endorse the discuseres' ohservactions that there are still some aroas of doubt conceraing stmplified assemptions in ligheriong caleulations att in the opiaion of the athors this statessent applies not only to the characteristics of the strase, but to the characteristics of the transmission line. The danger of accepting average stroke parameters sas brought out y ry clearly by Messrs. Linek and Tishedyna, and the authors wish to develop this thought further. The stroke potential certainly varies from struke to stroic depending upon the chas ge distributed along the path of the dowstward leader, and since the return stroke current varies over wide limits and is proportional to the charge laid down by the downward leader, then for a given returti stroke velocity, the stroke potential should vary over about the same range as the return-stroke current. The evidence indicates that the velocity is not constant but is higher for the higher currents

90004137

Fig. 18. The velosity of the return stroke as a function of the lightning current. The unbroken curve is calculated by equation 40. The dotted carve is outained from analysis of field measurements (Fig. 7 of reference 4)
than fos the lower curtents. This vartation of return-stroke velocity with current affects the computation of the stroke potential when computed through the medium of the surge impedance because the surge imped. ance decreases with increasing velocity In this connection it wowld be well to teview the present knowledge concerning the relation between velocity and curtent

In 1442 W'agner and McCann ${ }^{1}$ in reviewing the data of Sxtonjand ${ }^{2}$ and his associates state that "the evidence is quite strong that higher return-streamer velocities are assiciated with higher strake curtents." From their data ${ }^{2}$ Wagner and McCann also derived percentage distribution curves of the effective upward velocity of the return siftater (Fig 20 of roforence 1). Asuming that the Higher return-streamer selacities are asociated with the higher stroke curreats then from the distribution carves of ctum streamer veloeity and distribution
"urves of curnent, it is pussible to abtain a curve relatigg to thane two quantisies Landhoim' cumpared these quantities for three ranges of strake currents and Rusck' plotted the curve shoun by a dotted line in Fig 18 (Fig 7 of reference 4). The full line in Fig. 18 is an analvtical rolation develoned by Rusck' which is given by
$y=1 / 11+\frac{500}{1}$
where p is the velocity of the return streamer expresed as a fraction of that of light and I is the return stroke current. Accurding to Rusck this relation is bised upon the previuns work of Landholm² and Tocpler ${ }^{2}$ and includes some degree of empiticism Never. theless, the equation fits the observed tesults very nucely and can be tsed for the present for extrapolating into the unknown itgion of Fig. 18

Refekences

Radio-Influence Testing on 70 Miles of $345-\mathrm{Kr}$ Horizontal Bundle Conductor

R. E. GRAHAM
C. R. BOND

Abstract

Summarv: Raditionfloetice (RI fest results on 70 miles of 345 kv tranonission tate ate procturted The them of the $345: \mathrm{kv}$ tranamission line using $954-\mathrm{MCM}$ thonsand citentar mils) ACSR (aluminum cabls, steel reinforced) conductor sundled at 18 inch anding, the use of stard at suspunsion tionne iriangular apace plates, and a houtiontal phase spacing of 27 feet resalted in satiffetory R1 level without control ftngs at the conductor bardwate assemblies Utemuation tests show that R1 readings at acie tite are that materially ffected by "tadtation on the line a for milies away

1. ABORATORS TESTSwerecanducted the Ohio Edism Coumpan. pro

 cinus to the construction of 80 miles of the 345 ky line. to determine the corona and mifimprence levels of the line bisturare to be used on its 345 kv unnsmission lines, and fieid tests were condurted on the completed tratismission line to evaluate the selection of hardware On January 31, 1961, the Sumumb Star North 345 kv tratamistion line was enotgized for RI testing; Fizs 1 and These lests ran int approximately 5 weeks
Laboratory Tests

In luss, the Ohio Edison Company vollucted ruk ratory tests on warnus types of hartwate and comductors for corona and R1, and the tesults are thown in Table I (atl volfages are line to ground)

These test data provided the hasis for the selection of the hardware assembly for the 345 ky tansmiscun lines.
Tension stringing was adopted after a comparison of laboratory data of "cleaned" and "as received" conductor corona and R1 tests indicaled that a significant reduction in the RI could be expected if tension stringing was used The "as recenved" condition would be similar to conductors strung in a normal manter

Realizing that differen es oxist when moving from laboratory to the field, it isas decided that R1 field tests sould he conducted on the Summis-Star North 315. ky transmission line to essaluate the laboratory tests forther.
Iaboratury teats had indiceted that contral ting thight tot be tecessary on conductor hardisare assemblies and, since RI feld tests were necersary to substantiate the laboratory results, it was decided to construct the Summis-Star North 345 kx (ransmission litie without control rins on the 26 -mhie section at the plant and and with control sings on the remaining 44 miles of line.

Ambient Level Tests

\qquad noise level readinss were taken along the

Tight of way to establish an ambient level for the area and for some of the existing hes ercosed how hemetshe tile athe germal ambient level ran from alrout 3 to $10 \mu \mathrm{y}$ (microsplis) per meter as read on the Quasi-Peak seale of a Stoddart NM 20 B thuter with a $1 /$? meter rod antoma. Tests were oonducted on other fines

and the thethods of measurement

345-Kv Long-Line Tests panumaner पios 90004138

test locutions. Drie iest site whas in the

 aenter of the 2tamile section of line withaut contral rimgs, while the other was in the if male section with control rings, 13 miles finsu witere the rinass start. Thece lest -ites wert selected since they ware moatly
d ntieat in all re-prects and thas ofin.

t'ed entwe of the pinceithe tuapightes

These two particular sites were then staned so that all latoral and longilndinal readings wornld be taken at exactly the same lucation remur diless of the nuthler af roadings Lateral stines isere plued S. fer? दnatt for 300 feet either side of the centerline while the longutudinat stahes were 20 feet af art $\overline{3} 5$ feet either side of the centertine for misul G00 feet.

\qquad Stie Euran Cumpany Aston. Dhio.

[^13]on the anther band emphasize that on the basis of only 2 years of experience, about 4 cr of the strikes produce flashovers. They further point out the difference between this value and the value of 7% used by the authors. The authors wish to call alter. cion to these contradictory criticisms and cmplasize their own recognition of the need to llandle averages carefully: But even if one would use the 4% value mentioned by Mi f Johnson and Mr Schultz, it does not constitute a contradiction of the authors' thesis but rather indicates in viewing Fig. 2 that a relatively large value of time to crest is indinated. This follows trectuse, in zuoural, the average tate of rise increases with increasing current, regardless of the loner limit of current chosen. 13 ut in spite of these comments, the authors will also agree that the available data are still meager IN aud they be co completely satisflout with the publlated data, there would base been to age to undertake the invesfifution described in the paper. But even it this investigation, the results were not ton conclusive. As mentioned in conclusion 6, to achieve times to crest of the order of 1 or $?$ used the neutralizing processes in a action of the $\$$ ghthing channel proceed by latciul dischafges and develop at about the tattie speed as spark fish barges.
The authors with to concur with Mr
 formation can best be obtained through a combined + fort of the industry.
Returning to the comments of M, John-
 they alpha ice and gate our statement
"Theremast be a limit of crest current betow which the diva need not be given conderation" We swish to reassert this state-
mont. For example, even if the current has a remangular front with an infinite rate of rise, it does not follow that the voltage across the insulator string will be infinitely large or that the insulator string will flash over. There certainly exists a lower limit of content, even of rectangular shape that would not cause flashover. The most desizable information regarding current is the instantaneous values as a function of time. Lacking this, the average values of slopes to several dofmite instants would be next most desirable At this point in the art of cal. culating the performance of a line, one cannot say with assurance which is the most important average. It is conceivable that the most desirable average must be coordinate with the breakdown characteristies of the insulator string. But given only one avorage, the average to crest would appear to be the most informative.
of course, the curtunt and its thine variaton are 0 . the only factors that must be considered determining the performance of a line. The time variation of the charge and current in the stroke channel above the tower can also be of importance. The authors' discussion of Fig. 2 does not imply it any way that the actual curtents in the tower and ground wires and their time variatigons are the anil factors that toast be computed.

Mr J-linson td MT Schultz fodicute that high rates of rise or short fronts of stroke currents are the cause of the bough lathing outage rates on existing high volethe field data shown in Fig 2 and on use of the tower surge impedance or inductance

Arc Drop During Transition from Spark Discharge to Arc

C. F. WAGNER
C. M. LANE
C. M. LEAR

O RFCENS JEARS, renewed nearest has developed in the rate of a Ho flailing str he us it sutlers the that an essential element in determining the surckemartent characteristics is the tratelent ane drop of the str he current The ; infuse of this paper is to present axpatareatal results of tests on tahora-

Super 38-176, recommended by the NEE Traps Fro and Dosttitutwon Cumonitice and approved

 Firtithugh, Pa
tory produced oscillatory arcs havingcrest values up to 50,000 amperes andtitres to crest as short as 12 aec(microseconds)
Review of Present Knowledge
The earliest work of this mature is that
of Norinder and Kor
having a crest amplitude up to 102 ka
atloutnperes). Most of these data are
for times much longer than I sec. Fino.

1. however, tefinitted if om titis work,hows the ate drop : ind thereof an ISnemand through milit an eclat or y current
existing data on wavefronts and the ecacept of token surge impedance or inductance does not result in line flashovers, and there. fore does not explain the high outage rates on existing high-voltage lines.

The authors have not attempted in their - paper to analyze all aspects of the lightning stroke. They are concurred primarily with those characteristics that might have a beating upon the lighting protection of transuicion lives. Mr Rordon has raised the question of a theory to splats branching The authors feel that the logical starting point in the analysis of strobe for its effect upon the line is the current fed into the tower top and ground wires. Considerable Statistical information is available concerning the crest magnitude and the frequency of arourtance of different crest alums bess information concerning the rate of the of the cument is availatie. This current and the variation of charge and current above the taser whin a heist of say 800 or 500 feet, as influenced by the velocities of the stroke or the presence of upward streamers, are provably all that is significant. Branching in parallel or above this zone may influence the value of these quantities within this zone, but if the quantities within this zone are postulated in terms of the towerCp extents and their rates of rise, the en facts of branching would automatically be frelurded in the computations. The the the tower shout ane int on d os int them. whility of concurrence of onward streamers.
\qquad
shive positive and negative current crests.
$\mathrm{By} ~$
$143 \mu \mathrm{sec}$, the current crest had refined to 15,000 amperes.

In 1950 Thishum and Wees? imosetisated impute curarnts in the range 60 to 300 amperes, that attained their peak values in shout ! \& sec and decayed to half value in 10 or 25 used. Their work was curried out on spark gaps up to 40 cm in length. Fig 2 taken from their ; doper is ant devil grate that shames the gerent it immediately fifer the spark has ucrurred and current begins to flow. From w her data given in the flamer it is deduced that this nsellygram frobiatity applies to a 20.

cred at 3 agee. The plotted punts

These values, for air, are plotted in Fig 2. Higham and Mesk state that, this curfe may be expected to apply with resornahle aveuracy to spark channels in air at atmospheric pressure when conducting unit function curtents of maguitudes ranging from 50 to 1,000 amperes.

It is this curve that encouraged the athers to investigate the tramient-volt-age-drop characteristics of the impulse cartents as a likely factor in determining the front and other characteristics of the stroke current. Highans and Meek also tark into consideration the tortaous charauter of the are path and showed that the total drup was proportional to the total are path for gaps up to 40 cm in length Tungsten electrodes were used and the electrode drop was about 100 volts.

More recently, Allen and Craggs ${ }^{3}$ con tinued this work with currents up to 265 ka. Their currents were oscillatory rewhing a crest in $7.5 \mu \mathrm{sec}$. The maximuin leng th of their g ep was 7 millimeters. Because of the inductive drop in the measuring eircuit they report voltage gradients orly at the instant at which the rate of chans ${ }^{\text {s }}$ of current is zero. For air the viltage gradient at 188 ka is 180 volts per em and for $265 \mathrm{ka}, 360$ volts per cm .

Thete thus remains an area of currents in the order of tens of thousands of crest aruperes rising to erest in the order of several μ see that remains to be investigated.

> Considerable data are avaifable re-

Fig. 2. Oreillogram' of voltage drop across spark channel. Authors state that the original oscillogram thows a cleaily defined tace above 10 kv

Fig. 1. Ars drop: at current crests of an oreillating current whose finst crest is 26,000 amperas and whose period of oscillation is 5.2 -sec
garding the diameter of the are channel under transient cotadtions. Higham and
 the tirst 12 usec following the development of impulsecurrents that rise to crest in $1 / 4$ asec. Fig 4 is typical of their data and applies to currents from 150 to 500 am peres that decay to half value in $9 \mu \mathrm{sec}$. The values were obtained photograph. ically by means of a fotating mirmor tech. pique.

Allen and Craggs' by a similar method determined that for a current that rose from zero to a crest of 188,000 amperes in $7:-\mu \mathrm{sec}$ as a sinusoid, the channel ratius increased ahast undormly duritg this time, and at 7.7μ sec attained + radius of 1.25 cm . The radius of the core at the same instant was 0.95 cm . These ares were in air at atmospheric pressure.

Apparatus

The test setup used in this investigation is shown schematically in Fig 5. From one to five 100 -kv 025 -microfarad eapacitors were connected in parallel and charged through high resistances from a source of d-c potertiat. Two gaps, a "tripping " or "external" gap, and a "test" gap, were connected in series with a cur-rent-measuring shunt and placed directly
across the terminals of the capacitor. The electrodes B and C forming the test gap were unde of 0.185 inch tumbten rods and electsude A of coppes rud. Curreut w is measured by tating the drop across the sfount to the oscillograph through cinuxial cable.

Anticipating voltages as high as 30 or 40 kv actuss the test gap before breakdowne then to measure ure drups as low as 1 ky with a satisfactory accuracy, required a special techrtique for the measurement of the voltage. A scheme similar to that used by Higham and Meek' was used. As shown in Fig 5, a nonlinear shume parallets a 100 -othm resistor and the 32 -ohn conxint cable to the oscillo. graph. A 1,6000 whn resistor is in series with the parallel combination. For low voltages the nonlinear resistor has a high resistance, but for bigh voltages its resistance is low The resultant caltbration is shown in Fig 6.

It was found that a consiterathe volt age was induced in unswoidable loops of the voltage measuring circuit by the heavy curtents in its vicinity. This voltage was almost completely aeutralized by placing a compensiting coil in each of the doops of the voltage measuring circuit. These consisted of cuils mounted on rods that could be turned until a minimum de-flection of the voltage element was obtained with electrade C moved inward to short circuit the tost gap. To ensure that good contact wos made. a stuall brass sleeve with two claaping screws was fastened acruss the gap.

To a large extent the external g ap determined the curtent obtained since this controlted the voltage to which the capacitors would rise before discburoing The proportions of the external gap to test gap could be varied only within relatively smatl limits. To increase the current that

Fig. 3. Transient voltage gradient: for arcs of 50 to 1,000 amperes having a front of $1 / 4$ usec and a Aat top

Fig. 4. Dismeter of arcs ${ }^{4}$
could be obtained for small values of the test gap ($1 / 2$ ituch an auxiliary electrode shown by the dakhed line in Fig 5 was inserted in the circuit. The resistance actoss this gap approsimated that across the test gap. This permitted an artificial increase of the test gap without disturbing the voltage measurements across the small gap.

The shortest time for the current to reach ceest, 1,2 asec, was attained when the capactitirs were discharged with no external infuctance. The time to crest was increased, but at the cost of decreas ing the crest current. by insurting an inficctance 3.3 or 9.4 mbllihenrvs) as Et wit by the dashed lises.

Measuring Technique

Fur prelithithaty observations, the osdlligraph isas tripped by mewns of a prabe located near the high-saltage electrode In this way tripping occurred in the early stages of ireakdown of the external gap. Only a very small element of the voltage record was lost and the entire sequence of esents of Lruakdown became evident. Fig. $T(A)$ is an vikcillagtami of the voltage auross the test gap. ohtained by tripping in this manner. As the capacitors hecame charged, the voltage across their terminals
increased slowly until the exzernal gap Uroke down and the oscilligrapht tripped. Prior to lireakdosm of the test gap the current through the exiernal sap is finnted by the resistance in the viltagemetering circuit. These predincharge curtents are of the order of 50 amperes. depending upon the setting of the external gap. As illustrated hy Fig 2, the valtage across the sap daes not decrease to zero instantly. The tine required for the decrease in veltage of the external gap is reflected in the time required for the valtage acrass the test gap to lutd up, which reghires a fraction of a $\mu \mathrm{sec}$. After this interval, substantiatly all of the capacitor voltage is applied across the test gup which also reguires a small time to loreak down. With the hreahdown of the test gap, a similar phenomenon occurs in both gaps, the current in the test gap increases from substantially zero (neglecting the preionization earrents) and the current in the extemal gup increases from about 50 amperes, both currents increasing to the eurrent determined by the rate at which charge on the cafracitors can discharge into the inductance of the circuit, which is controlled lasely by the intemal inductance of the valacitars. From this imstant the soltage actoss the test gap describes the churacteristics of the testgap are as the current tirough it increases in risponse to the circuit parameters. The deflection of the ascillogram is not, of course, proportional to the voltage but
includes the effect of the monimear calibration of Fig 6.

The valtage across the curtent shunt is shown in Fig. (B) with the sudden, almust vertical, trace lined up to correspund to the instant of breakdown of the test gap. Prior to this instant the indica. tion is zero, which eomerpunds to the 50 amperes to which the somisince of the voltage circuit limats the current. The vertical trace tepresents the indactive drop of the shunt, an aiservation that was suhsegquently cherked by other miensareanents Limitations in avallable 1ahora. tury time fid not petmit of the embintic. tion of a smore дecurate shomt

Excopt for about the first 0.1 ,-oco the arc soltuges of the test and trip sups should not influence the waveshape of the current apprectably. To eliminate the inductive errot of the current shunt it was assumed that the current was sinusoidal. From the actual record the crest value and the time to crest of the astmmed simusoilat current were enloulated. The crest value and time to crest (quarter period) in $\mu \mathrm{sec}$ was indicated by the designation such as 32.300 amperes per 3.0 urec.

Tripfing by the method just deserthed was found to be erratio. The trip titumit was transforted to the terminals of the curtent shumt so that the verticat the which was always associated with the initial rise of current would provide positive trigning. At the same time about

Fig. 6 (right). Calibration curve for voltage element

Fig. 5 (below). Schematic diagram of apparatus

Fig. 7 (leit). Oscillogrems

Fig. 9 (right). Variation of arc

Fig. 8 (leit). Replots of typical oscillograms showing measured drop, compensating voltage, and difference

90004142

tion attains its crest in $2+\mu$ see, and for the bottom otie in $4.4 \mu \mathrm{sec}$ Summaries of the results are shown in Fis $10(\mathrm{~A})$ and (B): (A) being for an external inductance of zero, and (B) for 3.3 mioroherrys. The voltage acruss the arc decreases very rapidly for the first few tenths of a $\mu \mathrm{sec}$. In Fig. 10(A) it can be observed that this effect is quite erratic. Doubtless part of the lag in approaching a low voltage can be attributed to a lag in the measurement circuit, but a portion must represent an actual time required for the channel to become conducting. If the lag were simply a theasuremenc ertor one would expect a greater consistency: Perhaps a portion of the inconsistency can be attributed to the sharp rise in vo tage prior to actual breakdown. It was found in selecting the relative lengths of test and extermal gaps that no great variation was permissible. The desired current is set by the external gap. Theu if the test gap is too small breakduwn occurs in the rising front of the wave, and if too small breakdown does not take place at all. In general, a ratio of about one to two was semerat.

100 feet of delay cable was inserted in the coaxial eable to the voltage plates which introduced sufficient delay so that a strall element of the voltage just prior to the gap breakdown was included in the oscillogram

For each setting of the gaps, several records of the compensated voltage (voltage across the short-circuited test gapi, the voltage across the test gap, and the current were made. The ecords were found to be sufficiently requatitive. Fig. 8 is illustrative of the results obtained. These are replots of the oscillograms for a 32,300 -ampere-per -30 -curtent wave. The upper uscilogr atn is the recurd of the mewared suitage across the

1. B -inch test gap. The middle oscillogram is the record of the compensating voltage, the voltage obtained with the test gap short-circuited to measure the remanent induced voltage in the measuring circuit. Subtracting the compensation values from the upper curve provides the true arc valtage plotted by the bottom curve. As will be seen from subsequent records, the oscillation in the voltage record is affected to some degree by the amount of inductance in the discharge circuit The actual voltage was taken as the smovth curve chrough the bottom curve. Doubtless also some error exists in the reword for times less than 0.2 μ sec

Results

Typical are-drop and current curves are shown in Fig. 9 for the three external inductances used in the tests. The top illustration in Fig. 9 is for the maximum curreat and shortest time, the curtent in this case attainitg thaximum is 1.2 usec. The current the middle ilfustra-
with time for three typical condifions

Fig. 10. Summary of are drop as a function of time and ciest current

A Thare externsl nductance
B-3 3 -mucrohenty extertal inductance

the gradient curves of Fig 12 were plotted to illustrate more clearly than Fig. 9 the effect of changing the wavefront, maintaining at the same time the same crest value of 30,000 anneres. The curves are platted for the period during w lich the currents continue to increase.

The limits of the avalable facilities urevented collection of data for currents of high magritude with flat tops. The data by Higham and Meek for which Fig. 2 is tsprical shows a rather tapid decrement in veltage drop to 72 volts per em at 1 asec. After this there is a further gradual drop to 35 volts per on at $24 \mu \mathrm{sec}$. A similar phenomenon probably occurs at the bigher currents studied in this investigation. At the instant of flattexing of the curtert the valtage drop probably dectises slowly and by 30 to 100 usec reaches a steady

90004143
Fig. 11 (left). Voltage gre. dient of ares. For each curve it is assumed that the current increesed linearly with time up to the time indicated on each curve

Fig. 12 (right). Gredient-time curves for current insressing lineaty 10 crest of 30000 amperes at times indicaled on the curves

value f about 50 volts per inch. Stroms atcatred for 60 -cycle ares in air a drop

Conctusions

1. Oscithatory curteat discharges have been abtaised from eapucitors that have 1 crevt up to 36,000 amperss. The wisi.
 cher It 12μ eec Lower chirschts were ohturned with longer times to crest

2 The initial discharge was accompanied by a very high voltage drop having a duration of about 02 usec that might be of cteve orter of 30 to 40 kv per inch.
3. The faitill high drop is followed by a
longer duration but still high drop of the orier of 1 to 4 kv per inch. This drop ithrenses with the stoepness and with the magnitude of the curnen: crest
4. The primary puspue of thase test was to detertaine whether the thavent voltan" deap of bighemurent ares mizht be of significance in determining the characteristics of the lightning-atroke currents. If one were to consider an are gradient of, e. . .30 kv per inch, then atr are length of non feet would proseres a drop of $3,600,001)$ volts. Since the struise pottrital has bect estimated at from 1 to 3×10^{3} voits, it would toot requite thany 100 -foot lengths to have a very sigrificant effect upon the characteristics.

This much has been demonstrated. It would be desirable if this work were con timuel under more caroftlly conts ithed cont
ditions and over a greater range of the parameters.

References

 Statconall, Aatronoms arh fysif, Stocshulm Sweden, bsty 315d, no 16, 1942, p9. I-48
2. Voltace Gendernis bv Long Gaseors Bples Casixima, J. B. Eishar, J. M. Menk. Pro
 53, pt 9, ac. 3503, Eent 1931
 J. D. Craggs. Erifisn Jowirnct of Appacd Phiyid Loudoo. Englauk, vol S. Dec 1954, 2p 41t-5

4. Tris Repansron or Cistors Spap Cravick

 J. B. Eigbam. J. M. Meek. Procufings. Playolica Society, vol 83, pt 9-13, Sept 1900. pp. 847-51 5. Long Bo.Cvers ARes iN Ais, A. P. Strom AtEE: Trismblions, vol 65. Mar 194if. PD 113-13
Electromagnetic Field Phenomena in Shielded Acrial Cables Under Surge Conditions

J. K. DELSON

WHEN shielded aerial cable is sur rounded by a coaxial shield, the shied thay be of tuetal ribbon and be apylied in the form of a hellix. See Fig. 1. If the shield ribbon is wound with an itatercalated insulation so that the turns do not touch each other, the current path in the shield would necessarily be along the thelis formed by the conductor. On the other hund, if the individual turns of the in-ubation were pot intercalated, but rather allowed to overlap in the manmer shown in Fig. 1, the current path having least resistance would be neither strictly aloug the ribbon oor atong the straight path of the cable shield in the asial or : direction, both would be somenhere be tween these two extretnes. Thus the cur rent path is the shield would be in the form of a belix the pitch angle of which would be greater than that of the helix formed by the construction of the shield, but less than 90 degrees, angular theasure,

[^14]which corresponds to flow in the axial or $:$ direction

If it is assumed that the cursents in the shield follow the path of least resistance as discussed above, namely a helical path of pitch angle ψ, the spiraling flow of the shield currents should affect the performance of the cable by increasing the inductance of the cable over the value of inductance expected for a cable in which the shield currents did not spiral, such as in an extruded lead sheath. This effect has been postulated in a study by Van Wormer, Schultz, and Lee. ${ }^{1}$ These authors allowed for an increase in in ductance which would correspond to the spitaling of the shield curtent, and thereby increase the value of surge impedance of the cable while decreasing the velocity of wave propagation. The authors also carried out measuremeuts, which they compared with their theory The cable measured was of the type illus trated in Fig. 1, ated was made up of an inner conductor, the adjacent insulating material, the shield an! a jacket, and the messenger and binder. In addition to waves propagating between the inner conductor and shield of the cable, waves attributed to the presence of the mes senger and binder were atso observed

90004144

The
 efacities and were courled to each othes

 and at puites of rethectios comblos that fonms of crarrent and voltase resultect. In a disenssion of this study, observations off the cable suere compored with an analvsis based on electromagnetic field concepts.2 This analysis onnitted the influence of the Intsictiger and binder and the resulting multivelocibs waves it concentrated insteat on the influence which the helical sheld construction has on the prinutpal waves propagated. The analysis corresponded, therefore, to the case in which the messenger ard binder were grounded contimmousty to the shrid In the obsersations made on the case where the messenses atsd bitider were groutided at periodic intervals to the shield, the surse impedmee and velocity of wave progagation asreed with the values from the amslisis of electroma, ${ }^{-}$ thetic fields for a pitah ankle in the ratge of 45 degrees to 30 desrees.: This value of pitch angle appears quite reasonable, serving as a check betwewn theory and abservation. The purpose of this paper is to present the details of the analysis reierred to. paying particulas attesition to those comporests of electric feld intensity which arise in the cable in the presence of shield crurrent Bowing itt a belfcal path.The mathematical analy is is presented in the Appendix. Here, the cable is understood to be made of an itner cylindrical conductor (assumed to be smooth-surfaced), covered with an insulating dielectric, which in turn is wrapped helically with a metallis rib bon to form the outer conductor or shield. The boundary conditions, used in the analysis to dearite the flow of cur rents in the shield, are the sumbe as those

Li心htmine and Tramsmission Limes

by c. F. wagner

Westinghouse Electric Corporation
Gast Pittsturst., Pomisylvania

Introduction

The phenomenon of anturai lightning is of fintereot to a withe tange of workeys in varfed disciptines, among them are the metorobogist, the physiciat, the radion angineer and the power tramsmi wion engineer. It has become increasingly diffeult to follow the reserech that is currently in progreses in all of these fields. The power transmission enginear limits his attention largely to nggrogate or terminal effects and, in consonameo with his knowledge of the eqpipment which he must protect, attempts to undestand and explain the lightaning atroke by analogy with the corona characteristies and breakdown charactoristion of rod gips and parallel eonducturs.

The engiveer aften does mot pownow the lixary to awat complete information on a particolar problem before attempting ito - huthou. Lishtmins prateotion of
 upan tho proibem of the nature of stroke chasacteristics. To Chis background, the present strusture of tho stroke and its appliontion are aubmitted.

Fitst Componcut

During the procens of charge separation, change of one polarity may form in a volme distribution within the stom white charge of the apposite polarity is carricd to matls. Or with eharge cells of apposite polaritios within a cloud
 are -eparated by induetion. In cither event, for the purpose of this discussion it will be akoument that a negative volume distribution of chage exists in the chad and a correpponding change of poative pubarity exiats on the earth. By a
 the cloud and initiatos a leader that tovels carthumed. We omit a detailed discussion of the characteriation of these leadera, which propagate in a stepped fashon to carth, sitiee this iaformation nasy be foned elsewhere (1 6).

Acrooling for sichamand (1 ?) the lenghis of the stops sary betweem 10

 ments Sthonland emeluded very oarly that the currem in the atepo is lose than

10 per cent of that in structure and th like ant insweted I For this amaly-is, dharge vertieal to core of relativels caved from premt tivity to accommes of arc-like charnt axis. This centrat

The presentiel Illuvtration, we wi stroke impimgers 14

Uito (8) has : sparkover voltage about 500,000 vol leader comes with alischarge chather

In the particu the downward les this is the point: wiil eventuatly crimination.
viggiu
leader:
the leak!
before this pas. wand Jealor mo tower, and the su streanors sre ond externat to cher ! The ensuing dive! breken down by tributed atong the the nature of the mediately avaind

If the downixa distributed, the of wit! which at wav the inypedanee off bo wbout 300 obtr can be mote , Nut tens of hamdicela. Foddonly ituentaser This may be semene

10 per cout of that in the main return atroke. Ietualls, the leafer in complieated in structure athd las many braches emanatigg from the eentral member, whech tike our inverted tree. Fach branch has charges depowed atong its members.
 charge vertisal to the marth. The eylinder of charge pmomably han a central core of relatively high combuctivity as the charge for cach advanae muat be arriod from pminta hidher up to the heat of the teader. The mevesary montuctivity to necommodate the efurent involved em only be awheved by a discharge
 axis. This central core will be called the "chamed of the downsard lesader."

The protential of the downward teai a varies from stroke to stroke, but for illastration, we will anvume it to be $80,0 n 0,000$ voles. It is alon masumed that the suroke impinges upen a transmission tower oo that rod-rud conditions nqply.

Udo (8) has shown that for spaciug between 3 and 8 meters the critical sparkover voltage is substantially linear with the length of gap and is syual to about 500,000 volts per meter (150 Kiv per ft .) Therefore, when the tip of the teader comes withiu a distance of $50000 / 150$ or 330 feet, the chatacter of the discharge changes radically.

In the particelar theory of the strike we propuse, this point in the path of the dommand leader is important because with carth surfice protuberances, this is the point from which diserimfuation is detemfued as to where the earith will cyentually be struck. Thus, this point will be called the "paint of discrimination." Prome to this forstat the salvane of the leader sats projected into virgin air and the impedace of the discharge cirent for the advanee of the teader tip invofved buth the surge imperance of the leader and the capacity of the leader head to earth. But from the puint of diecrimination, or porhapos just before thin puift is reached, sune of the high resistance atremers of the downward leader meet simitar atromers that extemb upmend from the atticken tower, and the asties capacity tho fonger exists, It aust, the currents in these streumers are only a few humirod amperes. From this instant, the impedance externaf to the discharge is simply the aldze fmpedance of the domment loader. The enloning divcharge should be similar to that in any uther long gep bring bruken down by a aurge generator, exeept that the zeterator charge io distributed along the vertical leader. However, a further lamitation is imposed by the nature of the struke. The chargo atong the length of the leader is not immediately available to the discharge for the following reasons:

If the downawd leader were a matallic condurtor aloug which the change is diatributed, the charge wrould be availahle for diseharge to earth at the velocity with which a wave coukt tracel uphered with the veloerty of light In this case the impedance offered to the thers of current from the vertical conductar woutd be about 300 ohms. For the present cave, the ehanmel of the downward teader coa be more properls spproximated by an are that had boen carrying a fers (tens of thendredo of amperes. It is the peppeyty of an are that ans its empent is
 This may be viewed as a mema of supplying the greator internal energy required

C. F^{\prime}. Wagner

to prodace the greater entudetisity of the are for higher emmentas. Is a eonsequence of the high temparary grodient atong the thatach, the chage in the dossmward leador beeomes avaifable at a shower rate; this effect is reflected by The sfower veloncity of the heal of the weform streame whid travel at at velocity of between 0.1 and 0.3 that of light. This emeet divenomed by the unt hor in 1962
(9) showed that the observed rofation between stowe current and velocity of the return strake was matched closely by an imaly tieal relation based upon the enorgy required to establish an are. The degree of comformance is shown in Fig. I and is better than expected for the duta swalable. It should not be

Fig. 1. Relations between stroke current and velority of roturn stroke.
ascepted as the degree of precision in either the whalytical exprrosion or the field data.

Prior to the Wagner development, a simblar rolation was presented by Landholm $(10,11)$ in 1957 in which he related the resistance obtained from traveling wave theory to the resistance of an electric diacharge, obtained empirically by Toepler (12), which stated that the masktanco is insersely proportional to the charge passing a particular point. The L, amdhola relation is atso shewn in Fig. 1

The perpiod of the temperary high apadient is very short. T'ests made by che suthor (13) indieate a time less than a mierosecond. Thus, exeept for this short interval, the return stroke constitutes a relatively good conductor whose head extend upward along the axis of the cylindrical chavge onnstituting the downward leader. Ls it advances streamess must oxtend nutwand and upward, a sort of counter-corons that collects the charge onginally depnotited on and around the chammel of the downward leader. If this collection process were neglented a heavy neutralizing charge, opposite in polarity to the dowuward leader, would be drawn from the earth by mutual capacitanee coupling. Because of the low aro drop), the retum chand being blazed up the channet of the downmad lesuder is at sub-tantially canth potontiad aver its antive length. This condition requires that the leader chamge be subatantially nemtatizad by this coupling effeet, estinates of whieh by Whaner and \$to Conn (14) in 1912 indieated a 70 per cent neutralization.

It foillows stor streaner the im batere likely atral progreses of ther le 3,000 alime froas

We might fon to anticipate the of the downsar ouly slightly gre larger series resiz are available ats merus for slowin

Pra. 2. Voltiagns aer nppliedi atrame
, Figure 2 is a rod rod getp with around the maxi. tions in the ritey termed fles "mons

Liyhlang and Transmisston Litues

It follows also that ligease of the shew veloefty of propesation of the return -treanor the imperdane of the vertieal leador, instend of being whout : 200 , is

 8000 ohma front a expreitom chatrad to $50,000,000$ volts.

We might lonk to the current that flows in a laboratory gap when impulsed (1) muticipate the mature of the lightniug dixcharge Becanse of the slow approach of the dotrmavard lemter, the voltage applied to the labomatory gap should be only slighty sreater than the minimum breakdown salue and should have a larger sorics resistance than is notmally used in commorciat besting such data we avalable as the itsertion of it high revistance in the ementit is it fasorite means for slotring tho proces of breakilumat En facilitafe its atudy

Fini. 2. Voltages across nid currents through a ifit, vertient rod -ond gap for pooitive polarity applied surges. The surge getrerator charging voltage for atitical sprathover is 98 volte. 3
Figure 2 is a reptat of the current thenugh, and the wattage acrons, in $6 . \mathrm{ft}$. mad rod gap with apposimatets 1,000 ahma in series in the cercuit. Osellations mound the maximum value of the emtent, attributable to the naturn oscillations in the cifonit. are not Ahom. The meme value of theme weellations will be termed the "nomual orest value" of the cureont. All the ofther curves that have

ermer for the ati chatiouteriatio : si-tance and tho

With this 1 . taned for acta compoutint of
Note that all oit and that this c cases a flatenis crest current.

This discuas lepieted in Fig the chamet of
hows the poni chimatel tip athd sleasth has alre later instant at point of di-crin chamasel) tip at active dischare chanuels amopo: number aud int impresxion of ti. met; perthaps se carted and the licrget's curves Hattell mat sitl due to the trime different braneb

 sistance and the guy lenget
 trined for actuat-trokno. Fugure 3 shows a momber of such retork of the first component of stakes obtained by Boyger (15) atop Mentut Ran Balvatore. Sute that at of these reoords eontain the name enneave upward chanacteristic ath that this concavity terminaten with as sudden change of slope- in most enses of flattening out. This point in the laboratory conterponds to the nomimal crest curcut.

This firmasain thim leads to the model (6) of the first component of a stroke eppieted in Fig. 1. The dotted times imbleate the eorona sheothe that sumound the chanmel of the downward leader and the mant next to the earth. Figure f(a)
He

Shose the position of the downward leader channel when separation of the chanmel tip end mast still exceeds the manmuan breakdown value. I eorona weuth has already formol swound the mats. Figure (b) shows a somewhat fater instant at whech the minimum breakdown pooithon is attained. This is the priat of disermination. (Trannel begin to develop) from both the leader (or chatmel) tip and the mast By "chanaels" in this cave we mean a thematly active diseharge of hugh temporature and sefatively gemd eomduetivity. The channels zpporach each other progrosively athe at the same time increase it nomber athd intensity: The width of the heavy linex is intended to convey an inpression of the coment flowing at the instant. Finally at G the chands have met: porhaps some fand stabilization of the chamed poltage geadients hat ocmured and the breakdoma proees in the fimal anp is completed. This geont in

C. F. Wamner

Fu: 5. IHastrating approximate length of unbridged gap of leader (B), current (C), and charge (D) resulting from assumption (1) regarding length of unbriked gap and current. Time is measured from instant of initution of lemens of last step).
tion of current and charge resulting from the stroke (16). This model assumes Shat the trataition of the eurrent is the upward streamer oceurs instantly, which is thot the ease. The high tramsitary voltage gratient in the ate as it aceommodates itself to a condition of higher conductivity prevents an instantaneous rise in the curreat. The current in the return stroke should therefore be sloped to sone extent,

The sketeh reproduced in Hig. 6 shows the earth termimal of a stroke which oceurred on flat, bare country. It is a Boys' canera rocord taken by Malan atd reproduced by Giolde (17) in a diseussion of uptard leaders. Point x, about 50

Fig. 6. Boys' camern photograph of stroke to ground 17)
Fici. 7. Ossitlo
from a direct ing equpment torted by prat on a soction of vamia Power at
meters above the sath, indieates where the downward leater (oue chanmel) terminated it is from this point that the donsward and unswad headers chamge chanastor and develup intor the late hig atep. The Tengetso of tho last feov steph ate clearly slonwn.
 records abtaned on a tall mast atop a high hill as met typical of downward stroker to leved groumd of to low earthed whjects. Seconding to the stroke in Fig. 6, theme sould be of at p "umble difference, and the anthor aceepts the data as typieal of stomer bo th asmisaion litues. It is frequently advaneed that gonditions nt the earth ent of s strake eompergand to these of a plane gap. This argument is eertanly unt applieable to strokes that terminate of a transmisoion fire.

In Pig. 7 is shown the only uscillogram (t) the author's knowlodge) obtained

Fio. 7. Osedlogram of lightuing surge voit the measured 125 fect irom peuint struck (19).
from a tireet stroke to a thanmisuinn line that was chase enongh to the recording equifment so that the wave shape of the voltage to ground was mot digtateal by propagationt. This derillogram was ohtained by 13 ell and Price (19) 01 a section of 220 -kv stect-tower line, without grotad wires, of the Pennsylvania Power and hight Company. Flashover occured 125 foy from the oscillo-

C. P. Wagner

graph on the phase to which it was comected-an outer conductor of a horizontal single-circuit configuration. The insulation level of the line was about 1300 kv and the voltage reached 2800 kv before flashover took place. The interval between the time the voltage was high enough to operate the oscillograph and flashover occurred was thout 6 mieroseconds. This record helps to support the contention that strokes to towers have the same upward concave character as do Berger's.

As observed by many investigators $(20,21)$, most notably Berger $(22,23$, 15), many strokes of negative polarity are of relatively small magnitude and long duration. These strokes are initiated from the earth and propagate upward. Berger, in his companion article (page 451), discusses this type of discharge in detail. But in the problem of lightning protection of transmission lines this type of stroke is of little significance. Berger (23) has also demonstrated more elearlythan others that occasional positive strokes occur which are characterized by much higher values than conventional strokes but have slower rates of rise.

Subsequent Components

A lightning stroke (or flash) may consist of one or more components. As many as 42 have been recorded. All of the components take the same path as the return stroke of the first component. Compared to the average velocity of the leader of the first component, the leaders for subsequent components have very high velocities (about 0.03e) and are almost entirely free of steps, although

Ftg. 8. Lightuing stroke probahility curve.

Kitagawa atd Kobayashi (7) report very high frequency steps. These leaders are called "dart leaders" by Schonland (1,2). It is still regarded as controversial whether a significant current continues to flow down the path of the return stroke in the interval betweon components. MeCann (21) states that for some strokes the current between component is less than 0.1 :mpere, and Berger (22) atso refers to the absence of current be seen componemts. MeCann and (lanke (24) have suggested that time is requi ! for the hot gases comprising the are
phasma to dittase into the surtunding eonler air. This proces involves the expansion of the smath are eore into a progromas dy hager estinder that gradually domps it cemperature atad demaity. Sinee a ravefied gas repures a lower viltage for beakdown it may be agged that a similar dincrimitntion is active if the formation of dart leaders, If if is true, as with lathoriotery gaps, that the
 Akopian, Sarmov and Tomosian (25), then the return curent asoneiated with subsequent eomponentas should rise more rapidly than the first component. While much of this argment is apeculative, it is a fact, as meoorded by Berger 15), that the frout time of the return stroke currents is about 1.0 mierosecond. The erest value of these currents is atated by schouland to be less than those of the first compronent. Dimeet mesumements by Berger lave verified this statoment.

Stroke Current Probability and Stroke Density

One of the most impertant critorin ns to whether flashover of a transmission line insulator oceurs, is the crest value of the stroke current. An enormous anmunt of data has been collected in this conntry and elsewhere, primeipally through the use of magnetie liuks. In 1950, after a study of the available information, the lightuing and lasulator subeonmittee of the $A / 2 \mathrm{~EB}$ (26) agreed that the curve shown in Fig 8 is suttimently representative to be used in determining the lightning performathee of trausmission lines. It shows the percentage of strokes that equal or exceed the values of current indicated by the athecianch. The mintmon eurent eransidered in the preparation of this eurve is 2400 umperes.

Stroke density is usually measured by the isokensunic level, which is simply the number of days in the year that C.S. Weather Bureau attendants hear thunder at a partimular location. In the US, the levels vary from substantially muse to at hish of g0 in western Plorida Bused upon the actmat number of strokes to a line, the A/EiE Tightning and Insulator \&ubeommittee agreed that in a togion where the ismkemumic leved is 30, about 100 strokes oneur for 100 miles per yours. On this bavis the corre of Fig. 8 also givos the utubler of strokes per 100 mile per year that exceed the abseisat This correaponds roughly to between 10 and 15 strokes per square mile per yeas. Isoketnumic levels are a crude menswre but they we the boat indicators avablable to date. Doring the past few years at considerable amonnt of work has been done, notably in Firupe and South Dirica, in the development and installation of a "lighthing counter" to measure the number of strokes that oceurs in a given awon. The more general use of this in-trament should be of considerable value.

Sur-ze Impedance and Potential of Stroke

To obtain a mase procise mathod of emmphting the voltage aeross a strine off insulators on a tratamiosion lime when the tower is strwek by lightning, the thathor (27) derised expressions for the fied around a rectangular wave of change and current that efongater from sh acto prosition with a comstant velocity

Fig. 9. Space distribution of fields, E_{i} aund $E_{\text {e, at }}$ different instants illustrating wave nature of electric fieds prodused by a sgate-front wive of charge and ctirrent originating at $x=0$ and traveling with velocity v, expresaed in ternas of light, alonis x-avis.
p, expressed as a fraction of the velocity of light c. Figure 9 gives the values of such fields at a constant radius a from the geometric axis of propagation, where $E, 8$ is the component parallel to the asis and F, the component perpendicular to the axis. The fundamental relations for this develupment are given in (14) As Fig. 9 shows, the values of fields for difterent iastants are pluttei as a function of c, the distance from the origin.

Through the device of a mirror image these relations sum be used almust directly to determine the fields ssoueiated with a wave of constant magnitude and velueity that travels upward from a perfectly conducting earth. Iutegrating

$$
\begin{equation*}
V=60 i \frac{1}{v} \ln \frac{2 D}{b} \tag{1}
\end{equation*}
$$

where V is the potential to point D. The symbol is in this case represents the nulun at which the charge ean be sonumed to be coneentrated, being different thau the current rathus because of corom. This exproserter can likewise be tised to deternine the current when a constant voltage is applied between a vertical emanductor and the earth. For a more detailed discussion of this point see (25). With this as a basis, the salues of V (the potential of the struke) and the surge impedance to any paint can be determined. For protection parpones we are

 with the current for fixing 1 . Taking D tor this case ar 300 fect the values indi-

Tame: 1

i. синиегея	50),000	10,000
D), feet	(31)	360
b, feet	6	2
v, is rumeric	0.3	Q. 17
V, kv	46,000	20,000
Z, whins	920	2,000
Striking distance, feet	310	135

catad in Table I were computed. These values serve to artent one with respect to the values of the stroke potential, V, and the surge impedace, Z.

From Eq. 1, the surge impedance is seen to inerease as the had of the return stroke rises, which partially accounts for the decrease in stroke eurrent after the notniual crest is reached. The charge density per unit length of leader channel also decreases with the leader height.

shielding of Transmission Iines

It łins lonk been aceepted that the principal means for p otecting transmi fon lines is the installation of wires above the conductors to sheld them from direct strokes. These are usually ealled ground wises. The focation of such ounductors is important because falure of the gronnd wire to intereept the stroke (a shielding tailure) nearly ahsays results in fashover of the fusulatom otring. Proper location his been the subject of much investigation Some of the earfiest work was done on simulated models (30). Another approach is purely geometric in

Fiti, ith Shelding faltares mording to toung, Clavton and Hileman (31), with Wifteen 6) meh insulators.

Fics. 11 I'robubitits of shietoling fuitures acuording to Nostenko, Pulevoy, and Rosenfeld (32).

C. \vec{F}. Wegner

mature but it applieation is dependent upon setting up a critorion to detemmine the location of what is called here the peoint of discrimitation. I third apprach involves an analysis of the aetand ontage performane of transmisaien line and
 disetw-sion of different methods is found its (16).

Secording to the strake theory ato emmetated here, the -trikithg dintanee is egual to the stroke potentiat divided by the breakdown gradient per ft. of rodrod gapes. The direction of leader propregation is inflactead by the random lied at its heal, which produces the sudden changes in difection at each step, and by the direative field that controls its general direction. The latter sometimes probluecs mather bizare aftects. But acempling to this thenty the path of the stroke above the print of diserimination is irrelevant. The asommption implies at unifom area tiatribution to a pront just above this print. Young, Clayton and Hileman (31) have adopted this getreral approach but have made some modest changis in ofther aswmuttons: The priteiput onte beits in the velation between current iud velocity, shown in Fig. 1, so that the realtas of their analysis mateh the presently available experience data on actual lines. The assumption was also made that the number of strokes per 100 miles per year for a ground wire height

Fig. 12 Likhtoung outages ac a function of protective angle (30 for 100 to 165 kv , with averige tanceforitiog remistunces lexa than 10 ohms.
of 100 foct in a tegion of tokermaic level of 30 was 100 . Figue 10, thken from their paper (31), illustrates the effect of protective angle (the angle made by a line down through cither the artaide or the upper couductor and the ground whe and the heght of the ground wixe upon the number it shietelog fititurs. Wigure 11 shows similar curves from Kustenko, P foxoy and Rosemped (32) bwed upon subtracting conmeted back flawhemes from actual performance to ohtain the shielding failores. We have takes here the liberty of basing the performance on 100 atrokes per 100 miles. It is nlon of interest to compare these enves with the curves in Fig. 12 presented by Wignep, MoCann and Mactame (30) in $19+1$ basad upon operating experience ats requoted by A/E: in 1938 for 110 (0) 165 kv lines for which the tower fonting porintancen were leas than

More retontly: Jomstrong and Whitchead 33 doveloped a device called the "Prathinder" that is intended to diatimptidh, offer flawhover of a string of
insulaton - has bet to a tower and is provided a meth used athatantal! the striking di. toristies itheter lesder of the approsach of the frout voltage that treatidown neem questimfliations at सtepm, so the imp:

Figures 10, 11 Pig. 10 is partly botter concept bhiekling, protect heights of $50,10 \mathrm{C}$

Direct Strokes

In enty oxpe Furtescie (35),
Not Induced : that time de dimotly aml Maximu indir

this time, activil was just beitig p comdacted sand t Methods of eomp, *0 that in 1950 conmittee prepa Petformance of 7 praper that had bo the getteral sirect prineipat demens

Vot 281, No. 6, June 1967
inatatorn has neenered, between is bether the stroke nectured to : is enductor or to at totior and gromad wie combination, Improsements it the device (34) ako
 theal - abotatially the sime nomel for lhe stroke as given here but in computing the striking distance of the stroke it used switchitg surge breakelinst charmecorinties instead of the impulae beakefown ehanacteriaties of a mat getp. If the leader of the initial empmenent of a stroke is traly devend of steps theat the slow approach of the head would juxtify the breakdown chametoristies of a fonwer front soltage than a 2×10 miermecend wave. It the front for which minimum breakdewn ocours the breakduwn value is loss than the impulse sabues but the question anises as to what front would apply. deta 4y, the leader adsances in steqs, su the impulse ratue might be as gend as a swo thing surge value.

Figuros 10, 11 and 12 are based upen actual oporating experienee, but sinco Wig. 10 is partly based upon the struke model presented here, it provides a better concept of the priteiples involved. In resume, for essentinlly perfect Ahelding, protective angles of 45,30 and 12 degrees are required for ground wire heivhts of 50 , 100 and 150 feet, reapeetively.

Dirent Strokes

An oufly exponent of the direct stroke theory of lime protection was (.$~ \mathrm{~L}$. Fortescue (35), who, in 1930, imstoluced the idea in his articte "Direct stiones, Xint Inducet surges, Chief Came of High-Voltuge fine Flashover." Prior to dhat time deskters thought it highly improbuble that lines would be struck direetly and many believed it practically imprasible to cope with direet strokes. Thaimuan coupling of tho gromed wire with phase embluctors to proteet agaitst inderet strokes was the controfling critermon in keating the ground wire. About
\qquad

Fot, 13. Schenatic diazram of a sinate phase oonductar and sround wire.
this time, activitios in related fiedds mok phace: The eathode ray ancillograph was just being perfected; laboratory tests on insulators and gips were being eantacted; sud the theory of tranmisaton lime peytumance was being retmed. Sethods of emmputation and confidenee in the reate had suthementy adsaneed

 moseiosi dements.

Figure 18 is a chomatic diagram of a uransmision lime showing onls one

 pattiges the insulatom string. The fir-t step is to congute this protential, atad to this end the following asomptions are made:

1) The crest walue of the stroke eurrent
2) The wate shape uf the stroke current. A 2×10 micteseecond wave -hape was ociginally selected and for carments in exeess of 30,000 to $+0,000$ amperes a 1×10 mieronctontal wave was chosen.
3) The inductance ant gramut resislanet of the zateres. The inductnuce was held constant at 20 mierohenries for all cases mal the tower footing was taken as at constant for any ease, ie., it was mit permitted to vary with time but held as sone of the varlables
4) The squal length.
5) Tower footing resistance.

It was further usomed that the impertance of the tower and ground wires, and the tower footing revistance, wentd tow affect the current forced into tho tower

Fen.14. Typient towectopand midepan pmentials 37 from Abacom stud) thoulting from

 shan, 100 ohim tower-foating resistance.
top). With thene at tower top patertia determised with it pritential per whit is the eompling ia remat of the decter follons that the pr Fin be derignated from slambard time ence time lage, and then
where I is the erest to the distribution. per 100 miles per ye

Foflowing such in Fig 15 for ditfore

Fig. 15. Curve fir fortance and insatation 26)

Shows a cotuparizon published data withe Tpon examinitus this. reflegton it will bee wace, probably y yeal with high perfomant was hacel as the town

Yal. 283, Va, 5. June 1\%e?
(ty). With those asatmptions, applying the evelved methosh of computatiosta,

 petential por unit stroke corront. The patential of the cotalnetor is C' $/$, where C in the complize faetor between the ground wise and the embluctor. The square
 follows that the potential acrons the insubator atring is simply ($1-C^{\prime}$) P^{\prime}. If I in be devignated the Haslower voltage of the insulator string as determined front stamdand time lag curver for 1.5×10 mieroseond waves at -pecified refer(wee time lags, and t the time lag of the cquivatent 15×10 mieroseennd wave, then

$$
\begin{equation*}
I=\frac{V_{\mathrm{in}} k}{(1-C) P} \tag{2}
\end{equation*}
$$

where I is the crest current of the stroke that will cause flashover. . Next, referring to the distribution curve of Fig. 8, it is possible to obtain the number of strokes por 100 miles per year that will canse flashover for an isokeraunic level of 30

Fullowing such procedure we can compute eurves (20) such as those shown in 17is. 15 for diferent span lengths. Figure 16, taken from the Committee report,

Fia. 15. Curve for astimating line perfortanate and inatalion for a $1200-\mathrm{ft}$, span (20).

F:a. 16. Comparison of estimated performance with experience.
shows a comparionn of performance of the tramsmiowion lines as taken from published data with catculated pertormance as determined by the A/EV method.
 ratectiou it wit be abserved that fow e-timetes agee gemerally in lows performnace, probably tewtiting tran low tower footiog matataces and high cotimates with high perfomance. The worage rowintance of all towers on a particular line wha coed an the tower rosistane for computing the extimated performance. Had
actual pecisturex been bsed the comparison would phesumatily hase been better.

The 1/EF methed spphies only to syatems of 230 bv and belows. Whith the
 Clayten and Young (38) extembed the methad to apply to soltages ramige from
 ground wire height with voltage.

This peviex of the menerally atecepted methots of enteulation hats been sketchy bat it is hoped that it has sorved to delinento the important elements in the amalysis.

It is Aiflimett to quarel whith suceess but in the lizht of mote recent informa-
 offects in the simplified assumptions of the . I / EV method. From the results of Borger (15), partieularly, it is evident that the front of the wave is concave upurard rather than that comesponding to a $+X+0$ miemosecond wave, Just what the erpuivalent straight front wave would be is didicult to judge without calculations. It would seem also that the nomimal orest value, if., the value at which comeavity ceases, would be more logical to use that the actual cresta showa in Fig. 3. Furthermore, as will be discussed in greater detal later, the predischarge currents-the curents asomeinted with the development of leadersbecome very grent between parallel couductors such as the ground wire and the onudnctors. This effect may explain the infrequeney of midkpar sparkovers mentoned in the Committee report and which prompted the Committee to favor a + microssond font.

Itudirect Strokes

In addition to shimdeng falures and hack-flanhes resulting from strokes to a ground wite, a third prosibility of insubatom flashover exists in the form of a sufieiently high voltage being imiuced by a stroke near the line that strikes noither is conductor nor a ground wire. The indteed voltage is greater, the nearey the stroke is to the line, but for high-voltage lines-even for the stroke that jast misses the lime-the indteed valtage is innactons. For low-valtage tinos, mpecially in the absence of gromd wives, the insalation level may be so low that the induced veltages become inportant evern for strokes a considerable distance from the line. Uxing substantially the same stmine mechann mas presented heme, Wagnor and MeCaran (14) stadied this pmohem in 1942.

The basie mechanism of the stroke is divided into theee distinet stages
a) Condition before the start of the tiveturge to carth. A charge of $-Q_{0}=$ -itifif coufumbe was asounced concentrated at a point 2,000 meters of 6,500 fect above growid.
b) First staye of tanocring charge, It the matiation of the diseharge the charge, - Oa, was poserad at a constant velueity of $1 / 20$ of 1 pereent of the velacity of light (of appmoximately 0.5 ft per macemacond) so that at uniform chavge of $q=-i .02 \times 10^{-3}$ combombs per it. was depaxited along the domberand leader
and the leader curn this stage coded ent the gromitid wats meme
c) Sieond s/t tor vise from : 1 . nuxiy diachemgrel The current bedina lougth. For the eo $\mathrm{I}_{\text {, }}=100,000$ атирен

The olectric grta then catealated for The gradient will he instantaneorns diatri tions change rapidly recognize the finite in space under cons

Fin. 17. fimond zealic and distannee from
rotarded vector pot. ground gradient for distances from the extended at the inst 15. (hanging the tis streathex, flet right-i stage lite to the edt imelucling the prop.
and the leader current was 500 amperes. When this temder rewtied the ground this shage ended and the retum shrenmee was imibiated. So mpand tradey from the gronnd whe eonxidered for the fumbmental case,
e) Sieond stage of latering charge. The return stmenmer wis then assumed to eise from the ground at a uniform velocity of $1 / 10$ that of light. It instantane masly diacharged each section of the downwad leader as that seet ion was reachad. The cument behand the head of the retarn streamer was constant ahng its entire length. For the comditions assumed, this results it a return stroke corrent $I_{0}=100.000$:mperes.

The electrie graxient at any point I' at a distatnee at from the stroke was then catentated for these three stages for the assumption of a perfeet ground. The gradient will have only is vertical compment; it can bo computed trom the instantaneous distribution of the charges and curents. When these distributious chauge eapidly, using the veloeity of light as a criterion, it is necossary to reongrize the finte time required for the distarbance to propagate to the point in spate under consideration by using the motarded charge potential and the

Fic. 17. Ground kradiont as function of time ant diatanco from stroke olatanel

Fic. 18. Maximum value of ground gradient that occurs the instant initiah streamer reaches earth.
potarded vector potential of current. The lefthand side of Fig. 17 shows the grotmel gradient for the (b) stage as a function of time for different horizontal distamear from the atroke, Daxmum groulients oecotr when the leader is fully
 18. Cloungig the time-scale su that sero represents the begituing of the retian streamos, the right-hame side of Pig. 17 gives the ground gradient for the (c) stage due on the chaure alone, athe I'is 19 due to the current. The effect of induding the propatation time-the retarded magnetic vector protential-is
 For diatame leos than 10,000 beet, the gradient due to the everent is weglisible

 is indepentent of I., beth being proquational to I.
 latod from it. Let a vertieal stroke oweur 300 feet from this comductor: Further twame that the condretor is divided into $50-\mathrm{ft}$. sections insulated from ench other. 18y computiag the xprate roont of the sum of the krpates of 300 and the distance of along the line, the distance from the mid-point of each section to the stroke ean be determined and thus the igtadient bencath each efoment is

Fua. 19. Ciround gradient due to current in returu strenaer
found. The potential indmed in emch section is propurtional to the height of the conductor. The masimam potential, the point neareat to the stroke at the inslant the downward leader meatho the egrth. is from [is is is about - 150,000, 000 volts. However, the actual comblectors do mot eonsist of inolated sectings but one continuoux conductor, 20 as the indacing voltages increuse they are simudtanemsly being drated of atong the line. The metual voltane that does oectar is a function of the veloceities of the docemsand fesder and the moturn otroke current. The velocity of the donsamand loader is as loas that the eondiector rian only a very small anount daring this stages But the volucity of the rethen stooke is sufiemently high on that a very siguifieant voltage can appear.

Figure: 20 त्राens the the lise to 200,000 Nroke merrent, by probnimitity of weat

Pa, flowitis this indweed sedtages, e for low-voltage dias tuced voltagess evet
(iovkle (39), usi concerting eltatge tion of the retum -tudies were diteate information awalat. surges exceediug 201

In 1958, Rusel. this problem in m charge along the ot.

entiolubled that the womit in the It.te entr has the great infleme lightmitug strokes vo time eonstants. He portance it the ease Ont the other hand, lower are cansed by the effeet oi lizhtnia

Stare perently 01 the effeet of lishitmi intorestime chement : indivilual stepo in il vances produce dang

Yol. 283, No 6, June (\%)

 stroke eutent, by combining the reatio with the at toke pothedsity eture the

Following this type of pententing, Whages atnd Mectand emmeloted that imbuced voltages, even for strakea that ju-t mine the lime, she impurtant only for lon-voltage distribution lines. Ciround wires reduce the importanee of inducod voltages even more.
fietele 39 , wink somewhat mare sophistionted and mentistic matumptions concerming chame distribution along the downwand feader and selocity variation of the retima stroke, arrived at substantially the same eonelusioms. His
 information asalable indicates that indireet aurges ravely reach 100 kv and that sarges exceeding 200 kv are almost exclusively due to direct strokes."

In 1958, Rusck (11) presented a comprehensive and rigorons amblysis of this problem in mathematienl form. He assumed a tuiform distribution of charge alomg the stroke channel and a uniform veloeity of the retum woke. He

Fiss. 20. Bi-4 otbution of indmed tolfage shoug an whititely long outulutor so feet dhove grontid it strecesive fimes after -tart of returt streamer.
mencluted that the rabltant roptage on the line abtains it- maximum at that point in the lime ishich is meare-t to the lightning stroke and that the front-time Jras mm great influence on the magnitule of the soltage, except in the case of loghtning atrokes very elose to the line, which will be alecteatod with longer time sonstants. He furthey sonefudes that the induced voltages are of no inpoitatiea in the case of lineo instatated for a system voltage higher that 70 kv . () 11 the other hand, the majonity of the lightaing faults on fines for 20 ks and lower are cansed by the indued voltages. His atudies ineluded an evaluation of the effect of tightaitug areaters on low-voltage distribution ciremits
 the effeet of hathtrimg armestor distributed afong the lime at franaformers. In
 indisidunt ateps in the rlepped leader during the momentars bish veloeity adsances produce dangerounly high voltages of very short damation in faw-valtage

C. P. Hingner

distribution cirenits, I study of the ground gradients protuced at a dintance by the retimn stroke was presented by Whager (41) in 10ei) I'hia stady excluded the fitereasiang eftects deseribed liy ohasa that are produced by the stepped teruler.

Prestrike Theory

Of the wariotts themies adsanced to explain the atatme of the lightning stroke, the only uther aththor who diseuseres these aspects of the stroke which affect transmisxion line perfomance is firiseom ($18,42,43,44$), He designates his theory the "Prestrike Theory" because the main stroke emment at the ground was expected to be preceded by a spike of courent of very bigh maknitude but short duration. Secording to Giviseom the head of the downward loader forms a lurge bulbous volume of charge which is respousible for a dispoportionate amount of charge in the head. I pon approaching earth this charge is dumped out quickly and aceounts for the lage pip of carrent before the main petirn stroke current forms. The Cirisenm theory predicts [see Fig. 6, (43)] that for a crest return stroke current of 75,000 mperes, the prestrike

Fig. 21. Early estimate of relative bumbitute of the preotrike prul-e and the oteut trigustude of the main portion of the stroke carretit and also the goneral shape of the atroke current.
charent consists of a pip of current that rixas to a creat of about 200.000 amperse if a sort of simsondal fashon and then falls to zero in about 12 microseconds. atuch a prike, if it actualy existed, could prodnce previnudy unatapected flashovers and onstiges of transmission lines. Botore any fied data had been obthined, pubicity in connection with this theory portraved the stroke coment as Indieated in Fig. 21. ()) 1965, hased upon a comsiderable amount of data collected with the newly devised libe-klydonograph, Criseom and his asonciaten $(18,44)$ publiahed !ig 22 as their conception of the stroke marrent at the earth. Referting to tho lower figure, the crest of the prestrike pulse is now only ahont 0 I of the return stroke current and is to some oxtent absorbed into the front of the first compunent. Insteal of being mose than 2.5 times the main atmoke eurent as previonals predicted, the magnitade of the priane, areording to their interpretation of the reeords, is now only $0+$ times the matin stowke curcent. We would not expect a preatrike current of the character depicted in Fis 21 to exert much influence unom line performate
 the shape is entirely dilferent from that deduced by Ciriscon and his associates.

The prestrite pula drems wot evidenee bero temmed the ar intie of Lichtos: chauge in voltios viewed as metasit. (18), Giriscom sta possible to dinting pulsos. It appears lower curve of 「ig

Fis. 22. Coneppt of x
sise, they would pret derductions ate rat graphic evidume ot obtained in the lato In Fig 2. 1) the w

Vot. 293: Nu 6, June 190t
 dhes but evidonee fle sfong uptrat coneavity that conde abruphly it what is
 intie of liehtenberg figure tedmipnes, the Kinc-hlydonograph megnures the change in voltate that ocears witha certain fixed intervals of time. It can be viewed as messurtus ronghly the slope of the eement. In a clastre diselsaion (18), Chiseom states that from the chanacter of the Liehtemberg ligures it is prosible to distinguish the time sequenee of ocembence of sucocoste veltage matras. It appears chat since oseithgram of 06 27/23-1 T2 of Fig 3 and the lower curve of Fig. 22 consist of a high mate of rise followed by a dower rate of

Fig. 22. Concept of wave form of lightaing struhe as comstracted frati kine-klydomograph recorde (18)
rinc, they would proxhec the snme kind of Kine-klvdethugraph meord, Ciriscon's deductions are rather straned in oomparison with the more reliable oneilion zraphio evidenee of Bergee, suppouted by the tuture of the discharge ourrent bufaned in the laboratory and the actunt tine voltoue omeillomen of Fig. 22. In Fig. 22 (b) the wave slape of tho subsequent components is identical with
that of the firs romponent mimus the proatrike current. These extso likewiad

In connection with his studies firiscons and his asonefates also used an Gastrmaent they tem a "klydomgeraph gradient reeorles." It consists of a sereen mised up) (rom and parallel to the earth actoms which a moditied kivitomograph and dramage rexistors are conneeted. The time constant of the combintstion is 75 mieroseconds. They -tate (44) that lied ptadients of about $100 \mathrm{kv} / \mathrm{m}$ have been measured by this instrment, and they conclude that "while there is
 gradionts close to downward strekes does substantiate the prestrila concept of -troko development." Sote that Figs. 17 and is show calealated values of gradients, based upon a more eonventional stroko mechanism, that are of the same order of magnitude as those reported by Ciriscom. Ciolde (39) and Rusck 11) also refer to similar ground gradients. The prestrike tl is not cosentia! to explain gradients of this magnitude.

Difficulties of Computations

Frequently, the competence of an investigator resides in his ability to choose whoubate simplifying assumptions. One of these assumptions refers to the tower. (ireat simplifieation results if a specifie ange impedance, Z_{t}, is assigned to the tower and the tower is frmated as though it were a shot thme if this serge impedunce grounded at the end. This asstumption also gives a particular monning (1) the torm "tower top potential." This is a generally accepted practice, but eonsiderable theoretioal doubt exists as to its validity. Fono of these doubts will now bo explored

Consider a trathsmission line whose inductance is L. hembes per cm and whose capacitanee is C farods per em. The -urge impedance, Z, in ohms is

$$
\begin{equation*}
Z=\sqrt{L / C} . \tag{3}
\end{equation*}
$$

A disturbance propagates along the line with the velocity of light, e, equal to $3.0 \times 10^{10} \mathrm{~cm}$ per see. This velocity ean also be stated as equal to

$$
\begin{equation*}
c=1 / \sqrt{ } L C . \tag{4}
\end{equation*}
$$

Eliminating C between Eqs, 3 and 4

$$
Z=3 \times 10^{10} \mathrm{~L}
$$

Suppuse now that a 100 - ft . (30.5 m) tower, which is actablly a vertiond eent ductor, is represented as a herizontal couductor 100 foct long prounded at the
ched. Suppoase farth eonstant tate th er I/FE committace height of 100 fer inductane pry responding value ${ }^{\circ}$ wave themy that t such a ourrent, is f of current, or if I $10^{n}=5.0 /$ in volts the tower it may 1 dhees a drop of 20 . tower would carto fore, only for towe: in the tower beeom

One of the prin amonems practice in space. such is va
where I_{3} is the in estinder in cm . ' ' duced bey a uni
to infinit
ill coul
other cion
by itself has u clese that the in length whon each inductance of the or flux around ato inf: grated over the let smit length so eom ductance has oxen. misaion lines, the of meluded.

Tamiots attempt what towor is the proper phacemeot illustate the frumt top of a right eotin*
end. Suppose further that a corrent is foreed into the free ond that rises at a comstant rate to erest at + mieroseemids. This is the asamption mate by the I/ lif' eommitee rogading ivave frent. The committee also atamed at tower height of 100 foet and a tower inductanee of 20 mictohentics. fonputing the inductance per anit lomgth and inserting into Eq. 5 it can be seen that the eor-re-pomding value of $\%$ is 200 ohms. It can be shoms by conventional traveling wave thery that the voltage at the free chd of such a line, when subjected to such a current, is equal to the total inductance times the time rate of change of eurrent, of if I be the erest current the valtage is $\left(20 \times 10^{-6}\right)(0.25) I \times$ $10^{6}=700$ in volts. Tolom an idea of the relative importance of the drop in the tower it maty be observed that a tower footitig resistance of 20 whans produes a dopp of 201 . For this value of tower fonting restatance the drop in the tower would eorrespond to about 20 per cent of the whole voltage drep). Therefore, only for tower footing rosistances below 20 olms does the inductive drop in the tower become important from the conventional point of view.

One of the prineipal dificultics encountered in the past is similar to the emotomus practice of asoigting a self inductance value to an isolated eylituder in space. such a value is given by Rosa (45), i.e.,

$$
\begin{equation*}
I_{1}=2 l\left(\ln \frac{2 l}{\rho}-1\right) \times 10^{-3} \tag{6}
\end{equation*}
$$

where L_{4} is the inductance in houries, l is the length, and ρ the radius of the cylinder in cm . This value was obtaned by integrating the flux limkages produred hy a unit current in the cylinder over the length of the cylluler and out to infinity. Rosa oantions that this quantity eannot be used by forlf but only in conjunction with -imilar solf and mutual inductances that apply between other clements compriming a complete cument circut. That this quantity taken by itself has wh significance can be illuntruted by two -imple examples, It is clear that the inductance of two cylinders of the same diancter but half the length when sach is computed separately by this formula is not equal to the inductance of the original cylinder when ealculated by this formula. Abo, if the flas atrond at infintely long cylinder be computed and the linkages be integrated aver the length of the eylimder and out to intitity, the inductance per atnit langth so computed is intinitely lugge. In the manmer in which this inductance has been used in ennnection with the lightning performrnce of transmission lines, the effects of other parts of the cirent upon this clement are not induded.

Vintous attempts have been made to measure the strge impodatice of ats agtuat towor in the ficld (46). In this caso the question arises conecrning the proper plamment of the woltage lead in mesontiag the tower top putential. Tos illustrate the proint consider Fig. 33 that shows a ground wire connected to the top of a right cylinder representing a towor (47). The eylinder material will be

C. P. Wignacr

noxumed to have profect condnctivity. Suppome a traveling wave of chage atad eurtent, that moves from left in right, is interessed upern the ground wase. It is
 voitage divider, FB, $E B$, or $D B$, which is the correct she for monsaritig the postental of B above yenmil? P'oition F'S, making about a 45° angle with the stromed, has been wed in some field testing. For pesition D., lying along

Fis. 23. Dillorent lend jobitiona for nemaring tower-top potentinls.

Fig. 2t. Inuromental espacitanee efements of riblit eylinder insulated from the warth.

Whe surface of the orliuder, the measured voltage is simply the resistanoe drop alung the surface of the cylluder, but sinee the materiat fas as zery reststivity
 the three different positions, doubts arise as to whother any of them is correct.

As exuly as $19+1$, offorts (48) were made to measure the sumge impedance of as tower by pulaing the top dirsetly from a alirge generator thongh a teat making a small angle with the ground and by meanuring the tower top potential by another lead making a shatper angle with the geound. Sueh a methed, interpreted in terms of the prexious diseassion, has definite upparent errors.

Another way of illuatrating the qumstionable nature of fower surge inpeolatue is shown in Fig. 24. A right cylinder is raised slighty above the oarth and a voltage in applied between the cylader ind the earth. By geaphical ennstruction or otherwise, the electenstatio fied patten is uhtamed. The tower is then divided into soctionts as shown and a eapacitance number assigned in propertion to the limes of foree that emamene from ench seetion. The arement then continges that a wave moving down the fower must traved af the pelocity of light and from the relation for veloeity, $1 / \sqrt{ }$ LC, the induetanee for the cloment is determined. Thus the surge impedtanee of any pratiendar olement is ohtamed
 from at buximutn value th the top to zem at the bottern. Detwally, if a wave stats from the tap and travels to the trattom (ate untenable nsonaption without considerim the sntrese of the wave), the lines of force mant move out from the sertion with the veloenty of tight and enmont develop instantly to the earth.

It an eflart to ec sese appronela bated he Waghey and II. along similar lines, and Price (52) in I beretting the loops : based upon function and cument is it is froath, the primary reetangilar wave of a velocity less than with (at) which fod calculate the voltas wires, conventional the proper values of compute the voltag: stroke above the t. mechanion the voll: tower were siguifien first eomponent of components. Until above the tower

In the warl that the checked

This value is surppe value of surge imper
a value supported be et al. I value of toy also be obtained by resalting in

Coneerning the nume coses used without a 100; Jurdan (53), \%

Vol. 281, No. 0, June to

 by Whgner and ITileman $(49,50)$. Iumihesm (51), who had beon working akoug similar lines, presented a paper before ('/fiFE: and amother with Finn and 1'rice (52) in 1958 that introduced his "hoop voltage" method. Diffienties besetting the kops voltage are disenased it (52). These wews appratches were besed upon functions that defined the electric fied around a wowe of charge and current as it was inwiated from it zern position. Citing the Wagner apppromels, the peimacy forciug fonction of the lightaing stroke was (a) if positive rectangular wave of catage that mosed vertically above the stricken tower with as velucity loss than that of light and (h) a positive wave of cument associated with (a) which fed a negative current into the tower top. It was shown that to ealeulate the voltage produced by the current fed into the tower and ground wires, conventional traveling wave theory and methods can be used provided the proper values of surge impedance are used. Nethods were also developed to compute the voltages across the insulator string due to (1), the charge in the stroke above the tower. For the purticular asoumption regarding the stroke mechanism the wiltages acruss the insulator string due to the charge above the tower were significunt. This stroke mechanism is probably mot typieal of the fisst emmponent of the stroke but may approach somowhat that of suhsequent components. Unt:l more opeefic information pogarding the movement of charge above the tower beenmes available, to deftitive judgment can be assessed.

In the work of Wagner and Hileman (50) the surge impedance of the tower that they developed (when wed in the conventional methods of culculation cheched their results) is

$$
\begin{equation*}
\therefore=60 \ln \sqrt{2} \frac{2 h}{r_{i}} . \tag{7}
\end{equation*}
$$

This value is supported by Clayton and Young (38). On the other hand, the value of surge impedance given by Jordan (53) without proof is

$$
\begin{equation*}
Z_{1}=60 \ln \frac{h}{r_{1}}+45 \frac{d}{n}-60 \tag{8}
\end{equation*}
$$

a value supported by Inderson and Hagenguth (54) and also by Ciriscom (18), et al. I value of tower surge impedance (54) based upon Rosa's formula can also be obtained by dividing Eq, 6 by the tower hefght and insenting in Eq, 5, resulting in

$$
\begin{equation*}
Z_{i}=\theta\left(\ln \frac{2 h_{3}}{r_{1}}-1\right) . \tag{9}
\end{equation*}
$$

Concerning the numerical values of tower surge impedance which were in many cares used without any effort to substantiate them are: Torok and Iillis (55), 100; Jordme (53), 78; Chaytons wait Yune (38), 200, for the highor tomers

C. F. Wagner

 miftee (20) used a tower inductanee of 20 mierohemenes which they stated up-

Retuming th the queation of messuring the tower surge imprablace in the
 a 45° angle with the earth and apply a surge to the bottom end. The stuge impedance is then computed from the reflections produced by the tower (56). Kawai (57) in using this method reported that an reliable result could be obtained. There are eertain theoretieal objertions to this appre wh, such an the eroupling between the tower and the lead. Ife devised alternate methouk bat the results are at variance with all other methods of evaluation.

In an entimely different approach to the clamification of tranamisaion line performance, Hagonguth, Anderson and Fischer (58) resorted to the construction and testing of models. The morlel described by them was buit to as 25-to-1 scale which requires that all measurements munt likewise bo reduced correspondingly in time. They reported an agreement with the Landholm "loop voltage" method, but in a discussion Lundholm ituliented that the diserepaney was tou great and attributed it either to imacouracy it the loop voltage theory or to some orror in the measurements, or to both. Later, Braunstein (59) continued his work on models in Sweden with improsed mensuring techniques. The model approach is unique beoause it eliminates the need for eomputing a tower surge impedance or coupling between the ground wire. But measurements are a problem with this arraugement. For exumple, if it is desired to measure the tower top potential, the same questions arise as with actual towers in the field. Similar questions apply regarding plucement of leads in mensuring the potential across the insulator string. Shouk leads be brought out horizontally from the top and botton of the insulator string, or should one lead be tapped from the bottom of the iusulator string, brought up to the top and then taken off along a similar lead tapped from the top of the insulator string? Inother disadvantage of model testing is the inability to introduce the change in coupling arising from corona effects, although this might be a secondary consideration. It is also difficult to properly simulate actual stroke chatracteristics.

In resume, then, a true equivalent tower surgo impedance can only be evaluated through an andysis, such as undertahen by Wagner and tamdholm or similar development. The value given by Eq. \bar{F} is therefore reeommended. This quantity applies only for the erment injected into the tower top. Whilo not proved definitely, it appeats that to dotermine the effect of charge variation above the tower assointed with the stroke mechanism, the tower surge impedance can be negloeted.

The equivalent tower surge impodabee may differ with the eimut eonditions and the element akong which the foreing funetion is applied, betnig different for the case of a wave approationg the tower aling the transmission combeter as compared to a stroke to the tower

To date, in lisere (10 riae linewhy with is meth (ruse The afl fronts of ctapmen component, that somaller it is yuentif more severe. The eff evaluated.

Pipe-Pipe Gaps

The left-hand or injeeted into a prowe duration (several ha quently the voltage (2 or 3 microsecond towers on both sides paths to earth.

So long as the vo thashover value only: is exceetled leaters them. From Fiz Aowing the an imped

Sol. 283, No 6, Jupe 102

Tordate, in line ealenlations the wave fronts of fightamg stomes ate assumed to rive linealy with time to the erest value. Berger's data shos monduavely this ss not trae. The effert of the comerve fromt is still to be deternamed. The wave fionts of compments xubscrpent to the first fise much tastor than the lirst sampmont, and thus sbould be mare severe, but sinee the erest values are smaller it is questiomble whether the firat or subsequent components are the more severe. The offect of the charge in the stroke above the tower is still to be evaluated.

P'ipe-P'ipe Gaps

The Infthand oseilograms in Pig. 14 demonstrate that while the curreut Jnjected into a perwer asstem when lightning strikes a line is of relatively long duration (several hundred microseconds), the tower top putential, and consequently the voluage acouss the insulator string, is of relatively short duration (2 or 3 microseconds). Such short durations are the result of reflections from towors on both sides of the stricken tower as the stroke current seeks additional pathe to earth.

Fo long as the voltage aernss the insulator string is smaller than the critical Alishover value only a rolatively small current flows. But when the critical value is axeeeded leaders begin to flow that require much larger currents to support them. From Fig. 25 it is elear that the leader current, i, mu-t be supplied by flowing through the cunducter on both sides. In sueking a path of current flow, an itmpolance, 2, is offered. Because the predischarge currents of insulator

Fig. 25. Diagrammatic sketeh of tower with ground wire and corntutor showing nomendature used.

C. P. Wagner

atrings and uther typar of expipment are ao stmall, the Zi drop encometered is atso smatl fad is thatally moglected. لtwover, by smitably modifying the lime
 and to such an extent that the Zidepp beeones sufficiently bage in eomparison with the critical flashower value of the insulator as to radieally mordify the line performance. Severnl means will be shown whereby the predischarge current can be increased. They wor alt based upen the breakdown chawacteristies of long prataltel electondes. Since in tho litomature such terms as rod rod, rod plane and sphere-sphere are uned to desiguate particudar types of electrode configurations, wo apply the torm pipe pipe to specify this type of gap becmuse pipes were used in makimg the tests.

Figme 26 slows typioal oscillograms of the voltage across such a gap and the

Fio. 26. Surge geneentor efreuit and typical ocrillograms of urarmat and voltage in it parallel Flectrodo gap woliating of two piges, 30 fent in lenuth, spueed 6 foet apart, and with 975 ohens in the circuit.
current through it. The gup comsiats of two pipos L. ft . in longth, apaced S ft. apart. To the point a only a small earrent flows which reprosents the current necessary to supply the chaging current of the gap and tho comona discharge. It point a the earrent rises abpuptly and contimues at a high value until breakdown oecars. This current is asoocuted with the genth of are-lihe streamers that extend from both electrodes. To obtain as out of werksins relatomatip., it has been foumd, as the result of a large manler of tests, that the total ayerage emrent, i_{p}, in amperes is proportional to L and S and invorsely proportional
to the apuare of T in mieronceronds, the sime of leader growth from each of the electrodes of antil the gip voltage drogs to zero. Thus,

$$
\begin{equation*}
i_{p}=\frac{10 \mathrm{~L} . \mathrm{S}}{7^{2}} \tag{10}
\end{equation*}
$$

If the voitage is remeved before the time T, that is, before the approaching leaders make eontact or attain sulficient conductivity, flashover will not oceur.

Figure 27 is a still comera photograph of the difchange of such a gap. It

Fig 27. Phatograph of the di-charge rarose of if p of 50 -ft, letuth and th-ft spacing surge generator set for 1.85 times sritical breakduvis value.
shows elearly the simultaneons devolopment of numerous leaders until one finally dominates and flushover oecurs at that point, although the wuthor has phatographs that show simultaneous thathovers at soveral points-evidence that is finte time is reguired for good emmluetivity to be achieved at any point. We might view a gap of this nuture as a large number of rod rod gaps in parallel eloctrieally, each of which has a very high resistance combected in series. It is known from the previons discussion of ron-rod gaps that the time of breakdown inarenses as the serios resiatance fucmensers.

Supose a gap of this nature is comeveted across as string of insulatots and the spacing S is aljuated oo that the eritical breakdown voituge is just less that the oritical flashover of the insuhator. This spacing is as very impontant con-

C. F. Wagner

sideration. The eqitical breakdonsn value (63), che is approximutely

$$
\begin{equation*}
e_{n}=186000 \mathrm{~S} \tag{11}
\end{equation*}
$$

It was stated previously that the curcont, i_{ρ}, thant be drawn themgh the impedance of the trusmixsion tine Z. To aswess the walue of the gap, the Zi, drop sill be compared with the eritieal breakdown valtage. tet thio ration be designated N. Then from Bys. 10 and 11

$$
\begin{equation*}
N=\frac{40 L \%}{T^{2}} 186000 \tag{12}
\end{equation*}
$$

Note that N is independent of S. Assuming the effective surge inupedmee of the line to be 500 chms, and since the current is supplied from both sides, this value

$$
\begin{equation*}
N=\frac{0) 05+) L}{T^{2}} \tag{13}
\end{equation*}
$$

Suppose, further, that two rods that extend 15 feet on each side of the towes are mounted on each phase. The effective length of the combination is then 60 frect Assume aho that the durattom of the thener top vistage is 2 mier seconds. Then

$$
\begin{equation*}
N=\frac{0.054 \times 0.0}{4}=0.8 \tag{14}
\end{equation*}
$$

or, if T is $3, N=0.36$.
While these numbers are only erpude approximations, they do provide an oftimate of the order of the effect. Thus, to maintain the same woltage across the insulator string with the gap as without the gap requires a forcing voltage (or stroke current), $(1+N)$ times as great.

While the ground sire and phase conductors constitute a very long pipo-pipe zap, they are of no value is developing predischurge eurrents until the spacing between them is reduced to the point where its critical flashover value is slightly tess than thant of the insulator string This perpurcment favolves a guite differant beation of the ground wire or wires than u-ual. While galloping might be a deterrent in reducing the distance between the ground wire and the conduetor, this is not the onse in some loealities even for trm-misaion limes with their large spacings Gattoping ls an even tower danger for distribution linew. Perthaps the wery simple encrgy-absorthing mon-gulloper of A. H. Kideder (65) coudd fini application. Two schemes, indicated merely to illustrate the principlo, are shown it Tigs 28 and 29.

In Fig. 28 two pipes for ench phase conductor are mountod on the theser and the gap spacing is adjuated so that the sparkover value of the gap is equal to or a little less than that of the msulator string. Predisebarge cetrents begin to

excenels the certional itmpulse vollages an applieation of stelt through the comen drawing the hight can be exprosed to: a specified voltage stroke current as an flabover occur-, is gap is formed by $t \mid$ other. In order tha

पलत्र
Ftr, 28, Pipmurive ga tically par:
and B to the down sap, R_{4}; otherwise : sup, R_{1}, beames efl with the phave con this is very second. is lowered sulficient plue eftect infticom known that Jushove conventional theory chawe a 4 mistrasen wift that with meat over at midicpuen as
 impulse veltuges are requited to cathei brakdown of the eombination. With the ayphlieation of surts vathages high peodi-chatge coment: flow thit must be drawn
 drawing the high prediacharge carrents flemugh the surge inupedanee of the line cem be ospressed by stating that a higher stroke ewrent is required to produce a specified voltuge acromes the insalator atring or by stating that for a given stroke curcent is smatter coltage. that sam be appliod for is lowiger time before Hhahover mecms, uppeats asemos the fisohittor string. In Fig. 29 the pipe-pipe gap is formed by the gromed wire as one electrode and phares I and B as the ather. In order that thix gip be effective the elenamece of both eonductors A

Fla, 2s. Pipe-pipe gaps inatalled on a steel trasentissism tower, with pipes mounted geametrically parallel to the eomidetor, whi fo forms one clen teote of the gap.
and B to the domnleid. R_{2}. must be kreater than the spacing of the pipe-pipe \&ap, R_{1}; otherwise clearance distance R_{2} wothd break down before the pipe-pipe gap, $R_{\text {, }}$, beennes effective. Lowering the ground wire also increaves the coupling with tha thase comductors which in turn refluces the tower top putentiat, but this is very secondary in comparison with the pipe-pipe cefeet provided that it is lowered sulficiently. Even with present spacings of the gromed wire the pipepipe effect influetues the flashover for strokes to mid-pan. It has lung been
 comrentional thenes ; in freet, this is what prompted the AIEE committee to chonse a 4 mictosemad froit for the stroke conent. Howover, it must be pointed out that with prosen comipurations strokes that might atherwise eatise llash-

C. b. Wigner

Around 1058, (iriscom (18,66) sughersted the une of eantilever rods momed at the top of the insulatores paraftel to the enndector. This wemld appear to be identical to the pipe pipe ocheme, but such is mot the case. The pipe-pipe arrangement depends for its operation upou the thigh enorgy leaders that omanate from both pipes before the discharge (the fimal short eirenit of the gap), whereas the Griscom "cantilever eoplanar" rods depeod upon inereasing the coupling between the cower top and the conductor to aboorb the high frequency prestrike pulse. The spacing between the pipe-pipe gap of Wagner is very critical and must be culjusted so that the critieal breakdensn value is just smaller than that of the insulator string, wherens Griseom indicates that the ods should be placed as close as mechimic illy convenient. Griscom and his assi, i.tes (18) state that

Fid. 29. Hhastrutive example of distribution circuit dexigned so that the flashover voltaze of tistane B_{2} from the onuductor \bar{B} to the downlead is grenter than the flashover voltage of th. distamee A_{1} from the eondictors if and B to the ground wire.
with their co-planar rods couplings as high as 70 to 80 per cent can be attained. This could be the case if the duration of the prestrike pulse were only about 0.05 or 0.10 mieroseconds mether than the in licated ono mierosecond duration, for then the wave aeed not travel any great distamee before the crest voltage is attained. But for a puise duration of one microsecond to increase, the coupling sufficiently would involve lengths of cantilever co-planar rods of about 500 feet.

Diseussion and Conclusions

The phenomenon of matural lightning is so complicated that perforee simplifying assimptions must be made to describe even its fundamental nature. The
model of the -trok garding shichling,

Much detailed contimaally bein. strokes. Tatom the new hish-vent however, the actra tations for the desi

Regarding shiel shielding, protectis wite hemehts of 50 . the working curve and roung to the siderations prosum Distribution lines insulation levels, a strukes to constitut ground wires. Thi shoutd be discont: undertakell to dete the cutrent wave movement, the is the struke abovi sparks should

Sir
numbers
duction of the thecotomical. L since these consi promising lead for momenot of predis those syatems in w and 60-cycle wiltas prituciples should :. moms for elloumati are developed at a insulation along t: t.muination, apace f sinuthor to stenin insulators can be infer that tungent resint tumgential st?

Yol. 283. No. 0. June 1087
model of the stroke presented here provides a vehicle for hasing judgment regurting shictding, direet strokes and indirect strokes.

Maeh detailed information has adready been obtained and new data are contintally being aecumulated concorning the characteristies of individaal strokes. Labontory data on the lomgest gays that can be broken down with the new high-voltage surge generators should be of value. We do not foresce. however, the actual incorporation of much of the detailed knowledge in computations for the dosign of lines, such calculations must be simple and practient.

Regarding shiedling, it is suficient to know that for substantially perfect thelding, protective angles of 45,30 and 12 degrees are required for ground wire heights of 50,100 and 150 feet. And for direct strokes to the ground wire the working curves of the $1 / F E$ committce and their extensions by Clayton and Young to the higher woltages seem to be adequate. Of course, these considerations preaume the use of ground witen in regions of high isokernunic level. Distribution lines in the range of 33 kv and below, beeatee of their very fow insulation levels, are subject to suficiontly high induced voltages irom nearby strokes to constitute a problem. Such nutages are reduced greatly by the use of firound wires. This does not imply thit general investigations and analyses shoukd be discontinued. Quite the emmary, it is suggested that studies be andeataken to determine by conventional means the effect of the consavity of the cursent wave fronts. With the somewhat abbitrary aswumptions of charge movement, the investigations begun by the author on the effect of charge in the stroke above the stricken point should be continued. Studies of very long aparks should reveal merc information.

Since the introduction of the ground wire, except for a slight choice in the rumber of insulators, the conventional means for reducing outages is the reduction of the tuwer foothis resistance. It certain types of soil this beenmes (itmeonomieal. Littie of a fundamental natore has been added to the technique since these considerations were astablished. Therofore. it appears the only promising lead for reducing line insulation lies in the application of the phenomenon of predischarge cuments as exemplified by the pipe-pipe gaps. For fhooe systems in which switching surges and the combination of contamination and 60 -cycle voltages do not constitute the limits of insulation, the pipe-pipe prineiples should have direct application. Where these other limitations exist, moans for eliminating them should be sought. Certainly switching surges which are developed at a fow sperifio points should not be permitted to eontrol the insulation along the entire line. With respeet to o0-eycle voltages and contaminution, space for additional turils could bo foum by utilizing a construction vimilar to strain towers-a construction in which ath cullnited number of insulators ean be added without inergnsing the tower feight. This is not to infer that tament towers have the strength of strain lowems buit into then to resist fangential strains; they merely contimpe to function like elothesline props.

C．F．Hengner

The flexibility of the vertied string com be intrentued by making the tow or Hesible，if this is esomtial．These ideas are merely injoeted in order to vitatize the plea that some omsideration be given to the pipe pipe gap phenomenon．

References

 1o6．143．［4）．654－71，19834．
 Ruyat Soe Laston，Aeries A．Vat．152，102．595－625， 1035.

 ＊ou of thotugryphis and Heatried Studies of the I hor harge Prowes，＂Pooc，Royal Soc． tomiton，Vol．16te，［2．56， 1933.
5）1．S．Stekolnikov，＂The Niture of the Long Sipark，＂I Eidutel＇stzo Ahutemit Nouk SSSR． p1）．1－272，1860．Ehglish trans，available from Foreign Toch．Div，dir Force Systems Command，Wright－Patterson IFB，Ohio．
6）C．F．Wagner and A．R．Hileman，＂The Lightaing Stome II，＂I／EE Trana，Pt，III Power Apparatus and sistems），Vol．80，pp 62？＋2，（）et 196i．
7 X Kitamawa，M．Kiubuvashi，Field Changes and Varimions of Luminosity Jene to
 Surk，Perzamon Press，Ine， 1958.
（8）T．Ulo，＂Sparhover Charactariatics of Targe Gap Spaces afot Lowg Insulation Strings，＂ IEEE Trans on Power I pparatus ami Systems，pp．17 $\{-8\}, 1564$.
9）C．F．Wigner，＂Tehation Between Stwhe Current and Volucity of tho．Rewarn Stroke，＂

（10）R．Landholm．＂Thlaced Over－Voltuge Roraes on Tramsmivaion Lines，and Their Mearing on the Lakhtwing Performance at Modimo－Voltage Notworks，＂T＇rans．Chatmers Uiniv Tech，（inthenlourg，siverlen，So．188， 1957.
（11）B．Ruack，＂Induced Kightuing Over－Voltages on Power Tranamision Iimes with Special Heference to the Over－Voltage Protection of Low－Voltage Networks，＂Trats．Royal thet．Tech．，Stwekhoim，Sivelen，No，120， 1958.
12）M．Tompler，＂Funmokonstante，Zondfonken und Wonderwelle，＂Arch fir Blektrotechn，＂ Vol．14．pp．305－318 and Vol．18，p．549．
13）C．E．Wigner，C．M．Iane and C．M．Tear＂Are Drop from Gpurh Dincharke to Are，＂ 1 TEE：Thasa，Pt，III Tunnr Apmeatus and Systemsty pp 2P2－17．
（4）C．F．Wisher and G．D．MeCinn，＂foduced Yoltage on Transmisaion Lames，＂i／EE． Trans，Voh．fil，D），916－30， 1942.
（15）\＆Berger，＂Front Duration and Chrront Steppness of Tixhtwing strokes to the Farth，＂ Proes，Internal．Coní，Centeal Eincricity Red Lahs，．Leatherhend，Surrey，England，May i－11．1902，Loowlou，Butternorths， 1002.
16）C．F．Wagner，＂The Lightaing ziroke as Refateal to＂Transmision Iime．Porformatue，＂ Parts 1 and 11，Elec：Eing，May and Jutie，I9ti3．
（17）П．H．Golde，＂Oecurronee of Vpwart streamers in Lighening Dischorges，＂Vature， Tandon，England，Vol，160，p，545，Supt，20，1047．
（18）8．B．Gerscom．Ot ah，＂Five－Yese Field Inveatigation of Lightuing Effocta on Trans－ mission Lines，I－Data Suthary and Suxkestions for Itaproved Line Performance，＂

 $\mathrm{pq}, 25 \%-80$ ，April 1465.
 vambs Powet and Light Company，＂1／EE Tratis．，if）．1101－10，Sept． 1081
 A IE Trans，1＇t， 111 （Power 1 pphratus and Systems），1ol．71，pp，641－19，\uk．1952．
 Trans，Vol．ins，
22）K．Betcitr，＂M1 PM5 on Mfuat Switaerlacel，So
23）K．Berger and I Salvature for ！！ 13il．57，1543i．
（24）（i．1）．Mc（＇an！： A／EG Jrane，I
25）A．A．Thopriat， Acrows 16 ghalion No．111，（l亻ikl．
（26）＂A Method of I misaloti und this
（27）C，F．Whaner， AIEE Tiuns．， 1
（28）C．F．Wagner an Stroke，＂I／EEE
1961 「et． 1362
（29）C．I．Wigater， IEEE at Newv
30）C．F．Wiguer，＇ A EEL Trems．，I
（31）F．S．Young，f IEEE Trans．\％
（32）M1．V．Kinaten！ Ciround Wha 1Bol？Sis
（33） II
Po
（34） 11
Lifus zinch 11ヶ月7．
（35）C．L．Firtesue fime Flashover．
（30）E．L．Lianter ans Ditect Liclithinz
（37）A．C．Montoth， and Distribution
（38）J．M．Clayton Lims，＂Traus I
39）12．If Ciolite，＂ 1 III－1．I＇ander I
40）（ienteta Olowa， Electrical Eintine
41）C．F．W mner， Fiedd Mevalrem 11p．$\overline{56} 1-80$ ，（150）
42）B．13．（1riocom， Trituf，17．115，
（43）\＆13．falsmoth． Purformithers，＂I Den 1958
（44）E．Beck，ot al． Records，＂IF esa
 Trones, lat 63, 1p, $1150-66,1444$.

23) K. Bergor and B. Dagetratuge, "Photagraphic Lightring Iovestigalioms on Maunt san

27) C. F. Wagner, "I New Approach to the Lightning Periormance of Tranamisaion Dines,"

 strohe," I/EES Trans., Pt. 1 II (Poner I pppaculus und Syatems), Vol. 80, Dp. 1022-22, 1961 (Fob. [502 sertion).
 TEFE at New Orleame, Tis Jaly 15. 1460 .
30) C. F. Wagner, G. L. Whatane and Ci D. NeCam, "-hiotding of Tramamssion Lines," A/EES Trons, Vol. 64, 14. 313-28, 1941.
31) F. S. Youngi J. M. Chayton and A. 18. Hileman, "Fheleting of Transmission Lines,"

 Grount Wires in the Protection of High-Nitage Clame fines," Bieatruchestro, Maseaw,

(33) If R. Armstrong and E. R. Whitehend, "I Sightuing Stwhe Pichtinder," Trants. PEEEE, Pouer 1 pparatus and Systems, Vol. 83, p12. 1223-27, 100t.
34) II. R. Armstrong and E. IE. Whitehead, "Field and Amatited Atudien if Tramsmission thee shehting," Paper No 31, pp. it- 403 , Winter Potver Neeting of the /EEE, Feb. I, 1407.
35) C. L. Furtesene, "Dirent Strokes-Not tudured Sirges-Clidef Cause of Migh-Voltage

 atal Distratution Bef. Beok Westingionse Floce Corp, 1050,
38) J. M. Clastou and F. S Sougg, Eastimating Lightutug Petformance of Transmistion

40) Genichif Othwi, "study of tadweed Lightaing Surges and Their Frequency of Oceurence,"

41) C. F. Wagner, "Determination of the Wave Front of Tizfituing >troke Currente from
 174. $581-89,1060$.

 Dee. 1158.
44) E. Beek, it al. "Kemults from Pivo Meara of Thightaing stuly with Klydongerath Hecorls," IF cstumphouse Engthers, up. 1.8-55, Sept. 15titi.

593

C. F. Wagner

 1958 Sections, Wol. 76, P1). 1392-46, 1957.
(47) Discussion hy C. F. Whatuer of Red. (46).

(42) C. F. Wagner and S. R. Hikeman, "I New Approach to Calethation of hightering l'e. formance of Tranomissish Lines, II," IIEE Trans., I't III (Power Apparatus and

51) If. Landholar, "Over-Voltages in a Direct Lightaing stroke to at Trannaimsion Line 'Tower," CHGHE' Rep. Xo. Z33, Paris, IS58.
52) R. Lutudholan et at, "Catentation of 'Transmission Litue Likhtning Vultages by Fiefd Concepts, AIEE' T'rans., Pt. III, (Power Apparatus and Systems), Vol. 76, pp. 1271-83, 1957.
(53) C. A. Jordan, "Lightring Compututions for Transmission Lines with Overhoud Cround Wires," Grneral Blectric Roview, sethenectady, N. Y., Ioh. 37, No. 3, pp. 130-37, March 30. 1934.

 (tion), pp. 164t-50, 1458
 tit7-71 Noy test
 Lines of Commonuesith Efisen Coppmany-0peratink Evperience atul : field studies,"

57) II. Kirwar, "Studien of the surge Response on a Tramemiswion hame Tower," ILEE Trans. Pouer i ppoartus and Syatema, Vol. 83, pp. 30-34, 1at. 1904.
(58) F. A. Fiwcher, ef al., "Determination of Lightning Response of Transmisxion Lines by Mema of Cenmetrmal Modele," 1!E'E: Trans. Pouer Apparuths and Svitema. Fou. 1060: lot 78, pip, 1705-34, 1459
59) 1. Braunstein, "Lightuing Respoure of Power Transmismion Lines," Doutorate Thesis,

(s0) C. F. Wigner and A. K. Hiloman, "Lfect of Prediseharke Curtents upon Line Por-
 Ayril 1963.
o1) C.F. Whgner wht I. IR. Aliteman, "Prediacharge Current- of Parathel Ete trode Gaps," C/CRE Paper No. 320,1964
62) C. P. Wagner and A IR Itheman, "Predisharge Corrent Chatacteristes of Pabatel

63) C. F. Wigner, "ipplication of Predisharge Currents of Parall 1.7e trode Caps," Western Electronio show and Convention. Los Dugeles, Cal. Dugust 25-28, 1004.
04 C. F. Wagner, "Xeav Lhe-Protection Concepts Lack Fletd Trials," Electioc Layhi and Poner, pp. $70-73$, Marth [(10): pp. $88-42$, Aprit 1065
05) + 11. Fidder, "A Proposet Friction Damper for thallogtige Cunductor Waves," Paper

06) Diachasten of Thef. (60)

Papers are listed title of paper. Aats. Author Tridox. Kinte:

Aerodynamics. On t mom hyporsonite she Acroutastic sy teins. noto (TVang), 430 (Aeroclastic systems. for aeroelastic pt (BC)
Whe transformatio of aftine transform over tinite fiedis
Antenia aperture problem of optimus tribution (Fong),
Auterina pastorn tem of optinut.
Lution (Fong),
dppied mather proten anch
Automv aftine : fante fotha

Deti's law, mptics terpretation of \& Beitl's taiv H .t: Book Reviews Adranees in Wor Kils. I, 1t, 11t, Totrye, 10tif, 1 Aloxanider, A. F. (alls, is history and discovery, toltoin, witulered traflic itow, 317 Nflans, Miebue! tienal amerol: theory mati its Buker, Burbarat r carbon foed edit
ramer, we anticipate that great advantages will be found from this circuit, namely, the flexibility of adjustment of the different circuit parameters and the possibility of making many more testo in the failure area since the failure, though it can be readily detected from the oscillograms, will not be damaging to the breaker
bey und the normal erosion associated with successful operations. We appreciste the good wishes of Dr. Hochrainer who has had a number of years evpenence with a circut rather similar to the one we have proposed and has made "many comparison tests to show the equivalence of synthetic testing to direct testing.

A Lightning Stroke Pathfinder

H. R. Armstrong, Fellow IERE E. R. Whitehead, pellow I EEB

Summary: Extra-high-voltage transmission lines, designed in accordance with the AIEE lightaing outage estimation method published in 1950, have sctually experienced several times the outages predicted. Recent studies, based on new concepts of the lightning stroke mechanism, strongly indicate that lightaing strokes to the phase conductors, or shielding failures, account for this sharp discrepancy

A low-cost instrument, rugged in design and readily installed, has been developed to discriminate between strokes to the shielding system or a phase conductor. Signals are easily read either from the ground or from a helicopter. Power follow current is similarly indicated. A minimum of 100 records are deemed egsential to firmly allocate lightning outages to phase conductor or shield wire stroke terminations. To secure these records, it is recommended that a field study be conducted on a suitable mileyear sample of transmission lines.
With this information available, the engineering prediction of the lightning performance of transmission lines can be placed on a much sounder basis and lines can be designed to a preselected level
of tripout probability.

In 1950, the AIEE published a report on a method of estimating lightning performance of transmission lines. ${ }^{1}$ This method assumed that virtually perfect shielding was obtainable on all lines with a shielding angle of 30 degrees and considerei that flashovers that did occur were the result of voltages developed across the insulator string resulting from the flow of current to earth through the tower.

Extra-high-voltage (EHV) lines, designed on the recommendations of the AIEE report, actually experienced many times the predicted number of lightning tripouts per 100 miles per vear. This situstion has led to an extensive reappraisal of the theoretical basis for the conclusions reached in this report along one or more of the following lines:

1. The rates of rise of lightning stroke currents may be much

[^15]higher than commonly supposed, in which cave the electrodynamic response of the transmission line must be calculated from the concepts of fundamental electromagnetic field theory rather than from those of distributed-constant circuit theory
2. The charge in the lower portion of the leader channel may be highly concentrated and immediately available, resulting in high tower currents as well as high induced voltage components.
3. The shielding of EHV lines is much poorer than that of lower voltage lines and is critically dependent on the height of the EHV lines.
4. The lightning stroke mechanism is essentially involved in a little understood and complex manner with all of the fore-
going items.

In recent years important progress has been made in the theory of the lightning stroke ${ }^{2,3}$ and in the careful analysis of field data over a significant period of time. 1 It is clear, however, that any final adjustment of theoretical models to field data must include additional data which definitely assign every flashover to one of two classes:

1. Those arising from direct strokes to the phase conductor.

2. Those arising from direct strokes to the shielding system.

The purpose of this paper is two-fold: first, to outline briefly the most promising developments with respect to the shielding problem and to describe a low-cost instrument designed to indicate the ground wire or phase conductor as th terminus of the lightning stroke; and second, to suggest its use in a large-scale field test to provide the information essential for a meaningful advance in the application of the theory of lightning protection of high-voltage transmission lines.

Theoretical Background

The authors have followed with great interest the fundamental work of C. F. Wagner, A. R. Hileman, and their associates in developing the theoretical mechanism of the lightning stroke. This mechanism was under active investigation in relation to the shielding problem when the excellent paper by Young, Hileman, and Clayton appeared.* This paper confirmed the basic ideas upon which the present studies were premised but indicated that future effort should be concentrated on the problem of providing economical instrumentation which could be installed in the field in sufficient numbers to provide experimental mnfirmation of the shielding theories.

The new approach to he shielding problem assumes that

[^16]the point to be struck is determined by long-spark theory' involving distances of the order of 100 feet or less and average vollage gradients of the order of 0.6 megavolt per meter. In applying this approach, Young, Hileman, and Clayton found initially that more shielding failures were estimated than experienced when Wagner's velocity-current relation ${ }^{3}$ was used as the key transition relation between the stroke current frequency distribution and the stroke voltage frequency distribution. Accordingly, they made an appropriate adjustment of this curve to bring the estimated shielding failures down to the level of lightaing tripouts experienced on important EHV lines. Recent studies ${ }^{6}$ suggest that the actual stroke model may require modification, probably on a statistical basis, to include effects of branching on both the velocity current curve and the effective striking distance. When this is done, little or no important modification in Waguer's velocity-current relation may be needed.
It is becoming apparent that even a modest increase in the procision of knowledge in one area of this problem only highlights the uncertainties in others. Painstaking fitting of the theoretical calculations of shielding failures to field experience seems at least highly questionable when we really do not know the division between outages so caused and those resulting from strokes to the ground wire or tower.

The Pathfinder

Recognizing that the problem posed in the foregoing is of key importance, the Edison Electric Institute supported a research project designed (1) to evaluate existing theories relating to shielding failures, (2) to develop a low-cost instrument suitable for largescale field studies, and (3) to outline preliminary plans for such a field investigation." This paper is primarily concerned with the second of these tasks. Professor L. S. Van Slyck has in preparation a thesis for an advanced degree which will deal more fully with the other phases of this investigation at a later date.

It is estimated from available, but scattered, data sources that 90 to 95% of the lightning strokes to earth lower negative charge. This fact serves with acceptable accuracy as the physical basis for discrimination as to the probabie location of the stroke terminus on the transmission line.

In the original concept, the device named the "Pathfinder" was to consist of (1) a flashover current interceptor ring affixed to the cap of the second insulator from the tower arm directing this current to (2) a polarity-sensitivr but power-follow-rejective circuit which would activate sig' als furnishing the corresponding information to an observer on the ground or in a helicopter. Accordingly, a simple device using a highcurrent inductor for time discrimination and shicon diodes for polarity discrimination was initially proposed a a point of departure for further development.

If the lightning stroke terminates on the phase conductor, and its current exceeds a very low threshold level depending upon the number of insulators, negative current is supplied to the collector electrode, probably by cascade flashover, and directed through the device. The silicon diodes sense the polarity and direct a smal! fraction of the eurrent through an electroexplosive device of a highly reliable type. This device, known as a squib, is installed in a gun designed to rject a large disk covering a distinctive signal employing both shape and color as a means of visual discrimination.

Should the stroke contact the shield wire or tower, and sufficient voltage develop across the insulator string to resuit in flashover, a current of opposice polarity flows from the phase wire through the instrument and an alternate characteristic signal is exposed in a similar fashion. In either case, care

Fig. 1. Pathfinder circuit employing electroexplosive power-follow-current signal

Table 1. Indicator Coding

Signal			Stroke Terminated on		Stroke Polarity		Power Follow Current	
Red Cross	Green Disk	$\begin{aligned} & \text { Black } \\ & \text { Triangle } \end{aligned}$	Conductor	Ground Wire	Pesitive	Neg. ative	Yes	No
\times			${ }^{x}$			x		x
\times		x	\times			天	x	
\times	x		*		$x(1)$			\times
\times	\times	*	\times		\times	x	x	\times
	x			x		\times	\times	
	\times	x		\times	$\times(2)$ or	\times	\times	

Instrument biased for hign positive current to conductor
Low magnitude short duration current caused by "backflash" be. low threshold current of instrument.
must be taken to prevent any ensuing power follow current from activating the remaining surge current signal and destroying the information.
Many circuits employing resistors, inductors, and capacitors in various combinations were investigated as timediscrimination networks, and in the interest of low cost it was decided that time discrimination should be assigned to the low-current circuit. Moreover, the wide range of lightning current expected dictated the use of a nonlinear shunt resistor of the type used in lightning arresters to provide both rowcurrent sensitivity and high-current withstand ability.
As the development progressed, it became evident that a signai showing power follow current would be useful inherently and also serve as a flashover indicator if the surge current from is stroke to the ground wire were below the threshold of the instrument; see note 2 of Table 1. It was also felt desirable to indicase the presence of a very high positive current, as this would be most unlikely except for a positive stroke to the phase conductor. A bias resistor in the positive diode circuit results in rupture of the negative diode to provide the indicstion in such a case; see note 1 of Table 1 .

From the foregoing considerations it was deter three signals would be used with the associats yield information in accordance with the signa. wown in Table I. A red cross is used for a negative current from the insulator string, a green disk for a positive current, and a black triangle is used to indicate power follow current. In the production model the signals will be about 5 inches in diameter and will be readily visible for a distance of 150 to 200 feet.

Fig. 1 shows one of the circuits which employs electro-

Fig. 2. Pathfinder circuit employing expulsion fuse for power-follow-current signal
explosive actuation of all three signals, while Fig. 2 shows a simpler circuit which employs exputsion fuse operation to uncover the power follow signal.

It has been suggested that when performance records of transmission lines are analyzed the ratio of double-circuit to single-circuit can be used to estimate the division between backflash and shielding failure tripouts. Application of the Pathfinder to both circuits of a double-circuit line should yield dats relating to such a possibility. In such applications the existence of shielding failure on one circuit with backflash on the other could be detected if the signals were definitely known to be coincident.

Fig. 3 shows a developmental model of the Pathfinder with Fig. 3(A) all signals covered. Fig. 3(B) a stroke to the phase conductor without power follow current, and Fig. 3(C) the porver follow current indication added.

Field Tests

Extremely valuable data could be obtained if the instrument described were applied to a sufficiently large sample of
electric power transmission lines, 100 kv and above. The choice of such a sample is of critical importance, however, because of the small number of flashovers per 100 miles per year Moreover, the sample must be selected so that some lines may be expected to furnish flashovers arising from strokes to the ground wire, while others may be expected to furaish flashovers arising largely from shielding failures. Obviously, the sample should not include lines exceptionally free from flashovers caused by lightning. Viewed in this perspective, the vagaries of thunderstorm-days per year and storm paths are, fortunately, slready included in the record of the performance of lines, and it is on this basis that a proper statistical sample should be based.

A preliminary study of statistical considerations suggests that about 100 records are desirable to give a reasonably reliable allocation of lightning tripouts to backflash or to shielding failure causes. This study also indicates clearly that experimental evaluation of various shielding angies, ground resistances, and other design parameters is completely unrealistic. It is believed, however, that extremely valuable data could be obtained from a sample of perhaps 1,500 to 2,500 mile-years distributed equally in three categories as indicated in Table II.

An important factor in any widespread application of the Pathfinder is a means of rapid and safe installation of both the current collector ring and the indicator housing. A springloaded clamp secures the ring to the insuistor hardware below the unit which is first from the grounded end of the insulator string. The clamp is held open by a toggle action hot-line tool, as shown in Fig 4, in order to provide casy access to the installation location. Fig. 5 shows the zullector ring in place and the unlatched tool in the withdro wal stage. The collector ring causes a negligible reduction in impulse flashover for insuiator strings of seven or more units.

Conclusions

1. Recent advances in theoretical models of the lightning stroke mechanisms have led to corresponding applications to

Table II. Suggested Transmission Line Sample

Sampla	Description of Sample	$\begin{aligned} & \text { Mile- } \\ & \text { years } \end{aligned}$	Number of Records Expected	
			$\begin{gathered} 90 \% \\ \text { Certain } \end{gathered}$	$\begin{gathered} 50 \% \\ \text { Certain } \end{gathered}$
A(15) *	High flashover rate Stielding and backflash Shielding angle 45 degrees or mor High footing cesistances	${ }^{500}$	64	75
$8(5) \cdot$	Few backflashes expected Shielding suspected Shielding angle 30 degrees or less Low footing resistances High towers	500	19	25
C(2)*	Few shielding tailures expected Backtash suspected Shielding angle $0-12$ degrees High tooting resistances Low towers	500	6	10
	Totais	1.500	89	110

* Average thopout rate pet 100 miles per year.

Fig. 4. Collector ring and hot-line tool

Fig. 5. Collector ring in position
the calculation of shielding failures which may account for the poor performance of certain EHV lines. It seems clear that a much more complete knowledge of the total mechanism of the lightning stroke is necessary for any meaningful advance in the engineering design of high-voltage lines for protection against lightning tripouts.
2. The AlEE method erred in assuming shielding failures as negligible with angles of 30 degrees or less. With our
knowledge of shielding performance it may be wise to be cautious before dismissing backflash flashovers as being negligible.
3. Any feasible method of reliably assigning every flashover to a backflash category or a shielding failure category would not only yield results of immediate value in terms of design evaluation but would also provide a basis for adjustment of the lightning stroke model to account for the experimental facts. The authors urge the industry to support a cooperative field investigation of sufficient scope to yield adequate data
4. The present paper describes a low-cost device which can readily and safely be installed on transmission lines and which is capable of yielding seven responses from three visual signals. Athough this device operates on a "one-shot" basis, spent units can easily be replaced on times with high data potential.

References

1. A Method of Estimating Ligrtning Performance of TraneMB8ION LINEs, AIEE Committee Report. AlEE Transactions, vol. 69, pt. 11, 1950, pp. 1187-96.
2. The Reliston Between Stroke Corrent and Velocity of the Rettrn Stroke. C. F. Wagner. AIEE Transuctione, pt. III (Potwer Apparatus ardi Spstems), vol. 82, Oct. 1963, pp. 601-08.
3. The Liohtntng Stroke ab Related to Transmiabion Line Performancy, C. F, Wagner. Electrical Engiseeting, vol, 82. May 1963. рр. 339-47; pp. 388-403.
4. Perfarmance of 161 KV ano 115 -Ky Transmasiav Lines, Fred Chamber, C, P. Almon, Jf, AIEE Transcetions, pt. III. val. 81, Oet. 1962. pp. 431-59

5 Mechanism of Bheakdown of Laboratory Gaps, C.F. Wagner, A. R. Hileman. Ibid, vol. 80, Ock 1961, pp. 604-18.
6. Meceanism of Lightinino Flashover Research, E, R. Whitehead, L. S. Van Slyck. Rezort of Project No, Esoo4. I.1.T. Research Institule, Sept. 1963.

Discussion

C. F. Wagner Westinghouse Electric Corporation, East Pittsburgh. Pa.: It is very encouraging to note the recognition of the need for field work to determine directly the degree of shielding afforded by overhead ground wires. It is also gratifving that some steps have been taken to implement such field work. The results of such investigations, in order to be really meaningful, must be carried out by instrumentation and deductions which are unquestionable. This is particularly important because of the great expense of instrument manufacture and field installation upervision.
ne factor in the assumption of the authors should be given rther consideration. The authors state quite correctly that 90 to 95% of all lightning strokes wearth lower negative charge and imply thereby that the number of shielding failures should also be accurate within these limits. This conclusion might be correct if the same percentage applied over the entire range of lightaing stroke currents, but since in high-voltage lines it is asually the very high stroke currente that produce backflashes, the analysis of the percentage of negative strokes should be directed to the high values for which the value of 90 to 95% may not apply

Of greater importance is the assumption that if the prolarity of the stroke itself is known, then from the polarity of the impulse current flowing through the insulator dashover it is possible to discriminate between is shielding failure and a backflash. This would be true according to generally accepted theories in which the effecte of predischarges are neglected, but prediacharges can
hive a very important effect. Consider the case of a nerative stroke of high current value to midspan. The potential from tis? ground wire to the conductor rises above the value at which channels form in the discharge between them. Because of the great leagth of the distance for which the ground wire and conductor are parallel, the currents that flow through this discharge attain large values. By the time the head of the wave reaches the tower, large currents are flow.ag in the conductor. But if the tower footing is low the tower top is held at substantially ground potential and the conductor rises to a high negative value relative to the tower top. In the usual constructions the insulation level of the insulator string may be only a quarter of that of the distance bet ween the ground wire and conductor at midspan, and flashover of the insulator string may occur. The resultant polarity of the current that flows across the insulator string is of the same polarity as that which would resulc for a stroke to the conductor. For a stroke to midspan the measured polarity does not provide a proper discrimination between a shielding failure and a backtlash.
H. R. Armstrong and E. R. Whitehead: We appreciate the discussion of our paper very much. Mr. Kalb bas asked about the tests made on the device. The Pathfinder model described in the paper was a developmental model intended primarily to demonstrate the feasibility of such an instrument. The lowest current was about 23 crest kiloamperes, the signal duration approximately $\vec{?}$ microseconds, and the upper limit of current used about 90 kilosmperes. Within these limits no polarity diserimination falures aere experienced. The parameters of the circuit have not yet been optimized, and this remains is task in
er.anection with the production prototype now being designed.
Dr. Wagner cautions that predischarge current to the phase conductor caused by a stroke to midspan may cause insulator flashover and incorrectly signal a stuelding failure. While we have given some thought to such streamer currenta, it may well be that more careful consideration is required to guard against them. We believe there are three reasons why the probability of misinformation from this source can be made sufficiently small:

1. For normal spans, the duration of insulator voltage should be of the order of 1 microsecond and the insulator sparkover voltage would be quite high.
2. Perhaps fewer than one-half the strokes to the ground wire can be considered as terminating in the critical region.
3. Fime discrimination for the negative current indicator can provide a delay in the order of 10 microseconds at an acceptable incremental cost.

If suitable time discrimitation is employed, the false signal can be avoided and reliance is then placed on the power follow signal in the same manner is indicated in the signal chart of the paper.

During the program of the investigation leading to the paper, many circuits were devised to provide varying degrees of diccrimination. One such circuit included a linear resistor and a parallel indicator branch designed to operate only at a predetermined magnitude of current irrespective of polarity. In the interest of reduced cost and complexity this additional indicator was diacarded.
We would very much appreciate Dr. Wagner's estimate of the order of magnitude of the predischarge curreats which were diecussed.

Calculating Loss Reduction Afforded by Shunt Capacitor Application

R. F. Cook, Member IERE

Many papers have beea writtea and much controversy exists concerning the correct technique for evaluating losses in power distribution systems. One of the greatest bones of contention concerns the loss reduction afforded by application of shunt capacitors. Some points of dispute arise from different economic and operating principles governing the operstion of various electric systems. Other points represent differences of opinion between engineer-economists.

No matter how the loss reduction afforded by shunt capacitors is evaluated, assuming the losses are worth something, one common step must be taken; the amount of loss tedrution, peak losses and energy losses, must be calculated. Th calculation is the subject of this paper.

Most but not all previcus papers, including those for $A / S E$ Transactions, which studied the application of shunt capacttors to distribution systems, have used an incorrect method of calculating the energy loss reduction, some authors calling it as approximation, which it is not. Approximate data-which is all that is usually available-may be used in an incorrect calculation and may result in a correct or approximate answer, but this is sheer luck. Moreover, use of the particular in-

[^17]correct calculation shown in the next secvion cannot be justified on the basis of less effort because the correct calculation is almost as simple as the incorrect. This will be shown.

Example of Incorrect Loss Reduction Calculation

A simple hypothetical primary feeder circuit is shown in Fig. 1(A). Accepting the assumption that shunt capacitors affect

(A)

Fig. 1
A-Simple circuit with reactive load currents, capacitor current, and line section resistances B-Reactive load cycie for loads of A

2) It some ients, we meswured a turrent thrmugh a sample at the gromod side. We found that the leakage cument is veri small, on the urder of less than a fer mA exrept in the anae of the snow test Just before the occurrence of flashover, somewhut larger amonmts of prediadarge curtent mas appear, but the laryt capacitance in the loading capachar prevented this from being is probiem. We elicountered no difficulty with wollage regulation. elcept in the care of the snow tests. H. L. Hill in his report|1] stazed that "the current surging seldom exceeds 3 mA until immediately prior to flashover un standard and semifog insulators." In the case of the show test, the larger current capacity of the power source would give a lower fisshover voltage
3) In the case of dry or wet flashover testa, the applied voltage was kept about 85 percent of the sparkover wollage, and the remaining 15 perient was raived and dropped for each occurrence of fiasinover without interrupting the applied voltage. The voltage was tanirolled at the 3 thecy le porer source using i tap-changing traneformer. One step of tap-changug rexulied in a F-h Y change of the de output.

It appears that the mean rate of voltage rimer has little effect on
flashover voltage when the mavimom rate of voltage rive i- in a range sinaller than $3 \mathrm{kl} / \mathrm{s}$.
4. No texto were perforneed tising an instantaneonsly applied veluage.
3) Sparkoven sometime take place actum a pair of ophere gap at an abnormally lowet voltake, such as 80 percent of the stamio. d value; bowever, it is not diffenth to eliminate there shomormaities by the same method used for $3(1-60$ cycle volitage calibration.

Although a pair of sphere gaps is not always on accurate meaxnmig device for direct current, it is good for confirmation of the operation of modern mearuring eutipnent. In the cave of de voluge measur ment, any corons from the voltage divider would introdice a largeerror, because of the extremely high value of resistance. The luse 0 sphere gaps is a good method to avoid an accidantal error of yoltane measurement.

References
ASEA, Luavika, Switzerland, Tech. Memo M335, Kepremiljer 13, 1966.

Field and Analytical Studies of Transmission Line Shielding

H. R. ARMSTRONG, FELLOW, IEEE, AND EDWIN R. WHITEHEAD, FELLOU: IEEE

Abstract

During the past two years, 4015 Pathfinder devices were installed on approximately 433 miles of EVY and EHV transmission lines suitably divided into sample classes for significant data yield.

Over approximately 70 percent of a full lightring season, 14 Patbfinder operations were recorded of which 12 were caused by lightning strokes to the top phase conductors and two reswled from a doublecircuit fault caused by a stroke to the ground wize or tower.

Fifty transmission lines showing an averagre lightning trip-out rate of only 0.175 per 100 miles per year were cronsidered effectively shielded over the sample period of 52000 mile -years, and were accordingly analyzed for their average ground wire beights and average shield angles. The data were plotred by inswilation levels and the results compared with the predictions of an amalytical model developed to serve as an extrapolating device to relane feld experience to the design of new lines. Important parameters of the model were determined by calibration against the feld data. It is concluded that terrain factors, as determined by the actual line profie, are of major signifcance and must be carefully considered in establishing effective conductor and \#round wire beights.

While the analytical model is theoretically capable of extension to the prediction of trip-out rates for partially effective shielding, it is concluded that more data are needed before this can be done with satisfactory confidence.

Paper 31 TP 67-103, recommended and apprived by the Tranmisson and Distribution Committee of the IEEE Power Group for presentation at the IEEE Winter Power Meetins New York X Y January 29-Febniary 3, 196\%. Manuscript rusimitted October 31, 11466: made available for printing November 21. 1466.
H. R. Armstrong is with the Detroit Edisan. Company, Detroit, Mich.
E. R. Whitehead is with the Illinois Institule of Technology, Chicago, 11 .

AREPORT has been previously made:') on the Pathfinder research program which was designed to study the mechanism of lightning strakes to transmission lines. The investigation is still in progress in the third, or data-gathering phase, and will not be completed for several years. It seems timely, however, to report on the progress of the field investigation and the parallel analytical studies. This paper will discuss

1) the final form of the Pathfinder shielding failure indicator
2) the interpretation of the Pathfinder signals
3) a description of the tran*mission line samples studied
4) a summary of the Pathfinder opera., 3 to date
5) the development of an analytical system model consisting of the lightning stroke, the aransmission line tover and conductors, and the surrounding terrain. The model is then used as a correlating and extrapolating mechanism to relate line performance to the characteristics of the lightning stroke. The model is also useful in interpreting Pathfinder data.

The final form of the Pathfinder instrument installed in the field differs in detail, though not in function, from that described before. ${ }^{11)}$ Fig. 1 shows the circuit diagram of the production device, while Fig. 2 shows an installation on a $345-\mathrm{kV}$ transmision tower.

The device operates only upon complete flashover across the insulator string when the flavhover current path to ground is intercepted by the current collector ring normally mounted on the ground-end insulator unit. It is simplest to explain the operation using electron flom as negative current. If the collector ring receives electrons or negative current from the phase conductor as a result of a shieiding failure, the silicon carbide voltage-limiting element transmits a voltage signal by way of the dropping

Fig. Circuit diagram of Pathfinder.

Fig. 2. Pathfinder installation on a a isi-k V tower.
resistor R_{1} to the renaing system tapped at R_{2}. The negative current enters dioide $D(-)$ and is rejected by diode $D(+)$ If the time duration of the signal is under $3 \mu s$ the indicator current drops very rapidly as this time approaches zero. Corona and sinall streamer currents will not operate the indicator. On the other hand, the response drops somewhat more slowly as the duration increases above 20 s so that power irequency current will not operate the surge current indicator. Thus, with current in the operating range, the electro-explosive "squih" $I(-)$ absorbs sufficient energy to activate the detonating charge and expel the aluminum dise covering the red dise signal on the exteriot of the in-trument housing In doing so, the interlock circuit is opened. preventing any subsequent surge operation. Should system fault current follow the initial impule flawhover across the insulator string, the expulsion fuse in series with the voltagelimiting element is activated, and the disc covering the black triangular power-follow signal is expelled to reveal this signal in addition.

If lightning striken the tonwer or ground wire and an itsulator fla-hover ensuen, electron current enters the grounded housing and pases through the voltage-limiting eiement to the collector ring and then to the phave conductor. This current is much less than that for a stroke to the conductor because a surge impedance of the order of 200 ohms is in parallel with the tower imperdance. Here the notlinear character of the current shunt permits sufficient voltage to activate the $I(+)$ squib by way of the

TABLEI
Sional Code with Probible Interpretations

diode $D(+)$ provided the current duration exceeds the intentional time delay. Tests indicate a current threshold of approximately $3-4$ k... providing further iusurance against spurious operation.

The functions of the Pathfinder device are to signal the probable point of stroke termination, either phase conductor or shielding system, for each instrumented insulator string flashover and to signal the presence or absence of potver follow

Most of the Pathfinders are installed on the two top phases of double-circuit vertical-configuration cowers. In Table I several single and multiple signals are interpreted. For a complete and more accurate analysis of the signals it is necessary to know the tower footing resistance, the phase sequence of the circuits, and the relay and circuit breaker operating records.

The selection of the lines for a shielding efficiency study is of great importance because line performance governs the quality and quantity of the expected data. Accordingly, the structural and electrical features of 45 selected steel-cower lines were examined, and three classes of line samples were established together with an approximate mileage needed for each class. These sample clasves are defined in broad terms in Table II.

TABLE 111
Anticipated Data Yields

Sample Class	Miles	Yeare	Rate	Lines With Favorable* Trip-out Ratesand Percent Percent certainty		Rate	$\begin{aligned} & \text { Los With } \\ & \text { flavorabie } \\ & \text { Trip-rut Rate, } \\ & 70 \quad 90 \\ & \text { Petcent Percen } \\ & \text { certainty } \end{aligned}$	
A	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 75 \\ & 90 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 45 \\ & 34 \end{aligned}$	$\begin{aligned} & 37 \\ & 40 \end{aligned}$
B	150	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 52 \\ & 63 \end{aligned}$	$\begin{aligned} & 43 \\ & 35 \end{aligned}$	$\begin{array}{ll} 0 & 04 \\ 0 & 04 \end{array}$	$\begin{aligned} & 30 \\ & 36 \end{aligned}$	$\begin{aligned} & 23 \\ & 28 \end{aligned}$
C	150	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 30 \\ & 36 \end{aligned}$	$\begin{aligned} & 23 \\ & 28 \end{aligned}$	$\begin{array}{ll} 0.02 \\ 0.02 \end{array}$	$\begin{aligned} & 15 \\ & \text { is } \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \end{aligned}$
$\begin{aligned} & \text { Tutal } \\ & \text { Jears } \end{aligned}$				$\begin{gathered} 157-18 \\ 5-6 \end{gathered}$	$\begin{gathered} 136-162 \\ 5-6 \end{gathered}$		$\begin{gathered} 90-108 \\ 5-6 \end{gathered}$	$\begin{gathered} 70-87 \\ 5-6 \end{gathered}$

- For study purposes a favurable rate is a high number of lightning trip-outs per 100 tower line miles per year.

TABLE IV
Sevmary of Pathmader Operations to October 15,1966

Cumpany	$\begin{aligned} & \text { Line, } \\ & h V \end{aligned}$	$\underset{k V}{B I L}$	$\begin{gathered} A_{1} \\ \text { feet } \end{gathered}$	$\begin{gathered} \hat{Y}_{1} \\ \text { feet } \end{gathered}$	$\underset{\text { degrees }}{\dot{\theta}}$	Tower Number	Red	$\begin{aligned} & \text { Signais } \\ & \text { Green } \end{aligned}$	Black	$\begin{aligned} & \text { Trip-outs } \\ & \text { fes No } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Fsult } \\ & \text { Type } \end{aligned}$
		790				$\begin{aligned} & 200 \\ & 201 \\ & 202 \\ & 271 \\ & 272 \\ & 312 \end{aligned}$	XXXX	$\underset{\mathrm{X}}{\mathrm{X}}$	$\begin{aligned} & \mathrm{X} \\ & \dot{X} \\ & \dot{X} \\ & - \end{aligned}$	XXX	$\begin{aligned} & \operatorname{Lng} \\ & \operatorname{LGG} \\ & \operatorname{Ln} G \\ & \operatorname{LnG} \\ & \operatorname{LnG} \end{aligned}$
\widehat{A}	120	790	67	58	44						
A	120	790	67	58	44						
A	120 120	790 -90	$\begin{aligned} & 67 \\ & 67 \end{aligned}$	58	44 44						
${ }_{\text {A }}$	120	$\begin{array}{r} 790 \\ 790 \end{array}$	$\begin{aligned} & 67 \\ & 67 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \end{aligned}$	44 44						
A										X	
B	115	690 690	83	71 58	43	99 100	X		\underline{X}	X	L-G
B	115	690	70	58	45	101	X		X	Х	L-G
C	115	790	65	56	63	85	-		Double	X	I-G
C	115	790	65	36	63	85	-		Circuit	X	L-G
		1600	129	102	33	53	x		X	X	L-C
D	345	1600	129	102	33	79	X		र	X	L-Ci
D	345	1600	120	102	33	106	X		X	X	L-G

Aoke: These data reflect approximately a 70-percent installation for one lightning season.

Anticipated data yie ds, computed from standard Poisson tables, are given in Table III.

To determine whether actual outage experience over δ-year periods conforms approximately to mathenatical expectations, an analysis was made of about 2600 mile-years of transmission line operation reported in the literature. It was found that the actual performance experienced either agreed reasonably well with the theoretical variability of 5 -year samples or was more consistent than expected. This comparison lent credence to the basis on which Table III was prepared. The conclusion drawn from the statistical review was that, if lines with favorable trip-out rates could be obtained as samples, the desired number of approximately 100 records would be virtually certain in five years. On the other hand, if oniy samples with unfavorable rates were available, there would still be about an even chance of securing the desired data in five or six years. When all factors were considered, including the cost of the production Pathfinder, the final field installation included 4615 instruments distributed over 433 miles of transmission line in three categories as outlined before. The instruments were distributed among 12 participating companies located in a rectangle bounded by Florida, New England. Texas, and Colorado. Table IV summarizes the Pathfinder operations to October $15,1966$.

The first 285 Pathfinder units in service in 1965 were installed on 25 miles of Detroit Edison Company $120-\mathrm{kV}$ lines with a shielding angle of 45 degrees. The installation was less than a month old when a reasonably severe thunderstorm over the line yielded four indications of insulator flashover due to strokes to a phase conductor. It was possible to relate power follow indications to circuit breaker operations - a good omen for a successful project.

Analytical Model

While attempts to quantify transmission line shielding theory are not new, ${ }^{|2|-|4|}$ none of the preceding models has seemed fully satisfactory' as a means of coordinating the performance of existing transmission lines with those characteristics of the lightning stroke which appear applicable. The model presented here has been useful in several directions, but it, too, must be considered a tentative step which may well be modified substantially as new data are evaluated. One important advantage of even a tentative model is that it classifies and separates the variables so that attention can be focused on its defects. It is with the foregoing firmly in mind that the following model is presented.

In the use of geometrical quantities, the term effective means that quantity which, when employed in the model, characterizes
the rariable in the field. Usually this really means an average ra.je. In the use of electrical or electrogeometrical quantities such as rcitage, current, or strike distance, the term employed for the same purpose will be the expected value. In the latter case it is urs) meant that the deviations from the expected value are res.7) not known. In both cases, however, the superscript bar Win se employed to designate such quantities.

Gute etry of Shielding

Fig. 3 illustrates the geometry of shielding for a single-circuit borizontal configuration of phase conductors w and x, shielding conductors s at an average angle $\dot{\theta}_{3}$ with respect to the phase cooductor, and their respective average heights above earth. Athuugh transverse slope of the earth is easily incorporated into tbe model, it is omitted here in the interest of simplieity. The ares centered on the ground wires with strike radius $\mathcal{F}_{\boldsymbol{u}}$ and the borizontal line through y, represent the intersection of the shieldi.g zuriaces with the plane of the paper, while the arc $y_{1} z_{2} y_{2}$ re;reents the intersection of the exposed surface. The phase cotductor w is the origin of poiar coordinates and counter-clock*ie angles are positive. For conveniance is subsequent reference, the leader terminating on the exposure arc above the horizontal b designated type 1 exposure, while that terminating on the portion of the exposure belorv the borizontal is designsted type 2 exporure.

E. ectite Shielding

The expected exposure is clearly reduced to zero when the triarzle wy/s of Fig. 3 is rotated clock wise about the origin to make $\delta_{.}=\theta_{2}$, as is depicted in Fig. A. Analysis of these figures will show that zero exposure for one outaide phase conductor results when:

$$
\begin{gather*}
\dot{\theta}_{1} \leq \dot{\theta}_{1}-\bar{\beta} \tag{1}\\
\dot{\theta}_{1}=\sin ^{-1}\left(K_{1 \varphi}-\hat{\theta}_{11} F_{1 n}\right)=\dot{\theta}_{2} \tag{2}\\
\tilde{\beta}=\sin ^{-1} \tilde{C} 2 F_{n} \tag{3}
\end{gather*}
$$

which hold for the assigned expected strike distances
$i_{1,}$-expected strike distance from the leader core to the shield wires.
${ }_{44}=K_{49} 7_{4}$-expected strike distance to earth.
A complete list of symbols will be found in Appendis [.)
The strike distance is here taken as

$$
\begin{equation*}
F_{u}=K_{n} I_{0}^{\prime} \tag{4}
\end{equation*}
$$

where I_{0} is the lightring stroke current to a zero-resistance ground and K_{r}, and a are constants to be developed. The strike distance ${ }^{\prime}$, cantut really be considered an invariable value for an a-~igned value of current, but there is presently little to assist in deternining its deviation.
In the derivation of (4), first associate a leader voltage V, with the struke current fo and next associate a strike distance with V. In recent years there have been various approaches to the frst step, ${ }^{(5)}()^{(t)}$ and the latent data on switching surge strike distances. ${ }^{[1 / \cdot|8|}$ aid in the second step. Regardless of the approach adopted, the struke voltage-current relation requirex very great -implification of the electrogeometry to afford tractable wlution, and the voltage-distance relation requires very great extrapolation of available test data. For theve reavons, the justification for any analytical approach can only lie in a demonatrated unefulness in dexcribing actual line periormance and in indicating directions in which to proceed to improve the moxiel.

Fig. 3. The geometry of shieiding

Fig 4. The geometry of effective shieiding

With the foregoing in mind, the Wagner ${ }^{16}$ stroke model is then employed in the following form :

$$
\begin{equation*}
V_{t}=60\left(I_{0} / v_{1}\right) \ln \left(2 F_{s q} / d\right) \tag{5}
\end{equation*}
$$

where

V , leader voltage, kV
Io stroke current to zero resistance earch
v_{1} velocity of retura channel in per unit velocity of light
$f_{i f}$ strike distance to ground
d expected corona radius of the leader at heights svell sbove ${ }^{5}$ is.
Since V, depeads on F_{40} and F_{10} depends on V_{h}, trial solutions are necessary to proceed. Because both $F_{s \ell}$ and d increase with V_{n}, the logarithmic iactor varies very slowly, and a value of 4.6 has tentatively been selected for it.
Within the apyropriace accuracy requirements, the various relations which have been proposed for the relation between the current I_{0} and the return channel velocity v_{1} may be represented by

$$
\begin{equation*}
I_{0}=K_{1} v_{1}{ }^{q} . \tag{6}
\end{equation*}
$$

Among the several relations inveatigated, the relation

$$
\begin{equation*}
I_{0}=2400 v_{1}^{2} \text { or } v_{1}=I_{0}^{1 / 2} / 13.4 \tag{7}
\end{equation*}
$$

has been tentatively adopted as a useful compromi-e substitution of (7) in (5) gives

$$
\begin{equation*}
V,=3.7 l_{0}^{21} \mathrm{MV}^{2} \text { for } I_{0} \text { in } \mathrm{kA} . \tag{8}
\end{equation*}
$$

Fig 5. Point-point sparhover distance for liegative polarity switching surges.

To determine the strike distance, there is no recourse but to extrapolate the laboratory strike distances for the highest voltages available. Fig. 5 shows the relatively close agreement between the data of Parisis) and Watanabe. ${ }^{[1]}$ The mean of these data is given by the solid line, empirically given by

$$
\begin{equation*}
T_{1}=1.4 \mathrm{~F}_{1}^{1.2} \tag{9}
\end{equation*}
$$

for V , in megavolts and r_{1} in meters.
Sub-tituting ($\$$) into (9), the desired distance-current relation becomes

$$
\begin{align*}
& r_{u}=1.4 \times 3.7^{-1.210^{2} \times 1.23} \tag{10}\\
& T_{n}=6.72 \mathrm{I}_{0}^{08} \text { meters } \\
& r_{u}=22 \mathrm{I}_{0} 0^{0 .} \text { feet. }
\end{align*}
$$

The critical lightning current which can be accepted by the phase conductor rithout insulator flashover is given by

$$
\begin{equation*}
I_{\mathrm{c}}=2 E / Z=\frac{\text { basic insulation level in } \mathrm{kV}}{\text { one half the conductor surge impedance }} \tag{11}
\end{equation*}
$$

where the surge impedance Z is determined by the usual methods taking into account the presence of the ground wires. ${ }^{(11}$ For estimating purposes, the following tabulated values are useful as applying to HV and EHT lines.

Conductor	One Ha\ Z, ohms
Four-burdie	160
Twobumdie	180
Single EHH	200
Single (HV)	220

I_{0} is slightly greater than $I_{\text {, and a correiation curve may be }}$ used if desired (see Fig. 11).

Terrain Parameders

The geometry of shielding requires the use of certain effective parameters which can be determined from existing or proposed tower design and line profile. The effective conductor and shield wire heights must not only take into account their respective sags, but also the "earth sag" as determined from the profile of the line. These considerations are shown in Fig. 6 where, for estimating purposes, flat, rolling, and mountainous terrains are defined. In the field research program, each individual shielding failure event is analyzed in terms of the profile on both sides of the tomer involved. The conductor and shieldwire heights aver-

Fig. 6. Terrain and structural paramelers.

Fig. 7. Effective shield aire height os effective shielding angle for 30 lines showing superior performatace.

TABLE Y
Data por Fift Transmission Lines Showing Siperior Performance*

| Characteristic | Minimum Average Maximum | | |
| :--- | :---: | :---: | :---: | :---: |
| Lightning trip-outs for 100
 miles per yesr at 40 T.D. \dagger | 0.00 | 0.175 | 0.50 |
| Experience per line in mile-
 years | 210 | 1040 | 6500 |
| BIL, kJ | 450 | 1300 | 1625 |
| Average ground resistance in
 ohms (35 lines) | 2 | 23 | 94 |

Total mile-years: 52000

* From Chambers and Almon ${ }^{(10)}$ and Ohio Brass Company. (13]
\dagger Tbunderstorm days.
aged for these adjacent spans are then used, together with the tower configuration, to determine the effective separations and angles. Theoretically, the analytical model provides for a sloping earth plane. Examination of numerous lines, however, shows that the longitudinal profile is by far the controlling factor in transmission line shielding.

Calibration of Analytical Model

It has been pointed out earliet that any model must satifactorily account for the good or poor performance of existing lines. On one hand, the model may be "calibrated" by examining the geometry of high-periormance lines and comparing it with analytical results. On the other hand, it is necessary to compare the analytical results with conditions known to produce shielding failure. Such conditions are evidenced by the corresponding type of Pathfinder operation. In the final analysis, therefore, the param-

Fig. 5. Tentative calibration of K_{tg} using a subgroup of lines irom Fig .
eters of the model must be adjusted so as to provide the fullest possible agreement with field experience. Adjustments must be made with maxinum objectivity and within the context of known theoretical considerations, so that they do not obscure basic defects in the model.

Fig. 7 shows the height-aingle characteristics of 50 transmission lines showing superior lightning performance as indicated in Table V. The total experience sampled in this table is 52000 mile-years. While common practice in the United States has been to refer periormance to a level of 30 thunderstorm days (T.D.) per year, these data have been adjusted to 40 T.D. to minimize the possibility that linear correction over the wider range might be invalid.

The solid lines of Fig. 7 have been calculated from the analytical model for the three groups of lines as indicated by the symbul code. It is important to note that a given line may, of course, have an effective shield angle well below its critical value, so the upper envelope of the points in each group carries the essential inforniation with which to compare the lines. $\tilde{K}_{1 g}$ has been taken as 0.9 in these calibrations.

At the suggextion of Dr. R. H. Golde, the model has been modified to permit a difference in the sparkover-distance relation for leader to ground wire or tower (nominally point-point) and for leader to ground (nominally point-plane). It is by no means clear that laboratory differences in point-point and point-plane extend to the actual situacion in the field. For example, in heavily wooded country, $k_{s e}$ might actually be equal to or greater than unity.

Fig 8 shows height-angle data for a reasonably homogeneous subyroup of Fig. 7. The solid lines have been calculated for several value of K_{29}, and from this figure a value of $K_{18}=0.9$ has been tentatively sdopted.

The line samples shown for Pathfinder instaHtations have heen selected primarily to detect both shielding and "backflash" events. Some attention has been given, however, to selecting sample lines whove configurations lie close to the critical one. By this means it is hoped to sharpen the determination of the model parameters when sufficient data become available. For the same reavon, a limited number of instruments have been installed on the top and middle phaves on one side of a doublecircuit tower, and, in one cave, top and middle phaves on both -ides of the double-circuit tower have been instrumented for a fimited distance in mountamous terrain. The lines contributing the data in Table IV all have effective shieiding angles much greater than calculated by the prevent model, so that these data do not yet aid substantially in the calibration of moxicl parameters.

Shielding Design

The authors feel that the data of Table V and Fig. 7 demonstrate that effective shielding can be and has been achieved in practical designs. For this reason it is recommended that design of the shielding system, that is, placement and spacing of the ground wires, be predicated on zero expectation of shielding failures. To design a corver line for a predetermined number of shielding failures is vastly more complicated and cannot be done to a satisfactory degree of confidence at this stage of the art. The reasons for this conclusion stem from the fact that, since the parameters have beell selected for expected perfect shielding, no measure is yet available for deviations from their mean values. On the other hand, deviations in thunderstorm days, stroke density per storm, and leader angles are eliminated from consideration. Some of the problems associated with partially effective or imperfect shieiding are discussed in the following.

Partially Effective Shielding

Extension of the analytical model to partially effective shielding, while theoretically straightforward, involves numerous uncertainties, statistical variations, and necessary assumptions. Nevertheless, the extension is essential to use fully the data anticipated from the field study, since most of the sample lines are obviously only partially shielded.

Fig. 3 shows that conductor w has an exposure are $Y_{1} \mathrm{~S}_{3} Y_{2}$. Leader angles other than zero referred to the y axis can result in type 1 or type 2 intersections. Since the shielding geometry is expressed in trigonometric form, it is advantageous to postulate a probability density function

$$
\begin{equation*}
f(\alpha)=K_{m} \cos ^{m} \alpha \tag{12}
\end{equation*}
$$

so that the probability of finding a leader in the angle range α_{1} to α, is

$$
P_{a 1}^{\alpha 1}=\int_{a}^{\alpha 1} K_{m} \cos ^{m} a d a
$$

with

$$
\begin{equation*}
\int_{-, 2}^{+\infty} K_{m} \cos ^{n} \alpha d \alpha=1 \tag{13}
\end{equation*}
$$

so that the normalizing constant K_{n} becomes

$$
K_{m}=1 / \int_{-r / 2}^{++\pi / 2} \cos ^{m} \alpha d \alpha
$$

The meaning of the constants \AA_{m} and m is illustrated by the probability curves of Fig 9. As m and K_{m} approach infinity

$$
\begin{equation*}
P_{a:}^{a n} \rightarrow \int_{a i}^{a t} j(\alpha) d \alpha=1 \text { for } a_{1}<0<\alpha_{2} \tag{14}
\end{equation*}
$$

where $\hbar(a)$ is the unit impulee of a
Preliminary evaluation of the performance of partially shielded lines suggests that m may lie between 1 and 2 with ralues near 2 more probsble. Further detailed study of the calculations for partially shielded lines is beyond the scope of the present paper, but the process involves evaluation, using suitable trigonometric substitutions for z, of integrals of the form

$$
\begin{equation*}
\int_{1=1}^{K_{c}} P(r) \int_{-\infty}^{+\infty} F_{i m} \int_{\alpha(x, r)}^{\alpha(x, r)} \cos ^{m} \alpha d \alpha d x d r . \tag{15}
\end{equation*}
$$

In practice, the outer intearal will be evaluated fron the lower critical value $r_{i s}$ to the mpper critical value R_{e} (at which the ex-

Fig. 9. Leader angle prohability density curves.

Fig. 10. Maximum exposure for a single strike radius r and $y=2 r$.
posure becomes zero) by summation using

$$
\begin{equation*}
P(r) \Delta r=P(i) \Delta i \tag{16}
\end{equation*}
$$

where
$r=22 i^{0.4}$
and the probability density function $P(i)$ is adopted from the AIEE or more suitable current-probability curves. ${ }^{[12]}$ For present purposes it has been found useful to take the probability density function as

$$
\begin{equation*}
P(i)=4.75 e^{-1 / x}+0.10 t^{-1 / x} \text { percent } \tag{17}
\end{equation*}
$$

where i is in kiloamperes and the increment Δi has been chosen as

$$
\begin{aligned}
& \Delta i=2 \mathrm{kA} \text { for } i<10 \mathrm{kA} . \\
& \Delta i=5 \mathrm{kA} \text { for } i>10 \mathrm{kA} .
\end{aligned}
$$

For distributions other than those of the AIEE report, ${ }^{[14]}$

$$
\begin{equation*}
P(i)=\kappa_{i t}-i / h_{1}+\kappa_{r t}-i / t_{t} \tag{18}
\end{equation*}
$$

will also be found useful.
As a clue to the possible values of the angle distribution exponent m, Fig. 10 shows the result of evaluating the α and x integrals for one value of the radius r and an unshielded conductor at a height $y=2 r$. The figure shows that these integrals are not convergent for $m=0$ so this is not a valid exponent. As m approaches infinity the curve approaches the value $2 r$ as the necessary exposure for all-vertical surokes.

When sufficient data become available from the various field installations of the Pathfinder instrument, it is hoped that more accurate analysis of the leader angle effect will be possible along the lines illustrated in Appendix 111 .

Conclusions

1) During approximately a 70 -percent lightning season, 14 Pathfinder operations have been obtained on an indicated nine separate strokes. Eight of these strokes were indicated as strohes to the phase conductor, and one was indicated as a stroke to the ground wire which resulted in a double-circuit fault.
2) An analytical model bas been developed which appears capable of correlating the more important factors affecting the shielding of transmission lines from strokes to the phase conductors.
3) Terrain factors are of major significance and must be wrefully considered to determine the effective heights of the conductors and ground wires.
4) Fifty transmission lines having superior performance over an aggregate of 52000 mile-years experience have been analyzed for effective shield angle and effective heights of conductor and ground wire as a mpans of calibrating some of the parameters of the analytical model. There is great need for extending this type of statistical study into more recent experience on EHV lines.
5) Design of EHV lines should be based on an outage expectation of zero, as determined by the correlating model of this paper or similar equivalent models.
6) The analytical model is capable of extension to the extimation of shielding failure trip-out rates resulting from partially effective shielding, and there are reasons to expect that progescan be made in this phase of the problem as data accumulate from the Pathfinder installations. The problem is complex, challenging, and interesting, but the relevant parameters require further study and evaluation.
7) Basic research on the plasma thermodynamics of the lightning stroke should be encouraged and supported, for new knowledge in this area will undoubtedly find early application to improved engineering models of the lightning mechanism.

Appendrx I
 Nomenclatcre and Terminology

General

T.D. Thunderstorm days per year

N Strokes to ground per square mile per year
BIL Basic insulation level
$P(r)$ Probability of strike radius r
$P(i)$ Probability of stroke current i.

Electrogeometric and Electric

V, Leader voltage to ground, kV or MW
Io Stroke current to zero resistance ground, kA
$I_{c} \quad$ Critical current to conductor, kA
In Natural or Naperian logarithm
$v_{1} \quad$ Velocity of return channel in per unit v_{0}
to Velocity of light, m / s
d Expected corona radius of leader
E Line BIL, kV
Z Surge impedance of line conductor struck
$f_{n} \quad$ Expected strike radius-ieader to shieid wire
fos Expected strike radius to earth
$i_{t \epsilon} \quad$ Expected strike radius to conductor $\left(f_{t c} \cong f_{r o}\right)$
$\tilde{K}_{1,} \quad \vec{f}_{1,} / f_{1,}$
\widetilde{K}_{m} Angle probability density normalizing coefficient
$m \quad$ Angle probability density exponent
$\alpha \quad$ Angle of leader from the vertical.

Tertain

i. Ground or shield wire height at tower
y. Conductor height at wer
t. Ground or shield wire sag
4. Conductor sag

A Mean around wire beight
j) Mean conductor height
4. Earth sag
*, Mean transverse ground plane angle from horizontal.

Flat terrain

Rolling terrain
Mountainous terrain

Plane earth between tower footings Earth sag equal to conductor sag
Mean conductor height equal to or greater than twice that for flat terrain.

Geometrical

$\dot{\theta}_{\text {, }}$ Mean value of shielding angle
$\bar{\theta}_{1} \quad$ Upper exposure angle (mean)
$\hat{\theta}_{1}$ Lower exposure angle (mean)
c. Mean separation between shield wire and conductor

इ Angle whose sine is $C / 27_{3}$
$b \quad C \cos \theta_{1}$ (mean shield wire superelevatiou)
a $C \sin \hat{\theta}_{\text {, (mesa shield wire offiset from conductor) }}$
$=$ Distance from conductor at right angle to line.

Appendix II
 Sabrple Calculations for Effective. Shielding

A review of Olmstead ${ }^{[16]}$ suggests the following typical values useful for preliminary design of structures for zero expectation of shielding failures:

Yoltage Claso, $k V$	$\underset{\mathrm{kV}}{\mathrm{BIL},}$	$\begin{aligned} & Z / 2, \\ & \text { ohms } \end{aligned}$	$\underset{\text { feet }}{\underset{\text { en }}{2}}$	l kA	Notes
500	1800	160	33	11	4-bundle conductor 2 -bundle conductor 2 -bundle conductor - ingle conductor
500	1800	180	35	10	
$300-400$	1600	180	30	9	
		200	30	\%	
$22(1-200$	1400	200	25	5	
$110-161$	1000	200	20	3	

The following data refer to a proposed double-circuit $345-\mathrm{kV}$ line, which will traverse virtually flat terrain, which has the following tentative electrical and structural characteristics:

> Conductor sag $S_{c}=34$ ieet
> Ground wire sag $S_{p}=36$ feet
$y_{1}=$ top conductor height at tower $=136$ feet
$\bar{c}=$ mean separation-ground wire to conductor
$Z_{2}=$ one half conductor surge impedance $=180$ ohms
$\mathrm{BIL}=1600 \mathrm{kV}$ and $I_{0}=1800 / 180=8.9 \mathrm{kt}$.
Estimate the location of the ground wire for zero expected shieiding failures.

Step	Quancity	Source of Data or Calculation
1	${ }_{0}=10 \mathrm{kA}$	Fig. 11
2	$r_{t u}=139$ feet	Fig. 12
3	y	$y=y_{1}-(2 / 3) S_{6}=136-36=100$
t	y / r_{3}	$100 / 139=0.120$
5	$\theta_{1}=11.0^{\circ}$	To enter Fig. 13 If $\mathrm{Klg}_{10}=0.9$
5	θ_{1}	Add 0.1 to 0.720 to get 0.82
6	3	Enter Fig. 14 with
6	$\bar{\beta}=7.2{ }^{\circ}$	$\bar{c} / 2 r_{14}=35,278=0.126$

Fig 11. Adjustment curve for determining I_{0} from I_{s}.

Fig. 12. Strike radius $r_{\text {, }}$ as a function of T_{0}.

Fig. 13. The angle θ_{1} as a function of y, r for $\kappa_{i s}=1.0$.

Fig. 14. The angle 3 ax a function of $c \cdot 2$. .

7	\hat{B}_{1}	$\theta_{1}=11.0^{\circ}-7.2^{\circ}=3.8^{\circ}$
7	$\theta_{1}=3.8{ }^{\circ}$	
ह	b	$\delta=\varepsilon \cos \theta,=35$ feet
9	$\hat{H}=135$ feet	$\hat{y}+\bar{b}=100+35$
10	$A=135$ feet	Check from curve of Fig. 7
11	$h_{4}=159$ feet	$\begin{aligned} & h_{1}=H+2 / 3 S_{0}=135+24= \\ & 159 \end{aligned}$
12	$a_{i}=2.45$ feet	$a_{1}=\hat{c} \sin \theta_{1}$
13	$b_{1}=23$ leet	$b_{i}=h_{i}-y_{i}=159-136$
14	$\theta_{\text {A }}=6.1^{\circ}$	$\theta_{11}=\arctan 2.45 / 23$.

Summary

$$
\begin{aligned}
& y_{1}=136 \text { feet } h_{1}=159 \text { feet } \\
& \theta_{1}=6.1^{\circ} \text { at the tower } \\
& b_{1}=23 \text { feet } a_{1}=2.45 \text { feet (inboard) } \\
& \theta_{1}=4^{\circ} \mathrm{A}=135 \text { feet. }
\end{aligned}
$$

Appendix III
 Application of Analytical Model to Imperfect Shielding

In the body and conclusions of this repo.t it has been emphasized that additional and rather indefinitely-known parameters are necessary to permit estimation of trip-out rates from shielding failures to a satisiactory degree of confidence. Some of these are

1) $X^{*}=$ number of strokes to ground per square mile per year. This number has been variously estimated from 10 to 15 for 30 thunderstorm days per year
2) the leader angle probabillty density function $F(\alpha)$ which is here taken as
3) $K_{m} \cos ^{m} \alpha=F(\alpha)$
4) the exponent m if this form of $F(\alpha)$ is satisfactory,
5) $\kappa_{1}, \kappa_{3}, h_{1}$, and I_{2} if the probability density function for current has the assumed form

$$
P(i)=\kappa_{i t}-i / h+\kappa_{z t}-i / h
$$

6) the ratio (or relation) between Λ and the number of thunderstorm days (isoheraunic level)
7) unknown effects of stroke branching.

Despite the lack of precision in our knowledge of these parameters, it is useful to make reasonable estimate of their average "alues and to apply the analytical model to estimate the number of trip-outs caused b, shielding failures for an assigned geometrical situation. These estimates can then be compared with the actual periormance of the line over an extended period in the past and over the period of the Pathfinder field study:

The sample lines have been selected with a view to providing a range of height, angle, and terrain conditions so that, with sufficient data, one may hope to narrow the range of uncertainty to some degree. If parameters can be determined which enable the analytical model to meet the requirements of effectively shielded lines while accounting satisfactorily for the performance of partially shielded lines, a most useful result will have been obtained.

Table V1 shows the steps by which the analytical model is applied for one of the 345 kV lines of the fieid study, but it is not presented as a "calculation" of the trip-out rate. For the purpose of this illustration the angle-exposure integrals have been evaluated for

$$
\begin{aligned}
F(\alpha, m) & =1 / 2 \cos \alpha \\
K_{m} & =1 / 2 \\
m & =1
\end{aligned}
$$

TABLE VI
Illetstrative Application of Analytical Model to Inperfect Shielding

Line	Item			Computations for $\hat{y}=130 \quad \mathrm{c}=32$					Notes
2	Siroke current $/$, Probability	9.0	12.5	17.5	29 i	27.5	32.5	97.5	Kiloamperes
	$P(r) \Delta r$	6	13	10	9	6	5	4	Percent
3	Ririke Distance for	127	166	217	264	312	356	400	Feet
$\stackrel{4}{5}$	Angle Angie	33.	33.	33	33	33	33	33	Degrees
${ }_{6}$	Angle ${ }_{\text {a }}$	40	${ }^{3} 5$	4.2	3.5	2.9	2.6	2.3	Degrees
-	$\begin{array}{ll}\text { Angle } & \theta_{1} \\ \theta_{1}\end{array}$	40.70	38.57	37.2 0.63	36.5 0.64	35.9 0.93	35.6 0.62	35. 3	Degrees
8	Angle ${ }_{\text {a }}$	-7.2	6.6	17.2	24.0	29.2	32.1		Radians
4	Angle ${ }^{\text {at, }}$	-0.123	0.115	(1) 32	${ }_{0} 42$	- 0.1	0.56	${ }_{0} 061$	Degrees
10	Cosine of,	0.99	0.99	-96	0.92	0 \%	0.85	08.	Units
11	Cosine θ_{1}	0. 76	0.78	U 80	0.80	081	0.81	0.82	Units
12	Line 10-Line 11	0.23	021	0.16	0.12	0.16	0.4	000	Units
13	Line 7 -Line 9	0.8 ?	0.55	0.35	022	0.12	0.06	0.01	Radians
14	Line $12-$ Line 13	1.05	0.76	0.31	0.34	0 18	0.10	0.01	Numeric
15	Line 3 Line $14 / 2$		63				18		
16	19N $\times 10^{-1}$	${ }_{12}^{0 .} 7^{190}$	${ }_{12.190}$	10. 190	0.193 8.6	${ }^{0.190}$	0.190	${ }_{0}^{0} 190$	
18	Line $17 \times$ Line 2	76	156	$104{ }^{4}$	$77^{8.6}$	32		0.38 1.6	
19	Summation Litue 18								464
20	Trip-out rate for on	of line 464	$100=4.6$						
21	Trip-out rate for bo	of the lin	2×4.64	$=9.28$ io	(30) $=$				
$\begin{aligned} & 22 \\ & 23 \end{aligned}$	Trip-out rate for bo Trip-ont rate for bo	of the lin	at N(30)	$(=12.5)=$					
24	Actual trip-ont rate	, showing	need for f	=her inv	ation	el para	eiers.		

[^18]relding the renult, for $2 F_{n}$ much larger than \bar{c}, Transverse exposure distance $=\frac{7}{2}\left[\cos \hat{人}_{2}-\cos \hat{\theta}_{1}+\dot{\theta}_{1}-\dot{\theta}_{2}\right]$ *zich is evaluated in lines 12, 13, 14, and 15 .

Acknomledgaent

The authon wish to express their thanks to the Edison Electric Institute for the extensive support which has made this research possible and to the coopersting companies for their eLthusiastic participation. Thanks are also extended to Dr. K. Berger, Dr. D. H. Bastz, and Dr. R. H. Golde for most helpful ewnierences and to G. Brown for verifying many of the analytical developments.

References

- H. R. Armatrong and E. R. Whitehead, "A lightning stroke pa 'bfinder," IEEE Trans. Pover -ipparatus and Systems, vol. 83, pp. 1 ± -1227, December 1964 .
" R. H. Golde, "The frequency of occurrence and the distribution of lightning tashe to transmission lines." Trans. A/EE, vol. 64, pp. arc- 410,1945
is F. Schwab, "Lighening proof overhead lines," Bull. S.E.V. Surtierland), vol. S3, pp. $87-40,1964$.

IH F. S. Young, J. IL Clayton, and A. R. Hileman, "Shielding of tratumiswon linex," IEEE Trans. Pouer Apparatis and Syatems Suppienient), vol, 83, pp. 132-134, 1963.

- R. H. Golde Theoretical considerations on the protection of lizhtning rodv ETZ-4, vol. s2, pp. 273-277, 1961.
- C. F. Wagner, Relation between struke current and the reincity of the return strcke," IEEE Trans. Power Apparalus and S.tiems, vol. s2, pp. 60s-617, 1063.

11 Y. Watatiahe, "Switching surge fla-hover characteristice of ex*ngely long air gapz," prevelted at the IEEE Summer Power \ieetis 4 . Vew Orleans, La., July $10-15,1966$.
a L. Pario. Influence of air gap characteristies on line to ground witching surge otrength," prevented at the IEEE Summer Power Yeeting. New Orieans, La. July 10-15, 1960
? L. Bewley, Travelling Waves on Transmission Systems. Sex tork: Wiley, 1981 .
ex F Chambers and C. P. Almon, Jr. "Periormance of $161-\mathrm{kV}$ suld 11.3 k ' transmis-ion lines," Trans AlEE (Power A pparatus and Sjwiems), vol. S1. pp. 431-361, October 1962.
(ii) Lighining Performance of Typical Transmission Lines. Man5eld, Ohin: Ohim Bra*s Company, IGi5.

If AIEE Committee Report, is method of estimatirg lightning perfurmance of trail-miswion linex, "Trans A/EE, vol. $69, \mathrm{pt}$. II, pp. 11< $-1196,1930$.
(11) B. F. J. Schouland, Flight of Thunderbolts. Oxford: Clarendon, 19. $)^{2}$
(ii) D. Muller-Hillebrand, "On the frequency of lightning flawhes wi bigh shject-ma study ou the gulf of Buthris," Tellus, vol. 12, no. 4. pp. $444+49$.
(1i) K . Berger, "Electric requirements of overhead lines for very bigh voltager, Bull. S.E.V. (Surizerland), vol. 34, pp. it9-i3i, 1'N2.
"isi L. M. Olmated, "Desigu survey reveals patterus of EHV expunion," Elec. World, pp. 104-116, Nuvember 15, 196.5.

Discussion

J. G. Anderson (General Electric Company, Pittafield, Mass.): If xould appear that, at long laxt, we are obtaining some good data on the chieiding fature characteristion of actual transmisaion lines. The athors are tnaking a very important contribution with this Pathfinsies study
One prowhie applicurion of the Pathfinder measuring device is in ctufr of the lightuing reapoune of distribution lines. Have the author 3nv plans to do such work? Another pus-ibie application is the study if apprewion of pulwer-tillow current by woond crowsarm when

in such situations.

As disctussed 6 some extetut in the paper, the data obtained on shielding faitures will normally deal with shielding failure probabilities of only a few percent of the strokes contacting the line, bence dats from many strokes are necemary. To obtaill a good workable number to calculate outage frequency, one needs to know:

1) How many strokes contact the line?
2) Of these strokes, how many contact the ground wire and how many the phase conductor?
3) Of the strokes contacting either location, how many of each caused fiashover?
If, on the lines where Pathfinders are installed, the footing resintances are low, then most fadures would naturally be shielding failures and the Pathfinder indication that this is the cave would only be what was expected anyway. Hence, shouldn't the forting resistances of each of the test lit.es be carefully examined in their statistical aspects, and not just at the towers where a target indication is obtained? Also, unless one measures the total number of strokes contacting the ine, can shielding failure probability be obtained with any confidence? Some of the rules of thumb for estimating the total strokes are of dubious accuracy for this kind of work.
The suthors are making a notable contribution, and their meavirements appear likely to create some new concepts in iratsmission line design.

90004196

F. S. Young (Westinghouse Electric Corporation, East Pittsburgh,

Ps.): In the study of subjects such as shieiding of transmission lines, several important phases of investigation are found to exist. There nust be an undentanding of the phenomena that interact to produce the problem, in this case the mechanics of the lightning stroke. A suitably accurate model must be developed for use in study of this interaction of components and data finally supplied to support and verify the hypothesis. All these phases are found in varions stagex of development in this paper.

The authors have isolated the important parametern that affect the shielding of transmission lines and have developed an ins trument to record data for each outage experienced on a line. They have perfected a model that can be used for extersive analysis of the probiem. All that remains now is completion of their field investigation- Although the data presented here represent only a small sampie of the total expected to be obtained in this project, it is inveresting to see how it compares with theoretical work.
Referring particularly to the anslytical model developed in the paper, the authors discuss their calculation procedure. Thix has proven to be a useful technique in the analytical study of shielding of tranamission. In work ${ }^{14}$ prevented in 1963, we chowe to use two points of calibration. First we selected a line of known performance where shielding failures were thought in produce the majority of the outage. When properly calihrated our model succevfully produced this outage rate and also showed that lines of good performance, i.e., those with zero outage rates, were reprevelted properly. The authors have wisely chosen to calihrate their model only with lines showing superior performance. Fig. Thowever show a conviderable margin of safety for the lines used. It would be most inatrictive if the authors would comment on how accurate the model appears to be when the effertive shielding sugle of a line may in fact exceed the critical. It is realized that more data will be required before definite conclusions can be reached, hut some indication of the degree of connervetism included would be belpful in evaluating this method.
In develnping this model the authom have inclided several interesting and iweful feathres that have not been inchuded in previous work. The diseussion of the terrain facton is important. They will also he useful to the authons in evaluating data from particular towers when more field experience ha* heell gained.
The line designer hould alwass strive to achieve perfect on in the anthor terms, effective shielding, then concentrate his efforta on limiting the number of tackflasher or outager due to strukes to the ground wire. Atnalytical work, bowever, shonid not be limited io perfectly shielded linex but should pernit analyons of all condition-

Finally, in compuring the effective shielding angle data preselued in Fig 7 with data presented previmaly, one imme fiately nonier a
large prepowderance of uegative anglev for line- over 100 feet of effective beight. Care shonld be exercised in comparinon of data pre. wated in such favhion. Work we did has been presented in terms of height of the tower: therefore, if some sag is ascumed it is found thas the wo sets of amalvic ally derived dats agree fairly well. We hupe thi- provides as much comfort and entouragement to the anthon as it did to its in reviewing their papet.
C. F. Wagner (Pinsturgh, Ps.): Sheiding still remains one of the important facturs in the protertion of transmission lines against ligtoromg that is tiot quite ompleteiy remelved, although presentiy waviable operating experience directs one to conclustuns that -hould be scceptable. I agree complesely with the authors that it is difficult to specify lightning characteristics and particularly those that appiy w definition of an adequate or acceptable model of the stroke 1 am gratified that the anthors have adopted the same stroke model ax I have advocaled, but I wonld like to cumment on sume of the difficulties that attend the adoption of any stroke model.
First, I would like to call attention to the quantity fig that a ppears in (3). In the model that I prefer, this quantity would refer to the distance that the head of the return stroks has traveled by the time crest return strake current hav been athained. The argument behind this statement is somewhat as follows. If the downard leader be regarded as a vertical cllinder charged to a uniform potential of V, and if such a cslinder be di-charged 10 ground at a uniform velocity a., then neglecting other phenomens in the last step, the current flowing to gr und from which a circuit can be determined approximately by

$$
V_{1}=60\left(l_{0} / v_{1}\right) \sinh ^{-1}(z / a)
$$

or approximstely

$$
V_{1}=i_{0}\left(I_{0} / t_{1}\right) \ln (2 x / a)
$$

In this expression x is the vertical distance above the earth at any instant and a is the radius, reglecting corons to simplify the discuscion. The principal point I wish to make is this: As the head of the ieturn sireamer advances upward the impedance increase logarithmicalls. The current consequently decreases inversely as this quantity incresses. Actually, of course, all the phenomena conociated with the breakdown of long gaps are present to limit the initial current and to produce an upward concave current flow until crest is resched. After this, in the simple model, the current should decrease $a s$ the impeciance increases. In my model I have thus chosen \dot{t}_{48} to be that value of z at which crest current is attained.

1 have also observed that in determining the striking distance in (9), the swotching surge vaiues of the breakdown voltage of the gap have been used, whereas I used the impulse breakdown values. If the leader of the initial component of the stroke in its downward progress is truely devoid of steps, then it would appear that some value of switching surge breakdown should be used. But what wave front? The suthon do not specify the front that they used. There is nothing distinctive about the velucity of the hesd of the leade: to indicate the use of any particulat switching wave front. On the other hand, if the influence of the steps is conordered, then the potential applied to the striking distance might be applied suddenly so as to justify zhe use of ath impulse value of sparkover voluage

The suthors bave alan introtuced the concept of the "probability density function," in which the density of the strokes, instead of being uniform above the luci of the striking distance radii, is a function of the angle of incidence of the strokes. Unquestionsbily, before the leader actuslly comes within the range of the striking distances, they are attracled to nome degree by the transmission line as it projects above a level plane. Jowing et al. 4 provided for this condition by mesns of an altractive factor that is a function of the height of the transmission line The probability density factor might conceivably go further than this axumption of discriminsting between exposures that the anthors have denigusled as type 1 and type 2 in Fig. 3.

The nature of individual lightning arrokes is very complex, combining as it dues phemomelis involved in spark breakdown, cotons di-charges, and the tranient and steady-state characteristics of arcs.

1) ver and abrive there variable- are anch (actors that affect individua) area struke midencen, seawal effecto, and year to yesr effecta. Any practical reprectitation of the wroke musi, of necewity, repreuent a greatly overomplifed model of the actual phesumenon. It behoxives the lightning -pecialist, therefore, to exercise ext-eme callthos in atributing too great a rigidily or two great a refis enient in the representation of the stroke. The lightring specialist must have his head in the clouds and his feet on the ground. W7.ile he apires to learn more concerning the theoretical sapects of the phenomenon, he should provide the designing engineet with : simple relation between shieiding angle and height to insure ss'isfactory shielding and a method of computing lightning outages as simple a: the old AIEE method of computation.

Edward Beck and D. F. Shankle (11 extinghonse Electric Curpuration. East Pittsburgh. Pa.) In this interesting paper, our attention was attracted immedistely to Table IV which indicates that of a total of 14 flashovers recorded by the Pathfinder, 12 were cansed by direct hits on conductors and only two by back flashes from stmick fowers or shield wires to a conductor.
Accepting these recurds as factual, it is a startling finding which is contrary to the generat view held so far that most flashovers on shieided tmen are calsed by backflasher and only \& few by direct hits un a conductor. But that has been the hivtory of lightning research. What we once thonght was so is found to be not so. Furthermore, the two cases of bsckflach were recurded on a line with a thielding angle of 66 degrees, the largext hited in the tahle. Acsording to our 'raditional way of thinking, if the record- were revered. 12 caused by backflashes and two by direct hins, we would not be started.
We think that significant comment and conclusions must be reserved until more data are available, which should not be loug forthcoming in view of the great seope of this promising investigation.

Manuscript received Febrnary 21, 1967.
J. C. Engimann and R. W. Caswell (Commonwealth Edison Company. Chicago, Ill.): The aluthors indicate that, to keep the trip-out tate down to an acceptable vaine, it is lecessany to have a snialler shieiding angle than has been considered necessary in the past.
It is of interest to consider the performance of une of our $34 . \mathrm{kl}$ double-circut tower lines which has two ground wires installed at a shieldng a gie that in the paet was con-idered very guod. The overall length of the ground wire arm is 20 feet: the 10 and bottom conductor arms are esch 38 feet long and the middle conductor arm is 68 (eet long. The shielding angle for top conductor is approximasely 20° and approximately 26° for the middie conductor. The insulation consists of twenty 5 by 10 -inch insulator units. The footing resistance of each tower is 10 ohms or less. The isokeratuic level is beraeen 40 and 45 . The tower line is 89 miles long
The two circuits, nambers 11601 and 11602 , have been it service for nine vears. For this period, line 11601 has an annual trip-nut rate (due to lightuing of 2.36 per 100 circuit miles, and for line 11602 it is 249 . This high trip-out rate is not considered sstisfactory performance.

The following informstion about which phase position was involved in the fla*hover is based on urcillograms and aerial patrols.

For line 11601,64 percent of the flawhovers involved the middle phase, 20 percent the top phase, 5 percent the bottom phave, and 5 percent not known.

For e 11602,75 percent of the flashuvers involved the middle phase and 25 percent the top phase.

There have not been any instances where these two circuits have had a simultaneous flashover due to lightning.

The height of the ground wire arm on the majonity of the towers on which flashovers have beea localed is in the range of 140 to 160 feet, witb one having the maximum beight of 225 feet.

Te believe this waver line is a gond example of why additional in－ mation，as we hope will be obrained by the Pathfinder instru－ t－2t，is esential for the economical dexigro of cranmiw－ion limes that ＊İ give satisfactory perfurmance．In an atternpt to secure more ELormastion，we are installing the Pathfinder in a portion of one cir－ －it on the top and middl－phave．

A comparison of the nsatisfactery performance of the $34.5-\mathrm{kV}$ tene just discussed wit bove of mores recent design is interesting． The have had in service for tho years approximately 102 circuit－ E－Ver of double－circhit 3 hikT＇tower line－with two ground wires $\Rightarrow a l l e d$ ．The shieiding angle for the top phase is negative 17° ．The E－ulation consists of eighteen $5^{3} /$ by 10 －inch insulator units．During thit 2－year period we have bot had any tripouts of these circuits due sa lightning Whie this record is for only a short period of time，ve a．koow that they have been exposed to lightning，as a $138-\mathrm{kV}$ cir－ eif adjacent to one of these lines bas had two trip－outs in esch of tee two years due to lightring Also，lines 11601 and 11602 ，which $2 T$ in the same area，had higher than usual trip－out rates for these To years．
This limited experience indicates that better thielding will ma－ erially improve the performance．To design the most economical ［－e，consistent with desired performance，it is necessary to know m－re sbout shielding requirements．
We believe chat the data to be secured by the $\mathrm{P}_{\text {athender }}$ with its a．slysis and development of desigu parameters by Dr．Whitehead ＊－ansiat in the economical design of better performing transmision ter

R．J．Bronikowski MoGraw－Edison，Power Systems Division： M：Iwankee，Wisc．）：Our compliments are extended to the authors of this interesting study of shielding characteristics．As one of the MeGras Edison engineers who worked with Dr．Whitehead on the development and production design of Pa thfinder instruments．I ذve s keen interest both it the siguificance of the findings and the p－formance of the device．One of the design criteria was that the Ps－hfinder safely withstand a 60 －cycle favtt current of 3000 am am － ；－re－for 12 cycles without blowing up or dropping the line lead to Be phave conductor．Thas level provides a substantial safety margin triseen expected fanlt currents and breaker operating times an that be devicen could be installed at mort locations on transmisaion sys． －ems．To meet thas requirement，vent panels were built into two sides A the instrument．In our texting we learned that the vents would not －rate at 3000 ampers fault current，chat at about 6000 amperen one reat operated，and that at $1000 x$ ）amperes or higher，both vent panels ＊uld be releaved．It would be interesting to learn if the reports of Pa＇hfinder operations mention vent patul－blowing at any of the in．allations．

Matuscript received Febriuary 23，1967．

E．R．Armstrong and E．R．Whitebead：The are noost gratified by the in erest in our paper as indicated by the neveral pertiment discussions． Te－hall endeavor to respond to particular questions as possible or ancur in the remaining uncertainty．

Mr．Audemon inquires abrut poswible plans to extend the study i．diatribution line．There are no pians for a field study utilizing the Painfuder device，but it is pomibie that the general conclusions of the overall study can be extrapolated to distribution systemn at the tigher vultages．We agree that studies lising the Pathinder device un woud croxsarm lines could be of value in the stady of follow－cur－ Thif suppression by the deionizing action of wood．Such lines were －liminated from the prevent study becanse，in general，their excellent meformance promived too little data toward the principal abjective of the study．We further concur in the denirability of the data Mr． sudemon quite correctly enumerates as 1）total strokes to any part of the line，2）divivion of stroke－between phave conductno and －hield wires，3）how muny to either phave conductor or gromed wire
cause fla－hover？In the early phaves of reveatch on the Pathfinder de－ vice，these were precisely the question，we anked orirselves．It wa－ irmediately realized，however，that an economically－feavible experi－ mental study would have to concentrate on the division of actual flashoven between thove arising from shielding failure and thove from the rexponse of the line to strokex to the tower or ground wire． As Mr ．Anderson points out，the footing resistances of the sample lines should be studies as carefully as powible and present pians are to obtain the maximum infornation avaliable．

Mr．Young requests the anthors＇estimate of the degree of con－ servatismirepresented by the calculated lines of Fig．7．In doing so be points up the most important objective of the field study which will require a great deal more data．What makes the question even thore pertinent is that lines showing superio：performance may in－ deed be conservatively shielded；that is，have shielding angles well below the＂critical line＂referred to a particular electrogeometrica＇ model．We cannot yet answer his question in an objective manner， but we have chosen some lines whose shielding angles are belieted to be very close to the critical lines of Fig T and perhaps in another few months we can be somewhat more helpful in this respect．We appreci－ ate his comment in connection with the use of terrain factors and ef－ fective height，and can assure him we share bis comfort and en－ couragement at the reasonable agreement between the results ob－ tained from his data $/ 4$ and those of our paper when adjusted for such factors．
Dr．Wagner comments on his preference for somewhat different values in connection with the estimate of the stroke voltage and strike distance．The result of the use of these different values would yeid slightly higher voltage for an assigned current together with larger strike distances for the larger voltage on an impulse basis． Unfortunstely，the laboratory data inust be extrapolated inordi－ nately in any event so that，as pointed out in the paper，calibration with field results must be employed in any reliable engineering de－ sign．One the secondary objectives of the present study is，how－ ever，to throw light on such questions as Dr ．Wagner has raised．We agree that the lighining specialist should＂have his head in the clouds and his feet on the ground＂though somenne remarked that this could easily result in his convervion to＂the late lighening specia－ list＂＇Moreover，we agree that the line dexigner should be provided with simple relatio between shielding angle and height．Such rela－ tions between shielding angle and height have indeed been pro－ vided the designer，on a tentative basis，in a recent IIT staths re－ port（4）We appreciate Dr．Wagner＇s comments and have used his stroke model as the simplest ad heat for our purposes．We accept full responsibility for such results as accrue from the simplifications made to adapt it to our overall electrogenmetrical shielding model．
We thark Mr．Shankel and Mr．Beck for their comments and could not agree more that further comment and conclusions must a wait further data．As in many studies，however，EHV lines are be－ ing designed now end we felt it important that even these early ie－ sulto should be made available，particularly since they are in agree－ thent with les，extensive studies in thix country and abroad
Mr．Engimann and Mr．Cas vell cite some exceedingly interesting data on the performance of the line to which the Pathninder devices are applied on their system．It will be mont intereating if and when the first Pathfinder recards are received－howing impulse flashover on a middle phave．There are two other lines，one 138 kV and one 345 kV ，where a limited application of the Pathfinder device is made to a middle phave，but neither is as extensive as that reported by Mr． Engimann and Mr．Cawwell．
Mr．Broniknaski asks about the performance of the preware re－ hef vent parels of the Pathfinder device．We have extimated fault current values for only one operation on which both vent plate operated．This current was 6800 ampers．On several other opers－ tions，one plate was blown off．It appears，therefore，that these plases are functioning properly．The JeGiraw Ediwon Company and the Jorlyn Manufacturing and Supply Compary furnished the in－ strument and current collector ring＊，re－pectively．Much favorable comment has been received from the field concerving the speed and eave of installation of，and the evident attention to reliability given to，the manufacture of there devices．

References

（10）＂Current siatus report on the E F．I．research pruject－Mech－ anism of lightning atroker in transmission liner－inft，Rept if the sleering Commitree，H．R．Armatring．Chatrman，IIT Re－ search Invitute，Chicag III．，Jamary 16， 1967.
table IN
Comparion of Llimination ano Impridance: Methons

Nokies	Branches	Links	Suurces	Complex Mulcipheations	
				$\begin{aligned} & \text { Elimi- } \\ & \text { nation } \\ & \text { Miethoud } \end{aligned}$	Impedanee Method
50	100	25	25	40200	41800
50	125	25	50	40200	02575
50	125	50	23	59300	62825
50	150	30	50	50300	83600
50	175	100	25	99350	104875
50	200	100	50	99350	12.5650
100	175	50	25	159200	238150
100	200	50	50	150200	317200
100	225	100	25	243000	397250
100	250	100	50	243600	476300
100	325	200	25	$410 ; 00$	715450
100	350	200	50	410700	704500

izes the elimination method since no advantages can be taken of the ordering festure.

For the imperiance method, no computations are included for matrix terms below the diagonal. If the off-diagonal terms were not symmetrical, the number of cajculations for the impedance method would approximately double. Conversely, no credit is given to the impedance method for gradually increusing the size of the matrix. It is assumed that the original betwork is actually larger than the final that is retained and the tabulated computations include only those that occur after the setwork has been built up to full sizc. Comparable techniques are applicable for both the impeciance and elimination methods for erusing nodes that are not required in the final analysis.

To take advantage of network sparsity, the eliminatica method requires more logical operations than the impedance method.

No reliable assessment can be made of the penalty attributabie to this difference other than to note that nutaerous lagienl steps can be made during the time that it takes to make one eomplex multiplieation.

To open a line, fower computations are required by the impedance method than by dimination if the oncning is temporar: , und if thore is no mutual entupling wo the line, such that only one column of the matrix need be moditied. For samultancous fiatits and/or line-open conditions, it is generally uecessary to modify the entire impedance matrix, and the climination method would tre fuster.

For transient stability studies, only one solution by ciimination would be required for each time interval, even though several generators may be swinging. The number of computations for the impedance matrix solution would be proportional to the number of getnerators. The impedance method would generally be faster except during switching operations which would require 1) modification of the entire matrix or 2) input of a precalculated matrix from bulk storage. Ovomilh, one would expect the time requirements of the two methods to be comparuble for transient stability studies.

One could go on comparing the efficiencies of the unpedance and elimination methods for different problems and show that either may have advantages in certain respects but are comparable overall. We prefer the elimination method primarily because it
requires less storage than the impedance method. True, computers are getting larger, fuster, and cheaper. At the same time our probiems are getting more complex such that onc uever seems to have a computer that is large or fast enough. Thus there is always an incentive to strive for better programs. Off-ine problems can generally be taken to large computer centers where storage may not be a probiem. For on-line systems, storage and time require ments may be all important.
Our company seiected a 16 K IB.N 1130 computer instead of a 32 hbyte 16.1360 . As Mr. Lipson nuted, we were indeed somewhat optimistic in estimating 300 nodes internal storage. Our present prograth is dimensioned for 200 nodes, with provision to transfer a block of terms to temporary bulk storage any time that the principal onutrix area cannot hold all the terms that are developed. It is, however, expected that this feature will not be required except possibly for very dense networks of $2(00$ nodes. Normally, the dats for large networks will be transmitted to a large computer center, except for cases where only a fers solutions are required.

Field and Analytical Studies of Transmission Line Shielding: Part II

GORDON W. BROWN, MEMBER, IEEE, AND EDWLN R. WHITEHEAD, FELLOW, IEEE

Abstract

An analytical model for the shielding of transmission lines against lightning is extended to the case of partially effective shielding, including the effect of possible leader approach angle distributions. Results of the Pathfinder projects are brought up to date,

Paper ©8 TP 61G-PWR, recommended and approved by the Trmanission snd Distributinn Cummittee of the 1ELEL Power Group for presentation at the IVlik summer Power Xleeting,
 1998; thate avainthe for prime is April $2,1908$.
G. W. Brown is with the t'inversity of Pitheuirgh, Pittsburgh, Pa.
E. K. Whitehend is with thin wis Inatitute of Teehnolugy, Cinesge, III.
and the data are shown to be consistent with the model. An index tumber is developed to aid in classifying line performance, and suggestions are made regarding the study of the backflash proolem.

Introduction

0VER the part ten ycars the theory of shielding 118 and EIIV eiectric power transmiswion lines has been significantly advanced both in Europe and in the United states, although some of the underlying ideas were advanced much earlicr. 'The work of Gidile, and mare recently that of Wagner on the elation leetween prowective stroke current and the
strike distance from the leader tip provided the missing link between the electrical parameters of the lightning stroke and the geometrical parameter of the transmission line leading to the development of what may be termed the electrogeometric theory of transmission line shieiding [1]-[3].

In January, 1067, Armstrong and Whitehead reported on the development of an analytical moriel based on the Wagner lightning stroke mechanism and its application to the design of effectively shielded lines. This model was tentatively calibrated against the parameters of 50 effectively shieided lines for a total experience of 52000 mile years. The paper also reported on the design and operating characteristics of the Pathfinder device and the initial results of its installation on 433 tower line miles to determine the effects of partially effective shieiding and other causes of insulator flashover from lightning. The extension of the electrogeometric model to partially effective shielding was, however, indicated only briefly [4].
The present paper will extend the application of the analytical model to the case of partially effective shielding, including the effects of an assumed leader angle probability density function, give typical samples from the 240 curves obtained in a computer study, and bring the Pathfinder field daca up to date [5].

Efectrogeometry of Transmission Line Shielding

The geometry of the transmission line model is given in Figs. 1 and 2. In Fig. 1, for the illustrated strike distance r, to the conductors and $\tau_{\text {ay }}$ to earth, there will be an effective horizontal swath X which will depend upon the leader angle probsbility density function. The exposed cylindrical surface is indicated by the arc abc. If all leaders are vertical, the swath for one side of the line is the projection of the are $a b$ on the horizontal axis. If a frequency distribution $f\left(r_{1}\right)$ of strike distances can be found, the number of shielding failure outages per unit length and time in a region of known stroke density N_{0} is given as

$$
\begin{equation*}
n=k N_{0} \int_{1,=10}^{r_{1}, \ldots n} X f\left(r_{1}\right) d r_{1} . \tag{1}
\end{equation*}
$$

Here, $r_{\text {min }}$ is the minimum strike distance for which an outage could possibly occur and $r_{\text {, max }}$ the maximum strike distance for which a stroke can hit the phase conductor. The coefficient k is the proportion of shielding failure flashovers which cause outages (i.e., which allow power follow current), and X the effective swath at $r_{\text {, }}$ for both sides of the line.

Effect of Leader Angular Distribution

Since not all stroke leaders approach earth (or line) from a vertical direction, some angular distribution must be found for the spproach angle of the leader. If ψ is defined as in Fig. 1, and a frequency function $g(\psi)$ is determined, it can be shown that (1) applies if the swath X is reinterpreted as an effective swath

$$
\begin{equation*}
X=r_{1} \int_{t_{2}}^{\theta_{1}} \int_{\psi(t)}^{\psi(t)} \frac{\sin (\theta-\psi)}{\cos \psi} \rho(\psi) d \psi d \theta . \tag{2}
\end{equation*}
$$

The trigonometric coefficient results from the fact that the number of strokes to an elementary are $r_{\text {r }} d \theta$ from strokes at angle ψ with total variation $d \psi$ is as follows:

$$
r, d \theta \sin (\theta-\psi)=d A
$$

is the clemental arca presented perpendicular to the oncoming strokes at angle ψ.

$$
\begin{equation*}
N_{\infty}(\psi) d \psi=N_{k} \tag{3}
\end{equation*}
$$

Fig. 1. Geometry of transmission line shielding.

(B)
(b)

Fig. 2. Common limitations on approach angle. (a) Region I$\theta<\theta_{2}$. (b) Region II- $\theta>\theta_{\text {. }}$.
is the stroke density measured at the horizontal, while

$$
\begin{equation*}
\frac{N_{\infty}(\psi) d \psi}{\cos \psi}=N_{\psi} \tag{4}
\end{equation*}
$$

is the stroke density as would be measured in the plane of the above elemental srea. Hence, the number of strokes striking this element is

$$
\begin{equation*}
d n=\frac{N_{\omega}(\psi) d \psi}{\cos \psi}, r, \sin (\theta-\psi) d \theta \rho\left(r_{t}\right) d r_{t} . \tag{5}
\end{equation*}
$$

The limits of integration ψ : and ψ_{1} depend on several factors, as indicated in Fig. 2. It is assumed that no leaders approach from below the horizontal.

Effective Shielding

If in (1), $r_{\text {min }}$ is equal to $r_{\text {, max }}$, no shieiding failures can oceur. However, since most quantities used are averaged quantities, use of the term perfect should be avoided. The term effective shielding is preferred.

Determination of Variables

Distribution of Strike Distance

The frequency distribution $f\left(r_{1}\right)$ rests upon the relation between strike distance and current, and the frequency distribution of current. The connection between the distribution of monotonically related functions is

$$
\begin{equation*}
f\left(r_{0}\right)=h(I) \frac{d I}{d r_{0}} \tag{6}
\end{equation*}
$$

The function $h(l)$ is the frequency distribution of currents, which can be determined from the cumulative or probability distribution, such as found in [6]. The connection between r, and l is found by the series of functional dependencies

$$
\begin{align*}
v & =v(I) \quad 90004200 \\
V_{1} & =V_{1}(I, v) \\
r_{1} & =r_{1}\left(V_{1}\right) \tag{7}
\end{align*}
$$

Thus

$$
r_{t}=r_{t}(I) .
$$

Here, v is the roturn stroko velocity and V, the leader voltage [4], [5].

Distribution of Approach Angle

The distribution of leader approach angle can at present only be estimated. However, a reasonably wide class of solutions is represented by

$$
Q(\psi)=\left\{\begin{array}{lr}
0, & \psi<-\pi / 2 \tag{8}\\
K_{m} \cos ^{m} \psi, & -\pi / 2 \leq \psi \leq \pi / 2 \\
0, & \pi / 2<\psi .
\end{array}\right.
$$

Three of this class are of greatest interest; namely, $m=1$ $\left(K_{1}=1 / 2\right), m=2\left(K_{2}=2 / \pi\right)$, and $m=\infty$ which is the case for all strokes vertical, and for which $g(\psi)$ degenerates to the Dirac function. Calibration of the end result and limited visual observation by one of the authors suggest that m is about 2 [4], [5].

Real-Line Geometry

For a real line, factors such as terrain and conductor sag determine the a g ular parameters and heights of Fig. 1. Under these circumstances, (1) can be interpreted as outages per unit length at a given point on the line, and the total outages for the line will be

$$
\begin{equation*}
N=\int_{0}^{t} n(x) d x \tag{9}
\end{equation*}
$$

where x is the dimension along the line and L the total line length. It is felt, however, that there is insufficient justification in going to this extreme, as long as the esution in the previous section on effective shielding is observed. Calibration of the above formulas, based on averaged heights, sags, and shielding angles indicates that lines designed for effective shielding and ground resistances of less than 25 ohms can be expected to have fewer than 0.5 outage per hundred miles and year.

Tentatife Calibration or Analytical Model

Numerical representation has been left to one section, since in large measure numerical values are interdependent. For example, the frequency distritution of strike distance depends on both the velocity-current relation and the probability distribution of current. In addition, many of the factors are relatively poorly known, resulting in the necessity of calibrating the final analytical model against actual field results. With this in mind, the following formulas are given as a unit, based on the work indicated in [4] and [5]:

$$
\begin{align*}
& r_{t}=7.1 \Gamma^{[/ 4} \text { meters }(I \text { in kA }) \tag{10a}\\
& f\left(r_{t}\right)= \begin{cases}0, & l<5 \mathrm{kA} \\
7.4 r_{t}^{-b / 2}, & l \geq 5 \mathrm{kA}\end{cases} \tag{10b}\\
& O(\psi)=\frac{2}{\pi} \cos ^{2} \psi \tag{10c}\\
& N_{0}=0.4 \mathrm{TD} \tag{10d}\\
& K_{t \varphi}=0.9 \tag{10e}\\
& k=0.9 \tag{10f}\\
& r_{t} \text { min }=r_{t} \text { lor } I_{\text {min }} \tag{10~g}
\end{align*}
$$

Fig. 3. Influet of exponent m on shieiding failures.

where

$$
\begin{equation*}
I_{\min }=\frac{2 \mathrm{BIL}}{Z} \tag{10h}
\end{equation*}
$$

and TD is thunderstorm days per year.
It is noted that (10b) is an approximation which may be valid only for transmission lines. For applications where precision is necessary in calculating strike distances having currents outside the range of about $5-80 \mathrm{kA}$, such as backflash and area protection, the current probability distribution and (5) must be utilized [4].
It has been pointed out that $g(\psi)$ cannot presently be accurately estimated. Perhaps it sill never be isolated. Nevertheless, it is believed prudent to provide for a reasonable possibility of leader angle deviation from the vertical. Fig. 3 shows the influence of the exponent m on shielding failures under one set of line parameters. The xponent $m=2$ has been selected tentatively as preferable to either $m=\infty$ or $m=1$ (as are used in [3] and [4], respectively).

The estimate for N_{0} is quite close to that of other investigstors, yieiding a value of 12 strokes per square mile per year for 30 thunderstorm dsys per year. It is clear that a significant improvement would be made if storm frequency could be expressed in thunderstorm hours per year as is reported abroad [12].
$K_{\text {vo }}$ was originally intended to reflect a possible difference in strike distance for a leader-to-arth and a leader-to-ground wire for the same leader voltage. The use of this constant is such that it actually subsumes uncertainties in τ_{6}, in the angle distribution function, sod in the smoothness of terrain such as the averaged effect of trees, brush, or buildings along the right of way. It serves as a calibration constant having values variously estimated from 0.85 to 1.00 with the value 0.9 selected for the estimates reported.
It is important to note that all calculations for partially effective shielding have been made using the so-called AIEE current magnitude listribution curve as numerically adapted for computation. It foliwws that $f\left(r_{1}\right)$ is affected by any uncertainty in this curve. While the AIEE curve has the merit of quantity, its quality is open to considerable question. Recent oscillographic ineasurements by Berger tend to support the higher current levels reported by Bastz and others. Since larger values of current could increase r_{t} and affect $f\left(r_{t}\right)$, it is possible that compensating adjustments in the exponent m of $g(\psi)$ and perhaps in the value of $K_{\text {es }}$ might be required [7]. [8].
Estimates of the height-angle relation for effective shielding depend upon the more accurately known values of BIL and conductor surge impedance, and any uncertainty in this relation

Fig. 5. Estimated shieiding failures as function of height for constant shielding angie.

Fig. 6. Height-angle relations for effectively shieided and partiaily shielded lines.
verified the integrity of the impulve circuitry, and the electroexplosive devices functioned properly. It is therefore assumed that the failure to indicate resulted from volt-time signals below the activation level of the electroexplosive elements. Such cases are expected to be rare [9].
The Pathfinder devices have been in the field for only 1.7 lightning seasons and the 1967 season was noteworthy for a low level of thunderstorm activity over most of the sample lines. Only one company reported above average activity. It is expected that a resumption of normal thunderstorm incidents will accelerate the accumulation of operations. The data yield is only slightly below projections for the actual instrumented time, but it is expected that the full five-year period will be required to yield the variety and number of data needed.

Inserprelation of Pathfinder Dala

The estimation of shielding failure tripouts is subject to much more variability than the estimation of a critical tovight-ahielding angle relation and it has long been recomnized that the Pathfinder data taken alone could never yield sufficient data to pernit statistical curves of tripout rates versus height and shieiding angle. The apprnach to the problete is threefold: 1) a large-scale statistical study of the height-angle relations for lines showing execellent performance, 2) verification of shielding failure or backflash events for a variety of line geometry, insulation, and grounding conditions, sand 3) the use of an annlytient model as un extrapolation mechanisn consixtent with the findings of 1) and 2). White it is yet too early to form firm

TABDA: 1

- red stroke-to-phase conductor (shielding failure) phase conductor green stroke-to-kro
black
power follow

Noles:

no black signal, but pressure plates ejected, double circuit fault
see special discussion in text
no instrument on tower 60 (strain tower)
black taryet cover failed wo eject compietely
mero target cover fareaker operation, perhaps no power follow
5 records not clear on breaker operations.ón top phave $138-\mathrm{k} \$ side only
6 donble-circuit isuit, Psthinder
8 lines opersted as sulike circur $\begin{aligned} & \text { blach signal covers did not eject properly. }\end{aligned}$
conclusions, some interesting patterns are beginning to emerge which suggest that sound conclusions can be reached with sufficient data. Fig. 6 shows height-angle relations for 50 effectively shielded lines an indicated by their mean trinout rate of only 0.175 per 100 niles per year. Plotted on the same figure are the extimated critical height-angle lines for $K_{40}=1.0$ and $K_{\text {e }}=0.9$. The mean BIL value for the circled proints is 1300 kV . Numbers adjacent to proints indicate the number of lines having the same geometry. Also plotted on this figure are the lueghtangle points for the ennfirmed shielding failures of Table I . The group of trianglem near $\bar{\eta}=70$ feet and $\vec{\theta}_{3}=40$ degrees has all averuged 331 L of 760 kV , the group tiear $f /=125$ (eet and $\tilde{\theta}_{1}=33$ degrees has a BIL of 1600 kV , and the trian zle at $\hat{n}=138$ feet aud $\bar{b}_{1}=7$ degrees has a BIL of 945 kV . It is interesting to note that the upler envelone line A eorresponds
to the maximum BIL of 1600 kV for the circle points and that effective shielding for 125 (eet and 1600 kV would be indicatet for a shielding angle slightly less than zero degrees. The data of Fig. 4 confirms this estimate. The circied cross of Fig. is represents the periormance of this same line plotted for the mean beight and angle where shielding failures occurret. These arameters may not conform exactly to the average for the entire line, but inarked departure is not anticipated.

Application of Shielding Theory to the Back/lash Probicm

Shiciding theory affects the hackflanh probiem through its applicestion $t 0$ the eatimation of the number of strok in 10 the ground wire $-y^{-1} \mathrm{~cm}$. Although an extended stady of thi- appliration is beyond the seope of the present paper, it in suptremeriate to sughest the directions to be taken in such a struly.

Assuming the transmisxion line to lee effeetively shielded, the effective transyerse exposure or swath deqends upon the location and mean height above carth of the ground wires. Any attractive effect of grounded objects on the leuler and its corona envelope is considered to be absorberl in the angle distribution function $g(\psi)$.

The backflash problem is acute for large values of current. A reasonable valuc of time invariant tower footing resistance is 20 ohms, and a representative BIL value might be 1000 kV ior an HV line. If the coupling factor is assumed to be offset by the electric induction from the struke, there results an estimate of $50 \mathrm{k} \Lambda$ as a significant threshhokd current. The corresponding strike distance is $r_{t}=435$ feet. For an EIIV line, a significant current might be 100 kA for which the estimated strike distance is 735 feet. Table 11 illustrates the effect of mean ground wire height and angle distribution parameter on the total swath for these two currents.

Table II brings out two useful points: 1) the effect of increased height on backflash events is less than proportional to height, and 2) the influence of the angle parameter on this effect is trivial at high currents. It should be noted that the swaths of Table 11 are specific for the current involved and are not integrated effective swaths.

Stroke Density and Power Follow Ratio

Based on the analytical model presented here and the performance of typical lines, a tentative stroke density is given by
where

$$
N_{0}=0.4 \mathrm{TD}
$$

N_{0} number of strokes per square mile per year
TD number of thunderstorm days per year.
The tentative tripout-to-flashover ratio from the Pathfiuder study is approximately 0.9 .

Line Performance Index

A useful concept, developed in [10], is that of a broad index number describing the lightning performance of transmission lines for discussion purposes which avoids the minutiae of the problem. The periormance index M defues the specific performance in tripouts per 100 miles or kilometers per year, for a range of $30-50$ thunderstorm days per year, by the relation specific performance $=10^{\mathrm{Mr}}$.
Table III is expressly applicable to shielded HV and EHV lines, and the qualitative classifestion is that of the authors, not necessarily that of CIGRE Committee 33. This table is useful in evaluating the performance of existing lines, and in formulating realistic predictions of the performance of new lines [10].

Variation of Tripout Rates

The application of analytical models to the multivariate problem of the lightning performance of trunsmission lines leads to numerical results which must neccosarily be viewed in relation to the variability of line performance. Fig. 7 has been derived fron data given in [11], the particular example being selected because of a continuous record hept for 27 ycars. This figure exhibits the relative stability of five-year averages about the nican tripout rate of 8.8 jer 100 iniles per year as compared to the spread of the yearly tripout rates. It is for this reason that the l'athfinder study was planned for a fivo-yeser period and it is reconmended that averages for five or more years le used in comparing analytical extimater with line jerfornance.

TABLI: it
Total Swath X in Feet

| n
 $($ feet $)$ | l
 (kA) | (foet) | $n=\infty$ | ratio | $m=2$ | ratio | $m=1$ | ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 75 | 50 | 435 | 487 | 1.00 | 490 | 1.00 | 500 | 1.00 |
| 150 | 50 | 435 | 720 | 1.48 | 757 | 1.33 | 800 | 1.58 |
| 75 | 100 | 735 | 646 | 1.00 | 646 | 1.00 | 640 | 1.00 |
| 150 | 100 | 735 | 880 | 1.30 | 890 | 1.30 | 910 | 141 |

TABLE III

Exponent m	Specific Lightning Performance	Qualitative Classification
-2	$0.00-0.05$	exceptional
-1	$0.06-0.59$	excolient
0	$0.60-5.99$	common
+1	6.00 or more	poor

Fig. 7. Variability of tripout rates.

Conelustons

1) The extension of the analytical model developed by Armstrong and Whitehead [4] to the estimation of lightning tripouts resulting from partially effective shielding leads to results consistent with limited data on the anown performance of existing transmission lines.
2) Two specific degrees of freedom for the calibration of the analytical model, the parameter $K_{1 g}$ and the angle distribution parameters m, have been studied for $K_{\bullet 0}$ values of $1.0,0.9$, and 0.85 and for m values of 1.0 and 2.0. Typical results for $K_{4 c}=0.9$ and $m=2.0$ have been presented as illustrative of the numerous studies made. It is believed that thesc parameters, along with small adjustments of N_{0}, allow sufficient fexibility to accommodate any moderate adjustments which may later be made in the current magnitude frequency distribution curve, or in the strike distance-current relation.
3) Over a cumulative period of 1.7 lightning seasons marked by subnormal lightning incidents, 40 Pathfinder operations have been reported. These records resulted from 20 separate strokes, 19 of which caused shielding failures, 8 caused known backflash events, and 2 are thought to reflect backflash events. Of the 8 known backflash events, 4 were on wowers having counterpoise grounding in high-resistivity soil and 3 were on towers having localized ground resistances of 250,140 , and 37 ohms, respectively. Five of the 8 known backflash events caused doublecireuit or multiple conductor faults.
4) All of the 17 known shielding failures resulted from licightangle parameters woll above the critical lines tentatively established for effective shiclding. The most significant single shiclding fuilure resulted from a mean shiciding angle of only 7 degrees and a mean cround wire height of 138 feet in moun-
tainots termin. tainotes terrain.

TABLE IV

	Pathfinder's lecords	Commonwenth Edison 345 -ky Line		$\begin{gathered} \text { OVEC } \\ 345-\mathrm{kV} \text { Line } \end{gathered}$	Ontario Hydru 230-kV Line
		Line 11601	Line 11602		
Stieiding failures	00%	58\%	62%	82\%	61.1%
Backflashovers	34%	37\%	38\%	13\%	30.5\%
Flashes to unknown destination	0	5\%	0	5\%	8.3\%
References	Brown and White- head	Engimann and Caswell (13]	Engimann and Caswell (13]	Schlonumn et al. $[14]$	Listurhy na [15]

5) A broad index number M has been developed to classify lightning performance of HV and EHV lines, according to the relation

$$
\text { specific periormance }=10^{\mathrm{k}}
$$

with numerical and qualitative elassification as given in Table 111. This index is useful in characterizing existing or estimated line performance.
6) Excellent lightning performance, $M=-1$, has been achieved for HV and EHV lines having conventional basic insulation levels, effective shielding, and localized ground resistances of 25 ohms or less.
7) Electrogeometric shielding theory is spplicable to the estimation of the backflash performance of lines having effective shieiding through its connection with the attractive swath of the ground wire system. While the effect of mean ground wire beight is a controlling factor in shielding failures, it is a relatively minor factor in increasing the number of strokes to the ground wire.
8) As improvements in shielding theory lead to better allocation of the cause of lightning tripouts, it should be possibie to renew the attack on hackflash performance with greater effectiveness.

References

[1] R. 11. Golde, "Theoretische Betrachtungen uber den Schutz von Blitzableitern." ETZ-A, vol. 82. pp. 273-277, 1961.
(2) C. IR. Wsgner, "The lightning stroke as related to transmissionline performance." Elec. Engrg., voi. 82. pp. 385-394, June 1963.
(3) F. S. Young, J. M. Clayton, and A. R. Hieman, "Shielding of uransmission luies," IEEE Trans. Pover dpparatus and Systems (Supplement), vol. S82, pp. 132-134. 1963.
(4) H. R. Armstrong and E. R. Whitehead, "Field and analytical studies of transmission line shieiding." IEEE Trans. Potver A pparatus and Systems, vol. PAS-87, pp. 270-281, January 1908.
(5) G. Wr. Brown. "The electrogeometry of shielding against lightning." Ph. D. dissertation, Illinois Institute of Technoiogy, Chicsgo, Ill., 1907.
[6] AlEE Commitlee Report, "A method of estimating lightning performance of transmission lines," AIEE Trans., vol. U9, pp. 1187-1196, 1950.
[7] K. Berger, "Novel observations on lightning discharges: results of researeh on Mount San Salvatore, " J. Franklin Inst., vol. 283, pp. 478-525, June 1967.
[8] PP. Baatz, "Lighthing struke measurements on transmission lines." ETZ, vol. 72, pp. 191-198, April 1951.
(9) E. if Whitchead, Current station report on the E.E.I. Resenrch Project 30 -mechanics of lighthing strokes in transmission lines," I1T Research Institule, Chicago, IIL, January 1968.
(10) E. 12. Whisencad, "The lightning perfurmance of EIIV lines," CIGRE Rept of study Cotimitlee 33 on Lightning and Surges, 1968.
(11) F. Chambers and C. P. Almon. Jo "Performance of $161-\mathrm{kV}$ and $115-\mathrm{k} V$ transmiswion line " A/EEV 7 'ranus. (Power Apparatias and Systems), vili. 81, p1. $431-4(x)$, Ochiber 1962.
(12) V. V Furgadorf, "Listhtning nrotection of overbead transmisaton ling and operating experience in the U.S.S.IS." CIGILE, Psjer 326, 1958.

TABLE V

$I(\mathrm{kA})$		r, (m)	
50 100	134 224 Brown and Whicehead	120 Golde $[16]$	73

Discussion

Y. H. Chan The Hydro-Electric Power Commistion of Ontario, Toronto, Canada): This paper makes an excellent combination of theoretical analysis and engueeting application. In the analysis, many factors, including leader angle and terrain effect, were carefully weighted and the final estimacion of shielding failures is precisely represented as a function of shielding angle, earth wire beight, and BIL of the line.

The number of flashes to unit length of a transmission line was extensively studied by Lewis and others in the 1930's. It took us over 30 years to realize the need of separating the number of flasbes to phase wires and that to the earthed parts of a line, i.e., towers and earth wires. Surely the Pathfinder is the device to fulfill this function. Probably in the very near future its records will provide a fair judgment on the merits of the lightning performance theories which came from various schools. The records obcained so far are very encouraging. They compare well with the observation of Engimann and Caswell (13) as shown in Table (1) which is con structed under the assumption that flashes to the top phave are due to shielding failure, chose to the bottom phase are due to backflashovers, and those to the middle phase are equaily contributed by shielding failures and backflashovers.

I would like wo know the suthors' opinion on the following questions:

1) The suthors relate the stroke current I with the strike distance $r_{\text {a }}$, by

$$
r_{1}=7.1 I^{1 / 4}(I \text { in kA, } r \text {, in meters })
$$

This equation seems to give too high a Gashover distance for the corresponding lightning current as compared with Golde's revent estimation [16] and Wagner's result [17] as seen in Table I'
2) For leader angle other than vertical, the transmiswion line cannot be considered as symmetrics, wa the authors inchide this effect in their calculation?

References

(13) J. C. Engimann and R. W. Caswell, discussion of (4), 1, 2N)
(14) 1. II Schlomann. I. B. Johnson, IV. S. Price and J. (a. A whlet: son, "1050 lightumg ficid invertigation on the ()yic atimy system," A/FE: Trans. (Yower Apparatus arul Systews, wil $76.1447-14: 90,19: 7$ (Febreury 1655 sec .).
(15) I inhehyna, Ontario llydro Tectmical Report.
(15) I ,ishehyna, Ontarin liydro Tectumeal Report. Frawhin Inal. vol 28.3. P. 1, June 1907.
[17] C. F. Wagner, Contribution w Gas Discharge and the Electrovty Supply Indusiry. London: Butlerworth, $106 \operatorname{li}^{2}$.

Manuscript recoived June 2, 1968.
R. H. Goide The 1/lentrient hemearch Avexciation, Cleeve Road,
 on having presented an colstanding contribution to the solution of the question of the lightniug performanee of Ell I Iramemiseson lines. In fatt, as one of the cariv contributom to what the muthors call the eiectrogeometrical approach, I would sugkest that the authors have perfected this nethod to sich an extent that attention should now be conceatrated on the main parameters on which this investigation is based. With this in view, the following comments are offered as a conatructive contribution to the disetussion.
Equation (6) expresuen the striking distancet as a fumetion of the intensity of the lightning current. From this concept it follows that the frequency dixtribution of the amplitudes of lightning currents to open ground difers from that determined from magnetic link measurements on transmission lines to which the anthors reler as AIEE curient magnitude distribution curve. The resulting differences are clearly showil in Fig. 6 of (19). To what extent the eurrent distribution determined in a tall tower on top of a S wiss trountain [7] cati be related to strokes to open ground is a matter which is open to argument
The question as to whether the striking distance should be estimated from laboratory tests with standard $1.2 / 30$ impuises or with long-fronted impulses depelids on the nature of the pilot streamer preceding a step in a leader stroke. In my view, the potential drop in the pilot streamer is sufficiently low for the second alternative to be preierabie Values derived from (10a) are someWhat greater than those obtained from this interpretation (see (18], Fig. 3.) On the same argument there are indications that the authors factor K_{10}, may not be far from unity.
Equation (10 h) appears to be over-simplified since the potential at the point struck is materially affected by reflections from adjacent towers [20].
The authors' estimate for \hat{N}_{0} is acceptable but their attention thay be drawn to the intensive work carried out by CIGRE Study Committee 8 on devermining this ull-important factor from lightning flash counter measuremento
Prof. Whitehead's pioneering work in the Pathfinder investigation deserves highest commendation and further resuls are awaited with greatest interest. As he is aware, CIGRE Study Committee 33 is currently engaged in an attempt at elucidating the relative frequencies of shielding failures and backflashovers on EHV lines by statistical evidence to be provided from existing transmission systems all over the world.
It would be appreciated if the suthors could explain the sig. nificance of the points indicated in Fig 7. From the data in Table I, one would bave expected to find 27 points on the curve relating to one year but considerably fewer points on the curve reiating to five years.

References

(18) R. II. Goide. "The lightning conductor," J. Franklin Inst,, vol. 283, pp. $451-477$, June 1907.
(19) bv Lightning surges on overhead distribution lines caused by indirect and direct lightning strokes." AIEE Trans. (Pober Apparatus and Sustems, vol. 73, pp. 437-447, June 1954 .
[20] $\frac{\text { Lightning currents and potentials on overhead trans- }}{\text { mivsion lines," J. IEE (Londou), vol. } 93 \text {, pp. } 350-569,1946 \text {. }}$
Manuscript received June 24, 1908.
In bonor of Benjamin Franklin, who introduced the term "striking distance." I prefer this verm wo the suchors' "strike distance" and hope that it will find wider application.
L. Lishchyna The Hydro-Electric Power Commixaion of Ontario, Toronto, Canada): Over the paxt eight yeara we at Ottario Itydro have retained records of the lightuing performance of a 230 kV double-circuit line as shown in Fig. S. The rolav operation records show that during the years of $1960-1007$ this litie had a total of 27 lightning tripotits of which 18 involved only one of its (wo circuits.

Manuseript received July 24, 1968.

Fig. 8. $230-\mathrm{kV}$ doubie-cirenit line from St. Lawrence Ts to tinchinbrooke TS with tap w Brockville ' N .

Fig. 9. Tower type of line P.

Fig. 10. Tower type of line S.
It was also noted that nine of these single-circuit triponts (SCT) were from one of the top phases to ground, eight were from nil of the conter phaves to ground, and in one cave the phave involved was not established (Table VI). Thus, if either one of the bottom phases was involved in SCT at all it was not involved more than once. However, out of nine double-circuit tripouts (DCT) that occurred on this line during the same period, three tripouts insvolved both buttom phaves.
The above findings suggerted that the mechanistrs intiating the single- and donble-eiretis tripouts on thiv line nigigit not be the katne. A remomable explanation seemed to be that DCTs were initiated by backflashovern and SCT by shielding failures.

We were athie to calculate the oxpected rate of shieiding tripouts on this line, the tower type of which is shown in Fig. 9, using the methods which have been proposed it the liternture. One of the

TABLE VI
Liohtning Falits on St. Lawranck: TS-llinehturrooke TS $230-\mathrm{kV}$ Woumbe-Cimcut Trannsmbolun Link: 19kit-1907

Year	Line Length (miles)	$\begin{aligned} & \text { Total } \\ & \text { Number of } \\ & \text { Faults } \end{aligned}$	Number of DC Fauls	Phave Involved in DC Fanles*	Phases Insoiveri in Single-Ciretuit Fuilts* +
1960	100.25	2	0		W, W'
1961	100.25	1	1	$\stackrel{R}{R^{\prime}-W^{\prime}}$	$R, R^{\prime}, \theta^{\prime}$:
1902	100.25	3	0		
1963	100.25	7	1	$\begin{aligned} & B \\ & B^{\prime} \end{aligned}$	$W, W, W^{\prime}, W^{\prime}, R^{\prime}, W^{\prime}$
1064	100.25	1	0		R^{\prime}
1965	114.968	5	4	$\begin{aligned} & \mathbb{W}, B, B, R \\ & W^{\prime}, B^{\prime}, B^{\prime}, R^{\prime} \end{aligned}$	W'
1966	114.96	5	2	$\begin{aligned} & R-W^{\prime} \\ & R^{\prime}-W^{\prime} \end{aligned}{ }_{\theta^{\prime}}^{\theta}$	R, R, R
1967	114.96	3	1	$\begin{aligned} & R \\ & R^{\prime}-W^{\prime} \end{aligned}$	R, R^{\prime}
1960-1967		27	9		

- All faults are to ground
+ Primed phases are of circuit L 21 H and those not primed of circuit L 20 H .
; Phase involved not known.
Tap to Brockville TS added.

TABLE VII
Characteristics of Lines for Which Shielding Tripout Rates have been Caiculated

Line Designation	Number of Circuits	$\begin{aligned} & \text { Voltage Rating } \\ & (\mathrm{kV}) \end{aligned}$	$\begin{aligned} & \text { Line } \\ & \text { BIL } \end{aligned}$	$\underset{(\text { feet })}{A}$	$\stackrel{\hat{\gamma}}{\text { (feet) }}$	$\stackrel{\delta_{1}}{(\text { degrees }}$	Mile-Years of Reported Service Experience
$\begin{aligned} & P \\ & Q \\ & R \\ & R \end{aligned}$	2 1 1 1	$\begin{aligned} & 230 \\ & 300 \\ & 115 \\ & 115 \end{aligned}$	$\begin{array}{r} 1275 \\ 1800 \\ 675 \\ 675 \end{array}$	$\begin{array}{r} 112 \\ 87 \\ 65 \\ 44 \end{array}$	$\begin{aligned} & 82 \\ & 48 \\ & 36 \\ & 34 \end{aligned}$	$\begin{aligned} & 25 \\ & 17 \\ & 25 \\ & 34,67 \end{aligned}$	$\begin{array}{r} 845 \\ 1380 \\ 1100 \\ 300 \end{array}$

methods tried was proposed in 1967 [4], and now has been expanded bere. Its salient features are twofold; the length of the last step of lightning stroke is deermined by the switching surge strength of long air-gaps, and stroke leaders are ansumed to have angle distribution. It is assumed that the probability density of stroke leader angles orthogonally projected on a vertical plane, perpendicwhar to the direction of the transmission line, has a cosine distribution about a vertical line on such a plane. This latter parameter of lightning stroke has not been included previousiy in calculations of shielding tripouts. Instead, it has been customary to assume that all atrokes proceed downward vertically.

The long and cedious mathematical computations, required to determine the exposure of line conductors to lightning strokes of various current magnitudex, were performed by a computer. The computer program provided the tripout rate on either single- or double-circuit lines.

The calculated value of SCT was 1.3 per 100 miles per year. The corresponding figure estimated from fiekd data, axouming that all 18 single-cireut triponcs were becanse of shieldng failures, wis 1.6 and shows no conflict with the calculated valuc. Sume SCT actunlly may have been carsed by backflawheren, in which cave there would be even better agrement between the ntuve (wo figures. Plotting $\bar{I}, \bar{\theta}$, parameters of thix line (deniguated in Table 11 by P), in Fig. 6 a point is obtained that falls in the region of not effectively shielded lines.
Line Q in Table 1111 is a siugle-cirenit $500-\mathrm{k}$ l' line with a hori- $^{\text {a }}$ zontal phave configuration. This fire if 'ad two lightaing triponts (one of these involved the center phaiz) wiash constituten U.145 tripout per 100 miles per year. Thin tipromit rate, according to the
paper, qualifies this line as an effectively shielded line. The point obtained by plotting $\dot{A}, \bar{\theta}$, parameters of this line in Fig. 6 indicates that the line is indeed effectively st. Ided. In fact, it would be effectively shieided even if it had the BIL of 1600 kV instead of the sctual BIL of 1800 kV . The computer calculations indicated no shieiding tripouts for fat terrain.

The shielding tripout rate for line R in Table VII was estimated from the cotal lightning outages on this line and the flashover marks on the insulator strings observed during the helicopter patrol flights. It was observed that each of the outwide phasen of this line had 4.9 times as many insulator strings with fla-hover marks as the center phase had. The estimated value was 0.95 tripout per 100 miles per year which comparer well with the calculated value of 0.90.

According to Fig. 6, the line with $\tilde{A}, \bar{\theta}$, parameters corresponding to thome of line \mathbb{R} would be effectively shielded if it had a B1L of not less than 1300 kV . The actual BIL of this line, as shown in Tabie VI, is 675 kV .
From the above given and other similar applications, it was found that on lines with either one or two symmetrically located sky: wires, shiedding failure eates caloulated by this nethod compare favorably with thome extimated from fied data.
Next we tried this method on transmbsion lines with oue okvwire locnted owymmetrically (see Fik. 10 and Tabile V15). The culenhated shichding tripsolt ratex for such lines were found to bee tho highls considerably hugher than the ealimated value. The mothor's comments charifying thix prime wond be appreciated.
The field data obtamed than far from the Pathfinder project and reported by the authom lave already chaciduted a momber of
pointe enserning the ahielding tripmuts. It has demonstrated convincingle that on some temsmasion lines such tripouta may piny an imporant roie in d ermoning the overall lightumg performanee. It is hoped that the as bon will contmme to make their excellient contribution in this field.
G. W. Brown and E. R. Whitebead: The authors wish to thank the discussers for their interesting and constructive comments.

Miss Chan presents a valuable tabulation of dita on a varicty of lines. We feel, however, that caution must be exercised in interpreting the apparent agreement with the Pathfinder results. The Pathfinders are located on 12 different lines with voltage levels from 115 kV to 345 kV , and with wide variations in shielding angle and terrain. Thus comparison of the overall results with specific lines suggests that caution be used. Miss Chan raises two specific questions. The strike distance is related to the stroke current by the empirical relation

$$
r_{1}=K_{n} I \cdot .
$$

The following values have been given in or derived from the litersture:
r. $7.11^{10.3}$ in Brown and Whitehead
r r. $6.71^{\circ} \mathrm{u}$ Armstrong and Thitehead [4]
r, $3.3 /^{0.7}$ derived from Goide's data as given by Chan
r. $10.6 / 0.31$ derived from Wagner (2).

The values from Golde and Wagner yieid critical height-shielding angle lines much below those given in Fig. 6. A possibie explanation for this is that much lower current values, say $5-15 \mathrm{kA}$ are important in deriving critical lines for effective shielding of transmission lines, while the values cited by Miss Cban are much higher. Concerning Miss Chan's second question, the curves of Fig. 4 essume the line to be symmetrical. In the event of asymmetry, each side may be treated independently and the values of the curves divided by two.

Dr. Golde raises the very important question of the validity of the current probability distribution as used by the suthors. Our own reservations are pointed out in the paper along with our tentative preference for a composite curve from the data of Bastz and Berger. The use of the so-called AIEE curve was dictated by a desire to facilitate comparison with other studies based on the same curve Certainly improvernent in our understanding of this relation (as well as the other constants and functions which make up our tentative calibration of the model is needed. Regarding the question of the basis for the striking distance versus voltage relation, it is noted that (10a) is based on long front switching surges which Dr. Golde indicates as preferable.

Manuscript received August 7, 1968.

Dr. Golde suggests that the value for K., might perhans be put at a value near unity, and a clome examination of Fig, if will support this view. The value of $K_{i,}=0.9$ was originally nssigned to provide some protective margit against penetration of the mean striking distance surface by individual corona filaments when the model was used to predict cifcetive shicliting Obviously, this practice should be reconsidered when the model is used to predict the resulis for partially effectwe thiedding Curves for $\kappa_{n}=1.0$ are nvailable.

The ailthors agree that (10h) is probably an ovensimplification. but the alternatives do not yet appent justified in the presence of other basic uncertainties.

Dr. Goide directs our attention to the very intensive studies of CIGRE Study Conimittee 33 in endeavoring to determine the stroke density number from lightning-flash counter measurements. His pioneering work in this field has biossomed into most extensive studies throughout the worid and extremely valuable data are becoming available. Proper interpretation, evailution, and utilization of these data are of utmost inportance to future numerical Analysis of the lightning performance of EHV lines. Finally. Dr. Golde requesta clarification of the fact that there are fewer than 27 points on the one-year average curve of Fig. 7. The explanation is that several single years had identical tripout rater and it is this rate that is grouped as one point. Unfortunately; the dashed line is still slightly in error, as the point at 10 specific tripouts was inadvertently omitted. The objective of the figure is, however, not impaired by this error.

The authors agree with Mr. Lishchyna that double-circuit tripouts are more likely to be associated with backflash events than with snielding failures. This is corroborsted by Table I where it is seen that the double-circuit faults are invariably associated with high footing resistance or counterpoise. The authors are pleased that the agreement of the theory with Mr_{r}. Lishchyna's estimates of actual line failures is as good as he indicates for the symmetrical lines. Several comments are in order regarding the case which apparently did not agree with the method of (4); namely, the single circuit with one ssymmetrical ground wire.
Additional and poorly quantified influences become evident for very large shielding angles, ssy $30-90$ degrees. Among these are: the shieiding effects of the crassarm for steel construction or grounded insulator hangers for wood construction. effect of variations in length of corons fiaments from the assumed mean striking radius, the poorly known current disuibution curve between 0 and 10 kA , and the effect of nonlinear stroke resistance at these low currents. Fortunately, these perturbing influences do not appear to affect the principal reiations for modern line configurations, though they msy account in some measure for the scatter of points in data presentations s th as Fig. 6. Mr. Lishchyns has kindly furnished the authors winn additional data in private communications and his cooperstion is much appreciated.

In general, the authors believe that the estimating curves for either $K_{1,}=0.9$ or $K_{1,}=1.0$ will yield results consistent with the periormance classifications in Table III.

[^0]: ${ }^{3}$ aper $01-488$, recommended by the AIER Trans ausston and Distribution Committee anid appraved bu the AtRE Tectontal Agerationt Depretimett for peesentation of the NIEE South Bus- Suash Central Diotrot Meetigg. Vew Drleans 4 April S-? TBNi Manuscript sutmottelf \anuary a. Difil made avalabie for peintios ifareth ।
 Westingamure Eiectric Corporintien bast fitts thirgh P!

[^1]: fis the erather isate of this foumpal devoted to the equestion of lightuing

 of some ayweis of fle setion of the lighto we cendecter sad to exomian the same

[^2]: rod, toe refors to the "seand and principad intention of the rods . . , the . What af condmetint the lightning" (sne (4), p, 3ib)

[^3]: ${ }^{2}$ In commors is Aloh in innlerstor tialily fie satip it of a downward leur

[^4]:
 thalls the same divelarge ethamet. A lightaing strone should be matentood is the sequenee (6f a diostaw irt leuder folkwed ly sit upavid seturn stroke.

[^5]: bent overrome.
 'siace, for instanco, Fife is, page B64, in the companion paper hy Wagtuer

[^6]: ${ }^{6}$ Thdirent evilence on Framklin's vies rogarding the pace protected thy a vertimal lightning rol may be dedued from the famous cose of the powder magazine at Purflect (24), the Jightning protection of which was dexigned lis a committey of four scientista, atee of whom was Framklin. A corter of this butheng was dhmagel be hightuing. The ratio of the horimontat diblace betwen thix point anat the lightning rod and the helsht of the tip of the fod alave the point strack was 1,63 to 1, as that this "pratective ration" was apporently rokarded :s
 paratively weyk lightuing diacharge.

[^7]: Paper 62.1004, recommeaded by the AlEE Transmive, and Disteibution Committer and approved by the ITFF. Tectinical Operations Department for precentation at the AIEE Summer General Meet10R Trenver. Coin, June 17-22, 1962 Maouscript wht metred March 21, 1902, made available for prum May 2, 10f2
 \# Wisoner is *ith Westinghouse Electric CPyration East Pitt-hurgh Pa

[^8]:

[^9]:

[^10]: Part II of a two-pert article, prepared originally tor publicstion in Cerman is a current issue of Elektrotechnische Zeitachrits. C. F. Wagner, Fellow IEEE, is a consulting engineer, Pittsburgh, Pa .

[^11]: Paper 61-489, recommended by the AIEE Trans mission and Distribution Coarmittee and approved by the tikE Fechumal Operations Department int prosentation at the A1EE South Eust South Central District Meeting. New Orirans. La, April $5-7,1951$ Manuscript submitted Jancary 9. 1961: made avallable for pointing March 3, 1961 C. F. Wagner and A. R. Hiteman are buth with the Wiestinghouse Electric Corjuration, East Pittsbutgb. Pa.

 The authors wish to ach nowledge the valuable arsotance of P. H. Lovg, f, BradG, and L. Kaiting or jeffotming the gap breakbown sests aiod of If L. Suith for the cumputer coding of the chynnel velocity equations for rapid and arcurate determination of the gap time las curves

[^12]: Paper 61-1043, recmmmended by the AIEE Tranaarswon and Distribution Cosimittor and approved
 ptecentation it the ALER Fall Genectal Meeting Deirost, Wich, Oetuber is 20, 10 Hi . Manuscript submisted June $15,19+1$, made avaitable for

 C. F Wacouer and A R Hiteman whe buth with the Weatingtuase Electny Curputation. East Fictathersh. Pi

[^13]: Thin Boas Cum, usy, and the Sholith, wa

[^14]: Paper 58-76, zecommeoded bv the AIEB Insulater Conductor, Committec and spprused by the AlEE fechnicat Operistions Departertert for preventitue as the Ntt Wiater Geoeral Wetting. New York. V Y February ? ? 1959 Nanuncript submittel October 14. 1957 auaile available for printiog Decemter is 190^{-}

 1. K. Dostson 3 *ith the General Electric Com patay infersectaily, is Y
[^15]: Paper 64-40, recommended by the IEEE Transmission and Distribution Committee and approved by the IEEE Technical Operstions Committee for presentation at the IEFE Winter ? New York, N Y.. February 2-7, 1964. Manuscript submitted November 4, 1963; made available for printing December 12, 1963.
 F. R. Armatrona is with the Detroit Edison Company, Detroit, Mich. and E. R. Whiteheab is with the Illinois Institute of Technology, Chicago, III.
 The suthors take pleasure in acknowiedging the contributions of both organizations and individuals to the development of the device described in this paper. Sponsorship of the project by the Edison Electric Institute made it possible to carry out the necessary development and testing in parallel with a review of the theoretical background Edison Ele to the problem. D. W. Gilman and W. S. Price of the Edison Electric Institute gave valuable advice and enthusiastic support. Special acknowiedgment is due che Josiyn Manufacturing and Supply Company for the development of the hot-line tool for the coliector ring and for furnishing laboratory testing time at cost as a contribution to the feasibility project. R. J. Arndt of the IIT Research Institute furnished valuable preliminary information on suitable eiectroexplosive and rectifier elements. L. S. Van Slyck. graduate student at Illinois Institute of Technology, made substantial contributions to the theoretical phases of the investigation.

[^16]: * Shielding op Tranamiseion Lines, F. S. Young, J. W. Clayton,
 A. R. Hileman (Paper 62-1313)

[^17]: Paper 64-00, recommended by the TEFE Transmission and Disinbution Commutcee and approved by the IEFE Technical Operations Comnuttee for presentation it the IEEE Winter Power Meet ing. New York. V. Y. Fehruary 2-7, 1963. Manuscript submitted November 4, 1963, made available for printing December 6, 1963
 R. F. Cook is with the Westinghouse Electric Corporation, East Pitlaburgh. Pa.

[^18]: Note: Illustrated computation is for $N(30)=10$ strokes per square mile per ear and 100 percent rolling terrain. Line profile is estimated th be 75 percent fat, 16 percent rolling, and 9 percent mountainous. When adjusted for profile distribution and 35 thinderstorm days the resulis are as follows, for the indicated $N(30)$ values, $m=1, \grave{K}_{m}=1 / 2$:

 $$
 \text { Trip-out rate } \quad \frac{\Lambda(30)=10}{7.8} \quad \frac{\Lambda(30)=12}{9.8} \quad \Lambda(30)=15
 $$

