Overview and Preliminary Results of the U.S. Empirical HRA Study

Andreas Bye, Vinh N. Dang, John A. Forester, Michael Hildebrandt, Julie Marble, Huafei Liao, Erasmia Lois

Presenter: Andreas Bye,
OECD Halden Reactor Project, Institute for energy technology (IFE)

PSAM11 & ESREL-2012, Helsinki, Finland, 25-29 June 2012

Objectives of U.S. HRA Empirical Study

- Follow-up study on strengths and weaknesses of HRA methods from International Study
- Method effects vs analyst effects?
 - Several HRA teams per method
- Effect of information to HRA teams?
 - Plant visit, observations and interview
- Similar results for U.S. crews as for European crews?

Study overview Plant training 9 HRA teams, **Scenarios** LOFW/SGTR simulator 4 HRA methods experiments **Loss of CCW** (4 crews) **SGTR Empirical data Predictions** Qualitative **Qualitative** - Main drivers - PSFs - Operational - Operational Comparison stories expressions Quantiative Quantitative - Level of difficulty - HEPs (Human incl number of crews **Error Probabilities**) failing

Scenario 1 incl Human Failure Events (HFEs)

- Loss of Feedwater (LOFW)
 - Mis-positioned recirc valve with no indication in the control room
 - Indicated flow from AFW pump on the HSIs masked the fact that no water at all was going to the steam generators
 - Criterion to start procedure including Bleed & Feed met, but due to the masking not clear
 - HFE 1A: Failure to establish Bleed & Feed within 45 minutes, given a manual reactor trip had been done
 - HFE 1B: Failure to establish Bleed & Feed within 13 minutes, given an automatic reactor trip
- Steam Generator Tube Rupture (SGTR) followed the LOFW
 - HFE 1C: Failure to isolate the ruptured SG and control pressure below the SG PORV setpoint

Scenario 1 results

- HFE 1A: All crews made it
- HFE 1B: No data
- HFE 1C: 3 of 4 crews did not accomplish the action within success criteria
 - within the 40 minutes timeframe
 - 3 crews succeeded from a plant perspective, 2 of these crews isolated SG and controlled the pressure, but used longer time
 - 1 crew isolated SG but did not manage to control RCS pressure and the SG PORV opened, leading to release of radioactivity

Scenario 2

- Loss of CCW and RCP sealwater
 - Failing distribution panel increased the complexity and masked the status indications
 - Very short time windows
 - HFE 2A: Failure to trip the Reactor Coolant Pumps and start Positive Displacement Pumps to prevent RCP seal LOCA
- No crews accomplished it
- After the complex situation lead to a delayed start of the procedure, crews did not have enough time
 - NOTE: After these test runs, the plant has focused the training on this event

Scenario 3

- Textbook SGTR (Steam Generator Tube Rupture)
- HFE3A: Failure to isolate the ruptured SG and control pressure below the SG PORV setpoint
- All crews succeeded

Difficulty ranking of HFEs

HFE	Task	US rank	Failure rate	Difficulty
HFE 2A	Stop RCPs and start PDP in scenario 2	1	4 / 4	Very difficult
HFE 1C	Identify and isolate ruptured steam generator in scenario 1	2	1 / 4 (3/4 given 40 minute time criterion)	Difficult
HFE 1A	Start bleed and feed in scenario 1	3	0/4	Fairly difficult to difficult*
HFE 3A	Identify and isolate ruptured steam generator in scenario 3	4	0/3	Easy

Overall findings on HRA methods, 1

- Ranking of HFEs was reasonable for most methods
 - Exceptions: relation between HFE 2A and 1C

Predicted mean HEPs by HRA methods with empirical bounds

- For most HFEs, one order of magnitude difference across teams using a given method
 - Also variability in crew performance
 - Model average behavior

- Some methods seem to be more consistent than other methods in this study
 - ASEP
 - ATHEANA
 - SPAR-H maybe a special case in this study, two different applications of the methods, needs more investigation

- Except ASEP, all other teams underestimated HFE 2A
 - Differences in interviews with experts led to different results
 - General interview with instructors
 - Detailed apriori scenario analysis then a general interview
 - Detailed scenario analysis including a walk-through/talk-through with instructors
 - Training on specific events is an influencing factor
 - Loss of CCW and RCP sealwater

- All teams agreed that HFE 3A was easiest, but significant variability
 - No common baseline for easy actions or standard scenarios

Main conclusions, 1

- Follow-up study on strengths and weaknesses of HRA methods from International study
 - Many of the findings from the first study confirmed
- Method effects vs analyst effects?
 - Could conclude better on method effects when several teams for same method
 - Intra-method paper (Marble et al., this conference and session) discusses comparisons
 - Still focus on qualitative insights
 - Rather few teams per method
 - Some HRA teams used the methods differently

Main conclusions, 2

- Effect of information to HRA teams?
 - Plant visit important
 - Insights in how to perform interviews and collect data
- Similar results for U.S. crews as for European crews?
 - Found similar variability in crew performance as in the International study
 - Difficult scenarios, variability expected

