FINAL Report

Remediation and Final Status Survey Bomb Throwing Device Site - Structures

Aberdeen Proving Ground, Aberdeen, Maryland

Contract Number DAAA09-00-G-0002/39

Prepared for:

U.S. Army Field Support Command AMSIO-ACE-D Bidg. 350, 5th Floor Rock Island, IL 61299-6000

Prepared by:

473 Silver Lane East Hartford, Connecticut 06118 Cabrera Project No: 01-3030.39 December 2004

EXECUTIVE SUMMARY

Cabrera Services, Inc. (CABRERA), under contract to the U.S. Army Field Support Command (FSC), performed remedial activities, remedial support surveys, and Final Status Surveys (FSS) for the Bomb Throwing Device (BTD) site at the Aberdeen Proving Ground (APG), Maryland. This document provides the results of post-remediation final status surveys for the structures associated with the BTD site. These surveys were designed so that the results of the individual integrated static measurements could be compared to the release criteria (DCGLw) by survey unit. If all of the survey units associated with a structure meet the criteria for unrestricted release, then the structure as a whole is considered a viable candidate for unrestricted release.

CABRERA conducted survey activities in accordance with the U.S. Nuclear Regulatory Commission (NRC) approved FSS work plan, prepared by CABRERA. This FSS Report addresses final status surveys performed on five BTD structures. The five structures are: the BTD Armor Reclamation Facility, Wash Rack #2, Wash Rack #3, Concrete Pad #2 located behind Building 701, and Concrete Pad #1 located behind the DU Test Enclosure Building.

FSS activities were designed in accordance with the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) guidance (NRC, 2000).

The project had several major activities associated with the remediation and FSS including:

- Remediation of soils, debris, and structures within the confines of the BTD site,
- Deconstruction of structures on the BTD site,
- Removal of plate steel for on-site recycling,
- Removal and shipment of remediated soils and debris to Envirocare of Utah (the disposal site),
- Designation of the BTD land areas into 25 MARSSIM Class 1 Survey Units,
- FSS of the BTD site soils and structures, and
- Determination that the dose from residual contamination at the site is not greater than the release criterion for each Survey Unit.

The radiological contaminant of concern was depleted uranium (DU). The derived concentration guideline (DCGLw) for fixed (or total) DU activity was determined to be 100 disintegrations per minute alpha per 100 square centimeters $(dpm/100cm^2)$. The maximum measurements from all of the survey units associated with the five structures were well below the DCGLw value.

Smear samples for gross transferable alpha contamination were collected and analyzed to determine if transferable activity is less than 10% of total activity, to confirm assumptions in the release criterion. The maximum smear measurements from all of the survey units associated with the five structures were below 10% (i.e., 10 dpm/100cm²) of total activity.

The FSS data indicates that the five structures are suitable for release for unrestricted use, without regard for former operations with licensed radioactive material.

FSSs were also performed over a land area of approximately 46,000 square meters and on access roads and several support buildings situated on the BTD site. Discussions of the surveys over land areas are addressed in a separate FSS document.

TABLE OF CONTENTS

Section		Page
EXECUTIV	Æ SUMMARY	i
1.0 INT	RODUCTION	1
1.1 Si	te History	
1.1.1	BTD Armor Reclamation Facility	
1.1.2	Wash Rack #2	
1.1.3	Wash Rack #3	4
1.1.4	Concrete Pad #2 (Located Behind Building 701)	4
1.1.5	Concrete Pad #1 (Located Behind the DU Test Enclosure Building)	4
1.2 Ra	adionuclides of Potential Concern	
1.3 De	erived Concentration Guideline Levels	5
2.0 FINA	AL STATUS SURVEY DESIGN	6
	eneral Structure Classification Based on Contamination Potential and S	
2.1.1	BTD Armor Reclamation Facility	6
2.1.2	Wash Rack #2	7
2.1.3	Wash Rack #3	7
2.1.4	Concrete Pad #2	8
2.1.5	Concrete Pad #1	8
2.2 Su	rvey Instrumentation and Survey Techniques	
2.2.1 Alpha F	Direct Surface Alpha Radioactivity Scan Surveys and Integrated Direct adioactivity Measurements	
2.2.2	Smear Sample Collection and Analysis	10
2.3 Nu	mber of Static Measurements	
2.3.1	Estimation of Relative Shift	
2.3.2	Determination of N (Number of Required Measurement Locations)	
2.4 Ele	vated Measurement Criterion (DCGL _{EMC})	
2.5 Sta	tic Measurement Locations	12
3.0 RESU	JLTS	14
3.1 BT	D Armor Reclamation Facility	14
DAAA09-00G-0	002/0039 CABRERA SERVICES, INC.	Page i

Bomb Throwing Device - Structures	
Aberdeen Proving Ground	

3.1.1	Surface Alpha Radioactivity Scan Surveys	14
3.1.2	Integrated Direct Surface Alpha Radioactivity Measurements	14
3.1.3	Smear Sample Collection and Analysis	14
3.1.4	Recommendation	15
3.2 Wa	ash Rack #2	15
3.2.1	Surface Alpha Radioactivity Scan Surveys	15
3.2.2	Integrated Direct Surface Alpha Radioactivity Measurements	15
3.2.3	Smear Sample Collection and Analysis	15
3.2.4	Recommendation	16
3.3 Wa	sh Rack #3	16
3.3.1	Surface Alpha Radioactivity Scan Surveys	16
3.3.2	Integrated Direct Surface Alpha Radioactivity Measurements	16
3.3.3	Smear Sample Collection and Analysis	16
3.3.4	Recommendation	17
3.4 Cor	ncrete Pad #2	17
3.4.1	Surface Alpha Radioactivity Scan Surveys	17
3.4.2	Integrated Direct Surface Alpha Radioactivity Measurements	17
3.4.3	Smear Sample Collection and Analysis	17
3.4.4	Recommendation	17
3.5 Cor	ncrete Pad #1	18
3.5.1	Surface Alpha Radioactivity Scan Surveys	18
3.5.2	Integrated Direct Surface Alpha Radioactivity Measurements	18
3.5.3	Smear Sample Collection and Analysis	18
3.5.4	Recommendation	18
	L STATUS SURVEY INSTRUMENT QUALITY ASSURANCE AND QUA	
5.0 REFE	RENCES	21
FIGURES		
APPENDICE	S	

LIST OF TABLES

Title

Page

Table 2-1:	BTD Armor Reclamation Facility Survey Units	7
Table 2-2:	Wash Rack #2 Survey Units	7
Table 2-3:	Wash Rack #3 Survey Units	8
Table 2-4:	Instruments Used for Scanning and Integrated Direct Surface Measurements	9
Table 2-5:	Alpha/Beta Scintillation Counter Used for Transferable Activity Measurements 1	0
Table 2-6:	Summary of Area, Number of Data Points, and Grid Spacing by SU 1	2

LIST OF APPENDICES

- Appendix A: Building Photographs
- Appendix B: Final Status Survey Plan For BTD Armor Reclamation Facility, Aberdeen Proving Ground, Aberdeen, MD
- Appendix C: Final Status Survey Plan For Wash Rack Facilities #2 and #3, Aberdeen Proving Ground, Aberdeen, MD
- Appendix D: Final Status Survey Plan, Bomb Throwing Device (BTD) Site, Aberdeen Proving Ground, Aberdeen, MD
- Appendix E: Survey Unit Maps and Sample Locations
- Appendix F: Daily Instrument/Building Summary
- Appendix G: Radiological Survey Maps
- Appendix H: Survey Unit Worksheets and Data Summaries
- Appendix I: Survey Instrument Quality Control and Calibration Certificates

ACRONYMS AND ABBREVIATIONS

AFSC	U.S. Army Field Support Command
ALARA	As Low As Reasonably Achievable
APG	Aberdeen Proving Ground
ARL	Army Research Laboratory
ATC	Aberdeen Test Center
BARF	BTD Armor Reclamation Facility
BTD	Bomb Throwing Device
Cabrera	Cabrera Services, Inc.
CFR	Code of Federal Regulations
cm	Centimeters
DCGL or DCGLw	Derived Concentration Guideline Level
dpm alpha/100cm ²	Disintegrations per minute alpha per 100 square centimeters
DU	Depleted Uranium
FSC	U.S. Army Field Support Command
FSS	Final Status Survey
HEPA	High Efficiency Particulate Air filter
LAB	Liquid Abrasive Blaster
LBGR	Lower Bound of the Grey Region
m	Meters
m ²	Square Meters
MARSSIM	Multi-Agency Radiation Survey and Site Investigation Manual
mrem/yr	Millirem per year
NAD	Normalized Absolute Difference
NIST	National Institute of Standards and Technology
NRC	U. S. Nuclear Regulatory Commission
PSA	Plate Storage Area
QA	Quality Assurance
QC	Quality Control

CABRERA SERVICES, INC.

Bomb Throwing Device - Structures Aberdeen Proving Ground Final Report Remediation and Final Status Survey

ROPC	Radionuclides of Potential Concern
σ	Sigma
S/N	Serial Number
SU	Survey Unit
²³⁴ U	Uranium-234
²³⁵ U	Uranium-235
²³⁸ U	Uranium-238

1.0 INTRODUCTION

Cabrera Services, Inc. (CABRERA) is under contract to the United States Army Field Support Command (AFSC) to provide support to the Aberdeen Test Center (ATC) at the Aberdeen Proving Ground (APG) in Aberdeen, Maryland. CABRERA performed facility demolition, remediation, and site wide radiological surveys of the Bomb Throwing Device (BTD) site to support consideration for unrestricted release. The BTD site consists of approximately 46,000 square meters (m^2) of land on the APG used for the testing of Depleted Uranium (DU) munitions. The BTD site also contains a number of structures used to support operations.

For consistency with other decommissioning activities at APG, radiologically impacted soils and structures are addressed separately. This document presents the Final Status Survey (FSS) activities for five structures on site – the BTD Armor Reclamation Facility (BARF), Wash Rack #2, Wash Rack #3, Concrete Pad #2 located behind Building 701, and Concrete Pad #1 located behind the DU Test Enclosure Building. The Final Status Survey conducted on soils is addressed in a separate document titled, "*Remediation and Final Status Survey, Bomb Throwing Device Site – Soils*," (CABRERA, 2004). These final status surveys are designed in accordance with Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) guidance (U.S. Nuclear Regulatory Commission [NRC], 2000).

1.1 Site History

APG, located in Aberdeen, Maryland, is an active U.S. Army testing and research facility. The APG lies along the western shore of the Chesapeake Bay in Harford and Baltimore Counties, Maryland, approximately 15 miles northeast of Baltimore. The APG covers a total of 72,516 acres (land and water) and consists of two distinct areas: the northern portion of APG, referred to as the Aberdeen Area; and the southern portion of APG, referred to as the Edgewood Area. The Aberdeen Area became a formal military post, designated as the APG, in 1917.

The BTD site was used between 1982 and 1993 for the testing of DU munitions. In 1993, the site consisted of the BTD ARMOR RECLAMATION FACILITY, the DU Test Enclosure Building, the Enclosure Building High Efficiency Particulate Air (HEPA) system, the Plate Storage Area (PSA), Wash Racks #2 and #3, access roads, and several support buildings situated on approximately 46,000 square meters (m^2) (11.4 acres) of land. During operations, DU munitions were fired at steel plate and other targets placed inside the DU Test Enclosure Building. The High Efficiency Particulate Air (HEPA) ventilation system equipment was located outside the DU Test Enclosure Building on a concrete pad (Concrete Pad #1). Its function was to collect and filter potentially contaminated air exiting the DU Test Enclosure Building after the firing of DU munitions.

Prior to site remediation, approximately 40 tons of DU-contaminated armor plate was located within the DU Test Enclosure Building and surrounding grounds. Heavy equipment was used to transport the armor plates between the DU Test Enclosure Building and the PSA. As part of the remedial activities and subsequent to the removal of the armor plates, the DU Test Enclosure Building, the HEPA ventilation system, the footings for the DU Test Enclosure Building, the "Rust" Building, and the Sabot Stripper were removed in their entirety from the site and processed separately from this report.

The BTD site decommissioning consisted of structure demolition, soil excavation, and removal of contaminated soil and demolition debris. As physical decommissioning actions were completed, FSSs were performed on both structures and land areas (this report addresses only five structures previously mentioned). Much of the plate steel that was generated during site cleanup and demolition (primarily the DU Test Enclosure Building) was transferred to the Army Research Laboratory (ARL) facility, at APG Spesutie Island, for decontamination and recycling. A cost analysis performed by the Army indicated that recycling was a less expensive option than offsite disposal of the material and that there was a beneficial reuse for the plate steel in support of APG's mission. Other demolition debris and excavated soil was considered unwanted radioactive material and was shipped via rail to Envirocare of Utah, an NRC licensed disposal facility, for shallow land burial.

During initial mobilization in February 2003, the CABRERA field crew entered the BARF and dismantled, surveyed, and removed the DU armor plate reclamation machine (the LAB) housed within the BTD Armor Reclamation Facility.

In May 2003 CABRERA re-mobilized to perform a FSS on the inside of the BTD Armor Reclamation Facility, and demolish the DU Test Enclosure building. Most of the steel plate removed from the DU Test Enclosure Building was shipped across APG to the ARL Spesutie Island Facility for decontamination and beneficial reuse. Other steel/debris was containerized in intermodals for future rail shipment to Envirocare of Utah.

During June 2003, the CABRERA team performed remediation/FSS of Wash Racks 2 and 3, which included dismantling and ship out of the floor grids and left the scrap steel piled for transfer to ARL or other use, as instructed by ATC personnel. Concurrent to the dismantling operations and through the month of August 2003, the CABRERA team completed the majority of the gamma walkover survey, excavated contaminated soils, and stockpiled the remediated soil (approximately 1,200 cubic yards) into a lay down area within Survey Units 16 and 25. CABRERA demobilized at the end of August 2003.

In February and March 2004, the CABRERA team returned to the BTD site, performed data collection for survey gaps, and accomplished 95% of the remediated soil load out. The soil was packed into intermodal containers, and the intermodals were shipped via rail to Envirocare of Utah.

In June 2004, the remainder of the soil was loaded/shipped to Envirocare for disposal and both Concrete Pad #1 and Concrete Pad #2 surfaces were remediated with a steel ball blast/HEPA vacuum system. Following cleaning, the surfaces were surveyed and the FSSs were performed.

As of the time of this writing, all soil/debris shipped via rail to Envirocare of Utah has been transferred to Envirocare of Utah and final disposition documentation is forthcoming.

In the Figures section of this report, Figure 1 shows the location of the BTD Site relative to APG and surrounding towns. Figure 2 shows the relative locations of the five structures specifically addressed in this FSS Report. Appendix A contains site photos of the structures discussed below.

1.1.1 BTD Armor Reclamation Facility

The BARF is a steel beam and sheet metal constructed building with insulated walls and roof. The insulation is covered with a flexible protective plastic cover. The floor is a concrete pad. The interior of the BARF is approximately 12 meters (m) long by 14.8 m wide with a ceiling height of 6 m. The building is bisected by a sheetrock wall with doors leading from one side to the other. There are no drains, sumps, or ventilation system penetrations other than the liquid abrasive blaster (LAB) HEPA ventilation system. A small heating system with insulated ductwork, rollup doors for equipment entry, smaller doorways for personnel entry, and electrical circuit boxes are other general features found in the building.

The northern portion of the BARF contained the LAB decontamination equipment and a small capacity crane used to help lift and load steel plates into the LAB. The southern part of the building was used to store clean unused HEPA filters and small amounts of containerized contaminated trash. Routine radiation contamination surveys were executed on all floor areas within the BTD Armor Reclamation Facility, on stored boxes and containers, and occasionally on wall surfaces.

The ATC utilized the BARF to house the LAB. The LAB was an enclosed system used to decontaminate pieces of steel plate and other small objects with water jets and abrasive. A ventilation system with a pre-filter demister and a HEPA filter removed airborne particulates prior to ventilation release to the environment. A hopper attached to the LAB retained spent abrasive and removed contamination.

No contamination was found on either the LAB HEPA filter or areas downstream in the ventilation system ducts during removal of the LAB. Minor contamination was found within the LAB enclosure, the hopper which contained water and abrasive, the HEPA pre-filter, and small areas on the outside of the LAB enclosure near loading points. The lack of activity downstream of the HEPA filter indicates a well-designed system that did not release airborne radioactivity to the environs. Other general surveys do not show contamination on the walls of the BARF. Scan surveys showed only occasional activity on the floor areas surrounding the LAB. Surveys of selected areas overhead and on the crane are also negative with respect to contamination.

1.1.2 Wash Rack #2

Wash Rack #2 consists of a steel beam frame and sheet metal walls with no interior insulation or wallboard. The interior is approximately 17 m long by 8 m wide with a ceiling height of 6 m. The floor consists of steel plate with a recessed trough running the length of the facility. The trough area is approximately 6 m wide by 10 centimeters (cm) deep. The trough area contains multiple raised (approximately 3 inches) steel beams, which were used to support steel floor grating. The grating, which was removed prior to this FFS, was flush with the surrounding floor plate. There are no drains, sumps, heating, cooling, or ventilation systems present. Steel rollup doors for equipment entry are located at both ends of the structure. Previously documented routine surveys identified minor levels of DU contamination on the floor area of Wash Rack #2.

Since the construction of Wash Rack #2 in 1992, the ATC has utilized this facility as a warehouse. Wash Rack #2 has never been used as a wash rack. Instead, it was used to store items and equipment, some of which were contaminated with DU. Wash Rack #2 housed DU in

the form of penetrators, floor sweepings, liquid abrasive residue from previous decontamination activities, and range debris (e.g., paper, plastic, wood).

Since the wash rack was used as a storage facility for contaminated materials, the primary area of investigation is the floor, trough area, and lower wall surfaces (2 m and below).

1.1.3 Wash Rack #3

Wash Rack #3 is identical to Wash Rack #2, was also built in 1992, and was used for the storage of uncontaminated Navy accelerator parts and the temporary housing of a cutting table contaminated with DU. Contamination left by the cutting table was identified in the southwest corner of the facility. This contamination was removed though decontamination activities prior to the initiation of the FSS. Past routine surveys of this structure have identified minor levels of DU contamination on the floor.

Since the wash rack was used as a storage facility for contaminated materials, the primary area of investigation is the floor, trough area, and lower wall surfaces (2 m and below).

1.1.4 Concrete Pad #2 (Located Behind Building 701)

This concrete pad is located behind Building 701. Pad dimensions are approximately 22 m by 15 m. The pad was confirmed to have alpha contamination and therefore would not pass release criteria. Its purpose was to stage or store heavy armored vehicles.

1.1.5 Concrete Pad #1 (Located Behind the DU Test Enclosure Building)

Concrete Pad #1 is located adjacent to the DU Test Enclosure Building. It is somewhat smaller than Concrete Pad #2 and is approximately 10 m by 12 m. Its purpose was to provide a foundation for the HEPA system associated with the DU Test Enclosure Building.

1.2 Radionuclides of Potential Concern

The following three Final Status Survey Plans were utilized in producing this consolidated FSS report:

- Final Status Survey Plan For BTD Armor Reclamation Facility, Aberdeen Proving Ground, Aberdeen, MD (provided in Appendix B)
- Final Status Survey Plan For Wash Rack Facilities #2 and #3, Aberdeen Proving Ground, Aberdeen, MD (provided in Appendix C)
- Final Status Survey Plan Bomb Throwing Device (BTD) Site, Aberdeen Proving Ground, Aberdeen, MD (provided in Appendix D)

Section 2.2 of each FSS Plan identifies the site Radionuclides of Potential Concern (ROPC) as being limited to DU and its short-lived uranium progeny (decay products). The uranium ratios are based on isotopic uranium weight ratios used for shipments of routine DU waste from APG

(BARG, 1995). The activity fractions are calculated from the isotopic weight ratios and the specific activity of each uranium isotope. The result of the activity fraction calculation is a Uranium-234 (²³⁴U):Uranium-235 (²³⁵U):Uranium-238 (²³⁸U) ratio of 0.084:0.012:0.904.

1.3 Derived Concentration Guideline Levels

As described by MARSSIM, a Derived Concentration Guideline Level (DCGL) is a calculated radionuclide activity concentration within a designated survey unit that corresponds to a defined release criterion in radiation dose or risk units. Per the license requirement of 10 Code of Federal Regulations (CFR) 20 Subpart E, a release criterion of 25 millirem per year (mrem/yr) will be used for the buildings and structures included in this FSS Report. Doses from residual radioactivity will be kept as low as reasonably achievable (ALARA) whenever possible. Using MARSSIM Section 4.3.4 (equation below) and knowing that there is one alpha decay per decay of each uranium isotope, a single total uranium DCGL_W of 100 disintegrations per minute alpha per 100 square centimeters (dpm alpha/100cm²) was calculated for DU. This DCGL_W was calculated using the values provided by the NRC screening guidelines of 90.6 dpm/100cm², 97.6 dpm/100cm², and 101 dpm/100cm² for U²³⁴, U²³⁵, and U²³⁸, respectively, as presented in Table 5.19 of NUREG/CR-5512 (volume 3, October 1999), NUREG 1757, and the DU activity fractions discussed in Section 1.2. The DCGL_W is calculated as follows:

$$DCGL_{W} = \frac{1}{\left(\frac{f_{1}}{DCGL_{1}}\right) + \left(\frac{f_{2}}{DCGL_{2}}\right) + \left(\frac{f_{3}}{DCGL_{3}}\right)} = \frac{1}{\left(\frac{0.084}{90.6}\right) + \left(\frac{0.012}{97.6}\right) + \left(\frac{0.904}{101}\right)} = 100 \text{ dpm alpha/100cm}^{2}$$

Where: $DCGL_w =$ Combined gross activity DCGL (i.e., release limit).

 f_n = Activity fraction of radionuclide *n*

 $DCGL_n = DCGL \text{ of radionuclide } n$

The total uranium $DCGL_W$ of 100 dpm alpha/100cm² was used as the action level for both static and scanning measurements in the buildings and on the structures.

2.0 FINAL STATUS SURVEY DESIGN

The FSS performed at the BTD site was designed in accordance with Final Status Survey guidance from MARSSIM (NRC, 2000). FSS activities consisted of scanning surveys over 100% of the accessible structure surfaces. Integrated direct surface measurements were performed at frequencies based on MARSSIM guidance. Survey activities also included direct and biased smear sample collection. The FSSs were designed conservatively in that the radiological background present in the structure materials is neglected and the measured total activity is used for direct comparisons to the DCGL_W.

2.1 General Structure Classification Based on Contamination Potential and Survey Unit Identification

Using MARSSIM Section 5.3 as guidance, the five structures were subdivided into survey units and designated as Class 1, Class 2, or Class 3 survey units. The following subsections describe how each structure was subdivided and classified. Appendix E presents individual SU schematic diagrams along with direct (integrated) measurement/smear locations.

2.1.1 BTD Armor Reclamation Facility

The BARF was subdivided into four Class 1 SUs and one Class 3 SU as listed in Table 2-1. The floor and lower walls of the northern room of the BARF share similar contamination potential because this area housed the LAB decontamination equipment and was where the decontamination process was performed. Although the lab system was self-contained and surveys did not routinely identify transferable contamination on the floor or walls, contaminated materials were moved through this room via the south rollup door to be loaded in and out of the LAB system. In accordance with MARSSIM guidance, the south room floor and lower walls were considered Class 1 SUs as well because this area was once used to store containerized contaminated trash.

Since the upper wall and ceiling surfaces of the north and south rooms share similar potential for contamination, these areas were combined into one Class 3 SU. The potential for contamination on the upper walls and ceiling surface in the north room is small because no contamination was identified on the LAB HEPA filter or at downstream areas in the ventilation system. The lack of activity downstream of the HEPA filter indicates a well-designed system that did not release airborne radioactivity to the environs. In addition, transferable contamination was not identified during routine surveys in the BTD Armor Reclamation Facility, and the primary mechanism for transport (i.e., ventilation system) was not contaminated.

Maps presenting the BARF SU delineations and the reference coordinate system are presented in Appendix E.

Description	Area (m ²)	Material	MARSSIM Survey Class
North Room Floor	88.8	Concrete	1
South Room Floor	88.8	Concrete	1
North Room Lower Walls	76.6	Foam / Sheet Metal	1
South Room Lower Walls	76.6	Foam / Sheet Metal	1
Ceilings and Upper Walls	488	Foam / Sheet Metal	3

Table 2-1: BTD Armor Reclamation Facility Survey Units

2.1.2 Wash Rack #2

Wash Rack #2 was divided into three Class 1 SUs and one Class 2 SU as listed in Table 2-2. The floor and lower walls of Wash Rack #2 has a history of contamination and contamination potential because this structure was used to store DU waste. DU contamination has been identified previously on the floor of this facility during past routine surveys. The floor area in Wash Rack #2 was remediated for DU contamination prior to the initiation of the FFS.

The ceiling and upper walls of Wash Rack #2 are classified as Class 2 due to remediation activities being performed previously on the floor of this facility.

Maps presenting the Wash Rack #2 SU delineations and the reference coordinate system are presented in Appendix E.

Description	Area (m²)	Material	MARSSIM Survey
Floor South Side	68	Metal	1
Floor North Side	68	Metal	1
Lower Walls	90	Metal	1
Ceiling and Upper Walls	346	Metal	2

Table 2-2: Wash Rack #2 Survey Units

2.1.3 Wash Rack #3

Wash Rack #3 was divided into three Class 1 SUs and one Class 2 SU as listed in Table 2-3. The floor and lower walls of Wash Rack #3 has a history of contamination and contamination potential because this structure was used to store DU waste. DU contamination has been identified previously on the floor of this facility during past routine surveys. The floor area in Wash Rack #3 was remediated for DU contamination prior to the initiation of the FFS.

The ceiling and upper walls of Wash Rack #3 are classified as Class 2 due to prior remediation activities performed on the floor of this facility.

Maps presenting the Wash Rack #3 SU delineations and the reference coordinate system are presented in Appendix E.

Description	Area (m²)	Material	MARSSIM Survey Class
Floor South Side	68	Metal	1
Floor North Side	68	Metal	1
Lower Walls	90	Metal	1
Ceiling and Upper Walls	346	Metal	2

Table 2-3: Wash Rack #3 Survey Units

2.1.4 Concrete Pad #2

Concrete Pad #2 was designated a Class 1 survey unit. Due to its size, the pad was divided into two survey units – North and South. Each survey unit is approximately 107 m^2 .

2.1.5 Concrete Pad #1

Concrete Pad #1 was designated a Class 1 survey unit. Due to its size, the pad was divided into two survey units – North and South. Each survey unit is approximately 60 m^2 .

2.2 Survey Instrumentation and Survey Techniques

Instrumentation used in the survey consisted of direct alpha scan and integrated surface detectors, and alpha/beta smear counters. A number of both types of instruments were used due to the extended duration of the surveys. All instruments were properly calibrated (appendix I), QC checked (appendix F), and operated in accordance with standard operating procedures (section 4.0).

2.2.1 Direct Surface Alpha Radioactivity Scan Surveys and Integrated Direct Surface Alpha Radioactivity Measurements

Direct alpha scanning was performed to identify surface locations on structures where contaminant concentrations may exceed the criterion for unrestricted release. Integrated direct measurements (i.e., static measurements) of surface alpha radioactivity were performed during the FSS to compare contaminant levels at discrete sampling locations on building interior surfaces to the release criterion and to facilitate statistical testing, if necessary. Scanning and integrated direct surface measurements were performed using the instruments listed in Table 2-4.

Table 2-4:	Instruments Used f	or Scanning and Integrat	ted Direct Surface Measurements
		· · · · · · · · · · · · · · · · · · ·	

Instrument Used	Dates Used	Building or Structure Where Used
(Meter and Probe)		
Ludium Model 2224-1 portable	5/28/03, 5/29/03, 6/4/03	Wash Rack #2
alpha/beta scaler/ratemeter (serial number [S/N] 162425) with the Ludium model 43-93 100 cm ² alpha/beta detector (S/N 182403)	6/11/03, 6/12/03, 6/13/03, 6/19/03, 6/20/03	Wash Rack #3
apharbela delector (SIN 102403)	6/27/03	Wash Racks #2 and #3
	7/9/03, 7/10/03	Wash Rack #3
	8/12/03	DU Test Enclosure Building
Ludium Model 2224-1 portable	5/5/03, 5/14/03, 5/15/03	BTD Armor Reclamation Facility
alpha/beta scaler/ratemeter (S/N 162426) with the Ludlum model 43- 89 126 cm ² alpha/beta detector (S/N 193921)	5/19/03, 5/20/03, 5/22/03, 5/28/03, 5/29/03. 6/6/03	Wash Rack #2
(0/14 180821)	6/9/03	Wash Racks #2 and #3
	6/10/03	DU Test Enclosure Building
	6/11/03, 6/12/03, 6/13/03	DU Test Enclosure Building and Wash Rack #3
	6/19/03	Wash Rack #3
	6/20/03	DU Test Enclosure Building and Wash Rack #3
	6/26/03, 6/27/03, 7/9/03, 7/10/03	Wash Racks #2 and #3
	3/30/04	Wash Rack #3
	3/31/04	Wash Rack #2
Ludium Model 2224 portable alpha/beta scaler/ratemeter (S/N 183048) with the Ludium Model 43- 68 large area (126 cm ²) gas proportional detector (S/N 161781)	5/8/03	BTD Armor Reclamation Facility
Ludlum Model 2360 alpha/beta data logger (S/N 193675) with the	5/7/03, 5/8/03, 5/9/03, 5/12/03, 5/13/03, 5/14/03, 5/15/03, 6/2/03	BTD Armor Reclamation Facility
Ludlum Model 43-37 area floor monitor (S/N 161687)	6/4/03, 6/5/03, 6/6/03	Wash Rack #2
	6/9/03	Wash Racks #2 and #3
	6/11/03, 6/12/03, 6/16/03, 6/19/03 6/20/03, 6/23/03, 6/24/03	Wash Rack #3
	6/25/03	Wash Racks #2 and #3
Ludlum Model 2360 alpha/beta data logger (S/N 184938) with the Ludium Model 43-37 area floor monitor (S/N 178371)	6/8/04, 6/9/04, 6/10/04	Concrete Pads #1 and #2
Ludium Model 2360 alpha/beta data logger (S/N 202398) with the Ludium model 43-93 100 cm ² alpha/beta detector (S/N 211706)	6/8/04, 6/9/04, 6/10/04	Concrete Pads #1 and #2

2.2.2 Smear Sample Collection and Analysis

Gross transferable alpha contamination was collected and analyzed to determine if transferable activity is less than or equal to 10% of total activity as assumed in the NUREG/CR-5512 and NUREG 1757 documents for screening level guidelines.

Smear samples were collected over approximately 100 cm² areas at systematic and biased locations identified during scanning activities. Smear samples were analyzed for alpha and beta radioactivity using a Ludlum Model 2929 alpha/beta scintillation counter. Three different units were used during the field activities, as summarized in Table 2-5.

Table 2-5: Alpha/Beta Scintillation	Counter Used for Transferable Activity Measurements
-------------------------------------	---

Instrument Used	Dates Used	Duilding on Chryster	
(Meter and Probe)	Dates Used	Building or Structure Where Used	
Ludium Model 2929 alpha/beta scintillation counter (S/N 163827)	5/5/03, 5/8/03, 5/9/03, 5/12/03, 5/13/03, 5/14/03	BTD Armor Reclamation Facility	
with attached 43-10-1 probe (S/N 171322)	5/15/03	BTD Armor Reclamation Facility, Wash Rack #2	
	5/19/03, 5/20/03, 5/21/03, 5/22/03, 5/28/03, 5/29/03, 5/30/03	Wash Rack #2	
	6/2/03, 6/3/03, 6/4/03, 6/6/03, 6/9/03	DU Test Enclosure Building and	
	6/10/03	Wash Rack #2 DU Test Enclosure Building	
	6/11/03, 6/12/03, 6/16/03	Wash Rack #3	
	6/26/03, 6/27/03	Wash Racks #2 and #3	
	7/8/03	Wash Rack #2	
	7/9/03, 7/10/03	Wash Rack #3	
Ludlum Model 2929 alpha/beta scintillation counter (S/N 180830)	3/30/04	Wash Rack #3	
with attached 43-10-1 probe (S/N 207849)	3/31/04	Wash Rack #2	
Ludlum Model 2929 alpha/beta scintillation counter (S/N 171590) with attached 43-10-1 probe (S/N 174813)	6/8/04, 6/9/04, 6/10/04	Concrete Pads #1 and #2	

2.3 Number of Static Measurements

MARSSIM provides a method to determine the number of measurement locations required in a given survey unit. A minimum number of measurement locations are required in each survey unit to obtain sufficient statistical confidence that the conclusions drawn from the measurements are correct. The following subsections describe the bases for and derivation of the minimum required measurement locations per survey unit.

2.3.1 Estimation of Relative Shift

The minimum number of measurement locations required is dependent on the distribution of site residual radionuclide concentrations relative to the DCGL_w and acceptable decision error limits (α and β).

The relative shift describes the relationship of site residual radionuclide concentrations to the $DCGL_w$ and is calculated using the guidance found in Section 5.5.2.3 of MARSSIM. The relative shift is calculated as follows:

$$\Delta / \sigma = \frac{\text{DCGL}_{w} - \text{LBGR}}{\sigma}$$

Where: DCGL_w= Derived Concentration Guideline Level

- LBGR = concentration at the lower bound of the gray region. The Lower Bound of the Grey Region (LBGR) is the concentration at which the survey unit has an acceptable probability of passing the statistical tests.
- σ = an estimate of the standard deviation of the concentration of residual radioactivity in the survey unit (which includes real spatial variability in the concentration as well as the precision of the measurement system).

As previously stated, the DCGL_w for surface alpha radioactivity is 100 dpm/100cm². The LBGR was conservatively estimated at 70 dpm alpha/100 cm² based on previous studies with similar instruments on concrete. Without prior survey, it is reasonable to assume a coefficient of variation on the order of 30 percent (MARSSIM Section 5.5.2.2). Using a coefficient of variation of 30 percent and the LBGR as an estimate of the sample mean, a sigma value of 21 dpm/100cm² is estimated. Using the parameters discussed above, the relative shift is calculated as 1.4.

2.3.2 Determination of N (Number of Required Measurement Locations)

The final number of required measurement locations per survey unit is 20 as per MARSSIM (Table 5.5) given a relative shift of 1.4 and an error rate for both Type I and Type II errors of five percent (i.e., $\alpha = \beta = 0.05$). The actual number of measurements taken in each survey unit ranges from 20 to 24 samples based on the size of the survey area.

2.4 Elevated Measurement Criterion (DCGL_{EMC})

MARSSIM states that, for Class 1 survey units, a dose area factor should be used to evaluate the magnitude by which the concentration within a small area of elevated activity can exceed the $DCGL_w$ while maintaining compliance with the release criterion. For the purpose of ALARA, the $DCGL_w$ will be used as the $DCGL_{EMC}$, which corresponds to an area factor of one. Since the

scan minimum detectable concentration of the instrumentation is sensitive enough to identify the $DCGL_W$ with a 90% confidence limit (refer to Appendices B, C, and D), it is unlikely that small areas of elevated activity exceeding the $DCGL_W$ would be missed during surface scans.

2.5 Static Measurement Locations

Measurement locations in Class 1 and Class 2 survey units were established using a random start point in a systematic rectangular grid. The Class 3 survey unit measurement locations were randomly selected. The grid spacing for Class 1 and Class 2 survey units was determined, based on the measured area of the survey unit, using the following equation (Equation 5-7 from MARSSIM).

$$L = \sqrt{\frac{A}{0.866N}}$$

Where: L = rectangular grid spacing for survey unit

A = area of survey unit

N = number measurement locations

Measurement spacing results (L) using the equation above are presented in Table 2-6. Maps presenting the SU delineations are presented in Appendix E.

Table 2-6:	Summary of Are	a, Number of Data	a Points, and Grid	Spacing by SU
------------	----------------	-------------------	--------------------	---------------

Survey Unit Description	Survey Unit Class	Area, A (m ²)	Number of Data Points, N	Grid Spacing, L (m)
BARF – North Room Floor	1	88.8	24	2.058
BARF – South Room Floor	1	88.8	24	2.058
BARF – North Room Lower Walls	1	76.6	24	1.920
BARF – South Room Lower Walls	1	76.6	24	1.920
BARF – Ceilings and Upper Walls	3	488	21	5.180
Wash Rack #2 – Floor South Side	1	68	20	1.859
Wash Rack #2 – Floor North Side	1	68	20	1.859
Wash Rack #2 – Lower Walls	1	90	24	2.134
Wash Rack #2 - Ceiling and	2	346	20	4.176

DAAA09-00G-0002/0039

Bomb Throwing Device - Structures Aberdeen Proving Ground

Final Report Remediation and Final Status Survey

Survey Unit Description	Survey Unit Class	Area, A (m²)	Number of Data Points, N	Grid Spacing, L (m)
Upper Walls				
Wash Rack #3 – Floor South Side	1	68	20	1.859
Wash Rack #3 – Floor North Side	1	68	20	1.859
Wash Rack #3 - Lower Walls	1	90	24	2.134
Wash Rack #3 – Ceiling and Upper Walls	2	346	20	4.176
Concrete Pad #2 – North	1	107	20	2.486
Concrete Pad #2 South	1	107	20	2.486
Concrete Pad #1 North	1	60	20	1.861
Concrete Pad #1 South	1	60	20	1.861

3.0 RESULTS

Field activities took place during three separate mobilizations. The first mobilization began May 3, 2003 and ended August 27, 2003. The second mobilization began February 10, 2004 and ended March 31, 2004. The third mobilization began June 8, 2004 and ended June 15, 2004. Appendix F contains a table that documents every day that CABRERA personnel were on-site, the instruments used, and the activities performed.

All raw data collected on Radiological Survey Maps for each SU (survey unit) are provided in Appendix G. Scan survey results are provided graphically in the Figures section of this FSS Report and are referenced in the following sub-sections. Additional data for each SU include worksheets that convert the raw data (recorded in counts per minute) to $dpm/100cm^2$ for integrated direct measurements (integrated one minute counts) from each one meter square grid with cross-reference to grid numbers) and 100 cm² smear results from each one meter square grid with cross-reference to grid numbers. These worksheets are provided in Appendix H.

3.1 BTD Armor Reclamation Facility

3.1.1 Surface Alpha Radioactivity Scan Surveys

The floors and the lower walls were surveyed for surface alpha radioactivity in the BTD Armor Reclamation Facility. All of these areas are designated MARSSIM Class 1. The ceiling and upper walls are designated MARSSIM Class 3. In the Figures section, Figures 3 through 11 graphically depict the results of the scan surveys. As can be observed in the figures, no alpha scanning measurements exceeded the DCGL of 100 dpm/100cm².

3.1.2 Integrated Direct Surface Alpha Radioactivity Measurements

The BARF was divided into five SUs – the North Floor Room, the South Floor Room, the North Room Lower Walls, and the South Room Lower Walls were Classified MARSSIM Class 1 SUs. The Ceiling and Upper Walls were classified MARSSIM Class 3 SUs. Twenty-four integrated direct surface alpha measurements were taken on the North Floor Room and the maximum reading was 30.1 dpm/100cm². Twenty-four integrated direct surface alpha measurements were taken on the South Floor Room, and the maximum reading was 20.0 dpm/100cm². Twenty-four integrated direct surface alpha measurements were taken on the North Room Lower Walls and the maximum reading was 12.0 dpm/100cm². Twenty-four integrated direct surface alpha measurements were taken on the North Room Lower Walls and the maximum reading was 12.0 dpm/100cm². Twenty-four integrated direct surface alpha measurements were taken on the South Room Lower Walls and the maximum reading was 10.0 dpm/100cm². Twenty-one integrated direct surface alpha measurements were taken on the South Room Lower Walls and the maximum reading was 10.0 dpm/100cm². Twenty-one integrated direct surface alpha measurements were taken on the South Room Lower Walls and the maximum reading was 10.0 dpm/100cm². Twenty-one integrated direct surface alpha measurements were taken on the Ceiling and Upper Walls and the maximum reading was 14.3 dpm/100cm². Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.1.3 Smear Sample Collection and Analysis

All smear samples taken from the BARF resulted in alpha measurements of less than 10 $dpm/100cm^2$. Twenty-four smear samples were taken on the North Floor Room and the maximum alpha reading was 6.5 $dpm/100cm^2$. Twenty-four smear samples were taken on the

Bomb Throwing Device - Structures	
Aberdeen Proving Ground	R

South Floor Room and the maximum alpha reading was $6.5 \text{ dpm}/100 \text{cm}^2$. Twenty-two smear samples were taken on the North Room Lower Walls and the maximum alpha reading was $5.8 \text{ dpm}/100 \text{cm}^2$. Twenty-five smear samples were taken on the South Room Lower Walls and the maximum reading was $4.1 \text{ dpm}/100 \text{cm}^2$. Twenty-three smear samples were taken on the Ceiling and Upper Walls and the maximum reading was $4.2 \text{ dpm}/100 \text{cm}^2$.

3.1.4 Recommendation

In accordance with the BARF FSS Work Plan and consistent with MARSSIM guidance, a SU can be cleared for release where all scans and integrated direct measurements are below the DCGL of 100 dpm/100cm² and all smear measurements are less than the DCGL of 10 dpm/100cm². Therefore, the North Room Floor, the South Room Floor, the North Room Lower Wall, the South Room Lower Wall, and the Ceiling and Upper Walls SUs are recommended for unrestricted release.

3.2 Wash Rack #2

3.2.1 Surface Alpha Radioactivity Scan Surveys

The floor and the lower walls were surveyed for surface alpha radioactivity in Wash Rack #2. All of these areas are designated MARSSIM Class 1. The ceiling and upper walls are designated MARSSIM Class 2 and approximately 10% of the total area was scanned for alpha activity. All scans of ceiling and upper walls resulted in alpha counts that were equal to or below background, so results of these scans were not recorded on official CABRERA forms. In the Figures section of this FSS, Figures 12 through 16 graphically depict the results of the scan surveys on the floor and lower walls. As can be observed in the figures, no alpha scanning measurements exceeded the DCGL of 100 dpm/100cm².

3.2.2 Integrated Direct Surface Alpha Radioactivity Measurements

Wash Rack #2 was divided into four SUs – the North Floor, the South Floor, and the Lower Walls were classified Class 1 and the Ceiling and Upper Walls were classified Class 2. Twenty integrated direct surface alpha measurements were taken on the North Floor and the maximum reading was 15.0 dpm/100cm². Twenty integrated direct surface alpha measurements were taken on the South Floor and the maximum reading was 11.9 dpm/100cm². Twenty-four integrated direct surface alpha measurements were taken on the Lower Walls and the maximum reading was 13.9 dpm/100cm². Twenty integrated direct surface alpha measurements were taken on the Lower Walls and the maximum reading was 13.9 dpm/100cm². Twenty integrated direct surface alpha measurements were taken on the Ceiling and Upper Walls and the maximum reading was 10.0 dpm/100cm². Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.2.3 Smear Sample Collection and Analysis

Twenty smear samples were taken on the North Floor and the maximum reading was $2.7 \text{ dpm}/100 \text{ cm}^2$. Twenty smear samples were taken on the South Floor and the maximum reading was $2.7 \text{ dpm}/100 \text{ cm}^2$. Twenty-four smear samples were taken on the Lower Walls and the

maximum reading was 2.7 $dpm/100cm^2$. Twenty integrated direct surface alpha measurements were taken on the Ceiling and Upper Walls and the maximum reading was 2.7 $dpm/100cm^2$. Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.2.4 Recommendation

In accordance with the Wash Rack FSS Work Plan and consistent with MARSSIM guidance, a SU can be cleared for release where all scans and integrated direct measurements are below the DCGL of 100 dpm/100cm² and all smear measurements are less than the DCGL of 10 dpm/100cm². Therefore, the North Floor SU, the South Floor SU, the Lower Walls SU, and the Ceiling and Upper Walls SU of Wash Rack #2 are recommended for unrestricted release.

3.3 Wash Rack #3

3.3.1 Surface Alpha Radioactivity Scan Surveys

The floor and the lower walls were surveyed for surface alpha radioactivity in Wash Rack #3. All of these areas are designated MARSSIM Class 1. The ceiling and upper walls are designated MARSSIM Class 2 approximately 10% of the total area was scanned for alpha activity. All scans of ceiling and upper walls resulted in alpha counts that were equal to or below background, so results of these scans were not recorded on official CABRERA forms. In the Figures section of this FSS, Figures 17 through 21 graphically depict the results of the scan surveys on the floor and lower walls. As can be observed in the figures, no alpha scanning measurements exceeded the DCGL of 100 dpm/100cm².

3.3.2 Integrated Direct Surface Alpha Radioactivity Measurements

Wash Rack #3 was divided into four SUs – the North Floor, the South Floor, and the Lower Walls were classified Class 1 and the Ceiling and Upper Walls were classified Class 2. Twenty integrated direct surface alpha measurements were taken on the North Floor and the maximum reading was 14.9 dpm/100cm². Twenty integrated direct surface alpha measurements were taken on the South Floor and the maximum reading was 6.8 dpm/100cm². Twenty-four integrated direct surface alpha measurements were taken on the Lower Walls and the maximum reading was 8.8 dpm/100cm². Twenty integrated direct surface alpha measurements were taken on the Lower Walls and the maximum reading was 8.8 dpm/100cm². Twenty integrated direct surface alpha measurements were taken on the Ceiling and Upper Walls and the maximum reading was 10.0 dpm/100cm². Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.3.3 Smear Sample Collection and Analysis

Twenty smear samples were taken on the North Floor and the maximum reading was $0.9 \text{ dpm}/100 \text{cm}^2$. Twenty smear samples were taken on the South Floor and the maximum reading was -0.6 dpm/100 cm². Twenty-four smear samples were taken on the Lower Walls and the maximum reading was 2.4 dpm/100 cm². Twenty integrated direct surface alpha measurements were taken on the Ceiling and Upper Walls and the maximum reading was 0.9 dpm/100 cm².

Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.3.4 Recommendation

In accordance with the Wash Rack FSS Work Plan and consistent with MARSSIM guidance, a SU can be cleared for release where all scans and integrated direct measurements are below the DCGL of 100 dpm/100cm² and all smear measurements are less than the DCGL of 10 dpm/100cm². Therefore, the North Floor SU, the South Floor SU, the Lower Walls SU, and the Ceiling and Upper Walls SU of Wash Rack #3 are recommended for unrestricted release.

3.4 Concrete Pad #2

This 22- by 15-m pad was cleaned by shot blasting it with a Blastractm. Then the pad was surveyed with a floor monitor and Total Station. The pad was divided into two survey units (under MARSSIM requirements, this Class 1 structure was treated similar to a building interior). Systematic fixed count surveys with alpha/beta meter were completed along with smears at those locations.

3.4.1 Surface Alpha Radioactivity Scan Surveys

One hundred percent of the surface of Concrete Pad #2 was surveyed for surface alpha radioactivity. Concrete Pad #2 is designated MARSSIM Class 1. In the Figures section of this FSS, Figures 22 and 23 graphically depict the results of the scan survey. As can be observed in the figures, no alpha scanning measurements exceeded the DCGL of 100 dpm/100cm².

3.4.2 Integrated Direct Surface Alpha Radioactivity Measurements

Concrete Pad #2 was divided into two Class 1 SUs and they were designated North and South. Twenty integrated direct surface alpha measurements were taken on both the North SU and the South SU. The maximum measurement taken on the North SU was 27.1 dpm/100cm² and the maximum measurement taken on the South SU was 18.0 dpm/100cm². Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.4.3 Smear Sample Collection and Analysis

Twenty smear samples were taken on both the North SU and the South SU. The maximum measurement taken on the North SU was 2.9 $dpm/100cm^2$ and the maximum measurement taken on the South SU was 1.6 $dpm/100cm^2$. Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.4.4 Recommendation

In accordance with the BTD FSS Work Plan and consistent with MARSSIM guidance, a SU can be cleared for release where all scans and integrated direct measurements are below the DCGL of 100 dpm/100cm² and all smear measurements are less than the DCGL of 10 dpm/100cm².

Therefore, both the North SU and the South SU of Concrete Pad #2 are recommended for unrestricted release.

3.5 Concrete Pad #1

This pad is somewhat smaller than the pad behind Building 701. As with Concrete Pad #2, the pad was divided into two survey units. Systematic fixed count surveys with alpha/beta meter were completed along with smears at those locations.

3.5.1 Surface Alpha Radioactivity Scan Surveys

Concrete Pad #1 is designated MARSSIM Class 1. In the Figures section of this FSS, Figures 24 and 25 graphically depict the results of the scan survey. As can be observed in the figures, no alpha scanning measurements exceeded the DCGL of 100 dpm/100cm².

3.5.2 Integrated Direct Surface Alpha Radioactivity Measurements

Concrete Pad #1 was divided into two Class 1 SUs and they were designated North and South. Twenty integrated direct surface alpha measurements were taken on both the North SU and the South SU. The maximum measurement taken on the North SU was 33.2 dpm/100cm² and the maximum measurement taken on the South SU was 16.3 dpm/100cm². Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.5.3 Smear Sample Collection and Analysis

Twenty smear samples were taken on both the North SU and the South SU. The maximum measurement taken on the North SU was 4.2 dpm/100cm² and the maximum measurement taken on the South SU was 1.6 dpm/100cm². Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.5.4 Recommendation

In accordance with the BTD FSS Work Plan and consistent with MARSSIM guidance, a SU can be cleared for release where all scans and integrated direct measurements are below the DCGL of 100 dpm/100cm² and all smear measurements are less than the DCGL of 10 dpm/100cm². Therefore, both the North SU and the South SU of Concrete Pad #1 are recommended for unrestricted release.

4.0 FINAL STATUS SURVEY INSTRUMENT QUALITY ASSURANCE AND QUALITY CONTROL

The purpose of this section is to document the calibration of the radiological survey instruments used during the FSS, and the quality control tracking of each instrument as specified in the Work Plans (as documented in Appendices B, C, and D). Data collection activities were performed in accordance with written procedures and/or protocols in order to ensure consistent, repeatable results. The Project Engineer ensured that individuals were appropriately trained to use project instrumentation and other equipment, and that instrumentation met the required detection sensitivities.

Scanning and integrated direct measurements were performed to measure surface radioactivity levels for total uranium. These measurements were based solely on alpha emissions due to high specificity and sensitivity, and low background interference. For smear measurements, beta measurements were collected in tandem with alpha measurements as a qualitative assessment to confirm survey assumptions. Prior to the initiation of alpha survey activities, surfaces of interest were cleaned to remove dirt and grime that could shield alpha emissions from detection.

Current calibration/maintenance records were kept on site for review and inspection (included in Appendix I). The records include, at a minimum, the following:

- name of the equipment
- equipment identification (model and serial number)
- manufacturer
- date of calibration
- calibration due date

Instrumentation was maintained and calibrated to manufacturers' specifications to ensure that required traceability, sensitivity, accuracy and precision of the equipment/instruments were maintained. Instruments were calibrated at a facility possessing appropriate NRC and/or Agreement State licenses for performing calibrations using National Institute of Standards and Technology (NIST) traceable sources. Copies of the calibration certificates for the sources are also provided in Appendix I. A chronological summary of field activities at each structure/SU and instrumentation is presented in Appendix F.

QC measurements were performed on all deployed field instruments each day, before and after each use at a minimum. A controlled area was used to perform these checks. The QC investigation levels for count rate instruments used during the FSS were ± 2 -sigma (2 σ) (warning) and $\pm 3\sigma$ (fail). Exposure rate and other radiation detection instruments were evaluated using a qualitative $\pm 20\%$ against the indicated check source response on the meter. If any single measurement was found to be outside of its investigation level, the measurement was repeated. If the second count was also found to be outside of this criterion, the instrument was investigated to assess whether any external biases or instrument physical damage was present. If response checks were found to be outside of $\pm 3\sigma$, the instrument was taken out of service unless evaluated and approved by the Field Radiological Engineer or the Project Manager. Control charts for check source response, background count rates (where applicable), and copies of the daily check source logs for all instruments are provided in Appendix I.

DAAA09-00G-0002/0039

Bomb Throwing Device - Structures Aberdeen Proving Ground

Gross transferable alpha contamination was collected and analyzed to determine if transferable activity is less than or equal to 10% of total activity as assumed in the NUREG/CR-5512 and NUREG 1757 documents for screening level guidelines.

Smear samples were collected over approximately 100 cm² areas at systematic and biased locations identified during scanning activities. Smear samples were analyzed for alpha and beta radioactivity using a Ludlum Model 2929 alpha/beta scintillation counter.

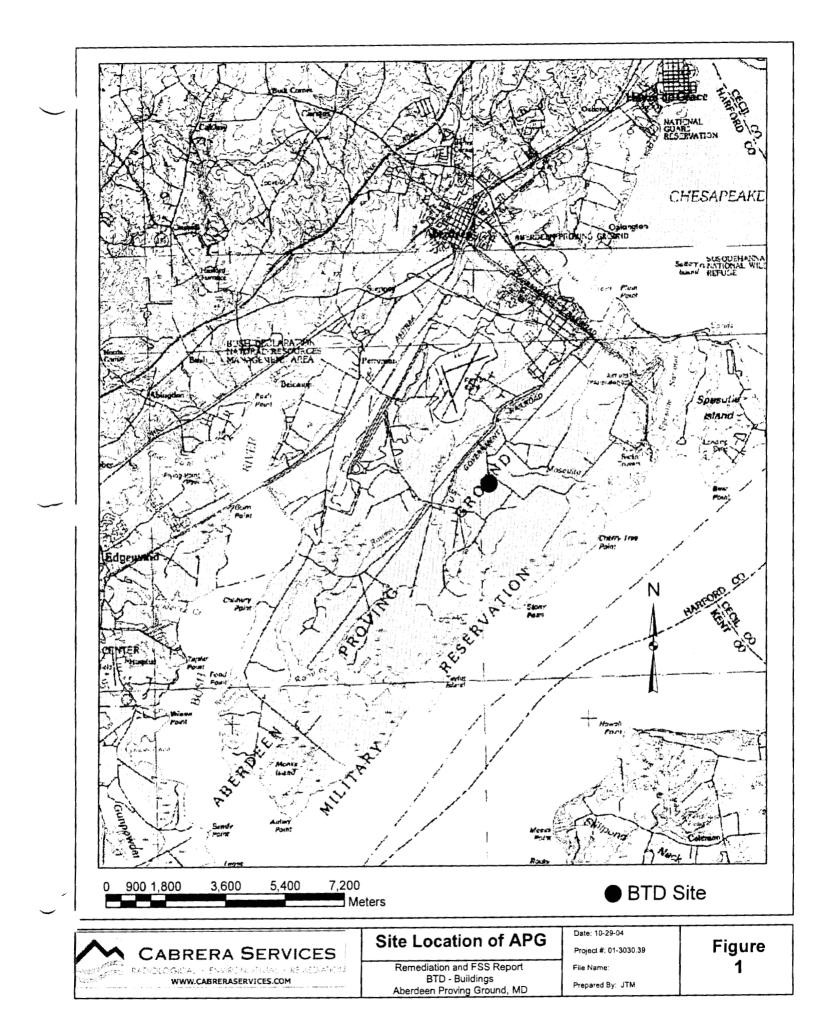
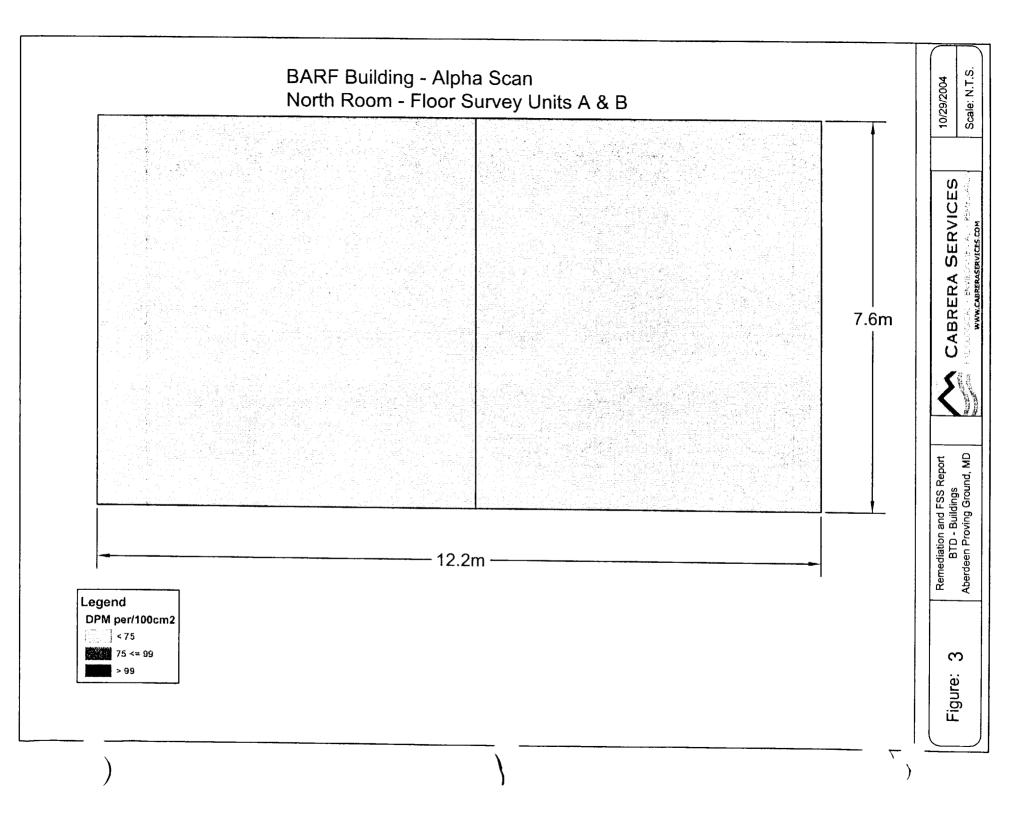
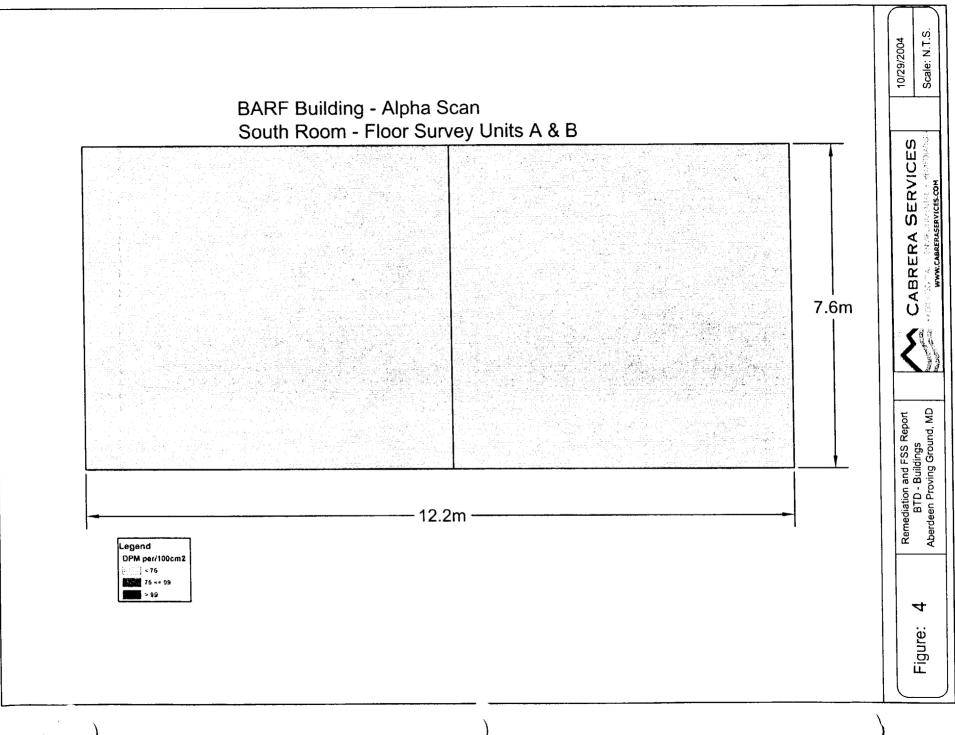
Control charts for check source response, background count rates (where applicable), and copies of the daily check source logs for all instruments are provided in Appendix I.

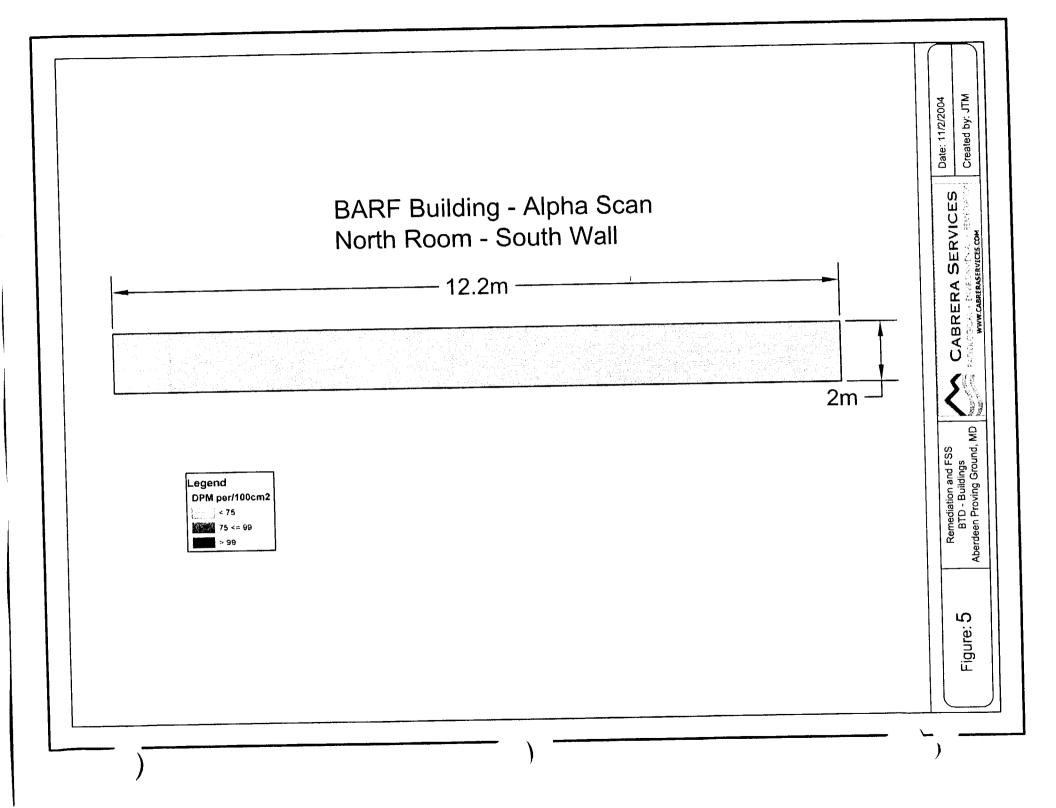
5.0 REFERENCES

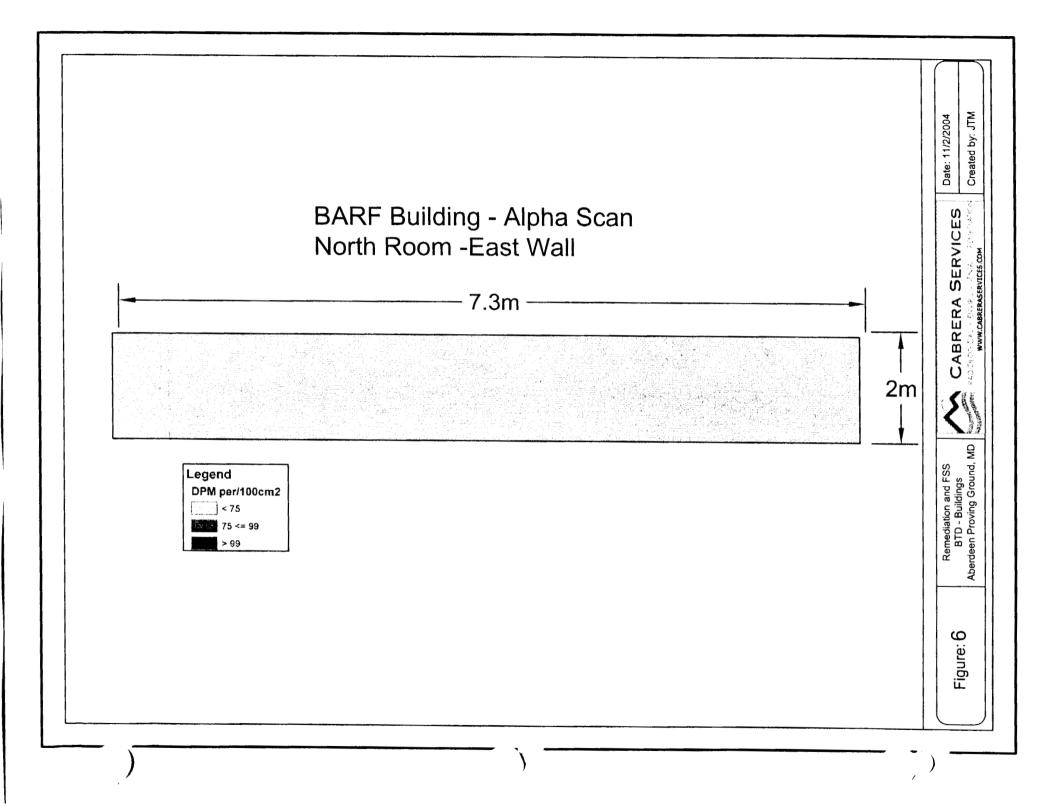
- (BARG, 1995) Specific Manufacturing Capability Program, Depleted Uranium Constituents and Decay Heating, Lockheed, Idaho presentation, dated October 3, 1995.
- (CABRERA, 2003) CABRERA Work Plan, "Final Status Survey Plan for the Bomb Throwing Device (BTD) Site, Aberdeen Proving Ground, Aberdeen, MD", Contract DAAA09-00-G-0002/0039.
- (CABRERA, 2004) CABRERA Report, "Remediation and Final Status Survey, Bomb Throwing Device Site Soils," Contract DAAA09-00-G-0002/0039.
- (NRC, 2000) NUREG-1575, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), U.S. Nuclear Regulatory Commission, dated August, 2000.
- (NRC, 2003) NUREG-1757, Consolidated NMSS Decommissioning Guidance, Rev. 1, U.S. Nuclear Regulatory Commission, September 2003.

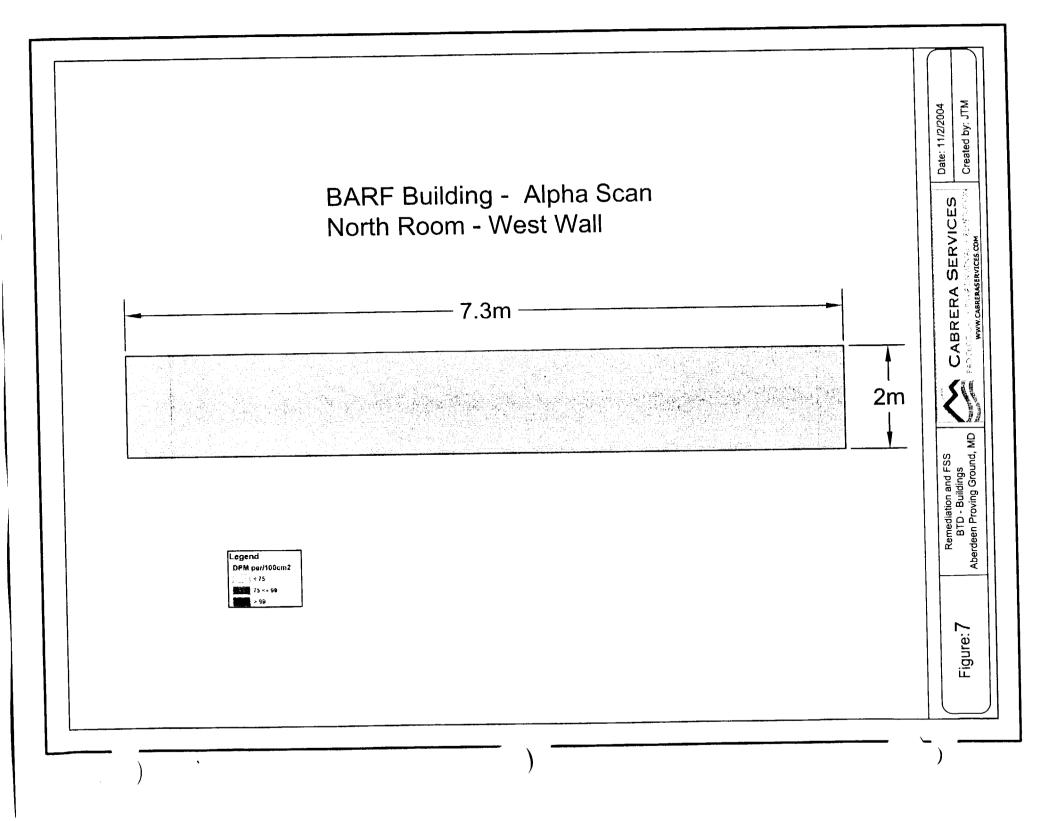
FIGURES

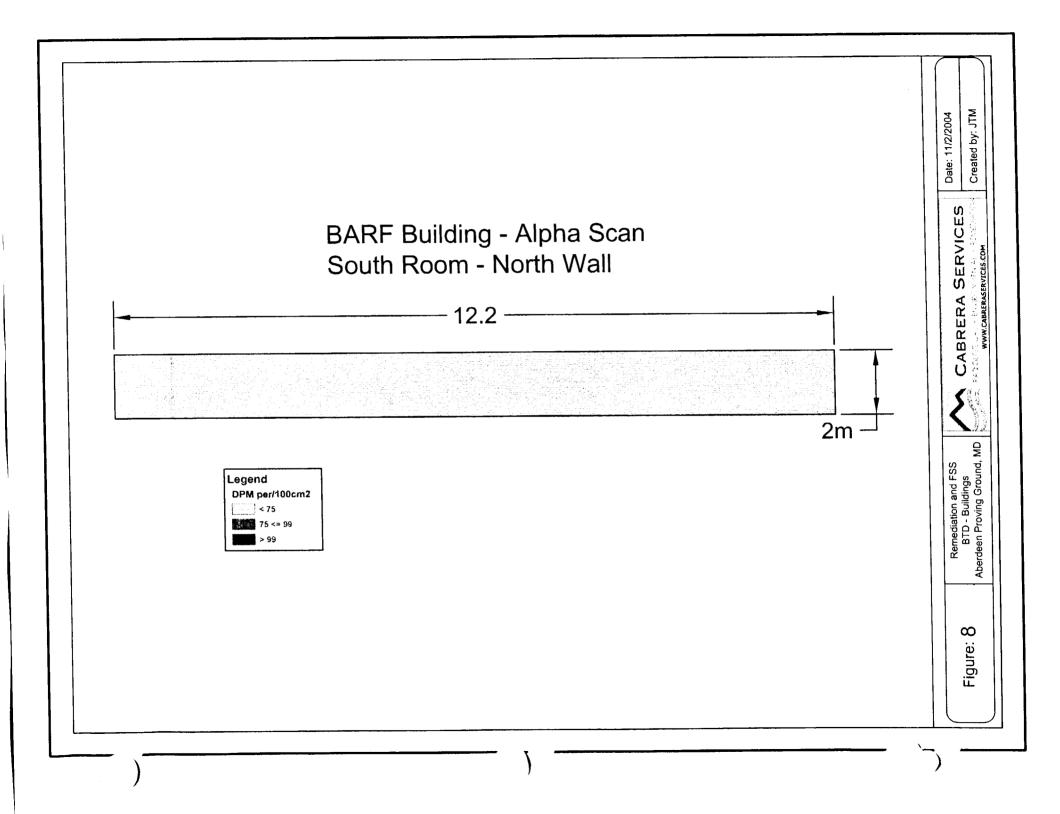
/

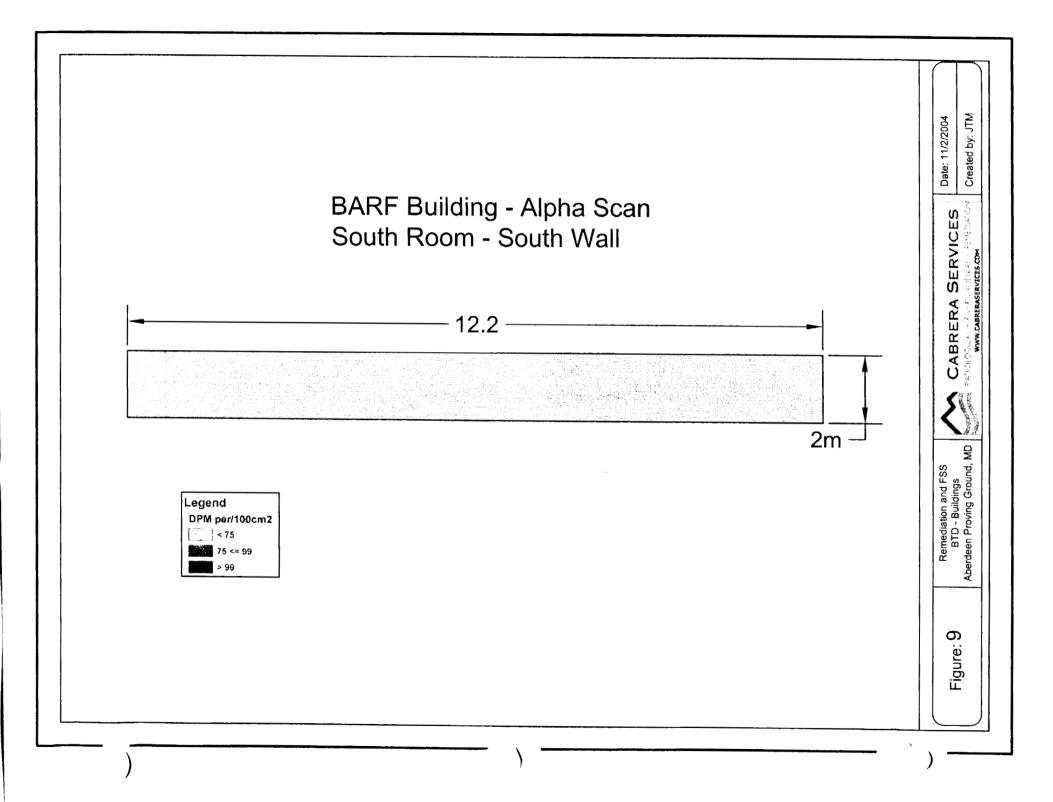




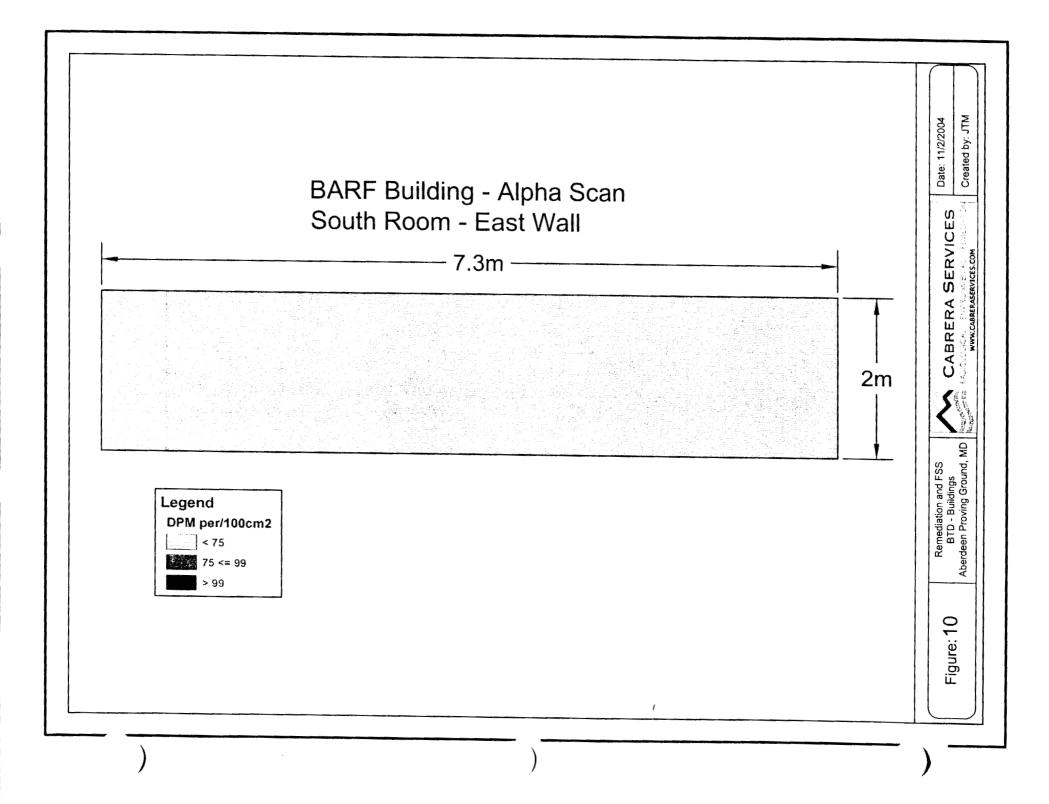

Figure 2, Restricted Data Removed

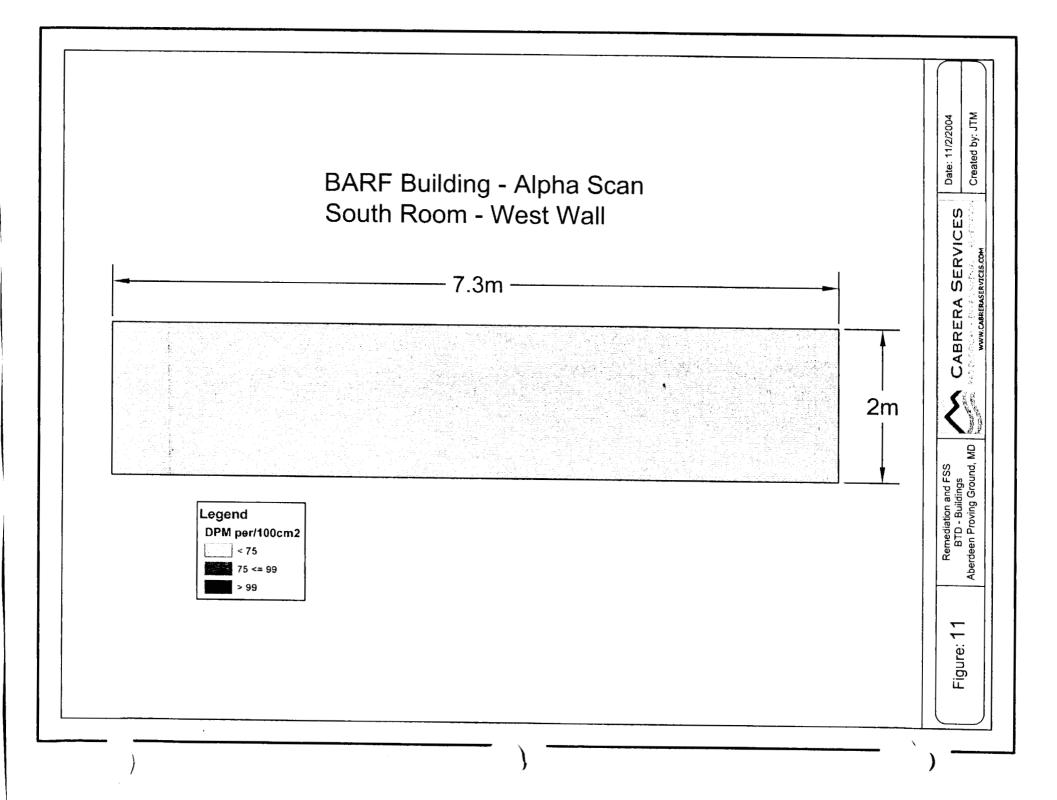


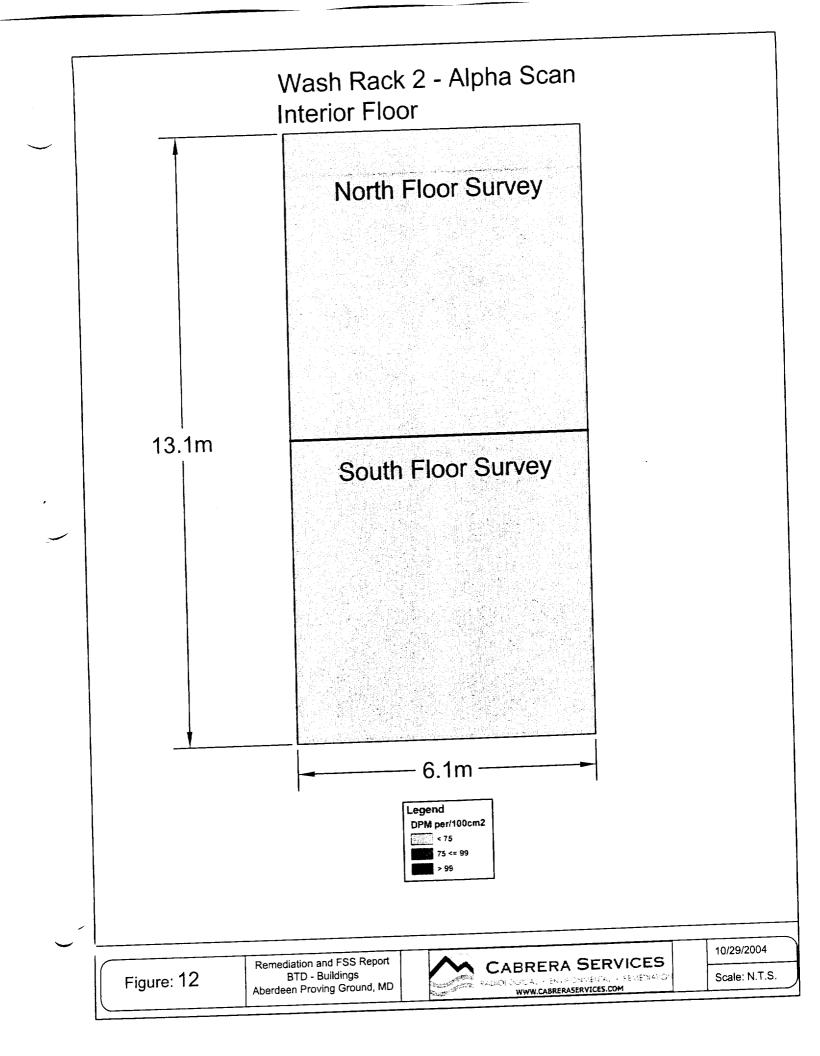


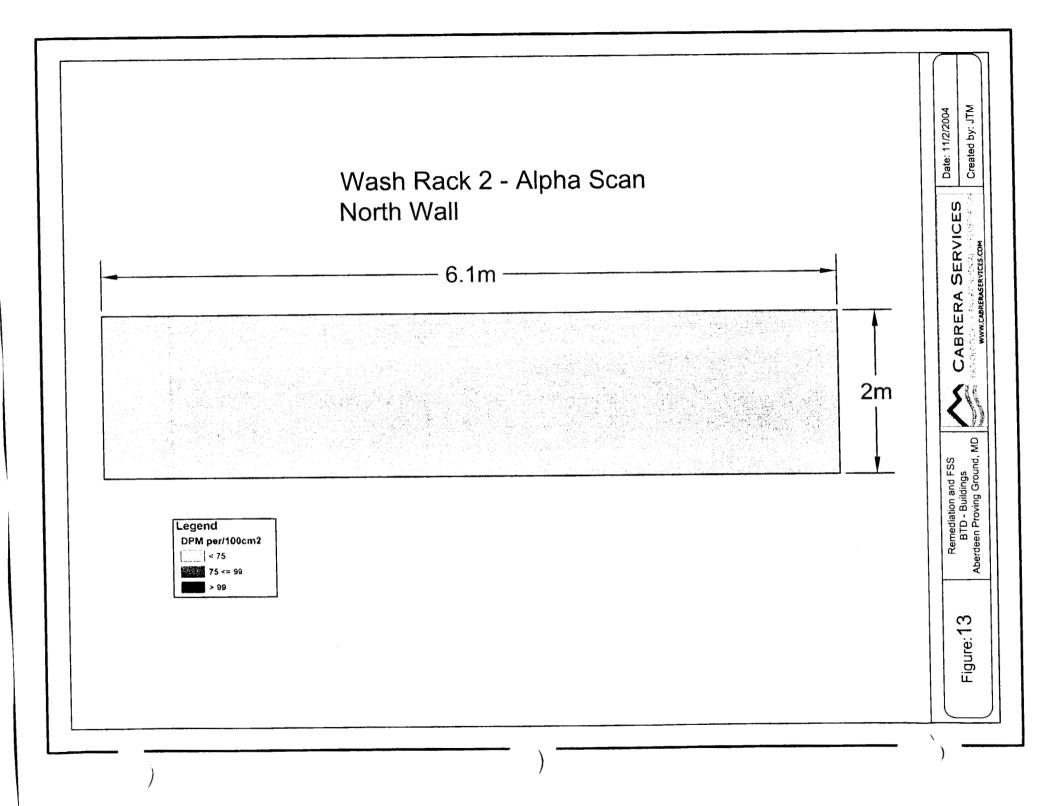

ţ

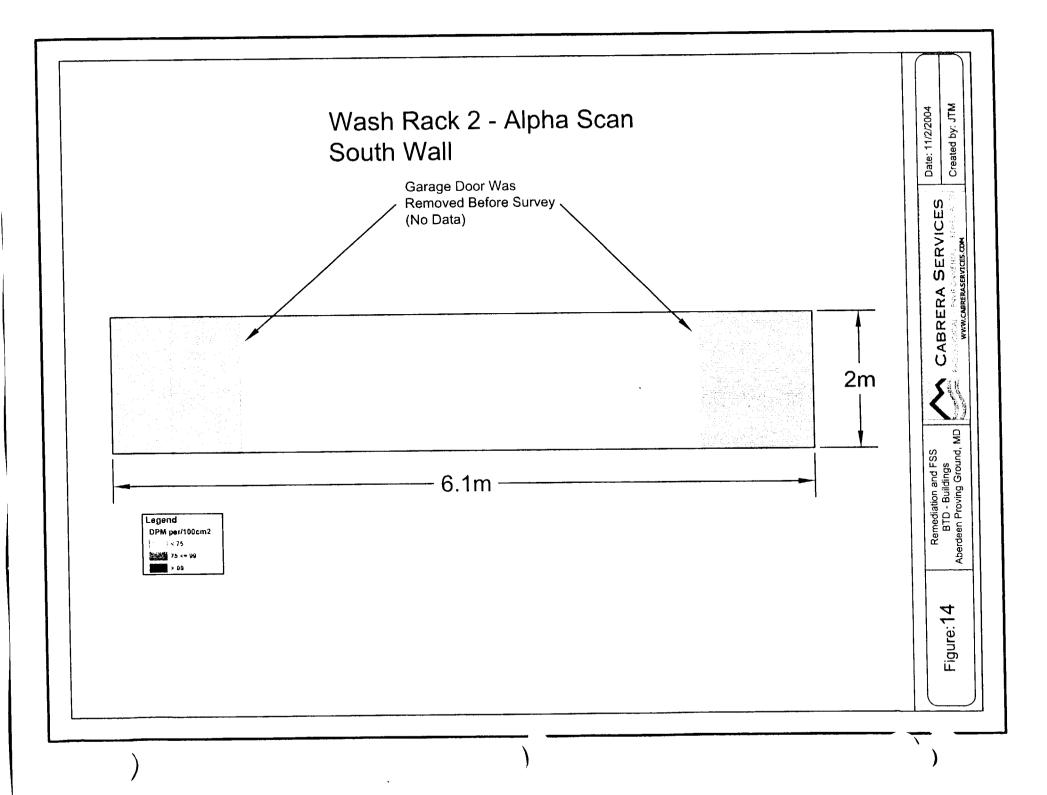

)

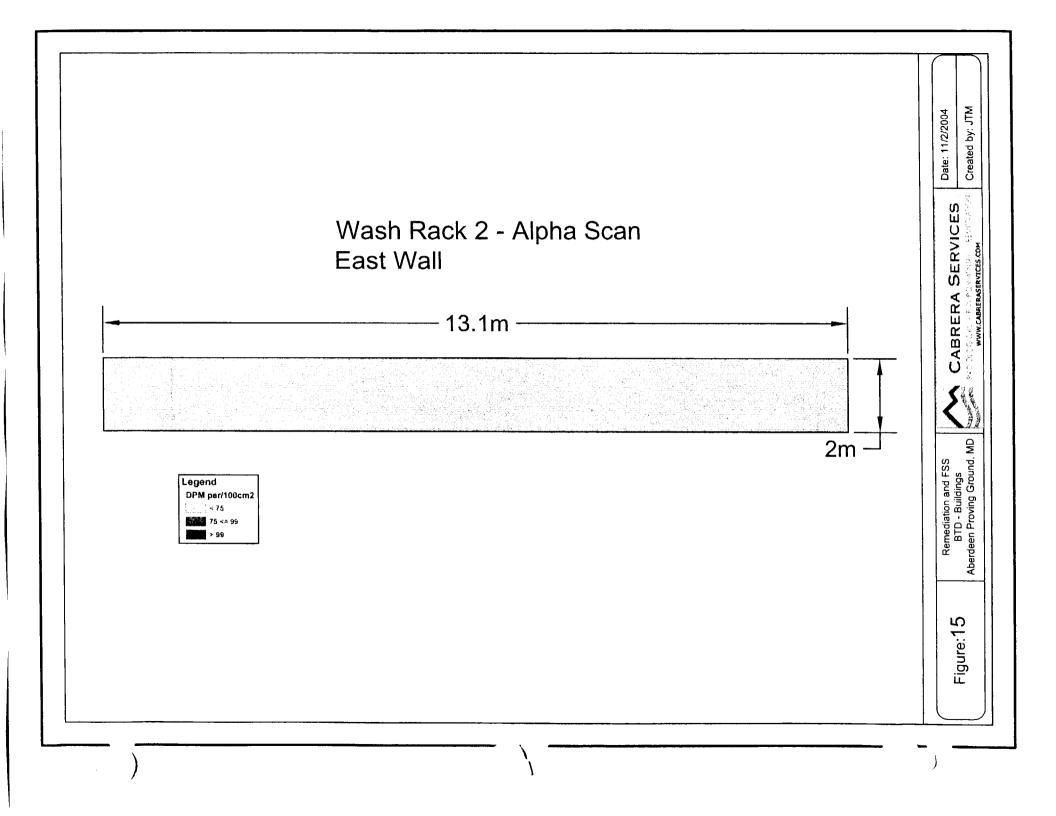


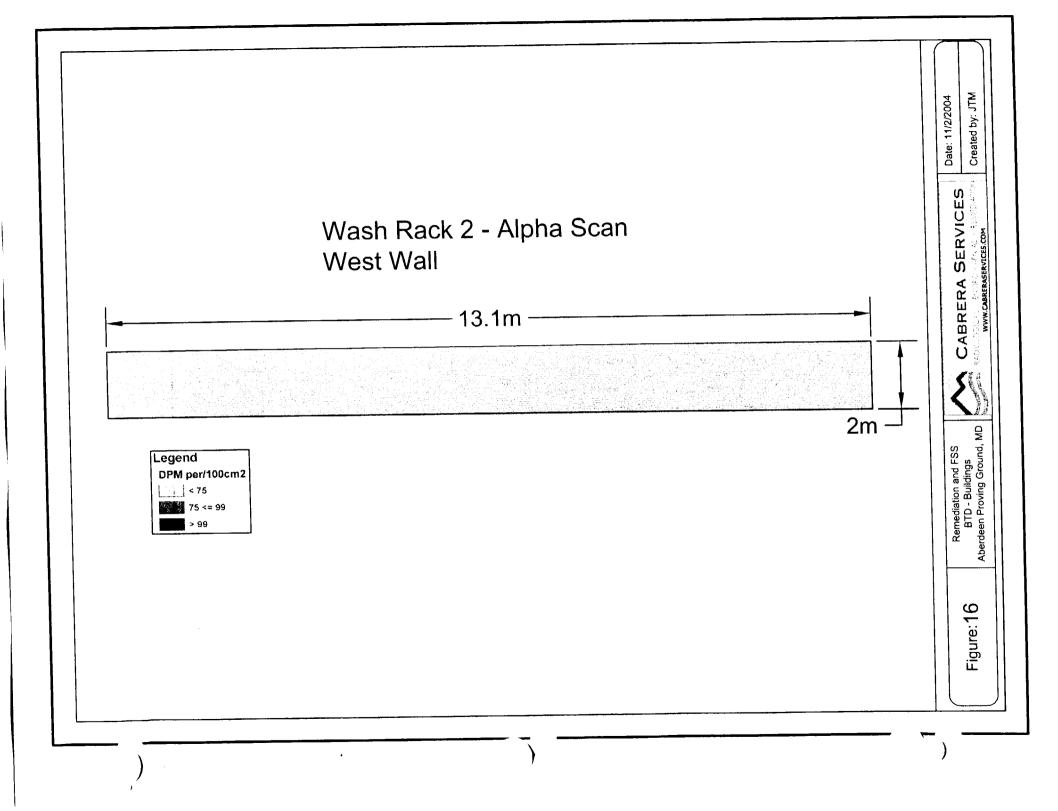


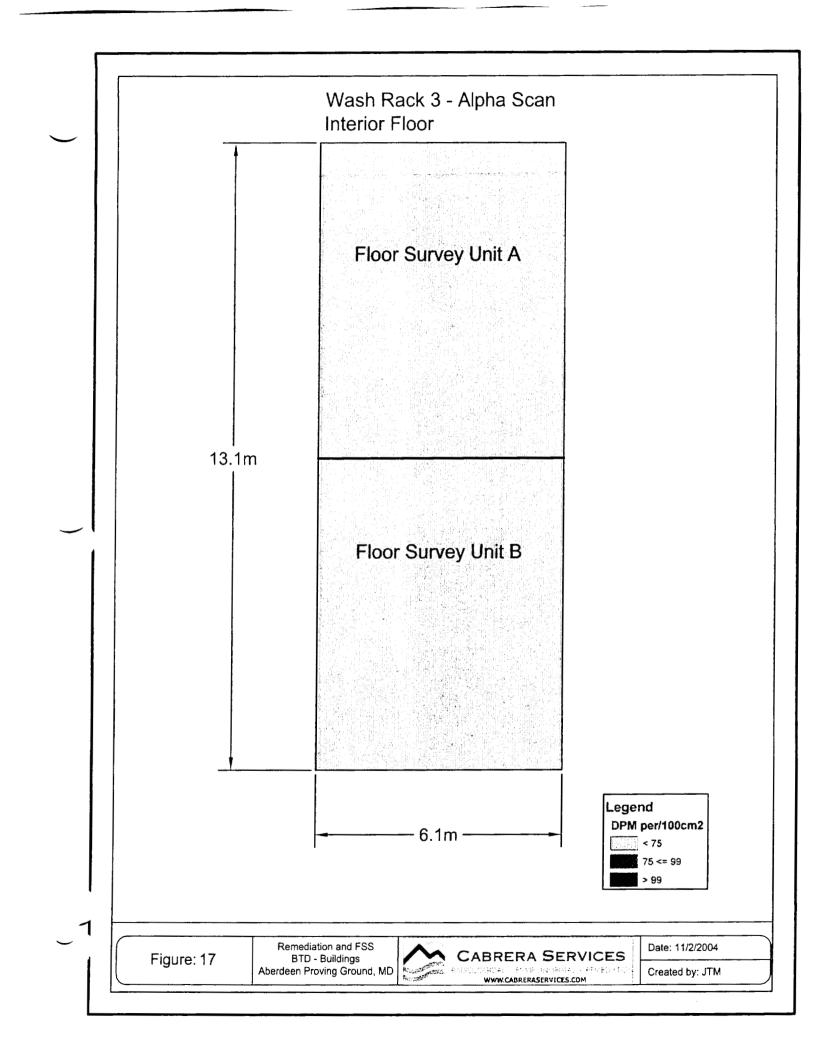


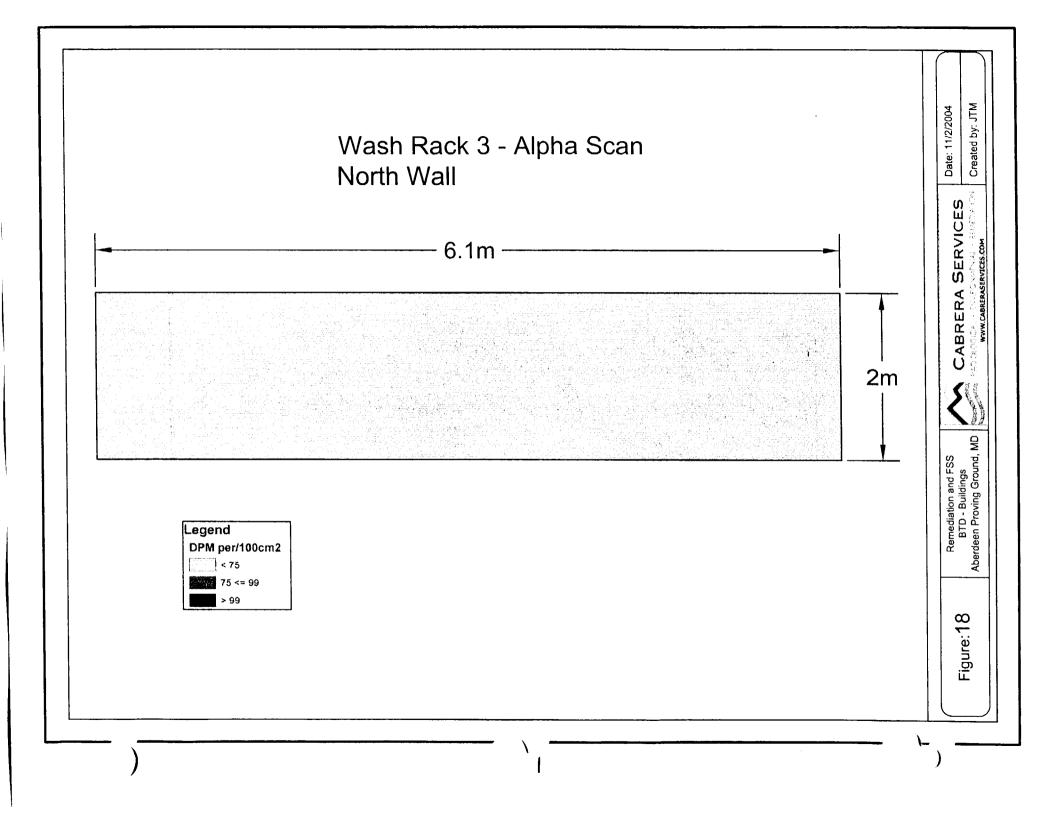


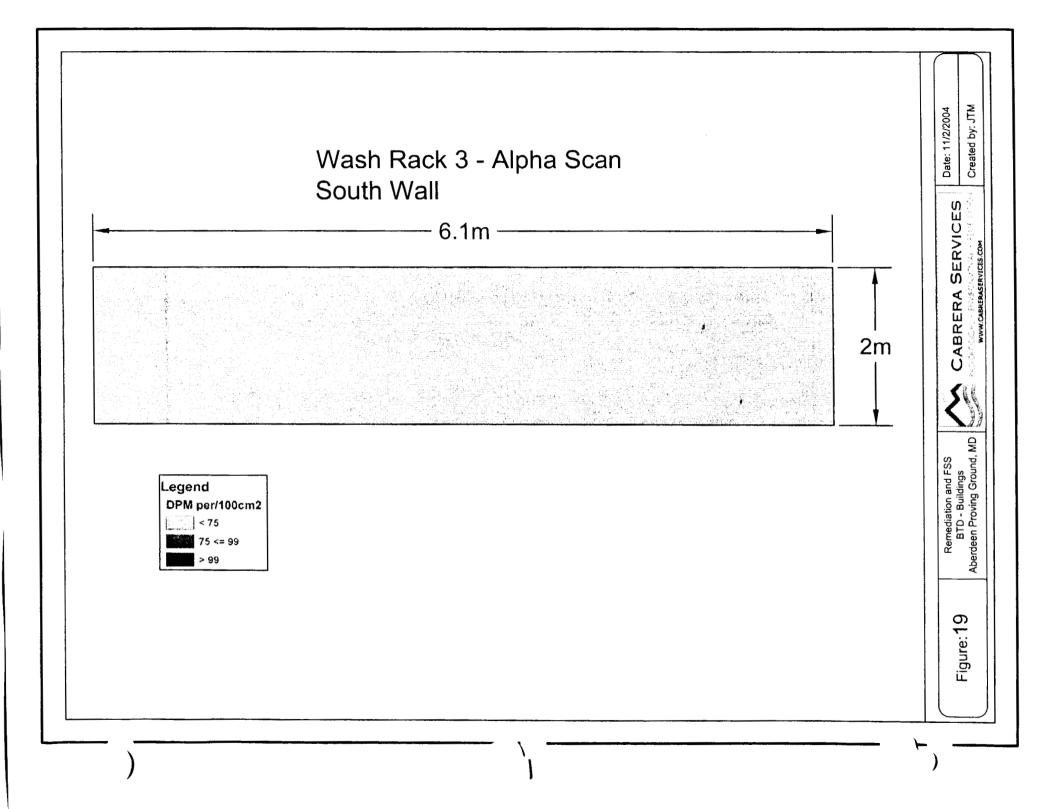


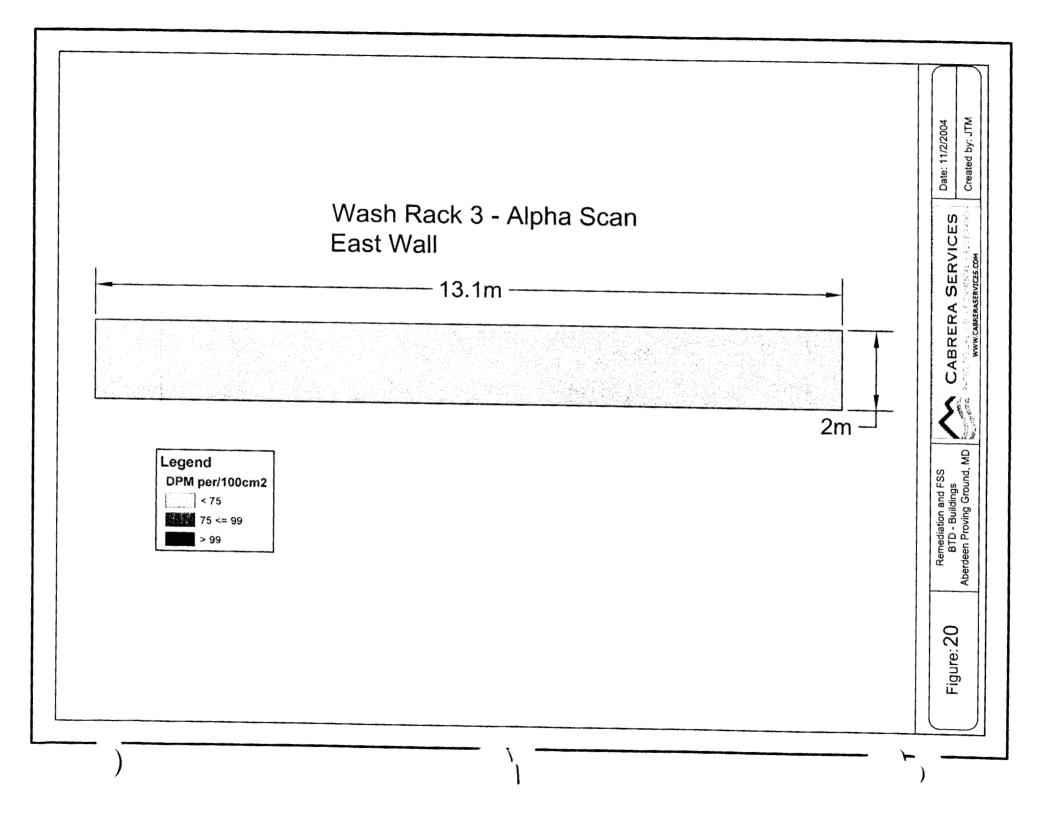


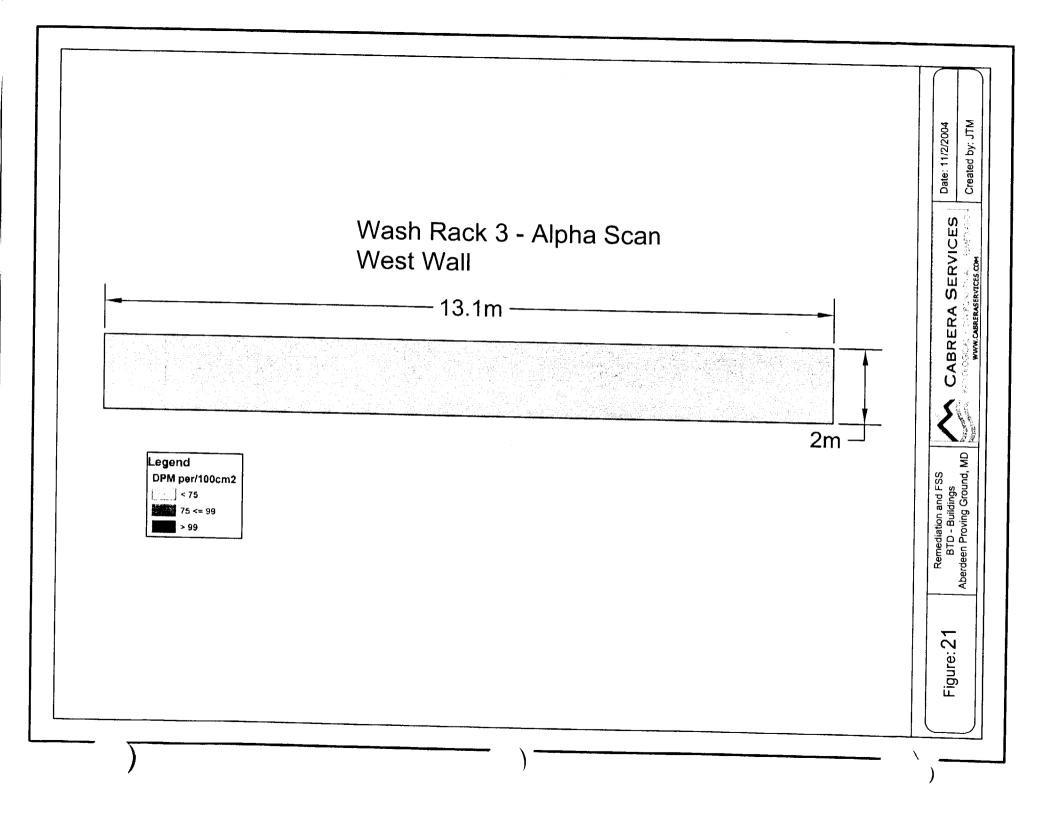


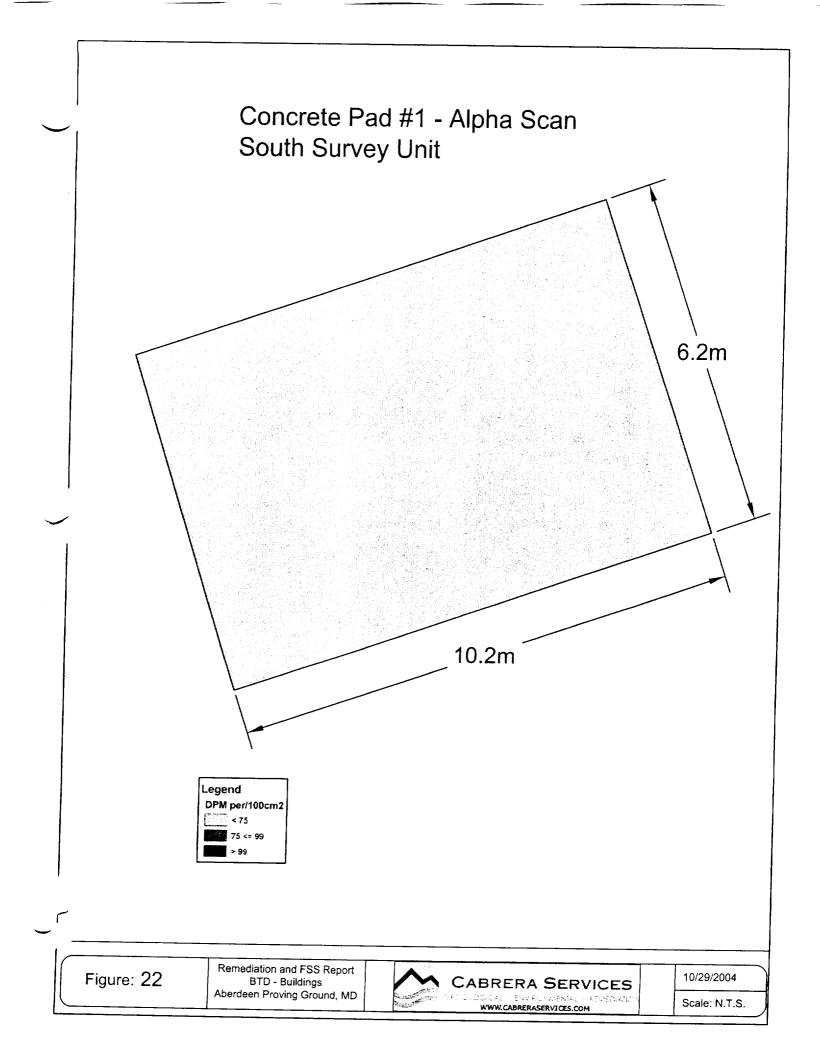


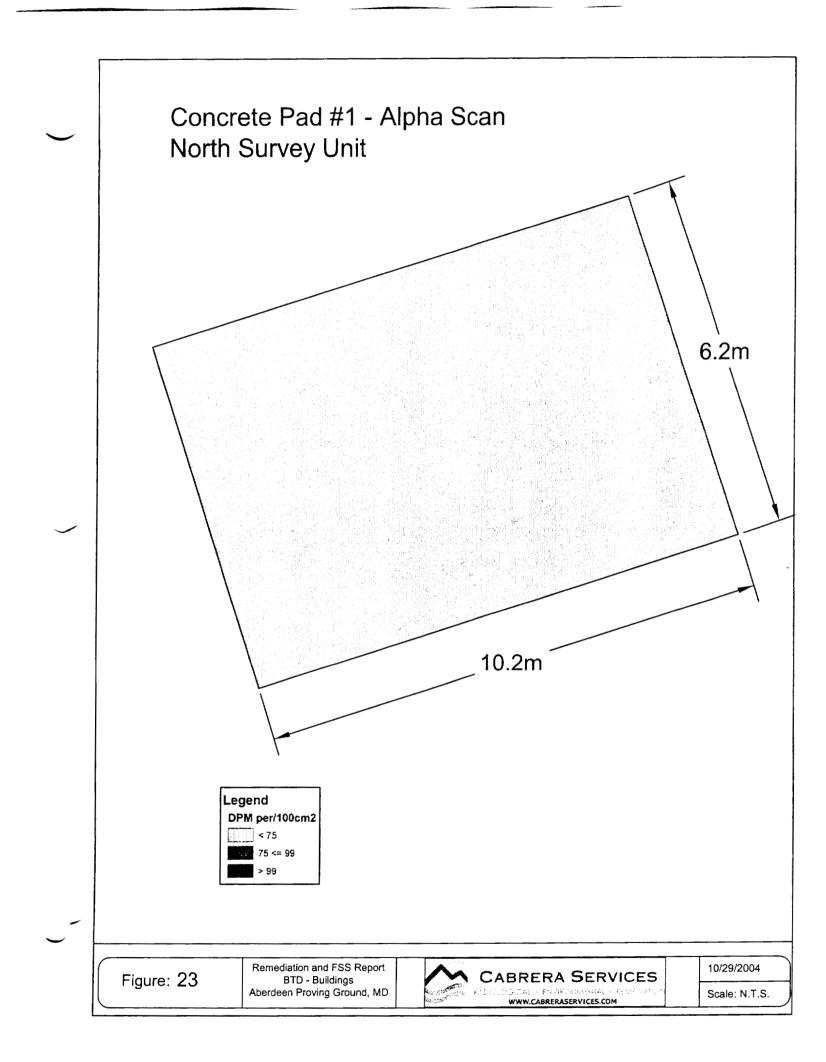


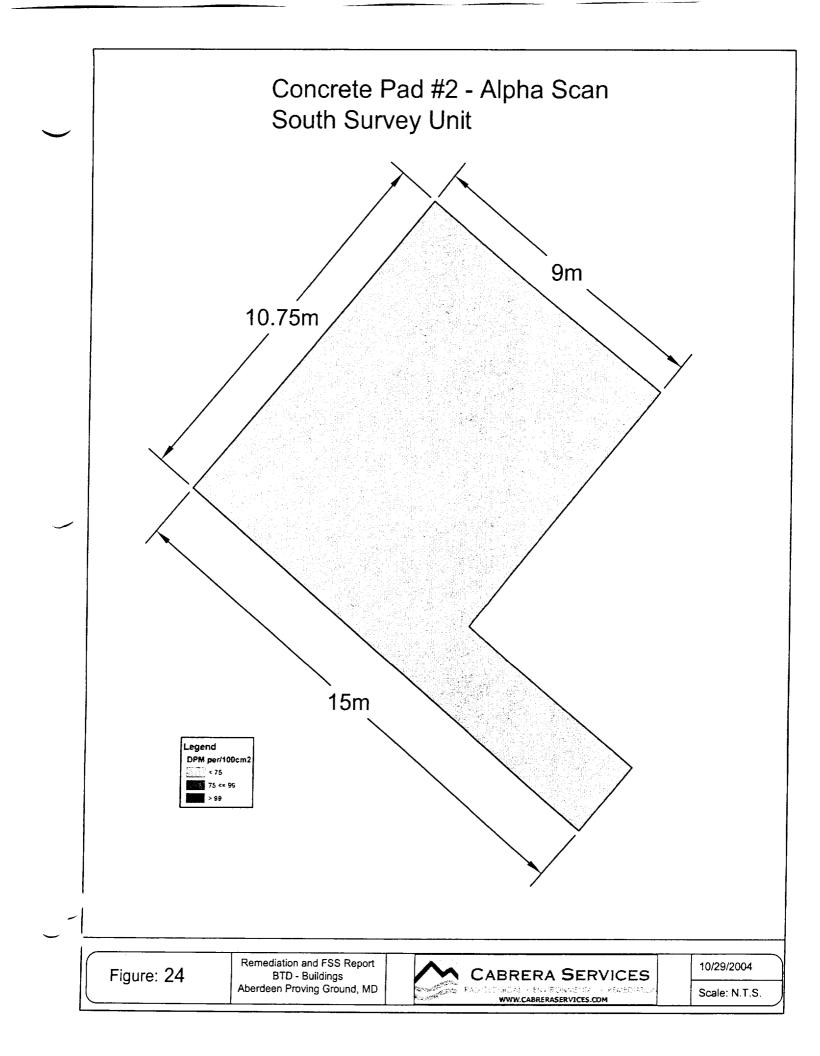


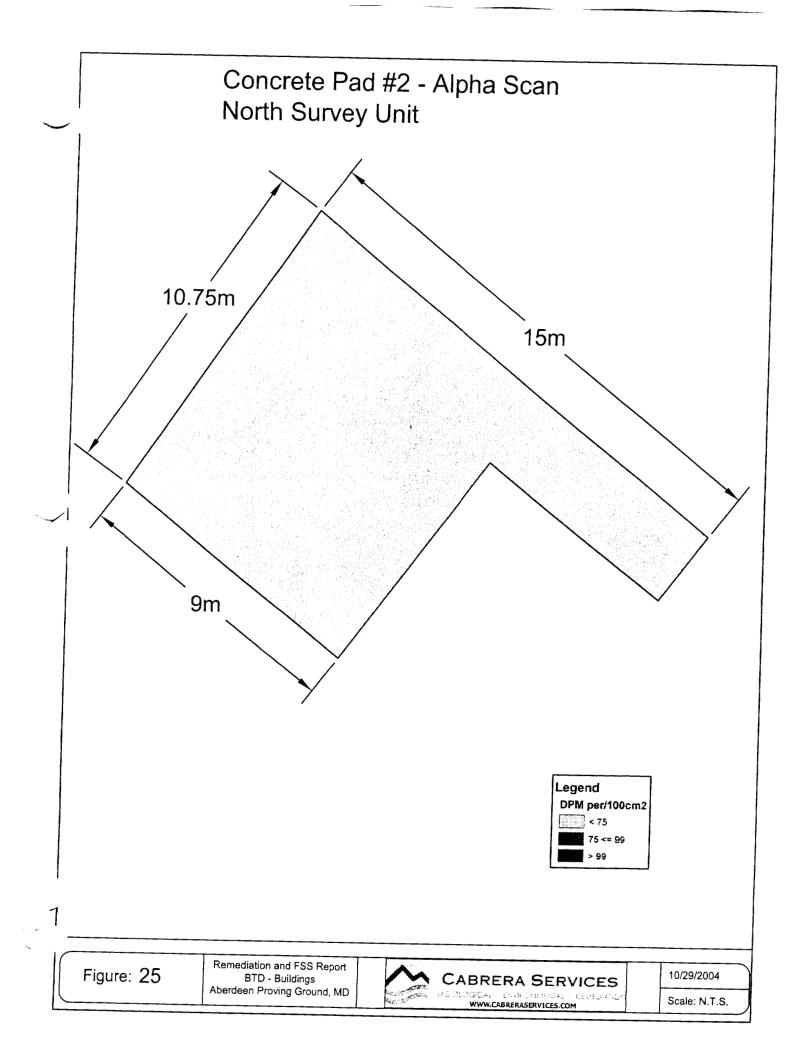


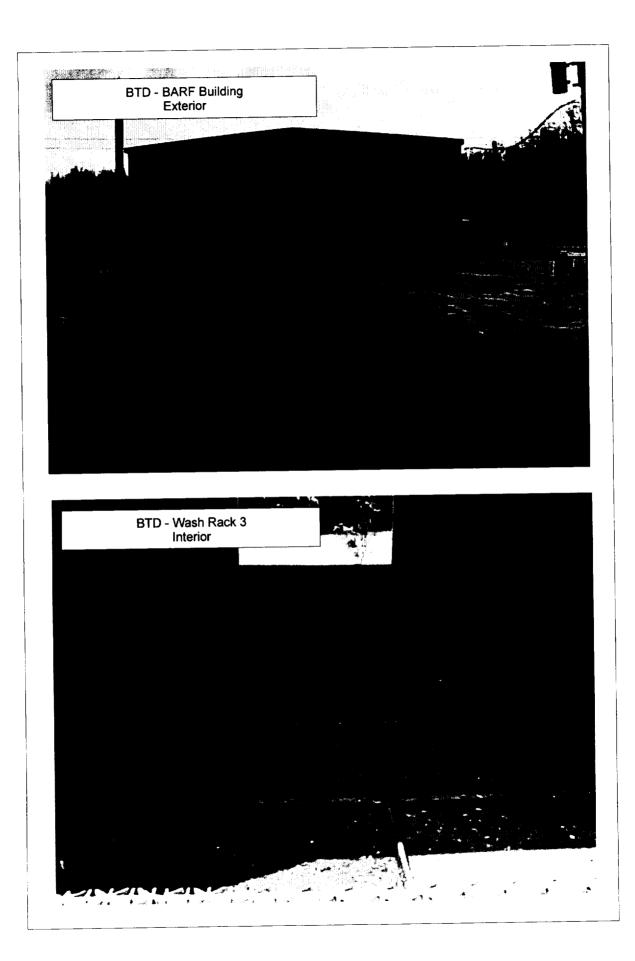


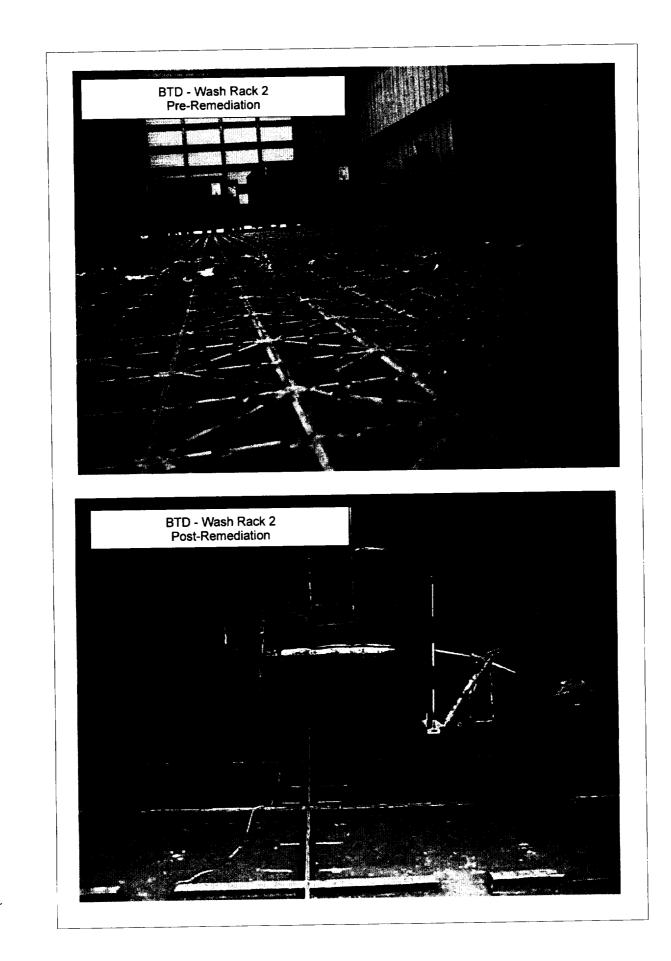


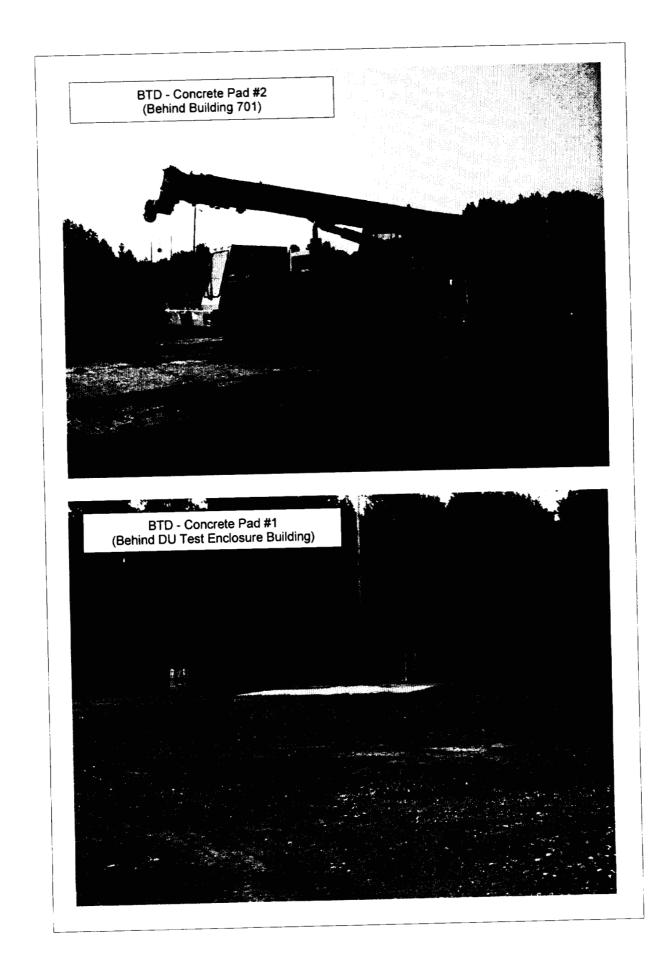











APPENDICES

Appendix A: Building Photographs

Appendix B: Final Status Survey Plan for BTD Armor Reclamation Facility, Aberdeen Proving Ground, Aberdeen, MD

Final Status Survey Plan For Bomb Throwing Device Armor Reclamation Facility Aberdeen Proving Ground, Aberdeen, MD

Contract Number DAAA09-00G-0002/0039

Prepared for:

U.S. Army Joint Munitions Command AMSIO-ACE-D Bldg., 350 5th Floor Rock Island, IL 61299-6000

Prepared by:

Cabrera Services, Inc. 809 Main Street East Hartford, CT 06108

> Cabrera Project No 01-3030.39

> > April 2003

BTD Armor Reclamation Facility

TABLE OF CONTENTS

<u>Sectio</u>	n Pag	<u>ze</u>
1.0	INTRODUCTION	. 1
1.1 1.2	General History General Approach to Building Investigation	. 1
2.0	SITE ASSESSEMENT	
2.1 2.2	General Areas for Investigation Radionuclides of Concern	. 2
3.0	SURVEY INSTRUMENTATION AND TECHNIQUES	
-	Surface Alpha Radioactivity Scan Surveys	3 4 5 6 6
4.0	FINAL STATUS SURVEY DESIGN	
4.1 4.2 4.3	Residual Radioactivity Limit (DCGL) Action Levels General Area Classification based on contamination potential	7 7
4.4	Number of Static Measurements I.4.1 Estimation of Relative Shift	8
4 4.5	I.4.2 Determination of N (Number of Required Measurement Locations) Elevated Measurement Criterion (DCGL _{EMC})	9 9
4.6 4.7	Surface Alpha Radioactivity Scan Surveys	10
4.8 4.9 4.1	Smear Sample Collection and Analysis 0 Gamma Exposure Rate Measurements	11 11
5.0	EQUIPMENT RELEASE	
5.1	Survey of Equipment for Release without Restriction	12
6.0	DATA PROCESSING	13
6.1	Project Electronic Data	13
7.0	SURVEY QUALITY ASSURANCE/QUALITY CONTROL	
7.2	 7.1.1 Calibration Requirements 7.1.2 Instrument QC Source and Background Checks Direct Alpha, Smear, and Exposure Rate Measurements 7.2.1 Duplicate Measurements 	14 15 16 16
8.0	REFERENCES	. 17

LIST OF TABLES

<u>Title</u>	Page
Table 3.1-1: Alpha Scan Assumptions	5
Table 3.2-1: Detector Sensitivities and Assumptions	5
Table 4.3-1: Survey Units	8

Final Status Survey Plan Aberdeen Proving Ground BTD Armor Reclamation Facility

LIST OF APPENDICES

Appendix A: Uranium 238 Decay Series

Appendix B: Army Regulation 11-9 Army Radiation Safety Program

Appendix C: Survey Unit Maps and Sample Locations

BTD Armor Reclamation Facility

ACRONYMS AND ABBREVIATIONS

	As Low As Researchly Ashiovable
ALARA	As Low As Reasonably Achievable
APG	Aberdeen Proving Ground
ATC	Army Test Center
BARF	BTD Armor Reclamation Facility
BTD	Bomb Throwing Device
CABRERA	Cabrera Services, Inc.
cpm	Counts Per Minute
DCGL or DCGLw	Derived Concentration Guideline Level
dpm	Disintegrations Per Minute
DU	Depleted Uranium
FSS	Final Status Survey
HSA	Historical Site Assessment
JMC	Joint Munitions Command
LBGR	Lower Bound of the Grey Region
LAB	Liquid Abrasive Blaster
MARSSIM	Multi-Agency Radiation Survey And Site Investigation Manual
MDC	Minimum Detectable Concentration
μR	Microroentgen
mrem	Millirem
NAD	Normalized Absolute Difference
NIST	National Institute of Standards and Technology
NRC	Nuclear Regulatory Commission
QA	Quality Assurance
QC	Quality Control
ROC	Radionuclides of Concern
SU	Survey Unit

1.0 INTRODUCTION

Cabrera Services, Inc. (CABRERA) is under contract to the United States Army Joint Munitions Command (JMC) to provide support to the Army Test Center (ATC) at the Aberdeen Proving Ground (APG) in Aberdeen, MD. The ATC intends to remove equipment used in the decontamination of steel plates within the BTD Armor Reclamation Facility (BARF). The decontamination equipment and ancillary support systems to be removed are part of a Liquid Abrasive Blaster (LAB). This document presents the plans for BARF Final Status Survey (FSS) activities, which are designed in accordance with Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (NRC, 2000) guidance. The FSS is a survey of the interior of the BARF. Areas outside the BARF interior walls, floor and ceiling and land areas surrounding the BARF will be addressed under a separate effort.

1.1 General History

APG is a Government-owned and operated testing facility in Aberdeen, MD. The ATC is a tenant activity located at APG. The ATC possesses a Nuclear Regulatory Commission (NRC) license (SUB 834) for the use of depleted uranium (DU) at APG. The ATC utilized the BARF to house the LAB. The LAB was an enclosed system used to decontaminate pieces of steel plate and other small objects with water jets and abrasive. A ventilation system with a pre-filter demister and a HEPA filter removed airborne particulates prior to ventilation release to the environment. A hopper attached to the LAB retained spent abrasive and removed contamination.

Steel plates slated for decontamination were brought to the LAB by fork lift and loaded in the LAB for decontamination. Since the LAB was operated as a closed system with HEPA ventilation the potential for spread of contamination was small. Routine radiation contamination surveys were performed in accordance with license requirements.

In addition, several small boxes of slightly contaminated trash were stored in the southern portion of the building. Several boxes of clean unused HEPA filters were also stored in this area. Routine surveys were performed on all boxes and containers stored in the area.

1.2 General Approach to Building Investigation

The site radiological investigations are designed using the approach outlined in MARSSIM (NRC, 2000).

- Assemble sufficient data to classify areas by contamination potential
- Estimate number of measurement locations
- Identify survey units
- Implement FSS

2.0 SITE ASSESSEMENT

2.1 General Areas for Investigation

The BARF is a steel beam sheet metal constructed building with insulated walls and roof covered with a flexible protective plastic cover. The floor is a concrete pad. The interior of the BARF is approximately 12 meters long by 14.8 meters wide with a ceiling height of 6 meters. The building is bisected by a sheetrock wall with doors leading from one side to the other. There are no drains, sumps, or ventilation system penetrations other than the LAB HEPA ventilation system. A small heating system with insulated ductwork, rollup doors for equipment entry, smaller doorways for personnel entry, and electrical circuit boxes are other general features found in the building.

The northern portion of the BARF contained the LAB decontamination equipment and a small capacity crane used to help lift and load steel plates into the LAB. The southern part of the building was used to store clean unused HEPA filters and small amounts of containerized contaminated trash. Routine radiation contamination surveys were provided on all floor areas within the BARF, on stored boxes and containers, and occasionally on wall surfaces.

No contamination was found on the LAB HEPA filter and areas downstream in the ventilation system ducts during removal of the LAB. Minor contamination was found within the LAB enclosure, the hopper which contained water and abrasive, the HEPA pre-filter, and small areas on the outside of the LAB enclosure near loading points. The lack of activity downstream of the HEPA filter indicates a well-designed system that did not release airborne radioactivity to the environs. Other general surveys do not show contamination on the walls of the BARF. Routine surveys showed only occasional activity on the floor areas surrounding the LAB. Surveys of selected areas in the overhead and on the crane are also negative with respect to contamination.

2.2 Radionuclides of Concern

Site Radionuclides of Concern (ROC) are limited to depleted uranium (DU) and short-lived uranium progeny (Appendix A). The uranium ratios are based on isotopic uranium weight ratios used for shipments of routine DU waste from APG (BARG, 1995). The activity fractions are calculated from the isotopic weight ratios and the specific activity of each uranium isotope. The result is a Uranium-234 (²³⁴U):Uranium-235 (²³⁵U):Uranium-238 (²³⁸U) ratio of 0.084:0.012:0.904. This composition is similar to the 0.190:0.021:0.790 average ratio from three DU soil samples described in the APG report (ANL 1999) entitled "Derived Uranium Guideline for the Depleted Uranium Study Area of the Transonic Range, Aberdeen Proving Ground, Maryland", Argonne National Laboratory Environmental Assessment Department, April 1999.

The calculated $DCGL_w$ for the ROC is 100 dpm of total uranium per 100 cm² that is calculated using the MARSSIM technique described in section 4.1.

BTD Armor Reclamation Facility

Final Status Survey Plan Aberdeen Proving Ground

3.0 SURVEY INSTRUMENTATION AND TECHNIQUES

The purpose of this section is to describe radiological survey instruments and techniques to be used for surveys that will be implemented during site radiological investigations. Specific measurement/sampling frequencies and approaches for FSSs are discussed in later sections.

3.1 Surface Alpha Radioactivity Scan Surveys

3.1.1 Eberline FCM4M and Ludlum Model 43-37

Surface scanning for alpha radioactivity will be performed to identify locations, if any, where contaminant concentrations exceed the criterion for unrestricted release. Alpha scanning will be performed on floor surfaces and lower walls using an Eberline FCM4M (active area of 728 cm²) gas proportional floor monitor, Ludlum Model 43-37 handheld (active area of 582 cm²) gas proportional detector, or equivalent. Using MARSSIM equation J-7 and the assumptions listed in Table 3.1-1 (scan speeds, background, efficiency, dwell times, etc), the probabilities of two or more counts occurring during the survey of a contaminated area equal to the derived concentration guideline (DCGL_W) may be computed from:

P(n ≥ 2) = 1 – P(n = 0) – P(n = 1) (MARSSIM Equation J-7)
= 1 –
$$(e^{-A}) \times (1 + A)$$

for A =
$$\frac{(GE + B)t}{60}$$

where

P(n ≥ 2)	=	probability of getting 2 or more counts during the time interval t
P(n = 0)	=	probability of not getting any counts during the time interval t
P(n = 1)	=	probability of getting 1 count during the time interval t
G	=	source activity (dpm)
E	=	detector efficiency (4π)
В	=	background count rate (cpm)
t	=	dwell time over source (seconds)

Alpha scanning will be performed with these instruments by moving the active area of the detector over the surface of interest at or below the given scan speed (Table 3.1-1). If two or more counts occur over the observation interval (Table 3.1-1), a one-minute integrated measurement will be performed at that location prior to scanning being resumed. If the result of the integrated measurement is in excess of the release criteria action level (Section 4.2), the area will be marked for biased measurements and investigated by the Field Supervisor.

3.1.2 Ludlum Model 43-89

Upper wall and ceiling surfaces may not be readily scanned using a Ludlum 43-37 handheld gas proportional counter due to potential long gas delivery tubing lines. These areas are class 3 areas having 10 percent of their areas scanned and may alternatively be scanned with a Ludlum Model 43-89 hand held (active area 126 cm²) alpha scintillation detector, or equivalent. If the Ludlum Model 43-89 alpha scintillation detector is used, then MARSSIM equation J-5 and the assumptions listed in Table 3.1-1, with a probability of at least one count occurring while surveying an area of contamination equal to the DCGL_W P(n \ge 1), will be implemented instead of MARSSIM equation J-7. Using MARSSIM equation J-5 and the assumptions listed in Table 3.1-1 (scan speeds, background, efficiency, dwell times, etc), the probability that a single count is sufficient to cause a surveyor to stop and investigate further is:

$$P(n \ge 1) = 1 - P(n = 0) = 1 - e^{-A}$$
 (MARSSIM J-5)

for A =
$$\frac{\text{GEd}}{60\text{v}}$$

where,

 $P(n \ge 1)$ probability of getting 1 or more counts during the time interval t = P(n = 0) =probability of not getting any counts during the time interval t G source activity (dpm) = E detector efficiency (4π) = width of the detector in the direction of scan (cm) d = v = scan speed (cm/s)

Alpha scanning will be performed using the Ludlum Model 43-89 detector by moving the active area of the detector over the surface of interest at the given scan speed and assumptions shown in Table 3.1-1. Whenever a count is detected during the scan, the detector will be held in place over the location where the count was detected for approximately for the duration of the pause time (approximately 7-8 seconds). If a second count is detected over this location during the pause time, a two minute integrated count will be performed. If the result of the integrated measurement is in excess of the release criteria (Section 4.1), the area will be marked for biased measurements and investigated by the Field Supervisor. For all instruments, scanning will be performed with the active area of the detector at a height of 0.5 cm above the surface of interest.

To assist in scanning, grids will be marked on surfaces requiring a surface scan. Grids on the floor and lower walls will be one square meter in area. Areas of elevated radioactivity identified during scanning will be physically marked and biased integrated measurements will be performed to quantify surface alpha activity concentrations.

Model #	Probe Area (cm ²)	Probe Width (cm)	a Efficiency (cpm/dpm)	a Bkgrd (cpm)	Scan Speed (cm/sec)	Pause Time (sec)	P(n>=1)	Dwell Time (sec)	P(n>=2)
FCM4M	728	15	0.15	10	7.5	NA	NA	2.0	0.91
43-37	582	15	0.15	10	6	NA	NA	2.5	0.91
43-89	126	9	0.15	3	1	7.3	0.90	NA	NA

Table 3.1-1: Alpha Scan Assumptions

3.2 Integrated Direct Surface Alpha Radioactivity Measurements

Integrated direct measurements (i.e., static measurements) of surface alpha radioactivity will be performed during FSSs to compare contaminant concentrations at discrete sampling locations to the release criterion and facilitate statistical testing. Interior surfaces will be cleaned prior to surveying to remove dirt and grime that could shield alpha emissions from surfaces of interest. The cleaning implements used and the wastes generated during cleaning will be collected and stored on site and disposed in accordance with the contaminants found. Integrated measurements of floors and walls will be performed using a Ludlum Model 43-37 handheld (active area of 582 cm²) gas proportional detector, Eberline FCM4M (detector surface area of 728 cm²) gas proportional floor monitor, Ludlum Model 43-89 hand held (active area 126 cm²) alpha scintillation detector, or equivalent. The estimated detector sensitivities and assumptions used for each of the detectors are presented in Table 3.2-1.

Static measurements will be performed in accordance with CABRERA procedures OP-020 "Operation of Contamination Survey Meters," Rev 0, and OP-021 "Alpha-Beta Counting Instrumentation," Rev 0, and CABRERA standard radiation instrumentation templates "Alpha Beta Counting and Smear Worksheet", Rev 1. Prior to use, FSS instrumentation will be checked for expected response using a Chi-Square distribution utilizing the CABRERA template "Chi-Square Worksheet", Rev 0.

The net count rate using the referenced templates will be determined as the difference between the measurement countrate and the daily background countrate measured prior to use.

Model #	Count Time (min)	Probe Area (cm ²)	a Efficiency (cpm/dpm)	a Background (cpm)	c. Static MDC (dpm / 100 cm ²)
FCM4M	1	728	0.15	10	16
43-37	1	582	0.15	10	20
43-89	2	126	0.15	3	30
2929	4	swipe	0.30	0.5	5

Table 3.2-1: Detector Sensitivities and Assumptions

3.3 Smear Sample Collection and Analysis

Smear samples for gross transferable alpha contamination will be collected and analyzed to determine if transferable activity is less then 10% of total activity as assumed in the release criterion and to ensure compliance with the equipment release criterion of Army Regulation (AR) 11-9 presented in Appendix B.

Smear samples will be collected over approximately 100 cm^2 areas at biased locations identified during scanning activities, and at other biased locations such as overhead ductwork. Smear samples will be analyzed for alpha radioactivity using a Ludlum 2929 alpha/beta scintillation counter or equivalent in accordance with CABRERA procedure *Alpha Beta Counting Instrumentation, Rev 0.* Based on the assumptions listed in Table 3.2-1, an alpha MDC of 5 dpm/100cm2 will be achieved.

3.4 Gamma Dose Rate Measurements

Gamma dose rate measurements may be qualitatively performed during the FSSs to ensure worker health and safety and to identify unusual dose rate conditions. Measurements will be performed using a Bicron[®] MicroRem tissue-equivalent scintillation detector, or equivalent, and will be performed in accordance with CABRERA Procedure OP-023, *Operation of micro-R Meters, Rev 0.* Measurements will be performed using the "slow" response time constant setting. The detector will be positioned over the area of interest and allowed to stabilize prior to recording the measurement. The technician will use their judgment to determine when the instrument has stabilized, it is estimated that this will take at least 15 seconds. Such measurements will typically be performed at 1 meter from and/or on contact with the surface being evaluated.

3.5 Volumetric Samples and Analysis

Volumetric samples may be collected from areas of interest (e.g., ventilation) for analysis by alpha spectroscopy for isotopic uranium. If samples are collected to quantify surface activity concentrations, the area over which the sample is collected will be noted so laboratory results can be converted into units of dpm/100cm². Volumetric samples will be collected in accordance with CABRERA procedure *OP-005 Volumetric and Material Sampling, rev 0*. Samples will be sent to Paragon Analytics, Inc. for analysis and analyzed in accordance with Paragon's standard operating procedure.

4.0 FINAL STATUS SURVEY DESIGN

The FSS to be performed at the BARF is designed in accordance with Final Status Survey guidance from MARSSIM (NRC, 2000). FSS activities will consist of gross alpha scan surveys and integrated measurements on interior surfaces at frequencies based on MARSSIM guidance. The FSS is designed conservatively in that the radiological background present in survey materials (i.e., concrete floor) will be neglected and the measure of total activity will be used for statistical comparisons to release criteria. Survey activities will also include biased smear sample collection and the performance of gamma dose rate measurements. Biased survey measurements may be performed on building systems (e.g., ventilation) and additional analysis of samples by alpha spectroscopy may be performed. MARSSIM area classifications will be reviewed and possibly revised based on the results of these surveys.

4.1 Residual Radioactivity Limit (DCGL)

As described by MARSSIM, a DCGL is a derived radionuclide activity concentration within a survey unit that corresponds to a release criterion. Per the license requirement of 10CFR20 Subpart E, a release criterion of 25 mrem/yr per year will be used for the BARF. Doses from residual radioactivity will be kept as low as reasonably achievable (ALARA) whenever possible. Using MARSSIM Section 4.3.4, the equation below, and knowing that there is one alpha decay per decay of each uranium isotope, a single total uranium DCGL_w of 100 dpm alpha/100cm² was derived for DU. This DCGL_w was calculated using the values provided by the NRC screening guidelines of 90.6 dpm/100cm², 97.6 dpm/100cm², 101 dpm/100cm² and for U²³⁴, U²³⁵, and U²³⁸, respectively, as presented in Table 5.19 of NUREG/CR-5512, volume 3, October 1999 and the DU activity fractions as presented in Section 2.2 of this FSS.

$$DCGL_{W} = \frac{1}{\left(\frac{f_{1}}{DCGL_{1}}\right) + \left(\frac{f_{2}}{DCGL_{2}}\right) + \left(\frac{f_{3}}{DCGL_{3}}\right)}$$

Where: $DCGL_w$ = Combined gross activity DCGL (i.e., release limit).

f = Activity fraction of radionuclide

DCGL = DCGL of radionuclide

4.2 Action Levels

The total uranium $DCGL_W$ of 100 dpm alpha/100cm² will be used conservatively as the action level for both static and scanning measurements. If any survey measurement results in readings above the $DCGL_W$, the Field Supervisor shall be notified and the detector and survey location shall be evaluated. Following evaluation, a follow-up measurement shall be performed at the measurement location to verify the initial result.

4.3 General Area Classification based on contamination potential

Using MARSSIM Section 5.3 as guidance, the BARF will initially be subdivided into four Class 1 Survey Units (SUs) and one Class 3 SU as listed in Table 4.3-1. The initial classifications are

based on contamination potential and area size. MARSSIM recommends that interior Class 1 SUs be less than 100 square meters in size and each of the four Class 1 SU range from 77.6 m² to 88.8 m². The floor and lower walls of the northern room of the BARF share similar contamination potential because this area housed the LAB decontamination equipment and was where the decontamination process was performed. Although the lab system was self-contained and surveys did not routinely identify transferable contamination on the floor or walls, contaminated materials were moved through this room via the south rollup door to be loaded in and out of the LAB system. In accordance with MARSSIM guidance, the south room floor and lower walls will initially be considered Class 1 SUs as well because this area was once used to store containerized contaminated trash.

MARSSIM does not specify area limits on Class 3 SUs. Since the upper wall and ceiling surfaces of the north and south rooms share similar potential for contamination, these areas were combined into one Class 3 SU. The potential for contamination on the upper walls and ceiling surface in the north room is small because no contamination was identified on the LAB HEPA filter or at downstream areas in the ventilation system. The lack of activity downstream of the HEPA filter indicates a well-designed system that did not release airborne radioactivity to the environs. In addition, transferable contamination was not identified during routine surveys in the BARF and the primary mechanism for transport (i.e., ventilation system) was not contaminated.

Maps presenting the BARF SU delineations and the reference coordinate system are presented in Appendix C.

SU #	Description	Area (m ²)	Material	Class
SU 1	North Room Floor	88.8	Concrete	1
SU 2	South Room Floor	88.8	Concrete	1
SU 3	North Room Lower Wall	76.6	Foam / Sheet Metal	1
SU 4	South Room Lower Wall	76.6	Foam / Sheet Metal	1
SU 5	Ceilings and Upper Walls	488	Foam / Sheet Metal	3

Table 4.3-1: Survey Units

4.4 Number of Static Measurements

MARSSIM discusses a method to determine the number of measurement locations required in a given survey unit. A minimum number of measurement locations are required in each survey unit to obtain sufficient statistical confidence that the conclusions drawn from the measurements are correct. The following subsections describe the bases for and derivation of the minimum required measurement locations per survey unit.

4.4.1 Estimation of Relative Shift

The minimum number of measurement locations required is dependent on the distribution of site residual radionuclide concentrations relative to the DCGL_w and acceptable decision error limits (α and β).

The relative shift describes the relationship of site residual radionuclide concentrations to the $DCGL_w$ and is calculated using the following equation, found in Section 5.5.2.3 of MARSSIM. The relative shift is calculated as follows:

$$\Delta / \sigma = \frac{DCGL_{w} - LBGR}{\sigma}$$

Where: $DCGL_w$ = the DCGL (i.e., release limit).

- LBGR = concentration at the lower bound of the gray region. The Lower Bound of the Grey Region (LBGR) is the concentration to which the survey unit must be cleaned in order to have an acceptable probability of passing the statistical tests.
- σ = an estimate of the standard deviation of the concentration of residual radioactivity in the survey unit (which includes real spatial variability in the concentration as well as the precision of the measurement system).

As previously stated, the DCGL_w for surface alpha radioactivity is 100 dpm/100cm². The LBGR was conservatively estimated at 70 dpm alpha/100 cm² based on previous studies with similar instruments on concrete. Without prior survey, it is reasonable to assume a coefficient of variation on the order of 30 percent (MARSSIM Section 5.5.2.2). Using a coefficient of variation of 30 percent and the LBGR as an estimate of the sample mean, a sigma value of 21 dpm/100cm² is obtained. Using the parameters discussed above, the relative shift is calculated as 1.4.

4.4.2 Determination of N (Number of Required Measurement Locations)

The final number of required measurement locations per survey unit is 20 as per MARSSIM (Table 5.5) given a relative shift of 1.4 and an error rate for both Type I and Type II errors of five percent (i.e., $\alpha = \beta = 0.05$). The actual number of measurements to be performed in each survey unit ranges from 20 to 24 samples based on the size of the survey area (Section 4.6).

4.5 Elevated Measurement Criterion (DCGL_{EMC})

MARSSIM states that, for Class 1 survey units, a dose area factor should be used to evaluate the magnitude by which the concentration within a small area of elevated activity can exceed the $DCGL_w$ while maintaining compliance with the release criterion. For the purpose of ALARA, the $DCGL_W$ will be used as the $DCGL_{EMC}$ which corresponds to an area factor of one. Since the scan MDC of the instrumentation is sensitive enough to identify the $DCGL_W$ at least ninety percent of the time, it is unlikely that small areas of elevated activity exceeding the release criterion would be missed during scanning.

Final Status Survey Plan Aberdeen Proving Ground

4.6 Static Measurement Locations

Measurement locations in Class 1 survey units have been established using a random start point in a systematic rectangular grid. The grid spacing for Class 1 survey units will be determined, based on the measured area of the survey unit, using the following equation (Equation 5-7 from MARSSIM).

$$L = \sqrt{\frac{A}{N}}$$

Where: L = rectangular grid spacing for survey unit A = area of survey unit N = number measurement locations

Measurement spacing results (L) using the equation above, 20 systematic static measurement locations, and the area of the Class 1 survey units presented in Section 4.3 ($77.6m^2$ and $88.8m^2$) results in a measurement spacing of approximately 2m. Maps presenting the BARF SU delineations and the reference coordinate system are presented in Appendix C.

In accordance with MARSSIM, static measurement spacing for the Class 3 SU will be performed at random locations. Maps presenting the BARF SU delineations and the reference coordinate system are presented in Appendix C.

4.7 Surface Alpha Radioactivity Scan Surveys

Class 1 SU scan surveys will be performed as described in Section 4.1 and will cover 100% of reasonably accessible surfaces. Areas of elevated radioactivity identified during scanning will be physically marked and biased integrated measurements will be performed to quantify surface alpha activity concentrations for direct comparison to the DCGL_W. Survey areas in excess of the DCGL_W will be investigated by the Field Supervisor and flagged for additional biased sampling (e.g. smear sampling, alpha spectroscopy).

Scan surveys in Class 3 SUs will cover at least 10% of surface areas and, when possible, will be biased toward areas with high potential for the presence of contamination. Examples of areas with potentially higher concentrations of contamination include ventilation intake and exhaust ports and areas where DU contamination may have settled from the air, such as ceiling trusses and joints. Areas of elevated radioactivity identified during scanning will be physically marked and biased integrated measurements will be performed to quantify surface alpha activity concentrations for direct comparison to the DCGL_W. Since contamination is not expected in Class 3 areas, any biased measurements confirmed to be in excess of the DCGL_W will trigger investigation by the Field Supervisor and a re-evaluation of the area classification.

Final Status Survey Plan Aberdeen Proving Ground

4.8 Integrated Direct Surface Alpha Radioactivity Measurements

Measurements of surface alpha radioactivity will be performed in SUs at locations selected for MARSSIM statistical testing and at biased locations identified prior to and during scanning activities. Such measurements will be performed as described in Section 3.2.

4.9 Smear Sample Collection and Analysis

Smear samples will be collected at biased survey locations and at least 10% of systematic survey locations. Smear samples will be collected as described in Section 3.3.

4.10 Gamma Exposure Rate Measurements

Gamma exposure rate measurements may be performed to ensure worker safety and to identify unusual exposure rate conditions. Gamma exposure rate measurements will be performed as described in Section 3.4.

5.0 EQUIPMENT RELEASE

5.1 Survey of Equipment for Release without Restriction

Certain equipment present inside the BARF may need to be surveyed for consideration of release without restriction. If necessary, CABRERA will follow the surface release limits of 1,000 dpm/100 cm² of DU alpha activity per Army Regulation 11-9 *The Army Radiation Safety Program.* It is expected that all final release surveys of equipment will be performed by the licensee and these surveys will follow APG procedures. If CABRERA performs these release surveys for APG, then CABRERA will follow the APG procedures.

6.0 DATA PROCESSING

For this FFS, it is essential that all significant events be documented and retained for future reference. While many types of project events have specific forms on which they are documented, many events occur on a routine basis during survey field activities that must be documented as they occur. Additionally, project data transactions must also be recorded as they occur. To provide a practical means of capturing this information, a project logbook will be initiated upon project commencement.

Significant project events, including data transactions involving project electronic data, shall be recorded in the Project Logbook. Data transactions are defined as any transfer, download, export, copy, differential correction, sort, or other manipulation performed on project electronic data. Project Logbook records shall be sufficient to allow data transactions to be reconstructed after the project is completed. The Field Supervisor shall be responsible for maintaining the Project Data Logbook and will review the Project Data Logbook at least daily to report significant issues.

The Project Logbook is considered a legal record and will be permanently bound and the pages will be pre-numbered. Pages may not be removed from the logbook under any circumstances. Entries shall be legible, factual, detailed, and complete and shall be signed and dated by the individual(s) making the entries. If a mistake is made, the individual making the entry shall place a single line through the erroneous entry and shall initial and date the deletion. Under no circumstances shall any previously entered information be completely obliterated. Use of whiteout in the Project Logbook is not permitted for any reason. Only one Project Logbook will be maintained. If a Project Logbook is completely filled, another volume shall be initiated. In this case, each volume shall be sequentially numbered.

6.1 **Project Electronic Data**

Much of this FSS will rely on data collected and stored electronically. Electronic data is subject to damage and/or loss if not properly protected. As such, all project electronic data shall be downloaded from its collection device (e.g., laptop computers, data loggers, etc.) on at least a daily basis. At the conclusion of each day's survey activities, the Field Supervisor shall back up all electronic data collected that day to appropriate removable media (e.g., CD, zip disk, or equivalent) and shall ensure the backup is removed from site. Under no circumstances shall the backup be stored in the same building in which the original project electronic data is stored.

Data files shall be named according to a naming protocol designated by the field supervisor. No variations from this protocol shall occur without the prior concurrence of the field supervisor. During data download and transfer transactions, the applicable data file name(s) shall be included in project data logbook entries.

7.0 SURVEY QUALITY ASSURANCE/QUALITY CONTROL

Activities associated with this work plan shall be performed in accordance with written procedures and/or protocols in order to ensure consistent, repeatable results. Topics covered in project procedures and protocols may include proper use of instrumentation, Quality Control (QC) requirements, equipment limitation, etc. Quality Assurance (QA) measures for this FSS are described herein.

7.1 Instrumentation Requirements

The Field Supervisor is responsible for determining the instrumentation required to complete the requirements of this work plan. Only instrumentation approved by the Field Supervisor will be used to collect radiological data. The Field Supervisor is responsible for ensuring individuals are appropriately trained to use project instrumentation and other equipment, and that instrumentation meets the required detection sensitivities. Instrumentation shall be operated in accordance with either a written procedure or manufacturers' manual, as determined by the Field Supervisor. The procedure and/or manual will provide guidance to field personnel on the proper use and limitations of the instrument.

7.1.1 Calibration Requirements

Instruments used during the FSS shall have current calibration/maintenance records kept on site for review and inspection. The records will include, at a minimum, the following:

- name of the equipment
- equipment identification (model and serial number)
- manufacturer
- date of calibration
- calibration due date

Instrumentation shall be maintained and calibrated to manufacturers' specifications to ensure that required traceability, sensitivity, accuracy and precision of the equipment/instruments are maintained. Instruments will be calibrated at a facility possessing appropriate NRC and/or Agreement State licenses for performing calibrations using National Institute of Standards and Technology (NIST) traceable sources.

7.1.2 Instrument QC Source and Background Checks

Prior to and after daily use, alpha and gamma measuring instruments will be QC checked by comparing the instruments' response to a designated alpha or gamma radiation source and to ambient background. QC source checks will be performed with the designated source positioned in a reproducible geometry. Background checks will be performed in an identical fashion with the source removed. During QC checks, instruments will be inspected for physical damage, current calibration and erroneous responses. The individual performing these tasks shall document the results in accordance with the associated instrument procedure and/or protocols. Instrumentation that does not meet the specified requirements of calibration, inspection, or response check will be removed from service. If an instrument is removed from service, any data obtained after the last successful QC check will be considered suspect due to faulty instrumentation.

Quality control source checks for the Eberline FCM4M, Ludlum 43-37, Ludlum 43-89 will consist of a one-minute integrated count with the designated Thorium–230 (²³⁰Th) and Technetium-99 (⁹⁹Tc) sources. QC source checks for the Bicron[®] MicroRem meter will consist of observing needle deflection and estimating an average dose rate once the instrument readings have stabilized (approximately 22 seconds) using a ¹³⁷Cs source. The acceptance criterion for these instrument response checks is within +/- 20% of the average response generated using ten initial source checks and ten measurements of ambient background performed at the beginning of the project. A response check outside these criteria will be cause for evaluation of conditions (e.g., instrument operation, source/detector geometry). The response check will be repeated once prior to field use of that instrument. Instruments that fail the second successive response check will be removed from service. Only Field Supervisors can return a failed instrument back to service after proper corrective actions are taken.

Quality control source response checks for the Ludlum 2929 will be checked daily by evaluating response to designated ²³⁰Th (Alpha) and ⁹⁹Tc (Beta) sources and ambient background. Response checks will consist of one-minute counts of a ²³⁰Th, ⁹⁹Tc source, and a 20 minute count of ambient background. The acceptance criteria for instrument response will be set to two and three-sigma of the average response generated using ten initial source checks and ten measurements of ambient background. A daily response check outside the two-sigma, but within the three-sigma criteria will be cause for a recount prior to use. A response check outside two sigma on the second count will be cause for further evaluation and or re-performance of QC control values prior to continued use. Response checks falling outside acceptance criteria will be cause for notification of the Field Supervisor and evaluation of conditions (e.g., instrument from service. Instruments must pass a response check prior to field use. Only Field Supervisors can return a failed instrument back to service after proper corrective actions are taken.

Quality control for volumetric sample analysis will be performed in accordance with applicable Paragon standard operating procedures.

7.2 Direct Alpha, Smear, and Exposure Rate Measurements

Instrumentation will be operated in accordance with standard operating procedures and/or protocols.

7.2.1 Duplicate Measurements

Duplicate measurements will be required for 10% of the static measurement locations for each survey unit. Duplicate measurements will be compared to the initial analytical results by determining a Normalized Absolute Difference (NAD) value and comparing it against the performance criteria specified as follows:

Analyses of field and laboratory duplicates will be compared to the initial analytical results by determining a NAD value for each data set by the following equation (PROB, 1993):

$$NAD = \frac{|Sample - Duplicate|}{\sqrt{\sigma_{Sample}^{2} + \sigma_{Duplicate}^{2}}}$$

Where: Sample = first sample value (original), Duplicate = second sample value (duplicate), $\sigma_{\text{Sample}} = 2\sigma$ counting uncertainty of the sample, and, $\sigma_{\text{Duplicate}} = 2\sigma$ counting uncertainty of the duplicate

The calculated NAD results will be compared to a performance criteria of less than or equal to 1.96. Calculated NAD values less than 1.96 will be considered acceptable and values greater than 1.96 will be investigated for possible discrepancies in analytical precision, or for sources of disagreement with the following assumptions of the test:

- > the sample measurement and duplicate or replicate measurement are of the same normally distributed population
- > the standard deviations, σ_{Sample} and $\sigma_{\text{Duplicate}}$, represent the true standard deviation of the measured population

8.0 **REFERENCES**

- (ANL, 1999) ANL Environmental Assessment Department Health Risk Report, "Derived Uranium Guidelines for the Depleted Uranium Study Area of the Transonic Range, Aberdeen Proving Ground, Maryland", M. Picel and S. Kamboj, Argonne National Laboratory, April 1999
- (BARG, 1995) Specific Manufacturing Capability Program, Depleted Uranium Constituents and Decay Heating, Lockheed, Idaho presentation, dated October 3, 1995.
- (CABRERA, 2000a) CABRERA OP-020, "Operation of Contamination Survey Meters", Rev 0
- (CABRERA, 2000b) CABRERA OP-021, "Alpha-Beta Counting Instrumentation", Rev 0
- (CABRERA, 2000c) Cabrera OP-023, "Operation of micro-R Meters", Rev 0
- (NRC, 1999) NUREG/CR-5512, Volume 3 Residual Radioactive Contamination from Decommissioning, Parameter Analysis, Draft Report for Comment, U.S. Nuclear Regulatory Commission, dated October, 1999.
- (NRC, 2000) NUREG-1575, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), U.S. Nuclear Regulatory Commission, dated August, 2000.

Final Status Survey Plan Aberdeen Proving Ground BTD Armor Reclamation Facility

Appendix A: Uranium 238 Decay Series

				D
Radionuclide	Half-Life	Emissions	Energy (MeV)	Percent Yield
U-238	4.5 x 109 y	α	4.2	75
		α	4.15	25
Th-234	24.1 d	β	0.193	79
		β	0.1	21
		γ	0.093	4
		γ	0.063	3.5
Pa-234m	1.17 min	β	2.29	98
Pa-234	6.75 h	β	0.53	<1
		β	1.13	<1
U-234	2.47 x105 y	α	4.72	28
		α	4.77	72
Th-230	8.0 x 104 y	α	4.62	24
		α	4.68	76
Ra-226	1602 y	α	4.60	6
		α	4.78	95
		γ	0.186	4
Rn-222	3.82 d	α	5.49	100
Po-218	3.05 min	α	6.0	100
Pb-214	26.8 min	β	0.65	50
		β	0.71	40
		γ	0.3	19
		γ	0.35	36
Bi-214	19.7 min	β	1.0	23
		β	1.51	40
		β	3.26	19
		γ	0.609	47

Uranium 238 Decay Series (Excerpted from Radioactive Decay Data Tables, David Kocher, 1981)

Final Status Survey Plan Aberdeen Proving Ground BTD Armor Reclamation Facility

Appendix B: Army Regulation 11-9 Army Radiation Safety Program

Army Regulation 11-9

Army Programs

The Army Radiation Safety Program

Headquarters Department of the Army Washington, DC 28 May 1999 Headquarters Department of the Army Washington, DC 28 May 1999

Effective 29 June 1999

Army Programs

The Army Radiation Safety Program

Louis Caldera Secretary of the Army

History. This is a new regulation.

Summary. This regulation prescribes Army radiation safety policy. It is a consolidation of several regulations that partially covered this policy. It implements DODI 6055.8 and DODI 6055.11. It includes Army policy for the use, licensing, disposal, transportation, dosimetry, accident reporting, safety design, and inventory control of and radiation exposure standards for ionizing and nonionizing radiation sources. This regulation updates policy to be consistent with current Federal radiation safety regulations; simplifies Army radiation authorization, Army radiation permit, and Nuclear Regulatory Commission license application procedures; requires Army radiation authorizations for the use of machine-produced ionizing radiation; and strengthens MACOM and installation radiation safety authority.

Applicability. This regulation applies to the Active Army, the Army National Guard of the

United States, the Army Reserve, and Army contractors. This regulation does not apply to nuclear weapons (AR 50-5).

Proponent and exception authority. The proponent of this Army regulation is the Director of the Army Staff (DAS). The DAS has the authority to approve exceptions to this regulation that are consistent with controlling law and regulation. The DAS may delegate this authority, in writing, to a division chief within the proponent agency in the grade of colonel or civilian equivalent.

Army management control process. This regulation contains management control provisions and identifies key management controls that must be evaluated.

Supplementation. Supplementation of this regulation is prohibited without prior approval from HQDA (DACS-SF), WASH DC 20310-0200.

Suggested improvements. Users are invited to send comments and suggested improvements on DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to HQDA (DACS-SF), WASH DC 20310-0200.

Distribution. This publication is available in electronic media only and is intended for command level C for Active Army and D for Army National Guard of the United States.

*This regulation supersedes AR 40-14, 30 June 1995; AR 40-46, 15 November 1974; AR 385-9, 1 April 1982; and AR 385-11, dated 1 May 1980 AR 11-9 € 28 May 1999

Appendix E	8	
••	pplication for Army Radiation Authorization (DA Form 3337).	
Appendix (· · · · · · · · · · · · · · · · · · ·	
Managen	ent Control Evaluation Checklist	31
C-1.	Function	
C-2.	Purpose	
C-3.	Instructions	
C-4 .	Test questions	
C-5.	Supersession	
C-6 .	Comments	
Glossary		
Section	I Abbreviations	
Section	II Terms	
Index		

Chapter 1 Introduction

1-1. Purpose

This regulation establishes policies and procedures for the use of, licensing, disposal, transportation, safety design, and inventory control of ionizing and nonionizing radiation sources. It also provides radiation exposure standards and dosimetry and accident reporting instructions. Its objective is to assure safe use of radiation sources and compliance with all applicable Federal and DOD rules and regulations.

1-2. References

Required and related publications are listed in appendix A.

1-3. Explanation of terms

Abbreviations and special terms used in this regulation are explained in the glossary.

1-4. Responsibilities

- a. The Assistant Secretary of the Army (Installations and Environment) (ASA(I&E)) establishes overall Army environment, safety, and occupational health policy and maintains general oversight of and serves as advocate for the Army Radiation Safety Program.
- b. The Assistant Secretary of the Army (Manpower and Reserve Affairs) establishes overall Army health and preventive medicine policy and maintains oversight of medical and health aspects of the Army Radiation Safety Program.
- c. The Director of Army Safety (DASAF), Office of the Chief of Staff, Army, will-
 - (1) Provide Army Staff oversight of the Army Radiation Safety Program.
 - (2) Administer, direct, and integrate Army Force Protection risk management (AR 385-10).
 - (3) Chair the Army Radiation Safety Council (ARSC).
 - (4) In coordination with the ASA (I&E), designate, in writing, a qualified nuclear medical science officer (SSI 72A67C) colonel to serve as Army Radiation Safety Officer (Army RSO).
- d. The Commanding General, Army Materiel Command (AMC) will-
 - Control NRC (Nuclear Regulatory Commission) licenses and Army radiation authorizations for Army radioactive commodities.
 - (2) Provide ionizing radiation dosimetry services (at the Army Ionizing Radiation Dosimetry Center (AIRDC)) that meet the requirements of 10 CFR 20.1501(c). The Chief, AIRDC, will—
 - (a) Publish instructions for starting, maintaining, and ending personnel dosimetry services (SB 11-206).
 - (b) Maintain the Army's Central Dosimetry Records Repository (CDRR). The CDRR will archive comprehensive dosimetry records for all Army personnel and for other personnel who use Army dosimetry services. Records will meet the requirements of 10 CFR 20.2106 and 20.2110. Records will include results of bioassays, administrative dose assignments (including copies of documents that make the assignments), and supplementary occupational dose equivalent information (for example, dosimetry information resulting from off-duty employment, "moonlighting") that any radiation safety officer (RSO) reports. In particular, the AIRDC will meet the requirements of 10 CFR 20.2106(f) for long-term retention of these records.
 - (c) Provide quarterly personnel dosimetry reports (automated dosimetry record (ADR)) to RSOs for all personnel who received dosimetry services during the previous calendar quarter. These reports will enable supported RSOs to meet all recordkeeping requirements in 10 CFR 20.2106.

- (3) Survey each installation and each NRC license, Army reactor permit, or Army radiation authorization (ARA) holder at least once every three years for compliance with applicable radiation safety and health regulations and guidance (AR 40-5).
- (4) Establish appropriate occupational health surveillance for personnel occupationally exposed to radiation (AR 40-5).
- (5) Perform health hazards assessments (HHAs) of commodities and systems that emit radiation or contain RAM as early as practical in development and before fielding (AR 40-10).
- (6) Provide radiation bioassay services (AR 40-5) that comply with criteria of the American National Standards Institute (ANSI) (see ANSI N13.30). Such services are available from the U.S. Army Center for Health Promotion and Preventive Medicine (CHPPM) on a cost-reimbursable basis.
- (7) Provide medical support for investigations of alleged excessive radiation exposures (DODI 6055.11 and DA PAM 40-18).
- The Assistant Chief of Staff for Installation Management (ACSIM) will provide oversight for all radioactive contamination surveys conducted in support of base closure or installation restoration activities.
- i. Each MACOM commanding general will-
 - (1) Assure installation and subordinate command compliance with conditions of AMC-held radioactive commodity NRC licenses and ARAs. (See para 2-1b.)
 - (2) Designate, in writing, a person to be the MACOM RSSO.
 - (3) Issue ARAs as necessary (para 2-3).
 - (4) As necessary, establish and employ procedures to assure that captured, purchased, borrowed, or otherwise obtained foreign equipment and materiel are surveyed for RAM and that appropriate actions are taken following discovery of any RAM in those items.
 - (5) Concerning the MACOM radiation safety program:
 - (a) Establish review and approval procedures for conducting risk management in accordance with established doctrine (DODI 6055.1).
 - (b) Maintain a central register of risk decisions regarding deviations from the Army standards of this regulation and DA PAM 40-18 within the command.
 - (c) Assure that the complete risk management process is executed before the conduct of all operations.
 - (6) Report excess military-exempt lasers to the Defense Reutilization and Marketing Service for utilization screening within DOD (DOD 4160.21-M-1). (See para 3-2c.)
 - (a) Maintain accountability during the screening period.
 - (b) Losing and gaining organizations will transfer excess directly between themselves.
 - (c) After utilization screening is completed, identify supply system requirements for usable parts. Return required parts to the supply system.
- j. Each installation commander-
 - (1) Will designate, in writing, a qualified individual to be Installation RSO.
 - (2) May establish an Installation Radiation Safety Committee (RSC). (See para 1-6.)
 - (3) Will prepare and maintain historical records of location of use or storage of RAM on the installation and the responsible activity for that use or storage (para 2-5).
 - (4) Will maintain documentation listing locations categorized as "RF controlled" and "RF uncontrolled" environments as necessary (DODI 6055.11).
 - (5) Issue Army radiation permits as necessary (para 2-4).
- k. Each commander will-
 - (1) Designate, in writing, a person to be the RSO when any of the following is true.

- (4) Provide radiation safety consultation to the MACOM commanding general and staff and to subordinate commanders and staffs.
- (5) Serve as MACOM radiation safety point-of-contact.
- n. Each Installation RSO will-
 - (1) Direct the installation radiation safety program.
 - (2) Assist TOE (Table of Organization and Equipment) units on the installation to meet requirements of NRC licenses and ARAs for radioactive commodities. In particular, the installation RSO will—
 - (a) Assure that TOE unit personnel receive appropriate radiation safety training as necessary.
 - (b) Meet all reporting requirements for accidents or incidents (para 6-2).
 - (c) Assure appropriate inventory control per applicable technical publications and logistics regulations.
 - (3) Notify the AMC RSSO when a building or area that currently or formerly contained radioactive commodities is scheduled for demolition or will no longer contain radioactive commodities. This is to provide AMC radioactive commodity license holders appropriate notice so that they can take decommissioning actions as necessary.
- o. Each RSO (or LSO), including the installation RSO, will-
 - Perform or be responsible for the performance of all radiation safety functions that applicable Federal, DOD, and Army regulations and NRC license, Army reactor permit, and ARA conditions require.
 - (2) Establish plans and procedures for handling credible emergencies involving radiation and radioactive materials. This includes coordination with civilian and military emergency response organizations as necessary.
 - (3) Coordinate with supporting medical personnel to help assure that personnel receive appropriate occupational health surveillance (AR 40-5).
 - (4) For an RSO with laser safety responsibilities, assume the responsibilities of an LSO as listed in section 1.3.2, ANSI Z136.1, except for occupational health responsibilities. (The RSO or LSO will assist the occupational health physician as necessary in meeting laser occupational health responsibilities.)

1-5. Army Radiation Safety Council

- a. The ARSC is the Chief of Staff, Army's advisory body to provide recommendations for Army radiation safety directives and to gather and disseminate information about the status of the Army radiation safety program.
- b. Membership includes the DASAF as chair (para 1-4c(3)), the Army RSO as recorder, the Radiological Hygiene Consultant to TSG, a representative of the ACSIM (Assistant Chief of Staff for Installation Management), a representative of the Army Reactor Office (AR 50-7), and the RSSO from each MACOM, the National Guard Bureau, and the Office, Chief Army Reserve.
- c. The ARSC will meet at least once each 6 month period and at the call of the chair.

1-6. Installation Radiation Safety Committee

- a. The installation RSC is the installation commander's advisory body to gather and disseminate information about the status of the installation radiation safety program.
- b. Membership includes a chair that the commander designates, the installation RSO (recorder), and all tenant RSOs. Installations with large numbers of TOE unit personnel that use radioactive commodities will include military representatives knowledgeable about the TOE units' radiation safety programs.
- c. Each installation RSC will meet at least once each calendar year and at the call of the chair.

f. Forward requests through command channels to HQDA (DACS-SF), WASH DC 20310-0200, for waivers and exceptions to Federal or DOD radiation safety regulations. Prior approval from HQDA (DACS-SF), WASH DC 20310-0200, is required before such requests are sent to a Federal agency or to DOD. Prior approval of TSG is also required before requests for waivers or exceptions to Federal or DOD personnel radiation exposure standards are sent to a Federal agency or to DOD.

Chapter 2 Ionizing Radiation Sources

2-1. General

- a. Materiel. AR 70-1 applies to developmental and non-developmental materiel containing radiation sources.
- b. Compliance with NRC regulations and NRC license, Army reactor permit, and ARA conditions.
 - (1) All Army personnel using RAM will comply with all applicable NRC regulations and conditions of NRC licenses, Army reactor permits, and ARAs held by their own or by another command (paras 2-2a(2) and 2-3b(2)).
 - (2) Holders of NRC licenses, Army reactor permits, and ARAs will assure that all personnel using RAM are aware of applicable regulations and conditions as appropriate.
- c. Shielding and control designs. A qualified expert will design, review, and test shielding of and controls for access to radiation areas, high radiation areas, and very high radiation areas. Perform these procedures per applicable regulations and guidelines before routinely using radiation sources within the area. Each design for high radiation and very high radiation areas will receive an additional independent review by a qualified expert that the MACOM RSSO designates.
- d. Environmental requirements. See 10 CFR 51, 40 CFR, AR 200-1, and AR 200-2 for RAM environmental requirements.

2-2. Nuclear Regulatory Commission licenses

The NRC licenses special, source, and byproduct material in the U.S. and its possessions.

- a. Send applications for new licenses, license renewals, and license amendments through command channels to the MACOM headquarters for forwarding to the NRC.
 - (1) The MACOM commanding general may allow subordinate commanders to forward applications directly to the NRC without MACOM review.
 - (2) When compliance with conditions proposed in the application requires efforts of personnel of another command, obtain a letter of agreement from an authorized representative of that command (paras 1-4l(5) and 2-1b).
 - (3) The applicant or MACOM RSSO will provide a copy of all correspondence relating to applications to Commander, CHPPM, Aberdeen Proving Ground, MD 21010-5422.
 - (4) Tenant commanders will provide a copy of each NRC license, including all amendments, to the installation commander.
- b. Except as specified in paragraphs 1-9f and 2-2a, all Army personnel may communicate directly with the NRC without restriction. However, a person considering such communication should also consider whether information to be requested is obtainable from Army sources and whether information provided or obtained is of interest to the chain of command or other Army organizations.

2-3. Army radiation authorizations

a. The Army uses ARAs to control specific Army ionizing radiation sources (including machines that emit ionizing radiation) that the NRC does not license. An ARA is required for all such sources except

- b. The ARP application will specify start and stop dates for the ARP and describe for what purposes the applicant needs the ARP. The installation commander will approve the application only if the applicant provides evidence to show that one of the following is true.
 - (1) The applicant possesses a valid NRC license or Department of Energy (DOE) radiological work permit that allows the applicant to use the source as specified in the ARP application.
 - (2) The applicant possesses a valid Agreement State license that allows the applicant to use RAM as specified in the ARP application, and the applicant has filed NRC Form-241, Report of Proposed Activities in Non-Agreement States, with the NRC in accordance with 10 CFR 150.20. An ARP issued under this circumstance will be valid for no more than 180 days in any calendar year.
 - (3) For NARM and machine-produced ionizing radiation sources, the applicant has an appropriate State authorization that allows the applicant to use the source as specified in the ARP application or has in place a radiation safety program that complies with Army regulations.
 - (4) For overseas installations, the applicant has an appropriate host-nation authorization as necessary that allows the applicant to use the source as specified in the ARP application and has in place a radiation safety program that complies with Army regulations. (Applicants will comply with applicable status-of-forces agreements [SOFAs] and other international agreements.)
- c. All ARPs will require applicants to remove all permitted sources from Army property by the end of the permitted time.
- d. Disposal of RAM by non-Army agencies on Army property is prohibited. However, the installation commander may authorize radioactive releases to the atmosphere or to the sanitary sewerage system that are in compliance with all applicable Federal, DOD, and Army regulations. (The installation commander also will give appropriate consideration to State or local restrictions on such releases.)
- e. A sample ARP is in figure 2-2.
- 2-5. Decommissioning records
 - a. Holders of NRC licenses will establish and maintain decommissioning records in accordance with 10 CFR 30.35(g), 40.36(f), and 70.25(g), as applicable.
 - Holders of ARAs will establish and maintain decommissioning records similar to those that the NRC requires.
 - c. Holders of NRC licenses and ARAs will provide information about the location of use and storage of RAM to the installation commander for the installation RAM history records (para 1-4j(3)).

2-6. Transfer and transport

- a. Transfer radioactive material only to persons authorized to receive and possess it.
 - (1) The holder of the commodity license or ARA will in accordance with technical publications and applicable instructions establish transfer of Army radioactive commodities.
 - (2) For all other RAM, the shipper will obtain and retain appropriate evidence (for example, a copy of the recipient's ARA or NRC or Agreement State license) before shipping the RAM.
- b. Domestic shipments of RAM will be in accordance with applicable NRC (10 CFR 71), Department of Transportation (DOT) (49 CFR), and U.S. Postal Service (39 CFR) regulations and per DOD 4500.9-R (Part II). International shipments of RAM will be per applicable U.S. and International Atomic Energy Agency (IAEA) transportation regulations.
- c. Do not transfer radium and items containing radium to non-DOD agencies or activities (except for disposal as radioactive waste).

DEPARTMENT OF THE ARMY

HQ, MACOM

CITY, STATE, AND ZIP CODE

REPLY TO ATTENTION OF

XXXX-XX (11-XXm)

15 January 2000

MEMORANDUM FOR Commander, U.S. Army Activity, Installation, City, State XXXXX-XXXX

SUBJECT: Army Radiation Authorization (ARA) No. XXX-XX

1. Reference memorandum, HQ, U.S. Army Activity, XXXX-XX-X, 15 November 1999, subject: Application for Renewal of Army Radiation Authorization No. XXX-XX, and enclosures thereto.

2. In accordance with referenced memorandum ARA No. XXX-XX is amended in its entirety to read as follows:

a. Expiration date: 31 January 2002.

b. Description of machine-produced ionizing radiation source and of radioactive material, its chemical and/or physical form, and maximum amount at any one time authorized under this ARA: See enclosure.

- c. Authorized use: See enclosure.
- d. Radiation Safety Officer: CPT Dan Hamilton.
- e. Conditions: See enclosure.

3. Except as specifically provided otherwise in this ARA, conduct your program in accordance with the statements, representations, and procedures in the documents, including any enclosures, listed: referenced memorandum.

4. Our point of contact is Mr. John A. Manfre, MACOM Radiation Safety Staff Officer, DSN XXX-XXXX.

FOR THE COMMANDER:

	Figure 2-1. Sample Army radiation authorization
	Adjutant
as	LTC, GS
Encl	RUPERT K. THORNE

AR 11-9 • 28 May 1999

Chapter 3 Lasers

- 3-1. General
 - a. The design of Army laser safety programs will follow applicable guidelines in ANSI Z136.1 and ANSI Z136.3. Military-exempt laser users will comply with laser safety requirements in applicable technical publications.
 - b. Army laser range safety guidance is in AR 385-63 and MIL-HBK 828.
 - c. Use a type-classified or commercial class IIIb or class IV laser on an Army range only if the DOD Laser Systems Safety Working Group or CHPPM has performed a prior laser hazard evaluation for that specific kind of laser.
 - (1) A list of approved lasers is in MIL-HDBK-828. Send requests for approval of an unlisted laser through command channels to Commander, CHPPM, ATTN: MCHB-DC-OLO, Aberdeen Proving Ground, MD 21010-5422.
 - (2) Use an unlisted class IIIb and class IV laser on an Army range for RDTE purposes only. Users of such lasers will comply with paragraph a.
 - d. Only a qualified expert will design, review, and test controls for access to a class IIIb or IV laser facility. Meet this requirement in accordance with applicable directives before routinely using class IIIb or IV lasers within such a facility. A qualified expert will design or review for adequacy all radiation safety SOPs (standing operating procedures) for each such facility.
 - e. Use only class I, class II, and class IIIa lasers indoors on Army installations as hand-held laser pointing devices. Do not use class IIIb or class IV lasers for such purposes.

3-2. Military-exempt lasers

- a. Although exempt, military-exempt lasers will meet as many of the laser safety standards in 21 CFR 1040 as practical.
- b. Proponents of military-exempt lasers will include laser safety requirements in technical publications about siting, operation, and maintenance of these lasers and laser systems.
- c. Dispose of unwanted military-exempt lasers in accordance with DOD 4160.21-M-1. Do not dispose of potentially usable lasers or laser parts through utilization outside DOD, donation, or sale without the prior approval of the Deputy Undersecretary of Defense (Environmental Security) or designee. Send requests for such disposition through supply channels to the commanding general of the appropriate materiel readiness command.
- d. Military-exempt lasers will not include lasers intended primarily for indoor classroom training and demonstration, industrial operations, scientific investigations, or medical applications.
- e. Commanding General, USACHPPM, will maintain records for all military-exempt lasers that indicate types of laser products and manufacturers.

Chapter 4

Radiofrequency electromagnetic radiation

4-1. General

- a. The Army will comply with RF (radiofrequency) radiation safety program elements in DODI 6055.11. Type-classified RF EMR (electromagnetic radiation) emitting system users will comply with radiation safety requirements in applicable technical publications.
- b. Adopt no practice and conduct no operation involving planned exposure of personnel to RF levels in excess of the applicable maximum permissible exposures in DODI 6055.11.
- c. Do not use radiofrequency protective clothing for routine use to protect personnel. Protective equipment, such as electrically insulated gloves and shoes for protection against RF shock and burn or for insulation from the ground plane is permissible where necessary for compliance with induced current limits in DODI 6055.11.

- (2) Personnel at Army government-owned contractor-operated (GOCO) facilities and contractor personnel who are working in Army facilities and require dosimetry will use AIRDC-supplied dosimeters unless a written contract specifically exempts them. (Non-GOCO contractor personnel working under provisions of an ARP may use contractorsupplied dosimetry.)
- (3) AIRDC dosimeters may be used to monitor the exposure of other personnel and for area monitoring. Evaluate requirements for continued use of AIRDC dosimetry for such purposes periodically (at least annually).
- (4) DA PAM 40-18 contains instructions for wearing supplemental dosimeters.
- c. Bioassay.
 - (1) Monitor occupational intake of RAM and, as necessary, assess the committed effective dose equivalent (CEDE) for:
 - (a) Adults likely to receive, in 1 year, an intake in excess of 10 percent of applicable annual limits of intake (ALI). The ALIs for NRC-licensed RAM are in table 1, columns 1 and 2, 10 CFR 20, appendix B. The Surgeon General will provide, as necessary, ALIs and related air and water concentrations for radioisotopes used under ARA authority and not listed in 10 CFR 20, appendix B to the Army RSO for promulgation.
 - (b) Minors and declared pregnant women likely to receive, in 1 year, a CEDE in excess of 0.05 rem (0.5 mSv).
 - (2) Intake of RAM may be monitored and the CEDE assessed for other individuals. Evaluate the requirement for continued intake monitoring periodically (at least annually).
 - (3) All Government- and contractor-provided bioassay will be in accordance with procedures in ANSI N13.30.
- d. Dosimetry and bioassay records.
 - All personnel will complete DD Form 1952, Dosimeter Application and Record of Occupational Radiation Exposure, before receiving AIRDC dosimetry or participating in a routine bioassay program.
 - (2) The RSO will provide a copy of determinations of administrative doses (para e), determinations of non-Army occupational dose histories (obtained from somewhere other than AIRDC), bioassay results, and results of assessing CEDE by bioassay or by determination of the time-weighted air concentrations to which an individual has been exposed [that is, derived air concentration (DAC)-hours] to the AIRDC for archiving.
 - (3) The RSO will provide a copy of each DD Form 1952 and calendar year ADR for routinely monitored personnel to the supporting medical treatment facility or occupational health clinic (AR 40-66). (Examples: A visitor monitored only during a short-term visit of a few days is not routinely monitored. A student or intern monitored over a period of a few months is routinely monitored.)
- e. Administrative doses.
 - (1) Only TSG may approve assigning an administrative dose in place of any AIRDCrecorded occupational dose equivalent that exceeds a value in table 5-1.
 - (2) RSOs will estimate TEDE (total effective dose equivalent) or CEDE when they cannot determine it from dosimetry or bioassay (for example, if a dosimeter was lost, damaged, or believed to be deliberately exposed). The estimate of the administrative dose may be based on any of the following.
 - (a) Occupancy or workload information and radiation dose levels at the radiation source operator location.
 - (b) Data supplied by a supplemental dosimeter.
 - (c) Average of the individual's previous occupational dose for the preceding 6 to 12 months if conditions prevailed similar to those during the period for which the dose is being estimated.

- 1. From 10 CFR 20. Refer to 10 CFR 20 for detailed standards.
- Abbreviations: TEDE = total effective dose equivalent; DDE = deep dose equivalent; ED =
 effective dose; EDE = effective dose equivalent; CDE = committed dose equivalent;
 SDE = shallow dose equivalent.
- 3. OSHA standard for occupational exposure of adults and for the lens of the eye is 1¼ rem in calendar quarter. OSHA standard for skin of whole body is 7½ rem in calendar quarter. OSHA standard for hands and forearms; feet and ankles is 18¾ rem in calendar quarter.
- 4. The dose in any unrestricted area from external sources, exclusive of the dose contributions from patients administered radioactive material and released in accordance with applicable regulations, will not exceed 2 mrem (0.02 mSv) in any one hour.

Table 5-3. Electromagnetic Radiation.			
REGION	WAVELENGTH	FREQUENCY	AUTHORITY
lonizing (gamma and x rays)	< 100 nm	> 3 PHz (E > 12.4 eV)	NRC and OSHA
Ultraviolet (UV)	100 to 380-400 nm	0.75-0.79 to 3 PHz	ACGIH
Visible (light)	380-400 to 760-780 nm	380-390 to 750-790 THz	ACGIH
Infrared (IR)	760-780 nm to 1 mm	300 GHz to 380-390 THz	ACGIH
Radiofrequency	1 mm to 100 km	3 kHz to 300 GHz	DOD
Extremely low frequency	> 100 km	< 3 kHz	ACGIH
Static electric fields	NA	NA	ACGIH
Static magnetic fields	NA	NA	ICNIRP

Notes.

1. Unit abbreviations: $nm = nanometer (10^{-9} m); mm = millimeter (10^{-3} m); km = kilometer (10^{3} m); PHz = petahertz (10^{15} Hz); THz = terahertz (10^{12} Hz); GHz = gigahertz (10^{9} Hz); kHz = ki-lohertz (10^{3} Hz); and eV = electron volt (1 eV = 1.6 <math>\Box 10^{-19}$ J).

- 2. Wavelength x frequency = speed of light = $3 \times 10^8 \text{ m s}^{-1}$.
- Authority = The regulating authority for personnel exposure for the purposes of this regulation (para 5-4).

Chapter 6

Special reporting requirements

6-1. General

- a. Reporting requirements of AR 40-5, AR 385-40, and DA PAM 40-18 apply for radiation accidents, incidents, and over-exposures. Additional requirements are in paras b and 6-2.
- b. IMMEDIATELY EVACUATE PERSONNEL SUSPECTED OF EXPERIENCING POTENTIALLY DAMAGING EYE EXPOSURE FROM LASER RADIATION TO THE NEAREST MEDICAL FACILITY FOR AN EYE EXAMINATION (See FM 8-50). LASER EYE INJURIES REQUIRE IMMEDIATE SPECIALIZED OPHTHALMOLOGIC CARE TO MINIMIZE LONG-TERM VISUAL ACUITY LOSS. MEDICAL PERSONNEL SHOULD OBTAIN MEDICAL GUIDANCE FOR SUCH EMERGENCIES FROM THE WALTER REED ARMY INSTITUTE OF RESEARCH DETACHMENT AT BROOKS AFB (Commercial [800] 473-3549).
- c. Notify the installation or activity public affairs officer at the onset of the accident or incident in order to activate public affairs contingency measures (AR 360-5). Radiation accidents or incidents attract the attention of local and national media quickly. Early disclosure of accurate information is vital to maintaining the confidence of both the internal and external public.

6-2. Ionizing radiation

Federal reporting requirements for accidents, incidents, and over-exposures are in 10 CFR 20, subpart M and in 29 CFR 1910.1096(m) and 1926.53(o).

- a. Send information copies of all reports required by 10 CFR 20.2201 through 20.2205, 29 CFR 1910.1096(m), or 29 CFR 1926.53(o) and of any other accident or incident report to the NRC or OSHA through command channels to HQDA (DACS-SF), WASH DC 20310-0200.
- b. Reports through command channels will meet the same time requirements, as do required reports to the NRC and OSHA. For example, if the NRC requires immediate telephonic notification, follow it with immediate telephonic notification through the chain of command to HQDA (DACS-SF), WASH DC 20310-0200.

DA PAM 40-18

Personnel Dosimetry Guidance and Dose Recording Procedures for Personnel Occupationally Exposed to Ionizing Radiation. (Cited in paras 1-4g(7), 1-4i(5)(b), 5-2b(4), and 6-1a.)

DOD 4160.21-M-1

Defense Demilitarization Manual. (Cited in para 3-2c.)

DOD 4500.9-R (Part II)

Defense Transportation Regulation - Cargo Movement. (Cited in para 2-6b.)

DODI 6055.1

DOD Occupational Safety and Health Program (Cited in para 1-4i(5)(a).)

DODI 6055.11

Protection of DOD Personnel from Exposure to Radiofrequency Radiation and Military Exempt Lasers. (Cited in paras 4-1a through c, 1-4g(7), 1-4j(4), and 5-4c.)

FM 8-50

Prevention and Medical Management of Laser Injuries. (Cited in para 6-1b.)

FM 25-101

Battle Focused Training. (Cited in para 1-8f.)

FM 101-5

Staff Organization and Operations. (Cited in paras 1-8f and 1-9c.)

IEEE C95.3

Institute of Electrical and Electronics Engineers, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave. (Cited in para 4-2.) (This publication may be obtained from the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th St., New York, NY 10017.)

MIL-HDBK-828

Laser Range Safety. (Cited in paras 3-1b and 3-1c(1).) (This publication may be obtained from the Standardization Documents Order Desk, Building 4D, 700 Robbins Ave., Philadelphia, PA 19111-5094.)

SB 11-206

Personnel Dosimetry Supply and Service for Technical Ionizing Radiation Exposure Control. (Cited in para 1-4d(2)(a).)

TB 750-43

Army Test, Measurement, and Diagnostic Equipment (TMDE) Calibration and Repair Support Program. (Cited in paras 1-4d(4) and 2-8.)

Title 10, CFR, Chapter I

Nuclear Regulatory Commission. (Cited in paras 1-4d(2), 1-4d(2)(b) through (e); 2-1d; 2-3a(1) and (4); 2-3c(2); 2-4b(2); 2-5a; 5-2a(1), c(1)(a), and f; 6-2; and 6-2a.)

Title 21, CFR, Subchapter J Radiological Health. (Cited in paras 3-2a.)

Title 29, CFR, Part 1910

Occupational Safety and Health Standards. (Cited in paras 1-4d(2)(d), 5-2a(2) and f, 6-2, and 6-2a.)

Title 32, CFR, Part 655

Radiation Sources on Army Land. (Cited in para 2-4.)

Title 39, CFR U.S. Postal Service. (Cited in para 2-6b.)

Title 40, CFR Environmental Protection Agency. (Cited in para 2-1d.)

DODI 6055.8

Occupational Radiation Protection Program

IEEE C95.1

Institute of Electrical and Electronics Engineers, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz (This publication may be obtained from the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th St., New York, NY 10017.)

NBS Handbook 107

Radiological Safety in the Design and Operation of Particle Accelerators (The National Bureau of Standards is now known as the National Institute of Standards and Technology) (This publication may be obtained from the U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082, or from the National Technical Information Service, 5258 Port Royal Rd., Springfield, VA 22161.)

NBS Handbook 111

Radiation Safety for x-ray Diffraction and Fluorescence Analysis Equipment (This publication may be obtained from the U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082, or from the National Technical Information Service, 5258 Port Royal Rd., Springfield, VA 22161.)

NBS Handbook 114

General Safety Standards for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV (This publication may be obtained from the U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082, or from the National Technical Information Service, 5258 Port Royal Rd., Springfield, VA 22161.)

NCRP Reports

Approximately 100 numbered reports on a variety of radiation safety topics (These publications may be obtained from the National Council on Radiation Protection and Measurements, 7910 Woodmont Ave., Suite 1016, Bethesda, MD 20814.)

NRC Regulatory Guide 8.13

Instruction Concerning Prenatal Radiation Exposure (This publication may be obtained from the U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082, or from the National Technical Information Service, 5258 Port Royal Rd., Springfield, VA 22161.)

NRC Regulatory Guide 8.29

Instruction Concerning Risks from Occupational Radiation Exposure (This publication may be obtained from the U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082, or from the National Technical Information Service, 5258 Port Royal Rd., Springfield, VA 22161.)

TB 43-0116

Identification of Radioactive Items in the Army

TB 43-0121

Inspection and Certification of RADIAC Meters (Dosimeters)

TB 43-0122

Instructions for the Safe Handling and Identification of U.S. Army Communications-Electronics Command-Managed Radioactive Items in the Army Inventory

TB 43-0216

Safety and Hazard Warnings for Operation and Maintenance of TACOM Equipment

TB 43-0133

Hazard Criteria for CECOM Radiofrequency and Optical Radiation Producing Equipment

TB 43-0137

Transportation Information for CECOM Radioactive Commodities (Use this bulletin for general guidance only; refer to 10 CFR 71 and 49 CFR for current NRC and DOT regulations.)

Appendix B Sample application for Army Radiation Authorization (DA Form 3337)

	Y RADIA IDHAU HRUMZA I KUN (119) iba propertent againsy ac DSE
I THUS & AN APPLICATEDNEOR (Check app ho start) and NEW X-2. AMENDAGINT TO AFA BUMBER HENEYLA, OF ARE NUMBER 3. ACTIRESSES WHERE AUTOMOUST 2001 NRIVAFA (#ATION SOURC)	ESTMILLER USETLOR RUSSESSES
A. WANT OF PERSONNO DE CONTACTED ADOUT Y IS APPLICAT.	ON S. TOUCHONCHUMAN AND LAN YUMDER
Hems 6 through 12 may be continued on the following miormation to be provided should be adequate to sho quickinge – fit you ear half use of radioactive material provide neuropar and expiration date of the backet con application and associated documents.	er acempioto gampiones verso piecobio requiatacino and la a veixà terres Haquiatas Gammassian (NHC) locace,
8. MOLATIONADURCEU	
a BADADAL "Wilshing Disha Linnery and music number, chumiced antifugging a is any unit accurate an ound char provide physical ar and one fina."	k. ACC. CORE AND X-BAY CHORT WHI CAFADLE OF BIDGUTY HIDH RADIUTION AFER' OF "MERY -874- FACHATICAL MAL' <i>"Destrike"</i>
7 - PLEROSERLEROR WHICHICHIRINGFACELTICH SOUTH & DC LICED	NDNYDIAALIORESSEMISELEEGE FOR FLUIATION SCHEEV PROGRAM TII ON THABANGANG DURCH CHOC
D. THANNETON AND VIOLALOW ON CONTINUES OF THE OFFICE AFEAS	10 FACL TIZCARDOLUPUCHT - Deserion comme of arams sumified weigt devices deserbaring machinest, and so are
I. RADIATION SAFETY PROGRAM	12 YASTE MANAJEMENT
12, 0	HIF KANCA
scolicent. The applicant and any official executing the	esentations media in this application are binding upon the s certification on behalf of the applicant named in Itam 2. his true and correct to the back of their knowledge and
A NAME RANK, AND "TLE OF CETTIF AND OFFICER	15. SKONATLIFE
	15 DATE YAYAGON

Appendix C Management Control Evaluation Checklist

C-1. Function

The function covered by this checklist is radiation safety.

C-2. Purpose

The purpose of this checklist is to assist commanders and radiation safety officers in evaluating the key management controls listed below. It is not intended to cover all controls.

C-3. Instructions

Answers must be based on the actual testing of key management controls (for example, document analysis, direct observation, sampling, simulation, other). Answers that indicate deficiencies must be explained and corrective action indicated in supporting documentation. These management controls must be evaluated at least once every five years. Certification that this evaluation has been conducted must be accomplished on DA Form 1102 IR (Management Control Evaluation Certification Statement).

C-4. Test questions

- a. If required (para 1-4k(1)), has a person been designated to be radiation safety officer?
- b. If required (para 1-4k(2)), has a written radiation safety SOP been established?
- c. Are all personnel occupationally exposed to radiation receiving appropriate radiation safety training?
- d. Are all radiation sources secured against unauthorized use and removal?
- e. If the unit possesses radioactive commodities, has a written SOP been established to assure compliance with radiation safety requirements of applicable technical publications?
- f. Are all controllable quantities of radioactive material and radiation-producing sources held by the unit under appropriate authority (for example, a Nuclear Regulatory Commission license, an Army radiation authorization, or as part of a radioactive commodity)?
- g. Is all radioactive waste disposed of properly?
- h. Are all radiation survey instruments used for health and safety appropriately calibrated?
- i. For Army laser ranges have all type-classified or commercial class IIIb or class IV lasers received appropriate evaluation before their use?
- j. Are all unwanted military-exempt lasers disposed of properly?
- k. Are all accidents and incidents involving excessive personnel radiation exposure or excessive radioactive contamination of facilities, equipment, or the environment promptly reported through appropriate channels?
- I. Do all personnel occupationally exposed to ionizing radiation or radioactive material above applicable levels (paras 5-2b(1) and c(1)) participate in an appropriate dosimetry or bioassay program?
- m. Is the dose in all unrestricted areas less than 2 millirems (0.02 millisieverts) in any one hour?

C.5. Supersession

This is a new checklist.

C-6. Comments

Help make this a better tool for evaluating management controls. Submit comments to HQDA (DACS-SF), WASH DC 20310-0200.

СНРРМ U.S. Army Center for Health Promotion and Preventive Medicine cm centimeter DA Department of the Army DAC derived air concentration DASAF Director of Army Safety DOD Department of Defense DODI Department of Defense Instruction DOE Department of Energy dpm disintegrations per minute DOT Department of Transportation DSN Defense Switching Network EMR electromagnetic radiation EPA U.S. Environmental Protection Agency еV electron volt FΥ fiscal year GHz gigahertz GOCO Government-owned contractor-operated Gy gray h hour HHA health hazard assessment HQDA Headquarters, Department of the Army Ηz hertz

NBS

National Bureau of Standards (now named the National Institute of Standards and Technology)

NCRP

National Council on Radiation Protection and Measurements

NGB

National Guard Bureau

NIST

National Institute of Standards and Technology

nm nanometer

NORM

naturally occurring radioactive material

NRC

U.S. Nuclear Regulatory Commission

NSN

National stock number

NVLAP

National Voluntary Laboratory Accreditation Program

OSHA

Occupational Safety and Health Administration

PHz petahertz

RAM radioactive material

RDTE

research, development, testing, and evaluation

RF

radiofrequency

RSC

radiation safety committee

RSO

radiation safety officer

RSSO

radiation safety staff officer

SB

supply bulletin

SI

Systemé Internationale (International System)

SOFA

status of forces agreement

SOP

standing operating procedure

SSI

specialty skill identifier

ALARA

Acronym for "as low as is reasonably achievable" means making every reasonable effort to maintain exposures to radiation as far below applicable dose limits as is practical consistent with the purpose for which the activity is undertaken, taking into account the state of technology, the economics of improvements in relation to benefits to the public health and safety, and other societal and socioeconomic considerations and in relation to utilization of nuclear energy, radioactive materials, and ionizing radiation in the public interest.

Annual limit of intake (ALI)

The derived limit for the amount of radioactive material taken into the body of an adult worker by inhalation or ingestion in a year. ALI is the smaller value of intake of a given radionuclide in a year that would result in a committed effective dose equivalent of 5 rems (0.05 Sv) or a committed dose equivalent of 50 rems (0.5 Sv) to any organ or tissue.

Army regulation

A directive that sets forth missions, responsibilities, and policies, and establishes procedures to ensure uniform compliance with those policies.

Army Reserve facilities

Pertains to those facilities normally employed for the administration and training of Army Reserve units, in any entire structure or part thereof, including any interest in land, Army Reserve Center, and storage and other use areas.

Background radiation

Radiation from cosmic sources; naturally occurring radioactive material, including radon (except as a decay product of source or special nuclear material); and global fallout as it exists in the environment from the testing of nuclear explosive devices or from past nuclear accidents such as Chernobyl that contribute to background radiation. Background radiation does not include radiation from source, by-product, or special nuclear materials that the NRC regulates or from NARM that the Army regulates.

Becquerel (Bq)

The SI unit of radioactivity equivalent to one nuclear transformation per second.

Bioassay (radiobioassay)

The determination of kinds, quantities or concentrations, and, in some cases, the locations of radioactive material in the human body, whether by direct measurement (*in vivo* counting) or by analysis and evaluation of materials excreted or removed from the human body (*in vitro* counting).

Byproduct material

Any radioactive material (except special nuclear material) yielded in or made radioactive by exposure to the radiation incident to the process of producing or utilizing special nuclear material.

Committed dose equivalent

The dose equivalent to organs or tissue of reference that will be received from an intake of radioactive material by an individual during the 50-year period following the intake.

Committed effective dose equivalent

The sum of the products of the weighting factors applicable to each of the body organs or tissues that are irradiated and the committed dose equivalent to these organs or tissues.

Commodity, radioactive See Radioactive commodity

Condition

The status of personnel and equipment (readiness) as they interact with the operational environment during mission planning and execution.

Control

Action taken to eliminate hazards or reduce their risk.

Curie (Ci) A unit of radioactivity equal to 37 billion becquerels.

Gray (Gy)

The SI unit of absorbed dose. One gray is equal to an absorbed dose of 1 joule/kilogram (100 rads).

Hazard

Any real or potential condition that can cause injury, illness, death of personnel, damage to or loss of equipment or property, or mission degradation.

Hertz (Hz)

The SI unit of frequency equivalent to one vibration (cycle) per second.

High radiation area

An area, accessible to individuals, in which radiation levels could result in an individual receiving a dose equivalent in excess of 0.1 rem (1 mSv) in 1 hour at 30 centimeters from the radiation source or from any surface that the radiation penetrates.

Infrared (IR) electromagnetic radiation

Electromagnetic radiation with a wavelength between 760-780 nm and 1 mm.

Installation

A grouping of facilities located in the same vicinity, which support particular functions. Installations may be elements of a base. Land and improvements permanently affixed thereto which are under the control of the Department of the Army and used by Army organizations. Where installations are located contiguously, the combined property is designated as one installation and the separate functions are designated as activities of that installation. In addition to those used primarily by troops, the term installation applies to real properties such as depots, arsenals, ammunition plants (both contractor and Government operated), hospitals, terminals, and other special mission installations. For the purposes of this regulation, United States Army Regional Support Commands are installations.

Ionizing radiation

Charged subatomic particles and ionized atoms with kinetic energies greater than 12.4 eV, electromagnetic radiation with photon energies greater than 12.4 eV, and all free neutrons and other uncharged subatomic particles (except neutrinos and antineutrinos).

Kilo-(k)

An SI unit prefix indicating a factor of 1000.

Laser

A device that produces an intense, coherent, directional beam of light by stimulating electronic or molecular transitions to lower energy levels. An acronym for light amplification by stimulated emission of radiation. Lasers are classified by degree of potential hazard (see 21 CFR 1040.10 and ANSI Z136.1 for comprehensive definitions of laser hazard classes).

- a. Class I lasers emit at levels that are not hazardous under any viewing or maintenance conditions. They are exempt from control measures. (However, as a matter of good safety practice avoid intrabeam viewing in case the laser is mislabeled.)
- b. Class II lasers (low-power) emit in the visible light portion of the electromagnetic spectrum. They are a potential eye hazard only for prolonged intrabeam viewing. Eye protection is normally afforded by the aversion response including the blink reflex.
- c. Class III (medium-power) lasers emit in the infrared, visible, or ultraviolet portions of the electromagnetic spectrum. They are a hazard for direct intrabeam and specular reflection viewing. Diffuse reflection is not normally a hazard.
 - (1) Class Illa lasers, even though they emit at class III power levels, have special beam characteristics that make them eye-safe except when viewed through magnifying optics.
 - (2) Class IIIb lasers are all other class III lasers.
- d. Class IV (high-power) lasers emit in the infrared, visible, or ultraviolet portions of the electromagnetic spectrum. They are hazardous for direct intrabeam exposure and sometimes diffuse reflection exposure to the eyes or skin. They may also produce fire, material damage, lasergenerated air contaminants, and hazardous plasma radiation.

Qualified expert

A person who, by virtue of training and experience, can provide competent authoritative guidance about certain aspects of radiation safety. Being a qualified expert in one aspect of radiation safety does not necessarily mean that a person is a qualified expert in a different aspect. Forward requests for determination of whether a certain individual is a qualified expert through command channels to the MACOM RSSO as necessary. Forward these requests to HQDA (DACS-SF), WASH DC 20310-0200, for further evaluation as necessary.

Quality factor

The modifying factor [listed in 10 CFR 20.1004, tables 1004(b).1 and 1004(b).2] that is used to derive dose equivalent from absorbed dose.

Rad

A unit of absorbed dose. One rad is equal to an absorbed dose of 0.01 joule/kilogram (0.01 gray).

Radiation

For the purposes of this regulation, unless otherwise specified, radiation includes both ionizing and nonionizing radiation.

Radiation area

An area, accessible to individuals, in which radiation levels could result in an individual receiving a dose equivalent in excess of 0.005 rem (0.05 mSv) in 1 hour at 30 centimeters from the radiation source or from any surface that the radiation penetrates.

Radiation safety

For the purposes of this regulation, a scientific discipline whose objective is the protection of people and the environment from unnecessary exposure to radiation. Radiation safety is concerned with understanding, evaluating, and controlling the risks from radiation exposure relative to the benefits derived. Same as health physics and radiation protection.

Radiation safety committee

An advisory committee for the commander to assess the adequacy of the command's radiation safety program. Same as radiation control committee and radiation protection committee.

Radiation Safety Officer

The person that the commander designates, in writing, as the executive agent for the command's radiation safety program. Same as radiation protection officer or health physics officer.

Radiation safety program

A program to implement the objective of radiation safety.

- a. The Army's radiation safety program includes all aspects of:
 - (1) Measurement and evaluation of radiation and radioactive material pertaining to protection of personnel and the environment.
 - (2) Army compliance with Federal and DOD radiation safety regulations.
 - (3) The Army's radiation dosimetry, radiation bioassay, radioactive waste disposal, radiation safety training, and radiation instrument TMDE and calibration programs.
- b. A command's radiation safety program includes all aspects of:
 - (1) Measurement and evaluation of radiation and radioactive material within the command as they pertain to protection of personnel and the environment.
 - (2) Compliance with Federal, DOD, and Army radiation safety regulations.

Radioactive commodity

An item of Government property made up in whole or in part of radioactive material. A national stock number (NSN) or part number is assigned to commodities containing radioactive material greater than 0.01 Ci.

Severity

The expected consequence of an event in terms of degree of injury, property damage, or other mission impairing factors (loss of combat power, adverse publicity, and so on), that should occur.

Shallow dose equivalent

Applies to the external exposure of the skin or an extremity and is taken as the dose equivalent at a tissue depth of 0.007 centimeter (7 mg cm²) averaged over an area of 1 square centimeter.

Sievert (Sv)

The SI unit of any of the quantities expressed as dose equivalent. The dose equivalent in sieverts is equal to the absorbed dose in grays multiplied by the quality factor (1 Sv = 100 rem).

Source material

Uranium or thorium, or any combination thereof, in any physical or chemical form or ores that contain by weight one-twentieth of one percent (0.05%) or more of uranium, thorium, or any combination thereof. Source material does not include special nuclear material.

Special nuclear material

Plutonium, uranium-233, uranium enriched in the isotope 233 or in the isotope 235, or any material artificially enriched by any of the foregoing.

Sustain the Force

One of the Army's four core capabilities. This capability includes the processes of acquiring, maintaining and sustaining equipment; maintaining and sustaining land operations; acquiring and sustaining infrastructure and operating installations.

Tera- (T)

An SI unit prefix indicating a factor of one trillion (10¹²).

Total effective dose equivalent

The sum of the deep-dose equivalent (for external exposures) and the committed effective dose equivalent (for internal exposures).

Type classification

A designation the Army uses to indicate acceptability for service use (AR 70-61).

Ultraviolet (UV) electromagnetic radiation

Electromagnetic radiation with wavelengths between 100 nm and 380-400 nm.

United States Army Reserve Center

A home station facility, activity, or installation utilized for administration and training of United States Army Reserve units and personnel.

Unrestricted area

An area, access to which in neither limited nor controlled (for the purposes of ionizing radiation safety).

Very high radiation area

An area, accessible to individuals, in which radiation levels could result in an individual receiving an absorbed dose in excess of 500 rads (5 grays) in 1 hour at 1 meter from a radiation source or from any surface that the radiation penetrates.

Visible light

Electromagnetic radiation with wavelengths between 380-400 nm and 760-780 nm.

Weighting factor

For an organ or tissue, the proportion of the risk of stochastic effects resulting from irradiation of that organ or tissue to the total risk of stochastic effects when the whole body is irradiated uniformly.

Radioactive waste, low-level, 1-4d(3), 1-4i(4), 2-4d, 2-6c, 2-7 Radiofrequency controlled environment, 1-4j(4) Radiological health, 1-4e(3) Radium, 2-2a(2), 2-6c Reports, 6-2 Research, development, testing, and evaluation (RDTE), 1-8c, 2-1a **Responsibilities Army Radiation Safety Council, 1-5** Army Radiation Safety Officer (Army RSO), 1-4I, 1-5b, 1-9f Assistant Chief of Staff for Installation Management (ACSIM), 1-4h, 1-5b Assistant Secretary of the Army (Installations, Logistics, and Environment) [ASA(IL&E)], 1-4a Assistant Secretary of the Army (Manpower and Reserve Affairs), 1-4b, 1-5b Chief, Army Ionizing Radiation Dosimetry Center (AIRDC), 1-4d(2), 5-2d(2), 5-2e(3)(b) Chief, Army Reserve, 1-5b Chief, National Guard Bureau, 1-5b, 1-9b(3) Commander, 1-4k, 2-2a(4), 2-2b(3) Commanding General, Center for Health Promotion and Preventive Medicine (CG, CHPPM), 1-4g(6), 2-2a(3), 2-3d, 3-1c, 3-2d, 4-2a Commanding General, U.S. Army Materiel Command (CG, AMC), 1-4d Commanding General, U.S. Army Medical Command (CG, MEDCOM), 1-49 Commanding General. U.S. Army Training and Doctrine Command (CG, TRADOC), 1-4f Director of Army Safety (DASAF), 1-4c, 1-5b, 1-9f Installation commander, 1-4j Installation Radiation Safety Committee, 1-6 Installation Radiation Safety Officer, 1-4n, 1-6b, 1-7b and c Laser Safety Officer (LSO), 1-40 Major Army command commanding general, 1-4i, 1-9b(1) 1-4d(2) Radiation Safety Officer (RSO), 1-4d(2)(c) and (d), 1-4o, 1-6b, 1-7b and c, 1-8a, 5-2d(2) and (3), 5-2e(2) and (3) Radiation Safety Staff Officer (RSSO), 1-4m, 1-5b, 2-1c, 2-2d, 2-3b, 2-3d Radiological Hygiene Consultant to The Surgeon General, 1-5b Superintendent, U.S. Military Academy, 1-9b(2) Surgeon General, 1-4e, 1-9b, 1-9f, 5-2e(1) Risk management, 1-4c(2), 1-4i(5), 1-4i(11), 1-8c(2), 1-8f, 1-9, 5-3c Shielding and controls, 2-1c Surveillance, see Occupational health surveillance Survey instruments, 2-8 Test, measurement, and diagnostic equipment (TMDE) program, 1-4d(4) Third-party liability, 1-4i(1), 1-4k(5), 2-1b, 2-2a(2) Training, 1-4f(1) and (2), 1-4g, 1-4k(3) Transfer and transport, 2-6, 2-7b X-ray system, see Machine-produced ionizing radiation source

BTD Armor Reclamation Facility

Appendix C: Survey Unit Maps and Sample Locations

Appendix C: Final Status Survey Plan For Wash Rack Facilities #2 and #3, Aberdeen Proving Ground, Aberdeen, MD

Final Status Survey Plan For Wash Rack Facilities #2 and #3 Aberdeen Proving Ground, Aberdeen, MD

Contract Number DAAA09-00G-0002/0039

Prepared for:

U.S. Army Joint Munitions Command AMSIO-ACE-D Bldg., 350 5th Floor Rock Island, IL 61299-6000

Prepared by:

Cabrera Services, Inc. 809 Main Street East Hartford, CT 06108

> Cabrera Project No 01-3030.39

> > June 2003

Wash Rack Facilities #2 and #3

TABLE OF CONTENTS

P	age
	uge.

<u>Sectio</u>		Page
1.0	INTRODUCTION	1
1.1	General History	
1.2	General Approach to Building Investigation	1
2.0	SITE ASSESSEMENT	2
2.1	General Areas for Investigation	
2.2	Radionuclides of Concern	
3.0	SURVEY INSTRUMENTATION AND TECHNIQUES	
3.1	Surface Alpha Radioactivity Scan Surveys	
3	.1.1 Ludlum Model 43-37 and Eberline FCM4M	
3	.1.2 Ludlum Model 43-89 and Ludlum Model 43-93	
3.2	Integrated Direct Surface Alpha Radioactivity Measurements	
3.3	Smear Sample Collection and Analysis	
3.4	Gamma Dose Rate Measurements	6
4.0	FINAL STATUS SURVEY DESIGN	
4.1	Residual Radioactivity Limit (DCGL)	7
4.2	Action Levels	
4.3	General Area Classification Based on Contamination Potential	
4.4	Number of Static Measurements	
4	.4.1 Estimation of Relative Shift	
4	.4.2 Determination of N (Number of Required Measurement Locations)	
4.5	Elevated Measurement Criterion (DCGL _{EMC})	
4.6	Static Measurement Locations	
4.7	Surface Alpha Radioactivity Scan Surveys	10
4.8	Integrated Direct Surface Alpha Radioactivity Measurements	10
4.9	Smear Sample Collection and Analysis	11
4.10	Gamma Exposure Rate Measurements	
5.0	EQUIPMENT RELEASE	
5.1	Survey of Equipment for Release Without Restriction	12
6.0	DATA PROCESSING	13
6.1	Project Log Book	
6.2	Project Electronic Data	
7.0	Interpretation of Survey Results	14
8.0	SURVEY QUALITY ASSURANCE/QUALITY CONTROL	
8.1	Instrumentation Requirements	
8.	1.1 Calibration Requirements	
8.	1.2 Instrument QC Source and Background Checks	
8.2	Direct Alpha, Smear, and Exposure Rate Measurements	

×-

Wash Rack Facilities #2 and #3

	8.2.1	Duplicate Measurements	17
9.0	REFE	RENCES	18

Wash Rack Facilities #2 and #3

LIST OF TABLES

<u>Title</u>	Page
Table 3.1-1: Alpha Scan Assumptions	5
Table 3.2-1: Detector Sensitivities and Assumptions	5
Table 4.3-1: Survey Units	8

Wash Rack Facilities #2 and #3

Final Status Survey Plan Aberdeen Proving Ground

LIST OF APPENDICES

Appendix A: Uranium 238 Decay Series

Appendix B: Army Regulation 11-9 Army Radiation Safety Program

Appendix C: Survey Unit Maps and Sample Locations

ACRONYMS AND ABBREVIATIONS

ALARA	As Low As Reasonably Achievable
APG	Aberdeen Proving Ground
ATC	Army Test Center
CABRERA	Cabrera Services, Inc.
cpm	Counts Per Minute
DCGL or DCGLw	Derived Concentration Guideline Level
dpm	Disintegrations Per Minute
DU	Depleted Uranium
FSS	Final Status Survey
HSA	Historical Site Assessment
JMC	Joint Munitions Command
LBGR	Lower Bound of the Grey Region
MARSSIM	Multi-Agency Radiation Survey And Site Investigation Manual
MDC	Minimum Detectable Concentration
μR	Microroentgen
mrem	Millirem
NAD	Normalized Absolute Difference
NIST	National Institute of Standards and Technology
NRC	Nuclear Regulatory Commission
QA	Quality Assurance
QC	Quality Control
ROC	Radionuclides of Concern
SU	Survey Unit

1.0 INTRODUCTION

Cabrera Services, Inc. (CABRERA) is under contract to the United States Army Joint Munitions Command (JMC) to provide support to the Army Test Center (ATC) at the Aberdeen Proving Ground (APG) in Aberdeen, MD. The ATC intends to survey two Wash Rack Facilities (WRFs) for unrestricted release. This document presents the plans for WRF #2 and WRF #3 Final Status Survey (FSS) activities, which are designed in accordance with Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (NRC, 2000) guidance. The FSS is a survey of the interior of both WRFs. Areas outside the WRFs interior walls, floors and ceilings as well as the surrounding land areas will be addressed under a separate effort.

1.1 General History

APG is a Government-owned and operated testing facility in Aberdeen, MD. The ATC is a tenant activity located at APG. The ATC possesses a Nuclear Regulatory Commission (NRC) license (SUB 834) for the use of depleted uranium (DU) at APG. Since the construction of WRF #2 and WRF #3 in 1992, the ATC has utilized these facilities as warehouses. The WRFs have never been used as wash racks. The WRFs were used to store items and equipment, some of which were contaminated with DU. WRF #2 housed DU in the form of penetrators, floor sweepings, liquid abrasive residue from previous decontamination activities, and range debris (e.g., paper, plastic, wood). WRF #3 was used for the storage of uncontaminated Navy accelerator parts and the temporary housing of a cutting table contaminated with DU.

1.2 General Approach to Building Investigation

The site radiological investigations are designed using the approach outlined in MARSSIM (NRC, 2000).

- Select instrumentation and measurement techniques (Section 3.0)
- Develop a Derived Concentrations Guideline Level (Section 2.2 and Section 4.1)
- Classify areas by contamination potential (Section 4.3)
- Estimate number of measurement locations (Section 4.4)
- Identify survey units (Table 4.3-1)
- Collect Data (Sections 4.7, 4.8, 4.9, 4.10)
- Evaluate Data (Section 7.1)

2.0 SITE ASSESSEMENT

2.1 General Areas for Investigation

The WRFs are similar in construction and consist of steel beam frame and sheet metal walls with no interior insulation or wallboard. The interior of the WRFs are approximately 56' long by 26' wide with a ceiling height of 20'. The floors consist of steel plate with a recessed trough running the length of the facilities. The trough area is approximately 20' wide by 4" deep. The trough area contains multiple raised (\sim 3") steel beams which were used to support steel floor grating. The grating, which was removed prior to this FFS, was flush with the surrounding floor plate. There are no drains, sumps, heating, cooling, or ventilation systems in these facilities. Steel rollup doors for equipment entry are located at both ends of these facilities.

Since the WRFs were used as storage facilities for contaminated materials, the primary area of investigation is the floor, trough area, and lower wall surfaces (6' and below). WRF #2 housed DU in the form of penetrators, floor sweepings, liquid abrasive residue from previous decontamination activities, and range debris (e.g., paper, plastic, wood). Some of these contaminated materials may have been spilled prior to packaging and loose contamination could be transferred to the facility. WRF #3 was used for the storage of uncontaminated Navy accelerator parts and the temporary housing of a cutting table contaminated DU. Contamination left by the cutting table was identified in the southwest corner of the facility. This contamination was removed though decontamination activities prior to the initiation of the FSS. Past routine surveys of the WRFs have identified minor levels of DU contamination on the floor areas of these facilities.

2.2 Radionuclides of Concern

Site Radionuclides of Concern (ROC) are limited to depleted uranium (DU) and short-lived uranium progeny (Appendix A). The uranium ratios are based on isotopic uranium weight ratios used for shipments of routine DU waste from APG (BARG, 1995). The activity fractions are calculated from the isotopic weight ratios and the specific activity of each uranium isotope. The result is a Uranium-234 (²³⁴U):Uranium-235 (²³⁵U):Uranium-238 (²³⁸U) ratio of 0.084:0.012:0.904. This composition is similar to the 0.190:0.021:0.790 average ratio from three DU soil samples described in the APG report (ANL 1999) entitled "Derived Uranium Guideline for the Depleted Uranium Study Area of the Transonic Range, Aberdeen Proving Ground, Maryland".

3.0 SURVEY INSTRUMENTATION AND TECHNIQUES

The purpose of this section is to describe radiological survey instruments and techniques to be used for surveys that will be implemented during site radiological investigations. For this FSS, scanning and integrated direct measurements performed to measure surface radioactivity concentrations will be based solely on alpha emissions. Beta measurements will be collected in tandem with alpha measurements and presented for qualitative review in an appendix of the FSS report. Specific measurement/sampling frequencies and approaches for the FSS are discussed in later sections.

Prior to the initiation of survey activities, interior surfaces will be cleaned to remove dirt and grime that could shield alpha emissions from detection. The cleaning implements used and the wastes generated during cleaning will be collected and stored on site and disposed in accordance with the contaminants found.

3.1 Surface Alpha Radioactivity Scan Surveys

Surface scanning will be performed to identify locations, if any, where contaminant concentrations exceed the criterion for unrestricted release. Scanning will be performed with the active area of the detector at a height of 0.5 cm above the surface of interest using the detector specific assumptions listed in Table 3.1-1. Scanning measurements will be performed in accordance with CABRERA procedures OP-020 "Operation of Contamination Survey Meters," Rev 0.

3.1.1 Ludlum Model 43-37 and Eberline FCM4M

Scanning will be performed on floor surfaces and lower walls using an Eberline FCM4M (active area of 728 cm²) gas proportional floor monitor, Ludlum Model 43-37 handheld (active area of 582 cm²) gas proportional detector, or equivalent. Using MARSSIM equation J-7 and the instrument specific assumptions listed in Table 3.1-1, the Scan MDC is determined to be equal to DCGL_W. Using the detector specific assumptions presented in Table 3.1-1, the chance of detecting a concentration equal to the DCGL_W would be 91% and signified by the incidence of two alpha counts occurring within the dwell time of that instrument.

$$P(n \ge 2) = 1 - P(n = 0) - P(n = 1)$$
(MARSSIM Equation J-7)
$$= 1 - (e^{-A}) \times (1 + A)$$
$$A = \frac{(GE + B)t}{60}$$

where

P(n ≥ 2)	=	probability of getting 2 or more counts during the time interval t
$\mathbf{P}(\mathbf{n}=0)$	=	probability of not getting any counts during the time interval t
P(n = 1)	=	probability of getting 1 count during the time interval t
G	=	source activity (dpm)
Ε	=	detector efficiency (4π)
В	=	
t	=	
Α	=	detector area (cm ²)

If two or more alpha counts occur during the dwell time, a one-minute integrated measurement will be performed at that location. If the result of the integrated alpha measurement is in excess of the release criteria action level (Section 4.2), the area will be marked for biased measurements and investigated by the Field Supervisor.

3.1.2 Ludlum Model 43-89 and Ludlum Model 43-93

Upper wall and ceiling surfaces may not be readily scanned using a Ludlum 43-37 handheld gas proportional counter due to potential long gas delivery tubing lines. These areas may alternatively be scanned with a Ludlum Model 43-89 (active area 126 cm²) or Ludlum Model 43-93 (100 cm²) active area scintillation detectors, or equivalent.

Using MARSSIM equation J-5 and the instrument specific assumptions listed in Table 3.1-1, the Scan MDC is determined to be equal to derived concentration guideline (DCGL_W). The chance of detecting a concentration equal to the DCGL_W would be 90% and signified by the incidence of one alpha count occurring within the pause time of that stationary instrument.

$$P(n \ge 1) = 1 - P(n = 0) = 1 - e^{-A}$$
 (MARSSIM J-5)

for A =
$$\frac{\text{GEd}}{60\text{v}}$$

where,

$P(n \ge 1) \approx$	probability of getting 1 or more counts during the time interval t
P(n=0) =	probability of not getting any counts during the time interval t

E = detector efficiency (4π)

- d = width of the detector in the direction of scan (cm)
- v = scan speed (cm/s)

A = detector area (cm^2)

Whenever an alpha count is detected during the scan, the detector will be held in place over the location where the count was detected for approximately for the duration of the pause time (approximately 7-8 seconds). If a second alpha count is detected over this location during the

pause time, a two minute integrated count will be performed. If the result of the integrated measurement is in excess of the release criteria (Section 4.1), the area will be marked for biased measurements and investigated by the Field Supervisor.

Model #	Probe Area (cm ²)	Probe Width (cm)	a Efficiency (cpm/dpm)	a Bkgd (cpm)	Scan Speed (cm/sec)	Pause Time (sec)	P(a>=1)	Dweil Time (sec)	P(n>=2)
FCM4M	728	15	0.15	10	7.5	NA	NA	2.0	0.91
43-37	582	15	0.15	10	6	NA	NA	2.5	0.91
43-89	125	9	0.15	3	1	7.3	0.90	NA	NA
43-93	100	9	0.15	3	1	7.3	0.90	NA	NA

Table 3.1-1: Alpha Scan Assumptions

3.2 Integrated Direct Surface Alpha Radioactivity Measurements

Integrated direct measurements (i.e., static measurements) of surface alpha radioactivity will be performed during FSSs to compare contaminant concentrations at discrete sampling locations to the release criterion and facilitate statistical testing. Integrated measurements of floors and walls will be performed using a Ludlum Model 43-37 handheld (active area of 582 cm^2) gas proportional detector, Eberline FCM4M (detector surface area of 728 cm^2) gas proportional floor monitor, Ludlum Model 43-89 hand held (active area 126 cm^2) alpha scintillation detector, Ludlum Model 43-93 hand held (active area 100 cm^2) alpha scintillation detector or equivalent. The estimated detector sensitivities and assumptions used for each of the detectors are presented in Table 3.2-1.

Static measurements will be performed in accordance with CABRERA procedures OP-020 "Operation of Contamination Survey Meters," Rev 0, and OP-021 "Alpha-Beta Counting Instrumentation," Rev 0, and CABRERA standard radiation instrumentation templates "Alpha Beta Counting and Smear Worksheet", Rev 1. Prior to use, FSS instrumentation will be checked for expected response using a Chi-Square distribution utilizing the CABRERA template "Chi-Square Worksheet", Rev 0.

The net count rate using the referenced templates will be determined as the difference between the measurement count rate and the daily background count rate measured prior to use.

Model #	Count Time (min)	Probe Area (cm ²)	a Efficiency (cpm/dpm)	a Background (cpm)	ct Static MDC (dpm / 100 cm ²)
FCM4M	1	728	0.15	10	16
43-37	1	582	0.15	10	20
43-89	2	126	0.15	3	38
43-93	2	126	0.15	3	48
2929	4	swipe	0.30	0.5	5

Table 3.2-1: Detector Sensitivities and Assumptions

3.3 Smear Sample Collection and Analysis

Smear samples for gross transferable alpha contamination will be collected and analyzed to determine if transferable activity is less than or equal to 10% of total activity as assumed in the $DCGL_W$ (Section 4.1) and to ensure compliance with the equipment release criterion of Army Regulation (AR) 11-9 presented in Appendix B. Smear results for beta activity will be collected in tandem with alpha activity measurements and recorded for qualitative assessment.

Smear samples will be collected over approximately 100 cm^2 areas at biased locations identified during scanning activities. Smear samples will be analyzed for alpha and beta radioactivity using a Ludlum 2929 alpha/beta scintillation counter or equivalent in accordance with CABRERA procedure OP-021 "Alpha-Beta Counting Instrumentation," Rev 0. Based on the assumptions listed in Table 3.1-1, an alpha MDC of 5 dpm/100cm² will be achieved.

3.4 Gamma Dose Rate Measurements

Gamma dose rate measurements may be qualitatively performed during the FSSs to ensure worker health and safety and to identify unusual dose rate conditions. Measurements will be performed using a Bicron[®] MicroRem tissue-equivalent scintillation detector, or equivalent, and will be performed in accordance with CABRERA Procedure OP-023, *Operation of micro-R Meters, Rev 0.* Measurements will be performed using the "slow" response time constant setting. The detector will be positioned over the area of interest and allowed to stabilize prior to recording the measurement. The technician will use their judgment to determine when the instrument has stabilized, it is estimated that this will take at least 15 seconds. Such measurements will typically be performed at 3' from and/or on contact with the surface being evaluated.

4.0 FINAL STATUS SURVEY DESIGN

The FSS to be performed at the WRFs are designed in accordance with Final Status Survey guidance from MARSSIM (NRC, 2000). FSS activities will consist of gross alpha and beta scan surveys and integrated measurements on interior surfaces at frequencies based on MARSSIM guidance. The FSS is designed conservatively in that the radiological background present in survey materials (i.e., floor and walls) will be neglected and the measure of total activity will be used for statistical comparisons to release criteria. Survey activities will also include biased smear sample collection and the performance of gamma dose rate measurements. MARSSIM area classifications will be reviewed and possibly revised based on the results of these surveys.

4.1 Residual Radioactivity Limit (DCGL)

As described by MARSSIM, a DCGL is a derived radionuclide activity concentration within a survey unit that corresponds to a release criterion. Per the license requirement of 10CFR20 Subpart E, a release criterion of 25 mrem/yr per year will be used for the WRF. Doses from residual radioactivity will be kept as low as reasonably achievable (ALARA) whenever possible. Using MARSSIM Section 4.3.4, the equation below, and knowing that there is one alpha decay per decay of each uranium isotope, a single total uranium DCGL_W of 100 dpm alpha/100cm² was derived for DU. This DCGL_W was calculated using the values provided by the NRC screening guidelines of 90.6 dpm/100cm², 97.6 dpm/100cm², 101 dpm/100cm² and for U²³⁴, U²³⁵, and U²³⁸, respectively, as presented in Table 5.19 of NUREG/CR-5512, volume 3, October 1999 and the DU activity fractions as presented in Section 2.2 of this FSS. As noted in the NUREG/CR-5512 document, screening level guidelines are based on the assumption that the fraction of removable surface contamination is ten percent.

$$DCGL_{W} = \frac{1}{\left(\frac{f_{1}}{DCGL_{1}}\right) + \left(\frac{f_{2}}{DCGL_{2}}\right) + \left(\frac{f_{3}}{DCGL_{3}}\right)}$$

Where: $DCGL_w$ = Combined gross activity DCGL (i.e., release limit).

f = Activity fraction of radionuclide

DCGL = DCGL of radionuclide

4.2 Action Levels

The total uranium $DCGL_w$ of 100 dpm alpha/100cm² will be used as the action level for both static and scanning measurements. If any survey measurement results in readings above the $DCGL_w$, the Field Supervisor shall be notified and the detector and survey location shall be evaluated. Following evaluation, a follow-up measurement shall be performed at the measurement location to verify the initial result.

4.3 General Area Classification Based on Contamination Potential

Using MARSSIM Section 5.3 as guidance, the WRFs will be divided into individual survey units and classified by contamination potential. Initially, WRF #2 will be divided into three Class 1

Survey Units (SUs) and one Class 2 SU as listed in Table 4.3-1. WRF #3 also be divided into three Class 1 SUs and one Class 2 SU as listed in Table 4.3-1.

The initial classifications are based on contamination potential and area size. MARSSIM identifies Class 1 areas as having, or had prior to remediation, a potential for radioactive contamination or known contamination. MARSSIM suggests that interior Class 1 SUs be less than 100 square meters in size. The floor and lower walls of the WRFs share a similar history of contamination and contamination potential because these facilities were used to store DU waste. DU contamination has been identified previously on the floors of these facilities during past routine surveys. The floor area in WRF #2 was remediated for DU contamination prior to the initiation of the FFS.

MARSSIM identifies Class 2 areas as having, or had prior to remediation, a potential for radioactive contamination or known contamination but are not expected to exceed the DCGL_w. MARSSIM suggests that interior Class 2 SUs be less than 1000 square meters in size. The ceiling and upper walls of WRFs are initially classified as Class 2 due to remediation activities being performed previously on the floor of these facilities.

Maps presenting the WRFs SU delineations and the reference coordinate system are presented in Appendix C.

SU #	Description	Material	Class	Area (m ²)	# of Samples	L (ff)
1	WRF #2 Floor South Side	Metal	1	68	20	6.1
2	WRF #2 Floor North Side	Metal	1	68	20	6.1
3	WRF #2 Lower Walls	Metal	1	90	24	7.0
4	WRF #2 Ceiling and Upper Walls	Metal	2	346	20	13.7
1	WRF #3 Floor South Side	Metal	1	68	20	6.1
2	WRF #3 Floor North Side	Metal	1	68	20	6.1
3	WRF #3 Lower Walls	Metal	1	90	24	7.0
4	WRF #3 Ceiling and Upper Walls	Metal	2	346	20	13.7

Table 4.3-1: Survey Units

4.4 Number of Static Measurements

MARSSIM provides a method to determine the number of measurement locations required in a given survey unit. A minimum number of measurement locations are required in each survey unit to obtain sufficient statistical confidence that the conclusions drawn from the measurements are correct. The following subsections describe the bases for and derivation of the minimum required measurement locations per survey unit.

4.4.1 Estimation of Relative Shift

The minimum number of measurement locations required is dependent on the distribution of site residual radionuclide concentrations relative to the DCGL_w and acceptable decision error limits (α and β).

The relative shift describes the relationship of site residual radionuclide concentrations to the $DCGL_w$ and is calculated using the guidance found in Section 5.5.2.3 of MARSSIM. The relative shift is calculated as follows:

$$\Delta / \sigma = \frac{\text{DCGL}_{w} - \text{LBGR}}{\sigma}$$

Where: DCGL_w= Derived Concentration Guideline Level

- LBGR = concentration at the lower bound of the gray region. The Lower Bound of the Grey Region (LBGR) is the concentration at which the survey unit has an acceptable probability of passing the statistical tests.
- σ = an estimate of the standard deviation of the concentration of residual radioactivity in the survey unit (which includes real spatial variability in the concentration as well as the precision of the measurement system).

As previously stated, the DCGL_w for surface alpha radioactivity is 100 dpm/100cm². The LBGR was conservatively estimated at 70 dpm alpha/100 cm² based on previous studies with similar instruments on concrete. Without prior survey, it is reasonable to assume a coefficient of variation on the order of 30 percent (MARSSIM Section 5.5.2.2). Using a coefficient of variation of 30 percent and the LBGR as an estimate of the sample mean, a sigma value of 21 dpm/100cm² is estimated. Using the parameters discussed above, the relative shift is calculated as 1.4.

4.4.2 Determination of N (Number of Required Measurement Locations)

The final number of required measurement locations per survey unit is 20 as per MARSSIM (Table 5.5) given a relative shift of 1.4 and an error rate for both Type I and Type II errors of five percent (i.e., $\alpha = \beta = 0.05$). The actual number of measurements to be performed in each survey unit ranges from 20 to 24 samples based on the size of the survey area (Section 4.6).

4.5 Elevated Measurement Criterion (DCGL_{EMC})

MARSSIM states that, for Class 1 survey units, a dose area factor should be used to evaluate the magnitude by which the concentration within a small area of elevated activity can exceed the $DCGL_w$ while maintaining compliance with the release criterion. For the purpose of ALARA, the $DCGL_w$ will be used as the $DCGL_{EMC}$, which corresponds to an area factor of one. Since the scan MDC of the instrumentation is sensitive enough to identify the $DCGL_w$ at least ninety percent of the time (see Section 3.1), it is unlikely that small areas of elevated activity exceeding the release criterion would be missed during scanning.

Wash Rack Facilities #2 and #3

Final Status Survey Plan Aberdeen Proving Ground

4.6 Static Measurement Locations

Measurement locations in Class 1 and Class 2 survey units have been established using a random start point in a systematic rectangular grid. The grid spacing for Class 1 and Class 2 survey units will be determined, based on the measured area of the survey unit, using the following equation (Equation 5-7 from MARSSIM).

$$L = \sqrt{\frac{A}{N}}$$

Where: L = rectangular grid spacing for survey unit A = area of survey unit N = number measurement locations

Measurement spacing results (L) using the equation above are presented in Table 4.3-1. Maps presenting the WRFs SU delineations and the reference coordinate system are presented in Appendix C.

4.7 Surface Alpha Radioactivity Scan Surveys

Class 1 SU scan surveys will be performed as described in Section 4.1 and will cover 100% of reasonably accessible surfaces. Areas of elevated radioactivity identified during scanning will be physically marked, and biased integrated measurements will be performed to quantify surface alpha activity concentrations for direct comparison to the DCGL_w. Survey areas in excess of the DCGL_w will be investigated by the Field Supervisor and flagged for additional biased sampling (e.g., smear sampling). Beta scans will be performed in tandem with alpha measurements and recorded for qualitative purposes.

Scan surveys in Class 2 SUs will cover at least 10% of accessible surface areas and, when possible, will be biased toward areas with high potential for the presence of contamination. Examples of areas with potentially higher concentrations of contamination include horizontal and difficult to access areas where DU contamination may have accumulated, such as trusses and floor joints. Areas of elevated radioactivity identified during scanning will be physically marked, and biased integrated measurements will be performed to quantify surface alpha activity concentrations for direct comparison to the DCGL_w. Since contamination in excess of the DCGL_w will trigger investigation by the Field Supervisor and a re-evaluation of the area classification. Beta scans will be performed in tandem with alpha measurements and recorded for qualitative purposes.

4.8 Integrated Direct Surface Alpha Radioactivity Measurements

Measurements of surface alpha radioactivity will be performed in SUs at locations selected for MARSSIM statistical testing and at biased locations identified prior to and during scanning activities. Such measurements will be performed as described in Section 3.2. Beta measurements will be performed in tandem with alpha measurements and recorded for qualitative purposes.

Wash Rack Facilities #2 and #3

Final Status Survey Plan Aberdeen Proving Ground

4.9 Smear Sample Collection and Analysis

Smear samples will be collected at biased survey locations and at least 10% of systematic survey locations. Smear samples will be collected as described in Section 3.3. Beta measurements will be performed in tandem with alpha measurements and recorded for qualitative purposes.

4.10 Gamma Exposure Rate Measurements

Gamma exposure rate measurements may be performed to ensure worker safety and to identify unusual exposure rate conditions. Gamma exposure rate measurements will be performed as described in Section 3.4.

5.0 EQUIPMENT RELEASE

5.1 Survey of Equipment for Release Without Restriction

All equipment inside the WRFs should have been removed prior to FFS. If equipment is present that requires survey for unrestricted release, CABRERA will follow the surface release limits of 1,000 dpm/100 cm² of DU alpha activity per Army Regulation 11-9 *The Army Radiation Safety Program.* It is expected that all final release surveys of equipment will be performed by the licensee and these surveys will follow APG procedures. If CABRERA performs these release surveys for APG, then CABRERA will follow the APG procedures.

6.0 DATA PROCESSING

This section describes how project events and data will be retained for this FSS.

6.1 Project Log Book

All significant events which occur during this FSS be documented and retained for future reference. While many types of project events have specific forms on which they are documented, many events occur on a routine basis during survey field activities that must be documented as they occur. Additionally, project data transactions must also be recorded as they occur. To provide a practical means of capturing this information, a project logbook will be initiated upon project commencement.

Significant project events, including data transactions involving project electronic data, shall be recorded in the Project Logbook. Data transactions are defined as any transfer, download, export, copy, differential correction, sort, or other manipulation performed on project electronic data. Project Logbook records shall be sufficient to allow data transactions to be reconstructed after the project is completed. The Field Supervisor shall be responsible for maintaining the Project Data Logbook and will review the Project Data Logbook at least daily to report significant issues.

The Project Logbook is considered a legal record and will be permanently bound and the pages will be pre-numbered. Pages may not be removed from the logbook under any circumstances. Entries shall be legible, factual, detailed, and complete and shall be signed and dated by the individual(s) making the entries. If a mistake is made, the individual making the entry shall place a single line through the erroneous entry and shall initial and date the deletion. Under no circumstances shall any previously entered information be completely obliterated. Use of whiteout in the Project Logbook is not permitted for any reason. Only one Project Logbook will be maintained. If a Project Logbook is completely filled, another volume shall be initiated. In this case, each volume shall be sequentially numbered.

6.2 **Project Electronic Data**

Much of this FSS will rely on data collected and stored electronically. Electronic data is subject to damage and/or loss if not properly protected. As such, all project electronic data shall be downloaded from its collection device (e.g., laptop computers, data loggers, etc.) on at least a daily basis. At the conclusion of each day's survey activities, the Field Supervisor shall back up all electronic data collected that day to appropriate removable media (e.g., CD, zip disk, or equivalent) and shall ensure the backup is removed from site. Under no circumstances shall the backup be stored in the same building in which the original project electronic data is stored.

Data files shall be named according to a naming protocol designated by the field supervisor. No variations from this protocol shall occur without the prior concurrence of the field supervisor. During data download and transfer transactions, the applicable data file name(s) shall be included in project data logbook entries.

7.0 INTERPRETATION OF SURVEY RESULTS

The results of individual integrated static measurements performed for this FSS will be evaluated to compare the residual radioactivity present in the WRFs SU's to the release criteria (DCGL_W). This comparison will determine if the WRFs can be considered for release without radiological restriction. If all of the SU's of a WRF meet the criteria for unrestricted release, the WRF as a whole will be considered a viable candidate for unrestricted release.

In accordance with MARSSIM guidance, a preliminary data review will be performed to identify patterns, relationships, and potential anomalies present in the survey data. In this review, basic statistics including the mean, median, standard deviation, maximum and minimum values will be calculated for each SU. A graphical review of the alpha data will be performed consisting of posting plots and histograms. Posting plots will be used to review the spatial independence of measurements within survey units, while histograms will be employed to review the overall symmetry of the data.

Once the data have been reviewed, all of the static alpha measurements for each SU will be compared to the DCGL_W. If all of the static alpha measurements for a SU are below the DCGL_W, the survey unit meets the release criteria. If the average residual radioactivity in an individual SU is greater than the DCGL_W, the SU does not meet the release criteria. If any alpha measurements in a SU are greater than the DCGL_W and the average residual radioactivity in that survey unit is below the DCGL_W, the Sign test will be performed as described in MARSSIM to compare the median concentration of residual radioactivity in individual survey units to the DCGL_W. If the results of that survey unit pass the Sign test, that SU meets the release criteria. Finally, a retrospective power curve will be computed to measure the power of the Sign test based on the results of the measurements performed. The results of all of these statistical processes will be provided in the FSS Report.

8.0 SURVEY QUALITY ASSURANCE/QUALITY CONTROL

Activities associated with this work plan shall be performed in accordance with written procedures and/or protocols in order to ensure consistent, repeatable results. Topics covered in project procedures and protocols may include proper use of instrumentation, Quality Control (QC) requirements, equipment limitation, etc. Quality Assurance (QA) measures for this FSS are described herein.

8.1 Instrumentation Requirements

The Field Supervisor is responsible for selecting the instrumentation required to complete the requirements of this work plan. Only instrumentation approved by the Field Supervisor will be used to collect radiological data. The Field Supervisor is responsible for ensuring individuals are appropriately trained to use project instrumentation and other equipment, and that instrumentation meets the required detection sensitivities. Instrumentation shall be operated in accordance with either a written procedure or manufacturers' manual, as determined by the Field Supervisor. The procedure and/or manual will provide guidance to field personnel on the proper use and limitations of the instrument.

8.1.1 Calibration Requirements

Instruments used during the FSS shall have current calibration/maintenance records kept on site for review and inspection. The records will include, at a minimum, the following:

- name of the equipment
- equipment identification (model and serial number)
- manufacturer
- date of calibration
- calibration due date

Instrumentation shall be maintained and calibrated to manufacturers' specifications to ensure that required traceability, sensitivity, accuracy and precision of the equipment/instruments are maintained. Instruments will be calibrated at a facility possessing appropriate NRC and/or Agreement State licenses for performing calibrations using National Institute of Standards and Technology (NIST) traceable sources.

8.1.2 Instrument QC Source and Background Checks

Prior to and after daily use, alpha and gamma measuring instruments will be QC checked by comparing the instruments' response to a designated alpha or gamma radiation source and to ambient background. QC source checks will be performed with the designated source positioned in a reproducible geometry. Background checks will be performed in an identical fashion with the source removed. During QC checks, instruments will be inspected for physical damage, current calibration and erroneous responses. The individual performing these tasks shall document the results in accordance with the associated instrument procedure and/or protocols. Instrumentation that does not meet the specified requirements of calibration, inspection, or response check will be removed from service. If an instrument is removed from service, any data obtained after the last successful QC check will be considered suspect due to faulty instrumentation.

Quality control source checks for the Eberline FCM4M, Ludlum 43-37, Ludlum 43-89, and Ludlum 43-93 will consist of a one-minute integrated count with the designated Thorium–230 (230 Th) and Technetium-99 (99 Tc) sources. QC source checks for the Bicron[®] MicroRem meter will consist of observing needle deflection and estimating an average dose rate once the instrument readings have stabilized (approximately 15 seconds) using a 137 Cs source. The acceptance criterion for these instrument response checks is within +/- 20% of the average response generated using ten initial source checks and ten measurements of ambient background performed at the beginning of the project. A response check outside these criteria will be cause for evaluation of conditions (e.g., instrument operation, source/detector geometry), and the response check will be repeated once prior to field use of that instrument. Instruments that fail the second successive response check will be removed from service and corrective actions will be taken. Only Field Supervisors can return a failed instrument back to service after proper corrective actions are taken and documented.

Quality control source response checks for the Ludlum 2929 will be checked daily by evaluating response to designated ²³⁰Th (Alpha) and ⁹⁹Tc (Beta) sources and ambient background. Response checks will consist of one-minute counts of a ²³⁰Th, ⁹⁹Tc source, and a 20 minute count of ambient background. The acceptance criteria for instrument response will be set to two and three-sigma of the average response generated using ten initial source checks and ten measurements of ambient background. A daily response check outside the two-sigma, but within the three-sigma criteria will be cause for a recount prior to use. A response check outside two sigma on the second count will be cause for further evaluation and or re-performance of QC control values prior to continued use. Response checks falling outside acceptance criteria will be cause for notification of the Field Supervisor and evaluation of conditions (e.g., instrument operation, source/detector geometry) prior to further counts and/or removal of the instrument from service. Instruments must pass a response check prior to field use. Only Field Supervisors can return a failed instrument back to service after proper corrective actions are taken and documented.

Quality control for volumetric sample analysis will be performed in accordance with applicable Paragon standard operating procedures.

8.2 Direct Alpha, Smear, and Exposure Rate Measurements

Instrumentation will be operated in accordance with standard operating procedures and/or protocols.

8.2.1 Duplicate Measurements

Duplicate measurements will be required for 10% of the static measurement locations for each survey unit. Duplicate measurements will be compared to the initial analytical results by determining a Normalized Absolute Difference (NAD) value and comparing it against the performance criteria specified as follows:

Analyses of field and laboratory duplicates will be compared to the initial analytical results by determining a NAD value for each data set by the following equation (PROB, 1993):

$$NAD = \frac{|Sample - Duplicate|}{\sqrt{\sigma_{Sample}^{2} + \sigma_{Duplicate}^{2}}}$$

Where:

There: Sample = first sample value (original), Duplicate = second sample value (duplicate), $\sigma_{\text{Sample}} = 2\sigma$ counting uncertainty of the sample, and, $\sigma_{\text{Duplicate}} = 2\sigma$ counting uncertainty of the duplicate

The calculated NAD results will be compared to a performance criteria of less than or equal to 1.96. Calculated NAD values less than 1.96 will be considered acceptable and values greater than 1.96 will be investigated for possible discrepancies in analytical precision, or for sources of disagreement with the following assumptions of the test:

- > the sample measurement and duplicate or replicate measurement are of the same normally distributed population.
- > the standard deviations, σ_{Sample} and $\sigma_{\text{Duplicate}}$, represent the true standard deviation of the measured population.

9.0 **REFERENCES**

(ANL, 1999)	ANL Environmental Assessment Department Health Risk Report, "Derived
	Uranium Guidelines for the Depleted Uranium Study Area of the Transonic
	Range, Aberdeen Proving Ground, Maryland", M. Picel and S. Kamboj,
	Argonne National Laboratory, April 1999

- (BARG, 1995) Specific Manufacturing Capability Program, Depleted Uranium Constituents and Decay Heating, Lockheed, Idaho presentation, dated October 3, 1995.
- (CABRERA, 2000a) CABRERA OP-020, "Operation of Contamination Survey Meters", Rev 0
- (CABRERA, 2000b) CABRERA OP-021, "Alpha-Beta Counting Instrumentation", Rev 0
- (CABRERA, 2000c) Cabrera OP-023, "Operation of micro-R Meters", Rev 0
- (NRC, 1999) NUREG/CR-5512, Volume 3 Residual Radioactive Contamination from Decommissioning, Parameter Analysis, Draft Report for Comment, U.S. Nuclear Regulatory Commission, dated October, 1999.
- (NRC, 2000) NUREG-1575, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), U.S. Nuclear Regulatory Commission, dated August, 2000.

Wash Rack Facilities #2 and #3

Appendix A: Uranium 238 Decay Series

Radionuclide	Half-Life	Emissions	Energy (MeV)	Percent Yield
U-238	4.5 x 109 y	α	4.2	75
	1.5 x 107 y	α.	4.15	25
Th-234	24.1 d	β	0.193	79
111 23 1		β	0.1	21
		<u>Ρ</u> γ	0.093	4
		γ	0.063	3.5
Pa-234m	1.17 min	β	2.29	98
Pa-234	6.75 h	β	0.53	<1
		β	1.13	<1
U-234	2.47 x105 y	α	4.72	28
	¥	α.	4.77	72
Th-230	8.0 x 104 y	α	4.62	24
		α	4.68	76
Ra-226	1602 y	α	4.60	6
	*	α	4.78	95
		γ	0.186	4
Rn-222	3.82 d	α	5.49	100
Po-218	3.05 min	α	6.0	100
Pb-214	26.8 min	β	0.65	50
		β	0.71	40
		γ	0.3	19
		γ	0.35	36
Bi-214	19.7 min	β	1.0	23
		β	1.51	40
		β	3.26	19
		γ	0.609	47

Uranium 238 Decay Series (Excerpted from Radioactive Decay Data Tables, David Kocher, 1981)

Wash Rack Facilities #2 and #3

Appendix B: Army Regulation 11-9 Army Radiation Safety Program

Wash Rack Facilities #2 and #3

Appendix C: Survey Unit Maps and Sample Locations

Appendix D: Final Status Survey Plan, Bomb Throwing Device (BTD) Site, Aberdeen Proving Ground, Aberdeen, MD

-

DEPARTMENT OF THE ARMY U. S. ARMY ABERDEEN TEST CENTER 400 COLLERAN ROAD ABERDEEN PROVING GROUND, MARYLAND 21005-5069

J-8

September 18, 2003

Office of the Commander

Mr. James Schmidt Nuclear Regulatory Commission, Region I Division of Nuclear Materials Safety 475 Allendale Road King of Prussia, Pennsylvania 19406

5ub-834 04087354

Dear Mr. Schmidt:

The final Status Survey Plan for the Aberdeen Test Center Bomb Throwing Device Site is provided for your review and approval (Enclosure).

A copy of this letter with the enclosure has been furnished to the Directorate for Installation Management (CSTE-DTC-MS-S/Mr. Robert Aaserude), U.S. Army Developmental Test Command, 314 Longs Corner Road, Aberdeen Proving Ground, Maryland 21005-5055.

My point of contact at the U.S. Army Aberdeen Test Center is Mr. John C. Beckman at 410-278-9618.

Brown

Colonel, U.S. Army Commanding

ł

Enclosure

STOR SED 23 WH 3: 50

133995

NMSS/RGNI MATERIALS-002

REC'D IN LAT NOV 1 7 2003

FINAL

Final Status Survey Plan Bomb Throwing Device (BTD) Site

Aberdeen Proving Ground, Aberdeen, MD

Contract Number DAAA09-00G-0002/0039

Prepared for:

U.S. Army Joint Munitions Command AMSIO-ACE-D Bldg., 350 5th Floor Rock Island, IL 61299-6000

Prepared by:

809 Main Street East Hartford, Connecticut 06108

> Cabrera Project No 01-3030.39

> > August 2003

Final Status Survey Plan

.

TABLE OF CONTENTS

Section		Page
1.0	INTRODUCTION	1
1.1 1.2	Site History General Approach to the BTD Site FSS	1 1
2.0	SITE ASSESSEMENT	
2.1 2.2 2.3 2.4	Area of Investigation Radionuclides of Potential Concern Residual Radioactivity Limit (DCGL) Action Levels	3 4
3.0	SURVEY INSTRUMENTATION AND TECHNIQUES	6
3.1 3.2 3.3 3.4 3.5 3.6	Gamma Walkover Surveys (GWS) Direct Alpha Radioactivity Scan Surveys Soil Sampling Integrated Direct Surface Alpha Radioactivity Measurements Gamma Dose Rate Measurements Smear Sample Collection and Analysis	
4.0	FINAL STATUS SURVEY DESIGN	
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	······································	12 14 14 14 15 15 15 15 15 15 16
5.0	EQUIPMENT RELEASE	
5.1	Survey of Equipment for Release Without Restriction	
6.0	DATA PROCESSING	
6.1 6.2	Project Log Book Project Electronic Data	
7.0	Interpretation of Survey Results	19
8.0	SURVEY QUALITY ASSURANCE/QUALITY CONTROL	20
8.1 8.2 8.3	Instrumentation Requirements Instrument QC Source and Background Checks Duplicate Measurements	
9.0	REFERENCES	
DAA	A09-00G-0002/0039 CABRERA SERVICES, INC.	Page

Bomb Throwing Device Site Aberdeen Proving Ground

LIST OF TABLES

Title		Page
Table 3.1-1	: Nal Scanning Sensitivities for Soil	
Table 3.2-1	: Alpha Scan Assumptions	
Table 3.4-1	: Detector Sensitivities and Assumptions	9
Table 4.1-1	: Survey Units	

DAAA09-00G-0002/0039

CABRERA SERVICES, INC.

Page ii

Bomb Throwing Device Site Aberdeen Proving Ground

LIST OF APPENDICES

Appendix A: Uranium 238 Decay Series

- Appendix B: Derived Concentration Guideline Level (DCGL) Determination For U. S. Army Garrison, Aberdeen Proving Grounds (APG) Bomb Throwing Device Site
- Appendix C: Ludlum NaI 3"x3" MDC_{SCAN} and Instrument Sensitivity Results Calculated Using Microshield[®]

Appendix D: Survey Unit Maps and Sample Locations

Bomb Throwing Device Site Aberdeen Proving Ground

ACRONYMS AND ABBREVIATIONS

ALARA	As Low As Reasonably Achievable
APG	Aberdeen Proving Ground
ATC	Aberdeen Test Center
BTD	Bomb Throwing Device
CABRERA	Cabrera Services, Inc.
cpm	Counts Per Minute
DCGL or DCGLw	Derived Concentration Guideline Level
DGPS	Differential Global Positioning System
dpm	Disintegrations Per Minute
DU	Depleted Uranium
FSS	Final Status Survey
GWS	Gamma Walkover Survey
HEPA	High Efficiency Particulate Air
LBGR	Lower Bound of the Grey Region
MARSSIM	Multi-Agency Radiation Survey And Site Investigation Manual
MDC	Minimum Detectable Concentration
MDC _{scan}	Minimum Detectable Concentration for gamma Scanning
μRem	Microrem
mrem	Millirem
NAD	Normalized Absolute Difference
NIST	National Institute of Standards and Technology
NRC	U. S. Nuclear Regulatory Commission
PARAGON	Paragon Analytics, Inc.
QA	Quality Assurance
QC	Quality Control
ROPC	Radionuclides of Potential Concern
SU	Survey Unit
WESTON	Roy F. Weston

DAAA09-00G-0002/0039

CABRERA SERVICES, INC.

1.0 INTRODUCTION

Cabrera Services, Inc. (CABRERA) is under contract to the United States Army Joint Munitions Command (JMC) to provide support to the Aberdeen Test Center (ATC) at the Aberdeen Proving Ground (APG) in Aberdeen, MD. CABRERA will perform radiological surveys of the Bomb Throwing Device (BTD) site to support consideration for unrestricted release. The BTD site consists of approximately 46,000 square meters of land on the APG. There are several support facilities and access roads located on the BTD site that were used for the testing of Depleted Uranium (DU) munitions. This document presents the plan for the BTD site Final Status Survey (FSS) activities, which are designed in accordance with Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (NRC, 2000) guidance. This final status survey specifically addresses the survey of approximately 46,000 square meters of BTD site soil, two concrete pads, and three steel test structures located within the boundary of the BTD site. Buildings and other enclosed structures located on the BTD site will be addressed under a separate effort.

1.1 Site History

Aberdeen Proving Ground, located in Aberdeen, MD, is an active U.S. Army testing and research facility. The Aberdeen Proving Ground (APG) lies along the western shore of the Chesapeake Bay in Harford and Baltimore Counties, MD, approximately 15 miles northeast of Baltimore. The APG covers a total of 72,516 acres (land and water) and consists of two distinct areas: the northern portion of APG, referred to as the Aberdeen Area; and the southern portion of APG, referred to as the Edgewood Area. The Aberdeen Area became a formal military post, designated as the APG, in 1917.

The BTD site was used between 1982 and 1993 for the testing of DU munitions. The site consists of the Building Armor Reclamation Facility (BARF), Building 701 (DU Test Enclosure Building which has been recently removed), Plate Storage Area (PSA), access roads and several support buildings situated on approximately 46,000 square meters of land. During use, munitions were fired at steel plate and other targets placed inside the DU Test Enclosure Building. The ATC tested DU munitions utilizing an enclosure with high efficiency particulate air (HEPA) equipment, used to collect potentially contaminated air exiting the building.

Prior to remediation of the site, approximately 40 tons of DU-contaminated armor plate was located within the building and surrounding grounds. Heavy equipment was used to transport the armor plates between the PSA and the DU Test Enclosure Building. The DU Test Enclosure Building, which was recently demolished, had dimensions of approximately 25 by 50 feet with a height of 20 feet, will be disposed of at an appropriate facility. Associated HEPA equipment including filters and ductwork are also scheduled for removal and appropriate disposition. A HEPA motor may remain on the site.

1.2 General Approach to the BTD Site FSS

The FSS investigations are designed using the approach outlined in MARSSIM (NRC, 2000).

- Development of Derived Concentrations Guideline Levels
- Selection of instrumentation and measurement techniques
- Identification of survey units and classify areas by contamination potential

Bomb Throwing Device Site Aberdeen Proving Ground

- Estimation of the number of measurement locations
- Collection of Data
- Evaluation of Data

DAAA09-00G-0002/0039

CABRERA SERVICES, INC.

2.0 SITE ASSESSEMENT

2.1 Area of Investigation

The focus of this FSS is the radiological assessment of the top six inches of surface soil over the entire 46,000 square meters BTD site and the surface activity on unenclosed structures located within the BTD site boundaries. The land area associated with the BTD site consists of open grassy areas with one area of standing trees. Originating near the center of the BTD site is a wetland ravine. The ravine is approximately 140 meters in length and often has water covered surfaces averaging up to several meters in width. Water depths in the ravine range from several centimeters to approximately 15 centimeters.

Roy F. Weston (Weston) provided a radiological characterization for the BTD site in 2001 (Weston, 2001). The Weston characterization encompassed the BTD site and divided the site into Class 1, 2, and 3 areas. Soil samples were taken from each area and compared to the NRC soil screening value of 14 pCi/g for uranium-238. Both surface (0-0.25 ft) and subsurface samples (1-1.5 ft) were taken. All values exceeding the soil action level as described in this report were found to exist in the surface soil (0-0.25 ft). An exception was the presence of several subsurface samples taken in the vicinity of the DU Test Enclosure Building that showed levels of soil contamination in excess of the soil action level. The removal of the DU Test Enclosure building by the CABRERA remediation and subsequent soil remediation activities will ensure that these areas of soil contamination have been addressed. In addition, the Weston characterization classified the majority of the BTD site as Class 3. The CABRERA remediation and FSS conservatively assumes the entire site is a Class 1.

The BTD site structures of interest are two concrete pads and three unenclosed steel structures. A motor associated with the HEPA filtration system is expected to remain onsite at its current location. The northern concrete pad is approximately 230 square meters size while the southern concrete pad is approximately 130 square meters in size. The unenclosed structures consist of a steel gun mount, a "Sabot Stripper", and a "Back Stop Plate". The bases of these structures are approximately 25 square meters each with an additional 20-25 square meters of vertical surface area. The HEPA motor is several square meters in overall area.

The land areas surrounding the facilities and structures where testing and transport of materials was performed are expected to have a greater potential for surface soil contamination than other areas. DU contamination below the top six inches are not expected in soil due to the trajectory and containment of the targets used during ordnance testing. Prior BTD site characterization study (Weston, 2001), confirms the presence of DU contamination in the upper six inches of the soil. DU contamination below the concrete pads and steel test structures are not expected as these structures were in place prior to testing protocols.

2.2 Radionuclides of Potential Concern

Site Radionuclides of Potential Concern (ROPC) are limited to DU and short-lived uranium progeny (Appendix A). For brevity, Appendix A does not show the radionuclides from the actinium decay series as parent uranium-235 contributes a vanishingly small fraction of the radioactivity and mass. The uranium ratios are based on isotopic uranium weight ratios used for

DAAA09-00G-0002/0039

shipments of routine DU waste from APG (BARG, 1995). The activity fractions are calculated from the isotopic weight ratios and the specific activity of each uranium isotope. The result is a Uranium-234 (²³⁴U): Uranium-235 (²³⁵U): Uranium-238 (²³⁸U) ratio of 0.084:0.012:0.904. This composition is similar to the 0.190:0.021:0.790 average ratio from three DU soil samples described in the APG report (ANL 1999) entitled "Derived Uranium Guideline for the Depleted Uranium Study Area of the Transonic Range, Aberdeen Proving Ground, Maryland", Argonne National Laboratory Environmental Assessment Department, April 1999.

2.3 Residual Radioactivity Limit (DCGL)

As described by MARSSIM, a DCGL is a derived radionuclide activity concentration within a survey unit that corresponds to a dose-based release criterion. For this FSS, separate DCGL_w's were developed for soil and structure surfaces. The release criteria for miscellaneous equipment (e.g. Back Stop Plate, HEPA Motor, etc) are discussed in Section 5.0.

Soil DCGL_W

A soil DCGL of 230 pCi/g total DU (resident-farmer scenario) developed for the Transonic Range is considered applicable for the BTD site based on a report prepared by CABRERA and included as Appendix B (CABRERA, 2003). The report evaluates site-specific RESRAD parameters/pathways, the similarity of both locations, and the equivalence of the radiological isotopic DU mixes at both locations. Use of the approved BTD soil DCGL will ensure that the potential dose to a hypothetical individual will not exceed 25 mrem in any one year over a 1,000 period consistent with 10 CFR Part 20 Subpart E requirements. For this FSS, a soil DCGLw of 105 pCi/g total DU in soil will be used based on the ALARA principle of as-low-as-reasonably-achievable to provide assurance that hypothetical doses are limited to a fraction of the 25 mrem/year requirement.

Structure Based DCGL_W

A release criterion of 25 mrem/yr per year will be used for the unenclosed structures per the requirement of 10CFR20 Subpart E. Doses from residual radioactivity will be kept as low as reasonably achievable (ALARA) whenever possible. Using MARSSIM Section 4.3.4, and the equation below, and knowing that there is one alpha decay per decay of each uranium isotope, a single total uranium DCGLw of 100 dpm alpha/100cm² was derived for DU. This DCGLw was calculated using the values provided by the NRC screening guidelines of 90.6 dpm/100cm², 97.6 dpm/100cm², 101 dpm/100cm² and for U²³⁴, U²³⁵, and U²³⁸, respectively, as presented in Table 5.19 of NUREG/CR-5512, Volume 3, October 1999 and the DU activity fractions as presented in Section 2.2 of this FSS. As noted in the NUREG/CR-5512 document, screening level guidelines are based on the assumption that the fraction of removable surface contamination is ten percent.

$$DCGL_{W} = \frac{1}{\left(\frac{f_{1}}{DCGL_{1}}\right) \cdot \left(\frac{f_{2}}{DCGL_{2}}\right) \cdot \left(\frac{f_{3}}{DCGL_{3}}\right)}$$

Where: $DCGL_w =$

f = Activity fraction of radionuclide

DAAA09-00G-0002/0039

CABRERA SERVICES, INC.

Combined gross activity DCGL (i.e., release limit).

DCGL = DCGL of radionuclide

2.4 Action Levels

For soil, the soil ALARA DCGL_W of 105 pCi/g will be used as the action level for scanning measurements. If any scan measurement results in readings above the soil DCGL_W (Section 3.1), the Field Supervisor shall be notified and the detector and survey location shall be evaluated. Following evaluation, the immediate area will be rescanned to verify the initial result. If the verified result is greater than the DCGL_W, the location will be marked and remediated to ensure that the soil DCGL_W of 105 pCi/g is not exceeded. Additional scans of the area will be performed to verify that the additional remediation has removed soil above the action level of 105 pCi/g.

For unenclosed non-equipment structures (e.g., concrete pads), the structural DCGL_w of 100 dpm alpha/100 cm² for total uranium will be used as the action level for both scanning and integrated measurements (Section 3.2 & 3.4). If any survey measurement results in readings above this DCGL_w, the Field Supervisor shall be notified and the detector and survey location shall be evaluated. Following evaluation, a follow-up measurement shall be performed at the measurement location to verify the initial result. If the result of the verification measurement is in excess of the DCGL_w, a biased smear sample (Section 3.6) will be performed at that location. Follow-up remediation and survey scan and integrated measurements will be provided at the subject location as necessary.

For equipment, the DCGL_w will be based on equipment release criteria of 1,000 dpm alpha/100 cm^2 removable contamination and 5,000 dpm alpha/100 cm^2 total contamination in accordance with Army Regulation 11-9 (AR11-9, 1999) Table 5-2 (Section 5.0). If any survey measurement results in readings above this DCGL_w, the Field Supervisor shall be notified and the detector and survey location shall be evaluated. Following evaluation, a follow-up measurement shall be performed at the measurement location to verify the initial result. If the result of the verification measurement is in excess of the DCGL_w, a biased smear sample (Section 3.6) will be performed at that location. In certain cases, the equipment may be removed from the site and the small area beneath the equipment will be resurveyed in accordance with the soil DCGL_w.

3.0 SURVEY INSTRUMENTATION AND TECHNIQUES

The purpose of this section is to describe radiological survey instruments and techniques that will be used for surveys implemented during site radiological investigations. Specific measurement/sampling frequencies and approaches for the FSS are discussed in later sections.

For the soil FSS, ambient gamma scanning, discrete soil sampling, offsite laboratory analyses of the soil, and dose rate measurements will be performed to measure radioactivity concentrations of total uranium in surface soil. Implements used to collect soil samples will be cleaned and surveyed after each sample is collected to minimize cross-contamination of samples.

For unenclosed structures, scanning and integrated direct measurements will be performed to measure surface radioactivity concentrations of total uranium. These measurements will be based solely on alpha emissions. Beta measurements will be collected in tandem with alpha measurements and presented for qualitative review in an appendix of the FSS report. Prior to the initiation of alpha survey activities on unenclosed structures, surfaces of interest will be cleaned to remove dirt and grime that could shield alpha emissions from detection. The cleaning implements used to clean surfaces will be collected and stored on site and disposed in accordance with the contaminants found.

3.1 Gamma Walkover Surveys (GWS)

A GWS will be performed over soil to identify surface soil DU contamination. These surveys will provide position-correlated gross gamma count rate data proportional to the gross gamma fluence rate at the ground surface. The results of these surveys will be used to detect areas of elevated activity and select locations for biased soil sampling.

The GWS will be performed using a Ludlum Model 44-20 3" x 3" NaI gamma scintillation detector (or equivalent) coupled to a Ludlum Model 2221 rate meter (or equivalent). These instruments will be linked with differential global positioning system (DGPS) receiver/dataloggers. The gamma detection systems will be setup to measure gamma interactions in the NaI crystal that are discernable from electronic noise. Specifically, the detection systems will be calibrated with no lower level discriminator and no upper level discriminator (i.e., open window). This system will log the gross gamma reading and position every second in State Plane Coordinates.

Using NUREG-1507 as guidance, a minimum detectable scanning concentration (MDC_{SCAN}) and scanning sensitivity was calculated using Microshield[®]. The results of these calculations are presented in Table 3.1-1. The action level of 6,800 cpm above ambient gamma background was calculated by multiplying the instrument scanning sensitivity by the DCGL_w of 105 pCi/g.

The calculations performed and the assumptions made in the sensitivity estimates are presented in Appendix C. The assumptions include an ambient gamma background of 10uR/hr and a 56 cm diameter soil source term uniformly contaminated to a depth of 15 cm as described by NUREG-1507. The Ludlum Model 44-20 instrument sensitivity and scanning evaluation incorporates 18 energy response groups covering the energy range associated with DU. The sensitivity evaluation also assumes that scanning will be performed in accordance with

DAAA09-00G-0002/0039

Bomb	Thro	wing	Dev	ice l	Site
Aber	deen	Provi	ing (Groi	ınd

MARSSIM protocol by walking straight parallel lines over an area while moving the detector in a serpentine motion, approximately 10 cm above the ground surface. Survey passes will be approximately 1 meter apart and the scan rate will be approximately 0.5 meters per second. The CABRERA General Countrate Meter QC template will be used to assure proper instrument operability prior to daily scanning.

The action level of 6,800 cpm above background, the instrument scanning sensitivity, and the MDC_{scan} values are shown in Table 3.1-1.

Detector	Description	MDC _{SCAN} (pCi/g)	Scanning Sensitivity (cpm/pCi/g)	Action Level (cpm above background)
Ludlum 44-20	Na! 3"x3"	38	65	6,800

Table 3.1-1: Nal Scanning Sensitivities for Soil

3.2 Direct Alpha Radioactivity Scan Surveys

Direct alpha scanning will be performed to identify surface locations on structures where contaminant concentrations may exceed the criterion for unrestricted release. Scanning surveys for alpha activity will also be performed to determine if radiological surface contamination is present on soil sampling equipment. Scanning will be performed using a Ludlum Model 43-93 (100 cm^2) active area scintillation detectors, or equivalent. Scanning will be performed with the active area of the detector at a height of 0.5 cm above the surface of interest using the detector specific assumptions listed in Table 3.2-1. Scanning measurements will be performed in accordance with CABRERA procedures OP-020 "Operation of Contamination Survey Meters," Rev 0 and use CABRERA General Countrate Meter QC template.

Using MARSSIM equation J-5 and the instrument specific assumptions listed in Table 3.1-2, the MDC_{SCAN} is determined to be equal to the structural $DCGL_W$. The chance of detecting a concentration equal to the $DCGL_W$ would be 90% and signified by the incidence of one alpha count occurring within the pause time of that stationary instrument.

$$P(n \ge l) = l - P(n = 0) = l - e^{-A}$$
(MARSSIM J-5)
for A = $\frac{GEd}{60v}$

where,

DAAA09-00G-0002/0039

Whenever an alpha count is detected during the scan, the detector will be held in place over the location where the count was detected for the duration of the pause time (approximately 7 seconds). If a second alpha count is detected over this location during the pause time, a two minute integrated count will be performed. If the result of the integrated measurement is in excess of the structural DCGL_w (Section 2.3), the area will be marked and further investigated by the Field Supervisor.

The net count rate will be determined as the difference between the measurement count rate and the daily background count rate measured prior to use.

	Model #	Probe Area (cm ²)	Probe Width (cm)	a Efficiency (cpm /dpm)	a Bkgrd (cpm)	Scan Speed (cm/sec)	Pause Time (sec)	P(n>=1)	Dwell Time (sec)	P(n>=2)
ļ	43-93	100	9	0.20	3	1	6.9	0.95	NA	NA

Table 3.2-1: Alpha Scan Assumptions

3.3 Soil Sampling

Soil samples will be collected to measure surface soil contaminant concentrations at discrete locations. The soil samples will be analyzed for total uranium and the results will be used to facilitate statistical testing. Discrete sampling locations will be identified using the Trimble DGPS system to get the appropriate Easting and Northing coordinates (North American Datum System). Samples will be sent to Paragon Analytics, Inc. (Paragon) for analysis for isotopic uranium and analyzed in accordance with Paragon's standard operating procedure. Volumetric samples will be collected in accordance with CABRERA procedure *OP-005 Volumetric and Material Sampling, rev 0.*

Soil samples will be collected using surface scraping tools such as trowels or spoons. In general, surface soil samples will be collected from the top six inches of soil. The sample will be transferred into a stainless steel bowl, where it will be thoroughly mixed to homogenize the sampled media. Visually identifiable non-soil components such as stones, twigs, and foreign objects will be manually separated in the field and excluded from the laboratory samples to avoid biasing results. Samples will not be preserved in the field, as there are no preservation requirements for the radiological analyses. All sampling equipment, mixing utensils, and homogenizing bowls will be decontaminated using distilled water after each sample to avoid cross contaminating the subsequent sample. A Ludlum 43-93 detector and smear sample will be used to ascertain that no cross-contamination occurs between samples. The presence of less than 1,000 dpm/100 cm² of DU alpha activity on a smear is sufficient to show non-contamination of volumetric samples from the sampling equipment thus limiting cross-contamination between soil samples.

Soil will be collected in 500 ml sample containers. These containers will hold sufficient sample material as to allow detection of radioactive materials at the MDC values specified (approximately 4 pCi/gram DU). The analysis lab has indicated this amount to be equivalent to

approximately 500 grams of soil. Each filled 500 ml container will hold more than 500 grams of soil.

Samples will be marked to show the sample identification number. Sample identification number, northing and easting coordinates, and other pertinent data will be recorded on appropriate field data recording sheets. Samples will be collected in accordance with the Paragon Laboratories applicable chain of custody procedures.

3.4 Integrated Direct Surface Alpha Radioactivity Measurements

Integrated direct measurements (i.e., static measurements) of surface alpha radioactivity will be performed during the FSS to compare contaminant concentrations at discrete sampling locations on construction materials (i.e., concrete pad) to the release criterion and facilitate statistical testing. Model 43-93 hand held (active area 100 cm^2) alpha scintillation detector or equivalent. The estimated detector sensitivity and the assumptions used for this detector are presented in Table 3.4-1.

Static measurements will be performed in accordance with CABRERA procedures OP-020 "Operation of Contamination Survey Meters," Rev 0, and OP-021 "Alpha-Beta Counting Instrumentation," Rev 0, and CABRERA standard radiation instrumentation templates "Alpha Beta Counting and Smear Worksheet", Rev 2. Prior to field mobilization, FSS instrumentation will be checked for expected response using a Chi-Square distribution utilizing the CABRERA template "Equipment Chi-Square Distribution Worksheet", Rev 0.

The net count rate will be determined as the difference between the measurement count rate and the daily background count rate measured prior to use.

Mødel #	Count/Bkg Time (min)	Probe Area (cm ²)	a ¹ Efficiency (cpm/dpm)	a Background (cpm)	ct Static MDC (dpm / 100 cm ²)
43-93	2	100	0.20	3	36
2929	4	smear	0.37	0.5	6

Table 3.4-1: Detector Sensitivities and Assumptions

¹ Instrument efficiencies are estimated from vendor literature-based ²³⁰Th and ²³⁹Pu efficiencies.

3.5 Gamma Dose Rate Measurements

Gamma dose rate measurements may be qualitatively performed during the FSSs to ensure worker health and safety and to identify unusual dose rate conditions. Measurements will be performed using a Bicron MicroRem tissue-equivalent scintillation detector, or equivalent, and will be performed in accordance with CABRERA Procedure OP-023, *Operation of micro-R Meters, Rev 0.* Measurements will be performed using the "slow" response time constant setting. The detector will be positioned over the area of interest and allowed to stabilize prior to recording the measurement. The technician will use their judgment to determine when the

instrument has stabilized, it is estimated that this will take at least 15 seconds. Such measurements will typically be performed at 30 cm from and/or on contact with the surface being evaluated.

3.6 Smear Sample Collection and Analysis

For non-equipment structural smear samples (e.g., concrete pads), gross transferable alpha contamination will be collected and analyzed to determine if transferable activity is less than or equal to 10% of total activity as assumed in the NUREG/CR-5512 document for screening level guidelines.

For equipment smear samples, gross transferable alpha contamination will be collected and analyzed to ensure compliance with equipment release criterion of Army Regulation 11-9 of $1,000 \text{ dpm}/100 \text{ cm}^2$.

Smear samples will be collected over approximately 100 cm^2 areas at systematic and biased locations identified during scanning activities. Smear samples will be analyzed for alpha and beta radioactivity using a Ludlum 2929 alpha/beta scintillation counter or equivalent in accordance with CABRERA procedure OP-021 "Alpha-Beta Counting Instrumentation," Rev 0. Based on the assumptions listed in Table 3.4-1, an alpha MDC of 6 dpm/100cm² will be achieved.

4.0 FINAL STATUS SURVEY DESIGN

The FSS to be performed at the BTD site is designed in accordance with Final Status Survey guidance from MARSSIM (NRC, 2000). FSS activities will consist of scanning surveys over 100% of the reasonable accessible surface soil and structure surfaces. Discrete soil sampling and integrated direct surface measurements will be performed at frequencies based on MARSSIM guidance. Survey activities will also include biased smear sample collection. The FSS is designed conservatively in that the radiological background present in the soil will be neglected and the measure of total activity will be used for statistical comparisons to the respective DCGL_w.

4.1 Area Classification Based on Contamination Potential

Using MARSSIM as guidance, the BTD site will be divided into 29 Class 1 survey units (SU). The initial SU classifications are based on sample matrix, area, and contamination potential. Table 4.1-1 lists each SU by matrix type, area, number of samples to be collected in that SU, and the distance between each sample using a triangular grid pattern.

For soil areas, MARSSIM suggests that outdoor Class 1 SUs be not more than 2,000 square meters in size. For unenclosed structures (concrete pads), SU size was limited to approximately 100 square meters that MARSSIM suggests for interior SUs. This more restrictive size was selected for unenclosed structures based on the possibility that enclosures may be built upon existing concrete pads and around test equipment in the future. To accommodate the interior SU size, concrete pads remaining in place were divided into two separate SUs of equal size.

Three pieces of steel test equipment and a HEPA motor are considered equipment and will be released based on Army Regulation 11-9 as described in sections 4.2 and 5.1.

MARSSIM identifies Class 1 areas as having, or had prior to remediation, a potential for radioactive contamination or known contamination. Initially, all survey units will be considered Class 1 survey units based on the process involved (i.e., the testing and firing of DU munitions), the amount of DU present on the BTD site (i.e., approximately 40 tons of contaminated plate armor), the on-site transport of contaminated materials, the length of time the BTD site was used to test munitions. This is a conservative assumption.

Bomb Throwing Device Site Aberdeen Proving Ground

SU #	Matrix	Area (m ²)	L (m)	No. of Samples	SU #	Matrix	Area (m ²)	L (m)	No. of Samples
i	Soil	1235	10.1	16	16	Soil	1970	12.8	15
2	Soil	1600	11.5	15	17	Soil	1590	11.5	15
3	Soil	1560	11.3	17	18	Soil	2000	12.8	15
4	Soil	1840	12.3	15	19	Soil	2000	12.8	15
5	Soil	1945	12.7	14	20	Sail	1935	12.6	14
6	Soil	1995	12.8	14	21	Soil	1950	12.7	15
7	Soil	2000	12.8	15	22	Soil	1970	12.8	17
8	Soil	2000	12.8	15	23	Soil	1300	10.4	17
9	Soil	1335	10.5	15	24	Soil	2000	12.8	14
10	Soil	1650	11.7	17	25	Soil	2000	12.8	15
11	Soil	1900	12.5	14	26	Concrete	65	1.94	20
12	Soil	2000	12.8	15	27	Concrete	65	1.94	20
13	Soil	1980	12.8	15	28	Concrete	115	2.58	20
14	Soil	2000	12.8	14	29	Concrete	115	2.58	20
15	Soil	2000	12.8	15				}	

Table 4.1-1: Survey Units

4.2 Number of Static Measurements/Soil Samples

MARSSIM provides a method to determine the number of measurement locations required in a given survey unit. A minimum number of measurement locations are required in each survey unit to obtain sufficient statistical confidence that the conclusions drawn from the measurements are correct. The following subsections describe the bases for and derivation of the minimum required measurement locations per survey unit.

Estimation of Relative Shift

The minimum number of measurement locations required is dependent on the distribution of site residual radionuclide concentrations relative to the DCGL_w and acceptable decision error limits (α and β).

The relative shift describes the relationship of site residual radionuclide concentrations to the $DCGL_w$ and is calculated using the guidance found in Section 5.5.2.3 of MARSSIM. The relative shift is calculated as follows:

$$\Delta / \sigma = \frac{\text{DCGL}_{w} - \text{LBGR}}{\sigma}$$

DAAA09-00G-0002/0039

CABRERA SERVICES, INC.

Page 12 of 24

Bomb Throwing Device Site Aberdeen Proving Ground

Where:	DCGL _w =	Derived Concentration Guideline Level
	LBGR =	concentration at the lower bound of the gray region. The Lower Bound of the Grey Region (LBGR) is the concentration at which the survey unit has an acceptable probability of passing the statistical tests.
	σ =	an estimate of the standard deviation of the concentration of residual radioactivity in the survey unit (which includes real spatial variability in the concentration as well as the precision of the measurement system).

The DCGL_w for surface soil radioactivity is 105 pCi/g. The LBGR is estimated at 52.5 pCi/g which is half of the DCGL_w as suggested by MARSSIM. Using an estimated coefficient of variation of 30 percent and the LBGR as an estimate of the sample mean, a sigma value of 15.8 pCi/g is calculated. Using the parameters discussed above, the relative shift is calculated as 3.3.

The unenclosed concrete pad DCGL_w for surface alpha radioactivity is 100 dpm/100cm². The LBGR was conservatively estimated at 70 dpm alpha/100 cm² based on previous studies with similar instruments on concrete. Without prior survey, it is reasonable to assume a coefficient of variation on the order of 30 percent (MARSSIM Section 5.5.2.2). Using a coefficient of variation of 30 percent and the LBGR as an estimate of the sample mean, a sigma value of 21 dpm/100cm² is estimated. Using the parameters discussed above, the relative shift is calculated as 1.4.

The unenclosed steel structures and HEPA motor are considered equipment and will be released based on Army Regulation 11-9, submitted as part of the APG ATC NRC License document SUB-834. Table 5-2 of Army Regulation 11-9 provides for surface radioactivity values of up to 1,000 dpm/100 cm² removable and 5,000 dpm/100 cm² total activity for 235 U and 238 U and associated decay products. These values are the same as provided by Regulatory Guide 1.86.

Determination of N (Number of Required Measurement Locations)

For soil SUs, the final number of suggested measurement locations per survey unit is 14 as per MARSSIM (Table 5.5) given a relative shift of 3.7 and an error rate for both Type I and Type II errors of five percent (i.e., $\alpha = \beta = 0.05$). The actual number of measurements to be performed in each survey unit ranges from 14 to 17 samples based on the size and geometry of the SU and are presented in Table 4.1-1.

For unenclosed concrete structures, the final number of direct surface required measurement locations per survey unit is 20 as per MARSSIM (Table 5.5) given a relative shift of 1.4 and an error rate for both Type I and Type II errors of five percent (i.e., $\alpha = \beta = 0.05$). The actual number of measurements to be performed in each concrete survey unit is 20 samples based on the size and geometry of the survey area.

4.3 Elevated Measurement Criterion (DCGL_{EMC})

MARSSIM states that, for Class 1 survey units, a dose area factor should be used to evaluate the magnitude by which the concentration within a small area of elevated activity can exceed the DCGL_w while maintaining compliance with the release criterion. For the purpose of ALARA, the DCGL_w will be used as the DCGL_{EMC} for both soil and structures. This corresponds to an area factor of one. Since soil and structure MDC_{SCAN} values are sensitive enough to identify a concentration that is less than half of their respective DCGL_w, it is unlikely that small areas of elevated activity exceeding the release criterion would be missed during scanning.

4.4 Static Measurement Locations

Measurement locations in Class 1 survey units will be established using a random start point in a systematic triangular grid. The grid spacing for Class 1 survey units will be determined, based on the measured area of the survey unit, using the following equation (Equation 5-7 from MARSSIM).

$$L = \sqrt{\frac{A}{0.866 \text{ N}}}$$

Where: L = rectangular grid spacing for survey unit

A = area of survey unit

N = number measurement locations

Measurement spacing results (L) using the equation above are presented in Table 4.1-1. Maps presenting the BTD site SU delineations and the reference coordinate system are presented in Appendix D.

4.5 Gamma Walkover Surveys

GWS will be performed as described in Section 3.1 over 100% of reasonably accessible soil SU areas. If a scan measurement exceeds the soil action level, the Field Supervisor shall be notified and the detector and survey location shall be evaluated. Following evaluation, the immediate area will be rescanned to verify the initial result. If the verified result is greater than the action level, the location will be marked for further remediation followed by additional surveying of the location.

As described previously in section 2.1, the ravine area site feature has water covered surfaces that range from several centimeters to approximately 15 centimeters in depth. Scan surveys over soil areas covered by more than 13 cm of water may result in a MDC_{SCAN} sensitivity less than the soil DCGL_w of 105 pCi/g. To compensate for potential reduced instrument sensitivity in these areas, streambed sediment samples will be taken. The GWS for the area will be provided up to the areas of standing water. Sediment samples will be taken in the center of the streambed ravine where GWS measurements stop. Section 4.7 provides additional details associated with the sediment sampling.

4.6 Surface Alpha Radioactivity Scan Surveys

Alpha scan surveys will be performed as described in Section 3.2 and will cover 100% of reasonably accessible structure surfaces. Areas of elevated radioactivity identified during scanning will be physically marked and biased integrated measurements will be performed to quantify surface alpha activity concentrations for direct comparison to the DCGL_w. Survey areas in excess of the DCGL_w will be investigated by the Field Supervisor and flagged for additional biased sampling (e.g., smear sampling). Beta scans will be performed in tandem with alpha measurements and recorded for qualitative purposes only.

4.7 Soil Sampling

Sampling of surface soil will be performed in soil SUs at locations selected for MARSSIM statistical testing and at biased locations identified during the GWS. Such measurements will be performed as described in Section 3.3. Collected samples will be sent to an offsite laboratory for isotopic uranium analysis.

Sediment samples will be taken in the streambed of the ravine to provide additional assurance that the soil action levels are not exceeded for this area. The sediment samples collected may take the place of systematic soil samples that may be co-located in streambed areas covered by water. Sediment samples will be taken in the approximate center of the ravine streambed at a rate of 1 sediment sample for every 7 linear meters of the ravine. This will result in a statistically significant number of samples (20 samples) based on the estimated total length of the ravine of 140 meters. The locations for these samples will be determined in the field due to the transient nature of the water in the ravine area.

4.8 Integrated Direct Surface Alpha Radioactivity Measurements

Measurements of surface alpha radioactivity will be performed on structures at locations selected for MARSSIM statistical testing and at biased locations identified prior to and during scanning activities. Such measurements will be performed as described in Section 3.4. Beta measurements will be performed in tandem with alpha measurements and recorded for qualitative purposes.

If any alpha survey measurement results in readings above the structure DCGLw, the Field Supervisor shall be notified and the detector and survey location shall be evaluated. Following evaluation, a follow-up measurement shall be performed at the measurement location to verify the initial result. If the result of the verification measurement is in excess of the DCGLw, remediation of the surface followed by biased sampling will be performed at that location.

4.9 Gamma Dose Rate Measurements

Gamma dose rate measurements will be performed at locations selected for MARSSIM statistical testing and at biased locations identified during scanning. At soil locations, dose rate measurements will be prior to soil samples being drawn. Gamma dose rate measurements may be performed to ensure worker safety and to identify unusual dose rate conditions. Gamma dose rate measurements will be performed as described in Section 3.5.

Bomb Throwing Device Site Aberdeen Proving Ground

4.10 Smear Sample Collection and Analysis

Smear samples will be collected at biased survey locations and at least 10% of systematic survey locations. Smear samples will be collected as described in Section 3.6. Beta measurements will be performed in tandem with alpha measurements and recorded for qualitative purposes. Smear samples will also be collected on soil sampling equipment between sampling.

5.0 EQUIPMENT RELEASE

5.1 Survey of Equipment for Release Without Restriction

Certain equipment present within the BTD site boundaries may need to be surveyed for consideration of release without restriction. CABRERA will follow the surface release limits of 1,000 dpm/100 cm² removable DU alpha activity and 5,000 dpm/100 cm² total DU alpha activity per Army Regulation 11-9, "*The Army Radiation Safety Program*". It is expected that all final release surveys of equipment will be performed by the licensee and these surveys will follow APG procedures. If CABRERA performs these release surveys for APG, then CABRERA will follow the APG procedures.

6.0 DATA PROCESSING

This section describes how project events and data will be retained for this FSS.

6.1 Project Log Book

All significant events which occur during this FSS be documented and retained for future reference. While many types of project events have specific forms on which they are documented, many events occur on a routine basis during survey field activities that must be documented as they occur. Additionally, project data transactions must also be recorded as they occur. To provide a practical means of capturing this information, a project logbook will be initiated upon project commencement.

Significant project events, including data transactions involving project electronic data, shall be recorded in the Project Logbook. Data transactions are defined as any transfer, download, export, copy, differential correction, sort, or other manipulation performed on project electronic data. Project Logbook records shall be sufficient to allow data transactions to be reconstructed after the project is completed. The Field Supervisor shall be responsible for maintaining the Project Data Logbook and will review the Project Data Logbook at least daily to report significant issues.

The Project Logbook is considered a legal record and will be permanently bound and the pages will be pre-numbered. Pages may not be removed from the logbook under any circumstances. Entries shall be legible, factual, detailed, and complete and shall be signed and dated by the individual(s) making the entries. If a mistake is made, the individual making the entry shall place a single line through the erroneous entry and shall initial and date the deletion. Under no circumstances shall any previously entered information be completely obliterated. Use of whiteout in the Project Logbook is not permitted for any reason. Only one Project Logbook will be maintained. If a Project Logbook is completely filled, another volume shall be initiated. In this case, each volume shall be sequentially numbered.

6.2 **Project Electronic Data**

Much of this FSS will rely on data collected and stored electronically. Electronic data is subject to damage and/or loss if not properly protected. As such, all project electronic data shall be downloaded from its collection device (e.g., laptop computers, data loggers, etc.) on at least a daily basis. At the conclusion of each day's survey activities, the Field Supervisor shall back up all electronic data collected that day to appropriate removable media (e.g., CD, zip disk, or equivalent) and shall ensure the backup is removed from site. Under no circumstances shall the backup be stored in the same building in which the original project electronic data is stored.

Data files shall be named according to a naming protocol designated by the Field Supervisor. No variations from this protocol shall occur without the prior concurrence of the field supervisor. During data download and transfer transactions, the applicable data file name(s) shall be included in project data logbook entries.

7.0 INTERPRETATION OF SURVEY RESULTS

The results of individual soil and sediment samples and direct integrated alpha measurements performed for this FSS will be evaluated statistically and compared to the release criteria. This comparison will determine if the BTD site can be considered for release without radiological restriction. If all of the SUs of the BTD site meet the criteria for unrestricted release, the entire BTD site as defined in this FSS will be considered a viable candidate for unrestricted release.

Background in the sampled matrix is not considered during interpretation of individual soil samples, concrete smear samples, or the integrated alpha count measurements associated with soil, sediment, and concrete at the BTD site. This is a conservative approach and is appropriate since the background for these media are small compared to the DCGL_w levels.

In accordance with MARSSIM guidance, a preliminary data review will be performed to identify patterns, relationships, and potential anomalies present in the survey data. In this review, basic statistics including the mean, standard deviation, maximum, and minimum values will be calculated for each SU. A graphical review of the data will be performed consisting of posting plots and histograms. Posting plots will be used to review the spatial independence of measurements within survey units, while histograms will be employed to review the overall symmetry of the data.

Once the data have been reviewed, soil sample or direct integrated alpha measurement results for each SU will be compared to the respective DCGL_W. If all of the results for a SU are below the DCGL_W, the survey unit meets the release criteria. If the average residual radioactivity in an individual SU is greater than the DCGL_W, the SU does not meet the release criteria. If any results in a SU are greater than the DCGL_W and the average residual radioactivity in that survey unit is below the DCGL_W, the Sign test will be performed as described in MARSSIM to compare the median concentration of residual radioactivity in individual survey units to the DCGL_W. If the results of that survey unit pass the Sign test, that SU meets the release criteria. Finally, a retrospective power curve will be computed to measure the power of the Sign test based on the results of the measurements performed. The results of all of these statistical processes will be provided in the FSS Report.

8.0 SURVEY QUALITY ASSURANCE/QUALITY CONTROL

Activities associated with this work plan shall be performed in accordance with written procedures and/or protocols to ensure consistent, repeatable results. Topics covered in project procedures and protocols may include proper use of instrumentation, Quality Control (QC) requirements, equipment limitation, etc. Implementations of Quality Assurance (QA) measures for this work plan are described herein.

8.1 Instrumentation Requirements

The Field Supervisor is responsible for selecting the instrumentation required to complete the requirements of this work plan. Only instrumentation approved by the Field Supervisor will be used to collect radiological data. The Field Supervisor is responsible for ensuring individuals are appropriately trained to use project instrumentation and other equipment, and that instrumentation meets the required detection sensitivities. Instrumentation shall be operated in accordance with either a written procedure or manufacturers' manual, as determined by the Field Supervisor. The procedure and/or manual will provide guidance to field personnel on the proper use and limitations of the instrument.

Calibration Requirements

Instruments used during the FSS shall have current calibration/maintenance records kept on site for review and inspection. The records will include, at a minimum, the following:

- name of the equipment
- equipment identification (model and serial number)
- manufacturer
- date of calibration
- calibration due date

Instrumentation shall be maintained and calibrated to manufacturers' specifications to ensure that required traceability, sensitivity, accuracy and precision of the equipment/instruments are maintained. Instruments will be calibrated at a facility possessing appropriate NRC and/or Agreement State licenses for performing calibrations using National Institute of Standards and Technology (NIST) traceable sources.

8.2 Instrument QC Source and Background Checks

The following subsections describe the techniques that will be used to evaluate accuracy and precision of measurements obtained with project instrumentation. Daily instrument response check data and calibration certificates for each instrument will be included in an appendix of the FSS.

Sodium Iodide (Nal) Gross Gamma Systems

NaI detectors coupled to count rate meters and DGPS systems will be used to perform gamma walk-over surveys and integrated fixed location measurements. Instruments will be calibrated at

least annually at a facility possessing appropriate NRC and/or Agreement State licenses for performing calibrations using NIST-traceable standards.

Instruments will be response checked daily for quality control by comparing the instrument response to a designated ¹³⁷Cs source. Response checks will consist of a one-minute integrated count of the ¹³⁷Cs source positioned in a reproducible geometry (i.e., a jig). The acceptance criterion for these instrument response checks is within +/- 20% of the mean response generated using ten initial source checks and ten measurements of ambient background. A response check outside these criteria will be cause for evaluation of conditions (e.g., instrument operation, source/detector geometry). The response check will be repeated once prior to field use of that instrument. Instruments that fail the second response check will be removed from service. During daily response checks, instruments will be inspected for physical damage, battery voltage levels, current calibration and erroneous readings.

Background checks will be performed daily for each instrument. These checks will be performed to monitor fluctuations in ambient gamma background that could impact the interpretation of the gross gamma measurements, not to monitor the performance of the instruments. The results of the background measurements will be recorded and presented on a control chart.

MicroRem Meter

A MicroRem meter will be to provide gamma dose rate information during performance of area radiation surveys. The instrument was calibrated at least annually by a facility possessing appropriate NRC and/or Agreement State licenses for performing calibrations using NIST-traceable standards.

Instruments will be checked daily for quality control by comparing response to a designated 137 Cs source. Response checks will consist of exposing the instrument to a designated 137 Cs source positioned in a reproducible geometry and location. The acceptance criterion for these instruments is response within a +/- 20% of the mean response generated using ten initial source checks and ten measurements of ambient background. A response check outside these criteria is cause for evaluation of conditions (e.g., instrument operation, source/detector geometry). The response check is repeated once prior to field use of that instrument. Instruments that fail the second response check will be removed from service pending evaluation. During daily response checks, the instrument used to obtain radiological data was also inspected for physical damage, battery voltage levels, current calibration and erroneous readings in accordance with CABRERA procedures.

Alpha/Beta Detector

Quality control source checks for the Ludlum 43-93 will consist of a one-minute integrated count with the designated Thorium-230 (²³⁰Th) and Technetium-99 (⁹⁹Tc) sources. The acceptance criterion for this instrument response is within +/- 20% of the average response generated using ten initial source checks and ten measurements of background performed at the beginning of the project. A response check outside these criteria will be cause for evaluation of conditions (e.g., instrument operation, source/detector geometry), and the response check will be repeated once

DAAA09-00G-0002/0039

prior to field use of that instrument. Instruments that fail the second successive response check will be removed from service and corrective actions will be taken. Only Field Supervisors can return a failed instrument back to service after proper corrective actions are taken and documented.

Smear Counter

A Ludlum Model 2929 smear counter will be used for on site analysis of radiological contamination smears in conjunction with project soil sampling. The instrument will be calibrated at least annually at a facility possessing appropriate NRC and/or Agreement State licenses for performing calibrations using NIST-traceable standards.

Instruments will be checked daily for quality control by comparing response to designated ²³⁰Th (Alpha) and ⁹⁹Tc (Beta) NIST-traceable sources and to ambient background. Response checks will consist of a one-minute count of the ²³⁰Th and ⁹⁹Tc sources positioned in a reproducible geometry and location within the detector system. Background measurements will be performed in an identical fashion for a twenty-minute count, with the source removed. The acceptance criteria for instrument response will be set to two and three-sigma of the mean response generated using ten initial source checks and ten measurements of ambient background. A response check outside the two-sigma, but within the three-sigma on the second count or three-sigma on the initial count will be cause for further evaluation prior to continued use. A response check outside these criteria is cause for notification of the Field Supervisor and evaluation of conditions (e.g., instrument operation, source/detector geometry) prior to further counts and/or removal of the instrument from service. Instruments must pass a response check prior to field use. During daily response checks, instruments used to obtain radiological data will also be inspected for physical damage, battery voltage levels, current calibration and erroneous readings in accordance with CABRERA procedures.

Digital Global Positioning System

DGPS point features will be collected at the beginning and end of the day at a fixed location established at the beginning of the FSS. Results of these feature counts will be compared to the mean of a series of sequential initial positions. This data will be entered into a spreadsheet and examined to ensure no more than one-meter variability occurs. A feature count outside these criteria is cause for notification of the Site Supervisor and evaluation of conditions prior to further counts and/or removal of the GPS from service. GPS units must pass a feature count prior to field use. During daily feature counts, GPS systems will also be inspected for physical damage, battery voltage levels and erroneous readings in accordance with SOPs.

8.3 Duplicate Measurements

Instrumentation will be operated and sampling performed in accordance with standard operating procedures and/or protocols.

Duplicate Measurements

Duplicate measurements will be required for 10% of the total soil samples collected from all survey units. Duplicate measurements will be compared to the initial analytical results by determining a Normalized Absolute Difference (NAD) value and comparing it against the performance criteria specified as follows:

Analyses of field and laboratory duplicates will be compared to the initial analytical results by determining a NAD value for each data set by the following equation:

 $NAD = \frac{|Sample - Duplicate|}{\sqrt{\sigma_{Sample}^2 + \sigma_{Duplicate}^2}}$

Where: Sample = first sample value (original), Duplicate = second sample value (duplicate), $\sigma_{\text{Sample}} = 2\sigma$ counting uncertainty of the sample, and, $\sigma_{\text{Duplicate}} = 2\sigma$ counting uncertainty of the duplicate

The calculated NAD results will be compared to a performance criteria of less than or equal to 1.96. Calculated NAD values less than 1.96 will be considered acceptable and values greater than 1.96 will be investigated for possible discrepancies in analytical precision, or for sources of disagreement with the following assumptions of the test:

- > the sample measurement and duplicate or replicate measurement are of the same normally distributed population.
- the standard deviations, σ_{Sample} and $\sigma_{Duplicate}$, represent the true standard deviation of the measured population.

9.0 **REFERENCES**

(ANL, 1999)	ANL Environmental Assessment Department Health Risk Report, "Derived
	Uranium Guidelines for the Depleted Uranium Study Area of the Transonic
	Range, Aberdeen Proving Ground, Maryland", M. Picel and S. Kamboj,
	Argonne National Laboratory, April 1999

- (AR11-9, 1999) Army Regulation 11-9, "The Army Radiation Safety Program", 28 May, 1999
- (BARG, 1995) Specific Manufacturing Capability Program, Depleted Uranium Constituents and Decay Heating, Lockheed, Idaho presentation, dated October 3, 1995.
- (CABRERA, 2000a) CABRERA OP-020, "Operation of Contamination Survey Meters", Rev 0
- (CABRERA, 2000b) CABRERA OP-021, "Alpha-Beta Counting Instrumentation", Rev 0
- (CABRERA, 2000c) CABRERA OP-023, "Operation of micro-R Meters", Rev 0
- (CABRERA, 2003) Cabrera Report, "U.S. Army Garrison, Aberdeen Proving Ground Derived Uranium Guidelines For Depleted Uranium at the BTD Soil Sample Area", Contract DAAA09-00-G-0002/039
- (NRC, 1999) NUREG/CR-5512, Volume 3 Residual Radioactive Contamination from Decommissioning, Parameter Analysis, Draft Report for Comment, U.S. Nuclear Regulatory Commission, dated October, 1999.
- (NRC, 2000) NUREG-1575, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), U.S. Nuclear Regulatory Commission, dated August, 2000.
- (Weston, 2001) Weston Report, "Radiological Characterization for the Bomb Throwing Device Interim Report, Aberdeen Test Center, Aberdeen Proving Ground, MD", Contract No. DAAD05-97-D-7004, dated September, 2001.

Bomb Throwing Device Site Aberdeen Proving Ground

Appendix A: Uranium 238 Decay Series

DAAA09-00G-0002/0039

CABRERA SERVICES, INC.

Appendix A

Bomb Throwing Device Site Aberdeen Proving Ground

Radionuclide	Half-Life	Emissions	Energy (MeV)	Percent Yield
U-238	4.5 x 109 y	α	4.2	75
		α	4.15	25
Th-234	24.1 d	β	0.193	79
		β	0.1	21
		γ	0.093	4
		γ	0.063	3.5
Pa-234m	1.17 min	β	2.29	98
Pa-234	6.75 h	β	0.53	<1
		β	1.13	<1
U-234	2.47 x105 y	α	4.72	28
		α	4.77	72
Th-230	8.0 x 104 y	α	4.62	24
		α	4.68	76
Ra-226	1602 y	α	4.60	6
		α	4.78	95
		γ	0.186	4
Rn-222	3.82 d	α	5.49	100
Po-218	3.05 min	α	6.0	100
Pb-214	26.8 min	β	0.65	50
		β	0.71	40
		γ	0.3	19
		γ	0.35	36
Bi-214	19.7 min	β	1.0	23
		β	1.51	40
		β	3.26	19
		γ	0.609	47

Uranium 238 Decay Series (Excerpted from Radioactive Decay Data Tables, David Kocher, 1981)

DAAA09-00G-0002/0039

CABRERA SERVICES, INC.

Bomb Throwing Device Site Aberdeen Proving Ground

Appendix B:

Derived Concentration Guideline Level (DCGL) Determination For U. S. Army Garrison, Aberdeen Proving Grounds (APG) Bomb Throwing Device Site

DAAA09-00G-0002/0039

CABRERA SERVICES, INC.

Appendix B

U. S. ARMY GARRISON, ABERDEEN PROVING GROUND DERIVED URANIUM GUIDELINES FOR DEPLETED URANIUM AT THE BTD SOIL SAMPLE AREA

Contract Number DAAA09-00-G-0002 / 039

Prepared for:

U.S. Army Operations Support Command Rock Island, Illinois

Performed By:

•

CABRERA Services Inc. 809 Main Street East Hartford, CT 06108

Project No. 01-3030.39

EXECUTIVE SUMMARY

The depleted uranium (DU) derived concentration guideline level (DCGL) developed for the Transonic Range is considered applicable to and adequately protective for the BTD Site on the basis of comparable site-specific RESRAD parameters/pathways, the similarity of both locations, and the equivalence of the radiological isotopic DU mixes at both locations. Use of the approved Transonic DCGL at the BTD Site will ensure that the potential dose to a hypothetical individual will not exceed 25 mrem in any one year over a 1,000 period consistent with 10 CFR Part 20 Subpart E requirements.

On these bases, the proposed DCGL for the BTD Site in soil is 230 pCi/g total DU (resident-farmer scenario). This evaluation utilizes the more conservative resident-farmer scenario. Additionally, the ALARA principle of as-low-as-reasonably-achievable is applied to provide assurance that hypothetical doses are limited. The ALARA action level has been set at 105 pCi/g.

DAAA09-00-G-0002 / 039

CABRERA SERVICES, INC.

DCGL at BTD Area

DERIVED CONCENTRATION GUIDELINE LEVEL (DCGL) DETERMINATION FOR U. S. ARMY GARRISON, ABERDEEN PROVING GROUNDS (APG) BOMB THROWING DEVICE SITE

1.0 BACKGROUND

The Aberdeen Test Center (ATC) Bomb Throwing Device (BTD) site was used between 1982 and 1993 for the testing of Depleted Uranium (DU) munitions. The site consists of the BTD Butt Enclosure, access roads, Plate Storage Area (PSA), and several support buildings situated on approximately 4-5 acres of land. The BTD Butt Enclosure has dimensions of approximately 25 by 50 feet with a height of 20 feet. WESTON previously performed a MARSSIM type characterization at the BTD Site. Data from that characterization has been utilized in this evaluation. The total BTD site land area is approximately 10 acres.

During testing at the site, munitions were fired at either steel plate targets or vehicles placed inside the BTD Butt Enclosure. A HEPA ventilation system associated with the BTD Butt Enclosure was designed to filter potentially contaminated air exiting the building. Heavy equipment was used to transport the armor plates between the PSA and the BTD Butt Enclosure. Currently, approximately 40 tons of DU-contaminated armor plate is located within the BTD Site.

A characterization study was initiated to identify DU and other environmental contaminants currently present in the soil as well as gamma radiation levels at the site. This is in preparation for removal of the BTD Butt Enclosure and decommissioning of the BTD Site currently covered by NRC LICENSE #. The WESTON characterization study provided quantitative activity concentration levels of ²³⁵U and ²³⁸U in soil and identified MARSSIM class 1, 2, and 3 areas based on comparison of results to NRC screening derived concentration guideline levels (DCGLs).

Results from the WESTON BTD Site characterization are compared in this evaluation to characterization data from the Transonic Range. The Transonic Range Decommissioning Plan (DP) developed by ATG utilized the characterization data and DCGL dose analysis as provided by Argonne National Laboratory. NRC has approved this DP.

2.0 SCOPE/PURPOSE

The purpose of this evaluation is to contrast and compare the parameters used to develop the DUcontaminated soil (DCGL) applied at the Transonic Range to the BTD Site. This evaluation will be used to demonstrate that the DCGL used at the Transonic Range may be equally applied at the BTD Site.

3.0 DCGL EVALUATION

The DCGL for the DU Study Area of the Transonic Range is based on a site-specific uranium guideline derived on the basis of a 50-year Total Effective Dose Equivalent (TEDE) to a

DCGL at BTD Area

Aberdeen Proving Ground

hypothetical individual not exceeding 25 mrem in any one year and evaluated over a 1,000 year time interval.

3.1 DCGL Derivation from Transonic DP

The results of a previous DU DCGL developed for the Transonic Range were submitted to NRC as part of a DP for the Transonic Range and was approved. The computer code, RESRAD, Version 5.82 (ANL 1999) used to develop DCGLs for the Transonic Range. The RESRAD code parameters/pathways used in the Transonic Range evaluation was set up to consider nine exposure pathways:

- 1) Direct exposure from contaminated soil,
- 2) Internal dose from inhalation of contaminated dust,
- 3) Internal radiation from the inhalation of emanating radon-222,
- 4) Internal radiation from the ingestion of plant foodstuffs grown in contaminated soil and irrigated with groundwater drawn from a well located within the decontaminated area,
- 5) Internal radiation from the ingestion of meat from livestock fed fodder grown in the decontaminated area and irrigated with groundwater from the decontaminated area,
- 6) Ingestion of milk from milk animals raised with fodder and irrigation groundwater drawn from the decontaminated area,
- 7) Internal radiation from ingestion of fish from a pond drawing water from the decontaminated area,
- 8) Internal dose from the ingestion of on-site soil, and
- 9) Internal radiation from drinking water drawn from an on-site well.

Two potential exposure scenarios were considered using combinations of the above pathways. These are the industrial-worker scenario and the resident-farmer scenario. The industrial-worker scenario assumes the continued industrial use of the site. The scenario assumes 2,000 hours per year at the site with 6 hours per day spent indoors and 2 hours per day spent outdoors. No plant foodstuffs, meat, milk, fish, or water is consumed from the site. The dose is assumed to arise only from the contaminated soil. This scenario reflects the current use and is a likely future use scenario.

The resident-farmer scenario has a subsistence farmer who lives on the site and consumes foodstuffs grown on the site. This includes on-site groundwater for drinking and irrigation, vegetables, fruits, livestock meat, milk, and 50% of the farmer's fish consumption. At the present time, no agricultural activity occurs on the site. This scenario is plausible but considered an unlikely future use. Table 1 provides a summary of the exposure pathways by scenario.

TABLE 1 - Applicable Pathways for Industrial-Worker and Resident-Farmer Scenarios									
	Applicable Pathways								
Pathway	Industrial-worker	Resident-Farmer							
External gamma exposure	Yes	Yes							
Inhalation of soil	Yes	Yes							
Inhalation of radon	Yes	Yes							
Ingestion of soil	Yes	Yes							
Ingestion of plant foodstuffs	No	Yes							
Ingestion of meat	No	Yes							
Ingestion of milk	No	Yes							
Ingestion of fish	No	Yes							
Ingestion of water	No	Yes							

3.2 Evaluation of Applicability of Transonic Range DCGL to BTD Site

Since the BTD Site and the Transonic Range are within a few miles of each other at APG, the climate, meteorology, irrigation rates, the type, growth rate, and root depths of vegetation, type of meat and milk producing animals, fish and aquatic organisms, and the geology and soil characteristics are considered to be similar in nature for purposes of this evaluation. Additionally, the types of work activities causing the contamination of the soil are similar and result in like soil surface and vertical distributions. Table 2 provides a summary comparison of the parameters.

The DU contaminated soil at the Transonic Range was characterized from the analysis of 100 total soil samples collected from 1-3 inch and 3-6 inch depths. The samples were analyzed for ²³⁴U, ²³⁵U, and ²³⁸U isotopes by alpha spectroscopy.

DAAA09-00-G-0002 / 039

CABRERA SERVICES, INC.

Page 3 of 10

	TABLE 2 - RESRAD Parameters for Transonic Range and BTD Site											
Region	Алеа	Soil Cover	Vegetation	Water	Meat	Milk	Fish Pond	Radon	Direct Soil Irrad.	Soil Inhal	Meteor- ology	Geology/ Soil Char.
Transonic Range	12 acre	none	Site	Site parameters are those indigenous to the eastern shore area of Maryland at APG								
BTD Site	10.5 acre	none	Due to geogr	Due to geographic proximity of both sites and type of work activities causing soil activity, BTD Site parameters are considered the same								

A soil characterization (WESTON) was completed at the BTD Site in 2001. As with the Transonic Range soil samples, soil was collected from the surface and near surface. At the BTD Site soil was collected from the surface to a depth of 3 inches. Samples were collected in areas designated as class 1, class 2, and class 3 areas following MARSSIM definition and an assumed NRC screening DCGL. A total of 44 samples from the class 1 area had detectable ²³⁵U; 36 samples from the class 2 area had detectable ²³⁵U; and 20 samples from the class 3 area had detectable ²³⁵U activity concentrations. In addition, 13 samples from a background area had detectable ²³⁵U activity concentrations.

For the purpose of contaminant magnitude and isotopic mixture evaluation, the BTD Site class 1 and class 2 area characterization results were lumped together as one category because of the significant levels of uranium identified in these areas. The listed class 3 area results were similar in magnitude to that observed in the background area and had $^{235}U/^{236}U$ ratios that are indicative of natural uranium concentrations as opposed to typical DU ratios. These areas are not considered further in this evaluation.

The BTD Site class 1 and class 2 area data was analyzed in the same fashion as the Transonic Range soil samples, namely case 1 included all samples, case 2 included samples greater than 1 pCi/g, and case 3 excluded samples greater than 1,000 pCi/g²³⁸U. Since the BTD Site analysis was based on gamma spectroscopy, only the ²³⁵U and ²³⁸U isotopes are identified. A comparison of the soil concentration activity ranges and ²³⁵U/²³⁸U activity ratios at the Transonic Range and the BTD Site for the 3 cases is shown in Table 3.

The comparison indicates that the $^{235}U/^{238}U$ activity concentration ratio at the BTD Site is similar to that detected at the Transonic Range. This is expected because the DU utilized at both locations has the same ^{235}U depletion. At both the Transonic Range and the BTD Site the activity ratio of $^{235}U/^{238}U$ indicates that the uranium is in fact DU since the activity ratio ranges from 0.013 to 0.028 while natural uranium has a $^{235}U/^{238}U$ activity ratio of 0.045.

DAAA09-00-G-0002 / 039

Aberdeen Proving Ground

DCGL at BTD Area

	TABLE 3	- Transos	uc Range	and BTD S	ite Soil Data	Activity I	Ratio Con	nparison	
		Transonic Range			BTD Site				
Case No.	ltem	234U	²³⁵ U	238U	²³⁵ U/ ²³⁸ U	²³⁴ U	²³⁵ U	^{23₿} U	235U/ ²³⁸ U
1.	Activity Range, pCi/g	0.19 - 49,000	0.001 - 8,300	0.19 - 370,000	-	No results provided	0.055- 31.7	0.974- 1,470	-
1*	Average Activity Fraction	0.211	0.0205	0.768	0.027	-	-	-	0.027
2 ^b	Activity Range, pCi/g	6.7 - 49,000	1.2 - 8,300	45 - 370,000	-	No results provided	1.05 - 31.7	70.6 – 1470	-
2 ^b	Average Activity Fraction	0.138	0.0234	0.839	0.028	-	-	-	0.013
3°	Activity Range, pCi/g	0.19 - 46	0.001 - 6.3	0.19 - 290	-	No results provided	0.055- 5.99	0.974- 528	-
3°	Average Activity Fraction	0.222	0.0193	0.759	0.025	-	-	-	0.027
Nat. U	Activity Fraction	0.489	0.022	0.489	0.045	0.489	0.022	0.489	0.045

* For case 1, all samples were grouped together

^b For case 2, only samples with ²³⁵U activity greater than 1 pCi/g were grouped together

For case 3, hot samples were removed, and the remaining samples were grouped together

The ²³⁴U soil activity concentrations were not determined for the BTD Site since analysis was performed using gamma spectroscopy. However, the dose fraction assigned to a hypothetical individual from the ²³⁴U isotope is a small fraction of the total dose. Tables 4 and 5 summarize the maximum dose-to-source concentration ratio (dose conversion factor or DCF) as a function of pathway and scenario at Transonic range as derived from ANL 1999. Since the maximum dose occurs immediately after remediation, the dose from the inhalation of radon, water ingestion, and fish ingestion pathways are zero (ANL 1999). Since the BTD Site depth to ground water is deeper than at the Transonic Range, it is logical that the breakthrough time for the BTD area would be longer than at Transonic. The breakthrough time (i.e., time it takes the uranium to reach the water table) does not occur within 1,000 years (ANL 1999).

CABRERA SERVICES, INC.

The ²³⁴U dose contribution DCF for the industrial-worker and the resident-farmer scenarios immediately following remedial action is small, being on the order of 3.4% and 6.5% of the total uranium DCF respectively. Tables 4 and 5 list the fractional DCF for ²³⁴U compared to total uranium DCF for the Transonic Range. Based on the information in these two tables, the ²³⁴U DCF components are expected to be generally smaller or comparable to the ²³⁵U and ²³⁸U DCFs. Therefore the ²³⁴U DCF may be estimated for the BTD Site as being the same as the Transonic Range without incurring any significant calculation differences.

	Maximum Dose/Source Concentration Ratios ^a (mrem/yr)/(pCi/g)					
Pathway	²³⁴ U	²³⁵ U	²³⁸ U	234U/Total U		
External gamma exposure	8.3E-5	1.5E-1	2.6E-2	4.7E-4		
Inhalation of dust	4.3E-3	4.0E-3	3.8E-3	3.6E-1		
Inhalation of radon	0	0	0			
Ingestion of soil	2.4E-3	2.2E-3	2.3E-3	3.5E-1		
Total	6.7E-3	1.6E-1	3.2E-2	3.4E-2		

^a All values are reported to two significant figures. Maximum dose/source concentration ratios would occur immediately following remedial action for all uranium isotopes. This value is the dose conversion factor, DCF.

TABLE 5 – Maximum Dose/Source Concentration Ratios for the Resident-Farmer Scenario at the Depleted Uranium Study Area of the Transonic Range							
	Maximum D	Maximum Dose/Source Concentration Ratios [®] (mrem/yr)/(pCi/g)					
Pathway	²³⁴ U	235U	²³⁶ U	²³⁴ U/Total U			
External gamma exposure	2.4E-4	4.3E-1	7.2E-2	4.8E-4			
Inhalation of dust	9.9E-3	9.2E-3	8.9E-3	3.5E-1			
inhalation of radon	0	0	0	-			
Ingestion of plant foods	1.0E-2	9.7E-3	9.8E-3	3.4E-1			
Ingestion of meat	3.2E-3	3.0E-3	3.0E-3	3.5E-1			
Ingestion of water	0	0	0	-			
Ingestion of milk	8.2E-3	7.7E-3	7.8E-3	3.5E-1			
Ingestion of fish	0	0	0	-			
Ingestion of soil	7.7E-3	7.3E-3	7.4E-3	3.4E-1			
Total	4.0E-2	4.7E-1	1.1E-1	6.5E-2			

^a All values are reported to two significant figures. Maximum dose/source concentration ratios would occur immediately following remedial action for all uranium isotopes. This value is the dose conversion factor, DCF.

The residual radioactive material guideline is the concentration of contaminated material that may remain in a decontaminated area and still allow for unrestricted use of the area. The residual radioactive material guideline, or derived concentration guideline level (DCGL) for a given dose limit, DL, to a hypothetical individual derived from the soil data at the Transonic Range may be calculated as

DCGL = DL/DCF

Where,

DCGL = Derived Concentration Guideline Level, pCi/g in soil

- DL = NRC Dose Limit for unrestricted use, 25 mrem/year for both industrial-worker and resident-farmer

DAAA09-00-G-0002 / 039

CABRERA SERVICES, INC.

Page 7 of 10

The DCF ratios listed in Table 6 were used in turn to determine the allowable residual radioactivity for uranium in soil at the Transonic Range using the above relationship. The resulting DCGL for each radionuclide is shown in Table 7. The 238 U isotope may be used as an indicator radionuclide by multiplying the Table 7 individual depleted uranium DCGL guideline by the appropriate ²³⁸U activity concentration fraction. This allows for use of the readily identified field indicator, ²³⁸U, to be used as the indicator radionuclide DCGL.

TABLE 6 – Total Dose/Source Concentration Ratios for Uranium at the Depleted Uranium Study Area of the Transonic Range						
	1	vrce Concentration Ratios [®] /yr)/(pCi/g)				
Radionuclide	Industrial-Worker ^b	Resident-Farmer ^e				
234 _U	6.7E-3	4.0E-2				
235 _U	1.6E-1	4.7E-1				
^{23#} ن	3.2E-2	1.1E-1				
Natural Uranium	2.2E-2	8.3E-2				
Depleted Uranium ⁴	2.9E-2	1.0E-1				
Depleted Uranium ^e	3.1E-2	1.1E-1				
Depleted Uranium ^f	2.9E-2	1.0E-1				

* All values are reported to two significant figures. Maximum dose/source concentration ratios would occur immediately following remedial action for all uranium isotopes

^b Industrial-Worker: no consumption of water or food obtained on the site (current use scenario)

^c Resident-Farmer : Water used for drinking, household purposes, livestock, watering, and irrigation assumed to be from an on-site well (an unlikely but plausible future use scenario) ⁴ The wranium isotopes (²¹⁸U, ²³⁴U, and ²¹⁵U) are present in the activity ratio of 0.768:0.211:0.0205 ^c The uranium isotopes (²¹⁸U, ²³⁴U, and ²¹⁵U) are present in the activity ratio of 0.839:0.138:0.0234 ^f The uranium isotopes (²¹⁸U, ²³⁴U, and ²¹⁵U) are present in the activity ratio of 0.759:0.222:0.0193

TABLE 7 – Residual Radioactive material DCGL for Depleted Uranium Study Area of the Transonic Range (25 mrem)					
	DCGL Gui	DCGL Guideline, pCi/g [*]			
Radionuclide	Industrial-Worker ^b	Resident-Farmer ^c			
234U	3,700	630			
235U	160	54			
23 8 U	790	230			
Natural Uranium	1,100	300			
Depleted Uranium ^d	860; (660) ⁸	250; (190) ^g			
Depleted Uranium ^e	800; (670) [#]	230; (190) ⁸			
Depleted Uranium ^f	880; (670) ^s	250; (190) ^g			

* All values are reported to two significant figures.

^b Industrial-Worker: no consumption of water or food obtained on the site (current use scenario, dose constraint 25 mrem/yr)

^c Resident-Farmer : Water used for drinking, household purposes, livestock, watering, and irrigation assumed to be from an on-site well (an unlikely but plausible future use scenario, dose constraint 25 mrem/yr)

⁴ The tranium isotopes (²³⁸U, ²⁴U, and ²³⁵U) are present in the activity ratio of 0.768:0.211:0.0205 ⁵ The tranium isotopes (²³⁸U, ²⁴U, and ²³⁵U) are present in the activity ratio of 0.839:0.138:0.0234 ⁶ The tranium isotopes (²³⁴U, ²³⁴U, and ²³⁵U) are present in the activity ratio of 0.759:0.2222:0.0193

⁸ First number is the total DU DCGL; number in parenthesis is the indicator radionuclide ²³⁸U value

4.0 SUMMARY

Since the BTD Site and the Transonic Range are within close proximity of each other, the climate, meteorology, irrigation rates, the type, growth rate, and root depths of vegetation, type of meat and milk producing animals, fish and aquatic organisms, and the geology and soil characteristics are considered to be similar in nature. Additionally, since the type of work activities and the DU isotopic activity fractions at both locations are similar they result in surface and vertical distributions of DU that are comparable at both the Transonic Range and the BTD Site.

The DCGL developed at the Transonic Range is considered applicable to and adequately protective for the BTD Site on the basis of comparable site-specific RESRAD parameter/pathways, the similarity of both locations, and the equivalence of the radiological isotopic DU mixes. Use of the approved Transonic DCGL at the BTD Site will ensure that the potential dose to a hypothetical individual will not exceed 25 mrem in any one year over a 1,000year period. The DCGL for the BTD Site soil is 230 pCi/g total DU (resident-farmer scenario). Additionally, the ALARA principle of as-low-as-reasonably-achievable is applied to provide

CABRERA SERVICES, INC.

DCGL at BTD Area

Aberdeen Proving Ground

assurance that hypothetical doses are limited. The ALARA action level DCGL has been set at 105 pCi/g total DU.

5.0 REFERENCES

- 1. ANL 1999 Derived Uranium Guidelines for the Depleted Uranium Study Area of the Transonic Range, Aberdeen Proving Ground, Maryland, ANL Rad Health Risk Study, M. Picel and S. Kamboj, April 16, 1999
- 2. WESTON Radiological Characterization for the Bomb Throwing Device Interim Report Aberdeen Test Center Aberdeen Proving Ground, MD, Addendum to the BEST Contract General Safety and Health Program, Rev. 2 September 1999, Contract No. DAAD05-97-D-7004, Delivery Order No. 191, dated September 2001

CABRERA SERVICES, INC.

Final Status Survey Plan

Bomb Throwing Device Site Aberdeen Proving Ground

Appendix C:

Ludlum NaI 3"x3" MDC_{SCAN} and Instrument Sensitivity Results Calculated Using Microshield[®]

DAAA09-00G-0002/0039

CABRERA SERVICES, INC.

Appendix C

Bomb Throwing Device Area 3x3 Nal Calibration Factor (DU)

MDC_{SCAN}: 38 pCi/g Sensitivity: 65 cpm per pCi/g Assumed bkg: 10 uR/hr Source Distribution per: NUREG-1507 (56 cm dia soil uniformly contaminated to a depth of 15 cm) DU Activity fractions: 84.7% U238; 14.2% U234; 1.1% U235

BTDA 3x3 Nal Scan for DU @ 1pCi/g total Uranium w/ no soil cover at 15 cm thick x 28 cm RADIUS Fluence rate to exposure rate (FRER, no units) = ~ (1 uR/h)/(Ey)(u_m/ρ)air

TABLE 1					
Energy., keV	(Um/p)ale cm ² /g	FRER			
15	1.29	0.0517			
20	0.516	0,0969			
30	0.147	0.2268			
40	0.064	0.3906			
50	0.0384	0.5208			
60	0.0292	0,5708			
80	0.0236	0.5297			
100	0.0231	0.4329			
150	0.0251	0,2656			
200	0.0268	0,1866			
300	0.0288	0.1157			
400	0.0296	0.0845			
500	0.0297	0.0673			
600	0.0296	0.0563			
800	0.0289	0.0433			
1,000	0.0280	0.0357			
1,500	0.0255	0.0261			
2,000	0.0234	0.0214			

Probability of interaction (P) through end of detector for given energy is

Probability = $1 - e^{-(\mu/\rho)Nel(x)(\rho Nel)}$

7

TABLE 2					
Energy, keV	$(\mu/\rho)_{Nel}, cm^2/g$	<u>P</u>			
15	47.4	1.00			
20	22.3	1.00			
30	7.45	1.00			
40	19.3	1.00			
50	10.7	1.00			
60	6.62	1.00			
80	3.12	1.00			
100	1.72	1.00			
150	0.625	1.00			
200	0.334	1.00			
300	0.167	0.99			
400	0.117	0.96			
500	0.0955	0.93			
600	0.0826	0.90			
800	0.0676	0.85			
1,000	0.0586	0.80			
1,500	0.0469	0.73			
2,000	0.0413	0.68			

for Ludium 3x3 Model 44-20 7.6 cm dia x 7.6 cm thick Nal crystal

aluminum window per Ludlum ~0.05 inch thick

x = 7.6 cm $\rho = 3.67 \text{ g/cm}^3$

ponse (RDR) = relative fluenc	T/		
Energy, keV	FRER	<u>e</u>	RDR
15	0.0517	1.00	0.0517
	0.0969	1.00	0.0969
20	0.2268	1.00	0.2268
30	0.3906	1.00	0.3906
40	0.5208	1.00	0.5208
50	0.5708	1.00	0.5708
60	0.5297	1.00	0.5297
80		1.00	0.4329
100	0.4329	1.00	0.2656
150	0.2656	1.00	0.1866
200	0.1866	0.99	0.1146
300	0.1157	0.99	0.0812
400	0.0845		0.0626
500	0.0673	0.93	0.0507
600	0.0563	0.90	0.0367
800	0.0433	0.85	0.0287
1,000	0.0357	0.80	
1,500	0.0261	0.73	0.0191
2,000	0.0214	0.68	0.0146

2700

Estimated Ludium 44-20 7.6 cm dia x 7.6 cm thick Nal response for Cs-137 i:

cpm/uR/hr

Use same methodology and interpolating for Cs-137 response have:

Energy _y , keV 662	(u _{en} /ρ) _{air} , cm²/g 0.0294	FRER ~	0.0514
Energy _r , keV 662	(µ/ρ) _{Nal} , cm²/g 0.0 7 80	Probability =	0.89
		RDR =	0.0455

TABLE 4					
		Ludium 44-20 3x3			
		Nal Detector, E,			
Energy _r , keV	RDR _{Ei}	cpm per μR/hr			
15	0.0517	3064			
20	0.0969	5745			
30	0.2268	13445			
40	0.3906	23161			
50	0.5208	30881			
60	0.5708	33842			
80	0.5297	31404			
100	0.4329	25667			
150	0.2656	15748			
200	0.1866	11061			
300	0.1146	6797			
400	0.0812	4816			
500	0.0626	3714			
600	0.0507	3005			
662	0.0455	2700			
800	0.0367	2175			
1,000	0.0287	1704			
1,500	0.0191	1131			
2,000	0.0146	867			

For this detector the response to another energy is based on the ratio of the relative detector response, RDR, to the Cs-137 energy cpm/ μ R/h, E₁ = (cpm_{cs-137})*(RDR_{Ei})/(RDR_{Cs-137})

MDC for Cs-137 energy

Assume 10 μ R/hr bkg then have 27,000 cpm	b _i =	450	counts
	MDCR =	1756	cpm
	MDCR _{surveyor} =	2484	cpm
minimum detectable exposure rate =	0.92 µl	R/hr	

		Table 5		
	MicroShield Exposure Rate, μR/hr (with			Percent of Nai detector
keV	buildup)	cpm/µR/hr	cpm/µR/hr (weighted)	response
15	8.274E-09	3064	0	0.0%
20	6.657E-11	5745	0	0.0%
30	4.852E-06	13445	9	0.1%
40	7.972E-09	23161	0	0.0%
	1.133E-06	30881	5	0.1%
50	3.234E-04	33842	1483	16.8%
60		31404	182	2.1%
80	4.275E-05	25667	4863	55.0%
100	1.398E-03	15748	236	2.7%
150	1.108E-04		823	9.3%
200	5.489E-04	11061		0.1%
300	1.301E-05	6797	12	0.1%
400	1.473E-05	4816	10	0.2%
500	2.694E-05	3714	14	0.6%
600	1.309E-04	3005	53	
800	9.470E-04	2175	279	3.2%
1000	3.690E-03	1704	852	9.6%
1500	1.083E-04	1131	17	0.2%
2000	1.755E-05	867	2	0.0%
Total	7.378E-03		8840	100%

Minimum Detectable Exposure Rate =

MDCR surveyor/(cpm/µr/hr) 0.281 µr/hr

and MDC for DU and 50-year equilibrium progeny based on a normalized 1 pCi/g total uranium

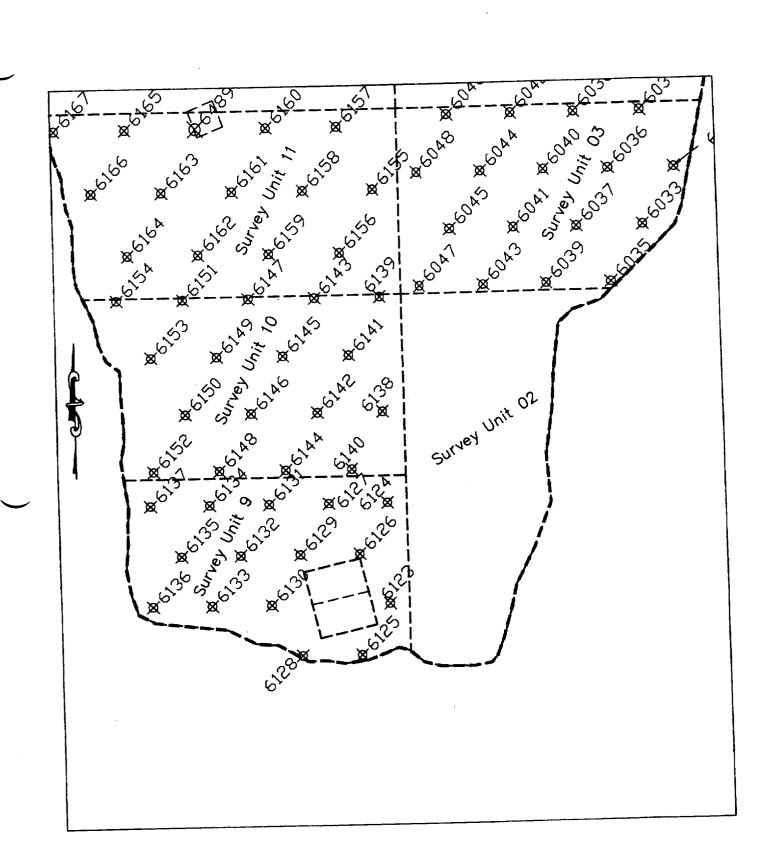
Scan MDC = (Assumed MDC U_{TOTAL}Conc) x (Exposure Rate MDCR_{Surveyor})/(Exposure Rate_{assumed U Conc})

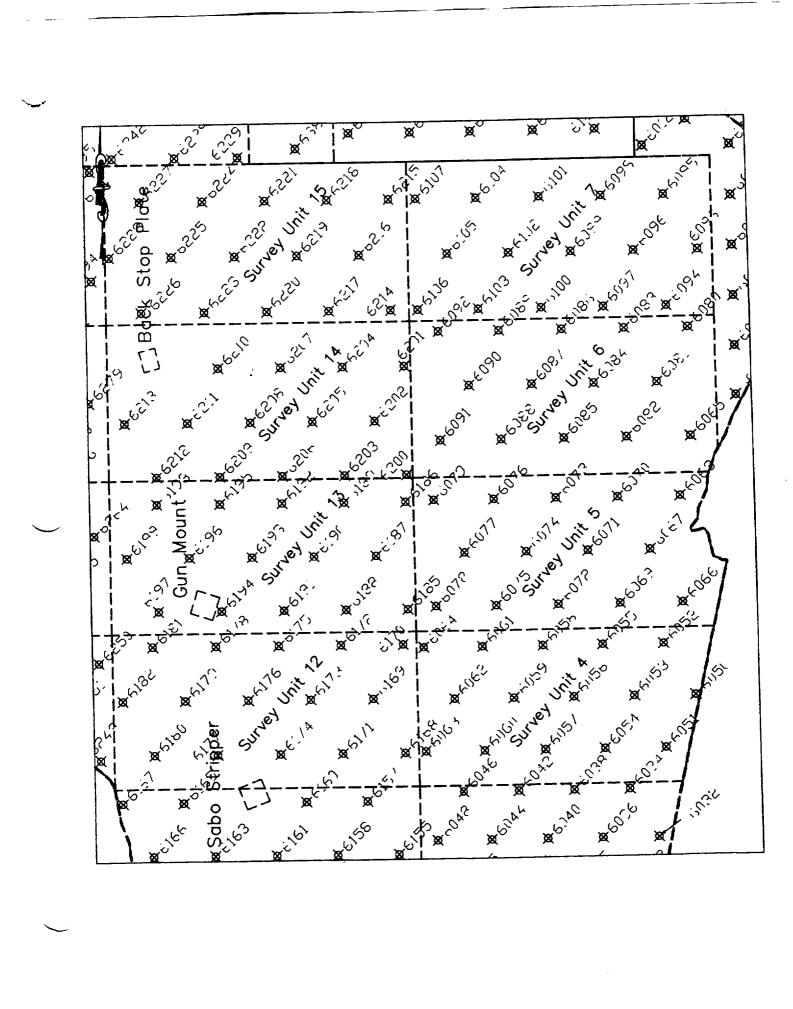
Scan MDC = 38.08 pCi/g

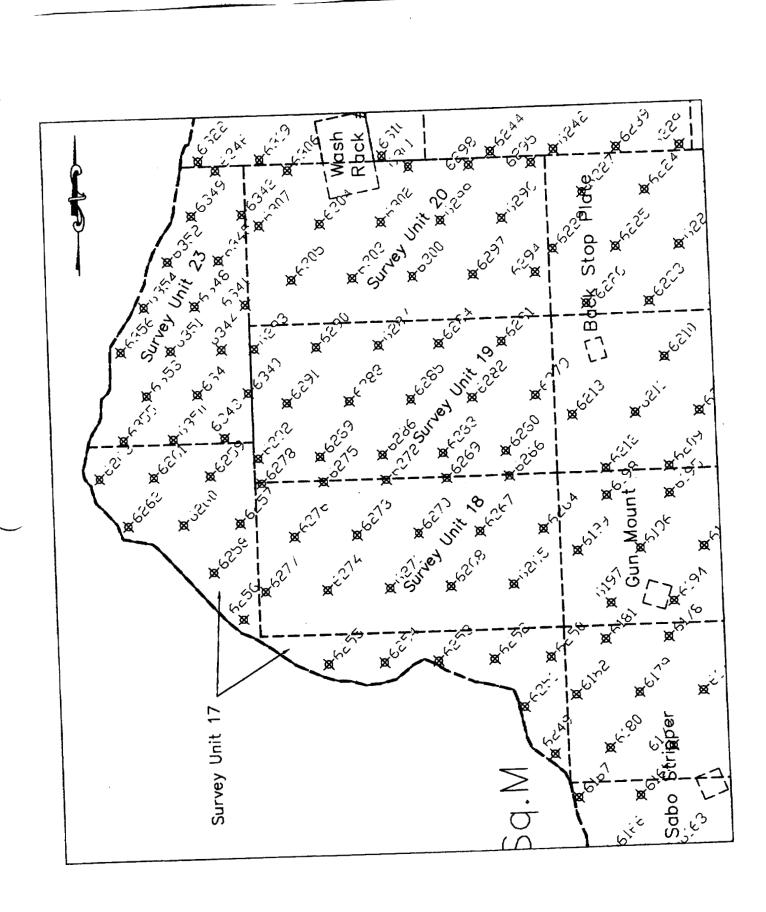
Final Status Survey Plan

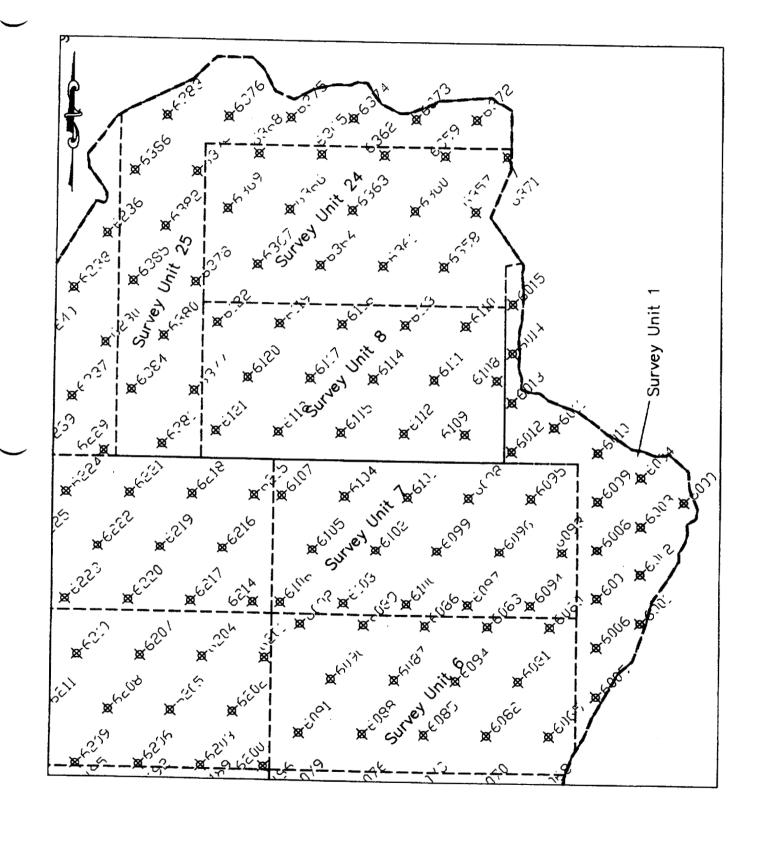
Bomb Throwing Device Site Aberdeen Proving Ground

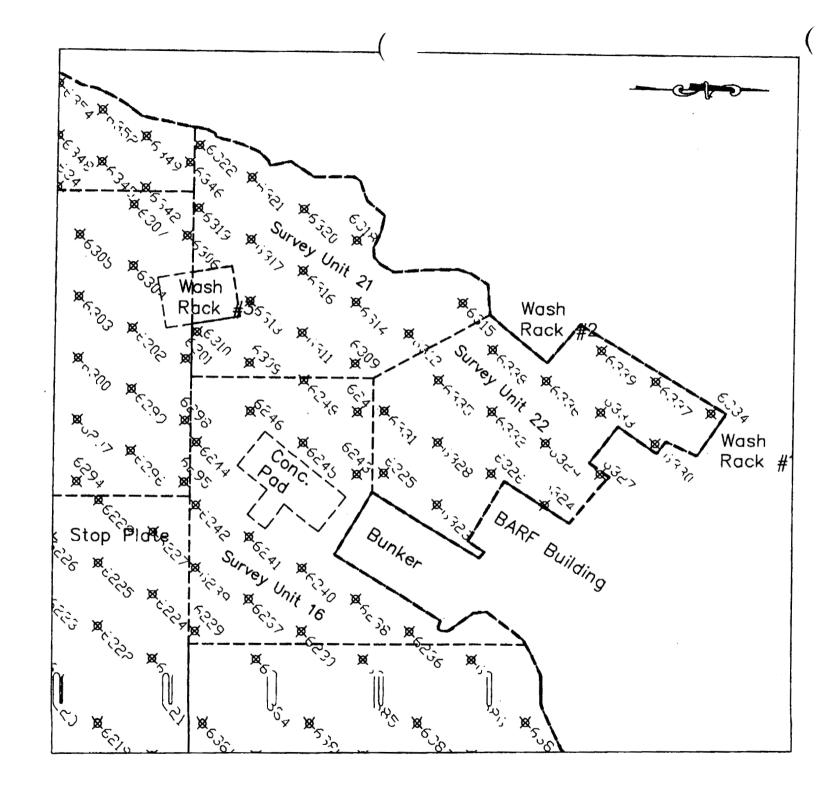
Appendix D:

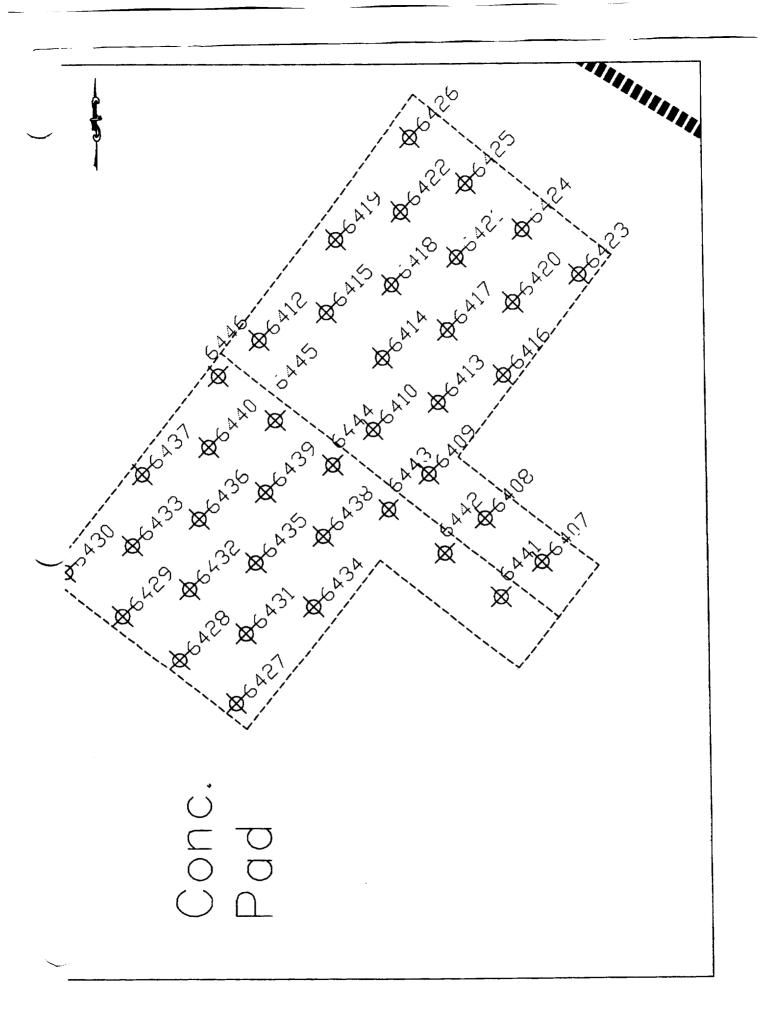

Survey Unit Maps and Sample Locations

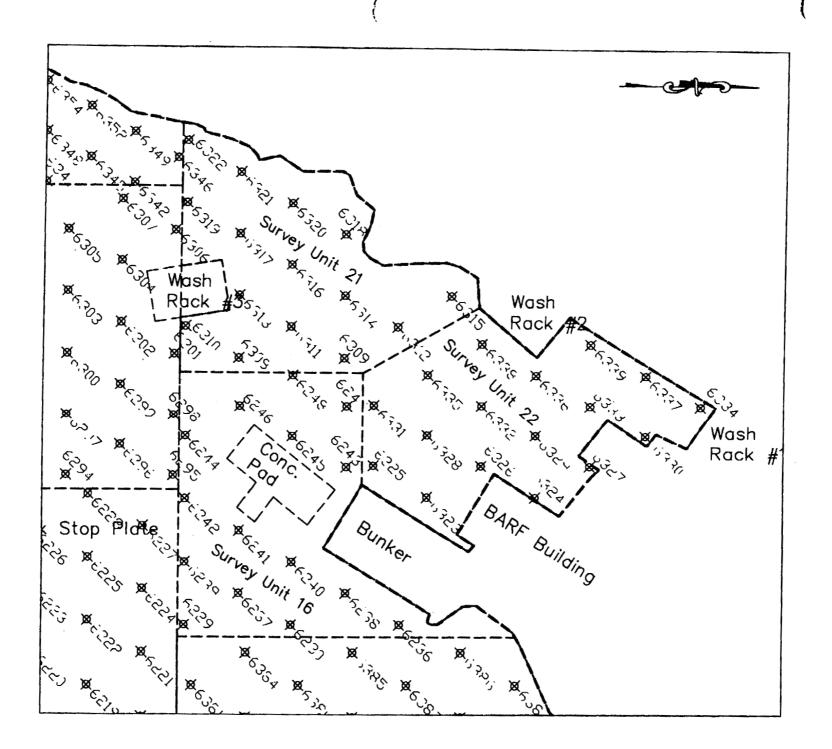

DAAA09-00G-0002/0039


CABRERA SERVICES, INC.




(





	: (FOR LFMS USE)
	: INFORMATION FROM LTS
Between :	:
	:
License Fee Management Branch, ARM	: Program Code: 11221
and	: Status Code: 0
Regional Licensing Sections	: Fee Category: EX 2B 2C
	: Exp. Date: 20080930
	: Fee Comments: SHIELDING AND OTHER
	: Decom Fin Assur Reqd: Y

LICENSE FEE TRANSMITTAL

T A, REGION

- 1. APPLICATION ATTACHED Applicant/Licensee: ARMY, DEPARTMENT OF THE Received Date: 20031117 Docket No: 4007354 Control No.: 133995 License No.: SUB-834 Action Type: Notifications
- 2. FEE ATTACHED Amount: Check No.:

3. COMMENTS

signed M.a. Pa Date

B. LICENSE FEE MANAGEMENT BRANCH (Check when milestone 03 is entered /__/)

1. Fee Category and Amount: _____

2. Correct Fee Paid. Application may be processed for:

Amendment	
Renewal	
License	

3. OTHER _____

Signed ______ Date _____

ATTACHMENT CABRERA OPERATIONAL PROCEDURES

Radiation Safety Procedure

For

Volumetric and Material Sampling

OP-005

Revision 0

Reviewed By: Watters, Radiological Safety Engineer David

Date: 1/24/00

Approved By:

Date: 1/24/00

Steven Masciulli CHP, CSP, Radiation Safety Officer

Approved By:

Date: 1/24/00

P.E., Corporate Health Physicist

1.0 PURPOSE

This procedure establishes the requirements Cabrera Services, Inc. (CABRERA) implements for the collection of volumetric and material samples for analysis.

2.0 APPLICABILITY

The applicability of this procedure is limited to collecting volumetric and material samples on CABRERA field projects. It also applies to volumetric samples taken for the purpose of analysis for radioactivity. This procedure is applicable to all volumetric and material samples taken by CABRERA to fulfill a requirement for sampling.

3.0 PRECAUTIONS, LIMITATIONS AND REQUIREMENTS

- 3.1 Precautions
 - 3.1.1 Special situations such as evaluating trends or airborne deposition, determining contamination profiles, and measuring non-radiological contaminants, necessitates special sampling procedures. These special situations are evaluated and incorporated into site specific survey plans as the need arises.

The shipping container (e.g., box, cooler, or equivalent) should be lined with plastic and approved absorbent material prior to placing samples inside the shipping container if the samples are to be shipped for analysis. A load rating stamped o the bottom of the shipping container should be noted. This rating shall not be exceeded to prevent degradation of the box during shipment. The PM or designee shall approve packaging material and method.

3.2 Limitations

3.2.1 Do not exceed load rating for containers when shipping samples to prevent degradation of the container during shipping.

3.3 Requirements

3.3.1 Direct surface radiation measurements are to be performed at each location before initiating sampling. This may identify the presence of gross contamination, which may require that samples and equipment be treated as radioactive and handled in accordance with appropriate procedures.

- 3.3.2 Material sampling requires documentation as follows:
 - Record forms
 - Sample Chain of Custody forms
 - Field Sample Logbook

4.0 REFERENCES

- RSP Radiation Safety Program
- SHSP Site Health and Safety Plan
- SWP Site Work Plan
- NUREG/CR-5512 Residual Radioactive Contamination from Decommissioning
- 40 CFR 192 Code of Federal Regulations
- AP-001 Record Retention
- OP-008 Chain of Custody
- MARSSIM Multi-Agency Radiation Survey and Site Investigation
 Manual

5.0 DEFINITIONS AND ABBREVIATIONS

- 5.1 Sediment Sediment is solid material that has settled to the bottom of a liquid, usually water (MARSSIM).
- 5.2 Surface Soil The top layer of soil that is available for direct exposure, growing plants, re-suspension of particles for inhalation, and mixing from human disturbances (MARSSIM). Surface soil may also be defined as the thickness of soil that can be measured using direct measuring techniques (MARSSIM). Typically, this layer is represented as the top 15 cm (6 inches) of soil (40 CFR 192).
- 5.3 Subsurface Soil Subsurface soil is any soil not considered surface soil, typically anything greater than 15 cm (6 inches) below the ground surface (MARSSIM).
- 5.4 Volumetric Sample A sample of material, taken for the purpose of determining the radioactivity content in units of activity per unit volume or mass. This does not apply to loose surface material sampled using a cloth smear/swipe, or to activity present only on the surface of solid materials.

6.0 EQUIPMENT

6.1 Volumetric Sampling

The following is a list of the minimum equipment required to perform field volumetric sampling under this procedure.

- A Lietz level log book 8152-50 or the equivalent;
- Survey map(s);
- Chain of Custody and Record Forms;
- Decontamination detergent (e.g., Alconox);
- Sample Containers;
- Indelible marker;
- Distilled Water;
- Clean towels (paper);
- Brushes for decontamination;
- Sample location markers; and
- Digging implement: garden trowel, shovel, spoons, post-hole digger, etc.
- Special sampling apparatus (cup cutter, shelby tube, etc.) as required
- Plastic bags, approximately 10 cm diameter x 30 cm long
- Cardboard "ice cream" containers (1 quart size) or geology sample bags
- Twist-ties
- Masking or duct tape
- Record forms
- Labels and security seals
- Applicable sample collection equipment.

Revision 0

For collecting water samples, the following may also be required:

- pH meter; and
- Nitric acid preservative.

For sample packing and shipping, at a minimum, the following may be required:

- Box, Coolers, or the equivalent;
- Clear packing tape;
- Zipper locking plastic bags;
- Packaging material (vermiculite or use preformed poly-foam liner or equivalent)
- Self adhesive labels;
- "Fragile" and "This Side Up" stickers;
- · Chain of Custody and Record Forms as required;
- Ice and;
- Mailing labels.

Equipment is chosen based on the type of material to be sampled. The following list represents some possibilities:

- Paint sampling: heat gun, paint stripper solution, hammer and chisel
- Drains or pipes: plumber's snake, swabs
- Residues: trowels, scoops
- Concrete or asphalt: core boxes, hammer, and chisel
- Metals: emery cloth or scraping tool
- Dusts: scraping tool and plastic bags

7.0 RESPONSIBILITIES

- 7.1 Project Manager (PM) The PM is responsible for ensuring that personnel assigned the task of collecting volumetric and material samples are familiar with this procedure, adequately trained in the use of this procedure, and have access to a copy of this procedure.
- 7.2 Radiation safety Officer (RSO) The RSO is responsible for verifying that personnel comply with this procedure and are trained in obtaining material samples described in this procedure.
- 7.3 Radiological Field Supervisor (RFS) During field assignments, the RFS is responsible for ensuring that this procedure is implemented. When the RSO is not on site, the RFS will act as the RSO's duly authorized representative for radiological issues.
- 7.4 Health Physics Technicians (HPT) The HPT collecting volumetric and/or material samples is responsible for knowing and complying with this procedure.
- 7.5 Sample Collectors Sample Collectors are responsible to follow the instructions of the RFS and Health Physics technicians and to ensure compliance with this procedure.

8.0 INSTRUCTIONS

8.1 General - Collection of Samples

This section is applicable to surface subsurface, sediment, surface water, ground water, and other sample collections.

- 8.1.1 Survey maps shall be used to document soil sample location, and any survey results related to the particular sample (i.e. loose surface activity of sample container or sampling equipment).
- 8.1.2 Sample locations should be clearly identified with a stake or other appropriate marker, and labeled with a corresponding sample number when available.
- 8.1.3 Ensure that the sample container is of adequate type and size prior to collecting a sample. The sample size may depend on the type of analysis being performed, and the desired detection sensitivity. Consult with the laboratory performing the analysis for proper sample container type and size.

- 8.1.4 If multiple samples are taken, bring appropriate cleaning materials along for cleaning the sampling equipment. Refer to the applicable section of this procedure for instructions regarding sampling equipment decontamination.
- 8.1.5 A field-sampling logbook shall be used to document pertinent information about the sampling event. Note any significant observations during the sampling event in the field-sampling logbook.
- 8.1.6 Seal the container with a tamper proof seal. The sampling technician shall initial and date the seal.
- 8.1.7 Initiate the sample chain of custody record for the sample.
- 8.1.8 Identify the sample location with a stake or other appropriate marker. Document the sample location on a survey in such a manner that the location can be easily and accurately re-identified.
- 8.1.9 Clean the sampling equipment prior to collecting another sample in accordance with requirements of this procedure.
- 8.1.10 Survey sampling equipment to ensure no removable contamination exists, which could result in cross-contamination of samples.
 - 8.1.10.1 Samples that require gamma, beta, or alpha spectroscopy or isotopic discrimination of any type shall be sent to an approved laboratory for analysis.
 - 8.1.10.2 Samples that can fit into a 1/8" x 2" planchette that require gross alpha and/or beta/gamma results may be counted in a Ludlum 2929 or equivalent.Ensure that minimum counting system sensitivity requirements are met by calculating MDA values for alpha and beta, as applicable.
 - 8.1.10.2.1 Place the sample into a planchette with the surface to be measured facing upward.
 - 8.1.10.2.2 Count sample for an appropriate length of time.
 - 8.1.10.2.3 Record count and counting time data, and calculate activity estimates. Record information and data on appropriate Survey Form.

- 8.1.11 If the collected sample is suspected to contain radioactivity above background levels, survey the sampling equipment for loose surface activity prior to using the equipment to collect another sample. Document the results on a survey map.
- 8.2 Collection of Surface Samples
 - 8.2.1 Surface Soil Samples shall be collected using appropriate equipment (stainless-steel hand auger, post-hole digger, shovel, etc.)
 - 8.2.2 Ensure that the sampling equipment which makes contact with the soil (i.e. split-spoon sampler, shovels, post-hole digger, sieves, sample containers, etc.) is free from radioactive material contamination. Perform a loose surface activity survey of the sampling equipment if necessary. Document the results on the survey map corresponding to the sample.
 - 8.2.3 Fill the sample container to the top with surface soil.
 - 8.2.4 Remove large rocks, vegetation, and foreign objects (these items may also be collected as separate samples, if directed). It may be necessary to use a sieve or screen to remove large objects.
 - 8.2.5 Assign a unique sample identification number to the sample. For surface samples, the identifier shall begin with "SS" followed by a series of numbers, where "SS" indicates surface soil as the sample matrix. Additional numerical/alphanumerical designators will be added to indicate the sampling location and number. Label the sample container with the sample number using a permanent marker.
 - 8.2.6 Ensure that the sample is properly labeled and secure the sample container.
- 8.3 Collection of Subsurface Samples
 - 8.3.1 Subsurface Soil Samples shall be collected using appropriate equipment (stainless-steel hand auger, post-hole digger, shovel, etc.)
 - 8.3.2 Ensure that the sampling equipment which makes contact with the soil (i.e. split-spoon sampler, shovels, post-hole digger, sieves, sample containers, etc.) is free from radioactive material contamination. Perform a loose surface activity survey of the sampling equipment if necessary. Document the results on the survey map corresponding to the sample.

- 8.3.3 Fill the sample container to the top with surface soil.
- 8.3.4 Remove large rocks, vegetation, and foreign objects (these items may also be collected as separate samples, if directed). It may be necessary to use a sieve or screen to remove large objects.
- 8.3.5 Assign a unique sample identification number to the sample. For surface samples, the identifier shall begin with "SS" followed by a series of numbers, where "SS" indicates surface soil as the sample matrix. Additional numerical/alphanumerical designators will be added to indicate the sampling location and number. Label the sample container with the sample number using a permanent marker.
- 8.4 Collection of Sediment Samples
 - 8.4.1 Sediment samples shall be collected using the appropriate equipment (i.e. stainless steel Ponar dredge, sample containers, etc.).
 - 8.4.2 Ensure that the sampling equipment which makes contact with the sediment (i.e. stainless steel Ponar dredge, sample containers, etc.) is free from radioactive material contamination. Perform a loose surface activity survey of the sampling equipment if necessary. Document the results on the survey map corresponding to the sample.
 - 8.4.3 It is important to minimize disturbance of the sediment caused by sampling activities. Move slowly when approaching the sample location. Approach the sampling location from downstream (for moving water) and downwind (for stationary water).
 - 8.4.4 Remove the sediment slowly and gently from the water using the appropriate sampling equipment. Fill the sample container.
 - 8.4.5 Remove large rocks, vegetation, and foreign objects (these items may also be collected as separate samples, if directed). It may be necessary to use a sieve or screen to remove large objects.
 - 8.4.6 Assign a unique sample identification number to the sample. For surface samples, the identifier shall begin with "SS" followed by a series of numbers, where "SS" indicates surface soil as the sample matrix. Additional numerical/alphanumerical designators will be added to indicate the sampling location and number. Label the sample container with the sample number using a permanent marker.

- 8.5 Collection of Surface Water Samples
 - 8.5.1 Surface water samples shall be collected using the appropriate equipment (i.e. ladle, scoop, pond sampler, funnel, etc.) or by submerging the sample container.
 - 8.5.2 Ensure that the sampling equipment which makes contact with the surface water (i.e. ladle, scoop, pond sampler, funnel, etc.) is free from radioactive material contamination. Perform a loose surface activity survey of the sampling equipment if necessary. Document the results on the survey map corresponding to the sample.
 - 8.5.3 It is important to minimize disturbance of the sediment caused by sampling activities. Move slowly when approaching the sample location. Approach the sampling location from downstream (for moving water) and downwind (for stationary water).
 - 8.5.4 Rinse the sampling equipment and sampling container with distilled water, or in the same water to be sampled if possible. Remove the water slowly and gently using the appropriate sampling equipment, and fill the sample container. If the water is deep enough, surface water samples can be collected by dipping the polyethylene sample container directly into the water body.
 - 8.5.5 Test the pH of the water sample. If the pH is greater than 2.0, add nitric acid to reduce the pH to 2.0 or less.
 - 8.5.6 Assign a unique sample identification number to the sample. For surface samples, the identifier shall begin with "SS" followed by a series of numbers, where "SS" indicates surface soil as the sample matrix. Additional numerical/alphanumerical designators will be added to indicate the sampling location and number. Label the sample container with the sample number using a permanent marker.
- 8.6 Collection of Ground Water Samples
 - 8.6.1 Ground water samples shall be collected using the appropriate equipment (i.e. peristaltic pump, bailer, etc.).
 - 8.6.2 Ensure that the sampling equipment which makes contact with the surface water (i.e. tubing, sample containers, pH probe, etc.) is free from radioactive material contamination. It may be helpful to dedicate sampling equipment, such as Teflon tubing, to each monitoring well. Perform a loose surface activity survey of the sampling equipment if necessary. Document the results on the survey map corresponding to the sample.

- 8.6.3 It is important to minimize disturbance of the sediment caused by sampling activities. Use a low flow peristaltic pump, or slowly sample with a bailer, to avoid increased sample turbidity.
- 8.6.4 Rinse the sampling equipment and sampling container with distilled water.
- 8.6.5 Purge standing water in the well until flow from the surrounding aquifer is established. Draw water into an intermediate container and test periodically for pH, conductivity, and temperature during the purging.
- 8.6.6 Repeat step 8.6.5 until the pH, conductivity, and temperature readings are within \pm 10% of the previous reading for three consecutive measurements.
- 8.6.7 When the criteria in Step 8.6.6 are met, the sample container can be filled.
- 8.6.8 Test the pH of the water sample. If the pH is greater than 2.0, add nitric acid to reduce the pH to 2.0 or less.
- 8.6.9 Assign a unique sample identification number to the sample. For surface samples, the identifier shall begin with "SS" followed by a series of numbers, where "SS" indicates surface soil as the sample matrix. Additional numerical/alphanumerical designators will be added to indicate the sampling location and number. Label the sample container with the sample number using a permanent marker.
- 8.7 Collection of Other Samples
 - 8.7.1 For the purposes of this procedure, "other" refers to any type of sample not previously defined in this document.
 - 8.7.2 Other samples shall be collected using the appropriate equipment (i.e. peristaltic pump, bailer, etc.).
 - 8.7.3 Consult with the analytical laboratory, and the responsible radiological engineer, prior to collecting the sample, for specific instructions on taking any other sample types.
 - 8.7.4 Ensure that the sampling equipment which makes contact with the media is free from radioactive material contamination. Perform a loose surface activity survey of the sampling equipment if necessary. Document the results on the survey map corresponding to the sample.

- 8.7.5 Obtain the sample using appropriate techniques. Transfer the sample to the appropriate sample container.
- 8.7.6 Foreign objects, which are not representative of the desired sample matrix, or which may effect the laboratory analysis, shall be removed from the sample.
- 8.7.7 Assign a unique number to the sample. The unique sample number shall identify the media sampled, the location, and the number as appropriate. Label the sample container with the sample numbers using a permanent marker.
- 8.8 Material Sampling

Methods for collecting miscellaneous samples should be determined based upon the characteristics of the sample media. Care should be taken to limit the potential for spreading contamination during sample collection. Sample quantities should be determined based upon the following:

- 8.8.1 Type of analyses required
- 8.8.2 Number of analyses requested
- 8.8.3 Detection sensitivity required of analytical result
- 8.8.4 Estimated activity level of material
- 8.8.5 Consult with the analytical laboratory, and the responsible radiological engineer, prior to collecting the sample, for specific instructions on taking any other sample types.
- 8.8.6 Ensure that the sampling equipment which makes contact with the media is free from radioactive material contamination. Perform a loose surface activity survey of the sampling equipment if necessary. Document the results on the survey map corresponding to the sample.
- 8.8.7 Remove material to be sampled by using the tools required and contamination control techniques to prevent loss of material from the sampled area.
- 8.8.8 Assign a unique number to the sample. The unique sample number shall identify the media sampled, the location, and the number as appropriate. Label the sample container with the sample numbers using a permanent marker.

- 8.8.9 Clean all sampling tools before proceeding to the next sampling location.
- 8.9 Sample Equipment Decontamination
 - 8.9.1 Sample equipment must be clean before use. Used sample equipment must be decontaminated before a sample is taken to prevent cross contamination between samples. Perform the following steps, in order, to properly decontaminate sampling equipment.
 - 8.9.1.1 Remove loose debris from the subject sampling equipment.
 - 8.9.1.2 Wash the sample equipment with an inert detergent solution such as Alconox or the equivalent.
 - 8.9.1.3 Rinse the sample equipment several times with distilled water.
 - 8.9.1.4 Allow the sample equipment to dry prior to use. Perform a loose surface activity survey of the sampling equipment if necessary. Document the results on the survey map corresponding to the sample.
 - 8.9.1.5 Collect the rinsate in a drum or authorized container. Label the drum or container "Rinsate-Awaiting Sampling Results" and "Possible Internal Contamination".
- 8.10 Sample Packing and Shipping
 - 8.10.1 Sample Labeling Instructions
 - 8.10.1.1.1 Place self-adhesive labels on appropriate sample containers.
 - 8.10.1.2 Record sample identification, date, and time of sample collection on label.
 - 8.10.1.3 If sample containers contain water (e.g., preserved with ice) place clear plastic tape around the label.
 - 8.10.1.4 Collect sample as per appropriate section of this procedure.
 - 8.10.1.5 If necessary, wipe the outside of the sample container to decontaminate prior to packing.

8.11 Packaging and Shipping

8.11.1 Prepare coolers for shipment as follows:

- 8.11.1.1 Tape container openings such as box seams and cooler drains (when used) shut.
- 8.11.1.2 Affix "This Side Up" labels on all four sides, and "Fragile" labels on at least two (2) sides of each shipping container.
- 8.11.1.3 Place mailing label with laboratory address on the top of container(s).
- 8.11.1.4 Fill bottom of container(s) with about three inches of absorbent material (e.g.,Vermiculite) or use preformed poly-foam liner or an equivalent and authorized packing material.
- 8.11.2 Arrange decontaminated sample containers in groups by sample number.
- 8.11.3 Arrange samples in shipping containers so that they do not touch and the potential for motion is minimized.
- 8.11.4 If ice is required to preserve the samples, cubes should be repackaged in double zipper locking bags and placed on and around the sample containers.
- 8.11.5 Fill remaining spaces with absorbent material.
- 8.11.6 Sign chain-of-custody form (or obtain signature) and indicate air bill number if applicable.
- 8.11.7 Separate copies of forms. Seal proper copies in large zipper lock plastic bags and tape to the inside of the appropriate container top or lid as necessary.
- 8.11.8 If a cooler serves as the shipping container, close the lid and secure latch.
- 8.11.9 Tape the container shut on both ends, making several complete revolutions with strapping tape.
- 8.11.10 Relinquish samples to the shipper.
- 8.11.11 Sample collection and shipment documentation is kept for the project file.

8.12 Shipment of Samples

Shipments of samples containing potentially hazardous or radioactive materials may require specific packaging and shipping precautions not specified above. Consult the RSO or duly authorized representative, the analytical laboratory, or other pertinent resources for instruction when shipping these samples.

- **NOTE:** Do not exceed load rating for containers when shipping samples to prevent degradation of the container during shipping.
- **CAUTION:** Samples should be contained within an outer protective cover to prevent cross-contamination of samples.

9.0 QUALITY ASSURANCE/RECORDS

- 9.1 Quality Assurance
 - 9.1.1 Instruments used for measurements required by this procedure shall be checked with standards and verified to have current calibration.
 - 9.1.2 Surveillance of this procedure (in use) shall be performed at least annually to verify that operations are within the guidelines of this procedure. Any time this procedure is in effect, the PM should ensure by personal observation that samples are collected and controlled appropriately.

9.2 Records

- 9.2.1 Documented information shall be legible written in ink.
- 9.2.2 Data shall not be obliterated by erasing or using white-out. Incorrect entries shall be corrected by striking a single line across the entry. The correction shall be entered, initialed and dated.
- 9.2.3 The HPT shall ensure that the attachments are of the most current.
- 9.2.4 The HPT shall review completed attachment forms for accuracy and completeness.
- 9.2.5 Entries on forms must be dated and initialed by the HPT to be valid.
- 9.2.6 The RSO or duly authorized representative shall review any applicable completed forms. The review shall be for accuracy and completeness.

Revision 0 Volumetric and Material Sampling

10.0 ATTACHMENTS

OP-005-01 Sample Status Log

OP-005-01

Sample Status Log

Project/Location:_____

Sample ID #	Sampling Location	Date and Time Sample Was Obtained	Requested Analysis	Technician Initial s	Sample Status
	<u> </u>) 	 		
				<u>}</u>	
				+	<u> </u>
					<u>}</u>
				 	

Reviewed By:

Name

Title

Date

Radiation Safety Procedure

For

Operation of Contamination Survey Meters

OP-020

Revision 0

Reviewed By: Radiological Safety Engineer David Watters. Approved By

Date: 1/24/00

Date: 1/24/00

ven Masciulli CHP, CSP, Radiation Safety Officer

Approved By: rist CHP, P.E., Corporate Health Physicist

Date: 1/24/00

1.0 PURPOSE

This procedure provides the methods for operating alpha/beta survey meters when performing contamination surveys. Adherence to this procedure will provide reasonable assurance that the surveys performed have reproducible results.

2.0 APPLICABILTY

This procedure will be used by Cabrera Services, Inc. (CABRERA) personnel to measure fixed and removable alpha and/or beta emitting radioactive material on facility surfaces, equipment, waste packages, personnel, personnel protective clothing, etc.

3.0 PRECAUTIONS, LIMITATIONS, AND REQUIREMENTS

- 3.1 Precautions
 - 3.1.1 Ensure that the thin Mylar or mica window on the probe face is protected from punctures during survey operations.
 - 3.1.2 If any instrument inconsistencies are observed (e.g., unusually high or low background readings, source checks outside the acceptable range, etc.), remove the instrument from use, label it "OUT OF SERVICE" and report the condition to the Radiation Safety Officer (RSO) or duly authorized representative.
- 3.2 Limitations

None

- 3.3 Requirements
 - 3.3.1 Calibration sources shall be traceable to the National Institutes of Science and Technology (NIST).
 - 3.3.2 A battery check, general observation of instrument condition and source check shall be performed each day before instrument use and daily following work activities as a final verification.
 - 3.3.3 Survey instrument calibrations shall be performed by an NRC or Agreement State licensed calibration facility.

4.0 REFERENCES

- RSP Radiation Safety Program
- AP-001 Record Retention
- OP-001 Radiological Surveys
- OP-009
 Use and Control of Radioactive Check Sources

5.0 DEFINITIONS AND ABBREVIATIONS

- 5.1 Restricted Area An area containing radioactive material(s) to which access is controlled to protect individuals from exposure to ionizing radiation.
- 5.2 Alpha/Beta Contamination Survey A survey technique to determine fixed and removable alpha/beta contamination.
- 5.3 Acceptance Range A range of values that describe an acceptable daily instrument source check result.

6.0 EQUIPMENT

- 6.1 For Alpha Surveys Ludium Model 43-5 probe and Ludium Model 3 survey meter or equivalent meter/probe combination.
- 6.2 For Beta Surveys Ludium Model 44-9 probe and Ludium Model 3 survey meter or equivalent meter/probe combination.

7.0 RESPONSIBILITIES

- 7.1 Project Manager (PM) the PM is responsible for ensuring that personnel assigned the task of operating contamination survey meters are familiar with this procedure, adequately trained in the use of this procedure, and have access to a copy of this procedure.
- 7.2 Radiation safety Officer (RSO) The RSO is responsible for verifying that personnel comply with this procedure and are trained in the use of contamination survey meters described in this procedure.
- 7.3 Radiological Field Supervisor (RFS) During field assignments, the RFS is responsible for ensuring that this procedure is implemented. When the RSO is not on site, the RFS will act as the RSO's duly authorized representative for radiological issues.
- 7.4 Health Physics Technicians (HPT) The HPT operating contamination survey meters are responsible for knowing and complying with this procedure.

8.0 OPERATION

- 8.1 Instrument Inspection
 - 8.1.1 Select the contamination survey meter and probe to be used in the survey.
 - 8.1.2 Before each use, perform the following checks:
 - 8.1.2.1 Verify the instrument has a current calibration label.
 - 8.1.2.2 Visually inspect the instrument for physical damage or defects.
 - 8.1.2.3 Position the meter switch to "BAT". Check to see that the needle falls within the "Bat Test" checkband.
 - If the needle falls below the "Bat Test" checkband, install new battery(s).
 - If the needle still falls outside the "Bat Test" checkband after the installation of new battery(s), tag the instrument "Out of Service" and notify the RSO or duly authorized representative.
 - 8.1.2.4 Check alpha detectors for light leaks by pointing the mylar window of the detector toward a light source and observing no change in the meter indication.
 - 8.1.3 Remove and tag the instrument "Out of Service" if it fails any of the criteria in Step 8.1.2.1 through 8.1.2.44 and notify the RSO or duly authorized representative.
- **NOTE:** Any defects, damages or other physical abnormalities require that the instrument be removed from service and the RSO or duly authorized representative be notified.
 - 8.2 Pre-operation of instrument
 - 8.2.1 Position the meter fast/slow ("F/S") switch to "S".
 - 8.2.2 Position the meter switch to the appropriate range scale.
 - 8.2.3 Obtain an OP-020-01 Form.
 - 8.2.4 If a Quality Control (Q.C.) acceptance range has not already been calculated on the OP-020-01 Form, then follow the instructions below, other wise proceed to step 8.2.5.

	Revision	0		Operation of Contamination Survey Meters
\smile			8.2.4.1	Ensure the source and detector are in documented reproducible positions, which will be used each time this check is performed. Document this position on Form OP-020-01.
		8.2.5		e QC check source and detector in the documented position oP-020-01.
		8.2.6	Compar 020-01. range, t	e instrument reading to stabilize (approximately 30 seconds). re the reading to the response check criteria on Form OP- If the response reading falls outside of the acceptance ag the instrument "Out of Service" and notify the RSO or duly red representative.
	8.3	Conta	mination	Survey Techniques
	Caution	m m w	g/cm²) al g/cm² mi hich have	w area of alpha detectors are covered with a very thin (1 luminized Mylar window and beta detector windows are 1.7 ca. Either window can be easily when surveying areas, e protruding fragments that might puncture the detector face. hese fragments before performing surveys.
\smile	Note:	he su 1/ in	eld at the urveying. 2 inch fro	n the calibrated detection efficiency, the detector must be appropriate height, determined during calibration, when For example, if a beta probe's efficiency was calculated at om the calibration source, the detector must be held at 1/2 he surface being surveyed to maintain calibrated detection
	Note:			acting the detector probe to the area being surveyed. This could contaminate the probe.
		8.3.1	Verify th	e instrument selector switch is in the X 0.1 position.
		8.3.2	measure indicatio	ationary reading, place the detector over the area to be ed and allow meter to stabilize. Record the average meter on in either CPM α /PA (probe area) or CPM β /PA on ole forms.
		8.3.3	than one increase stationa	an survey move the detector slowly over the surface (less e detector width per second). Observe meter indication. If ed readings are observed return to the area and obtain a ry reading. Record maximum area meter indication in either PA or CPM β /PA, on applicable forms.
	8.4	Final	Verificatio	on
		Upon	completio	on of work activities, repeat steps 8.1.2.1 through 8.2.2.4 and

8.2.5 through 8.2.6, as a final verification that the instrument is working properly

8.5 Interpretation of Results

The meter reading on the alpha and beta survey meters must be corrected for detector efficiency and detector surface area before comparing results with the contamination units in Section 3.6 of the Radiation Safety Program. The conversion from CPM α /PA or CPM β /PA to DPM α /100 cm² or β /100 cm² is performed using the following equation.

$$(DPM / 100 \text{ cm}^2) = \frac{(AxB)}{C}$$

- Where: $A = Alpha \text{ or Beta survey meter indication in net CPM } \alpha/PA \text{ or } \beta/PA$ (i.e. Gross Alpha or Beta Survey Counts minus background counts = Net CPM/PA)
 - $B = 100 \text{ cm}^2 \text{ divided by the effective detector surface area in cm}^2.$ With an effective surface area of 50 cm² for the Ludlum 43-5 alpha detector, the value of B is approximately 2 or for the 15 cm² for the Ludlum 44-9 beta detector, the value of B is approximately 6.7.
 - C = Detector efficiency (expressed as decimal).

9.0 QUALITY ASSURANCE/RECORDS

- 9.1 Quality Assurance
 - 9.1.1 The health physics technician performing the survey shall ensure that this procedure is the most current and approved revision.
- 9.2 Records
 - 9.2.1 Documented information shall be legibly written in ink.
 - 9.2.2 Data shall not be obliterated by erasing, using white-out, or by any other means. Incorrect entries shall be corrected by striking a single line across the entry. The correction shall be entered, initialed, and dated.
 - 9.2.3 The HPT performing the survey shall review Form OP-020-01 and any other applicable forms for accuracy and completeness.
 - 9.2.4 Entries on Form OP-020-01 and any other pertinent forms must be dated and initialed by the HPT performing the survey to be valid.

9.2.5 The RSO or duly authorized representative shall review any applicable completed forms. The review shall be for accuracy and completeness.

10.0 ATTACHMENTS

OP-020-01 Survey Meter Source Check

·~___

Revision 0 Operation of Contamination Survey Meters

Survey Meter Source Check Form

				Serial N	No.:				
Source:			table Bonde 10						
Source	Date	Cal Due	Reading	H.P. Technician	H.P. Technician Initial				
			-						

Review By: _____

Date: _____

Radiation Safety Procedure

For

Alpha – Beta Counting Instrumentation

OP-021

Revision 0

Vato Date: 1/44/00 Reviewed By: Radiological Safety Engineer David

Approved By;

Date: 1/24/00

Steven Masciulli CHP, CSP, Radiation Safety Officer

Approved By: Date: 1/24/00 rist CHP, P.E., Corporate Health Physicist

1.0 PURPOSE

This procedure provides instruction on the operation and setup of an alpha/beta sample counter. Adherence to this procedure will provide reasonable assurance that the surveys performed have reproducible results.

2.0 APPLICABILITY

This procedure will be used by Cabrera Services, Inc., (CABRERA) personnel operating an alpha/beta sample counter during surveys. Types of surveys that may use an alpha/beta sample counter are:

- Smear surveys performed to determine the removal of alpha and beta contamination on facility surfaces, equipment, waste, and source packages, etc.
- Air sample surveys performed in a workers breathing zone to determine alpha and beta air concentrations.

3.0 PRECAUTIONS, LIMITATIONS, AND REQUIREMENTS

- 3.1 Precautions
 - 3.1.1 If any instrument inconsistencies are observed (e.g., unusually high or low background counts, source checks outside the tolerance range, etc.), remove the instrument from use and report the condition to the RSO or duly authorized representative.
 - 3.1.2 Individuals performing work with an alpha/beta counter shall be familiar with the requirements set forth in the current and approved version of this procedure.

3.2 Limitations

3.2.1 This instrument should be set up for use in low background area as determined by the RSO or duly authorized representative.

3.3 Requirements

- 3.3.1 Calibration sources shall be traceable to the National Institutes of Science and Technology (NIST).
- 3.3.2 Survey instrument calibrations shall be performed by an NRC or Agreement State licensed calibration facility.

3.3.3 A battery check, general observation of instrument condition and source check shall be performed each day before instrument use and daily following work activities as a final verification.

4.0 REFERENCES

- RSP Radiation Safety Program
- AP-005 ALARA Program
- AP-001 Record Retention
- AP-013 Packaging Radioactive Material
- OP-001 Radiological Surveys
- NUREG-1556 Consolidated Guidance About Material Licenses (Vol.11)

5.0 DEFINITIONS AND ABBREVIATIONS

- 5.1 Restricted Area An area to which access is controlled to protect individuals against undue risks from exposure to radiation and radioactive materials.
- 5.2 Smear sample survey a technique using a two-inch diameter filter papers to determine removable contamination of alpha and/or beta emitting radioactive material.
- 5.3 Air sample survey a technique in which particulates are collected from a known volume of air drawn through a filter paper and concentrations of airborne alpha and beta activity associated with the particulates is determined by sample counting.
- 5.4 Plateau portion of a voltage curve where changes in operating voltage introduce minimum changes in the counting rate.
- 5.5 Chi-square test A statistical test to evaluate the operation of a sample counter by determining how data fit a series of counts to a Poisson distribution.
- 5.6 Daily calibration A determination of alpha and beta sample counting efficiency by counting National Institute of Standard Technologies (NIST) radioactive standards.

6.0 EQUIPMENT

Ludlum model 2929 or equivalent

7.0 RESPONSIBILITIES

- 7.1 Project Manager (PM) the PM is responsible for ensuring that personnel assigned the task of operating alpha/beta sample counters are familiar with this procedure, adequately trained in the use of this procedure, and have access to a copy of this procedure.
- 7.2 Radiation Safety Officer (RSO) The RSO is responsible for verifying that personnel comply with this procedure and are trained in the use of alpha/beta sample counters described in this procedure.
- 7.3 Radiological Field Supervisor (RFS) During field assignments, the RFS is responsible for ensuring that this procedure is implemented. When the RSO is not on site, the RFS will act as the RSO's duly authorized representative for radiological issues.
- 7.4 Health Physics Technicians (HPT) The HPT using alpha/beta sample counters are responsible for knowing and complying with this procedure.

8.0 OPERATION

- 8.1 Instrument Inspection
 - 8.1.1 Before each use, perform the following checks:
 - 8.1.1.1 Verify the instrument has a current calibration label.
 - 8.1.1.2 Visually inspect the instrument for physical damage or defects.
 - 8.1.2 Remove and tag the instrument "Out of Service" if it fails any of the criteria in Step 8.1.1.1 through 8.1.1.2 and notify the RSO or his duly authorized representative.
- **NOTE:** Any defects, damages or other physical abnormalities require that the instrument be removed from service and the RSO or his duly authorized representative be notified.
 - 8.2 Initial Startup.
 - 8.2.1 Turn high voltage potentiometer to its lowest position (fully counterclockwise).
 - 8.2.2 Turn instrument on.

- 8.2.3 The operator can select one of four operational procedures depending on the function to be performed. Before performing any of the following complete steps 8.1.1 to 8.1.2.
 - a) Plateau Curve The Plateau Curve is used to find the proper operating voltage of the instrument and will be performed at the discretion of the RSO or duly authorized representative. This test shall be documented on the attached Form OP-021-01 or equivalent.
 - b) Chi-square Test The Chi-Square Test will be performed at the discretion of the RSO or duly authorized representative in order to test the operational adequacy of the instrument and will be recorded on Form OP-021-02. This test statistically evaluates the sample counter against a poisson distribution.
 - c) Daily Calibration Check This portion of the procedure is performed before samples are counted on any day the instrument is in use.
- 8.3 Plateau Curve
- **NOTE:** Before beginning, record the previous calibration high voltage values.
 - 8.3.1 Set up the instrument in a low background area.
 - 8.3.2 Rotate the high voltage potentiometer slowly clockwise until the meter indicates proper voltage. This proper voltage is approximately 500 volts.
 - 8.3.3 Set time multiplier switch to "x1."
 - 8.3.4 Set the instrument-preset timer to one (1) minute.
 - 8.3.5 Insert an alpha calibration standard into the center of the sample tray, slide the sample tray under the detector and depress the "COUNT" button to obtain a one minute count.
 - 8.3.6 Upon completion of the count, record high voltage reading and digital counts appearing in the instrument alpha display in the indicated columns on Form OP-021-01(Plateau Data Sheet)
 - 8.3.7 Continue increasing high voltage by 50-volt increments, as described above, obtaining counts and recording data until the end of the plateau is reached. If rapid increase in count rate is observed, proceed to step 8.3.8. If not, notify the RSO or duly authorized representative.

- 8.3.8 Remove the alpha source and replace with a beta source.
- 8.3.9 Reduce high voltage reading to the voltage level chosen during Step 8.3.2 by turning potentiometer counterclockwise.
- 8.3.10 Perform one-minute counts at 50-volt increments and record the data on Form OP-020-01, until the end of the plateau is reached. If a rapid increase in count rate is observed reduce the high voltage.
- 8.3.11 Using linear graph paper or equivalent plotting system, plot alpha and beta counts on the "Y" axis and the voltage for the indicated count on the "X" axis.
- 8.3.12 Select an operating voltage 1/3 the distance beyond the knee of the plateau curve by marking the voltage on the graph and on the plateau data sheet.
- 8.3.13 Sign and date Form OP-021-01 and forward the results along with any graphs produced to the RSO or duly authorized representative for review.
- 8.4 Chi-Square Test
 - 8.4.1 Set up the Instrument in a low background area.
 - 8.4.2 Ensure the high voltage potentiometer is positioned according to the posted instrument label. Adjust if necessary.
 - 8.4.3 Set the time multiplier switch to "x1".
 - 8.4.4 Set the instrument-preset timer to one (1) minute.
 - 8.4.5 Insert the alpha calibration standard into center of the sample tray, slide the sample tray under the detector and depress the "COUNT" button to obtain a one minute count.
 - 8.4.6 Upon completion of the count, record digital counts appearing in the alpha display in the "X_i" column on Form OP-021-02 (Chi -Square Data Sheet).
 - 8.4.7 Repeat counting sequence without changing settings until a total of 20 counts have been taken and recorded in the "X_i" column on Form OP-021-02.
 - 8.4.8 Add the 20 counts recorded in the "X_i" column and record in the "Sum" column. Then divide by 20 to obtain the mean number of counts (X_m) and record on the line "X_m".

- 8.4.9 Calculate the individual count "X_i" difference from the mean (X_m) value and record in the "(X_i-X_m)" column on Form OP-021-02 for all 20 values.
- 8.4.10 Calculate $(X_i-X_m)^2$, sum the " $(X_i-X_m)^2$ " column, and record on Form OP-020-02.
- 8.4.11 Calculate the value of Chi- Square using the following formula.

$$X^2 = \frac{\sum (X_i - X_m)^2}{X_m}$$

- 8.4.12 The value of Chi-square should be between 8.91 and 32.8 (represents a probability between 0.025 and 0.975). Record this value at "X²". If the Chi-square value falls outside this range, contact the RSO or duly authorized representative for further instructions.
- 8.4.13 Sign and date Form OP-021-02 and forward the results to the RSO or duly authorized representative for review.
- 8.5 Daily Calibration Check
 - 8.5.1 Ensure the high voltage potentiometer is positioned according to the posted instrument label. Adjust, slowly, if necessary.
 - 8.5.2 Set time multiplier switch to "x1".
 - 8.5.3 Set the instrument-preset timer to five (5) minutes.
 - 8.5.4 Record the source type to be used and corresponding serial number on the proper line indicated on Form OP-021-03. Use separate rows of the form for each source efficiency to be calculated.
 - 8.5.5 Insert a blank sample into the center of the sample tray, slide the sample tray under the detector and depress the "COUNT" button to obtain a five minute background count.
 - 8.5.6 Calculate and record the background total counts and count rate in the columns labeled "Total Counts" and "BKG CPM" respectively, under Background Information on Form OP-021-03. The background count rate in CPM (counts per minute) can be calculated as follows:

 $CPM = \frac{Total Counts}{Total Time}$

Revision 0	Alpha-Beta Counting Instrumentation
	8.5.7 Remove the blank sample and insert the alpha or beta calibration standard into the center of the sample tray, slide the sample tray under the detector and depress the "COUNT" button to obtain a five minute count.
	8.5.8 Upon completion of the measurement, calculate and record the tota counts and count rate in the columns labeled "Total Counts" and "CPM" respectively, under Source Information on Form OP-021-03 The count rate (CPM) can be calculated as listed in Step 8.5.6.
	8.5.9 Calculate Net Source CPM as below and record on Form OP-021- under "Net CPM".
	Net Source CPM = CPM – BKG CPM
NOTE:	Obtain activity (DPM) value from the source certification paperwork. Decay correct activity, if needed.
	8.5.10 Use the source disintegration per minute (DPM) to calculate the efficiency as shown below and record as a decimal on Form OP-02 03.
	% Efficiency = $\frac{Net Source CPM}{DPM}$ *100
	 8.5.11 To calculate the efficiency for the next source, remove the current source standard, insert a new source standard and repeat steps 8.5.1 through 8.5.10, as necessary.
	8.5.12 Remove calibration standards and place in source holders.
	8.5.13 Generate a control chart tracking the daily efficiencies and notify the RSO or duly authorized representative if any point falls outside of variance.
	NOTE: For the first day on control chart use five data points to begin tren line.
9.0 QUA	LITY ASSURANCE/RECORDS
9.1	Quality Assurance
	9.1.1 The alpha/beta sample counter will be checked for proper calibrati daily with a NIST traceable source when in use.
	9.1.2 Chi-square and plateau tests are verified and noted as currently

- 9.1.3 The HPT shall ensure that the attachments are of the most current.
- 9.2 Records
 - 9.2.1 Documented information shall be legible written in ink.
 - 9.2.2 Data shall not be obliterated by erasing or using white-out. Incorrect entries shall be corrected by striking a single line across the entry. The correction shall be entered, initialed and dated.
 - 9.2.3 The HPT shall review completed attachment forms for accuracy and completeness.
 - 9.2.4 Entries on forms must be dated and initialed by the HPT to be valid.
 - 9.2.5 The RSO or duly authorized representative shall review any applicable completed forms. The review shall be for accuracy and completeness.

10.0 ATTACHMENTS

- OP-021-01 Plateau Data Sheet
- OP-021-02
 Chi–Square Data Sheet
- OP-021-03 Daily Calibration Check

Revision 0 Alpha-Beta Counting Instrumentation

OP-021-01

Plateau Data Sheet

Date:_____ Recommended Operating Voltage:_____

Instrument:_____ Serial Number:_____

Alpha Source Serial No._____ Activity (dpm)_____

Beta Source Serial No._____ Activity (dpm)_____

Voltage Setting	Alpha Counts	Voltage Setting	Alpha Counts	Voltage Setting	Beta Counts	Voltage Setting	Beta Counts
	 				1	 	
						l 	

Prepared By:		Date:
	Print/Sign	
Reviewed By:		Date:
	Print/Sign	

Alpha-Beta Counting Instrumentation

OP-021-02

Chi-Square Data Sheet

		Serial Number:X ²				
Alpha Source No./Activity:_		Beta Source No./Activity:				
Count Number	Xi	(X _i -X _m)	(X _i -X _m) ²			
1			_			
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
Sum						
Xm						

OP-021-02	Cabrera Services, Inc.		Page10 of 11
	Print/Sign		
Reviewed By:		Date:	
	Print/Sign		
ricparcu by.			

Revision 0 Alpha-Beta Counting Instrumentation

OP-021-03

Daily Calibration Check

Instrument_____Serial No._____

Alpha Source No./Activity______ Beta Source No./Activity_____

Background Information					Sour	Source Information			
Date/Time	Total Time	Total Counts	BKG CPM	Total Time	Total Counts	CPM	Net CPM	% Eff.	
								+	
Prepared By	:		Deint	/Sign		_ Date: _			
-									
Reviewed By	/:		Print	/Sign		Date: _			
				-					
OP-021-04			Cabrer	a Services	, Inc.		Page	e 11 of 11	

Radiation Safety Procedure

For

Operation of Micro-R Meters

OP-023

Revision 0

Date: ____/dy/00 **Reviewed By:** David Watters, Rediological Safety Engineer Date: 1/24/00 Approved Byz Steven Masciulli CHP, CSP, Radiation Safety Officer Date: 1/24/00 Approved By: Corporate Health Physicist Henry Siegrist CHP, P.E.

1.0 PURPOSE

The purpose of this procedure is to provide instruction for the operation of the micro-R meter for gamma radiation surveys. Adherence to this procedure will provide reasonable assurance that the radiological surveys performed have reproducible results.

2.0 APPLICABILITY

This procedure will be used by Cabrera Services, Inc. (CABRERA) personnel operating the micro-R meter during gamma radiation surveys. The micro-R meter is used to determine gamma radiation levels from facility surfaces, equipment, waste and source packages, etc., containing gamma emitting radioactive materials.

3.0 PRECAUTIONS, LIMITATIONS AND REQUIREMENTS

- 3.1 Precautions
 - 3.1.1 Individuals performing work with the micro-R meter shall be familiar with the requirements set forth in the current and approved version of this procedure.
 - 3.1.2 If any instrument inconsistencies are observed (e.g., unusually high or low background readings, source checks outside the acceptable range, etc.), remove the instrument from use, label it "OUT OF SERVICE" and report the condition to the Radiation Safety Officer (RSO) or duly authorized representative.
- 3.2 Limitations

None

- 3.3 Requirements
 - 3.3.1 Calibration sources shall be traceable to the National Institutes of Science and Technology (NIST).
 - 3.3.2 A battery check, general observation of instrument condition and source check shall be performed each day before instrument use and daily following work activities as a final verification.
 - 3.3.3 Survey instrument calibrations shall be performed by an NRC or Agreement State licensed calibration facility.

4.0 REFERENCES

- RSP Radiation Safety Program
- ALARA ALARA Program
- AP-001 Record Retention
- OP-001 Radiological Surveys
- OP-009 Use and Control of Radioactive Check Sources
- OP-020 Operation of Contamination Survey Meters
- NUREG-1556 Consolidated Guidance About Material Licenses (Vol.11)

5.0 DEFINITIONS AND ABBREVIATIONS

- 5.1 Restricted Area An area to which access is controlled to protect individuals against undue risks from exposure to radiation and radioactive materials.
- 5.2 Gamma Radiation Survey A survey technique to determine gamma radiation levels from radioactive material(s) in facilities, materials, landmasses, etc.
- 5.3 Acceptance Range A range of values that describe an acceptable daily instrument source check result.

6.0 EQUIPMENT

Ludlum Model 19 or equivalent

7.0 RESPONSIBILITIES

- 7.1 Project Manager (PM) the PM is responsible for ensuring that personnel assigned the task of operating a micro-R meter is familiar with this procedure, adequately trained in the use of this procedure, and have access to a copy of this procedure.
- 7.2 Radiation safety Officer (RSO) The RSO is responsible for verifying that personnel comply with this procedure and are trained in the operation of a micro-R meter described in this procedure.
- 7.3 Radiological Field Supervisor (RFS) During field assignments, the RFS is responsible for ensuring that this procedure is implemented. When the RSO is not on site, the RFS will act as the RSO's duly authorized representative for radiological issues.
- 7.4 Health Physics Technicians (HPT) The HPT operating the micro-R meter are responsible for knowing and complying with this procedure.

8.0 OPERATION

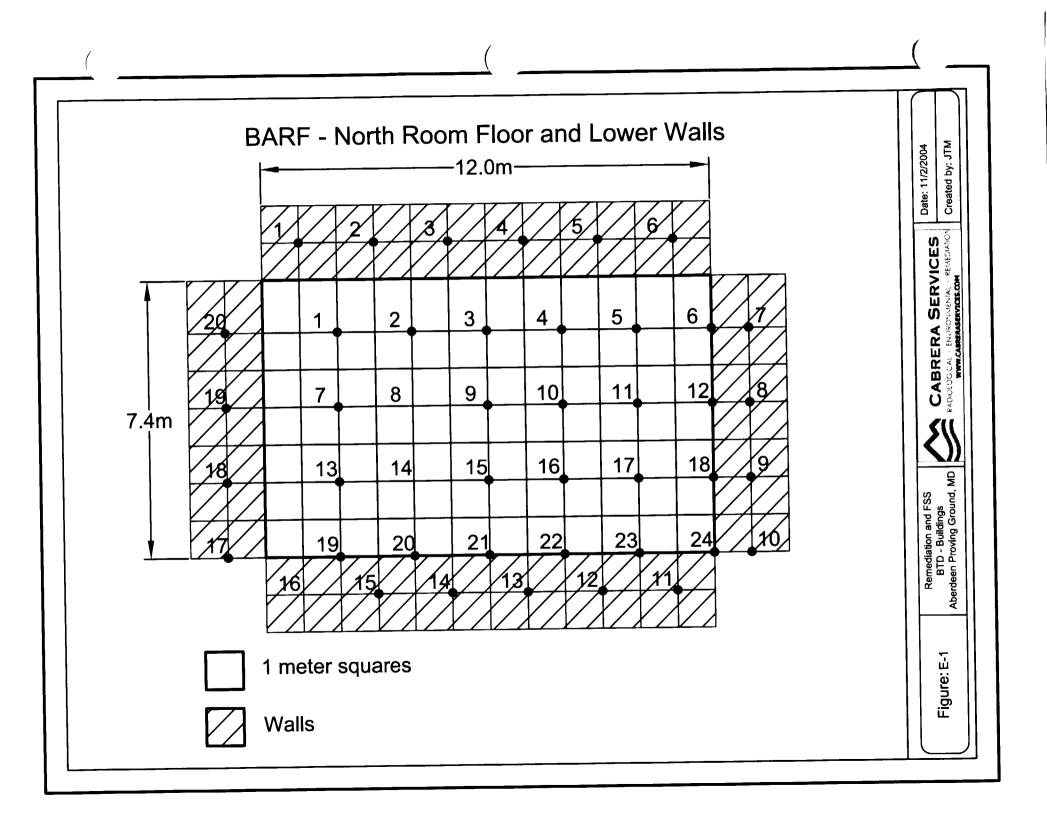
- 8.1 Instrument Inspection
 - 8.1.1 Before each use, perform the following checks:
 - 8.1.1.1 Verify the instrument has a current calibration label.
 - 8.1.1.2 Visually inspect the instrument for physical damage or defects.
 - 8.1.1.3 Position the meter switch to "BAT". Check to see that the needle falls within the "Bat Test" checkband.
 - If the needle falls below the "Bat Test" checkband, install new battery(s).
 - If the needle still falls outside the "Bat Test" checkband after the installation of new battery(s), tag the instrument "Out of Service" and notify the RSO or duly authorized representative.
 - 8.1.2 Remove and tag the instrument "Out of Service" if it fails any of the criteria in Step 8.1.1.1 through 8.1.1.3 and notify the RSO or duly authorized representative.
- **NOTE:** Any defects, damages or other physical abnormalities require that the instrument be removed from service and the RSO or duly authorized representative be notified.
 - 8.2 Pre-operation of instrument
 - 8.2.1 Position the meter fast/slow ("F/S") switch to "S".
 - 8.2.2 Position the meter switch to the appropriate range scale.
 - 8.2.3 If a Quality Control (Q.C.) acceptance range has not already been calculated, then follow the instructions below, other wise proceed to step 8.2.5.
 - 8.2.3.1 Ensure the source and detector are in documented reproducible positions, which will be used each time this check is performed. Document this position on appropriate form.
 - 8.2.4 Place the QC check source and detector in the documented position on appropriate form.

- 8.2.5 Allow the instrument reading to stabilize (approximately 30 seconds). Compare the reading to the response check criteria. If the response reading falls outside of the acceptance range, tag the instrument "Out of Service," and notify the RSO or duly authorized representative.
- 8.3 Operation of the instrument
 - 8.3.1 Grid Surveys
 - 8.3.1.1 Turn the audio switch to the "On" position.
 - 8.3.1.2 Verify the instrument selector switch is on the lowest scale (usually the μR position). Turn the instrument selector switch to the next higher scale only if meter indication is off scale.
 - 8.3.1.3 For a stationary grid reading in a facility or land mass, position the instrument one meter above the surface to be surveyed and allow meter to stabilize. With the instrument toggle switch set in the "SLOW" position, the meter reaches 90% of its final reading in 22 seconds. Record the average meter indication in μ R/hr on appropriate form(s).
- **Note:** Two survey methods (step 8.3.1.4 or 8.3.1.5) can be used to obtain contact readings in the survey grids. The survey method used will be specified in the site specific work plan.
 - 8.3.1.4 For a scan survey, make sure the meter response is set to fast and suspend the instrument from a strap which locates the detector at surface or ground level. Move the instrument slowly over the surface while walking in an "S" pattern unless otherwise instructed by the RSO or duly authorized representative. Areas, which could concentrate radioactive materials such as drainage ditches, floor cracks, and wall/floor joints, should be surveyed. Observe meter indication and listen for increases in audible clicks from the speaker. If elevated readings above background are observed, a stationary survey shall be performed (at one-meter height and at the surface) at the point of elevated activity. Record area meter indications above background in μ R/hr on appropriate form.

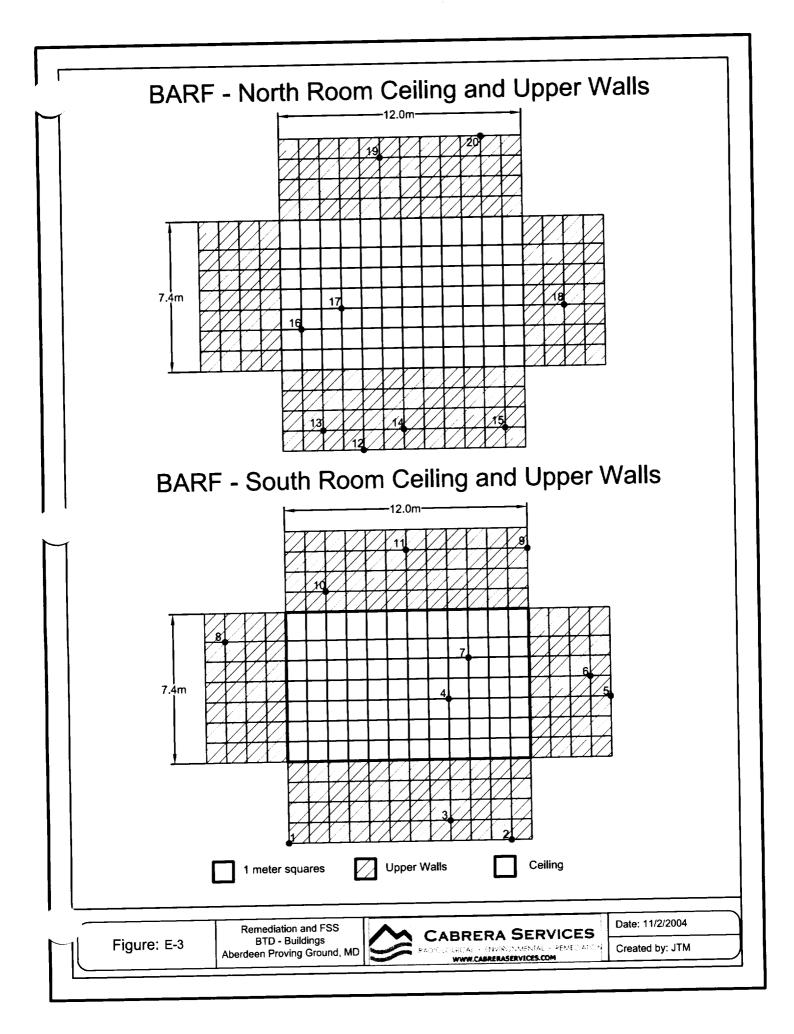
- 8.3.1.5 As an alternate to the "S" pattern survey used in step 8.3.1.4, the survey grid can be divided into subgrids and readings taken as directed by the site work plan. Elevated measurements should be performed in the same manner as above (i.e., at one meter and at the surface). The readings from each measurement are recorded on appropriate form.
- 8.3.2 Waste Container Surveys
 - 8.3.2.1 Set the instrument scale to accommodate the highest expected radiation level. If radiation levels may approach 5000 μ R/hr (5 mR/hr) obtain an instrument with appropriate range before performing any radiation surveillance.
 - 8.3.2.2 Slowly scan the total surface of the package and record the maximum contact reading obtained on appropriate forms.
 - 8.3.2.3 Obtain instrument readings at one meter from all sides of the package and record the maximum reading obtained on appropriate form.
- 8.3.3 Final Verification

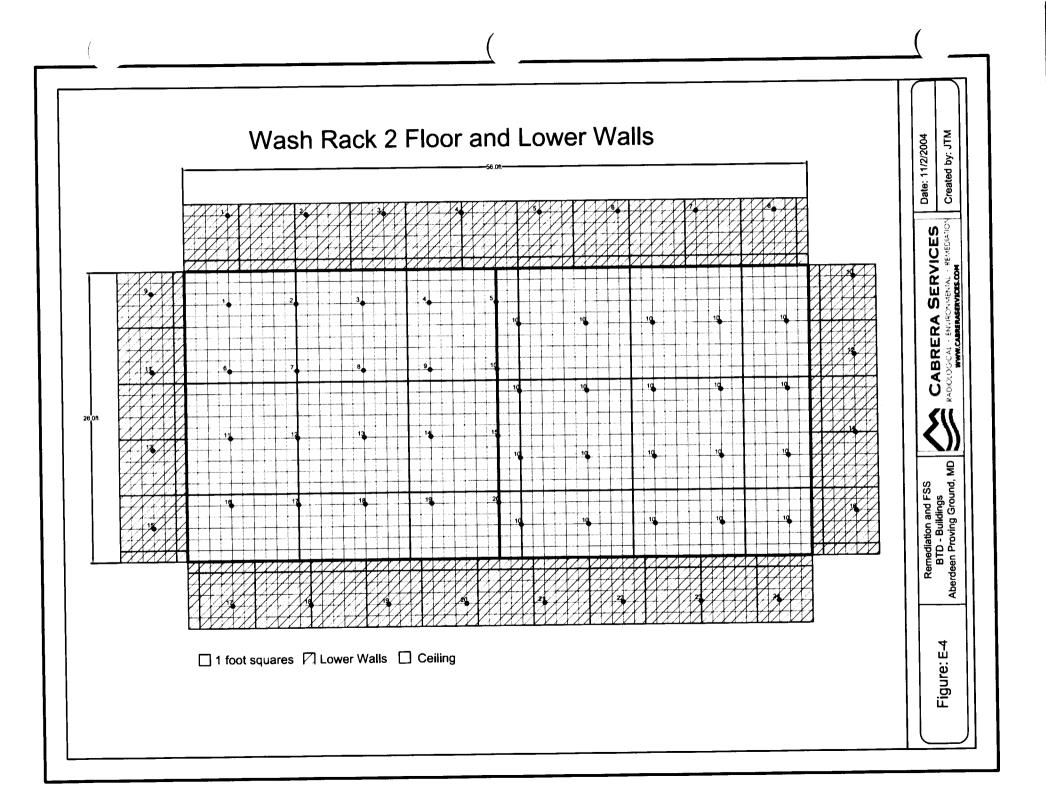
Upon completion of work activities, repeat steps 8.1.1.1 through 8.2.2 and 8.2.4 through 8.2.5, as a final verification that the instrument is working properly

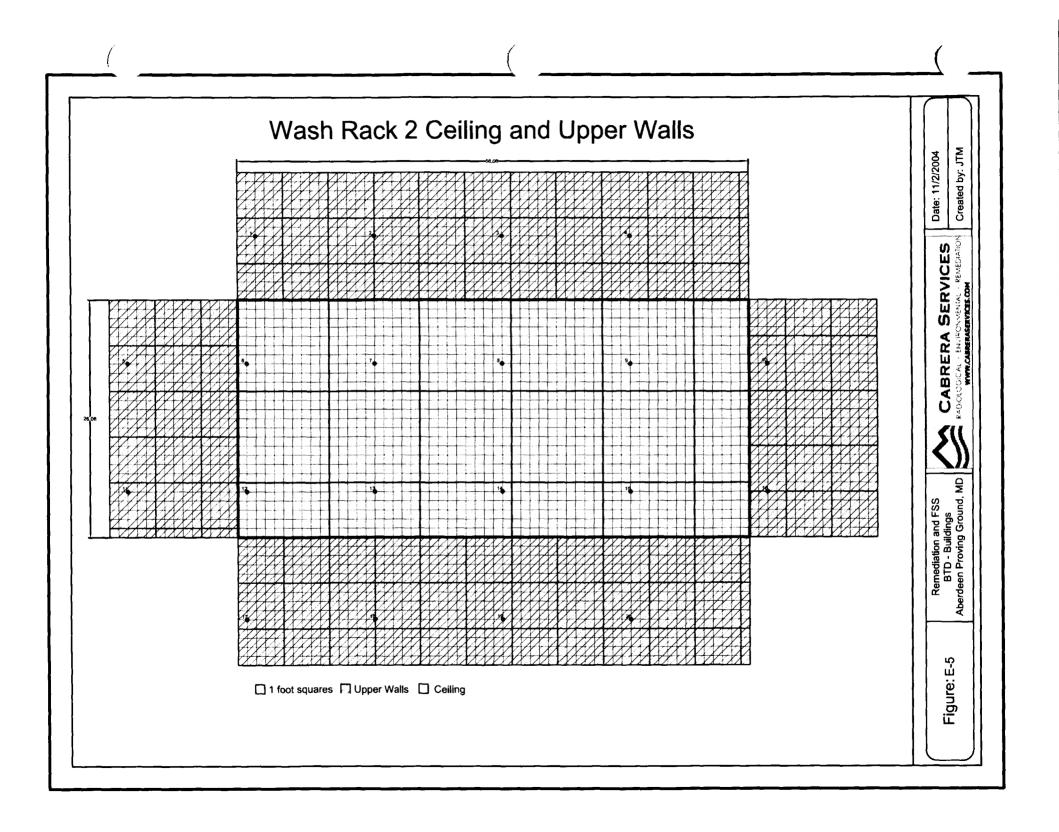
- 8.3.4 Additional Information
 - 8.3.4.1 In a uniform background radiation field (without interfering sources of radiation), methods such as selectively shielding the detector, soil sample analysis, etc., can be used to differentiate between extraneous radioactive sources (e.g., skyshine or radioactive waste shipment containers), naturally occurring radioactive material and/or radioactive contamination.
 - 8.3.4.2 Note the location of installed devices, which contain radioactive material and could cause elevated background radiation levels in localized areas.
 - 8.3.4.3 Land mass surveys might contain areas with naturally occurring radioactive materials, which will elevate background radiation levels.

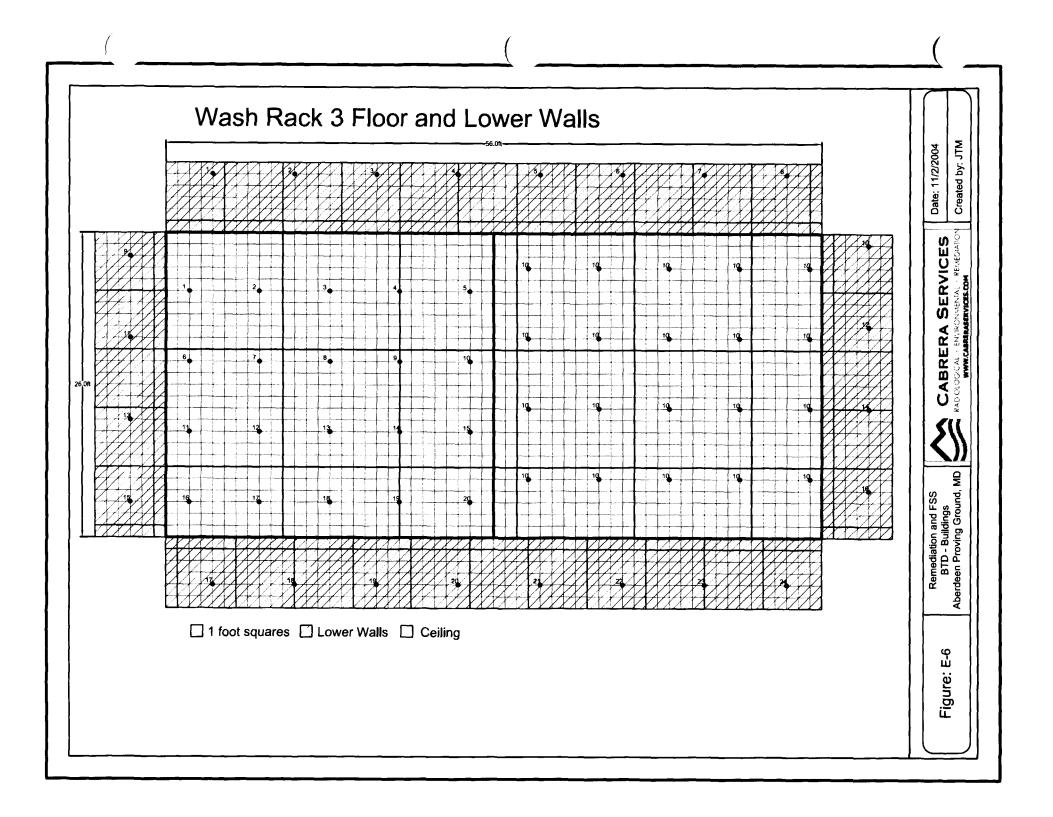

9.0 QUALITY ASSURANCE/RECORDS

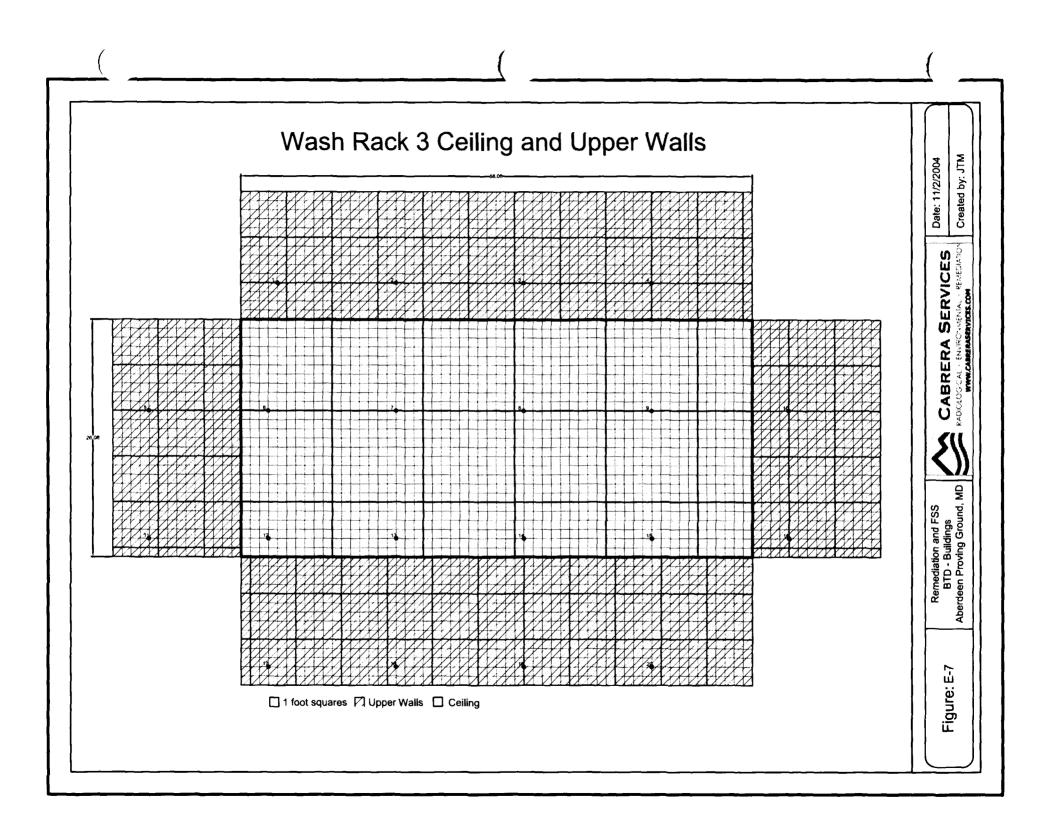
- 9.1 Quality Assurance
 - 9.1.1 The health physics technician performing the survey shall ensure that this procedure is current.
- 9.2 Records
 - 9.2.1 Documented information shall be legibly written in ink.
 - 9.2.2 Data shall not be obliterated by erasing, using white-out, or by any other means. Incorrect entries shall be corrected by striking a single line across the entry. The correction shall be entered, initialed, and dated.
 - 9.2.3 The health physics technician performing the survey shall review appropriate forms and any other applicable forms for accuracy and completeness.
 - 9.2.4 Entries must be dated and initialed by the health physics technician performing the survey to be valid.
 - 9.2.5 The RSO or duly authorized representative shall review any applicable completed forms. The review shall be for accuracy and completeness.

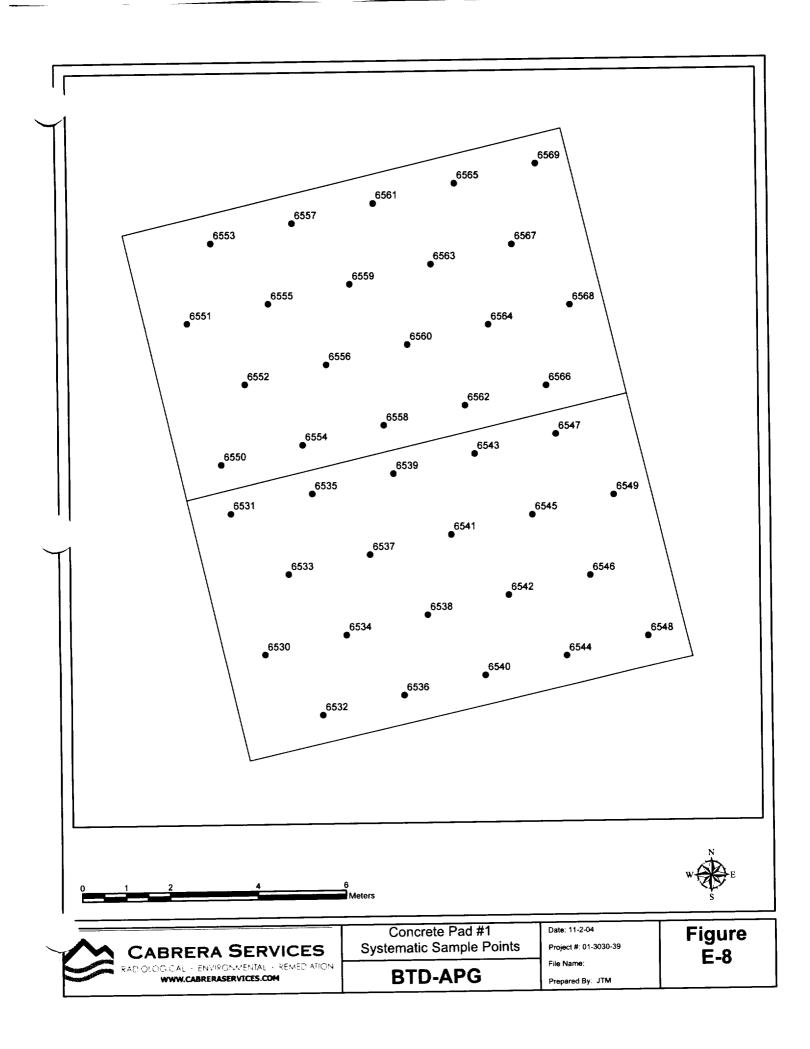

10.0 ATTACHMENTS

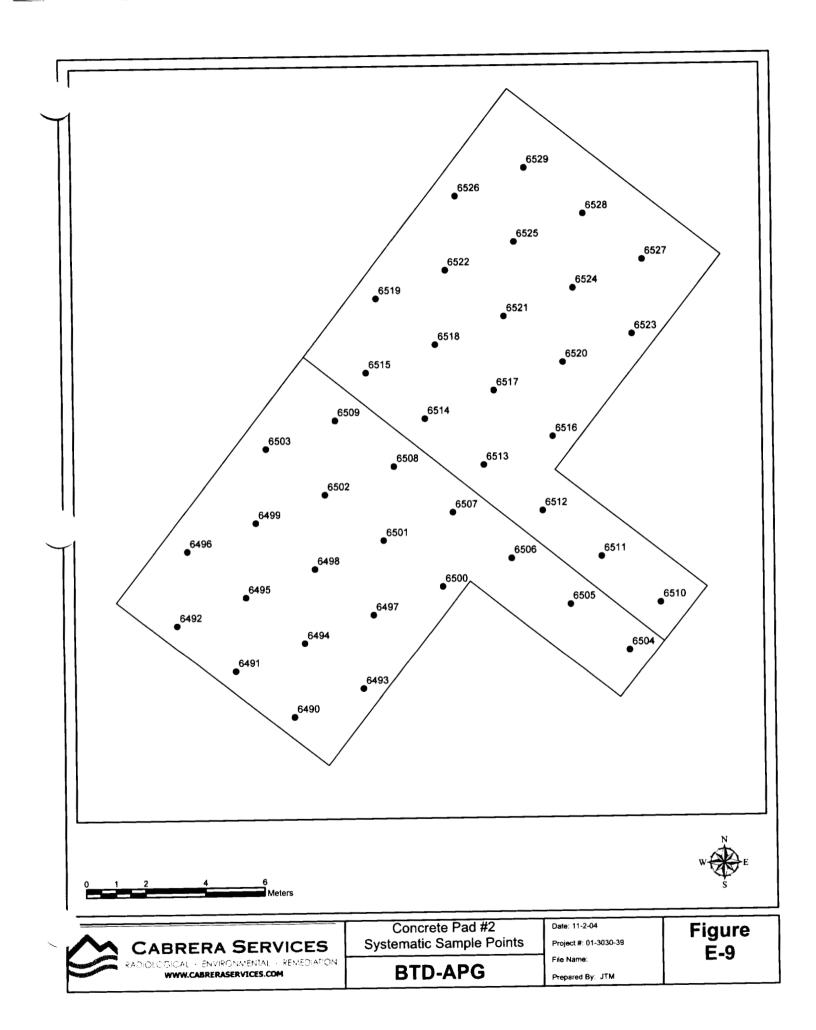

None


Appendix E: Survey Unit Maps and Sample Locations









Appendix F: Daily Instrument/Building Summary

1

Date	Instrument	S/N	Detector	S/N	QC File	Source of Info	Field Activity
5/3/2003	2929	163827	43-10-1	171322	Y	Instrument QC Files	Daily QC/response checks
5/5/2003	2929	163827	43-10-1	171322	Y	Instrument Log	Building Armor Reclamation Facility (BARF) setup
5/5/2003	Model 3	79511	44-9	137499	Y	Instrument Log	BARF setup
5/5/2003	Model 3	89973	44-9	084781	Y	instrument Log	BARF setup
5/5/2003	2224-1	162426	43-93	193921	Y	Instrument Log	BARF setup
5/6/2003	Model 3	89973	44-9	084781	Y	Instrument Log	BARF setup
5/7/2003	Model 3	89973	44-9	084781	Y	Instrument Log	BARF setup
5/7/2003	2360	193675	43-37	161687	Y	Instrument Log	BARF setup; Chi-square counts
5/8/2003	2929	163827	43-10-1	171322	Y	Instrument Log	BARF setup
5/8/2003	Model 3	89973	44-9	084781	Y	Instrument Log	BARF setup
5/8/2003	2360	193675	43-37	161687	Y	Instrument Log	BARF setup
5/8/2003	2224	183048	43-68	161781	Y	Instrument Log	BARF setup
5/9/2003	Model 3	89973	44-9	084781	Y	Instrument Log	BARF setup
5/9/2003	2360	193675	43-37	161687	Y	Instrument Log	BARF setup
5/9/2003	Model 3	79511	44-9	137499	Y	Instrument Log	BARF setup
5/9/2003	2929	163827	43-10-1	171322	Y	Instrument Log	BARF setup
		403807	40.40.4	171322	Y	Instrument Log	BARF static, smears, floors N & S rooms; floor surveys N & S rooms; smears S room and lower 2m of E, S,
5/12/2003	2929	163827	43-10-1	1/1322	1	instrument Log	W wails of S room.
5/12/2003	Model 3	89973	44-9	084781	Y	Instrument QC Files	
5/12/2003	2360	193675	43-37	161687	Y	Instrument Log	BARF static, smears, floors N & S rooms; floor surveys N & S rooms; smears S room and lower 2m of E, S, W walls of S room.
5/12/2003	Micro Rem	C853F	-	-	Y	Instrument QC Files	
5/12/2003		79511	44-9	137499	Y	instrument Log	BARF static, smears, floors N & S rooms; floor surveys N & S rooms; smears S room and lower 2m of E, S, W walls of S room.
5/13/2003	2929	163827	43-10-1	171322	Y	Instrument Log	BARF Finish N room floor survey, static readings on lower 2m of walls S & N rooms; S room lower 2m west wall , half of lower 2m S wall survey complete
5/13/2003	2360	193675	43-37	161687	Y	Instrument Log	BARF Finish N room floor survey, static readings on lower 2m of walls S & N rooms; S room lower 2m west wall , half of lower 2m S wall survey complete
5/13/2003	Model 3	79511	44-9	137499	Y	Instrument QC Files	
5/13/2003		89973	44-9	084781		Instrument QC Files	
5/13/2003		C853F		-	Y	Instrument QC Files	
5/14/2003		163827	43-10-1	171322	Y	Instrument Log	BARF finish S room S, N, E walls lower 2m; plus N room N, E, W wall lower 2m; upper wall /ceiling surveys completed S room
5/14/2003	2360	193675	43-37	161687	Y	Instrument Log	BARF finish S room S, N, E walls lower 2m; plus N room N, E, W wall lower 2m; upper wall /ceiling surveys completed S room
5/14/2003	2224-1	162426	43-93	193921	Y	Instrument Log	BARF finish S room S, N, E walls lower 2m; plus N room N, E, W wall lower 2m; upper wall /ceiling surveys completed S room
5/14/2003	Model 3	89973	44-9	084781	Y	Instrument QC Files	
5/14/2003		C853F	-	-	Ý	Instrument QC Files	
5/15/2003		193675	43-37	161687		Instrument Log	BARF Wash Rack (WR) #2 Survey lower 2m S wall of N room (BARF); upper walls & ceiling of N room (BARF); lower 2m wall (WR#2)
5/15/2003	2224-1	162426	43-93	193921	Y	Instrument QC Files	
5/15/2003		163827	43-93 43-10-1	171322		Instrument Log	BARF WR#2 Survey lower 2m S wall of N room (BARF); upper walls & ceiling of N room (BARF); lower 2m wall (WR#2)
5/15/2003	Model 3	89973	44-9	084781	Y	Instrument QC Files	······································
5/15/2003		C853F	-	-	Ý	Instrument QC Files	
5/19/2003		163827	43-10-1	171322		Instrument Log	Disassemble WR#2
5/19/2003		79511	44-9	137499		Instrument Log	Disassemble WR#2
5/19/2003		162426	43-93	193921		Instrument Log	Disassemble WR#2
5/19/2003		C853F		-	Ŷ	Instrument QC Files	
31 312003		0000					

5/20/2003 2929 163827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/20/2003 Model 3 89373 44-9 084781 Y Instrument Log Disassemble WR#2 5/20/2003 2224-1 182426 43-93 193921 Y Instrument Log Disassemble WR#2 5/20/2003 2224-1 182827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/21/2003 Model 3 89373 44-9 084781 Y Instrument Log Disassemble WR#2 5/21/2003 Model 3 89373 44-9 084781 Y Instrument Log Disassemble WR#2 5/21/2003 Model 3 89373 44-9 084781 Y Instrument Log Disassemble WR#2 5/21/2003 2929 163827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/21/2003 2929 163827 43-10-1 Y Instrument Log Continue disassemble WR#2 5/28/2003 5/28/2003 2924-1 162426 43-93 189494 Ins	Date	Instrument	8/N	Detector	S/N	QC File	Source of Info	Field Activity
5/20/2003 Model 3 79511 44-9 137499 Y Instrument Log Disassemble WR#2 5/20/2003 2224-1 162426 43-93 13921 Y Instrument Log Disassemble WR#2 5/21/2003 2224-1 162426 43-93 13921 Y Instrument Log Disassemble WR#2 5/21/2003 2229 163827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/21/2003 2929 163827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/22/2003 2929 163827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/22/2003 Model 3 98973 44-9 084781 Y Instrument Log Disassemble WR#2 5/22/2003 22241 162426 43-93 193921 Y Instrument Log Disassemble WR#2 5/28/2003 22241 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 193921 Y	5/20/2003	2929	163827	43-10-1	171322	Y	Instrument Log	Disassemble WR#2
6/20/2003 Model 3 89973 44-9 064781 Y Instrument Log Disassemble WR#2 5/20/2003 2224-1 162426 43-93 193921 Y Instrument Log Disassemble WR#2 5/21/2003 Model 3 79511 44-9 137499 Y Instrument Log Disassemble WR#2 5/21/2003 Model 3 89973 44-9 087781 Y Instrument Log Disassemble WR#2 5/21/2003 Model 3 89973 44-9 137499 Y Instrument Log Disassemble WR#2 5/22/2003 2929 163827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/22/2003 2929 163827 43-90 Y Instrument Log Disassemble WR#2 5/22/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 189921 Y Instrument Log Continue disassemble WR#2 <			79511	44-9	137499	Y	Instrument Log	Disassemble WR#2
5/21/2003 2929 163827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/21/2003 Model 3 79511 44-9 137499 Y Instrument Log Disassemble WR#2 5/21/2003 89973 44-9 084781 Y Instrument Log Disassemble WR#2 5/22/2003 Model 3 79511 44-9 137499 Y Instrument Log Disassemble WR#2 5/22/2003 Model 3 89973 44-9 084781 Y Instrument Log Disassemble WR#2 5/22/2003 2224-1 162426 43-83 193921 Y Instrument Log Disassemble WR#2 5/28/2003 Model 3 89973 44-9 084781 Y Instrument Log Continue disassemble WR#2 5/28/2003 Model 3 89971 44-9 084781 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 182403 Y <t< td=""><td>5/20/2003</td><td>Model 3</td><td>89973</td><td>44-9</td><td>084781</td><td>Y</td><td>Instrument Log</td><td>Disassemble WR#2</td></t<>	5/20/2003	Model 3	89973	44-9	084781	Y	Instrument Log	Disassemble WR#2
5/21/2003 Model 3 79511 44-9 137499 Y instrument Log Disassemble WR#2 5/21/2003 2929 163827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/22/2003 Model 3 79511 44-9 084781 Y Instrument Log Disassemble WR#2 5/22/2003 Model 3 79511 44-9 084781 Y Instrument Log Disassemble WR#2 5/22/2003 2224-1 162426 43-83 193921 Y Instrument Log Disassemble WR#2 5/28/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 5/28/2003 2024-1 162426 43-83 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162426 43-93 19			162426	43-93	193921	Y	Instrument Log	Disassemble WR#2
S/21/2003 Model 3 89973 44-9 084781 Y Instrument Log Disassemble WR#2 5/22/2003 2929 163827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/22/2003 Model 3 89973 44-9 084781 Y Instrument Log Disassemble WR#2 5/22/2003 2224-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 Model 3 89973 44-9 084781 Y Instrument Log Continue disassemble WR#2 5/28/2003 Model 3 89973 44-9 084781 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162426 43-93 193921 Y Instrument Log C	5/21/2003	2929	163827	43-10-1	171322	Y	Instrument Log	Disassemble WR#2
5/22/2003 2929 163827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/22/2003 Model 3 79511 44-9 137499 Y Instrument Log Disassemble WR#2 5/22/2003 2224-1 162426 43-93 193921 Y Instrument Log Disassemble WR#2 5/22/2003 2224-1 162426 43-93 193921 Y Instrument Log Disassemble WR#2 5/28/2003 Model 3 89973 44-9 064781 Y Instrument Log Continue disassemble WR#2 5/28/2003 Model 3 79511 44-9 137499 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 183921 Y Instrument LOg Continue disassemble WR#2 5/29/2003 Model 3 79511 44-9			79511	44-9	137499	Y	instrument Log	Disassemble WR#2
5/22/2003 2929 163827 43-10-1 171322 Y Instrument Log Disassemble WR#2 5/22/2003 Model 3 79511 44-9 137499 Y Instrument Log Disassemble WR#2 5/22/2003 2224-1 162426 43-93 193921 Y Instrument Log Disassemble WR#2 5/22/2003 2224-1 162426 43-93 193921 Y Instrument Log Disassemble WR#2 5/28/2003 Model 3 89973 44-9 084781 Y Instrument Log Continue disassemble WR#2 5/28/2003 Model 3 79511 44-9 137499 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162425 43-93 182403 Y Instrument LOg Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 183921 Y Instrument CG Files Continue disassemble WR#2 5/29/2003 Model 3 79511 44-9	5/21/2003	Model 3	89973	44-9	084781	Y	Instrument Log	Disassemble WR#2
5/22/2003 Model 3 89973 44-9 084781 Y Instrument Log Disassemble WR#2 5/22/2003 2224-1 162426 43-93 193921 Y Instrument Log Disassemble WR#2 5/28/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 5/28/2003 Model 3 89973 44-9 084781 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 182403 Y Instrument QC Files 5/29/2003 2224-1 162425 43-93 182403 Y Instrument QC Files 5/29/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29	5/22/2003	2929	163827	43-10-1	171322	Y	Instrument Log	Disassemble WR#2
5/22/2003 2224-1 162426 43-93 193921 Y Instrument Log Disassemble WR#2 5/28/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 5/28/2003 Model 3 89973 44-9 084781 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162426 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2929 163827 43-10-1 171322 Y Instrument CF Files 5/29/2003 2929 163827 43-10-1 171322 Y Instrument CC Files 5/29/2003 Model 3 89973 44-9 084781 Y Instrument Log Continue disassemble WR#2 (note out of scope work items i	5/22/2003	Model 3	79511	44-9	137499	Y	Instrument Log	Disassemble WR#2
5/28/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 5/28/2003 Model 3 79511 44-9 084781 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/29/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 5/29/2003 Model 3 89973 44-9 084781 Y Instrument Log Continue disassemble WR#2 5/29/2003 2929 1	5/22/2003	Model 3	89973	44-9	084781	Y	Instrument Log	Disassemble WR#2
5/28/2003 Model 3 89973 44-9 084781 Y Instrument QC Files 5/28/2003 2024-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/29/2003 2929 163827 43-10-1 171322 Y Instrument QC Files 5/29/2003 Model 3 89973 44-9 084781 Y Instrument Log Continue disassemble WR#2 (note out of scope work items in wkly SRs 5/29/2003 2929 163827 43-10-1 171322 Y Instrument Log BARF bias fixed rate couts 13 locations, DU Test Enclosure Building demo 6/2/2003 2929<	5/22/2003	2224-1	162426	43-93	193921	Y	Instrument Log	Disassemble WR#2
5/28/2003 Model 3 79511 44-9 137499 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162426 43-93 193921 Y Instrument QC Files 5/29/2003 2929 163827 43-10-1 171322 Y Instrument QC Files 5/29/2003 Model 3 79511 44-9 137499 Y Instrument QC Files 5/30/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 (note out of scope work items in wkly SRs 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 (note out of scope work items in wkly SRs 6/2/2003 2929 163827 43-10	5/28/2003	2929	163827	43-10-1	171322	Y	Instrument Log	Continue disassemble WR#2
5/28/2003 2224-1 162426 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/28/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 193921 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162426 43-93 193921 Y Instrument QC Files 5/29/2003 2929 163827 43-10-1 171322 Y Instrument QC Files 5/29/2003 Model 3 79511 44-9 084781 Y Instrument QC Files 5/30/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 (note out of scope work items in wkly SRs 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log 6/2/2003 2360 193675 43-37 161687 Y Instrument Log WR#2, DU Test Enclosure Building demo </td <td>5/28/2003</td> <td>Model 3</td> <td>89973</td> <td>44-9</td> <td>084781</td> <td>Y</td> <td>Instrument QC Files</td> <td></td>	5/28/2003	Model 3	89973	44-9	084781	Y	Instrument QC Files	
5/28/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162425 43-93 193921 Y Instrument QC Files 5/29/2003 2929 163827 43-10-1 171322 Y Instrument QC Files 5/29/2003 Model 3 79511 44-9 137499 Y Instrument QC Files 5/29/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 5/29/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 (note out of scope work items in wkly SRs 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log BARF bias fixed rate counts 13 locations, DU Test Enclosure Building demo 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log <	5/28/2003	Model 3	79511	44-9	137499	Y	Instrument Log	Continue disassemble WR#2
5/29/2003 2224-1 162425 43-93 182403 Y Instrument Log Continue disassemble WR#2 5/29/2003 2224-1 162426 43-93 193921 Y Instrument QC Files 5/29/2003 2929 163827 43-10-1 171322 Y Instrument QC Files 5/29/2003 Model 3 79511 44-9 137499 Y Instrument QC Files 5/30/2003 2929 163827 43-10-1 171322 Y Instrument QC Files 5/30/2003 2929 163827 43-10-1 171322 Y Instrument QC Files 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 (note out of scope work items in wkly SRs 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log BARF bias fixed rate counts 13 locations, DU Test Enclosure Building demo 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y <t< td=""><td>5/28/2003</td><td>2224-1</td><td>162426</td><td>43-93</td><td>193921</td><td>Y</td><td>Instrument Log</td><td>Continue disassemble WR#2</td></t<>	5/28/2003	2224-1	162426	43-93	193921	Y	Instrument Log	Continue disassemble WR#2
5/29/2003 2224-1 162426 43-93 193921 Y Instrument QC Files 5/29/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 5/29/2003 Model 3 79511 44-9 137499 Y Instrument QC Files 5/29/2003 Model 3 89973 44-9 084781 Y Instrument QC Files 5/20/2003 2929 163827 43-10-1 171322 Y Instrument QC Files 5/30/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 (note out of scope work items in wkly SRs 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log 6/2/2003 2360 193675 43-37 161687 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument L	5/28/2003	2224-1	162425	43-93	182403	Y	Instrument Log	Continue disassemble WR#2
5/29/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 5/29/2003 Model 3 79511 44-9 137499 Y Instrument QC Files 5/29/2003 Model 3 89973 44-9 084781 Y Instrument QC Files 5/30/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 (note out of scope work items in wkly SRs 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log BARF bias fixed rate counts 13 locations, DU Test Enclosure Building demo 6/2/2003 2360 193675 43-37 161687 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/	5/29/2003	2224-1	162425	43-93	182403	Y	Instrument Log	Continue disassemble WR#2
5/29/2003 Model 3 79511 44-9 137499 Y Instrument QC Files 5/29/2003 Model 3 89973 44-9 084781 Y Instrument QC Files 5/20/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 (note out of scope work items in wkly SRs 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log BARF bias fixed rate counts 13 locations, DU Test Enclosure Building demo 6/2/2003 2360 193675 43-37 161667 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2860 193675 43-37 161687	5/29/2003	2224-1	162426	43-93	193921	Y	Instrument QC Files	
5/29/2003 Model 3 89973 44-9 084781 Y Instrument QC Files 5/30/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 (note out of scope work items in wkly SRs 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log BARF bias fixed rate counts 13 locations, DU Test Enclosure Building demo 6/2/2003 2360 193675 43-37 161687 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2960 193675 43-37 161687 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Bu	5/29/2003	2929	163827	43-10-1	171322	Y	Instrument Log	Continue disassemble WR#2
5/30/2003 2929 163827 43-10-1 171322 Y Instrument Log Continue disassemble WR#2 (note out of scope work items in wkly SRs 6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log BARF bias fixed rate counts 13 locations, DU Test Enclosure Building demo 6/2/2003 2360 193675 43-37 161687 Y Instrument Log 6/3/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2960 193675 43-37 161687 Y Instrument Log WR#2, 100% scan walls (EW, 1/2	5/29/2003	Model 3	79511	44-9	137499	Y	Instrument QC Files	
6/2/2003 2929 163827 43-10-1 171322 Y Instrument Log BARF bias fixed rate counts 13 locations, DU Test Enclosure Building demo 6/2/2003 2360 193675 43-37 161687 Y Instrument Log BARF bias fixed rate counts 13 locations, DU Test Enclosure Building demo 6/3/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2360 193675 43-37 161687 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 79511 44-9 137499 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 89973 44-9 084781 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo	5/29/2003	Model 3	89973	44-9	084781	Y	Instrument QC Files	
6/2/2003 2360 193675 43-37 161687 Y Instrument Log 6/3/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2360 193675 43-37 161687 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2360 193675 43-37 161687 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 79511 44-9 137499 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 89973 44-9 084781 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo	5/30/2003	2929	163827	43-10-1	171322	Y	Instrument Log	
6/3/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, DU Test Enclosure Building demo 6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2360 193675 43-37 161687 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 79511 44-9 137499 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 89973 44-9 084781 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo	6/2/2003	2929	163827	43-10-1	171322	Y	Instrument Log	BARF bias fixed rate counts 13 locations, DU Test Enclosure Building demo
6/4/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 2360 193675 43-37 161687 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 79511 44-9 137499 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 89973 44-9 084781 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 89973 44-9 084781 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo	6/2/2003	2360	193675	43-37	161687	Y	Instrument Log	
6/4/2003 2360 193675 43-37 161687 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 79511 44-9 137499 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 89973 44-9 084781 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo	6/3/2003	2929	163827	43-10-1	171322	Y	Instrument Log	
6/4/2003 Model 3 79511 44-9 137499 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo 6/4/2003 Model 3 89973 44-9 084781 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo	6/4/2003	2929	163827	43-10-1	171322	<u> </u>	Instrument Log	
6/4/2003 Model 3 89973 44-9 084781 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo	6/4/2003	2360	193675	43-37	161687	Y	Instrument Log	WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo
	6/4/2003	Model 3	79511	44-9	137499	Y	Instrument Log	WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo
6/4/2003 2224-1 162425 43-93 182403 Y Instrument Log WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo	6/4/2003	Model 3	89973	44-9	084781	Y	Instrument Log	WR#2, 100% scan walls (EW, 1/2 WW); DU Test Enclosure Building demo
	6/4/2003	2224-1	162425	43-93	182403		Instrument Log	
6/5/2003 2360 193675 43-37 161687 Y Instrument Log WR#2 plasma cutter hot spots + scan WW & NW; DU Test Enclosure Building demo	6/5/2003	2360	193675	43-37	161687	Y	Instrument Log	
6/6/2003 2360 193675 43-37 161687 Y Instrument Log WR#2 scan floor; DU Test Enclosure Building demo EW & WW	6/6/2003	2360	193675	43-37	161687	Y	Instrument Log	WR#2 scan floor, DU Test Enclosure Building demo EW & WW
6/6/2003 2224-1 162426 43-93 193921 Y Instrument Log WR#2 scan floor; DU Test Enclosure Building demo EW & WW	6/6/2003	2224-1	162426	43-93	193921		Instrument Log	
6/6/2003 Model 3 79511 44-9 137499 Y Instrument Log WR#2 scan floor; DU Test Enclosure Building demo EW & WW	6/6/2003	Model 3	79511	44-9	137499	Y	Instrument Log	WR#2 scan floor; DU Test Enclosure Building demo EW & WW
6/6/2003 Model 3 89973 44-9 084781 Y Instrument Log WR#2 scan floor; DU Test Enclosure Building demo EW & WW	6/6/2003	Model 3	89973	44-9	084781	Y	Instrument Log	WR#2 scan floor; DU Test Enclosure Building demo EW & WW
6/6/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2 scan floor; DU Test Enclosure Building demo EW & WW	6/6/2003	2929	163827	43-10-1	171322		Instrument Log	
6/9/2003 2360 193675 43-37 161687 Y Instrument Log WR#2 scan floor, walls; equip moved to WR#3, scan 1/2 WW; DU Test Enclosure Building demo	6/9/2003	2360	193675	43-37	161687		Instrument Log	
6/9/2003 2224-1 162426 43-93 193921 Y Instrument Log WR#2 scan floor, walls; equip moved to WR#3, scan 1/2 WW; DU Test Enclosure Building demo	6/9/2003	2224-1	162426	43-93	193921		Instrument Log	
6/9/2003 Model 3 79511 44-9 137499 Y Instrument Log WR#2 scan floor, walls; equip moved to WR#3, scan 1/2 WW; DU Test Enclosure Building demo	6/9/2003	Model 3	79511	44-9	137499	Y	Instrument Log	
6/9/2003 Model 3 89973 44-9 084781 Y Instrument Log WR#2 scan floor, walls; equip moved to WR#3, scan 1/2 WW; DU Test Enclosure Building demo	6/9/2003	Model 3	89973	44-9	084781		Instrument Log	
6/9/2003 2929 163827 43-10-1 171322 Y Instrument Log WR#2 scan floor, walls; equip moved to WR#3, scan 1/2 WW; DU Test Enclosure Building demo	6/9/2003	2929	163827	43-10-1	171322		Instrument Log	
6/10/2003 2224-1 162426 43-93 193921 Y Instrument Log DU Test Enclosure Building demo	6/10/2003	2224-1	162426				•	
6/10/2003 Model 3 79511 44-9 137499 Y Instrument Log DU Test Enclosure Building demo	6/10/2003	Model 3	79511				•	
6/10/2003 Model 3 89973 44-9 084781 Y instrument Log taken out of service, light leak							_	
6/10/2003 2929 163827 43-10-1 171322 Y Instrument Log DU Test Enclosure Building demo	and the second se							
6/11/2003 2360 193675 43-37 161687 Y Instrument Log WR#3 complete scan WW, 1/2 EW; continue DU Test Enclosure Building demo							-	
6/11/2003 2224-1 162425 43-93 182403 Y Instrument Log WR#3 complete scan WW, 1/2 EW; continue DU Test Enclosure Building demo							•	
6/11/2003 2224-1 162426 43-93 193921 Y Instrument Log WR#3 complete scan WW, 1/2 EW; continue DU Test Enclosure Building demo							•	
6/11/2003 Model 3 79511 44-9 137499 Y Instrument Log WR#3 complete scan WW, 1/2 EW; continue DU Test Enclosure Building demo	6/11/2003	B Model 3	79511	44-9	137499	Y Y	Instrument Log	WR#3 complete scan WW, 1/2 EW; continue DU Test Enclosure Building demo

i

Date	Instrument	5/N	Detector	S/N	QC File	Source of Info	Field Activity
6/11/2003	2929	163827	43-10-1	171322	Υ_	Instrument Log	WR#3 complete scan WW, 1/2 EW; continue DU Test Enclosure Building demo
6/12/2003	2360	193675	43-37	161687	Y	Instrument Log	WR#3 finish scan EW, NW, SW; continue DU Test Enclosure Building demo
6/12/2003	2224-1	162425	43-93	182403	Y	Instrument Log	WR#3 finish scan EW, NW, SW; continue DU Test Enclosure Building demo
6/12/2003	2224-1	162426	43-93	193921	Y	Instrument Log	WR#3 finish scan EW, NW, SW; continue DU Test Enclosure Building demo
6/12/2003	Model 3	79511	44-9	137499	Y	instrument Log	WR#3 finish scan EW, NW, SW; continue DU Test Enclosure Building demo
6/12/2003	2929	163827	43-10-1	171322	Y	Instrument Log	WR#3 finish scan EW, NW, SW; continue DU Test Enclosure Building demo
6/13/2003	2224-1	162425	43-93	182403	Y	Instrument Log	continue DU Test Enclosure Building demo, clean floor WR#3 (out of scope)
6/13/2003	2224-1	162426	43-93	193921	Y	Instrument Log	continue DU Test Enclosure Building demo, clean floor WR#3 (out of scope)
6/13/2003	Model 3	79511	44-9	137499	Y	Instrument Log	continue DU Test Enclosure Building demo, clean floor WR#3 (out of scope)
6/16/2003	2929	163827	43-10-1	171322	Y	Instrument Log	WR#3 finish 25% of floor scan; continue DU Test Enclosure Building demo
6/16/2003	2360	193675	43-37	161687	Y	Instrument Log	WR#3 finish 25% of floor scan; continue DU Test Enclosure Building demo
6/19/2003	2360	193675	43-37	161687	Y	Instrument Log	WR#3 finish 50% of floor scan
6/19/2003	2224-1	162425	43-93	182403	Ý	Instrument Log	WR#3 finish 50% of floor scan
6/19/2003	2224-1	162426	43-93	193921	Y	Instrument Log	WR#3 finish 50% of floor scan
6/19/2003	Model 3	79498	44-9	073106		Instrument Log	WR#3 finish 50% of floor scan
6/19/2003	Model 3	79511	44-9	137499		Instrument Log	WR#3 finish 50% of floor scan
6/19/2003	Micro Rem	C853F	-	_	Y	Instrument Log	WR#3 finish 50% of floor scan
6/20/2003	2360	193675	43-37	161687		Instrument Log	WR#3 finish 100% floor scan; continue DU Test Enclosure Building demo
6/20/2003	2224-1	162425	43-93	182403		Instrument Log	WR#3 finish 100% floor scan; continue DU Test Enclosure Building demo
6/20/2003	2224-1	162426	43-93	193921		Instrument Log	WR#3 finish 100% floor scan; continue DU Test Enclosure Building demo
6/20/2003	Model 3	79498	44-9	073106		Instrument Log	WR#3 finish 100% floor scan; continue DU Test Enclosure Building demo
6/20/2003	Model 3	79511	44-9	137499		Instrument Log	WR#3 finish 100% floor scan; continue DU Test Enclosure Building demo
6/23/2003	2360	193675	43-37	161687		Instrument Log	WR#3 complete scans, start static counts
6/24/2003	2360	193675	43-37	161687		Instrument Log	WR#3 complete 1/2 static counts
6/25/2003	2360	193675	43-37	161687		Instrument Log	WR#3 complete static counts & those accessible in WR#2; continue demo Rust Vault
6/26/2003	2224-1	162426	43-93	193921		Instrument Log	WR#2/3 static counts upper walls/ceilings; demo Rust Vault; Transonic X-Ray2 roof
6/26/2003	Model 3	79511	44-9	137499		Instrument Log	WR#2/3 static counts upper walls/ceilings; demo Rust Vault; Transonic X-Ray2 roof
6/26/2003	2929	163827	43-10-1	171322		Instrument Log	WR#2/3 static counts upper walls/ceilings; demo Rust Vault; Transonic X-Ray2 roof
6/27/2003	2224-1	162425	43-93	182403		Instrument Log	WR#2/3 complete all static counts; police junk around both vaults; transonic X-Ray2 roof
6/27/2003	2224-1	162426	43-93	193921		Instrument Log	WR#2/3 complete all static counts; police junk around both vaults; transonic X-Ray2 roof
6/27/2003	Model 3	79498	44-9	073106		Instrument Log	WR#2/3 complete all static counts; police junk around both vaults; transonic X-Ray2 roof
6/27/2003	Model 3	79511	44-9	137499		Instrument Log	WR#2/3 complete all static counts; police junk around both vaults; transonic X-Ray2 roof
6/27/2003	2929	163827	43-10-1	171322		Instrument Log	WR#2/3 complete all static counts; police junk around both vaults; transonic X-Ray2 roof
7/8/2003	2929	163827	43-10-1	171322		Instrument Log	Crane/WashRack#2 scanned; continue demo Vaults
7/9/2003	2224-1	162425	43-93	182403		Instrument Log	WR#3 count smears; continue demo Vaults; survey Sabot Stripper and Backstop Plate
7/9/2003	2224-1	162426	43-93	193921		Instrument Log	WR#3 count smears; continue demo Vaults; survey Sabot Stripper and Backstop Plate
7/9/2003	Model 3	79498	44-9	073106		Instrument Log	WR#3 count smears; continue demo Vaults; survey Sabot Stripper and Backstop Plate
7/9/2003	Model 3	79511	44-9	137499		Instrument Log	WR#3 count smears; continue demo Vaults; survey Sabot Stripper and Backstop Plate
7/9/2003	2929	163827	43-10-1	171322		Instrument Log	WR#3 count smears; continue demo Vaults; survey Sabot Stripper and Backstop Plate
7/10/2003		162425	43-93	182403		Instrument Log	Survey of electrical boxes; complete demo of Vaults; cut first section of HEPA removed
7/10/2003		162425	43-93	193921		Instrument Log	Survey of electrical boxes; complete demo of Vaults; cut first section of HEPA removed
7/10/2003		79498	43-93	073106		instrument Log	Survey of electrical boxes; complete demo of Vaults; cut first section of HEPA removed
7/10/2003		79498	44-9 44-9	137499		instrument Log	Survey of electrical boxes; complete demo of Vaults; cut first section of HEPA removed
		163827	43-10-1	171322		Instrument Log	Survey of electrical boxes; complete demo of Vaults; cut first section of HEPA removed
7/10/2003			43-10-1	137499		Instrument Log	second section of HEPA removed and loadeed into intermodal container
7/11/2003		79511					remove plywood from interior of shed east of DU Test Enclosure Bldg; cut up HEPA system from BARF
7/14/2003		79511	44-9	137499		Instrument Log	
7/15/2003	and the local division of the local division	79511	44-9	137499		Instrument Log	prepare for gamma walkover surveying (GWS); continue demo
7/16/2003		79511	44-9	137499		Instrument Log	prepare for GWS; continue demo
7/17/2003	Model 3	79511	44-9	137499	Y	Instrument Log	GWS SU20/part of SU17; continue demo

Date	Instrument	S/N	Detector	S/N	QC File	Source of Info	Field Activity
7/18/2003	Model 3	79511	44-9	137499	Y	Instrument Log	GWS SU17, straighten out Super Sacks
7/21/2003	Model 3	79511	44-9	137499	Y	Instrument Log	GWS SU7; start excavation DU Test Enclosure Building
7/22/2003	Model 3	79511	44-9	137499	Y	Instrument Log	Down (range activities)
7/23/2003	Model 3	79511	44-9	137499	Y	Instrument Log	DU Test Enclosure Building excavation stop (found 105mm HEAT round); down rest of day after 0930
7/24/2003	Model 3	79511	44-9	137499	Y	Instrument Log	Down (range activities)
7/25/2003	Model 3	79511	44-9	137499	Y	Instrument Log	Excavate DU Test Enclosure Building (200 cubic yards of soil)
7/28/2003	Model 3	79511	44-9	137499	Y	Instrument Log	Daily QC
7/29/2003	Model 3	79511	44-9	137499	Y	Instrument Log	GWS SU24 75% complete; continue excavation DU Test Enclosure Building
7/30/2003		79511	44-9	137499	Y	Instrument Log	GWS SU24 & 28; expose concrete footers DU Test Enclosure Building
7/31/2003		79511	44-9	137499	Y	Instrument Log	GWS SU 6; hand dig hot spots SU7; excavation DU Test Enclosure Building
8/7/2003	Model 3	79511	44-9	137499		Instrument Log	GWS SU6; soil samples from SU17 & 23; excavation, grading DU Test Enclosure Building
8/8/2003	Model 3	79511	44-9	137499		Instrument Log	GWS SU1; soil samples from SU7 & 8 & 24; hot spots SU6 removed, ready to be resurveyed
	and the second se	79511	44-9	137499		Instrument Log	GWS SU6 after remediation; soil sampling SU1
8/11/2003		162425	43-93	182403		Instrument Log	GWS SU6 complete; continue demo footers DU Test Enclosure Building
8/12/2003 8/12/2003		79511	44-9	137499		Instrument Log	GWS SU6 complete; continue demo footers DU Test Enclosure Building
		C853F	-	-	Ŷ	Instrument Log	GWS SU6 complete; continue demo footers DU Test Enclosure Building
8/12/2003		79511	44-9	137499		Instrument Log	Soil sampling SU6; continue demo footers DU Test Enclosure Building
8/13/2003				-	Y	Instrument Log	Soil sampling SU6; continue demo footers DU Test Enclosure Building
8/13/2003		C853F	44-9	137499		Instrument Log	GWS SU5 done, start SU3; soil sampling SU4&5
8/14/2003		79511		13/433	Y	Instrument Log	GWS SU5 done, start SU3; soil sampling SU4&5
8/14/2003		C853F	44-9	137499		Instrument Log	GWS SU2&3&12 complete, GWS SU11 60% complete
8/15/2003		79511		13/499	Y	Instrument Log	GWS SU2&3&12 complete, GWS SU11 60% complete
8/15/2003		C853F	44-9	137499		Instrument Log	GWS SU11&13&14&15 complete
8/18/2003		79511		13/499	Y Y	Instrument Log	GWS SU11&13&14&15 complete
8/18/2003		C853F	44-9	137499		Instrument Log	GWS SU21-25 complete
8/19/2003		79511			Y Y	Instrument Log	GWS SU21-25 complete
8/19/2003		C853F	44-9	-		Instrument Log	Remediate hot spots SUs 11 to 15; sampled SU21 &15; continue demo footers/stockpile
8/20/2003	Model 3	79511	44-9	137499	· · ·	Insuument Log	
8/21/2003	Model 3	79511	44-9	137499		Instrument Log	Sample soil SUs 13&14; demo crew found 4.2 chemical mortar (phosgene, CNS, or Chlorine); wait for EOD
8/22/2003	Model 3	79511	44-9	137499) Y_	Instrument Log	Remediate SUs 2, 9, 10; sampled SU11 &12
8/23/2003	Model 3	79511	44-9	137499) Y	Instrument Log	Daily QC
8/24/2003	Model 3	79511	44-9	137499) Y	Instrument Log	Daily QC
8/25/2003	Model 3	79511	44-9	137499) Y	Instrument Log	Finish remediation SU9, GWS SU9, sample SU3, remediate SU2
8/26/2003		79511	44-9	137499) Y	Instrument Log	Sample SU9, GWS SU10, remediate SU10
8/26/2003		163827	43-10-1	171322	2 Y	Instrument Log	Sample SU9, GWS SU10, remediate SU10
8/27/2003	the second s	79511	44-9	137499) Y	Instrument Log	GWS SU2, remediate SU2 & SU25; post GWS SU2 & SU25; sample SU2
2/10/2004		180830	43-10-1	207849) Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/10/2004		135696		145224	t Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/10/2004		89973	44-9	084781	1 Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/10/2004		B837Y	_	_	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/11/2004		180830	43-10-1	207849	9 Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/11/2004		135696		145224		Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/11/2004		89973	44-9	08478		Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/11/2004		B837Y	_	-	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/12/2004		180830		20784		Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/12/2004		135696		145224		Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/12/2004		89973	44-9	08478		Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/12/2004		B837Y	_	-	N	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
		180830		20784		Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/16/200	4 2929	180830	43-10-1	20764	5 1	manament Log	

Date	Instrument	S/N	Detector	8/N	QC File	Source of Info	Field Activity
2/16/2004	Model 3	135696	44-9	145224	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/17/2004	2929	180830	43-10-1	207849		Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/17/2004	Model 3	135696	44-9	145224	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/17/2004	Model 3	89973	44-9	084781	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/17/2004	Micro Rem	B837Y	_	-	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/18/2004	2929	180830	43-10-1	207849	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/18/2004	Model 3	135696	44-9	145224	Ŷ	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/18/2004	Model 3	89973	44-9	084781	Ŷ	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/18/2004	Micro Rem	B837Y	_	_	Ý	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/19/2004	2929	180830	43-10-1	207849	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/19/2004	Model 3	135696	44-9	145224	Ŷ	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/19/2004	Micro Rem	B837Y	-	_	Ŷ	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/20/2004	2929	180830	43-10-1	207849		Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/20/2004	Model 3	135696	44-9	145224	Ý	Instrument Log	Soil removal, rail shipmonts, handling RAD waste to demob 3/5
2/20/2004	Model 3	89973	44-9	084781	Ý	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/20/2004	Micro Rem	B837Y	-	-	Ý	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
	2929	180830	43-10-1	207849	- <u>'</u>	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/23/2004 2/23/2004	Model 3	135696	43-10-1	145224	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
			44-9 44-9	084781	Ý	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/23/2004	Model 3	89973			Ŷ	•	
2/23/2004	Micro Rem	B837Y		-		Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/24/2004	2929	180830	43-10-1	207849	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/24/2004	Model 3	135696	44-9	145224	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/24/2004	Model 3	89973	44-9	084781	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/24/2004	Micro Rem	B837Y			<u> </u>	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/25/2004	2929	180830	43-10-1	207849	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/25/2004	Model 3	135696	44-9	145224	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/25/2004	Model 3	89973	44-9	084781	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/25/2004	Micro Rem	B837Y			<u>Y</u>	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/26/2004	2929	180830	43-10-1	207849	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/26/2004	Model 3	135696	44-9	145224	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/26/2004	Model 3	89973	44-9	084781	Y	instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/26/2004	Micro Rem	B837Y	-	-	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/27/2004	2929	180830	43-10-1	207849	Y Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/27/2004	Model 3	135696	44-9	145224	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/27/2004	Model 3	89973	44-9	084781	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
2/27/2004	Micro Rem	B837Y	-		Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/1/2004	2929	180830	43-10-1	207849	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/1/2004	Model 3	135696	44-9	145224	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/1/2004	Model 3	89973	44-9	084781	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/1/2004	Micro Rem	B837Y	_	_	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/2/2004	2929	180830	43-10-1	207849	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/2/2004	Model 3	135696	44-9	145224	Ý	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/2/2004	Model 3	89973	44-9	084781	Ŷ	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/2/2004	Micro Rem	B837Y	-	-	Ŷ	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/3/2004	2929	180830	43-10-1	207849		Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/3/2004	Model 3	135696	44-9	145224	Ý	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/3/2004	Model 3	89973	44-9	084781	Ý	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
		89973 B837Y			Ý	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/3/2004	Micro Rem		42 10 1	207849			Soil removal, rail shipments, handling RAD waste to demob 3/5
3/4/2004	2929	180830	43-10-1	20/049	T	Instrument Log	Soli temoval, tali sinjimenta, nanuling KAD waste to demoti 3/3

Date	Instrument	S/N	Detector	S/N	QC File	Source of Info	Field Activity
3/4/2004	Model 3	135696	44-9	145224	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/4/2004	Model 3	89973	44-9	084781	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/4/2004	Micro Rem	B837Y			Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/5/2004	Model 3	135696	44-9	145224	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/5/2004	Model 3	89973	44-9	084781	Y	Instrument Log	Soil removal, rail shipments, handling RAD waste to demob 3/5
3/29/2004	2224-1	162426	43-93	193921	Ŷ	Instrument Log	excavate SU16 & SU22
3/29/2004	2360	193675	43-37	161687	Y	Instrument Log	excavate SU16 & SU22
3/30/2004	2360	193675	43-37	161687	Y	QC Files, Radiological Survey Maps	Wash Rack #3 survey, smear counting
3/30/2004	2929	180830	43-10-1	207849	Y	Instrument Log	Wash Rack #3 survey, smear counting
3/30/2004	2224-1	162426	43-93	193921	Y .	Instrument Log	Wash Rack #3 survey, smear counting
3/31/2004	2360	193675	43-37	161687	Y	QC Files, Radiological Survey Maps	Wash Rack #2 smear survey, Demob
3/31/2004	2929	180830	43-10-1	207849	Y	Instrument Log	Wash Rack #2 smear survey, Demob
3/31/2004	2224-1	162426	43-93	193921	Y	Instrument Log	Wash Rack #2 smear survey, Demob
6/2/2004	Model 3	79498	44-9	073106	Y	QC Files, Daily reports	Project mobilization, set-up, and logistics
6/2/2004	Model 3	166511	44-9	073107	Y	QC Files, Daily reports	Project mobilization, set-up, and logistics
6/2/2004	2360	184938	43-37	178371	Y	QC Files, Daily reports	Project mobilization, set-up, and logistics
6/2/2004	2360	202398	43-93	211706	Y		Project mobilization, set-up, and logistics
6/2/2004	Micro Rem	B985Y		-	<u>Y</u>	QC Files, Daily reports	Project mobilization, set-up, and logistics
6/3/2004	Model 3	79498	44-9	073106	Y		Health & Safety audit, receive and inspect rental equipment, project logistics
6/3/2004	Model 3	166511	44-9	073107	Y		Health & Safety audit, receive and inspect rental equipment, project logistics
6/3/2004	2360	184938	43-37	178371	Y		Health & Safety audit, receive and inspect rental equipment, project logistics
6/3/2004	2360	202398	43-93	211706	Y		Health & Safety audit, receive and inspect rental equipment, project logistics
6/3/2004	Micro Rem	B985Y			Y		Health & Safety audit, receive and inspect rental equipment, project logistics
6/4/2004	Model 3	79498	44-9	073106	Y		Gamma walkover survey in SU #25, remediate hotspots within SU #16
6/4/2004	Model 3	166511	44-9	073107	Y		Gamma walkover survey in SU #25, remediate hotspots within SU #16
6/4/2004	2360	184938	43-37	178371	Y		Gamma walkover survey in SU #25, remediate hotspots within SU #16
6/4/2004	2360	202398	43-93	211706	Y		Gamma walkover survey in SU #25, remediate hotspots within SU #16
6/4/2004	Micro Rem	B985Y			<u>Y</u>		Gamma walkover survey in SU #25, remediate hotspots within SU #16
6/6/2004	Model 3	79498	44-9	073106	Y		Attempt water removal and drying of SU #16 and concrete pad, partial GWS of SU #25
6/6/2004 6/6/2004	Model 3	166511	44-9	073107	Y		Attempt water removal and drying of SU #16 and concrete pad, partial GWS of SU #25
6/6/2004 6/6/2004	2360 2360	184938 202398	43-37 43-93	178371	Y Y		Attempt water removal and drying of SU #16 and concrete pad, partial GWS of SU #25
6/6/2004	Micro Rem	202398 B985Y		211706	Y		Attempt water removal and drying of SU #16 and concrete pad, partial GWS of SU #25
6/7/2004	Model 3		44-9				Attempt water removal and drying of SU #16 and concrete pad, partial GWS of SU #25
6/7/2004	Model 3	79498 166511	44-9	073106 073107	Y	QC Files, Daily reports	
6/7/2004	2360	184938	43-37	178371	r Y		Surface clean concrete pads, complete GWS of SU #25
6/7/2004	2360	202398	43-93	211706	Ý		Surface clean concrete pads, complete GWS of SU #25
6/7/2004	Micro Rem	202390 B985Y	43-95	211700	Ý		Surface clean concrete pads, complete GWS of SU #25
6/8/2004	Model 3	79498	44-9	073106			Surface clean concrete pads, complete GWS of SU #25
6/8/2004	Model 3	166511	44-9	073100	Ý	QC Files, Daily reports	Sand-blasting concrete pads, concrete pad surveying SU #9, pad layout and hotspot flagging
6/8/2004	2360	184938	44-9 43-37	178371	Ý	QC Files, Daily reports	and the second
6/8/2004	2360	202398	43-37	211706	Y		
6/8/2004	Micro Rem	202398 B985Y	43-93	211700	Y		Sand-blasting concrete pads, concrete pad surveying SU #9, pad layout and hotspot flagging
6/9/2004	Model 3	79498	44-9	073106	<u> </u>		Sand-blasting concrete pads, concrete pad surveying SU #9, pad layout and hotspot flagging
6/9/2004	Model 3	166511	44-9	073108	Y		Survey concrete pads of SUs #9 and #16, GWS of SU #16, soil sampling of SUs #25, #22, #2, #9, and #10 Survey concrete pads of SUs #9 and #16, GWS of SU #16, soil sampling of SUs #25, #22, #2, #0, and #10
6/9/2004	2360	184938	43-37	178371	Y		Survey concrete pads of SUs #9 and #16, GWS of SU #16, soil sampling of SUs #25, #22, #2, #9, and #10
6/9/2004	2360	202398	43-93	211706	r Y		Survey concrete pads of SUs #9 and #16, GWS of SU #16, soil sampling of SUs #25, #22, #2, #9, and #10
	2000	202030	40-30	211700		ao milios, paity reports	Survey concrete pads of SUs #9 and #16, GWS of SU #16, soil sampling of SUs #25, #22, #2, #9, and #10

Date	Instrument	8/N	Detector	S/N	QC File	Source of Info	Field Activity
6/9/2004	Micro Rem	B985Y	_	-	Y	QC Files, Daily reports	Survey concrete pads of SUs #9 and #16, GWS of SU #16, soil sampling of SUs #25, #22, #2, #9, and #10
6/10/2004	Model 3	79498	44-9	073106	Y	QC Files, Daily reports	Remediate hotspots in SUs #25 and #22, collect additional data and flag bias locations in SU #16, scan smear samples
6/10/2004	Model 3	166511	44-9	073107	Y	QC Files, Daily reports	Remediate hotspots in SUs #25 and #22, collect additional data and flag bias locations in SU #16, scan smear samples
6/10/2004	2929	171590	43-10-1	17 4813	Y	QC Files, Daily reports	Remediate hotspots in SUs #25 and #22, collect additional data and flag bias locations in SU #16, scan smear samples
6/10/2004	2360	184938	43-37	178371	Y	QC Files, Daily reports	smear samples
6/10/2004	2360	202398	43-93	211706	Y	QC Files, Daily reports	smear samples
6/10/2004	Micro Rem	B985Y	_	-	Y	QC Files, Daily reports	Remediate hotspots in SUs #25 and #22, collect additional data and flag bias locations in SU #16, scan
6/11/2004	Model 3	79498	44-9	073106	Y	QC Files, Daily reports	Complete GWS of remediated hotspots in SUs #2, #9, and #10, remediate hotspot and finish soil sampling in SU #16
6/11/2004	Model 3	166511	44-9	073107	Y	QC Files, Daily reports	Complete GWS of remediated hotspots in SUs #2, #9, and #10, remediate hotspot and finish soil sampling in SU #16
6/11/2004	2360	184938	43-37	178371	Y	QC Files, Daily reports	Complete GWS of remediated hotspots in SUs #2, #9, and #10, remediate hotspot and finish soil sampling in SU #16
6/11/2004	2360	202398	43-93	211706	Y	QC Files, Daily reports	Complete GWS of remediated hotspots in SUs #2, #9, and #10, remediate hotspot and finish soil sampling in SU #16
6/11/2004	Micro Rem	B985Y	_	-	Y	QC Files, Daily reports	Complete GWS of remediated hotspots in SUs #2, #9, and #10, remediate hotspot and finish soil sampling in SU #16
6/14/2004	Model 3	79498	44-9	073106	Y	QC Files, Daily reports	Identify and fill data gaps via additional GWS in 12 areas, collect duplicate soil samples in four areas, scan
6/14/2004	Model 3	166511	44-9	073107	Y	QC Files, Daily reports	Identify and fill data gaps via additional GWS in 12 areas, collect duplicate soil samples in four areas, scan 3 smear samples
6/14/2004	2360	184938	43-37	178371	Y	QC Files, Daily reports	Identify and fill data gaps via additional GWS in 12 areas, collect duplicate soil samples in four areas, scan smear samples
6/14/2004	2360	202398	43-93	211706	Y	QC Files, Daily reports	Identify and fill data gaps via additional GWS in 12 areas, collect duplicate soil samples in four areas, scan s mear samples
6/14/2004	Micro Rem	B985Y	-	_	Y	QC Files, Daily reports	Identify and fill data gaps via additional GWS in 12 areas, collect duplicate soil samples in four areas, scan smear samples
6/15/2004	Model 3	79498	44-9	073106) Y	QC Files, Daily reports	s Complete data gap GWS, identify obstructed survey areas, intermodal container logistics
6/15/2004		166511		073107	Y	QC Files, Daily report	s Complete data gap GWS, identify obstructed survey areas, intermodal container logistics
6/15/2004		184938		178371	I Y	QC Files, Daily report	s Complete data gap GWS, identify obstructed survey areas, intermodal container logistics
6/15/2004	2360	202398		211706		QC Files, Daily report	s Complete data gap GWS, identify obstructed survey areas, intermodal container logistics
6/15/2004		B985Y	-	_	Y	QC Files, Daily report	s Complete data gap GWS, identify obstructed survey areas, intermodal container logistics

. <u> </u>									RADI	OLOGICAL	SURVEY N							
Local	ion:		Wa	sh Ra	ick 3 (Ceiling	RWP#				Survey #	32		Sur	vey Type	e: Static/Smear		
						l					1				··			
 		mear						an Result				ed Result		-				
	_	PM/10					a (cpm)	p (cpm)			α (cpm)	15 (cpm)		Comme	ents			
<u>No.</u>	α	β	No. 26	_α	β				{	1	0		East Wall					
· · · · ·	-0.6	0.9	20 27						<u> </u>				East Wall					
2	-0.6	-9.9 4.5	27						{}	3	2		East Wall					
4	0.9		20 29						<u> </u>	<u> </u>			East Wall North Wall					
5	0.9	11.7 -31.4	30						┼╌╌╌╌┥	<u>5</u>								
	-0.6	6.3	31						┼╌╌╌┥			70	Ceiling Ceiling			<u> </u>		
	0.9	-13,4	32	_					╂────── ┨		2	13	Ceiling					
8	0.9	-13.4	33						╉╌╼╾╌╼┫	9		93	Ceiling					
9		-9.9	34						╂╼╼╼╾┨		0		South Wall					
10		-22.4	35		 -				<u>+</u> {		1		North Wall					
11	0.9	17.0	36							12	<u>'</u>		Ceiling					
12	-0.6	20.6	37						<u> </u>	13	2		Ceiling					······
13		-8.1	38						+	14	0	86	Ceiling					
14	_	-9,9	39						1	15	ō		Ceiling					
15		0.9	40							16	1	93	South Wall					
16		8.1	41		<u> </u>				1	17	0		West Wall					
17		-4.5	42							18	0		West Wall					
18	0.9	-8.1	43							19	0		West Wall					
19	0.9	4.5	44							20	2	71	West Wall		·····			
20	-0.6	8.1	45							21								
21			46							22								
22			47							23								
23			48							24								
24			49							25								
25			50		<u> </u>													
		Com	nents								ļ							
L													<u> </u>					
<u> </u>						L					<u> </u>			20	<u> </u>			
ļ								ļ	+			ļ	1			115/04-		
J						l	L	Ļ	+		+				· · · · · · · · · · · · · · · · · · ·			
						Surveyed By:	Da	ate:	Instrument		α Eff.	βEff.	α Bkg. β Bk			Кеу		
						KP	3/30	/2004	2929 2224	180830	0.33	0.28	4 965		0	Smear		Boundary
		<u> </u>					613	105r -	7 2224	162426	0.2	0.15	0 21	12/27/04		Dose Rate mr/hr		A/S Location
ļ						Reviewed By:	D	ate:	1				000	1	*	Direct Reading DPM/100 cm^2	1	1
—						1			 		1			4	Δ	Grab Sample	<u>+</u>	1
						L						1				Joiato Sample	1	I

X Note : Smear sample another via 2929 were analyzed in March 2001

direct frisks using 43-93 probe were taken during work in June 2003

No big deter mind Use O as Conjervative value.

Appendix G: Radiological Survey Maps

cation				North	Floor (BAR	F)	RWP# PC-RP64	Α			S	1 Min Fixed	2			rvey Type:	Fixed -Smears	
		Smear	Results						1 Min Fixed Result β (cpm)			1 Min ⊢txec α (cpm)	β (cpm)	c	Comments			
		DPM/1	00cm^2 No.	a	β			a (cpm)	p (cpin)									
No.	a	F	ND.		P		NF1	10	648									
NF1	4.06	31.67					NF2	12	661									
NF2	5.30	40.00					NF3	7	847									
NF3	4.06	81 67					NF4	11	878		NF4 Dup	3	889					
VF4	0.37	21.25				····			800									
NF5	0.37	0.00					NF5	30										
NF6	4.06	4 58					NF6	4	675									
NF7	6.53	42.08					NF7	17	992									
NF8	0.37	27.50					NF8	12	689									
NF9	0.37	46.25		1			NF9	6	670	_								
NF10	0.37	27.50					NF10	12	944									
NF11	1.60	37.92					NF11	13	828									
NF12	0.37	48.33					NF12	10	673									
NF13	4.06	52.50					NF13	7	815									
NF14	1.60	46.25					NF14	4	719							·····		
NF15	4.06	0.00					NF15	7	755		NF15 Dup	11	803					
NF16	0.00	2.50					NF16	3	842									
NF17	1.60	21 25		1			NF17	10	926									
NF18	0.37	23.33	1	1			NF18	17	721									
NF19	0.37	21.25		-			NF19	10	1131									
		15.00		1			NF20	6	808									
NF20	0.37	21.25	+	-			NF21	4	758									
NF21	0.00			+			NF22	9	722		NF22 Dup	5	724					
NF22	1.60	29.58	+		+		NF22 NF23	8	699							0+17		
NF23	4.06	8.75	+				NF23	6	606								-0.25	
NF24	1.60	0.00	+		+													
				1		Surveyed By		Date:		Instrument	Serial #	a Eff.	b Eff	a Bkg.	b Bkg	Cal. Due	Key	Bound
							· +	5/12/2003		2929	163827	0.4960	0.2400		828	1/21/2004	O Smear Dose Rate mr/hr	
										2360	193675 162725	6 1207	0.268		4/8	4/28/2004	Direct Reading DPM/100 cm ²	
	-					Reviewed By:	1.0	Date.	PLAN	1	10-1-1		6/1950				△ Grab Sample	
						Reviewed By:	Hulfrigent	Date.	8/04	2224-1	6. [.]	Put Huy	Didu					İ

Location:				North F	Room North	Wall	RWP#				!	Survey #	7			Survey Type:	Fixed -Smea	ɛn
		Smear					1		1 Min Fixed Resu	n		1 Min Eke						
No	α	DPM/10	No.	a				a. (cpm)	β (cpm)			a (cpm)	β (cpm)		Commen	15		
				<u> </u>	<u> </u>		NRNW1	12	697						·····			
NRNW1	1.52	5.42	h												· · · · · ·			
NRNW2	3.70	36.67					NRNW2	4	663									
NRNW3	1.52	26.25					NRNW3	4	624									
NRNW4	2.61	-0.83	l				NRNW4	2	635									
NRNW5	2.61	24.17					NRNW5	1	591									
NRNW6	0.43	45.00	1				NRNW6	3	560									
							D-NRNW1	10	619									
					[NRNWU19	2	89					SCAN	0/90			
							NRNWU20	2	97					SCAN	0/100			
			1		1	1	1	T										
			<u>† </u>	<u> </u>	 	<u> </u>		<u> </u>	1									
					-					F{					······			
	<u> </u>		┨─────		+			<u> </u>	+							·· ···		
	<u> </u>	<u> </u>	<u> </u>			<u> </u>	+		<u>+</u>									
		ļ	ļ	ļ		<u> </u>	<u> </u>		<u>}</u>									
	<u> </u>		L	ļ	<u> </u>												·····	
					[
	}	I	1	-	T	[_			-							
					1			<u> </u>										
			1	-	1	1	1											
	<u> </u>		1			<u> </u>		<u>+</u>	+						··		· · · · · · · · · · · · · · · · · · ·	
			<u> </u>		 	+		<u> </u>	+	łł				<u> </u>			·····	
	<u> </u>	<u>↓</u>				<u> </u>	+	<u> </u>	+									
	┣		 	 	· · ·			+	+	ļ				1-				
			 	 	<u> </u>	ļ		l						17				
	1			<u> </u>				<u> </u>	1									
						Surveyed By:		Date:		Instrument	Serial #	a Eff.	b Eff.	a Bkg.	b Bkg	Cal. Due	<u>к</u>	
						by KPO	Laliurs	5/13/2003		2929 2360	163827 193675		0.2400		844 560	1/24/2004	O Smear □ Dose Rate mr/h	Boundary
						+	<u></u>								500	4/15/200		
						Reviewed By	Aipist	Date: , , /_	1.4	2224-1	162425	0,20	0.20	3	200	7/15/400	DPM/100 cm*2	<u>↓ ↓</u>
						1	August	U/S	107	I			L	Ļ]		L	_ △ Grab Sample	

ocation:				North R	oom South	Wall	RWP#					Survey #	9			Survey Type:	Fixed -Smea	
		Smear					1	· · · · · · · · · · · · · · · · · · ·	1 Min Fixed Resul	1		1 Min Fix				Survey type.		
No		DPM/1					I	a (cpm)	β (cpm)			a (cpm)	β (cpm)		Commen	<u>ls</u>		
Na.	<u>a</u>	<u> </u>	Nka,	a	β		1		++									
RSW11	-0.66	17.92	+		<u> </u>		NRSW11	4	678									
RSW12	3.70	84.58	<u> </u>				NRSW12	9	639									
RSW13	-0.65	30.42					NRSW13	5	632									
RSW14	2.61	61.67	L				NRSW14	3	583									
RSW15	0.43	38.75					NRSW15	4	589									
RSW16	1.52	34.58	L				NRSW16	5	659									
							D-NRSW12	10	677									
ISWU12	1.72	17.50					NRSWU12	1	94					SCAN	0/80			
SWU13	2.96	-17.92					NRSWU13	1	86						0/90			
NSWU14	0.49	52.92					NRSWU14	2	84						0/100			
RSWU15	2.96	27.92					NRSWU15	1	91						0/100			
																_		
														-				
									<u>+</u>				İ			<u> </u>		
												·	<u> </u>			·		
			<u> </u>				1									_		
									1									
							<u> </u>											
								<u>├──</u> -	+								· · · · · · · · · · · · · · · · · · ·	
		├ ──					1		╀			· · · · · ·						
		<u> </u>	<u> </u>		 -		+		+ - +									
		<u> </u>					<u>+</u>							-				
							ļ		+			ļ						
			<u> </u>															
		<u> </u>					ļ							pit,				
		L					<u> </u>											
				_		Surveyed By:		Date:		Instrument	Serial #	a Eff.	b Eff.	a Bkg.	b Bkg	Cal. Due	Ke	
						by K.	Puntiero	3/13/2003		2929	163827		0.2400			1/24/2004		Boundary A/S Local
							Puglise ro Negrit			3954 4				-			Direct Reading	- AVS LOCA
						Keviewed By:	Win A	Date: 11/6	loy	44417	60(1)	0,30	0.90	3	560	Y/15/04	DPM/100 cm^2	<u>↓ </u>
					_		1 - Law	<u> </u>	<u> </u>				L	L	1		△ Grab Sample	L

							T		RADIO	DLOGICAL SURV	EY MAP								
cation			_	North	Room East	Nall	RWP#					Survey #	8			Survey Type:	Fixed	Smears	
		DPM/10	Resulta D0cm^2					a (cpm)	1 Min Fixed Rest β (cpm)	ult j		1 Min Fixe a. (cpm)	ed Result β (com)		Commen	1c			
No.	a	β	No.	a	β		T												
REW7	2.61	30.42			 		NREW7	2	711										
NREW8	0.43	34.58 15.83	<u>}</u>		<u> </u>		NREW8	5 6	676 673	<u> </u>				{					
REW10		3.33			1		NREW10	7	691										
							D-NREW10	4	594							· · · · · · · · · · · · · · · · · · ·			
REWUIE	0.5	7.1					NREWU18	2	94					SCAN	0/80				
					 														
														<u> </u>					
	<u> </u>				<u> </u>		+		<u> </u>					}					
														<u> </u>					
																			·
			<u> </u>		ļ														
																			
			}	h	<u> </u>				+										
														<u> </u>	~~~~~				
							1												
					<u> </u>									0,17					
			L			Salveyed Br		Date:	L	lasta mart	Control #								
					b	Surveyed By: K, Paj	1400	5/13/2003		Instrument 2929	Serial # 163827	■ Eff. 0,4060	6 Eff. 0.2400		b Bikg 844	Cal. Due 1/24/2004	Smear	Key	Boundary
									lhat	2360		0,4069	0.2500	3	844	4/29/2004	Dose Rate Direct Read DPM/100 c	mr/hr	A/S Location
						Reviewed By:	WSin.	tate: ++	4/04-	975A-1	162425	0,20	0,70	3	560	4/15/04	DPM/100 c	m^2	
						H	Pu		ISLOY	L							△ Grab Samp	le	1

									RADIOL	OGICAL SURVEY	MAP									
ocation:				North	Room West V	Vali	RWP#					Survey #	10			urvey Type:		Fixed -Smear	8	
		Smear							1 Min Fixed Result	t		1 Min Fixe								
		DPM/10						a (cpm)	<u>β (cpm)</u>			a (cpm)	β (cpm)		Comments	·				
No.	a	β	No.	α	β			·	╉────┾											
NRWW17	2.61	9.68	<u> </u>				NRWW17	7	699											<u> </u>
NRWW18	3.70	49.17	<u> </u>				NRWW18	5	709					· <u> </u>						
NRWW19	-0.65	9.58			L		NRWW19	7	644											
NRWW20	3.70	32.50					NRWW20	4	647											
					L		D-NRWW17	4	699											
																<u></u>				
					1															
		ļ —																<u>.</u>		
			1																	
					1															
														_						
					T							_								
	[1		1															
	<u>}−</u>	1	1	1	1															
		<u>├</u> ───	1		<u> </u>	<u> </u>								1						
	<u> </u>	┼────	+		+	<u>↓</u>		1	-			• <u> </u>		<u> </u>						
	<u>↓</u>		+	<u> </u>				<u> </u>	-				1			·				
	ł	<u> </u>	+	╀────	1			<u> </u>	+				0	15						
		+	+	<u> </u>	+	<u> </u>	ţ					·	O	↓ <i>↓ (</i>						
	.			1	_l	Surveyed By:	L	 Dete:		instrument	Serial #	a Eff.	D Eff.	a Bkg.	b Bkg	Cal. Due		Ke		
						1 N	1	5/13/2003		2929	163827	0.4066	0.2400			1/24/2004	0	Smear		Boundary
						by K. Ha				2360	193675	6.1100	0.2500		560	4/29/2004		Dose Rate mr/hr Direct Reading DPM/100 cm^2	╞	A/S Locatio
						Reviewed By:	1.1.4	Date:	lov				┢────	 	{			DPM/100 cm^2 Grab Sample	–	╂
						L	maryan	<u></u>	1 <u>01</u>	<u>اا</u>			L	I			<u> </u>	Grad Sample	⊥	L

(

							.	·	RADIO	LOGICAL SURVEY	MAP							
Location:				Nort	n Room Celi	ing	RWP#					Survey #	12		S	ичеу Туре:	Fixed -Sr	nears
		Smear				1	1		1 Min Fixed Resu	h.		1 Min Fixe	d Result					
No.	α	DPW/10	0cm^2 No.	a	6	ļ	I	a (cpm)	β (cpm)			a (cpm)	β (cpm)		Comments			
		P	NO.	<u> </u>	P	+			85					SCAN (/80		· · · · · · · · · · · · · · · · · · ·	······································
NRCU16	-0.74	9.17	<u> </u>	┢────	┼	∱	NRCU16	0	1	<u>├────</u>							·····	
NRCU17	2.96	2.92			<u> </u>	╀	NRCU17	0	112	<u>├───</u> }				SCAN (/100	<u> </u>		
					<u> </u>	<u> </u>			<u> </u>									
								L										
			T.	[_	1	1							. <u> </u>					
	-			[1					1								
				t	t	1	1		1	1	(
		L	┪━	<u>├</u> ──	+	+	t	<u> </u>	1	┫ <u>───</u> ┣								
			┼	<u>├</u>	<u> </u>	╆	┨─────		+	┼───┼				<u>├</u> ───				
				<u> </u>	┨────	+	}	<u>↓</u>	+	╞╴╍╼╸┼								
		L	ļ	<u> </u>		 		↓		┝────┤				——				
				L			1	L		ļ								—
					T	1				Ţ								
			t	1	1	1				1	· · · · · · · · · · · · · · · · · · ·					-		······································
			+	┼───	+	f	1			<u>∤</u> ∤				<u> </u>				
		<u> </u>		<u> </u>	╆		d	<u> </u>		+	<u>-</u>			├ ────				···- _ ···- _ ·
			+		<u> </u>		↓		+	<u>↓</u>				<u> </u>		·		
			ļ	ļ	<u></u>	<u></u>	· · · · · · · ·	ļ	+	╄────┤				ļ				
					1													
										1								
		t	1		1	1	1		T									
		<u> </u>	+	1		+	+			1				1		····		
			+	<u> </u>	+	+		+	+	╂────┤		<u>├</u>						
		<u> </u>	<u> </u>	+	+		·}	↓	·+	┟╼────┥			├ ──────	├ ────				
			∔		·	·		 	·+	╄━━╍──┤	··· <u>··</u> ····							
								l	1				.0+2	10	0126	<u>}</u>		
						1		1										
					· · · · · · · · · · · · · · · · · · ·	Surveyed By:	1 liero Whigiert	Date:		Instrument	Serial #	a Eff.	b Eff.	8. E.C.	b Bikg	Cal Due		Key
						The D.	1. 4. 100	Shyle	2	2929	163827		0.2400	K _ ?	828 3730 3750	1/24/2004	Smear	Market Soundary
						1 Di lai	1 There	7111	·)	2224-1	162426	0,1919	1 0.116	* 3*	-368	1/15/2004	Direct Readi	na Avs Locas
_						Reviewed By	1. 18 2 1. 1	Date: ,	1				ļ	_			DPM/100 cm	-2
]	W Jugert	115	107				1		l		_∆ Grab Sample	

									RADIOL	OGICAL SURVE						
				South	Floor (BAR	=	RWP# PC-RP64	A			s	Survey #	1	Survey Type:	Fixed -Smears	
ocation			Results	3000					1 Min Fixed Result			1 Min Fixed				
			00cm^2					a (cpm)	β (cpm)			a (cpm)	<u>β (cpm)</u>	Comments		
No.	a	β	No.	a	β											
SF1	5.30	50 42					SF1	4	791		SF1 Dup	14	764			
SF2	0.00	42.08					SF2	20	779							
SF3	0.37	25.42					SF3	9	700							
SF4	1.60	56.67					SF4	18	665							
SF5	1.60	27 50					SF5	10	681							
SF6	6.53	46.25					SF6	16	675							
SF7	0.37	17.08	[SF7	9	660							
SF8	1.60	25.42					SF8	10	734							
SF9	1.60	42.08					SF9	8	819							
SF10	4.06	69.17					SF10	9	864						A	
SF11	5.30	71.25					SF11	11	922							
SF12	0.00	0.00	1				SF12	6	686		SF12 Dup	4	695			
SF13	0.37	71.25					SF13	10	687							
SF 14	1.60	50.42	1				SF14	4	696					· · · · · · · · · · · · · · · · · · ·		
SF15	1.60	15.00					SF15	9	783							
SF16	0.37	4.58					SF16	6	846							
SF17	0.00	40.00	1				SF17	11	730						<u> </u>	
SF18	4 06	4.58					SF18	7	713							
SF19	1 60	21.25					SF19	11	633							
SF20	1.60	0.42	1				SF20	10	720							
SF21	1.60	4 58					SF21	10	1029							
SF22	0.37	42.08					SF22	5	853							
SF22	1.60	27.50		<u> </u>			SF23	9	761					0,17	1	
	2.83	25.42		1	1	1	SF24	7	734		SF24 Dup	10	745		()	
SF24	2.03	2542			-										Key	
		.l			1	Surveyed By:	kp	Date		Instrument	Serial #	a Eff.	DE#	a Bko b Bkg Cai Due 7 828 1/21/2004		Boundary
]		5/12/2003		2929			0.2685		Dose Rate mr/hr	A/S Location
										2300	162 45		0120	3 560 4/15/200Y	Direct Reading DPM/100 cm ²	
						Reviewed By	Kaillan	Date:	La fa	-7894-J	100 103	0.20	0140	- 360 113000	△ Grab Sample	
							they broken.		01-01	L						

 $r=r_{\rm s}$

Joach Server # Sarver # <	Fixed -Smears
VICTOR DPM/100cm ² 641 β (gpm) a (cpm) β (gpm) Commenta No. α β	
No. α β No. α β No. α β No. α β No. α β No. α β No. α β No. α β No. α β No. α β No. α β No. α β No. α β No. Second Se	
RNW1 1.52 22.08 Image: strain of the s	
RNW2 2.61 -7.08 SRNW2 4 616 Image: Constraint of the second sec	
RNW3 0.43 24.17 SRNW3 4 586 SRNW3 5 641 SRNW3 5 641 SRNW3 SRNW3 5 641 SRNW3 SRNW	
RNW4 0.43 7.50 SRNW4 5 641 Image: Constraint of the synthetic of the syn	
RNW5 4.085 20.00 SRNW5 4 620 Image: Constraint of the state of the	
RNW8 1.52 -2.92 SRNW6 3 604 Image: Constraint of the state of	
NWU9 -0.87 -14.38 D D-SRNW1 5 665 Image: Constraint of the second seco	
NWU1 0.22 -14.38 SRNWU9 0 70 Scan: 0/50 NNU11 0.22 8.64 SRNWU10 3 87 Scan: 0/76 NWU11 0.22 8.64 SRNWU10 3 87 Scan: 0/76 Scan: 0/76 SRNWU11 0 77 Scan: 0/76 Scan: 0/76	
SRNWU11 0 77 Scan: 0/75	
Image: Construction of the second	
Image: Sector sector	
Image: Sector sector	
Image: Second second	
Surveyed By: Dete: Instrument Serial # a Eff. b Eff. a Bkg. b Bkg. Cal. Due	Key
5/13/2003 2828 163827 0.4969 0.2400 7 828 1/24/2004	Smear Bour
193675 1100 0,2500 3 560 4/29/2004 C	Dose Rate mr/hr A/S L
Roviewad By: Date: 11/5/04 2224-1 162426 058-19 (1166) 3 56800 1/15/2004 -	Direct Reading DPM/100 cm ²
	△ Grab Sample
\cdot	
0.30 0.20	

1

ocation:				South F	Room South \	Vali	RWP#					Survey #	5		9	kurvey Type:		Fixed -Smear	.	
		Smear	Results						1 Min Fixed Result	- 	i da ang a ng ak	1 Min Fixe								
		DPM/1	00cm^2				<u> </u>	a (cpm)	β (cpm)			a (cpm)	β (cpm)		Comment					
No.	α		No.	α	B		·	Ţ	↓				{			~ <u>_</u>	~ ~~~			
RSW11	1.41	-10.00	ļ				SRSW11	2	609							·				
RSW12	0.33	33.75					SRSW12	3	686											
RSW13	2.50	29.58	1				SRSW13	3	509	I.										
RSW14	2.50	21.25					SRSW14	1	606											
RSW16	1.41	-7.92					SRSW15	3	626											
RSW16	2.50	31.67					SRSW16	2	596									-		
RSWU1	-1	-10	1				D-SRSW12	10	731											
RSWU2	o	-31					SRSWUI	2	88					Scan : 0/9	0					
RSWU3	2	-14	1				SRSWU2	2	97					Scan: 0/90)					
ينت فنيد		1					SRSWU3	1	92					Scan; 0/85						
			1						1											
		1						1			1									
			1		1											·				
		1	<u> </u>		1				1											
		+	<u>∤</u>	[1											
		1	┼╼───	<u> </u>	<u> </u>		{	+	+											
		<u> </u>						ţ												
		┟────	+	<u> </u>	1		<u> </u>	╀────	+							- <u></u>			<u> </u>	
		<u> </u>	+					<u> </u>	+	┝╌╼╾╴╋										
		<u> </u>	+	┝───	+		+	+	1									·		
								<u> </u>	╉╌╼╌╌┤											
	 	<u> </u>	+	<u> </u>	+		<u> </u>	<u> </u>	++											
	 	ļ	+	<u> </u>	4		<u> </u>	<u> </u>												
				ļ	<u></u>		ļ								-011	1-7				
	[L	<u> </u>				ļ							\sim			·····			
			1	L	l		L	1	1					K						
						Surveyed By:	1. MD	Date: 5/13/2000-		Instrument 2929	Serial # 163827	a Eff0,4060	0.2400	a Bikg. 7	b Bkg 828	Cal Due 1/24/2004		Key Smear	1.1 Be	
				<u> </u>		on Kild	ginamo	5/12/03	,	2929	193675	0.1100	0.2500	3	560	4/29/2004		Dose Rate mr/hr		S Local
						7	N 1								100		Γ.	Direct Reading		
						Reviewed By:	Jenne 1	Date:	c) AU	2224-1	162426	0.1919	0.1165		SLO SLO	1/15/2004		DPM/100 cm^2 Grab Sumple	┝╼┾╴	

{

									RADIOL	OGICAL SURVEY	(MAP									
ocation				South	Room East	Nai	RWP#					Survey #	4			Survey Type:		Fixed -Smea	113	
		Smear							1 Min Fixed Result			1 Min Fix								
No.	α	DPM/10	Ocm^2 No.	α	B	<u> </u>	l	a (cpm)	<u>β (cpm)</u>		r	a (cpm)	β (cpm)		Comment	s				
			- 140.		P		SREW7	1	649						· · · · · · · · · · · · · · · · · · ·					
REW7	1.41	25.42		<u> </u>	 			1												
REW8	-0,76	-3.75		<u> </u>	<u>↓</u>		SREW8	0	691											
REW9	3.59	44.17	ļ		 		SREWO	3	700	<u> </u>	+									
REW10	0.33	12.92	ļ		<u> </u>		SREW10	7	875											
REWU6	0	-2			ļ		D-SREW10	6	674											
REWU6	2	2	 	<u> </u>			SREWU6	<u> </u>	84		ł			Scan : 0/1	00					
				ļ			SREWU6	1	104					Scan : 0/1	00					
					1				_											
			}	<u> </u>					1									·		
				Γ																
				T					T											
							T	1												
			1	1			+		11											
				1			+	+								·				
		[<u>├</u> ──	<u> </u>			+	+												
		<u> </u>		<u> </u>	+		+	+												
		<u> </u>		+	+	{		+												
	}		┼───		╂────	<u> </u>	+						}							
		{			+	<u> </u>	+	+												
	ļ	<u> </u>	}	+				+	-+						<u> </u>					
				·	<u> </u>		+			·										
			ļ	<u> </u>												• <u>-</u>				
	L	L	L	1	ļ		_						<u> </u>							
		1		<u> </u>										b_{l}	2	·				
	1																			
						Surveyed By:		Date:		Instrument	Serial #	a Eff.	DEN.	a Bkg.	b Bikg	Cal Due		Ke	γ	
						la K	la barn	5/13/2003		2929 2360	163827	04000	0.2400		828	1/24/2004		imear lose Rate mr/hr		Boundary A/S Locativ
						Reviewed Bal	hey liero	Date: 1		2300	162426	0.1915	1		300	1/15/2004	•	Fired Reading	1	NO LOUAN
						1	W Sumst	111	5/04				1	3	560		Δ	inab Sample	1	

۲.

cation				South	Room West V		RWP#				ĺ.	Survey #	6	Survey Type: Fixed -Sme	ars
Southorn.	_	Smear F	Results						1 Min Fixed Resul			1 Min Fixe			
		DPM/10	0cm^2					<u>a (cpm)</u>	β (cpm)			a. (cpm)	β (cpm)	Commenta	
No.	<u>a</u>	β	No.	<u>a</u> .	β									·	.
RWW17	-0.76	15.00			ļ		SRWW17	1	750						
RWW18	1.41	42.08					SRWW18	3	681						
RWW19	1.41	19.17					SRWW19	7	647						
RWW20	-0.76	2.50					SRWW20	2	702						
RWWU8	-1	-41					D-SRWW19	8	566						
_							SRWWU8	0	80					Scan: 0/75	
				-											
								1							
			<u> </u>						·						
	j			i –	-										
				[-f										
				<u> </u>											
	(<u> </u>		+			<u> </u>	1						
							·								
			 					<u> </u>						BKg	
					+	· · · · ·			<u>+</u>						
	ļ	<u> </u>						┼────						TIMOS	
	<u> </u>											Dil	b	8/819 der 0/1103	-
	 	┞───	ļ				i					<u> </u>	/	for +/13/a	,
	<u> </u>		<u> </u>		+				<u> </u>					the states	
	1	<u> </u>	1	<u> </u>		O manual D	l	Deter		Insta ment	Serial #	a 61.	bEM.	a Blag BrBkg Cal Dos	Kery
	· · · · · · · · · · · · · · · · · · ·					Surveyed By:	0.1.0	Date: 5/13/2005 b	1 5/10/43	Instrument 2929	163827	6.4060	0.240	0 Z 829 #24/2004 O Smear	Boundary
						by Ki	reguino	5/12/0	3 + 5/NO3	2360	193675	0.1100	0.250	0 3 560 4/29/2004 Dose Rate mr/	hr A/SLoca
						Reviewed By:	۰. ۱.	1 1 Y		2224-1	162426	0.1919	6.118	5 1 39 1/15/2004 Direct Reading DPM/100 cm^2	2
	·					Reviewed By:	Juint	1	1/5/04			T		3 330 △ Grab Sample	
						H - 7		-	. ,				•	\	
												(ľ)	120	Ò ,2 0	

									- FADIOLI	DGICAL SURVEY										
cation				South	Room Ceil	ina	RWP#				3	rvey #	11		s	urvey Type:		Fixed -Smea	18	_
		Smear F	Results				1		1 Min Fixed Result			1 Min Fixe	d Result							
		DPM/10				1		a. (cpm)	<u> β (српт)</u>			a. (cpm)	β (cpm)		Comments					
Vo.	α.	β	No.	a	β			,	++											
RC4	1.30	-12.29					SRC4	0	105						Scan : 0/90					
		10.63					SRC7	Γ ι	100					5	Scan: 0/100					
RC7	-0.87	10.63																		
					<u> </u>	l	+		+											
							1													
		<u> </u>			↓			+	++											
							- <u> </u>	<u> </u>	++											
				1												· · · · · · · · · · · · · · · · · · ·				
	<u> </u>		t																	
		ļ					+	_												
		1																		
			1																	
	1																		a	
		+	+	<u> </u>					_											
		<u> </u>		ļ																
			T				1													
	1		1		1						1									
	<u> </u>						- <u> </u>													
		L		<u> </u>					_		ł									
	1	1							_											
	<u> </u>	1																		
	+		+	+			-	-												
	<u> </u>			<u> </u>		<u> </u>				·			1							
		1	1	1												819				
	+	+		+				-						X						
	<u> </u>		1	1		-+				Instrument	Serial #	a Elf.	b Eff.	a Bko	b Bin	Cal. Due		ĸ	ey	
						Surveyed By:		Date: 5/14/2003		2929	163827	0.406	0.2400	a Bko	828	1/24/2004	0	Smear	•.•	Boundar
						b K	Payliero	3/14/2003		2224-1	162426	(191	0 0,2400 9) 0(1165	D_{1}	99	1/15/2004		Dose Rate mr/h	r 🔳 –	A/S Loca
						104 10							1 0.10					Direct Reading DPM/100 cm^2		
						Reviewed By.	- 9.1	Date: 1	1/5/04_	ļ		Oide	000	<u> </u>				DPM/100 cm^2 Grab Sample	+	
						7 V	Wien		13/04					L	L			srad Sample	<u> </u>	1

ocation:	Wa	sh Ra	ck 2 N	orth Floor	RWP#				SURVEY N	20			Su	rvey Typ	e: Static/Smear		
Sme	ar Res	ults		T	AVG Sc	an Result			1				1				
	V100cr			4		β (cpm)				ed Result							
10α	3 No		β	+		p (cpin)	T			<u>β (cpm)</u>			Comm	ents			
1 -0.3 11	_		┼┸	+	+		+		8		WR2.	-NF-I					
2 1.2 -0		7	+	+	+	f	h	2	7	1121	1	NE-	2				
3 2.7 -9		8	+	+	<u> </u>		f	3	10			NF-3					
4 -0.3 -4		9		+	+			4	9			NF-4					
			+	+	<u> </u>			5	5			NF-S					
the second second second second second second second second second second second second second second second s		11-	+	+	+			6	7	659		NE-6					
			+	+	L	L		7	5			NF-	7				
			+		l			8	12	857		NF-8	>				
8 -0.3 -9		3						9	5	871		NE-9					
9 1.2 15		4	+					10	6	917		NET	0				
10 1.2 -13			1					11	4	593		NF-					
11 2.7 -4.								12	5	556		NF-I					
12 -0.3 -15								13	4			NE-					
13 1.2 19	.0 3	8						14	9		-+	MF.					
14 -0.3 6.							1	15	15	778		NE					
15 -0.3 -11			1					16	11	689			F-16				
16 -0.3 15			T	1				17	7	627	┝╼┢╼						
17 1.2 -11	.5 4	2	1	1			1	18	6	698	-	¥	=-1)				
18 -0.3 -15	.1 4	3			1			19	12	612	┝╼┿╌╸		=-18				
19 -0.3 -6.	_		1					20	5	713			-19				
20 -0.3 -13	3 4	5	1							/13		NF	-40				
21	4	6	1		t		+										
22	4	7	+														
23	4		+														
24	4		+	t					+								
25	5		+	f													
	mment	-	-l	+													
	Third City			+									TE	Ľ			
				+									AL LA	N.			
												\rightarrow					
				+								_ //-	J	1010			
÷		~~~										/		819-			
				Surveyed By:	Da	ate: 2004	Instrument	Serial #	αEff.	βEff.	α Bkg		Cal. Due		Key		
				KP	3/31/	2004	2929	180830	0.33	0.28	2	994	12/15/04	0	Smear	1 *.*	Boundary
				Reviewed By:	6/27	2000	2360	193675	0.17	0.25	(4)	(854)	4/29/04		Dose Rate mr/hr		A/S Location
				Reviewed By	Da	ite: J										+	
				+ 1h. P	. + .	1 1								-	DPM/100 cm^2		
				1 In Au	and 1	18/04						1		Δ	Grab Sample		1
				* Note:	Smear	Samplea	endysis	via a	1929 W	vere ta	the an	Lano	lyzed N	tench	Direct Reading DPM/100 cm ² Grab Sample 200 Y 7 d during h	.	· · · · ·

ash Rack 2sults cm^2 lo. α 26 27 28 29 30 31 32 33	β β		RWP# AVG Scan Ι α (cpm) β				α (cpm)	19 ed Result β (cpm)			Comme		e: Static/Smear		
cm ² 2 40. α 26 27 28 29 30 31 32 33	β.					1	α (cpm)	β (cpm)		_ _	Comm	ents	<u> </u>		
lo. α 26	β		α (cpm) β	(cpm)		1	α (cpm)	β (cpm)			Comme	ents			
lo. α 26	β					1									
27 28 29 30 31 32 33							5	594	L.R	2-5	F-1		·····		
28 29 30 31 32 33						2	7	703			-2				
29 30 31 32 33						3	4	687			- 3				
30 31 32 33						4	10	673			F-4				
31 32 33						5	9	692		2	F-s				
32 33						6	7	694			F-6				
33						7	7	741			F7				
33						8	12	1272			F-P				
						9	7	1147			1F-9				
34						10	5	921			SF-10				
35						11	8	827			F-11				
36						12	3	712			F-12				
											E-13				
											(F-14				
											SF-16				
											SE-17				
											1F-11				
							<u> </u>								
44						20	8	698			SF-20				
							ļ								
					L	L									
						ļ									
						L					<u> </u>				
ents						L					····	F1_			
											12				
					ļ							m			
						ļ					<u>p</u>	P19-			
			<u></u>		<u> </u>			0.5%				017			
	^{Si}	urveyed By:	Date	*					α Bkg.	Bkg	Cal. Due			_	
			3/31/20		2929				24						active any
		by KP	<u> </u>	24"-						(454)					A/S Location
	R	eviewed By:	Date	:	1					- 1		(•	Direct Reading	1	{
	{ ;	that I -	A 14	Zlav					┟┈╼╾┠				Grab Samela	+	+
		the street	110	141	L			L					I Grab Sample		<u> </u>
	37 38 39 40 41 42 43 44 45 46 47 48 49 50 nts 50	37 38 39 40 41 42 43 44 45 46 47 48 50 nts S	37 38 39 40 41 42 43 44 45 46 47 46 47 48 49 50 nts Surveyed By: KP by KP	37	37	37	37 13 38 14 39 15 40 16 41 17 42 18 43 19 44 20 45 20 46 20 47 14 48 15 49 50 50 118 50 119 KP 3/31/2004 2929 180830 2929 180830 50 2360 193675	37 13 9 38 14 6 39 15 11 40 16 10 41 16 10 42 18 6 43 19 4 44 20 8 45 46 47 48 49 50 50 50 50 nts Surveyed By: Date: KP 3/31/2004 2929 180830 0.33 by KP 6/27/0 y ^H 2360 193675 A i 7	37 13 9 802 38 14 6 753 39 15 11 769 40 16 10 652 41 17 5 696 42 18 6 723 43 19 4 649 44 20 8 698 45 1 19 4 46 1 19 4 48 1 10 50 nts 1 10 10 Surveyed By: Date: Instrument Serial # α Eff. β Eff. 2929 180830 0.33 0.28 193675 0.17 0.23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(

									RADIO	DLOGICAL									
Locat	ion:		Wash	n Racl	(2 No	orth Wall	RWP#				Survey #	21			Surv	еу Туре	Static/Smear		
	S	mear	Result	s			AVG Sc	an Result			1 Min Fix	ed Result							
		PM/10					α (cpm)				α (cpm)				Commei	nts			ĺ
No.	α	β	No.	α	B				1	1	<u> </u>								
1			26		E					2									
2			27							3									
3			28							4									
4			29							5									
5			30							6									
6			31							7									
7			32							8									
8			33							9	14	543	Nort	h w	all				
9	-0.3	26.2	34			WR2-NV	1-1			10									
10			35							11	9	523	Nort	h Wa	41			··	
11	1.2	-11.5	36			WR2-NU	2-a	ļ		12									
12			_37		ļ		L			13	8	530	No	rth 1	Mall				
13	-0.3	-27.6	38		·	WRJ-NW.	-1	<u> </u>		14				-14					
14			39							15 16	7	517	No.	rth	~u1 [·		
15	-0.3	-2.5	40			MR2-NY	<u>w-1</u>		┝	10			<u> </u>					·	
16			41 42			}		ļ		18			<u>}</u> ~~			·			
17			42			<u> </u>				19			<u> </u>						
18 19			43			 		<u> </u>	╎╌╌╌┥	20			<u> </u>						
20			45			}	<u> </u>	<u> </u>	<u>├</u> }				<u> </u>			<u> </u>			
21			46			<u> </u>		<u>├</u> ────					┟╌╌╌╼						
22	<u> </u>		47			<u> </u>		┼					<u> </u>						
23			48				<u> </u>	<u>├~~~</u>						~ ~ ~ ~					
24			49			+						· · · · ·	<u> </u>						
25			50				<u> </u>	t											
		Com	ments		<u> </u>	<u> </u>		<u>├</u> ────											
								<u> </u>											·
						1									-5				
								1						-7					
						Surveyed By:	D	ate: /2004	Instrument	Serial #	α Eff.	βEff.		β Bkg	Cal. Due		Key		
						KP	3/31	/2004	2929	180830	0.33	0.28	2	994	12/15/04	0	Smear		Boundary
						by KP		1 /o 11 ate:	2360	193675	0,17	0.25	(4)	854	4/29/04		Dose Rate mr/hr		A/S Location
						Reviewed By:	D	ate:]				•	Direct Reading DPM/100 cm ²		
						7 HWlesin	it 11	leloy_								\triangle	Grab Sample		
												WI A	1 . 1	MA	11/ 200	17			

* Note: Smear sample andlysis via 2929 were taken the analyzed MARCH 2004 Direct Frisk using their menitor 43-37 probe were taken tandlyzed during work in June 2003

tior			Mash	Deale	2.60	uth Wall	RWP#		RADIO	DLOGICAL	SURVEY N	1 <u>AP</u> 23			Sun		Static/Smear	- <u></u>	
ocation	n.		wasni	каск	2 30	utnivvan	RVVP#				Survey #	23			Sulv	ey Type.	Static/Sinear		
······································	Sr	pear	Results		- 1		AVG Sc	an Result			1 Min Fix	ed Result							
			0cm^2				α (cpm)				α (cpm)				Comme	nts			
VO.	α	β	No.	α	β			1		1									
1		-	26							2									
2			27			_				3									
3			28							4									
4			29							5									
5			30							6									
6			31							7									
7			32							8			ļ						
8]	33					L		9			 						
9			34							10	6	545	- Jan	th we	víl		······		
	0.3	-36.6	35			NR2-SW	-1	J		11		505		14					
11	-+		36							12	5	525	Jev.	12 mg	 	··			
	0.3	-9.7	37			WR2-SW-	2	+		13 14		400		10					
13			38			100 - 54		+		14	9	499	194	hw		<u></u>			
	1.2	-4.3	39			WR2-JW-	 ∠	<u> </u>		16	11	573	F.	14	10				
15			40					<u> </u>		17		- 515	- 202	12 W					
	1.2	-13.3	41			MR2-SM	F.7	<u>∔</u>		18			<u>├</u> ───			·····			
17 18			42				<u> </u>	+		19			+						
19			43			╏╺╴┈╾╴╼╴	<u>├</u>	+		20			┨						
20	{		45			<u> </u>	<u>}</u> −	+		21	<u>├</u>		<u> </u>						
21	-+		46			<u></u>		+		22	<u> </u>								
22	-+		47			<u> </u>	t	1		23	f	[·····			
23			48			f		1		24				·····					
24			49			 	f	+		25			1						·
25	- 1		50	· · · ·		····	1	1											
- المستقد	I	Com	nents	<u> </u>	<u>.</u>	1		1											
						1	1												
							1								25				
						Surveyed By:		Date:	Instrument	Serial #	α Eff.	β Eff.	α Bkg.	& Bkg	Cal. Due		Кеу		
						KP	3/3	Date: 1/2004	2929	180830	0.33	0.28	2	994	12/15/04	0	Smear		Boundary
						by KP Reviewed By:	6/2	7/2∞3 → Date:	2360	193675	0.17	0.25	(43	854	4/29/04		Dose Rate mr/hr		A/S Locati
						Reviewed By:	C)ate:						1		*	Direct Reading DPM/100 cm^2		
						Hw high		10/04	}		<u> </u>	<u> </u>	+			Δ	Grab Sample	f	+
						1 11 10	<u>1</u>	10107	l	L	-that	t	J	L	لىسىم م		Totan sample	1	<u> </u>

Note: Somear sumple analysis via 2929 were taken & analyzed Murch 2004

Direct Frisk using floor monitor 43-37 prote were taken & analyze during work in June 2003

ocation:		Mas	h Rad	12 E	ast Wall	RWP#			DLOGICAL	SURVEY N	22			Sun		e: Static/Smear		
ocation.		vvd3	in indi		351 44011	1.				Survey #	22			Surv	ey iypi	e. Static/Smeal		
Smear Results AVG Scan Result DPM/100cm^2 α (cpm)									1 Min Fixed Result									
					i		β (cpm)		α (cpm)				Comme	nts				
No. α	β	No.	α	β					1									
1		26							2									
2		27							3									
3		28					·····		4									
4		29						{	5									
5	+	30						<u>↓ </u>	6						<u>_</u>			<u> </u>
6		31		ļ														
_7	+	32						ł ł	8									
8		33					<u> </u>	┽╌───┤	9 10									
10	+	35		+				1	11				-, <u></u>					
11	-+	36		 -			├ ─ ───	<u>+</u> {	12									
12	-{	37					<u> </u>	11	13									
13	+	38		1					14							······································		
14		39							15				··					
15		40							16									
16		41							17	11			H Wal					
17 1.2					WR2-EM				18	9			+ may					
18 1.2				<u> </u>	HR2- EN	- 2	<u> </u>	<u> </u>	19	14		EA	A wak	L				
19 -0.			·	L	WRZ-EN	1-3	<u> </u>		20	9			ut Wa					
20 -0.3				ļ	WR2- EM	r-y			21	6			ent lare	41				<u> </u>
21 2.7					WRZ-EW-		<u> </u>		22 23	7			fait n	sall				
22 1.2 23 1.2	the second second second second second second second second second second second second second second second s	_		┨	WR2-EW	+ <i>6</i>	<u> </u>		23	8			ZAIL W	<u></u>		·····		
23 1.2 24 -0.	_			┿╼╼	WR2-EN	+7	╁╼────	+	24		565	<u> </u>	Galt	Wall				
24 -0.	3 -9.7	50		╋───	WR2-EW-	† <i>₽</i>	ł	<u> </u>	20	<u> </u>		<u> </u>						
20		nments		Ł	f			+		<u> </u>		<u> </u>		····,				
		in jente			}	<u> </u>	<u> </u>	+		╉┅────							·	
					<u> </u>		<u> </u>	+			(<u> </u>				·····		
			·····	·····	<u> </u>	<u> </u>	†		·			1		13		······	·	
		<u> </u>				1	1						-/					
		Surveyed By: Date: Inst							Serial #	α Eff.	β Eff.	α Bkg.	Bkg	Cal. Due		Кеу		
					KP	3/31	ate: /2004	2929	180830	0.33	0.28	2	994	12/15/04	0	Smear	*-*	Boundary
					Reviewed By:	6/2	1/0 3 [#]	2360	193675	0.17	0125	(A)	854	4/29/04		Dose Rate mr/hr		A/S Locati
					Réviewed By:	D	ate:								•	Direct Reading DPM/100 cm^2		
					Hardreins	オー ぃ/	rlon			1					Δ	Grab Sample		

* Note: Somer sample analysis via 2929 were total handyzel March 2004 Direct Frisk Using Flour Monitor 43-37 probe were taken familyzed during Morl(in June 2003

RADIOLOGICAL SURVEY MAP Location: Wash Rack 2 West Wall **RWP#** Survey # 24 Survey Type: Static/Smear AVG Scan Result 1 Min Fixed Result Smear Results DPM/100cm^2 α (cpm) β (cpm) α (cpm) β (cpm) Comments 581 West Wall No. No. β 8 α β α 1 12 589 26 WR2-WW 2 1 -0.3 -0.7 545 10 2 -0.3 -2.5 27 ww-3 503 11 -03 28 4 3 -11.5 -ww-574 5 5 1.2 29 4 -4.3 -hin 6 10 560 30 5 -0.3 10.0 -ww 7 582 6 1.2 31 -WW 8 -7.9 8 555 -0.3 -11.5 32 - WW 8 ~7 9 33 -NW-8 8 1.2 -6,1 10 34 9 35 11 10 11 36 12 12 37 13 13 38 14 15 14 39 15 40 16 16 41 17 17 42 18 43 19 18 20 44 19 45 21 20 46 22 21 47 23 22 48 24 23 24 49 25 25 50 Comments Date: 3/31/2004 Surveyed By: Instrument Serial # α Eff. βEff. α Bkg. Bkg Cal. Due Key 2929 KΡ 180830 0.33 0.28 994 12/15/04 21 *_* 0 Smear Boundary 6/27 /03 ¥ Date: Reviewed By: 0.17 2360 193675 0125 (4) 854 4/29/04 A/S Location Dose Rate mr/hr **Direct Reading** DPM/100 cm^2 W drepnit 11/8/04 * Note: Smear Sample analysis via 2929 were tates and analyzed March 2004 Direct Frisk Using theor monitor 43-37 probe were taken & analyzed during work in June 2003

ocation:		Wa	sh R	ack 2 (Deiling	RWP#				SURVEY M	25							
oodion			01110	2011 2 1	bennig					Survey #	25			Surv	ey iype	: Static/Smear		
	Smear	Result	s		· · · · · · · · · · · · · · · · · · ·	AVG Sc	an Result			1 Min Fixe	ad Result	<u> </u>		L		······		
	DPM/1						β (cpm)			α (cpm)				Comme	nts			
νο. α	β	No.	α	β		<u>/_</u> _/_	<u></u>		1	0		East Wa						
1 -0.3	-16.8	26						<u>├</u>	2	0		East Wa						
2 1.2	-18.6	27							3	2		East Wal						
3 -0.3	-15.0	28							4	1	78	East Wal	1					
4 -0.3	-16.8	29						1	5	1	100	North Wa	all					
5 2.7	-29.3	30							6	2		Ceiling						
6 -0,3	-18.6	31							7	0		Ceiling						
7 1.2	8.2	32							8	0		Ceiling						
8 -0.3	15.4	33							9	0		Ceiling						
9 -0.3	-6.1	34							10	1		South W						
10 1.2	-2.5	_ 35							11	0		North Wa	all					
11 1.2	-16.8	36							12	0		Ceiling						
12 -0.3	-0.7	_ 37							13	1		Ceiling		<u> </u>		·		
13 -0.3		38							14	1		Ceiling						
14 -0.3		39					L		15	2		Ceiling						
15 -0.3	-40.0	40							16	0		South W						
16 1.2	-38.2	41							17_	0		West Wa						
17 -0.3		42				[L		18	2		West Wa		<u> </u>				
18 1.2	-9.6	43					L		19	0		West Wa						
19 -0.3	_	44		<u> </u>			l		20	1	72	West Wa	all			·		
20 -0.3	-6.1	45					<u> </u>		21		<u> </u>							
21		46		<u> </u>		ļ	<u> </u>		22									
22		47		<u> </u>	<u>_</u>		<u> </u>		23	┞───┼		{						
23		48		- <u> </u>	 		<u> </u>		24 25	┝╍───┥		<u> </u>				· <u></u>		
24		49		┥	Į	ļ	 	+	25	┟───╁		<u> </u>				<u></u>		
25	1	50			<u> </u>		<u>↓</u>	<u>}</u>	· 	┟╾╍╴╋		<u> </u>		····		·····		
	Com	ments			<u> </u>		ł	d		┟───┤		<u>}</u>						
······					<u> </u>	┝────	<u>↓</u>	+		├			OTA	0		No Bro	to to	+ (A)
					<u> </u>		<u> </u>			┟╌╌──┼			<u> </u>	_0_		No Blg	OTO OTO	mind i
					<u> </u>		<u> </u>	<u>}</u>		<u>├</u>					0- t	ye 0 26	7	· · · · · · · · · · · · · · · · · · ·
				·	Surveyed By:	<u> </u>	1	Instrument	Serial #	αEff.	βEff.	α Bkg.	& Bkg	Cal Due		Key	/	
					Surveyed By.	U • גיג ג	ate: 1/2004	2929	180830	0.33	028	2 Drg.	994	12/15/04		Smear	•••	Boundary
			<u> </u>	-		6/3/		2329	162426	0.33	(0.15)	1 th	(019)	12/27/04	<u> </u>	Dose Rate mr/hr		
			<u> </u>		Reviewed By:	<u>@1.46</u>	<u>/03[≭] →</u> ate:	<u> </u>	102420		<u> </u>		0.0	12121104	<u> </u>	Direct Reading	+	TVO LOCALK
					Reviewed By:								}		*	DPM/100 cm^2		
					Reviewed By:		IRION								Δ	Grab Sample	[[
	<u></u>				The area		·····	······································		4l		****	••					

* Mok: Smear Supple andysis vie 2929 ware analyzes Mark 2004 direct frisk using floor monitor 43-89 for the ware taken & analyzar during work in planch 2003

1				((
			BADK									
cation: Wash Rack 3 No	rth Floor RWF	D#	RADIC	DLOGICAL	Survey #	27		Surv		: Static/Smear		
		n			ou.voy "				-, .,			
Smear Results		G Scan Result			1 Min Fixe	ed Result						
DPM/100cm^2	α (α	cpm) β (cpm)			α (cpm)	β (cpm)		Commer	nts			
Ιο. α β Νο. α β				1	3	525	WR3-NI			<u> </u>		
1 0.9 -8.1 26				2	1	605	N	-2				
2 -0.6 0.9 27				3	2	548		6-3				
3 -0.6 8.1 28				4	4	606 613		<u>F-4</u>				
4 -0.6 -11.7 29				5	3	637		1F-5				
5 0.9 -13.4 30 6 -0.6 -0.9 31	┟╴╺╼╴╼╶┠╶╍╸			7	10	634		VF-6				
	┼╾╌╌╴╺┼╴╼╴			8	8	588		1F-7				
7 -0.6 0.9 32 8 -0.6 9.9 33	<u> </u>			9	6	589		VF-9				
9 -0.6 8.1 34	+			10	11	621		NF-10				
10 -0.6 -9.9 35	┼╼╾╼╌┼╍╌			11	8	621	the second second second second second second second second second second second second second second second se	NF-11				
11 0.9 -13.4 36				12	7	602		NF-12				
12 -0.6 -4.5 37				13	6	617		VE-13				
13 0.9 20.6 38	1			14	5	740		NF-14				
14 0.9 -6.3 39				15	5	569		NF-15				
15 -0.6 -15.2 40				16	8	552		NF-16				
16 0.9 -36.8 41				17	12	558		NE-1				
17 -0.6 -11.7 42				18	10			NE-1	8			
18 -0.6 -4.5 43				19	8	601		NE-1	9			
19 0.9 -13.4 44				20	15	639		NF-0	10			
20 -0.6 -2.7 45	<u> </u>											
21 46												
22 47	<u>↓</u>											
23 48 24 49	<u> </u>				+		{					
24 49 25 50	<u>┽╌</u> ╌╶╸╴ ╸ ┤╼╌╴											
Comments	╅╾╌╾╼╼╋╼╼		<u> </u>									
Comments	╋╼╌╼╌┾╼╌											
	++				1		5107	5				
	+				1		Thurs					
	1											
	Surveyed By:	Date:	Instrument		α Eff.	βEff.	α 8kg. β 8kg 4 965	Cal. Due		Key		
	KP KP	3/30/2004	2929			0.28	965	12/15/04	0	Smear	***	Boundary
	by Kl	3/30/2004*	2360	193675	0.17	0.25	4 854	4/29/04		Dose Rate mr/hr		A/S Location
	by 14 Reviewed By:	Date:						T	*	Direct Reading	1	
	1	+ 11-1					╁╌╾╶╶┼ ┈╼╼╼	╞╾╍╌╺┤		DPM/100 cm^2	+	<u> </u>
	Hurs segues	1 18/04			1			1	Δ	Grab Sample		L

Dirat Frisk Uning floor monitor 43-37 probe were taken taxelyzed doring work in June 2003

Location: Wash Rack 3 South Floor						uth Floor	RWP#				Survey #	26			Surv	еу Тур	e: Static/Smear	
	5	Smear	Result	s	<u> </u>		AVG S	can Result			1 Min Fixe	d Result				<u>.</u>		
		PM/10					α (cpm)				α (cpm)	β (cpm)			Commer	nts		
VO.	α	β	No.	α	β		A			1	5	808	n	1K3 -5	F-1			
1	-0.6	9.9	26							2	3	758		1	-2			
2	-0.6	0.9	27							3	6	561			-3			
3	-0.6	6.3	28					1		4	7	1005			-4			
4	-0.6	-36.8	29							5	2	258			-1			
5	-0.6	-26.0	30							6	2	647			-6			
6	-0.5	-6.3	31							7	3	665						
7	-0.6	-42.1	32							8	1	569	_		-8			
8	-0.6	-29.6	33							9	6	880			_9			
9	-0.6	24.2	34							10	4	940			-10			
10		-0.9	35							11	2	558			-11			
11	-0.6	8.1	36							12	3	551			-12			
12	-0.6	4.5	37							13	2	434			1.3	_		
13	-0.6	-18.8	38							14	4	1283			-14			
14	-0.6	-31.4	39							15	7	1076			-15			
15	-0.6	11.7	40							16	4	572			-16	_		
16	-0.6	-33.2	41							17	4	620			-17			
17	-0.6	-8.1	42							18	4	576			-18			
18		9.9	43							19	7	683			- 19			
19	-0.6	-0.9	44							20	4	664		¥	- 20			
20	-0.6	-4.5	45							21								
21			46							22								
22			47							23								
23		1	48							24								
24			49							25								
25			50		l										·			
		Com	nents															
														,		186	6	
													ļ					
						L	L	1					<u> </u>	-	<u> </u>			
						Surveyed By:	i	Date: 🚽	Instrument	Serial #	α Eff.	βEff.		/ Bkg	Cal. Due		Key	
						KP	3/3	0/2004	2929	180830	0.33	0.28	4	965 (854)	12/15/04	0	Smear	Boundary
						KP KP Reviewed By:		123/0T -	instrument 2929 2360	193675	0.17	0175	(4)	(854)	4/29/04		Dose Rate mr/hr	A/S Locatio
												<u>_</u>				*	Direct Reading DPM/100 cm ²	
						HW hen	ال	1 Plon					1			Δ	Grab Sample	1
			*	Not	215	Har fage le c	Enabry 1	/ via 2	9,79 600	the state	a luzed	Man	L 200'	4				

Direct fruk Using floor momitor 43-37 were taken & andy and during work in 2002

						I. I. I. I.			RADIO	DLOGICAL							04-1-0		
.ocati	on:		wast	n Rac	k 3 No	orth Wall F	RWP#				Survey #	28			Surv	ey iype	: Static/Smear		
· · ·	s	mear	Result	ts		r	AVG Sca	an Result	<u></u> .	l	1 Min Fix	ed Result			·····				
			00cm^				α (cpm)	β (cpm)			α (cpm)				Comme	nts			
No.	α	β	No.	α	β					1									
1			26							2									
2			27							3					- <u></u>				
3		_	28							4					<u> </u>		······		
4			29							5							<u> </u>		
5			30							6									
6			31							_7									
7			32							8									
8			33							9	4	757	Por	44 1	rali				
9	-0.6	-164	34						 	10			L						
10			35							11	5	781		onth	Wull				
11	-0.6	-26.0	36		L					12				1.	1. 1. 14				
12			37							13	9	988	No	rth_	Will				
13	2.4	-20.6	38			 				14									
14			39							15	6	794	N	orth	Win			<u> </u>	
15	-0.6	2.7	40		L					16									
16			41		<u> </u>	┟━━━━━┝				17									
17			42					·		18		L							
18			43		<u> </u>	<u> </u>				19									<u> </u>
19			44		 					20									
20			45		╂	├ ──── ↓													
21		┣	46		<u> </u>	<u> </u>													
22		 	47		+	┦────┼													
23			48		┼───	<u>↓</u>													
24		}	49 50		+														
25		L			1	├ ─────													
		Com	ments			<u>↓</u>									· · · · · · · · · · · · · · · · · · ·				<u> </u>
						<u> </u>				<u> </u>			{						
						┟╼╾╼╾┽			<u></u>						<u> </u>				
						}			<u>}</u> i					\rightarrow	<u> </u>				
			<u> </u>		<u> </u>	Surveyed By:		ate:	Instrument	Serial #	α Eff.	β Eff.	α Bkg.	β Bkg	Cal. Due		Key		····-
		·				KP	2/20	/2004 7	 2929 	180830	0.33	0.28	4	965	12/15/04	0	Smear	•-*	Boundary
							3/30 /s /	Isloy#	2360	193675	0.33	0.25	as t	854	4/29/04	<u> </u>	Dose Rate mr/hr		A/S Locatio
						Reviewed By:	V /,	ate:	2000	100010		0140			-1/20/04	*	Direct Reading		Locatio
		<u> </u>				the Suint	E 11/	ol.u				<u>├</u> ───	┼───┼	<u></u>		Δ	Grab Sample		
						1 11 Control	<u>ь </u>	8/04		l	L	L	.L		L		Late outple	·	

* Mote: Smeer Sample one has I via 2929 analyzed in March 2004 direct frisk using theor momentar 43-37 probe were taken tanalyzed during work in June 2003

1	
(

									RADIOL	OGICAL SL	JRVEY M	AP				Survey	Type: St	atic/Smear		
_ocation:	Wash	Rack	3 Sou	th Wall	F	RWP#				S	urvey#		30							
						AVG S	can Re	sult			Min Fix	ed F	Result			Comments				
	r Results					α (cpm)	I B (c	em)		(ı (cpm)	β (cpm)			Commenter				
DPM/	100cm^2	2			T	a (cpin)	1	<u> </u>		1		L								
Νο. α β	No.	α	β		+		+			2		L								
1	26				+					3		-								
2	27									4										
3	28			_						5										
4	29						+			6		<u> </u>								
5	30									7										
6	31						_			8										
7	32						-+			9		1		0						
8	33									10	Ę	5	861	Guth	Wet: W					
9	34					<u> </u>				11										
	.5 35			wez	-JV					12		9	1206	Jor 1	h mett					
11	36							+		13		1		IA		2				
	3.1 37	1				<u>+</u>)		+		14		4	1102	Jerh	- Will	1				
13	38						_+_			15						4				
	2.7 39					3				16		5	974	Jov4	_var	1				
15	40				1	+				17										
	27.8 4	1			¥	<u>+1</u>				18										
10 0.5	4									19										
18	4	3								20										
19	4									21										
20	4	5								22										
20	- 4	6								23	1									
22	4	.7								24										
23		8								25										
24		19																		
25		50																		
	Commen	ts										T								
	Genne								+											
												_				~5				
									+							Oal Dure I		Key		
									Instrument	t Serial #	t αE	ff.	βEff.	α Bkg.	Bkg	Cal. Due		Smear	*_*	Boundary
				Surv	eyed B	iy:	Date	×.	1115010111011	180830			0.28	4/	965	12/15/04		Dose Rate mr/hr		A/S Location
					KP		3/30/2	004 ¥	2929	19367		_	0125	(4)	854	4/29/04		Direct Reading		
L				- 1	KI		6125	<u>09" -</u>	2300	13307						1 1	*	DPM/100 cm^2		
				Rev	iewed [By:	Date	e:	Instrumen 2929 2360								~	Grab Sample		
						Зу:		sL v								L	<u> </u>			
					NAL.	pit_	<u> </u>	101		29.24	were	2	melkized	(in f	Murch	2004		Grab Sample		
			×	Note	: Jn	ear J	angle	unel)	yta on	. 01-1 UN-7	7 Am	be	were	taken	4 conel	yzed d	eriz	work in J	Cine d	43
				Direc	x fr	j1K.	wing	+ bor	mon Tor	~ YJ 3	/ / ···					/	•			

.

								RADIO	LOGICAL S	URVEY M	AP							
Location:		Was	h Rac	k 3 Ea	ist Wall	RWP#				Survey #	29		ſ	Surve	y Type:	Static/Smear		
S	mearl	Result	5			AVG	Scan Result			1 Min Fixe								
	PM/10	Ocm^	2				m) β (cpm)			α (cpm)	β (cpm)			Commen	ts			
No. a	B	No.	α	ß		T			1	7	516	East	mall					
1 -0.6	38.5	26		P	WR3-EW	1			2	5	558		1					
	4.5	27				-12		<u> </u>	3	5	539	_						
	-17.0	28							4	2	617							
	-17.0	29						++	5	6	1348							
	-8.1	30				+			6	2	582							
		31							7	5	886							
	17.0	32				_			8	5	1212		4					
	-6.3	33				10-		1	9									
8 -0.6 9	-13.4	34		<u>├</u> ──	<u> </u>	- ta		 t	10									
10		34				+		11	11									
		36			{	+		1	12									
11		37	<u> </u>			+		++	13									
12	 	38				+		t	14									
13		39							15									
14		40		<u> </u>		+			16									
15						+		+	17									
16		41			<u> </u>	+			18									
17		42				+		+	19									
18	┣───	43		<u> </u>					20									
19		44		──					21									
20		45		+	╂				22									
21		40				-+			23									
22									24				_					
23		48		+		+			25									
24		49		+														
25	<u> </u>		_															
J	Com	ments	s		+													
L														6				
												1		<u> </u>				
										<u> </u>	<u> </u>							
					10		l	Instrument	Serial #	α Eff.	βEff.	α Bkg.	Bka	Cal. Due		Key		
					Surveyed B	y:	Date:	2929	180830	0.33	0.28	4	965	12/15/04	0	Smear	•••	Boundary
L					KP			2929	193675	0,17	005		854	4/29/04		Dose Rate mr/hr		A/S Location
					Reviewed B	y:	Date: 3/30/2004 0/25/04 Date:	2300	193075	0117					•	Direct Reading DPM/100 cm^2		
					- 10 - 0	- 1	1 John			+		1 1			Δ	Grab Sample		
L						mont	/8/04		L		1							

* Note: smear sample analysis via 2929 were analyzed March 2004 Direct Frisk using floor monitor 43-37 probe were taken tanebyzed during work in June 2003

(

ocation		Wash	Raci	(3 We	est Wall	WP#				Survey #	31			Surv	еу ⊺уре	e: Static/Smear		
S	mear F	Results				AVG Sca	an Result	<u> </u>		1 Min Fix	ed Result							
D	PM/10	0cm^2				α (cpm)	β (cpm)			α (cpm)	β (cpm)			Comme	nts			
10. α	β	No.	α	β					1									
1	1	26							2								_	
2		27							3									
3		28							4									
4		29							5									
5		30							6									
6		31							7									
7		32							8									
8		33				·····			9						· · · · · · · · · · · · · · · · · · ·			
9		34							10									
10		35							11							······································		
11		36							12									
12		37							13									
13		38							14									
14		39							15									
15		40							16				_					
16		41							17	7								
17 -0.6	-11.7	42							18	5								
18 0.9	-15.2	43							19	3							_	
19 -0.6	15.2	44				,	1		20	3								
20 -0.6	-22.4	45							21	6								
21 0.9	-13.4	46							22	5								
22 -0.6	9.9	47							23	4								
23 -0.6	-13.4	48							24	4	542							
24 0.9	-8.1	49							25								_	
25		50																
	Comn	nents																
······································																		
					Surveyed By:	D	ate:	instrument	Serial #	α Eff.	βEff.	α Bkg	A Bkg	Cal, Due		Key		
					KP	3/30	/2004 -	2929	180830	0.33	0.28	4/	965	12/15/04	0	Smear	*-*	Boundary
					by KI	612	5/03*-	2360	193675	0117	0125	Ø	854	4/29/04		Dose Rate mr/hr		A/S Locatio
					Surveyed By: KP by K/ Reviewed By: IW Aren	D	ate:						_		•	Direct Reading	[
					ind -	1.		J		┨─────	 	↓		┟───┤		DPM/100 cm^2		┢┈╼────
					1 YW/Yer	mgt 1	112104	1		l		1	l	[]	Δ	Grab Sample	L	<u> </u>

* Note: Smear Sample analysis 1 via 2929 were analyzed March 2004 direct frisk, using Hoor monitor, 43-37 probe, were taken & andly zed during wolk in June 2003

RADIOLOGICAL SURVEY MAP

Appendix H: Survey Unit Worksheets and Data Summaries

CABRERA SMEAR COU .NG WORKSHEET (Rev 4) BARF BUILDING NORTH FLOOR - SMEAR RESULTS

											dpm/1]		
	<u>α eff</u>	βeff		Samp	le Count Tin	ne (min)	Daily Back		t Time (min)		α Flag	β Flag			
	0.4060	0.2400	1		2.0			20.0			10	500			
			* Morning	Daily Count											
		1	Backgro	und Total	T				1						Tech.
seq. #	Sample ID# and Description	Date	Cou	ints*	Sample To	otal Counts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm ²)	>α flag	>β flag	Initial
			α	β	α	β	α	β	a	β	α	β			
1	BARF NF 1	5/12/2003	7	828	4	98	0.4	41.4	2.00	49	4.1	32			KvH
2	BARF NF 2	5/12/2003	7	828	5	102	0.4	41.4	2.50	51	5.3	40			KvH
3	BARF NF 3	5/12/2003	7	828	4	122	0.4	41.4	2.00	61	4.1	82			KvH
4	BARF NF 4	5/12/2003	7	828	1	93	0.4	41.4	0.50	47	0.4	21			KvH
5	BARF NF 5	5/12/2003	7	828	1	78	0.4	41.4	0.50	39	0.4	-10			KvH
6	BARF NF 6	5/12/2003	7	828	4	85	0.4	41.4	2.00	43	4.1	5			KvH
7	BARF NF 7	5/12/2003	7	828	6	103	0.4	41.4	3.00	52	6.5	42			KvH
8	BARF NF 8	5/12/2003	7	828	1	96	0.4	41.4	0.50	48	0.4	28			KvH
9	BARF NF 9	5/12/2003	7	828	1	105	0.4	41.4	0.50	53	0.4	46	1		KvH
10	BARF NF 10	5/12/2003	7	828	1	96	0.4	41.4	0.50	48	0.4	28			KvH
11	BARF NF 11	5/12/2003	7	828	2	101	0.4	41.4	1.00	51	1.6	38			KvH
12	BARF NF 12	5/12/2003	7	828	1	106	0.4	41.4	0.50	53	0.4	48			KvH
13	BARF NF 13	5/12/2003	7	828	4	108	0.4	41.4	2.00	54	4.1	53			KvH
14	BARF NF 14	5/12/2003	7	828	2	105	0.4	41.4	1.00	53	1.6	46	<u> </u>		KvH
15	BARF NF 15	5/12/2003	7	828	4	80	0.4	41.4	2.00	40	4.1	-6			KvH
16	BARF NF 16	5/12/2003	7	828	0	84	0.4	41.4	0.00	42	-0.9	3	1		KvH
17	BARF NF 17	5/12/2003	7	828	2	93	0.4	41.4	1.00	47	1.6	21		L	KvH
18	BARF NF 18	5/12/2003	7	828	1	94	0.4	41.4	0.50	47	0.4	23			Кун
19	BARF NF 19	5/12/2003	7	828	1	93	0.4	41.4	0.50	47	0.4	21			KvH
20	BARF NF 20	5/12/2003	7	828	1	90	0.4	41.4	0.50	45	0.4	15			KvH
21	BARF NF 21	5/12/2003		828	0	93	0.4	41.4	0.00	47	-0.9	21			KvH
22	BARF NF 22	5/12/2003	7	828	2	97	0.4	41.4	1.00	49	1.6	30	I		KvH
23	BARF NF 23	5/12/2003	7	828	4	87	0.4	41.4	2.00	44	4.1	9			KvH
24	BARF NF 24	5/12/2003	7	828	2	80	0.4	41.4	1.00	40	1.6	-6			KvH
25															

CABRERA SMEAR COL ING WORKSHEET (Rev 4) BARF BUILDING SOUTH FLOOR - SMEAR RESULTS

_										_	dpm/1	00 cm ²			
	α eff	βeff		Sampl	e Count Tin	ne (min)	Daily Backg	round Coun	t Time (min)		α Flag	βFlag			
	0.4060	0.2400			2.0			20.0			10	500			
			* Mornina	Daily Count						-			-		
			-	und Total	· · · · ·				r				r-		Teo
seq. #	Sample ID# and Description	Date	-	ints*	Sample To	otal Counts	Backgro	und (cpm)	Sample Co	unts (com)	Sample (dp	m/100 cm ²)	> a flag	>β flag	
			a	ß	α	β	α	β	α	β	α	β		' ·	
1	BARF SF 1	5/12/2003	7	828	5	107	0.4	41.4	2.50	54	5.3	50			KvH
2	BARF SF 2	5/12/2003	7	828	0	103	0.4	41.4	0.00	52	-0.9	42			Кун
3	BARF SF 3	5/12/2003	7	828	1	95	0.4	41.4	0.50	48	0.4	25			KVH
4	BARF SF 4	5/12/2003	7	828	2	110	0.4	41.4	1.00	55	1.6	57	1		KvH
5	BARF SF 5	5/12/2003	7	828	2	96	0.4	41.4	1.00	48	1.6	28	1		KvH
6	BARF SF 6	5/12/2003	7	828	6	105	0.4	41.4	3.00	53	6.5	46			KvH
7	BARF SF 7	5/12/2003	7	828	1	91	0.4	41.4	0.50	46	0.4	17			KvH
8	BARF SF 8	5/12/2003	7	828	2	95	0.4	41.4	1.00	48	1.6	25			KvH
9	BARF SF 9	5/12/2003	7	828	2	103	0.4	41.4	1.00	52	1.6	42			KvH
10	BARF SF 10	5/12/2003	7	828	4	116	0.4	41.4	2.00	58	4.1	69			KvH
11	BARF SF 11	5/12/2003	7	828	5	117	0.4	41.4	2.50	59	5.3	71			KvH
12	BARF SF 12	5/12/2003	7	828	0	80	0.4	41.4	0.00	40	-0.9	-6			KvH
13	BARF SF 13	5/12/2003	7	828	1	117	0.4	41.4	0.50	59	0.4	71			KvH
14	BARF SF 14	5/12/2003	7	828	2	107	0.4	41.4	1.00	54	1.6	50			KvH
15	BARF SF 15	5/12/2003	7	828	2	90	0.4	41.4	1.00	45	1.6	15			KvH
16	BARF SF 16	5/12/2003	7	828	1	85	0.4	41.4	0.50	43	0.4	5			KvH
17	BARF SF 17	5/12/2003	7	828	0	102	0.4	41.4	0.00	51	-0.9	40			Кун
18	BARF SF 18	5/12/2003	7	828	4	85	0.4	41.4	2.00	43	4.1	5			KvH
19	BARF SF 19	5/12/2003	7	828	2	93	0.4	41.4	1.00	47	1.6	21		<u> </u>	KvH
20	BARF SF 20	5/12/2003	7	828	2	83	0.4	41.4	1.00	42	1.6	0		<u> </u>	KvH
21	BARF SF 21	5/12/2003	7	828	2	85	0.4	41.4	1.00	43	1.6	5	ļ	Ļ	KvH
22	BARF SF 22	5/12/2003	7	828	1	103	0.4	41.4	0.50	52	0.4	42	L	—	KvH
23	BARF SF 23	5/12/2003	7	828	2	96	0.4	41.4	1.00	48	1.6	28	L	L	KvH
24	BARF SF 24	5/12/2003	7	828	3	95	0.4	41.4	1.50	48	2.8	25	ļ	┣	KVH
25		<u> </u>	I	L		1		<u> </u>	L	1		1		1	

Tech. Initial CABRERA SMEAR COU ING WORKSHEET (Rev 4) BARF BUILDING NORTH ROOM LOWER WALLS - SMEAR RESULTS page 3

Tech.

Initial

KvH KvH KvH KvH KvH Кун KvH KvH КүН KvH KvH KvH KvH KvH KvH КvН KvH Кун KvH KvH AC AC

										_	upinv it	00 cm²		
Г	α eff	βeff		Sample	e Count Tim	e (min)	Daily Backg	round Count	Time (min)		α Flag	β Flag		
	0.4060	0.2400			2.0			20.0			10	500		
-										-				
			* Morning E		· · · · · · · · · · · · · · · · · · ·						· · -			
			Backgrou								Sample (dp		>α flag	>β flag
seq. #	Sample ID# and Description	Date	Cou	nts"	Sample To	tal Counts	•	und (cpm)	Sample Co	unes (cpm)			- of marking	- p
			α	β	α	<u> </u>	α	ß	α	p	α	<u>Р</u>		
1	BARF NRNW 1	5/13/2003	6	844	2	87	0.3	42.2	1.00	44	1.7	5		
2	BARF NRNW 2	5/13/2003	6	844	4	102	0.3	42.2	2.00	51	4.2	37		
3	BARF NRNW 3	5/13/2003	6	844	2	97	0.3	42.2	1.00	49	1.7	26		
4	BARF NRNW 4	5/13/2003	6	844	3	84	0.3	42.2	1.50	42	3.0	-1		
5	BARF NRNW 5	5/13/2003	6	844	3	96	0.3	42.2	1.50	48	3.0	24		L
6	BARF NRNW 6	5/13/2003	6	844	1	106	0.3	42.2	0.50	53	0.5	45		
7	BARF NREW 7	5/13/2003	6	844	3	99	0.3	42.2	1.50	50	3.0	30	L	i
8	BARF NREW 8	5/13/2003	6	844	1	101	0.3	42.2	0.50	51	0.5	35	L	
9	BARF NREW 9	5/13/2003	6	844	2	92	0.3	42.2	1.00	46	1.7	16		
10	BARF NREW 10	5/13/2003	6	844	0	86	0.3	42,2	0.00	43	-0.7	3	ļ	
11	BARF NRSW 11	5/13/2003	6	844	0	93	0.3	42.2	0.00	47	-0.7	18		
12	BARF NRSW 12	5/13/2003	6	844	4	125	0.3	42.2	2.00	63	4.2	85	ļ	L
13	BARF NRSW 13	5/13/2003	6	844	0	99	0.3	42.2	0.00	50	-0.7	30		L
14	BARF NRSW 14	5/13/2003	6	844	3	114	0.3	42.2	1.50	57	3.0	62		L
15	BARF NRSW 15	5/13/2003	6	844	1	103	0.3	42.2	0.50	52	0.5	39		L
16	BARF NRSW 16	5/13/2003	6	844	2	101	0.3	42.2	1.00	51	1.7	35		
17	BARF NRWW 17	5/13/2003	6	844	3	89	0.3	42.2	1.50	45	3.0	10		L
18	BARF NRWW 18	5/13/2003	6	844	4	108	0.3	42.2	2.00	54	4.2	49		L
19	BARF NRWW 19	5/13/2003	6	844	0	89	0.3	42.2	0.00	45	-0.7	10		
20	BARF NRWW 20	5/13/2003	6	844	4	100	0.3	42.2	2.00	50	4.2	33		
21	BARF WWNRB 1	6/2/2003	3	829	5	88	0.2	41.5	2.50	44	5.8	11		
22	BARF WWNRB 2	6/2/2003	3	829	0	90	0.2	41.5	0.00	45	-0.4	15		
23		1	1	t										

page

CABRERA SMEAR COL ING WORKSHEET (Rev 4) BARF BUILDING SOUTH ROOM LOWER WALLS - SMEAR RESULTS

											dpm/10	00 cm ^z			
1	α eff	βeff		Sampl	e Count Tim	e (min)	Daily Backg	round Count	Time (min)		α Flag	β Flag			
	0.4060	0.2400		•	2.0			20.0			10	500			
			* Morning [<u> </u>						Tech.
				und Total							Sample (dp		$> \alpha$ flag	> ß flag	Initial
seq. #	Sample ID# and Description	Date	Cou	nts*	Sample To	tal Counts	-	und (cpm)	Sample Cou	ints (cpm)			- u, ising	r p tang	
			α	β	α	β	α	ß	α	P	<u>a</u>	<u> </u>			Кун
1	BARF SREW 10	5/12/2003	7	828	1	89	0.4	41.4	0.50	45	0.4	13			KvH
2	BARF SREW 9	5/12/2003	7	828	4	104	0.4	41.4	2.00	52	4.1	44			KvH
3	BARF SREW 7	5/12/2003	7	828	2	95	0.4	41.4	1.00	48	1.6	25			KvH
4	BARF SREW 8	5/12/2003	7	828	0	81	0.4	41.4	0.00	41	-0.9	-4			KvH
5	BARF SRWW 18	5/12/2003	7	828	2	103	0.4	41.4	1.00	52	1.6	42			KvH
6	BARF SRWW 17	5/12/2003	7	828	0	90	0.4	41.4	0.00	45	-0.9	15			KVH
7	BARF SRWW 20	5/12/2003	7	828	0	84	0.4	41.4	0.00	42	-0.9	3	 		KvH
8	BARF SRWW 19	5/12/2003	7	828	2	92	0.4	41.4	1.00	46	1.6	19	ļ		KvH
9	BARF SRSW 11	5/12/2003	7	828	2	78	0.4	41.4	1.00	39	1.6	-10	Į		KvH
10	BARF SRSW 12	5/12/2003	7	828	1	99	0.4	41.4	0.50	50	0.4	34	ļ		KvH
11	BARF SRSW 13	5/12/2003	7	828	3	97	0.4	41.4	1.50	49	2.8	30		{	KVH
12	BARF SRSW 14	5/12/2003	7	828	3	93	0.4	41.4	1.50	47	2.8	21	l		KvH
13	BARF SRSW 15	5/12/2003	7	828	2	79	0.4	41.4	1.00	40	1.6	-8		ļ	KvH
14	BARF SRSW 16	5/12/2003	7	828	3	98	0.4	41.4	1.50	49	2.8	32			KvH
15	BARF SRNW 1	5/13/2003	6	844	2	95	0.3	42.2	1.00	48	1.7	22	╉─────	ļ	KVH
16	BARF SRNW 2	5/13/2003	6	844	3	81	0.3	42.2	1.50	41	3.0	-7	 	I	KVH
17	BARF SRNW 3	5/13/2003	6	844	1	96	0.3	42.2	0.50	48	0.5	24	Į		KvH
18	BARF SRNW 4	5/13/2003	6	844	1	88	0.3	42.2	0.50	44	0.5			I	KVH
19	BARF SRNW 5	5/13/2003	6	844	0	94	0.3	42.2	0.00	47	-0.7	20	<u> </u>		
20	BARF SRNW 6	5/13/2003	6	844	2	83	0.3	42.2	1.00	42	1.7	-3			
21	BARF EWSRB	6/2/2003	3	829	0	85	0.2	41.5	0.00	43	-0.4	4		╂────	
22	BARF NWSRB	6/2/2003	3	829	3	80	0.2	41.5	1.50	40	3.3	-6			AC
23	BARF WWSRB 1	6/2/2003	3	829	3	111	0.2	41.5	1.50	56	3.3	59		ł	AC AC
24	BARF WWSRB 2	6/2/2003	3	829	1	97	0.2	41.5	0.50	49	0.9	29		l	IRS IS
25	BARF WWSRB 3	6/2/2003	3	829	2	89	0.2	41.5	1.00	45	2.1	13			
26		T				Ι		<u> </u>		1	l	<u> </u>	I	L	

CABRERA SMEAR COU. ING WORKSHEET (Rev 4) BARF BUILDING CEILING AND UPPER WALLS - SMEAR RESULTS

page 5

dpm/100 cm²

- I	α eff	βeff		Sampl	e Count Tim	e (min)	Daily Backg	round Count	Time (min)		α Flag	β Flag			
	0.4060	0.2400			2.0			20.0			10	500			
•			• • Morning (Jaily Count											
			Backgro								·				Tech.
	Comple (Dd and Description	Data	Cou		Sample To	tal Counte	Backarou	ind (cpm)	Sample Cou	inte (com)	Sample (dp	$m/100 \text{ cm}^2$	> α flag	$> \beta$ flag	Initial
seq. #	Sample ID# and Description	Date	α	R		R	α	R (Cpini)	a	ß	a	в		,	
	BARF SRSWU 1	5/14/2003	<u>u</u>	819	ō	77	0.4	41.0	0.00	39	-1.0	-10			KvH
1	BARF SRSWU 2	5/14/2003	8	819	1	67	0.4	41.0	0.50	34	0.2	-31			Кун
3	BARF SRSWU 2 BARF SRSWU 3	5/14/2003	8	819	3	75	0.4	41.0	1.50	38	2.7	-14			KvH
	BARF SRWWU 8	5/14/2003	8	819	ŏ	62	0.4	41.0	0.00	31	-1.0	-41			KvH
5	BARF SRC 4	5/14/2003	8	819	2	76	0.4	41.0	1.00	38	1.5	-12			Кун
6	BARF SRC 7	5/14/2003	8	819	- -	87	0.4	41.0	0.00	44	-1.0	11			KvH
7	BARF SREWU 5	5/14/2003	8	819	1	81	0.4	41.0	0.50	41	0.2	-2			KvH
8	BARF SREWU 6	5/14/2003	8	819	3	83	0.4	41.0	1.50	42	2.7	2			KvH
9	BARF SREWU 9	5/14/2003	8	819	0	75	0.4	41.0	0.00	38	-1.0	-14			Кун
10	BARF SRNWU 10	5/14/2003	8	819	1	75	0.4	41.0	0.50	38	0.2	-14			KvH
11	BARF SRNWU 11	5/14/2003	8	819	1	86	0.4	41.0	0.50	43	0.2	9			KvH
12	BARF SRNWU 12	5/15/2003	6	796	2	88	0.3	39.8	1.00	44	1.7	18			Кин
13	BARF SRNWU 13	5/15/2003	6	796	3	71	0.3	39.8	1.50	36	3.0	-18			KvH
14	BARF SRNWU 14	5/15/2003	6	796	1	105	0.3	39.8	0.50	53	0.5	53			KvH
15	BARF SRNWU 15	5/15/2003	6	796	3	93	0.3	39.8	1.50	47	3.0	28			KvH
16	BARF SRNWU 19	5/15/2003	6	796	0	75	0.3	39.8	0.00	38	-0.7	-10			KvH
17	BARF SRNWU 20	5/15/2003	6	796	4	90	0.3	39.8	2.00	45	4.2	22			KvH
18	BARF SRNWU 18	5/15/2003	6	796	1	83	0.3	39.8	0.50	42	0.5	7	L		KvH
19	BARF NRCU 16	5/15/2003	6	796	0	84	0.3	39.8	0.00	42	-0.7	9			KvH
20	BARF NRCU 17	5/15/2003	6	796	3	81	0.3	39.8	1.50	41	3.0	3	L		KvH
21	BARF CB 1	6/2/2003	3	829	3	101	0.2	41.5	1.50	51	3.3	38			KvH
22	BARF CB 2	6/2/2003	3	829	2	88	0.2	41.5	1.00	44	2.1	11			Кун
23	BARF CB 3	6/2/2003	3	829	1	96	0.2	41.5	0.50	48	0.9	27		L	Кун
24							ļ							I	Кун
25		I			1	l					l				

CABRERA STATIC CO

_		_			_				_		_		_	dpm/1	100 cm ²
	Detector Active Area (cm ²)	7	α eff	β eff	1	Static	Count Time	(min)]	Daily Backg	round Count T	ime (min)]	α Flag	β Flag
	582		0.1700	0.2500	1		1.0				20.0		í	100	5000
-		-	* Morning	Daily Count	-				-				-		
			Backgro	und Total	1						r				Tech.
seq. #	Sample ID# and Description	Date		ints*	Sample To	tal Counts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	$m/100 \text{ cm}^2$	>α flag	>β flag	Initial
$\left[\begin{array}{c} \cdot \\ \end{array} \right]$		1 1	α	β	a	β	α	β	a	β	a	β			_
1	NF1	5/12/2003	4	478	10	648	0.2	23.9	10.00	648	9.9	429			KP
2	NF2	5/12/2003	4	478	12	661	0.2	23.9	12.00	661	11.9	438			KP
3	NF3	5/12/2003	4	478	7	847	0.2	23.9	7.00	847	6.9	566			KP
4	NF4	5/12/2003	4	478	11	878	0.2	23.9	11.00	878	10.9	587			KP
5	NF5	5/12/2003	4	478	30	800	0.2	23.9	30.00	800	30.1	533			KP
6	NF6	5/12/2003	4	478	4	675	0.2	23.9	4.00	675	3.8	447			KP
7	NF7	5/12/2003	4	478	17	992	0.2	23.9	17.00	992	17.0	665			KP
8	NF8	5/12/2003	4	478	12	689	0.2	23.9	12.00	689	11.9	457			KP
9	NF9	5/12/2003	4	478	6	670	0.2	23.9	6.00	670	5.9	444	I		KP
10	NF10	5/12/2003	4	478	12	944	0.2	23.9	12.00	944	11.9	632			KP
11	NF11	5/12/2003	4	478	13	828	0.2	23.9	13.00	828	12.9	553		[KP
12	NF12	5/12/2003	4	478	10	673	0.2	23.9	10.00	673	9.9	446			KP
13	NF13	5/12/2003	4	478	7	815	0.2	23.9	7.00	815	6.9	544			KP
14	NF14	5/12/2003	4	478	4	719	0.2	23.9	4.00	719	3.8	478			КР
15	NF15	5/12/2003	4	478	7	755	0.2	23.9	7.00	755	6.9	502		1	KP
16	NF16	5/12/2003	4	478	3	842	0.2	23.9	3.00	842	2.8	562			KP
17	NF17	5/12/2003	4	478	10	926	0.2	23.9	10.00	926	9.9	620			KP
18	NF18	5/12/2003	4	478	17	721	0.2	23.9	17.00	721	17.0	479			KP
19	NF19	5/12/2003	4	478	10	1131	0.2	23.9	10.00	1131	9.9	761			КР
20	NF20	5/12/2003	4	478	6	808	0.2	23.9	6.00	808	5,9	539			KP
21	NF21	5/12/2003	4	478	4	758	0.2	23.9	4.00	758	3.8	505			KP
22	NF22	5/12/2003	4	478	9	722	0.2	23.9	9.00	722	8.9	480			KP
23	NF23	5/12/2003	4	478	8	699	0.2	23.9	8.00	699	7.9	464			KP
24	NF24	5/12/2003	4	478	6	606	0.2	23.9	6.00	606	5.9	400			KP

CABRERA STATIC COU. .NG WORKSHEET (Rev 5) BARF SOUTH FLOOR - INTEGRATED DIRECT MEASUREMENTS

-					•	r 							,		00 cm ²
I	Detector Active Area (cm ²)		<u>α eff</u>	β eff	1	Static	Count Time	(min)	ł	Daily Backgi	round Count T	ime (min)		α Flag	β Flag 5000
L	582	}	0.1700	0.2500	1		1.0	L	l	L	20.0			100	5000
			* Morning (Daily Count											
			Backgro	und Total											Tech.
seq.#	Sample ID# and Description	Date	Cou	nts*	Sample To	otal Counts	Backgrou	und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm²)	>α flag	>β flag	Initial
(α	β	α	β	α	β	α	β	a	β			
1	SF1	5/12/2003	4	478	4	791	0.2	23.9	4.00	791	3.8	527			KP
2	SF2	5/12/2003	4	478	20	779	0.2	23.9	20,00	779	20.0	519			KP
3	SF3	5/12/2003	4	478	9	700	0.2	23.9	9.00	700	8.9	465			KP
4	SF4	5/12/2003	4	478	18	665	0.2	23.9	18.00	665	18.0	441			KP
5	SF5	5/12/2003	4	478	10	681	0.2	23.9	10.00	681	9.9	452			KP
6	SF6	5/12/2003	4	478	16	675	0.2	23.9	16.00	675	16.0	447			KP
7	SF7	5/12/2003	4	478	9	660	0.2	23.9	9.00	660	8.9	437			KP
8	SF8	5/12/2003	4	478	10	734	0.2	23.9	10.00	734	9.9	488			KP
9	SF9	5/12/2003	4	478	8	819	0.2	23.9	8.00	819	7.9	546			KP
10	SF10	5/12/2003	4	478	9	864	0.2	23.9	9,00	864	8.9	577			KP
11	SF11	5/12/2003	4	478	11	922	0.2	23.9	11.00	922	10.9	617			KP
12	SF12	5/12/2003	4	478	6	686	0.2	23.9	6.00	686	5.9	455			KP
13	SF13	5/12/2003	4	478	10	687	0.2	23.9	10.00	687	9.9	456			KP
14	SF14	5/12/2003	4	478	4	696	0.2	23.9	4.00	696	3.8	462		1	КР
15	SF15	5/12/2003	4	478	9	783	0.2	23.9	9.00	783	8.9	522			KP
16	SF16	5/12/2003	4	478	6	846	0.2	23.9	6.00	846	5.9	565			КР
17	SF17	5/12/2003	4	478	11	730	0.2	23.9	11.00	730	10.9	485			KP
18	SF18	5/12/2003	4	478	7	713	0.2	23.9	7.00	713	6.9	474			KP
19	SF19	5/12/2003	4	478	11	633	0.2	23.9	11.00	633	10.9	419		L	KP
20	SF20	5/12/2003	4	478	10	720	0.2	23.9	10.00	720	9.9	478			КР
21	SF21	5/12/2003	4	478	10	1029	0.2	23.9	10.00	1029	9.9	691			КР
22	SF22	5/12/2003	4	478	5	853	0.2	23.9	5.00	853	4.9	570			KP
23	SF23	5/12/2003	4	478	9	761	0.2	23.9	9.00	761	8.9	507			KP
24	SF24	5/12/2003	4	478	7	734	0.2	23.9	7.00	734	6.9	488			KP

page\

CABRERA STATIC CO

_		_			_				_				-	dpm/1	00 cm²
[Detector Active Area (cm ²)		α eff	βeff		Static	Count Time	(min)	}	Daily Backg	round Count T	ime (min)		α Flag	β Flag
[582]	0.1700	0.2500			1.0				20.0	L		100	5000
-			* Morning (Daily Count											
			Backgro	und Total											Tech.
seq. #	Sample 1D# and Description	Date	Cou	ints*	Sample To	tal Counts	Backgrou	und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm ²)	>α flag	>β flag	Initial
1 1	· _ ·	L	α	β	α	β	α	β	α	β	α	β			
1	NRNW1	5/13/2003	3	560	12	697	0.2	28.0	12.00	697	12.0	460			KP
2	NRNW2	5/13/2003	3	560	4	663	0.2	28.0	4.00	663	3.9	436			KP
3	NRNW3	5/13/2003	3	560	4	624	0.2	28.0	4.00	624	3.9	410			KP
4	NRNW4	5/13/2003	3	560	2	635	0.2	28.0	2.00	635	1.9	417			KP
5	NRNW5	5/13/2003	3	560	1	591	0.2	28.0	1.00	591	0.9	387			KP
6	NRNW6	5/13/2003	3	560	3	560	0.2	28.0	3.00	560	2.9	366			KP
7	D-NRNW1	5/13/2003	3	560	10	619	0.2	28.0	10.00	619	10.0	406			KP
8	NREW7	5/13/2003	3	560	2	711	0.2	28.0	2.00	711	1.9	469			KP
9	NREW8	5/13/2003	3	560	5	676	0.2	28.0	5.00	676	4.9	445			KP
10	NREW9	5/13/2003	3	560	6	673	0.2	28.0	6.00	673	5.9	443			KP
11	NREW10	5/13/2003	3	560	7	691	0.2	28.0	7.00	691	6.9	456			КР
12	D-NREW10	5/13/2003	3	560	4	594	0.2	28.0	4.00	594	3.9	389			KP
13	NRSW11	5/13/2003	3	560	4	678	0.2	28.0	4.00	678	3.9	447			KP
14	NRSW12	5/13/2003	3	560	9	639	0.2	28.0	9.00	639	8.9	420			KP
15	NRSW13	5/13/2003	3	560	5	632	0.2	28.0	5.00	632	4.9	415			KP
16	NRSW14	5/13/2003	3	560	3	583	0.2	28.0	3.00	583	2.9	381			KP
17	NRSW15	5/13/2003	3	560	4	589	0.2	28.0	4.00	589	3.9	386			KP
18	NRSW16	5/13/2003	3	560	5	659	0.2	28.0	5.00	659	4.9	434			KP
19	D-NRSW12	5/13/2003	3	560	10	677	0.2	28.0	10.00	677	10.0	446			КР
20	NRWW17	5/13/2003	3	560	7	699	0.2	28.0	7.00	699	6.9	461			KP
21	NRWW18	5/13/2003	3	560	5	709	0.2	28.0	5.00	709	4.9	468			KP
22	NRWW19	5/13/2003	3	560	7	644	0.2	28.0	7.00	644	6.9	423			KP
23	NRWW20	5/13/2003	3	560	4	547	0.2	28.0	4.00	547	3.9	357			KP
24	D-NRWW17	5/13/2003	3	560	4	699	0.2	28.0	4.00	699	3.9	461			KP

CABRERA STATIC COL ING WORKSHEET (Rev 5) BARF SOUTH ROOM LOWER WALLS - INTEGRATED DIRECT MEASUREMENTS

Detector Active Area (cm²) αeff B eff Static Count Time (min) Daily Background Count Time (min) β Flag α Flag 5000 0.1700 0.2500 1.0 20.0 100 582 * Morning Daily Count **Background Total** Tech. > β flag Sample ID# and Description Counts* Sample Total Counts Background (cpm) Sample Counts (cpm) Sample (dpm/100 cm²) $> \alpha$ flag Initial sea, # Date A α α α α α ß ß 28.0 KP SRNW1 5/13/2003 3 560 7 642 0.2 7.00 642 6.9 422 1 KΡ 5/13/2003 560 616 0.2 28.0 3.9 404 2 SRNW2 3 4 4.00 616 5/13/2003 560 586 0.2 28.0 4.00 586 3.9 384 KP 3 SRNW3 3 4 KP SRNW4 5/13/2003 560 5 641 0.2 28.0 5.00 641 4.9 421 4 3 ΚP SRNW5 5/13/2003 3 560 4 620 0.2 28.0 4.00 620 3.9 407 5 560 2.9 396 KΡ 6 SRNW6 5/13/2003 3 3 604 0.2 28.0 3.00 604 KP 7 D-SRNW1 5/13/2003 3 560 5 655 0.2 28.0 5.00 655 4.9 431 427 KP SREW7 5/12/2003 3 560 649 0.2 28.0 1.00 649 0.9 8 1 KP 9 SREW8 5/12/2003 560 0 691 0.2 28.0 0.00 691 -0.2 456 3 560 2.9 462 KP 10 SREW9 5/12/2003 3 3 700 0.2 28.0 3.00 700 675 KΡ SREW10 5/12/2003 3 560 7 675 0.2 28.0 7.00 6.9 445 11 KΡ **D - SREW10** 5/12/2003 3 560 6 674 02 28.0 6 00 674 5.9 444 12 560 1.9 399 13 SRSW11 5/12/2003 3 2 609 0.2 28.0 2.00 609 KP 2.9 KP SRSW12 5/12/2003 3 560 3 686 0.2 28.0 3.00 686 452 14 KΡ 15 SRSW13 5/12/2003 3 560 3 599 0.2 28.0 3.00 599 2.9 392 KΡ 560 606 28.0 1.00 606 0.9 397 16 SRSW14 5/12/2003 3 0.2 1 SRSW15 5/12/2003 560 3 626 0.2 28.0 3.00 626 2.9 411 KP 17 3 560 390 KP SRSW16 5/12/2003 2 596 0.2 28.0 2.00 596 1.9 18 3 560 10 10.0 483 KP 19 D-SRSW12 5/12/2003 3 731 0.2 28.0 10.00 731 KP 20 SRWW17 5/12/2003 3 560 1 750 0.2 28.0 1.00 750 0.9 496 SRWW18 5/12/2003 3 560 3 681 0.2 28.0 3.00 681 2.9 449 KP 21 KР 22 SRWW19 5/12/2003 3 560 7 647 0.2 28.0 7.00 647 6.9 425 560 702 28.0 2.00 702 1.9 463 KΡ SRWW20 5/12/2003 3 2 0.2 23 KΡ 24 D-SRWW19 5/12/2003 3 560 8 566 0.2 28.0 8.00 566 7.9 370

dpm/100 cm²

CABRERA STATIC COU ING WORKSHEET (Rev 5)

BARF CEILING AND UPPER WALLS - INTEGRATED DIRECT MEASUREMENTS

														dpm/1	00 cm ²
ſ	Detector Active Area (cm ²)	1	αeff	βeff	1	Static	Count Time	(min)		Daily Backg	round Count T	ime (min)		α Flag	β Flag
ŀ	100	1	0.2000	0.2000	1		1.0	. ,			20.0			100	5000
			* Marrian	Daily Count	-				•						
· · · · ·		r		und Total	1										Tech.
	Sample ID# and Description	Date	-	ints*	Sample T	tal Counts	Backgrou	und (com)	Sample Co	unte (cnm)	Sample (dp	m/100 cm ²)	> a flag	> ß flag	initial
seq. #	Sample ID# and Description	Date		ß		8	a	ß	α	ß	α	β		, .	
	NRCU16	5/15/2003	1	99	ō	85	0.1	5.0	0.00	85	-0.3	400			AC
2	NRCU17	5/15/2003	1	99	ō	112	0.1	5.0	0.00	112	-0.3	535			AĆ
3	SRC4	5/14/2003	1	99	Ō	105	0.1	5.0	0.00	105	-0.3	500			AC
	SRC7	5/14/2003	1	99	1	100	0.1	5.0	1.00	100	4.8	475			AC
5	NRNWU19	5/13/2003	3	560	2	89	0.2	28.0	2.00	89	9.3	305			КР
6	NRNWU20	5/13/2003	3	560	2	97	0.2	28.0	2.00	97	9.3	345			KP
7	NREWU18	5/13/2003	3	560	2	94	0.2	28.0	2.00	94	9.3	330			KP
8	NRSWU12	5/13/2003	3	560	1	94	0.2	28.0	1.00	94	4.3	330			KP
9	NRSWU13	5/13/2003	3	560	1	86	0.2	28.0	1.00	86	4.3	290			KP
10	NRSWU14	5/13/2003	3	560	2	84	0.2	28.0	2.00	84	9.3	280			КР
11	NRSWU15	5/13/2003	3	560	1	91	0.2	28.0	1.00	91	4.3	315		L	KP
12	SRNWU9	5/13/2003	3	560	0	70	0.2	28.0	0.00	70	-0.8	210			KP
13	SRNWU10	5/13/2003	3	560	3	87	0.2	28.0	3.00	87	14.3	295			КР
14	SRNWU11	5/13/2003	3	560	0	77	0.2	28.0	0.00	77	-0.8	245		ļ	KP
15	D-SRNWU11	5/13/2003	3	560	1	89	0.2	28.0	1.00	89	4.3	305			KP
16	SREWU5	5/12/2003	3	560	0	94	0.2	28.0	0.00	94	-0.8	330		ļ	KP
17	SREWU6	5/12/2003	3	560	1	104	0.2	28.0	1.00	104	4.3	380		ļ	КР
18	SRSWU1	5/12/2003	3	560	2	88	0.2	28.0	2.00	88	9.3	300		ļ	KP
19	SRSWU2	5/12/2003	3	560	2	97	0.2	28.0	2.00	97	9.3	345	 	<u> </u>	KP
20	SRSWU3	5/12/2003	3	560	1	92	0.2	28.0	1.00	92	4.3	320			КР
21	SRWWU8	5/12/2003	3	560	0	80	0.2	28.0	0.00	80	-0.8	260	I	L	КР

page

page 6

CABRERA STATIC COU. ING WORKSHEET (Rev 5) BARF BIAS LOCATIONS - INTEGRATED DIRECT MEASUREMENTS

-					-				-				_	dpm/1	00 cm ²
	Detector Active Area (cm ²)		αeff	β eff		Static	Count Time	(min)		Daily Backg	round Count T	ime (min)		α Flag	β Flag
	582		0.1700	0.2500			1.0]		20.0			100	5000
			* Morning	Daily Count									-		
			Backgro	und Total											Tech.
seq. #	Sample ID# and Description	Date	Cou	ints*	Sample Te	otal Counts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	om/100 cm ²)	>α flag	>β flag	Initial
			α	β	α	β	α	β	α	β	α	β			
1	CB1	6/2/2003	5	560	3	547	0.3	28.0	3,00	547	2.8	357			AC
2	CB2	6/2/2003	5	560	7	728	0.3	28.0	7.00	728	6.8	481	1		AC
3	CB3	6/2/2003	5	560	4	589	0.3	28.0	4.00	589	3.8	386	1		AC
4	BB1	6/2/2003	5	560	8	593	0.3	28.0	8.00	593	7.8	388	j	1	AC
5	BB2	6/2/2003	5	560	7	574	0.3	28.0	7.00	574	6.8	375			AĊ
6	DB	6/2/2003	5	560	4	590	0.3	28.0	4.00	590	3.8	386	1		AC
7	EWSRB	6/2/2003	5	560	1	488	0.3	28.0	1.00	488	0.8	316			AC
8	NWSRB	6/2/2003	5	560	6	466	0.3	28.0	6.00	466	5.8	301	j	<u> </u>	AC
9	WWNRB1	6/2/2003	5	560	8	626	0.3	28.0	8.00	626	7.8	411	1		AC
10	WWNRB2	6/2/2003	5	560	5	538	0.3	28.0	5.00	538	4.8	351	1	1	AC
11	WWSRB1	6/2/2003	5	560	4	484	0.3	28.0	4.00	484	3.8	313	1	1	AC
12	WWSRB2	6/2/2003	5	560	7	530	0.3	28.0	7.00	530	6.8	345	<u>, </u>	1	AC
13	WWSRB3	6/2/2003	5	560	7	527	0.3	28.0	7.00	527	6.8	343	t	1	AC

CABRERA SMEAR COL , ING WORKSHEET (Rev 4) CONCRETE PAD #1 (SU09) NORTH - SMEAR RESULTS

	α eff 0.3850	β eff 0.2650		Sampl	e Count Tim 2.0	ie (min)	Daily Back	round Coun 20.0	t Time (min)]	dpm/10 α Flag 10	00 cm ² β Flag]		
			* Morning	Daily Count											
seq. #	Sample ID# and Description	Date		und Total unts* β	Sample To	otal Counts β	Backgro	und (cpm) β	Sample Co α	unts (cpm) β	Sample (dp α	m/100 cm²) β	>α flag	>β flag	
1	6550	6/10/2004	8	1456	1	143	0.4	72.8	0.50	72	0.3	-5			J/

												· · ·	
			α	β	α	β	α	β	α	β	α	β	
1	6550	6/10/2004	8	1456	1	143	0.4	72.8	0.50	72	0.3	-5	JAC
2	6551	6/10/2004	8	1456	1	150	0.4	72.8	0.50	75	0.3	8	JAC
3	6552	6/10/2004	8	1456	0	165	0.4	72.8	0.00	83	-1.0	37	JAC
4	6553	6/10/2004	8	1456	0	140	0.4	72.8	0.00	70	-1.0	-11	JAC
5	6554	6/10/2004	8	1456	0	129	0.4	72.8	0.00	65	-1.0	-31	JAC
6	6555	6/10/2004	8	1456	4	141	0.4	72.8	2.00	71	4.2	-9	JAC
7	6556	6/10/2004	8	1456	1	132	0.4	72.8	0.50	66	0.3	-26	JAC
8	6557	6/10/2004	8	1456	2	136	0.4	72.8	1.00	68	1.6	-18	JAC
9	6558	6/10/2004	8	1456	1	138	0.4	72.8	0.50	69	0.3	-14	JAC
10	6559	6/10/2004	8	1456	0	112	0.4	72.8	0.00	56	-1.0	-63	JAC
11	6560	6/10/2004	8	1456	1	135	0.4	72.8	0.50	68	0.3	-20	JAC
12	6561	6/10/2004	8	1456	1	129	0.4	72.8	0.50	65	0.3	-31	JAC
13	6562	6/10/2004	8	1456	0	149	0.4	72.8	0.00	75	-1.0	6	JAC
14	6563	6/10/2004	8	1456	1	141	0.4	72.8	0.50	71	0.3	-9	JAC
15	6564	6/10/2004	8	1456	0	133	0.4	72.8	0.00	67	-1.0	-24	JAC
16	6565	6/10/2004	8	1456	1	136	0.4	72.8	0.50	68	0.3	-18	JAC
17	6566	6/10/2004	8	1456	1	152	0.4	72.8	0.50	76	0.3	12	JAC
18	6567	6/10/2004	8	1456	0	157	0.4	72.8	0.00	79	-1.0	22	JAC
19	6568	6/10/2004	8	1456	0	133	0.4	72.8	0.00	67	-1.0	-24	JAC
20	6569	6/10/2004	8	1456	0	155	0.4	72.8	0.00	78	-1.0	18	JAC
21													

Tech.

Initial

CABRERA SMEAR COU NG WORKSHEET (Rev 4) CONCRETE PAD #1 (SU09) SOUTH - SMEAR RESULTS

1	a eff	βeff		Sampl	e Count Tim	e (min)	Daily Backg	round Coun	t Time (mín)	Ĩ	α Flag	β Flag			
	0.3850	0.2650			2.0			20.0			10	500			
			Morning	Daily Count						_			-		
			Backgro	und Total											Tech.
seq. #	Sample ID# and Description	Date	Cou	ints*	Sample To	tal Counts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm ²)	> a flag	>β flag	Initial
			α	β	α	β	α	β	α	β	α	β			
1	6530	6/10/2004	8	1456	0	139	0.4	72.8	0.00	70	-1.0	-12			JAC
2	6531	6/10/2004	8	1456	1	141	0.4	72.8	0.50	71	0.3	-9			JAV
3	6532	6/10/2004	8	1456	1	124	0.4	72.8	0.50	62	0.3	-41			JAV
4	6533	6/10/2004	8	1456	0	129	0.4	72.8	0.00	65	-1.0	-31			JAV
5	6534	6/10/2004	8	1456	0	130	0.4	72.8	0.00	65	-1.0	-29			JAV
6	6535	6/10/2004	8	1456	1	150	0.4	72.8	0.50	75	0.3	8			JAV
7	6536	6/10/2004	8	1456	0	139	0.4	72.8	0.00	70	-1.0	-12			JAV
8	6537	6/10/2004	8	1456	0	126	0.4	72.8	0.00	63	-1.0	-37			JAV
9	6538	6/10/2004	8	1456	2	134	0.4	72.8	1.00	67	1.6	-22			JAV
10	6539	6/10/2004	8	1456	0	141	0.4	72.8	0.00	71	-1.0	-9			JAV
11	6540	6/10/2004	8	1456	0	160	0.4	72.8	0.00	80	-1.0	27			JAV
12	6541	6/10/2004	8	1456	2	130	0.4	72.8	1.00	65	1.6	-29			JAV
13	6542	6/10/2004	8	1456	1	132	0.4	72.8	0.50	66	0.3	-26			JAC
14	6543	6/10/2004	8	1456	2	157	0.4	72.8	1.00	79	1.6	22			JAC
15	6544	6/10/2004	8	1456	0	122	0.4	72.8	0.00	61	-1.0	-45			JAC
16	6545	6/10/2004	8	1456	0	137	0.4	72.8	0.00	69	-1.0	-16			JAC
17	6546	6/10/2004	8	1456	0	159	0.4	72.8	0.00	80	-1.0	25			JAC
18	6547	6/10/2004	8	1456	0	141	0.4	72.8	0.00	71	-1.0	-9			JAC
19	6548	6/10/2004	8	1456	1	133	0.4	72.8	0.50	67	0.3	-24			JAC
20	6549	6/10/2004	8	1456	0	136	0.4	72.8	0.00	68	-1.0	-18			JAC
21		L	i	L	L						<u> </u>				

page 2

dpm/100 cm²

CABRERA STATIC COL ،NG WORKSHEET (Rev 5) معود المحافة CONCRETE PAD #1 (SU09) SOUTH - INTEGRATED DIRECT MEASUREMENTS

_					_				_					dpm/1	JO cm²
	Detector Active Area (cm ²)		α eff	β eff]	Static	Count Time	(min)		Daily Backg	round Count T	ïme (min)		α Flag	β Flag
L	126	J I	0.1879	0.3200			1.0				20.0			100	5000
			* Morning	Daily Count											
			Backgro	und Total											Tech.
seq. #	Sample ID# and Description	Date	Čoi	unts*	Sample To	otal Counts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm ²)	>α flag	>β flag	Initial
, i			α	β	α	β	α	β	ά	β	α	β	-	· -	
1	6530	6/10/2004	3	200	3	200	0.2	10.0	3.00	200	12.0	471			JAC
2	6531	6/10/2004	3	200	0	404	0.2	10.0	0.00	404	-0.6	977			JAC
3	6532	6/10/2004	3	200	2	196	0.2	10.0	2.00	196	7.8	461			JAC
4	6533	6/10/2004	3	200	2	226	0.2	10.0	2.00	226	7.8	536			JAC
5	6534	6/10/2004	3	200	2	200	0.2	10.0	2.00	200	7.8	471			JAC
6	6535	6/10/2004	3	200	4	383	0.2	10.0	4.00	383	16.3	925			JAC
7	6536	6/10/2004	3	200	0	178	0.2	10.0	0.00	178	-0.6	417			JAC
8	6537	6/10/2004	3	200	2	168	0.2	10.0	2.00	168	7.8	392			JAC
9	6538	6/10/2004	3	200	2	155	0.2	10.0	2.00	155	7.8	360			JAC
10	6539	6/10/2004	3	200	3	151	0.2	10.0	3.00	151	12.0	350			JAC
11	6540	6/10/2004	3	200	2	143	0.2	10.0	2.00	143	7.8	330			JAC
12	6541	6/10/2004	3	200	2	208	0.2	10.0	2.00	208	7.8	491			JAC
13	6542	6/10/2004	3	200	2	214	0.2	10.0	2.00	214	7.8	506			JAC
14	6543	6/10/2004	3	200	0	229	0.2	10.0	0.00	229	-0.6	543			JAC
15	6544	6/10/2004	3	200	0	198	0.2	10.0	0.00	198	-0.6	466			JAC
16	6545	6/10/2004	3	200	0	184	0.2	10.0	0.00	184	-0.6	432			JAC
17	6546	6/10/2004	3	200	0	172	0.2	10.0	0.00	172	-0.6	402			JAC
18	6547	6/10/2004	3	200	0	150	0.2	10.0	0.00	150	-0.6	347			JAC
19	6548	6/10/2004	3	200	3	201	0.2	10.0	3.00	201	12.0	474			JAC
20	6549	6/10/2004	3	200	1	146	0.2	10.0	1.00	146	3.6	337			JAC
21															
22															

CABRERA STATIC COU NG WORKSHEET (Rev 5) CONCRETE PAD #1 (SU09) NORTH - INTEGRATED DIRECT MEASUREMENTS

		_			-				_				_	dpm/1	100 cm ²
1	Detector Active Area (cm ²)		α eff	β eff		Static	Count Time	(min)		Daily Backg	round Count T	<u>Fi</u> me (min)	I	α Flag	β Flag
L L	126	j	0.1879	0.3200			1.0				20.0]		100	5000
			* Morning	Daily Count											
			Backgro	und Total										ľ	Tech.
seq. #	Sample ID# and Description	Date	Cou	ints*	Sample To	tal Counts	Backgrou	und (cpm)	Sample Co	unts (cpm)	Sample (dr	om/100 cm ²)	>α flag	>β flag	Initial
			α	β	α	β	α	β	α	β	α	β			
1	6550	6/10/2004	3	200	2	293	0.2	10.0	2.00	293	7.8	702	T	<u> </u>	JAC
2	6551	6/10/2004	3	200	3	364	0.2	10.0	3.00	364	12.0	878	1	1	JAC
3	6552	6/10/2004	3	200	8	723	0.2	10.0	8.00	723	33.2	1768			JAC
4	6553	6/10/2004	3	200	3	220	0.2	10.0	3.00	220	12.0	521			JAC
5	6554	6/10/2004	3	200	4	300	0.2	10.0	4.00	300	16.3	719	Γ	Ι	JAC
6	6555	6/10/2004	3	200	4	318	0.2	10.0	4.00	318	16.3	764			JAC
7	6556	6/10/2004	3	200	0	153	0.2	10.0	0.00	153	-0.6	355			JAC
8	6557	6/10/2004	3 ·	200	4	151	0.2	10.0	4.00	151	16.3	350			JAC
9	6558	6/10/2004	3	200	2	213	0.2	10.0	2.00	213	7.8	503			JAC
10	6559	6/10/2004	3	200	2	187	0.2	10.0	2.00	187	7.8	439			JAC
11	6560	6/10/2004	3	200	0	136	0.2	10.0	0.00	136	-0.6	313			JAC
12	6561	6/10/2004	3	200	1	169	0.2	10.0	1.00	169	3.6	394	I		JAC
13	6562	6/10/2004	3	200	1	149	0.2	10.0	1.00	149	3.6	345			JAC
14	6563	6/10/2004	3	200	0	160	0.2	10.0	0.00	160	-0.6	372			JAC
15	6564	6/10/2004	3	200	1	169	0.2	10.0	1.00	169	3.6	394			JAC
16	6565	6/10/2004	3	200	1	198	0.2	10.0	1.00	198	3.6	466			JAC
17	6566	6/10/2004	3	200	0	179	0.2	10.0	0.00	179	-0.6	419			JAC
18	6567	6/10/2004	3	200	3	229	0.2	10.0	3.00	229	12.0	543			JAC
19	6568	6/10/2004	3	200	3	165	0.2	10.0	3.00	165	12.0	384			JAC
20	6569	6/10/2004	3	200	1	205	0.2	10.0	1.00	205	3.6	484			JAC
21										1					
22					1					1					
23															

CABRERA SMEAR COU ING WORKSHEET (Rev 4) CONCRETE PAD #2 (SU16) NORTH - SMEAR RESULTS

F	<u>α eff</u> 0.3850	β eff 0.2650		Samp	e Count Tir 2.0	ne (min)	Daily Back	round Coun 20.0	t Time (min)	1	α Flag	00 cm ² β Flag			
		0.2000	* Morning	Daily Count				20.0		1	100	5000	ļ		
seq. #	Sample ID# and Description	Date	-	und Total Ints*		otal Counts	-	und (cpm)	Sample Co	unts (cpm)	Sample (dp	om/100 cm ²)	>α fiag	>β flag	Tech. Initial
1	6510	6/10/2004	8	1456	α	154	<u>α</u> 0.4	<u> </u>	<u>a</u>	<u> </u>	α	ß			
2	6511	6/10/2004	8	1456		154	0.4	72.8	0.50	77	0.3	16			JAC
3	6512	6/10/2004	8	1456		159	0.4	72.8	0.50	77	0.3	16			JAV
4	6513	6/10/2004	8	1456	0	149	0.4	72.8		80	0.3	25		ļ	JAV
5	6514	6/10/2004	8	1456	ŏ	144	0.4	72.8	0.00	75	-1.0	6			JAV
6	6515	6/10/2004	8	1456	Ö	137	0.4	72.8	0.00	72	-1.0	-3			JAV
7	6516	6/10/2004	8	1456	ŏ	106	0.4	72.8	0.00	69	-1.0	-16			JAV
8	6517	6/10/2004	8	1456	2	149	0.4	72.8	1.00	53 75	-1.0	-75			JAV
9	6518	6/10/2004	8	1456		146	0.4	72.8	0.00	73	1.6	6			JAC
10	6519	6/10/2004	8	1456		133	0.4	72.8	0.00	67	-1.0	1			JAC
11	6520	6/10/2004	8	1456	1	117	0.4	72.8	0.50	59	0.3	-24			JAC
12	6521	6/10/2004	8	1456	<u>i</u>	150	0.4	72.8	0.50	75	0.3	-54			JAC
13	6522	6/10/2004	8	1456		144	0.4	72.8	0.50	75	0.3	8			JAC
14	6523	6/10/2004	8	1456	3	155	0.4	72.8	1.50	72	0.3	-3			JAC
15	6524	6/10/2004	8	1456	ů č	146	0.4	72.8	0.00	78	2.9	18			JAC
16	6525	6/10/2004	8	1456	0	165	0.4	72.8	0.00	83	-1.0	1			JAC
17	6526	6/10/2004	8	1456		130	0.4	72.8	0.00	65	-1.0 0.3	37			JAC
18	6527	6/10/2004	8	1456	0	145	0.4	72.8	0.00	73	-1.0	-29			JAC
19	6528	6/10/2004	8	1456	ŏ	138	0.4	72.8	0.00	69	-1.0	-1			JAC
20	6529	6/10/2004	8	1456	1	131	0.4	72.8	0.50	66	0.3	-14			JAC
21					<u>├</u> ──	<u>+</u>	v. v	, 2.0	0.50	00	0.3	-28			JAC

CABRERA SMEAR COU NG WORKSHEET (Rev 4) CONCRETE PAD #2 (SU16) SOUTH - SMEAR RESULTS

											dpm/1	00 cm ²	1		
1	α eff	βeff		Samp	e Count Tim	ne (min)	Daily Backg	round Count	t Time (min)	I	α Flag	β Flag			
ľ	0.3850	0.2650			2.0			20.0			100	5000			
•			• • Morning	Daily Count						•		-	•		
				und Total	1				r		r			<u> </u>	Tech.
	Sample ID# and Description	Date		unts*		otal Counts	Backgrou	und (cpm)	Sample Co	unte (com)	Sample (dp	$m/100 \text{ cm}^2$	> a flag	> ß flag	Initial
seq. #	Sample ID# and Description	Date	α	A		R	α	B	α	R		ß	·	· • • • • •	
1	6490	6/10/2004	8	1456	2	151	0.4	72.8	1.00	76	1.6	1 10			JAC
2	6491	6/10/2004	8	1456	1	140	0.4	72.8	0.50	70	0.3	-11			JAC
3	6492	6/10/2004	8	1456	0	132	0.4	72.8	0.00	66	-1.0	-26	ł	<u> </u>	JAC
4	6493	6/10/2004	8	1456	ŏ	145	0.4	72.8	0.00	73	-1.0	-1			JAC
5	6494	6/10/2004	8	1456		163	0.4	72.8	0.50	82	0.3	33			JAC
6	6495	6/10/2004	8	1456	t i	125	0.4	72.8	0.50	63	0.3	-39		.	JAC
7	6496	6/10/2004	8	1456	1 1	138	0.4	72.8	0.50	69	0.3	-14			JAC
8	6497	6/10/2004	8	1456	0	150	0.4	72.8	0.00	75	-1.0	8		1	JAC
9	6498	6/10/2004	8	1456	ō	124	0.4	72.8	0.00	62	-1.0	-41		1	JAC
10	6499	6/10/2004	8	1456	1	136	0.4	72.8	0.50	68	0.3	-18			JAC
11	6500	6/10/2004	8	1456	1	112	0.4	72.8	0.50	56	0.3	-63	• ••••••		JAC
12	6501	6/10/2004	8	1456	1	129	0.4	72.8	0.50	65	0.3	-31	1		JAC
13	6502	6/10/2004	8	1456	2	143	0.4	72.8	1.00	72	1.6	-5			JAC
14	6503	6/10/2004	8	1456	2	137	0.4	72.8	1.00	69	1.6	-16			JAC
15	6504	6/10/2004	8	1456	0	159	0.4	72.8	0.00	80	-1.0	25			JAC
16	6505	6/10/2004	8	1456	2	158	0.4	72.8	1.00	79	1.6	23			JAC
17	6506	6/10/2004	8	1456	1	118	0.4	72.8	0.50	59	0.3	-52			JAC
18	6507	6/10/2004	8	1456	1	142	0.4	72.8	0.50	71	0.3	-7			JAC
19	6508	6/10/2004	8	1456	0	159	0.4	72.8	0.00	80	-1.0	25	I		JAC
20	6509	6/10/2004	8	1456	0	146	0.4	72.8	0.00	73	-1.0	1			JAC
21								1	L		1	<u> </u>			

page 2

CABRERA STATIC COL ING WORKSHEET (Rev 5) CONCRETE PAD #2 (SU16) SOUTH - INTEGRATED DIRECT MEASUREMENTS

		_			_									uprivi	uu an
	Detector Active Area (cm ²)]	α eff	β eff		Static	Count Time 1.0	(min)		Daily Backg	round Count T 20.0	'ime (min) T	i i	α Flag 100	β Flag 5000
	126	1	0.1700	0.2500	1		1.0		l	L	20.0			100	0000
			* Morning	Daily Count											
			Backgro	und Total											Tech.
seq. #	Sample ID# and Description	Date	Cou	ints*	Sample To	otal Counts	Backgrou	und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm²)	>α flag	> β f lag	Initial
			a	β	α	β	α	β	α	β	α	β			
1	6490	6/10/2004	3	200	1	168	0.2	10.0	1.00	168	4.0	502			JAC
2	6491	6/10/2004	3	200	1	182	0.2	10.0	1.00	182	4.0	546			JAC
3	6492	6/10/2004	3	200	2	121	0.2	10.0	2.00	121	8.6	352			JAC
4	6493	6/10/2004	3	200	1	114	0.2	10.0	1.00	114	4.0	330			JAC
5	6494	6/10/2004	3	200	3	107	0.2	10.0	3.00	107	13.3	308			JAC
6	6495	6/10/2004	3	200	1	121	0.2	10.0	1.00	121	4.0	352			JAC
7	6496	6/10/2004	3	200	2	119	0.2	10.0	2.00	119	8.6	346			JAC
8	6497	6/10/2004	3	200	2	129	0.2	10.0	2.00	129	8.6	378			JAC
9	6498	6/10/2004	3	200	1	129	0.2	10.0	1.00	129	4.0	378			JAC
10	6499	6/10/2004	3	200	3	137	0.2	10.0	3.00	137	13.3	403			JAC
11	6500	6/10/2004	3	200	1	139	0.2	10.0	1.00	139	4.0	410			JAC
12	6501	6/10/2004	3	200	3	129	0.2	10.0	3.00	129	13.3	378			JAC
13	6502	6/10/2004	3	200	1	112	0.2	10.0	1.00	112	4.0	324			JAC
14	6503	6/10/2004	3	200	1	142	0.2	10.0	1.00	142	4.0	419			JAC
15	6504	6/10/2004	3	200	1	341	0.2	10.0	1.00	341	4.0	1051			JAC
16	6505	6/10/2004	3	200	2	306	0.2	10.0	2.00	306	8.6	940			JAC
17	6506	6/10/2004	3	200	4	229	0.2	10.0	4.00	229	18.0	695			JAĆ
18	6507	6/10/2004	3	200	3	158	0.2	10.0	3.00	158	13.3	470			JAC
19	6508	6/10/2004	3	200	1	109	0.2	10.0	1.00	109	4.0	314			JAC
20	6509	6/10/2004	3	200	1	103	0.2	10.0	1.00	103	4.0	295			JAC

page

 $dnm/100 cm^2$

CABRERA STATIC COU NG WORKSHEET (Rev 5) CONCRETE PAD #2 (SU16) NORTH - INTEGRATED DIRECT MEASUREMENTS

_		_			-				-					upine	
	Detector Active Area (cm ²)]	αeff	β eff]	Static	Count Time	(min)		Daily Backg	round Count 1	Time (min)		α Flag	β Flag
	126]	0.1700	0.2500			1.0		[L	20.0		í í	100	5000
-		-	* Morning	Daily Count	-										
	<u> </u>	T		und Total							r				Tech.
seq. #	Sample ID# and Description	Date	-	ints*	Sample To	otal Counts	Backgrou	und (cpm)	Sample Co	unts (com)	Sample (dr	pm/100 cm ²)	>α flag	> ß flag	Initial
304. #	Sample ID+ and Description	Date	α	β	α	β	α	β	α	β	α	β		PU	
	6510	6/10/2004	4	800	4	289	0.2	40.0	4.00	289	17.7	790			JAC
2	6511	6/10/2004	4	800	3	336	0.2	40.0	3.00	336	13.1	940			JAC
3	6512	6/10/2004	4	800	4	306	0.2	40.0	4.00	306	17.7	844			JAC
4	6513	6/10/2004	4	800	1	291	0.2	40.0	1.00	291	3.7	797			JAC
5	6514	6/10/2004	4	800	3	144	0.2	40.0	3.00	144	13.1	330			JAC
6	6515	6/10/2004	4	800	2	116	0.2	40.0	2.00	116	8,4	241	1		JAC
7	6516	6/10/2004	4	800	6	230	0.2	40.0	6.00	230	27.1	603			JAC
8	6517	6/10/2004	4	800	3	128	0.2	40.0	3.00	128	13.1	279			JAC
9	6518	6/10/2004	4	800	2	135	0.2	40.0	2.00	135	8.4	302			JAČ
10	6519	6/10/2004	4	800	2	143	0.2	40.0	2.00	143	8.4	327			JAC
11	6520	6/10/2004	4	800	4	137	0.2	40.0	4.00	137	17.7	308			JAC
12	6521	6/10/2004	4	800	0	116	0.2	40.0	0.00	116	-0.9	241]		JAC
13	6522	6/10/2004	4	800	4	176	0.2	40.0	4.00	176	17.7	432			JAC
14	6523	6/10/2004	4	800	5	156	0.2	40.0	5.00	156	22.4	368			JAC
15	6524	6/10/2004	4	800	0	156	0.2	40.0	0.00	156	-0.9	368			JAC
16	6525	6/10/2004	4	800	0	90	0.2	40.0	0.00	90	-0.9	159			JAC
17	6526	6/10/2004	4	800	1	163	0.2	40.0	1.00	163	3.7	390			JAČ
18	6527	6/10/2004	4	800	5	158	0.2	40.0	5.00	158	22.4	375			JAC
19	6528	6/10/2004	4	800	0	147	0.2	40.0	0.00	147	-0.9	340			JAC
20	6529	6/10/2004	4	800	3	160	0.2	40.0	3.00	160	13.1	381			JAC

dpm/100 cm²

(

CABRERA SMEAR COU NG WORKSHEET (Rev 4) WASH RACK #2 NORTH FLOOR - SMEAR RESULTS

_							Duit Duala		Time (min)		α Flag	β Flag			
[α eff	βeff		Sampl	e Count Tim	e (min)	Daily Backg		t Time (min)		10	500			
	0.3300	0.2800			2.0			20.0		1	10	500			
_			* Morning I	Daily Count											
- T				und Total	I							_			Tech.
4	Sample ID# and Description	Date		nts*	Sample To	tal Counts	Backgrou	Ind (cpm)	Sample Co	unts (cpm)	Sample (dp	om/100 cm ²)	> α flag	>β flag	Initial
seq. #	Sample ID# and Description		α	ß	α	β	a	β	α	β	α	β			
1	WR2-NF-1	3/31/2004	2	994	0	106	0.1	49.7	0.00	53	-0.3	12			KP
2	WR2-NF-2	3/31/2004	2	994	1	99	0.1	49.7	0.50	50	1.2	-1			КР
3	WR2-NF-3	3/31/2004	2	994	2	94	0.1	49.7	1.00	47	2.7			<u> </u>	КР
4	WR2-NF-4	3/31/2004	2	994	0	97	0.1	49.7	0.00	49	-0.3	_4			КР
5	WR2-NF-5	3/31/2004	2	994	0	103	0.1	49.7	0.00	52	-0.3	6			КР
6	WR2-NF-6	3/31/2004	2	994	0	99	0.1	49.7	0.00	50	-0.3	-1			KP
7	WR2-NF-7	3/31/2004	2	994	1	93	0.1	49.7	0.50	47	1.2	-11			КР
8	WR2-NF-8	3/31/2004	2	994	0	94	0.1	49.7	0.00	47	-0.3	-10		ļ	KP
9	WR2-NF-9	3/31/2004	2	994	1	108	0.1	49.7	0.50	54	1.2	15			КР
10	WR2-NF-10	3/31/2004	2	994	1	92	0.1	49.7	0.50	46	1.2	-13			КР
11	WR2-NF-11	3/31/2004	2	994	2	97	0.1	49.7	1.00	49	2.7	4	L		КР
12	WR2-NF-12	3/31/2004	2	994	0	91	0.1	49.7	0.00	46	-0.3	-15			КР
13	WR2-NF-13	3/31/2004	2	994	1	110	0.1	49.7	0.50	55	1.2	19	L	L	КР
14	WR2-NF-14	3/31/2004	2	994	0	103	0.1	49.7	0.00	52	-0.3	6		ļ	KP
15	WR2-NF-15	3/31/2004	2	994	0	93	0.1	49.7	0.00	47	-0.3	-11	L	<u> </u>	КР
15	WR2-NF-16	3/31/2004	2	994	Ō	108	0.1	49.7	0.00	54	-0.3	15			КР
10	WR2-NF-17	3/31/2004	2	994	1	93	0.1	49.7	0.50	47	1.2	-11		<u> </u>	КР
18	WR2-NF-18	3/31/2004	2	994	0	91	0.1	49.7	0.00	46	-0.3	-15		<u> </u>	КР
10	WR2-NF-19	3/31/2004	2	994	0	96	0.1	49.7	0.00	48	-0.3	-6		1	KP
20	WR2-NF-20	3/31/2004	2	994	0	92	0.1	49.7	0.00	46	-0.3	-13	<u> </u>		KP

page 📢

dpm/100 cm²

CABRERA SMEAR COU ING WORKSHEET (Rev 4) WASH RACK #2 SOUTH FLOOR - SMEAR RESULTS

Г	α eff	βeff		Sampl	e Count Tim	e (min)	Daily Backg	round Count	t Time (min)		α Flag	β Flag			
ŀ	0.3300	0.2800			2.0			20.0			10	500			
L			t Manaira d	Deily Court											
				Daily Count	T			· · · · · ·	Г	<u>.</u>					Tech.
		.	÷	und Total ints*	Sample Te	otal Counts	Backgrou	und (cpm)	Sample Co	unts (com)	Sample (dp	$m/100 \text{ cm}^2$)	>α flag	>β flag	Initial
seq. #	Sample ID# and Description	Date	α	A R		ß	α	β	α	β	α	β			
	WR2-SF-1	3/31/2004	2	994	0	96	0.1	49.7	0.00	48	-0.3	-6			КР
$-\frac{1}{2}$	WR2-SF-2	3/31/2004	2	994	ō	102	0.1	49.7	0.00	51	-0.3	5			КР
3	WR2-SF-3	3/31/2004	2	994	0	95	0.1	49.7	0.00	48	-0.3	-8			КР
4	WR2-SF-4	3/31/2004	2	994	1	93	0.1	49.7	0.50	47	1.2	-11			КР
5	WR2-SF-5	3/31/2004	2	994	2	82	0.1	49.7	1.00	41	2.7	-31			КР
6	WR2-SF-6	3/31/2004	2	994	0	98	0.1	49.7	0.00	49	-0.3	-3			КР
-7	WR2-SF-7	3/31/2004	2	994	0	94	0.1	49.7	0.00	47	-0.3	-10			КР
8	WR2-SF-8	3/31/2004	2	994	0	92	0.1	49.7	0.00	46	-0.3	-13			КР
9	WR2-SF-9	3/31/2004	2	994	0	106	0.1	49.7	0.00	53	-0.3	12	<u> </u>	[KP
10	WR2-SF-10	3/31/2004	2	994	0	99	0.1	49.7	0.00	50	-0.3	-1			КР
11	WR2-SF-11	3/31/2004	2	994	0	84	0.1	49.7	0.00	42	-0.3	-28			КР
12	WR2-SF-12	3/31/2004	2	994	0	97	0.1	49.7	0.00	49	-0.3				КР
13	WR2-SF-13	3/31/2004	2	994	0	99	0.1	49.7	0.00	50	-0.3			ļ	КР
14	WR2-SF-14	3/31/2004	2	994	2	104	0.1	49.7	1.00	52	2.7	8			KP
15	WR2-SF-15	3/31/2004	2	994	2	95	0.1	49.7	1.00	48	2.7	-8		_	KP
16	WR2-SF-16	3/31/2004	2	994	0	93	0.1	49.7	0.00	47	-0.3	-11		I	KP
17	WR2-SF-17	3/31/2004	2	994	0	97	0.1	49.7	0.00	49	-0.3	_4			KP
18	WR2-SF-18	3/31/2004	2	994	0	94	0.1	49.7	0.00	47	-0.3	-10		I	KP
19	WR2-SF-19	3/31/2004	2	994	1	91	0.1	49.7	0.50	46	1.2	-15	L		KP
20	WR2-SF-20	3/31/2004		994	1	86	0.1	49.7	0.50	43	1.2	-24	<u> </u>		KP

page (

dpm/100 cm²

CABRERA SMEAR COU WASH RACK #2 CEILING AND UPPER WALLS - SMEAR RESULTS

											dpm/1	00 cm ²	1		
Г	α eff	βeff	l	Samp	e Count Tim	ne (min)	Daily Backo	round Count	t Time (min)	1	α Flag	β Flag			
1	0.3300	0.2800			2.0	<u>ן</u> ` ` ן		20.0]		10	500	1		
-			••••	D-il. 0									•		
rr		· · · · · · · · ·	<u> </u>	Daily Count							r	-	r	,	Tech
				und Total			Destaurs							> 0 #em	Tech.
seq. #	Sample ID# and Description	Date		unts*		otal Counts	•	und (cpm)	Sample Co	unts (cpm)	Sample (dp	mv100 cm ⁻)	>α flag	>β flag	Initial
			α	<u> </u>	α	<u>p</u>	α	p	α	<u>β</u>	α	<u> </u>	.	Ļ	
	WR2-C-1	3/31/2004	2	994	0	90	0.1	49.7	0.00	45	-0.3	-17	L	ļ	KP
2	WR2-C-2	3/31/2004	2	994	1	89	0.1	49.7	0.50	45	1.2	-19			КР
3	WR2-C-3	3/31/2004	2	994	0	91	0.1	49.7	0.00	46	-0.3	-15			KP
4	WR2-C-4	3/31/2004	2	994	0	90	0.1	49.7	0.00	45	-0.3	-17			КР
5	WR2-C-5	3/31/2004	2	994	2	83	0.1	49.7	1.00	42	2.7	-29			КР
6	WR2-C-6	3/31/2004	2	994	0	89	0.1	49.7	0.00	45	-0.3	-19			KP
7	WR2-C-7	3/31/2004	2	994	1	104	0.1	49.7	0.50	52	1.2	8			KP
8	WR2-C-8	3/31/2004	2	994	0	108	0.1	49.7	0.00	54	-0.3	15			KP
9	WR2-C-9	3/31/2004	2	994	0	96	0.1	49.7	0.00	48	-0.3	-6	1		KP
10	WR2-C-10	3/31/2004	2	994	1	98	0.1	49.7	0.50	49	1.2	-3	1		КР
11	WR2-C-11	3/31/2004	2	994	1	90	0.1	49.7	0.50	45	1.2	-17	1		KP
12	WR2-C-12	3/31/2004	2	994	0	99	0.1	49.7	0.00	50	-0.3	-1	1		KP
13	WR2-C-13	3/31/2004	2	994	0	93	0.1	49.7	0.00	47	-0.3	-11	1	1	КР
14	WR2-C-14	3/31/2004	2	994	Ö	84	0.1	49.7	0.00	42	-0.3	-28		t	KP
15	WR2-C-15	3/31/2004	2	994	Ō	77	0.1	49.7	0.00	39	-0.3	-40	1		KP
16	WR2-C-16	3/31/2004	2	994	1	78	0.1	49.7	0.50	39	1.2	-38	1	1	КР
17	WR2-C-17	3/31/2004	2	994	0	89	0.1	49.7	0.00	45	-0.3	-19		t	KP
18	WR2-C-18	3/31/2004	2	994	1 1	94	0.1	49.7	0.50	47	1.2	-10	1	1	KP
19	WR2-C-19	3/31/2004	2	994	0	95	0.1	49.7	0.00	48	-0.3	8	1	1	KP
20	WR2-C-20	3/31/2004	2	994	1 <u>0</u>	96	0.1	49.7	0.00	48	-0.3	-6		1	KP

CABRERA SMEAR COU ,NG WORKSHEET (Rev 4) WASH RACK #2 LOWER WALLS - SMEAR RESULTS

_															
[α eff	βeff		Sampi	e Count Tim	e (min)	Daily Backg		Time (min)		α Flag	β Flag			
ſ	0.3300	0.2800			2.0			20.0			10	500	l		
-			* Morning [Saily Count											
r					r				·		·				Tech.
			Backgro Cou	und Total	Sample To		Backgrou	und (cpm)	Sample Cou	unte (com)	Sample (dp	$m/100 \text{ cm}^2$)	> a flag	> ß flag	Initial
seq. #	Sample ID# and Description	Date		៣៥៦"	· · ·					ß	α	R			
			α	<u>p</u>	<u>a</u>	P	α	P	0.00	57	-0.3	26		t	КР
1	WR2-NW-1	3/31/2004	2	994	0	114	0.1	49.7		47	1.2	-11			KP
2	WR2-NW-2	3/31/2004	2	994	1	93	0.1	49.7	0.50		-0.3	-28			KP
3	WR2-NW-3	3/31/2004	2	994	0	84	0.1	49.7	0.00	42	-0.3	-20	ł		KP
4	WR2-NW-4	3/31/2004	2	994	0	98	0.1	49.7	0.00	49		-36	 	┨─────	KP
5	WR2-SW-1	3/31/2004	2	994	0	79	0.1	49.7	0.00	40	-0.3		<u> </u>		KP
6	WR2-SW-2	3/31/2004	2	994	0	94	0.1	49.7	0.00	47	-0.3	-10			KP
7	WR2-SW-3	3/31/2004	2	994	1	97	0.1	49.7	0.50	49	1.2	-4	 	· · · · · · · · · · · · · · · · · · ·	KP
8	WR2-SW-4	3/31/2004	2	994	1	92	0.1	49.7	0.50	46	1.2	-13			KP
9	WR2-EW-1	3/31/2004	2	994	1	103	0.1	49.7	0.50	52	1.2	6	ļ		KP
10	WR2-EW-2	3/31/2004	2	994	1	83	0.1	49.7	0.50	42	1.2	-29	 	l	KP KP
11	WR2-EW-3	3/31/2004	2	994	0	99	0.1	49.7	0.00	50	-0.3	-1	ļ	<u> </u>	KP
12	WR2-EW-4	3/31/2004	2	994	0	95	0.1	49.7	0.00	48	-0.3	-8	l	 	KP KP
13	WR2-EW-5	3/31/2004	2	994	2	91	0.1	49.7	1.00	46	2.7	-15	l	l	
14	WR2-EW-6	3/31/2004	2	994	1	96	0.1	49.7	0.50	48	1.2	-6	_	ļ	KP
15	WR2-EW-7	3/31/2004	2	994	1	93	0.1	49.7	0.50	47	1.2	-11		L	KP
16	WR2-EW-8	3/31/2004	2	994	0	94	0.1	49.7	0.00	47	-0.3	-10	Į		КР
17	WR2-WW-1	3/31/2004	2	994	0	99	0.1	49.7	0.00	50	-0.3	-1	<u> </u>	_	KP
18	WR2-WW-2	3/31/2004	2	994	0	98	0.1	49.7	0.00	49	-0.3	-3	ļ	_	KP
19	WR2-WW-3	3/31/2004	2	994	0	93	0.1	49.7	0.00	47	-0.3	-11	↓	ļ	КР
20	WR2-WW-4	3/31/2004	2	994	1	97	0.1	49.7	0.50	49	1.2		L	<u> </u>	KP
21	WR2-WW-5	3/31/2004	2	994	0	105	0.1	49.7	0.00	53	-0.3	10		L	KP
22	WR2-WW-6	3/31/2004	2	994	1	95	0.1	49.7	0.50	48	1.2	-8			KP
23	WR2-WW-7	3/31/2004	2	994	0	93	0.1	49.7	0.00	47	-0.3	-11		L	KP
24	WR2-WW-8	3/31/2004	2	994	1	96	0.1	49.7	0.50	48	1.2	6	J		KP

dpm/100 cm²

CABRERA STATIC COL ING WORKSHEET (Rev 5) WASH RACK #2 NORTH FLOOR - INTEGRATED DIRECT MEASUREMENTS

-		_			_				_					dpm/1	00 cm ²
	Detector Active Area (cm ²)]	αeff	β eff		Static	Count Time	e (min)	1	Daily Backg	round Count T	Time (min)		α Flag	β Flag
[582		0.1700	0.2500			1.0	I			20.0			100	5000
			* Morning	Daily Count					-						
			Backgro	und Total	T						1				Tech.
seq. #	Sample ID# and Description	Date	Co	unts*	Sample To	otal Counts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	om/100 cm ²)	>α flag	>β flag	Initial
			α	β	α	β	α	β	α	β	α	β	-	• -	
1	WR2-NF-1	6/27/2003	4	819	8	829	0.2	41.0	8.00	829	7.9	542			KP
2	WR2-NF-2	6/27/2003	4	819	7	1121	0.2	41.0	7.00	1121	6.9	742			KP
3	WR2-NF-3	6/27/2003	4	819	10	1345	0.2	41.0	10.00	1345	9.9	896			KP
4	WR2-NF-4	6/27/2003	4	819	9	1500	0.2	41.0	9.00	1500	8.9	1003			KP
5	WR2-NF-5	6/27/2003	4	819	5	729	0.2	41.0	5.00	729	4.9	473			KP
6	WR2-NF-6	6/27/2003	4	819	7	659	0.2	41.0	7.00	659	6.9	425			KP
7	WR2-NF-7	6/27/2003	4	819	5	580	0.2	41.0	5.00	580	4.9	370			KP
8	WR2-NF-8	6/27/2003	4	819	12	857	0.2	41.0	12.00	857	11.9	561			KP
9	WR2-NF-9	6/27/2003	4	819	5	871	0.2	41.0	5.00	871	4.9	570			КР
10	WR2-NF-10	6/27/2003	4	819	6	917	0.2	41.0	6.00	917	5.9	602			KP
11	WR2-NF-11	6/27/2003	4	819	4	593	0.2	41.0	4.00	593	3.8	379			KP
12	WR2-NF-12	6/27/2003	4	819	5	556	0.2	41.0	5.00	556	4.9	354			KP
13	WR2-NF-13	6/27/2003	4	819	4	696	0.2	41.0	4.00	696	3.8	450			KP
14	WR2-NF-14	6/27/2003	4	819	9	686	0.2	41.0	9.00	686	8.9	443			KP
15	WR2-NF-15	6/27/2003	4	819	15	778	0.2	41.0	15.00	778	15.0	507			КР
16	WR2-NF-16	6/27/2003	4	819	11	689	0.2	41.0	11.00	689	10.9	445			KP
17	WR2-NF-17	6/27/2003	4	819	7	627	0.2	41.0	7.00	627	6.9	403			KP
18	WR2-NF-18	6/27/2003	4	819	6	698	0.2	41.0	6.00	698	5.9	452			KP
19	WR2-NF-19	6/27/2003	4	819	12	612	0.2	41.0	12.00	612	11.9	392			КР
20	WR2-NF-20	6/27/2003	4	819	5	713	0.2	41.0	5.00	713	4.9	462			КP

page

CABRERA STATIC COU. .NG WORKSHEET (Rev 5) WASH RACK #2 SOUTH FLOOR - INTEGRATED DIRECT MEASUREMENTS

_			_		_				-					dpm/1	00 cm*
	Detector Active Area (cm ²)]	α eff	βeff		Static	Count Time	(min)		Daily Backg	round Count T	ime (min)		α Flag	β Flag
	582]	0.1700	0.2500			1.0				20.0]		100	5000
-		-	* Morning	Daily Count	_										
	······	r		und Total	T				ſ						Tech.
seq. #	Sample ID# and Description	Date		ints*	Sample To	tal Counts	Backgrou	(mqa) bnu	Sample Co	unts (com)	Sample (dp	m/100 cm ²)	>α flag	>β flag	Initial
			α	β	a	β	α	β	α	β	α	β			
1	WR2-SF-1	6/27/2003	4	819	5	594	0.2	41.0	5.00	594	4.9	380			KP
2	WR2-SF-2	6/27/2003	4	819	7	703	0.2	41.0	7.00	703	6.9	455			KP
3	WR2-SF-3	6/27/2003	4	819	4	687	0.2	41.0	4.00	687	3.8	444			KP
4	WR2-SF-4	6/27/2003	4	819	10	673	0.2	41.0	10.00	673	9.9	434			KP
5	WR2-SF-5	6/27/2003	4	819	9	692	0.2	41.0	9.00	692	8.9	447			KP
6	WR2-SF-6	6/27/2003	4	819	7	694	0.2	41.0	7.00	694	6.9	449			KP
7	WR2-SF-7	6/27/2003	4	819	7	741	0.2	41.0	7.00	741	6.9	481			KP
8	WR2-SF-8	6/27/2003	4	819	12	1272	0.2	41.0	12.00	1272	11.9	846			KP
9	WR2-SF-9	6/27/2003	4	819	7	1147	0.2	41.0	7.00	1147	6.9	760			KP
10	WR2-SF-10	6/27/2003	4	819	5	921	0.2	41.0	5.00	921	4.9	605			KP
11	WR2-SF-11	6/27/2003	4	819	8	827	0.2	41.0	8.00	827	7.9	540			KP
12	WR2-SF-12	6/27/2003	4	819	3	712	0.2	41.0	3.00	712	2.8	461			KP
13	WR2-SF-13	6/27/2003	4	819	9	802	0,2	41.0	9.00	802	8.9	523			КР
14	WR2-SF-14	6/27/2003	4	819	6	753	0.2	41.0	6.00	753	5.9	489			KP
15	WR2-SF-15	6/27/2003	4	819	11	769	0.2	41.0	11.00	769	10.9	500			KP
16	WR2-SF-16	6/27/2003	4	819	10	652	0.2	41.0	10.00	652	9.9	420			KP
17	WR2-SF-17	6/27/2003	4	819	5	696	0.2	41.0	5.00	696	4.9	450			KP
18	WR2-SF-18	6/27/2003	4	819	6	723	0.2	41.0	6.00	723	5.9	469			KP
19	WR2-SF-19	6/27/2003	4	819	4	649	0.2	41.0	4.00	649	3.8	418			KP
20	WR2-SF-20	6/27/2003	4	819	8	698	0.2	41.0	8.00	698	7.9	452			KP

page 2

dom/100 cm²

CABRERA STATIC COL ING WORKSHEET (Rev 5) WASH RACK #2 CEILING AND UPPER WALLS - INTEGRATED DIRECT MEASUREMENTS

_		_	_		_				_					dpm/1	00 cm ²
[Detector Active Area (cm ²)		αeff	β eff	ר	Static	Count Time	(min))	Daily Backg	round Count T	ime (min)		α Flag	β Flag
Ī	100		0.2000	0.2000	1		1.0		1		20.0			100	5000
			* Morning	Daily Count	_				-						
			Backgro	und Total						· · · · · ·					Tech.
seq. #	Sample ID# and Description	Date	Co	unts*	Sample To	otal Counts	Backgrou	und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm ²)	>α flag	>β flag	Initial
			α	β	α	β	α	β	a	β	a	β			
1	East Wall	6/26/2003	0	0	0	79	0.0	0.0	0.00	79	0.0	395			KP
2	East Wall	6/26/2003	0	0	0	104	0.0	0.0	0.00	104	0.0	520			KP
3	East Wall	6/26/2003	0	0	2	86	0.0	0.0	2.00	86	10.0	430			KP
4	East Wall	6/26/2003	0	0	1	78	0.0	0.0	1.00	78	5.0	390			KP
5	North Wall	6/26/2003	0	0	1	100	0.0	0.0	1.00	100	5.0	500			KP
6	Ceiling	6/26/2003	0	0	2	77	0.0	0.0	2.00	77	10.0	385			KP
7	Ceiling	6/26/2003	0	0	0	84	0.0	0.0	0.00	84	0.0	420			KP
8	Ceiling	6/26/2003	0	0	0	93	0.0	0.0	0.00	93	0.0	465			KP
9	Ceiling	6/26/2003	0	0	0	96	0.0	0.0	0.00	96	0.0	480			КР
10	South Wall	6/26/2003	0	0	1	82	0.0	0.0	1.00	82	5.0	410		~	KP
11	North Wall	6/26/2003	0	0	0	85	0.0	0.0	0.00	85	0.0	425			KP
12	Ceiling	6/26/2003	0	0	0	91	0.0	0.0	0.00	91	0.0	455			КР
13	Ceiling	6/26/2003	0	0	1	92	0.0	0.0	1.00	92	5.0	460			KP
14	Ceiling	6/26/2003	0	0	1	98	0.0	0.0	1.00	98	5.0	490			KP
15	Ceiling	6/26/2003	0	0	2	97	0.0	0.0	2.00	97	10.0	485			КР
16	South Wall	6/26/2003	0	0	0	92	0.0	0.0	0.00	92	0.0	460			KP
17	West Wali	6/26/2003	0	0	0	91	0.0	0.0	0.00	91	0.0	455		· · · · · ·	КР
18	West Wall	6/26/2003	0	0	2	105	0.0	0.0	2.00	105	10.0	525			KP
19	West Wall	6/26/2003	0	0	0	98	0.0	0.0	0.00	98	0.0	490			KP
20	West Wall	6/26/2003	0	0	1	72	0.0	0.0	1.00	72	5.0	360		···	KP

page

CABRERA STATIC COU. NG WORKSHEET (Rev 5) WASH RACK #2 LOWER WALLS - INTEGRATED DIRECT MEASUREMENTS

-													_	dpm/1	00 cm⁴
	Detector Active Area (cm ²)		αeff	β eff		Static	Count Time	(min)		Daily Backg	round Count T	ime (min)		α Flag	β Flag
L	582	5	0.1700	0.2500			1.0	l			20.0			100	5000
			* Morning I	Daily Count											
				und Total											Tech.
seq. #	Sample ID# and Description	Date	-	nts*	Sample To	tal Counts	Backgrou	und (cpm)	Sample Co	unts (cpm)	Sample (dp	$m/100 \text{ cm}^2$	> a flag	> β flag	Initial
↓ · ↓		•	α	β	α	β	α	ß	α	β	α	β			
	North Wall	6/25/2003	5	854	14	543	0.3	42.7	14.00	543	13.9	344			KP
2	North Wall	6/25/2003	5	854	9	523	0.3	42.7	9.00	523	8.8	330			KP
3	North Wall	6/25/2003	5	854	8	530	0.3	42.7	8.00	530	7.8	335			KP
4	North Wall	6/25/2003	5	854	7	517	0.3	42.7	7.00	517	6.8	326			KP
5	East Wall	6/25/2003	5	854	11	561	0.3	42.7	11.00	561	10.9	356			KP
6	East Wall	6/25/2003	5	854	9	602	0.3	42.7	9.00	602	8.8	384			KP
7	East Wall	6/25/2003	5	854	14	581	0.3	42.7	14.00	581	13.9	370			KP
8	East Wall	6/25/2003	5	854	9	574	0.3	42.7	9.00	574	8.8	365			KP
9	East Wall	6/25/2003	5	854	6	550	0.3	42.7	6.00	550	5.8	349			KP
10	East Wall	6/25/2003	5	854	7	568	0.3	42.7	7.00	568	6.8	361			KP
11	East Wall	6/25/2003	5	854	8	578	0.3	42.7	8.00	578	7.8	368			KP
12	East Wall	6/25/2003	5	854	5	583	0.3	42.7	5.00	583	4.8	371			KP
13	South Wall	6/25/2003	5	854	6	545	0.3	42.7	6.00	545	5.8	345			КР
14	South Wall	6/25/2003	5	854	5	525	0.3	42.7	5.00	525	4.8	331			KP
15	South Wall	6/25/2003	5	854	9	499	0.3	42.7	9.00	499	8.8	314			KP
16	South Wall	6/25/2003	5	854	11	573	0.3	42.7	11.00	573	10.9	364			KP
17	West Wall	6/25/2003	5	854	8	581	0.3	42.7	8.00	581	7.8	370			KP
18	West Wall	6/25/2003	5	854	12	589	0.3	42.7	12.00	589	11.9	375			KP
19	West Wall	6/25/2003	5	854	10	545	0.3	42.7	10.00	545	9.9	345			KP
20	West Wall	6/25/2003	5	854	11	503	0.3	42.7	11.00	503	10.9	316			KP
21	West Wall	6/25/2003	5	854	5	574	0.3	42.7	5.00	574	4.8	365			КР
22	West Wall	6/25/2003	5	854	10	560	0.3	42.7	10.00	560	9.9	356			KP
23	West Wall	6/25/2003	5	854	8	582	0.3	42.7	8.00	582	7.8	371			KP
24	West Wall	6/25/2003	5	854	8	555	0.3	42.7	8.00	555	7.8	352			KP

page 4

1-----

CABRERA SMEAR COL. ING WORKSHEET (Rev 4) WASH RACK #3 NORTH FLOOR - SMEAR RESULTS

			_								dpm/1	00 cm ²			
	α eff	βeff		Samp	e Count Tin	ne (min)	Daily Back	around Coun	t Time (min)	I	α Flag	β Flag			
	0.3300	0.2800			2.0]`´		20.0]		10	500			
			* Morning	Daily Count					•	8					
		T		und Total											
seq. #	Sample ID# and Description	Date		unts*											Tech.
	campie ibs and beechpuoli	Date	α	R		otal Counts		und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm ⁺)	>α flag	>β flag	Initial
1	WR3-NF-1	3/30/2004	4	965	1	92	α 0.2	48.3	α 0.50	<u> </u>	<u>α</u> 0.9	<u>В</u>			
2	WR3-NF-2	3/30/2004	4	965	t 0	97	0.2	48.3	0.00	40	-0.6	-8			КР
3	WR3-NF-3	3/30/2004	4	965	0	101	0.2	48.3	0.00	51	-0.6				KP
4	WR3-NF-4	3/30/2004	4	965	ő	90	0.2	48.3	0.00	45	-0.6	8			КР
5	WR3-NF-5	3/30/2004	4	965	1	89	0.2	48.3	0.50	45	0.9	- <u>12</u> -13			КР
6	WR3-NF-6	3/30/2004	4	965	i i	96	0.2	48.3	0.00	48	-0.6	-13			КР
7	WR3-NF-7	3/30/2004	4	965	1 õ	97	0.2	48.3	0.00	49	-0.6				KP
8	WR3-NF-8	3/30/2004	4	965	Ö	102	0.2	48.3	0.00	51	-0.6	10			KP
9	WR3-NF-9	3/30/2004	4	965	Ö	101	0.2	48.3	0.00	51	-0.6	8			KP KP
10	WR3-NF-10	3/30/2004	4	965	Ō	91	0.2	48.3	0.00	46	-0.6	-10			KP KP
11	WR3-NF-11	3/30/2004	4	965	1	89	0.2	48.3	0.50	45	0.9	-13		······	KP
12	WR3-NF-12	3/30/2004	4	965	0	94	0.2	48.3	0.00	47	-0.6	-13			KP
13	WR3-NF-13	3/30/2004	4	965	1	108	0.2	48.3	0.50	54	0.9	21			KP KP
14	WR3-NF-14	3/30/2004	4	965	1	93	0.2	48.3	0.50	47	0.9	-6			KP KP
15	WR3-NF-15	3/30/2004	4	965	0	88	0.2	48.3	0.00	44	-0.6	-15			KP
16	WR3-NF-16	3/30/2004	4	965	1	76	0.2	48.3	0.50	38	0.9	-37			KP
17	WR3-NF-17	3/30/2004	4	965	0	90	0.2	48.3	0.00	45	-0.6	-12			KP
18	WR3-NF-18	3/30/2004	4	965	0	94	0.2	48.3	0.00	47	-0.6	-12			KP
19	WR3-NF-19	3/30/2004	4	965	1	89	0.2	48.3	0.50	45	0.9	-13			KP
20	WR3-NF-20	3/30/2004	4	965	Ö	95	0.2	48.3	0.00	48	-0.6	-13			KP

page \

			_							_	dpm/1	00 cm ²			
1	a eff	βeff		Samp	e Count Tim	e (min)	Daily Backg	round Count	t Time (min)		α Flag	β Flag			
[0.3300	0.2800		-	2.0			20.0			10	500			
•			• • Morning	Daily Count						•					
				und Total											Tech.
seq. #	Sample ID# and Description	Date		ints*	Sample To	tal Counts	Backgrou	und (cpm)	Sample Co	unts (com)	Sample (dp	$m/100 \text{ cm}^2$	>α flag	> ß flag	Initial
			α	β	α	β	α	β	α	β	α	β			
1	WR3-SF-1	3/30/2004	4	965	0	102	0.2	48.3	0.00	51	-0.6	10			KP
2	WR3-SF-2	3/30/2004	4	965	0	97	0.2	48.3	0.00	49	-0.6	1			KP
3	WR3-SF-3	3/30/2004	4	965	0	100	0.2	48.3	0.00	50	-0.6	6			КР
4	WR3-SF-4	3/30/2004	4	965	0	76	0.2	48.3	0.00	38	-0.6	-37			КР
5	WR3-SF-5	3/30/2004	4	965	0	82	0.2	48.3	0.00	41	-0.6	-26			КР
6	WR3-SF-6	3/30/2004	4	965	0	93	0.2	48.3	0.00	47	-0.6	-6			КР
7	WR3-SF-7	3/30/2004	4	965	0	73	0.2	48.3	0.00	37	-0.6	-42			КР
8	WR3-SF-8	3/30/2004	4	965	0	80	0.2	48.3	0.00	40	-0.6	-29			KP
9	WR3-SF-9	3/30/2004	4	965	0	110	0.2	48.3	0.00	55	-0.6	24			KP
10	WR3-SF-10	3/30/2004	4	965	0	96	0.2	48.3	0.00	48	-0.6	-1			KP
11	WR3-SF-11	3/30/2004	4	965	0	101	0.2	48.3	0.00	51	-0.6	8			KP
12	WR3-SF-12	3/30/2004	4	965	0	99	0.2	48.3	0.00	50	-0.6	4			КР
13	WR3-SF-13	3/30/2004	4	965	0	86	0.2	48.3	0.00	43	-0.6	-19			KP
14	WR3-SF-14	3/30/2004	4	965	0	79	0.2	48.3	0.00	40	-0.6	-31			KP
15	WR3-SF-15	3/30/2004	4	965	0	103	0.2	48.3	0.00	52	-0.6	12			KP
16	WR3-SF-16	3/30/2004	4	965	0	78	0.2	48.3	0.00	39	-0.6	-33			KP
17	WR3-SF-17	3/30/2004	4	965	0	92	0.2	48.3	0.00	46	-0.6	-8			KP
18	WR3-SF-18	3/30/2004	4	965	0	102	0.2	48.3	0.00	51	-0.6	10			KP
19	WR3-SF-19	3/30/2004	4	965	0	96	0.2	48.3	0.00	48	-0.6	-1			KP
20	WR3-SF-20	3/30/2004	4	965	0	94	0.2	48.3	0.00	47	-0.6	-4			КР
21															

CABRERA SMEAR COU ... NG WORKSHEET (Rev 4) WASH RACK #3 CEILING AND UPPER WALLS - SMEAR RESULTS

			1												
ļ	<u>α eff</u>	βeff	1	Samp	le Count Tim	ne (min)	Daily Back		t Time (min)		α Flag	β Flag			
l	0.3328	0.2789			2.0			20.0			10	500	1		
			* Morning	Daily Count						-			-		
			Backgro	und Total											Tech
ieq. #	Sample ID# and Description	Date	Čou	unts*	Sample To	otal Counts	Backgro	und (cpm)	Sample Co	unts (com)	Sample (do	m/100 cm ²)	>α flag	>β flag	Initia
·			α	β	α	β	α	β	a	B	α	в			
1	WR3-C-1	3/30/2004	4	965	0	97	0.2	48.3	0.00	49	-0.6	1 1			KP
2	WR3-C-2	3/30/2004	4	965	0	91	0.2	48.3	0.00	46	-0.6	-10			KP
3	WR3-C-3	3/30/2004	4	965	1	99	0.2	48.3	0.50	50	0.9	4		1	KP
4	WR3-C-4	3/30/2004	4	965	1	103	0.2	48.3	0.50	52	0.9	12		1	KP
5	WR3-C-5	3/30/2004	4	965	0	79	0.2	48.3	0.00	40	-0.6	-31			KP
6	WR3-C-6	3/30/2004	4	965	0	100	0.2	48.3	0.00	50	-0.6	6	1		KP
7	WR3-C-7	3/30/2004	4	965	1	89	0.2	48.3	0.50	45	0.9	-13			KP
8	WR3-C-8	3/30/2004	4	965	1	91	0.2	48.3	0.50	46	0.9	-10		1	KP
9	WR3-C-9	3/30/2004	4	965	0	92	0.2	48.3	0.00	46	-0.6	-8	1		KP
10	WR3-C-10	3/30/2004	4	965	0	84	0.2	48.3	0.00	42	-0.6	-22			KP
11	WR3-C-11	3/30/2004	4	965	1	106	0.2	48.3	0.50	53	0.9	17		1	KP
12	WR3-C-12	3/30/2004	4	965	0	108	0.2	48.3	0.00	54	-0.6	21			KP
13	WR3-C-13	3/30/2004	4	965	0	92	0.2	48.3	0.00	46	-0.6	-8	1	1	KP
14	WR3-C-14	3/30/2004	4	965	0	91	0.2	48.3	0.00	46	-0.6	-10			КР
15	WR3-C-15	3/30/2004	4	965	1	97	0.2	48.3	0.50	49	0.9	1			KP
16	WR3-C-16	3/30/2004	4	965	0	101	0.2	48.3	0.00	51	-0.6	8			KP
17	WR3-C-17	3/30/2004	4	965	0	94	0.2	48.3	0.00	47	-0.6	-4			KP
18	WR3-C-18	3/30/2004	4	965	1	92	0.2	48.3	0.50	46	0.9	-8	I	l l	KP
19	WR3-C-19	3/30/2004	4	965	1	99	0.2	48.3	0.50	50	0.9	4			KP
20	WR3-C-20	3/30/2004	4	965	0	101	0.2	48.3	0.00	51	-0.6	8			KP
21															

page 3

dpm/100 cm²

L

CABRERA STATIC COU .NG WORKSHEET (Rev 5) WASH RACK #3 NORTH FLOOR - INTEGRATED DIRECT MEASUREMENTS

					-								_	dpm/1	00 cm ²
1	Detector Active Area (cm ²)		_α eff	β_eff		Static	Count Time	e (min)		Daily Backg	round Count T	ime (min)		α Flag	β Flag
	582]	0.1700	0.2500	1		1.0				20.0	1	[100	5000
			* Morning	Daily Count					•				-		
			Backgro	und Total					[<u> </u>				Tech.
seq.#	Sample ID# and Description	Date	Cou	ints*	Sample To	otal Counts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	m/100 cm ²)	> a flag	>β flag	Initial
			α	β	α	β	α	β	ά	β	α	β			
	WR3-NF-1	6/25/2003	5	854	3	525	0.3	42.7	3.00	525	2.8	331			KP
2	WR3-NF-2	6/25/2003	5	854	1	605	0.3	42.7	1.00	605	0.8	386			KP
3	WR3-NF-3	6/25/2003	5	854	2	548	0.3	42.7	2.00	548	1.8	347			KP
4	WR3-NF-4	6/25/2003	5	854	4	606	0.3	42.7	4.00	606	3.8	387			KP
5	WR3-NF-5	6/25/2003	5	854	3	613	0.3	42.7	3.00	613	2.8	392		·······	КР
6	WR3-NF-6	6/25/2003	5	854	8	637	0.3	42.7	8.00	637	7.8	408			KP
7	WR3-NF-7	6/25/2003	5	854	10	634	0.3	42.7	10.00	634	9.9	406			KP
8	WR3-NF-8	6/25/2003	5	854	8	588	0.3	42.7	8.00	588	7.8	375			KP
9	WR3-NF-9	6/25/2003	5	854	6	589	0.3	42.7	6.00	589	5.8	375			KP
10	WR3-NF-10	6/25/2003	5	854	11	640	0.3	42.7	11.00	640	10.9	411			KP
11	WR3-NF-11	6/25/2003	5	854	8	621	0.3	42.7	8.00	621	7.8	397			КР
12	WR3-NF-12	6/25/2003	_ 5	854	7	602	0.3	42.7	7.00	602	6.8	384			KP
13	WR3-NF-13	6/25/2003	5	854	6	617	0.3	42.7	6.00	617	5.8	395			KP
14	WR3-NF-14	6/25/2003	5	854	5	740	0.3	42.7	5.00	740	4.8	479			KP
15	WR3-NF-15	6/25/2003	5	854	5	569	0.3	42.7	5.00	569	4.8	362			KP
16	WR3-NF-16	6/25/2003	5	854	8	552	0.3	42.7	8.00	552	7.8	350			KP
17	WR3-NF-17	6/25/2003	5	854	12	558	0.3	42.7	12.00	558	11.9	354			KP
18	WR3-NF-18	6/25/2003	5	854	10	781	0.3	42.7	10.00	781	9.9	507			KP
_19	WR3-NF-19	6/25/2003	5	854	8	601	0.3	42.7	8.00	601	7.8	384			KP
20	WR3-NF-20	6/25/2003	5	854	15	639	0.3	42.7	15.00	_639	14.9	410			KP

CABRERA SMEAR COU NG WORKSHEET (Rev 4) WASH RACK #3 LOWER WALLS - SMEAR RESULTS

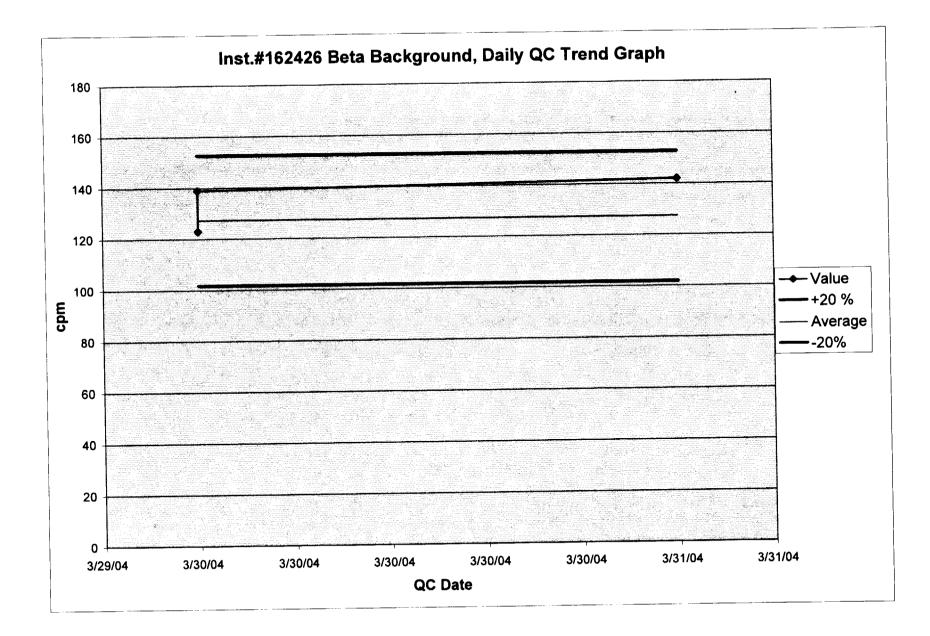
			-								upine i c				
	α eff	βeff		Sampl	e Count Tim	e (min)	Daily Backg		t Time (min)		α Flag	β Flag			
	0.3300	0.2800			2.0			20.0			10	500			
•			• •	Daily Carvet											
		.		Daily Count	-				1				·	r	Tech.
				und Total							•		>α flag	> B flag	Initial
seq. #	Sample ID# and Description	Date		ints"	1 .	tal Counts		und (cpm)	Sample Co	unts (cpm)	Sample (dp		×α naig	- p mag	
			α	<u> </u>	α	β	α	<u>β</u>	α	<u>β</u>	α	p		ļ	1/0
1	WR3-NW-1	3/30/2004	44	965	0	5	0.2	48.3	0.00	3	-0.6	-163	.		KP
2	WR3-NW-2	3/30/2004	4	965	0	82	0.2	48.3	0.00	41	-0.6	-26	Į	ļ	KP
3	WR3-NW-3	3/30/2004	4	965	2	85	0.2	48.3	1.00	43	2.4	-21	ļ	Į	KP
4	WR3-NW-4	3/30/2004	4	965	0	98	0.2	48.3	0.00	49	-0.6	3			КР
5	WR3-EW-1	3/30/2004	4	965	0	118	0.2	48.3	0.00	59	-0.6	38			KP
6	WR3-EW-2	3/30/2004	4	965	1	99	0.2	48.3	0.50	50	0.9	4	I		KP
7	WR3-EW-3	3/30/2004	4	965	2	87	0.2	48.3	1.00	44	2.4	-17	<u> </u>		KP
8	WR3-EW-4	3/30/2004	4	965	0	101	0.2	48.3	0.00	51	-0.6	8			KP
9	WR3-EW-5	3/30/2004	4	965	0	92	0.2	48.3	0.00	46	-0.6	-8			KP
10	WR3-EW-6	3/30/2004	4	965	1	106	0.2	48.3	0.50	53	0.9	17			КР
11	WR3-EW-7	3/30/2004	4	965	0	93	0.2	48.3	0.00	47	-0.6	-6			KP
12	WR3-EW-8	3/30/2004	4	965	0	89	0.2	48.3	0.00	45	-0.6	-13		T	KP
13	WR3-SW-1	3/30/2004	4	965	0	94	0.2	48.3	0.00	47	-0.6	-4			KP
14	WR3-SW-2	3/30/2004	4	965	0	92	0.2	48.3	0.00	46	-0.6	-8		1	KP
15	WR3-SW-3	3/30/2004	4	965	2	95	0.2	48.3	1.00	48	2.4	-3			KP
16	WR3-SW-4	3/30/2004	4	965	1	81	0,2	48.3	0.50	41	0.9	-28			KP
17	WR3-WW-1	3/30/2004	4	965	0	90	0.2	48.3	0.00	45	-0.6	-12	1		KP
18	WR3-WW-2	3/30/2004	4	965	1 1	88	0.2	48.3	0.50	44	0.9	-15		1	КР
19	WR3-WW-3	3/30/2004	4	965	Ó	105	0.2	48.3	0.00	53	-0.6	15	1		KP
20	WR3-WW-4	3/30/2004	4	965	Ō	84	0.2	48.3	0.00	42	-0.6	-22	1		КР
21	WR3-WW-5	3/30/2004	4	965		89	0.2	48.3	0.50	45	0.9	-13	1	1	КР
22	WR3-WW-6	3/30/2004	4	965	i o	102	0.2	48.3	0.00	51	-0.6	10		1	KP
23	WR3-WW-7	3/30/2004	4	965	1 0	89	0.2	48.3	0.00	45	-0.6	-13	1	1	KP
24	WR3-WW-8	3/30/2004	1	965		92	0.2	48.3	0.50	46	0.9	-8		1	KP
25	1110-111-0	0.00/2004	<u> </u>		+	<u>+</u>	<u> </u>	+		<u> </u>	<u> </u>	<u>+ </u>			<u> </u>
65		I	L		<u>i</u>	1	I	I	1				I		1

dpm/100 cm²

Г

Appendix I: Survey Instrument Quality Control and Calibration Certificates

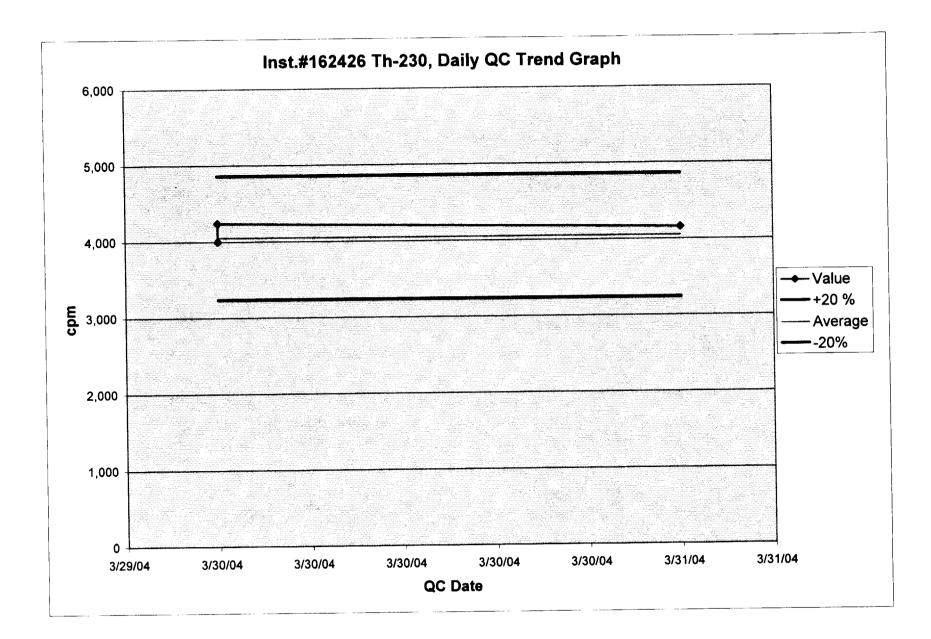
inst.#79498 Tc-99							
QC Daily Source							
Date	Result (cpm)	P/F					
6/17/2003	2,600						
6/19/2003	2,650						
6/20/2003	2,600						
6/22/2003	2,500						
6/27/2003	2,600						
6/30/2003	2,450						
7/9/2003	2,500						
7/10/2003	2,400	-					


inst.#7	9498 Tc-99	Source Ser. #	3974-02
Initial So	urce Readings	Nuclide	Tc-99
Date	Result (cpm)		
6/16/2003	2,600		
6/16/2003	2,700		
6/16/2003	2,550		
6/16/2003	2,500		
6/16/2003	2,600		
6/16/2003	2,650		
6/16/2003	2,700		
6/16/2003	2,600		
6/16/2003	2,500		
6/16/2003	2,300		
	Average		
	2570		

Inst.#162426 Beta Background								
	QC Daily Source							
Date	Result (cpm)	P/F						
3/30/2004	123							
3/30/2004	139							
3/31/2004	142							

~

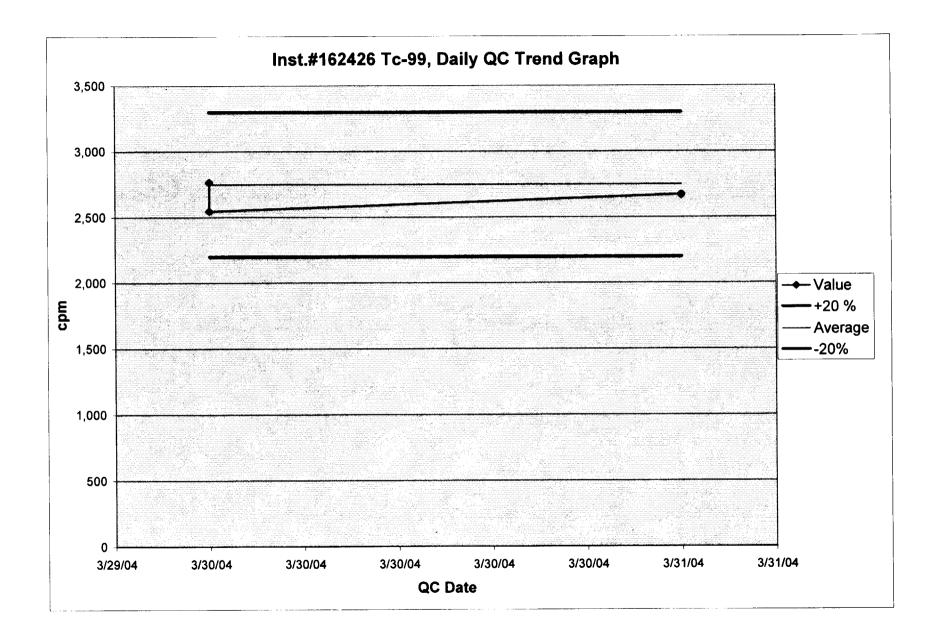
Inst.#162426	Beta Background	Source Ser. #	BKG
Initial So	urce Readings	Nuclide	
Date	Result (cpm)		
3/29/2004	124		
3/29/2004	113		
3/29/2004	119		
3/29/2004	117		
3/29/2004	152		
3/29/2004	139		
3/29/2004	122		
3/29/2004	131		
3/29/2004	138		
3/29/2004	118		
	Average		
	127		


BTD General Meter QC 0304 Inst.#162426 Beta Background

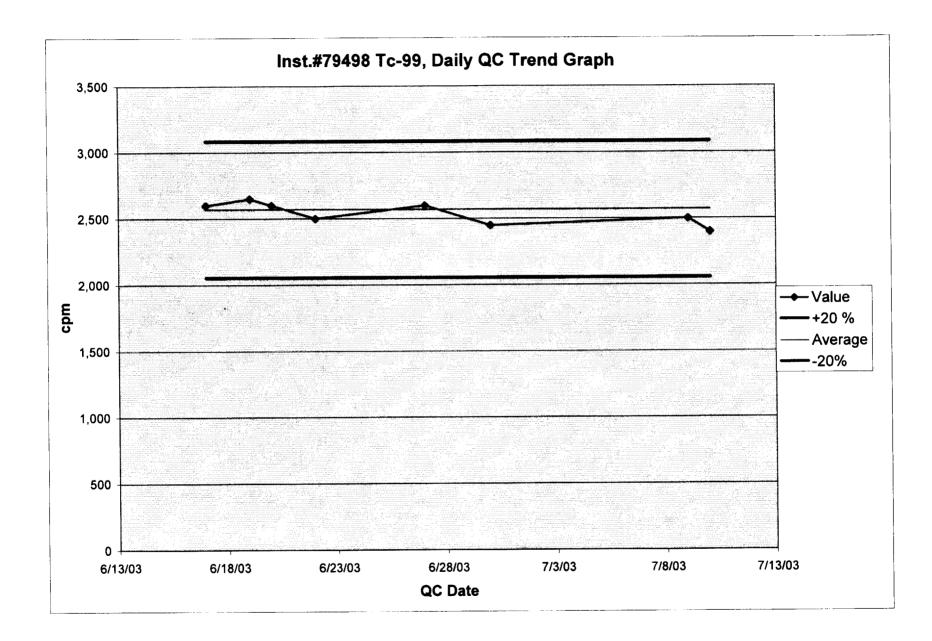
Inst.#162426 Th-230							
	QC Daily Source						
Date	Result (cpm)	P/F					
3/30/2004	4,000						
3/30/2004	4,237						
3/31/2004	4,158						
<u> </u>							

inst.#16	32426 Th-230	Source Ser. #	2888-01
Initial So	urce Readings	Nuclide	Th-230
Date	Result (cpm)		
3/29/2004	3,948		
3/29/2004	4,080		
3/29/2004	4,151		
3/29/2004	4,062		
3/29/2004	4,067		
3/29/2004	4,021		
3/29/2004	3,996		
3/29/2004	4,060		
3/29/2004	4,155		
3/29/2004	3,972		
	Average		
	4051		

BTD General Meter QC 0304 Inst.#162426 Th-230

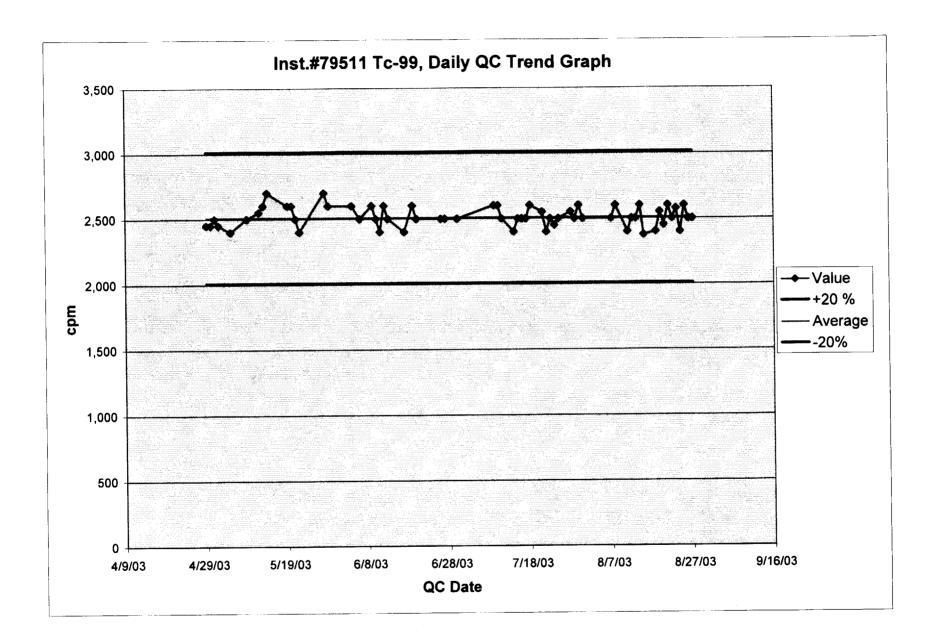


Inst.#162426 Tc-99								
	QC Daily Source							
Date	Result (cpm)	P/F						
3/30/2004	2,764							
3/30/2004	2,545							
3/31/2004	2,671							

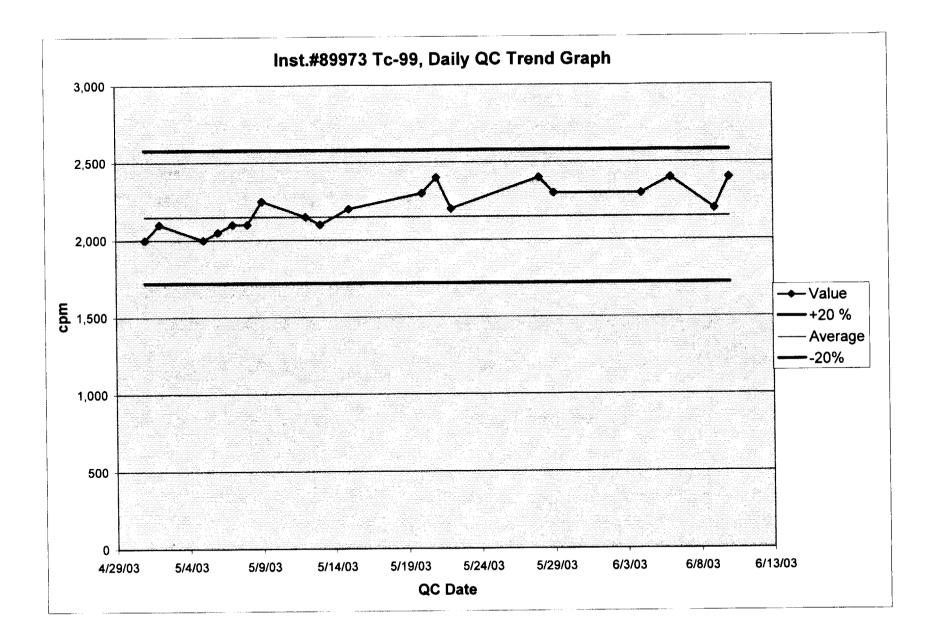

•

Inst.#1	Inst.#162426 Tc-99		
Initial Sou	urce Readings	Nuclide	
Date	Result (cpm)		
3/29/2004	2,664		
3/29/2004	2,684		
3/29/2004	2,859		
3/29/2004	2,704		
3/29/2004	2,718		
3/29/2004	2,807		
3/29/2004	2,788		
3/29/2004	2,745		
3/29/2004	2,724		
3/29/2004	2,796		
	Average		
dan seria dan pertekan Disebut dan pertekan	2749		

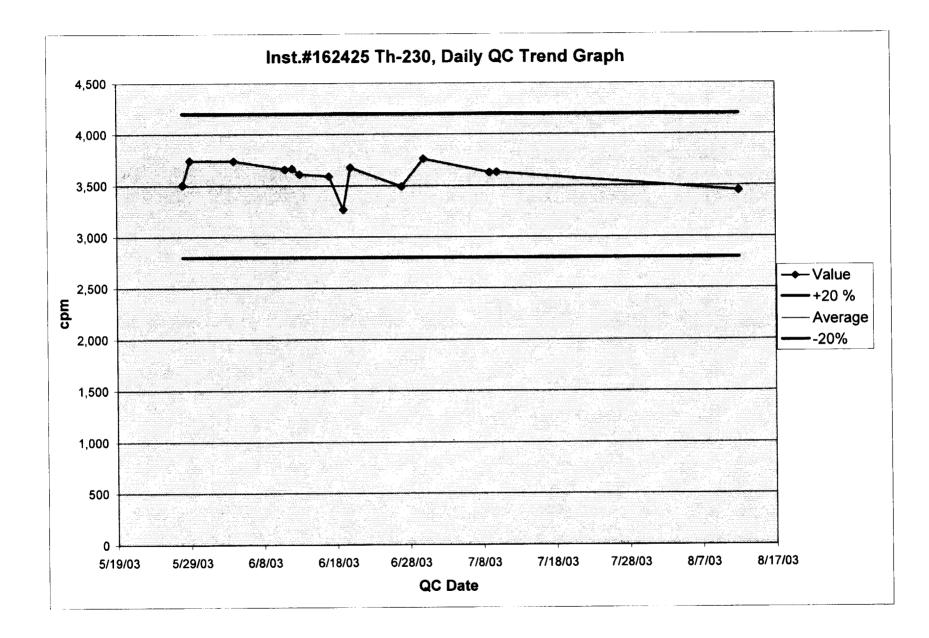
2889-01 Tc-99


(

	Inst.#79511 Tc-99				
QC Daily Source					
Date	Result (cpm)	P/F			
4/29/2003	2,450				
4/30/2003	2,450				
5/1/2003	2,500				
5/2/2003	2,450				
5/5/2003	2,400				
5/9/2003 5/12/2003	2,500				
5/13/2003	2,600				
5/14/2003	2,700				
5/19/2003	2,600				
5/20/2003	2,600				
5/21/2003	2,500				
5/22/2003	2,400				
5/28/2003	2,700				
5/29/2003	2,600				
6/4/2003	2,600				
6/6/2003	2,500				
6/9/2003	2,600				
6/10/2003	2,500				
6/11/2003	2,400				
6/12/2003	2,600				
6/13/2003	2,500				
6/17/2003	2,400				
6/19/2003	2,600				
6/20/2003	2,500				
6/26/2003	2,500				
6/27/2003	2,500				
6/30/2003 7/9/2003	2,500				
7/10/2003	2,600				
7/11/2003	2,500				
7/14/2003	2,400				
7/15/2003	2,500				
7/16/2003	2,500				
7/17/2003	2,500				
7/18/2003	2,600				
7/21/2003	2,550				
7/22/2003	2,400				
7/23/2003	2,500				
7/24/2003	2,450				
7/25/2003	2,500				
7/28/2003	2,550				
7/29/2003	2,500				
7/30/2003	2,600				
7/31/2003	2,500				
8/7/2003	2,500				
8/8/2003 8/11/2003	2,600 2,400				
8/12/2003	2,500				
8/13/2003	2,500				
8/14/2003	2,600				
8/15/2003	2,375				
8/18/2003	2,400				
8/19/2003	2,550				
8/20/2003	2,450				
8/21/2003	2,600				
8/22/2003	2,500				
8/23/2003	2,575				
8/24/2003	2,400				
8/25/2003	2,600				
8/26/2003	2,500				
8/27/2003	2,500	<u>ant to ant</u>			

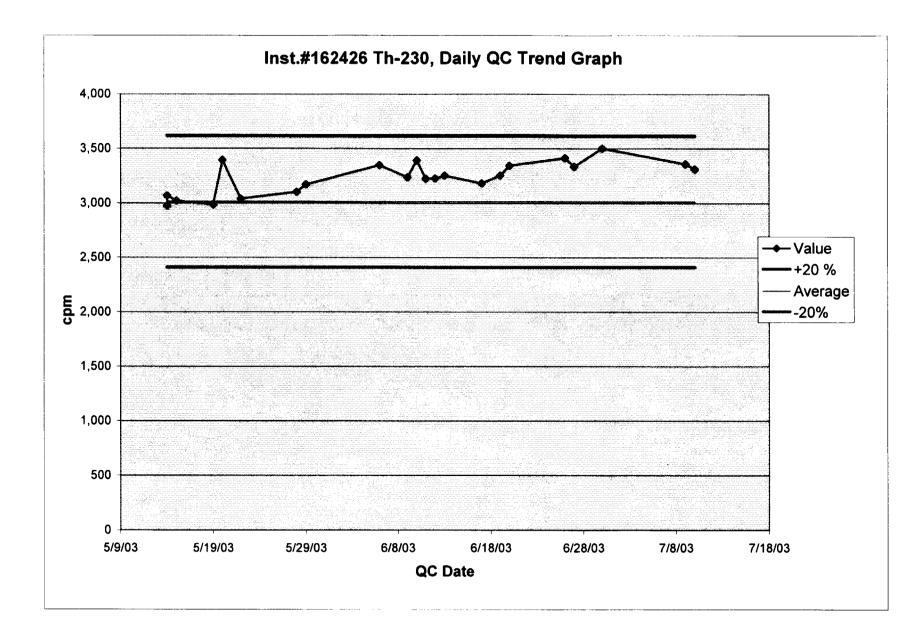

~___

Inst.#7	79511 Tc-99	Source Ser. #	3974-02
Initial So	urce Readings	Nuclide	Tc-99
Date	Result (cpm)		
4/28/2003	2,500		
4/28/2003	2,650		
4/28/2003	2,450		
4/28/2003	2,500		
4/28/2003	2,500		
4/28/2003	2,450		
4/28/2003	2,550		
4/28/2003	2,500		
4/28/2003	2,550		
4/28/2003	2,450		
	Average		
	2510		

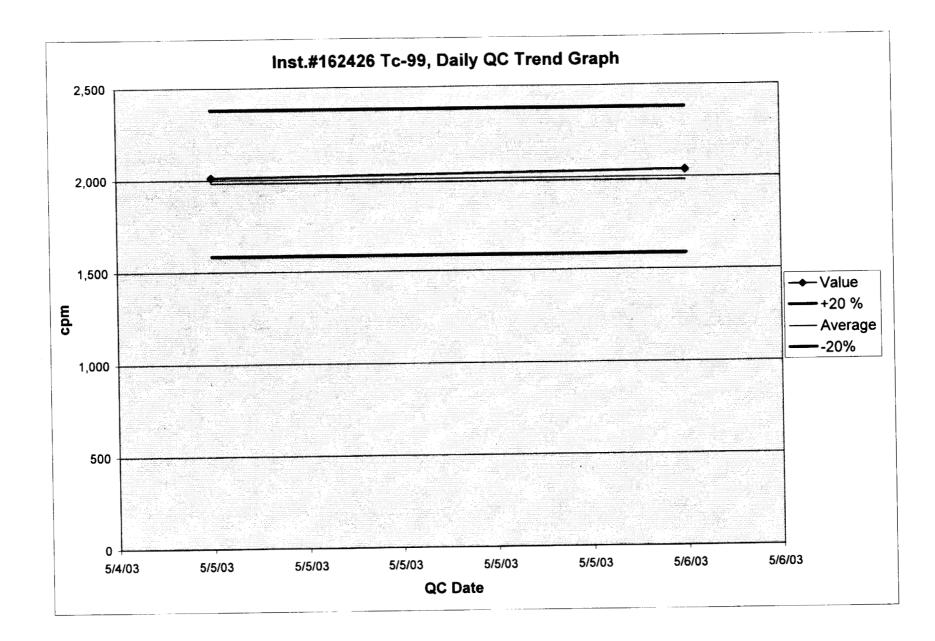

Inst.#89973 Tc-99						
QC Daily Source						
Date	Result (cpm)	P/F				
5/1/2003	2,000					
5/2/2003	2,100					
5/5/2003	2,000					
5/6/2003	2,050					
5/7/2003	2,100					
5/8/2003	2,100					
5/9/2003	2,250					
5/12/2003	2,150	and the second sec				
5/13/2003	2,100					
5/15/2003	2,200	:				
5/20/2003	2,300					
5/21/2003	2,400					
5/22/2003	2,200					
5/28/2003	2,400					
5/29/2003	2,300					
6/4/2003	2,300					
6/6/2003	2,400					
6/9/2003	2,200					
6/10/2003	2,400					

Inst.#8	Inst.#89973 Tc-99		3974-02
Initial So	Initial Source Readings		Tc-99
Date	Result (cpm)		
5/1/2003	2,200		
5/1/2003	2,200		
5/1/2003	2,000		
5/1/2003	2,200		
5/1/2003	2,200		
5/1/2003	2,000		
5/1/2003	2,200		
5/1/2003	2,200		
5/1/2003	2,100		
5/1/2003	2,200		
	Average		
na ang pagina sa ta	2150		

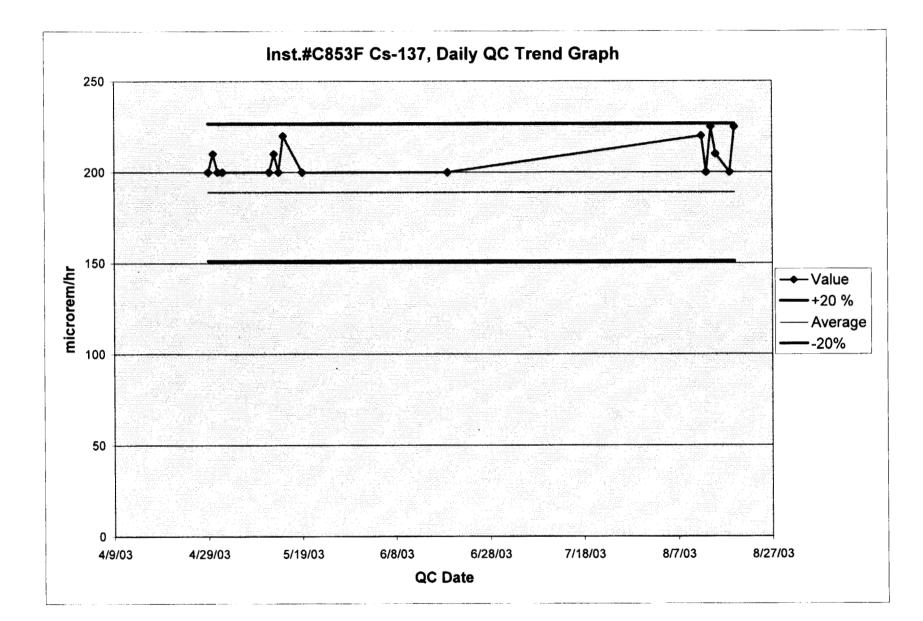
In	st.#162425 Th-230	
QC Daily Source		
Date	Result (cpm)	P/F
5/28/2003	3,503	
5/29/2003	3,742	
6/4/2003	3,740	
6/11/2003	3,658	
6/12/2003	3,664	
6/13/2003	3,610	
6/17/2003	3,591	
6/19/2003	3,266	
6/20/2003	3,676	
6/27/2003	3,490	
6/30/2003	3,760	
7/9/2003	3,626	
7/10/2003	3,628	
8/12/2003	3,450	


Inst.#16	32425 Th-230	Source Ser. #	3972-02
Initial So	Initial Source Readings		Th-230
Date	Result (cpm)		
5/28/2003	3,443		
5/28/2003	3,459		
5/28/2003	3,557		
5/28/2003	3,446		
5/28/2003	3,570		
5/28/2003	3,493		
5/28/2003	3,531		
5/28/2003	3,459		
5/28/2003	3,532		
5/28/2003	3,503		
	Average		
1.5	3499		

inst,#162426 Th-230		
QC Daily Source		
Date	Result (cpm)	P/F
5/14/2003	2,974	
5/14/2003	3,067	
5/15/2003	3,021	
5/19/2003	2,986	
5/20/2003	3,396	
5/22/2003	3,039	
5/28/2003	3,103	
5/29/2003	3,171	
6/6/2003	3,351	
6/9/2003	3,239	
6/10/2003	3,394	
6/11/2003	3,225	
6/12/2003	3,228	and the second
6/13/2003	3,254	
6/17/2003	3,183	
6/19/2003	3,256	
6/20/2003	3,345	
6/26/2003	3,417	
6/27/2003	3,337	
6/30/2003	3,503	
7/9/2003	3,360	
7/10/2003	3,314	- By

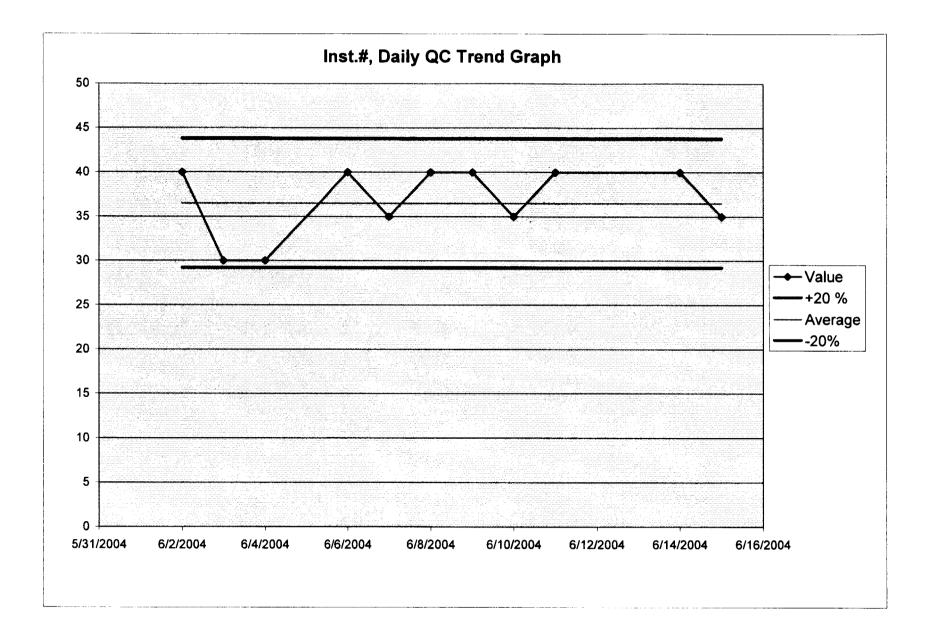

Inst.#16	Inst.#162426 Th-230		3972-02
Initial So	Initial Source Readings		Th-230
Date	Result (cpm)		
5/13/2003	2,975		
5/13/2003	3,062		
5/13/2003	2,968		
5/13/2003	2,989		
5/13/2003	3,000		
5/13/2003	2,934		
5/13/2003	3,040		
5/13/2003	3,043		
5/13/2003	3,034		
5/13/2003	3,095		
	Average		
	3014		

BTD General Meter QC 0403 Inst.#162426 Th-230



lr	Inst.#162426 Tc-99		
	QC Daily Source		
Date	Result (cpm)	P/F	
5/5/2003	2,013		
5/6/2003	2,039		

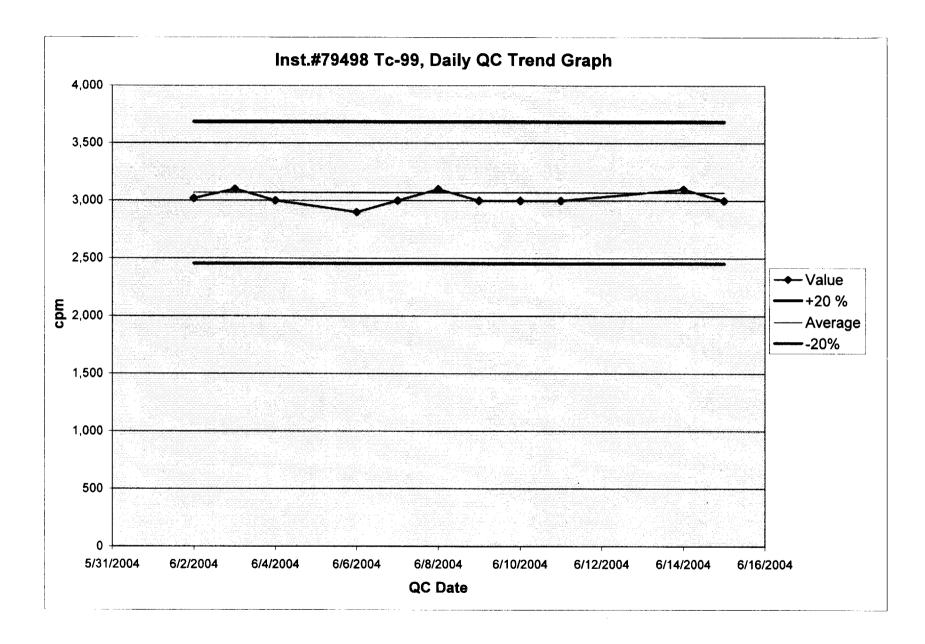
Inst.#16	2426 Tc-99	Source Ser. #	3974-02
Initial Sou	Initial Source Readings		Tc-99
Date	Result (cpm)		
5/1/2003	1,959		
5/1/2003	1,969		
5/1/2003	1,934		
5/1/2003	1,981		
5/1/2003	1,964		
5/1/2003	1,997		
5/1/2003	1,987		
5/1/2003	2,052		
5/1/2003	2,042		
5/1/2003	1,951		
	Average		
	1984		



ĺ

inst.#79498 Background		
QC Daily Source		
Date	Result (cpm)	P/F
6/2/2004	40	
6/3/2004	30	
6/4/2004	30	
6/6/2004	40	
6/7/2004	35	
6/8/2004	40	
6/9/2004	40	
6/10/2004	35	
6/11/2004	40	
6/14/2004	40	
6/15/2004	35	

Inst.#794	98 Background	Source Ser. #	BKG
Initial So	Initial Source Readings		
Date	Result (cpm)		
6/2/2004	50		
6/2/2004	40		
6/2/2004	50		
6/2/2004	30		
6/2/2004	25		
6/2/2004	30		
6/2/2004	40		
6/2/2004	20		
6/2/2004	60		
6/2/2004	20		
	Average		
	37		

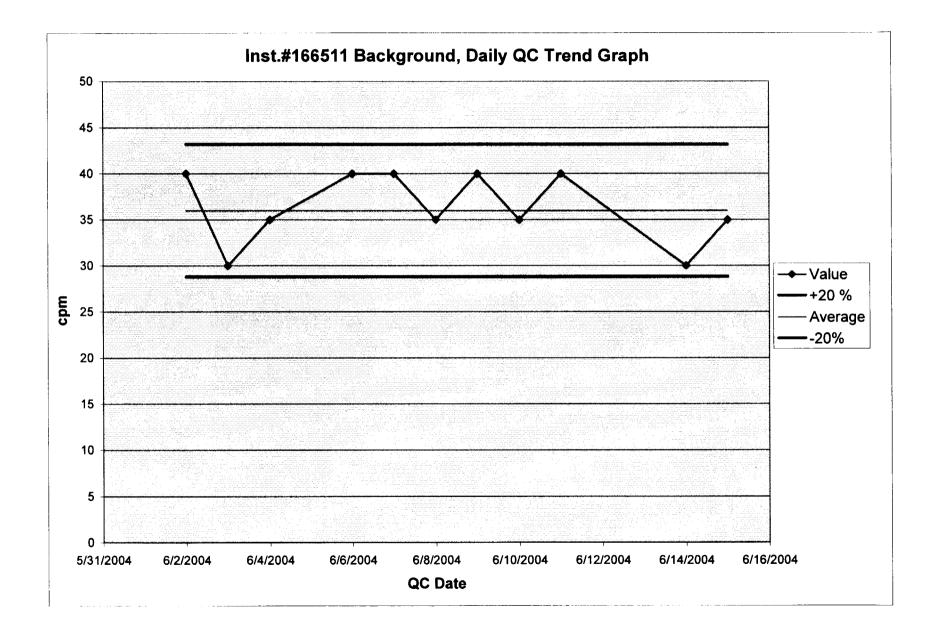


Inst.#79498 Tc-99 QC Daily Source		
6/2/2004	3,020	E.
6/3/2004	3,100	
6/4/2004	3,000	
6/6/2004	2,900	
6/7/2004	3,000	
6/8/2004	3,100	
6/9/2004	3,000	
6/10/2004	3,000	
6/11/2004	3,000	
6/14/2004	3,100	
6/15/2004	3,000	

inst.#7	Inst.#79498 Tc-99		2889-01
Initial Sou	Initial Source Readings		Tc-99
Date	Result (cpm)		
6/2/2004	2,900		
6/2/2004	3,100		
6/2/2004	2,800		
6/2/2004	3,000		
6/2/2004	3,200		
6/2/2004	3,300		
6/2/2004	3,100		
6/2/2004	3,300		
6/2/2004	3,100		
6/2/2004	2,900		
	Average		
	3070		

BTD General Meter QC 0604 Inst.#79498 Tc-99

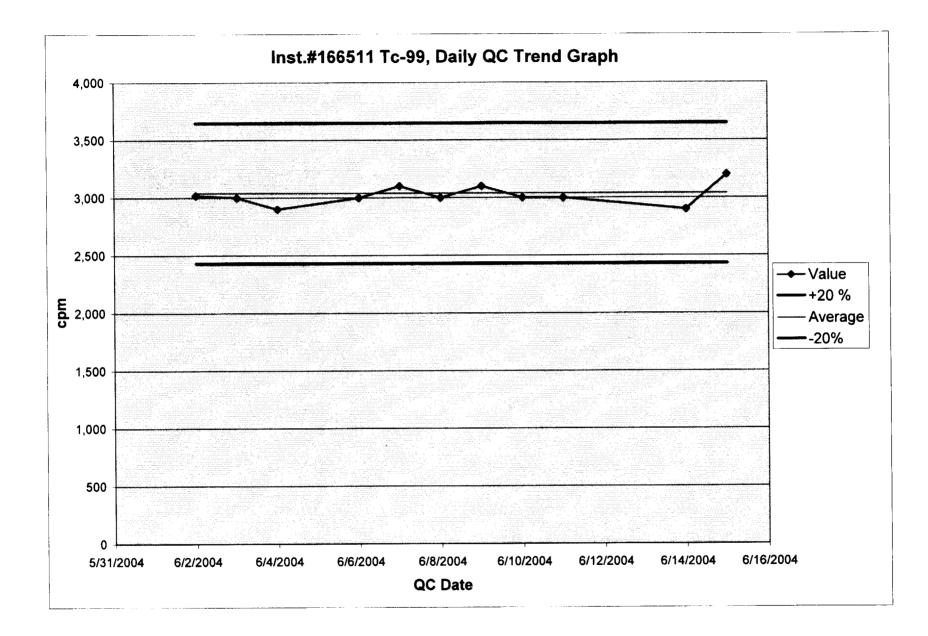
 \sim



Inst.#	166511 Backgrou	nd
QC Daily Source		
Date	Result (cpm)	P/F
6/2/2004	40	
6/3/2004	30	
6/4/2004	35	
6/6/2004	40	
6/7/2004	40	
6/8/2004	35	en Ma
6/9/2004	40	
6/10/2004	35	
6/11/2004	40	
6/14/2004	30	
6/15/2004	35	

Inst.#16651	Inst.#166511 Background		BKG
Initial Sou	Initial Source Readings		
Date	Result (cpm)		
6/2/2004	20		
6/2/2004	50		
6/2/2004	60		
6/2/2004	30		
6/2/2004	35		
6/2/2004	25		
6/2/2004	50		
6/2/2004	40		
6/2/2004	30		
6/2/2004	20		
	Average		
a Markada Markada	36		

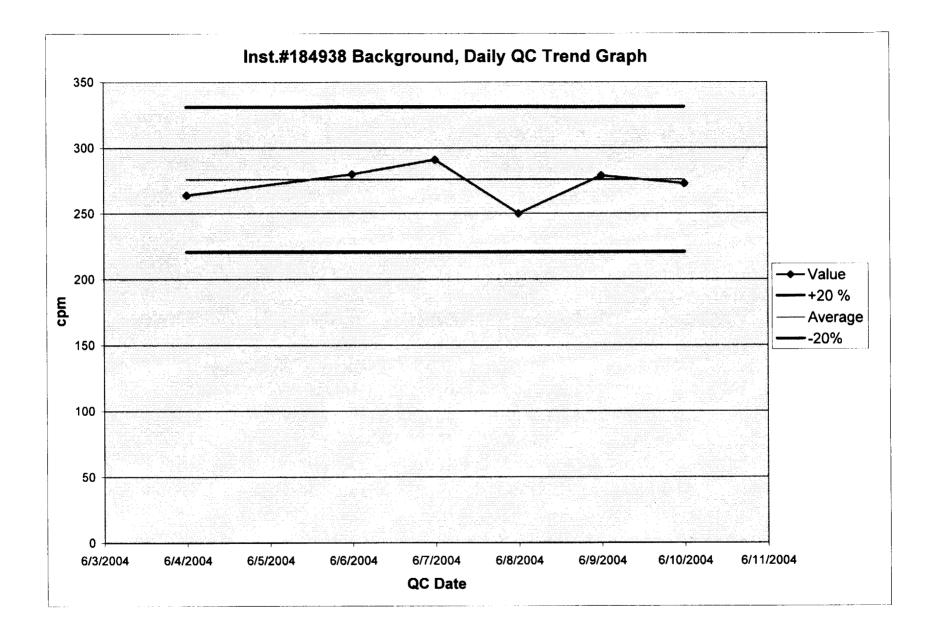
- -----


BTD General Meter QC 0604 Inst.#166511 Background

lr	st.#166511 Tc-99		
QC Daily Source			
Date	Result (cpm)	P/F	
6/2/2004	3,020		
6/3/2004	3,000		
6/4/2004	2,900		
6/6/2004	3,000		
6/7/2004	3,100		
6/8/2004	3,000	_	
6/9/2004	3,100		
6/10/2004	3,000		
6/11/2004	3,000		
6/14/2004	2,900		
6/15/2004	3,200		

Inst.#16	6511 Tc-99	Source Ser. #	2889-01
Initial Sou	Initial Source Readings		Tc-99
Date	Result (cpm)		
6/2/2004	3,100		
6/2/2004	3,000		
6/2/2004	2,900		
6/2/2004	3,000		
6/2/2004	3,200		
6/2/2004	2,800		
6/2/2004	3,100		
6/2/2004	3,300		
6/2/2004	3,100		
6/2/2004	2,900		
	Average		
and the second second	3040		

BTD General Meter QC 0604 Inst.#166511 Tc-99

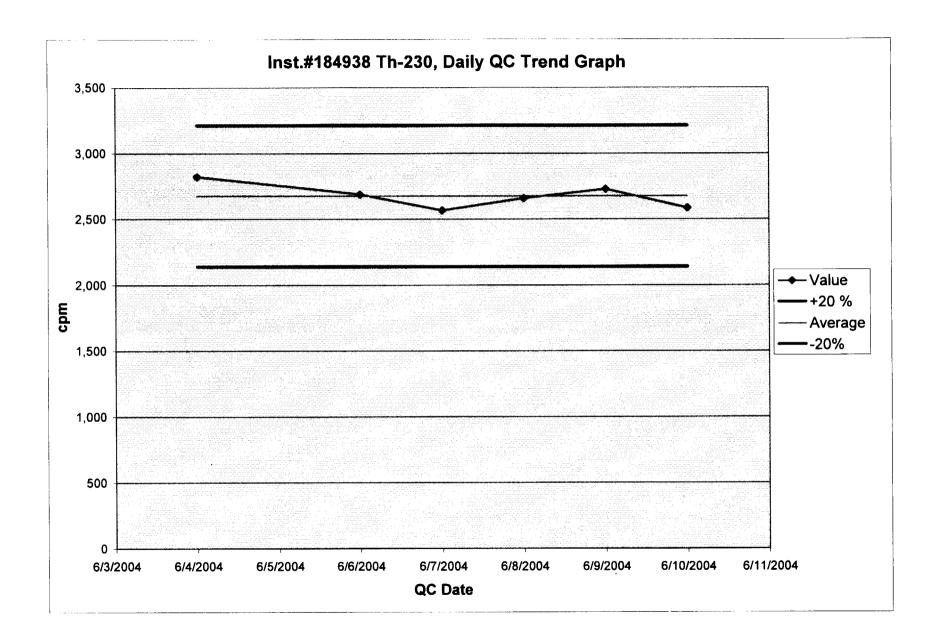


Inst.#184938 Background		
QC Daily Source		
Date	Result (cpm)	P/F
6/4/2004	264	
6/6/2004	280	
6/7/2004	291	-
6/8/2004	250	
6/9/2004	279	Teles ing
6/10/2004	273	
		4
		-╉────┤
		-{{

Inst.#184938 Background		Source Ser. #	BKG
Initial Sou	Initial Source Readings		
Date	Result (cpm)	<u>P</u>	
6/4/2004	263		
6/4/2004	286		
6/4/2004	287		
6/4/2004	279		
6/4/2004	256		
6/4/2004	285		
6/4/2004	280		
6/4/2004	290		
6/4/2004	265		
6/4/2004	269		
	Average		
	276		

.

BTD General Meter QC 0604 Inst.#184938 Background

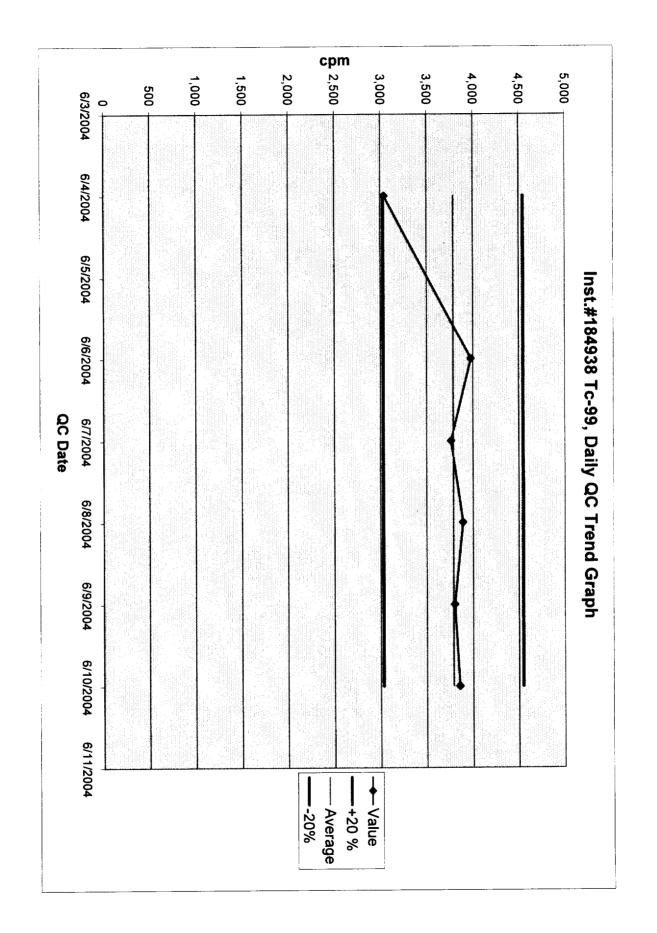


Inst.#184938 Th-230			
QC Daily Source			
Date	Result (cpm)	P/F	
6/4/2004	2,822		
6/6/2004	2,689		
6/7/2004	2,567		
6/8/2004	2,661		
6/9/2004	2,730		
6/10/2004	2,587		

Inst.#184	4938 Th-230	Source Ser. #
Initial Sou	rce Readings	Nuclide
Date	Result (cpm)	
6/4/2004	2,811	
6/4/2004	2,709	
6/4/2004	2,722	
6/4/2004	2,730	
6/4/2004	2,556	
6/4/2004	2,649	
6/4/2004	2,585	
6/4/2004	2,657	
6/4/2004	2,638	
6/4/2004	2,722	
	Average	
	2678	

2897-01 Th-230

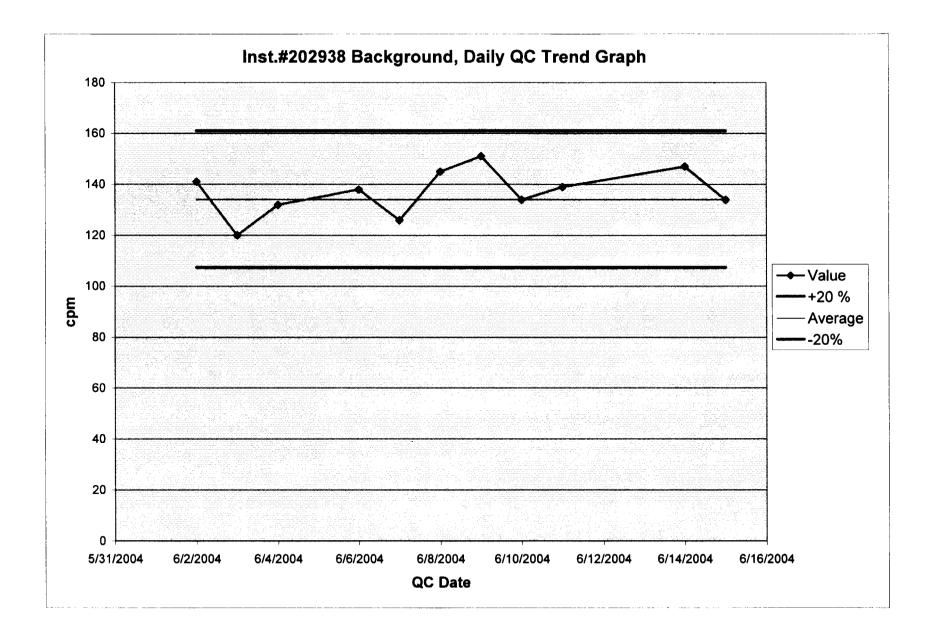
BTD General Meter QC 0604 Inst.#184938 Th-230



(

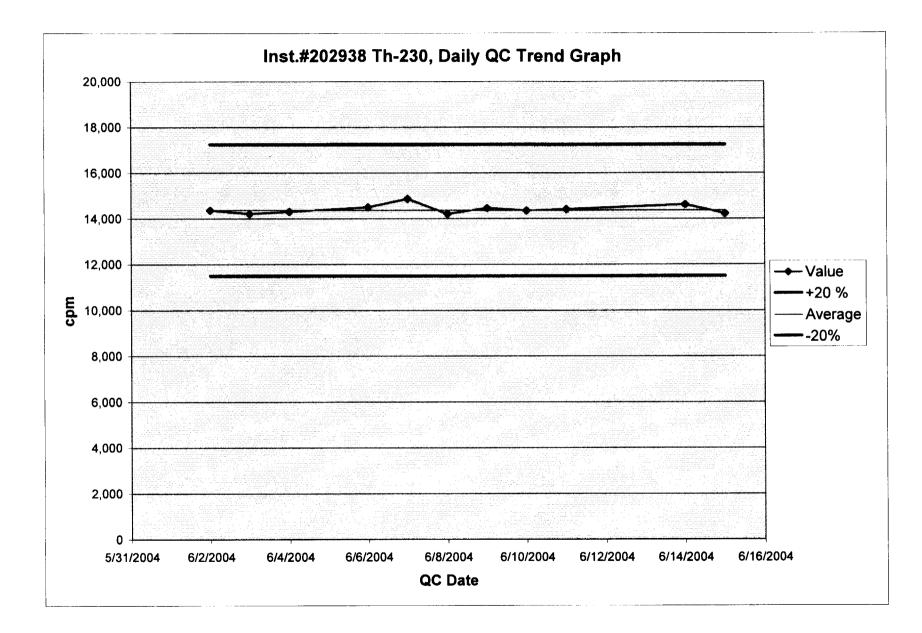
Inst.#184938 Tc-99			
QC Daily Source			
Date	Result (cpm)	P/F	
6/4/2004	3,039		
6/6/2004	3,980		
6/7/2004	3,765		
6/8/2004	3,891		
6/9/2004	3,802		
6/10/2004	3,856		

Inst.#18	4938 Tc-99	Source Ser. #	2889-01
Initial Sou	Initial Source Readings		Tc-99
Date	Result (cpm)		
6/4/2004	3,671		
6/4/2004	3,787		
6/4/2004	3,730		
6/4/2004	3,797		
6/4/2004	3,799		
6/4/2004	3,939		
6/4/2004	3,776		
6/4/2004	3,820		
6/4/2004	3,789		
6/4/2004	3,782		
	Average		
	3789		


BTD General Meter QC 0604 Inst.#184938 Tc-99

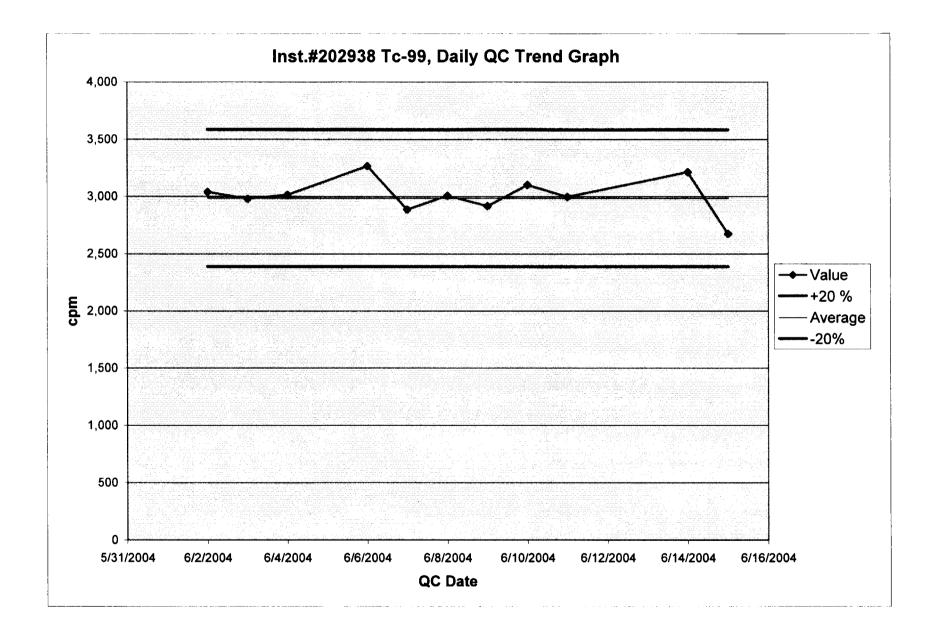
Inst.#202938 Background QC Daily Source			
P/F	Date Result (cpm)		
	141	6/2/2004	
	120	6/3/2004	
4	132	6/4/2004	
	138	6/6/2004	
	126	6/7/2004	
	145	6/8/2004	
	151	6/9/2004	
	134	6/10/2004	
	139	6/11/2004	
	147	6/14/2004	
	134	6/15/2004	

Inst.#20293	Inst.#202938 Background		BKG
Initial Sou	Initial Source Readings		
Date	Result (cpm)		
6/2/2004	135		
6/2/2004	145		
6/2/2004	156		
6/2/2004	123		
6/2/2004	137	1	
6/2/2004	123		
6/2/2004	133		
6/2/2004	138		
6/2/2004	146		
6/2/2004	106		
	Average		
	134		


BTD General Meter QC 0604 Inst.#202938 Background

(

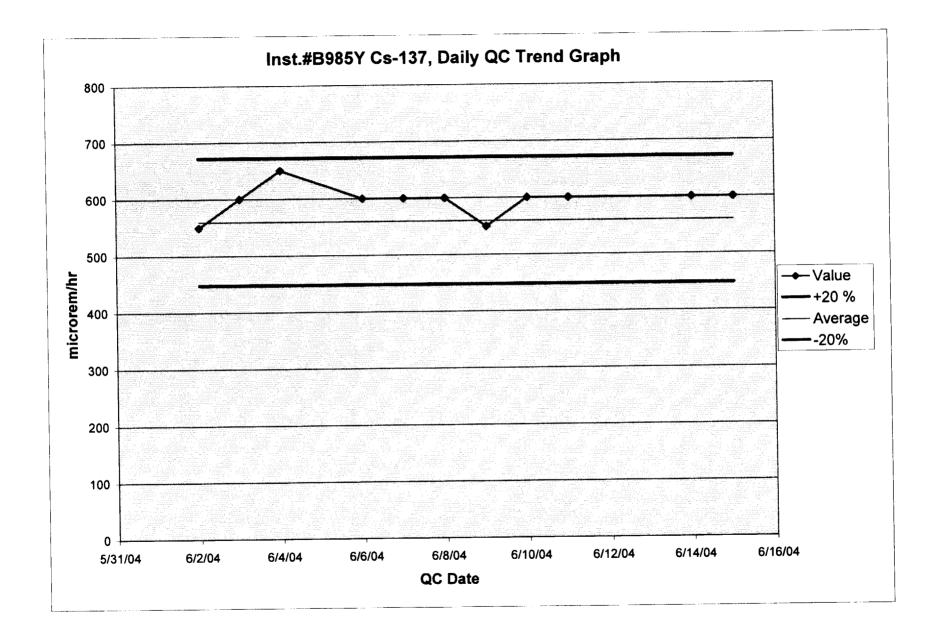
In	st.#202938 Th-230	
	QC Daily Source	
Date	Result (cpm)	P/F
6/2/2004	14,370	
6/3/2004	14,218	
6/4/2004	14,310	1
6/6/2004	14,507	
6/7/2004	14,870	
6/8/2004	14,213	-
6/9/2004	14,467	
6/10/2004	14,354	
6/11/2004	14,412	
6/14/2004	14,621	an an pri
6/15/2004	14,231	


Inst.#202	2938 Th-230	Source Ser. #	2897-01
Initial Sou	rce Readings	Nuclide	Th-230
Date	Result (cpm)		
6/2/2004	14,463		
6/2/2004	14,390		
6/2/2004	14,504		
6/2/2004	14,211		
6/2/2004	14,433		
6/2/2004	14,315		
6/2/2004	14,183		
6/2/2004	14,452		
6/2/2004	14,421		
6/2/2004	14,356		
	Average		
	14373		

In	st#202938 Tc-99	
	QC Daily Source	
Date	Result (cpm)	P/F
6/2/2004	3,039	
6/3/2004	2,980	
6/4/2004	3,015	
6/6/2004	3,267	· · · · ·
6/7/2004	2,887	
6/8/2004	3,008	
6/9/2004	2,918	
6/10/2004	3,102	
6/11/2004	2,998	
6/14/2004	3,214	
6/15/2004	2,676	

Inst.#20	2938 Tc-99	Source Ser. #	2889-01
Initial Sou	rce Readings	Nuclide	Tc-99
Date	Result (cpm)		
6/2/2004	3,168		
6/2/2004	3,000		
6/2/2004	2,932		
6/2/2004	3,027		
6/2/2004	3,127		
6/2/2004	2,901		
6/2/2004	3,046		
6/2/2004	2,872		
6/2/2004	2,840		
6/2/2004	2,965		
	Average		
	2988		

 $\overline{}$



1	nst.#B985Y Cs-137	
	QC Daily Source	
Date	Result (µrem/hr)	P/F
6/2/2004	550	
6/3/2004	600	
6/4/2004	650	
6/6/2004	600	
6/7/2004	600	
6/8/2004	600	
6/9/2004	550	
6/10/2004	600	
6/11/2004	600	
6/14/2004	600	
6/15/2004	600	

~...<

Inst.#B	985Y Cs-137	Source Ser. #	1134
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (µrem/hr)		
6/2/2004	550		
6/2/2004	600		
6/2/2004	550		
6/2/2004	550		
6/2/2004	500		
6/2/2004	600		
6/2/2004	550		
6/2/2004	550		
6/2/2004	600		
6/2/2004	550		
	Average		
	560		

BTD General Meter QC 0604 Inst.#B985Y Cs-137

(

CABRERA STATIC COUNTING WORKSHEET (Rev 5) STATIC INSTRUMENT QC

<u> </u>	ounting Inc	trument	1.00	um 2360	Detector	43-			Cal. Date:	4/29/2004						T	·	<u> </u>			<u> </u>		·					
		Serial #		83675	Serial #	PR16			ue Date OK?				h			t	· · · · · · · · · · · · · · · · · · ·	·			<u>↓</u> •							(
		_					180/			Tankining						+	+	<u>↓</u>										
	Dete	ector Activ	ve Area or /	Area Covered I	by Smear (cm ²)	582			1				L															h {
	Efficiency		Source	Original Source Activity (DPM)	Source Creation		Source Decayed Activity	Required MDA	Control Chart & Daily Big Count Time	Control Chart & Daily Source Count	Centrol Chart bkg Average 9.6 cpm	Control Chart bkg 1 sigma, com	Control Chert Source-big Average a.(3	Gentral Chart source 1 sigms, cpm]									
	(fraction)	Nuclede	Number		Date	T _{1/2} (yr)	~ covey	(DPM)	Course 1978	Time	a popm	signal, cpm	cpm	eignie, opm														
Alpha	0.1206	Th-230	3973-02	17,500	4/29/2002	7.70E+04	17,500	100	,	1	4.40	1.51	2107.6	49,72			[
Beta	0,2685	70-90	3975-02	17.700	4/29/2002	2.13E+05	17,700	1000	1	1	505.30	24.15	4247.1	83.68														
																		1		[L						i /
Date				Seurce Counts	Daily Blug Ra			urce Rate (cpm)			Source QC				u MDA	β MDA	H.P.	Technicean	L	L						+		
5/0/2003	Alphs			Bota 4,229	Alphe 8.0	Beta	Alpha 2411.0	Beta 3432.0	Alpha	Beta	Alpha	Beta	MDA u (dpm) 23.02		OK7	OK7 Yes	Technician	Indata										
		787		4,229				3432.0	QUESTION					88	Yet	Yes		ł			In Migl 1	leakara	and and	autora C		Control C	Charles	
5/9/2003	<u> </u>	722	2,451	4,328	7.0	722.0	2444.0	4203.0	PASE	FAB		114	21.81	82	Tel	746	+	ł					ind and a dicounte			source pl		-
5/12/2003	-		2,156	4.760	4.0	457.0	2151.0	4167.0	PAS8 PASS	PASS PASS	PA83	PASS	19.10	60	Yes		+	<u> </u>	 	•	Alpha	cpm		срин	Alpha		Bota 2	
5/13/2003		402		4,645	4.0	402.0	2002.0	4187.0	PASS	PAS8 PAS8	PA88	PASS	17.53	67	Vee	- Vee	+	<u> </u>			Alipna 5		611	511	2,197		4,657	
\$/13/2003			2,100	4.848	3.0	500.0		4266.0	PASS	QUESTION	PASS	PASS	16,74	72	Yes	Yes .	1	t	t		<u> </u>	1 3	510	519	2,172		4.744	
5/13/2003	<u> </u>	521		4.846	10	528.0	2087.0	4318.0	PASS	PASS	PASS	PARS	15.76	70	Yes	Yes	+	<u>†</u>	t	1 1	1		550		2.042		4743	
5/14/2003	4	459		4,500	4.0	459.0	2048.0	4101.0	PASS	PABS	PA88	PASS	17.53	60	Yee	Yes	1	1	1		5	5	479	479	2.072	2072	4,891	4891
5/14/2003	4	520	2.065	4,751	4.0	529.0	2061.0	4222.0	PASS	PASS	PASS	PASS	17.53	70	Yes	Yes			1	1	6	6	492	492	2.143	2143	4,651	4651
5/15/2003	6	463		4,582	6,0	463.0	2043.0	4119,0	PASS	PASS	PASS	PASS	20.51	44	Yes	Yes	1			1	5	5	500	506	2,121		4,684	4684
6/2/2003	- 5	482		4,699	5,0	482.0	2051.0	4217.0	PASS	PASS	PASS	PASS	19.10	67	Yes	Yes					- 3	,	520	520	2,057		4,798	
6/2/2003	4	510	2,076	4,755	4.0	510,0	2074.0	4245.0	PASS	PASS	PASS	PASS	17.53		Yes	Yes	· [1	L		7	~	518	518	2,101		4,730	
									·			<u> </u>		ļ		-							490		2,000		4,804	4804
<u> </u>		+					<u> </u>		· · · · · · · · · · · · · · · · · · ·				<u> </u>					-			+				4,140			
<u> </u>		+				ł	<u> </u>		<u> </u>	}		<u> </u>	+	ł	ł		+	╋━━━━━		Line	+	4.40		505.3		2112.0		4752.4
		<u> </u>		·			<u> </u>			ł			t	f	t		t	1		8,	-	1.51	<u> </u>	24.15		49.71		74.35
		+															+			-3 sigma		-0.12		432,84		1962.88	ł	4528.34
		<u>+</u>		<u>+</u>					· ·				+				+	1		•3 sigma	1	8.82		577,76		2261,12		4975.44
<u> </u>		+	-							1	——		1	1			+	T		-2 sigme	1	1.39		456,90		2012,56		4603.69
								1				1	1	1	1		1			+2 sigma	1	7.41	1	\$63,81		2211.42		4801.11
		1												J	<u> </u>		1								tiver big	2107.4		4247.1
													1				.1		1				[1	6 _{p-1}	40.72		83.68
		1		1				1		1								1	1		1	L	L	Menn, bilg	-3 sigma	1958,43		3006.07
		L												1			I	L			+	L		Mean big	+3 sigms	2256.77	!	4466.13
J	Į		ļ	1		<u> </u>		L	L					1	ļ	+		┢────		<u> </u>	+	↓	+	tifeen. bite	-2 sigme	2008.16	!	4079.75
J	ļ	+	ļ		ļ	<u> </u>		<u> </u>	 ^			<u> </u>	+	L	I	+	·+	t	+	+	+	ł			+2 sigme	4401.04	لمسيسي	4414.40
L		+	F	(· · · · · · · · · · · · · · · · · · ·		f	 -	ł		<u> </u>		l	ł	+	+				+	<u> </u>	+	ļ	-	2192		414
		+	<u> </u>						t			<u> </u>	+	t	<u> </u>	+	+	t	t	ŧ	t	<u>+</u>				2170		4267
		1	•	t		t	<u> </u>	t	t	1		t	1	t	1	+	+	†	1	t	1	-				2038		4193
	İ	1	1	1	· · · · ·			1		1		1	1	1	····	1	1		1	1	1		1			2067		4412
	·	1	l l						1			1	1			1	Ι	L		Ι	I	I	I			2137		4150
		1	L	1						1		1		I		1	1	1			-					2116		4170
			1	1		L		L		L			L	L	<u> </u>	1		I		I	+	I				2064	!	4278
J	ļ	+			L		·	L	L	L		↓		l	<u> </u>	4	4	+	-	÷	+		+	↓ ·		2094	لـــــــــــــــــــــــــــــــــــــ	4221
J	L	+						↓	ł		L	— —	+		ļ	+	+	+	ł	+	+	+	+	<u> </u>		2005	لـــــــــــــــــــــــــــــــــــــ	4314
	L	<u> </u>		L	L	L	L	L	L	L		L	1	L	L	<u> </u>		L		L	1	يد مسلم	<u> </u>					1 9305

BTD Ludium 2360 QC Inst.#193675 QC 0503

CABRERA STATIC COUNTING WORKSHEET (Rev 5) STATIC INSTRUMENT QC

C C	ounting Ir	nstrument		um 2360	Detector	43-			Cal. Date	4/29/2004														<u> </u>	_			
		Serial #	1 1	\$3675	Serial #	PR16	1687	Cal. D	ue Date OK?	WARNING		[T			t		1					t	+				
	Det	tector Act	ve Ares or	Area Covered I	by Smear (cm ²)	582																		-				
	Efficiency (fraction)		Source Number	Original Source Activity (DPM)	Source Creation Date	τ _{1/2} (μτ)	Source Decayed Activity	Required MDA (DPM)	Control Charl & Dedy Bkg Count Time	Control Chart & Daily Source Count Time	Control Chart bitg Average α/β cpm	Control Chart big 1 sigma, cpm	Control Chart Source-blug Average u.p cpm	Control Chart source 1 sigme, cpm														
Alpha	0.1115		3973-02	17,500	4/29/2002	7.70E+04	17,500	100	1	1	4.50	0.53	1946.3	30.22									1	<u> </u>			-	
Beta	0,2563	To-80	3975-02	17,700	4/29/2002	2.13E+05	17.700	1000		1	622.70	37_06	3713.6	115,87										1				
	Dely B	ke Counts	Dely Check	Source Counts	Deally Bing Re		Net Dark Sc	ource Rate (cpm)	Bing QC /	and fail	Source QC	Breefel		_														
Date	Alphs	Beta	Alphe	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	MDA a (dom)		a MDA OK7	β MDA OK?	H.P. Technicaen	Technician	L									
6/5/2003	4		2.020	4,548	4.0	842.0	2016.0	3746.0	PASS	PABS	PASS	PASS	18,95	93	Yes	Yes -	Technicalin	Indiana Indiana		+							\rightarrow	
6/5/2003		855	2.004	4,576	4,0	656,0	2003.8	3721,0	PASS	PASS	PASS	PASS	18.96		¥06	Yes				h	Initial L	ackgro	ind and	Source C	ounts for	Control (Chart	
8/8/2003 6/6/2003	2-		2.008	4.501	2.0	740.0	2006.0	3651.0	ans. Think	QUESTION	PASS	PASS	14.78	47	Tes	744							counts			source pl		ounts
6/6/2003		766		4,501	5.0	768.0	2003.0	3823.0	PASS	PASS	PASS	PASS	20.66	_ #0	Yes	Yes					Alpha	cpm			Alpha	cpm	Beta	
4/1/2003	3-	874		4.629	3.0	874.0	2019.0	3756.0	PASS	PASS	PASS	PA65 PA88	18,96	50 12	Yes	Yes				7 ·· 7 ··	4	-	827				4,650	4050
6/9/2003	5		2.020	4,559	5.0	759.0	2024.0	3400.0	PASS	PASS	PASE	PASS	20.66		Yes	Yes		<u> </u>				4	774		2,021		4,563	4543
6/11/2003	5	758		4,646	5.0	758.0	1871.0	3000.0	PASS	PASE	PASS	PASS	20.66		Yes	Yes						+	840	840	1,936	1836	4,676	4676
6/11/2003 6/12/2003	+	764	2.041	4,533	4.0	764.0	2037.0	3769.0	PASS	PASS	QUESTION	PASS	18.96	64	Yes	Yes					- 5		833	433	1.847	1847	4.507	
6/12/2003		412		4,005	5.0	801.0	1873.0	3064,0 3885,0	PASS	PASS	PASS	PASS	20.66	90	Yes	Yes				1 •	1	1	854	854	1,861	1951	4,438	4436
8/18/2003	5	787		4,701	5.0	787.0	2024.0	3014.0	PASS	PASS PASS	PASS	PASS	20.66	91 90	Yes	Yes					5	5	750	750	1,500	1965	4,442	4442
6/16/2003	4	778		4,607	4.0	778.0	1010.0	3829.0	PASS	PASS	PASS	PASE	18.99	89	Yes	Yes		<u> </u>		1. S. S. S. S. S. S. S. S. S. S. S. S. S.	5	3	808	806	1,927	1927	4,677	4877
A/19/2003	5	816		4,584	5.0	816,0	1964.0	3768.0	PASS	PASS	PASS	PASS	20.66	01	Yes	744	<u> </u>		— — —	10	-3-		817		1,923		4,540	4540
M20/2003		848		4,502	4,5	848.0 846.0	1963.0	3744.0	PASS	PASS	PASS	PASS	18.96	83	Yes	Yes						<u> </u>		t- <u></u> -				
6/24/2003		756	1,806	4,428	5.0	754.0	1945.0	3643.0	PASS	PASS	PASS	PASS	20.66	84	Yes	Yes				Hoen		4.50		822.7		1950.8		4534.3
6/25/2003		854		4,782	5.0	854.0	1902.0	3672.0	PASS	PASS	PASS	PASS	18.96	- 44	Yes	Yes				B ₃₄₋₁₁		0.53		37.06		38.96		103.82
6/25/2003	4	810		4,646	4.0	819.0	2023.0	3627.0	PASS	PASS	PASS	PASS	20.66	93 91	Yes	Yes				-3 sigma		2,82		711.51		1833,01		4225.44
												1 1000	-			<u></u>	<u> </u>			+3 sigma		6,08		533.89 748.57		2067.69		4847.18 4329.06
		_													_	<u> </u>		<u> </u>		+2 нати		5,55		896.83		2028.73		4743.54
	ļ																								Non the	1846.3		3713.8
	<u> </u>	+																							8 pr-1;	30.22		115.87
		+												-										Mean Mag	-3 sigms	1628.63		3366.00
		1																							+3 sigma			4061.20
																					<u>+</u> i		<u> </u>		-2 sigms +2 sigms	1867.85		3481.87 3645.33
							_									1										100-13		
		+																								1968		3823
								<u> </u>								·								L		2017		3675
													t			t				+				t		1832		3002
_																		<u> </u>	⊢ —					1		1942		3582
									_																	1847		3662
		+													_											1963		3083
															_											1822		3860
																								I		1874		3722
																				<u> </u>				L		1918		3644

CABRERA STATIC COUNTING WORKSHEET (Rev 5) STATIC INSTRUMENT QC

C	ounting In			um 2360	Detector				Cal. Date.	4/29/2004	1			—		<u> </u>	1	T	T	T	T		T	T		<u> </u>		
		Serui #	1	\$3675	Serial #	PR16	1687	Cal. D	lue Date OK?	WARNING						1	1	T	1		+		+	+	+	tt		
	Dete	ector Acti	ve Area or	Area Covered	by Smear (cm ²)	582						1				1	1	1	†	· · · · · · · · · · · · · · · · · · ·			-	+	<u>├</u>	tt		
	Efficiency (fraction)		Source Number	Original Source Activity (DPM)	Source Creation Date	T _{1/2} (yr)	Source Decayed Activity	Required MDA (DPM)	Control Chart & Daily Big Count Time	Control Chart & Daily Source Count Time	Control Chart bitg Average a/ji cam	Centrel Chart big 1 sigms, cpm	Control Chart Source-blug Average α.β cpm	Centrel Chart seurce 1 sigma, cpm														
Alpha	0.1115	Th-230	3973-02	17,500	4/29/2002	7.70E+04	17,500	100		Ι,	5,30	2,45	2468,5	47.44		1			1	1				+			+	
Beta	0.2563	Tc-80	3975-02	17,700	4/29/2002	2.13E+06	17,700	1000	1	1	730.70	25,94	3863.1	76,52					<u> </u>	+			╂────	<u>+</u>	<u>↓</u>	+		+
Date	Daily Bk	a Counts	Daily Charl	Source Counts	Daily Big R	te (comi	Net Date &	ource Rate (cpm)	Bikg QCT		Source QC													1	1			
Dete	Apha	Beta	Alpha		Alpha	Beta	Alpha	Beta	Alpha	Bete	Alpha		MDA a (dom)		a MDA		H.P.	Technician										
3/30/2004	10	714	2.450	4,475	10.0	714.0	2440.0	3761.0	PASS	PASS	PASS	PASS	27.30	85	OK7 Yes	OK7 Yes	Technician	Initials										í
3/30/2004	6	755	2.487	4,532	6.0	755.0	2461.0	3777,0	PASS	PASS	PASS	PASS	22.19		Vet	V	ł	·····		<u> </u>	L. Well					Control		<u> </u>
3/31/2004		760	2.237	4,447	8.0	700.0	2220.0	3678.0	PASS	PASS		QUESTION	24,90		Tes	746				<u> </u>		saciquo	g counts	Source C				
3/31/2004		1	I	1	6.0				PASS			10050//011	17.00					÷	+ · · · · ·	1.	Alpha		eg courre Beta		Alpha	source pl	us Dig c	ounts
				1				T			F			1		t	t	1		t i	7	 7	712				Bata 4,505	
	L	-									1	1	1 ······			t	· · · · ·	1	· · · · · ·	1 1		- 4	724				4,600	
	l		Į	ļ												-	1	1		1 5	1 2	2	728	1 198	2,540	364	4,478	
	<u> </u>					L	L										1	1		1		3	607	897	2,400	2460	4.521	4521
		<u> </u>	<u> </u>					<u> </u>	<u> </u>	_								1		•	5	5	750	750	2,409		4.542	
						ł			· · · · · · · · · · · · · · · · · · ·							I] · · · · · ·	7	7			2,428	2428	4,590	4500
	1	1									··		.							1 × 1	3	,	704	704	2,501		4,742	
		1	1	1		1			<u> </u>							I				- -	7	7	724	724	2,506	2508	4,540	
				1	1	1		1											4		10	10	765		2,521	2521	4,633	4633
				1	1							1				· · ·	ł			- 10	• •	<u> </u>	728	725	2,415	2415	4,457	4867
				1	1							1		t			ł			Been	-	5.30		730,7		2473.8		4593,6
				1									1				t	l		8,		2.45	<u> </u>	25.96	⊢	47.20		73.14
				I								1						+	+	-3 sigme	-	-2.06		652.83	<u> </u>	2332,20		4374.37
	ļ	1														1	t	1	t	+3 sigma		12.46		808,57		2615.40		4013,23
								I								1	1	1		-2 sigme		0.40	t	678 79		2378.40		4447.51
					·····											L				+2 sigma		10.20	1	782.01	1	2568.20		4740.00
		t			· · · · · ·	<u> </u>						L					L								itters the	2468.5		3663.1
								ł	-																8,	47,44		76.52
		t		<u> </u>		_										1		L	1	L						2326.17		3633.63
		1			ł			t				ł	ļ				l		L	·				titeen ale	+3 sigme	2610.83		4092.67
		1		1	1			1				<u> </u>				<u> </u>	<u> </u>	l	ł	+	+			filmen bite	-2 sigma	2373.61		3710.06
		1												I		t	t	<u> </u>	<u> </u>	+	↓			Printer Street	+2 sigma	2563.30		4016.14
-																1	1	<u> </u>	<u> </u>	+				╆───┤	<u> </u>	2454		3853
				l												1	1		1	1	t ł		ł	t	<u>├</u> ───┩	2462	\rightarrow	3853
																			t	1	1		-	t	<u>⊢</u>	2547	\rightarrow	3754
	——	+								<u> </u>								L	I		1 1	-				2457		3824
		t															1		1							2404		3824
	· · · · ·			· · · · ·	-											Ļ		ļ	L		L					2421		3826
		1												I		ł			ł	+	↓			↓	L	2496]	4038
		I															<u> </u>		+	+			h	└─── ┘	↓I	2501		3636
	L	I														<u> </u>	t			+	+			\vdash	└───	2511		3868
												•					·		L	L			L			2410		3432

BTD Ludium 2360 QC Inst.#193675 QC 0304 CABRERA STATIC COU. ING WORKSHEET (Rev 5) WASH RACK #3 SOUTH FLOOR - INTEGRATED DIRECT MEASUREMENTS

		_			-	_			_				_	dpm/1	00 cm ²
	Detector Active Area (cm ²)		_α eff	β eff		Static	Count Time	e (min)	ľ	Daily Backg	round Count T	ime (min)		α Flag	β Flag
	582]	0.1700	0.2500]		1.0]			20.0			100	5000
			* Morning	Daily Count					-				-		
			Backgro	und Total							1				Tech.
seq. #	Sample ID# and Description	Date	Cou	unts*	Sample T	otal Counts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	$m/100 \text{ cm}^2$)	>α flag	>β flag	Initial
			α	β	α	β	α	β	α	β	α	β	-		
1	WR3-SF-1	6/23/2003	5	866	5	808	0.3	43.3	5.00	808	4.8	526			KP
2	WR3-SF-2	6/23/2003	5	866	3	758	0.3	43.3	3.00	758	2.8	491			KP
3	WR3-SF-3	6/23/2003	5	866	6	561	0.3	43.3	6.00	561	5.8	356			KP
4	WR3-SF-4	6/23/2003	5	866	7	1005	0.3	43.3	7.00	1005	6.8	661			KP
5	WR3-SF-5	6/23/2003	5	866	2	258	0.3	43.3	2.00	258	1.8	148			KP
6	WR3-SF-6	6/23/2003	5	866	2	647	0.3	43.3	2.00	647	1.8	415			KP
7	WR3-SF-7	6/23/2003	5	866	3	665	0.3	43.3	3.00	665	2.8	427			КР
8	WR3-SF-8	6/23/2003	5	866	1	569	0.3	43.3	1.00	569	0.8	361			КР
9	WR3-SF-9	6/23/2003	5	866	6	880	0.3	43.3	6.00	880	5.8	575			KP
10	WR3-SF-10	6/23/2003	5	866	4	940	0.3	43.3	4.00	940	3.8	616			KP
11	WR3-SF-11	6/23/2003	5	866	2	558	0.3	43.3	2.00	558	1.8	354			KP
12	WR3-SF-12	6/23/2003	5	866	3	551	0.3	43.3	3.00	551	2.8	349			KP
13	WR3-SF-13	6/23/2003	5	866	2	434	0.3	43.3	2.00	434	1.8	269			KP
14	WR3-SF-14	6/23/2003	5	866	4	1283	0.3	43.3	4.00	1283	3.8	852			КР
15	WR3-SF-15	6/23/2003	5	866	7	1076	0.3	43.3	7.00	1076	6.8	710			KP
16	WR3-SF-16	6/23/2003	5	866	4	572	0.3	43.3	4.00	572	3.8	363			KP
17	WR3-SF-17	6/23/2003	5	866	4	620	0.3	43.3	4.00	620	3.8	396			KP I
18	WR3-SF-18	6/23/2003	5	866	4	576	0.3	43.3	4.00	576	3.8	366			KP
19	WR3-SF-19	6/23/2003	5	866	7	683	0.3	43.3	7.00	683	6.8	440			KP
20	WR3-SF-20	6/23/2003	5	866	4	664	0.3	43.3	4.00	664	3.8	427	l		КР

page 2

CABRERA STATIC COU. .NG WORKSHEET (Rev 5)

r		-			-	<u> </u>			_					dpm/1	100 cm ²
	Detector Active Area (cm ²)	4	α eff	βeff	-	Static	Count Time	e (min)	l l	Daily Backg	round Count T	ime (min)		α Flag	β Flag
l	100]	0.2000	0.2000			1.0	1			20.0			100	5000
			* Morning	Daily Count											
				und Total	<u> </u>				r						Tech.
seq. #	Sample ID# and Description	Date	Cou	ints*	Sample To	otal Counts	Backgro	und (cpm)	Sample Co	unts (cpm)	Sample (dp	$m/100 \text{ cm}^2$	>α flag	>β flag	Initial
			a	β	α	β	α	В	α	аны (ор.н.) В	α	в		- p	IIIItaa
1	East Wall	6/26/2003	0	0	0	108	0.0	0.0	0.00	108	0.0	540			KP
2	East Wall	6/26/2003	0	0	1	115	0.0	0.0	1.00	115	5.0	575			КР
3	East Wall	6/26/2003	0	0	2	98	0.0	0.0	2.00	98	10.0	490			KP
4	East Wall	6/26/2003	0	0	0	88	0.0	0.0	0.00	88	0.0	440			KP
5	North Wall	6/26/2003	0	0	1	92	0.0	0.0	1.00	92	5.0	460			KP
6	Ceiling	6/26/2003	0	0	0	96	0.0	0.0	0.00	96	0.0	480			KP
7	Ceiling	6/26/2003	0	0	0	79	0.0	0.0	0.00	79	0.0	395			KP
8	Ceiling	6/26/2003	0	0	2	93	0.0	0.0	2.00	93	10.0	465			KP
9	Ceiling	6/26/2003	0	0	0	87	0.0	0.0	0.00	87	0.0	435			KP
10	South Wall	6/26/2003	0	0	0	95	0.0	0.0	0.00	95	0.0	475			KP
11	North Wall	6/26/2003	0	0	1	101	0.0	0.0	1.00	101	5.0	505			KP
12	Ceiling	6/26/2003	0	0	0	103	0.0	0.0	0.00	103	0.0	515			KP
13	Ceiling	6/26/2003	0	0	2	99	0.0	0.0	2.00	99	10.0	495			KP
14	Ceiling	6/26/2003	0	0	0	86	0.0	0.0	0.00	86	0.0	430			KP
15	Ceiling	6/26/2003	0	0	0	103	0.0	0.0	0.00	103	0.0	515			KP
16	South Wall	6/26/2003	0	0	1	93	0.0	0.0	1.00	93	5.0	465			KP
17	West Wall	6/26/2003	0	0	0	84	0.0	0.0	0.00	84	0.0	420			KP
18	West Wall	6/26/2003	0	0	0	72	0.0	0.0	0.00	72	0.0	360			KP
19	West Wall	6/26/2003	0	0	0	89	0.0	0.0	0.00	89	0.0	445			KP
20	West Wall	6/26/2003	0	0	2	71	0.0	0.0	2.00	71	10.0	355			KP

CABRERA STATIC COU NG WORKSHEET (Rev 5) WASH RACK #3 LOWER WALLS - INTEGRATED DIRECT MEASUREMENTS

_		_			_				_				_	dpm/1	100 cm ²
	Detector Active Area (cm ²)		αeff	βeff	1	Static	Count Time	(min)		Daily Backg	round Count T	Time (min)		α Flag	β Flag
[582]	0.1700	0.2500			1.0				20.0			100	5000
			* Morning	Daily Count					-				-		
			Backgro	und Total											Tech.
seq. #	Sample ID# and Description	Date	Cou	ints*	Sample To	otal Counts	Backgrou	und (cpm)	Sample Co	ounts (cpm)	Sample (dp	om/100 cm ²)	>α flag	>β flag	Initial
, i	•		α	ß	ά	β	a	β	ά	β	α	β	_		
1	North Wall	6/25/2003	5	854	4	757	0.3	42.7	4.00	757	3.8	491			KP
2	North Walt	6/25/2003	5	854	5	781	0.3	42.7	5.00	781	4.8	507			KP
3	North Wall	6/25/2003	5	854	9	988	0.3	42.7	9.00	988	8.8	650			KP
4	North Wall	6/25/2003	5	854	6	794	0.3	42.7	6.00	794	5.8	516			KP
5	East Wall	6/25/2003	5	854	7	516	0.3	42.7	7.00	516	6.8	325			KP
6	East Wall	6/25/2003	5	854	5	558	0.3	42.7	5.00	558	4.8	354			KP
7	East Wall	6/25/2003	5	854	5	539	0.3	42.7	5.00	539	4.8	341	1		KP
8	East Wall	6/25/2003	5	854	2	617	0.3	42.7	2.00	617	1.8	395	1		KP
9	East Wall	6/25/2003	5	854	6	1348	0.3	42.7	6.00	1348	5.8	897	1		КР
10	East Wall	6/25/2003	5	854	2	582	0.3	42.7	2.00	582	1.8	371			KP
11	East Wall	6/25/2003	5	854	5	886	0.3	42.7	5.00	886	4.8	580		<u> </u>	KP
12	East Wall	6/25/2003	5	854	5	1212	0.3	42.7	5.00	1212	4.8	804	T	1	KP
13	South Wall	6/25/2003	5	854	5	861	0.3	42.7	5.00	861	4.8	562			KP
14	South Wali	6/25/2003	5	854	9	1206	0.3	42.7	9.00	1206	8.8	800			KP
15	South Wall	6/25/2003	5	854	4	1102	0.3	42.7	4.00	1102	3.8	728	1		KP
16	South Wall	6/25/2003	5	854	5	974	0.3	42.7	5.00	974	4.8	640	1		KP
17	West Wall	6/25/2003	5	854	7	521	0.3	42.7	7.00	521	6.8	329			KP
18	West Wall	6/25/2003	5	854	5	538	0.3	42.7	5.00	538	4.8	340			KP
19	West Wall	6/25/2003	5	854	3	508	0.3	42.7	3.00	508	2.8	320	1		KP
20	West Wall	6/25/2003	5	854	3	448	0.3	42.7	3.00	448	2.8	279	T		KP
21	West Wall	6/25/2003	5	854	6	613	0.3	42.7	6.00	613	5.8	392	1	1	KP
22	West Wall	6/25/2003	5	854	5	541	0.3	42.7	5.00	541	4.8	342	1	1	KP
23	West Wall	6/25/2003	5	854	4	527	0.3	42.7	4.00	527	3.8	333			КР
24	West Wall	6/25/2003	5	854	4	542	0.3	42.7	4.00	542	3.8	343		1	KP

page 4

CERTIFICATE OF CALIBRATION

LINE

EBERI

Electroplated Alpha Standard

s.o. <u>#</u>
Description of Standard:
Model No. DNS-11 Serial No. 3973-02 Isotope Th-230
Electroplated on polished <u>SS</u> disc, <u>0.79</u> mm thick.
Total diameter of <u>4.77</u> cm and an active diameter of <u>4.45</u> cm.
The radioactive material is permanently fixed to the disc by heat treatment without any covering over the active surface.
Measurement Method:
The 2pi alpha emission rate was measured using an internal gas flow proportional chamber. Absolute counting of alpha particles emitted in the hemisphere above the active surface was verified by counting above, below, and at the operative voltage. The calibration is traceable to NIST by reference to an NIST calibrated alpha source $S/N_{2393/91}$.
Measurement Result:
The observed alpha particles emitted from the surface of the disc per minute (cpm) on the calibration date was:
8,860 + 265
The total disintegration rate (dpm) assuming 1.5% backscatter of alpha particles from the surface of the disc, was:
$17,500 + 523$ (0.00786 μ Ci)
The uncertainty of the measurement is <u>3</u> %, which is the sum of random counting error at the 99% confidence level, and the estimated upper limit of systematic error in this measurement.
Calibrated by: ART REUST Reviewed by:
Calibration Technician: Other Q.A. Representative Multiplication
Calibration Date: 4-29-2002 Reviewed Date: 4-29-02

Analytical Services 7021 Pan American Freeway NE Albuquerque, New Mexico 87109-4238 (505) 345-3461 Fax (505) 761-5416 Toll Free (866) RAD-LABS (723-5227) www.eberlineservices.com

CERTIFICATE OF CALIBRATION

Electroplated Beta Standard

						S.O.# P.O.#	386	
Description of a	Standard:					·		
Model No	DNS-12	_ Serial	No	3974-02	Isotope	Тс	-99	
Electroplated or	polished	SS		disc,	0.79		mm	thick.
Total diameter c	of 4.77		_ cm	and an active	diameter of	4.4	5	cm.

The radioactive material is permanently fixed to the disc by heat treatment without any covering over the active surface.

Measurement Method:

The 2pi beta emission rate was measured using an internal gas flow proportional chamber. Absolute counting of beta particles emitted in the hemisphere above the active surface was verified by counting above, below, and at the operative voltage. The calibration is traceable to NIST by reference to an NIST calibrated beta source S/N 2148/90

Measurement Result:

The observed beta count rate from the surface of the disc per minute (cpm) on the calibration date was:

10,400 + 414

The total disintegration rate (dpm) assuming <u>25</u> % backscatter of beta particles from the surface of the disc, was:

> 663 (<u>0.00747</u> μCi) 16,600 +

The uncertainty of the measurement is 4 %, which is the sum of random counting error at the 99% confidence level, and the estimated upper limit of systematic error in this measurement.

Calibrated by:	ART REUST	Reviewed by later	
Calibration Techr	nician: atta	Q.A. Representative full Miller Sell	h

Calibration Date: 4-25-2002 Reviewed Date: 4-39-02-

Analytical Services 7021 Pan American Freeway NE Albuquerque, New Mexico 87109-4238 (505) 345-3461 Fax (505) 761-5416 Toll Free (866) RAD-LABS (723-5227) www.eberlineservices.com

CERTIFICATE OF CALIBRATION

Electroplated Beta Standard

					s.o.#
Description of	Standard:				P.O.# 02-055
Model No	DNS-12	Serial No	3975-02	Isotope	Tc-99
Electroplated o	n polished	SS ·	disc,	0.79	mm thick.
Total diameter	of <u>4.77</u>	cm an	d an active (diameter of	<u>4.45</u> cm.
The radioactive covering over t			ed to the di	sc by heat t	reatment without any
Measurement Met	:hod:	•			
Absolute countine verified by co	ng of beta part unting above,	icles emitted : below, and at	in the hemisp the operati	phere above th ve voltage.	roportional chamber. le active surface was The calibration is 2148/90
Measurement Res	ult:				• • • •
The observed b calibration dat	eta count rat ce was:	e from the su	rface of the	e disc per n	ninute (cpm) on the
	11,000	+	441	-	
The total disin the surface of			<u>25</u> % bi	ackscatter of	beta particles from
	17,700	<u> </u>	706	(0.0)	0796 μCi)
at the 99% con measurement.	fidence level,	and the estim	ated upper 1	imit of syste	andom counting error ematic error in this
Calibrated by:_	ART REUST	R	eviewed by:	Tur hurs	
Calibrated by:_ Calibration Tec		Kunt	Q.A. Rep	presentation	und de la charles de la charle
Calibration Dat	:e: <u>4-25-20</u>	02	Reviewed	d Date:	1-29-02
					Analytical Servi

Analytical Services 7021 Pan American Freeway NE Albuquerque, New Mexico 87109-4238 (505) 345-3461 Fax (505) 761-5416 Toll Free (866) RAD-LABS (723-5227) www.eberlineservices.com **Isotope Products** Laboratories

24937 Avenue Tibbitts Valencia, California 91355

An Eckert & Ziegler Company

Tel 661.309.1010 Fax 661.257.8303

CERTIFICATE OF CALIBRATION GAMMA STANDARD SOURCE

Radionuclide:	Eu-152	Cus
Half-life:	4933 ± 11 days	P.O .
Catalog No.:	GF-152	Refe
Source No.:	812-99-2	Con

Customer:	C
P.O. No.:	0.
Reference Date:	15
Contained Radioactivity:	0.

ABRERA SERVICES, INC.				
1-414				
5-Oct-01	12:00	PST		
9640	μCi	35.67	kBg	

Physical description:

A. Capsule type:	D
B. Nature of active deposit:	Evaporated metallic salt
C. Active Diameter:	5 mm
D. Backing:	Ероху
E. Cover:	Acrylic

Radioimpurities:

Gd-153 = 2.25%; Eu-154 = 1.30% on 15 Oct 01

Method of Calibration:

This source was prepared from a weighed aliquot of solution whose activity in µCi/g was determined using gamma ray spectrometry. Peak energy used for integration: 344.3 keV Branching ratio used: 0.266 gammas per decay

Uncertainty of Measurement:

A. Type A (random) uncertainty:	± 0.7 %
B. Type B (systematic) uncertainty:	± 3.0 %
C. Uncertainty in aliquot weighing:	± 0.6 %
D. Total uncertainty at the 99% confidence level:	± 3.1 %

Notes:

- See reverse side for leak test(s) performed on this source.
- IPL participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15).
- Nuclear data was taken from IAEA-TECDOC-619, 1991.
- This source has a working life of 5 years.

Un U Ullan Quality Control

2-6-5-4-01 Date Signed

IPL Ref. No .: 812-99

ISO 9001 CERTIFIED

FINAL Report

Remediation and Final Status Survey Bomb Throwing Device Site - Structures

Aberdeen Proving Ground, Aberdeen, Maryland

Contract Number DAAA09-00-G-0002/39

Prepared for:

U.S. Army Field Support Command AMSIO-ACE-D Bldg. 350, 5th Floor Rock Island, IL 61299-6000

Prepared by:

473 Silver Lane East Hartford, Connecticut 06118 Cabrera Project No: 01-3030.39 December 2004

EXECUTIVE SUMMARY

Cabrera Services, Inc. (CABRERA), under contract to the U.S. Army Field Support Command (FSC), performed remedial activities, remedial support surveys, and Final Status Surveys (FSS) for the Bomb Throwing Device (BTD) site at the Aberdeen Proving Ground (APG), Maryland. This document provides the results of post-remediation final status surveys for the structures associated with the BTD site. These surveys were designed so that the results of the individual integrated static measurements could be compared to the release criteria (DCGLw) by survey unit. If all of the survey units associated with a structure meet the criteria for unrestricted release, then the structure as a whole is considered a viable candidate for unrestricted release.

CABRERA conducted survey activities in accordance with the U.S. Nuclear Regulatory Commission (NRC) approved FSS work plan, prepared by CABRERA. This FSS Report addresses final status surveys performed on five BTD structures. The five structures are: the BTD Armor Reclamation Facility, Wash Rack #2, Wash Rack #3, Concrete Pad #2 located behind Building 701, and Concrete Pad #1 located behind the DU Test Enclosure Building.

FSS activities were designed in accordance with the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) guidance (NRC, 2000).

The project had several major activities associated with the remediation and FSS including:

- Remediation of soils, debris, and structures within the confines of the BTD site,
- Deconstruction of structures on the BTD site,
- Removal of plate steel for on-site recycling,
- Removal and shipment of remediated soils and debris to Envirocare of Utah (the disposal site),
- Designation of the BTD land areas into 25 MARSSIM Class 1 Survey Units,
- FSS of the BTD site soils and structures, and
- Determination that the dose from residual contamination at the site is not greater than the release criterion for each Survey Unit.

The radiological contaminant of concern was depleted uranium (DU). The derived concentration guideline (DCGLw) for fixed (or total) DU activity was determined to be 100 disintegrations per minute alpha per 100 square centimeters (dpm/100cm²). The maximum measurements from all of the survey units associated with the five structures were well below the DCGLw value.

Smear samples for gross transferable alpha contamination were collected and analyzed to determine if transferable activity is less than 10% of total activity, to confirm assumptions in the release criterion. The maximum smear measurements from all of the survey units associated with the five structures were below 10% (i.e., 10 dpm/100cm²) of total activity.

The FSS data indicates that the five structures are suitable for release for unrestricted use, without regard for former operations with licensed radioactive material.

FSSs were also performed over a land area of approximately 46,000 square meters and on access roads and several support buildings situated on the BTD site. Discussions of the surveys over land areas are addressed in a separate FSS document.

TABLE OF CONTENTS

Section Page
EXECUTIVE SUMMARY i
1.0 INTRODUCTION
1.1 Site History 1
1.1.1 BTD Armor Reclamation Facility
1.1.2 Wash Rack #2
1.1.3 Wash Rack #3
1.1.4 Concrete Pad #2 (Located Behind Building 701)
1.1.5 Concrete Pad #1 (Located Behind the DU Test Enclosure Building)
1.2 Radionuclides of Potential Concern
1.3 Derived Concentration Guideline Levels
2.0 FINAL STATUS SURVEY DESIGN
2.1 General Structure Classification Based on Contamination Potential and Survey Unit Identification
2.1.1 BTD Armor Reclamation Facility
2.1.2 Wash Rack #2
2.1.3 Wash Rack #37
2.1.4 Concrete Pad #2
2.1.5 Concrete Pad #1 8
2.2 Survey Instrumentation and Survey Techniques
2.2.1 Direct Surface Alpha Radioactivity Scan Surveys and Integrated Direct Surface Alpha Radioactivity Measurements
2.2.2 Smear Sample Collection and Analysis10
2.3 Number of Static Measurements
2.3.1 Estimation of Relative Shift
2.3.2 Determination of N (Number of Required Measurement Locations)
2.4 Elevated Measurement Criterion (DCGL _{EMC})11
2.5 Static Measurement Locations
3.0 RESULTS 14
3.1 BTD Armor Reclamation Facility
DAAA09-00G-0002/0039 CABRERA SERVICES, INC. Page i

Bomb Throwing Device - Structures Aberdeen Proving Ground

Surface Alpha Radioactivity Scan Surveys 14 3.1.1 Integrated Direct Surface Alpha Radioactivity Measurements 14 3.1.2 Smear Sample Collection and Analysis...... 14 3.1.3 3.1.4 Recommendation 15 3.2 Surface Alpha Radioactivity Scan Surveys 15 3.2.1 Integrated Direct Surface Alpha Radioactivity Measurements 15 3.2.2 Smear Sample Collection and Analysis.....15 3.2.3 3.2.4 Wash Rack #3 16 3.3 Surface Alpha Radioactivity Scan Surveys 16 3.3.1 3.3.2 Integrated Direct Surface Alpha Radioactivity Measurements 16 Smear Sample Collection and Analysis...... 16 3.3.3 3.3.4 3.4 Surface Alpha Radioactivity Scan Surveys 17 3.4.1 Integrated Direct Surface Alpha Radioactivity Measurements 17 3.4.2 Smear Sample Collection and Analysis..... 17 3.4.3 3.4.4 3.5 3.5.1 3.5.2 Integrated Direct Surface Alpha Radioactivity Measurements 18 Smear Sample Collection and Analysis..... 18 3.5.3 3.5.4 FINAL STATUS SURVEY INSTRUMENT QUALITY ASSURANCE AND QUALITY 4.05.0 FIGURES APPENDICES

LIST OF TABLES

Title

Page

Table 2-1:	BTD Armor Reclamation Facility Survey Units	7
Table 2-2:	Wash Rack #2 Survey Units	7
Table 2-3:	Wash Rack #3 Survey Units	8
Table 2-4:	Instruments Used for Scanning and Integrated Direct Surface Measurements	9
Table 2-5:	Alpha/Beta Scintillation Counter Used for Transferable Activity Measurements 1	0
Table 2-6:	Summary of Area, Number of Data Points, and Grid Spacing by SU 1	2

LIST OF APPENDICES

Appendix A: Building Photographs

- Appendix B: Final Status Survey Plan For BTD Armor Reclamation Facility, Aberdeen Proving Ground, Aberdeen, MD
- Appendix C: Final Status Survey Plan For Wash Rack Facilities #2 and #3, Aberdeen Proving Ground, Aberdeen, MD
- Appendix D: Final Status Survey Plan, Bomb Throwing Device (BTD) Site, Aberdeen Proving Ground, Aberdeen, MD
- Appendix E: Survey Unit Maps and Sample Locations
- Appendix F: Daily Instrument/Building Summary
- Appendix G: Radiological Survey Maps
- Appendix H: Survey Unit Worksheets and Data Summaries

Appendix I: Survey Instrument Quality Control and Calibration Certificates

ACRONYMS AND ABBREVIATIONS

AFSC	U.S. Army Field Support Command
ALARA	As Low As Reasonably Achievable
APG	Aberdeen Proving Ground
ARL	Army Research Laboratory
ATC	Aberdeen Test Center
BARF	BTD Armor Reclamation Facility
BTD	Bomb Throwing Device
CABRERA	Cabrera Services, Inc.
CFR	Code of Federal Regulations
cm	Centimeters
DCGL or DCGLw	Derived Concentration Guideline Level
dpm alpha/100cm ²	Disintegrations per minute alpha per 100 square centimeters
DU	Depleted Uranium
FSC	U.S. Army Field Support Command
FSS	Final Status Survey
НЕРА	High Efficiency Particulate Air filter
LAB	Liquid Abrasive Blaster
LBGR	Lower Bound of the Grey Region
m	Meters
m ²	Square Meters
MARSSIM	Multi-Agency Radiation Survey and Site Investigation Manual
mrem/yr	Millirem per year
NAD	Normalized Absolute Difference
NIST	National Institute of Standards and Technology
NRC	U. S. Nuclear Regulatory Commission
PSA	Plate Storage Area
QA	Quality Assurance
QC	Quality Control

DAAA09-00G-0002/0039

Designer and Manufacturer of Scientific and Industrial Instruments	CERTIFICATE OF CALIBRATION	LUDLUM MEASUREMENTS, INC. POST OFFICE BOX 810 PH. 915-235-5494 501 OAK STREET FAX NO. 915-235-4672 SWEETWATER, TEXAS 79556, U.S.A. ORDER NO. 291453/269534
\sim	Model2929	
	Model 43-10-1	
		Cal. Interval <u>1 Year</u> Meterface 202-014
Check mark 🗹 applies to applicable instr. a	nd/or detector IAW mfg. spec. T. <u>76</u>	°F RH20_% Att700.8 mm Hg
New instrument Instrument Received	d 🚺 🕅 🖓 🗍 🗤 🖓 🗍 🖓 🗍 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓	Tol. 🔲 Requiring Repair 🔲 Other-See comments
	peration ansitivity <u>175</u> mV Beta Sensitivity 14.8 rev 12/05/89. Calibrated in act	
	—	
Instrument Volt Set 825 V = 3.3	2.8 on High Voltage dial. High Voltage s	set with detector connected.
🗹 HV Readout (2 points) Ref./Inst	500 / 500 V Re	of./inst
COMMENTS: Th230 #2748 Current Activity: 6130dpm Source count minus background: (Eff: 45 %(4pi)	2772 cpm	

Gamma Calibration: GM detectors positioned perpendicular to source except for M 44-9 in which the front of probe faces source.

Alaba Channel	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*	
Alpha Channel Digital Readout	400K cpm	39994 (0)	39994 (0)	
	40K cpm	4002	4002 (
	4K cpm	400	400	
	400 cpm	40)	<u> </u>	
	40 cpm	ч́	<u> </u>	
Beta/Gamma Channel	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*	
Digital Readout	400K cpm	40012 (0)	40012(0)	
Digital Readout	400K cpm 40K cpm	40012 (0)	40012(0) 4001	
Digital Readout				
Digital Readout	40K cpm	4001	4001 f	

*Uncertainty within \pm 10% - C.F. within \pm 20%

Ludium Measurements, Inc. certifies that the above instrument has been calibrated by standards traceable to the National institute of Standards and Technology, or to the calibration facilities of other international Standards Organization members, or have been derived from accepted values of natural physical constants or have been derived by the ratio type of calibration techniques. The calibration system conforms to the requirements of ANSI/NCSL Z540-1-1994 and ANSI N323-1978. State of Texas Calibration License No. LO-1963 Defer mante and/or Co to all

Reference Instruments ana/or sources:	
Cs-137 Gamma S/N 1162 G112 M565 5105 T1008 T879 E552 E551	Neutron Am-241 Be S/N T-304
✓ Alpha S/N Ih230 #2748 Beta S/N Ic99 NI-EV, C14 0	GV471 Other
M 500 S/N 57885 Oscilloscope S/N	Multimeter S/N71300353
~alibrated By: for a une	Date 21- Jan -03
viewed By: Rhade Hamin	Date 22 from 03
This certificate shall not be reproduced except in full, without the written approval of Ludium Measurements. Inc. FORM C25 = 10/31/2001	AC Inst. Passed Dielectric (Hi-Pot) and Continuity Test Only Falled:

LUDLUM MEASUREMENTS, INC.

Designer and Manufacturer of Scientific and Industrial Instruments

POST OFFICE BOX 810 PH. 915-235-5494 501 OAK STREET FAX NO. 915-235-4672 SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data For Detector

Detector43-10-1 Serial NoPR 171 322	Order #.	291453/269534
Customer CABRERA SERVICES	Alpha Input Sensitivity	<u> </u>
Counter 2929 Serial No. 163827	Beta Input Sensitivity	mV
Count Time 1 Minute	Beta Window	50 mV
Other	Distance Source to Detector	Tray

High		Back	ground		<u>Th 230</u> 6130 dpm		C14 140 kdpm		Tc 99 22.6 dpm
Volta	ge	Alpha	Beto	Alpha	Beta	Alpha	Beta	Alpha	Beta
רר	5	0	37	2214	196	0	9278	0	5098
80	0		49	2588	187		13647	0	6268
-> 82	5	0	58	2772	232		19991	2	7028
85	0	D	69	2738	281	Ч	24368	2	7567
					-			<u> </u>	
		·		+					
						<u> </u>	++		-
							++	<u> </u>	
		~ ~	· · · · · · · · · · · · · · · · · · ·				+	<u>. </u>	

 \Box Gas Proportional detector count rate decreased \leq 10% after 15 hour static test using 39" cable.

🔲 Gas proportional detector count rate decreased ≤ 10% after 5 hour static test using 39" cable and alpha/beta counter.

ferong it u Signature

Date 21-Jan-03

FORM C4B 12/09/97

Serving The Nuclear Industry Since 1962

M	Designer and Manufacturer of Scientific and Industrial Instruments	CERTIFICAT	E OF CALIBRATION	LUDLUM MEASU POST OFFICE BOX 81 501 OAK STREET SWEETWATER, TEXAS	FAX NO. 325-235-4672
STOMER	CABRERA SERVICES			ORDER NO.	206689 / 277045
 Mfg	Ludium Measurements, Inc.	Model	2929	Serial No	171590
Mfg.	Ludium Measurements, Inc.	Model	43-10-1	Serial No	<u>PR 1748/3</u>
Cal. Date _	19-Nov-03	Cal Due Date	19-Nov-04 (Cal. Interval <u>1 Year</u> M	Vieterface 202-014
Check mark	🗹 applies to applicable instr. c	and/or detector IA	W mfg. spec. T. <u>73</u>	°F RH33_%	Alt 708.8 mm Hg
📋 New Ins	trument instrument Receive	d 🖵 🕬 Thin Toler	.+-10% 🗍 10-20% 🗍 Out of	Tol. 🔲 Requiring Repair	Other-See comments
🗹 Mechar	nicalick. 🗌 Window O	peration			
Audio c 🗹 🗹	Alush = 0	ensitivity <u>175</u>	mV Beta Sensitivity	_4 mV Beta Window	7 <u>.50</u> mV
	ed in accordance with LMI SOP			cordance with LMI SOP 14	.9 rev 02/07/97.
Instrument Vo	ht Set_ <u>875</u> v = <u>35</u>	9 on High Vo	ltage dial. High Voltage	set with detector connecte	əd.
	eadout (2 points) Ref./inst	500	-/V Re	əf./Inst2000	12025 V

COMMENTS:

Gamma Calibration: GM detectors positioned perpendicular to source except for M 44-9 in which the front of probe faces source.

	Alaba Channal	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*	
	Alpha Channel Digital Readout	400K cpm	799989	399989	
		40K cpm	40009	40009	
\smile		4K cpm	4008	4008	
		400 cpm	400		
		40 cpm	40	#c	
	Beta/Gamma Channel	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*	
	Digital Readout	400K cpm	399987	399987	
		40K cpm	40009	40009	
		4K.cpm	4607	4007	
		400 cpm	400	400	~~
		40 com	40	40	

*Uncertainty within ± 10% C.F. within ± 20%

Ludium Measurements, Inc. certifies that the above instrument has been calibrated by standards traceable to the National institute of Standards and Technology, or to the calibration facilities of other international Standards Organization members, or have been derived fram accepted values of natural physical constants or have been derived by the ratio type of calibration techniques. The calibration system conforms to the requirements of ANSI/NCSL 2540-1-1994 and ANSI N323-1978. State of Texas Calibration License No. LQ-1963 Peterence Instruments and/or Sources:

Reference instruments ana/or sources.	
Cs-137 Gamma S/N 1162 G112 M565 5105 T1008 T879 E552 E551	Neutron Am-241 Be S/N T-304
Aipha S/N 14239 12.6Kcp - 500 S/N Tc99 143Kcfa	614 91.5kepm [] Other
✓ m 500 S/N 102799 Oscilloscope S/N	Multimeter S/N 68260348
	Date 19Novc3
Newed By: UPRESS	Date 19 NOV 03
This certificate shall not be reproduced except in full, without the written approval of Ludium Measurements, Inc. FORM C25 - 04/09/2003	AC Inst. Z Passed Dielectric (HI-Pot) and Continuity Test Only Failed:

LUDLUM MEASUREMENTS, INC. POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-4672 SWEETWATER, TEXAS 79556, U.S.A.

Designer and Manufacturer of

Scientific and Industrial Instruments

Bench Test Data For Detecto	Bench	Test Data	For Detecto
-----------------------------	-------	-----------	-------------

-10-1	_ Serial No	YK 11	7813				89 / 277045
				Alpha	Input Sensitivity		/ <u>/)</u> mv
729	Serial No	1715	90	Beta	Input Sensitivity	/	<u> 4 </u> mV
nute					Beta Windo	N	<u>50</u> mV
tul	detectore	un rected	D	Istance Sou	rce to Detector		Tray
							·
		Isotope	4 239	isotope _	Tc99	lsotope_	C14
Back	ground	Size _	12.6Kcpn	Size _	14. 3Kefm	Size_	91.8Kcp
Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beto
0	44	9654	414	12	6427		13281
0	43	9890	391	14	69 64		17268
۵	51	9692	325	12	7633	3	2256,
0	69	9860	280	24	7994	0	26432
0	61	9859	343	11	8724		32/63
							<u> </u>
	RA SERVIC 929 nute L LL Back Alpha O 6	RA SERVICES 929 Serial No nute H with Olfrefore Background Alpha Beta 0 44 0 43 0 5 1 0 6 9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RA SERVICESAlpha929Serial No. 171590 BetanuteIsotopeDistance SouIsotope l_{239} IsotopeSize $12.6/4cpn$ SizeBackgroundSize $12.6/4cpn$ Size 0 44 9654 $4/4$ 12 0 43 9870 $39/$ 14 0 43 9870 $39/$ 14 0 69 9860 2.80 24	RA SERVICESAlpha Input Sensitivity929Serial No. 171590 Beta Input SensitivitynuteBeta Window L with differ for connectedDistance Source to DetectorL with differ for connectedIsotope f_{4239} Isotope $Tc 99$ BackgroundSize $12.6/4cpn$ Size $f4.3Kcfm$ AlphaBetaAlphaBetaAlphaBeta 0 94496544/141264277 0 439890391146964 0 699860280247964	RA SERVICESAlpha Input Sensitivity929Serial No. 171590 Beta Input SensitivitynuteBeta WindowLuff of the for constructedDistance Source to DetectorBackgroundSize $12.6Kcpn$ SizeAlphaBetaAlphaAlphaBetaAlphaBackgroundSize $12.6Kcpn$ SizeAlphaBetaAlphaBetaAlphaBetaAlphaBackgroundSize $12.6Kcpn$ SizeAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBotope $12.6Kcpn$ Size $12.6Kcpn$ Size $14.3Kcfm$ AlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlphaBetaAlpha

□ Gas proportional detector count rate decreased ≤ 10% after 5 hour static test using 39" cable and alpha/beta counter.

 \Box Gas Proportional detector count rate decreased \leq 10% after 15 hour static test using 39" cable.

Signature

VileAlvare Dote 19Nav 03

FORM C48 04/09/2003

Serving The Nuclear Industry Since 1962 • .

Designer and Manufacturer of Scientific and Industrial Instruments		E OF CALIBRATION	SWEETWATER, TEXAS 7	PH. 325-235-5494 FAX NO. 325-235-4672 79556, U.S.A.
USTOMER CABRERA SERVICES Mfg. Ludium Measurements, Inc.		2020		
Mfg. Ludium Measurements, Inc.				
Cal. Date15-Dec-03	Cal Due Date	<u>15-Dec-04</u> Ca	I, Interval <u>1 Year</u> Me	eterface202-014
Check mark 🗹 applies to applicable instr.	and/or detector IA	W mfg. spec. T, <u>72</u> °	F RH <u>25</u> %	Alt 694.8 mm Hg
New Instrument Instrument Receive	ed 🦳 Within Toler	. +-10% 🗍 10-20% 📋 Out of To	ol. 📋 Requiring Repair	Other-See comments
Mechanical ck. 🗹 Window (
	operation			
	Sensitivity 175	mV Beta Sensitivity 4	mV Beta Window	<u>50</u> mV
Meler Zeloed				
🕑 Callbrated in accordance with LMI SC	14.8 fev 12/05/89		Siddrice with Livit SOF 14.9	IEV 02/0//77
Instrument Volt Set <u>675</u> V = 2	.<u>8 </u> on High Vo	itage dial. High Voltage se	et with detector connected	d.
HV Readout (2 points) Ref./Inst.	500	/	/Inst2000 /	1996 V

COMMENTS:

Gamma Calibration: GM detectors positioned perpendicular to source except for M 44-9 in which the front of probe faces source

	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*
Alpha Channel Digital Readout	400K cpm		400340
	40K cpm		39992
	4K cpm		3999
	400 cpm		400
	40 cpm	-	<u> </u>
Beta/Gamma Channel	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*
Digital Readout	400K cpm		400063
	40K cpm		400 21
	4K cpm		4004
	400 cpm		400
	40 cpm		40

*Uncertainty within $\pm 10\%$ C.F. within $\pm 20\%$

Ludium Measurements, Inc. certifies that the above instrument has been calibrated by standards traceable to the National Institute of Standards and Technology, or to the calibration facilities of other international Standards Organization members, or have been derived from accepted values of natural physical constants or have been derived by the ratio type of calibration techniques. The calibration system conforms to the requirements of ANSI/NCSL 2540-1-1994 and ANSI N323-1978. State of Texas Calibration Ucense No. LO-1963

Reference Instruments and/or Sources:

Cs-137 Gamma S/N	🛄 1162 🛄 G112 🛄 M565	🗍 5105 📋 T1008 🗌 T879 📋 E	552 🔲 E551 🗍 720 🛄 734 🛄 1616	Neutron Am-241 Be S/N T-304
Alpha S/N	4337 Pu239 15.7kcpm	Beta S/N 165	2 C14 635/83 Tc99	
🖌 m 500 S/N	141244	Oscilloscope S/N	Multimeter S/N	68160950
Calibrated By:	D. a. i. a.	0.041.2		03
cillorated by.	Jour	www.	4	
.eviewed By:	En Teur	alling	Date 16 Deco7	

LUDLUM MEASUREMENTS, INC.

Designer and Manufacturer of Scientific and Industrial Instruments

POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-4672 SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data For Detector

Detector	43-10-1	Serial No.	PR 207849	Order #.	20	8017	
Customer	CABRERA SERV	ICES		Alpha Input Sensitivity		175	mV
Counter	2929	Serial No.	180830	Beta Input Sensitivity		4	_ mV
Count Time	1 Minute			Beta Window		50	mV
Other				Distance Source to Detector	Tra	Y	

High	Back	ground	lsotope Size	C14 155,824cpm	lsotope 	15,700 Lpm		TL99_ 14,300 CP
Voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta	Aipha	Beta
625	6	54	0	20785	12380	357	7	8080
650	0	56	0	26072	12305	430		8841
> 1075	0	51	0	29842	12405	607	14	9261
700	0	49	٥	33312	12534	1015	12	9034
725	0	66	٥	36 430	12377	1960	15	8389
750	0	81	0	400 94	12441	8888	9	7890
						·		
						: : :		
				1				
						l 		
						1	1	

Date 15 Dec - 03 gander altho Signature

FORM C4B 04/09/2003

Serving The Nuclear Industry Since 1962

MOTE	Designer and Manuf of Scientific and Indu Instruments	istrial C	CERTIFICATE OF CAL	IBRATION	LUDLUM MEASU POST OFFICE BOX 810 501 OAK STREET SWEETWATER, TEXAS 7	PH. 325-235-5494 FAX NO. 325-235-4672
Mfg.	Ludium Measurer	nents. Inc.	Model	3	Serial No. 794	198
Mfa.			Model	44-9	Serial No. PRC	
• -	te9-May		· · · · · · · · · · · · · · · · · · ·		al. Interval <u>1 Year</u> M	
			or detector IAW mfg. spec			Alt697.8_mm Hg
					ol. 🗹 Requiring Repair 🗌	
	hanical ck.	Meter Zer		ackground Subtrac		Sens, Linearity
		Reset ck.		Window Operation	Geo	
Aud		🗌 Alarm Set		Batt. ck. (Min. Volt)		
🛃 Calib	rated in accordance	with LMI SOP 14.8	rev 12/05/89.	alibrated in accord	lance with LMI SOP 14.9 re Threshol	v 02/07/97. d mV
Instrument	t Volt Set 900	_ V input Sens	28mV_Det.Oper.	<u></u> V at	28 mV Diai Rat	0
	IV Readout (2 points)	Ref./inst	1	V Ref.	/Inst	/V
COMM	ENTS:				······	
F	ICinience	for To	-99: Backgr	ound cou	t = 50 cpm, Scienter, Scienter, Scienter, Science, Scie	TT efficiency=
	10.			0.0	4	TI addition -
Ĺ	+800 cpm1	dpm v	alne of so	wce = 11	1600 dpm, 1	11 ett identy
า	1024	2. 10	To-99 cours	e = NI - E	ΞV.	
ŀ	LINC 10,	211 04				
Gamma Calibra	llion: GM delectors positioned per	pendicular to source exce	x for M 44-9 in which the front of probe (aces source.		
			EFERENCE	INSTRUMENT		
	RANGE/MULTIPLI		CAL. POINT	"AS FOUND I	READING" METER	READING"
\smile	<u>X 100</u> X 100		kopm	TK		TK
	X 10		kcpm	4 K		48
	<u>X 10</u>					48
	<u></u> X1		kcpm		- <u></u>	75
	X 0.1			- 4 K		48
	X 0.1		Depm			
	<u> </u>					•
	*! log a delete 10			<u></u>	Ali Range(s) (Collorated Electronically
	*Uncertainty within ± 10% REFERENCE	INSTRUMENT	INSTRUMENT	REFERENCE		INSTRUMENT
	CAL. POINT	RECEIVED	METER READING*	CAL. POINT		METER READING*
Digitai Readout			[]	Log Scale		
Recipion				· · · · · · · · · · · · · · · · · · ·	······································	
			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	<u> </u>			<u> </u>	. <u></u> .	
other internati	tonal Standards Organization	members, or have bee	n derived from accepted values of 2540-1-1994 and ANSI N323-1978	f natural physical constan	Ittute of Standards and Technology, ts or have been derived by the ration Strate of Tevres Co	b type of calibration techniques. Noration License No. 1.0-1963
-	ce Instruments and/					
			5105 🗍 71008 🗌 7879 🔲	E552 🗹 E551		Neutron Am-241 Be S/N T-304
CT Alp	ha S/N		Beto S/N		Other	
	00 S/N 578			· · · · · · · · · · · · · · · · · · ·	Multimeter S/N	82080087
•	TI			 		<u> </u>
Jate	ed By: JOSK	Bosto	n	Dat	· Thay U	3
Reviewe	d By: Rhanh	. Homi		Da	to 14 Man 03	
		ncept in full, without th	e witten approval of Ludium Mea		J	H-Pot) and Continuity Test
	A 04/09/2003	ing a per a criana anticadad Ri				

LUDLUM MEASUREMENTS, INC.

 POST OFFICE BOX 810
 PH. 325-235-5494

 501 OAK STREET
 FAX NO. 325-235-4672

 SWEETWATER, TEXAS 79556, U.S.A.

M

Designer and Manufacturer of Scientific and Industrial Instruments

CONVERSION CHART

10 del	<u>3</u> Seriai No.	7949 8 c	Detector Model	44-9 Serial No	PR073106
ource _	Cs-137 194.6 mCl	Cs-137 20	<u>) mCi</u>	High Voltage	10
				Input Sensitivity	<u> 2</u> 8 m\
	Reference Point	"As Found" Re Meter Reading	adings (CPM): Range/Scale	After Adjustment Meter Reading	Readings (CPM): Range/Scale
	150 mR/hr	NA	NA	2,2K	×100
	50 mR/hr			1.15K	X 100
	15 mR/hr			4.0K	XIO
	5 mR/hr			1.45K	XIO
	1.5 mR/hr			4.5K	X1
	1.0 mR/hr			3.1K	XI
			· · · · · · · · · · · · · · · · · · ·		
				• <u> </u>	
					· · · · · · · · · · · · · · · · · · ·
		······································		.	
					·····
					<u> </u>
Skanature	Josh B	octon		Date 9 May O	3
		····			· · · · · · · · · · · · · · · · · · ·

	Designer and Manuf	acturer					IENTS, INC.	
	Scientific and Indu Instruments	istriai C	ERTIFICATE OF CA	LIBRATION	501 OAK STRE		H. 325-235-549 AX NO: 325-23 5, U.S.A.	
USTOMER	CABRERA SERV	/ICES			ORDE	ER NO.	216307/2817	73
Mfa.	Ludium Measuren	nents, Inc.	Model	3	Serial No.	79499	8	
			Model				3106	
			Due Date1				nce 202	
_			r detector IAW mfg. spi					
			Within Toler. +-10%					
		_	_					7115
Mechai		Meter Zerc Reset ck.		Background Subtrac Window Operation		✓ Input Sens ✓ Geotropis		
Audio c		Alarm Sett		Batt. ck. (Min. Volt)			•••	
Calibrate	ed in accordance y	with LMI SOP 14.8	rev 12/05/89.	Calibrated In accord	lance with LMI SOI	P 14.9 rev 02/0	07/97.	
strument Vo	olt Set 900	V Input Sens.	29_mV Det. Opt	ər. 900 Vat	29 mV	Threshold Dial Ratio	=	п
	Readout (2 points)	Ref./Inst		V Ref.	/inst	/	· · · · · · · · · · · · · · · · · · ·	_ v
COMMENT	rs:					20	7	
4 pi effi	ciency for Tc-	-99 as follow.	s: source count	= 3000 (pm, bi	ackground cou	nt =	kpm,	
ipm value	of source =	22600 dpm ,	SN of source = _	NI-EV ; 4 p	i efficiency	= 21.957	<u>o</u> .	
0 11l	1	' Cable						
(a)d	with b	liable	٤.					
-								
amma Calibration:	GM detectors positioned per		t for M 44-9 in which the front of pro		25010			
		RI	EFERENCE	INSTRUMENT				
 א	ANGE/MULTIPLI	RI ER C	EFERENCE AL. POINT	INSTRUMENT "AS FOUND I		INSTRUMEN METER REA		
ר 	ANGE/MULTIPLI X 100	RI ER C 400k	EFERENCE CAL. POINT KCPM	INSTRUMENT "AS FOUND I				
ר 	ANGE/MULTIPLI X 100 X 100	RI ER C 4004	EFERENCE CAL. POINT KCPM	INSTRUMENT "AS FOUND I 4K				
ר 	ANGE/MULTIPLI X 100	RI ER C 400k 100k 40k	EFERENCE CAL. POINT KCPM	INSTRUMENT "AS FOUND I 4K				
ר 	2ANGE/MULTIPLI X 100 X 100 X 100 X 10	RI ER C 400k 100k 40k 10k	EFERENCE CAL. POINT KCPM KCPM	INSTRUMENT "AS FOUND I 4K				
ר 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10	RI ER C 400k 100k 40k 10k 10k	EFERENCE CAL. POINT Copm Copm Copm Copm Copm	INSTRUMENT "AS FOUND I 4K				
ר 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 1 X 1 X 0.1	R C 400k 100k 40k 10k 40k 10k 10k 10k 400	EFERENCE CAL. POINT Copm Copm Copm Copm Copm	INSTRUMENT "AS FOUND I 4K 4K 4K 4K 4K 4K				
 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 1	R C 400k 100k 40k 10k 40k 10k 10k 10k 400	EFERENCE CAL. POINT Copm Copm Copm Copm Copm	INSTRUMENT "AS FOUND I 4K 4K 4K 4K 4K 4K				
ר 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 1 X 1 X 0.1	R C 400k 100k 40k 10k 40k 10k 10k 10k 400	EFERENCE CAL. POINT Copm Copm Copm Copm Copm	INSTRUMENT "AS FOUND I 4K 4K 4K 4K 4K 4K				
R 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 1 X 0.1 X 0.1	R C 400k 100k 40k 10k 40k 10k 10k 10k 10k 10k 10k 10k 10k	EFERENCE CAL. POINT Copm Copm Copm Copm Copm	INSTRUMENT "AS FOUND I 4K 4K 4K 4K 4K 4K				
R 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 0.1 X 0.1 X 0.1 Certainty within ± 10%	R ER C 400k 100k 40k 10k 40k 10k 40k 10k 40k 10k 10c 10c	EFERENCE CAL. POINT CCPM CC	INSTRUMENT "AS FOUND I 4K 7K 7K 7K 7K 7K 7K 7K 7K 7K 7K 7K 7K 7K	READING"	METER REA K K K K K K K K K K K K K	DING*	
R 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 1 X 0.1 X 0.1 X 0.1 Certainty within ± 10%	RI ER C 400k 100k 40k 10k 40k 10k 40k 10k 40k 10k 10k 10k 10k 10k 10k 10k 10k 10k 1	EFERENCE AL. POINT KCPM KCP	INSTRUMENT "AS FOUND I 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K	READING"	METER REA + K - - - - - - - - - - - - -	DING*	
R 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 0.1 X 0.1 X 0.1 Certainty within ± 10%	R ER C 400k 100k 40k 10k 40k 10k 40k 10k 40k 10k 10c 10c	EFERENCE CAL. POINT CCPM CC	INSTRUMENT "AS FOUND I 44 78 78 78 78 78 78 78 78 78 78 78 78 78	READING"	METER REA + K - - - - - - - - - - - - -	DING*	
R 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 1 X 0.1 X 0.1 X 0.1 Certainty within ± 10%	RI ER C 400k 100k 40k 10k 40k 10k 40k 10k 40k 10k 10k 10k 10k 10k 10k 10k 10k 10k 1	EFERENCE AL. POINT KCPM KCP	INSTRUMENT "AS FOUND I 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K 4K	READING"	METER REA + K - - - - - - - - - - - - -	DING*	
	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 1 X 0.1 X 0.1 X 0.1 Certainty within ± 10%	RI ER C 400k 100k 40k 10k 40k 10k 40k 10k 40k 10k 10k 10k 10k 10k 10k 10k 10k 10k 1	EFERENCE AL. POINT KCPM KCP	INSTRUMENT "AS FOUND I 44 78 78 78 78 78 78 78 78 78 78 78 78 78	READING"	METER REA + K - - - - - - - - - - - - -	DING*	
R 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 1 X 0.1 X 0.1 X 0.1 Certainty within ± 10%	RI ER C 400k 100k 40k 10k 40k 10k 40k 10k 40k 10k 10k 10k 10k 10k 10k 10k 10k 10k 1	EFERENCE AL. POINT KCPM KCP	INSTRUMENT "AS FOUND I 44 78 78 78 78 78 78 78 78 78 78 78 78 78	READING"	METER REA + K - - - - - - - - - - - - -	DING*	
	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 1 X 0.1 X 0.1 X 0.1 Certainty within ± 10%	RI ER C 400k 100k 40k 10k 40k 10k 40k 10k 40k 10k 10k 10k 10k 10k 10k 10k 10k 10k 1	EFERENCE AL. POINT KCPM KCP	INSTRUMENT "AS FOUND I 44 78 78 78 78 78 78 78 78 78 78 78 78 78	READING"	METER REA + K - - - - - - - - - - - - -	DING*	
R 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 1 X 1 X 0.1 X 0.1 X 0.1 X 0.1 Certainty within ± 10% IFERENCE AL. POINT	Ri Ri 400/ 100/ 40/ 100/ 40/ 100/ 40/ 10/ 40/	EFERENCE :AL. POINT <cpm <cpm <cpm <cpm <cpm </cpm </cpm </cpm </cpm </cpm 	INSTRUMENT "AS FOUND I 4K 4K 1K 4K 1K 4K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K	READING"	METER REA	DING*	01NG*
R 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 1 X 0.1 X 0.1 X 0.1 X 0.1 X 0.1 EFERENCE AL. POINT	R R 400+ 100+ 40+ 10+ 40+ 10+ 40+ 10+ 40+ 10+ 40+ 10+ 40+ 10+ 40+ 10+ 40+ 10+ 40+ 10+ 40+ 10+ 40+ 10+ 40+<	EFERENCE AL. POINT KCPM KCPM KCPM KCPM CPM CPM CPM CPM CPM CPM CPM	INSTRUMENT "AS FOUND I 44 18 44 14 14 14 14 14 14 14 14 14 14 14 14	READING"	METER REA K K K K K K K K K K K K K	DING*	0ING*
R 	2ANGE/MULTIPLI X 100 X 100 X 10 X 10 X 10 X 1 X 1 X 0.1 X 0.1 X 0.1 X 0.1 Certainty within ± 10% FERENCE AL. POINT	R R ER C 4004 1004 401 1004 401 1004 401 104 401 104 104 104 100 44 114 114 400 100 C.F. within ± 20% 100 INSTRUMENT RECEIVED EcciveD 100 e above instrument has to members, or have been 100	EFERENCE :AL. POINT <cpm <cpm <cpm <cpm <cpm </cpm </cpm </cpm </cpm </cpm 	INSTRUMENT "AS FOUND I 44 18 18 14 14 14 14 14 14 14 14 14 14 14 14 14	READING"	METER REA K K K K K K K K K K K K K	DING*	NING*
R 	RANGE/MULTIPLI X 100 X 100 X 10 X 0.1 X 0.1 X 0.1 Stondards Organization in the requirements ond/or Instruments and/or	RI ER C 4004 1004 404 104 404 104 404 104 404 104 404 104 404 104 405 104 405 104 405 104 405 104 405 105 106 114 400 114 400 114 400 1100 114 400 1100 114 400 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100	EFERENCE AL. POINT KCPM KCPM KCPM KCPM CCP	INSTRUMENT "AS FOUND I 44 14 14 14 14 14 14 14 14 14 14 14 14	READING"	METER REA K K K K K K K K K K K K K	DING*	NING*
R 	RANGE/MULTIPLI X 100 X 100 X 10 X 0.1 X 0.1 X 0.1 Stondards Organization in the requirements ond/or Instruments and/or	RI ER C 4004 1004 404 104 404 104 404 104 404 104 404 104 404 104 405 104 405 104 405 104 405 104 405 105 106 114 400 114 400 114 400 1100 114 400 1100 114 400 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100	EFERENCE AL. POINT COM COM COM COM COM COM COM COM	INSTRUMENT "AS FOUND I 44 14 14 14 14 14 14 14 14 14 14 14 14	READING"	METER REA K K K K K K K K K K K K K	DING*	es of ques. 0-196
R 	RANGE/MULTIPLI X 100 X 100 X 10 X 0.1 X 0.1 X 0.1 Stondards Organization in the requirements ond/or Instruments and/or	ER C 4004 1004 404 1004 404 104 404 104 404 104 404 104 404 104 405 104 405 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>EFERENCE AL. POINT <cpm <cpm <cpm <cpm <cpm <cpm <cpm Dcpm</cpm </cpm </cpm </cpm </cpm </cpm </cpm </td> <td>INSTRUMENT "AS FOUND I 44 14 14 14 14 14 14 14 14 14 14 14 14</td> <td>READING"</td> <td>METER REA</td> <td>DING*</td> <td>01NG*</td>	EFERENCE AL. POINT <cpm <cpm <cpm <cpm <cpm <cpm <cpm Dcpm</cpm </cpm </cpm </cpm </cpm </cpm </cpm 	INSTRUMENT "AS FOUND I 44 14 14 14 14 14 14 14 14 14 14 14 14	READING"	METER REA	DING*	01NG*
R 	ANGE/MULTIPLI X 100 X 10 X 10 X 1 X 1 X 0.1 Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in th	ER C 400/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/-	EFERENCE AL. POINT KCPM KCPM KCPM KCPM KCPM CPM CPM CPM CPM CPM CPM CPM	INSTRUMENT "AS FOUND I "AS FOUND I AK AK IK IK IK IK IK IK IK IK IK I	ALL R ALL R	METER REA K K K K K K K K K K K K K	DING*	PING*
R 	ANGE/MULTIPLI X 100 X 10 X 10 X 1 X 1 X 0.1 Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in the required of Stondards Organization in th	ER C 400/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/-	EFERENCE AL. POINT KCPM KCPM KCPM KCPM KCPM CPM CPM CPM CPM CPM CPM CPM	INSTRUMENT "AS FOUND I "AS FOUND I AK AK AK AK AK AK AK AK AK AK	ALL R ALL R	METER REA K K K K K K K K K K K K K	DING*	01NG*
R 	RANGE/MULTIPLI X 100 X 100 X 10 X 10 X 1 X 0.1 S/N [] 1162 [S/N] 1328'	ER C 400/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/- 100/-	EFERENCE AL. POINT KCPM KCPM KCPM KCPM KCPM CPM CPM CPM CPM CPM CPM CPM	INSTRUMENT "AS FOUND I "AS FOUND I AK IK IK IK IK IK IK IK IK IK I	ALL R ALL R	METER REA K K K K K K K K K K K K K	DING*	NING*

Treviewed By: This certificate shall not be reproduced except in full, without the written approval of Ludium Measurements, Inc. FORM C22A 11/26/2003

Measurements, Inc.	AC Inst. Passed Dielectric (HI-Pot) and Continuity Test Only Failed:

LUDLUM MEASUREMENTS, INC. POST OFFICE BOX 810 PH. 325-235-5494

SWEETWATER, TEXAS 79556, U.S.A.

501 OAK STREET

FAX NO. 325-235-4672

Designer and Manufacturer of Scientific and Industrial Instruments

CONVERSION CHART

Customer	CABRERA SERVICES	······	Date	19-May-04	Order #.	216307/281793
Model	<u>3</u> Serial No	79498	Detector Model	44-9	Serial No	PR073106
Source _	Cs-137 194.6 mCl	Cs-]37 2	<u>0 mCi</u>		High Voltage	
				Inp	out Sensitivity	<u> 29 mv</u>
			eadings (CPM):		er Adjustment eter Reading	Readings (CPM): Range/Scale
	Reference Point	Meter Reading	Range/Scale			
	150 mR/hr	2.05K	XIDO	2	.05K	X100
	50 mR/hr	1.1 K	X100	j.	IK	X100
	15 mR/hr	4.1K	x/0	4	. K	X10
	5 mR/hr	1.5K	$\times 10$.5K	X10
-	1.5 mR/hr	4.6K	X	L	F.6K	XI
	1.0 mR/hr	3.2K	X	3	1.2K	XI
		<u></u>				
		<u> </u>				
	Josh B	or to	1		9 Ma	.04
Signature	UUSK D	USJUL		Date	<u>IIIa</u>	y & I

JOMER	Designer and Manufacturer of Scientific and industrial Instruments CABRERA SERVICES	CERTIFICA	TE OF CALIBI	RATION	PC 50	JDLUM MEA OST OFFICE BOX 1 OAK STREET VEETWATER, TEX ORDER N	(810 PH. 915 FAX NC (AS 79556, U.S.	5-235-5494 D. 915-235-4672
Mfg	Ludium Measurements. In	c. Model		3		Serial No		
	Ludium Measurements, In			4-9		Serial No.	137499	
	3-Dec-02					1.	Meterface	202-002
Check mark	✓ applies to applicable in strument Instrument Rec	str. and/or detector l/ elved Within Tole	AW mfg. spec. r. +-10% 🔲 10-2	T72 20%6 ⊡ Out	2 •F of Tol. [] R	RH28 equiring Repai	_% Alt r [] Other-See	<u>701,8</u> mm H g e comments
Mecha F/S Res Audio c	p.ck 👿 F ck. 🗋 /	Meter Zeroed Reset ck. Alarm Setting ck.	. □ Wn ☑ Bat	k ground Sub dow Operat t. ck. (Min. Ve	tion oit) <u>2</u>		input Sens. Line Geotropism	
Instrument Vo	ed in accordance with LMI bit Set V Inpu	SOP 14.8 rev 12/05/8 ut Sens m	9. Calli V Det. Oper.	760	cordance w V at	mV Dia	.9 rev 02/07/97 sshold I Ratio	7. mV
🖂 HV R	Readout (2 points) Ref./Ir	n st	/:	v	Ref./Inst		/	V
COMMEN	15: efficiency for (6000 cm - 50 cm	r Te 99 22 n 66: 5950 cpm)	.9 KJpm Val	ue is	267.	f 9.		

Gamma Calibration: GM detectors positioned perpendicular to source except for M 44-9 in which the front of probe faces source.

<u> </u>	RANGE/MULTIPUE X 100 X 100 X 10 X 10 X 1 X 1 X 1 X 1 X 0.1 X 0.1	ER C/ 400 K 100 K 40 K 40 K 40 K 40 K 10 K 10 K 40	EFERENCE AL. POINT cpm cpm cpm cpm cpm cpm cpm cpm		4K			
	*Uncertainty within ± 10%	C.F. within ± 20%					Range(s) Ca	ibrated Electronically
Digital Readout	REFERENCE CAL. POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*	Log Scale	REFERENCE CAL. POINT		INSTRUMENT RECEIVED	INSTRUMENT METER READING*
luter Men	surements, inc. certifies that the							to the collitation facilities of
other Interna The calibration Reference Cs-137 Go	itional Standards Organization r on system conforms to the required to the req	members, or have been irements of ANSI/NCS.2 DI SOUICES: 112 M565 5	derived from accepted values 2540-1-1994 and ANSI N323-1976 105 11008 1879	6 natural	physical constants o	ar have beer	n derived by the ratio ty State of Texas Calibr	eutron Am-241 Be S/N T-304
m. ⊡m.	oha S/N 500 S/N5468 ed By:		Beta S/N		Date	. 🖌 Mut	timeter S/N	69101832
	ed By:	Rept in full, without the	written approval of Lucium Me	asurement	sinc. AC	Inst. 📋 p	assed Dielectric (H-	Pot) and Continuity Test

LUDLUM MEASUREMENTS, INC.

M

Designer and Manufacturer of Scientific and Industrial Instruments

POST OFFICE BOX 810 PH. 915-235-5494

501 OAK STREET FAX NO. 915-235-4672 SWEETWATER, TEXAS 79556, U.S.A.

CONVERSION	CHART
------------	-------

Customer	CABRERA SERVICES	······	Date	3-Dec-02	Order #.	289386/268534
Model	Serial No	19511	Detector Model	44-9	Serial No	fc 137499
Source	Cs-137 194.6 mCi	Cs-137 2	0 mCi		High Voltage	900 v
				In	put Sensitivity	<u>78</u> mV
_	Reference Point	"As Found" R Meter Reading	eadings (CPM): Range/Scale		fter Adjustment eter Reading	Readings (CPM): Range/Scale
-	150 mR/hr				J.7 K	4100
~	50 mR/hr				1.1K	4
~	15 mR/hr		/	•	4.2 K	X10
-	5 mR/hr		A		1.6 K	"
_	1.5 mR/hr	/V /			4.5K	x/
<u> </u>	1.0 mR/hr				-3 K	
_						
_		**************************************				
					<u> </u>	
_						
					<u></u>	
	·		· · · · · · · · · · · · · · · · · · ·		·····	
_		** · · ·				
_						
		ul	oli	Date	3 - Ju - 0	~
			8			
FORM C17-1A 05/	20/96					

Serving The Nuclear Industry Since 1962 •

۲

	Designer and Manufacturer of Scientific and Industrial Instruments	CERTIFICATE C	DF CALIBRATION	LUDLUM MEASU POST OFFICE BOX 810 501 OAK STREET SWEETWATER, TEXAS 7	PH. 915-235-5494 FAX NO. 915-235-4672
TOMER	CABRERA SERVICES			ORDER NO	294734/271134
	Ludium Measurements. Inc.	Model	3	Serial No. 899	73
	Ludium Measurements. Inc.				84781
	27-Mar-03				eterface <u>202-560</u>
Check mark	grapplies to applicable instr.	and/or detector IAW n	nfg. spec. T. <u>78</u> *F	RH20_%	Alt <u>690,8</u> mm Hg
New In:	strument Instrument Receive	d Within Toler. +-1	10% 🗌 10-20% 🗍 Out of Tol	. 📋 Requiring Repair 📋	Other-See comments
🖌 F/S Res	p.ck 🗹 Rese	er Zeroed et ck. m Setting ck.	Window Operation	🖌 Geot	
Calibrat	red in accordance with LMI SO off Set V Input So	P 14.8 rev 12/05/89.	Calibrated in accorde	ince with LMI SOP 14.9 rev	/ 02/07/97. dmV o=
	Readout (2 points) Ref./Inst.	/	V Ref./	Inst /	vv
COMMEN	TS: off for To-99	: 20.6% (4)	T) Source Size	: 22,600 dpm	source count

4,700 cpm background: Socpm S/n: NI-EV

			ERENCE		ENT REC'D	INSTRUM		
	RANGE/MULTIPL		L. POINT		ND READING"	METER RE		
<u>X 100</u>			150 mR/br				<u> </u>	
_	X 100		?/hr	·0				
	X 10		2/hr		<u> </u>	1.	48	
	X 10	<u> </u>			.33	0.	53	
	X1		x=5 60 cpm	!	6		5	
	_X1	<u>1.0 m</u>			·	!·!	0	
	<u> </u>	<u> </u>			6		5	
	X 0.1		pm	0	55	<u> </u>	<u> </u>	
	*Uncertainty within ± 10%	C.F. within ± 20%	·	·	X 0.1	Range(s) Cal	Ibrated Electronically	
	REFERENCE	INSTRUMENT	INSTRUMENT	REFER	NCE IN	STRUMENT	INSTRUMENT	
Digital Readout	CAL POINT	RECEIVED	METER READING*	CAL F	OINT RE	CEIVED	METER READING	
			L	.og icale				
				căle			·	
					· ·			
					······			
er interna	itional Standards Organization	i members, or have been d	en calibrated by standards frac enved from accepted values of	eable to the Natio	onstants or have been de	erived by the rafio fv	be of calibration techniques	
er interna calibratik	tional Standards Organization on system conforms to the req	i members, or have been d ulrements of ANSI/NCSL 25	en collibrated by standards frac initived from accepted values of 40-1-1994 and ANSI N323-1978	eable to the Natio natural physical co	onstants or have been de	erived by the rafio fv	be of calibration techniques	
er interna calibratik eferen	tional Standards Organization on system conforms to the req Ce Instruments and/	i members, or have been d juirements of ANSI/NCSL 25 Of SOUICES:	erived from accepted values of 40-1-1994 and ANSI N323-1978	nortural physical co	onstants or have been de	erived by the ratio ty ite of Texas Calibr	pe or calibration techniques atton License No. 1.0-196	
er interna calibratik eferen	tional Standards Organization on system conforms to the req Ce Instruments and/	i members, or have been d juirements of ANSI/NCSL 25 Of SOUICES:	ierived from accepted values of	nortural physical co	onstants or have been de	erived by the ratio ty ite of Texas Calibr	pe or calibration techniques atton License No. 1.0-196	
er interna calibratik eferen s-137 Go	tional Standards Organization on system conforms to the req ce instruments and/ amma S/N 1162 v G	international of hove been d lutrements of ANSI/NCSL 25 for Sources: G112 AM565 510	enved from accepted volues of 40-1-1994 and ANSI N323-1978 15 11008 T879 11 Beta S/N	notural physical co	shiftants or have been de Sto	nived by the ratio ty the of Texas Calibr	pe of calibration techniques attion License No. LO-196 autron Am-241 Be S/N T-3	
er Interna calibratik eferen s-137 Go	tional Standards Organization on system conforms to the req ce instruments and/ amma S/NG oha S/N	Imembars, or have been d ulrements of ANSI/NCSL 25 (or Sources: \$112 M565 510	enved from accepted volues of 40-1-1994 and ANSI N323-1978 15 11008 T879 11 Beta S/N	notural physical co	shiftants or have been de Sto	nived by the ratio ty the of Texas Calibr	pe of calibration techniques attion License No. 1.O-196 autron Am-241 Be S/N T-3	
er Interna e celibratik eferen s-137 Gc Alp M m i	tional Standards Organization on system conforms to the req ce instruments and/ amma S/N (oha S/N	Imembars, or have been d ulrements of ANSI/NCSL 25 (or Sources: \$112 M565 510	enved from accepted volues of 10-1-1994 and ANSI N323-1978 15 11008 T879 11 Beta S/N Øscilloscope S/N	natural physical ca	Other	nved by the ratio ty te of Texas Calibri Ne neter S/N	e of calibration techniques attion License No. LO-196 autton Am-241 Be S/N T-3 80040300	
er Interna calibratik eferen 3-137 Go 137 Go Alp 137 m 137 m	tional Standards Organization on system conforms to the req ce Instruments and/ simma S/N 1162 2 G oha S/N 500 S/N810	Imembars, or have been d ulrements of ANSI/NCSL 25 (or Sources: \$112 M565 510	enved from accepted volues of 10-1-1994 and ANSI N323-1978 15 11008 T879 11 Beta S/N Øscilloscope S/N	natural physical ca	Other	neter S/N	pe of calibration techniques attion License No. LO-196 autron Am-241 Be S/N T-3	

	of Scientific and inc Instrument		ERTIFICATE OF CA	ALIBRATION ,	LUDLUM MEASUR POST OFFICE BOX 810 501 OAK STREET SWEETWATER: TEXAS 79	PH. 325-235-5494 FAX NO. 325-235-4672 556, U.S.A.
CUSTON			<u></u>		ORDER NO	298393/272921 5696
	Ludium Measure			<u> </u>		
Mfg	Lucium Measure	menta inc.	Model	44-9	Serial NoPK	145224
Cal. Dat	e6_jur	<u>+03</u> Coll	ue Date	<u>6-Jun-04</u> Cal. I	interval <u>1 Year</u> Met	erface202-002
Check mo	ark 🗹 applies to app	ilicable instr. and/a	r detector IAW mfg. spi	ec. T. <u>73</u> •F	RH <u>59</u> %	Alt701.8_mm Hg
New	Instrument Instru	nent Received 🛛 🔓	Within Toler. +-10%] 10-20% 🔲 Out of Tol.	🗌 Requiring Repair 📋 🗘	Other-See comments
	hanical ck.	🖌 Meter Zer	Ded 📋	Background Subtract	🔲 Input S	ens. Linearity
F/SF		Reset ck.		Window Operation		plsm
				Batt. ck, (Min. Volt)		201407
	rated in accordance	9 WITT LIVII 50P 14.8		Compromed in occordan	nce with LMI SOP 14.9 rev (Threshold <u>38</u> mV Dial Ratio	mV
instrument	Volt Set900	V Input Sens	<u>38</u> mV Det. Ope	w900∨ crt_	<u>38 </u>	3
□ H	IV Readout (2 points)	Ref./inst	1	V Ref./In	ust /	V
	with a G H. tor: GM detectors positioned p RANGE/MULTIPI 	erpendicular to source enceg R LIER C 	tter M 449 in which the licent of peet EFERENCE AL POINT cpm cpm cpm cpm cpm	No faces source. INSTRUMENT R "AS FOUND RE 4K 1k 1k 1k 1k 1 k		ENT EADING* <u>4k</u> <u>1k</u> <u>1k</u> <u>4k</u> <u>1k</u> <u>4k</u>
	X 0.1	400	com	<u> </u>		<u>4</u> K
	X0.1	100	cpm	- <u> </u>		
				• • • • • • • • • • • • • • • • • • •		
	"Uncertainty within ± 109	6 C.F. within ± 20%		•	ALL Range(s) Co	librated Electronically
	REFERENCE	INSTRUMENT	INSTRUMENT	REFERENCE	INSTRUMENT	INSTRUMENT
Digital Readout	CAL POINT	RECEIVED	METER READING*	CAL POINT	RECEIVED	METER READING*
				'		
]		
Lucium Mece	rements, inc. certifies that t	he above instrument has	been calibrated by standards t	aceable to the National Inditut	e of Slandards and Technology, or	to the calibration facilities of
			1 derived from accepted value 2540-1-1994 and ANSI N323-1971		r have been derived by the ralio h	pe of calibration techniques. Inition License No. LO-1963
	>e Instruments and mma S/N □1162 ☑		106 🗍 TI 008 🗍 TI 797 🗍	E552 2 E551	. 🗋 N	eutron Am-241 Be S/N T-304
	na S/N	0] Beta S/N	····	Other	
🖌 m ð	00 S/N546	83 [Multimeter S/N	70602489
∩~ili orate	d By:	unineta	Kon	Date	6 Jun 03	
lewe	d By:	Kabuin	·	Date	6 there of	<u> </u>
This certifica FORM C22A	ite shall not be reproduced 04/09/2003	except in full, without the	witten approval of Ludium Me	asurements. inc. AC I		Pot) and Continuity Test

M	Designer and Manufacturer of Scientific and industrial Instruments			PC 50	UDLUM MEASU OST OFFICE BOX 81 1) OAK STREET MEETWATER, TEXAS	0 PH. 325-235 FAX NO. 32	-5494
		C	ONVERSION CHA	NRT /	•••	. - *	2 -
Customer	CABRERA SERVICES		Date	6-Jun-03	Order #.	298393/27	7 292 1
Model	<u>3</u> Seriai No	135696		44-9	Serial No	PR 1452	24
Source	Cs-137]94.6 mCi	Cs-137	<u>20 mCi_</u>		High Voltage		<u>900 </u> v mV
	Reference Point	"As Found" f Meter Reading	Readings (CPM): Range/Scale	ļ	After Adjustment Meter Reading		V) :
-	150 mR/hr	3.5K	KIOD		3.5K	x100	
-	50 mR/hr	1.65K	×100		1.65K	k 100	
-	15 mR/hr	0.55K	x100		0.55K	<u>r 100</u>	
_	5 mR/hr	185K	x10		1.85K	x 10	
-	1.5 mR/hr	0.55K	хЮ		055K	x 10	
-	1.0 mR/hr	<u>3,2</u> K	x1	- _ · _	3.2K	* 1	
-							
-			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
-							
-							
 Signature:	Duain	Mackon	I	Date	6-Jun-0	3	
		N					

Serving The Nuclear Industry Since 1962

·

Designer and Manufacturer of Scientific and Industrial Instruments	CERTIFICATE OF C	ALIBRATION	SWEETWATER, TEXAS 7	PH. 325-235-5494 FAX NO. 325-235-4672 2556, U.S.A.
USTOMER <u>CABRERA SERVICES</u>			ORDER NO	
Mfg. <u>Ludium Measurements, inc.</u>	Model		Serial No Serial No	
Mfg. Ludium Measurements. Inc.	Model	44-9	Serial No. <u>PRO</u>	73107
Cal. Date 16-Dec-03	_ Cal Due Date	16-Dec-04 Co	i. Interval <u> </u>	terface202-002
Check mark 📝 applies to applicable instr	. and/or detector IAW mfg. s	pec. T. <u>74</u> ºl	F RH20 %	Alt710.8_mm Hg
New Instrument Instrument Receiv				-
	ter Zeroed [t 🖌 Input:	
F/S Resp. ck		Window Operation		•
		Batt. ck. (Min. Volt)	—	
Calibrated in accordance with LMI SC			ance with LMI SOP 14.9 rev	
Instrument Volt Set 900 V Input S	iens. <u>35 </u> mV Det. O	per. <u>900</u> Vat	<u>35</u> mV Threshold Dial Ratio	۳۷ <u>ه</u>
HV Readout (2 points) Ref./Inst	·//	V Ref.,	/inst /_	V
COMMENTS:		Y 2		

Samma Calibration: CM detectors cositioned nemendicular to source errent for M 44-9 in which the front of probe faces source.

<u> </u>	RANGE/MULTIPLIE X 100 X 10 X 10 X 10 X 1 X 1 X 0.1 X 0.1	ER C/ 400k 100k 40k 10k 10k 10k 10k 10k 10k 10k 400	FERENCE AL. POINT cpm cpm cpm cpm cpm cpm cpm cpm		TRUMENT REC FOUND READ 4K 4K 4K 4K 4K 4K 4K 4K 4K		IRUMENT IER READING 4K 4K 1K 4K 4K 4K 4K 4K	·
	*Uncertainty within ± 10%	C.F. within ± 20%				ALL Range	(s) Calibrated Electronic	ally
Digital Readout			INSTRUMENT METER READING*		REFERENCE CAL. POINT		T INSTRUMENT METER READII	₩G*
other interno	surements, inc. certifies that the ritional Standards Organization of n system conforms to the requi	nembers, or have been	derived from accepted values	of natural p	the National Institute of hysical constants or ha	ve been derived by th	clogy, or to the calibration tocilit ratio type of calibration techni is Calibration License No. LO	ques.
Cs-137 Go	ce Instruments and/c amma S/N □1162 ☑G oha S/N	112 🗌 м565 🔲 5]734 [] 1616] Other	Neutron Am-241 Be S/M	17-304
	500 S/N 13285	Bost] Oscilloscope S/N		Dote			
Review	ed By: UPRS	~					· · · · · · · · · · · · · · · · · · ·	<u></u>
	/ cate shall not be reproduced e: 2A 11/26/2003	xcept in full, without the				(1717)	ciric (HI-Pot) and Continuity 1	ies)

LUDLUM MEASUREMENTS, INC.

 POST OFFICE BOX 810
 PH. 325-235-5494

 501 OAK STREET
 FAX NO. 325-235-4672

 SWEETWATER, TEXAS 79556, U.S.A.

Designer and Manufacturer of Scientific and Industrial Instruments

CONVERSION CHART

Customer	CABRERA SERVICES		Date	16-Dec-03	Order #.	
Model	<u>3</u> Serial No.	166511	Detector Model	44-9	Serial No.	PR073107
Source	<u>Cs-137 194.6 mCi</u>	Cs-137 2	0 mCi		High Voltage	
				Inj	put Sensitivity	<u>35</u> mv
	Reference Point	"As Found" Re Meter Reading	eadings (CPM): Range/Scale		ter Adjustment eter Reading	Readings (CPM): Range/Scale
-	150 mR/hr	3.8K	X100	3	1.8K	X100
-	50 mR/hr	1.8K	X 100		.8K	×100
-	15 mR/hr	0,5K	×100	0).5K	X/00
	5 mR/hr	1.9K	XIO		.9K	XIO
·	1.5 mR/hr	4.8K	XI	L	4.8K	XI
	1.0 mR/hr	3.3K	×	3	.3K	X
_						
_				·····		
-				<u> </u>		
-						
_						
_					•	
-						
Signature	Josh	Boston		Date	6 Dec 1	23

FORM C17-1A 04/09/2003

CUSTOMER	Designer and Manufacturer of Scientific and industrial Instruments CABRERA SERVICES	CERTIFICA	NTE OF CALIBRATION	SWEETWATER, TEXAS 7	PH. 915-235-5494 FAX NO. 915-235-4672
- Mfg	Bicron	Model	MICRO REM		53F
Mfg		Model		Serial No	
Cal. Date _	20-Jan-03	Cal Due Date _	<u>20-Jan-04</u> C	al. Interval <u>1 Year</u> Me	eterface <u>0-200µrem</u>
Check mark [🗹 applies to applicable ins	tr. and/or detector	IAW mfg. spec. T. <u>76</u>	°F RH <u>20</u> %	Alt <u>700.8</u> mm Hg
New Ins	trument Instrument Rece	eived 🔽 Within To	ler. +-10% 📋 10-20% 🗌 Out of 1	fol. 📋 Requiring Repair 📋	Other-See comments
🖌 Mechar	nicai ck. 🗹 N	leter Zeroed	Background Subtra	ict 🗌 Input	Sens. Linearlty
·	D. CK 🗌 R				ropism
🗌 Audioc	ж. 🗍 А	Jarm Setting ck.			
📋 Calibrate	ed in accordance with LMI	SOP 14.8 rev 12/05/	89. Calibrated In accor	dance with LMI SOP 14.9 rev	
Instrument Vo	off Set V Inpu	t Sens r	nV Det. OperV c	Threshold at mV Dial Rati	d m\v o≓
	Readout (2 points) Ref./Ir	st	/V Re	f./Inst/	V

anna calu	ation: GM detectors positioned per						INICTOLIN	
	RANGE/MULTIPUI		EFERENCE AL. POINT		ISTRUMENT REC'		INSTRUM	EADING*
			5.0		155	NG		
	X1000		nR/hr		50			50
-	X1000 X100		nR/hr		155		15	
			nR/hr		50			0
	X100		nR/hr	_	145		15	
	X10		vR/hr		50		5	
			vR/hr		145		SFIS	
	 X1		uR/hr		95			100
	X0.1		vR/hr		140			150
	X0.1							
	*Uncertainty within $\pm 10\%$	C.F. within $\pm 20\%$					Range(s) Ca	librated Electronically
	REFERENCE	INSTRUMENT	INSTRUMENT	Γ	REFERENCE	INST	RUMENT	INSTRUMENT
	CAL. POINT	RECEIVED	METER READING*		CAL. POINT	RECI	eived	METER READING*
Ital				Log Scale				
adout		<u> </u>	······································	scale	• • • • • • • • • • • • • • • • • • • •			
	<u> </u>		······································				······	
					<u>-</u> -			
ar interna calibratic	surements, Inc. certifies that the itional Standards Organization r on system conforms to the requ	members, or have been irements of ANSI/NCSL2	derived from accepted value	s of naturai	o the National Institute of S physical constants or have	e been derN	red by the ratio h	r to the calibration facilities of ype of calibration techniques ration License No. LO-196
	ce Instruments and/c imma S/N []1162 [] G3		105 11008 1879	E552	✓E551			eutron Am-241 Be S/N T-3
	oha S/N					Other	Cs 13	7 201, 12:
m t	500 S/N		Oscilloscope S/N			Multime	ter S/N	
	ed By:				Date _2.	0-24	n-03	
	od By: Rland	Harrin			Date _2	2 fer	202	. <u> </u>
	ate shall not be reproduced ex A 10/31/2003	xcept in full, without the	written approval of Ludium Me	osuremen	is inc. AC linst, Only			-Pot) and Continuity Test

		Designer and Manufacturer of Scientific and Industrial instruments CABRERA SERVICES	CERTIFICATI	E OF CALIBRA	TION	LUDLUM MEASU POST OFFICE BOX 81 501 OAK STREET SWEETWATER, TEXAS ORDER NO.	0 PH. 325- FAX NO 79556, U.S.A	235-5494 325-235-4672
- N	/lfg	Blcron	Model					Y
		6-Jun-03						
Ch	eck mark	🗹 applies to applicable in	str. and/or detector IAV	N mfg. spec.	ſ73_ºF	RH59_%	Alt	<u>701.8</u> mm Hg
C] New Ins	strument instrument Rec	elved 🔲 Within Toler.	+-10% 🔲 10-209	6 📋 Out of Tol. 🗌	Requiring Repair] Other-See	comments
5	🛛 Mecha	nical ck. 🛛 🗹 M	Neter Zeroed	🔲 Backg	round Subtract	🗌 Inpu	it Sens. Linea	arity
5	🖉 F/S Resp		Reset ck.			🗌 Geo	otropism	
6	🛛 Audio c	x. 🗌 /	Alarm Setting ck.	🗹 Batt. c	k. (Min. Volt)	VDC		
C] Calibrat	ed in accordance with LMI	SOP 14.8 rev 12/05/89.	🗌 Callbra	ited in accordance	e with LMI SOP 14.9 re		
Inst	trument Vo	olt Set V Inpu	ut Sens mV	Det. Oper	V at	Thresho mV Dial Ra	na flo	mV
		Readout (2 points) Ref./Ir	nst	.1	V Ref./Inst.		/	V

_

Gamma Calibr	ation: GM detectors positioned per	pendicular to source except for	M 44-9 in which the front of prob	e faces sour	C8.					
<u>Gamma Calibr</u>	ation: GM detectors positioned per RANGE/MULTIPLI x 1000 x 1000 x 100 x 100 x 100 x 100 x 10 x 10	REF	ERENCE L. POINT //br //br //hr //hr //hr //hr	IN "4	28. ISTRUMENT F AS FOUND R 55 55 750 51 750 51 790 48 135 90	EADING			ADING*	
		<u>15 µR</u> C.F. within ± 20%	/hr		150)	- - R	L	SO	illy
Digital Readout	REFERENCE CAL. POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*	Log Scale	REFERENCE CAL. POINT			ument Ved	INSTRUMENT METER READING	G.
other Interna	surements, inc. certifies that the tool Standards Organization	members, or have been de	erived from accepted values	s of natural	o the National Institu physical constants	ute of Stands or have bee	evheb n	d by the ratio type	e of calibration techniqu	UOS.
The calibratic	on system conforms to the require instruments and/	irements of ANSI/NCSL 254	0-1-1994 and ANSI N323-1978	3			State o	of Texas Calibra	tion License No. LO-7	963
	imma S/N 🗌 1162 🗹 G		5 🗌 T1008 🗌 T879 🗍] E552 [E55 1			🗌 Neu	rtron Am-241 Be S/N I	T-304
🗌 Alp	ha S/N	🖸	Beta S/N				her _	(5-137	20/yci	
🗌 m t	500 S/N	0	Oscilloscope S/N			Mu	ltimete	er S/N		
rate	ed By:	JAIN AC	bon		Date	<u> </u>	o-Ti	in-03		
Reviewe	ed By:	Result			Date		Ĺ	NHE 03		
	ate shall not be reproduced e A 04/09/2003	xcept in full, without the wr	itten approval of Ludium Me	osurement			Passed ailed:	Dielectric (Hi-Po	ot) and Continuity Te	st

USTOMER	Designer and Manufacturer of Scientific and Industrial Instruments CABRERA SERVICES	CERTIFICA	TE OF CALIBRAT	ION	LUDLUM MEASU POST OFFICE BOX 810 501 OAK STREET SWEETWATER, TEXAS ORDER NO	 PH. 325-235- FAX NO. 32 79556, U.S.A. 	5494 5-235-4672
 Mfg	Bicron	Model	MICRO R	EM	Serial No. <u>B9</u>	854	· · · · · · · · · · · · · · · · · · ·
Mfg		Model		· · · · · · · · · · · · · · · · · · ·	Serial No		
Cal. Date _	13-Jan-04	Cal Due Date	1 3-Jan-05	Cal. inte	erval <u>1 Year</u> M	leterface <u>0-</u>	200µrem/
	applies to applicable ins						
New ins	trument Instrument Rece	ilved 😽 Within Tole	er. +-10% 🔲 10-20%	🗌 Out of Tol. 🗌	Requiring Repair] Other-See cor	nments
🖌 Mechar	nicalick. 🗹 N	leter Zeroed	🔲 Backgro	und Subtract	📑 Inpu	t Sens. Linearity	
F/S Resp			Window	•		tropism	
🖌 Audio c	k. 🗌 A	larm Setting ck.	-/	(Min. Volt)			
	ed in accordance with LMI				with LMI SOP 14.9 re		
Instrumen t Vo	It Set V inpu	t Sens m	V Det. Oper	V at	mV Dial Ra	na ho	mV
HV R	eadout (2 points) Ref./in	st	_1	V Ref./Inst.	453 	1	v

Gamma Calibration: GM detectors positioned perpendicular to source except for M 44-9 in which the front of probe faces source.

			EFERENCE		ISTRUMENT REC	C'D	INSTRUM	ENT
	RANGE/MULTIPLI	ER C	AL, POINT	"A	S FOUND REAL	DING"	METER RE	
	x 1000	<u>150 n</u>	nR/hr		140	·	15	0
\sim	x 1000	<u> </u>	nR/hr	: 	50		50	
	x 100	<u>15 n</u>	nR/hr		145		150	
	x 100	<u>5 г</u>	nR/hr		50	 	5(
	x 10	1500	vR/hr	<u> </u>	50			0
	x 10	500	vR/hr		<u> </u>		5	
	x1	150	vR/hr		150		15	0
	x1	100	vR/hr					0
	x0.1	15	uR/hr		150		15	0
	x0.1							
	*Uncertainty within $\pm 10\%$	C.F. within ± 20%					Range(s) Ca	librated Electronically
	REFERENCE	INSTRUMENT	INSTRUMENT		REFERENCE	INST	RUMENT	INSTRUMENT
	CAL POINT	RECEIVED	METER READING*		CAL. POINT	REC		METER READING*
Digital				Log Scale				
Readout				Scále			<u> </u>	
							· · · · · · · · · · · · · · · · · · ·	÷
			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·					<u></u>
					- <u></u>			
other interno	surements, Inc. certifies that the ational Standards Organization r on system conforms to the requ	members, or have been	n derived from accepted value	is of natural	o the National Institute o physical constants or h	ave been derh	/ed by the ratio ty	to the calibration facilities of pe of calibration techniques. ration License No. LO-1963
	on system contorms to the requ		2340-1-1994 Cinci AINSI NI323-197	0		31016		
	amma S/N 🗌 1162 🗹 G		5105 🗌 T1008 🗍 T879 [E562	Z E551 2720 2	734 🗔 1	616 🗌 N	eutron Am-241 Be S/N T-304
	oha S/N	[_ Beta S/N] Other		
[] m	500 S/N	ŗ					ter S/N	·
ent.	ted By: Rayon	Pollon			Date			
Review	inn.	1			Date	13.70	.04	:
This certific	cate shall not be reproduced at 2A 11/26/2003	acept in full, without the	e written approval of Ludium M	easurement	a inc. AC ins	t. D Posse	d Dielectric (Hi-	Pot) and Columnuity Test
PURM CZ	25 11/20/2003				Only	Falled		

CERTIFICATE OF CALIBRATION

Electroplated Alpha Standard

Description o	S.O.# <u>3740</u> P.O.# <u>01-267</u> Description of Standard:											
Model No	DNS-11	Serial No	2888-01	Isotope	Th-230							
Electroplated thick.	on_polished	Ni	disc,	0.79	mm							
Total diamete cm.	r of <u>4.77</u>	cr	m and an active	diameter of	4.45							

The radioactive material is permanently fixed to the disc by heat treatment without any covering over the active surface.

Measurement Method:

The 2pi alpha emission rate was measured using an internal gas flow proportional chamber. Absolute counting of alpha particles emitted in the hemisphere above the active surface was verified by counting above, below, and at the operative voltage. The calibration is traceable to NIST by reference to an NIST calibrated alpha source S/N_2393/91_____.

Measurement Result:

The observed alpha particles emitted from the surface of the disc per minute (cpm) on the calibration date was:

10,100 + 403

The total disintegration rate (dpm) assuming no backscatter of alpha particles from the surface of the disc, was:

20,200 + 807 (0.00909 μ Ci)

The uncertainty of the measurement is 4 %, which is the sum of random counting error at the 99% confidence level, and the estimated upper limit of systematic error in this measurement.

Calibrated b	y: ART F	REUST	Reviewed by:	A utracy
Calibration .	Techniciar	" atter	Q.A. Representative:	frants
Calibration	Date:	5-01-2001	Reviewed Date:	05/02/01

CERTIFICATE OF CALIBRATION

Electroplated Beta Standard

			S	5.0.# <u>3740</u> 2.0.# <u>01-267</u>	
Description of Standard:			•		<u> </u>
Model No. DNS-12	_ Serial No	2889-01	Isotope	Tc-99	<u> </u>
Electroplated on polished	SS		9	mm thic	ck.
Totál diameter of4.77	cm and	an active diame	eter of	4.45	cm.
The radioactive material is covering over the active sur	permanently fixe face.	d to the disc b	oy heat trea	itment without a	any
Measurement Method:					
The 2pi beta emission rate w Absolute counting of beta par verified by counting above, traceable to NIST by reference	ticles emitted i below, and at	n the hemisphere the operative v	above the voltage. T	active surface w he calibration	was is
Measurement Result:					
The observed beta count rate calibration date was:	te from the sur	face of the di	.sc per min	ute (cpm) on t	th e
13,400	+	402			
The total disintegration rate the surface of the disc, was	• •				rom
21,400	<u></u>	643 (0.0096	<u>56</u> μCi)	
•					
The uncertainty of the measur at the 99% confidence level, measurement.	, and the estima	ted upper limit	of systema	tic error in th	ror his
Calibrated by:ART_REUST		viewed by:	ley A.	top	
Calibration Technician:	Alent	Q.A. Repres	entative: Z		
Calibration Date:5-01-	2001	Reviewed Dat	te:05/	02/01	

CERTIFICATE OF CALIBRATION

Electroplated Alpha Standard

			S.O.# <u>3759</u> P.O.#01-325
Description of Standard:			
Model NoDNS-11	Serial No	2897-01	Isotope Th-230
Electroplated on polished	disc,	0.79	mm thick.
Total diameter of 4.77	cm and an	active diamete	er of <u>4.45</u> cm.

The radioactive material is permanently fixed to the disc by heat treatment without any covering over the active surface.

Measurement Method:

The 2pi alpha emission rate was measured using an internal gas flow proportional chamber. Absolute counting of alpha particles emitted in the hemisphere above the active surface was verified by counting above, below, and at the operative voltage. The calibration is traceable to NIST by reference to an NIST calibrated alpha source S/N_2393/91_____.

Measurement Result:

•

The observed alpha particles emitted from the surface of the disc per minute (cpm) on the calibration date was:

11,400 + 343

The total disintegration rate (dpm) assuming no backscatter of alpha particles from the surface of the disc, was:

 $22,800 + 685 (0.0103 \mu Ci)$

The uncertainty of the measurement is 3 %, which is the sum of random counting error at the 99% confidence level, and the estimated upper limit of systematic error in this measurement.

Calibrated 1	by: ART RI	EUST F	leviewed by: Barbar M. Fritagy
Calibration	Technician	atking	Q.A. Representative: Kull
Calibration	Date:	6-11-2001	Reviewed Date:

BERLINE

CERTIFICATE OF CALIBRATION

Electroplated Alpha Standard

				x	S.O P.O	.# <u>3863</u> .# 02-055
Description of	f Standard:					
Model Nc	DNS-11	Serial	No	3972-02	Isotope	Th-230
Electroplated	on polished	SS	disc,	0.79		thick.

Total diameter of <u>4.77</u> cm and an active diameter of <u>4.45</u> cm.

The radioactive material is permanently fixed to the disc by heat treatment without any covering over the active surface.

Measurement Method:

The 2pi alpha emission rate was measured using an internal gas flow proportional chamber. Absolute counting of alpha particles emitted in the hemisphere above the active surface was verified by counting above, below, and at the operative voltage. The calibration is traceable to NIST by reference to an NIST calibrated alpha source $S/N_{2393/91}$.

Measurement Result:

The observed alpha particles emitted from the surface of the disc per minute (cpm) on the calibration date was:

7,970 + 398

The total disintegration rate (dpm) assuming 1.5% backscatter of alpha particles from the surface of the disc, was:

15,700 + 785 (0.00708 μ Ci)

The uncertainty of the measurement is 5 %, which is the sum of random counting error at the 99% confidence level, and the estimated upper limit of systematic error in this measurement.

Calibrated b	oy: ART REUST	F	eviewed by:	mog
Calibration	Technician:		Q.A. Representation	
Calibration	Date:	4-29-2002	Reviewed Date:	4-24-02

.

											01116/		I KOML															
Co	unting Ins	trument:	Ludi	um 2929	Detector:	43-1	10-1	Cali	bration Date:	1/21/2004						1								1				
		Serial #:	11	63827	Serial #:	PR17	1322	12 month		ок			1			t	t											1
	Detec	tor Activ	e Area or A	rea Covered b	ov Smear (cm ²);	100		NRC 6 Mo C	al. Due Date?	ОК						1									· · ·			F
			Source Number	Original Source	(Т _{1/2} (уг)	Source Decayed Activity	1		Control Chart	Control Chart bkg Average αβcpm		Control Chart Source-bkg Average a.ß cpm	Control Chart source 1 sigms, cpm														
Alpha	0,4060	Th-230	3972-02	15,700	4/29/2002	2,13E+05	15,700	10	20	2	0.12	0.08	5576.2	56.96														
Beta	0.2400	Tc-99	3974-02	16,600	4/29/2002	7.70E+04	16,600	500	20	2	36.66	1.22	3294.2	51.92		1		-						-				[]
Date				Source Counts	Daily Bkg Ra			ource Rate (cpm)	Bkg QC I			Pass/Fail	1		a MDA		H.P.	Technician										
5/3/2003	Alpha 3	Beta 732	Alpha 11,184	Beta 6,477	Alpha 0.2	Beta 36.6	Alpha 5591.0	Beta 3201.9	Alipha	Beta	Alpha PASS	Beta	MDA (dpm)		0K? ¥66	OK? Yes	Technician	Intels					L	I				/
5/5/2003	2	738	11,280	6,709	0.2	38.9	5639.9	3317.6	PASS PASS	PASS PASS	PASS	PASS PASS	6.02 5.60	68 68	Yes	Yes	ļ		l				and and i	i Source C	aunta fa	Control	Chart	
3/3/2003		/ 30	11,200	5.70	0.1	30.8	3038.8	3317.0	FA00	FASS	PASS	FA30	5.60	06									g counti			source p		counts
		i			-					ł	 	ł								*	Alpha	cpm	Beta		Alpha		Beta	
		<u> </u>		t	1	1	1	1	1			<u> </u>					t	h			2	0.1	714			5541.5		
				1	1	Î	T.	T			t	1	1			1	1			2	2	0.1	709	35.45	11,120	5560	6,644	3322
																				3	3	0.15	737			5443		
		<u> </u>		ļ		L						L	Į						L		4	0.2	713	35.65		5589.5		
					• • • • • • • • • • • • • • • • • • • •		+					ł	l			<u> </u>	<u> </u>				1	0.05	727 727			5638		
				f	1		+			ł	├ ───	ł							·		2	0.3	714	36.35	11,1/5	5587.5 5567.5	0,021	3310.5 3331.5
					1			1	ŧ	<u>†</u>	t	1				+	 				2	0,1	740			5579.5		
		1			1		1	1		1	1		1		1	1	1	1	t	<u> </u>	0	0	777			5640.5		
								1		1					I	I	[10	2	0.1	773	38.65	11,233	5616.5	6,535	3267.5
							1							1				I										
								1										ļ		. Hinan		0,12		36.7		5576.4		3330.9
						L			L			ļ					1	L		S(n-1)		0,08		1.22		56,94		51,18
			ļ			<u> </u>					ļ	I	L			÷	ł	.	ł	-3 sigma		-0.13		32.99 40.32		5405.54 5747.16		3177.31
					ł	 			t		ł	 	†	 			<u>{</u>			+3 sigma -2 sigma		-0.04	-	34.21	-	5462.47		3484.39 3228.49
						<u> </u>		1	1			 	1				1			+2 sigma		0.28	-	39,10		5690.23		3433.21
								1	1	1	1	1	1	1	1	1	1	1	1				1		Magn big	5576.2		3294.2
												I													8(m-1)	56.96		51.92
								1			1		1		L	I	1	I	I				1	Mean-blig	-3 sigma	5405.34		3138.45
		ļ		1				ļ	Ļ			Į	ļ				1							Meen-blig	+3 sigma	5747.12		3449.94
		+		l	+	 	+	+	ł	 	l	t	ł	ł		<u> </u>	l				ļ,			Mean-big	-2 sigma	5462.30 5690.16		3190.36
		1		1	<u> </u>	<u>+</u>	+	1	t		ł	t	+			+	<u> </u>	+	<u>+</u>				ł	Support State	+∠ ugma	5090.16		3398.03
		1		T	1	t	1	1	t	1	1	1	<u> </u>			1	1	t	ł				+	+		5541.4		3275.3
				1	1				1	L		1	1	1		<u> </u>		1	t				1	1	1	5559.9	1	3286,55
									1		1												1			5442.85		3367.65
				I		ļ		-	1			l	1			-		L	L							5589.3		3362.35
				+	<u>+</u>	 	+	+		<u>↓</u>	 	ļ	I		<u> </u>	 	<u> </u>	ļ	<u> </u>							5637.95 5587.2		3332.15 3274.15
				t	†	t	+	t	t		ł	ł	t		ł	+		<u> </u>					<u>├</u> ───		<u>↓</u>	5567.4		3295.8
		†	i	1	1	t	1	1	t	t	t	1	1	†	t	1	1	t	t				<u> </u>		<u> </u>	5579.4		3311
		T		1		1		<u>j</u>	1		1	1		L	1	1	1	1	1				L	1	1	5640.5		3208.15
				1							1		1		1	1										5616.4		3226.85

BTD Ludium 2929 QC (nst.#163827 QC 0503 (1)

		Instrume				Detector.	· · · · · ·		0-6	oration Date:	1/21/2004		r	·			1		·····										
<u> </u>	ounung		_		m 2929	Serial #:	43-1		12 month o		0K					······			h · ·							+	+		
		Seria			3827		PR17	322						•			+		+						-	 	+	+	F
	De	etector A	ctive .	Area or A	ea Covered b	y Smear (cm*):	100		NRC 6 Mo C	I. Due Date?	ок		ļ	<u> </u>															
	Efficie (frecti			Source Number	Original Source Activity (DPM)	Source Creation Date	Т _{1/2} (ут)	Source Decayed Activity	Required MDA (DPM/100cm ²)	Control Chart & Daily Bkg Count Time	Control Chart & Daily Source- Sample Count Time	Control Chart bkg Average α.β cpm	Control Chart bkg 1 sigms, cpm	Control Chart Source-bkg Average α.β cpm	Control Chart source 1 sigms, cpm														
Alpha	0.40	60 Th-2		3972-02	15,700	4/29/2002	7.70E+04	15,700	10	20	,	0,38	0.14	5576.0	56.97				1										
Beta	0,240			3974-02	16,600	4/29/2002	2.13E+05	16,600	500	20	2	39,96	1.30	3290.9	51.05		+									_			i
CHICK A	0.24		•a	30/4-02	18,000	4/13/2002	2.132703	10,000		10	•	38.90	1 1.50	3230.0	31.03		+	+	+	• — —	+								
	Daily	Bkg Coun	ts [1	Daily Check	Source Counts	Deily Bkg Ra	ate (com)	Net Daily S	ource Rate (cpm)	Bkg QC F	ass/F ad	Source QC	Pess/Fail	1		a MDA	6 MDA	H.P.	Technician							t		+	
Date	Alph			Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	MDA a (dpm)	MDA ß (dpm)	OK?	OK7	Technician	Initials							,T			(
5/8/2003	3	85	0	11,147	6,590	0.2	42.5	5573.4	3252.5	PASS	PASS	PA88	PASS	6.02	73	Yes	Yes	T											
5/9/2003	1 8	81	2	11,153	6,682	0.4	40.6	5576.1	3300.4	PASS	PASS	PASS	PASS	7,50	71	Yee	Yes	1	1	I		Initial E	Sackgrou	nd and S	lource C	ounts for	Control	Chart	
5/12/2003	17	82	8 T	11,336	6,724	0.4	41.4	5667.7	3320.6	PASS	PASS	PASS	PASS	7.25	72	Yet	Yes	T		Ī			Initial bk				source pi		counts
5/12/2003	7	82		11,108	8.730	0.4	41.4	5552.7	3323,6	PASS	PASS	PASS	PASS	7.25	72	Yes	Yes					Aipha	cpm	Beta		Alpha	срт	Beta	cpm
5/13/2003			4	11,184	6,694	0.3	42.2	5591.7	3304.8	PASS	PASS	PASS	PASS	6.99	72	Yes	Yes		[1	8	0.4	797	39.85	11,083	5541.5	6,622	3311
5/13/2003	6			11,294	6,485	0.3	42.2	5646.7	3200.3	PASS	PASS	PASS	PASS	6.99	72	Yes	Yes	1	L		1 2	1	0.35	812	40.6	11,120	5560	6,644	3322
5/14/2003	+	81		11,118	6,584	0.4	41.0	5558.6	3251.1	PASS	PASS	PASS	PASS	7.50	71	Yea	Yes		–		1	11	0.55	795	39.75	10,886	5443	6,609	3404.5
5/14/2003				11,015	6,604	0.4	41.0	5507.1 5548.7	3261.1 3276.2	PASS PASS	PASS	PASS	PASS	7.50	71	Yes	Yes	- 	┣───	ł	4	8 8	0.4	784	39.2	11,179	5589.5 5638	6,796	3398 3368.5
5/15/2003				11,094	6,632	0.4	42.3	5580,7	3275.3	PASS	PASS	PASS	PASS	6.99	70	Yes	Yes	+	<u> </u>			4	0.4	768	39.00		5587.5		3310.5
5/21/2003			2	11.050	6,690	0.3	44.6	5524.7	3300,4	PASS	FAL	PASS	PASS	6.99	74	Yes	Yes			ł	1 7		0.45	798	39.9	11,135		6,663	3331.5
5/21/2003		- 84		11,050	6 690	0.3	42.4	5524.7	3302.7	PASS	PASS	PASS	PASS	6.99	72	Yes	Yes		<u>+</u>		1	3	0.15	861	43.05	11,159			3348
5/22/2003	10	0 85	0	11,080	6,547	0.5	42.5	5539.5	3231.0	PASS	PASS	PASS	PASS	7.94	73	Yes	Yes	1	1	1	9	12	0.6	774	38.7	11,281	5640.5	6,494	3247
5/29/2003	6	81	8	11,097	6,717	0.3	40.9	5548.2	3317.6	PASS	PASS	PASS	PASS	6,99	71	Yea	Yes			1	10	- 5	0.25	811	40.55	11,233	5616.5	6,535	3267.5
5/29/2003	5			11,167	6,739	0,3	43.8	5583.3	3325.8	PASS	QUESTION	PASS	PASS	6.70	73	Yes	Yes												
5/29/2003	3		8	11,167	6,739	0.2	45.9	5583.4	3323.6	PASS	PAIL.	PASS	PASS	6.02	75	Yes	Yes				Mean		0.38		40.0		5578.4		3330.9
5/30/2003	7	86		11,177	6,671	0.4	44.9	5588.2	3290.6	PASS	FAL	PASS	PASS	7.25	74	Yes	Yes				S(n-1)		0.14		1.30		56.94		51.18
5/30/2003				11,177	6,671	0.3	42.0	5588.2	3293.5	PASS	PASS	PASS	PASS	6,99	72	Yes	Yes		1		-3 sigma		-0.08		36.06		5405.54	⊢′	3177.31
6/2/2003				11,014	6,637	0.2	41.5	5506.9	3277.1	PASS	PASS	PASS	PASS	6.02	72	Yes	Yes		I		+3 sigma		0.81		43.85		5747.16	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	3484.39
6/2/2003				11,243	6,597	0.3	43.0	5621.2	3255.5	PASS	OUESTICH	PASS	PASS	6.99	73	Yes	Yes	+			-2 sigma	· · · · · · · · · · · · · · · · · · ·	0.09		37.36		5482.47 5890.23	┢────┘	3228.49
6/2/2003 6/3/2003	4			11,243	6,597 6,458	0.2	42.5	5621.3 5581.1	3258.0 3185.6	PA88 PASS	PASS QUESTION	PASS	PASS QUESTION	6.38 7.73	73	Yes	Yes				+2 sigma		0.00		42,35	Second Second	5576.0	<u>_</u>	3290.9
6/3/2003	+ - ,		_	11,163	6,593	0.4	42.4	5581,2	3254.1	PASS	PASS	PASS	PASS	7.25	72	YPE	Yes	+									56,97	<u> </u>	51.05
6/3/2003	+	84		11.058	6,593	0.4	42.4	5527.6	3246.6	PASS	PASS	PASS	PASS	7.50	72	Yes	Yes	-	<u> </u>			ł	•		Mean-blug	-3 sigma	5405.07	لىر. <u> </u>	3137.74
6/4/2003	- 6			11,274	6,690	0.3	417	5636.7	3303.3	PASS	PASS	PASS	PASS	6.99	72	Yes	Yes	1		•								<u> </u>	3444.05
8/6/2003		86		10,898	6.748	0.0	43.2	5448,9	3330.9	PASS	QUESTION	QUESTION	PASS	5.60	73	Yes	Yes		·		+	t							3188.79
6/9/2003	5			11,344	6,594	0.3	40.0	5671.8	3257.1	PASS	PASS	PASS	PASS	8,70	71	Yes	Yes		1	1	· · · · · · · · · · · · · · · · · · ·	t							3393.00
6/10/2003	4	83	14	11,292	6,704	0.2	41.7	5645.8	3310.3	PASS	PASS	PASS	PASS	6,38	72	Yes	Yes	1	1		1								
6/11/2003				11,234	6,651	0.3	42.2	5616.7	3283.4	PASS	PASS	PASS	PASS	6.99	72	Y 65	Yes		L	1	L					L	5541.1		3271.15
6/12/2003				11,120	6,729	0.7	41.6	5559,4	3322.7	PASS	PASS	PASS	PASS	8.54	72	Yes	Yen				Ļ	I			L	└── ┥	5559.65	<u> </u>	3281.4
6/16/2003				11,321	6,614	0.3	42.4	5660.2	3264.7 3294.2	PASS PASS	PASS PASS	PASS PASS	PASS PASS	6.99	72	Yes	Yes		 	↓	<u> </u>	ļ			h	j	5442.45 5589.1	⊢ '	3364.75 3356.8
6/26/2003 6/26/2003	12	2 84		11,228	6,673	0.6	42.4	5613.4 5667.9	3294.2	PASS	QUESTION	PASS	PASS	8.35	72	Yes	Yes	+	<u>↓</u>	+	ł	ł	+			┝───┩	5637.8	<u> </u>	3356.8
6/27/2003		84		11,233	6,505	0.1	42.5	5616.4	3324.1	PASS	PASS	PASS	PASS	5,60	72	Yes	Yes	+ · ·	1		t	t					5587.3	r'	3272.1
6/27/2003		77		11 271	6.575	0.3	38.6	5635.2	3249.0	PASS	PASS	PASS	PASS	6.99	69	Yes	Yes	+	†	1	t	t				· · · · · · · · · · · · · · · · · · ·	5567.05		3291.6
6/30/2003		75		11 290	6,581	0.5	37.6	5644.6	3252.9	PASS	PASS	PASS	PASS	7.73	69	Yes	Yes			1	1	1					5579.35		3304.95
6/30/2003		75	53	10,981	6,623	0.2	37.7	5490.3	3273.9	PASS	PASS	PASS	PASS	6.38	69	Yes	Yes					L	L .				5639.9		3208.3
7/1/2003	7	78		11,133	6,641	0.4	38.3	5566.2	3282.3	PASS	PASS	PASS	PASS	7.25	69	Yes	Yes		J	L			l		L	L]	5616.25	 	3228.95
7/1/2003	7	80		11,114	6,537	0.4	40.1	5556.7	3226.5	PASS	PASS	PASS	PASS	7.25	71	Yes	Yes		<u> </u>	 	Į	L	····	ł	ł	⊢	,l	<u> </u>	+
7/2/2003	6			11,048	6,477	0.3	37.4	5522.7	3201.1	PASS	PASS	PASS	PASS PASS	6.99	68 70	Yes	Yes	+	┢───	- · ·	·	h				┝───┤	d	F	+
7/2/2003	+	79		10,942	6,518 6,507	0.2	39.6	5470.9 5552.1	3219.5 3215.2	PASS	PASS	PASS PASS	PASS	8.02 7.50	69	Yes	Yes		+	t		t				<u>├</u>	$ \longrightarrow $	'	+
7/8/2003	+ <u></u>			11,255	6,581	0.4	39.3	5627.4	3251.2	PASS	PASS	PASS	PASS	6.02	70	Yes	Yes	+	+	t	+	t ·'			<u> </u>	<u>├</u>		<u> </u>	+
7/9/2003	1 2	76		11,039	6,492	0.1	38.2	5519.4	3207.8	PASS	PASS	PASS	PASS	5.60	69	Yes	Yes	1		• • • • • • • • • • • • • • • • • • • •	1		†		†	+	t	/*	
7/10/2003	1 1	75		11,110	6,467	0.2	37.8	5554.6	3195.7	PASS	PASS	PASS	PASS	6,38	69	Yes	Yes	1		1	1	1	1			[······	· · · · · · · · · · · · · · · · · · ·	[
8/26/2003				11,107	6,572	0.2	39.3	5553.3	3246.7	PASS	PASS	PASS	PASS	6.38	70	Yes	Yes	T						[
8/26/2003	5	79	7	10,946	6,631	0.3	39.9	5472.8	3275.7	PASS	PASS	PASS	PASS	6,70	70	Yes	Yes			1			L		L				

		ierial #:		um 2929	Detector	43-1			ration Date:	12/15/2004															+		+	
	S	ierial #:																										
					Serial #:	00 70	7849	12 month c	alibration	OK																		
	Detecto			80830		100		NRC 6 Mo Ca		ОК																	· · · •	
	T	or Active	Area or A		y Smear (cm²):	100	Source	Required MDA	Control Chart	Control Chart & Daily	Control Chart	Control	Control Chart Source-bkg	Control Chart														
		Source Nuclide	Source Number	Onginal Source Activity (DPM)	Source Creation Date	Т ₁₂ (ул)	Decayed Activity	(DPM/100cm ²)	& Daily Bkg Count Time	Source- Sample Count Time	bkg Average α/β cpm	Chart bkg 1 sigma, cpm	Average u ß cpm	source 1 sigms, cpm														
Alpha 0	0.3328	Th 230	2888-01	20,200	5/1/2001	7.70E+04	20,199	10	20	2	0.11	0,08	7113.1	41.91												_		
	0.2789	Tc 90	2889-01	21,400	5/1/2001	2.13E+05	21,400	500	20	2	50,99	1,48	5834.7	61.44														
	0.2700														a MDA	6 MDA	H.P.	Technician										
	Daily Bkg	Counts	Daily Chec	k Source Counts	Daily Bkg Ra			ource Rate (cpm)	Bkg QC F		Source QC Alpha	Pass/Fail Beta	MDA (dpm)	MDA (dom)	OK?	OK?	Technician	Initials										L
	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta PASS	PASS	PASS	8.83	68	Yes	Yes			-									
2/11/2004	2	1,012	14,215	11,313	0.1	50.6	7107.4	5605.9	PASS	PASS	PASS	PASS	7.35	69	Yes	Yes								ource Co	unts for	Control	Chart	
2/16/2004	3	1,063	14,109	11.428	0.2	53.2	7054.4	5660.9 5694,0	PASS	PASS	PASS	PASS	6.83	68	Yes	Yes						nitial bk				source pl		
2/17/2004	2	1,020	14,174	11,490	0.1	51.0	7086.9	5694.0	PASS	PASS	PASS	PASS	7.35	69	Yes	Yes					Alpha	cpm	Beta	cpm	Alpha		Beta	cpm
2/18/2004	3	1,048	14,275	11,525	0.2	52.4	7137.4	5678.1	PASS	PASS	PASS	PASS	7.79	69	Yes	Yes				1	2	0.1	1,033		14,166	7083 7052.5	11,208	
2/19/2004	4	1,068	14,239	11,463	0.2	52.3	7093.3	5650.3	PASS	PASS	PASS	PASS	8.17	69	Yes	Yes				3	5	0.25	1,048		14,105		11,238	5640.5
2/20/2004	5	1,045		11,311	0.3	52.5	7166.9	5603.0	PASS	PASS	PASS	PASS	6.83	69	Yes	Yes					4	0.2	1,001		14,164		11,391	5695.5
2/23/2004	- 4	1,017	14,240	11,400	0.3	50.9	7119.8	5649.2	PASS	PASS	PASS	PASS	8,17	68	Yee	Yes	L			1.10° - 10° - 11°		0.15	1.016	50.8			11,319	5659.5
2/24/2004 2/25/2004	3	1,063	14,368	11,314	0.2	53.2	7183.9	5603,9	PASS	PASS	PASS	PASS	7,35	69	Yes	Yes	Į				1	0.05	984	49.2	14,191	7095.5		
2/26/2004	5	1,004	14,357	11,281	0.3	50.2	7178.3	5590.3	PASS	PASS	PASS	PASS	8.17	67	Yes	Yes	<u> </u>			7		0.05	1,055	52.75				
2/27/2004	5	997	14,322	11,447	0,3	49.9	7160.8	5673.7	PASS	PASS	PASS	PASS	8.17	67	Yes	Yes	l				2	0.1	974			7127.5		
3/1/2004	5	1,038	14,114	11,246	0.3	51,9	7056.8	5571.1	PASS	PASS PASS	PASS PASS	PASS	7,79	65	Yes	Yes				9	1	0.05	997			7205.5		5680
3/2/2004	4	1,033	14,181	11,234	0.2	51.7	7090.3	5585.4 5710.1	PASS	PASS	PASS	PASS	8.17	69	Yes	Yes	1			10	2	0.1	1,054	52.7	14,276	7138	11,248	5624
3/3/2004	5	1,068	14,359	11,527	0.3	53.4 53.0	7179.3	5669,1	PASS	PASS	PASS	PASS	6.83	69	Yee	Yes										7113.2		5685.7
3/4/2004	2	1,059	14,136	11,444	0,1	48.3	7094.8	5595.3	PASS	PASS	PASS	PASS	7.79	66	Yes	Yes						0.11		51.0		41.87		61,59
3/30/2004	4	965	14,190		0.2	49.4	7049.3	5515.7	PASS	PASS	PASS	PASS	8.17	67	Yes	Yes				S(n-1)		0.08		1.48				5500.92
3/30/2004	5	987	14,099	11,130	0.3	49.7	7074.9	5518.8	PASS	PASS	PASS	PASS	6.83	67	Yes	Yes				-3 sigma		-0.12	L	48.54		6967.59 7238.81		5870.48
3/31/2004	2	994	14,150	11,137	0.1	49./	1 10/4.0	3310.0	17.00		1.10			1						+3 sigma		0.33		55.44 48.03		7029.46		5562.51
						+		1												-2 sigma		0.26		53.95		7196.94		5808.89
<u> </u>																			 	+2 sigma		0.20			Name blue	7113.1		5634,7
 									1	1				+		+	+					t	1		S(n-1)	41,91		61,44
		 										1	1			-	+					1		Meen big				5450.38
																					+			Mean-blo	+3 sigma	7238.82		5819.04
_		t	· · · · · · · · · · · · · · · · · · ·							L					+				t — —					Mean-big	-2 sigma	7029.28		5511.82
											+				+	+		1						Number	+2 sigma	7196.91	L	5757.60
										+					<u> </u>	-		1								-		5552.35
										+				1				T						+ –		7082.9	l	5552.35
								+	+	1		1								-	l	+	÷	+		7092.25		5588.7
						+			1			1	1				L				<u> </u>	+	+	<u>+</u>		7081.8		5645.45
		+			+	+	+				1	1									+	+	1		1	7117.35		5608.7
		+	t	-		1															+	+		+	t	7095.45	1	5676.8
+		+			1										-		+				+	t	1	-		7131.45		5732.75
+	-	1	1								-				+		+	+		1	1					7127.4		5614.3
										+	+	+					+	1	1				1			7205.45		5630.15
									+	+		+	+	+		+	1	1							1	7137.9		5571.3

	unting Ins	in ment		um 2929	Detector	43-1		Calif	ration Date:	11/10/0000	r			· · · · · · · · · · · · · · · · · · ·	r——–	T	·		· · · · ·		·							,
<u></u> o		Serial #:		71590	Serial #	43-1 PR 17		12 month o		OK				· ·	↓	÷	+					ł	<u>↓</u>					<u>├</u> ──┦
<u> </u>						and the second se	4613			WARNING		<u>↓</u>					+					<u> </u>						<u>├</u> ───┤
	Detec	tor Activ	e Area or A	rea Covered L	y Smear (cm [*])	100		NRC 6 Mo Ca				<u> </u>																<u> </u>
	Efficiency (frection)	Source Nuclide	Source Number	Onginal Source Activity (DPM)	Source Creation Date	T 1/2 (yr)	Source Decayed Activity	Required MDA (DPM/100cm²)	Control Chart & Daily Bkg Count Time	Control Chart & Daily Source- Sample Count Time	Control Chart bkg Average α.β cpm	Control Chart bkg 1 sigma, cpm	Control Chart Source-bkg Average o.ß cpm	Control Chart source 1 sigma, cpm														
Alpha	0.3850	Th-230	2897-01	22,800	6/11/2001	7,70E+04	22,799	10	20	2	0.33	0.12	7983.1	81,27														
Beta	0.2650	Tc-99	2869-01	21,400	5/1/2001	2.13E+05	21,400	500	20	2	70.26	2.28	5007.0	39.53														
																				_								
Oate				Source Counts		te (cpm)	Net Daily S	ource Rate (cpm)	Bkg QC F			Pass/Fail				B MDA	H.P.	Technician			I							+
	Alpha		Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	MDA a (dpm)		OK? Yee		Cote	initals JAC				+	↓					+
6/10/2004	8	1,456	15,704	10,123	0,4	/2.6	7851.6	4988.7	PASS	PASS	PASS	PASS	7.90	84	1 66	1.		JAC			Initial	Backeres	ind and 4	Courses C	winte for	Control	Ched	<u>ــــــــــــــــــــــــــــــــــــ</u>
		 		ł	<u> </u>		├ ──	├ ───			 	<u> </u>	┡────		<u> </u>	h	+					Initial hi	ind and a	JOULCE C	Initia .	source pl	Lus bkr	counte
J		I		ł — — — — — — — — — — — — — — — — — — —	ļ	ļ			<u> </u>			<u> </u>	<u>+</u>	<u> </u>	<u> </u>		+	├ ────			Ainha	cpm		срт		cpm		contra
h				<u> </u>	ł			f		ļ	ļ				ļ		+				11	0.55	1,412	70.8	16 251	8125.5	10 241	5120.5
<u> </u>				<u>├</u>	·						ł			 i	<u> </u>		ŧ					0.4	1,345	67.25	15.875	7937.5	10,112	5056
h			t				<u> </u>	1			1		1				1			3	9	0.45	1,441	72.05	15,946	7973	10,113	5056.5
				1										· · · · ·						4	3	0.15	1,425	71.25	15,894	7947	10,268	5134
																				5	4	0.2	1,352			7986.5		
										L		I								6	7	0.35	1,410	70.5	15,865	7932.5	10,094	5047
L				<u> </u>		L	į	1		L	L	L	ļ	L				ļ			7-	0.35	1,456	73.3	16,035	8017.5 7855	10,153	5076.5
		I		<u> </u>					<u> </u>	<u> </u>	L	Į	+	ļ							7-	0.25	1,430	71.9	15/10	7973.5	10,235	5108
							<u> </u>		l	┣───	<u>}</u>	↓	<u> </u>	↓	<u>+</u> -			1		16	5	0.35	1 427	71 35	16 213	8108.5	10.055	5027.5
		<u> </u>			t		<u> </u>	+				t	1		+		1			1	<u> </u>	+						
	h	<u> </u>	<u> </u>					t	· · · · · · · · · · · · · · · · · · ·	1		t	t	1	+	<u>+</u>	<u> </u>	<u> </u>		Unit		0.33	t	70.3		7983.5		5077.3
F	f	1	(1	·		<u> </u>	f	<u> </u>		1			1	1		1			S(m-1)	1	0.12		2.26		61.32		39,80
F			t	t	· · · · · ·			<u> </u>	f	<u> </u>	f	1	t	t	1		1			-3 sigma		-0.03		63.48		7739.50		4957.84
		1		1								1		1			1	1		+3 sigma		0.69		77.03		8227.40		5196.86
				1																-2 sigma	1	0.09		65.74		7820.82		4997.65
															L		ļ			+2 sigma	ļ	0.57		74.77	Mean-big	8146.08		5156.85
							<u> </u>					↓	I					ļ	·			↓						5007.0 39.53
	L	L	L	l	L	l	<u> </u>	L		1	ļ	ļ	<u> </u>	ļ		<u> </u>	_	ļ				+	+		S(n-1)	81.27		39.53
H	ļ	┢───		ł	<u> </u>		<u> </u>	⊢	<u> </u>	<u> </u>	l	┢────	<u> </u>	<u> </u>	<u> </u>	+	· · · · · · · · · · · · · · · · · · ·	 	↓	I	+	+	ł	Mean-blg	+3 sigma +3 sigma	8728.02		4888.41 5125.58
F		I		t			<u>↓</u>	<u> </u>	<u> </u>	<u> </u>	+	t	t	t	+	+	+				<u></u>	+		Meen-big	-2 sigma	7820.59		4927.94
	<u> </u>	<u> </u>	t	†			t	t	<u> </u>	t	+	t	<u> </u>	t	+	1	1	<u> </u>	t		1	+		Mean Mail	+2 sigma	8145.65		5086.05
L		1	1					1										İ	1									
	1								1					I		Ι			L							8124.95		5049.9
		1						L	I	L	1		ļ	1	ļ						├ ─-	÷		<u> </u>		7937.1		4988.75
					↓		L	I		<u> </u>	ł	<u> </u>	ł	<u> </u>		+	ł		ł	├ ────	<u> </u>		f	ł	·	7972.55 7946.85		1 4984.45
<u> </u>		 	<u> </u>	<u> </u>	<u> </u>		├ ──	ł	ł	ł		ł	ł	ł		+	+	├ ────	├ ────		+	+	+	+		7966.3	t——	5062.75 4961.4
F		<u> </u>	t	t	<u>↓ </u>	ł	 	┢────	t	1	+	t	t	1	-	+	+	<u> </u>				+	+	<u> </u>		7932.15		4978.5
h		t	t	† · · ·	t		t	<u>+</u>	<u> </u>	1	†	+	t	t		+	1	t	1		1	+	<u> </u>	t	·	8017.15		5003.2
·	t	t	t	1			1	t	1		1		L			1		İ			1	1		1		7854.75		5003.2 5045.6
			L	I					L			1						I	1				1			7973.15		5041.25
	I	1			1	1				1	1			1		I	1	1		L	L		L			\$106,25	L	4956.15

M	esigner and Manufacturer of Scientific and Industria) Instruments	CERTIFICATE	OF CALIBRATIO	N POST 0	office box 810 Ak street Water, texas 7		194 235-4672
	<u> </u>					295451 / 27	
-	udium Measurements, Inc.						
Mfg <u>L</u>	udlum Measurements, Inc.	Model	43-93	Ser	al No. 🥂 198	<u>403</u>	
Cal. Date	15-Apr-03(Cal Due Date	15-Apr-04	Cal. Interval _	<u> </u>	eterface <u>2</u>	12-848
Check mark 🗹	applies to applicable Instr. a	nd/or detector IAW	mfg. spec. T		<u>38</u> %	Alt700.8	mm Hg
New Instru	ument Instrument Received	d 🗗 Within Toler. +	-10% 🗌 10-20% 🗍	Out of Tol. 📋 Requ	iring Repair 📋	Other-See comr	nents
Mechanic F/S Resp. of Audio ck.	ck 🛛 🗹 Reset 🗋 Alarm In accordance with LMI SOP	r Zeroed ock. 5 Setting ck. 14.8 rev 12/05/89.	Window Op Ø Batt. ck. (M	d Subtract beration in. Volt)2.2V n accordance with [Geoti ′DC LMI SOP 14.9 rev	02/07/97.	mV
Instrument Volt S	Set <u>900</u> V Input Sei	ns. <u>Comment</u> mV	Det. Oper. <u>900</u>	V at <u>Comment</u>	mV Dial Ratio	o =	
	adout (2 points) Ref./Inst						V
Firmware: 3	simulated light leak						
Gamma Calibration: GM	I detectors positioned perpendicular to source						
RAI	NGE/MULTIPLIER	REFERENCE CAL. POINT		UMENT REC'D OUND READING'	INSTRUN METER I	MENT READING*	
X	(1000	800kcpm		800		f xo	

\smile	X1000	200kc	pm		200		200
	X100		pm		800		800
	X100	20kc	pm		200		200
	X10	8kc	pmm		300		800
	X10	2kc	pm	-	100		200
	X1	800c	pm		800	·····	520
	X1	200c	:pm	- ~-	2.00	<u></u>	200
	*Uncertainty within ± 10	% C.F. within ± 20%				ALL Range(s) (Calibrated Electronically
	REFERENCE	INSTRUMENT	INSTRUMENT		REFERENCE	INSTRUMENT	INSTRUMENT
	CAL POINT	RECEIVED	METER READING*		CAL. POINT	RECEIVED	METER READING*
Digitai Readout	<u>800kcpm</u>	798621 7 9863	798421 79863	Log Scale			
	8kcpm	7917	7987			· · · · · · · · · · · · · · · · · · ·	
	800cpm	799	793				
	80cpm	80	80				
other Interna The calibratio	itional Standards Organization system conforms to the re	on members, or have been a aquirements of ANSI/NCSL Z5	een calibrated by standards tr Jerived from accepted values 40-1-1994 and ANSI N323-1978	of natural	o the National Institute of physical constants or h	ave been derived by the ratik	or to the calibration facilities of 5 type of calibration techniques. libration License No. LO-1963
	ce Instruments and amma S/N 1162 []	• • • • •	05 🗌 T1008 🗌 T879 🗌	E552	E551		Neutron Am-241 Be S/N T-304
Alp	oha S/N Pu-23	39 2928-01	Beta S/N 5-83 - 95	NIS, TO	99 NI - SV [Other	
🖌 m !	500 S/N134	4709	Oscilloscope S/N		[Multimeter S/N	57390613
brat	ed By: Connad	Jabodo			Date _	15 Apr 2	
	ed By: Rhand	· Hami			Date _	16 apro 3	

This certificate shall not be reproduced except in full, without the written approval of Ludium Measurements, Inc. FORM C22A 04/09/2003

AC Inst. Passed Dielectric (HI-Pot) and Continuity Test Only Failed:

LUDLUM MEASUREMENTS, INC.

Designer and Manufacturer of Scientific and Industrial Instruments
 POST OFFICE BOX 810
 PH. 325-235-5494

 501 OAK STREET
 FAX NO. 325-235-4672

 SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data For Detector

Detector <u>43-93</u> Serial No. <u>// 182 903</u>		295451 / 271487	
Customer CABRERA SERVICES	Alpha Input Sensitivity	120	mV
Counter 2224-1 Serial No Serial No	Beta Input Sensitivity	25	mV
Count Time _ 1Minute	Beta Window	Jo	_ mV
Other	Distance Source to Detector	Jurface	

High	Background			lsotope <u>72-139</u> Size <u>72.00 gam</u>		lsotope <u>\$~\$ ¥9.</u> Size <u>¥Y70</u>		lsotope <u>Tc-99</u> Size <u>/y/100 gem</u>	
Voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Bet	
50	0	110	5802	285	2	13110	1	5063	
875	0	161	6006	421	O	16757	0	4786	
900	<u> </u>	214	4152	604	3	20757	0	5339	
P5	0	260	4082	849	5	27934	3	6078	
950	3	290	4313	1255	3	23564		4520	
						+			
<u></u> .	• · · · · · · · · · · · · · · · · · · ·		·						

□ Gas Proportional detector count rate decreased ≤ 10% after 15 hour static test using 39" cable.

□ Gas proportional detector count rate decreased ≤ 10% after 5 hour static test using 39" cable and alpha/beta counter.

_____.

Signature Concod Jolindo

Date 15 Apr 2

FORM C48 04/09/2003

M STOM	Designer and Manufacturer of Scientific and Industrial Instruments MER CABRERA SERVICES	CERTIFICATE C	DF CALIBRATION	Post office Box 8 501 Oak Street Sweetwater, Texas	LUDLUM MEASUREMENTS, INC. POST OFFICE BOX 810 PH. 915-235-5494 501 OAK STREET FAX NO. 915-235-4672 SWEETWATER, TEXAS 79556, U.S.A. ORDER NO 289386/268534			
< .	Ludium Measurements, I	nc. Model	2224-1					
-	Ludium Measurements, I			٨				
	te 15-Jan-03							
	ark 🗹 applies to applicable li				Alt709.8_mm Hg			
	v Instrument Instrument Red				•			
					ut Sens. Linearity			
	Resp.ck	Reset ck.	 Background Sub Window Operation 	ion 🖌 🖌 Ge	otropism			
Aud		Alarm Setting ck.						
	prated in accordance with LN	II SOP 14.8 rev 12/05/89.	Callbrated in acc	cordance with LMI SOP 14.9 i	ev 02/07/97. old mV			
Instrumen	t Volt Set V Inc	out Sens. Colm In. mV De	ət. Oper. <u> </u>	at <u>LOMUL</u> mV Dial R	atio=			
۶	HV Readout (2 points) Ref./	Inst. 505 1	<u>500</u> V	Ref./Inst. 1573	/1500V			
COMM	ENTS:	<u>a</u>		0				
Alaha	Thehld: 120 mv	Cuid	using 5' de	Cable.				
1			9					
Beta	Thishid: 3.6 mm	Dh	Set to Simulat	e light leak.				
		entreit	my for This 5.	390 Jpm is 1970 .	f.s.			
Beta	Win: 30 mv		0	1				
		(102	4 cpm) Th 230	SIN 11019				
Lina	Noce No. 390090		¥ 1					
Gamma Calibr	ation: GM detectors positioned perpendicular							
		REFERENCE						
	RANGE/MULTIPLIER	CAL. POINT 800kcpm						
\smile	X1000	200kcpm		200	200			
-	X100	80kcpm	200	200	2			
	<u>X100</u>	20kcpm 8kcpm	800	200 800	200			
	X10			200	200			
	X1	800cpm	800	800				
	X1	200cpm		200	200			
	*Uncertainty within ± 10% C.F. wi	thin ± 20%			Calibrated Electronically			
	REFERENCE INSTRU	JMENT INSTRUMEN	IT REFEREN	NCE INSTRUMENT	INSTRUMENT			
	CAL. POINT RECEI		A	DINT RECEIVED	METER READING*			
Digitai Readout	800kcpm 80131	10 Kc/m 801320	kun Scale					
	80kcpm 2012		<u>, 11</u>					
	800cpm 801	<u> </u>	<u>pm</u>					
		<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>					
Lucium Meas	urements, Inc. certifies that the above i	nstrument has been calibrated by sto	andiards traceable to the Nation	al Institute of Standards and Technolo	gy, or to the calibration facilities of			
other internat	tional Standards Organization members on system conforms to the requirements	of ANSI/NCSL 2540-1-1994 and ANSI I	ed values of natural physical con N323-1978	State of Texas C	Calibration License No. LO-1963			
	ce Instruments and/or Sour		1870 6552 6551		Neutron Am-241 Be S/N T-304			
	ha S/N	—		Other				
			s/N		69101832			
brate	ed By	, Jela 1		Date 15 Jun 03				
Reviewe	ed By: Rhouse H	am C		Date 16 Jan 03				
This certific	ate shall not be reproduced except in f A 10/31/2001	ull, without the written approval of Lu	udium Measurements, Inc.		c (HI-Pot) and Continuity Test			

LUDLUM MEASUREMENTS, INC.

Designer and Manufacturer of Scientific and Industrial Instruments

POST OFFICE BOX 810 PH. 915-235-5494 501 OAK STREET FAX NO. 915-235-4672 SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data For Detector

Detector43-93 Serial Nofr93921	Order #289386/26	8534
Customer CABRERA SERVICES	Alpha Input Sensitivity	mV
Counter 2224-1 Serial No. 162426		
Count Time 1 Minute	Beta Window <u>30</u>	mV
Other	Distance Source to Detector	<u> </u>

High	Bacl	rground	lsotope Size	12,600 ctm	lsotope _ 	Tc 99 14, 300 cpm	lsotope _ Size _	5,90890 44979 ch
Voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta
150	0	97	4720	347	7	2532	0	11770
175	0	/4/	5110	370	4	3590	0	15651
800	1	197	5472	425	10	4408	3	19451
825	0	269	5673	469	11	5059	2	21424
850	1	322	5744	652	//	5698	2	22583
	<u> </u>							
	+							
		1						
					· · ·			
	+				- • • • • • • • • • • • • • • • • • • •	†		
					···· ···			
	+					+ +		
	1		<u>+</u>			†		
		<u> </u>						
	<u> </u>							
		L		<u> </u>				

🗀 Gas Proportional detector count rate decreased 🛛 ≤ 10% after 15 hour static test using 39" cable.

🔲 Gas proportional detector count rate decreased ≤ 10% after 5 hour static test using 39" cable and alpha/beta counter.

me Signaturø

Date 15. Jan - 03

FORM C4B 12/09/97

	Cesigner and Manufochiner						POSI OFFICE BOX 810 PH. 916-235-5494				
\sim	M	of Scientific and Indu Instruments		RTIFICATE OF CA	LIBRATION	501	SI OFFICE BOX 810 OAK STREET EETWATER, IEXAS 79	FAX NO. 915-235-4672			
	CUSTOM	ER CABRÉRA SERV	CES				ORDER NO	2125A2/279960			
	Mta.			odel	2224-1		Serial No. 1624	126			
		Ludium Mogsuren		odel	43-93		Serial No. PR14	392			
	Mitg			e Date11		Cat. Intervo	1 Year Mete	ntace202-848			
	Cal Date			detector IAW mfg. spc			RH20_% /				
C	Chock ma	uk 🕅 abbitet to abber		Within Toler. +-10%							
				Wanan ioter. ⊷ionsi]	Background Su		En Input \$6	ns, Linearly			
	Med	hanical ck.	Meter Zeroe	a D	Window Opera			Dism			
		esp.uk ock	Alorm Settin	nack. 📝	Batt. ck. (Min. V	/off)22	VDC				
			with LMI SOP 14.8 re	v 12/05/89	Calibrated in ac	cordanco w	th LMI SOP 14.9 rev ()	2/07/97. mV			
Ir	nstrument	Volt Set 825	V Input Sens. Cc	mmels mV Det. Ope	<u>. 825</u>	V at <u>com</u> m	JimV Dial Ratio				
-		V Readoul (2 points)			_, 500_ V		1500 /	<u>15</u> 00 V			
	Beta th Beta wi	nts: hreshold = 120 = ireshold = 3.5 m nday = 30-4 e: 390096 et to simula with 6' Co	ted light	leak.							
9	Genme Calibrat	ion: GNI delectors positioned per		or M 44-8 in which the front of prob FERENCE	INSTRUM	AENT REC'D	INSTRUM	ENT			
		RANGE/MULTIPLI		al, point	"AS FOL	IND READIN	NG" METER R	ADING*			
_		x1000	800kc			10		<u>00</u>			
		x1000	200kg			20	and the second s	<u>00</u>			
		X100		com		00		00			
		x100				20		00			
		x10		com		00		.00 20			
		_x1		com		00		00			
		X	200	COM		<u>v</u> <u>v</u>					
								libraled Electronically			
		Uncertainty within + 10%					INSTRUMENT	INSTRUMENT			
	Di- 14 - 4	REFERENCE CAL POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING	CAL	æ nce Point	RECEIVED	METER READING*			
	Digital Readout	800kcpm	80 11 24	80/24	Scale						
		<u> </u>	8011	BOIL							
		800com	\$01	801							
		80000	10					the second second second second			
	Lucium Meas cither internat The calibratio	Lienents, Inc. certifies that the lonal Standants Organization in system contorms to the real	a above indiament has b members, or have been unements of ANSL/NCSL 2	open collorated by standards to derived from accepted values 540-1-1994 and ANSI N3/3-1978	aceable to the Notic of natural physical of 8	onal Institute of Sk constants or have	ndards and Technology, or been derived by the ratio ly State of Texas Calif	to the collocation factment of pe of collocation techniques, arction License No. LO-1963			
	Relerance		ст Sources:	105 11008 11879	E552E551		 .	icution Am-241 Be S/N 1-304			
	Alp	ha s/N 11-130-50	10-03	BOTO S/N TC-99-1	NT-EV, Ser-	10-1016	Other				
	m s	00 S/N1328		Oscilloscope S/N			Multimeter S/N	82080087			
		Tal	Basto	1n		Date [Maro	4			
	Reviewe		1L-			_ Date	5 MAR. 04	H-Put) and Continuity Test			
	This continue FORM (C??)	nte shali nol tje reprodućeci A 10/31/2001	ercopt in full, without the	witten opproval of Fudium Me	SCARGITIQUES. SUC	Only	Foiled				
	£ 3	T Page 2 o	5:38:57 bW C2.	ed 17 Mar 2004 0	M 22	921.235.46	כי +ז'	dlum Measurements, In			

Designer and Manufacturer of Scientific and industrial Instruments

LUDLUM MEASUKEMENIS, INC. POST OFFICE BOX 810 PH. 915-235-5494 501 OAK STREEY FAX NO. 915-235-4672 SWEETWATER, TEXAS 7966G U.S.A.

.

			<i>ве</i> псл / <i>е</i> з	t Data For L	<i>Jetector</i>				
etector customer <u>CAE</u> counter count Time1	2224-1	ES	PR19 6242	6	Order #. <u>212582/279960</u> Alpha Input Sensitivity <u>120</u> m Beta Input Sensitivity <u>3.5</u> m Beta Window <u>30</u> m Distance Source to Detector <u>Surface</u>				
High Voltage	Back Apna	ground Beta	lsotope _ Size _	12-230 2910 cpm Boto	lsotope 	<u>Тс-99</u> 14100 срс- вого	isotope Size Alpha	Sr V-90 43732cq 	
800 825 850	 	101 196 458	1110 1196 1197	235 244 361	2 7 2	3547 4656 5473	4 2 2	1668 1952 2075	
Gastrooortic	onal detector o	count rate dec	recsed < 10	6 offer 15 hour	static test usin	g 39" cable.			

☐ Gas proportional detector count rate decreased ≤ 10% after 5 hour static test using 39" cable and alpha/beta counter.

signature Josh Boston

Date 11 Mar 04

FORM C48 12/09/97

Serving The Nuclear Industry Since 1962

+1' 352' 532' 4925

	Designer and Manufacturer of Scientific and Industrial Instruments LUSTOMER CABRERA SERVICES Afg. Ludium Measurements, Inc. Model 2224					POST OFFIC 501 OAK ST SWEETWATE	MEASURI E BOX 810 REET ER, TEXAS 79 DER NO	PH. 915-2 FAX NO. 556, U.S.A.		
Mfc										
-	Ludium Measure							· · · · ·		
-										
	ite <u>15-Ju</u>									
	ark 🗹 applies to app									<u>'02.8</u> mm Hg
🖌 Nev	w Instrument Instru	nent Received	d 📋 Within Toler. 4	-10% 🗌 10	D-20% 🗌 Oi	ut of Tol. 🗌] Requiring	Repair 🗌 C	Other-See o	comments
☐ F/S ☑ Auc	chanical ck. Resp. ck Ilo ck. orated in accordance	Reset	Setting ck.	✓ W ✓ Bo		ation Volt)	<u>2.2</u> VDC	☐ Input S ☑ Geotro OP 14.9 rev (pism	ity
Instrumen	nt Volt Set 1575	V Input Ser	ns. Comment mV	Det. Oper.	1575	V at Cor	nment mV	Threshold Dial Ratio	:	mv
	HV Readout (2 points)							/_		500 V
Beta Overlo Count High V Firmwa Platea	ENTS: sensitivity=120r sensitivity=3.5r Beta window= 35r ad not set. time set to 60 s oltage set with re #390063 u'd using 5 ft. aton: GM detectors positioned p	nV nV detector c cable.	TC 9 Ni 6 C 14 Al connected. Al sc pr	99 s/n 6 53 s/n 9 54 s/n I- 51 effici 51 readin 50 purce pla 50 tective	35/83 1N1310090 659 encies ar gs for ef ced at th screen c	; 22,90 9; 258,8 ; 311,6 fe NET ef ficienci e surfac	0 dpm is 90dpm is 549dpm is ficienci .es were :e and ce	ntered ag	9% 4pi 9% 4pi 6 4pi but back h	-
			REFERENCE			MENT REC		INSTRUM		-
	RANGE/MULTIP		CAL. POINT		"AS FOI	JND REAI	DING"	METER RI	EADING*	
\smile	x1000		400kcpm					400		
	_x1000 _x100		100kcpm 40kcpm							
	x100		10kcpm					100		
	x10		4kcpm					400		
	x10		1kcpm							
	<u>x1</u>							400		
			100cpm					100		
	*Uncertainty within ± 109	6 C.F. within ± 2	0%			·····	ALL	Range(s) Ca	librated El	ectronically
	REFERENCE	INSTRUMENT		1		RENCE		UMENT		UMENT
Disital	CAL. POINT	RECEIVED	METER RE			POINT	RECE	IVED	METE	R READING*
Digital Readout	400kcpm		4003	<u>o (o)</u> S	og cale					
	40kcpm		4004							
	4kcpm		<u> </u>							
	· · · · · · · · · · · · · · · · · · ·									
other Interna	400cpm 40cpm urements, Inc. certifies that it tional Standards Organizatio on system conforms to the rec	n members, or have	a been derived from acce	(p) standards trace apted values of	sable to the Nat natural physical	ional Institute a constants or he	ave been derive	d Technology, or ad by the ratio h of Texas Calib	/pe of calibrat	ion techniques.
Cs-137 Ga	ce Instruments and Imma S/N 1162 1	G112 🗌 M565	5105 1 T1008				-1 0"	<u>П</u> и	eutron Am-2	41 Be \$/N T-304
lƴ Alp lƴ m 5		7,Pu239 240	_ 🖌 Beta S/N		<u>299*5030,Sr9(</u>	L] Other	er S/N	50100	581
alibrati	ed By: CALSING	ia Alvan	ada				15 Jul	02		
		100					177.	(,7		
Reviewe	ed By:	except in full, with	et the written approval of	Ludium Measu	rements inc	Date /	1 JG	Dielectric (Hi-	Potl and C-	ntinuity Tost
	A 10/31/2001					Only	Failed:			

 LUDLUM MEASUREMENTS, INC.

 POST OFFICE BOX 810
 PH. 915-235-5494

 501 OAK STREET
 FAX NO. 915-235-4672

 SWEETWATER, TEXAS 79556, U.S.A.

Designer and Manufacturer of Scientific and Industrial Instruments

Bench Test Data For Detector

Detector <u>43-68</u>		Serial No. PR	2161781	Order #.	282597	
Customer	CABRERA SERVIC	CES		Alpha Input Sensitivity	120	mV
Counter	2224	Serial No. 18	3048			
Count Time	1 Minute			Beta Window	35	. mV
Other P	lateau'd	using 5A	cable.	Distance Source to Detector	surface	

High	Back	ground	lsotope Size	Pu 239 15,700cp	lsotope _ m Size	Tc 99 4,300cpr		5r90490 6850 cpm
Voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta	Aipha	Beta
1525	0	133	5813	715	L L	7291	1	3127
1550	Ō	146	6205	762	Ч	7184	D	3859
1575	2	205	6555	782	6	6982	_2	3949
1600	3	274	6777	782	31	6263	17	4125
1625	0	255	7017	709	209	5270	51	3821
				: 				
				- <u>-</u>				
			+					l
			+					: • · · · · · · · · · · · · · · · · · · ·
				+				
								<u> </u>
								<u> </u>
	_ L			<u> </u>	I			<u> </u>

□ Gas Proportional detector count rate decreased ≤ 10% after 15 hour static test using 39" cable.

📋 Gas proportional detector count rate decreased 🖆 10% after 5 hour static test using 39" coble and alpha/beta counter.

signature Cresencia Alvara do

Date 15 Jul 02

FORM C48 12/09/97

Designer and Mar of Scientific and In Instrument	dustrial CERTIFICATE	OF CALIBRATION	LUDLUM MEASUREMENTS, INC. POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-4672 SWEETWATER, TEXAS 79556, U.S.A.
JSTOMERCSTE-DTC-AT	-CS-SO		ORDER NO. 295475
Mfg. Ludium Measur	ements, Inc. Model	2360	Serial No. 193675
Mfg. Ludlum Measur	ements, Inc. Modei	43-37	Serial No. PR 161687
			. Interval <u>1 Year</u> Meterlace <u>202-855</u>
Check mark 🗹 applies to ap	plicable instr. and/or detector IAV	V mfg. spec. T. <u>75</u> °F	RH <u>37</u> % Alt <u>699.8</u> mm Hg
🔀 New Instrument 🛛 Instru	ment Received 🔲 Within Toler.	+-10% 🔲 10-20% 🔄 Out of Tol	Requiring Repair
F/S Resp. ck Audio ck. Callbrated in accordanc	 Meter Zeroed Reset ck. Alarm Setting ck. e with LMI SOP 14.8 rev 12/05/89. 	 ✓ Window Operation ✓ Batt. ck. (Min. Volt) 	Input Sens. Linearity √ Geotropism 2.2_VDC ance with LMI SOP 14.9 rev 02/07/97.
Instrument Volt Set _1700		13 H B (H) B (H)	1007
Firmware Version: 39 Alpha Threshold: 7 Beta Threshold: 2	0 my. t vnv. 0 nnv. 10 nnv. 10 not pet. 11 a <u>6 Ht.</u> caple.	(EEPROM Settings User Time: Alpha Alarm: Beta Alarm: Z	1.0 min 50000 50000 50000 04/29/2003

mma Calibration: GM detectors positioned perpendicular to source except for M 44-9 in which the front of probe faces source.

	•	REF	ERENCE	IN	ISTRUMENT REC	'D II	NSTRUMEN	IT
~	RANGE/MULTIPLI	ER CA	L. POINT	"∧	S FOUND READ	DING" N	METER REA	DING*
	x1000	400kc	pm				400	
	x1000	100kc	pm				100	
	x100	40kc					400	
	x100	10kc	pm				100	
	x10		pm				400	
	x10	1kç	pm				100	
	X1	4000	pm				400	
	x1	100c	pm				100	
	*Uncertainty within ± 10%	C.F. within ± 20%				ALL Ra	nge(s) Calibr	rated Electronically
	REFERENCE	INSTRUMENT	INSTRUMENT		REFERENCE	INSTRUM	AENT	INSTRUMENT
	CAL, POINT	RECEIVED	METER READING*		CAL. POINT	RECEIVE	Đ	METER READING*
Digital	400kcpm		398989	Log Scale				
Readout	40kcpm		40001	scule			-	
	40kcpm		1/00/			·		
	400cpm		400					
	400cpm		110					
								······
other Interna	surements, Inc. certifies that the itional Standards Organization r on system conforms to the requ	members, or have been o	letived from accepted values	of natural		ive been derived l	by the ratio type	
	ce Instruments and/a							
	imma S/N 1162 G		05 🛄 T1008 🛄 T879 📋	E552	E551		'! Neutr	ron Am-241 Be S/N T-304
	oha S/N 4337.F	Pu 239 📃 🖌	Beta S/N <u>635/83</u>	,Tc99*#	918,Sr90y90] Other		
🖌 m :	500 S/N 9494		Oscilloscope S/N			Multimeter	S/N	65240152
alibrat	ed By: ZW	v Clai	ent.		Date	29-	APK-1	<u>)3</u>
Reviewe	ed By: Dan (tai	0 <u>\</u>		Date	29A01	~ 83	
	ate shall not be reproduced ex \$ 04/09/2003	xcept in fuil, without the w	ritten approvat of Ludium Me	asurement	s, Inc. AC Ir Onl	nst. Passed		Pot) and Continuity Test

LUDLUM MEASUREMENTS, INC.

Designer and Manufacturer of Scientific and Industrial

Instruments

 POST OFFICE BOX 810
 PH. 325-235-5494

 501 OAK STREET
 FAX NO. 325-235-4672

 SWEETWATER, TEXAS 79556, U.S.A.

Bench	Test	Data	For	Detector
-------	------	------	-----	----------

	ount Time <u>1</u> N	-DTC-AT-CS- 2360	SOSerial No	.0000	<u> </u>	Betc	Orde Input Sensitivi Input Sensitiv Beta Wind Irce to Detect	ty ity ow	4 n 40	nV nV nV
1	High Voltage 1635 1650 155 1700 1725	Back Alpha 5 4 3 5 1 1	cground Beta 434 574 740 860 929	Isotope 7 Size 7 Alpha 6322 6322 6322 1035 7311	Puzz9 5,700egn Beta 93/ 1068 121/ 1421 1550	Isotope Size Alpha 3 4 7 29 203	5 r 907 90 9,88kpr 21733 26826 3074/ 34888 3737/	Isotope Size Alpha 13 9 11 18 52	Tegg 14,300cf 14,300cf 1230 8085 8085 8246 7949	

□ Gas Proportional detector count rate decreased ≤ 10% after 15 hour static test using 39" cable.

[Y Gas proportional detector count rate decreased ≤ 10% after 5 hour static test using 39" cable and alpha/beta counter.

Elior Char

- St 29AAR-03

Signature

FORM C48 04/09/2003

JOMER CABRERA SERVICES	CERTIFICATE OF	CALIBRATION	Post Offic 501 Oak Sti Sweetwate	R, TEXAS 79556, U.S.	235-5494 . 325-235-4672
MfgLudium Measurements. Inc.	Model	2360	Serial No	107600	
Mfg. Ludium Measurements. Inc.		43-37	Serial No	001700	71
Cal. Date <u>1-Apr-04</u>					202-855
Check mark 🗹 applies to applicable instr. a	1			<u>20</u> % Alt	-
🔲 New Instrument 🛛 Instrument Received	d 🕅 Within Toler. +-109	5 🔲 10-20% 🗍 Out o	of Tol. 🔲 Requiring F	Repair 📋 Other-See	comments
🗹 Mechanicalick. 🛛 🖌 Mete	r Zeroed	Background Subi	hact	[] Input Sens. Linea	ontry
🗌 F/S Resp. ck 📈 Reset	ck.	Window Operation	on	Geotropism	
🖌 Audio ck. 🗌 Alarm	n Setting ck.	🖌 Batt. ck. (Min. Vo	It)2_VDC	<u> </u>	
Calibrated in accordance with LMI SOP	14.8 rev 12/05/89.	Calibrated in acc	ordance with LMI SC	OP 14.9 rev 02/07/97.	
Instrument Volt Set 1675 v					
W Readout (2 points) Ref./Inst.	<u> </u>	V Ref./inst	2000 1 2.0	<u>00 v</u> .	
Firmware Version: $3900-000$	- 25	(EEPROM Set	tinas)		
Alpha Threshold: 100 m V	. –	User Time:	10		
Beta Threshold: 4		Alpha Alarm:	50000		
Beta Window: 40 m V		Beta Alarm:			
Overlage there a but no	k ant		50000		
Instrument calibrated with a 39"	cable.	A/B Alarm:	50000	a l	
	7 1 1 (Date: 04/0//	LOOT	<u> </u>
High voltage set with detector <u>ne</u>	+ connected.	Calibration D	ate Due: 04/0	1/1005	
COMMENTS:					

Calibr	ration: GM detectors positioned per	pendicular to source except for	M 44-9 in which the front of prob	e faces soun	28				
			ERENCE	IN	ISTRUMENT REC'	2	INSTRUM	ENT	
\smile	RANGE/MULTIPLI	ER CAL	. POINT	"AS FOUND READING"		NG"	METER READING*		
	x1000	400 kcr	<u>m</u>		400		40	0	
	X1000	100 kcr			100			0	
		40 kcr	om		400		40	-	
		10 kcr			[00		10		
	X10	4 kcr			400		40		
	X10				100			00	
	<u>X1</u>	<u> </u>			400			00	
	x1		2m		100				
	*Uncertainty within ± 10%	C.F. within ± 20%					Range(s) Co	librated Electron	cally
	REFERENCE	INSTRUMENT	INSTRUMENT		REFERENCE	INSTR	UMENT	INSTRUMENT	r
	CAL POINT	RECEIVED	METER READING*	I	CAL POINT	RECE	IVED	METER READ	NG*
Digital Readout	400 kcpm	400536)	40053(0)	Log Scale					
	40 kcpm	4009	4009						
	4 kcpm	401	401						
	400 cpm_	40	<u>40</u>						
	40 cpm	4 1	<u> </u>	1_					
other Interna	surements, inc. certifies that the tional Standards Organization r on system conforms to the requ	nembers, or have been der	tved from accepted values	of natural p	the National Institute of Sk hysical constants of have	been derive	d by the ratio typ	to the calibration facilities of calibration techn ration License No. L	IQUOS.
Referen	ce instruments and/a	or Sources:							
Cs-137 Go	ımma S/N □1162 ³ ,□G	112 🗌 M566 🔲 5105	1 T1008 T1879] E552 [] €561] 720] ;	734 🗌 16	16 🗌 N	eutron Am-241 Be S	/N T-304
	na S/N R -2.39 - 29		Bota S/N Tc-99		. doll	Other			
	500 S/N 1328		•		,				
			Oscilloscope S/N		······································	Multimet	er 5/N	82080087	
ibrati	ed By: Josh	Boston			Date	<u>Ap</u>	<u>r04</u>		
Reviewe	od By: LAR	L)			Date	IAPA	204		
	ate shail not be reproduced ex S 11/26/2003	cept in full, without the writ	ten approval of Ludium Med	surements	Inc. AC Inst Only	Poss Falled		HI-Pot) and Continu	uity T est
			•						

 LUDLUM MEASUREMENTS, INC.

 POST OFFICE BOX 810
 PH. 325-235-5494

 501 OAK STREET
 FAX NO. 325-235-4672

 SWEETWATER, TEXAS 79556, U.S.A.

Bench Test Data For Detector

D	etector	43-37	Serial No	PR 178	37		Orde	er#213	520/280435
С	ustomer CAB	RERA SERVIC	CES .				Input Sensitiv	HV 10	0mv
C	ounter	2360	Serial No	84938	· · · · · · · · · · · · · · · · · · ·		Input Sensitiv	<i>",</i> 4	mV
	ount Time						Beta Wind	w 4	D mV
С)ther			···		Distance Sou		<i>•</i>	rface_
	High Voltage		(ground	Size _	Pu-239 12600cg-		Te-99 14100cm	lsotope Size Alpha	<u>5, Y-90</u> <u>43670 c</u> pm Beta
-		Alpha	Beta	Alpha	Beta	Alpha	Beta		
- - - - - - - - - - -	625 650 675 700 725	4 2 2 5 12	382 515 672 895 947	4904 5022 5243 5361 5455	705 934 962 1145 1244	1 2 6 34 194	7092 7478 7698 7459 6452	7 6 16 73 431	14641 17734 18478 19837 19941
-									

□ Gas Proportional detector count rate decreased ≤ 10% after 15 hour static test using 39° cable.

🗹 Gas proportional detector count rate decreased 🔬 10% after 5 hour static test using 39" cable and alpha/beta counter.

signature Josh Boston

Designer and Manufacturer

of

Scientific and Industrial Instruments

Date | Apr 04

FORM C48 04/09/2003

Designer and Manufacturer of Scientific and Industrial Instruments	CERTIFICATE OF C	ALIBRATION	LUDLUM MEASUREMENTS, INC. POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-4 SWEETWATER, TEXAS 79556, U.S.A. 2166	
			ORDER NO. 216718/281992	
Mfg. <u>Ludium Measurements.</u>		2360	Serial No. 202398	
Mfg. Lucium Measurements		43-93		<u> </u>
	Cal Due Date		terval <u>1 Year</u> Meterface <u>202-855</u>	<u> </u>
Check mark 🗹 applies to applicable I			RH <u>56</u> % Alt <u>696.0</u> mm	-
V New Instrument Instrument Re	ceived 🔲 Within Toler. +-10% [] 10-20% 🔲 Out of Tol. [🗌 Requiring Repair 📋 Other-See comments	ł
	Meter Zeroed	Background Subtract	Input Sens. Linearity	
F/S Resp. ck		Window Operation	Geotropism	
✓ Audio ck. ✓ ✓ Calibrated in accordance with LN		Batt. ck. (Min. Volt)	<u>22_</u> vDC be with LMI SOP 14.9 rev 02/07/97.	
Instrument Volt Set 725 V			9 WIN LWI SOP 14.9 16V 02/07/97.	
	st. 500 / 500		, 1500 ,	
HV Readout (2 points) Ref./In		V Ref./inst. 1500		
Firmware Version: 390101	<u>10-25</u> ·	(EEPROM Settings)		
Alpha Threshold: 10 MV		User Time:		
Beta Threshold: 3.5 m V		Alpha Alarm: 50		
Beta Window: <u>30 n V</u> Overload Set to simi	tated to be look	Beta Alarm: <u>50</u> A/B Alarm: 50		
Instrument calibrated with a	S cable.		05/26/2004	
High voltage set with detector	<u>× </u>		105/26/2005	
COMMENTS: 4 pi efficiencies (Refer to Th-230 - 19.48%, Tc-99 -	plateau sheet at set vo 20. %1% , SrY-90 = <u>30.</u> ¶	ltage for details): 770 , Ni-63 - <u>O</u>.	1 3%	
Calibration: GM detectors positioned perpendicular	REFERENCE	obe faces source. INSTRUMENT RE	C'D INSTRUMENT	
RANGE/MULTIPLIER	CAL. POINT	"AS FOUND REA		
	400kcpm	 	400	
	100kcpm 40kcpm		400	
X100	10kcpm		00	
<u>x10</u>	4kcpm		400	
<u></u>			400	
<u></u>	400cpm 100cpm		100	
*Uncertainty within ± 10% C.F. w			ALL Range(s) Calibrated Electronical	ih.
		REFERENCE	INSTRUMENT INSTRUMENT	<u> </u>
CAL POINT RECEI			RECEIVED METER READING	
Diaitai	40151 (0)	Log Scale		
Readout <u>400kcpm</u>	4015	Scale	• • • • • • • • • • • • • • • • • • •	-
4kcpm	400			•
400cpm	40			-
40cpm	<u> </u>			-
Ludium Measurements, inc. certifies that the above in other international Standards Organization members,	strument has been calibrated by standards or have been derived from accepted value	traceable to the National Institute of Natural physical constants or h	of Standards and Technology, or to the calibration facilities of ave been derived by the ratio type of calibration techniques	1
The calibration system conforms to the requirements	of ANSI/NCSL 2540-1-1994 and ANSI N323-19	78	State of Texas Calibration License No. LO-19	
Reference Instruments and/or Sour				
C3-137 Gamma S/N 1162 G112	1	N:-L1-40	734 [1616 [Neutron Am-241 Be S/N T- 7	-304
Aipha S/N 16-230-5020-03		EV. S. Y-90. 1014,	Other	
T m 500 S/N 132899			Multimeter S/N82080087	
~ I AN	ton			
Reviewed By:	*	Date _		
This certificate shall not be reproduced except in f FORM C225 11/26/2003	ul, without the written approval of Ludium M		Inst. Passed Dielectric (HI-Pot) and Continuity Tr nly Failed:	'est

LUDLUM MEASUREMENTS, INC. POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-4672 SWEETWATER, TEXAS 79556, U.S.A.

Designer and Manufacturer of Scientific and Industrial Instruments

Bench Test Data For Detecto	Bench	Test	Data	For	Detecto
-----------------------------	-------	------	------	-----	---------

				082117	n I				216674
		43-93			0			or #2167	
		ABRERA SERVIC		02398			Input Sensitivi Input Sensitiv	2	
	Counter	1 Minute	30H01 W0			beid	Beta Wind	20	
						Distance Sou		•	
	High		ground	lsotope Size	<u>Th-230</u> 5730dam	Isotope	<u>-99</u> 2600dpm		<u>5-7-90</u> 621572pm
	Voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta
			ļ			<u> </u>			· · · ·
	675	0	70	1009	140	1	2560	2	13265
	700	1	119	1129	191	2	3849	2	16078
	725	0	170	1116	255	2	4876	3	19422
	750		204	1155	397	0	5773	5	20319
-						<u> </u>			
			· · · · · · · · · · · · · · · · · · ·						······································
						<u> </u>			
					+				
					1	1			
	· · · · · · · · · · · · · · · · · · ·								

□ Gas Proportional detector count rate decreased ≤ 10% after 15 hour static test using 39" cable.

□ Gas proportional detector count rate decreased ≤ 10% after 5 hour static test using 39° cable and alpha/beta counter.

Josh Boston Signature

Date 26 May 04

FORM C48 04/09/2003

LUDLUM MEASUREMENTS, INC. POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-4672 SWEETWATER, TEXAS 79556, U.S.A.

Designer and Manufacturer of Scientific and Industrial Instruments

Customer <u>CAB</u> Counter Count Time1 Other	2360 Minute	Serial No. 2			Alpha in Beta ir Distance Sourc	iput Sensitivit Beta Windo	120 3.5 30 Surfe	
High Vottage	Back Alpha	ground Beta	lsotope Size Alpha	N:-63 294/260 Beta	Isotope p n Size Alpha	Beta	lsotope Size Alpha	Be
675	0	70	}	75				<u></u>
700	1	119	0	193				
725 750	0	170 204	0	551				
								<u> </u>
			· · · · · · · · · · · · · · · · · · ·					
					r static test using 3 static test using 3		lipha/beta cour	nter.

Date 26 May 04

FORM C48 04/09/2003

Signature Josh Bosten

• Serving The Nuclear Industry Since 1962 •

Ζ.

Inst.#C853F Cs-137						
QC Daily Source						
Date	Result (µrem/hr)	P/F				
4/29/2003	200					
4/30/2003	210					
5/1/2003	200					
5/2/2003	200					
5/12/2003	200					
5/13/2003	210					
5/14/2003	200					
5/15/2003	220					
5/19/2003	200					
6/19/2003	200					
8/12/2003	220					
8/13/2003	200					
8/14/2003	225					
8/15/2003	210	Bar (1. ja				
8/18/2003	200					
8/19/2003	225					

Inst.#C	853F Cs-137	Source Ser. #	1127
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (µrem/hr)		
4/28/2003	190		
4/28/2003	210		
4/28/2003	190		
4/28/2003	180		
4/28/2003	190		
4/28/2003	180		
4/28/2003	190		
4/28/2003	180		
4/28/2003	190		
4/28/2003	190		
	Average		
	189		

ROPC	Radionuclides of Potential Concern
σ	Sigma
S/N	Serial Number
SU	Survey Unit
²³⁴ U	Uranium-234
²³⁵ U	Uranium-235
²³⁸ U	Uranium-238

1.0 INTRODUCTION

Cabrera Services, Inc. (CABRERA) is under contract to the United States Army Field Support Command (AFSC) to provide support to the Aberdeen Test Center (ATC) at the Aberdeen Proving Ground (APG) in Aberdeen, Maryland. CABRERA performed facility demolition, remediation, and site wide radiological surveys of the Bomb Throwing Device (BTD) site to support consideration for unrestricted release. The BTD site consists of approximately 46,000 square meters (m^2) of land on the APG used for the testing of Depleted Uranium (DU) munitions. The BTD site also contains a number of structures used to support operations.

For consistency with other decommissioning activities at APG, radiologically impacted soils and structures are addressed separately. This document presents the Final Status Survey (FSS) activities for five structures on site – the BTD Armor Reclamation Facility (BARF), Wash Rack #2, Wash Rack #3, Concrete Pad #2 located behind Building 701, and Concrete Pad #1 located behind the DU Test Enclosure Building. The Final Status Survey conducted on soils is addressed in a separate document titled, "*Remediation and Final Status Survey, Bomb Throwing Device Site – Soils*," (CABRERA, 2004). These final status surveys are designed in accordance with Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) guidance (U.S. Nuclear Regulatory Commission [NRC], 2000).

1.1 Site History

APG, located in Aberdeen, Maryland, is an active U.S. Army testing and research facility. The APG lies along the western shore of the Chesapeake Bay in Harford and Baltimore Counties, Maryland, approximately 15 miles northeast of Baltimore. The APG covers a total of 72,516 acres (land and water) and consists of two distinct areas: the northern portion of APG, referred to as the Aberdeen Area; and the southern portion of APG, referred to as the Edgewood Area. The Aberdeen Area became a formal military post, designated as the APG, in 1917.

The BTD site was used between 1982 and 1993 for the testing of DU munitions. In 1993, the site consisted of the BTD ARMOR RECLAMATION FACILITY, the DU Test Enclosure Building, the Enclosure Building High Efficiency Particulate Air (HEPA) system, the Plate Storage Area (PSA), Wash Racks #2 and #3, access roads, and several support buildings situated on approximately 46,000 square meters (m²) (11.4 acres) of land. During operations, DU munitions were fired at steel plate and other targets placed inside the DU Test Enclosure Building. The High Efficiency Particulate Air (HEPA) ventilation system equipment was located outside the DU Test Enclosure Building on a concrete pad (Concrete Pad #1). Its function was to collect and filter potentially contaminated air exiting the DU Test Enclosure Building after the firing of DU munitions.

Prior to site remediation, approximately 40 tons of DU-contaminated armor plate was located within the DU Test Enclosure Building and surrounding grounds. Heavy equipment was used to transport the armor plates between the DU Test Enclosure Building and the PSA. As part of the remedial activities and subsequent to the removal of the armor plates, the DU Test Enclosure Building, the HEPA ventilation system, the footings for the DU Test Enclosure Building, the "Rust" Building, and the Sabot Stripper were removed in their entirety from the site and processed separately from this report.

The BTD site decommissioning consisted of structure demolition, soil excavation, and removal of contaminated soil and demolition debris. As physical decommissioning actions were completed, FSSs were performed on both structures and land areas (this report addresses only five structures previously mentioned). Much of the plate steel that was generated during site cleanup and demolition (primarily the DU Test Enclosure Building) was transferred to the Army Research Laboratory (ARL) facility, at APG Spesutie Island, for decontamination and recycling. A cost analysis performed by the Army indicated that recycling was a less expensive option than offsite disposal of the material and that there was a beneficial reuse for the plate steel in support of APG's mission. Other demolition debris and excavated soil was considered unwanted radioactive material and was shipped via rail to Envirocare of Utah, an NRC licensed disposal facility, for shallow land burial.

During initial mobilization in February 2003, the CABRERA field crew entered the BARF and dismantled, surveyed, and removed the DU armor plate reclamation machine (the LAB) housed within the BTD Armor Reclamation Facility.

In May 2003 CABRERA re-mobilized to perform a FSS on the inside of the BTD Armor Reclamation Facility, and demolish the DU Test Enclosure building. Most of the steel plate removed from the DU Test Enclosure Building was shipped across APG to the ARL Spesutie Island Facility for decontamination and beneficial reuse. Other steel/debris was containerized in intermodals for future rail shipment to Envirocare of Utah.

During June 2003, the CABRERA team performed remediation/FSS of Wash Racks 2 and 3, which included dismantling and ship out of the floor grids and left the scrap steel piled for transfer to ARL or other use, as instructed by ATC personnel. Concurrent to the dismantling operations and through the month of August 2003, the CABRERA team completed the majority of the gamma walkover survey, excavated contaminated soils, and stockpiled the remediated soil (approximately 1,200 cubic yards) into a lay down area within Survey Units 16 and 25. CABRERA demobilized at the end of August 2003.

In February and March 2004, the CABRERA team returned to the BTD site, performed data collection for survey gaps, and accomplished 95% of the remediated soil load out. The soil was packed into intermodal containers, and the intermodals were shipped via rail to Envirocare of Utah.

In June 2004, the remainder of the soil was loaded/shipped to Envirocare for disposal and both Concrete Pad #1 and Concrete Pad #2 surfaces were remediated with a steel ball blast/HEPA vacuum system. Following cleaning, the surfaces were surveyed and the FSSs were performed.

As of the time of this writing, all soil/debris shipped via rail to Envirocare of Utah has been transferred to Envirocare of Utah and final disposition documentation is forthcoming.

In the Figures section of this report, Figure 1 shows the location of the BTD Site relative to APG and surrounding towns. Figure 2 shows the relative locations of the five structures specifically addressed in this FSS Report. Appendix A contains site photos of the structures discussed below.

1.1.1 BTD Armor Reclamation Facility

The BARF is a steel beam and sheet metal constructed building with insulated walls and roof. The insulation is covered with a flexible protective plastic cover. The floor is a concrete pad. The interior of the BARF is approximately 12 meters (m) long by 14.8 m wide with a ceiling height of 6 m. The building is bisected by a sheetrock wall with doors leading from one side to the other. There are no drains, sumps, or ventilation system penetrations other than the liquid abrasive blaster (LAB) HEPA ventilation system. A small heating system with insulated ductwork, rollup doors for equipment entry, smaller doorways for personnel entry, and electrical circuit boxes are other general features found in the building.

The northern portion of the BARF contained the LAB decontamination equipment and a small capacity crane used to help lift and load steel plates into the LAB. The southern part of the building was used to store clean unused HEPA filters and small amounts of containerized contaminated trash. Routine radiation contamination surveys were executed on all floor areas within the BTD Armor Reclamation Facility, on stored boxes and containers, and occasionally on wall surfaces.

The ATC utilized the BARF to house the LAB. The LAB was an enclosed system used to decontaminate pieces of steel plate and other small objects with water jets and abrasive. A ventilation system with a pre-filter demister and a HEPA filter removed airborne particulates prior to ventilation release to the environment. A hopper attached to the LAB retained spent abrasive and removed contamination.

No contamination was found on either the LAB HEPA filter or areas downstream in the ventilation system ducts during removal of the LAB. Minor contamination was found within the LAB enclosure, the hopper which contained water and abrasive, the HEPA pre-filter, and small areas on the outside of the LAB enclosure near loading points. The lack of activity downstream of the HEPA filter indicates a well-designed system that did not release airborne radioactivity to the environs. Other general surveys do not show contamination on the walls of the BARF. Scan surveys showed only occasional activity on the floor areas surrounding the LAB. Surveys of selected areas overhead and on the crane are also negative with respect to contamination.

1.1.2 Wash Rack #2

Wash Rack #2 consists of a steel beam frame and sheet metal walls with no interior insulation or wallboard. The interior is approximately 17 m long by 8 m wide with a ceiling height of 6 m. The floor consists of steel plate with a recessed trough running the length of the facility. The trough area is approximately 6 m wide by 10 centimeters (cm) deep. The trough area contains multiple raised (approximately 3 inches) steel beams, which were used to support steel floor grating. The grating, which was removed prior to this FFS, was flush with the surrounding floor plate. There are no drains, sumps, heating, cooling, or ventilation systems present. Steel rollup doors for equipment entry are located at both ends of the structure. Previously documented routine surveys identified minor levels of DU contamination on the floor area of Wash Rack #2.

Since the construction of Wash Rack #2 in 1992, the ATC has utilized this facility as a warehouse. Wash Rack #2 has never been used as a wash rack. Instead, it was used to store items and equipment, some of which were contaminated with DU. Wash Rack #2 housed DU in

the form of penetrators, floor sweepings, liquid abrasive residue from previous decontamination activities, and range debris (e.g., paper, plastic, wood).

Since the wash rack was used as a storage facility for contaminated materials, the primary area of investigation is the floor, trough area, and lower wall surfaces (2 m and below).

1.1.3 Wash Rack #3

Wash Rack #3 is identical to Wash Rack #2, was also built in 1992, and was used for the storage of uncontaminated Navy accelerator parts and the temporary housing of a cutting table contaminated with DU. Contamination left by the cutting table was identified in the southwest corner of the facility. This contamination was removed though decontamination activities prior to the initiation of the FSS. Past routine surveys of this structure have identified minor levels of DU contamination on the floor.

Since the wash rack was used as a storage facility for contaminated materials, the primary area of investigation is the floor, trough area, and lower wall surfaces (2 m and below).

1.1.4 Concrete Pad #2 (Located Behind Building 701)

This concrete pad is located behind Building 701. Pad dimensions are approximately 22 m by 15 m. The pad was confirmed to have alpha contamination and therefore would not pass release criteria. Its purpose was to stage or store heavy armored vehicles.

1.1.5 Concrete Pad #1 (Located Behind the DU Test Enclosure Building)

Concrete Pad #1 is located adjacent to the DU Test Enclosure Building. It is somewhat smaller than Concrete Pad #2 and is approximately 10 m by 12 m. Its purpose was to provide a foundation for the HEPA system associated with the DU Test Enclosure Building.

1.2 Radionuclides of Potential Concern

The following three Final Status Survey Plans were utilized in producing this consolidated FSS report:

- Final Status Survey Plan For BTD Armor Reclamation Facility, Aberdeen Proving Ground, Aberdeen, MD (provided in Appendix B)
- Final Status Survey Plan For Wash Rack Facilities #2 and #3, Aberdeen Proving Ground, Aberdeen, MD (provided in Appendix C)
- Final Status Survey Plan Bomb Throwing Device (BTD) Site, Aberdeen Proving Ground, Aberdeen, MD (provided in Appendix D)

Section 2.2 of each FSS Plan identifies the site Radionuclides of Potential Concern (ROPC) as being limited to DU and its short-lived uranium progeny (decay products). The uranium ratios are based on isotopic uranium weight ratios used for shipments of routine DU waste from APG

(BARG, 1995). The activity fractions are calculated from the isotopic weight ratios and the specific activity of each uranium isotope. The result of the activity fraction calculation is a Uranium-234 (234 U):Uranium-235 (235 U):Uranium-238 (238 U) ratio of 0.084:0.012:0.904.

1.3 Derived Concentration Guideline Levels

As described by MARSSIM, a Derived Concentration Guideline Level (DCGL) is a calculated radionuclide activity concentration within a designated survey unit that corresponds to a defined release criterion in radiation dose or risk units. Per the license requirement of 10 Code of Federal Regulations (CFR) 20 Subpart E, a release criterion of 25 millirem per year (mrem/yr) will be used for the buildings and structures included in this FSS Report. Doses from residual radioactivity will be kept as low as reasonably achievable (ALARA) whenever possible. Using MARSSIM Section 4.3.4 (equation below) and knowing that there is one alpha decay per decay of each uranium isotope, a single total uranium DCGL_W of 100 disintegrations per minute alpha per 100 square centimeters (dpm alpha/100cm²) was calculated for DU. This DCGL_W was calculated using the values provided by the NRC screening guidelines of 90.6 dpm/100cm², 97.6 dpm/100cm², and 101 dpm/100cm² for U²³⁴, U²³⁵, and U²³⁸, respectively, as presented in Table 5.19 of NUREG/CR-5512 (volume 3, October 1999), NUREG 1757, and the DU activity fractions discussed in Section 1.2. The DCGL_W is calculated as follows:

$$DCGL_{W} = \frac{1}{\left(\frac{f_{1}}{DCGL_{1}}\right) + \left(\frac{f_{2}}{DCGL_{2}}\right) + \left(\frac{f_{3}}{DCGL_{3}}\right)} = \frac{1}{\left(\frac{0.084}{90.6}\right) + \left(\frac{0.012}{97.6}\right) + \left(\frac{0.904}{101}\right)} = 100 \text{ dpm alpha/100cm}^{2}$$

Where: $DCGL_w =$ Combined gross activity DCGL (i.e., release limit).

 f_n = Activity fraction of radionuclide *n*

 $DCGL_n = DCGL \text{ of radionuclide } n$

The total uranium $DCGL_W$ of 100 dpm alpha/100cm² was used as the action level for both static and scanning measurements in the buildings and on the structures.

2.0 FINAL STATUS SURVEY DESIGN

The FSS performed at the BTD site was designed in accordance with Final Status Survey guidance from MARSSIM (NRC, 2000). FSS activities consisted of scanning surveys over 100% of the accessible structure surfaces. Integrated direct surface measurements were performed at frequencies based on MARSSIM guidance. Survey activities also included direct and biased smear sample collection. The FSSs were designed conservatively in that the radiological background present in the structure materials is neglected and the measured total activity is used for direct comparisons to the DCGL_W.

2.1 General Structure Classification Based on Contamination Potential and Survey Unit Identification

Using MARSSIM Section 5.3 as guidance, the five structures were subdivided into survey units and designated as Class 1, Class 2, or Class 3 survey units. The following subsections describe how each structure was subdivided and classified. Appendix E presents individual SU schematic diagrams along with direct (integrated) measurement/smear locations.

2.1.1 BTD Armor Reclamation Facility

The BARF was subdivided into four Class 1 SUs and one Class 3 SU as listed in Table 2-1. The floor and lower walls of the northern room of the BARF share similar contamination potential because this area housed the LAB decontamination equipment and was where the decontamination process was performed. Although the lab system was self-contained and surveys did not routinely identify transferable contamination on the floor or walls, contaminated materials were moved through this room via the south rollup door to be loaded in and out of the LAB system. In accordance with MARSSIM guidance, the south room floor and lower walls were considered Class 1 SUs as well because this area was once used to store containerized contaminated trash.

Since the upper wall and ceiling surfaces of the north and south rooms share similar potential for contamination, these areas were combined into one Class 3 SU. The potential for contamination on the upper walls and ceiling surface in the north room is small because no contamination was identified on the LAB HEPA filter or at downstream areas in the ventilation system. The lack of activity downstream of the HEPA filter indicates a well-designed system that did not release airborne radioactivity to the environs. In addition, transferable contamination was not identified during routine surveys in the BTD Armor Reclamation Facility, and the primary mechanism for transport (i.e., ventilation system) was not contaminated.

Maps presenting the BARF SU delineations and the reference coordinate system are presented in Appendix E.

Description	Area (m²)	. Matorial	MARSSIM Survey Class
North Room Floor	88.8	Concrete	1
South Room Floor	88.8	Concrete	1
North Room Lower Walls	76.6	Foam / Sheet Metal	1
South Room Lower Walls	76.6	Foam / Sheet Metal	1
Ceilings and Upper Walls	488	Foam / Sheet Metal	3

Table 2-1: BTD Armor Reclamation Facility Survey Units

2.1.2 Wash Rack #2

Wash Rack #2 was divided into three Class 1 SUs and one Class 2 SU as listed in Table 2-2. The floor and lower walls of Wash Rack #2 has a history of contamination and contamination potential because this structure was used to store DU waste. DU contamination has been identified previously on the floor of this facility during past routine surveys. The floor area in Wash Rack #2 was remediated for DU contamination prior to the initiation of the FFS.

The ceiling and upper walls of Wash Rack #2 are classified as Class 2 due to remediation activities being performed previously on the floor of this facility.

Maps presenting the Wash Rack #2 SU delineations and the reference coordinate system are presented in Appendix E.

Description	Area (m²)	Material	MARSSIM Survey Class
Floor South Side	68	Metal	1
Floor North Side	68	Metal	1
Lower Walls	90	Metal	1
Ceiling and Upper Walls	346	Metal	2

 Table 2-2:
 Wash Rack #2 Survey Units

2.1.3 Wash Rack #3

Wash Rack #3 was divided into three Class 1 SUs and one Class 2 SU as listed in Table 2-3. The floor and lower walls of Wash Rack #3 has a history of contamination and contamination potential because this structure was used to store DU waste. DU contamination has been identified previously on the floor of this facility during past routine surveys. The floor area in Wash Rack #3 was remediated for DU contamination prior to the initiation of the FFS.

The ceiling and upper walls of Wash Rack #3 are classified as Class 2 due to prior remediation activities performed on the floor of this facility.

Maps presenting the Wash Rack #3 SU delineations and the reference coordinate system are presented in Appendix E.

Description	Area (m²)	Material	MARSSIM Survey Class
Floor South Side	68	Metal	1
Floor North Side	68	Metal	1
Lower Walls	90	Metal	1
Ceiling and Upper Walls	346	Metal	2

 Table 2-3:
 Wash Rack #3 Survey Units

2.1.4 Concrete Pad #2

Concrete Pad #2 was designated a Class 1 survey unit. Due to its size, the pad was divided into two survey units – North and South. Each survey unit is approximately 107 m^2 .

2.1.5 Concrete Pad #1

Concrete Pad #1 was designated a Class 1 survey unit. Due to its size, the pad was divided into two survey units – North and South. Each survey unit is approximately 60 m^2 .

2.2 Survey Instrumentation and Survey Techniques

Instrumentation used in the survey consisted of direct alpha scan and integrated surface detectors, and alpha/beta smear counters. A number of both types of instruments were used due to the extended duration of the surveys. All instruments were properly calibrated (appendix I), QC checked (appendix F), and operated in accordance with standard operating procedures (section 4.0).

2.2.1 Direct Surface Alpha Radioactivity Scan Surveys and Integrated Direct Surface Alpha Radioactivity Measurements

Direct alpha scanning was performed to identify surface locations on structures where contaminant concentrations may exceed the criterion for unrestricted release. Integrated direct measurements (i.e., static measurements) of surface alpha radioactivity were performed during the FSS to compare contaminant levels at discrete sampling locations on building interior surfaces to the release criterion and to facilitate statistical testing, if necessary. Scanning and integrated direct surface measurements were performed using the instruments listed in Table 2-4.

Table 2-4: Instruments Used for Scanning and Integrated Direct Surface Measurements	Table 2-4:	Instruments Use	d for Scanning and	I Integrated Direct S	Surface Measurements
---	------------	-----------------	--------------------	-----------------------	----------------------

Instrument Used (Meter and Probe)	Dates Used	Building or Structure Where Used
Ludium Model 2224-1 portable	5/28/03, 5/29/03, 6/4/03	Wash Rack #2
alpha/beta scaler/ratemeter (serial number [S/N] 162425) with the Ludlum model 43-93 100 cm ²	6/11/03, 6/12/03, 6/13/03, 6/19/03, 6/20/03	Wash Rack #3
alpha/beta detector (S/N 182403)	6/27/03	Wash Racks #2 and #3
	7/9/03, 7/10/03	Wash Rack #3
	8/12/03	DU Test Enclosure Building
Ludium Model 2224-1 portable	5/5/03, 5/14/03, 5/15/03	BTD Armor Reclamation Facility
alpha/beta scaler/ratemeter (S/N 162426) with the Ludlum model 43- 89 126 cm ² alpha/beta detector (S/N 193921)	5/19/03, 5/20/03, 5/22/03, 5/28/03, 5/29/03. 6/6/03	Wash Rack #2
	6/9/03	Wash Racks #2 and #3
	6/10/03	DU Test Enclosure Building
	6/11/03, 6/12/03, 6/13/03	DU Test Enclosure Building and Wash Rack #3
	6/19/03	Wash Rack #3
	6/20/03	DU Test Enclosure Building and Wash Rack #3
	6/26/03, 6/27/03, 7/9/03, 7/10/03	Wash Racks #2 and #3
	3/30/04	Wash Rack #3
	3/31/04	Wash Rack #2
Ludlum Model 2224 portable alpha/beta scaler/ratemeter (S/N 183048) with the Ludlum Model 43- 68 large area (126 cm ²) gas proportional detector (S/N 161781)	5/8/03	BTD Armor Reclamation Facility
Ludlum Model 2360 alpha/beta data logger (S/N 193675) with the	5/7/03, 5/8/03, 5/9/03, 5/12/03, 5/13/03, 5/14/03, 5/15/03, 6/2/03	BTD Armor Reclamation Facility
Ludium Model 43-37 area floor monitor (S/N 161687)	6/4/03, 6/5/03, 6/6/03	Wash Rack #2
	6/9/03	Wash Racks #2 and #3
	6/11/03, 6/12/03, 6/16/03, 6/19/03 6/20/03, 6/23/03, 6/24/03	Wash Rack #3
	6/25/03	Wash Racks #2 and #3
Ludium Model 2360 alpha/beta data logger (S/N 184938) with the Ludium Model 43-37 area floor monitor (S/N 178371)	6/8/04, 6/9/04, 6/10/04	Concrete Pads #1 and #2
Ludium Model 2360 alpha/beta data logger (S/N 202398) with the Ludium model 43-93 100 cm ² alpha/beta detector (S/N 211706)	6/8/04, 6/9/04, 6/10/04	Concrete Pads #1 and #2

2.2.2 Smear Sample Collection and Analysis

Gross transferable alpha contamination was collected and analyzed to determine if transferable activity is less than or equal to 10% of total activity as assumed in the NUREG/CR-5512 and NUREG 1757 documents for screening level guidelines.

Smear samples were collected over approximately 100 cm^2 areas at systematic and biased locations identified during scanning activities. Smear samples were analyzed for alpha and beta radioactivity using a Ludlum Model 2929 alpha/beta scintillation counter. Three different units were used during the field activities, as summarized in Table 2-5.

Table 2-5: Alpha/Beta Scintillation Counter Used for Transferable Activity Measurements

Instrument Used	Dates Used	Building or Structure
(Meter and Probe)		Where Used
Ludium Model 2929 alpha/beta scintillation counter (S/N 163827)	5/5/03, 5/8/03, 5/9/03, 5/12/03, 5/13/03, 5/14/03	BTD Armor Reclamation Facility
with attached 43-10-1 probe (S/N 171322)	5/15/03	BTD Armor Reclamation Facility, Wash Rack #2
	5/19/03, 5/20/03, 5/21/03, 5/22/03, 5/28/03, 5/29/03, 5/30/03	Wash Rack #2
	6/2/03, 6/3/03, 6/4/03, 6/6/03, 6/9/03	DU Test Enclosure Building and
	6/10/03	Wash Rack #2 DU Test Enclosure Building
	6/11/03, 6/12/03, 6/16/03	Wash Rack #3
	6/26/03, 6/27/03	Wash Racks #2 and #3
	7/8/03 7/9/03, 7/10/03	Wash Rack #2
		Wash Rack #3
Ludlum Model 2929 alpha/beta scintillation counter (S/N 180830)	3/30/04	Wash Rack #3
with attached 43-10-1 probe (S/N 207849)	3/31/04	Wash Rack #2
Ludium Model 2929 alpha/beta scintillation counter (S/N 171590) with attached 43-10-1 probe (S/N 174813)	6/8/04, 6/9/04, 6/10/04	Concrete Pads #1 and #2

2.3 Number of Static Measurements

MARSSIM provides a method to determine the number of measurement locations required in a given survey unit. A minimum number of measurement locations are required in each survey unit to obtain sufficient statistical confidence that the conclusions drawn from the measurements are correct. The following subsections describe the bases for and derivation of the minimum required measurement locations per survey unit.

2.3.1 Estimation of Relative Shift

The minimum number of measurement locations required is dependent on the distribution of site residual radionuclide concentrations relative to the DCGL_w and acceptable decision error limits (α and β).

The relative shift describes the relationship of site residual radionuclide concentrations to the $DCGL_w$ and is calculated using the guidance found in Section 5.5.2.3 of MARSSIM. The relative shift is calculated as follows:

$$\Delta / \sigma = \frac{\text{DCGL}_{w} - \text{LBGR}}{\sigma}$$

Where: $DCGL_w$ = Derived Concentration Guideline Level

- LBGR = concentration at the lower bound of the gray region. The Lower Bound of the Grey Region (LBGR) is the concentration at which the survey unit has an acceptable probability of passing the statistical tests.
- σ = an estimate of the standard deviation of the concentration of residual radioactivity in the survey unit (which includes real spatial variability in the concentration as well as the precision of the measurement system).

As previously stated, the DCGL_w for surface alpha radioactivity is 100 dpm/100cm². The LBGR was conservatively estimated at 70 dpm alpha/100 cm² based on previous studies with similar instruments on concrete. Without prior survey, it is reasonable to assume a coefficient of variation on the order of 30 percent (MARSSIM Section 5.5.2.2). Using a coefficient of variation of 30 percent and the LBGR as an estimate of the sample mean, a sigma value of 21 dpm/100cm² is estimated. Using the parameters discussed above, the relative shift is calculated as 1.4.

2.3.2 Determination of N (Number of Required Measurement Locations)

The final number of required measurement locations per survey unit is 20 as per MARSSIM (Table 5.5) given a relative shift of 1.4 and an error rate for both Type I and Type II errors of five percent (i.e., $\alpha = \beta = 0.05$). The actual number of measurements taken in each survey unit ranges from 20 to 24 samples based on the size of the survey area.

2.4 Elevated Measurement Criterion (DCGL_{EMC})

MARSSIM states that, for Class 1 survey units, a dose area factor should be used to evaluate the magnitude by which the concentration within a small area of elevated activity can exceed the $DCGL_w$ while maintaining compliance with the release criterion. For the purpose of ALARA, the $DCGL_w$ will be used as the $DCGL_{EMC}$, which corresponds to an area factor of one. Since the

Bomb Throwing Device - Structures	Final Report
Aberdeen Proving Ground	Remediation and Final Status Survey

scan minimum detectable concentration of the instrumentation is sensitive enough to identify the $DCGL_W$ with a 90% confidence limit (refer to Appendices B, C, and D), it is unlikely that small areas of elevated activity exceeding the $DCGL_W$ would be missed during surface scans.

2.5 Static Measurement Locations

Measurement locations in Class 1 and Class 2 survey units were established using a random start point in a systematic rectangular grid. The Class 3 survey unit measurement locations were randomly selected. The grid spacing for Class 1 and Class 2 survey units was determined, based on the measured area of the survey unit, using the following equation (Equation 5-7 from MARSSIM).

$$L = \sqrt{\frac{A}{0.866N}}$$

Where: L = rectangular grid spacing for survey unit

A = area of survey unit

N = number measurement locations

Measurement spacing results (L) using the equation above are presented in Table 2-6. Maps presenting the SU delineations are presented in Appendix E.

Table 2-6:	Summary of Area	, Number of Data	Points, and Grid	Spacing by SU
------------	-----------------	------------------	------------------	---------------

Survey Unit Description	Survey Unit Class	Area, A (m²)	Number of Data Points, N	Grid Spacing, L (m)
BARF – North Room Floor	1	88.8	24	2.058
BARF – South Room Floor	1	88.8	24	2.058
BARF – North Room Lower Walls	1	76.6	24	1.920
BARF – South Room Lower Walls	1	76.6	24	1.920
BARF – Ceilings and Upper Walls	3	488	21	5.180
Wash Rack #2 – Floor South Side	1	68	20	1.859
Wash Rack #2 – Floor North Side	1	68	20	1.859
Wash Rack #2 – Lower Walls	1	90	24	2.134
Wash Rack #2 - Ceiling and	2	346	20	4.176

DAAA09-00G-0002/0039

Bomb Throwing Device - Structures Aberdeen Proving Ground

Final Report Remediation and Final Status Survey

Survey Unit Description	Survey Unit Class	Area, A (m ²)	Number of Data Points, N	Grid Spacing, L (m)
Upper Walls				<u></u>
Wash Rack #3 – Floor South Side	1	68	20	1.859
Wash Rack #3 – Floor North Side	1	68	20	1.859
Wash Rack #3 - Lower Walls	1	90	24	2.134
Wash Rack #3 – Ceiling and Upper Walls	2	346	20	4.176
Concrete Pad #2 - North	1	107	20	2.486
Concrete Pad #2 South	1	107	20	2.486
Concrete Pad #1 North	1	60	20	1.861
Concrete Pad #1 South	1	60	20	1.861

3.0 RESULTS

Field activities took place during three separate mobilizations. The first mobilization began May 3, 2003 and ended August 27, 2003. The second mobilization began February 10, 2004 and ended March 31, 2004. The third mobilization began June 8, 2004 and ended June 15, 2004. Appendix F contains a table that documents every day that CABRERA personnel were on-site, the instruments used, and the activities performed.

All raw data collected on Radiological Survey Maps for each SU (survey unit) are provided in Appendix G. Scan survey results are provided graphically in the Figures section of this FSS Report and are referenced in the following sub-sections. Additional data for each SU include worksheets that convert the raw data (recorded in counts per minute) to dpm/100cm² for integrated direct measurements (integrated one minute counts) from each one meter square grid with cross-reference to grid numbers) and 100 cm² smear results from each one meter square grid with cross-reference to grid numbers. These worksheets are provided in Appendix H.

3.1 BTD Armor Reclamation Facility

3.1.1 Surface Alpha Radioactivity Scan Surveys

The floors and the lower walls were surveyed for surface alpha radioactivity in the BTD Armor Reclamation Facility. All of these areas are designated MARSSIM Class 1. The ceiling and upper walls are designated MARSSIM Class 3. In the Figures section, Figures 3 through 11 graphically depict the results of the scan surveys. As can be observed in the figures, no alpha scanning measurements exceeded the DCGL of 100 dpm/100cm².

3.1.2 Integrated Direct Surface Alpha Radioactivity Measurements

The BARF was divided into five SUs – the North Floor Room, the South Floor Room, the North Room Lower Walls, and the South Room Lower Walls were Classified MARSSIM Class 1 SUs. The Ceiling and Upper Walls were classified MARSSIM Class 3 SUs. Twenty-four integrated direct surface alpha measurements were taken on the North Floor Room and the maximum reading was 30.1 dpm/100cm². Twenty-four integrated direct surface alpha measurements were taken on the South Floor Room, and the maximum reading was 20.0 dpm/100cm². Twenty-four integrated direct surface alpha measurements were taken on the North Room Lower Walls and the maximum reading was 12.0 dpm/100cm². Twenty-four integrated direct surface alpha measurements were taken on the South Room Lower Walls and the maximum reading was 10.0 dpm/100cm². Twenty-one integrated direct surface alpha measurements were taken on the South Room Lower Walls and the maximum reading was 10.0 dpm/100cm². Twenty-one integrated direct surface alpha measurements were taken on the South Room Lower Walls and the maximum reading was 10.0 dpm/100cm². Twenty-one integrated direct surface alpha measurements were taken on the South Room Lower Walls and the maximum reading was 10.0 dpm/100cm². Twenty-one integrated direct surface alpha measurements were taken on the South Room Lower Walls and the maximum reading was 10.0 dpm/100cm². Twenty-one integrated direct surface alpha measurements were taken on the Ceiling and Upper Walls and the maximum reading was 14.3 dpm/100cm². Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.1.3 Smear Sample Collection and Analysis

All smear samples taken from the BARF resulted in alpha measurements of less than 10 $dpm/100cm^2$. Twenty-four smear samples were taken on the North Floor Room and the maximum alpha reading was 6.5 $dpm/100cm^2$. Twenty-four smear samples were taken on the

South Floor Room and the maximum alpha reading was 6.5 dpm/100cm². Twenty-two smear samples were taken on the North Room Lower Walls and the maximum alpha reading was 5.8 dpm/100cm². Twenty-five smear samples were taken on the South Room Lower Walls and the maximum reading was 4.1 dpm/100cm². Twenty-three smear samples were taken on the Ceiling and Upper Walls and the maximum reading was 4.2 dpm/100cm².

3.1.4 Recommendation

In accordance with the BARF FSS Work Plan and consistent with MARSSIM guidance, a SU can be cleared for release where all scans and integrated direct measurements are below the DCGL of 100 dpm/100cm² and all smear measurements are less than the DCGL of 10 dpm/100cm². Therefore, the North Room Floor, the South Room Floor, the North Room Lower Wall, the South Room Lower Wall, and the Ceiling and Upper Walls SUs are recommended for unrestricted release.

3.2 Wash Rack #2

3.2.1 Surface Alpha Radioactivity Scan Surveys

The floor and the lower walls were surveyed for surface alpha radioactivity in Wash Rack #2. All of these areas are designated MARSSIM Class 1. The ceiling and upper walls are designated MARSSIM Class 2 and approximately 10% of the total area was scanned for alpha activity. All scans of ceiling and upper walls resulted in alpha counts that were equal to or below background, so results of these scans were not recorded on official CABRERA forms. In the Figures section of this FSS, Figures 12 through 16 graphically depict the results of the scan surveys on the floor and lower walls. As can be observed in the figures, no alpha scanning measurements exceeded the DCGL of 100 dpm/100cm².

3.2.2 Integrated Direct Surface Alpha Radioactivity Measurements

Wash Rack #2 was divided into four SUs – the North Floor, the South Floor, and the Lower Walls were classified Class 1 and the Ceiling and Upper Walls were classified Class 2. Twenty integrated direct surface alpha measurements were taken on the North Floor and the maximum reading was $15.0 \text{ dpm}/100 \text{ cm}^2$. Twenty integrated direct surface alpha measurements were taken on the South Floor and the maximum reading was $11.9 \text{ dpm}/100 \text{ cm}^2$. Twenty-four integrated direct surface alpha measurements were taken on the Lower Walls and the maximum reading was $13.9 \text{ dpm}/100 \text{ cm}^2$. Twenty integrated direct surface alpha measurements were taken on the Ceiling and Upper Walls and the maximum reading was $10.0 \text{ dpm}/100 \text{ cm}^2$. Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.2.3 Smear Sample Collection and Analysis

Twenty smear samples were taken on the North Floor and the maximum reading was $2.7 \text{ dpm}/100 \text{cm}^2$. Twenty smear samples were taken on the South Floor and the maximum reading was $2.7 \text{ dpm}/100 \text{cm}^2$. Twenty-four smear samples were taken on the Lower Walls and the

maximum reading was 2.7 dpm/100cm². Twenty integrated direct surface alpha measurements were taken on the Ceiling and Upper Walls and the maximum reading was 2.7 dpm/100cm². Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.2.4 Recommendation

In accordance with the Wash Rack FSS Work Plan and consistent with MARSSIM guidance, a SU can be cleared for release where all scans and integrated direct measurements are below the DCGL of 100 dpm/100cm² and all smear measurements are less than the DCGL of 10 dpm/100cm². Therefore, the North Floor SU, the South Floor SU, the Lower Walls SU, and the Ceiling and Upper Walls SU of Wash Rack #2 are recommended for unrestricted release.

3.3 Wash Rack #3

3.3.1 Surface Alpha Radioactivity Scan Surveys

The floor and the lower walls were surveyed for surface alpha radioactivity in Wash Rack #3. All of these areas are designated MARSSIM Class 1. The ceiling and upper walls are designated MARSSIM Class 2 approximately 10% of the total area was scanned for alpha activity. All scans of ceiling and upper walls resulted in alpha counts that were equal to or below background, so results of these scans were not recorded on official CABRERA forms. In the Figures section of this FSS, Figures 17 through 21 graphically depict the results of the scan surveys on the floor and lower walls. As can be observed in the figures, no alpha scanning measurements exceeded the DCGL of 100 dpm/100cm².

3.3.2 Integrated Direct Surface Alpha Radioactivity Measurements

Wash Rack #3 was divided into four SUs – the North Floor, the South Floor, and the Lower Walls were classified Class 1 and the Ceiling and Upper Walls were classified Class 2. Twenty integrated direct surface alpha measurements were taken on the North Floor and the maximum reading was 14.9 dpm/100cm². Twenty integrated direct surface alpha measurements were taken on the South Floor and the maximum reading was 6.8 dpm/100cm². Twenty-four integrated direct surface alpha measurements were taken on the Lower Walls and the maximum reading was 8.8 dpm/100cm². Twenty integrated direct surface alpha measurements were taken on the Lower Walls and the maximum reading was 8.8 dpm/100cm². Twenty integrated direct surface alpha measurements were taken on the Ceiling and Upper Walls and the maximum reading was 10.0 dpm/100cm². Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.3.3 Smear Sample Collection and Analysis

Twenty smear samples were taken on the North Floor and the maximum reading was $0.9 \text{ dpm}/100 \text{cm}^2$. Twenty smear samples were taken on the South Floor and the maximum reading was -0.6 dpm/100 cm². Twenty-four smear samples were taken on the Lower Walls and the maximum reading was 2.4 dpm/100 cm². Twenty integrated direct surface alpha measurements were taken on the Ceiling and Upper Walls and the maximum reading was 0.9 dpm/100 cm².

Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.3.4 Recommendation

In accordance with the Wash Rack FSS Work Plan and consistent with MARSSIM guidance, a SU can be cleared for release where all scans and integrated direct measurements are below the DCGL of 100 dpm/100cm² and all smear measurements are less than the DCGL of 10 dpm/100cm². Therefore, the North Floor SU, the South Floor SU, the Lower Walls SU, and the Ceiling and Upper Walls SU of Wash Rack #3 are recommended for unrestricted release.

3.4 Concrete Pad #2

This 22- by 15-m pad was cleaned by shot blasting it with a Blastractm. Then the pad was surveyed with a floor monitor and Total Station. The pad was divided into two survey units (under MARSSIM requirements, this Class 1 structure was treated similar to a building interior). Systematic fixed count surveys with alpha/beta meter were completed along with smears at those locations.

3.4.1 Surface Alpha Radioactivity Scan Surveys

One hundred percent of the surface of Concrete Pad #2 was surveyed for surface alpha radioactivity. Concrete Pad #2 is designated MARSSIM Class 1. In the Figures section of this FSS, Figures 22 and 23 graphically depict the results of the scan survey. As can be observed in the figures, no alpha scanning measurements exceeded the DCGL of 100 dpm/100cm².

3.4.2 Integrated Direct Surface Alpha Radioactivity Measurements

Concrete Pad #2 was divided into two Class 1 SUs and they were designated North and South. Twenty integrated direct surface alpha measurements were taken on both the North SU and the South SU. The maximum measurement taken on the North SU was 27.1 dpm/100cm² and the maximum measurement taken on the South SU was 18.0 dpm/100cm². Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.4.3 Smear Sample Collection and Analysis

Twenty smear samples were taken on both the North SU and the South SU. The maximum measurement taken on the North SU was 2.9 $dpm/100cm^2$ and the maximum measurement taken on the South SU was 1.6 $dpm/100cm^2$. Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.4.4 Recommendation

In accordance with the BTD FSS Work Plan and consistent with MARSSIM guidance, a SU can be cleared for release where all scans and integrated direct measurements are below the DCGL of $100 \text{ dpm}/100 \text{cm}^2$ and all smear measurements are less than the DCGL of $10 \text{ dpm}/100 \text{cm}^2$.

Therefore, both the North SU and the South SU of Concrete Pad #2 are recommended for unrestricted release.

3.5 Concrete Pad #1

This pad is somewhat smaller than the pad behind Building 701. As with Concrete Pad #2, the pad was divided into two survey units. Systematic fixed count surveys with alpha/beta meter were completed along with smears at those locations.

3.5.1 Surface Alpha Radioactivity Scan Surveys

Concrete Pad #1 is designated MARSSIM Class 1. In the Figures section of this FSS, Figures 24 and 25 graphically depict the results of the scan survey. As can be observed in the figures, no alpha scanning measurements exceeded the DCGL of $100 \text{ dpm}/100 \text{cm}^2$.

3.5.2 Integrated Direct Surface Alpha Radioactivity Measurements

Concrete Pad #1 was divided into two Class 1 SUs and they were designated North and South. Twenty integrated direct surface alpha measurements were taken on both the North SU and the South SU. The maximum measurement taken on the North SU was $33.2 \text{ dpm}/100 \text{cm}^2$ and the maximum measurement taken on the South SU was $16.3 \text{ dpm}/100 \text{cm}^2$. Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.5.3 Smear Sample Collection and Analysis

Twenty smear samples were taken on both the North SU and the South SU. The maximum measurement taken on the North SU was $4.2 \text{ dpm}/100 \text{cm}^2$ and the maximum measurement taken on the South SU was $1.6 \text{ dpm}/100 \text{cm}^2$. Since all measurements were below the DCGL, no further statistical analysis of the data was performed.

3.5.4 Recommendation

In accordance with the BTD FSS Work Plan and consistent with MARSSIM guidance, a SU can be cleared for release where all scans and integrated direct measurements are below the DCGL of 100 dpm/100cm² and all smear measurements are less than the DCGL of 10 dpm/100cm². Therefore, both the North SU and the South SU of Concrete Pad #1 are recommended for unrestricted release.

4.0 FINAL STATUS SURVEY INSTRUMENT QUALITY ASSURANCE AND QUALITY CONTROL

The purpose of this section is to document the calibration of the radiological survey instruments used during the FSS, and the quality control tracking of each instrument as specified in the Work Plans (as documented in Appendices B, C, and D). Data collection activities were performed in accordance with written procedures and/or protocols in order to ensure consistent, repeatable results. The Project Engineer ensured that individuals were appropriately trained to use project instrumentation and other equipment, and that instrumentation met the required detection sensitivities.

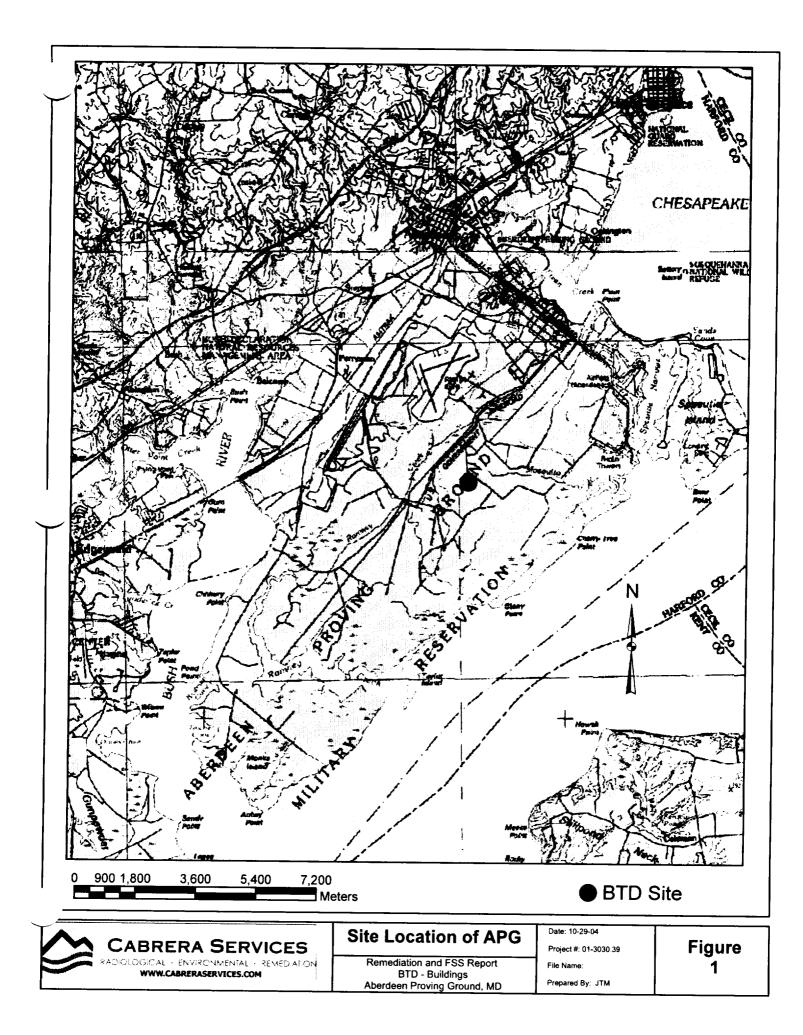
Scanning and integrated direct measurements were performed to measure surface radioactivity levels for total uranium. These measurements were based solely on alpha emissions due to high specificity and sensitivity, and low background interference. For smear measurements, beta measurements were collected in tandem with alpha measurements as a qualitative assessment to confirm survey assumptions. Prior to the initiation of alpha survey activities, surfaces of interest were cleaned to remove dirt and grime that could shield alpha emissions from detection.

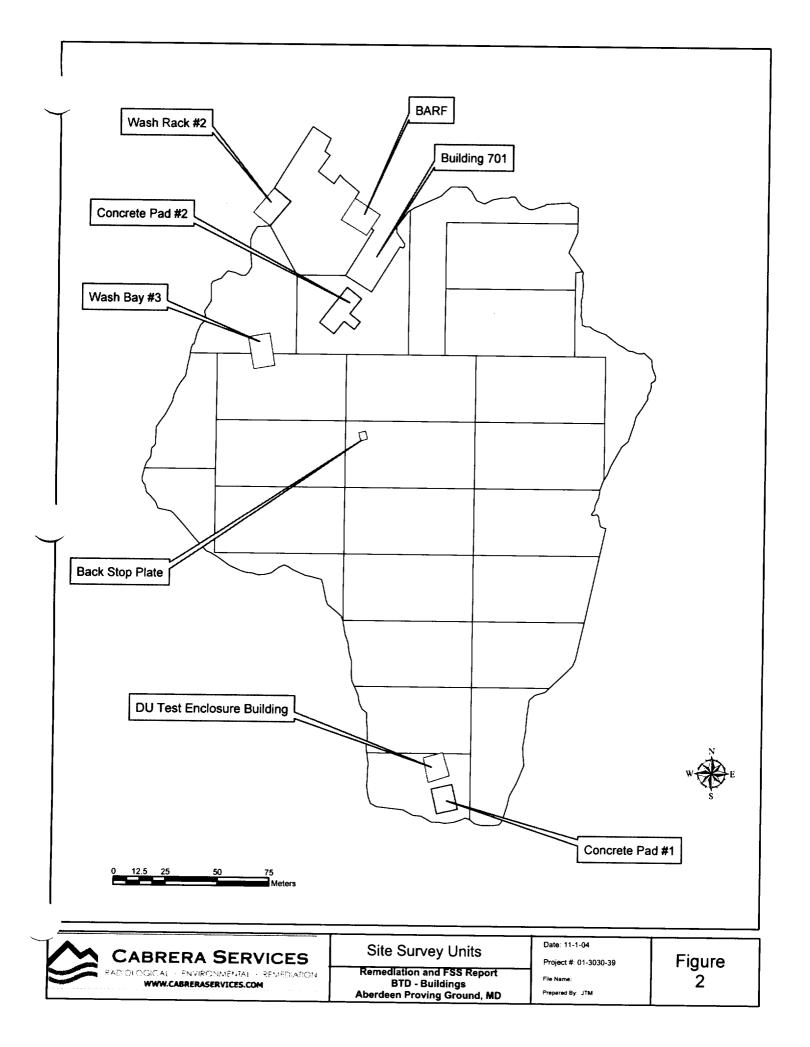
Current calibration/maintenance records were kept on site for review and inspection (included in Appendix I). The records include, at a minimum, the following:

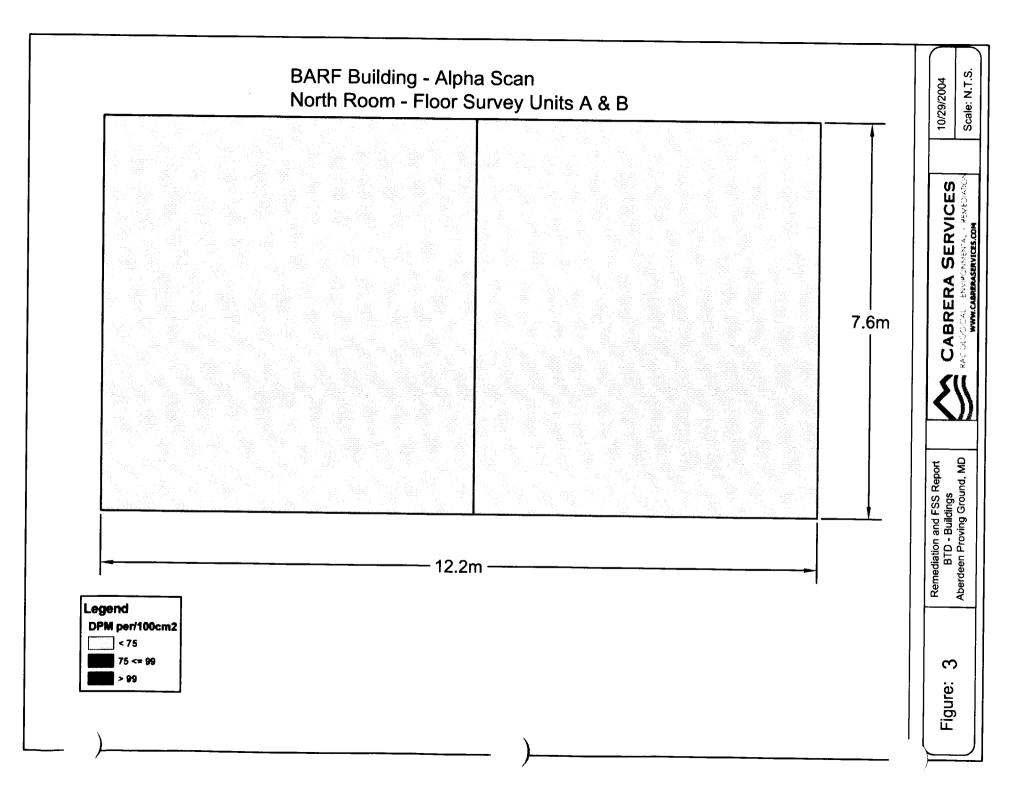
- name of the equipment
- equipment identification (model and serial number)
- manufacturer
- date of calibration
- calibration due date

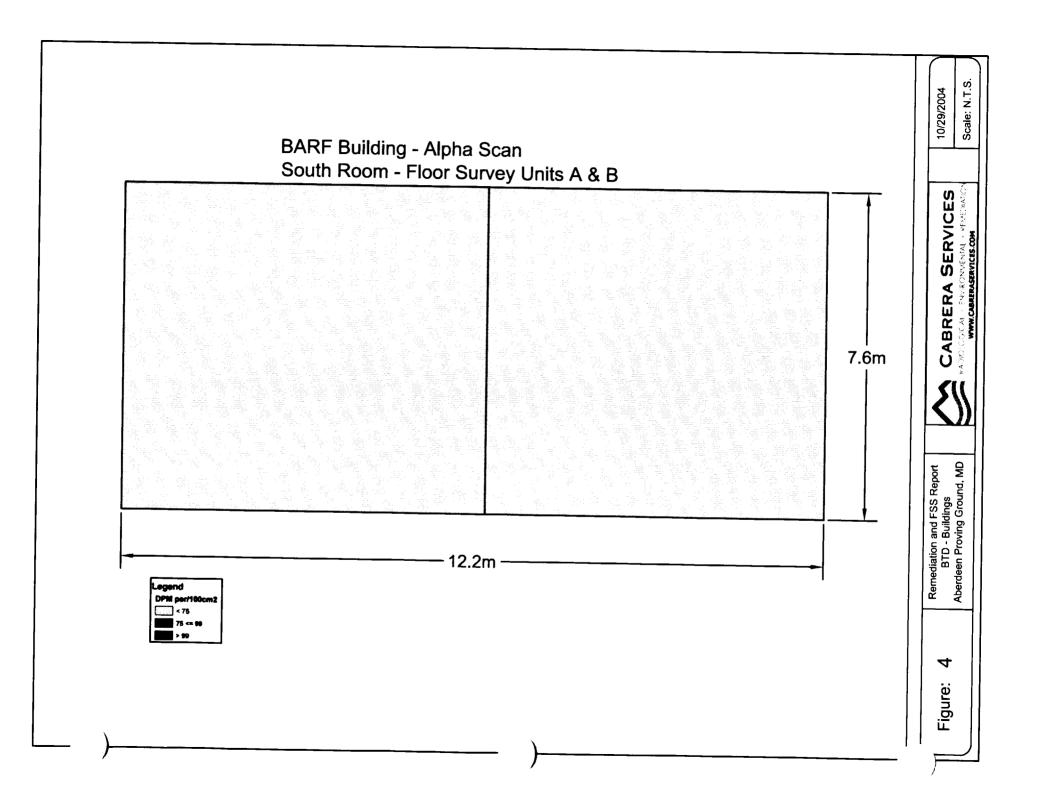
Instrumentation was maintained and calibrated to manufacturers' specifications to ensure that required traceability, sensitivity, accuracy and precision of the equipment/instruments were maintained. Instruments were calibrated at a facility possessing appropriate NRC and/or Agreement State licenses for performing calibrations using National Institute of Standards and Technology (NIST) traceable sources. Copies of the calibration certificates for the sources are also provided in Appendix I. A chronological summary of field activities at each structure/SU and instrumentation is presented in Appendix F.

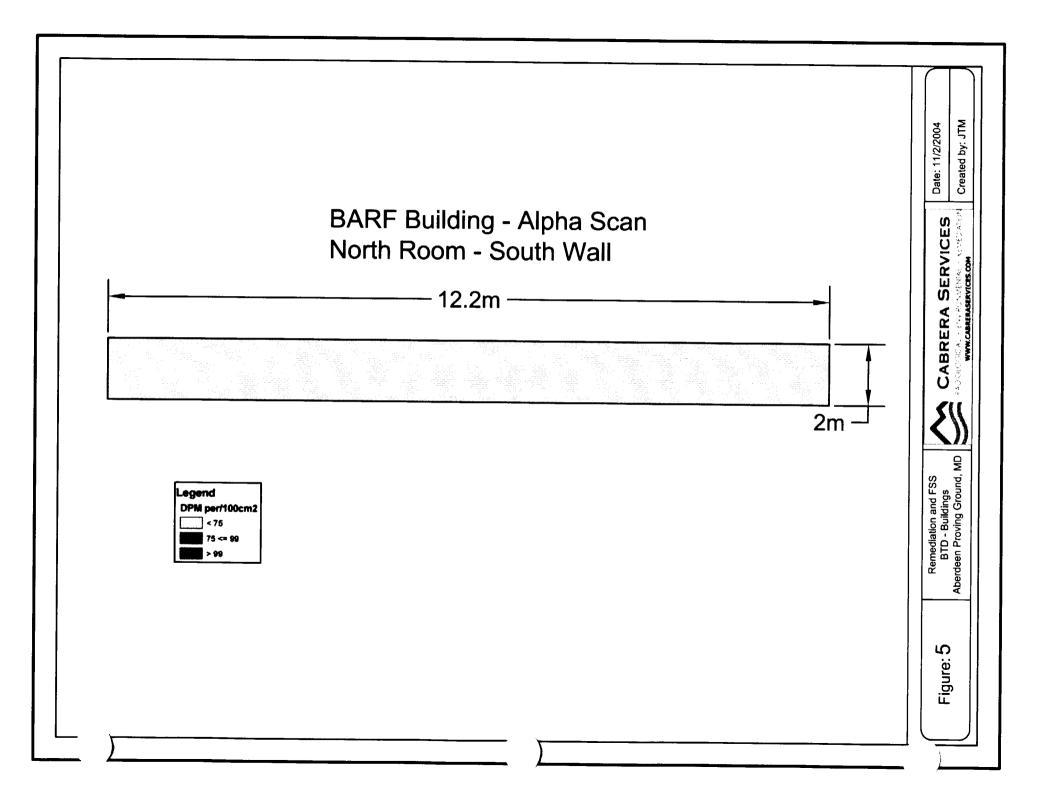
QC measurements were performed on all deployed field instruments each day, before and after each use at a minimum. A controlled area was used to perform these checks. The QC investigation levels for count rate instruments used during the FSS were ± 2 -sigma (2 σ) (warning) and $\pm 3\sigma$ (fail). Exposure rate and other radiation detection instruments were evaluated using a qualitative $\pm 20\%$ against the indicated check source response on the meter. If any single measurement was found to be outside of its investigation level, the measurement was repeated. If the second count was also found to be outside of this criterion, the instrument was investigated to assess whether any external biases or instrument physical damage was present. If response checks were found to be outside of $\pm 3\sigma$, the instrument was taken out of service unless evaluated and approved by the Field Radiological Engineer or the Project Manager. Control charts for check source response, background count rates (where applicable), and copies of the daily check source logs for all instruments are provided in Appendix I. Gross transferable alpha contamination was collected and analyzed to determine if transferable activity is less than or equal to 10% of total activity as assumed in the NUREG/CR-5512 and NUREG 1757 documents for screening level guidelines.

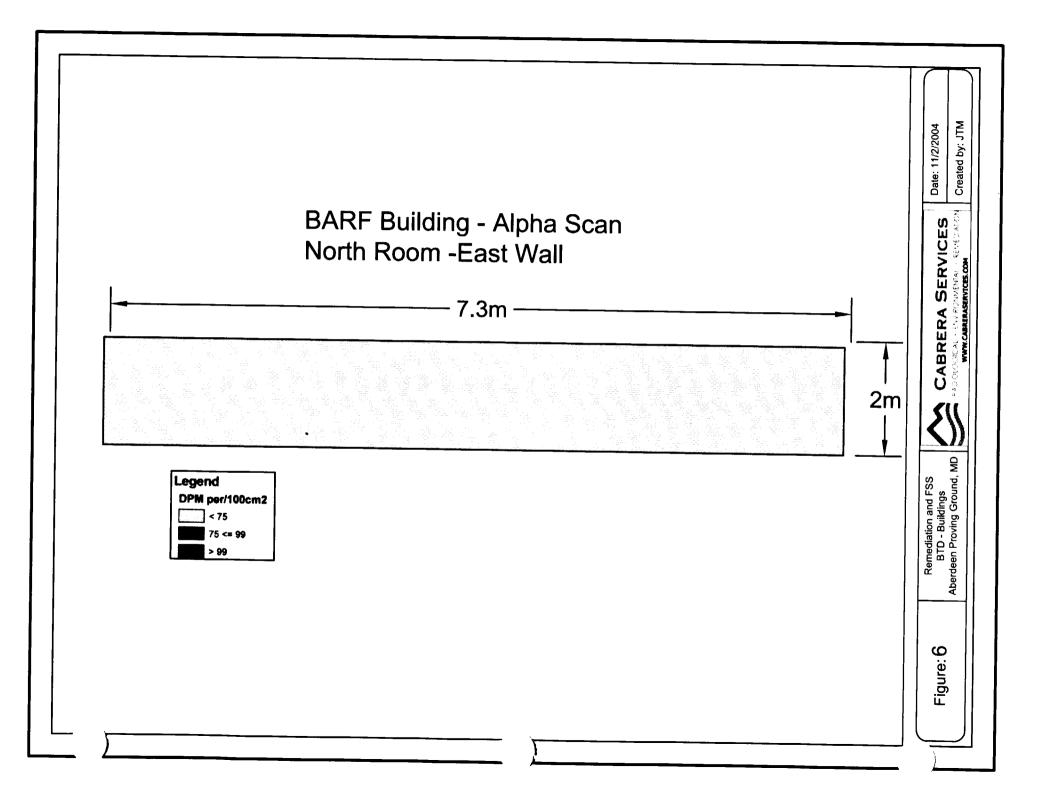

Smear samples were collected over approximately 100 cm² areas at systematic and biased locations identified during scanning activities. Smear samples were analyzed for alpha and beta radioactivity using a Ludlum Model 2929 alpha/beta scintillation counter.

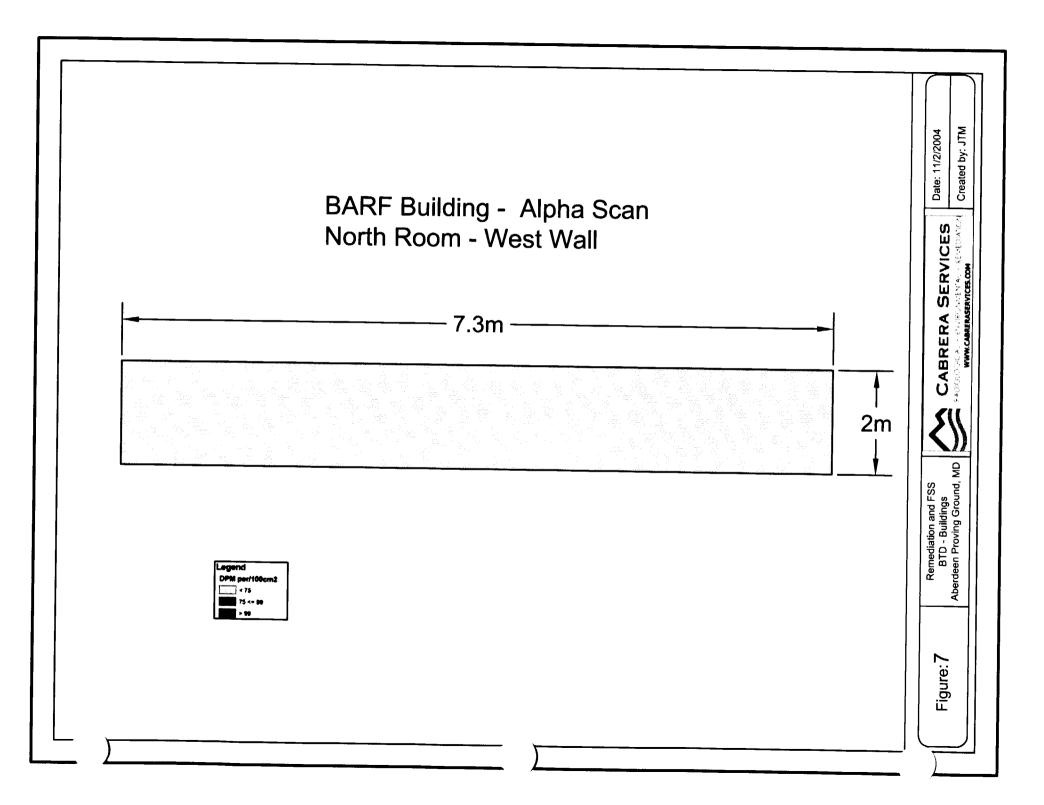

Control charts for check source response, background count rates (where applicable), and copies of the daily check source logs for all instruments are provided in Appendix I.

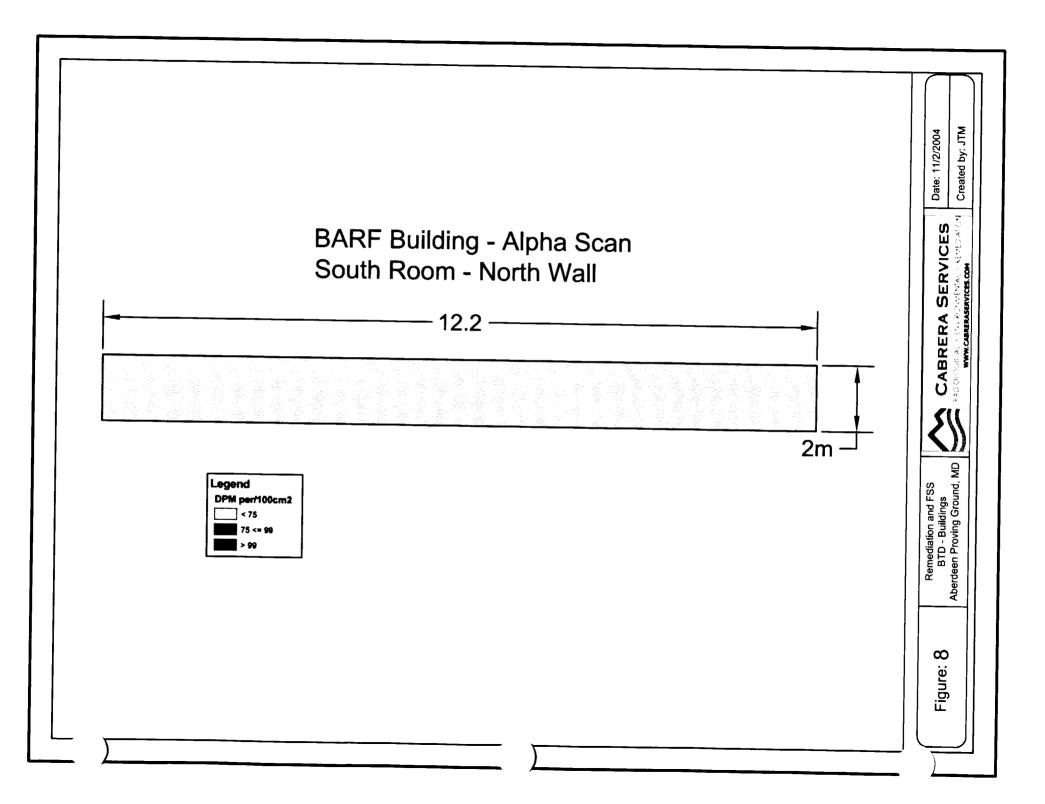

5.0 REFERENCES

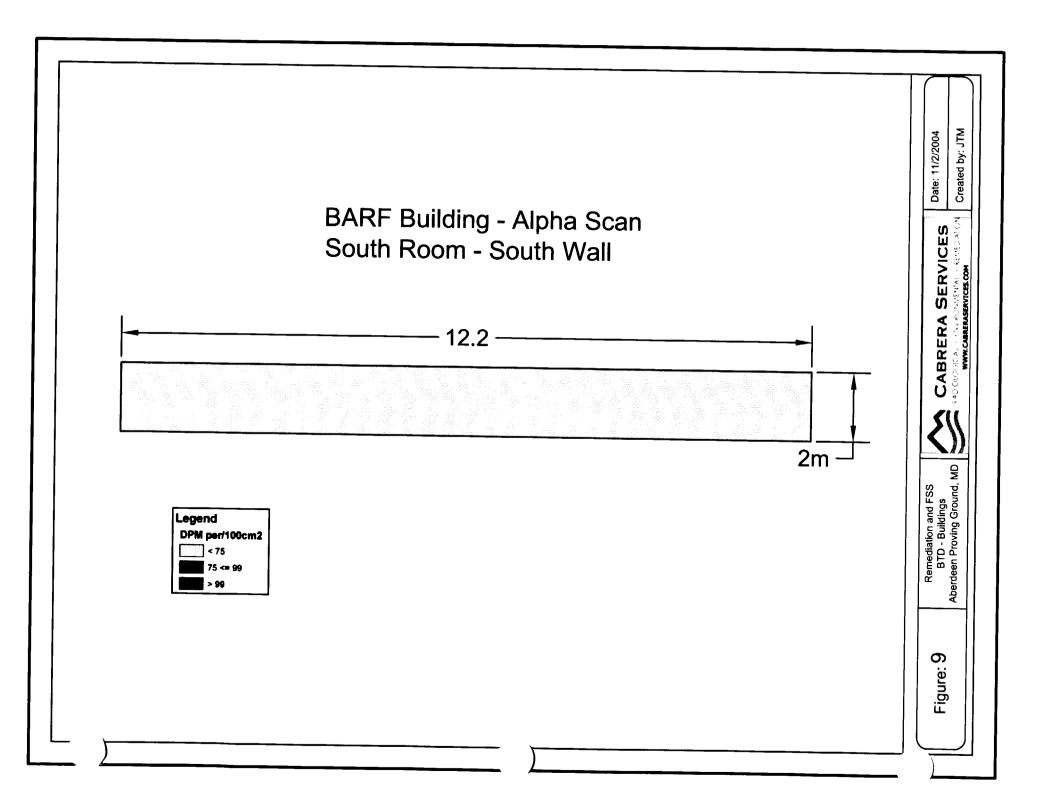

- (BARG, 1995) Specific Manufacturing Capability Program, Depleted Uranium Constituents and Decay Heating, Lockheed, Idaho presentation, dated October 3, 1995.
- (CABRERA, 2003) CABRERA Work Plan, "Final Status Survey Plan for the Bomb Throwing Device (BTD) Site, Aberdeen Proving Ground, Aberdeen, MD", Contract DAAA09-00-G-0002/0039.
- (CABRERA, 2004) CABRERA Report, "Remediation and Final Status Survey, Bomb Throwing Device Site Soils," Contract DAAA09-00-G-0002/0039.
- (NRC, 2000) NUREG-1575, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), U.S. Nuclear Regulatory Commission, dated August, 2000.
- (NRC, 2003) NUREG-1757, Consolidated NMSS Decommissioning Guidance, Rev. 1, U.S. Nuclear Regulatory Commission, September 2003.

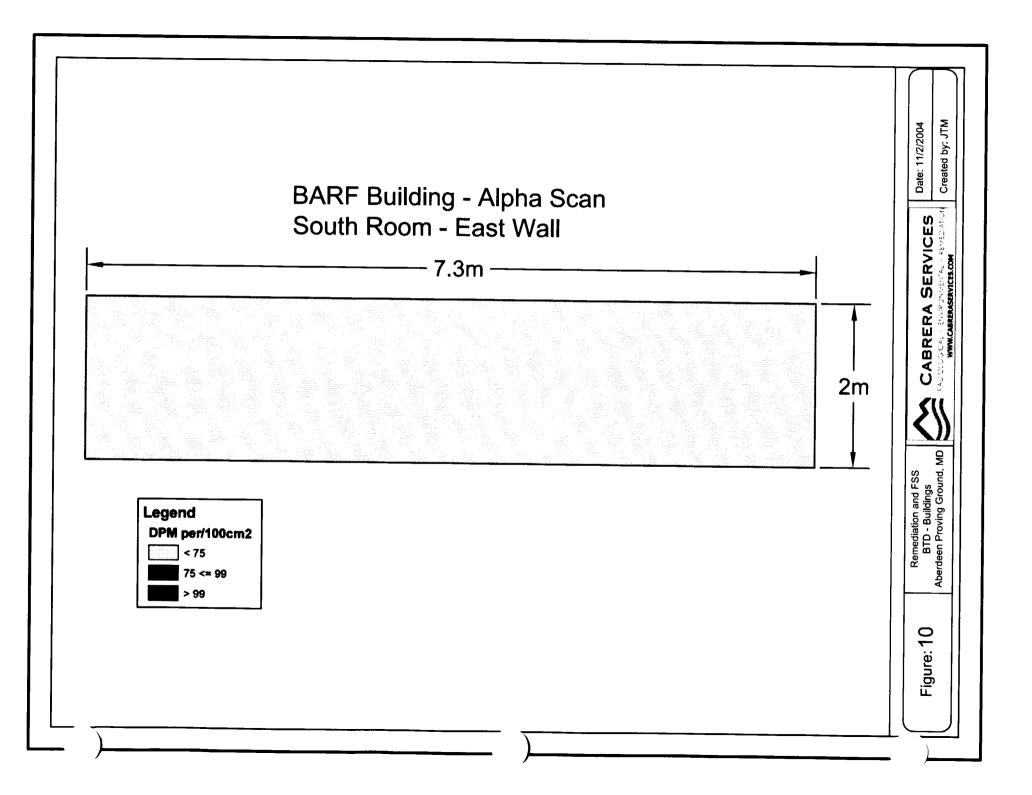

FIGURES

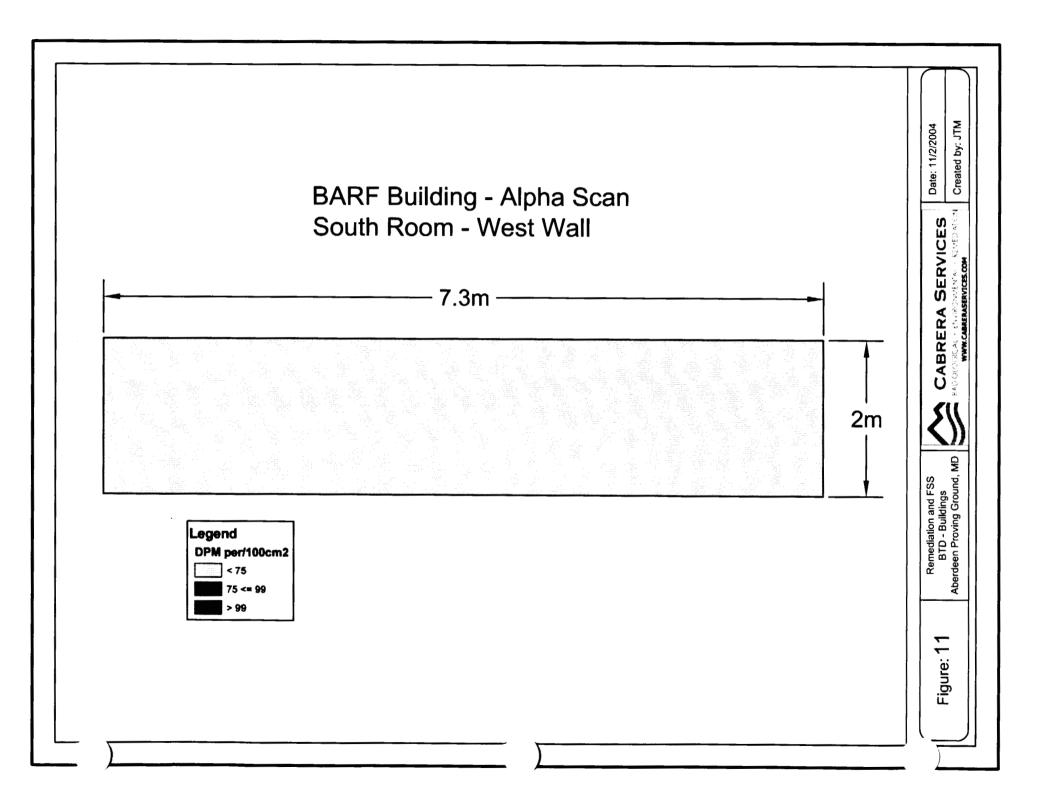


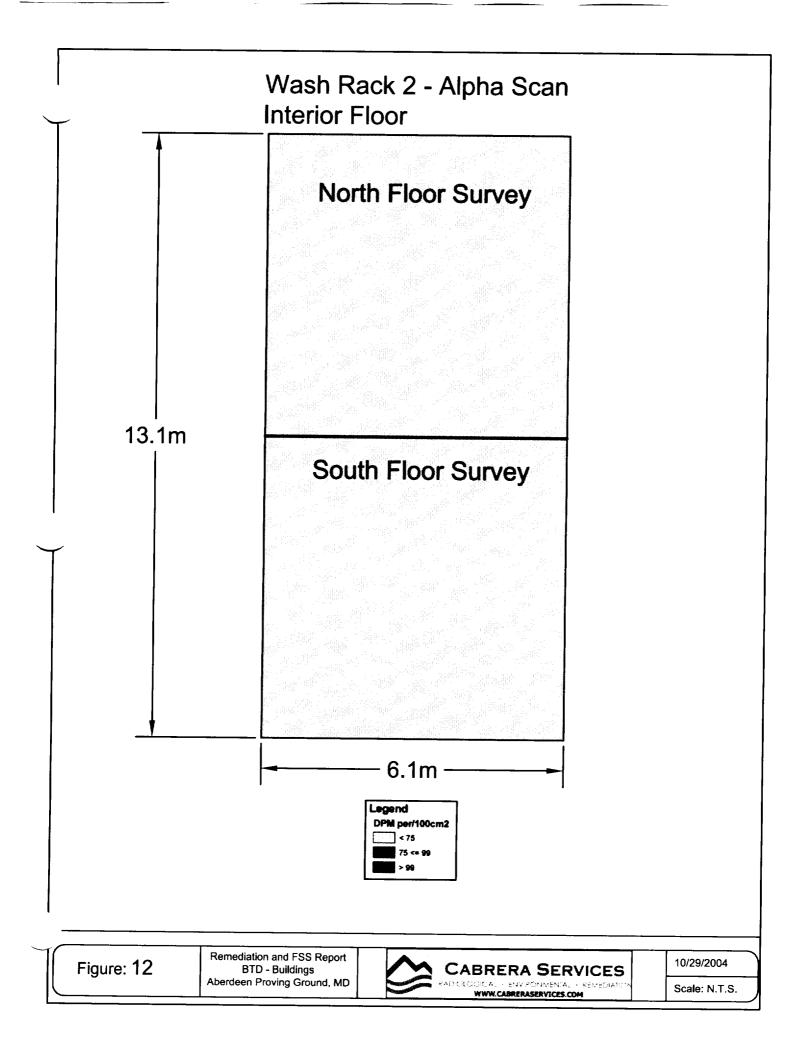


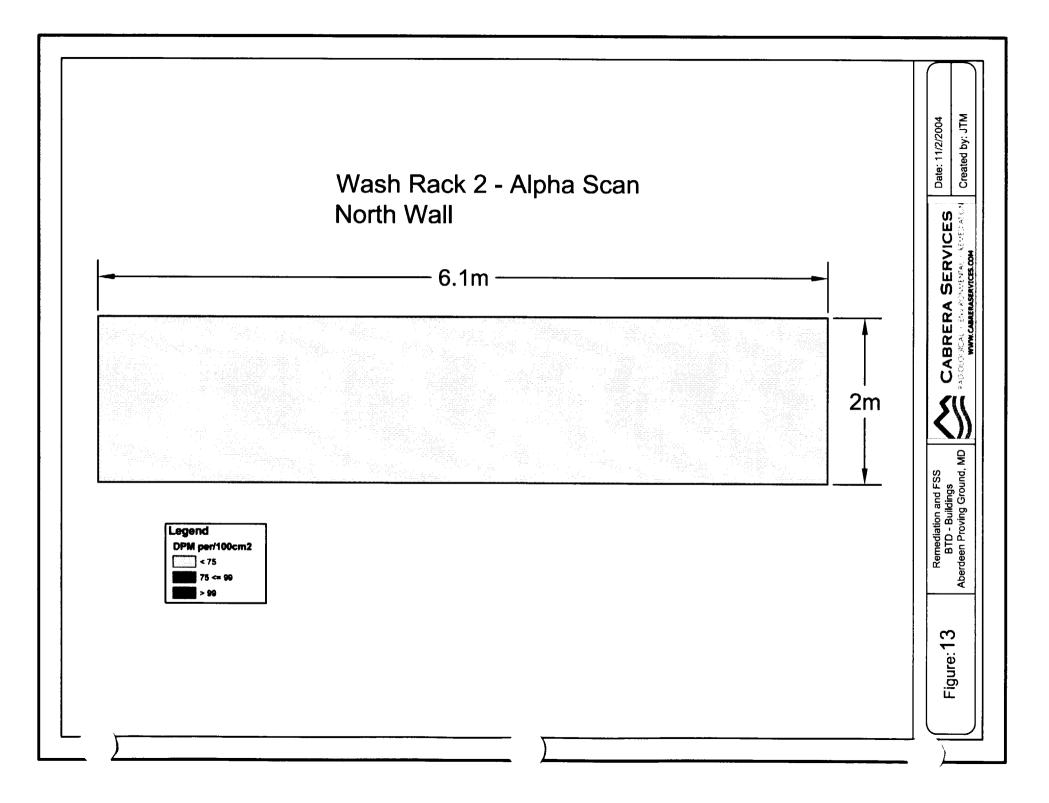


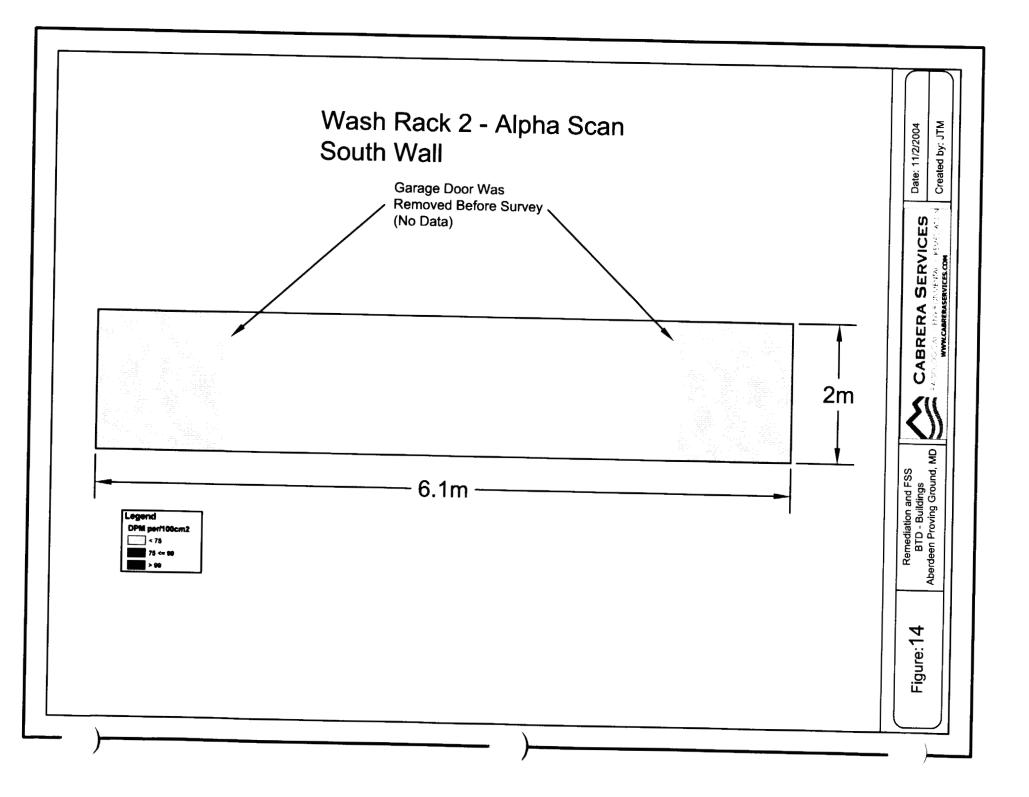


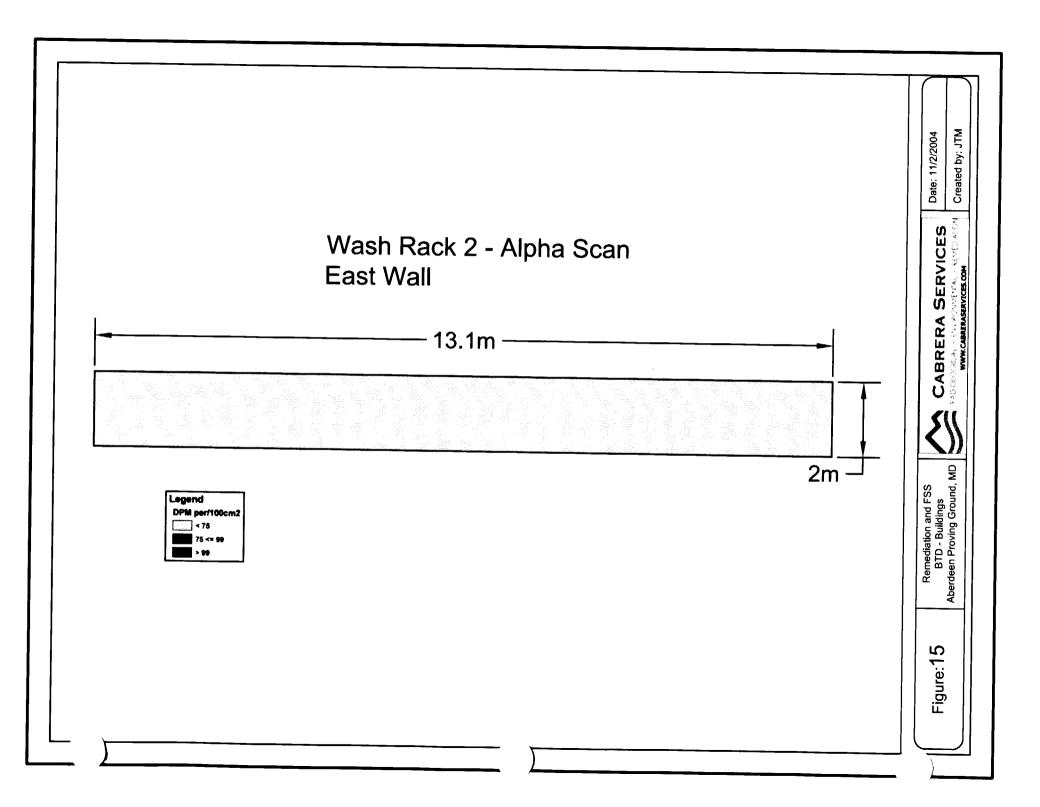


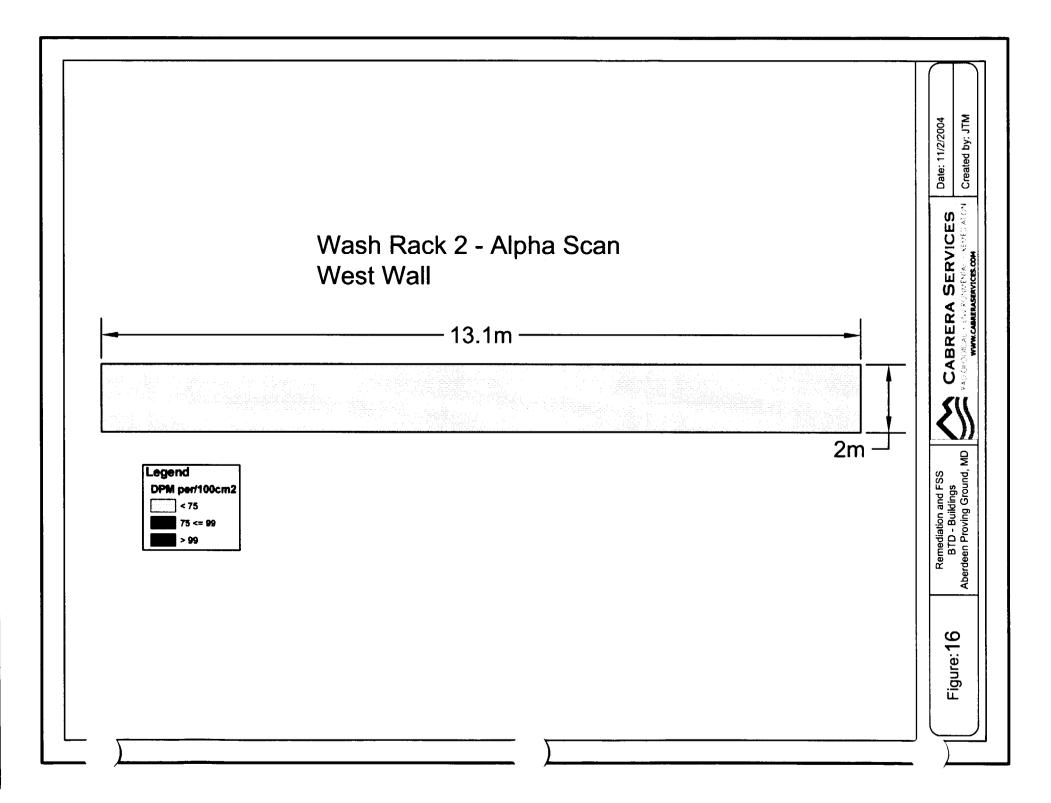


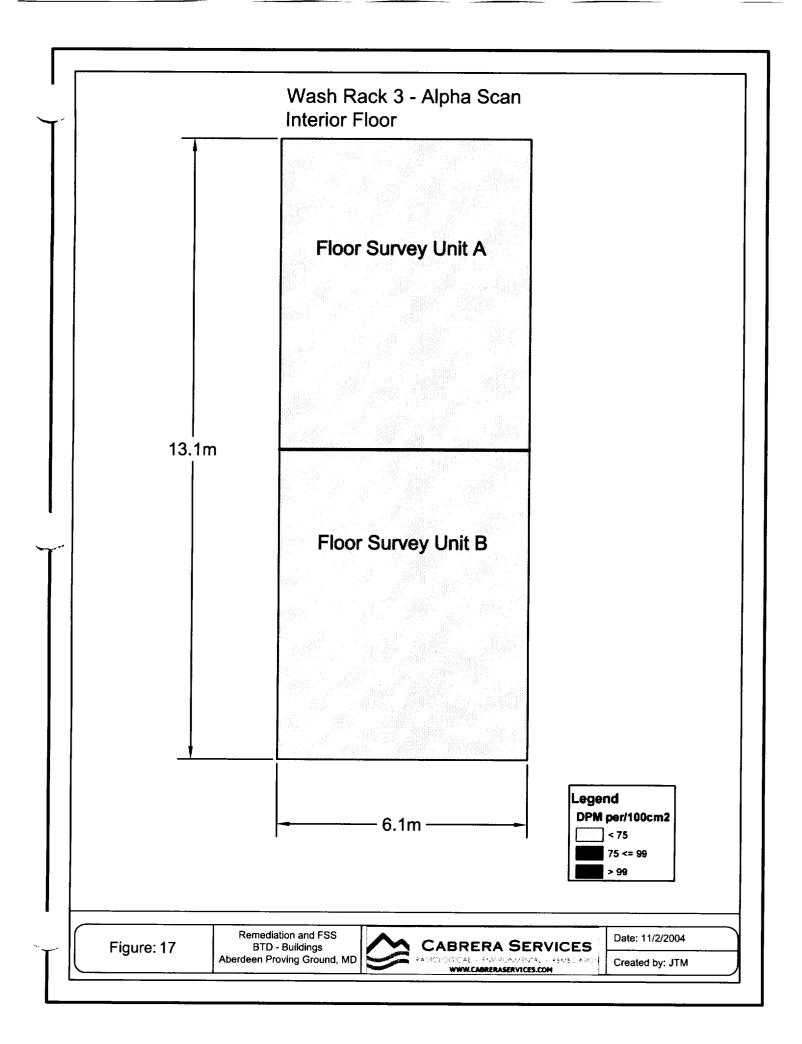


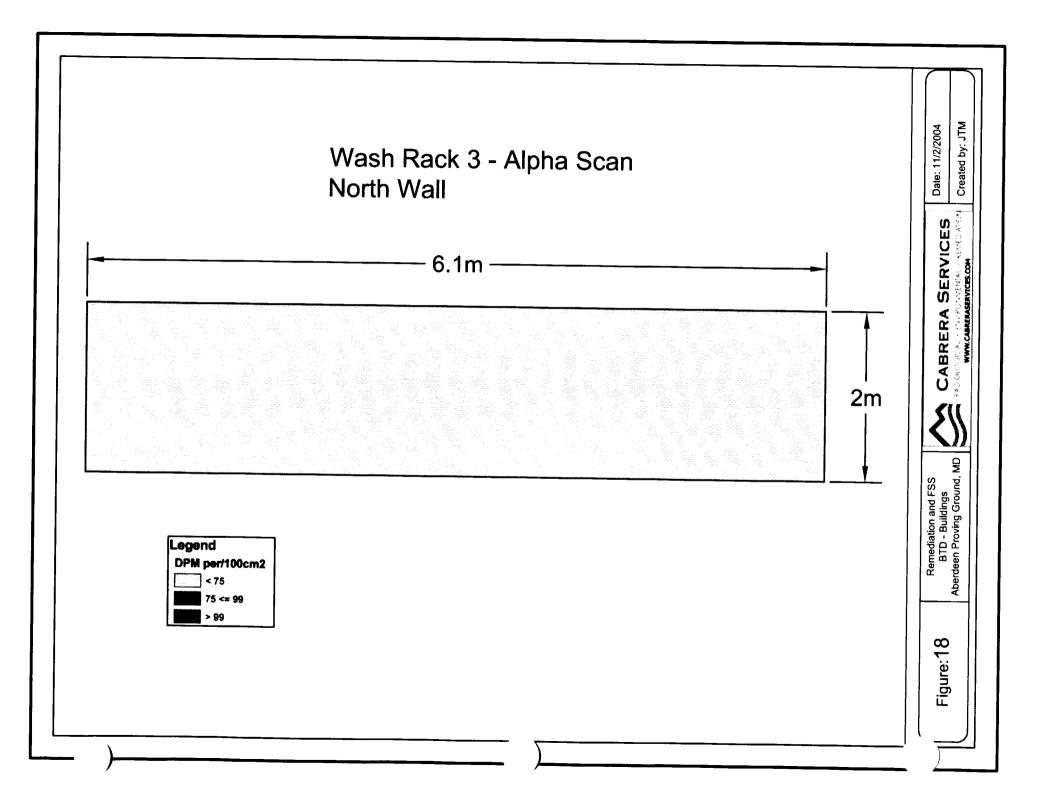


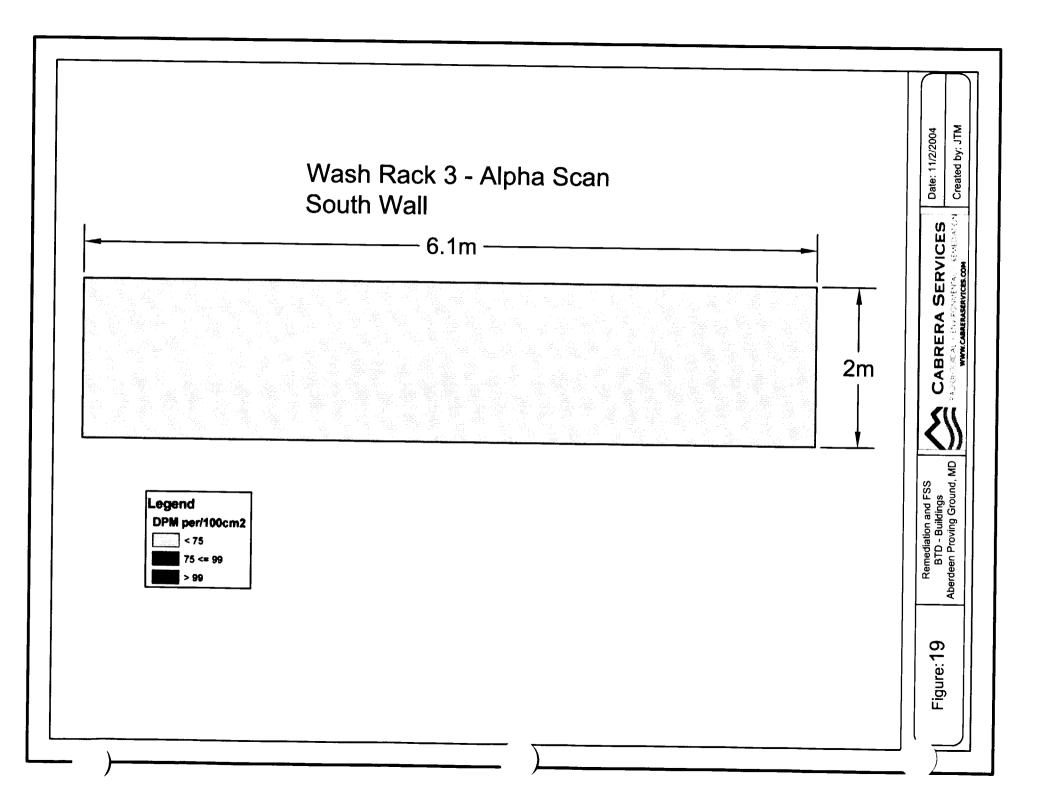


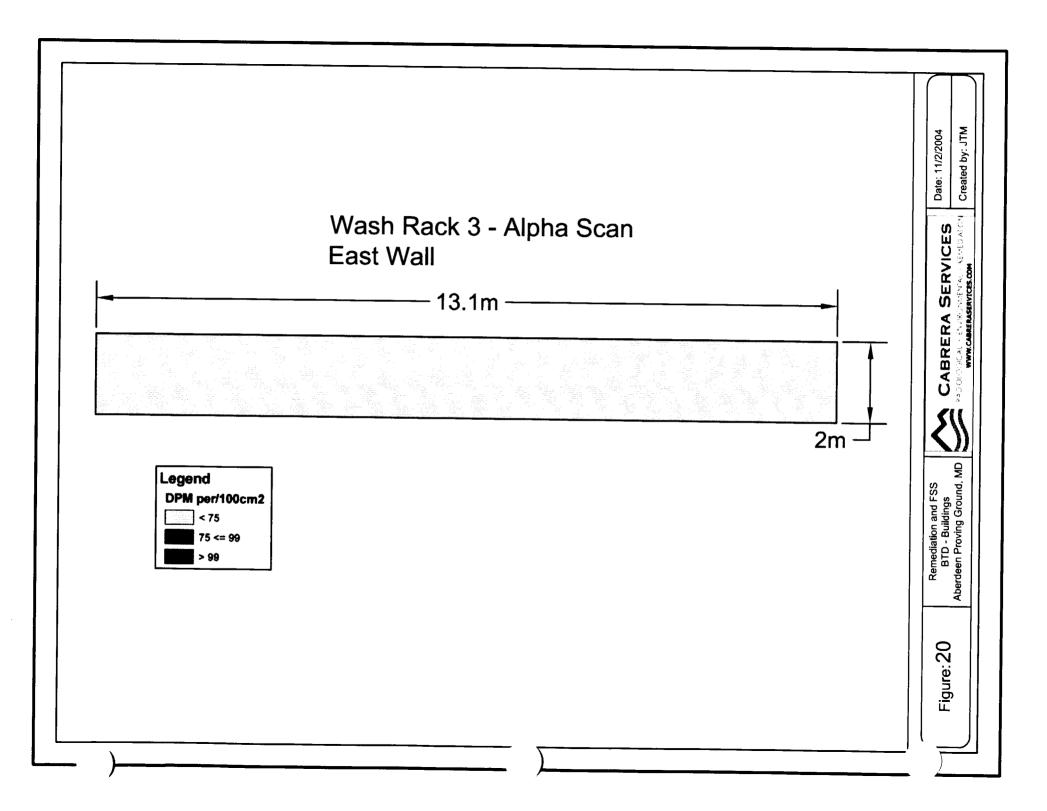


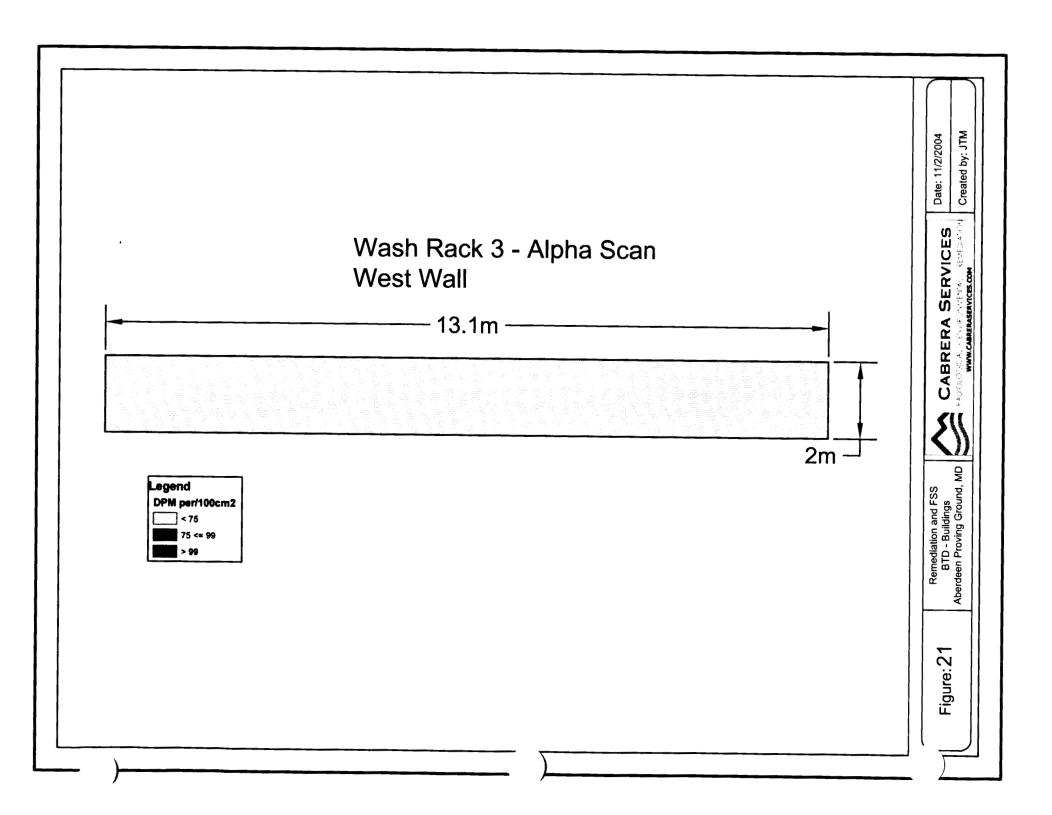


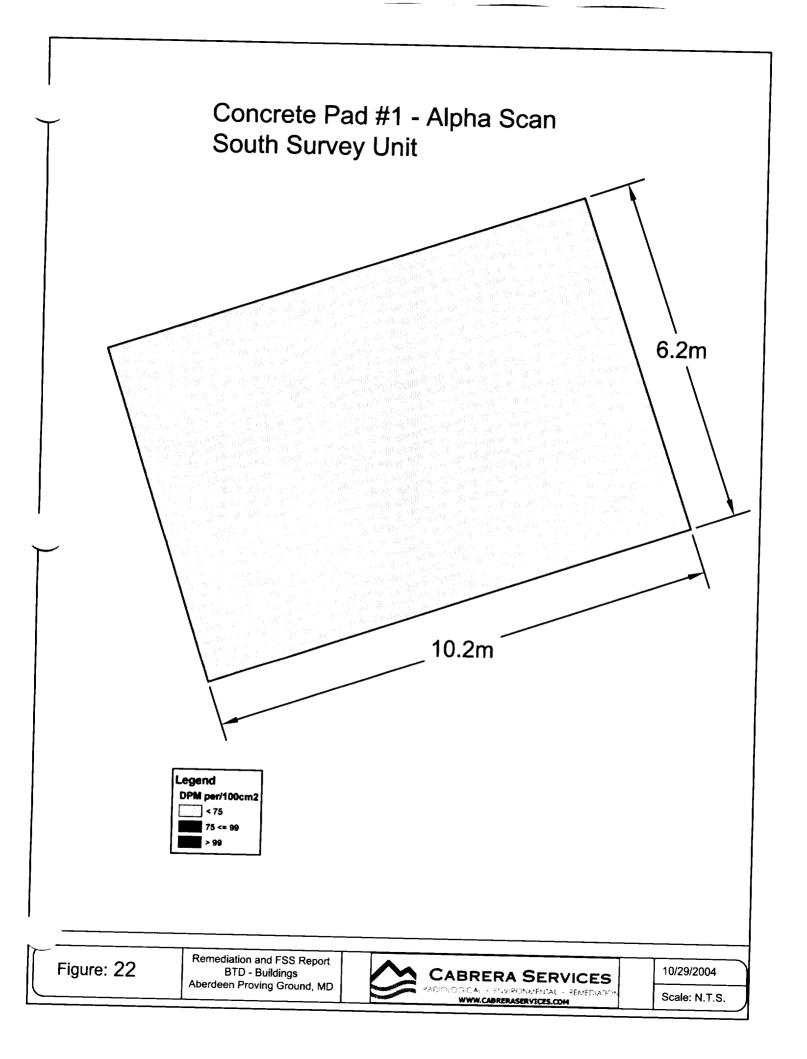


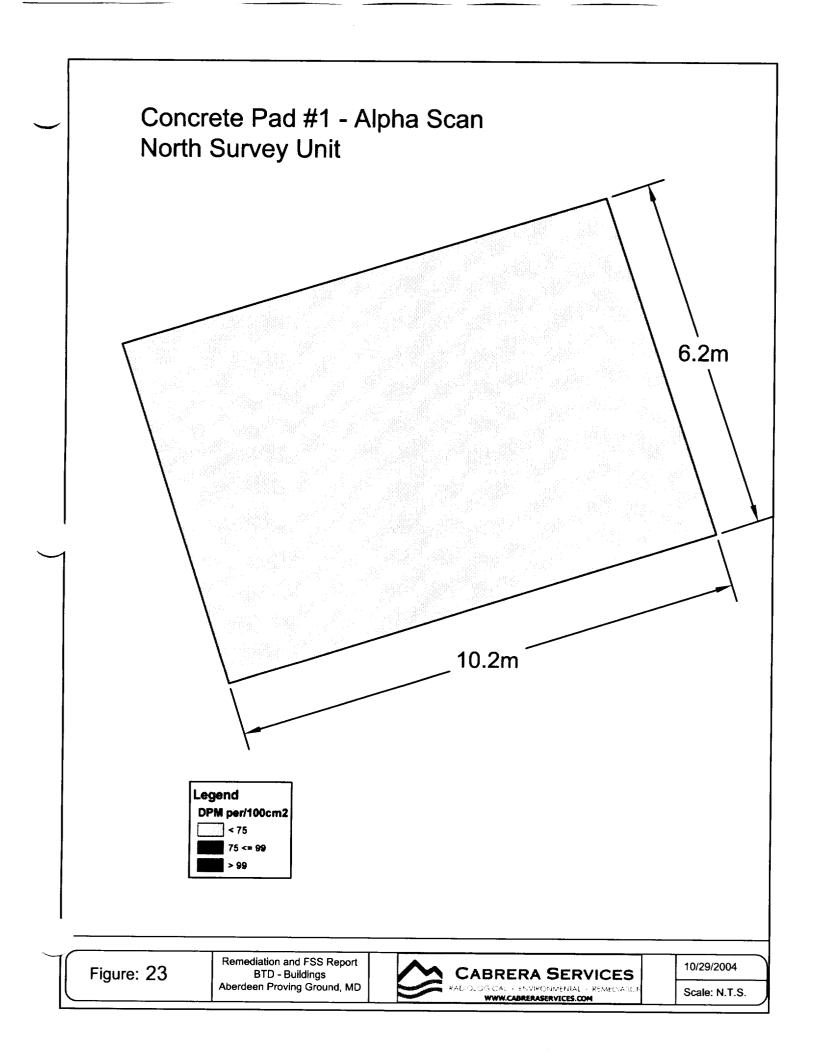


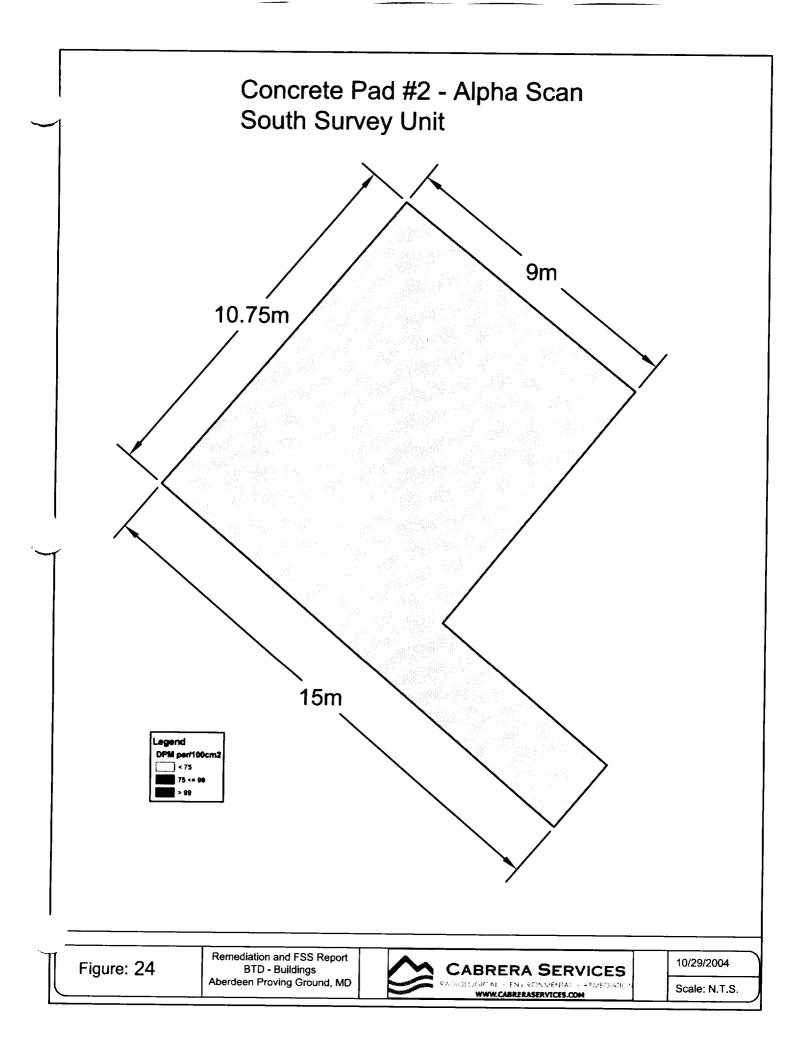


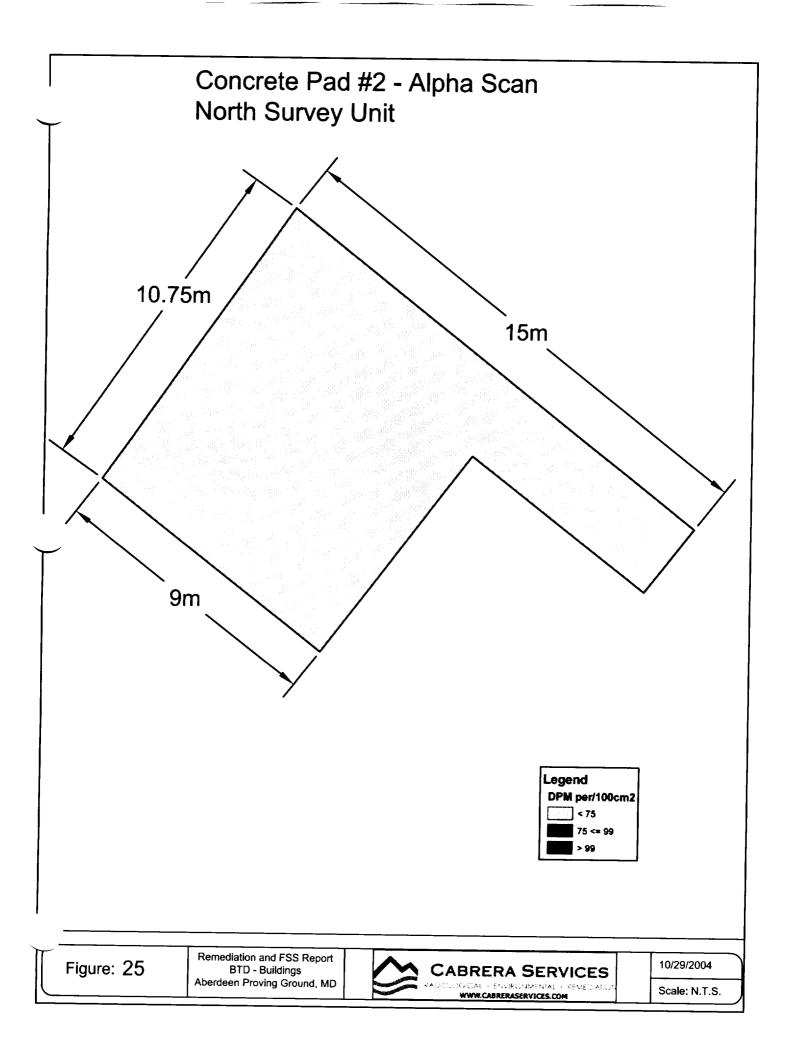












APPENDICES

Appendix A: Building Photographs

Appendix B: Final Status Survey Plan for BTD Armor Reclamation Facility, Aberdeen Proving Ground, Aberdeen, MD Appendix C: Final Status Survey Plan For Wash Rack Facilities #2 and #3, Aberdeen Proving Ground, Aberdeen, MD Appendix D: Final Status Survey Plan, Bomb Throwing Device (BTD) Site, Aberdeen Proving Ground, Aberdeen, MD Appendix E: Survey Unit Maps and Sample Locations Appendix F: Daily Instrument/Building Summary

Appendix G: Radiological Survey Maps

Appendix H: Survey Unit Worksheets and Data Summaries

/

~

Appendix I: Survey Instrument Quality Control and Calibration Certificates
