

CIP

CABRI CIP0-1 PRELIMINARY TEST RESULTS

JC Mélis, C Marquié, M Faury, J Papin IRSN

JC Melis, M. Faury, Ch. Marquié, J. Papin

THE CONTEXT

>Most utilities request, for economic reasons, an increase of the fuel discharge burn-up.

>MOX fuel is largely introduced

>Key points :

+ improve clad alloys (M5, Zirlo, Duplex, MDA,...) which properties are limited by corrosion

+ improve MOX microstructure (TU2, SBR) to minimize fission gas release

Determine UO2 and MOX high burn-up fuel behaviour under RIA conditions

Determine safety margins

Propose new safety criteria more adapted to high burn up fuel

JC Melis, M. Faury, Ch. Marquié, J. Papin

In 2000, IRSN proposed a new program under the auspices of OECD

> 12 tests planned

> 14 organisations from 11 countries have signed an agreement with IRSN

NSRC meeting – Washington

> 2 first tests performed in the Na loop environment (reference)

+ CIPO-1 75 GWd/t cladded with Zirlo - 30 ms pulse width + CIPO-2 75 GWd/t cladded with M5 – 30 ms pulse width

> Both tests performed in November 2002

> CIPO-2 (M5) exhibited no clad failure

Irradiated in the Vandellos reactor (Spain) up to 74.8 GWd/t (pellet burn-up)

Examined and refabricated in the Studsvik Labs (Sweden)

Shipped to Cadarache in June 2002

CIPO-1 NDE

Examinations

Neutronography : hydride concentrations at pellet-pellet interface

Metrology:

Typical of high burn-up fuel (ridges, ovalization)

JC Melis, M. Faury, Ch. Marquié, J. Papin

RSN

CIPO-1 Zirconia layer before test

Important zirconia layer (75 µm average) with large axial azimuthal variations

CIPO-1 First event

Microphone event linked with axial clad elongation

JC Melis, M. Faury, Ch. Marquié, J. Papin

JC

CIPO-1 late event (1)

Microphone event

CIPO-1 late event (2)

JC Melis, M. Faury, Ch. Marquié, J. Papin

CIPO-1 late event (3)

- Microphone event close to saturation on M2
- Flow, pressure and VD event
- This event could be interpreted as clad failure, but:
 - No detection on DND signals
 - No detection of ⁸⁵Kr on the Na cover gas after test
 - Unconsistent timing: P,Q before microphones
 - No failure seen during visual examination in hot cells
- Quantitative gamma-scanning on the upper plenum was performed

REPNa and CIPO DND

JC Melis, M. Faury, Ch. Marquié, J. Papin

JC Melis, M. Faury, Ch. Marquié, J. Papin

RSN

CIP0-1 results

CI

- First event = clad elongation
- Second event = most probably not a failure

The non failure will be confirmed by pin piercing in fall 2003

Non-destructive examinations performed :

- visual examination, profilometry
- gamma-scanning
- zirconia layer : extended spalling

CIPO-1 post-test NDE

Zirconia measurement

extended spalling

CI

➢Pin piercing and gas analysis in Fall 2003

Destructive examinations will be performed : axial and radial cuts at the beginning of 2004

➤The signal analysis is undergoing (explanation of second event)

MECHANICAL CHARACTERISATION

OF ZIRLO CLADDING

PROMETRA Program defined within the CIP for advanced cladding materials (Zirlo, M5-6cycles)

Objectives : determine the stress-strain laws and failure data **Common test matrix**

- 10 hoop tensile tests (doubled) : $T = 280-800^{\circ}C$, 1 s⁻¹
- T=480°C, strain rate : 0.01 s⁻¹
- 8 Penn-State type tests (doubled) : T = 280-800 °C, 1 s⁻¹
- 2 burst tests $T = 280^{\circ}C$, 1 s⁻¹

RSN

MECHANICAL CHARACTERISATION OF ZIRLO CLADDING

Comparison of UTS results between Zirlo and Zr4-5 cycles

- > CIPO-1 successfully performed
- Presumption of non failure confirmation Fall 2003
- Physical origine of late event signals to be analyzed
- CIPO-1 very last test with Na loop
- >1st test (CIPQ) in the water loop foreseen in 2006

