Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modular α-tertiary amino ester synthesis through cobalt-catalysed asymmetric aza-Barbier reaction

Abstract

Unnatural chiral α-tertiary amino acids containing two different carbon-based substituents at the α-carbon centre are widespread in biologically active molecules. This sterically rigid scaffold is becoming a growing research interest in drug discovery. However, a robust protocol for chiral α-tertiary amino acid synthesis remains scarce due to the challenge of stereoselectively constructing sterically encumbered tetrasubstituted stereogenic carbon centres. Herein we report a cobalt-catalysed enantioselective aza-Barbier reaction of ketimines with various unactivated alkyl halides, including alkyl iodides, alkyl bromides and alkyl chlorides, enabling the formation of chiral α-tertiary amino esters with a high level of enantioselectivity and excellent functional group tolerance. Primary, secondary and tertiary organoelectrophiles are all tolerated in this asymmetric reductive addition protocol, which provides a complementary method for the well-exploited enantioselective nucleophilic addition with moisture- and air-sensitive organometallic reagents. Moreover, the three-component transformation of α-ketoester, amine and alkyl halide represents a formal asymmetric deoxygenative alkylamination of the carbonyl group.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Introduction for asymmetric alkylative aza-Barbier reaction.
Fig. 2: Synthetic applications.
Fig. 3: Preliminary mechanistic studies.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 2215368 (3d), 2260751 (3cc) and 2211548 (21). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All data supporting the findings of this research are available within the Article and its Supplementary Information.

References

  1. Nugent, T. C. (ed.) Chiral Amine Synthesis: Methods, Developments and Applications (Wiley-VCH, 2010).

  2. Li, W. & Zhang, X. (eds) Stereoselective Formation of Amines (Springer, 2014).

  3. Blaskovich, M. A. T. Unusual amino acids in medicinal chemistry. J. Med. Chem. 59, 10807–10836 (2016).

    CAS  PubMed  Google Scholar 

  4. Vogt, H. & Bräse, S. Recent approaches towards the asymmetric synthesis of α,α-disubstituted α-amino acids. Org. Biomol. Chem. 5, 406–430 (2007).

    CAS  PubMed  Google Scholar 

  5. Metz, A. E. & Kozlowski, M. C. Recent advances in asymmetric catalytic methods for the formation of acyclic α,α-disubstituted α-amino acids. J. Org. Chem. 80, 1–7 (2015).

    CAS  PubMed  Google Scholar 

  6. Nájera, C. & Sansano, J. M. Catalytic asymmetric synthesis of α-amino acids. Chem. Rev. 107, 4584–4671 (2007).

    PubMed  Google Scholar 

  7. Xie, J.-H., Zhu, S.-F. & Zhou, Q.-L. Transition metal-catalyzed enantioselective hydrogenation of enamines and imines. Chem. Rev. 111, 1713–1760 (2011).

    CAS  PubMed  Google Scholar 

  8. Wang, H., Wen, J. & Zhang, X. Chiral tridentate ligands in transition metal-catalyzed asymmetric hydrogenation. Chem. Rev. 121, 7530–7567 (2021).

    CAS  PubMed  Google Scholar 

  9. Li, M.-L., Yu, J.-H., Li, Y.-H., Zhu, S.-F. & Zhou, Q.-L. Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science 366, 990–994 (2019).

    ADS  CAS  PubMed  Google Scholar 

  10. Yang, Z.-P., Freas, D. J. & Fu, G. C. Asymmetric synthesis of protected unnatural α-amino acids via enantioconvergent nickel-catalyzed cross-coupling. J. Am. Chem. Soc. 143, 8614–8618 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Leonard, D. J., Ward, J. W. & Clayden, J. Asymmetric α-arylation of amino acids. Nature 562, 105–109 (2018).

    ADS  CAS  PubMed  Google Scholar 

  12. Branca, M. et al. Memory of chirality of tertiary aromatic amides: a simple and efficient method for the enantioselective synthesis of quaternary α-amino acids. J. Am. Chem. Soc. 131, 10711–10718 (2009).

    CAS  PubMed  Google Scholar 

  13. Kainz, Q. M. et al. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, Y. et al. Copper(II)-catalyzed asymmetric photoredox reactions: enantioselective alkylation of imines driven by visible light. J. Am. Chem. Soc. 140, 15850–15858 (2018).

    CAS  PubMed  Google Scholar 

  15. Huo, X., Zhang, J., Fu, J., He, R. & Zhang, W. Ir/Cu dual catalysis: enantio- and diastereodivergent access to α,α-disubstituted α-amino acids bearing vicinal stereocenters. J. Am. Chem. Soc. 140, 2080–2084 (2018).

    CAS  PubMed  Google Scholar 

  16. Wei, L. et al. Stereodivergent synthesis of α,α-disubstituted α-amino acids via synergistic Cu/Ir catalysis. J. Am. Chem. Soc. 140, 1508–1513 (2018).

    CAS  PubMed  Google Scholar 

  17. Chen, W. & Hartwig, J. F. Control of diastereoselectivity for iridium-catalyzed allylation of a prochiral nucleophile with a phosphate counterion. J. Am. Chem. Soc. 135, 2068–2071 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Eftekhari-Sis, B. & Zirak, M. α-Imino esters in organic synthesis: recent advances. Chem. Rev. 117, 8326–8419 (2017).

    CAS  PubMed  Google Scholar 

  19. Quan, M., Wu, L., Yang, G. & Zhang, W. Pd(ii), Ni(ii) and Co(ii)-catalyzed enantioselective additions of organoboron reagents to ketimines. Chem. Commun. 54, 10394–10404 (2018).

    CAS  Google Scholar 

  20. Robak, M. T., Herbage, M. A. & Ellman, J. A. Synthesis and applications of tert-butanesulfinamide. Chem. Rev. 110, 3600–3740 (2010).

    CAS  PubMed  Google Scholar 

  21. Ge, L. & Harutyunyan, S. R. in Catalytic Asymmetric Synthesis (eds Akiyama, T. & Ojima, I.) 619–659 (Wiley, 2022).

  22. Denmark, S. E., Nakajima, N. & Nicaise, O. J.-C. Asymmetric addition of organolithium reagents to imines. J. Am. Chem. Soc. 116, 8797–8798 (1994).

    CAS  Google Scholar 

  23. Fu, P., Snapper, M. L. & Hoveyda, A. H. Catalytic asymmetric alkylations of ketoimines. Enantioselective synthesis of N-substituted quaternary carbon stereogenic centers by Zr-catalyzed additions of dialkylzinc reagents to aryl-, alkyl-, and trifluoroalkyl-substituted ketoimines. J. Am. Chem. Soc. 130, 5530–5541 (2008).

    CAS  PubMed  Google Scholar 

  24. Ortiz, P. et al. Copper-catalyzed enantioselective alkylation of enolizable ketimines with organomagnesium reagents. Angew. Chem. Int. Ed. 56, 3041–3044 (2017).

    CAS  Google Scholar 

  25. Curto, J. M., Dickstein, J. S., Berritt, S. & Kozlowski, M. C. Asymmetric synthesis of α-allyl-α-aryl α-amino acids by tandem alkylation/π-allylation of α-iminoesters. Org. Lett. 16, 1948–1951 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Blomberg, C. The Barbier Reaction and Related One-Step Processes (Springer, 1993).

  27. Shen, A., Liu, M., Jia, Z.-S., Xu, M.-H. & Lin, G.-Q. One-pot synthesis of chiral α-methylene-γ-lactams with excellent diastereoselectivities and enantioselectivities. Org. Lett. 12, 5154–5157 (2010).

    CAS  PubMed  Google Scholar 

  28. Friestad, G. K. & Qin, J. Highly stereoselective intermolecular radical addition to aldehyde hydrazones from a chiral 3-amino-2-oxazolidinone. J. Am. Chem. Soc. 122, 8329–8330 (2000).

    CAS  Google Scholar 

  29. Friestad, G. K., Shen, Y. & Ruggles, E. L. Enantioselective radical addition to N-acyl hydrazones mediated by chiral Lewis acids. Angew. Chem. Int. Ed. 42, 5061–5063 (2003).

    CAS  Google Scholar 

  30. Heinz, C. et al. Ni-catalyzed carbon–carbon bond-forming reductive amination. J. Am. Chem. Soc. 140, 2292–2300 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Presset, M. et al. CoI-catalyzed Barbier reactions of aromatic halides with aromatic aldehydes and imines. Chem. Eur. J. 25, 4491–4495 (2019).

    CAS  PubMed  Google Scholar 

  32. Ni, S. et al. A general amino acid synthesis enabled by innate radical cross-coupling. Angew. Chem. Int. Ed. 57, 14560–14565 (2018).

    CAS  Google Scholar 

  33. Turro, R. F., Brandstätter, M. & Reisman, S. E. Nickel-catalyzed reductive alkylation of heteroaryl imines. Angew. Chem. Int. Ed. 61, e202207597 (2022).

    ADS  CAS  Google Scholar 

  34. Kumar, R., Flodén, N. J., Whitehurst, W. G. & Gaunt, M. J. A general carbonyl alkylative amination for tertiary amine synthesis. Nature 581, 415–420 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blackwell, J. H., Kumar, R. & Gaunt, M. J. Visible-light-mediated carbonyl alkylative amination to all-alkyl α-tertiary amino acid derivatives. J. Am. Chem. Soc. 143, 1598–1609 (2021).

    CAS  PubMed  Google Scholar 

  36. Subramanian, H., Landais, Y. & Sibi, M. P. in Comprehensive Organic Synthesis II (eds Knochel, P. & Molander, G. A.) 699–741 (Elsevier, 2014).

  37. Li, Y., Lei, M. & Gong, L. Photocatalytic regio- and stereoselective C(sp3)–H functionalization of benzylic and allylic hydrocarbons as well as unactivated alkanes. Nat. Catal. 2, 1016–1026 (2019).

    CAS  Google Scholar 

  38. Amatore, M. & Gosmini, C. Direct method for carbon–carbon bond formation: the functional group tolerant cobalt-catalyzed alkylation of aryl halides. Chem. Eur. J. 16, 5848–5852 (2010).

    CAS  PubMed  Google Scholar 

  39. Gosmini, C. & Auffrant, A. in PATAI’S Chemistry of Functional Groups (Wiley, 2022).

  40. Wang, L., Wang, L., Li, M., Chong, Q. & Meng, F. Cobalt-catalyzed diastereo- and enantioselective reductive allyl additions to aldehydes with allylic alcohol derivatives via allyl radical intermediates. J. Am. Chem. Soc. 143, 12755–12765 (2021).

    CAS  PubMed  Google Scholar 

  41. Jiang, X. et al. Photoassisted cobalt-catalyzed asymmetric reductive Grignard-type addition of aryl iodides. J. Am. Chem. Soc. 144, 8347–8354 (2022).

    CAS  PubMed  Google Scholar 

  42. Poremba, K. E., Dibrell, S. E. & Reisman, S. E. Nickel-catalyzed enantioselective reductive cross-coupling reactions. ACS Catal. 10, 8237–8246 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ortiz, E., Shezaf, J., Chang, Y.-H. & Krische, M. J. Enantioselective metal-catalyzed reductive coupling of alkynes with carbonyl compounds and imines: convergent construction of allylic alcohols and amines. ACS Catal. 12, 8164–8174 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Troyano, F. J. A., Merkens, K., Anwar, K. & Glómez-Suárez, A. Radical-based synthesis and modification of amino acids. Angew. Chem. Int. Ed. 60, 1098–1115 (2021).

    Google Scholar 

  45. Jiang, Y., Jiang, Q., Zhu, G. & Zhang, X. Highly effective NPN-type tridentate ligands for asymmetric transfer hydrogenation of ketones. Tetrahedron Lett. 38, 215–218 (1997).

    CAS  Google Scholar 

  46. Ghorai, S., Chirke, S. S., Xu, W.-B., Chen, J.-F. & Li, C. Cobalt-catalyzed regio- and enantioselective allylic amination. J. Am. Chem. Soc. 141, 11430–11434 (2019).

    CAS  PubMed  Google Scholar 

  47. Li, K. et al. Enantioselective synthesis of pyridines with all-carbon quaternary carbon centers via cobalt-catalyzed desymmetric [2+2+2] cycloaddition. Angew. Chem. Int. Ed. 60, 20204–20209 (2021).

    CAS  Google Scholar 

  48. Bӧrjesson, M., Moragas, T. & Martin, R. Ni-catalyzed carboxylation of unactivated alkyl chlorides with CO2. J. Am. Chem. Soc. 138, 7504–7507 (2016).

    Google Scholar 

  49. Sakai, H. A., Liu, W., Le, C. & MacMillan, D. W. C. Cross-electrophile coupling of unactivated alkyl chlorides. J. Am. Chem. Soc. 142, 11691–11697 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Su, B., Deng, M. & Wang, Q. The first enantioselective approach to 13a-methyl-14-hydroxyphenanthroindolizidine alkaloids – synthetic studies towards hypoestestatin 2. Eur. J. Org. Chem. 2013, 1979–1985 (2013).

    CAS  Google Scholar 

  51. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    CAS  PubMed  Google Scholar 

  52. Luo, G. et al. Discovery of (S)-1-((2′,6-bis(difluoromethyl)-[2,4′-bipyridin]-5-yl)oxy)-2,4-dimethylpentan-2-amine (BMS-986176/LX-9211): a highly selective, CNS penetrable, and orally active adaptor protein-2 associated kinase 1 inhibitor in clinical trials for the treatment of neuropathic pain. J. Med. Chem. 65, 4457–4480 (2022).

    CAS  PubMed  Google Scholar 

  53. Pizzonero, M. et al. Discovery and optimization of an azetidine chemical series as a free fatty acid receptor 2 (FFA2) antagonist: from hit to clinic. J. Med. Chem. 57, 10044–10057 (2014).

    CAS  PubMed  Google Scholar 

  54. Affo, W. et al. Cobalt-catalyzed trimethylsilylmethylmagnesium-promoted radical alkenylation of alkyl halides: a complement to the Heck reaction. J. Am. Chem. Soc. 128, 8068–8077 (2006).

    CAS  PubMed  Google Scholar 

  55. Li, Y. et al. Cobalt-catalysed enantioselective C(sp3)–C(sp3) coupling. Nat. Catal. 4, 901–911 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC/China (22171079, 22371071), the Natural Science Foundation of Shanghai (21ZR1480400), the Shanghai Rising-Star Program (20QA1402300), the Shanghai Municipal Science and Technology Major Project (grant no. 2018SHZDZX03), the Program of Introducing Talents of Discipline to Universities (B16017), the China Postdoctoral Science Foundation (2021M701197, 2023T160215), the Shanghai Sailing Program (23YF1408800) and the Fundamental Research Funds for the Central Universities. We thank the Analysis and Testing Center of East China University of Science and Technology for help with NMR and high-resolution mass spectrometry analysis. Y.C. thanks B. Feringa (University of Groningen) and A. Schuppe (Vanderbilt University) for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.W. and Y.C. conceived the project. X.W., H.X., C.G., B.L., L.W., C.Z., D.Y., L.H., N.L., T.X. and H.L. performed the experiments under the supervision of J.Q. and Y.C.; X.W. and Y.C. wrote the manuscript with the feedback of all other authors.

Corresponding author

Correspondence to Yifeng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Marc Presset, Thomas Nugent and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–10.

Supplementary Data 1

Crystallographic data for compound 3cc; CCDC reference 2260751.

Supplementary Data 2

Crystallographic data for compound 3d; CCDC reference 2215368.

Supplementary Data 3

Crystallographic data for compound 21; CCDC reference 2211548.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Xia, H., Gao, C. et al. Modular α-tertiary amino ester synthesis through cobalt-catalysed asymmetric aza-Barbier reaction. Nat. Chem. 16, 398–407 (2024). https://doi.org/10.1038/s41557-023-01378-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01378-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing