Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification and angiogenic role of the novel tumor endothelial marker CLEC14A

Abstract

Tumor endothelial markers (TEMs) that are highly expressed in human tumor vasculature compared with vasculature in normal tissue hold clear therapeutic potential. We report that the C-type lectin CLEC14A is a novel TEM. Immunohistochemical and immunofluorescence staining of tissue arrays has shown that CLEC14A is strongly expressed in tumor vasculature when compared with vessels in normal tissue. CLEC14A overexpression in tumor vessels was seen in a wide range of solid tumor types. Functional studies showed that CLEC14A induces filopodia and facilitates endothelial migration, tube formation and vascular development in zebrafish that is, CLEC14A regulates pro-angiogenic phenotypes. CLEC14A antisera inhibited cell migration and tube formation, suggesting that anti-CLEC14A antibodies may have anti-angiogenic activity. Finally, in endothelial cultures, expression of CLEC14A increased at low shear stress, and we hypothesize that low shear stress due to poor blood flow in the disorganized tumor vasculature induces expression of CLEC14A on tumor vessels and pro-angiogenic phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Ando J, Yamamoto K . (2009). Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73: 1983–1992.

    Article  CAS  Google Scholar 

  • Armstrong LJ, Heath VL, Sanderson S, Kaur S, Beesley JF, Herbert JM et al. (2008). ECSM2, an endothelial specific filamin a binding protein that mediates chemotaxis. Arterioscler Thromb Vasc Biol 28: 1640–1646.

    Article  CAS  Google Scholar 

  • Bohlson SS, Silva R, Fonseca MI, Tenner AJ . (2005). CD93 is rapidly shed from the surface of human myeloid cells and the soluble form is detected in human plasma. J Immunol 175: 1239–1247.

    Article  CAS  Google Scholar 

  • Burrows FJ, Thorpe PE . (1993). Eradication of large solid tumours in mice with an immunotoxin directed against tumour vasculature. Proc Natl Acad Sci USA 90: 8996–9000.

    Article  CAS  Google Scholar 

  • Chaplin PJ, Trotter MJ, Dougherty GJ . (1997). Microregional tumour blood flow: heterogeneity and therapeutic significance. In: Bicknell R, Lewis CE and Ferrara N (eds). Tumour Angiogenesis. Oxford University Press: Oxford, UK, pp 61–70.

    Google Scholar 

  • Chen-Konak L, Guetta-Shubin Y, Yahav H, Shay-Salit A, Zilberman M, Binah O et al. (2003). Transcriptional and post-translation regulation of the Tie1 receptor by fluid shear stress changes in vascular endothelial cells. FASEB J 17: 2121–2123.

    Article  CAS  Google Scholar 

  • Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RK, Morgan RA et al. (2010). Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumours in mice. J Clin Invest 120: 3953–3968.

    Article  CAS  PubMed Central  Google Scholar 

  • Chu TJ, Peters DG . (2008). Serial analysis of the vascular endothelial transcriptome under static and shear stress conditions. Physiol Genomics 34: 185–192.

    Article  CAS  Google Scholar 

  • Dachs GU, Chaplin DJ . (1998). Microenvironmental control of gene expression: implications for tumour angiogenesis, progression and metastasis. Semin Radiat Oncol 8: 208–216.

    Article  CAS  Google Scholar 

  • Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E et al. (2002). Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100: 1689–1698.

    Article  CAS  Google Scholar 

  • Esmon CT . (1995). Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface. FASEB J 9: 946–955.

    Article  CAS  Google Scholar 

  • Gomez GA, Veldman MB, Zhao Y, Burgess S, Lin S . (2009). Discovery and characterization of novel vascular and hematopoietic genes downstream of etsrp in zebrafish. PLoS One 4: e4994.

    Article  PubMed Central  Google Scholar 

  • Gullino PM . (1975). Extracellular compartments of solid tumours. In: FF Becker (ed.) Methods in Cancer Research vol. 3. Plenum Press: New York, pp 327–354.

    Google Scholar 

  • He J, Yin Y, Luster TA, Watkins L, Thorpe PE . (2009). Antiphosphatidylserine antibody combined with irradiation damages tumour blood vessels and induces tumour immunity in a rat model of glioblastoma. Clin Cancer Res 15: 6871–6880.

    Article  CAS  Google Scholar 

  • Heath VL, Bicknell R . (2009). Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6: 395–404.

    Article  CAS  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK . (1997). Interstitial pH and pO2 gradients in solid tumours in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3: 177–182.

    Article  CAS  Google Scholar 

  • Herbert JM, Stekel D, Sanderson S, Heath VL, Bicknell R . (2008). A novel method of differential gene expression analysis using multiple cDNA libraries applied to the identification of tumour endothelial genes. BMC Genomics 9: 153.

    Article  PubMed Central  Google Scholar 

  • Ho M, Yang E, Matcuk G, Deng D, Sampas N, Tsalenko A et al. (2003). Identification of endothelial cell genes by combined database mining and microarray analysis. Physiol Genomics 13: 249–262.

    Article  CAS  Google Scholar 

  • Holthofer H, Virtanen I, Kariniemi AL, Hormia M, Linder E, Miettinen A . (1982). Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab Invest 47: 60–66.

    CAS  PubMed  Google Scholar 

  • Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE . (1997). Tumour infarction in mice by antibody-directed targeting of tissue factor to tumour vasculature. Science 275: 547–550.

    Article  CAS  Google Scholar 

  • Huijbers EJM, Ringvall M, Femel J, Kalamajski S, Lukinius A, Abrink M et al. (2010). Vaccination against the extra domain-B of fibronectin as a novel tumor therapy. FASEB J 24: 4535–4544.

    Article  CAS  Google Scholar 

  • Huminiecki L, Bicknell R . (2000). In silico cloning of novel endothelial-specific genes. Genome Res 10: 1796–1806.

    Article  CAS  PubMed Central  Google Scholar 

  • Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R . (2002). Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79: 547–552.

    Article  CAS  Google Scholar 

  • Jain RK . (1988). Determinants of tumour blood flow: a review. Cancer Res 48: 2641–2658.

    CAS  PubMed  Google Scholar 

  • MacFadyen JR, Haworth O, Roberston D, Hardie D, Webster MT, Morris HR et al. (2005). Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Lett 579: 2569–2575.

    Article  CAS  Google Scholar 

  • Maruyama I, Bell CE, Majerus PW . (1985). Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. J Cell Biol 101: 363–371.

    Article  CAS  Google Scholar 

  • Matharu NM, McGettrick HM, Salmon M, Kissane S, Vohra RK, Rainger GE et al. (2008). Inflammatory responses of endothelial cells experiencing reduction in flow after conditioning by shear stress. J Cell Physiol 216: 732–741.

    Article  CAS  Google Scholar 

  • McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG et al. (2001). DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci USA 98: 8955–8960.

    Article  CAS  Google Scholar 

  • Nanda A, Karim B, Peng Z, Liu G, Qiu W, Gan C et al. (2006). Tumour endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumours. Proc Natl Acad Sci USA 103: 3351–3356.

    Article  CAS  Google Scholar 

  • Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA et al. (2004). Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429: 629–635.

    Article  CAS  Google Scholar 

  • Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK . (2004). Pathology: cancer cells compress intratumour vessels. Nature 427: 695.

    Article  CAS  Google Scholar 

  • Pham VN, Lawson ND, Mugford JW, Dye L, Castranova D, Lo B et al. (2007). Combinatorial function of ETS transcription factors in the developing vasculature. Dev Biol 303: 772–783.

    Article  CAS  Google Scholar 

  • Porrat RM, Grunewald M, Globerman A, Itin A, Barshtein G, Alhonen L et al. (2004). Specific induction of tie1 promoter by disturbed flow in atherosclerosis-prone vascular niches and flow-obstructing pathologies. Circ Res 94: 394–401.

    Article  Google Scholar 

  • Reynolds GM, Billingham LJ, Gray LJ, Flavell JR, Najafipour S, Crocker J et al. (2002). Interleukin 6 expression by Hodgkin/Reed-Sternberg cells is associated with the presence of ‘B’ symptoms and failure to achieve complete remission in patients with advanced Hodgkin's disease. Br J Haematol 118: 195–201.

    Article  CAS  Google Scholar 

  • Rho SS, Choi HJ, Min JK, Lee HW, Park H, Park H et al. (2011). Clec14a is specifically expressed in endothelial cells and mediates cell to cell adhesion. Biochem Biophys Res Commun 404: 103–108.

    Article  CAS  Google Scholar 

  • Seth P, Lin Y, Hanai J, Shivalingappa V, Duyao MP, Sukhatme VP . (2005). Magic roundabout, a tumour endothelial marker: expression and signaling. Biochem Biophys Res Commun 332: 533–541.

    Article  CAS  Google Scholar 

  • Sheikh S, Gale Z, Rainger GE, Nash GB . (2004). Methods for exposing multiple cultures of endothelial cells to different fluid shear stresses and to cytokines, for subsequent analysis of inflammatory function. J Immunol Methods 288: 35–46.

    Article  CAS  Google Scholar 

  • Siemann DW . (2011). The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev 37: 63–74.

    Article  CAS  Google Scholar 

  • St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E et al. (2000). Genes expressed in human tumour endothelium. Science 289: 1197–1202.

    Article  CAS  PubMed Central  Google Scholar 

  • Sumanas S, Jorniak T, Lin S . (2005). Identification of novel vascular endothelial-specific genes by the microarray analysis of the zebrafish cloche mutants. Blood 106: 534–541.

    Article  CAS  PubMed Central  Google Scholar 

  • Thisse C, Thisse B . (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3: 59–69.

    Article  CAS  Google Scholar 

  • Tomar A, Lim ST, Lim Y, Schlaepfer DD . (2009). A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J Cell Sci 122: 1852–1862.

    Article  CAS  PubMed Central  Google Scholar 

  • van Beijnum JR, Dings RP, van der Linden E, Zwaans BMM, Ramaekers FCS, Mayo KH et al. (2006). Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108: 239–2348.

    Article  Google Scholar 

  • Wasserman SM, Topper JN . (2004). Adaptation of the endothelium to fluid flow: in vitro analyses of gene expression and in vivo implications. Vasc Med 9: 35–45.

    Article  Google Scholar 

  • Woo KV, Qu X, Babaev VR, Linton MF, Guzman RJ, Fazio S et al. (2011). TIE1 attenuation reduces murine atherosclerosis in a dose-dependent and shear stress-specific manner. J Clin Invest 121: 1624–1635.

    Article  PubMed Central  Google Scholar 

  • Zelensky AN, Gready JE . (2005). The C-type lectin-like domain superfamily. Febs J 272: 6179–6217.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Maria Grazia Lampugnani, IFOM—FIRC Institute for Molecular Oncology, Milan, for the gift of the BU9 anti-human VE cadherin mouse monoclonal antibody; and Dr Raj Mehta, Cancer Research Technology for helpful discussions. This work was supported by program grant number C4719/A6766 and project grant number C4719/A9601 from the Cancer Research UK to RB. RB and GBN acknowledge financial support from the British Heart Foundation. Umbilical cords were collected with the assistance of the Birmingham Women's Health Care NHS Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Bicknell.

Ethics declarations

Competing interests

RB, MM and XZ are named inventors of a patent filed by Cancer Research UK in the United States Patent and trademark Office on 3 September 2009 under No. 61/239,584, bearing Attorney Docket No. P0357.70004US00 and entitled ‘Inhibitors’. All the other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mura, M., Swain, R., Zhuang, X. et al. Identification and angiogenic role of the novel tumor endothelial marker CLEC14A. Oncogene 31, 293–305 (2012). https://doi.org/10.1038/onc.2011.233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.233

Keywords

This article is cited by

Search

Quick links