

ULTIMATE-Subaru Project Overview

Yosuke Minowa (Subaru Telescope) on behalf of

ULTIMATE-Subaru working group

Pl: Michitoshi Yoshida (Director, Subaru) Yusei Koyama, Ikuru Iwata, Yoshito Ono, Takashi Hattori, Christophe Clergeon, Ichi Tanaka, Naruhisa Takato (Subaru), Yutaka Hayano, Shin Oya, Hideki Takami (NAOJ), Masayuki Akiyama, Tadayuki Kodama, Tatsuhiro Watanabe (Tohoku) Kentaro Motohara (Univ. of Tokyo) Francois Rigaut, Celine D'orgeville, Gaston Gausachs, Nick Herrald, Visa Korkiakoski (ANU) Nobuo Arimoto (Seoul National Univ.)

http://www.naoj.org/Projects/newdev/ngao/index.html

Subaru's Wide-Field Strategy in 2020s

Recommendation from Subaru Science Advisory Committee (representative of the Subaru's community)

1. Very wide-field optical imagerHSC (2013)2. Wide-field multi-objet spectrographPFS (2019)3. Wide-field near-infrared imager and MOS spectrograph
including AO assisted IFUULTIMATE-Subaru (2025)

Subaru will provide "legacy data" to answer the fundamental questions using HSC, PFS (in dark nights), and ULTIMATE (in bright nights)

High-resolution wide-field NIR survey capabilities to explore the high-redshift universe

ULTIMATE-Subaru will deliver

- Subaru's original High-redshift targets to follow-up with TMT
- \cdot Spatially-resolved studies of the objects found by HSC/PFS
- SDSS like comprehensive imaging/spectroscopic survey for highredshift universe (z>2).
- Synergy with the future surveys by wide-field satellites, such as Euclid, WFIRST, SPICA, ATHENA, etc.

Subaru's Next Facility Instrument Plan **ULTIMATE-Subaru Ground-Layer Adaptive Optics** Wide-Field near-infrared instrument

GLAO performance simulation at Subaru (Oya et al. 2014)

 Δ On-sky performance verification with RAVEN

- Uniform seeing improvement over ~20 arcmin FoV
- FWHM ~ 0".2 at K-band, which is equivalent to HST and WFIRST

Comprehensive performance simulations are ongoing with more conservative turbulence profile and more statistics (Visa's talk)

Probability

ULTIMATE telescope upgrade

(1) Adaptive Secondary Mirror

TOPTICA fiber laser(589nm) x 2 Generate 4 laser guide stars

Preliminary Subaru ASM design by Microgate ADS

(2) Laser Guide <u>Star system</u>

ULTIMATE-GLAO: Baseline Specification

Item	Specification
Guide stars	$4 \text{ LGS}, \text{ NGS}(2\sim4)$
Location of guide stars	The edge of FoV $> 15'$ (LGS), Within the FoV (NGS)
Wavefront sensors	Each guide stars (Guide star oriented)
Wavefront sensor type	Shack-Hartmann (IR pyramid-WFS is optional)
Tip-tilt wavefront sensor type	2×2 Shack-Hartmann wavefront sensor or pyramid. (visible or NIR)
Sub apertures	> 100
Frame rate of wavefront sensor	> 500 Hz
Deformable mirror	Adaptive secondary mirror
Actuators	~ 1000
AO control type	GLAO (LTAO, ExAO modes)

Field coverage

Maximize the field of view to enhance the uniqueness of the ULTIMATE-Subaru

Cassegrain Focus

Nasmyth Focus

 ϕ ~20 arcmin Science FoV: 14' x 14'

 ϕ ~14 arcmin Science FoV: 10' x 10'

Key Technologies for GLAO

• (1) Adaptive Secondary Mirror

- Develop ASM with ADOPTICA and Mitsubishi
- Mitigate the technical risk by reusing the technology developed at VLT, MMT, and LBT
- Frequent exchange of the ASM will be a challenge.
- (2) Sodium Laser Guide Star system
 - 2 Sodium LGS system from TOPTICA -> well developed technology
 - Early commissioning with the exisiting AO system (AO188)

• (3) Wide-field (Tomographic) Wavefront sensing

- Make use of the previous experiences from the GLAO precessors at MaunaKea
 - RAVEN/Subaru (2014-2015): MOAO science demonstrators, GLAO performance at Subaru was demonstrated to be FWHM~0".2 at H-band. GLAO path-finder at Maunakea!!
 - Imaka/UH88 (2016-): GLAO performance verification at wid is ongoing.
- On-sky test with the SH-WFS prototype for testing the tc wavefront reconstruction is being planned by Tohoku Ur START)

All technologies can be connected to operation and development at TMT.

- ASM (~1000 actuators)+SCExAO or LTAO will provide superb Strehl ratio from visible to thermal infrared
- · Subaru can be a pathfinder for TMT's 2nd gen. instruments

New Wide-field Instrument for ULTIMATE

Phase 1

Reuse MOIRCS at Ns. IR

GLAO first light instrument

Phase 2

2025

 \cdot Wide-field imager (WFI) at Cs.

Imager concept by HIA (J. Pazder)

- Workhorse instrument for large SSP imaging survey
- Wide-variety of narrow/medium

K-band Sensitivity improvement band filters

- · 0.8-1.0 mag (PSF)
- 0.5 mag (galaxies with Re~2kpc)

Survey power is 20 times higher than MOIRCS at Cs $\,\cdot\,$

Phase 3

2030

 \cdot Fiber-bundle multi-IFU at Cs

Multi-IFU concept by AAO (S. Ellis)

- Unique instrument for large kinematic survey like MANGA/SAMI.
 - Feed to the existing spectrograph (MOIRCS/PFS)

Comparison with TMT/Space telescope in late 2020s

	Imaging			MOS			M-IFS
	JH	K	MB, NB	J	н	K	JHK
Pointed observations	JWST, TMT,						
Surveys			ATE-WFI	WFIRST R~500			ULTIMATE
		ULTIMA		PFS R~3000	ULTIMATI	E-MOIRCS	-MIFS

Slide courtesy of Y. Matsuoka

ULTIMATE-Subaru: Current activities

- International collaboration
- Collaboration with ANU for based on the Subaru-Australia short-term agreement
 - * GLAO performance simulation and system optimization (Visa's talk)
 - $\ast\, \rm WFS$ and LGS opt/mechanical conceptual design
- Looking into the possibility to extend the collaboration with ANU after the short-term agreement
- Looking for more collaborators for GLAO and wide-field instruments
- Step-by-Step development for each ULTIMATE module
- JSPS grant (Kiban-S: 2M USD for 5 years) has been allocated to kickoff the ULTIMATE-Subaru: ULTIMATE-Start (Akiyama-san's talk)
- Upgrade the existing instruments
 - *GPU-based real-time system development for SCExAO, AO188, and ULTIMATE *Develop high efficiency grism for MOIRCS

ULTIMATE-Subaru:

Past, On-going and future activities

(1) Adaptive Secondary

- Subaru is going to develop ASM with Adoptica and Mitsubishi.
- Phase1 Feasibility study by Adoptica has been started

(2) Laser

- 1st TOPTICA laser system will be delivered to Subaru on Mar, 2018 for AO188
- LLT and diagnostic system design and development

(5) Science

Contributions from domestic/international collaborators 😱

(3) Tomography WFS

- System optimization based on GLAO simulation (ANU, Tohoku Univ., Subaru)
- Conceptual design of WFS unit at Nasmyth and Cassegrain (Subaru, ANU)
- RTS development for AO188 and ULTIMATE
- Prototyping of SH-WFS at Tohoku Univ.

(4) Wide-Field Instruments

- Multi-IFU conceptual design by AAO (S. Ellis)
- Wide-Field imager conceptual optical design by NRC-HIA (J. Pazder)
- Prototyping of the Starbug positioner
- Conceptual design of the wide-field imager

ULTIMATE-Subaru Science Workshop @ Mitaka (2016/6/16-17)

Adaptive Secon

adoptica

Modify the existing IRM2 or Csop

MITSUBISHI Changes for the Better

- \cdot Use two TOPTICA fiber lasers to generate 4 LGS
- Assembly of the 1st laser has been completed at TOPTICA factory
- \cdot The 1st laser will be used for AO188 (ULTIMATE-START) from FY2019
- · Same optical mount will be used for ULTIMATE-Subaru in future.
- Alternative plan is to use a semi-conductor laser being developed by ANU for as a second laser.

TOPTICA laser for Subaru

NsIR platform

- \cdot Use two TOPTICA fiber lasers to generate 4 LGS
- Assembly of the 1st laser has been completed at TOPTICA factory
- \cdot The 1st laser will be used for AO188 (ULTIMATE-START) from FY2019
- · Same optical mount will be used for ULTIMATE-Subaru in future.
- Alternative plan is to use a semi-conductor laser being developed by ANU for as a second laser.

Laser Guide Star facility (LGSF)

Phase1: Single laser (center launch) for AO188

Laser Guide Star facility (LGSF)

Phase2: 4 laser (center launch) for LTAO experiment

Laser Guide Star facility (LGSF)

Phase3: 4 laser (side launch) for ULTIMATE-Subaru

GLAO performance simulation

- Comprehensive GLAO simulation is being conducted by ANU to optimize the specification of the ULTIMATE AO system.
- Conservative turbulence profile with more layers below 100m based on the Maunakea seeing campaign data (Chun et al. ****) is used.
- Once the AO specification is optimized with the baseline turbulence profile, statistical data will be obtained by changing the turbulence profile based on the statistics obtained from the campaign data.

Visa Korkiakoski's talk for the latest results

Turbulence profile assumed in the simulation

WFS and Instrument layout at Cs

Wavefront sensor Adapter Flange (WAF) conceptual design by ANU

WFS and Instrument layout at NsIR

WFS and Instrument layout at NsIR

Plan A (side view)

Pros

- Gravity-invariant design
- \cdot Enough space for the WAF
- \cdot The existing IMR can be reused

Cons

- FoV is limited to $\phi \sim 6'$
- Additional relay optics is required

WFS and Instrument layout at NsIR Plan B (side view)

WAF ~803 INR NGS 00000 MOIRCS (~2mx2mx1.9m) WFS NsIR platform WFS layer thickness < 803 - 160 = 643

Pros

- Maximize the FoV (~14 arcmin)
- Minimize thermal emission

Cons

- \cdot Non gravity-invariant design
- \cdot Envelope available for the WAF is small

WFS and Instrument layout at NsIR

Plan C (side view)

Pros

- \cdot Maximize the FoV (~14 arcmin)
- Gravity-invariant design
- \cdot Enough space for the WAF

Relay optics is required

WFS and Instrument layout at NsIR

Plan C (top view)

Pros: NsIR platform can be shared with the extreme AO instrument

Team Organization

ULTIMATE-Subaru working group

<u>PI: Subaru Director</u> M. Yoshida

<u>Project Manager</u> Y. Minowa

Project Scientist Y. Koyama

<u>A0</u>

Y. Minowa, Y. Ono, C. Clergeon, O. Guyon M. Akiyama (Tohoku), Y. Hayano (ATC)

<u>Instrument</u>

T. Hattori, I. Iwata, I. Tanaka, K. Motohara (Tokyo)

<u>Science</u>

Y. Koyama, T. Kodama, K. Motohara

International collaboration

GLAO system design WFS and LGS development

WFI system design and development

M-IFS system design and development

Domestic and International scientists

- Develop science case for ULTIMATE
- Summarize scientific requirement for determining the instrument and GLAO specifications.

Cost estimation, Budget Resources

Items	Cost (USD)	Budget			
(1) ASM&CAL system	\$6M	NAOJ operation budget			
(2) Laser system	\$3M	JSPS Grant-in-aid / International			
(3) WFS unit	\$2M	JSPS Grant-in-aid / International			
(4) Real time system	\$0.1M	JSPS Grant-in-aid			
(5) Telescope modification	\$2M	NAOJ operation budget			
(6) MOIRCS upgrade	\$0.7M	NAOJ operation budget & JSPS Grant-in-aid			
(7) Human resources	\$2M	NAOJ operation budget & JSPS Grant-in-aid			
(8) Contingency	\$1.5M	NAOJ operation budget			
Phase1 total	\$18M (~ \$10M from NAOJ operation budget)				
Phase2: WFI	\$16-18M	JSPS Grant-in-aid / External			
Phase3: M-IFS	\$7M	JSPS Grant-in-aid / External			
Total	~\$43M				

ULTIMATE-Subaru: Schedule

GLAO CoDR planned in early July, 2018

Summary

- ULTIMATE-Subaru is a Subaru's next generation facility instrument plan after PFS. Science and development team is led by the observatory.
- ULTIMATE-Subaru will develop a ground-layer AO system and wide-field near-infrared imager, which provide ~14x14 arcmin² FoV with ~0".2 spatial resolution in K-band.
- Instrument development will be done in phased approach starting from the upgrade of the existing AO system. Science output at each phase is expected.
- AO188 upgrade project to kick-off the ULTIMATE-Subaru (ULTIMATE-START) is funded. LGS and WFS design and fabrication are ongoing.
- Conceptual design of the GLAO is ongoing in collaboration with Australia. CoDR will be at mid-2018
- Expecting involvement from international collaborators for GLAO, wide-field imager (WFI), and multi-IFU spectrograph (M-IFS).
- We will first develop GLAO as an upgrade of telescope capabilities and develop dedicated science instruments (WFI and M-IFS) later, while continuing early science with the existing instrument (MOIRCS). Expected first light of GLAO+MOIRCS is around 2025.