Outline

- Interior Point Methods
- complementarity conditions
- linear algebra: LP, QP and NLP
- Very Large Scale Optimization
- implicit inverse representation
- from sparsity to block-sparsity
- structured optimization problems
- OOPS: Object-Oriented Parallel Solver
- Applications
- financial planning problems (nonlinear risk measures)
- utility distribution planning
- data mining (nonlinear kernels in SVMs)
- PDE-constrained optimization
- Conclusions
J. Gondzio

Large Scale Optimization with IPMs
Complementarity $\quad x_{j} \cdot s_{j}=0 \quad \forall j=1,2, \ldots, n$.
Simplex Method makes a guess of optimal partition:
For basic variables, $s_{B}=0$ and

$$
\left(x_{B}\right)_{j} \cdot\left(s_{B}\right)_{j}=0 \quad \forall j \in \mathcal{B}
$$

For non-basic variables, $x_{N}=0$ hence

$$
\left(x_{N}\right)_{j} \cdot\left(s_{N}\right)_{j}=0 \quad \forall j \in \mathcal{N} .
$$

Interior Point Method uses ε-mathematics:
Replace $\quad x_{j} \cdot s_{j}=0 \quad \forall j=1,2, \ldots, n$
by $\quad x_{j} \cdot s_{j}=\mu \quad \forall j=1,2, \ldots, n$.
Force convergence $\mu \rightarrow 0$.

First Order Optimality Conditions

Simplex Method:

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =0 \\
x, s & \geq 0 .
\end{aligned}
$$

Interior Point Method:

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =\mu e \\
x, s & \geq 0 .
\end{aligned}
$$

Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.

$$
\text { ICCOPT, August } 2007
$$

J. Gondzio

Large Scale Optimization with IPMs

Stochastic Programming Problems

$\longrightarrow(\mathbf{P h D}$ Thesis of Marco Colombo, talk tomorrow)

	Number of Iterations			
Scenarios	Variables	standard	correctors	warm-started
100	105 K	23	20	7
200	209 K	64	25	9
800	836 K	28	22	11
1200	1.6 M	33	26	12

Theory: IPMs converge in $\mathcal{O}(\sqrt{n})$ or $\mathcal{O}(n)$ iterations
Practice: IPMs converge in $\mathcal{O}(\log n)$ iterations
... but one iteration may be expensive!

Interior Point Methods

Marsten, Subramanian, Saltzman, Lustig and Shanno:
"Interior point methods for linear programming:
Just call Newton, Lagrange, and Fiacco and McCormick!",
Interfaces 20 (1990) No 4, pp. 105-116.

- Fiacco \& McCormick (1968) inequality constraints \longrightarrow logarithmic barrier; a sequence of unconstrained minimizations
- Lagrange (1788)
equality constraints \longrightarrow multipliers;
- Newton (1687)
solve unconstrained minimization problems;

ICCOPT, August 2007

J. Gondzio

KKT systems in IPMs for LP, QP and NLP

LP

$$
\left[\begin{array}{cc}
\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
f \\
d
\end{array}\right]
$$

QP

$$
\left[\begin{array}{cc}
Q+\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
f \\
d
\end{array}\right]
$$

NLP $\left[\begin{array}{cc}Q(x, y)+\Theta_{P}^{-1} & A(x)^{T} \\ A(x) & -\Theta_{D}\end{array}\right]\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}f \\ d\end{array}\right]$

The rest of the talk
\longrightarrow focuses on linear algebra issues.

KKT Systems Arising in IPMs

Quasidefinite matrix: $\quad H=\left[\begin{array}{cc}Q & A^{T} \\ A & -F\end{array}\right]$
where Q and F are positive definite.
Vanderbei, SIOPT 5 (1995) pp 100-113:
"Symmetric QDFM's are strongly factorizable."

For any QDFM there exists a Cholesky-like factorization

$$
H=L D L^{T}
$$

where D is diagonal but not positive definite:
D has n positive pivots and m negative pivots.
J. Gondzio

Large Scale Optimization with IPMs

Primal-Dual Regularization

Altman \& G., OMS 11-12 (1999) 275-302.
Replace $H=\left[\begin{array}{cc}Q & A^{T} \\ A & -F\end{array}\right]$ by $H_{R}=\left[\begin{array}{cc}Q & A^{T} \\ A & -F\end{array}\right]+\left[\begin{array}{cc}R_{p} & 0 \\ 0 & -R_{d}\end{array}\right]$.
Interpretation: proximal terms added to primal/dual objectives; Dynamic regularization: correct only suspicious pivots.

Inspired by:
Saunders, in Adams and Nazareth, eds, pp 92-100, SIAM 1996.
Saunders and Tomlin, Tech Rep SOL 96-4, Stanford, Dec 1996.

Primal Regularization

Primal Problem

$\min z_{P}=c^{T} x+\frac{1}{2} x^{T} Q x-\mu \sum_{j=1}^{n} \ln x_{j}$
s.t. $A x=b, x \geq 0$
$\rightarrow\left[\begin{array}{cc}Q+\Theta^{-1} & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}f \\ d\end{array}\right]$.

Primal Regularized Problem

$\min z_{P}+\frac{1}{2}\left(x-x_{0}\right)^{T} R_{p}\left(x-x_{0}\right)$
s.t. $A x=b, x \geq 0$
$\rightarrow\left[\begin{array}{cc}Q+\Theta^{-1}+R_{p} & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}f^{\prime} \\ d\end{array}\right]$.

Dual Regularization

Dual Problem

$$
\begin{aligned}
\max & z_{D}=b^{T} y-\frac{1}{2} x^{T} Q x+\mu \sum_{j=1}^{n} \ln s_{j} \\
\text { s.t. } & A^{T} y+s-Q x=c, s \geq 0
\end{aligned}
$$

$\rightarrow\left[\begin{array}{cc}Q+\Theta^{-1} & A^{T} \\ A & 0\end{array}\right]\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}f \\ d\end{array}\right]$.

Dual Regularized Problem

$$
\begin{array}{cc}
\max & z_{D}-\frac{1}{2}\left(y-y_{0}\right)^{T} R_{d}\left(y-y_{0}\right) \\
\text { s.t. } & A^{T} y+s-Q x=c, s \geq 0
\end{array}
$$

$$
\rightarrow\left[\begin{array}{cc}
Q+\Theta^{-1} & A^{T} \\
A & -R_{d}
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
f^{\prime} \\
d
\end{array}\right] .
$$

Structured Problems

Observation:

Truly large scale problems are not only sparse...
\rightarrow such problems are structured

Structure is displayed in:

- Jacobian matrix A
- Hessian matrix Q

Structure can be exploited in:

- IPM Algorithm \longrightarrow (talk by Marco Colombo tomorrow)
- Linear Algebra of IPM \longrightarrow (focus of the rest of this talk)

$$
\text { ICCOPT, August } 2007
$$

J. Gondzio

Large Scale Optimization with IPMs

Minimum Degree Ordering

Sparse Matrix
Pivot h_{11}
Pivot h_{22}

Minimum degree ordering:

choose a diagonal element corresponding to a row with the minimum number of nonzeros.
Permute rows and columns of H accordingly.

From Sparsity to Block-Sparsity:

Apply minimum degree ordering to (sparse) blocks:
Block-Sparse Matrix Pivot Block $H_{11} \quad$ Pivot Block H_{22}

Choose a diagonal block-pivot corresponding to a block-row with the minimum number of blocks.
Permute block-rows and block-columns of H accordingly.

ICCOPT, August 2007
J. Gondzio

Large Scale Optimization with IPMs
Primal Block-Angular Structure:

$$
Q=\left[\begin{array}{ll}
\square
\end{array}\right], \quad A=\left[\begin{array}{l}
\boldsymbol{\square} \\
\square
\end{array}\right] \text { and } A^{T}=\left[\begin{array}{ll}
\boldsymbol{\square} & \square
\end{array}\right]
$$

Reorder blocks: $\{1,3 ; 2,4 ; 5\}$.

$$
H=\left[\begin{array}{l|l|l}
\square & \square & \square \\
\square & \square \square \\
\square &
\end{array}\right], \quad P H P^{T}=\left[\begin{array}{ll|l|l}
\square & \square & & \square \\
\hline & \square & \square \\
& \square &
\end{array}\right]
$$

Dual Block-Angular Structure:

$$
Q=\left[\begin{array}{lll}
\square & & \\
& \square & \square
\end{array}\right], \quad A=\left[\begin{array}{ll}
\square & \square
\end{array}\right] \text { and } A^{T}=\left[\begin{array}{l}
\square \\
\square \\
\\
\\
\square
\end{array}\right]
$$

Reorder blocks: $\{1,4 ; 2,5 ; 3\}$.

$$
H=\left[\begin{array}{ll|l}
\square & \square & \square \\
& \square & \square \\
\square & \square &
\end{array}\right], \quad P H P^{T}=\left[\begin{array}{ll|l}
\square & \square & \\
\square & \boldsymbol{\square} & \square \\
\hline & \square & \\
\hline & & \square
\end{array}\right]
$$

ICCOPT, August 2007

J. Gondzio

Large Scale Optimization with IPMs
Row \& Column Bordered Block-Diag Structure:

$$
Q=\left[\begin{array}{lll}
\square & & \\
& \square & \square
\end{array}\right], \quad A=\left[\begin{array}{ll}
\square & \square \\
\square & \square
\end{array}\right] \text { and } A^{T}=\left[\begin{array}{ll}
\square & \square \\
\square & \square
\end{array}\right]
$$

Reorder blocks: $\{1,4 ; 2,5 ; 3,6\}$.

$$
H=\left[\begin{array}{cc|c|c}
\square & & \square & \square \\
& \square & & \square \\
\hline & & \square & \square \\
\hline \square & \square & \square &
\end{array}\right]
$$

Example: Bordered Block-Diagonal Structure

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{cccc}
\Phi_{1} & & & B_{1}^{\top} \\
& \cdots & & \vdots \\
& & \Phi_{n} & B_{n}^{\top} \\
B_{1} & \ldots & B_{n} & \Phi_{0}
\end{array}\right)}_{\Phi}= \\
& =\underbrace{\left(\begin{array}{cccc}
L_{1} & & & \\
& & \ddots & \\
& & & \\
& & & L_{n} \\
& & \\
L_{1,0} & \ldots & L_{n, 0} & L_{0}
\end{array}\right)}_{L} \underbrace{\left(\begin{array}{llll}
D_{1} & & & \\
& & \ddots & \\
\\
& & D_{n} & \\
& & & D_{0}
\end{array}\right)}_{D} \underbrace{\left(\begin{array}{cccc}
L_{1}^{\top} & & & L_{1,0}^{\top} \\
& \ddots & & \\
& & & L_{n}^{\top} \\
& & L_{n, 0}^{\top} \\
& & & L_{0}^{\top}
\end{array}\right)}_{L^{\top}}
\end{aligned}
$$

The blocks $\Phi_{i}, i=0,1, \ldots, n$ are KKT systems.

$$
\text { ICCOPT, August } 2007
$$

J. Gondzio

Example: Bordered Block-Diagonal Structure

- Cholesky-like factors obtained by Schur-complement:

$$
\begin{aligned}
\Phi_{i} & =L_{i} D_{i} L_{i}^{\top} \\
L_{i, 0} & =B_{i} L_{i}^{-\top} D_{i}^{-1}, \quad i=1 . . n \\
C & =\Phi_{0}-\sum_{i=1}^{n} L_{i, 0} D_{i} L_{i, 0}^{\top}=L_{0} D_{0} L_{0}^{\top}
\end{aligned}
$$

- And the system $\Phi x=b$ is solved by

$$
\begin{aligned}
z_{i} & =L_{i}^{-1} b_{i} \\
z_{0} & =L_{0}^{-1}\left(b_{0}-\sum L_{i, 0} z_{i}\right) \\
y_{i} & =D_{i}^{-1} z_{i} \\
x_{0} & =L_{0}^{-} \top y_{0} \\
x_{i} & =L_{i}^{-\top}\left(y_{i}-L_{i, 0}^{\top} x_{0}\right)
\end{aligned}
$$

- Operations (Cholesky, Solve, Product) performed on sub-blocks

Abstract Linear Algebra for IPMs

Execute the operation

"solve (reduced) KKT system"
in IPMs for LP, QP and NLP.
It works like the "backslash" operator in MATLAB.

Assumptions:

Q and A are block-structured

J. Gondzio

Large Scale Optimization with IPMs
Linear Algebra of IPMs

$$
\underbrace{\left[\begin{array}{cc}
-Q-\Theta_{P}^{-1} & A^{\top} \\
A & \Theta_{D}
\end{array}\right]}_{\Phi(N L P)}\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
f \\
d
\end{array}\right]
$$

Tree representation of matrix A :

ICCOPT, August 2007

Structures of A and Q imply structure of Φ :

J. Gondzio

Large Scale Optimization with IPMs
OOPS: Object-oriented linear algebra for IPM

- Every node in the block elimination tree has its own linear algebra implementation (depending on its type)
- Each implementation is a realisation of an abstract linear algebra interface.
- Different implementations are available for different structures

[^0]
Structured Problems

... are present everywhere.
J. Gondzio

Large Scale Optimization with IPMs

Sources of Structure

Dynamics \rightarrow Staircase structure

$$
x_{t+1}=A_{t} x_{t}+B_{t} u_{t} \quad x_{t+1}=A_{t}^{t+1} x_{t}+\ldots+A_{t-p}^{t+1} x_{t-p}+B_{t} u_{t}
$$

Sources of Structure

Uncertainty \rightarrow Block-angular structure

$T_{i} x^{1}+W_{i} y_{i}=b_{i}$

$T_{l_{t}} x_{a\left(l_{t}\right)}+W_{l_{t}} x_{l_{t}}=b_{l_{t}}$
J. Gondzio

Large Scale Optimization with IPMs

Sources of Structure

Common resource constraint
$\sum_{i=1}^{k} B_{i} x_{i}=b \rightarrow$ Dantzig-Wolfe structure

Sources of Structure

Other types of near-separability
\rightarrow Row and column bordered block-diagonal structure

J. Gondzio

Large Scale Optimization with IPMs

Sources of Structure

(low) rank-corrector
$A+V V^{T}=C$

and networks, ODE- or PDE-discretizations, etc.

Applications:

- financial planning problems (nonlinear risk measures)
- utility distribution planning
- data mining (nonlinear kernels in SVMs)
- PDE-constrained optimization

Financial Planning Problems (ALM)

- A set of assets $\mathcal{J}=\{1, \ldots, J\}$ given (bonds, stock, real estate)
- At every stage $t=0, \ldots, T-1$ we can buy or sell different assets
- The return of asset j at stage t is uncertain

Investment decisions: what to buy or sell, at which time stage Objectives:

- maximize the final wealth \Rightarrow Mean Variance formulation:
- minimize the associated risk $\Rightarrow \quad \max \mathbb{E}(X)-\rho \operatorname{Var}(X)$
\Rightarrow Stochastic Program: \Rightarrow formulate deterministic equivalent
- standard QP, but huge
- extentions: nonlinear risk measures (log utility, skewness)

OOPS vs. CPLEX 7.0 (convexified QPs)

J. Gondzio

Large Scale Optimization with IPMs

ALM: Largest Problem Attempted

- Optimization of 21 assets (stock market indices) 7 time stages.
- Using multistage stochastic programming Scenario tree geometry: $128-30-16-10-5-4 \Rightarrow 16 \mathrm{M}$ scenarios.
- 3840 second level nodes with 350.000 variables each.
- Scenario Tree generated using geometric Brownian motion.
- $\Rightarrow 1.01$ billion variables, 353 million constraints

Sparsity of Linear Algebra

$-63+128 \times 63=8127$ columns for Schur-complement

- Prohibitively expensive

- Need facility to exploit nested structure
- Need to be careful that Schurcomplement calculations stay sparse on second level

ICCOPT, August 2007
J. Gondzio

Large Scale Optimization with IPMs
Results (ALM: Mean-Variance QP formulation):

Prob	Stgs	Asts	Scen	Rows	Cols				iter time procs
ALM	7	6	13 M	64 M	154 M	42	3923	512	BlueGene
ALM9	7	14	6 M	96 M	269 M	39	4692	512	BlueGene
ALM10	7	13	12 M	180 M	500 M	45	6089	1024	BlueGene
ALM11	7	21	16 M	353 M	1.011 M	53	3020	1280	HPCx

The problem with

- 353 million of constraints

- 1 billion of variables
was solved in 50 minutes using 1280 procs.
Equation systems of dimension 1.363 billion were solved with the direct (implicit) factorization.
\longrightarrow One IPM iteration takes less than a minute.
ICCOPT, August 2007

Distribution Planning Prob: Deterministic Case

```
\(\min \sum_{t \in \mathcal{T}}\left(c_{t}^{T} x_{t}+p_{t}^{T} \phi_{t}\right)+\sum_{s \in \mathcal{S}} c_{s}^{T} \bar{x}_{s}+p_{0}^{T} \phi_{0}\)
s.t. \(A x_{t}+\sum_{\tau=1}^{\bar{\tau}} B^{(-\tau)} x_{t-\tau}+Q_{s}^{T} \phi_{0}+Q_{s}^{T} \phi_{t}=d_{t} \quad t \in \mathcal{T}\) \(x_{t} \leq \bar{x}_{s} \quad t \in S(s), s \in \mathcal{S}\)
```


ICCOPT, August 2007
37
J. Gondzio

Large Scale Optimization with IPMs

Deterministic Case (continued)

A cyclic dynamic structure with a "dense" column border block. Apply the symmetric reordering to augmented system matrix H :
The 19 rows and columns are in the order:
$\{1,12,2,13,3,14,4,15,5,16,6,17,7,18,8,19 ; 9,10,11\}$

which is again of cyclic bordered structure.

Distribution Planning Prob: Stochastic Case

$$
\begin{aligned}
\min & \mathbb{E}_{\xi}\left(\sum_{t \in \mathcal{T}}\left(c_{t}(\xi)^{T} x_{t}(\xi)+p_{t}(\xi)^{T} \phi_{t}(\xi)\right)+p_{0}(\xi)^{T} \phi_{0}(\xi)\right)+\sum_{s \in \mathcal{S}} c_{s}^{T} \bar{x}_{s} \\
\text { s.t. } & A x_{t}(\xi)+\sum_{\tau=1}^{\bar{\tau}} B^{(-\tau)} x_{t-\tau}(\xi)+Q_{s}^{T} \phi_{0}(\xi)+Q_{s}^{T} \phi_{t}(\xi)=d_{t}(\xi), t \in \mathcal{T} \\
& x_{t}(\xi) \leq \bar{x}_{s}, t \in S(s), s \in \mathcal{S}
\end{aligned}
$$

where x_{t}, ϕ_{t} and ϕ_{0} are recourse variables.
Assume that the distribution of ξ is discrete.

$$
\begin{aligned}
& \text { min } \sum_{i} \pi_{i}\left(\sum_{t \in \mathcal{T}}\left(c_{t}^{i T} x_{t}^{i}+p_{t}^{i T} \phi_{t}^{i}\right)+p_{0}^{i T} \phi_{0}^{i}\right)+\sum_{s \in \mathcal{S}} c_{s}^{T} \bar{x}_{s} \\
& \text { s.t. } A x_{t}^{i}+\sum_{\tau=1}^{\bar{\tau}} B^{(-\tau)} x_{t-\tau}^{i}+Q_{s}^{T} \phi_{0}^{i}+Q_{s}^{T} \phi_{t}^{i}=d_{t}^{i}, t \in \mathcal{T}, i \in \mathcal{I} \\
& \\
& \qquad x_{t}^{i} \leq \bar{x}_{s}, t \in S(s), s \in \mathcal{S}, i \in \mathcal{I} .
\end{aligned}
$$

J. Gondzio

Large Scale Optimization with IPMs

Distribution Planning Problems

Prob	variables constraints	periods	nodes	arcs	scenarios	
D1Y1	850,324	484,355	365 d	321	763	det
D1Yn	850,324	484,355	365 d	321	763	det
D7Yn	$5,880,190$	$3,390,485$	2555 d	321	763	det
S7	459,980	341,640	365 d	7	10	36
S321	$4,939,945$	$3,390,485$	365 d	321	763	7

Memory Requirements: CPLEX 9.1 vs. OOPS

Prob	Cplex 9.1				OOPS	
	time(s)	IPM iters memory	$n z\left(L D L^{T}\right)$	memory	$n z\left(L D L^{T}\right)$	
D1Y1	1448	$60(1 \mathrm{e}-4)$	917 MB	62 mln	388 MB	8.9 mln
D1Yn	894	$49(1 \mathrm{e}-4)$	808 MB	49 mln	372 MB	7.3 mln
D7Yn	-	-	OoM	594 mln	3410 MB	54.7 mln
S7	161	$162(1 \mathrm{e}-3)$	262 MB	2.6 mln	184 MB	1.5 mln
S321	-	-	OoM	530 mln	2270 MB	45.3 mln
ICCOPT, August 2007						

Performance of OOPS on large problems

Prob		div	time		memory		IPM iters time/iter
D7Yn	7	921 m	(2 proc)	3.5 GB	$77(1 \mathrm{e}-4)$	11.96 m	
	14	1161 m	$(2$ proc)	3.4 GB	$79(1 \mathrm{e}-4)$	14.7 m	
	35	1260 m	(2 proc)	3.4 GB	$84(1 \mathrm{e}-4)$	15.00 m	
S321	7	1223 m		2.3 GB	$162(1 \mathrm{e}-4)$	7.5 m	
	14	1488 m		2.2 GB	$166(1 \mathrm{e}-4)$	9.0 m	
	35	1318 m			2.3 GB	$163(1 \mathrm{e}-4)$	8.0 m

Parallel runs of OOPS

Prob	div	Procs	Speed-up
D7Yn	7	2	2.0
D7Yn	35	5	3.8
S321	7	7	3.9
S321	14	7	4.8

J. Gondzio

Large Scale Optimization with IPMs

Support Vector Machines:

Formulated as the (dual) quadratic program:

$$
\begin{array}{cc}
\min & -e^{T} y+\frac{1}{2} y^{T} K y, \\
\text { s.t. } & d^{T} y=0, \\
& 0 \leq y \leq \lambda e .
\end{array}
$$

Ferris \& Munson, SIOPT 13 (2003) 783-804.
Kernel function $K(x, z)=\langle\phi(x), \phi(z)\rangle$,
where ϕ is a (nonlinear) mapping from X to feature space F
Matrix K : $K_{i j}=K\left(x_{i}, x_{j}\right)$
$\begin{array}{ll}\text { Linear Kernel } & K(x, z)=x^{T} z . \\ \text { Polynomial Kernel } & K(x, z)=\left(x^{T} z+1\right)^{d} . \\ \text { Gaussian Kernel } & K(x, z)=e^{-\gamma\|x-z\|^{2}} .\end{array}$

SVMs with Nonlinear Kernels:

K is very large and dense!
Approximate:

$$
K \approx L L^{T} \quad \text { or } \quad K \approx L L^{T}+D
$$

Introduce $v=L^{T} y$ and get a separable QP:

$$
\begin{array}{ll}
\min & -e^{T} y+\frac{1}{2} v^{T} v+\frac{1}{2} y^{T} D y, \\
\text { s.t. } & d^{T} y=0, \\
& v-L^{T} y=0 \\
& 0 \leq y \leq \lambda e
\end{array}
$$

Structure can be exploited in:

- Linear Algebra of IPM
$\longrightarrow($ talk by Kristian Woodsend earlier today)

J. Gondzio

PDE-constrained problems

- grids may be irregular
- boundary conditions need to be taken into account

Domain decomposition

- 3D case: n^{3} grid points
- "remove" $\mathcal{O}\left(n^{2}\right)$ points to split the grid into $2,4, \ldots$ subsets each with $n^{3} / 2, n^{3} / 4, \ldots$ points

$$
\left(\begin{array}{cccc}
G_{1} & & S_{1}^{\top} \\
& G_{2} & S_{2}^{\top} \\
S_{1} & S_{2} & S_{0}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccccccc}
G_{1} & & S_{1}^{\top} & & & & \\
& G_{2} & S_{2}^{\top} & & & & S_{10}^{\top} \\
& S_{1} & S_{2} & S_{12} & & & \\
& & & G_{3} & & S_{30}^{\top} & S_{x x}^{\top} \\
& & & & G_{4} & S_{4}^{\top} & S_{40}^{\top} \\
& & & & S_{3} & S_{4} & S_{34} \\
S_{10} & S_{20} & S_{x x} & S_{30} & S_{40} & S_{x x}^{\top} & S_{00}
\end{array}\right)
$$

ICCOPT, August 2007
J. Gondzio

Large Scale Optimization with IPMs

Conclusions:

Interior Point Methods
\rightarrow are well-suited to Large Scale Optimization
Direct Methods
\rightarrow are well-suited to structure exploitation
OOPS: Object-Oriented Parallel Solver
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
\Rightarrow problems of size $\mathbf{1 0}^{6}, \mathbf{1 0}^{\mathbf{7}}, \mathbf{1 0}^{8}, \mathbf{1 0}^{9}, \ldots$
G. \& Sarkissian, MP 96 (2003) 561-584.
G. \& Grothey, SIOPT 13 (2003) 842-864.
G. \& Grothey, AOR 152 (2007) 319-339.
G. \& Grothey, EJOR 181 (2007) 1019-1029.

[^0]: \Rightarrow Rebuild block elimination tree with matrix interface structures
 ICCOPT, August 2007

