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Complementarity xj · sj = 0 ∀j = 1, 2, ..., n.

Simplex Method makes a guess of optimal partition:

For basic variables, sB = 0 and

(xB)j · (sB)j = 0 ∀j ∈ B.

For non-basic variables, xN = 0 hence

(xN )j · (sN )j = 0 ∀j ∈ N .

Interior Point Method uses ε-mathematics:

Replace xj · sj = 0 ∀j = 1, 2, ..., n
by xj · sj = µ ∀j = 1, 2, ..., n.

Force convergence µ → 0.
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Ongoing Project

Exploiting structure in very large scale optimization.

Many of you will have certainly seen earlier results.
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Interior Point Methods

Marsten, Subramanian, Saltzman, Lustig and Shanno:
“Interior point methods for linear programming:
Just call Newton, Lagrange, and Fiacco and McCormick!”,
Interfaces 20 (1990) No 4, pp. 105–116.

• Fiacco & McCormick (1968)
inequality constraints −→ logarithmic barrier;
a sequence of unconstrained minimizations

• Lagrange (1788)
equality constraints −→ multipliers;

• Newton (1687)
solve unconstrained minimization problems;
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KKT systems in IPMs for LP, QP and NLP

LP

[

Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

QP

[

Q + Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

NLP

[

Q(x, y) + Θ−1
P A(x)T

A(x) −ΘD

] [

∆x
∆y

]

=

[

f
d

]

The rest of the talk
−→ focuses on linear algebra issues.
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First Order Optimality Conditions

Simplex Method: Interior Point Method:

Ax = b
ATy + s = c

XSe = 0
x, s ≥ 0.

Ax = b
ATy + s = c

XSe = µe
x, s ≥ 0.

Basic: x > 0, s = 0 Nonbasic: x = 0, s > 0

x x

s s

"Basic": x > 0, s = 0 "Nonbasic": x = 0, s > 0

x x

s s

Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.
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Stochastic Programming Problems
−→(PhD Thesis of Marco Colombo, talk tomorrow)

Number of Iterations
Scenarios Variables standard correctors warm-started

100 105K 23 20 7
200 209K 64 25 9
800 836K 28 22 11

1200 1.6M 33 26 12

Theory: IPMs converge in O(
√

n) or O(n) iterations

Practice: IPMs converge in O(log n) iterations

... but one iteration may be expensive!
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Primal Regularization

Primal Problem

min zP = cTx+1
2x

TQx−µ
∑n

j=1 ln xj
s.t. Ax = b, x ≥ 0

→
[

Q+Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

.

Primal Regularized Problem

min zP+1
2(x − x0)

TRp(x − x0)
s.t. Ax = b, x ≥ 0

→
[

Q+Θ−1+Rp AT

A 0

] [

∆x
∆y

]

=

[

f ′
d

]

.
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Dual Regularization

Dual Problem

max zD = bTy−1
2x

TQx+µ
∑n

j=1 ln sj

s.t. ATy + s − Qx = c, s ≥ 0

→
[

Q+Θ−1 AT

A 0

] [

∆x
∆y

]

=

[

f
d

]

.

Dual Regularized Problem

max zD−1
2(y − y0)

TRd(y − y0)

s.t. ATy + s − Qx = c, s ≥ 0

→
[

Q+Θ−1 AT

A −Rd

] [

∆x
∆y

]

=

[

f ′
d

]

.
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KKT Systems Arising in IPMs

Quasidefinite matrix: H =

[

Q AT

A −F

]

where Q and F are positive definite.

Vanderbei, SIOPT 5 (1995) pp 100-113:
“Symmetric QDFM’s are strongly factorizable.”

For any QDFM there exists a Cholesky-like factorization

H = LDLT ,

where D is diagonal but not positive definite:
D has n positive pivots and m negative pivots.
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Primal-Dual Regularization

Altman & G., OMS 11-12 (1999) 275-302.

Replace H =

[

Q AT

A −F

]

by HR =

[

Q AT

A −F

]

+

[

Rp 0
0 −Rd

]

.

Interpretation: proximal terms added to primal/dual objectives;
Dynamic regularization: correct only suspicious pivots.

Inspired by:

Saunders, in Adams and Nazareth, eds, pp 92-100, SIAM 1996.

Saunders and Tomlin, Tech Rep SOL 96-4, Stanford, Dec 1996.
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From Sparsity to Block-Sparsity:

Apply minimum degree ordering to (sparse) blocks:

Block-Sparse Matrix Pivot Block H11 Pivot Block H22

H =




























P


















P










Choose a diagonal block-pivot corresponding to a block-row with the
minimum number of blocks.
Permute block-rows and block-columns of H accordingly.
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Primal Block-Angular Structure:

Q =

[ ]

, A =

[ ]

and AT =

[ ]

Reorder blocks: {1, 3; 2, 4; 5}.

H =













, PHPT =
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Structured Problems

Observation:

Truly large scale problems are not only sparse...
→ such problems are structured

Structure is displayed in:

• Jacobian matrix A

• Hessian matrix Q

Structure can be exploited in:

• IPM Algorithm−→(talk by Marco Colombo tomorrow)

• Linear Algebra of IPM−→(focus of the rest of this talk)
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Minimum Degree Ordering

Sparse Matrix Pivot h11 Pivot h22

H =










x x x x
x x

x x x
x x x
x x x

x x x



















p x x x
x x

x x f f x
x f x f x
x x f f x

x x x



















x x x x
p x

x x x
x x x
x x x

x x x










Minimum degree ordering:
choose a diagonal element corresponding to a row with the minimum
number of nonzeros.
Permute rows and columns of H accordingly.
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Example: Bordered Block-Diagonal Structure







Φ1 B>
1. . . ...

Φn B>
n

B1 ... Bn Φ0







︸ ︷︷ ︸

Φ

=

=






L1
. . .

Ln
L1,0 ... Ln,0 L0






︸ ︷︷ ︸

L






D1
. . .

Dn
D0






︸ ︷︷ ︸

D








L>
1 L>

1,0
. . . ...

L>
n L>

n,0

L>
0








︸ ︷︷ ︸

L>

The blocks Φi, i = 0, 1, ..., n are KKT systems.
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Example: Bordered Block-Diagonal Structure

• Cholesky-like factors obtained by Schur-complement:

Φi = LiDiL
>
i

Li,0 = BiL
−>
i D−1

i , i = 1..n

C = Φ0 −
∑n

i=1 Li,0DiL
>
i,0 = L0D0L

>
0

• And the system Φx = b is solved by

zi = L−1
i bi

z0 = L−1
0 (b0 −

∑

Li,0zi)

yi = D−1
i zi

x0 = L−>
0 y0

xi = L−>
i (yi − L>

i,0x0)

• Operations (Cholesky, Solve, Product) performed on sub-blocks

ICCOPT, August 2007 20

J. Gondzio Large Scale Optimization with IPMs

Dual Block-Angular Structure:

Q =







 , A =
[ ]

and AT =









Reorder blocks: {1, 4; 2, 5; 3}.

H =















, PHPT =
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Row&ColumnBorderedBlock-Diag Structure:

Q =







 , A =

[ ]

and AT =









Reorder blocks: {1, 4; 2, 5; 3, 6}.

H =

















, PHPT =
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Structures of A and Q imply structure of Φ:
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OOPS: Object-oriented linear algebra for IPM

• Every node in the block elimination tree has its own linear
algebra implementation (depending on its type)

• Each implementation is a realisation of an abstract linear alge-
bra interface.

• Different implementations are available for different structures

iA

iB

iC

iA

R

Rank corrector

implementation

RankCorrector

D

iA

iC

iB

y=Mtx

y=Mx

SolveLt

SolveL Implicit

PrimalBlockAngMatrix
Factorize

factorization

Implicit

DualBlockAng

factorization

Implicit

factorization

BorderedBlockDiag

linear algebra

General sparse

linear algebra

SparseMatrix

DenseMatrix

General dense

M
at

ri
x 

In
te

rf
ac

e

⇒ Rebuild block elimination tree with matrix interface structures
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Abstract Linear Algebra for IPMs

Execute the operation

“solve (reduced) KKT system”

in IPMs for LP, QP and NLP.

It works like the “backslash” operator in MATLAB.

Assumptions:

Q and A are block-structured
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Linear Algebra of IPMs

[

−Q − Θ−1
P A>

A ΘD

]

︸ ︷︷ ︸

Φ (NLP )

[

∆x
∆y

]

=

[

f
d

]

Tree representation of matrix A:
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Sources of Structure

Uncertainty → Block-angular structure

T

T

T

W

W

W

T W

T

T

T

T W

T

T

T

W

W

W

W

W

W

Tix
1 + Wi yi = bi Tltxa(lt)

+ Wlt xlt = blt
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Sources of Structure

Common resource constraint
k∑

i=1
Bi xi = b → Dantzig-Wolfe structure

B B B

A

A

A

ICCOPT, August 2007 28

J. Gondzio Large Scale Optimization with IPMs

Structured Problems

... are present everywhere.
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Sources of Structure

Dynamics → Staircase structure

B

B

B

−I

−I

−I

A

A

A

B

B

B

−I

−I

−I

A

A

AA

A A −IB

A A B −I

A

A

xt+1 = Atxt + Btut xt+1=At+1
t xt+. . .+At+1

t−pxt−p+Btut
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Applications:

• financial planning problems
(nonlinear risk measures)

• utility distribution planning

• data mining (nonlinear kernels in SVMs)

• PDE-constrained optimization
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Financial Planning Problems (ALM)

• A set of assets J ={1, ..., J} given (bonds, stock, real estate)

• At every stage t = 0, ..., T−1 we can buy or sell different assets

• The return of asset j at stage t is uncertain

Investment decisions: what to buy or sell, at which time stage

Objectives:

• maximize the final wealth

• minimize the associated risk
⇒ Mean Variance formulation:

max IE(X) − ρVar(X)

⇒ Stochastic Program: ⇒ formulate deterministic equivalent

• standard QP, but huge

• extentions: nonlinear risk measures (log utility, skewness)
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Sources of Structure

Other types of near-separability

→ Row and column bordered block-diagonal structure

B B B

A

A

A C

C

C

D
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Sources of Structure

(low) rank-corrector
A + V V T = C

+ =V VTA C

and networks, ODE- or PDE-discretizations, etc.
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Sparsity of Linear Algebra

• ⇒ – 63 + 128 × 63 = 8127 columns
for Schur-complement

– Prohibitively expensive

• ⇒ – Need facility to exploit nested
structure

– Need to be careful that Schur-
complement calculations stay
sparse on second level
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Results (ALM: Mean-Variance QP formulation):

Prob Stgs Asts Scen Rows Cols iter time procs machine
ALM8 7 6 13M 64M 154M 42 3923 512 BlueGene
ALM9 7 14 6M 96M 269M 39 4692 512 BlueGene
ALM10 7 13 12M 180M 500M 45 6089 1024 BlueGene
ALM11 7 21 16M 353M 1.011M 53 3020 1280 HPCx

The problem with

• 353 million of constraints

• 1 billion of variables

was solved in 50 minutes using 1280 procs.

Equation systems of dimension 1.363 billion
were solved with the direct (implicit) factorization.

−→ One IPM iteration takes less than a minute.
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OOPS vs. CPLEX 7.0 (convexified QPs)
Pb Stochastic Data Dimensions CPLEX 7.0 OOPS

Stgs A Nodes Rows Cols time iter Mem time iter Mem
2 6 5 111111 667K 1667K 3107 51 1859 4570 26 922
8a 4 50 1111 57K 167K 1317 29 452 1196 14 258
8b 3 50 1123 57K 168K 2838 31 637 368 16 142
8c 3 50 2552 130K 383K 10910 29 1590 860 16 319
8d 3 50 4971 254K 746K 51000∗ 30∗ OoM 1723 17 678
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CPU sec

CPLEX QP solver
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em
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M
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ALM: Largest Problem Attempted

• Optimization of 21 assets (stock market indices) 7 time stages.

• Using multistage stochastic programming
Scenario tree geometry: 128-30-16-10-5-4 ⇒ 16M scenarios.

• 3840 second level nodes with 350.000 variables each.

• Scenario Tree generated using geometric Brownian motion.

• ⇒ 1.01 billion variables, 353 million constraints

30 nodes 30 nodes

128 nodes
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Distribution Planning Prob: Stochastic Case

min IEξ

(

∑

t∈T
(ct(ξ)Txt(ξ)+pt(ξ)Tφt(ξ))+p0(ξ)Tφ0(ξ)

)

+
∑

s∈S
cTs x̄s

s.t. Axt(ξ)+
τ̄∑

τ=1
B(−τ )xt−τ (ξ)+QT

s φ0(ξ)+QT
s φt(ξ) = dt(ξ), t ∈ T
xt(ξ) ≤ x̄s, t∈S(s), s∈S,

where xt, φt and φ0 are recourse variables.
Assume that the distribution of ξ is discrete.

min
∑

i
πi

(

∑

t∈T
(cit

T
xi

t + pi
t
T
φi

t) + pi
0
T
φi

0

)

+
∑

s∈S
cTs x̄s

s.t. Axi
t+

τ̄∑

τ=1
B(−τ )xi

t−τ +QT
s φi

0+QT
s φi

t = di
t, t ∈ T , i ∈ I

xi
t ≤ x̄s, t∈S(s), s∈S, i∈I.
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Distribution Planning Problems

Prob variables constraints periods nodes arcs scenarios
D1Yl 850,324 484,355 365d 321 763 det
D1Yn 850,324 484,355 365d 321 763 det
D7Yn 5,880,190 3,390,485 2555d 321 763 det
S7 459,980 341,640 365d 7 10 36
S321 4,939,945 3,390,485 365d 321 763 7

Memory Requirements: CPLEX 9.1 vs. OOPS

Prob Cplex 9.1 OOPS

time(s) IPM iters memory nz(LDLT ) memory nz(LDLT )
D1Yl 1448 60 (1e-4) 917MB 62 mln 388MB 8.9 mln
D1Yn 894 49 (1e-4) 808MB 49 mln 372MB 7.3 mln
D7Yn - - OoM 594 mln 3410MB 54.7 mln
S7 161 162 (1e-3) 262MB 2.6 mln 184MB 1.5 mln
S321 - - OoM 530 mln 2270MB 45.3 mln
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Distribution Planning Prob: Deterministic Case

min
∑

t∈T
(cTt xt + pT

t φt) +
∑

s∈S
cTs x̄s + pT

0 φ0

s.t. Axt +
τ̄∑

τ=1
B(−τ )xt−τ + QT

s φ0 + QT
s φt = dt t ∈ T
xt ≤ x̄s t ∈ S(s), s ∈ S














A QT B QT

I −I
B A QT QT

I −I
B . . . . . . ...

. . .

. . . A QT QT

I −I
B A QT QT

I −I














.
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Deterministic Case (continued)

A cyclic dynamic structure with a “dense” column border block.

Apply the symmetric reordering to augmented system matrix H :

The 19 rows and columns are in the order:

{1, 12, 2, 13, 3, 14, 4, 15, 5, 16, 6, 17, 7, 18, 8, 19; 9, 10, 11}

H=



























, PHPT=



























which is again of cyclic bordered structure.
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SVMs with Nonlinear Kernels:

K is very large and dense!
Approximate:

K ≈ LLT or K ≈ LLT + D

Introduce v = LTy and get a separable QP:

min −eTy + 1
2v

Tv + 1
2y

TDy,

s.t. dTy = 0,
v − LTy = 0,
0 ≤ y ≤ λe.

H =







LT

L







Structure can be exploited in:

• Linear Algebra of IPM

−→(talk by Kristian Woodsend earlier today)

ICCOPT, August 2007 43

J. Gondzio Large Scale Optimization with IPMs

PDE-constrained problems

x

y

z

• grids may be irregular

• boundary conditions need to be taken into account
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Performance of OOPS on large problems

Prob div time memory IPM iters time/iter
D7Yn 7 921m (2 proc) 3.5GB 77 (1e-4) 11.96m

14 1161m (2 proc) 3.4GB 79 (1e-4) 14.7m
35 1260m (2 proc) 3.4GB 84 (1e-4) 15.00m

S321 7 1223m 2.3GB 162 (1e-4) 7.5m
14 1488m 2.2GB 166 (1e-4) 9.0m
35 1318m 2.3GB 163 (1e-4) 8.0m

Parallel runs of OOPS

Prob div Procs Speed-up
D7Yn 7 2 2.0
D7Yn 35 5 3.8
S321 7 7 3.9
S321 14 7 4.8
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Support Vector Machines:
Formulated as the (dual) quadratic program:

min −eTy + 1
2y

TKy,

s.t. dTy = 0,
0 ≤ y ≤ λe.

Ferris & Munson, SIOPT 13 (2003) 783-804.

Kernel function K(x, z) = 〈φ(x), φ(z)〉,
where φ is a (nonlinear) mapping from X to feature space F

Matrix K: Kij = K(xi, xj)

Linear Kernel K(x, z) = xTz.

Polynomial Kernel K(x, z) = (xTz + 1)d.

Gaussian Kernel K(x, z) = e−γ‖x−z‖2
.
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Domain decomposition

• 3D case: n3 grid points

• “remove” O(n2) points to split the grid into 2, 4, ...
subsets each with n3/2, n3/4, ... points
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Conclusions:

Interior Point Methods

→ are well-suited to Large Scale Optimization

Direct Methods

→ are well-suited to structure exploitation

OOPS: Object-Oriented Parallel Solver

http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html

⇒ problems of size 106,107,108,109, ...
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