- Notes	Chapter o7: Similar Polygons Unit 1: Ratio, Proportion, and Similarity Section 1: Ratio and Proportion
on your desk 7.1 7.2	The ratio of a to b means a / b. For example, the ratio of 4 to 6 (or 4:6) is $\frac{4}{6}$; the ratio of x to $y\left(\operatorname{or} x: y\right.$) is $\frac{x}{y}$
7.3 7.4	A proportion is an equation that two ratios are equal. For example, the proportion of $a: b=c: d$ is same as $\frac{a}{b}=\frac{c}{d}$
7.4 7.5	the proportion of $a: b=c: d$ is same as $\bar{b}=\frac{d}{d}$
7.6	Example 1. See the diagram. a. Find the ratio of $A E$ to $B E$.
	b. Find the ratio of the largest angle of triangle ACE to the smallest angle of triangle DBE. 2. A rectangular field has a length of one kilometer and a width of 300 meters. Find the ratio of the
	length to the width. ${ }_{\text {B }}$
	3. A telephone pole 7 meters is divided into the
	ratio of 3:2. Find the lengths. 1

\mathfrak{N} (otes	Chapter o7: Similar Polygons Unit 1: Ratio, Proportion, and Simílarity Section 1: Ratio and Proportion	
on your desk	Practice	
	$A B C D$ is a parallelogram. Find each ratio.	B
7.1	1. $A B: B C$	
7.2	2. $B C: A D$	6
7.3	3. $\mathrm{m} \angle \mathrm{A}: \mathrm{m} \angle \mathrm{C}$	
	4. $A B$:perimeter of $A B C D$ D	C
7.4		
7.5	5-7: $x=2$ and $y=3$. Write each ratio in simplest form.	
7.6	5. x to y	
	6. $6 x^{2}$ to $12 x y$	
	7. $\frac{y-x}{x}$	

Write each algebraic ratio in simplest form.
8. $\frac{6 \mathrm{a}^{2}}{12 \mathrm{abc}}$
9. $\frac{2(a-b)}{3 a-3 b}$

Nrotes	Chapter o7: Similar Polygons Unit 1: Ratio, Proportion, and Simíarity Section 2: Properties of Proportions
on your desk 7.1	Properties of Proportions 1. $\frac{a}{b}=\frac{c}{d}$ is equivalent to a. $a d=b c$ b. $\frac{a}{c}=\frac{b}{d}$ c. $\frac{b}{a}=\frac{d}{c}$ d. $\frac{a+b}{b}=\frac{c+d}{d}$
7.2 7.3	2. If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots$, then $\frac{a+c+e+\ldots}{b+d+f+\ldots}=\frac{a}{b}=\ldots$
7.4 7.5	NOTE: a \& d are called extremes and $b \& c$ are called means. 1 a is called the means-extremes multiplication property
7.6	Example Use the proportion $\frac{a}{b}=\frac{3}{5}$ to complete each statement. 1. $5 \mathrm{a}=$
	2. $\frac{5}{b}=$
	3. $\frac{a+b}{b}=$
	4. $\frac{5}{3}=$

From the definition of similar polygons, we have: (complete the list)
(1) $\angle \mathrm{A} \cong \angle \mathrm{P}, \angle_{-} \cong \angle_{-}, \angle_{-} \cong \angle_{-}, \quad \angle_{-} \cong \angle_{-}$, and $\angle_{-} \cong \angle_{-}$. .
(2) $\frac{\mathrm{PQ}}{\mathrm{AB}}=\square=\square=\square=\square$

Jotes	Chapter o7: Similar Polygons Unit 1: Ratio, Proportion, and Similarity Section 3: Similar Polygons
on your desk	Example 1. Quadrilateral ABCD ~ quadrilateral A'B'C'D'. a. find their scale factor
7.2	

2. Quadrilateral EFGH ~ quadrilateral E'F'G'H'
a. find their scale factor
b. the values of x, y, and z

c. the ratio of the perimeter

\mathfrak{N} (otes	Chapter o7: Simifar Polygons Unit 1: Ratio, Proportion, and Similarity Section 3: Simíar Polygons
on your desk	Practice
	1. Quadrilateral $A B C D \sim$ quadrilateral $E F G H$.
7.1	a. $\mathrm{m} \angle \mathrm{E}=$ _-_-_ $\quad 21$
7.2	-
7.3	b. $\mathrm{m} \angle \mathrm{G}=$ \qquad 100°
7.4	c. $\mathrm{m} \angle \mathrm{B}=$
7.5	c.
7.6	d. If $\mathrm{m} \angle \mathrm{D}=110$, then $\mathrm{m} \angle \mathrm{H}=\ldots \ldots \ldots$
	e. The scale factor is
	EH= f. 5
	f. $\mathrm{EH}=$
	g. $B C=$
	h. $A B=$
	7

Postulate 15 (AA Similarity Triangle)

If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

Notes	Chapter o7: Similar Polygons Unit 2: Working with Símilar Triangles Section 5: Theorems for Similar Triangles

on your desk	Theorem 7.1 (SAS Similarity Theorem) If an angle of one triangle is congruent to an angle of another triangle and the sides including those angles are in proportion, then the triangles are 7.1 7.2 7.3
7.4 7.5	

Theorem 7.2 (SSS Similarity Theorem)

If the sides of two triangles are in proportion, then the triangles are similar.

11

VNotes	Chapter o7: Similar Polygons Unit 2: Working with Similar Triangles Section 6: Proportional Lengths
on your desk	Practice 1.
7.1	a. $C D=$
7.2	$D A$ E ${ }^{\text {d }}$
7.3	V
	b. If $\mathrm{CD}=3, \mathrm{DA}=6$, and $\mathrm{DE}=3.5$, then $\mathrm{AB}=\ldots \ldots$
7.4	
7.5	
7.6	c. If $\mathrm{CB}=12, \mathrm{~EB}=8$, and $\mathrm{CD}=6$, then $\mathrm{DA}=$ _-_---

2.

a. If $a=2, b=3$, and $c=5$, then $d=$ \qquad
b. If $a=4, b=8, c=5$, then $\mathrm{c}+\mathrm{d}=$ \qquad

