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Abstract. In this paper, we present the proofs for several geometric inequalities
using the Alexandrov-Bakelman-Pucci (ABP) estimate on Riemannian manifolds.
First, we give new proofs of the Heintze-Karcher inequality for mean convex do-
main on manifolds with non-negative Ricci curvature and the classical Minkowski
inequality for mixed volumes. Then, we prove the anisotropic Heintze-Karcher
inequality. Along the new approach, we also establish an anisotropic version of
ABP estimate which may be of independent interest.

1. Introduction

The classical Alexandrov-Bakelman-Pucci (ABP) (see [6]) estimate gives a point-
wise bound for a function u by the Ln-norm of the Pucci extremal operator acting
on u, the integration being over the contact set of u with its convex envelop. This
estimate is essential in the regularity theory for second order elliptic equations [6]:
the Krylov-Safonov Harnack inequality and the landmark works on fully non-linear
equations by Caffarelli [7, 8]. On the other hand, it is remarkable that this PDE
technique was also used, by Cabré [5], to give a neat proof for the classical isoperi-
metric inequality for smooth domains in Euclidean space (see also the recent survey
paper on this topic [4]).

Given those important applications in both elliptic equations and geometry, it is
interesting to extend the classical ABP estimate to Riemannian manifolds. How-
ever, ABP techniques are not directly applicable due to the fact that there is no
corresponding notion of affine functions on general manifolds. To overcome this
difficulty, Cabré [3] suggested to consider the square of distance functions instead of
affine functions as the touching functions and obtained the Harnack inequalities for
non-divergent elliptic equations on manifolds with non-negative sectional curvature.
Based on Cabré’s idea and a work of Savin [20], the second author and Wang [24]
introduced a notion of contact set and established an explicit ABP type estimate on
Riemannian manifolds with Ricci curvature bounded from below (see Section 2.1 for
details). Similar to the classical ABP estimate in the Euclidean space, the upshot of
the new estimate is that the integration is calculated only on the contact set. This
allows one to establish the Krylov-Safanov Harnack inequalities on general mani-
folds. Moreover, it was also used to prove the Minkowski inequality on manifolds
with Ricci curvatures bounded from below in [24].
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Central Universities (Grant No.20720150012), NSFC (Grant No.11501480) and CRC Postdoc Fel-
lowship. Research of the second author is supported in part by NSF Grant: DMS-1308136 and
DMS-1605968.
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In this paper, we continue to investigate the applications of ABP estimate es-
tablished in [24] to geometric inequalities. In comparison with the Euclidean case,
this ABP estimate allows one to do small variations of the boundary of the original
domain, which brings the mean curvature of the boundary into play. Therefore, we
are able to establish some inequalities relating volume of the domain, area of the
boundary and the integral of the mean curvature.

In Section 2, we will first recall the definition of contact set defined in [24] and
state the ABP estimate on general manifolds. Then, we present a proof of the
classical Heintze-Karcher inequality by the ABP method.

Theorem 1.1. Assume that (Mn, g) is a Riemannian manifold with Ric ≥ 0. Let
Ω ⊂M be a connected subdomain with C2 boundary ∂Ω with mean curvature H > 0.
Then,

|Ω| ≤ n− 1

n

∫
∂Ω

1

H
dA,(1.1)

and equality holds if and only if Ω is isometric to an Euclidean ball.

In the second part of the paper, we will further investigate applications of the
ABP method to geometric inequalities involving anisotropic curvature integrals.
The anisotropy is an alternative way of talking about the relative geometry or the
Minkowski geometry, which was initiated by Minkowski, Fenchel, etc., see e.g. [14,
2]. In particular, the mixed volumes about two convex bodies, when smooth and
strictly convex, can be represented by the anisotropic curvature integrals.

In Section 3, we will briefly review the anisotropic curvatures and then use the
ABP estimate in Section 2 to prove a Minkowski type inequality.

Theorem 1.2. Let Ω ⊂ Rn be an open bounded domain with convex and C2 smooth
boundary ∂Ω. Then

|Ω|
∫
∂Ω
HFdA ≤

n− 1

n
|∂Ω|2F ,(1.2)

where HF is the anisotropic mean curvature (see Section 3.1 for the definition)
and |∂Ω|F =

∫
∂Ω F (ν)dA is the anisotropic area functional. Moreover, equality

holds if and only if ∂Ω is a translation or rescaling of the Wulff shape W (uniquely
determined by F ).

We remark that inequality (1.2) is also called the Minkowski inequality for mixed
volumes. Indeed, let K,L be two convex bodies in Rn and V (K[i], L[n − i]) be
the mixed volumes for i = 0, 1, · · · , n. Then, by approximations, (1.2) yields
Minkowski’s second inequality (see e.g. [21] Theorem 7.2.1):

V (K[n− 1], L[1])2 ≥ V (K[n− 2], L[2])V (K[n], L[0]).

In Section 4, we will establish an anisotropic analogue of the Heintze-Karcher
inequality. However, the ABP estimate (Theorem 2.1) is not directly applicable
and we will introduce a notion of contact set in the anisotropic setting and prove
an anisotropic ABP estimate, Theorem 4.1. With this new version, we are able to
prove the following inequality.
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Theorem 1.3. Let Ω ⊂ Rn be an open bounded domain with C2 boundary ∂Ω
satisfying HF > 0. Then,

|Ω| ≤ n− 1

n

∫
∂Ω

F (ν)

HF
dA,(1.3)

Moreover, equality holds if and only if ∂Ω is a rescaling or translation of the Wulff
shape W (uniquely determined by F ).

This anisotropic Heintze-Karcher inequality was first proved in [11] using Heintze-
Karcher’s idea. More recently, Ma-Xiong [13] gave a new proof which follows Bren-
dle’s flow method [1].

Acknowledgements: Both authors would like to thank Professor Pengfei Guan
for his constant support and helpful discussion. The first author would also like to
thank Professor B. Hua for some useful discussions on related topics. The second
author want to express his great gratitude to Professors D.H. Phong, O. Savin and
M.T. Wang for their constant encouragement and support. We are also grateful
to the anonymous referees for their careful reading and useful comments which
improves our paper substantially.

2. Heintze-Karcher inequality

In this section, we present a new proof for the classical Heintze-Karcher inequality
by the ABP estimate obtained in [24].

2.1. ABP estimates on Riemannian manifolds.

Let (M, g) be an n-dimensional Riemannian manifold with metric g and Ric be
the Ricci curvature. Let dy(x) be the Riemannian distance between the points x, y.
Given a connected domain Ω ⊂M with smooth boundary ∂Ω, we also denote dA and
dA as the canonical measure of Ω and ∂Ω, respectively. To simplify the notation,
the volume and boundary area are denoted by |Ω| := µ(Ω) and |∂Ω| := A(∂Ω),
respectively. In [24], the following definition of contact set on (M, g) was introduced.

Definition 2.1. Let Ω be an open bounded subdomain of (M, g) and u ∈ C(Ω). For
a given a > 0 and a compact set E ⊂M , the contact set associated to u of opening
a with vertex set E is defined by

Aa(E,Ω, u) := {x ∈ Ω : ∃ y ∈ E s.t. inf
z∈Ω

(u(z) +
a

2
d2
y(z)) = u(x) +

a

2
d2
y(x)}.

Geometrically, x ∈ Aa(E,Ω, u) if and only if there exists a concave paraboloid
of opening a and with vertex y ∈ E that touches u in Ω from below. Here, by a
concave paraboloid, we mean a function of the form Pa,y(·) := −a

2d
2
y(·) + cy with

cy ∈ R, a > 0.
Using this contact set, the following ABP estimate was established in [24].
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Theorem 2.1 ([24]). Let Ω be an open bounded subdomain in M with Ric ≥ 0 and
u ∈ C2(Ω).

Given any compact set E ⊂M and a real number a > 0, if Aa(E,Ω, u) ⊂ Ω, then

|E| ≤
∫
Aa(E,Ω,u)

(
1 +

∆u

na

)n
dA.(2.1)

The ABP estimate in [24] was proved for general Riemannian manifolds with Ricci
curvature bounded from below. Here we only state the case that Ricci curvature is
non-negative which is enough for our discussion in this paper.

2.2. The classical Heintze-Karcher inequality.

Let (M, g) be a Riemannian manifold and Ω ⊂ M is a connected subdomain.
Denote ν to be the unit outward normal of ∂Ω and H as the mean curvature with
respect to ν. The classical Heintze-Karcher inequality is as follows:

Theorem 2.2. Assume that (Mn, g) is a Riemannian manifold with Ric ≥ 0. Let
Ω ⊂M be a connected subdomain with C2 boundary ∂Ω satisfying H > 0. Then,

|Ω| ≤ n− 1

n

∫
∂Ω

1

H
dA,(2.2)

and equality holds if and only if Ω is isometric to an Euclidean ball.

The above Heintze-Karcher inequality is a sharp inequality for hypersurfaces of
positive mean curvature inspired by a classical inequality due to Heintze and Karcher
[10].

In 1987, Ros [19] provided a proof of the above theorem using the remarkable
Reilly formula (see [17]), and applied it to show Alexandrov’s rigidity theorem for
high order mean curvatures. More recently, aiming to extend Alexandrov’s rigidity
theorem to more general geometric setting, Brendle [1] established inequality (1.1)
in a large class of warped product spaces, including Sn,Hn and the Schwarzschild
manifolds. A geometric flow method, which is quite different from Ros’ proof, was
used in [1] and it allows one to weaken the assumption on the non-negativity of
Ricci curvature. However, it requires the warped product structure of the mani-
folds. Motivated by Brendle’s work, a new kind of Heintze-Karcher’s inequality was
established by the first author and Qiu [16] for compact manifolds with boundary
and sectional curvature bounded below by -1.

In the following, we present a new proof for Theorem 2.2 via the ABP method.
Heuristically, the key technique used to show Reilly’s formula is integration by parts,
which exploits the divergence structure of the elliptic operator. Meanwhile, ABP
estimate is the crucial technique to study the regularity theory of non-divergent
PDE. From this viewpoint, proof of Theorem 2.2 given by Ros [19] is making use
of the divergence structure of laplacian equation and our new proof plays with the
non-divergence part.
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Proof. In order to illustrate the idea more transparently, we first consider the case
Ω ⊂ Rn. Later, we will point out how to modify the argument to general manifolds.

Consider the Dirichlet problem

(2.3)

{
∆u = 1 in Ω

u = 0 on ∂Ω.

It is clear that the above problem has a solution u ∈ C2(Ω̄). Moreover,

f(x) := uν(x) :=
∂u

∂ν
(x) > 0, for any x ∈ ∂Ω

by Hopf’s boundary point lemma.
Next, for any fixed small ε, δ > 0, we apply the ABP estimate (2.1) with a =

(ε+ δ)−1 and E = Ωε which is enclosed by the following hypersurface

∂Ωε = {y ∈ Rn | y = x+ εf(x)ν(x) for some x ∈ ∂Ω}.

To apply the ABP estimate, we need to check that the contact set Aa(E,Ω, u) ⊂
Ω. Indeed, we can argue by contradiction and suppose there is x0 ∈ Aa(E,Ω, u) and
x0 ∈ ∂Ω. By the definition of contact set Aa(E,Ω, u), x0 is a minimum point of the
function

u(x) +
a

2
|y − x|2 + cy

for some y ∈ Ωε. We first observe that u(x) ≡ 0 on ∂Ω implies y − x0 is parallel to
ν(x0) since

a〈y − x0, τ(x0)〉 = 〈∇u(x0), τ(x0)〉 = 0,

for any tangential vector τ(x0) of ∂Ω at x0. On the other hand, by the critical point
condition of x0 ∈ ∂Ω, we know that

〈y − x0, ν(x0)〉 ≥ a−1〈∇u(x0), ν(x0)〉 > εf(x0).

But, this is impossible because y ∈ Ωε.
Now, we apply the ABP estimate and let δ → 0 to obtain

|Ωε| ≤
∫
A 1

ε
(E,Ω,u)

(
1 +

ε∆u

n

)n
dA ≤ |Ω|

(
1 +

ε

n

)n
(2.4)

= |Ω|
(

1 + ε+
ε2

2

n− 1

n

)
+ o(ε2).

To get the desired inequality, we need to approximate the volume |Ωε|. Indeed, ∂Ωε

can be viewed as the following evolving surface when t = ε:

∂tX(x, t) = f(x)ν(x), x ∈ ∂Ω.(2.5)

Note that the velocity of this flow is independent of t. To make use of the variational
formulae for area and volume, we re-write the flow (2.5) into an equivalent form.

∂tX(x, t) = f(x)〈ν(x), ν(x, t)〉ν(x, t) + f(x)〈ν(x), τ(x, t)〉τ(x, t)(2.6)

:= f⊥(x, t)ν(x, t) + f>(x, t)τ(x, t).
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Here ν(x, t) and τ(x, t) denote the unit normal and tangential vectors of hypersurface
∂Ωt. The variational formula gives

d

dt
|Ωt| =

∫
∂Ωt

f⊥(x, t)dAt;

d2

dt2

∣∣∣
t=0
|Ωt| =

∫
∂Ω

∂

∂t

∣∣∣
t=0

f⊥(x, t)dA+

∫
∂Ω

(
f⊥(x, t)

)2
H
∣∣∣
t=0

dA.

By standard computation, we have

f⊥(x, t)
∣∣∣
t=0

= (f(x)〈ν(x), ν(x, t)〉)
∣∣∣
t=0

= f(x);

∂

∂t

∣∣∣
t=0

f⊥(x, t) =
∂

∂t

∣∣∣
t=0

(f(x)〈ν(x), ν(x, t)〉) = f(x)〈ν(x),
∂

∂t

∣∣∣
t=0

ν(x, t)〉 = 0.

We used the fact that ∂
∂t

∣∣∣
t=0

ν(x, t) is a tangential vector of ∂Ω at x to get the last

equality. Therefore,

|Ωε| = |Ω|+ ε
d

dt

∣∣∣
t=0
|Ωt|+

ε2

2

d2

dt2

∣∣∣
t=0
|Ωt|+ o

(
ε2
)

= |Ω|+ ε

∫
∂Ω
fdA+

ε2

2

∫
∂Ω
f2HdA+ o

(
ε2
)
.

Compare this approximation with the right hand side of (2.4) and using the fact
that

∫
∂Ω f =

∫
∂Ω uν =

∫
Ω ∆u = |Ω|, we have∫
∂Ω
f2HdA =

∫
∂Ω
Hu2

νdA ≤
n− 1

n
|Ω|.

Finally, we have

|Ω|2 =

(∫
Ω

∆u

)2

=

(∫
∂Ω
uν

)2

≤
∫
∂Ω
Hu2

ν

∫
∂Ω

1

H
≤ n− 1

n
|Ω|
∫
∂Ω

1

H
,

which gives us the desired inequality

|Ω| ≤ n− 1

n

∫
∂Ω

1

H
dA.

To adapt this argument on Riemannian manifolds, we need to modify the defini-
tion of ∂Ωε as

∂Ωε = { y ∈M | y = expx (εf(x)ν(x)) for some x ∈ ∂Ω }.

And it satisfies the flow equation

∂tX(x, t) = f(x)d expx |tν(x) (ν(x)) := f(x)Pt (ν(x))

= f(x)〈Pt (ν(x)) , ν(x, t)〉ν(x, t) + f(x)〈Pt (ν(x)) , τ(x, t)〉τ(x, t)(2.7)

:= f⊥(x, t)ν(x, t) + f>(x, t)τ(x, t), x ∈ ∂Ω.
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Then, we can follow the same line as the Euclidean case to compute the variational
formula along this flow by changing ν(x) to Pt (ν(x)). The only thing we need to
verify is

f⊥(x, t)
∣∣∣
t=0

= f(x),
∂

∂t

∣∣∣
t=0

f⊥(x, t) = 0.(2.8)

The first equality in (2.8) holds since P0 (ν(x)) = ν(x, 0) = ν(x). For the second
equality in (2.8),

∂

∂t

∣∣∣
t=0

f⊥(x, t) = f(x)
∂

∂t

∣∣∣
t=0
〈Pt (ν(x)) , ν(x, t)〉

= f(x)〈∂t (Pt (ν(x))) , ν(x, t)〉
∣∣∣
t=0

+ f(x)〈Pt (ν(x)) , ∂tν(x, t)〉
∣∣∣
t=0

.(2.9)

We know that, for small t ≥ 0,

〈Pt (ν(x)) , Pt (ν(x))〉 = 〈ν(x), ν(x)〉 = 1.

It follows that

〈∂t (Pt (ν(x))) , Pt (ν(x))〉 = 0.

By evaluating at t = 0, and noting that P0 (ν(x)) = ν(x), we find ∂t (Pt (ν(x))) |t=0 is

a tangential vector of ∂Ω at x. Thus 〈∂t (Pt (ν(x))) , ν(x, t)〉
∣∣∣
t=0

= 0. It is clear that

∂tν(x, t)|t=0 is also a tangential vector of ∂Ω at x. Hence 〈Pt (ν(x)) , ∂tν(x, t)〉
∣∣∣
t=0

=

0. Therefore we can verify the second equality in (2.8) from (2.9).
Let us now check the equality case in (2.2). If we achieve equality in (2.2), then

each step in our argument must be equality. In particular, the ABP estimate (2.1)
is also forced to be equality. By checking the proof for (2.1) in [24], p. 505, we note
that the equality holds in

J̈ (t, x) ≤ − 1

n
Ric(a−1∇u, a−1∇u)J (t, x) ≤ 0,(2.10)

where J (t, x) := (det J(t, x)))
1
n and J(t, x) = D expx(a−1t∇u) is the matrix repre-

senting the Jacobi fileds. Inequality (2.10) was derived by using the standard theory
of Jacobi fields. In the proof of (2.10) (see e.g., Villani’s book [23], page 367-370),
the Cauchy-Schwarz inequality in the form

tr(U2) ≥ 1

n
(trU)2

is used, where U = J̇J−1, see [23], page 369. By the equality case for the Cauchy-

Schwarz inequality, we know that J̇(0) is proportional to J(0). Note that J̇(0) =
a−1∇2u and J(0) = In (see [23], (14.8), note that in our situation ξ = ∇u), we see
∇2u is proportional to g. Combining with ∆u = 1, we deduce ∇2u = 1

ng. Thus,
using Obata’s theorem (see [18], Lemma 3), we see Ω is isometric to the Euclidean
ball.

�
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3. Minkowski inequality for mixed volume

In the next two sections, we move to study some geometric inequalities involving
the so-called anisotropic curvatures.

The concept of anisotropy can date back to the time of Minkowski [14] and Wulff
[26]. In 1901, Wulff initiated the study of the interface energy functional or the
anisotropic area functional

∫
M F (ν)dA in the theory of the physical models of crystal

growth. The minimizer of the interface energy functional is the so-called Wulff
shape. Such crystalline variational problems and models of crystal growth have
been studied extensively by many mathematicians and theoretical physicists. On
the other hand, the anisotropy also has its root in the relative or the Minkowski
differential geometry, where the Wulff shape is named instead as “Eichkr̈oper”, a
fixed convex body, by Minkowski [14]. Especially, in the Euclidean geometry, the
unit round sphere plays the role of the “Eichkr̈oper”. The anisotropic curvatures
we consider here have a great correspondence with the concept of mixed volume in
the theory of convex bodies, see [2, 21].

3.1. Preliminaries on anisotropic curvature.

Given a smooth closed strictly convex hypersurfaceW ⊂ Rn containing the origin,
the support function of W, which is defined by

F (x) = sup
X∈W

〈x,X〉, x ∈ Sn−1,

is a smooth positive function on Sn−1. W can be represented by F as

W = {ψ(x) ∈ Rn | ψ(x) = F (x)x+∇SF (x), x ∈ Sn−1},(3.1)

where ∇S denotes the covariant derivative on Sn−1. Let AF : Sn−1 → Λ2T ∗Sn−1 be
a 2-tensor defined by

AF (x) = ∇S∇SF (x) + F (x)σ for x ∈ Sn−1,

and σ is the round metric on Sn−1. The strictly convexity of W implies that AF is
positive definite. It is well-known that the eigenvalues of AF are the principal radii
of W, i.e., the inverse of principal curvatures, see for example [21].

Let X : M → Rn be a smooth embedding in Rn with induced metric g, and
ν : M → Sn−1 be its Gauss map. The anisotropic Gauss map of X(M) with respect
to the Wulff shape W is defined by

νF : M −→ W
x → DF (ν(x)) = F (ν(x))ν(x) +∇SF (ν(x)).

The anisotropic principal curvature κF of X(M) is defined as the eigenvalues of

dνF : TxM → TνF (x)W.

In particular, the anisotropic mean curvature of X(M) with respect to W is given
by

HF (x) := trg(dνF |x) = trg (AF (ν(x)) ◦ dν|x) .
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On the other hand, a variational characterization for the anisotropic mean cur-
vature HF also arises from the first variation of the parametric area functional

|X(M)|F :=

∫
M
F (ν)dA.

More precisely, let X(·, t), t ∈ [0, ε) be a varation of X with variational vector field

∂

∂t
X(x, t) = ψ(x, t)νF (x, t) + τ(x, t) = ψ(x, t)F (ν(x, t))ν(x, t) + τ̃(x, t),

where ψ ∈ C∞(M × [0, ε)) and τ, τ̃ ∈ TxM . Then, it follows that (see [27])

d

dt
|X(M, t)|F =

∫
M
ψ(x, t)HF (x, t)F (ν(x, t))dAt(x).(3.2)

We extend F ∈ C∞(Sn−1) to be a 1-homogeneous function F ∈ C∞(Rn \ {0}) by

F (x) = |x|F
(
x

|x|

)
, x ∈ Rn \ {0} and F (0) = 0.

One can check easily that F ∈ C∞(Rn \ {0}) is in fact a Minkowski norm in Rn in
the sense that

(i) F is a norm in Rn, i.e., F is a convex, 1-homogeneous function satisfying
F (x) > 0 when x 6= 0;

(ii) F satisfies a uniformly elliptic condition: D2
(
F 2

2

)
is positive definite in

Rn \ {0}.
Here D is the Euclidean gradient and D2 is the Euclidean Hessian. In fact, (ii) is
equivalent to the fact that (∇S∇SF + Fσ) is positive definite on (Sn−1, σ).

For a Minkowski norm F ∈ C∞(Rn \ {0}), its dual norm is defined as

F 0(ξ) := sup
x 6=0

〈x, ξ〉
F (x)

, ξ ∈ Rn.

It follows from the definition of F 0 that F 0 is also a Minkowski norm and

〈x, ξ〉 ≤ F (x)F 0(ξ), ∀x, ξ ∈ Rn.(3.3)

This inequality allows one to verify that the Wulff shape W = {ξ ∈ Rn | F 0(ξ) = 1}
(see e.g. [11]).

Furthermore, using the norms given above, we can define Legendre transforms as

l(x) = D(
1

2
F 2)(x), l0(ξ) = D(

1

2
(F 0)2)(ξ).

The following properties are easy consequences of the 1-homogeneity of F . We refer
to [15], Lemma 1.1 for the proof.

Proposition 3.1. (i) F (DF 0(ξ)) = 1, DF (DF 0(ξ)) = ξ
F 0(ξ)

for ξ 6= 0;

F 0(DF (x)) = 1, DF 0(DF (x)) =
x

F (x)
for x 6= 0;
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(ii) The inverse map of l is l0, i.e.,

l(l0(x)) = l0(l(x)) = x;

(iii) The inverse matrix of
[
D2(1

2F
2)(x)

]
is
[
D2(1

2(F 0)2(l(x))
]
, i.e.,[

D2(
1

2
F 2)(x)

]
◦
[
D2(

1

2
(F 0)2(l(x))

]
= In, for x 6= 0.

3.2. A Minkowski type inequality.

In this subsection, we use the ABP estimate (2.1) to derive the Minkowski in-
equality.

Theorem 3.1. Let Ω ⊂ Rn be an open bounded domain with convex and C2 smooth
boundary ∂Ω. Then

|Ω|
∫
∂Ω
HFdA ≤

n− 1

n
|∂Ω|2F ,(3.4)

where |∂Ω|F =
∫
∂Ω F (ν)dA is the anisotropic area functional. Moreover, equality

holds if and only if ∂Ω is a translation or rescaling of the Wulff shape W.

Proof. We consider the Neumann problem

(3.5)

{
∆u = |∂Ω|F

|Ω| in Ω,

uν = F (ν) on ∂Ω.

It is clear from the standard PDE theory that (3.5) admits a unique C2 solution.
For any fixed ε > 0, let E := Ω̄ε be enclosed by the following hypersurface

∂Ωε := {y ∈ Rn | y = x+ ενF (x) for some x ∈ ∂Ω},
where νF (x) = DF (ν(x)) is the outward anisotropic normal vector at x.

We claim that for any δ > 0 and a = (ε + δ)−1, Aa(E,Ω, u) ⊂ Ω. Suppose not,
there exists some x0 ∈ Aa(E,Ω, u) ∩ ∂Ω. Let y0 be the point in E such that

inf
Ω̄

(
u(x) +

a

2
|y0 − x|2

)
= u(x0) +

a

2
|y0 − x0|2.

At x0, we have

0 < F (ν(x0)) = uν(x0) ≤ −a〈x0 − y0, ν(x0)〉.(3.6)

This implies y0 /∈ Ω̄. Let z0 be the point on ∂Ω such that

y0 = z0 + ε0νF (z0) for some 0 < ε0 ≤ ε.
and z1 be the intersection point of the segment y0z0 and x⊥0 , where x⊥0 denotes the
tangent hyperplane of ∂Ω at x0. It follows from the convexity of ∂Ω that z1 lies on
the segment y0z0. Moreover, it is easy to see from the definition of z1 that

〈y0 − x0, ν(x0)〉 = 〈y0 − z1, ν(x0)〉.(3.7)

By using (3.6), (3.7) and (3.3), we have

F (ν(x0)) ≤ −a〈x0 − y0, ν〉 = a〈y0 − z1, ν(x0)〉 ≤ aF 0(y0 − z1)F (ν(x0)).
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It follows that

F 0(y0 − z0) ≥ F 0(y0 − z1) ≥ 1

a
> ε.

On the other hand, by using Proposition 3.1 (i), we have

F 0(y0 − z0) = F 0(ε0νF (z0)) = ε0 ≤ ε.
A contradiction. Thus x0 ∈ Ω.

We can now apply the ABP estimate on Aa(Ω̄ε,Ω, u) and let δ → 0 to deduce

|Ωε| ≤
∫

Ω

(
1 + ε

∆u

n

)n
dV(3.8)

=

∫
Ω

1 + ε∆u+
n− 1

2n
(∆u)2ε2 + o(ε2)dV.

= |Ω|+ ε|∂Ω|F +
n− 1

2n
ε2

∫
Ω

(∆u)2dV + o(ε2).

On the other hand, Ω̄ε is the Minkowski sum of two convex bodies, Ω̄ and ε{y ∈
Rn | F 0(y) ≤ 1)}. Thus the variational formula (see e.g. [27]) gives

|Ωε| = |Ω|+ ε|∂Ω|F +
1

2
ε2

∫
∂Ω
HFdA+ o(ε2).(3.9)

By comparing the ε2 term between (3.8) and (3.9), we obtain∫
∂Ω
HFdA ≤

n− 1

n

|∂Ω|2F
|Ω|

.

To characterize the equality, we first observe that the equality holds when ∂Ω =
W. On the other hand, if the equality holds, we must have DiDju = cδij in Ω for
c > 0 from the ABP estimate. Integrating DiDju = cδij from some point x0 ∈ Ω
gives

u(x) =
c

2
|x− x0|2 + 〈Du(x0), x− x0〉+ u(x0).

It follows that

F (ν(x)) = 〈Du(x), ν(x)〉 = 〈c(x− x0) +Du(x0), ν(x)〉 for x ∈ ∂Ω.(3.10)

The right hand side of (3.10) is in fact the support function for c∂Ω with respect
to the point ξ0 := cx0 −Du(x0). Thus (3.10) tells us, the support function for the
hypersurface c∂Ω − ξ0 with respect to the origin, viewed as a function on Sn−1, is
F . Note that F is the support function of W with respect to the origin. Since the
support function uniquely determines a convex body or a convex hypersurface, we
conclude that ∂Ω is a rescaling and translation of W, precisely, ∂Ω = 1

c (W + ξ0).
�

4. Anisotropic Heintze-Karcher inequality

In this section, we prove an anisotropic analogue of the Heintze-Karcher inequal-
ity. We will utilize an anisotropic version of the ABP estimate.

11



4.1. Anisotropic ABP estimate.

Before stating the result, we introduce a notion of contact set in the anisotropic
setting.

Definition 4.1. Let Ω ⊂ Rn be an open bounded domain and E ⊂ Rn be a compact
set. Let a > 0 and u ∈ C1(Ω). Set Nu := {x ∈ Ω | Du = 0}. The F -contact set
associated with u of opening a with vertex set E is defined by

AFa (E,Ω, u) :=

{
x ∈ Ω

∣∣ ∃ y ∈ E \Nu s.t.

inf
z∈Ω̄

(
u(z) +

a

2
(F 0(y − x))2

)
= u(x) +

a

2
(F 0(y − x))2

}
.(4.1)

We remark that there are two differences between the F -contact set and the one
given in Definition 2.1: one is that we replace the usual paraboloid 1

2 |y − z|
2 + cy

by the F -paraboloid 1
2(F 0(y− z))2 + cy and the other is that we remove the critical

set Nu of u away from E.
To prove the anisotropic ABP, we also need to introduce the anisotropic gradient

and anisotropic Laplacian. For u ∈ C1(Ω) ∩ C2(Ω \Nu), we define

∇Fu := l(Du) = D(
1

2
F 2)(Du), for x ∈ Ω.

∆Fu(x) := div(∇Fu) =
n∑
i=1

∂

∂xi

(
∂

∂ξi

(
1

2
F 2

)
(Du)

)
, for x ∈ Ω \Nu.

It is worth to mention that the anisotropic Laplacian ∆Fu can only be defined
pointwisely away from Nu since the function 1

2F
2 may not be C2 at the origin.The

anisotropic Laplacian has been well studied in recent years, see for example [25] and
the references therein.

Based on the idea in [24], we can prove the following anisotropic ABP estimate
which links the F -contact set and the anisotropic Laplacian.

Theorem 4.1. Let Ω ⊂ Rn be an open bounded domain and u ∈ C1(Ω)∩C2(Ω\Nu).
Given any compact set E ⊂ Rn and any number a > 0, if AFa (E,Ω, u) ⊂ Ω, then

|E \Nu| ≤
∫
AF

a (E,Ω,u)\Nu

(
1 +

∆Fu

na

)n
dx.(4.2)

Proof. Consider the map

Tu : Rn → Rn, Tu(x) = x+ a−1∇Fu(x).

We claim that Tu is a C1 surjective map from AFa (E,Ω, u)\Nu to E \Nu. First, the
differentiability of Tu on AFa (E,Ω, u) \Nu is obvious. Second, for x ∈ AFa (E,Ω, u) \
Nu ⊂ Ω, there exists some y ∈ E \Nu such that

inf
z∈Ω̄

(
u(z) +

a

2
(F 0(y − z))2

)
= u(x) +

a

2
(F 0(y − x))2.

12



Then Du(x) = al0(y − x). Using Proposition 3.1 (ii) we have

∇Fu(x) = l(Du(x)) = l
(
al0(y − x)

)
= a(y − x).

Thus Tu(x) = x + a−1∇Fu(x) = y ∈ E \ Nu. Third, for y ∈ E \ Nu, there exists
x ∈ Ω̄ such that

inf
z∈Ω̄

(
u(z) +

a

2
(F 0(y − z))2

)
= u(x) +

a

2
(F 0(y − x))2.

By the definition of AFa (E,Ω, u), we have x ∈ AFa (E,Ω, u). From the assumption
that AFa (E,Ω, u) ⊂ Ω, we also have x ∈ Ω. By the same argument as above,
∇Fu(x) = a(y−x). It follows that x /∈ Nu because otherwise y = x ∈ Nu. Therefore
x ∈ AFa (E,Ω, u) \Nu and Tu(x) = y. Thus Tu is surjective.

It follows from the area formula for Lipschitz map that

|E \Nu| ≤
∫
AF

a (E,Ω,u)\Nu

|detDTu| dx.(4.3)

Next, we show the matrix (In + a−1D(∇Fu))(x) ≥ 0 for x ∈ AFa (E,Ω, u) \ Nu,
where In is the identity matrix and

(D(∇Fu))ij =
∂

∂xi

(
∂

∂ξj

1

2
F 2(Du)

)
=

n∑
k=1

∂2 1
2F

2

∂ξj∂ξk
(Du)DiDku.

By the fact that x is the minimum point of the function u(z) + a
2 (F 0(y − z))2 for

some y, we know that Du(x) = al0(y − x) and DiDku(x) ≥ −aDiDk
1
2(F 0(y − x))2

(as matrices). Thus

n∑
k=1

∂2(1
2F

2)

∂ξj∂ξk
(Du(x))DiDku(x) ≥ −a

n∑
k=1

∂2(1
2F

2)

∂ξj∂ξk

(
l0(y − x)

) ∂2(1
2(F 0(y − x))2)

∂xi∂xk

= −aδij .

The last equality follows from Proposition 3.1 (ii) and (iii).
Using the arithmetic geometric mean inequality in (4.3), we have

|E \Nu| ≤
∫
AF

a (E,Ω,u)\Nu

detDTudx(4.4)

≤
∫
AF

a (E,Ω,u)\Nu

[
1

n
tr
(
In + a−1D(∇Fu)(x)

)]n
dx

=

∫
AF

a (E,Ω,u)\Nu

(
1 +

1

na
∆Fu(x)

)n
dx.

�
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4.2. Anisotropic Heintze-Karcher inequality.

In this subsection we use Theorem 4.1 to derive the anisotropic Heintze-Karcher
inequality.

Theorem 4.2. Let Ω ⊂ Rn be an open bounded domain with C2 boundary ∂Ω
satisfying HF > 0. Then,

|Ω| ≤ n− 1

n

∫
∂Ω

F (ν)

HF
dA,(4.5)

and equality holds if and only if ∂Ω is a rescaling or translation of the Wulff shape
W.

Proof. Let u be the solution of the Dirichlet problem

(4.6)

{
∆Fu = 1 in Ω,

u = 0 on ∂Ω.

in the weak sense that u ∈W 1,2
0 (Ω) satisfies∫

Ω

n∑
i=1

Dξi(
1

2
F 2)(Du)Divdx =

∫
Ω
vdx, for any v ∈W 1,2

0 (Ω).

It is well-known that u ∈ C1,α(Ω̄) ∩ C2(Ω̄ \ Nu) for some α ∈ (0, 1), see e.g. [22],
Theorem 1 and [12], Theorem 1. The Hopf boundary point lemma still holds for
(4.6), i.e., u < 0 in Ω and uν > 0 on ∂Ω, see [9], Theorem 2.1.

We claim that the critical set Nu = {Du = 0} has Lebesgue measure zero. For
minu ≤ t ≤ 0, define St = {x ∈ Ω̄ : u(x) = t}. It follows from the strong maximum
principle that the domain Ωt := {x ∈ Ω̄ : u(x) < t} is connected and Ω̄ can be
viewed as the union of set {St} with minu ≤ t ≤ 0. Therefore, for the point in each
St with minu < t ≤ 0, we have |∇u| 6= 0. The points where |∇u| = 0 must then be
a subset of Sminu, and thus necessarily coincide with such set. On the other hand, it
follows from the equation that Sminu cannot have interior point. Therefore, Sminu,
and in turn, Nu has Lebesgue measure zero.

Let f(x) = uνF (x) = uν(x)F (ν(x)) > 0 for x ∈ ∂Ω and ε > 0 be a small positive
number. Let E = Ω̄ε be the enclosed domain by the hypersurface

∂Ωε = { y ∈ Rn | y = x+ εf(x)νF (x), x ∈ ∂Ω }.

where νF = DF (ν) is the outward anisotropic normal vector.
For any δ > 0 and a = (ε + δ)−1, we claim that AFa (E,Ω, u) ⊂ Ω. Suppose not.

There exists x0 ∈ AFa (E,Ω, u) ∩ ∂Ω. Let y0 ∈ E \Nu be the point such that

inf
z∈Ω̄

u(z) +
a

2
(F 0)2(y0 − z) = u(x0) +

a

2
(F 0)2(y0 − x0).(4.7)

Since u = 0 on ∂Ω, we see for any τ ∈ Tx0(∂Ω), 〈Du(x0), τ〉 = 0. From (4.7),

〈l0(y0 − x0), τ〉 = 〈D1

2
(F 0)2(y0 − x0), τ〉 = 0.

14



This implies l0(y0 − x0) = cν(x0) and by using Proposition 3.1 (ii),

y0 − x0 = c · (l0)−1ν(x0) = c · l(ν(x0)) = c · F (ν(x0))νF (x0)

for some constant c. On the other hand, from (4.7) we see that

uνF (x0)− a〈l0(y0 − x0), νF (x0)〉 ≥ 0.

That is

uνF (x0)− a〈cν(x0), νF (x0)〉 = uνF (x0)− ac · F (ν(x0))

= uνF (x0)− a〈y0 − x0,
νF
|νF |2

(x0)〉 ≥ 0.

It follows that

〈y0 − x0,
νF
|νF |2

(x0)〉 ≥ auνF (x0) > εf(x0).

This together with the fact that y0−x0 is in the same direction as νF imply y0 /∈ Ωε,
which gives the contradiction. Therefore, we obtain that AFa (E,Ω, u) ⊂ Ω.

We can apply the anisotropic ABP estimate on AFa (E,Ω, u) and let δ → 0,

|Ωε| = |Ωε \Nu| ≤
∫

Ω\Nu

(
1 + ε

∆Fu

n

)n
dV(4.8)

=

∫
Ω\Nu

1 + ε∆Fu+
n− 1

2n
(∆Fu)2ε2 + o(ε2)dV.

We will compute the first and the second variation of |Ωε|. By the same reason
as in (2.6), we need to decompose the vector into two parts. For this purpose, we
first recall a metric defined in [27]:

Gξ(V,W ) :=
n∑

α,β=1

∂2 1
2(F 0)2(ξ)

∂ξα∂ξβ
V αW β,

Qξ(U, V,W ) :=
n∑

α,β,γ=1

∂3(1
2(F 0)2(ξ)

∂ξα∂ξβ∂ξγ
UαV βW γ ,

for ξ ∈ Rn \ {0}, U, V,W ∈ TξRn. It is easy to see

GνF (νF , νF ) = 1 and GνF (νF , τ) = 0, for tangential vector τ ;(4.9)

QνF (νF , V,W ) = 0, for V,W ∈ Rn.

Thus we can decompose any vector into an anisotropic part together with a tangen-
tial part by using G.

We continue the proof. As before, we view ∂Ωt, t ∈ [0, ε] as a hypersurface flow

∂tX(x, t) = f(x, t)νF (x, t) + τ(x, t), t ∈ [0, ε]

where f(x, t) := f(x)GνF (x,t) (νF (x), νF (x, t)) and νF (x, t) is the outward anisotropic
normal vector of ∂Ωt and τ(x, t) is tangential to ∂Ωt.
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It follows from the variational formula that

d

dt
|Ωt| =

∫
∂Ωt

f(x, t)F (ν(x, t))dAt(x)(4.10)

=

∫
∂Ωt

f(x)GνF (x,t) (νF (x), νF (x, t))F (ν(x, t))dAt(x)

and in turn

d

dt

∣∣∣∣
t=0

|Ωt| =
∫
∂Ω
fF (ν)dA =

∫
∂Ω
uνFF (ν)dA.

For the second variation, we note that

∂

∂t

∣∣∣∣
t=0

GνF (x,t) (νF (x), νF (x, t))(4.11)

= GνF (x,t) (νF (x), ∂tνF (x, t)) +QνF (x,t) (νF (x), νF (x, t), ∂tνF (x, t)) = 0.

The last equality follows from (4.9). Using (4.10), (4.11) and (3.2), we get

d2

dt2

∣∣∣∣
t=0

|Ωt| =
∫
∂Ω
f(x)2HFF (ν)dA =

∫
∂Ω
u2
νF
HFF (ν)dA.

Thus, we have the expansion

|Ωε| = |Ω|+ ε

∫
∂Ω
uνFF (ν)dA+

1

2
ε2

∫
∂Ω
u2
νF
HFF (ν)dA+ o(ε2).(4.12)

Since u = 0 on ∂Ω, Du = uνν on ∂Ω. By integration by parts and Du = 0 on Nu,∫
Ω\Nu

∆FudV =

∫
∂Ω
〈D1

2
F 2(Du), ν〉dA =

∫
∂Ω
uν〈D

1

2
F 2(ν), ν〉dA =

∫
∂Ω
uνFF (ν)dA.

Thus ∫
Ω

1 + ε∆FudV = |Ω|+ ε

∫
∂Ω
uνFF (ν)dA.(4.13)

It follows from (4.8), (4.12) and (4.13) that∫
∂Ω
u2
νF
HFF (ν)dA ≤ n− 1

n

∫
Ω\Nu

(∆Fu)2dV =
n− 1

n
|Ω|.

Using the Hölder inequality, we have

|Ω|2 =

(∫
Ω\Nu

∆FudV

)2

=

(∫
∂Ω
uνFF (ν)dA

)2

≤
∫
∂Ω
u2
νF
HFF (ν)dA

∫
∂Ω

F (ν)

HF
dA

≤ n− 1

n
|Ω|
∫
∂Ω

F (ν)

HF
dA,

which implies the desired inequality∫
∂Ω

F (ν)

HF
dA ≥ n

n− 1
|Ω|.

16



We are remained with the equality case. By examining the equality in the
anisotropic ABP estimate, we find

(D(∇Fu))ij =
∂

∂xi

(
∂

∂ξj

1

2
F 2(Du)

)
=

1

n
δij in Ω \Nu.

Thus outside Nu, l(Du(x)) = 1
n(x− b) and in turn Du(x) = 1

nD(1
2(F 0)2)(x− b)for

some b ∈ Rn. Since Du is continuous in Ω, we have Du(x) = 1
nD(1

2(F 0)2)(x − b)
for all points in Ω. It follows that u(x) = 1

2n(F 0)2(x− b) + c. Note that ∂Ω = {u =

0} = {x ∈ Rn| 1
2n(F 0)2(x − b) + c = 0}. We conclude that ∂Ω must be a rescaling

and translation of W = {x ∈ Rn | F 0(x) = 1}. �
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