Available online at www.sciencedirect.com

SCIENOE@DIRECT" ADVANCES IN
Mathematics

ELSEVIER Advances in Mathematicll (11an) 11 —_—
www.elsevier.com/locate/aim

Organizing the arithmetic of elliptic curves

Barry Mazuf-1, Karl RubirP-*1

8Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
bDepartment of Mathematics, University of California Irvine, Irvine, CA 92697, USA

Received 28 November 2004; accepted 11 May 2005

Communicated by Johan De Jong

Abstract

Suppose thatt is an elliptic curve defined over a number field, p is a rational prime,
and K is the maximalZ ,-power extension ofK. In previous work [B. Mazur, K. Rubin,
Elliptic curves and class field theory, in: Ta Tsien Li (Ed.), Proceedings of the International
Congress of Mathematicians, ICM 2002, vol. I, Higher Education Press, Beijing, 2002, pp.
185-195; B. Mazur, K. Rubin, Pairings in the arithmetic of elliptic curves, in: J. Cremona
et al. (Eds.), Modular Curves and Abelian Varieties, Progress in Mathematics, vol. 224, 2004,
pp. 151-163] we discussed the possibility that much of the arithmeti€ ofer K (i.e., the
Mordell-Weil groups and theip-adic height pairings, the Shafarevich-Tate groups and their
Cassels pairings, over all finite extensions l0fin K~;) can be described efficiently in terms
of a single skew-Hermitian matrix with entries drawn from the Iwasawa algebr&-gf K .

In this paper, using work of NekovdJ. Nekovd, Selmer complexes. Preprint available at
(http://Iwww.math.jussieu.frfnekovar/puy], we show that under not-too-stringent conditions such
an “organizing” matrix does in fact exist. We also work out an assortment of numerical instances
in which we can describe the organizing matrix explicitly.
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1. Introduction

Fix the data(p, K, E) where p is a prime numberK a number field, ancE an
elliptic curve overQ. Let K,/K denote the maximal ,-power extension oK. Recent
work? provides, in some instances, detailed information almatlic completions of
Mordell-Weil groups and their associatgdadic height pairings, and thp-primary
Shafarevich—Tate groups and their associated Cassels pairings, over intermediate fields
in Ko/K . Added to this information we also have a constellation of conjectures telling
us even more precisely how all this arithmetic should behave.

In previous articles [MR1,MR2] we have considered the possibility that, under some
not too stringent assumptions, much of this arithmetic data can be packaged efficiently
in terms of a single skew-Hermitian matrix with entries drawn from the Iwasawa
algebra of theZ ,-power extensiork.,/K. We say that such a matrid organizes the
arithmetic of (p, K, E) if it plays this role vis-a-vis the arithmetic dip, K, E). For a
detailed discussion of this, see §7. In the special case where there is no noptrivial
torsion in the Shafarevich—Tate group Bfover K, our skew-Hermitian matrix may be
thought of as a (skew-Hermitian) lifting to the Iwasawa algebra of the matrix describing
the p-adic height pairing on the Mordell-Weil group(K).

The main resultTheorems 7.5 and 7.7 provide a construction of such skew-Hermitian
“organizing matrices” in a fairly general context. Our construction depends heavily on
work of Nekova [N] (which in turn makes use of work of Greenberg). An example
of what we can prove is the following.

Let (p, K, E) be such that

K /Q is abelian,

the integers, disqK), cond E) are pairwise relative prime,

E has ordinary reduction i,

p does not divide #(k,) for any of the residue field, at placesv of K lying
abovep,

the Tamagawa numbers @&/K are all prime top.

Then an organizing matri¥d for the arithmetic of(p, K, E) exists, and is unique up
to (noncanonical) equivalence.

We work out an assortment of numerical instances in which we can describe the
organizing matrix explicitly. In 8 we consider the case where the base fi€lé Q.
For example, ifE is either of the curves denoted 1058C1 or 1058D1 in [Cr] (and
assuming the Birch and Swinnerton—-Dyer conjecture Agf)) then using calculations
by William Stein we can give the organizing matiik exactly for all 337 primes less
than 2400 that satisfy the conditions listed above. We also show that a congruence
modulo 5 between the modular forms corresponding to these two curves is matched
by a congruence modulo 5 between their organizing matrices.

2 Advances here have been made be many people, including Bertolini and D@§BDarBD2], Cornut
[Co], Greenberg[G1,G2] Howard [Ho2,Hol] Kato [Ka], Nekova [N], Perrin-Riou[PR1,PR2,PR3,PR4]
and Vatsal[V].
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In 810 we consider the case wheEeis defined overQ and K is an imaginary
quadratic field satisfying the “Heegner condition”. We find, among other things, ex-
amples of lwasawa modulexan“ attached to elliptic curves over anti-cyclotomnic,-
extensions such thax@" contains nontrivial finite submodules, and we also give a
counterexampleéo a prior conjecture of ours.

To describe the structure we deal with in more detail, Aut= Z ,[[Gal(K o/ K)]1],
and denote by : A — A the standard involution (that sends every group element
in A to its inverse and is the identity an,). If M is a A-module, itsconjugate M’
is the A-module with the same underlying group &k but with A-module structure
obtained from that oM by composition with:. By a basic skew-Hermitianm\-module
® we mean a free\-module of finite rank equipped with a skew-Hermitian pairing,

(D(X)A(I)l—)mC/\,

wherem is the maximal ideal im\, and such that this pairing is nondegenerate after ex-
tending scalars to the field of fractions a&f If the arithmetic of(p, K, E) is organized
by ®, we can derive Mordell-Weil and Shafarevich—Tate information at all layers of
Ko /K together with their self-pairings from the structure of the basic skew-Hermitian
A-module @, as described in'8

Given an organizing modul@ for (p, K, E) as above, consider the freemodule
of rank oneA := dety @71, i.e., the inverse of the determinant moduledfover A.
Define Lf‘,"th(K , E), the arithmetic p-adic L function attached t@p, K, E) (relative
to the organizing moduleb) to be the discriminant of the skew-Hermitian module
®. (The definition of ap-adic L-function as a determinant of a complex in a derived
category has already appeared in the work of Nekosée the footnote at the end of
the introduction to [N].) Given our hypotheses above, the arithnyetdic L-function
is a nonzero element

LA™K, E) e A@p A'.

How canonical is this construction? First, themoduleA®A A’ is canonically isomor-
phic to the determinamh-module of NekovéS “Selmer complex,” which is represented

in the derived category by a finite complex of projective modules of finite rank (under
the hypotheses listed above). Therefore, the fhemodule of rank oneA @5 A' is
canonically determined by our initial date, K, E), as is the eIemenL?,”th(K, E)

in it.

There is also a canonicalrientation on A ®, A'. By an orientation of a free\-
module of rank one let us a mean a choice of generator up to multiplication by an
element of the formu - u' whereu € A* is a unit. Since the organizing module is
determined up to (noncanonical) equivalence, we haveAlgt A’ inherits a canonical
orientation.

There is, of course, thp-adic analytic side of this story. For simplicity fik = Q.

We have the standard (modular symbols) construction opthdic analyticL-function
of the elliptic curve,L‘;",”a'(K, E), which can be viewed, again canonically, as an element
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of H1(E(C),Z)* ®z A, where the superscript refers to the+-eigenspace of the ho-
mology group in question under the action of complex conjugation. Given the modular
parametrizationXg(cond E)) — E we may even make a canonical choice of a “pos-
itive” generator of the infinite cyclic groupi;(E(C), Z)*. Identifying H1(E(C),Z)™

with Z via the canonical generator, we may vid@"3(K, E) as an element oA, this

being one of the accidental bonuses (as we shall see below) of working with elliptic
curves rather than abelian varieties of higher dimension, or modular eigenforms of
higher weight. Theexpectationhere (themain conjecturein this context) for which
there is now much evidence, is that (givim@“a'(K, E) a natural normalization) there

is a unique generatgy of the free A-module of rank oneA ® A' such that

L3k E)-g = LA(K, E).

It is natural to wonder whether this unique generaganight bear some clear relation-
ship to the orientation structure df ® A'; it might make sense to make use of the
theory of Shimura’s lift to half-integral weight modular forms to study this question.

Questions about variationWe feel that our result might be but the first hint of
some kind ofgeneric purityphenomenon regarding NekaigaSelmer complexes. The
remainder of this introduction section is completely speculative, and is offered to give
a sense of what we might mean by this.

Let p>5 be a prime number. PW = Z,[[Z]], which we take ag-adic weight
space where fork € Z, we haves, : W — Z,,, the naturalprojection to weight k and
nebentypus charactan®. Here o is the standard Teichmiiller character, andis the
Z p-algebra homomorphism that sends a group elemeatZ; to xk e Z,CZp.

Let T denote Hida's Hecke algebra for ordingmiadic modular eigenforms ohg(p).
Hida’'s Hecke algebrd is a finite flatW-algebra with the following property. Fdr =
2,3,4, ... if we make the base change froMl to Z, via s, we have thall ®w Z,
is naturally isomorphic to the (classical) Hecke algebra that acts faithfullp-adic
cuspidal ordinary modular eigenforms éh(p) of weight k and nebentypus character
oF. Let m c T denote a maximal ideal associated to an absolutely irreducible residual
representation of the Galois grogp: Gal(Q/Q) — GL»(T/m) and letT,, denote the
completion of T at m. Put

R = Tm®zp/\,
and let: : R — R denote the involution &:. There is a canonical representation
p: GallQ/Q) — GLa(R).

unramified outsidep, uniquely characterized by the requirement that if

f=q+) an(f)g"

n=2
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is an ordinary eigenform om'1(p) whose associated residual representation is equiv-
alent top and if y : GalQx/Q) — C; is a wild p-adic character, then the Galois
representation

Gal(Q/Q) — GL2(C))

attached tof ® x is the one induced frorp by the homomorphisnk — C,, which, for

positive integers prime top, takesT,®y to a,(f)x(y) and takes/,®y to a,(f)x(y).

Attached top there is a (finitely generated) Selm&module S, which we wish
to view as coherent shed over X := SpeqR). Moreover, there is a “two-variable”
p-adic L function L?,”a' that is naturally a section of a certain line buntilever X that
we will denoteP.

In view of the main result of this article, we might wonder whether there are fairly
general conditions under which one may find a Zariski open subschermmeX =
SpegR) stable unden, and a skew-Hermitian vector bundé® of finite rank overY
with these two properties:

e The skew-Hermitian vector bundfe overY bears an “organizing” relationship to the
coherent sheaf ®p», Oy (analogous to the relationship that the organizing skew-
Hermitian module® in the context of elliptic curves above bears to the classical
Selmer module).

e Forming A := det®~1, which is a line bundle oveY, and

L‘f,”th := discriminant®),

viewed as a section of the line bundiex A' overY, there is a (unigue) isomorphism
of line bundles

g:P®oy Oy=AR®A'

that brings the sectio.3" (restricted toY) to L2 (this being analogous to the
“main conjecture” relationship between arithmetic and analgtadic L-functions of
elliptic curves described above).

2. The setup

Fix a number fieldK, an elliptic curveE defined overK, and a rational primep
such thate has good ordinary reduction at all primes Kfabovep.

3 Usually one definei%na' to be a bona fide function (cfGS,Ki]) but the natural construction of
this two-variable L-function—independent of any choice—is as a section of a specific line bundle that
we refer to above a®, which one must trivialize to expressf,”a' as a function.
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For every finite extensioh of K we have thep-power Selmer group

Sel,(E, L) := ker(H(L, E[p™]) — ]_[ HY(L,, E)),

v

where E[p®°] is the Galois module op-power torsion ong, and the product is over
all placesv of L. This Selmer group sits in an exact sequence

0— E(L)®Q,/Z, — Sel,(E, L) — w(E, L)[p>®] — 0, (2.1)

whereni(E, L)[p*] is the p-primary part of the Shafarevich—Tate group®fver L.
Let K« denote the maximak ,-power extension oK, i.e., GatKoo/K);Zf, for
somed € Z* and K, contains allZ ,-extensions oK. By class field theory we have
r2+1<d<[K : Q], wherery is the number of complex places &f andd = + 1
if Leopoldt's Conjecture holds foK. In particulard =1 if K =Q andd =2 if K is

guadratic imaginary. Lef" := Gal(K~/K), and define the lwasawa algebra

A= Z,[[T1].

If K CLCKx weletl'y :=Gal(lL/K) and Ay, := Z,[[T".]] for the corresponding
quotients of" and A.

As in the introduction, we let: A; — A denote the involution that sengs— y~
for y e I'z, and if M is a Az-module we letM' be theconjugate modulethe Ay -
module with the same underlying abelian groupMsbut with A;-module structure
obtained from that oM by composition with:.

If K C L C Ky wWe define

1

Sel,(E, L) := lim Sel,(E, F),

direct limit (with respect to restriction maps on Galois cohomology) over finite exten-
sionsF of K in L, and the Pontrjagin dual

S,(E, L) := Hom(Sel,(E, L), Q,/Z,).

We will frequently make the following assumption.

Perfect control assumption. If K C L C K« then the canonical restriction map
Sel,(E, L) —> Sel,(E, Kqo) S8 Kx/D)

is an isomorphism
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Remark 2.1. The Perfect Control assumption does not always hold. However, the ker-
nel and cokernel of the map S€E, L) — Sel,(E, K)®3K~/L) are usually small
and bounded independently &f (This is the “Control Theorem”, see for example
[M1,G1].) In a case where the Perfect Control assumption does not hold, we can either
localize A to avoid the support of these kernels and cokernels, or else work with the
collection of Sej}(E, K«)®3K=/L) instead of the classical Selmer groups 3£, L).

See Appendix A for a discussion of sufficient conditions that will guarantee that the
Perfect Control assumption holds.

Lemma 2.2. If the Perfect Control assumption holds ad C L C K, then
S[J(E! KOO) ®/\ AL ;Sp(Ev L)v
Sy(E, L) ®A, AL/mp)=S,(E,K)®Z/pZ,

wheremy, is the maximal ideal ofA;. In particular S,(E, L) is a finitely generated
A -module

Proof. The two isomorphisms are clear, and then sidGgE, K) ® Z/pZ is finite,
Nakayama’'s Lemma shows th&},(E, L) is finitely generated oveA;. [

Lemma 2.3. Suppose L is a finite extension of K k.
(i) There is a canonical isomorphism

Sp(E, Lyors=(E, L)[p™1/m(E, L)[p™ldiv

where ni(E, L)[p™]giv is the maximal divisible subgroup afi(E, L)[p*°]. If
w(E, L)[p®] is finite then this isomorphism becomes

Sp(E, L)ors=m(E, L)[p™].
(i) There is a canonical inclusion
(E(L)/E(L)tors) ® Z, = Hom(S,(E, L), Z )
which is an isomorphism ifi(E, L)[p°] is finite

Proof. Clear. (In the isomorphism of (i) we have used the Cassels pairing to identify
m(E, L)[p*>]/m(E, L)[p*>]qiv With its Pontrjagin dual.) O

Definition 2.4. If K C L C K5 we define theA;-module of universal norms

Mp(E, L) :==lim Hom(S,(E, F), Z)),
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the inverse limit (with respect to the maps induced by corestriction) being taken over
finite extensiong= of K in L. We have

Mp(E, L) S1IM(E(F)/E(Ftors) ® Z)p

(inverse limit with respect to the trace maps) by Lem&(ii), with equality if
m(E, F)[p] is finite for the intermediate fieldB.

If L/K is finite then M ,(E, L) = HoM(S,(E, L),Z,) D (E(L)/E(L)tors) ® Z,
and if furtherm(E, L)[p™] is finite then M ,(E, L) = (E(L)/E(L)tors) ® Z.

Remark 2.5. When L/K is infinite, one often expects thatt,(E, L) = 0 (for exam-
ple, whenL contains the cyclotomi@ ,-extension ofk). However, M ,(E, L) can be
nonzero for certain infinite extensiors/ K, for example[Co,V] when K is imaginary
quadratic andL is the anti-cyclotomicZ ,-extension ofK. See [MR3] for a further
discussion of this.

Proposition 2.6. If the Perfect Control assumption holds alc L C K., then
HOmMA (S, (E, Kxo), AL)' = Homy, (S,(E, L), Ap)' =M, (E, L).

Proof. The first equality is Lemma.2.
If L/K is finite, then Lemma B.1 of Appendix B shows that

HOmAL (Sp(Ev L)s AL)[ gHOmZp (Sp(Ev L)v Zp)v

which proves the proposition in this case. The general case follows by passing to the
inverse limit. O

3. Hermitian and skew-Hermitian modules

Definition 3.1. A semi-linear A-module is aA-moduleM endowed with an involution
i : M — M such thati(im) = 1(X) -i(m) for all 2 € A andm € M. Equivalently,
we may think of the involutioni as a A-module isomorphism : M — M"' such
thati'oi : M — (M")' = M is the identity. We refer to such a paiM,i) as a
semi-linear modulefor short. The involution: of the free A-module A endows that
module with a natural semi-linear structure Mfis a A-module andN is a semi-linear
A-module, theA-module Hom, (M, N) inherits a semi-linear structure as follows. For
f € Hom(M, N) let i(f) € Homp(M, N) be given byi(f) := i o f. For a free
A-module® of finite rank, by thesemi-linear conjugate\-dual ®* of ® we mean the
A-module ®* := Homp (@', A) with the semi-linear structure as given above.

If I c Ais an ideal that is stable under the actiothen the quotient\/I inherits
an involution compatible with; we denote it again.
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Example 3.2.If K C L C K, let I ¢ A be the closed ideal generated by all
elements of the formk — 1 € A for h € Gal(K/L). That is, I, is the kernel of the
natural projectionA — A;. We have a canonical isomorphism Af -modules

GalKoo/L) ®z, AL=1L/I}

characterized by the property that the eleme® 1 is sent toh — 1 modulo IL2 for all
h € Gal(Kso/L).

Definition 3.3. If ® is a A-module, andM a semi-linearA-module, a pairing
h:DR\DP — M
is called Hermitian if
h(a®b) =+i(h(b® a)),
and skew-Hermitianif
h(a ® b) = —i(h(b ® a)).

A skew-HermitianA-moduleis a free A-module of finite rank with a skew-Hermitian
A-valued pairing, where we viewk as semi-linearA-module via its involution:.

4. Derived pairings

Suppose from now on thab is a skew-HermitianA-module as in Definition3.3,
with a nondegenerat&-valued skew-Hermitian pairing : d® ®' — A. Such a pairing
corresponds to an injectivA-homomorphism (which we will also denote Iy

h:®— OF

and the skew-Hermitian property of the pairing is then equivalent to the fact that the
induced map

@' = Hom(@*, A) 5 Hom(®, A) = (@*)'
is identified with—A under the canonical isomorphism

Homy (@, @) = Homy (@', (®*)").
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Let S denote the cokernel df, so that

0—0 L o — 50 (4.1)

is a free resolution of theA-module S giving, in particular that theA-modules
Tor), (S, A) and Ext, (S, A) vanish for everyA-algebraA and everyi > 1. If K C L C
Koo, put

M(L) := Tory (S, Ar) = ker(h ® Ap),

S(L) := S ®x AL = cokerth ® Ayp)
(the letterM is chosen to remind us d¥lordell-Weil while the letterS is chosen to
remind us ofSelmer;see Sectior7). These definitions give us an exact sequence of

Az -modules

00— M(L) — dos AL 2225 &* @5 A —> S(L) —> 0. 4.2)

We have thati* = —h on @', and using this along with4(2) (for the upper exact
sequence) and (4.1) (for the lower exact sequence) gives a commutative diagram of
Az -modules,

—h
00— ML) —= D' @A, ——— (D) ®AL — S(L)) —= 0

i; l;

h*
0 = Homy (S, AL) = Hom(®*, Ay) —— Hom(®, Ay) — Ext}(S,AL) — 0.

Thus we obtain canonical isomorphisms
M(L)' =~Homy (S, Ap), (4.3)

S(L)' ~Exth (S, Ap). (4.4)

Recall (Example3.2) that/; is the kernel of the map\—~A;. Tensoring the exact
sequence

00— I, —A—AL,—0
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with S gives a canonical injection
0 —> Tork (S, Ar) — I ®) S

and composing this with the natural pairing

(I ®p S) @ HOMA(S, AL) — I @ AL = I /17
we get the pairing

Tork (S, AL) @, HOma(S, Ar) — Ip/17.
Now, using the definition of¥/(L) and @.3), we obtain the pairing:
M(L) ®p, M(L)' — I,/1?~Gal(Ks/L) ® AL. (4.5)

The pairing 4.5) is skew-Hermitian with respect to the involution b,n/lf induced
by 1. The identification/; /I? ~Gal(K~/L) ® A, sends this involution to-1® 1 on
Gal(K~/L)® Ar. By Proposition B.2 of Appendix B, il /K is finite then the pairing
(4.5) induces asymmetricpairing

M(L) ®z, M(L) — Gal(Ky/L). (4.5)
Remark 4.1. Here is a more direct description of the pairing5). Let ( , ) denote
the skew-Hermitian pairing correspondinghpand ifm € M(L) C ®/I;® let m € ®
denote any choice of lifting am. Then, from the definition oM (L), we have(m, x)
I C A for everyx € @. If m1,mp € M(L) we see that the valuéni, my) € I,
when taken modulolf, is dependent only upon the elememtg, m» € M (L) and
independent of the choices of liftingsy, m2 € ®. Then theA -bilinear pairing (4.5)
is defined by the rule

m1 Q@ my > (i, mp)(modI?) € I /12,

Let K, denote the total ring of fractions ok;. If M is a Az-module, Miors Will
denote the kernel of the natural madp— M QK (the set of elements dfl annihilated
by a non-zero-divisor ofA).

Applying the functor Hom (S, -) to the exact sequence df-modules

0—- AL — KL = Kr/AL — 0,

we obtain an exact sequence

Homy, (S(L), K1) — Homy, (S(L), K1/AL) — EXti (S, Ar) — EXty (S, Kp).
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The kernel of the right-hand map contains ‘}géd, Ap)twors, and there is a natural map
from the cokernel of the left-hand to Hoq(S(L)tors, K1 /AL). Thus using 4.4) we
get a map

S(L)iors= EXty (S, AL)tors — Hom, (S(L)tors: K1./AL)
and hence a\-bilinear pairing
S(L)tors ®AL S(L)tlors —> /CL/AL. (4.6)

The pairing 4.6) is skew-Hermitian with respect to the involution & /A induced
by 1. If L/K is finite, the identificationC; /A, =Q,/Z, ® A, sends this involution
to 1®:10nQ,/Z,® Ar. By Proposition B.2 of Appendix B, the pairing (4.6) induces
a skew-symmetric pairing

S(L)tors ®z, S(L)tors > Qp/Zp. (4.6)

Remark 4.2. Here is a more direct description of the pairing.q). Supposes €
S(L)tors, Sayas = 0 with a nonzero-divisor: € Ay. From the definition (4.2) of(L),
we can choosé € ® ® A, ands§* € ®* ® Ay such thats* lifts s (under (4.2)) ands
lifts a$*. Similarly, if ¢ € S(L){,;s andbt = 0 we can lift to7 € ®' ® A, whose image
in (®*)' ® AL is b times a lift of t.

Let (, ). denote the skew-Hermitian pairing ® A;) ® (®' ® Ar) — A induced
by h. Then the pairing (4.6) is given by

s®t > (ab) X5, 1) (modAy) € Ki/AL.
This is independent of all the choices that were made.
In summary, given a skew-Hermitian moduleover A, with the hypotheses above,

for every extensiorL of K in Ko we get aA.-bilinear pairing 4.5) on M (L) with
values inIL/If and aA_-bilinear pairing (4.6) onS(L)tors With values infC/Ap.

5. Complexes

Fix a noetherian local ringR with maximal idealm and residue fields = R/m. We
will be interested in the case whe® = A, but the results of this section are more
general.

Definition 5.1. By a complexof R-modules we mean an infiniteo-complexi.e., a
sequence oR-modules andR-homomorphisms

c*: ...c"sclrhs .o ot
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with (co-)boundary operators raising degrees by 1 and such that the composition of
any two successive coboundaries vanishes. For an integitre complexCe[k] will
denote the complex’® shifted byk

(C,)_n — (C/)l_" - (C’)” N (C/)n+l -

where (C")" := C™k,

If C*® is a complex, itsR-dual Hom(C*®, R) is again a complex, where, as usual the
gradation on HorC*®, R) is given by HoniC*®, R)" := Hom(C™", R).

If all of the modulesC” are free of finite rank oveR, then the natural identification
of a freeR-module of finite rank with its doubl&-dual,

M = Hom(Hom(M, R),R) by m > {¢ — ¢(m)}

extends to a natural identification @f* with its doubleR-dual.

Let C = C(R) denote the category of complexes Rfmodules, where morphisms
are morphisms (of degree zero) of complexeRahodules. Aquasi-isomorphisny :
C* — D* of complexes is a morphism that induces an isomorphism on cohomology

H*(f): H*(C*) — H*(D*).

Definition 5.2. A two-term complex of freeR-modules of finite rankf®, concentrated
in degrees 1 and 2

50> FL S P2 05 .

will be called abasic complexf the coboundary homomorphisi is injective and if,
when we form the short exact sequenceRamodules,

O—>Fl—>F2—>H—>O,

the induced homomorphisti?®zk — H®gl is an isomorphism. (The latter condition
is equivalent to requiring that the image &t is contained inmF2.)

Such a basic complex has cohomology concentrated in degree 2H®{tR®) = H.
Lemma 5.3. Suppose thaC*® is a complex of free R-modules concentrated in degrees
1 and 2, with injective coboundary mag! -5 C2. ThenC* is quasi-isomorphic to
a basic complex

Proof. Let H = H%(C*) and consider the exact sequence

ok 2% ?2gk— Hek— 0.
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Let =, be ak-basis for imagé ® k) = ker(C2® k — H ® k). Pull each element of
3, back toCl ® k via é ® k and then lift each of these elements@. Denote the
resulting sets b=y ¢ C*® k and£; ¢ €2, and letZ; := (Z1) C €2, a set lifting
o.

Fori =1,2 let D' ¢ C' be the A-module generated b¥;, and letB’ := C!/D'.
CompleteX; to a k-basisZ; UZ; of C' @ k, and lift £, to T, c C'. By Nakayama’s
LemmaZX; U, generatesC?, and sinceC'’ is free (of rank dim(C’ ® k)) =; U X]
must be aA-basis of C'. HenceX. projects to aA-basis of B/, and in particularB’
is free overA.

The mapd : ! — C? induces an injectiorB® — B? with cokernel equal tcH.
Since by definitionD? ® k and C! ® k have the same image i ® k, the induced
map B ® k — B?® I is the zero map. Thus, if we s& := 0 for i # 1, 2 then B*
is a basic complex, and the projection m@p — B*® is a quasi-isomorphism.]

Lemma 5.4. Suppose thatF* and G* are basic complexesand f : H2(F*) —
H2(G*) is an R-homomorphism

() There is a morphism of complexes: F* — G* such thatH?(¢) = f, and any
two such morphisms of complexes are homotopic
(ii) If f is an isomorphism then the morphismof (i) is an isomorphism of complexes

Proof. We are given a diagram

0 Fl F2 H?(F*) — 0
lf
0 Gl G2 H%(G*) —— 0.

Since F? is free we can pulf back to a mapp, : F> — G2, which in turn restricts
to a map¢, : F* — G!. This gives a morphism of complexes: F* — G* with
H2(¢) = f, and it is clear that any two such morphisms are homotopic.

Using the definition of basic complex we see that(ker® k) = ker(f ® k) and
cokern¢, ® k) = coker f ® k). Thus, iff is an isomorphism then so 5, ® k, and by
Nakayama’s Lemma so g, (and thereforep, as well). This proves (ii). O

Definition 5.5. Let D = D(R) denote the derived category of complexesRahodules.
That is, D(R) is the category usually denotdd(A) whereA is the abelian category
of R-modules (see for exampl¢lart]).

Recall thatD is constructed as follows ([Hart] Chapter 1). Lit= K(A) be the cat-
egory whose objects are complexesRafmodules, and whose morphisms are homotopy
classes of morphisms of complexes. The catedong obtained fromC by “localizing
quasi-isomorphisms.” That is, every morphism khthat induces an isomorphism on



B. Mazur, K. Rubin/Advances in Mathematisd (111r) 1ni-n 15

cohomology groups becomes an isomorphism in the catefoffhe categoriedC and
D are triangulated categories.

Corollary 5.6. Suppose that'® and G*® are basic complexeand y : F* — G* is an
isomorphism in the derived categofy. Then there is an isomorphism of complexes
(i.e, in the categoryC) ¢ : F* — G* that gives rise to). The isomorphismp is
unigue up to homotopy

Proof. The D-isomorphismy induces an isomorphisnf : H2(F®*) — H2%(G*). The
desired isomorphism of complexes is then provided by Lendrda O

6. Skew-Hermitian structures on complexes

Keep the noetherian local rinR of 85, and suppose further th& possesses an
involution 1 : R — R. Denote byM +— M' the induced involution on the categories
of R-modules, complexes d®-modules, etc.

Definition 6.1. SupposeC® is an R-complex of freeR-modules of finite rank.
A skew-Hermitian, degree n, perfect pairing in the categérgn C* is an isomor-
phism

¢ : C* — Homg(C®, R)'[—n]

of R-complexes such that after the natural identification of the compl®xwith its
R-double dual, the morphism Hogi¢'), which may be viewed as a morphism

Homg(¢") : C* — Homg(C®, R)'[—n],

is equal to—¢.
A skew-Hermitian, degree n, perfect pairing in the categbryon C* is an isomor-
phism

¢ : C* — Homg(C®, R)'[—n]

in D such that after the natural identification of the compték with its R-double
dual, the morphism Hop(¢') is equal inD to —¢.

We have the evident notion agquivalenceof skew-Hermitian, degre@, perfect
pairings, for each of the two categori€sand D.

An isomorphismC® — E* in either of the two categories transports—in the evident
manner—skew-Hermitian, degreg perfect pairings orC® to skew-Hermitian, degree
n, perfect pairings ore®.
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Corollary 6.2. If a basic complexF® possesses a skew-Hermitian deg@eerfect
pairing

Y : F* — Homg(F*, R)'[-3]
in the categoryD then there is a degre8 perfect pairing
¢ : F* — Homg(F*, R)'[-3]

in the categoryC of R-complexesnducingy, such that the morphismdomg(¢') and
—¢ in C are homotopicThe degree perfect pairing¢ with these properties is unique
up to homotopy

Proof. If F* is a basic complex, then so is H@t¥®, R)'[—3]. Thus, the corollary is
immediate from Corollarnys.6. O

Let ® be a skew-HermitiarR-module as defined in Definition 3.3 (for the case
R = A). Thus, ® is a freeR-module of finite rank, endowed with a skew-Hermitian
pairing, i.e., anR-homomorphism

h:®— Homg (D', R)
such that the induced homomorphism Ha is identified with
—h : ® - Homg(®', R)

when we identify Hong (Homg(®, R), R) =~®. Recall that®* := Homg(®', R) =
Homg (@, R)', and leth* := Hom(h'). We have natural identifications of “double-
duals” ** = ® and h** = h.

Definition 6.3. Given a skew-HermitiaiR-module ®, we form a complex®®, concen-
trated in degrees 1 and 2, by puttidg := ®, ®? := ®*, and setting the coboundary
0: 0! - @ to beh : d — D*,

We will say that® is abasic skew-Hermitian modulé h is injective, andi ® k = 0
(or equivalently, ifh is injective andh(®) ¢ m®*). Thus,® is basic if and only if®®
is a basic complex.

For example, ifR is an integral domain, thef® is basic if and only if

e the skew-Hermitian pairing over the field of fractions Bf obtained from® is
nondegenerate,

e there are no unimodular pieces that can be split off frdngi.e., ® is minimal for
our purposes).
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Suppose® is a basic skew-Hermitian module, and ¥ := Homg(®°, R)'[-3].
We have canonical identifications

N1 = Homg(Homg (@, R), R)=~®, N? = Homg(®d, R)' ~®*,

where the coboundary is given by = —h. The isomorphism of basic complexes
j:® — N* given by puttingj = —1 and j? = +1 (after the identifications we have
just made) is a skew-Hermitian degree 3 perfect pairing of the Basiomplex ®°.

Definition 6.4. A skew-Hermitian, degree 3, perfect pairing on a compi&in the
categoryD comes from the basic skew-Hermitian R-mod@leéf @ is a basic skew-
Hermitian R-module and there is an isomorphism in the derived cate@ory

~

o — C°

such that the skew-Hermitian, degree 3, perfect pairingCérnis the one obtained by
transport of structure from the pairing abf'.

Proposition 6.5. Suppose that the residual characteristic of R is Aothat C® is a
complex of free R-modules concentrated in degteesnd 2, and the coboundary map
¢! — C? is injective Then every skew-Hermitiamlegree3, perfect pairing onC*® in
the categoryD comes from a basic skew-Hermitian R-moddle

Proof. By Lemma5.3, C*® is isomorphic inD to a basic complexF'®, so we may
as well assume thaf*® is a basic complex in the statement of the proposition. By
Corollary 6.2 we can lift the skew-Hermitian degree 3 pairing@hin D to a skew-
Hermitian degree 3 pairing o6 in C, so in particular we get isomorphismsand f

in a commutative diagram

0
ct ——— ¢?

b

o

(CZ)* - (Cl)*
Passing to the dual, we get the diagram

F
ct —— (2

I
6*

(CZ)* . (Cl)*
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By Corollary 6.2, these two maps of complexes are homotopic (after replaeing
by (—a, —p) in the first diagram), so there exists Brhomomorphismw : C2 — (C2)*
such that

o =—pf+dw and ff=—o+ wd.
This implies (among other things) thatw = (wd)*.
If the residual characteristic @R is different from 2, we can modify the morphism
of complexes(a, ) by a homotopy, replacingx, f) by («, ') where
o :=a—wd/2 and f :=p—0"w/2
Sinceo* + f = 0" w, we get that

@)+ =0"w— (wd)*/2—"w/2=0.

It follows that the perfect degree 3 skew-Hermitian pairing in the derived cateBory
comes from the pairing od’® in the categoryC described by the diagram

0

Cl %. C2
a/ \L \L _(a/)*
6*
(CZ)* S (Cl)*
Now put @ := C*, and consider the homomorphism
h= (@) 00:D— O

We have thath* = —h, giving ® the structure of a basic skew-Hermiti&amodule.
The basic complexd® is isomorphic to the basic complex® by the mapping

@, (@) :C* — P°
and this isomorphism respects skew-Hermitian structurges.

Proposition 6.6. Suppose that the residual characteristic of R is ribt Suppose
further that ® and ¥ are basic skew-Hermitian moduleand there is an isomor-
phism®* = ¥* in the derived categoryD that induces an equivalence of degree
perfect skew-Hermitian pairingsThen ® and ¥ are isomorphic as skew-Hermitian
modules
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In other words if a skew-Hermitian degree 3, perfect pairing on a complex*®
in D comes from a basic skew-Hermitian moddie then ® (with its skew-Hermitian
structurg is unique up to(noncanonicgl isomorphism

Proof. By Corollary 5.6 there is an actual isomorphism of complexes — ¥*
giving rise to the isomorphism inD. In other words there is a commutative
diagram

h
o —— P*

1lglﬁ

Y — v

with isomorphismsx, . Further, since the isomorphism # induces an equivalence
of skew-Hermitian pairings, there is a homotopy between this diagram and the “dual
diagram” (after replacindg™ = —h and g* = —g by h andg)

Y — v*

Thus, there is a map : ®* — ¥ such that
P t=o+wh and (@)1= p+ gw. (6.1)

In particular, sinced and¥ are basic skew-Hermitian modules, we han@) ¢ md*
and g(¥) c m¥* and so

aff* = 1p(modm Hom(d, d)).
Suppose now that
af* = 1p(modm* Hom(d, @) (6.2)

for somek>1. We will show that we can replace the isomorphism of complexes
(«, B) by a homotopic one, congruent ta, f) modulom*, and satisfying §.2) with k
replaced by 2.
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Let o/ =a+wh/2, /' =B+ gw/2. Then

o (B = (a+ wh/2)(f* + (gw)*/2)
= oaff* + whf*/2 4+ a(gw)*/2 + wh(gw)* /4.

By (6.1) we have
af* + whf* = 1lp = (o) = (B + gwa™)* = af* + a(gw)*
so whf* = a(gw)* and
o (B)* = 1o + wh(gw)*/4.

By (6.1) and (6.2) we see thath € m* Hom(®, ¥) and gw € m* Hom(®*, ¥*), so
o (B)* = 1p(modm?* Hom(d, D)).

Proceeding by induction and passing to the limit, we may assumefthat o 1.
In other words, the isomorphism of complexes (with skew-Hermitian pairitgsj) :

®* = ¥* is induced by the isomorphism: ® — ¥. O
Although we will not need it, we have the following corollary.

Corollary 6.7. Suppose tha® and ¥ are basic skew-Hermitian modulesith pairings
he and hy, and letL C A be the ideal generated by the determinankgfwith respect
to any A-bases of® and ®*. If ® and ¥ are equivalent modulaC?, then they are
equivalent

In other words if there is an isomorphisnd : ¥ ® (A/£2) = @ ® (A/L2) such
that hy = p*hep (Wherehe = he ® (A/L2) and hy = hy ® (A/L?)), then there is
an isomorphisnp : ¥ — @ such thathy = p*hep.

Proof. Since® and¥ are free overA, we can liftp to a mapx : ¥ — ®. Nakayama’s
Lemma shows that is an isomorphism, and we have

hy = o hg «(mod L2 Hom(W, ¥*)).

Let 1 € A be a generator off. Since £ is the determinant ofig and o, o* are
isomorphisms, there is a homomorphigm W* — ¥ such that(o*heax)g = 7 - idg=
and g(a*hpo) = A-idy. Thus

hy g = (*hou)g = / - idy+(mod L2 Hom(¥*, ¥*)),
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so we see thai lhyg € Hom(¥P*, ¥*) and 2 thyg = idy+(modL Hom(¥*, ¥*)).
Let f = (A thyg)o* € Hom(®*, ¥*). Then

p = o*(modL Hom(d*, ¥*)) (6.3)
and
Bhoo= (2 hyg) (o how) = hy. (6.4)

Using the fact thatigp and iy are skew-Hermitian, we obtain fron6.d) two iso-
morphisms of complexe®® — ¥*

ho ho
O —> o O — P (6.5)
b el
hy hy
. 4 . 4

It follows from (6.3) that these two morphisms induce the same isomorphism
cokelthg) — coker(hy),

so by Lemmab.4(i) they are homotopic. It follows thab® and W* are isomorphic in
D as complexes with skew-Hermitian, degree 3, perfect pairings, and so the corollary
follows from Proposition 6.6. [

7. Organization

We now return to the elliptic curvé&/K and Z‘l’,—extensionKoo/K, and we takeR
to be the Iwasawa algebr&. We will make the following hypotheses:

p > 2 and E has good ordinary reduction at all primes abgve  (7.1)

Sp(E, Koo) is a torsionA-module (7.2)
E(K)[pl =0, (7.3)
for every primev of bad reductionp{[E(Ky) : Eo(Ky)], (7.4)
the Perfect Control assumption holds (7.5)

(recall that[E(K,) : Eo(K,)] is the Tamagawa number in the Birch and Swinnerton—
Dyer conjecture forE/K).
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Definition 7.1. Let CR,, be Nekov&S Selmer complein the derived categorp, the
complex denoteRI fw(Ks/K, T,(E)) in [N] §9.7.1, whereT,(E) :=lim E[p"] is
the p-adic Tate module oE.

Remark 7.2. Let S be a finite set of places d&f and letG g s denote the Galois group

of K unramified outsides. For the general definition of “NekowaSelmer complexes”

(of complexes ofG g s-modulesX® with local conditionsA(X®) = {A(X®)y}ves IM-
posed) see 86 ofN]. These NekovaSelmer complexes are canonical complexes in
the appropriate derived category that compute the cohomolod® agubject to speci-

fied local conditionsA(X*). The classical Selmer module of an abelian variety over a
number field, with ordinary reduction aboye falls into this rubric (see the preparation

for this, in particular “control theorems,” discussed in 87 of [N], and the study of such
modules in the context of Iwasawa theory in [N] §8. Section 9 of [N] defines the
complexes we calCy,, (Definition 7.1 above) with a close study of the self-dualities
such complexes enjoy; the relationship between this self-duality and the various derived
self-pairings obtained from the self-duality on the level of complexes is studied in [N]
810 (where the classical Cassels—Tate pairing is treated) and 811 (for the classical
p-adic height pairing).

Nekova's complexCyy, is a canonical complex i, with a skew-Hermitian pairing
in D, and with second cohomology

H2(Che) = Sp(E, Koo)

(see[N] §9.6.7 and §9.7). Under our hypotheses aboRg, has the following additional
useful properties.

Theorem 7.3 (Nekova). Suppose that hypothes€s1-4) hold. ThenCR, can be rep-
resented by a complex concentrated in degreesd 2, with free A-modulesC?, C? of
finite rank and an injective coboundary ma — C?2. Further, Cy, has a canonical
skew-Hermitian degree3, perfect pairing in the derived categary

Proof. By Proposition 9.7.7(iii) of [N], our hypotheses (7.1), (7.3), and (7.4) imply that
Crek €an be represented by a complex concentrated in degrees 1 and 2, with-free
modulesC?, C? of finite rank. The additional hypothesis (7.2) ensures ([N] Proposition
9.7.7(iv)) that the coboundary map! — C? is injective.

By [N] Proposition 9.7.3(ii),Cye, has a degree three pairing in the derived category,
and by [N] Propositions 9.7.3(iv) and 9.7.7(ii), respectively, the pairing is perfect and
skew-Hermitian. O

Definition 7.4. Suppose thatb is a basic skew-Hermitiarh-module as in Definition
6.3. Thus® is free overA of finite rank, with an injectiveA-valued skew-Hermitian
pairing

h:®— OF
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that is the zero map after tensoring with the residue figjadn. We will say that®
organizes the arithmetic of E ovef, if the complexCyg,., with its skew-Hermitian
pairing, comes fromb in the sense of Definitioi6.4: i.e., if there is an isomorphism

Clek — ©° in D preserving the skew-Hermitian structures. In this case we will call
® an organizing module

Theorem 7.5. Suppose that hypothes€g.1-4) hold. Then there is a basic skew-
Hermitian module® that organizes the arithmetic of E ovéf..
If ¥ is another organizing module for E ovef,, then there is alnoncanonical

isomorphism® — ¥ which takes the skew-Hermitian pairing d@nto the one on¥.

Proof. The existence of an organizing module is immediate from Theorem 7.3 and
Proposition 6.5. The uniqueness is Proposition 6/6.
Remark 7.6. Although the organizing module is not unique up to canonical equiv-

alence, there is a canonical rank-onemodule, containing a canonical discriminant,
defined as follows. Ifb is an organizing module lekq be the free, rank-onA-module

Ag :=dety® 1 = AP Hom@, A)
and dis¢®) the discriminant
disq®@) := dety gy € Hom(dety @, dety @*) = dety @ @, dety @* = Agp ®7 AL,
Note that dis¢D) is the determinant of the complek® as defined in 84 ofD]. In

particular dis¢®) =~ det(CR,) is independent of the organizing module (Concretely,
if ¥ is another organizing module, then the noncanonical isomorphism of Theorem 7.5

induces acanonicalisomorphismAg @ Ag S Ay @) Ay which sends dis@) to
disa\P).)

Theorem 7.7. Suppose that hypothesg&1-5) hold and that the basic skew-Hermitian
module® organizes the arithmetic of E ovek . Let

S = coke® 25 @) = H2(@*).
(i) There are natural isomorphisms
S=S,(E, Koo),
and for every intermediate fiel# C L C K
S®AL=S,(E, L), Tork(S, AL)=M,(E, L),

where M ,(E, L) is the universal norm module of Definitich4.
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(i) If L is a finite extension of K inKy then the isomorphisms df) induce a
surjection and injectionrespectively

w(E, L)[p=1-(S ® Ap)tors:
(E(L) ® Z,) = Tork (S, Ar),

which are isomorphisms ifi(E, L)[p®°] is finite
(i) If L is a finite extension of K ik, then the pairings

w(E, L)[pT1@m(E, L)[p™®] — Q,/Z,,
(E(LY®Z,) ® (E(L)®Z,) — Gal(Kx/L),

obtained by combining the derived pairing4.6') and (4.5") with the maps of
(i), coincide (up to sign with the classical Cassels and p-adic height pairing
respectively

Proof. We haveS = H?(®*)~ H?*(CRgy) =S, (E, Kxo). This gives the first isomor-
phism of (i), the second follows by Lemn®2, and the third by Proposition 2.6 and
(4.3).

The first map of (ii) comes from (i) and Lemma 2.3(i), and the second comes from
(i) and the inclusion(E(L)/E(L)tors) ® Z, C M, (E, L).

For assertion (iii), we need to check two things. The first is that our derived pairings
(4.5) and (4.6), defined directly from the basic skew-Hermitian modilecoincide
(up to sign) with the corresponding pairings made by Nekawa'the skew-Hermitian
degree three perfect duality enjoyed by the basic comgi&xobtained from®. The
second is to relate these derived pairings to the corresponding (various) classical pair-
ings.

For every intermediate field extensidtyK in K../K the lwasawa algebrd; is
a quotient of a (complete) regular noetherian local ring by an ideal generated by a
regular sequence, and so is a Gorenstein ring. For each of the intermediate. fieéds
identify the dualizing compIeXo;\L of the ring Ay with the complex concentrated in
degree zero, and given in degree zero by the fkxgemodule of rank oneA; itself.

SupposeX*® and Y* are complexes ofA-modules with cohomology of finite type
equipped with a morphism of complexes

n:X*®A\Y* — o)y[-3l

Consider the following two pairings of cohomology & and Y*°. First, for all inter-
mediate fieldd. we have [N] 2.10.14) the morphism defined via cup-product

H?(X* @5 ALtors®n, HA(Y® @A Ap)tors — HO(w},) @4, Ki/AL = Ki/AL,
(7.6)

where £ is the field of fractions ofA, .
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Second, we have the “derived, 1) cup-product”
HYX® ®p AL) @, HY(Y* ®) AL) — HO(0},) ®n, IL/If. (7.7)

This pairing can be defined in the following elementary way. For cohomology classes
(a,b) € H{(X* @A) x HY(Y*® A1), choose 1-cochaing:, y) € X1 x ¥ such that

the projection(#, ) € (X1 A1) x (Y1®,AL) is a pair of 1-cocycles representing the
pair of cohomology classe®, b). Note thatdx € I; X2 anddy € I;.Y2. Soy(x, dy) =
—n(0x, y) € A projects to zero ilMAz, and hence lies id.. Let oy : I} — IL2 be the
natural projection, and put

(a,b) :=m(n(x, 0y)) = —mL((0x, y)) € IL/If. (7.8)

To show that this is well-defined, first note thateife 7, X theny(e, dy) € I? (and,
if e e ILY! theny(x,e) € IE) which tells us thatry (n(x, dy)) = —nr(n(0x, y))
depends only onx, 7). Next, if ¥ = a9 for 7 € X°®, Ay liting 7 to v € X°
and takingx = dv to be our lifting of ¥ gives us thatr; (y(x, dy)) = ny (n(dv, dy))
vanishes; this, and the symmetrical argument whea dw, gives us that the pairing
(7.8) is well-defined.

The basic complexd® associated tab has a skew-Hermitian pairing

O ®) (P°)' — o} [-3], (7.9)
so for each intermediate field we have the induced pairing
(D° @7 AL) QA (D° @4 AL) —> a);\L[—3].

In the notation of 8 we haveS(L) = H2(®* ®x Ar) and M(L) = HY(®* @, AL),
so the cup-product pairing (7.6) obtained from (7.9) may be written

S(L)tOTS ®AL S(L)tlors — }CL/ALv (710)
and the derived, 1) pairing may be written
M(L) ®p, M(L)' —> I1/I?. (7.11)
It is straightforward to compute that the pairing &) is, up to sign, equal to the pairing
(7.10) and the pairing (4.5) is, up to sign, equal to the pairing (7.11).
Now, using the equivalence in the derived categ®rybetween the perfect degree
three skew-Hermitian self-dualities ofiy,, and ®°, one can check that the pairing

(7.10) is, up to sign, equal to the (“Cassels—Tate") pairing

Ur.022 : HA(CRek @A ALtors @A, HA(Cliek ®A AL)iors — Ho(w;\L) ®a, KL/AL
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of ([N] §10.3.3.3), and that (7.11) is, up to sign, equal to the (“height”) pairing
Brrsk11: HY(CRek @A AL) ®p, HH(Clek ®A AL)' — Ho(w;\L) ®n, I/I?

of [N] (11.1.7.5) (see also [N] §811.1.4,11.1.7,11.1.8).

Finally, assertion (iii) follows from the discussion in 810 and 811 of [N] that makes
the connection between the Cassels—Tate and height pairings defined there and the
classical pairings of the same name.

Remark 7.8. There are indeed many different approaches to defining what may be
called theclassical p-adic height pairingand the somewhat ample discussion[M

is a welcome addition to the literature comparing some of these approaches. The next
step that remains to be done is a systematic expository account of all this.

Remark 7.9. Note that becaus® is a basic skew-Hermitian module, we have
ranky (@) = dimg, (Sel, (E, K)[p]) = rankz (E(K)) +dimg, m(E, K)[p].

If we choose a basis of the organizing moddiethen the pairingh is equivalent to
a skew-Hermitian matrixd with entries in A. We then have that the characteristic
ideal chatS,(E, K«)) = det(H)A, and the matrixH contains complete information
about the Selmer moduleS,(E, L) and the Cassels anptadic height pairings on
m(E, L)[p*™] and E(L) ® Z,, for every finite extensior. of K in K.

Remark 7.10. Thanks to the Perfect Control assumption (see Leridy, if S,(E, L)
is a torsionA;-module for somer,-extensionL of K with >0, thenS,(E, K) is
a torsionA-module. In particular

e if Sel,(E, K) is finite (i.e., if E(K) is finite, since we are assuming thatE, K)[p™]
is finite) thenS,(E, K«) is a torsionA-module,

o if Eis defined oveQ and K /Q is abelian, then by work of KatfKa] S,(E, KQc)
is a torsionAgq,,-module, whereK Q.. denotes the cyclotomiZ ,-extension ofK,
S0 S,(E, Ky) is a torsionA-module.

Remark 7.11. Corollary A.3 shows that the Perfect Control assumption follows from
hypotheses (7.3), (7.4) along with the additional assumption #@t)(p] = O for
every primev of K abovep, wherek, is the residue field ab.

The following proposition, which combines some of the observations above, allows
us to verify hypotheses (7.1-5) in many interesting cases.

Proposition 7.12. Suppose that E is defined ov@rand K is a finite abelian extension
of Q. Suppose p is a rational prime such that

(i) for every primev of K above p E has good reduction abt and #E(k,) = 0 or
1(modp) wherek, is the residue field ab,
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(i) for every primev of K where E has bad reductipp does not divide the Tamagawa
number[E(K,) : Eo(K,)], and
(i) p is unramified inK /Q.

Then hypothese.1-5) hold.

Proof. If (i) holds thenp cannot be 2, and furthef has good ordinary reduction at
eachv dividing p. This is (7.1), and (ii) is (7.4).

Fix a primev of K abovep. It follows from (iii) that K™ has nopth roots of unity,
so (7.3) follows from Lemma A.6. Now the Perfect Control assumption (7.5) follows
from (i) and Corollary A.3, as in Remark 7.11, and then (7.2) follows as in Remark
7.10. O

For example, we have the following corollary mentioned in the introduction.

Corollary 7.13. Suppose that E is defined ov€, with conductor Ny and minimal
discriminant Ag. Suppose further that K is a finite abelian extensionQofwith dis-
criminant D prime to Ng, and p is a rational prime such that

() p13NeDk [1yy, Orde(Ag),

(i) a, #0 and aE,K:Q] # 1(modp), where as usuak, =1+ p — #E(Z/pZ).

Then there is a basic skew-Hermitian moddigunique up to(noncanonicgl isomor-
phism, that organizes the arithmetic of E ovEr,. We can recover frontb as in
Theorem7.7 the Selmer moduleg-adic height pairingsand Cassels pairings over
every finite extension of K i .

Proof. We will verify that the hypotheses of Proposition 7.12 hold. Proposition 7.12(iii)
holds sincept Dk .

Suppose first that is a prime ofK abovep. Since p{ Ng, E has good reduction at
v. Further, ifo, and §, are the roots of the Frobenius polynomiel — apx + p, and
f =1k, : Fpl, then

HE(ky) =1+ p/ —of —p/ =1— (2 + p)/ = 1—a (modp).

Since f | [K : Q] and aE,K’Q] # 0, 1(modp), Proposition7.12(i) holds.

Next supposev is a prime of K where E has bad reduction, and lgt be the
rational prime belowv. If E has either additive or nonsplit multiplicative reduction
at v then [E(K,) : Eo(K,)] divides 12 (see [T]), but condition (i) rules oyt = 3
and condition (ii) rules outp = 2, so p{[E(K,) : Eo(Ky)]. On the other hand, if
E has multiplicative reduction at then [E(K,) : Eo(K,)] is the order atv of the
discriminant of E/K ([T] step 2). Since by assumptiofiis unramified inK/Q, we
have [E(K,) : Eo(K,)] = orde(Ag) which is prime top. Thus, Proposition 7.12(ii)
holds.

Now by Proposition 7.12, hypotheses (7.1-5) hold. Thus, the existence and uniqueness
of @ follow from Theorem 7.5, and that fact that we can recover the arithmetigé of
over finite extensions oK in K., follows from Theorem 7.7(iii). O
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8. A generic example

In the next three sections we consider several families of examples where we can
give some information about the organizing module. We first consider the “generic”
situation wherau(E/K)[p] =0, so that Sel(E/K) = E(K) ® Q,/Z,.

Suppose thaE is an elliptic curve defined ovef, and letr = rank(E(K)). Let p be
a rational prime for which hypotheseg.{-5) are satisfied (see for example Proposition
7.12), and suppose in addition that £/K)[p] = 0. (Conjecturally this last condition
is satisfied for all but finitely manp.) Then we have SglE, K)=(Q,/Z,)", and by
Theorem 7.5 there is a basic skew-Hermitia&module®, free of rankr, that organizes
the arithmetic ofE/K .

If » =0 then® is trivial, the Selmer modules over all intermediate fields are trivial,
and there is nothing more to study. Suppose, then, that0. We want to describe
the r x r skew-Hermitian matrixH for the pairingh corresponding to a suitable basis
of @.

Let | denote the augmentation idest C A, and identifyAx = A/I = Z,. The
skew-Hermitian pairingh induces an exact sequence

h®Z,
DdR\Z, —> O*®)Z, - HOM(E(K),Z,) — 0 (8.1)

in which the first threeZ ,-modules are all free of rank. It follows that the map
O* @A Z, - HOM(E(K), Z,,) is an isomorphism, and using the identification

O* @ Z, xHom(®/I1®,Z))
we obtain an isomorphism
O/IP=(E(K)/E(K)tors) ® Zp.

Thus, we can take the organizing moddeto be (E(K)/E (K)tors) @z A.

It also follows from @.1) that the matrixd has entries id. In addition, the image of
H in M,(I/1) is the p-adic height pairing matrix for a basis O£ (K)/E (K )tors) ® Z
corresponding to the chosen basisdaf Hence we can viewd as a lift of the (/Izp-
valued)p-adic height pairing onE(K)/E(K)trs) ® Z, to anl-valued skew-Hermitian

pairing on® ® @', with ® = (E(K)/E(K)tors) ® A.

9. Examples over Q

For this section we tak&k = Q. Fix a generatory of I' = Gal(Q~/Q) and let

=y —y~L Then we haveA = Z,[[y — 111 = Z,[[0]], and the augmentation ideal
I = OA. If we write AT for the 1 eigenspaces af on A, then A, = Zp[[Hz]] and
A_ = 0A,.

Fix an elliptic curveE defined overQ.
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Definition 9.1. We say that a prime is admissibleif it satisfies the following two
conditions:

e E has good reduction g, p does not divide the order of the torsion subgroup of
E(Q), andp does not divide any of the Tamagawa number€&Ediver Q,

e E has ordinary and nonanomalous reductionpai.e., #£(F,) # 1(modp) and
#E(F,) # 0(modp)).

Note that the first condition rules out only a finite set of primes, and the second
only rules out a set of Dirichlet density/2 or 0 depending upon wheth& has CM
(over Q) or not.

9.1. The caseun(E, Q)[p] =0

Suppose now thap is admissible, and suppose further tha¢E, Q)[p] = 0. (If
the Shafarevich-Tate group & is finite, then this is true for all but finitely many
admissible primes.) Then we are in the situation 8f 8nd there is a skew-Hermitian
pairing on® := (E(Q)/E(Q)tors) ® A so that® organizes the arithmetic of /Qxo.

Let r = rank(E(Q)). We want to describe the x r skew-Hermitian matrixH for
the pairingh corresponding to a suitable basis ®f As discussed in 881 has entries
in I = 0A and H is a lift to M,(I) of the height pairing matrix in M1/I?) for
EQ®Z,. Let

H' :=0"1H € M,(A),

so H' is a Hermitian matrix in M(A) and its reduction in M(A/I) = M,(Z)) is a
symmetric matrix describing the height pairing (divided &)y

-1

N (EQ®Z)®(EQ®Z,) — 1/12 L5 A/ 3z,

Definition 9.1.1. Choose aZ,-basisb := {e1, e, ..., e} of (E(Q)/E(Q)ors) ® Z,,
and compute the discriminant af i.e.,

disa(n, b) = det(y(e;, e;)) € Z).

This discriminant is well-defined, independent of the chosen Itasfs to multiplication
by the square of an element iv}. In particular, if dis¢y, b) does not vanish (i.e., if
the p-adic height pairing is nondegenerate), then we can define two numerical invariants

e a nonnegative integey := ord, (disa(x, b)), the irregularity of 7,
e the Legendre symboﬂw) € {+1}, the sign of .

If the irregularity ofh is zero, we will say thap is regular for E. If it ever happens
that discn, b) = 0, we will just say then that the irregularity iso (and not try to
ascribe a “sign” ton).
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Note that the irregularity of; depends only onP and its skew-Hermitian pairing.
The same is true of sign) if r is even, but ifr is odd then sigty) also depends on
the choice ofy.

Proposition 9.1.2. If p is regular for E then ® has a basis for which the matrixl’

is diagonal with all but the last entry equal tb, and the last entry can be taken to
be anyu € Z with (;—‘) = sign(n). In particular if sign(n) = +1 then H' can be take
to be the identity matrix

Proof. Let ' denote the Hermitian pairing=1h on ®. Sincep is regular,h’ is a
perfect pairing.

If ranka® > 1, then’’ represents a square iN*, i.e., we can choose € @
such thath/(x, x) = % with § € A*. Sinceh’ is Hermitian, we have?)' = f°, so
p' = +£p. But f ¢ A~ sincef is a unit, sof € A*. Replacingx by x; = f~1x we
haveh'(x1, x1) = 1.

Let My = Axy and letN1 C @ be the orthogonal complement df;. ThenM1®N1 =
®. Continuing by induction we get a badiey, ... , x,_1, x,} of ® such that'(x;, x;) =
0ifi # j, andh’(x;,x;) =1 if i <r. We havel'(x,,x,) € AT, and we may change
it by any square ilPA™. In this way we obtain the desired basis®f [

It would be interesting to gather numerical data for particular elliptic cuBv/aslearn
something about the distribution, among admissible primes, of sign and irregularity.
Some examples and conjectures concerning irregularity are given by Wuthrjet].in

Example 9.1.3.Let E be the elliptic curvey?4xy+y = x3+2, 1058C1 in Cremona’s
tables[Cr]. For this curve we havé& (Q)~Z?, the Tamagawa numbers at the bad primes
2 and 23 are 2 and 1, respectively, and the Birch and Swinnerton—Dyer conjecture
predicts thatu(E, Q) = 0.

Using the basidb = {(—1, 1), (0, 1)} for E(Q), William Stein (using methods de-
scribed in a forthcoming paper by Stein, Tate, and the first author [MST]) computed
disan, b) for the 337 admissible primes < 2400. The computation shows that all of
these primes are regular, and 175 have sigitl and 162 have sige —1.

For example, ifp =5 and we takey to be the generator df satisfyinge(y) = 6,
wheres : ' — 1+ 5Zs is the cyclotomic character, then the height pairing matrix
for the basisb above is

, {33 105 3
H = <105 83)mod(S +1).

Thus the sign ist+1, so by Propositior.1.2 we can choose a new basis with

H:(SS) 9.1)
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9.2. The caseank(E(Q)) =0

At the opposite extreme from9§l, we consider here a case whef€éQ) has rank
zero so that the Selmer group is the Shafarevich-Tate group. We will make some
additional assumptions so that we can analyze this example in detail.
Suppose that ranl (Q)) = 0, p is admissible, andu(E, Q)[p>®]=(Z/pZ)2. Sup-
pose further thaS, (E, Q) hasZ ,-rank 2. In this case we have an organizing module
@ with ranky (@) = 2.

Proposition 9.2.1. There is a basis ofd such that the corresponding skew-Hermitian
matrix has the forn(g ;g) with o € Z,,[[QZ]]X,

Sketch of proof Fix a basis of® and letf € Ay = Z,,[[@z]] be the determinant of
the corresponding skew-Hermitian matrix. Wrife= ag 4 a260° + - - - with a; € Z,.
We have fA = charS,(E, Qx)). Thus

ao € p°Z%. axeZ (9.2)

becauseS,(E, Q) has orderp? and rank ,(S,(E, Qx)) = 2, respectively.

If x,y e ® let (x,y) denoteh(x ® y).

We first claim that there is am € ® such that(x, x) ¢ 6m, wherem is the maximal
ideal of A. Suppose on the contrary that, x) € 0m for everyx. Then if {u, v} is the
chosen basis o, we have moduldm

u,u)(v,v) — (u, v){(v,u) = —(u, v)(v, u)

(u, v) = (v, u))? = 2((u, v) + (v, u))?

f =

—

((u, v) = (v, w)? = 2 + v, u +v) — (u, u) — (v, v)?

(e, v) + (u, v)"H2.

NS NENTN

Since ((u, v) 4+ (u, v)")/2 € AL = ZI,[[OZ]], this is incompatible withq.2). This proves
the claim.

Fix a basis{x, y} of ® with (x,x) ¢ Om. Since (x,x) € A_ = 0A;, we have
(x,x) € OAL. By adding a multiple ofx to y we may assume thdt, y) € Z,, and
by (9.2) we must havéx, y) € pZ; and (y, y) € OA%. Now scalingy by a unit we
may assume further thdk, y) = p.

Finally, by consideringax + by with a,b € Z,, we can see now that there is a
z € @ such that(z,z) = 0 with § a square inA}. Scalingz by \/B we find that
(z, z) = 1. Repeating the argument of the previous paragraph startingwithy proves
the proposition. O

Example 9.2.2.Let E be the elliptic curvey® 4+ xy = x® — x? — 33231k — 73733731,
1058D1 in Cremona’s tabld€r]. For this curve we havé (Q) = 0, m(E, Q) =~ (Z/5Z)%,
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and all Tamagawa numbers are 1.plfis an admissible prime different from 5, then
® = 0 is an organizing module.

Now take p = 5. Since #/(Z/5Z) = 4, Proposition7.12 shows that hypotheses
(7.1-5) are satisfied. In particular the Perfect Control assumption holdSs(d6 Qo)
is not a cyclicA-module. By Greenberg’s Theorem C&5(E, Qo) has no finiteA-
submodules (this can also be seen directly from the existence of an organizing module
for E/Qx), so the sum of thei- and p-invariants Zag + Halg of Ss5(E, Q) is at
least 2.

Let L5(E) € A denote the 5-adid-function attached tde. Let 1 denote the trivial
character ofl ", { € us a primitive 5th root of unity, ang the character of" that sends
y to {. The definition of L5(E) and a computation of.(E, 1) and L(E, y, 1) show
that 1(Ls(E)) € 522 and

1(Ls(E))

1(Ls(E)) = (8% =250 = 3) (- TH? ==,

(9.3)

Since —3¢3 — 252 — 3{ = —1(mod({ — 1)) is a unit in Zs[(], we see that thé- and
p-invariants of £5(E) are Aan =2 and py, = 0.

One can check that the representat®g — Aut(E[5]) =GL2(Fs) is surjective, so a
theorem of KatdKa] shows that chdSs(E, Q) divides L5(E). In particulariag< 2
and Halg = 0, S0 Zaig =2, S5(E, Q) is free of rank 2 oveZ,, and the assumptions
at the beginning of 89.2 are satisfied. Further, we conclude that the Main Conjecture
is true forE, i.e.,

L5(E)A = charSs(E, Qo). (9.4)

Let H be the skew-symmetric matrix of Propositi®2.1. We will show thatx is a
square inA.
By (9.4) there is g8 € A* such that
L5(E) = det(H)f = p(ab? + 5°).
It follows that 1(Ls5(E)) = 1(f)5% and that

1(Ls(E)) = 1B (@) 7(0)? + 52 = 1(B) () (¢ — L H2(mod (¢ — 1))

in the ring Zs[{] (with maximal ideal generated by— 1). Comparing this with 4.3)
we conclude that

7() = =303 — 252 — 3{ = —1(mod({ — 1))

so o is the square of a unit it = Zs[[6?]].
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Fix a € A, with a® = «. Replacing the basigr, y} of Proposition9.2.1 by{x, a1y}

gives a new matrix
) 0 —5a1
H = (Sal 0 ) (9.5)

With more work one can modify the basis to obtadifi = (50}, ’g’b> with b e Z;.

9.3. A congruence

The curves of ExampleS.1.3 and 9.2.2 have a congruence modulo 5. More pre-
cisely, their corresponding modular forms are congruent modulo 5 (and have the same
conductor). In particular, the Shafarevich-Tate gréfip5Z)2 in Example 9.2.2 is “vis-
ible” in the sense of [CM] thanks to this congruence and the Mordell-Weil gi@tip
of Example 9.2.2.

Examples 9.1.3 and 9.2.2, and in particular (9.1) and (9.5), show that this congruence
is matched by a congruence modulo 5 between the two organizing modules.

10. Examples over an imaginary quadratic field

Suppose now thak is defined oveQ, and thatK is an imaginary quadratic field in
which all primes dividing the conductor df split. Supposep is a prime whereE has
good ordinary reduction, not dividing any of the Tamagawa numbgr®r primes ¢
of bad reduction. Suppose further thatis unramified inK/Q, a, # 1(modp) where
ap is the pth Fourier coefficient of the modular form correspondingApand if p is
inert in K thena, # —1(modp) as well. Then by Proposition 7.12, hypotheses (7.1-5)
all hold, so we have an organizing moduleby Theorem 7.5.

Let K@ denote the anti-cyclotomi@ ,-extension of K, and Aanti := Agani. Fix
a topological generatop of Gal(K./K2") ~Gal(Q./Q) and letf := y —y~1 a
generator of the augmentation ideglani C A.

Let Xoo = Sp(E, Koo) and X3M := X ®p Aanii = Sp(E, K3M). Writing U/ :=
M (K23 as defined in 84, the exact sequence (4.2) becomes

h®Aanti

0— U —> O, Aanii O* @A Aani — X" — 0. (10.1)

By Proposition2.6, (4.3), and the Perfect Control assumptibhjs canonically iso-
morphic to the module of anti cyclotomic universal norms

My(E, K*™) = lim(E(L) ® Z,).
L

inverse limit over finite extensions of K in Ka". Let r := ranky ®.
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It follows from the work of CornufCo] and Vatsal [V] that, under the hypotheses
above onk, we have ran_ X" = 1. Hence we conclude from (10.1) that

U is free of rank one oveNgni,

(® ® Aant)/U is torsion-free of rank — 1 over Aganij,

(® ® Aani) /U is free < X2 has no nonzero finite submodule$10.2)

Suppose first that® ® Aani)/U is free. Choose a\-basis{us, ..., u,} of ® such
that u1 projects to aAani-generator of/.
With this basis, the skew-Hermitian matrif has the form

fa| BwWHYT
H = , (10.3)

wherea € A, B € M,_1(Ig), andw ¢ A1 is a column vector. (To see this, note that

the left-hand column is divisible by because the image of; in ® ® Agnii lies in

U = ker(h®Aanii), and everything else follows from the fact thitis skew-Hermitian.)
Let htgnti : U @ U' — I,(,—Jmn/lliami denote the derived pairingt5). By definition of

“organizing module”, this is the same as the inverse limit of phadic height pairings

over finite extensions ok in K2"i. We easily deduce the following:

chanX«) = dett H)A and detH) = 6a det(B)(mod6?), (10.4)
char X" = det(B)Aan, (10.5)
htand@ @ U') = a(I gani/ 12 a). (10.6)

where the third assertion is immediate from the definition of the derived pairing (see
Remark4.1).

Note that the matriX*H makes it easy to compute the Fitting idealsXof,. We see
that

Fittg(X o) = det{t H)A = chanX ),
Fitt1 (X oo) Aanti = det(B) Aani = char Xgns).

Remark 10.1. We will call the image inAan of the elementa of (10.6) the anti-
cyclotomic regulatorof E/K2" and we will say thap is regular for E/K2" if the
anticyclotomic regulator is a unit (or equivalently ifsht(Uf ® U') = IKanti/II%ami). In
Conjecture 6.1 of [MR2] (see also Conjecture 6 of [MR1]), we conjectured that every
prime p (satisfying our hypotheses above) is regular £k 2", This turns out to be
false in general; see Example 10.10 for a counterexample.
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One can still hope to predict some properties of the anti-cyclotomic regulator. For
example, the nondegeneracy of theadic height pairing in the cyclotomic direction
over all finite extensions oK in k2" would imply thaty(a) # 0 for all characterg
of finite order of GalKanii/K).

Theorem 10.2. The characteristic ideathanX~) is contained in/gani and
charXoo) = htani(@ ® U")char X2ne) (Mod 12 ).

Proof. If (® ® Aanti)/U is free, then chdlX ) C Ixani by (10.4) and the congruence
of the theorem is a consequence of (10.4), (10.5), and (10.6).

If (® ® Aani)/U is not free, then it injects into a free module with finite coker-
nel. With more care, that is sufficient to follow the argument above and deduce the
theorem. O

The literature contains the following conjectures, and theorems concerning them.

Conjecture 10.3 (Main conjecturg. chanXy) = L,(E), where L,(E) € A is the
2-variable p-adic L-function of HararfHara], Hida [Hi], and Perrin-Riou[PR2].

Conjecture 10.4. charX{ao”rg = chanhtani@U @ U") /htani(H @ H')) whereH C U is the
submodule of universal norms of Heegner points.

Theorem 10.5(Howard [H02]). £,(E)Aanti = htand(H ® H') in (IKanti/II%ami).
Theorem 10.6 (Howard [Hol]). If the p-adic representation o[ p>°]

Gal(K/K) — Autz, (E[p™®]) — GL2(Z,)

is surjective then

chan X2 divides charhtani@ ® U")/htani(H @ H")).
Corollary 10.7. If the p-adic representatioGal(K /K) — GL2(Z,) is surjective then

(0~ 'charn X o)) Aanti divides (071L,(E))Aanti

with equality if and only if Conjecturd0.4 holds
Proof. Combine Howard’s Theorems 10.5 and 10.6 with Theorem 1Q.2.

Proposition 10.8. If X2l = 0, then X, is a cyclic A-module, andS,(E, K)=Z,,.
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Proof. If xg;:g = 0 then by (0.2) the A-module (® ® Aant)/U is free. Hence the
organizing matrixH has the form given by (10.3), and the submatiixof (10.3) is
invertible by (10.5). But all the entries ¢f are in the maximal idealt of A, so this
is possible only ifr =1, i.e.,H is a 1x 1 matrix. Thus

dime, S,(E, K)/pSp(E, K) = dimg, Xoo/mXoo = 1.

Since X@" has positive Aang-rank, Sp(E, K) must be infinite and the proposition
follows. [

Example 10.9.An example of a nonzero submodule X#"i. Let E be the elliptic
curve

y2+xy:x3+x2—34x—135

1913B1 in Cremona’s tablefCr]. We take p = 3, and K = Q(+v/—2). Note thatE
has good ordinary reduction at 3, both 3 and 1913 spliKjrthe Tamagawa number
c1913= 2, and the Fourier coefficients = 2. Thus, all of our hypotheses (7.1-5) hold.
We haveE(K)~Z & Z/2Z andm(E, K)=~(Z/3Z)%. Thus, the organizing matrik is
3 x 3 in this case.

For everyn>0 let K, denote the extension df of degree 3 inside Kant | et
H, C E(K,) ® Z3 be theZ3[Gal(K,/K)]-submodule generated by Heegner points in
E(K,). A computation shows that the Heegner pointAK) is

71 _ 29 299 | 145 /5
(‘E_E 2, % * 108 2)

and from this it follows easily tha#{o = 3E(K)®Z3. By computing the Heegner points
in K1, and dividing by 3 where possible, one can compute generatdtsxf) /3E (K1)
and verify that

Trg, k E(K1) = 3E(K).

Thus, the image of the projectidi — E(K)® Z3 is Ho. Since the Fourier coefficient

az = 2, every Heegner point is a universal norm of Heegner points (see for example
[M2]), so the projectiori{ — Hg is surjective. Sincé/ is free of rank one oveAgant,

it follows thati/ = H.

We also compute, using the techniques of [Se] (especially 81V.3.2), that the 3-adic
representation GéK/K) — GLy(Z3) is surjective, so we deduce from Howard’s
Theorem 10.6 thatXtOr}g is finite. But S,(E, K)=Z x (Z/3Z)2, so by Proposition
10.8 we cannot hav&@ll = 0. Thus Xantl has a nonzero finite submodule, namely
xgns



B. Mazur, K. Rubin/Advances in Mathematisd (111r) 1ni-n 37
For related work on the possibility of nonzero finite submodules(8t!, see[B].

Example 10.10.Counterexamples to one of our conjectures fridiR2]. Let E be the
elliptic curve

Y+y=x>-x,

37A1 in Cremona’s table§Cr]. We have E(Q)=~Z, generated byP := (0, 0), and
m(E, Q) =0.

Let K := Q(+/—3). Then 37 splits inK, and E(K) = E(Q)~Z, m(E, K) = 0. If
p > 3, p # 37, and the Fourier coefficient, # 0, 1 then all of our hypotheses (7.1-5)
are satisfied.

Since Sel(E/K)=Q,/Z,, the skew-Hermitian organizing matrix is<1, i.e., H =
(Oa) in (10.3) for somez € A. Arguing as in 89.1, iff = Ix denotes the augmentation
ideal of A then the image ofla in /12 is (up to a unit) thep-adic height ofP.

Let #,(P) denote thep-adic height ofP. William Stein (using methods of [MST])
has computed: ,(P) for all primes less than 100 of good ordinary reduction and with
ap # 1, and in all cases except = 13 and 67,h,(P) generates (the free, rank-one
Z,-module) 0A/I% C 1/I?. In the two exceptional casés,(P) generatesp(0A/12).
Thus 13 and 67 are irregular in the sense of Definition 9.1.1.

Recall that by (10.6), Qi ® U') = a(IKami/IIZ(ami). Thus, if p is one of the 17
primes less than 100 and different from 13 and 67 witet@s good ordinary reduction
anda, # 1, thena € A* and hgni @U') = IKanti/Il%anti. But if p = 13 or 67 then
a ¢ A and hini@ ®@U") # Igani/ 12, (SO P is irregular for E/K2" in the sense of
Remark 10.1). These last two cases give counterexamples to Conjecture 6.1 of [MR2]
(see also Conjecture 6 of [MR1]).

Appendix A. Perfect control assumption

We keep the notation of the body of the paper. In particiHas an elliptic curve
over a number fieldK, with good ordinary reduction at all primes abopeand K
is the maximalZ ,-power extension oK.

We will use the following theorem of Greenberg ([G1] 85.1).

Theorem A.1 (Greenber. Suppose that F is a finite extension of K andF is a
Z ,-extension. Suppose further that

(i) E(F) has no point of order p
(i) for every primew of F above p E(f,) has no point of order pwhere f,, is the
residue field of F atw,
(iii)y for every primew of F where E has bad reductipeither E(Fy,) has no point of
order p or E(Fy"[p®] is divisible

Then the natural magsel,(E, F) — Sel,(E, L)%/ is an isomorphism
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Lemma A.2. Suppose A is an elliptic curve defined over a fielgpks a prime and
¢ is an abelian(pro-)p-extension of kIf A(k) has no point of order p ther (¢) has
no point of order p

Proof. By Nakayama's Lemma, iA(¢) N A[p] # O, then
A(k) N Alpl = (A() N A[pD® 0 0. O

Corollary A.3. Suppose

(i) E(K) has no point of order p
(i) for every primev of K above p E(k,) has no point of order pwherek, is the
residue field of K at,
(ii) for every primev of K where E has bad reductipeither E(K,) has no point of
order p or E(KJ™[p] is divisible

If K C F C F' C K then the natural magsel,(E, F) — Sel,(E, F))C/F) is an
isomorphism
In particular, the Perfect Control assumption holds

Proof. Supposev is a prime ofK, K C F C K, andw is a prime ofF abovev.

If vip then Fy"" = KU, so assumption (i) and Lemna2 imply assumption (iii)
of Theorem A.1 forF. If v | p then the residue field, is a p-extension ofk,, so
assumption (ii) and Lemma A.2 imply assumption (ii) of Theorem A.1ForFinally,
assumption (i) and Lemma A.2 imply assumption (i) of Theorem A.1Hor

It is enough to prove the corollary whenis a finite extension oK, and then pass
to the limit for generalF. Further, it is enough to consider the case wWhergF is
cyclic, because every extension Bfin K, can be given as a finite chain of cyclic
extensions.

So suppose that’/F is cyclic. Then there is & ,-extensiorL of F in K, containing
F’. The hypotheses of Theorem A.1 are satisfiedApso if F' = L then the statement
of the corollary is just the conclusion of Theorem A.1.Af # L then the hypotheses
of Theorem A.1 are satisfied faf’ as well, and we conclude from Theorem A.1 that

Selp(E, F) — Selp(E,L)GaI(L/F) — (Selp(E, L)Ga|(L/F’))Ga|(F’/F)

= Sel,(E, F)SF/H)

Remark A.4. There are a few comments to make about the hypotheses in Corol-
lary A.3.

For a fixed elliptic curveE, hypotheses (i) and (iii) hold for all but finitely many
primesp. Condition (ii) can fail to hold; this is thenomalouscase of [M1]. Condition
(i) should hold for “most”p, but it could fail for infinitely manyp. However, we have
the following lemma.
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Lemma A.5. Suppose thattE(K) has a point of finite orde > 1. Then for every
rational prime p > 5, p # ¢ and every primev of K of degree one dividing p where
E has good reductignE (k,) has no point of order p

Proof. Fix such av and suppose thak (k,) has a point of ordep. Our assumptions
guarantee thak (k,) has a point of ordet as well, so #(k,) > p¢. Sincev has degree
one we have #(k,) — (p+1) < 2,/p, and this is impossible ip > 5. O

We also have the following lemma relating hypotheses (i) and (ii) of Coro#aBy

Lemma A.6. Suppose that for some primeof K above p with residue field, (where
as usual we suppose that E has gpodlinary reduction, E(k,) has no point of order
p. If K" does not contain a primitivepth root of unity thenE(K,) has no point of
order p

In particular if the ramification ofK,/Q, is not divisible byp — 1 then E(K,) has
no point of order pand soE(K) has no point of order p

Proof. If E(K,) has a point of ordep, it must be in the kernel of reduction. But
since E has good ordinary reduction at the inertia group av acts on the kernel of
reduction via the cyclotomic character. This proves the lemma.

Appendix B. Some commutative algebra with group rings

For this appendix suppose th@tis a finite abelian groupR is a commutative ring,
and let: : R[G] — R[G] be theR-linear involution that sendg — g~ for g € G. As
in 82, if M is an R[G]-module we letM' denote theR[G]-module whose underlying
abelian group igM, but with the action ofG obtained from that ifM by composition
with 1.

Suppose thaf is an R[G]-module andB is an R-module with trivial G-action.

Lemma B.1. There is a natural isomorphism

HomR[G](A, B ® R[G]) — Homg(A, B)l.

Proof. Let = : R[G] — R denote the projection ma@(zg agg) = a1. Composition
with 7 defines anR-module homomorphism

Homg[G1(A, B ®g R[G]) — Homg(A, B)! (B.1)

and it is straightforward to check that this is a morphismk@&]-modules. The inverse
of (B.1) is given by sendingf € Homg(A, B)' to the map

ar Y flaHeeg
8

and it follows that B.1) is an isomorphism. [
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Now consider the composition
Homg (A ®giG) A', B ®g RIG]) — Homg(A', Homg (A, B ® R[G)))
= Homg (A, Homg (A, B ®g R[G])Y) = Homg (A, Homg (A, B))
— Homz(A ®r A, B), (B.2)

where the third isomorphism comes from Lemid. This composition sends B ®
R[G]-valued, R[G]-bilinear pairing onA x A' to a B-valued, R-bilinear pairing on
A X A.

Proposition B.2. Suppose that : B — B is an R-linear involution and that = :
A ®prig1 A' — B ®g R[G] is a skew-Hermitian pairingi.e.,

nd ®a)=—>1(®1)(na®a)).
Then the pairingrg : A®r A — B induced fromr via (B.2) is i-skew symmetrjd.e.,
no(a’ ® a) = —i(mo(a ® a')).

In particular if i is the identity thenrg is skew-symmetrjand if i is multiplication by
—1 then g is symmetric

Proof. Straightforward. O

Appendix C. The structure of Selmer modules

One weak consequence of the existence of a skew-Hermitian madihlat organizes
the arithmetic ofE over K, is that theA-module S,,(E, K») has a free resolution
of length two. In this appendix we give a direct proof of this fact, under some mild
hypotheses, without appealing to the work of Nekofd] which was the basis for our
proof of Theorem 7.5.

We continue to suppose th& has good ordinary reduction at all primes abgve
the Perfect Control assumption holds, and we will make the following two additional
assumptions for this section.

Torsion assumption S,(E, K«) is a torsion A-module

Local Nontriviality assumption. For some primep of K above pthe decomposition
group ofp in Gk acts nontrivially on the kernel of reduction modupoin E[p].

Remark C.1. If K(E[p])/K is ramified at some prime aboyethen the Local Non-
triviality assumption holds, so in particular (sinpg C K (E[p])) it holds if p is odd
and unramified inK/Q.
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Theorem C.2 (Greenberg. If L is a Z‘[ﬁ—extension of KthenS,(E, L) has no nonzero
pseudo-nullA; -submodules

Proof. This is proved by Greenberff52], using the Torsion and Local Nontriviality
assumptions. [

Proposition C.3. Suppose L is if,-extension of KS,(E, L) is a torsionAz-module
M is a free A;, module of finite rankand f : M—S,(E, L) is a surjective map of
Ar-modules Thenker(f) is free overAy.

Proof. The proof will be by induction ord, where GaﬂL/K);Z;’. If d = 0 then
L =K, AL =Z,, and there is nothing to prove.

Let N := ker(f). Then N is a finitely generated torsion-fre&;-module, so the
structure theorem for such modules says that there is an exact sequence

O—N—S—Z—0,

whereS is a reflexiveA-module andZ is pseudo-null.

Let IC denote the field of fractions ohy. The inclusionN — M extends uniquely
to an inclusionS — M ® K. Since S/N is pseudo-null andC/A; has no nonzero
pseudo-nullA; -submodules, we must have— M c M ® K. But then

Z=S/N < M/N=S,(E, L)

so by Greenberg's Theore@.2 we must haveZ = 0, and soN = S is reflexive.

It remains to show thaN is free. If d = 1 then every reflexive module is free, so
we may assume that>2. SinceS,(E, L) is a torsionAz-module, for all but finitely
many Zf,—l extensionsF of K contained inL we have (using the Perfect Control
assumption) thatS,(E, F) = S,(E, L) ®4, Ar is a torsionAp-module. For such an
F, writing H := Gal(L/F)=Z,, we have an exact sequence

0— Sy(E, L) — N®Ar — M®Ap — S,(E, F) — 0,

SinceS, (E, L)®A, Ar is a torsionA --module,S, (E, L)" is a pseudo-null\; -module
(see for example Lemma 4 of 81.1.3 f#R1]). Again using Greenberg's Theorem C.2
we conclude thatS, (E, L)Y =0, and so

Sp(E, F)=(M ® Ar)/(N ® AF).

We conclude from our induction hypothesis thétz Ar is a free Ap-module of rank
t :=ranky, (M ® Ar) = ranky, M. By Nakayama’s Lemma can be generated over
Ay by t generators, and since (by the Torsion assumption) yank= ranky, M =1,

N must be free as claimed.(
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Theorem C.4. There are freeA-modulesN C M such thatS,(E, Koo)=M/N. If
t :=dimg, Sel,(E, K)[p] then we can take M and N to haverank t

Proof. By LemmaZ2.2, we have
Sp(E, Koo)/mS,(E, Koo) xHom(Sel, (E, K)[pl, Fp) =F,,

where m is the maximal ideal ofA. By Nakayama's Lemma there is a surjection
AN'—S8,(E, K), and by PropositiorC.3 the kernel of this surjection is also freel]
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