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Abstract

Suppose thatE is an elliptic curve defined over a number fieldK, p is a rational prime,
and K∞ is the maximalZp-power extension ofK. In previous work [B. Mazur, K. Rubin,
Elliptic curves and class field theory, in: Ta Tsien Li (Ed.), Proceedings of the International
Congress of Mathematicians, ICM 2002, vol. II, Higher Education Press, Beijing, 2002, pp.
185–195; B. Mazur, K. Rubin, Pairings in the arithmetic of elliptic curves, in: J. Cremona
et al. (Eds.), Modular Curves and Abelian Varieties, Progress in Mathematics, vol. 224, 2004,
pp. 151–163] we discussed the possibility that much of the arithmetic ofE over K∞ (i.e., the
Mordell–Weil groups and theirp-adic height pairings, the Shafarevich–Tate groups and their
Cassels pairings, over all finite extensions ofK in K∞) can be described efficiently in terms
of a single skew-Hermitian matrix with entries drawn from the Iwasawa algebra ofK∞/K.

In this paper, using work of Neková˘r [J. Neková˘r, Selmer complexes. Preprint available at
〈http://www.math.jussieu.fr/∼nekovar/pu/〉], we show that under not-too-stringent conditions such
an “organizing” matrix does in fact exist. We also work out an assortment of numerical instances
in which we can describe the organizing matrix explicitly.
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1. Introduction

Fix the data(p, K, E) where p is a prime number,K a number field, andE an
elliptic curve overQ. Let K∞/K denote the maximalZp-power extension ofK. Recent
work2 provides, in some instances, detailed information aboutp-adic completions of
Mordell–Weil groups and their associatedp-adic height pairings, and thep-primary
Shafarevich–Tate groups and their associated Cassels pairings, over intermediate fields
in K∞/K. Added to this information we also have a constellation of conjectures telling
us even more precisely how all this arithmetic should behave.

In previous articles [MR1,MR2] we have considered the possibility that, under some
not too stringent assumptions, much of this arithmetic data can be packaged efficiently
in terms of a single skew-Hermitian matrix with entries drawn from the Iwasawa
algebra of theZp-power extensionK∞/K. We say that such a matrixH organizes the
arithmetic of(p, K, E) if it plays this role vis-à-vis the arithmetic of(p, K, E). For a
detailed discussion of this, see §7. In the special case where there is no nontrivialp-
torsion in the Shafarevich–Tate group ofE over K, our skew-Hermitian matrix may be
thought of as a (skew-Hermitian) lifting to the Iwasawa algebra of the matrix describing
the p-adic height pairing on the Mordell–Weil groupE(K).

The main result. Theorems 7.5 and 7.7 provide a construction of such skew-Hermitian
“organizing matrices” in a fairly general context. Our construction depends heavily on
work of Neková˘r [N] (which in turn makes use of work of Greenberg). An example
of what we can prove is the following.

Let (p, K, E) be such that

• K/Q is abelian,
• the integersp, disc(K), cond(E) are pairwise relative prime,
• E has ordinary reduction atp,
• p does not divide #E(kv) for any of the residue fieldskv at placesv of K lying

abovep,
• the Tamagawa numbers ofE/K are all prime top.

Then an organizing matrixH for the arithmetic of(p, K, E) exists, and is unique up
to (noncanonical) equivalence.

We work out an assortment of numerical instances in which we can describe the
organizing matrix explicitly. In §9 we consider the case where the base fieldK is Q.
For example, ifE is either of the curves denoted 1058C1 or 1058D1 in [Cr] (and
assuming the Birch and Swinnerton–Dyer conjecture forE/Q) then using calculations
by William Stein we can give the organizing matrixH exactly for all 337 primes less
than 2400 that satisfy the conditions listed above. We also show that a congruence
modulo 5 between the modular forms corresponding to these two curves is matched
by a congruence modulo 5 between their organizing matrices.

2 Advances here have been made be many people, including Bertolini and Darmon[BD1,BD2], Cornut
[Co], Greenberg[G1,G2], Howard [Ho2,Ho1], Kato [Ka], Neková˘r [N] , Perrin-Riou [PR1,PR2,PR3,PR4],
and Vatsal[V] .
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In §10 we consider the case whereE is defined overQ and K is an imaginary
quadratic field satisfying the “Heegner condition”. We find, among other things, ex-
amples of Iwasawa modulesXanti attached to elliptic curves over anti-cyclotomicZp-
extensions such thatXanti contains nontrivial finite submodules, and we also give a
counterexampleto a prior conjecture of ours.

To describe the structure we deal with in more detail, put� := Zp[[Gal(K∞/K)]],
and denote by� : � → � the standard involution (that sends every group element�
in � to its inverse and is the identity onZp). If M is a �-module, itsconjugateM �

is the �-module with the same underlying group asM but with �-module structure
obtained from that ofM by composition with�. By a basic skew-Hermitian�-module
� we mean a free�-module of finite rank equipped with a skew-Hermitian pairing,

� ⊗� �� → m ⊂ �,

wherem is the maximal ideal in�, and such that this pairing is nondegenerate after ex-
tending scalars to the field of fractions of�. If the arithmetic of(p, K, E) is organized
by �, we can derive Mordell–Weil and Shafarevich–Tate information at all layers of
K∞/K together with their self-pairings from the structure of the basic skew-Hermitian
�-module�, as described in §7.

Given an organizing module� for (p, K, E) as above, consider the free�-module
of rank one� := det� �−1, i.e., the inverse of the determinant module of� over �.
Define Larith

p (K, E), the arithmetic p-adic L function attached to(p, K, E) (relative
to the organizing module�) to be the discriminant of the skew-Hermitian module
�. (The definition of ap-adic L-function as a determinant of a complex in a derived
category has already appeared in the work of Neková˘r; see the footnote at the end of
the introduction to [N].) Given our hypotheses above, the arithmeticp-adic L-function
is a nonzero element

Larith
p (K, E) ∈ � ⊗� ��.

How canonical is this construction? First, the�-module�⊗� �� is canonically isomor-
phic to the determinant�-module of Neková˘r’s “Selmer complex,” which is represented
in the derived category by a finite complex of projective modules of finite rank (under
the hypotheses listed above). Therefore, the free�-module of rank one� ⊗� �� is
canonically determined by our initial data(p, K, E), as is the elementLarith

p (K, E)

in it.
There is also a canonicalorientation on � ⊗� ��. By an orientation of a free�-

module of rank one let us a mean a choice of generator up to multiplication by an
element of the formu · u� whereu ∈ �× is a unit. Since the organizing module� is
determined up to (noncanonical) equivalence, we have that�⊗� �� inherits a canonical
orientation.

There is, of course, thep-adic analytic side of this story. For simplicity fixK = Q.
We have the standard (modular symbols) construction of thep-adic analyticL-function
of the elliptic curve,Lanal

p (K, E), which can be viewed, again canonically, as an element
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of H1(E(C),Z)+ ⊗Z �, where the superscript+ refers to the+-eigenspace of the ho-
mology group in question under the action of complex conjugation. Given the modular
parametrizationX0(cond(E)) → E we may even make a canonical choice of a “pos-
itive” generator of the infinite cyclic groupH1(E(C),Z)+. Identifying H1(E(C),Z)+
with Z via the canonical generator, we may viewLanal

p (K, E) as an element of�, this
being one of the accidental bonuses (as we shall see below) of working with elliptic
curves rather than abelian varieties of higher dimension, or modular eigenforms of
higher weight. Theexpectationhere (themain conjecture, in this context) for which
there is now much evidence, is that (givingLanal

p (K, E) a natural normalization) there
is a unique generatorg of the free�-module of rank one� ⊗� �� such that

Lanal
p (K, E) · g = Larith

p (K, E).

It is natural to wonder whether this unique generatorg might bear some clear relation-
ship to the orientation structure of� ⊗� ��; it might make sense to make use of the
theory of Shimura’s lift to half-integral weight modular forms to study this question.

Questions about variation. We feel that our result might be but the first hint of
some kind ofgeneric purityphenomenon regarding Neková˘r’s Selmer complexes. The
remainder of this introduction section is completely speculative, and is offered to give
a sense of what we might mean by this.

Let p�5 be a prime number. PutW = Zp[[Z×
p ]], which we take asp-adic weight

space, where fork ∈ Z, we havesk : W → Zp, the naturalprojection to weight k and
nebentypus character�k. Here � is the standard Teichmüller character, andsk is the
Zp-algebra homomorphism that sends a group elementx ∈ Z×

p to xk ∈ Z×
p ⊂ Zp.

Let T denote Hida’s Hecke algebra for ordinaryp-adic modular eigenforms on�0(p).
Hida’s Hecke algebraT is a finite flatW-algebra with the following property. Fork =
2, 3, 4, . . . if we make the base change fromW to Zp via sk we have thatT ⊗W Zp

is naturally isomorphic to the (classical) Hecke algebra that acts faithfully onp-adic
cuspidal ordinary modular eigenforms on�1(p) of weight k and nebentypus character
�k. Let m ⊂ T denote a maximal ideal associated to an absolutely irreducible residual
representation of the Galois group�̄ : Gal(Q̄/Q) → GL2(T/m) and letTm denote the
completion ofT at m. Put

R := Tm⊗̂Zp�,

and let � : R → R denote the involution 1̂⊗�. There is a canonical representation

� : Gal(Q̄/Q) −→ GL2(R),

unramified outsidep, uniquely characterized by the requirement that if

f = q +
∑
n�2

an(f )qn
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is an ordinary eigenform on�1(p) whose associated residual representation is equiv-
alent to �̄ and if � : Gal(Q∞/Q) → C×

p is a wild p-adic character, then the Galois
representation

Gal(Q̄/Q) −→ GL2(Cp)

attached tof ⊗� is the one induced from� by the homomorphismR → Cp which, for
positive integersn prime top, takesTn⊗̂� to an(f )�(�) and takesUp⊗̂� to ap(f )�(�).

Attached to� there is a (finitely generated) SelmerR-module S, which we wish
to view as coherent sheafS over X := Spec(R). Moreover, there is a “two-variable”
p-adic L function Lanal

p that is naturally a section of a certain line bundle3 over X that
we will denoteP.

In view of the main result of this article, we might wonder whether there are fairly
general conditions under which one may find a Zariski open subschemeY ⊂ X =
Spec(R) stable under�, and a skew-Hermitian vector bundle� of finite rank overY
with these two properties:
• The skew-Hermitian vector bundle� overY bears an “organizing” relationship to the

coherent sheafS ⊗OX
OY (analogous to the relationship that the organizing skew-

Hermitian module� in the context of elliptic curves above bears to the classical
Selmer module).

• Forming � := det�−1, which is a line bundle overY, and

Larith
p := discriminant(�),

viewed as a section of the line bundle�⊗�� overY, there is a (unique) isomorphism
of line bundles

g : P ⊗OX
OY �� ⊗ ��

that brings the sectionLanal
p (restricted toY) to Larith

p (this being analogous to the
“main conjecture” relationship between arithmetic and analyticp-adic L-functions of
elliptic curves described above).

2. The setup

Fix a number fieldK, an elliptic curveE defined overK, and a rational primep
such thatE has good ordinary reduction at all primes ofK abovep.

3 Usually one definesLanal
p to be a bona fide function (cf.[GS,Ki]) but the natural construction of

this two-variableL-function—independent of any choice—is as a section of a specific line bundle that
we refer to above asP, which one must trivialize to expressLanal

p as a function.
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For every finite extensionL of K we have thep-power Selmer group

Selp(E, L) := ker(H 1(L, E[p∞]) −→
∏
v

H 1(Lv, E)),

whereE[p∞] is the Galois module ofp-power torsion onE, and the product is over
all placesv of L. This Selmer group sits in an exact sequence

0 −→ E(L) ⊗ Qp/Zp −→ Selp(E, L) −→ i(E, L)[p∞] −→ 0, (2.1)

wherei(E, L)[p∞] is the p-primary part of the Shafarevich–Tate group ofE over L.
Let K∞ denote the maximalZp-power extension ofK, i.e., Gal(K∞/K)�Zd

p for
somed ∈ Z+ and K∞ contains allZp-extensions ofK. By class field theory we have
r2 + 1�d �[K : Q], wherer2 is the number of complex places ofK, and d = r2 + 1
if Leopoldt’s Conjecture holds forK. In particulard = 1 if K = Q and d = 2 if K is
quadratic imaginary. Let� := Gal(K∞/K), and define the Iwasawa algebra

� := Zp[[�]].

If K ⊂ L ⊂ K∞ we let �L := Gal(L/K) and �L := Zp[[�L]] for the corresponding
quotients of� and �.

As in the introduction, we let� : �L → �L denote the involution that sends� �→ �−1

for � ∈ �L, and if M is a �L-module we letM � be theconjugate module, the �L-
module with the same underlying abelian group asM, but with �L-module structure
obtained from that ofM by composition with�.

If K ⊂ L ⊂ K∞ we define

Selp(E, L) := lim→ Selp(E, F ),

direct limit (with respect to restriction maps on Galois cohomology) over finite exten-
sionsF of K in L, and the Pontrjagin dual

Sp(E, L) := Hom(Selp(E, L),Qp/Zp).

We will frequently make the following assumption.

Perfect control assumption. If K ⊂ L ⊂ K∞ then the canonical restriction map

Selp(E, L) −→ Selp(E, K∞)Gal(K∞/L)

is an isomorphism.
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Remark 2.1. The Perfect Control assumption does not always hold. However, the ker-
nel and cokernel of the map Selp(E, L) → Selp(E, K∞)Gal(K∞/L) are usually small
and bounded independently ofL. (This is the “Control Theorem”, see for example
[M1,G1].) In a case where the Perfect Control assumption does not hold, we can either
localize � to avoid the support of these kernels and cokernels, or else work with the
collection of Selp(E, K∞)Gal(K∞/L) instead of the classical Selmer groups Selp(E, L).

See Appendix A for a discussion of sufficient conditions that will guarantee that the
Perfect Control assumption holds.

Lemma 2.2. If the Perfect Control assumption holds andK ⊂ L ⊂ K∞, then

Sp(E, K∞) ⊗� �L�Sp(E, L),

Sp(E, L) ⊗�L
(�L/mL)�Sp(E, K) ⊗ Z/pZ,

where mL is the maximal ideal of�L. In particular Sp(E, L) is a finitely generated
�L-module.

Proof. The two isomorphisms are clear, and then sinceSp(E, K) ⊗ Z/pZ is finite,
Nakayama’s Lemma shows thatSp(E, L) is finitely generated over�L. �

Lemma 2.3. Suppose L is a finite extension of K inK∞.
(i) There is a canonical isomorphism

Sp(E, L)tors�i(E, L)[p∞]/i(E, L)[p∞]div,

where i(E, L)[p∞]div is the maximal divisible subgroup ofi(E, L)[p∞]. If
i(E, L)[p∞] is finite then this isomorphism becomes

Sp(E, L)tors�i(E, L)[p∞].

(ii) There is a canonical inclusion

(E(L)/E(L)tors) ⊗ Zp ↪→ Hom(Sp(E, L),Zp)

which is an isomorphism ifi(E, L)[p∞] is finite.

Proof. Clear. (In the isomorphism of (i) we have used the Cassels pairing to identify
i(E, L)[p∞]/i(E, L)[p∞]div with its Pontrjagin dual.) �

Definition 2.4. If K ⊂ L ⊂ K∞ we define the�L-module of universal norms

Mp(E, L) := lim← Hom(Sp(E, F ),Zp),
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the inverse limit (with respect to the maps induced by corestriction) being taken over
finite extensionsF of K in L. We have

Mp(E, L) ⊃ lim← (E(F )/E(F )tors) ⊗ Zp

(inverse limit with respect to the trace maps) by Lemma2.3(ii), with equality if
i(E, F )[p∞] is finite for the intermediate fieldsF.

If L/K is finite thenMp(E, L) = Hom(Sp(E, L),Zp) ⊃ (E(L)/E(L)tors) ⊗ Zp,
and if furtheri(E, L)[p∞] is finite thenMp(E, L) = (E(L)/E(L)tors) ⊗ Zp.

Remark 2.5. WhenL/K is infinite, one often expects thatMp(E, L) = 0 (for exam-
ple, whenL contains the cyclotomicZp-extension ofK). However,Mp(E, L) can be
nonzero for certain infinite extensionsL/K, for example[Co,V] when K is imaginary
quadratic andL is the anti-cyclotomicZp-extension ofK. See [MR3] for a further
discussion of this.

Proposition 2.6. If the Perfect Control assumption holds andK ⊂ L ⊂ K∞, then

Hom�(Sp(E, K∞), �L)� = Hom�L
(Sp(E, L), �L)��Mp(E, L).

Proof. The first equality is Lemma2.2.
If L/K is finite, then Lemma B.1 of Appendix B shows that

Hom�L
(Sp(E, L), �L)��HomZp (Sp(E, L),Zp),

which proves the proposition in this case. The general case follows by passing to the
inverse limit. �

3. Hermitian and skew-Hermitian modules

Definition 3.1. A semi-linear�-module is a�-moduleM endowed with an involution
i : M → M such thati(�m) = �(�) · i(m) for all � ∈ � and m ∈ M. Equivalently,
we may think of the involutioni as a �-module isomorphismi : M → M � such
that i� ◦ i : M → (M �)� = M is the identity. We refer to such a pair(M, i) as a
semi-linear module, for short. The involution� of the free�-module � endows that
module with a natural semi-linear structure. IfM is a �-module andN is a semi-linear
�-module, the�-module Hom�(M, N) inherits a semi-linear structure as follows. For
f ∈ Hom(M, N) let i(f ) ∈ Hom�(M, N) be given by i(f ) := i ◦ f . For a free
�-module� of finite rank, by thesemi-linear conjugate�-dual �∗ of � we mean the
�-module�∗ := Hom�(��, �) with the semi-linear structure as given above.

If I ⊂ � is an ideal that is stable under the action� then the quotient�/I inherits
an involution compatible with�; we denote it again�.



ARTICLE IN PRESS
B. Mazur, K. Rubin / Advances in Mathematics ( ) – 9

Example 3.2. If K ⊂ L ⊂ K∞, let IL ⊂ � be the closed ideal generated by all
elements of the formh − 1 ∈ � for h ∈ Gal(K∞/L). That is, IL is the kernel of the
natural projection� → �L. We have a canonical isomorphism of�L-modules

Gal(K∞/L) ⊗Zp �L�IL/I2
L

characterized by the property that the elementh ⊗ 1 is sent toh − 1 moduloI2
L for all

h ∈ Gal(K∞/L).

Definition 3.3. If � is a �-module, andM a semi-linear�-module, a pairing

h : � ⊗� �� → M

is calledHermitian if

h(a ⊗ b) = +i(h(b ⊗ a)),

and skew-Hermitianif

h(a ⊗ b) = −i(h(b ⊗ a)).

A skew-Hermitian�-module is a free�-module of finite rank with a skew-Hermitian
�-valued pairing, where we view� as semi-linear�-module via its involution�.

4. Derived pairings

Suppose from now on that� is a skew-Hermitian�-module as in Definition3.3,
with a nondegenerate�-valued skew-Hermitian pairingh : �⊗�� → �. Such a pairing
corresponds to an injective�-homomorphism (which we will also denote byh)

h : � −→ �∗

and the skew-Hermitian property of the pairing is then equivalent to the fact that the
induced map

�� = Hom(�∗, �)
h∗−→ Hom(�, �) = (�∗)�

is identified with−h under the canonical isomorphism

Hom�(�, �∗) = Hom�(��, (�∗)�).
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Let S denote the cokernel ofh, so that

0 −→ �
h−→ �∗ −→ S −→ 0 (4.1)

is a free resolution of the�-module S, giving, in particular that theA-modules
Tori�(S, A) and Exti�(S, A) vanish for every�-algebraA and everyi > 1. If K ⊂ L ⊂
K∞, put

M(L) := Tor1�(S, �L) = ker(h ⊗ �L),

S(L) := S ⊗� �L = coker(h ⊗ �L)

(the letterM is chosen to remind us ofMordell–Weil, while the letterS is chosen to
remind us ofSelmer;see Section7). These definitions give us an exact sequence of
�L-modules

0 −→ M(L) −→ � ⊗� �L
h⊗�L−−−→ �∗ ⊗� �L −→ S(L) −→ 0. (4.2)

We have thath∗ = −h on ��, and using this along with (4.2) (for the upper exact
sequence) and (4.1) (for the lower exact sequence) gives a commutative diagram of
�L-modules,

0 �� M(L)� �� �� ⊗ �L

−h
��

�
��

(�∗)� ⊗ �L
��

�
��

S(L)� �� 0

0 �� Hom�(S, �L) �� Hom(�∗, �L)
h∗

�� Hom(�, �L) �� Ext1�(S, �L) �� 0.

Thus we obtain canonical isomorphisms

M(L)��Hom�(S, �L), (4.3)

S(L)��Ext1�(S, �L). (4.4)

Recall (Example3.2) thatIL is the kernel of the map���L. Tensoring the exact
sequence

0 −→ IL −→ � −→ �L −→ 0
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with S gives a canonical injection

0 −→ Tor1�(S, �L) −→ IL ⊗� S

and composing this with the natural pairing

(IL ⊗� S) ⊗� Hom�(S, �L) −→ IL ⊗� �L = IL/I2
L

we get the pairing

Tor1�(S, �L) ⊗�L
Hom�(S, �L) −→ IL/I2

L.

Now, using the definition ofM(L) and (4.3), we obtain the pairing:

M(L) ⊗�L
M(L)� −→ IL/I2

L�Gal(K∞/L) ⊗ �L. (4.5)

The pairing (4.5) is skew-Hermitian with respect to the involution onIL/I2
L induced

by �. The identificationIL/I2
L�Gal(K∞/L) ⊗ �L sends this involution to−1 ⊗ � on

Gal(K∞/L)⊗�L. By Proposition B.2 of Appendix B, ifL/K is finite then the pairing
(4.5) induces asymmetricpairing

M(L) ⊗Zp M(L) → Gal(K∞/L). (4.5′)

Remark 4.1. Here is a more direct description of the pairing (4.5). Let 〈 , 〉 denote
the skew-Hermitian pairing corresponding toh, and if m ∈ M(L) ⊂ �/IL� let m̃ ∈ �
denote any choice of lifting ofm. Then, from the definition ofM(L), we have〈m̃, x〉 ∈
IL ⊂ � for every x ∈ �. If m1, m2 ∈ M(L) we see that the value〈m̃1, m̃2〉 ∈ IL,
when taken moduloI2

L, is dependent only upon the elementsm1, m2 ∈ M(L) and
independent of the choices of liftings̃m1, m̃2 ∈ �. Then the�L-bilinear pairing (4.5)
is defined by the rule

m1 ⊗ m2 �→ 〈m̃1, m̃2〉(modI2
L) ∈ IL/I2

L.

Let KL denote the total ring of fractions of�L. If M is a �L-module,Mtors will
denote the kernel of the natural mapM → M⊗KL (the set of elements ofM annihilated
by a non-zero-divisor of�L).

Applying the functor Hom�(S, ·) to the exact sequence of�-modules

0 → �L → KL → KL/�L → 0,

we obtain an exact sequence

Hom�L
(S(L), KL) → Hom�L

(S(L), KL/�L) → Ext1�(S, �L) → Ext1�(S, KL).
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The kernel of the right-hand map contains Ext1
�(S, �L)tors, and there is a natural map

from the cokernel of the left-hand to Hom�L
(S(L)tors, KL/�L). Thus using (4.4) we

get a map

S(L)�tors�Ext1�(S, �L)tors −→ Hom�L
(S(L)tors, KL/�L)

and hence a�-bilinear pairing

S(L)tors ⊗�L
S(L)�tors −→ KL/�L. (4.6)

The pairing (4.6) is skew-Hermitian with respect to the involution onKL/�L induced
by �. If L/K is finite, the identificationKL/�L�Qp/Zp ⊗ �L sends this involution
to 1⊗ � on Qp/Zp ⊗ �L. By Proposition B.2 of Appendix B, the pairing (4.6) induces
a skew-symmetric pairing

S(L)tors ⊗Zp S(L)tors → Qp/Zp. (4.6′)

Remark 4.2. Here is a more direct description of the pairing (4.6). Supposes ∈
S(L)tors, sayas = 0 with a nonzero-divisora ∈ �L. From the definition (4.2) ofS(L),
we can choosẽs ∈ � ⊗ �L and s̃∗ ∈ �∗ ⊗ �L such thats̃∗ lifts s (under (4.2)) and̃s
lifts as̃∗. Similarly, if t ∈ S(L)�tors andbt = 0 we can lift to t̃ ∈ �� ⊗ �L whose image
in (�∗)� ⊗ �L is b times a lift of t.

Let 〈 , 〉L denote the skew-Hermitian pairing(� ⊗ �L) ⊗ (�� ⊗ �L) → �L induced
by h. Then the pairing (4.6) is given by

s ⊗ t �→ (ab)−1〈s̃, t̃〉L(mod�L) ∈ KL/�L.

This is independent of all the choices that were made.

In summary, given a skew-Hermitian module� over �, with the hypotheses above,
for every extensionL of K in K∞ we get a�L-bilinear pairing (4.5) on M(L) with
values inIL/I2

L and a�L-bilinear pairing (4.6) onS(L)tors with values inK/�L.

5. Complexes

Fix a noetherian local ringR with maximal idealm and residue fieldk = R/m. We
will be interested in the case whereR = �, but the results of this section are more
general.

Definition 5.1. By a complexof R-modules we mean an infiniteco-complex, i.e., a
sequence ofR-modules andR-homomorphisms

C• : . . . C−n → C1−n → · · · → Cn → Cn+1 → . . .
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with (co-)boundary operators raising degrees by 1 and such that the composition of
any two successive coboundaries vanishes. For an integerk, the complexC•[k] will
denote the complexC• shifted byk

. . . (C′)−n → (C′)1−n → · · · → (C′)n → (C′)n+1 → . . .

where (C′)m := Cm+k.
If C• is a complex, itsR-dual Hom(C•, R) is again a complex, where, as usual the

gradation on Hom(C•, R) is given by Hom(C•, R)n := Hom(C−n, R).
If all of the modulesCn are free of finite rank overR, then the natural identification

of a freeR-module of finite rank with its doubleR-dual,

M
∼−→ Hom(Hom(M, R), R) by m �→ {� �→ �(m)}

extends to a natural identification ofC• with its doubleR-dual.
Let C = C(R) denote the category of complexes ofR-modules, where morphisms

are morphisms (of degree zero) of complexes ofR-modules. Aquasi-isomorphismf :
C• → D• of complexes is a morphism that induces an isomorphism on cohomology
H ∗(f ) : H ∗(C•) ∼−→ H ∗(D•).

Definition 5.2. A two-term complex of freeR-modules of finite rank,F •, concentrated
in degrees 1 and 2

· · · → 0 → F 1 �−→ F 2 → 0 → · · ·

will be called abasic complexif the coboundary homomorphism� is injective and if,
when we form the short exact sequence ofR-modules,

0 → F 1 → F 2 → H → 0,

the induced homomorphismF 2⊗Rk → H ⊗Rk is an isomorphism. (The latter condition
is equivalent to requiring that the image ofF 1 is contained inmF 2.)

Such a basic complex has cohomology concentrated in degree 2 withH 2(F •) = H .

Lemma 5.3. Suppose thatC• is a complex of free R-modules concentrated in degrees

1 and 2, with injective coboundary mapC1 �−→ C2. Then C• is quasi-isomorphic to
a basic complex.

Proof. Let H = H 2(C•) and consider the exact sequence

C1 ⊗ k
�⊗k−−→ C2 ⊗ k −→ H ⊗ k −→ 0.
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Let �̄2 be ak-basis for image(� ⊗ k) = ker(C2 ⊗ k → H ⊗ k). Pull each element of
�̄2 back toC1 ⊗ k via � ⊗ k and then lift each of these elements toC1. Denote the
resulting sets bȳ�1 ⊂ C1 ⊗ k and �1 ⊂ C1, and let�2 := �(�1) ⊂ C2, a set lifting
�̄2.

For i = 1, 2 let Di ⊂ Ci be the�-module generated by�i , and letBi := Ci/Di .
Complete�̄i to a k-basis�̄i ∪ �̄

′
i of Ci ⊗ k, and lift �̄

′
i to �′

i ⊂ Ci . By Nakayama’s
Lemma �i ∪ �′

i generatesCi , and sinceCi is free (of rank dimk(Ci ⊗ k)) �i ∪ �′
i

must be a�-basis ofCi . Hence�′
i projects to a�-basis ofBi , and in particularBi

is free over�.
The map� : C1 → C2 induces an injectionB1 → B2 with cokernel equal toH.

Since by definitionD2 ⊗ k and C1 ⊗ k have the same image inC2 ⊗ k, the induced
map B1 ⊗ k → B2 ⊗ k is the zero map. Thus, if we setBi := 0 for i �= 1, 2 thenB•
is a basic complex, and the projection mapC• → B• is a quasi-isomorphism.�

Lemma 5.4. Suppose thatF • and G• are basic complexes, and f : H 2(F •) →
H 2(G•) is an R-homomorphism.

(i) There is a morphism of complexes� : F • → G• such thatH 2(�) = f , and any
two such morphisms of complexes are homotopic.

(ii) If f is an isomorphism then the morphism� of (i) is an isomorphism of complexes.

Proof. We are given a diagram

0 �� F 1 �� F 2 �� H 2(F •)

f

��

�� 0

0 �� G1 �� G2 �� H 2(G•) �� 0.

SinceF 2 is free we can pullf back to a map�2 : F 2 → G2, which in turn restricts
to a map�1 : F 1 → G1. This gives a morphism of complexes� : F • → G• with
H 2(�) = f , and it is clear that any two such morphisms are homotopic.

Using the definition of basic complex we see that ker(�2 ⊗ k) = ker(f ⊗ k) and
coker(�2 ⊗ k) = coker(f ⊗ k). Thus, if f is an isomorphism then so is�2 ⊗ k, and by
Nakayama’s Lemma so is�2 (and therefore�1 as well). This proves (ii). �

Definition 5.5. Let D = D(R) denote the derived category of complexes ofR-modules.
That is, D(R) is the category usually denotedD(A) where A is the abelian category
of R-modules (see for example[Hart]).

Recall thatD is constructed as follows ([Hart] Chapter I). LetK = K(A) be the cat-
egory whose objects are complexes ofR-modules, and whose morphisms are homotopy
classes of morphisms of complexes. The categoryD is obtained fromK by “localizing
quasi-isomorphisms.” That is, every morphism inK that induces an isomorphism on
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cohomology groups becomes an isomorphism in the categoryD. The categoriesK and
D are triangulated categories.

Corollary 5.6. Suppose thatF • and G• are basic complexes, and � : F • → G• is an
isomorphism in the derived categoryD. Then there is an isomorphism of complexes
(i.e., in the categoryC) � : F • ∼−→ G• that gives rise to�. The isomorphism� is
unique up to homotopy.

Proof. The D-isomorphism� induces an isomorphismf : H 2(F •) → H 2(G•). The
desired isomorphism of complexes is then provided by Lemma5.4. �

6. Skew-Hermitian structures on complexes

Keep the noetherian local ringR of §5, and suppose further thatR possesses an
involution � : R → R. Denote byM �→ M � the induced involution on the categories
of R-modules, complexes ofR-modules, etc.

Definition 6.1. SupposeC• is an R-complex of freeR-modules of finite rank.
A skew-Hermitian, degree n, perfect pairing in the categoryC on C• is an isomor-

phism

� : C• → HomR(C•, R)�[−n]

of R-complexes such that after the natural identification of the complexC• with its
R-double dual, the morphism HomR(��), which may be viewed as a morphism

HomR(��) : C• → HomR(C•, R)�[−n],

is equal to−�.
A skew-Hermitian, degree n, perfect pairing in the categoryD on C• is an isomor-

phism

� : C• → HomR(C•, R)�[−n]

in D such that after the natural identification of the complexC• with its R-double
dual, the morphism HomR(��) is equal inD to −�.

We have the evident notion ofequivalenceof skew-Hermitian, degreen, perfect
pairings, for each of the two categoriesC and D.

An isomorphismC• → E• in either of the two categories transports—in the evident
manner—skew-Hermitian, degreen, perfect pairings onC• to skew-Hermitian, degree
n, perfect pairings onE•.
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Corollary 6.2. If a basic complexF • possesses a skew-Hermitian degree3 perfect
pairing

� : F • → HomR(F •, R)�[−3]

in the categoryD then there is a degree3 perfect pairing

� : F • → HomR(F •, R)�[−3]

in the categoryC of R-complexes, inducing�, such that the morphismsHomR(��) and
−� in C are homotopic. The degree3 perfect pairing� with these properties is unique
up to homotopy.

Proof. If F • is a basic complex, then so is HomR(F •, R)�[−3]. Thus, the corollary is
immediate from Corollary5.6. �

Let � be a skew-HermitianR-module as defined in Definition 3.3 (for the case
R = �). Thus, � is a freeR-module of finite rank, endowed with a skew-Hermitian
pairing, i.e., anR-homomorphism

h : � → HomR(��, R)

such that the induced homomorphism Hom(h�) is identified with

−h : � → HomR(��, R)

when we identify HomR(HomR(�, R), R)��. Recall that�∗ := HomR(��, R) =
HomR(�, R)�, and let h∗ := Hom(h�). We have natural identifications of “double-
duals” �∗∗ = � and h∗∗ = h.

Definition 6.3. Given a skew-HermitianR-module�, we form a complex�•, concen-
trated in degrees 1 and 2, by putting�1 := �, �2 := �∗, and setting the coboundary
� : �1 → �2 to be h : � → �∗.

We will say that� is a basic skew-Hermitian moduleif h is injective, andh⊗k = 0
(or equivalently, ifh is injective andh(�) ⊂ m�∗). Thus,� is basic if and only if�•
is a basic complex.

For example, ifR is an integral domain, then� is basic if and only if

• the skew-Hermitian pairing over the field of fractions ofR obtained from� is
nondegenerate,

• there are no unimodular pieces that can be split off from� (i.e., � is minimal for
our purposes).
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Suppose� is a basic skew-Hermitian module, and letN• := HomR(�•, R)�[−3].
We have canonical identifications

N1 = HomR(HomR(�, R), R)��, N2 = HomR(�, R)���∗,

where the coboundary is given byh∗ = −h. The isomorphism of basic complexes
j : �• → N• given by puttingj1 = −1 andj2 = +1 (after the identifications we have
just made) is a skew-Hermitian degree 3 perfect pairing of the basicR-complex�•.

Definition 6.4. A skew-Hermitian, degree 3, perfect pairing on a complexC• in the
categoryD comes from the basic skew-Hermitian R-module� if � is a basic skew-
Hermitian R-module and there is an isomorphism in the derived categoryD

�• ∼−→ C•

such that the skew-Hermitian, degree 3, perfect pairing onC• is the one obtained by
transport of structure from the pairing on�•.

Proposition 6.5. Suppose that the residual characteristic of R is not2, that C• is a
complex of free R-modules concentrated in degrees1 and 2, and the coboundary map
C1 → C2 is injective. Then every skew-Hermitian, degree3, perfect pairing onC• in
the categoryD comes from a basic skew-Hermitian R-module�.

Proof. By Lemma 5.3, C• is isomorphic inD to a basic complexF •, so we may
as well assume thatC• is a basic complex in the statement of the proposition. By
Corollary 6.2 we can lift the skew-Hermitian degree 3 pairing onC• in D to a skew-
Hermitian degree 3 pairing onC• in C, so in particular we get isomorphisms	 and 

in a commutative diagram

C1
�

��

	
��

C2



��

(C2)∗ �∗
�� (C1)∗

Passing to the dual, we get the diagram

C1
�

��


∗
��

C2

	∗
��

(C2)∗ �∗
�� (C1)∗
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By Corollary 6.2, these two maps of complexes are homotopic (after replacing(	, 
)

by (−	, −
) in the first diagram), so there exists anR-homomorphismw : C2 → (C2)∗
such that

	∗ = −
 + �∗
w and 
∗ = −	 + w�.

This implies (among other things) that�∗
w = (w�)∗.

If the residual characteristic ofR is different from 2, we can modify the morphism
of complexes(	, 
) by a homotopy, replacing(	, 
) by (	′, 
′) where

	′ := 	 − w�/2 and 
′ := 
 − �∗
w/2.

Since	∗ + 
 = �∗
w, we get that

(	′)∗ + 
′ = �∗
w − (w�)∗/2 − �∗

w/2 = 0.

It follows that the perfect degree 3 skew-Hermitian pairing in the derived categoryD
comes from the pairing onC• in the categoryC described by the diagram

C1
�

��

	′
��

C2

−(	′)∗
��

(C2)∗ �∗
�� (C1)∗

Now put � := C1, and consider the homomorphism

h := (	′)∗ ◦ � : � → �∗.

We have thath∗ = −h, giving � the structure of a basic skew-HermitianR-module.
The basic complex�• is isomorphic to the basic complexC• by the mapping

(1, (	′)∗) : C• → �•

and this isomorphism respects skew-Hermitian structures.�

Proposition 6.6. Suppose that the residual characteristic of R is not2. Suppose
further that � and � are basic skew-Hermitian modules, and there is an isomor-
phism �• ∼−→ �• in the derived categoryD that induces an equivalence of degree3
perfect skew-Hermitian pairings. Then � and � are isomorphic as skew-Hermitian
modules.
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In other words, if a skew-Hermitian, degree3, perfect pairing on a complexC•
in D comes from a basic skew-Hermitian module�, then � (with its skew-Hermitian
structure) is unique up to(noncanonical) isomorphism.

Proof. By Corollary 5.6 there is an actual isomorphism of complexes�• ∼−→ �•
giving rise to the isomorphism inD. In other words there is a commutative
diagram

�
h

��

	
��

�∗



��

�
g

�� �∗

with isomorphisms	, 
. Further, since the isomorphism inD induces an equivalence
of skew-Hermitian pairings, there is a homotopy between this diagram and the “dual
diagram” (after replacingh∗ = −h and g∗ = −g by h and g)

�
h

�� �∗

�
g

��


∗
��

�∗

	∗
��

Thus, there is a mapw : �∗ → � such that

(
∗)−1 = 	 + wh and (	∗)−1 = 
 + gw. (6.1)

In particular, since� and� are basic skew-Hermitian modules, we haveh(�) ⊂ m�∗
and g(�) ⊂ m�∗ and so

	
∗ ≡ 1�(modm Hom(�, �)).

Suppose now that

	
∗ ≡ 1�(modmk Hom(�, �)) (6.2)

for some k�1. We will show that we can replace the isomorphism of complexes
(	, 
) by a homotopic one, congruent to(	, 
) modulomk, and satisfying (6.2) with k
replaced by 2k.
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Let 	′ = 	 + wh/2, 
′ = 
 + gw/2. Then

	′(
′)∗ = (	 + wh/2)(
∗ + (gw)∗/2)

= 	
∗ + wh
∗/2 + 	(gw)∗/2 + wh(gw)∗/4.

By (6.1) we have

	
∗ + wh
∗ = 1� = (1�∗)∗ = (
	∗ + gw	∗)∗ = 	
∗ + 	(gw)∗

so wh
∗ = 	(gw)∗ and

	′(
′)∗ = 1� + wh(gw)∗/4.

By (6.1) and (6.2) we see thatwh ∈ mk Hom(�, �) and gw ∈ mk Hom(�∗, �∗), so
	′(
′)∗ ≡ 1�(modm2k Hom(�, �)).

Proceeding by induction and passing to the limit, we may assume that
∗ = 	−1.
In other words, the isomorphism of complexes (with skew-Hermitian pairings)(	, 
) :
�• ∼−→ �• is induced by the isomorphism	 : �

∼−→ �. �

Although we will not need it, we have the following corollary.

Corollary 6.7. Suppose that� and � are basic skew-Hermitian modules, with pairings
h� and h�, and letL ⊂ � be the ideal generated by the determinant ofh� with respect
to any �-bases of� and �∗. If � and � are equivalent moduloL2, then they are
equivalent.

In other words, if there is an isomorphism̃� : � ⊗ (�/L2)
∼−→ � ⊗ (�/L2) such

that h̃� = �̃∗h̃��̃ (where h̃� = h� ⊗ (�/L2) and h̃� = h� ⊗ (�/L2)), then there is
an isomorphism� : �

∼−→ � such thath� = �∗h��.

Proof. Since� and� are free over�, we can lift �̃ to a map	 : � → �. Nakayama’s
Lemma shows that	 is an isomorphism, and we have

h� ≡ 	∗ h� 	(modL2 Hom(�, �∗)).

Let � ∈ � be a generator ofL. Since L is the determinant ofh� and 	, 	∗ are
isomorphisms, there is a homomorphismg : �∗ → � such that(	∗h�	)g = � · id�∗
and g(	∗h�	) = � · id�. Thus

h� g ≡ (	∗h�	)g = � · id�∗(modL2 Hom(�∗, �∗)),
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so we see that�−1h�g ∈ Hom(�∗, �∗) and �−1h�g ≡ id�∗(modL Hom(�∗, �∗)).
Let 
 = (�−1h�g)	∗ ∈ Hom(�∗, �∗). Then


 ≡ 	∗(modL Hom(�∗, �∗)) (6.3)

and


 h� 	 = (�−1h�g)(	∗h�	) = h�. (6.4)

Using the fact thath� and h� are skew-Hermitian, we obtain from (6.4) two iso-
morphisms of complexes�• ∼−→ �•

�
h�

��

	−1

��

�∗



��

�
h�

��


∗−1

��

�∗

	∗
��

�
h�

�� �∗ �
h�

�� �∗

(6.5)

It follows from (6.3) that these two morphisms induce the same isomorphism

coker(h�)
∼−→ coker(h�),

so by Lemma5.4(i) they are homotopic. It follows that�• and �• are isomorphic in
D as complexes with skew-Hermitian, degree 3, perfect pairings, and so the corollary
follows from Proposition 6.6. �

7. Organization

We now return to the elliptic curveE/K andZd
p-extensionK∞/K, and we takeR

to be the Iwasawa algebra�. We will make the following hypotheses:

p > 2 andE has good ordinary reduction at all primes abovep, (7.1)

Sp(E, K∞) is a torsion�-module, (7.2)

E(K)[p] = 0, (7.3)

for every primev of bad reduction, p � [E(Kv) : E0(Kv)], (7.4)

the Perfect Control assumption holds (7.5)

(recall that[E(Kv) : E0(Kv)] is the Tamagawa number in the Birch and Swinnerton–
Dyer conjecture forE/K).
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Definition 7.1. Let C•
Nek be Neková˘r’s Selmer complexin the derived categoryD, the

complex denoted̃R�f,Iw(K∞/K, Tp(E)) in [N] §9.7.1, whereTp(E) := lim← E[pn] is

the p-adic Tate module ofE.

Remark 7.2. Let S be a finite set of places ofK and letGK,S denote the Galois group
of K unramified outsideS. For the general definition of “Neková˘r–Selmer complexes”
(of complexes ofGK,S-modulesX• with local conditions�(X•) = {�(X•)v}v∈S im-
posed) see §6 of[N]. These Neková˘r–Selmer complexes are canonical complexes in
the appropriate derived category that compute the cohomology ofX• subject to speci-
fied local conditions�(X•). The classical Selmer module of an abelian variety over a
number field, with ordinary reduction abovep, falls into this rubric (see the preparation
for this, in particular “control theorems,” discussed in §7 of [N], and the study of such
modules in the context of Iwasawa theory in [N] §8. Section 9 of [N] defines the
complexes we callC•

Nek (Definition 7.1 above) with a close study of the self-dualities
such complexes enjoy; the relationship between this self-duality and the various derived
self-pairings obtained from the self-duality on the level of complexes is studied in [N]
§10 (where the classical Cassels–Tate pairing is treated) and §11 (for the classical
p-adic height pairing).

Nekovár̆’s complexC•
Nek is a canonical complex inD, with a skew-Hermitian pairing

in D, and with second cohomology

H 2(C•
Nek) = Sp(E, K∞)

(see[N] §9.6.7 and §9.7). Under our hypotheses aboveC•
Nek has the following additional

useful properties.

Theorem 7.3 (Neková˘r). Suppose that hypotheses(7.1-4) hold. ThenC•
Nek can be rep-

resented by a complex concentrated in degrees1 and 2, with free�-modulesC1, C2 of
finite rank and an injective coboundary mapC1 → C2. Further, C•

Nek has a canonical
skew-Hermitian, degree3, perfect pairing in the derived category.

Proof. By Proposition 9.7.7(iii) of [N], our hypotheses (7.1), (7.3), and (7.4) imply that
C•

Nek can be represented by a complex concentrated in degrees 1 and 2, with free�-
modulesC1, C2 of finite rank. The additional hypothesis (7.2) ensures ([N] Proposition
9.7.7(iv)) that the coboundary mapC1 → C2 is injective.

By [N] Proposition 9.7.3(ii),C•
Nek has a degree three pairing in the derived category,

and by [N] Propositions 9.7.3(iv) and 9.7.7(ii), respectively, the pairing is perfect and
skew-Hermitian. �

Definition 7.4. Suppose that� is a basic skew-Hermitian�-module as in Definition
6.3. Thus� is free over� of finite rank, with an injective�-valued skew-Hermitian
pairing

h : � −→ �∗



ARTICLE IN PRESS
B. Mazur, K. Rubin / Advances in Mathematics ( ) – 23

that is the zero map after tensoring with the residue field�/m. We will say that�
organizes the arithmetic of E overK∞ if the complexC•

Nek, with its skew-Hermitian
pairing, comes from� in the sense of Definition6.4: i.e., if there is an isomorphism
C•

Nek
∼−→ �• in D preserving the skew-Hermitian structures. In this case we will call

� an organizing module.

Theorem 7.5. Suppose that hypotheses(7.1-4) hold. Then there is a basic skew-
Hermitian module� that organizes the arithmetic of E overK∞.

If � is another organizing module for E overK∞, then there is a(noncanonical)
isomorphism�

∼−→ � which takes the skew-Hermitian pairing on� to the one on�.

Proof. The existence of an organizing module is immediate from Theorem 7.3 and
Proposition 6.5. The uniqueness is Proposition 6.6.�

Remark 7.6. Although the organizing module is not unique up to canonical equiv-
alence, there is a canonical rank-one�-module, containing a canonical discriminant,
defined as follows. If� is an organizing module let�� be the free, rank-one�-module

�� := det��−1 = ∧rank�� Hom(�, �)

and disc(�) the discriminant

disc(�) := det�h� ∈ Hom(det��, det��∗) = det��−1 ⊗� det��∗ = �� ⊗� ��
�.

Note that disc(�) is the determinant of the complex�• as defined in §4 of[D]. In
particular disc(�)� det(C•

Nek) is independent of the organizing module�. (Concretely,
if � is another organizing module, then the noncanonical isomorphism of Theorem 7.5
induces acanonical isomorphism�� ⊗� ��

�
∼−→ �� ⊗� ��

� which sends disc(�) to
disc(�).)

Theorem 7.7. Suppose that hypotheses(7.1-5) hold and that the basic skew-Hermitian
module� organizes the arithmetic of E overK∞. Let

S = coker(�
h−→ �∗) = H 2(�•).

(i) There are natural isomorphisms

S�Sp(E, K∞),

and for every intermediate fieldK ⊂ L ⊂ K∞

S ⊗ �L�Sp(E, L), Tor1�(S, �L)�Mp(E, L),

whereMp(E, L) is the universal norm module of Definition2.4.
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(ii) If L is a finite extension of K inK∞ then the isomorphisms of(i) induce a
surjection and injection, respectively

i(E, L)[p∞]�(S ⊗ �L)tors,

(E(L) ⊗ Zp) ↪→ Tor1�(S, �L),

which are isomorphisms ifi(E, L)[p∞] is finite.
(iii) If L is a finite extension of K inK∞ then the pairings

i(E, L)[p∞] ⊗ i(E, L)[p∞] −→ Qp/Zp,

(E(L) ⊗ Zp) ⊗ (E(L) ⊗ Zp) −→ Gal(K∞/L),

obtained by combining the derived pairings(4.6′) and (4.5′) with the maps of
(ii), coincide (up to sign) with the classical Cassels and p-adic height pairing,
respectively.

Proof. We haveS = H 2(�•)�H 2(C•
Nek)�Sp(E, K∞). This gives the first isomor-

phism of (i), the second follows by Lemma2.2, and the third by Proposition 2.6 and
(4.3).

The first map of (ii) comes from (i) and Lemma 2.3(i), and the second comes from
(i) and the inclusion(E(L)/E(L)tors) ⊗ Zp ⊂ Mp(E, L).

For assertion (iii), we need to check two things. The first is that our derived pairings
(4.5) and (4.6), defined directly from the basic skew-Hermitian module�, coincide
(up to sign) with the corresponding pairings made by Neková˘r via the skew-Hermitian
degree three perfect duality enjoyed by the basic complex�• obtained from�. The
second is to relate these derived pairings to the corresponding (various) classical pair-
ings.

For every intermediate field extensionL/K in K∞/K the Iwasawa algebra�L is
a quotient of a (complete) regular noetherian local ring by an ideal generated by a
regular sequence, and so is a Gorenstein ring. For each of the intermediate fieldsL we
identify the dualizing complex�•

�L
of the ring �L with the complex concentrated in

degree zero, and given in degree zero by the free�L-module of rank one,�L itself.
SupposeX• and Y • are complexes of�-modules with cohomology of finite type

equipped with a morphism of complexes

� : X• ⊗� Y • −→ �•
�[−3].

Consider the following two pairings of cohomology ofX• and Y •. First, for all inter-
mediate fieldsL we have ([N] 2.10.14) the morphism defined via cup-product

H 2(X• ⊗� �L)tors ⊗�L
H 2(Y • ⊗� �L)tors → H 0(�•

�L
) ⊗�L

KL/�L = KL/�L,

(7.6)

whereKL is the field of fractions of�L.
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Second, we have the “derived(1, 1) cup-product”

H 1(X• ⊗� �L) ⊗�L
H 1(Y • ⊗� �L) −→ H 0(�•

�L
) ⊗�L

IL/I2
L. (7.7)

This pairing can be defined in the following elementary way. For cohomology classes
(a, b) ∈ H 1(X• ⊗��L)×H 1(Y • ⊗��L), choose 1-cochains(x, y) ∈ X1×Y 1 such that
the projection(x̃, ỹ) ∈ (X1⊗��L)×(Y 1⊗��L) is a pair of 1-cocycles representing the
pair of cohomology classes(a, b). Note that�x ∈ ILX2 and�y ∈ ILY 2. So �(x, �y) =
−�(�x, y) ∈ � projects to zero in�L, and hence lies inIL. Let �L : IL → I2

L be the
natural projection, and put

〈a, b〉 := �L(�(x, �y)) = −�L(�(�x, y)) ∈ IL/I2
L. (7.8)

To show that this is well-defined, first note that ife ∈ ILX1 then �(e, �y) ∈ I2
L (and,

if e ∈ ILY 1 then �(�x, e) ∈ I2
L) which tells us that�L(�(x, �y)) = −�L(�(�x, y))

depends only on(x̃, ỹ). Next, if x̃ = �ṽ for ṽ ∈ X0 ⊗� �L lifting ṽ to v ∈ X0

and takingx = �v to be our lifting of x̃ gives us that�L(�(x, �y)) = �L(�(�v, �y))

vanishes; this, and the symmetrical argument wheny = �w, gives us that the pairing
(7.8) is well-defined.

The basic complex�• associated to� has a skew-Hermitian pairing

�• ⊗� (�•)� → �•
�[−3], (7.9)

so for each intermediate fieldL we have the induced pairing

(�• ⊗� �L) ⊗� (�• ⊗� �L)� −→ �•
�L

[−3].

In the notation of §4 we haveS(L) = H 2(�• ⊗� �L) and M(L) = H 1(�• ⊗� �L),
so the cup-product pairing (7.6) obtained from (7.9) may be written

S(L)tors ⊗�L
S(L)�tors −→ KL/�L, (7.10)

and the derived(1, 1) pairing may be written

M(L) ⊗�L
M(L)� −→ IL/I2

L. (7.11)

It is straightforward to compute that the pairing (4.6) is, up to sign, equal to the pairing
(7.10) and the pairing (4.5) is, up to sign, equal to the pairing (7.11).

Now, using the equivalence in the derived categoryD between the perfect degree
three skew-Hermitian self-dualities onC•

Nek and �•, one can check that the pairing
(7.10) is, up to sign, equal to the (“Cassels–Tate”) pairing

∪�̄,0,2,2 : H 2(C•
Nek ⊗� �L)tors ⊗�L

H 2(C•
Nek ⊗� �L)�tors → H 0(�•

�L
) ⊗�L

KL/�L
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of ([N] §10.3.3.3), and that (7.11) is, up to sign, equal to the (“height”) pairing

h̃�,L/K,1,1 : H 1(C•
Nek ⊗� �L) ⊗�L

H 1(C•
Nek ⊗� �L)� → H 0(�•

�L
) ⊗�L

IL/I2
L

of [N] (11.1.7.5) (see also [N] §§11.1.4,11.1.7,11.1.8).
Finally, assertion (iii) follows from the discussion in §10 and §11 of [N] that makes

the connection between the Cassels–Tate and height pairings defined there and the
classical pairings of the same name.�

Remark 7.8. There are indeed many different approaches to defining what may be
called theclassical p-adic height pairingand the somewhat ample discussion in[N]
is a welcome addition to the literature comparing some of these approaches. The next
step that remains to be done is a systematic expository account of all this.

Remark 7.9. Note that because� is a basic skew-Hermitian module, we have

rank�(�) = dimFp (Selp(E, K)[p]) = rankZ(E(K)) + dimFp i(E, K)[p].

If we choose a basis of the organizing module� then the pairingh is equivalent to
a skew-Hermitian matrixH with entries in �. We then have that the characteristic
ideal char(Sp(E, K∞)) = det(H)�, and the matrixH contains complete information
about the Selmer modulesSp(E, L) and the Cassels andp-adic height pairings on
i(E, L)[p∞] and E(L) ⊗ Zp, for every finite extensionL of K in K∞.

Remark 7.10. Thanks to the Perfect Control assumption (see Lemma2.2), if Sp(E, L)

is a torsion�L-module for someZd
p-extensionL of K with d �0, thenSp(E, K∞) is

a torsion�-module. In particular

• if Selp(E, K) is finite (i.e., ifE(K) is finite, since we are assuming thati(E, K)[p∞]
is finite) thenSp(E, K∞) is a torsion�-module,

• if E is defined overQ andK/Q is abelian, then by work of Kato[Ka] Sp(E, KQ∞)

is a torsion�KQ∞ -module, whereKQ∞ denotes the cyclotomicZp-extension ofK,
so Sp(E, K∞) is a torsion�-module.

Remark 7.11. Corollary A.3 shows that the Perfect Control assumption follows from
hypotheses (7.3), (7.4) along with the additional assumption thatE(kv)[p] = 0 for
every primev of K abovep, wherekv is the residue field atv.

The following proposition, which combines some of the observations above, allows
us to verify hypotheses (7.1-5) in many interesting cases.

Proposition 7.12. Suppose that E is defined overQ and K is a finite abelian extension
of Q. Suppose p is a rational prime such that

(i) for every primev of K above p, E has good reduction atv and #E(kv) /≡ 0 or
1(modp) wherekv is the residue field atv,
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(ii) for every primev of K where E has bad reduction, p does not divide the Tamagawa
number[E(Kv) : E0(Kv)], and

(iii) p is unramified inK/Q.

Then hypotheses(7.1-5) hold.

Proof. If (i) holds then p cannot be 2, and furtherE has good ordinary reduction at
eachv dividing p. This is (7.1), and (ii) is (7.4).

Fix a primev of K abovep. It follows from (iii) that Kunr
v has nopth roots of unity,

so (7.3) follows from Lemma A.6. Now the Perfect Control assumption (7.5) follows
from (i) and Corollary A.3, as in Remark 7.11, and then (7.2) follows as in Remark
7.10. �

For example, we have the following corollary mentioned in the introduction.

Corollary 7.13. Suppose that E is defined overQ, with conductorNE and minimal
discriminant �E . Suppose further that K is a finite abelian extension ofQ with dis-
criminant DK prime to NE , and p is a rational prime such that
(i) p � 3NEDK

∏
2|NE

ord2(�E),

(ii) ap �≡ 0 and a
[K:Q]
p �≡ 1(modp), where as usualap = 1 + p − #E(Z/pZ).

Then there is a basic skew-Hermitian module�, unique up to(noncanonical) isomor-
phism, that organizes the arithmetic of E overK∞. We can recover from� as in
Theorem7.7 the Selmer modules, p-adic height pairings, and Cassels pairings over
every finite extension of K inK∞.

Proof. We will verify that the hypotheses of Proposition 7.12 hold. Proposition 7.12(iii)
holds sincep � DK .

Suppose first thatv is a prime ofK abovep. Sincep � NE , E has good reduction at
v. Further, if 	p and 
p are the roots of the Frobenius polynomialx2 − apx + p, and
f = [kv : Fp], then

#E(kv) = 1 + pf − 	f − 
f ≡ 1 − (	 + 
)f = 1 − a
f
p (modp).

Sincef | [K : Q] and a
[K:Q]
p �≡ 0, 1(modp), Proposition7.12(i) holds.

Next supposev is a prime of K where E has bad reduction, and let2 be the
rational prime belowv. If E has either additive or nonsplit multiplicative reduction
at v then [E(Kv) : E0(Kv)] divides 12 (see [T]), but condition (i) rules outp = 3
and condition (ii) rules outp = 2, so p � [E(Kv) : E0(Kv)]. On the other hand, if
E has multiplicative reduction atv then [E(Kv) : E0(Kv)] is the order atv of the
discriminant ofE/K ([T] step 2). Since by assumption2 is unramified inK/Q, we
have [E(Kv) : E0(Kv)] = ord2(�E) which is prime top. Thus, Proposition 7.12(ii)
holds.

Now by Proposition 7.12, hypotheses (7.1-5) hold. Thus, the existence and uniqueness
of � follow from Theorem 7.5, and that fact that we can recover the arithmetic ofE
over finite extensions ofK in K∞ follows from Theorem 7.7(iii). �
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8. A generic example

In the next three sections we consider several families of examples where we can
give some information about the organizing module. We first consider the “generic”
situation wherei(E/K)[p] = 0, so that Selp(E/K) = E(K) ⊗ Qp/Zp.

Suppose thatE is an elliptic curve defined overK, and letr = rank(E(K)). Let p be
a rational prime for which hypotheses (7.1-5) are satisfied (see for example Proposition
7.12), and suppose in addition thati(E/K)[p] = 0. (Conjecturally this last condition
is satisfied for all but finitely manyp.) Then we have Selp(E, K)�(Qp/Zp)r , and by
Theorem 7.5 there is a basic skew-Hermitian�-module�, free of rankr, that organizes
the arithmetic ofE/K∞.

If r = 0 then� is trivial, the Selmer modules over all intermediate fields are trivial,
and there is nothing more to study. Suppose, then, thatr > 0. We want to describe
the r × r skew-Hermitian matrixH for the pairingh corresponding to a suitable basis
of �.

Let I denote the augmentation idealIK ⊂ �, and identify �K = �/I = Zp. The
skew-Hermitian pairingh induces an exact sequence

� ⊗� Zp

h⊗Zp−−−→ �∗ ⊗� Zp → Hom(E(K),Zp) → 0 (8.1)

in which the first threeZp-modules are all free of rankr. It follows that the map
�∗ ⊗� Zp → Hom(E(K),Zp) is an isomorphism, and using the identification

�∗ ⊗� Zp�Hom(�/I�,Zp)

we obtain an isomorphism

�/I��(E(K)/E(K)tors) ⊗ Zp.

Thus, we can take the organizing module� to be (E(K)/E(K)tors) ⊗Z �.
It also follows from (8.1) that the matrixH has entries inI. In addition, the image of

H in Mr (I/I2) is thep-adic height pairing matrix for a basis of(E(K)/E(K)tors)⊗Zp

corresponding to the chosen basis of�. Hence we can viewH as a lift of the (I/I2-
valued)p-adic height pairing on(E(K)/E(K)tors) ⊗Zp to an I-valued skew-Hermitian
pairing on� ⊗� ��, with � = (E(K)/E(K)tors) ⊗ �.

9. Examples over Q

For this section we takeK = Q. Fix a generator� of � = Gal(Q∞/Q) and let

 := � − �−1. Then we have� = Zp[[� − 1]] = Zp[[
]], and the augmentation ideal
I = 
�. If we write �± for the ±1 eigenspaces of� on �, then �+ = Zp[[
2]] and
�− = 
�+.

Fix an elliptic curveE defined overQ.
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Definition 9.1. We say that a primep is admissibleif it satisfies the following two
conditions:

• E has good reduction atp, p does not divide the order of the torsion subgroup of
E(Q), and p does not divide any of the Tamagawa numbers ofE over Q,

• E has ordinary and nonanomalous reduction atp (i.e., #E(Fp) �≡ 1(modp) and
#E(Fp) �≡ 0(modp)).

Note that the first condition rules out only a finite set of primes, and the second
only rules out a set of Dirichlet density 1/2 or 0 depending upon whetherE has CM
(over Q̄) or not.

9.1. The casei(E,Q)[p] = 0

Suppose now thatp is admissible, and suppose further thati(E,Q)[p] = 0. (If
the Shafarevich–Tate group ofE is finite, then this is true for all but finitely many
admissible primes.) Then we are in the situation of §8, and there is a skew-Hermitian
pairing on� := (E(Q)/E(Q)tors) ⊗ � so that� organizes the arithmetic ofE/Q∞.

Let r = rank(E(Q)). We want to describe ther × r skew-Hermitian matrixH for
the pairingh corresponding to a suitable basis of�. As discussed in §8,H has entries
in I = 
� and H is a lift to Mr (I ) of the height pairing matrix in Mr (I/I2) for
E(Q) ⊗ Zp. Let

H ′ := 
−1H ∈ Mr (�),

so H ′ is a Hermitian matrix in Mr (�) and its reduction in Mr (�/I) = Mr (Zp) is a
symmetric matrix describing the height pairing (divided by
)

� : (E(Q) ⊗ Zp) ⊗ (E(Q) ⊗ Zp) −→ I/I2 
−1

−−→ �/I
∼−→ Zp.

Definition 9.1.1. Choose aZp-basis b := {e1, e2, . . . , er} of (E(Q)/E(Q)tors) ⊗ Zp

and compute the discriminant of�, i.e.,

disc(�,b) = det(�(ei, ej )) ∈ Zp.

This discriminant is well-defined, independent of the chosen basisb up to multiplication
by the square of an element inZ×

p . In particular, if disc(�,b) does not vanish (i.e., if
the p-adic height pairing is nondegenerate), then we can define two numerical invariants

• a nonnegative integer� := ordp(disc(�,b)), the irregularity of �,

• the Legendre symbol(p−�disc(�,b)
p

) ∈ {±1}, the sign of �.

If the irregularity of h is zero, we will say thatp is regular for E. If it ever happens
that disc(�,b) = 0, we will just say then that the irregularity is∞ (and not try to
ascribe a “sign” to�).



30 B. Mazur, K. Rubin / Advances in Mathematics ( ) –

ARTICLE IN PRESS

Note that the irregularity of� depends only on� and its skew-Hermitian pairing.
The same is true of sign(�) if r is even, but ifr is odd then sign(�) also depends on
the choice of�.

Proposition 9.1.2. If p is regular for E, then � has a basis for which the matrixH ′
is diagonal with all but the last entry equal to1, and the last entry can be taken to
be anyu ∈ Z×

p with ( u
p
) = sign(�). In particular if sign(�) = +1 then H ′ can be take

to be the identity matrix.

Proof. Let h′ denote the Hermitian pairing
−1h on �. Since p is regular,h′ is a
perfect pairing.

If rank�� > 1, then h′ represents a square in�×, i.e., we can choosex ∈ �
such thath′(x, x) = 
2 with 
 ∈ �×. Sinceh′ is Hermitian, we have(
2)� = 
2, so

� = ±
. But 
 /∈ �− since 
 is a unit, so
 ∈ �+. Replacingx by x1 = 
−1x we
haveh′(x1, x1) = 1.

Let M1 = �x1 and letN1 ⊂ � be the orthogonal complement ofM1. ThenM1⊕N1 =
�. Continuing by induction we get a basis{x1, . . . , xr−1, xr} of � such thath′(xi, xj ) =
0 if i �= j , and h′(xi, xi) = 1 if i < r. We haveh′(xr , xr ) ∈ �+, and we may change
it by any square in�+. In this way we obtain the desired basis of�. �

It would be interesting to gather numerical data for particular elliptic curvesE to learn
something about the distribution, among admissible primes, of sign and irregularity.
Some examples and conjectures concerning irregularity are given by Wuthrich in[W].

Example 9.1.3.Let E be the elliptic curvey2+xy +y = x3+2, 1058C1 in Cremona’s
tables[Cr]. For this curve we haveE(Q)�Z2, the Tamagawa numbers at the bad primes
2 and 23 are 2 and 1, respectively, and the Birch and Swinnerton–Dyer conjecture
predicts thati(E,Q) = 0.

Using the basisb = {(−1, 1), (0, 1)} for E(Q), William Stein (using methods de-
scribed in a forthcoming paper by Stein, Tate, and the first author [MST]) computed
disc(�,b) for the 337 admissible primesp < 2400. The computation shows that all of
these primes are regular, and 175 have sign= +1 and 162 have sign= −1.

For example, ifp = 5 and we take� to be the generator of� satisfying �(�) = 6,
where � : �

∼−→ 1 + 5Z5 is the cyclotomic character, then the height pairing matrix
for the basisb above is

H ′ ≡
(

33 105
105 83

)
mod(53 + I ).

Thus the sign is+1, so by Proposition9.1.2 we can choose a new basis with

H =
(


 0
0 


)
(9.1)
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9.2. The caserank(E(Q)) = 0

At the opposite extreme from §9.1, we consider here a case whereE(Q) has rank
zero so that the Selmer group is the Shafarevich–Tate group. We will make some
additional assumptions so that we can analyze this example in detail.

Suppose that rank(E(Q)) = 0, p is admissible, andi(E,Q)[p∞]�(Z/pZ)2. Sup-
pose further thatSp(E,Q∞) hasZp-rank 2. In this case we have an organizing module
� with rank�(�) = 2.

Proposition 9.2.1.There is a basis of� such that the corresponding skew-Hermitian

matrix has the form
(



p

−p

	


)
with 	 ∈ Zp[[
2]]×.

Sketch of proof. Fix a basis of� and letf ∈ �+ = Zp[[
2]] be the determinant of
the corresponding skew-Hermitian matrix. Writef = a0 + a2


2 + · · · with ai ∈ Zp.
We havef � = char(Sp(E,Q∞)). Thus

a0 ∈ p2Z×
p , a2 ∈ Z×

p (9.2)

becauseSp(E,Q) has orderp2 and rankZp (Sp(E,Q∞)) = 2, respectively.
If x, y ∈ � let 〈x, y〉 denoteh(x ⊗ y).
We first claim that there is anx ∈ � such that〈x, x〉 /∈ 
m, wherem is the maximal

ideal of �. Suppose on the contrary that〈x, x〉 ∈ 
m for every x. Then if {u, v} is the
chosen basis of�, we have modulo
m

f = 〈u, u〉〈v, v〉 − 〈u, v〉〈v, u〉 ≡ −〈u, v〉〈v, u〉
= 1

4(〈u, v〉 − 〈v, u〉)2 − 1
4(〈u, v〉 + 〈v, u〉)2

= 1
4(〈u, v〉 − 〈v, u〉)2 − 1

4(〈u + v, u + v〉 − 〈u, u〉 − 〈v, v〉)2

≡ 1
4(〈u, v〉 + 〈u, v〉�)2.

Since(〈u, v〉+〈u, v〉�)/2 ∈ �+ = Zp[[
2]], this is incompatible with (9.2). This proves
the claim.

Fix a basis{x, y} of � with 〈x, x〉 /∈ 
m. Since 〈x, x〉 ∈ �− = 
�+, we have
〈x, x〉 ∈ 
�×+. By adding a multiple ofx to y we may assume that〈x, y〉 ∈ Zp, and
by (9.2) we must have〈x, y〉 ∈ pZ×

p and 〈y, y〉 ∈ 
�×+. Now scalingy by a unit we
may assume further that〈x, y〉 = p.

Finally, by consideringax + by with a, b ∈ Zp, we can see now that there is a
z ∈ � such that〈z, z〉 = 

 with 
 a square in�×+. Scaling z by

√

 we find that

〈z, z〉 = 1. Repeating the argument of the previous paragraph starting withx = z proves
the proposition. �

Example 9.2.2.Let E be the elliptic curvey2 + xy = x3 − x2 − 332311x − 73733731,
1058D1 in Cremona’s tables[Cr]. For this curve we haveE(Q) = 0,i(E,Q)�(Z/5Z)2,
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and all Tamagawa numbers are 1. Ifp is an admissible prime different from 5, then
� = 0 is an organizing module.

Now take p = 5. Since #E(Z/5Z) = 4, Proposition7.12 shows that hypotheses
(7.1-5) are satisfied. In particular the Perfect Control assumption holds, soS5(E,Q∞)

is not a cyclic�-module. By Greenberg’s Theorem C.2,S5(E,Q∞) has no finite�-
submodules (this can also be seen directly from the existence of an organizing module
for E/Q∞), so the sum of the�- and �-invariants �alg + �alg of S5(E,Q∞) is at
least 2.

Let L5(E) ∈ � denote the 5-adicL-function attached toE. Let 1 denote the trivial
character of�, � ∈ �5 a primitive 5th root of unity, and� the character of� that sends
� to �. The definition ofL5(E) and a computation ofL(E, 1) and L(E, �, 1) show
that 1(L5(E)) ∈ 52Z×

5 and

�(L5(E)) = (−3�3 − 25�2 − 3�)(� − �−1)21(L5(E))

52 . (9.3)

Since−3�3 − 25�2 − 3� ≡ −1(mod(� − 1)) is a unit inZ5[�], we see that the�- and
�-invariants ofL5(E) are �an = 2 and�an = 0.

One can check that the representationGQ → Aut(E[5])�GL2(F5) is surjective, so a
theorem of Kato[Ka] shows that char(S5(E,Q∞)) dividesL5(E). In particular�alg�2
and �alg = 0, so �alg = 2, S5(E,Q∞) is free of rank 2 overZp, and the assumptions
at the beginning of §9.2 are satisfied. Further, we conclude that the Main Conjecture
is true for E, i.e.,

L5(E)� = char(S5(E,Q∞)). (9.4)

Let H be the skew-symmetric matrix of Proposition9.2.1. We will show that	 is a
square in�+.

By (9.4) there is a
 ∈ �× such that

L5(E) = det(H)
 = 
(	
2 + 52).

It follows that 1(L5(E)) = 1(
)52 and that

�(L5(E)) = �(
)(�(	)�(
)2 + 52) ≡ 1(
)�(	)(� − �−1)2(mod(� − 1)3)

in the ring Z5[�] (with maximal ideal generated by� − 1). Comparing this with (9.3)
we conclude that

�(	) ≡ −3�3 − 25�2 − 3� ≡ −1(mod(� − 1))

so 	 is the square of a unit in�+ = Z5[[
2]].
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Fix a ∈ �+ with a2 = 	. Replacing the basis{x, y} of Proposition9.2.1 by{x, a−1y}
gives a new matrix

H ′ =
(


 −5a−1

5a−1 


)
. (9.5)

With more work one can modify the basis to obtainH ′′ =
(



5b

−5b



)
with b ∈ Z×

5 .

9.3. A congruence

The curves of Examples9.1.3 and 9.2.2 have a congruence modulo 5. More pre-
cisely, their corresponding modular forms are congruent modulo 5 (and have the same
conductor). In particular, the Shafarevich–Tate group(Z/5Z)2 in Example 9.2.2 is “vis-
ible” in the sense of [CM] thanks to this congruence and the Mordell–Weil groupZ2

of Example 9.2.2.
Examples 9.1.3 and 9.2.2, and in particular (9.1) and (9.5), show that this congruence

is matched by a congruence modulo 5 between the two organizing modules.

10. Examples over an imaginary quadratic field

Suppose now thatE is defined overQ, and thatK is an imaginary quadratic field in
which all primes dividing the conductor ofE split. Supposep is a prime whereE has
good ordinary reduction, not dividing any of the Tamagawa numbersc2 for primes 2

of bad reduction. Suppose further thatp is unramified inK/Q, ap �≡ 1(modp) where
ap is the pth Fourier coefficient of the modular form corresponding toE, and if p is
inert in K thenap �≡ −1(modp) as well. Then by Proposition 7.12, hypotheses (7.1-5)
all hold, so we have an organizing module� by Theorem 7.5.

Let Kanti denote the anti-cyclotomicZp-extension ofK, and �anti := �Kanti. Fix
a topological generator� of Gal(K∞/Kanti)�Gal(Q∞/Q) and let 
 := � − �−1, a
generator of the augmentation idealIKanti ⊂ �.

Let X∞ = Sp(E, K∞) and Xanti := X∞ ⊗� �anti = Sp(E, Kanti). Writing U :=
M(Kanti) as defined in §4, the exact sequence (4.2) becomes

0 −→ U −→ � ⊗� �anti
h⊗�anti−−−−→ �∗ ⊗� �anti −→ Xanti −→ 0. (10.1)

By Proposition2.6, (4.3), and the Perfect Control assumption,U is canonically iso-
morphic to the module of anti cyclotomic universal norms

Mp(E, Kanti) = lim→
L

(E(L) ⊗ Zp),

inverse limit over finite extensionsL of K in Kanti. Let r := rank��.
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It follows from the work of Cornut[Co] and Vatsal [V] that, under the hypotheses
above onK, we have rank�antiX

anti = 1. Hence we conclude from (10.1) that

U is free of rank one over�anti,

(� ⊗ �anti)/U is torsion-free of rankr − 1 over �anti,

(� ⊗ �anti)/U is free ⇐⇒ Xanti has no nonzero finite submodules. (10.2)

Suppose first that(� ⊗ �anti)/U is free. Choose a�-basis{u1, . . . , ur} of � such
that u1 projects to a�anti-generator ofU .

With this basis, the skew-Hermitian matrixH has the form

H =





a 
(w�)tr


w B


 , (10.3)

wherea ∈ �, B ∈ Mr−1(IK), andw ∈ �r−1 is a column vector. (To see this, note that
the left-hand column is divisible by
 because the image ofu1 in � ⊗ �anti lies in
U = ker(h⊗�anti), and everything else follows from the fact thatH is skew-Hermitian.)

Let htanti : U ⊗ U � → IKanti/I2
Kanti denote the derived pairing (4.5). By definition of

“organizing module”, this is the same as the inverse limit of thep-adic height pairings
over finite extensions ofK in Kanti. We easily deduce the following:

char(X∞) = det(H)� and det(H) ≡ 
 a det(B)(mod
2), (10.4)

char(Xanti
tors) = det(B)�anti, (10.5)

htanti(U ⊗ U �) = a(IKanti/I2
Kanti), (10.6)

where the third assertion is immediate from the definition of the derived pairing (see
Remark4.1).

Note that the matrixH makes it easy to compute the Fitting ideals ofX∞. We see
that

Fitt0(X∞) = det(H)� = char(X∞),

Fitt1(X∞)�anti = det(B)�anti = char(Xanti
tors).

Remark 10.1. We will call the image in�anti of the elementa of (10.6) the anti-
cyclotomic regulatorof E/Kanti, and we will say thatp is regular for E/Kanti if the
anticyclotomic regulator is a unit (or equivalently if htanti(U ⊗ U �) = IKanti/I2

Kanti). In
Conjecture 6.1 of [MR2] (see also Conjecture 6 of [MR1]), we conjectured that every
prime p (satisfying our hypotheses above) is regular forE/Kanti. This turns out to be
false in general; see Example 10.10 for a counterexample.
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One can still hope to predict some properties of the anti-cyclotomic regulator. For
example, the nondegeneracy of thep-adic height pairing in the cyclotomic direction
over all finite extensions ofK in Kanti would imply that�(a) �= 0 for all characters�
of finite order of Gal(Kanti/K).

Theorem 10.2.The characteristic idealchar(X∞) is contained inIKanti and

char(X∞) ≡ htanti(U ⊗ U �)char(Xanti
tors)(modI2

Kanti).

Proof. If (� ⊗ �anti)/U is free, then char(X∞) ⊂ IKanti by (10.4) and the congruence
of the theorem is a consequence of (10.4), (10.5), and (10.6).

If (� ⊗ �anti)/U is not free, then it injects into a free module with finite coker-
nel. With more care, that is sufficient to follow the argument above and deduce the
theorem. �

The literature contains the following conjectures, and theorems concerning them.

Conjecture 10.3 (Main conjecture). char(X∞) = Lp(E), where Lp(E) ∈ � is the
2-variable p-adic L-function of Haran[Hara], Hida [Hi], and Perrin-Riou[PR2].

Conjecture 10.4. charXanti
tors = char(htanti(U ⊗ U �)/htanti(H ⊗ H�)) whereH ⊂ U is the

submodule of universal norms of Heegner points.

Theorem 10.5(Howard [Ho2] ). Lp(E)�anti = htanti(H ⊗ H�) in (IKanti/I2
Kanti).

Theorem 10.6(Howard [Ho1] ). If the p-adic representation onE[p∞]

Gal(K̄/K) −→ AutZp (E[p∞]) −→ GL2(Zp)

is surjective, then

char(Xanti
tors) divides char(htanti(U ⊗ U �)/htanti(H ⊗ H�)).

Corollary 10.7. If the p-adic representationGal(K̄/K) → GL2(Zp) is surjective, then

(
−1char(X∞))�anti divides (
−1Lp(E))�anti,

with equality if and only if Conjecture10.4 holds.

Proof. Combine Howard’s Theorems 10.5 and 10.6 with Theorem 10.2.�

Proposition 10.8. If Xanti
tors = 0, then X∞ is a cyclic �-module, andSp(E, K)�Zp.
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Proof. If Xanti
tors = 0 then by (10.2) the�-module (� ⊗ �anti)/U is free. Hence the

organizing matrixH has the form given by (10.3), and the submatrixB of (10.3) is
invertible by (10.5). But all the entries ofH are in the maximal idealm of �, so this
is possible only ifr = 1, i.e., H is a 1× 1 matrix. Thus

dimFp Sp(E, K)/pSp(E, K) = dimFp X∞/mX∞ = 1.

Since Xanti has positive�anti-rank, Sp(E, K) must be infinite and the proposition
follows. �

Example 10.9.An example of a nonzero submodule inXanti. Let E be the elliptic
curve

y2 + xy = x3 + x2 − 34x − 135,

1913B1 in Cremona’s tables[Cr]. We take p = 3, and K = Q(
√−2). Note thatE

has good ordinary reduction at 3, both 3 and 1913 split inK, the Tamagawa number
c1913 = 2, and the Fourier coefficienta3 = 2. Thus, all of our hypotheses (7.1-5) hold.
We haveE(K)�Z ⊕ Z/2Z andi(E, K)�(Z/3Z)2. Thus, the organizing matrixH is
3 × 3 in this case.

For every n�0 let Kn denote the extension ofK of degree 3n inside Kanti. Let
Hn ⊂ E(Kn) ⊗ Z3 be theZ3[Gal(Kn/K)]-submodule generated by Heegner points in
E(Kn). A computation shows that the Heegner point inE(K) is

(
−71

18 − 29
18

√−2, 299
54 + 145

108

√−2
)

and from this it follows easily thatH0 = 3E(K)⊗Z3. By computing the Heegner points
in K1, and dividing by 3 where possible, one can compute generators ofE(K1)/3E(K1)

and verify that

TrK1/KE(K1) = 3E(K).

Thus, the image of the projectionU → E(K)⊗Z3 is H0. Since the Fourier coefficient
a3 = 2, every Heegner point is a universal norm of Heegner points (see for example
[M2]), so the projectionH → H0 is surjective. SinceU is free of rank one over�anti,
it follows that U = H.

We also compute, using the techniques of [Se] (especially §IV.3.2), that the 3-adic
representation Gal(K̄/K) → GL2(Z3) is surjective, so we deduce from Howard’s
Theorem 10.6 thatXanti

tors is finite. But Sp(E, K)�Z × (Z/3Z)2, so by Proposition
10.8 we cannot haveXanti

tors = 0. Thus Xanti has a nonzero finite submodule, namely
Xanti

tors.
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For related work on the possibility of nonzero finite submodules ofXanti, see[B].

Example 10.10.Counterexamples to one of our conjectures from[MR2]. Let E be the
elliptic curve

y2 + y = x3 − x,

37A1 in Cremona’s tables[Cr]. We haveE(Q)�Z, generated byP := (0, 0), and
i(E,Q) = 0.

Let K := Q(
√−3). Then 37 splits inK, and E(K) = E(Q)�Z, i(E, K) = 0. If

p > 3, p �= 37, and the Fourier coefficientap �= 0, 1 then all of our hypotheses (7.1-5)
are satisfied.

Since Selp(E/K)�Qp/Zp, the skew-Hermitian organizing matrix is 1×1, i.e.,H =
(
a) in (10.3) for somea ∈ �. Arguing as in §9.1, ifI = IK denotes the augmentation
ideal of � then the image of
a in I/I2 is (up to a unit) thep-adic height ofP.

Let hp(P ) denote thep-adic height ofP. William Stein (using methods of [MST])
has computedhp(P ) for all primes less than 100 of good ordinary reduction and with
ap �= 1, and in all cases exceptp = 13 and 67,hp(P ) generates (the free, rank-one
Zp-module) 
�/I2 ⊂ I/I2. In the two exceptional caseshp(P ) generatesp(
�/I2).
Thus 13 and 67 are irregular in the sense of Definition 9.1.1.

Recall that by (10.6), htanti(U ⊗ U �) = a(IKanti/I2
Kanti). Thus, if p is one of the 17

primes less than 100 and different from 13 and 67 whereE has good ordinary reduction
and ap �= 1, thena ∈ �× and htanti(U ⊗ U �) = IKanti/I2

Kanti. But if p = 13 or 67 then

a /∈ �× and htanti(U ⊗ U �) �= IKanti/I2
Kanti (so p is irregular forE/Kanti in the sense of

Remark 10.1). These last two cases give counterexamples to Conjecture 6.1 of [MR2]
(see also Conjecture 6 of [MR1]).

Appendix A. Perfect control assumption

We keep the notation of the body of the paper. In particularE is an elliptic curve
over a number fieldK, with good ordinary reduction at all primes abovep, and K∞
is the maximalZp-power extension ofK.

We will use the following theorem of Greenberg ([G1] §5.I).

Theorem A.1 (Greenberg). Suppose that F is a finite extension of K andL/F is a
Zp-extension. Suppose further that

(i) E(F) has no point of order p,
(ii) for every primew of F above p, E(fw) has no point of order p, wherefw is the

residue field of F atw,
(iii) for every primew of F where E has bad reduction, either E(Fw) has no point of

order p or E(F unr
w )[p∞] is divisible.

Then the natural mapSelp(E, F ) → Selp(E, L)Gal(L/F) is an isomorphism.
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Lemma A.2. Suppose A is an elliptic curve defined over a field k, p is a prime, and
2 is an abelian(pro-)p-extension of k. If A(k) has no point of order p thenA(2) has
no point of order p.

Proof. By Nakayama’s Lemma, ifA(2) ∩ A[p] �= 0, then

A(k) ∩ A[p] = (A(2) ∩ A[p])Gal(2/k) �= 0. �

Corollary A.3. Suppose

(i) E(K) has no point of order p,
(ii) for every primev of K above p, E(kv) has no point of order p, wherekv is the

residue field of K atv,
(iii) for every primev of K where E has bad reduction, either E(Kv) has no point of

order p or E(Kunr
v )[p∞] is divisible.

If K ⊂ F ⊂ F ′ ⊂ K∞ then the natural mapSelp(E, F ) → Selp(E, F ′)Gal(F ′/F ) is an
isomorphism.

In particular, the Perfect Control assumption holds.

Proof. Supposev is a prime ofK, K ⊂ F ⊂ K∞, and w is a prime ofF abovev.
If v � p thenF unr

w = Kunr
v , so assumption (iii) and LemmaA.2 imply assumption (iii)

of Theorem A.1 forF. If v | p then the residue fieldfw is a p-extension ofkv, so
assumption (ii) and Lemma A.2 imply assumption (ii) of Theorem A.1 forF. Finally,
assumption (i) and Lemma A.2 imply assumption (i) of Theorem A.1 forF.

It is enough to prove the corollary whenF is a finite extension ofK, and then pass
to the limit for generalF. Further, it is enough to consider the case whereF ′/F is
cyclic, because every extension ofF in K∞ can be given as a finite chain of cyclic
extensions.

So suppose thatF ′/F is cyclic. Then there is aZp-extensionL of F in K∞ containing
F ′. The hypotheses of Theorem A.1 are satisfied forF, so if F ′ = L then the statement
of the corollary is just the conclusion of Theorem A.1. IfF ′ �= L then the hypotheses
of Theorem A.1 are satisfied forF ′ as well, and we conclude from Theorem A.1 that

Selp(E, F ) = Selp(E, L)Gal(L/F) = (Selp(E, L)Gal(L/F ′))Gal(F ′/F )

= Selp(E, F ′)Gal(F ′/F ). �

Remark A.4. There are a few comments to make about the hypotheses in Corol-
lary A.3.

For a fixed elliptic curveE, hypotheses (i) and (iii) hold for all but finitely many
primesp. Condition (ii) can fail to hold; this is theanomalouscase of [M1]. Condition
(ii) should hold for “most”p, but it could fail for infinitely manyp. However, we have
the following lemma.
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Lemma A.5. Suppose thatE(K) has a point of finite order2 > 1. Then for every
rational prime p > 5, p �= 2 and every primev of K of degree one dividing p where
E has good reduction, E(kv) has no point of order p.

Proof. Fix such av and suppose thatE(kv) has a point of orderp. Our assumptions
guarantee thatE(kv) has a point of order2 as well, so #E(kv)�p2. Sincev has degree
one we have #E(kv) − (p + 1) < 2

√
p, and this is impossible ifp > 5. �

We also have the following lemma relating hypotheses (i) and (ii) of CorollaryA.3.

Lemma A.6. Suppose that for some primev of K above p with residue fieldkv (where
as usual we suppose that E has good, ordinary reduction), E(kv) has no point of order
p. If Kunr

v does not contain a primitivepth root of unity thenE(Kv) has no point of
order p.

In particular if the ramification ofKv/Qp is not divisible byp − 1 then E(Kv) has
no point of order p, and soE(K) has no point of order p.

Proof. If E(Kv) has a point of orderp, it must be in the kernel of reduction. But
since E has good ordinary reduction atv, the inertia group atv acts on the kernel of
reduction via the cyclotomic character. This proves the lemma.�

Appendix B. Some commutative algebra with group rings

For this appendix suppose thatG is a finite abelian group,R is a commutative ring,
and let� : R[G] → R[G] be theR-linear involution that sendsg �→ g−1 for g ∈ G. As
in §2, if M is an R[G]-module we letM � denote theR[G]-module whose underlying
abelian group isM, but with the action ofG obtained from that ifM by composition
with �.

Suppose thatA is an R[G]-module andB is an R-module with trivial G-action.

Lemma B.1. There is a natural isomorphism

HomR[G](A, B ⊗ R[G]) −→ HomR(A, B)�.

Proof. Let � : R[G] → R denote the projection map�(
∑

g agg) := a1. Composition
with � defines anR-module homomorphism

HomR[G](A, B ⊗R R[G]) −→ HomR(A, B)� (B.1)

and it is straightforward to check that this is a morphism ofR[G]-modules. The inverse
of (B.1) is given by sendingf ∈ HomR(A, B)� to the map

a �→
∑

g

f (ag) ⊗ g−1,

and it follows that (B.1) is an isomorphism. �
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Now consider the composition

HomG(A ⊗R[G] A�, B ⊗R R[G]) ∼−→ HomG(A�, HomG(A, B ⊗R R[G]))
∼−→ HomG(A, HomG(A, B ⊗R R[G])�) ∼−→ HomG(A, HomR(A, B))

→ HomR(A ⊗R A, B), (B.2)

where the third isomorphism comes from LemmaB.1. This composition sends aB ⊗
R[G]-valued, R[G]-bilinear pairing onA × A� to a B-valued, R-bilinear pairing on
A × A.

Proposition B.2. Suppose thati : B → B is an R-linear involution, and that � :
A ⊗R[G] A� → B ⊗R R[G] is a skew-Hermitian pairing, i.e.,

�(a′ ⊗ a) = −(i ⊗ �)(�(a ⊗ a′)).

Then the pairing�0 : A ⊗R A → B induced from� via (B.2) is i-skew symmetric, i.e.,

�0(a
′ ⊗ a) = −i(�0(a ⊗ a′)).

In particular if i is the identity then�0 is skew-symmetric, and if i is multiplication by
−1 then �0 is symmetric.

Proof. Straightforward. �

Appendix C. The structure of Selmer modules

One weak consequence of the existence of a skew-Hermitian module� that organizes
the arithmetic ofE over K∞ is that the�-module Sp(E, K∞) has a free resolution
of length two. In this appendix we give a direct proof of this fact, under some mild
hypotheses, without appealing to the work of Neková˘r [N] which was the basis for our
proof of Theorem 7.5.

We continue to suppose thatE has good ordinary reduction at all primes abovep,
the Perfect Control assumption holds, and we will make the following two additional
assumptions for this section.
Torsion assumption. Sp(E, K∞) is a torsion�-module.
Local Nontriviality assumption . For some primep of K above p, the decomposition

group of p in GK acts nontrivially on the kernel of reduction modulop in E[p].

Remark C.1. If K(E[p])/K is ramified at some prime abovep then the Local Non-
triviality assumption holds, so in particular (since�p ⊂ K(E[p])) it holds if p is odd
and unramified inK/Q.
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Theorem C.2 (Greenberg). If L is a Zd
p-extension of K, thenSp(E, L) has no nonzero

pseudo-null�L-submodules.

Proof. This is proved by Greenberg[G2], using the Torsion and Local Nontriviality
assumptions. �

Proposition C.3. Suppose L is aZd
p-extension of K, Sp(E, L) is a torsion�L-module,

M is a free �L module of finite rank, and f : M�Sp(E, L) is a surjective map of
�L-modules. Thenker(f ) is free over�L.

Proof. The proof will be by induction ond, where Gal(L/K)�Zd
p. If d = 0 then

L = K, �L = Zp, and there is nothing to prove.
Let N := ker(f ). Then N is a finitely generated torsion-free�L-module, so the

structure theorem for such modules says that there is an exact sequence

0 −→ N −→ S −→ Z −→ 0,

whereS is a reflexive�-module andZ is pseudo-null.
Let K denote the field of fractions of�L. The inclusionN ↪→ M extends uniquely

to an inclusionS ↪→ M ⊗ K. Since S/N is pseudo-null andK/�L has no nonzero
pseudo-null�L-submodules, we must haveS ↪→ M ⊂ M ⊗ K. But then

Z = S/N ↪→ M/N�Sp(E, L)

so by Greenberg’s TheoremC.2 we must haveZ = 0, and soN = S is reflexive.
It remains to show thatN is free. If d = 1 then every reflexive module is free, so

we may assume thatd �2. SinceSp(E, L) is a torsion�L-module, for all but finitely
many Zd−1

p extensionsF of K contained inL we have (using the Perfect Control
assumption) thatSp(E, F ) = Sp(E, L) ⊗�L

�F is a torsion�F -module. For such an
F, writing H := Gal(L/F)�Zp, we have an exact sequence

0 −→ Sp(E, L)H −→ N ⊗ �F −→ M ⊗ �F −→ Sp(E, F ) −→ 0,

SinceSp(E, L)⊗�L
�F is a torsion�F -module,Sp(E, L)H is a pseudo-null�L-module

(see for example Lemma 4 of §I.1.3 of[PR1]). Again using Greenberg’s Theorem C.2
we conclude thatSp(E, L)H = 0, and so

Sp(E, F )�(M ⊗ �F )/(N ⊗ �F ).

We conclude from our induction hypothesis thatN ⊗ �F is a free�F -module of rank
t := rank�F

(M ⊗ �F ) = rank�L
M. By Nakayama’s LemmaN can be generated over

�L by t generators, and since (by the Torsion assumption) rank�L
N = rank�L

M = t ,
N must be free as claimed.�
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Theorem C.4. There are free�-modulesN ⊂ M such thatSp(E, K∞)�M/N . If
t := dimFp Selp(E, K)[p] then we can take M and N to have�-rank t.

Proof. By Lemma2.2, we have

Sp(E, K∞)/mSp(E, K∞)�Hom(Selp(E, K)[p],Fp)�Ft
p,

where m is the maximal ideal of�. By Nakayama’s Lemma there is a surjection
�t�Sp(E, K∞), and by PropositionC.3 the kernel of this surjection is also free.�
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