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A Siegel disk of a rational map f of degree ≥ 2 is a maximal
domain on which an iterate of f is conjugated to the rotation

Rθ(z) = e2iπθz .

θ is called the rotation number.

Golden Mean rotation number: f (z) = e2iπ
√

5−1
2 z + z2.



x f p z y e2iπθz

φ−→

Such a domain cannot contain a critical point.
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One can wonder which phenomena

at the boundary of a Siegel disk

prevents f from having a larger domain of linearization.



For an attracting k-periodic point:

f k(p) = p, (f k)′(p) = λ with 0 < |λ| < 1,

the map f k is locally conjugate to

z 7→ λz

x f 3 y λz

φ−→

there is always a

•

critical point “at the boundary” of a
linearizing domain.
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Also for a parabolic point: f ′(p) = 1

•

There is a critical point at the boundary of the linearizing domain.
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Ghys and Herman gave the first examples of polynomials having a
Siegel disk without a critical point on the boundary.
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In those examples of Ghys and Herman,
the Julia set is

NOT locally connected .

In fact, from Douady-Sullivan argument we get:

Lemma
If f is a polynomial with a Siegel disk ∆ and locally connected
Julia set, then there is a critical point on the boundary of ∆.
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So,

• either there is a critical point on the boundary of ∆ ;

• or the Julia set is not locally connected.

Both cases can occur simultaneously: in degree three take a
golden mean Siegel disk and arrange a Cremer point in the Julia
set...

Here we use

Theorem (Graczyk and Swiatek, 2003)

If a Siegel disk has a bounded type rotation number and is
compactly contained in the domain of definition of the map, then
its boundary contains a critical point.
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For non locally connected Julia sets,

when does the boundary of a Siegel disk contain a critical point?

If the Julia set is not locally connected, it does not imply that ∂∆
is not locally connected.

In Ghys-Herman example ∂∆ is locally connected and there are no
critical points on ∂∆
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Assume that ∂∆ is a Jordan curve

not containing a
critical point. C \∆ is homeomorphic to C \D.

φ−→

The pre-images of ∆ are at some distance

The map g = φ ◦ f ◦ φ−1 is defined on a annulus around the unit
circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an
analytic diffeomorphism with rotation number θ.
It is conjugated (by ψ) to the rotation Rθ on the unit circle.

ψ−→

If ψ is analytic then it extends to a neighborhood of the unit
circle. Then the rotation domain extends.



Assume that ∂∆ is a Jordan curve not containing a
critical point.

C \∆ is homeomorphic to C \D.

φ−→

The pre-images of ∆ are at some distance

The map g = φ ◦ f ◦ φ−1 is defined on a annulus around the unit
circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an
analytic diffeomorphism with rotation number θ.
It is conjugated (by ψ) to the rotation Rθ on the unit circle.

ψ−→

If ψ is analytic then it extends to a neighborhood of the unit
circle. Then the rotation domain extends.



Assume that ∂∆ is a Jordan curve not containing a
critical point. C \∆ is homeomorphic to C \D.

φ−→

The pre-images of ∆ are at some distance

The map g = φ ◦ f ◦ φ−1 is defined on a annulus around the unit
circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an
analytic diffeomorphism with rotation number θ.
It is conjugated (by ψ) to the rotation Rθ on the unit circle.

ψ−→

If ψ is analytic then it extends to a neighborhood of the unit
circle. Then the rotation domain extends.



Assume that ∂∆ is a Jordan curve not containing a
critical point. C \∆ is homeomorphic to C \D.

φ−→

The pre-images of ∆ are at some distance

The map g = φ ◦ f ◦ φ−1 is defined on a annulus around the unit
circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an
analytic diffeomorphism with rotation number θ.
It is conjugated (by ψ) to the rotation Rθ on the unit circle.

ψ−→

If ψ is analytic then it extends to a neighborhood of the unit
circle. Then the rotation domain extends.



Assume that ∂∆ is a Jordan curve not containing a
critical point. C \∆ is homeomorphic to C \D.

φ−→

The pre-images of ∆ are at some distance

The map g = φ ◦ f ◦ φ−1 is defined on a annulus around the unit
circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an
analytic diffeomorphism with rotation number θ.
It is conjugated (by ψ) to the rotation Rθ on the unit circle.

ψ−→

If ψ is analytic then it extends to a neighborhood of the unit
circle. Then the rotation domain extends.



Assume that ∂∆ is a Jordan curve not containing a
critical point. C \∆ is homeomorphic to C \D.

φ−→

The pre-images of ∆ are at some distance

The map g = φ ◦ f ◦ φ−1 is defined on a annulus around the unit
circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an
analytic diffeomorphism with rotation number θ.
It is conjugated (by ψ) to the rotation Rθ on the unit circle.

ψ−→

If ψ is analytic then it extends to a neighborhood of the unit
circle. Then the rotation domain extends.



Assume that ∂∆ is a Jordan curve not containing a
critical point. C \∆ is homeomorphic to C \D.

φ−→

The pre-images of ∆ are at some distance

The map g = φ ◦ f ◦ φ−1 is defined on a annulus around the unit
circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an
analytic diffeomorphism with rotation number θ.

It is conjugated (by ψ) to the rotation Rθ on the unit circle.

ψ−→

If ψ is analytic then it extends to a neighborhood of the unit
circle. Then the rotation domain extends.



Assume that ∂∆ is a Jordan curve not containing a
critical point. C \∆ is homeomorphic to C \D.

φ−→

The pre-images of ∆ are at some distance

The map g = φ ◦ f ◦ φ−1 is defined on a annulus around the unit
circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an
analytic diffeomorphism with rotation number θ.
It is conjugated (by ψ) to the rotation Rθ on the unit circle.

ψ−→

If ψ is analytic then it extends to a neighborhood of the unit
circle. Then the rotation domain extends.



Assume that ∂∆ is a Jordan curve not containing a
critical point. C \∆ is homeomorphic to C \D.

φ−→

The pre-images of ∆ are at some distance

The map g = φ ◦ f ◦ φ−1 is defined on a annulus around the unit
circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an
analytic diffeomorphism with rotation number θ.
It is conjugated (by ψ) to the rotation Rθ on the unit circle.

ψ−→

If ψ is analytic then it extends to a neighborhood of the unit
circle. Then the rotation domain extends.



Definition
Cω(S1) := {orientation preserving analytic circle diffeomorphisms},

ρ(f ) := rotation number of f ,

H := {θ ∈ R | ∀f ∈ Cω(S1) with ρ(f ) = θ is conjugate to Rθ in Cω(S1)}.

Theorem (Ghys)

Let f be a rational map of degree ≥ 2, ∆ a Siegel disk of period
one with rotation number in H.
∂∆ is a Jordan curve =⇒ ∂∆ contains a critical point.

Theorem (Herman)

The set H is non empty:

Diophantine ⊂ H.
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Recall that several people including Petersen, Inou-Shishikura,
Zhang... proved that ∂∆ is locally connected under some
hypothesis on the rotation number .

For the rest of the talk we do not assume ∂∆ locally connected.
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Theorem (Herman)

1 For all rational map f with degree ≥ 2 having a Siegel disk ∆
of period one with rotation number in H, f cannot be
injective in a neighborhood of ∂∆.

2 Every unicritical polynomial f (z) = zd + c having a Siegel
disk ∆ of period one and with rotation number in H, has a
critical point on ∂∆.

The Theorem holds also for periodic Siegel disks.



Theorem (Herman)

1 For all rational map f with degree ≥ 2 having a Siegel disk ∆
of period one with rotation number in H, f cannot be
injective in a neighborhood of ∂∆.

2 Every unicritical polynomial f (z) = zd + c having a Siegel
disk ∆ of period one and with rotation number in H, has a
critical point on ∂∆.

The Theorem holds also for periodic Siegel disks.



Theorem (Herman)

1 For all rational map f with degree ≥ 2 having a Siegel disk ∆
of period one with rotation number in H, f cannot be
injective in a neighborhood of ∂∆.

2 Every unicritical polynomial f (z) = zd + c having a Siegel
disk ∆ of period one and with rotation number in H, has a
critical point on ∂∆.

The Theorem holds also for periodic Siegel disks.



Conjecture

The boundaries of Siegel disks of rational maps contain a critical
point as soon as the rotation number is in H.

Theorem (Chéritat-R)

rr For all polynomials with two finite critical values, a Siegel disk ∆
of arbitrary period and of rotation number in H, there is an
element in the cycle of ∆ whose boundary contains a critical point.
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Important Remark
If the boundary ∂∆ is not locally connected then ∆ is not
necessarily full any more.

Definition
The filled Siegel disk ∆̂ is the union of ∂∆, ∆ and all bounded
connected components of C \∆.

Examples of filled topological disks ∆̂ in grey.
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Proof in a particular case

Theorem
If all critical orbits eventually enter ∆̂ then there is a critical point

on ∂∆.

Proof.
P is our polynomial.

• Pn(c) ∈ ∂∆, for some recurrent critical point c and some n ∈ N.

Otherwise, Pn(c) is in the interior of ∆̂: in the Fatou set. Then
ω(c) ∩ J(P) is finite. Contradiction with the following:

Theorem (Mañé )

There exists a recurrent critical point c such that ∂∆ ⊂ ω(c).

• c ∈ ∂∆.

c is recurrent: c ∈ ω(c) = ω(Pn(c))
P(∂∆) = ∂∆ =⇒ ω(Pn(c)) ⊂ ∂∆.
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Strategy of the proof

The strategy is to understand the dynamics of P restricted to the
filled Siegel disk ∆̂ :

• assume period 1 for simplicity,

• suppose the Julia set is connected: use a polynomial-like map
to restrict to the connected component containing ∆̂,

• prove that ∆̂ is backward invariant : ∆̂ is a connected
component of P−1(∆̂),

• study the external map:
• if it is a homeomorphism then prove that θ /∈ H,
• if it has degree > 1

• prove that it has no non-repelling periodic points,
• built a quadratic-like map around ∆̂ since the external map is

expanding,
• reduce then to a uni-critical map and apply Herman’s result.



Definition
Let ∆̃ be the connected component of P−1(∆̂) containing ∆̂.

Let n1, n0 be the number of critical values, critical point
respectively in ∆̂, in ∆̃ respectively.

Lemma
There exists U,V topological disks, ∆̃ ⊂ U, ∆̂ ⊂ V such that
P : U → V is a covering ramified only over ∆̂.
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• n1 = 0 =⇒ n0 = 0
P is a homeomorphism from U to V and ∆̂ = ∆̃,

• n1 = 1 =⇒ n0 = 0 or n0 = 1
since P is a covering over a topological disk ramified over one
point (Rieman-Hurwitz formula).

Theorem

1 If n0 = 0 then ρ(P|∆) /∈ H. (similar to Herman’s proof)

2 If n0 = 1 and P has only two critical values then there is a
critical point on ∂∆.

This implies the original Theorem since n1 ∈ {0, 1, 2}.



Case 1
∆̂ = ∆̃.

−→

Using the Rieman map φ : C \ ∆̂→ C \D, we can defined the
external map by Schwarz reflection :
The map g = φ ◦ f ◦ φ−1 is defined on a annulus around the unit
circle. The restriction of g to the unit circle is an analytic
diffeomorphism with rotation number θ.
If θ ∈ H, it is conjugated by a analytic map ψ to the rotation Rθ
on the unit circle. Then ψ extends to a neighborhood of the unit
circle. By analycity, ψ conjugate to the rotation. The Siegel
domain extends.
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Case 2

We assume that n0 = 1.
Remark: If P(c) ∈ ∂∆ then c ∈ ∂∆.

The critical value P(c) ∈ V has only c as preimage in U (n0 = 1)
and P(∂∆) = ∂∆ so c ∈ ∂∆.



Case 2

P(c) belongs to a Fatou component in ∆̂ \∆ since P(c) ∈ Int(∆̂)

Recall the SKETCH OF THE PROOF

1 ∆̂ is locally totally invariant by P: ∆̃ = ∆̂ (use Goldberg
Milnor Poirier Kiwi separation result).

2 The external map is well defined by Schwarz reflection. It has
degree > 1.

3 This circle map is hyperbolic (by Mané’s Theorem) since there
are no non repelling cycles on the circle.

4 Then P has a polynomial-like restriction which is unicritical.

5 We apply Herman’s theorem for uni-critical polynomials.



∆̃ = ∆̂.

Claim: P(c) belongs to a Fatou component W which is eventually
mapped to ∆ under iteration of P.

Otherwise, W is eventually periodic. Then ∂W intersects ∂∆ in at
most a point by the following

Theorem (Goldberg, Milnor, Poirier, Kiwi)

There exists m > 0 such that the union L of the closure of the
external rays fixed by Pm cut the plane into regions, each of them
containing at most one periodic Fatou component or Cremer point
(and never both of them).

But ∂W ⊂ ∂∆. Contradiction.
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∆̃ = ∆̂.

• The ramified covering P : U → V is equivalent to zd : D→ D

• W 6= ∆ otherwise c ∈ ∆

• Let G be the cyclic group of automorphisms of the covering
generated by ρ

• {ρn∆ | n ∈} are the preimages of ∆

•
∃g ∈ G | g(∆) ⊂ ∆̂

since P r (W ) is a preimage of ∆, P r (W ) = g∆ for some
g ∈ G ;
W ⊂ ∆̂ implies P r (W ) ⊂ ∆̂.

• Using that G is cyclic we can prove that

∀g ∈ G | g(∆) ⊂ ∆̂

• It “follows” that ∆̃ = ∆̂.
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Let H be the stabilizer of ∆̂: the set of h ∈ G such that h(∆̂) = ∆̂.

Claim: H = G .

Otherwise, ρ /∈ H and neither ∆̂ ⊂ ρ∆̂ nor ρ̂∆̂ ⊂ ∆̂
Then ρ∆̂ ∩∆ = ∅ and ∆̂ ∩ ρ∆ = ∅ since ρ∆ ∩∆ = ∅.

Take a point z0 ∈ ∂∆ \ ρ∆̂, a ball B ⊂ U, z0 ∈ B, B ∩ ρ∆̂ = ∅,
c /∈ B.
Take a curve in ∆ joining a point z1 ∈ B ∩∆ to a point
z2 ∈ bB ∩∆ where b is a generator of H.
Complete this curve with a segment in B joining z0 and z1, a
segment in bB joining bz0 and z2. Let γ0 be this curve.

Let γ = γ0 ∪ bγ0 ∪ b2γ0 ∪ ...



For z ′0 ∈ ∂ρ∆ \ ∆̂, z ′0 ∈ B ′ ⊂ U, B ′ ∩ ∆̂ = ∅, c /∈ B ′.
So

γ ⊂ H∆ ∪ HB, γ′ ⊂ ρH∆ ∪ HB ′ =⇒ γ ∩ γ′ = ∅

γ separates c from ∞, γ′ separates c from ∞
suppose that γ′ is in the unbouded component X of C \ γ then
∂ρ(∆) ⊂ X .

Join z0 to the boundary of U by δ0 disjoint from ρ̂(∆).
C = Hδ0 ∪ γ

∂ρ(∆) is invariant by H so is in a connected component of U \ C
invaraint by H : the one containing c . Contradiction.



External map
C \ ∆̂ is homeomorphic to C \D.

Let φ : C \ ∆̂→ C \D be the Riemann map.

φ−→

The map g̃ = φ ◦ f ◦ φ−1 is defined on a annulus around the unit
circle by Schwarz reflection.

The restriction g of g̃ to the unit circle (the external map) is an
analytic covering of degree m > 1.
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Absence of non repelling cycle

A non repelling periodic point for the external map g on S1 gives
an attracting or parabolic point for f .

Its basin has to contain a critical point.

There are only two critical points, none is free:

• one eventually maps into ∆

• the other one satisfies ∆ ⊂ ω(c ′).

By Mané’s Theorem the map g is hyperbolic on S1.

For an expanding map, we can then construct by hand a
polynomial-like restriction. It is uni-critical.
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Thank you for your attention


