Formal Power Series and Differential Elimination

François Boulier University of Lille, CRIStAL, France CIMPA School: Algebraic and Tropical Methods for Solving Differential Equations

June 14, 2023

イロト イボト イヨト イヨト

1/21

Picture from getdrawings.com

Formal Power Serious

It is a generalization of pseudo-division

Its efficiency relies on the fact that the derivative of a differential polynomial has degree one in its leading derivative

$$(v^n)' = n v^{n-1} \dot{v}$$

This would be false in difference algebra

If $p, f \in \mathscr{R}[x]$ are two polynomials

$$f = f_e x^e + \dots + f_1 x + f_0 \qquad p = p_d x^d + \dots + p_1 x + p_0$$

Then there exist $q, g \in \mathscr{R}[x]$ with such that

$$p_d^{e-d+1}f = q p + g \quad (\deg(g, x) < d)$$

The polynomial $g = \operatorname{prem}(f, p, x)$ is the pseudoremainder of f by p

$$p = \dot{y}^2 + 8xy - y$$

It is possible to compute the pseudoremainder of f by $p, \dot{p}, \ddot{p}, \ldots$ This process is called Ritt's reduction

The leading derivative \dot{y} of p plays the role of xThe initial i_p (= 1) of p plays the role of p_d when reducing by pThe separant s_p (= 2 \dot{y}) of p, which is the initial of every derivative of p, plays the role of p_d when reducing by any derivative of p

Specifications of Ritt's Reduction (v1)

There exists $d, e \in \mathbb{N}$ and $g, \overline{q_0, q_1, \dots} \in \mathscr{F}\{y\}$ such that

$$i_p^d s_p^e f = g + q_0 p + q_1 \dot{p} + \cdots$$

$$p = \dot{y}^2 + 8xy - y$$

It is possible to compute the pseudoremainder of f by $p, \dot{p}, \ddot{p}, \ldots$ This process is called Ritt's reduction

The leading derivative \dot{y} of p plays the role of xThe initial i_p (= 1) of p plays the role of p_d when reducing by pThe separant s_p (= 2 \dot{y}) of p, which is the initial of every derivative of p, plays the role of p_d when reducing by any derivative of p

Specifications of Ritt's Reduction (v2)

There exists a power product h of the initial and the separant of p and $g \in \mathscr{F}{y}$ such that

$$hf = g \mod [p]$$

$$p = \dot{y}^2 + 8xy - y$$

It is possible to compute the pseudoremainder of f by $p, \dot{p}, \ddot{p}, \ldots$ This process is called Ritt's reduction

There exists a power product *h* of i_p, s_p and $g \in \mathscr{F}{y}$ such that

$$hf = g \mod [p]$$

$$p = \dot{y}^2 + 8xy - y$$

It is possible to compute the pseudoremainder of f by $p, \dot{p}, \ddot{p}, \ldots$ This process is called Ritt's reduction

There exists a power product h of i_p, s_p and $g \in \mathscr{F}{y}$ such that

$$hf = g \mod [p]$$

The process can be a full or a partial reduction

partial: g is free of
$$\ddot{y}, y^{(3)}, \dots$$
 (proper derivatives of \dot{y})
full: in addition, $\deg(g, \dot{y}) < \deg(p, \dot{y})$

Remark The property of the partial remainder relies on the fact that proper derivatives of *p* have degree 1 in their leading derivatives

$$\dot{p} = 2\dot{y}\ddot{y} + 8x\dot{y} - \dot{y} + 8y$$

It is the spirit of Ritt's *Differential Algebra* or Kolchin's *Differential Algebra* and *Algebraic Groups*

Though terribly abstract, it is sometimes the simplest and the most general point of view to have

To be combined with Seidenberg's *Embedding Theorem* which states that every abstract differential field is isomorphic to a field of formal power series

A. Seidenberg. Differential Algebra and the Analytic Case. 1958

 $\mathbb{Z}/5\mathbb{Z}$ is a set of five equivalence classes

It is endowed with a ring structure by defining the sum and the product of two classes

The definitions make sense because the class of a + b (resp. $a \times b$) depends on the classes of a and b, not of a and b = 2 + 4 = 2

 $\mathscr{F}\{y_1,\ldots,y_n\}/\mathfrak{P}$ is a set of infinitely many equivalence classes

It can be endowed with a differential ring structure

By considering pairs of equivalence classes, one can define the differential field of fractions of $\mathscr{F}\{y\}/\mathfrak{P}$ provided that \mathfrak{P} is prime \mathscr{P} is prime \mathscr{P} is \mathfrak{P} and \mathfrak{P} is prime \mathfrak{P} is \mathfrak{P} and \mathfrak{P} is \mathfrak{P} and \mathfrak{P} is \mathfrak{P} is \mathfrak{P} and \mathfrak{P} is \mathfrak{P}

The solution in $\mathscr{F}\{y\}/\mathfrak{P}$ of $\mathfrak{P} = \{\dot{y}^2 - 4y, \ddot{y} - 2\}$ is . . .

The solution in $\mathscr{F}{y}/\mathfrak{P}$ of $\mathfrak{P} = {\dot{y}^2 - 4y, \ddot{y} - 2}$ is ... y = y

By the *Embedding Theorem* [Seidenberg, 1958], every such abstract differential field is isomorphic to a field of formal power series

Reduction to the Autonomous Case Almost Always Possible

A differential polynomial p in non autonomous if p explicitly depends on x

$$x \dot{y} + 8(x-2)y^2 - 1 = 0$$
 (1)

In Ritt and Kolchin differential algebra, there is no such thing as a non autonomous differential polynomial

At the price of one extra differential indeterminate and one extra differential equation (per derivation), the reduction process is always possible provided that coefficients belong to $\mathscr{F}[x]$ or $\mathscr{F}(x)$

$$x \dot{y} + 8 (x - 2) y^{2} - 1 = 0 \dot{x} - 1 = 0$$
 (2)

Eq (1) has no formal power series solution centered at x = 0Syst (2) has no formal power series solution for i.v. $x(0) = x_0 = 0$ Summary The reduction process transforms issues on expansion points into issues on initial values Many tropical differential geometry problems consider non autonomous equations with coefficients in $\mathscr{F}[[x]]$

Such settings address the existence problem of formal power series solutions centered at the origin

In the easy case, we address a simpler but related problem: does there exist initial values for which formal power series solutions exist?

Recall the Brachistochrone equation

$$y \dot{y}^2 + y = D$$
 (D nonzero constant)

It has formal power series solution but not for $y_0 = 0$

A differential equation states an equality between functions for every value of the independent variable

$$\dot{y}(x)^2 = 4 y(x) \quad (\forall x)$$

The "renaming step" (next slide) expresses the fact that, the equality holds in particular for at x = 0 i.e. for "initial values" $y_0, y_1, \dots = y(0), \dot{y}(0), \dots$

$$y_1^2 = 4 y_0$$

It is sometimes convenient to say we look for a "non differential solution" of

$$\dot{y}^2 = 4y$$

$$\overline{\overline{y}} = y_0 + y_1 (x - \alpha) + y_2 \frac{(x - \alpha)^2}{2} + y_3 \frac{(x - \alpha)^3}{6} + \cdots$$

solution of

$$p(x,y) = \dot{y}^2 + 8xy - y$$

Step 1: differentiate p

$$\dot{y}^{2} + 8xy - y = 0$$

$$2\dot{y}\ddot{y} + 8x\dot{y} - \dot{y} + 8y = 0$$

$$2\dot{y}y^{(3)} + 2\ddot{y}^{2} + 8x\ddot{y} - \ddot{y} + 16\dot{y} = 0$$

$$\overline{\overline{y}} = y_0 + y_1 (x - \alpha) + y_2 \frac{(x - \alpha)^2}{2} + y_3 \frac{(x - \alpha)^3}{6} + \cdots$$

solution of

$$p(x,y) = \dot{y}^2 + 8xy - y$$

Step 1: differentiate p

$$\dot{y}^{2} + 8xy - y = 0$$

$$2\dot{y}\ddot{y} + 8x\dot{y} - \dot{y} + 8y = 0$$

$$2\dot{y}y^{(3)} + 2\ddot{y}^{2} + 8x\ddot{y} - \ddot{y} + 16\dot{y} = 0$$

Step 2: rename $y^{(i)}$ as y_i

$$y_1^2 + 8 \times y_0 - y_0 = 0$$

$$2 y_1 y_2 + 8 \times y_1 - y_1 + 8 y_0 = 0$$

$$2 y_1 y_3 + 2 y_2^2 + 8 \times y_2 - y_2 + 16 y_1 = 0$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへで

$$\overline{\overline{y}} = y_0 + y_1 (x - \alpha) + y_2 \frac{(x - \alpha)^2}{2} + y_3 \frac{(x - \alpha)^3}{6} + \cdots$$

solution of

$$p(x,y) = \dot{y}^2 + 8xy - y$$

Step 1: differentiate pStep 2: rename $y^{(i)}$ as y_i

$$y_1^2 + 8 x y_0 - y_0 = 0$$

$$2 y_1 y_2 + 8 x y_1 - y_1 + 8 y_0 = 0$$

$$2 y_1 y_3 + 2 y_2^2 + 8 x y_2 - y_2 + 16 y_1 = 0$$

$$\overline{\overline{y}} = y_0 + y_1 (x - \alpha) + y_2 \frac{(x - \alpha)^2}{2} + y_3 \frac{(x - \alpha)^3}{6} + \cdots$$

solution of

$$p(x, y) = \dot{y}^2 + 8xy - y$$

Step 1: differentiate pStep 2: rename $y^{(i)}$ as y_i

$$y_1^2 + 8x y_0 - y_0 = 0$$

$$2 y_1 y_2 + 8x y_1 - y_1 + 8 y_0 = 0$$

$$2 y_1 y_3 + 2 y_2^2 + 8x y_2 - y_2 + 16 y_1 = 0$$

Step 3: evaluate at $x = \alpha$ and denote $p_i = p^{(i)}(\alpha, y_0, y_1, y_2, ...)$

$$p_0 \quad y_1^2 + 8 \alpha y_0 - y_0 = 0$$

$$p_1 \quad 2 y_1 y_2 + 8 \alpha y_1 - y_1 + 8 y_0 = 0$$

$$p_2 \quad 2 y_1 y_3 + 2 y_2^2 + 8 \alpha y_2 - y_2 + 16 y_1 = 0$$

11/21

$$\overline{\overline{y}} = y_0 + y_1 (x - \alpha) + y_2 \frac{(x - \alpha)^2}{2} + y_3 \frac{(x - \alpha)^3}{6} + \cdots$$

solution of

$$p(x,y) = \dot{y}^2 + 8xy - y$$

Step 1: differentiate pStep 2: rename $y^{(i)}$ as y_i Step 3: evaluate at $x = \alpha$ and denote $p_i = p^{(i)}(\alpha, y_0, y_1, y_2, ...)$

$$p_0 \quad y_1^2 + 8 \, \alpha \, y_0 - y_0 \qquad \qquad = 0$$

$$p_1 \quad 2 y_1 y_2 + 8 \alpha y_1 - y_1 + 8 y_0 = 0$$

$$p_2 \quad 2 y_1 y_3 + 2 y_2^2 + 8 \alpha y_2 - y_2 + 16 y_1 = 0$$

$$\overline{\overline{y}} = y_0 + y_1 (x - \alpha) + y_2 \frac{(x - \alpha)^2}{2} + y_3 \frac{(x - \alpha)^3}{6} + \cdots$$

solution of

$$p(x,y) = \dot{y}^2 + 8xy - y$$

Step 1: differentiate pStep 2: rename $y^{(i)}$ as y_i Step 3: evaluate at $x = \alpha$ and denote $p_i = p^{(i)}(\alpha, y_0, y_1, y_2, ...)$

$$p_0 \quad y_1^2 + 8 \,\alpha \, y_0 - y_0 \qquad \qquad = 0$$

$$p_1 \quad 2 y_1 y_2 + 8 \alpha y_1 - y_1 + 8 y_0 = 0 p_2 \quad 2 y_1 y_3 + 2 y_2^2 + 8 \alpha y_2 - y_2 + 16 y_1 = 0$$

Fact

$$p(x, \overline{y}) = p_0 + p_1(x - \alpha) + p_2 \frac{(x - \alpha)^2}{2} + p_3 \frac{(x - \alpha)^3}{6} + \cdots$$

$$\overline{\overline{y}} = y_0 + y_1 (x - \alpha) + y_2 \frac{(x - \alpha)^2}{2} + y_3 \frac{(x - \alpha)^3}{6} + \cdots$$

solution of

$$p(x,y) = \dot{y}^2 + 8xy - y$$

Step 1: differentiate pStep 2: rename $y^{(i)}$ as y_i Step 3: evaluate at $x = \alpha$ and denote $p_i = p^{(i)}(\alpha, y_0, y_1, y_2, ...)$

$$p_0 \quad y_1^2 + 8 \alpha y_0 - y_0 = 0 p_1 \quad 2 y_1 y_2 + 8 \alpha y_1 - y_1 + 8 y_0 = 0 p_2 \quad 2 y_1 y_3 + 2 y_2^2 + 8 \alpha y_2 - y_2 + 16 y_1 = 0$$

Notice the separant $s_p = 2\dot{y}$, the initial of every derivative of p, which provides the leading coefficient of p_1, p_2, \ldots

$$\bar{\bar{y}} = y_0 + y_1 (x - \alpha) + y_2 \frac{(x - \alpha)^2}{2} + y_3 \frac{(x - \alpha)^3}{6} + \cdots$$
(3)
$$p(x, y) = \dot{y}^2 + 8xy - y$$
(4)

Steps 1, 2, 3: differentiate, rename, evaluate at $x = \alpha$

$$\begin{array}{rcl} p_0 & y_1^2 + 8\,\alpha\,y_0 - y_0 & = & 0 \\ p_1 & 2\,y_1\,y_2 + 8\,\alpha\,y_1 - y_1 + 8\,y_0 & = & 0 \end{array}$$

Step 4: solve and substitute the solution in $\overline{\bar{y}}$

$$\bar{\bar{y}} = y_0 + y_1 (x - \alpha) + y_2 \frac{(x - \alpha)^2}{2} + y_3 \frac{(x - \alpha)^3}{6} + \cdots$$
(3)
$$p(x, y) = \dot{y}^2 + 8xy - y$$
(4)

Steps 1, 2, 3: differentiate, rename, evaluate at $x = \alpha$

$$\begin{array}{rcl} p_0 & y_1^2 + 8 \,\alpha \, y_0 - y_0 & = & 0 \\ p_1 & 2 \, y_1 \, y_2 + 8 \,\alpha \, y_1 - y_1 + 8 \, y_0 & = & 0 \end{array}$$

Step 4: solve and substitute the solution in $\overline{ar{y}}$

Example Looking for y_2 ? Compute the partial remainder g of \ddot{y} by p

$$\dot{p} = 2\dot{y}\ddot{y} + 8x\dot{y} - \dot{y} + 8y$$

Thus

$$\underbrace{(2\dot{y})}_{h}\ddot{y} = \underbrace{-8x\dot{y} + \dot{y} - 8y}_{g} \mod [p]$$

and
$$y_{2} = \frac{g(\alpha, y_{0}, y_{1})}{h(\alpha, y_{0}, y_{1})}$$

$$\bar{\bar{y}} = y_0 + y_1 (x - \alpha) + y_2 \frac{(x - \alpha)^2}{2} + y_3 \frac{(x - \alpha)^3}{6} + \cdots$$
(3)
$$p(x, y) = \dot{y}^2 + 8xy - y$$
(4)

Steps 1, 2, 3: differentiate, rename, evaluate at $x = \alpha$

$$\begin{array}{rcl} p_0 & y_1^2 + 8\,\alpha\,y_0 - y_0 & = & 0 \\ p_1 & 2\,y_1\,y_2 + 8\,\alpha\,y_1 - y_1 + 8\,y_0 & = & 0 \end{array}$$

Step 4: solve and substitute the solution in $\overline{\bar{y}}$

Summary Every solution of the following system on initial values can be prolongated to a differential solution $\overline{\bar{y}}$

$$y_1^2 + 8 \alpha y_0 - y_0 = 0$$
, $2 y_1 \neq 0$.

Reformulation Every "non differential" zero of p which does not annihilate the initial and separant of p can be prolongated into a differential zero

A Famous Ritt Example

The solution set of

$$\dot{y}^2 - 4y = 0$$

can be decomposed in two cases

$$\underbrace{\begin{cases} \dot{y}^2 = 4y, \\ 2\dot{y} \neq 0 \\ y(x) = (x+c)^2 \end{cases}}_{y(x) = (x+c)^2} \quad \text{and} \quad \underbrace{y = 0}_{y(x) = 0}$$

The general solution $y(x) = (x + c)^2$ corresponds to initial values

$$y_0, y_1, y_2 = c^2, 2c, 2$$

One of these formal power series solutions $(y(x) = x^2)$ satisfies

$$2\dot{y} \neq 0$$
 $2y_1 = 0$.

The study of these formal power series solutions belong to the difficult case $_{\circ}$

 $\mathscr{F}\{y_1,\ldots,y_n\}$

 $A = \{p_1, \ldots, p_r\}$ a triangular set of differential polynomials

ODE case: the elements of A must be pairwise partially reduced

PDE case: in addition, A must be coheremt

Note The coherence condition is due to A. Rosenfeld (1959) who generalizes a result of A. Seidenberg. Kolchin's definition hides its algorithmic nature

A. Rosenfeld. Specializations in Differential Algebra. 1959

A. Seidenberg An Elimination Theory in Differential Algebra. 1956

Remark Up to some encoding, Gröbner bases (1965) are a particular case of coherent systems

The Pairwise Partially Reduced Condition

 $\mathscr{F}\{y,z\}$ with a single derivation

 $A = \{p_1, \dots, p_r\}$ a triangular set of differential polynomials

 $H_A = i_1 \cdots i_r s_1 \cdots s_r$ the product of the initials and separants of A

The elements of *A* are not pairwise partially reduced

$$A\left\{\begin{array}{rrrr}z&=&\ddot{y}\,,\\\dot{y}^2&=&4\,y\,.\end{array}\right.$$

At steps 3 and 4, the constraint $y_2 = 2$ is missed (assuming $y_1 \neq 0$)

The Pairwise Partially Reduced Condition

 $\mathscr{F}\{y,z\}$ with a single derivation

 $A = \{p_1, \dots, p_r\}$ a triangular set of differential polynomials

 $H_A = i_1 \cdots i_r s_1 \cdots s_r$ the product of the initials and separants of A

Thanks to Ritt's partial reduction, the elements of A can be made pairwise partially reduced under the assumption $\dot{y} \neq 0$

$$A \begin{cases} z = 2, \\ \dot{y}^2 = 4y, \\ \dot{y}^2 = 0. \end{cases}$$
(5)

Summary If the elements of *A* are pairwise partially reduced then every non differential zero of the following system can be prolongated into a differential zero

$$A = 0, \quad H_A \neq 0.$$

Remark The system may have no solution

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

The Coherence Condition

In $\mathscr{F}\{y,z\}$ endowed with $\partial/\partial x$ and $\partial/\partial t$

The elements of A are pairwise partially reduced and $H_A = 1$ but A is not coherent

$$A\left\{\begin{array}{rrr} y_x &=& z\,,\\ y_t &=& 0 \end{array}\right.$$

Not every non differential zero of A = 0 can be prolongated to a differential zero since $z_t = 0$ (A is not coherent)

The Coherence Condition

In $\mathscr{F}\{y,z\}$ endowed with $\partial/\partial x$ and $\partial/\partial t$

System A can be made coherent

$$A \left\{ \begin{array}{rrrr} y_{x} & = & z \, , \\ y_{t} & = & 0 \, , \\ z_{t} & = & 0 \end{array} \right.$$

Def
$$z_t$$
 is a particular case of a Δ -polynomial

Test If all Δ -polynomials of A are reduced to zero by A then A is coherent

Summary If A is coherent and its elements are pairwise partially reduced then every non differential zero of following system can be prolongated into a differential zero

$$A = 0, \quad H_A \neq 0.$$

Given an input system Σ and a ranking, it is possible to compute an equivalent set of finitely many regular differential chains

$$A_1,\ldots,A_{\varrho}$$

If this decomposition is empty $(\varrho = 0)$ then $1 \in \{\Sigma\}$ (the perfect differential ideal) and Σ has no solution at all

If this decomposition is nonempty ($\varrho > 0$) then every non differential zero of

$$A_i = 0, \qquad H_{A_i} \neq 0$$

can be prolongated into a differential zero of $\boldsymbol{\Sigma}$

Hence there exist initial values for which Σ has formal power series solutions

$$p(x,y) = 0 \quad (\text{ord } p = n)$$

Difficult cases arise when the separant $s(x, y) = \partial p / \partial y^{(n)}$ does not vanish identically but vanishes at the prescribed initial values

At some point, the existence problem of a formal power series solution amounts to find nonnegative integer solutions to polynomials in m variables (the number of derivations)

The PDE case mostly leads to undecidability results by Matiiassevich (1970) negative answer to Hilbert's 10th Problem

The ODE case (m = 1) seems to be algorithmic

J. Denef and L. Lipshitz. *Power Series Solutions of Algebraic Differential Equations*. 1984

A. Hurwitz. Sur le développement des fonctions satisfaisant à une équation différentielle algébrique. 1899

The Number of Initial Values Depends on the Initial Values

$$\bar{\bar{y}} = y_0 + y_1 x + y_2 \frac{x^2}{2} + y_3 \frac{x^3}{6} + \cdots \text{ solution of } p(x, y) = 0 \quad (\text{ord } p = n)$$

The number of needed initial values depends on the initial values

The Number of Initial Values Depends on the Initial Values

$$\bar{\bar{y}} = y_0 + y_1 x + y_2 \frac{x^2}{2} + y_3 \frac{x^3}{6} + \cdots \text{ solution of } p(x, y) = 0 \quad (\text{ord } p = n)$$

Let us give ourselves infinitely many of them and encode them in a series

$$\bar{y} = y_0 + y_1 x + y_2 \frac{x^2}{2} + y_3 \frac{x^3}{6} + \cdots$$
 (i.v. encoding series)

The Number of Initial Values Depends on the Initial Values

$$\bar{\bar{y}} = y_0 + y_1 x + y_2 \frac{x^2}{2} + y_3 \frac{x^3}{6} + \cdots \text{ solution of } p(x, y) = 0 \quad (\text{ord } p = n)$$

Let us give ourselves infinitely many of them and encode them in a series

$$\bar{y} = y_0 + y_1 x + y_2 \frac{x^2}{2} + y_3 \frac{x^3}{6} + \cdots$$
 (i.v. encoding series)

From p and \bar{y} compute δ the number of needed initial values β the size of the polynomial system to solve

ľ

$$p_0=p_1=\cdots=p_{\beta-1}=0$$

Thm Every solution of the polynomial system (if any) can be prolongated into a formal power series solution $\overline{\overline{y}}$

Leading Coefficients are Now Given by a Polynomial A(q)

$$p(x, y) = y \ddot{y} + \dot{y}^2 - 6y$$

$$s(x, y) = y$$

$$\bar{y} = y_2 \frac{x^2}{2} + \cdots \quad (y_0 = y_1 = 0)$$

$$k = 2 \quad (\text{the valuation of } s(x, \bar{y}), \text{ assuming } y_2 \neq 0)$$

$$A(q) = y_2 q^2 + 15 y_2 q + 56 y_2 - 12$$
For $(y_0, y_1, y_2) = (0, 0, 2)$ we have $\beta = \delta = 8$

$$p_3 \quad \frac{7}{3} y_3 \qquad \qquad = 0 \quad \frac{A(-3)}{3!}$$

$$p_4 \quad 1 y_4 + \frac{5}{12} y_3^2 \qquad \qquad = 0 \quad \frac{A(-3)}{4!}$$

$$p_5 \quad \frac{3}{10} y_5 + \frac{7}{24} y_3 y_4 \qquad \qquad = 0 \quad \frac{A(-1)}{5!}$$

$$p_6 \quad \frac{5}{72} y_6 + \frac{7}{144} y_4^2 + \frac{7}{90} y_3 y_5 \qquad \qquad = 0 \quad \frac{A(0)}{6!}$$

$$p_7 \quad \frac{11}{840} y_7 + \frac{1}{40} y_4 y_5 + \frac{1}{60} y_3 y_6 \qquad = 0 \quad \frac{A(1)}{7!}$$
We have found $y(x) = x^2$

20/21

The problem: *does a given ordinary differential polynomial system have any nonzero formal power series solution centered at the origin?* is algorithmically undecidable [Singer, 1978]

Singer's argument relies on the following system

$$\begin{array}{rcl} x \, \dot{y} &=& \alpha \, y \\ \dot{\alpha} &=& \mathbf{0} \end{array}$$

which has a nonzero formal power series solution $y(x) = x^{\alpha}$ if and only if α is a nonnegative integer (Hilbert's 10th Problem)

Denef and Lipshitz formula permits to solve the existence and uniqueness problem of a formal power series solution under the assumption that we can determine k (over our example, we had to assume $y_2 \neq 0$)