Formal Power Series and Differential Elimination

François Boulier
University of Lille, CRIStAL, France
CIMPA School: Algebraic and Tropical Methods for Solving Differential Equations

June 14, 2023

Picture from getdrawings.com

Formal Power Serious

Ritt's Reduction Algorithm

It is a generalization of pseudo-division
Its efficiency relies on the fact that the derivative of a differential polynomial has degree one in its leading derivative

$$
\left(v^{n}\right)^{\prime}=n v^{n-1} \dot{v}
$$

This would be false in difference algebra

If $p, f \in \mathscr{R}[x]$ are two polynomials

$$
f=f_{e} x^{e}+\cdots+f_{1} x+f_{0} \quad p=p_{d} x^{d}+\cdots+p_{1} x+p_{0}
$$

Then there exist $q, g \in \mathscr{R}[x]$ with such that

$$
p_{d}^{e-d+1} f=q p+g \quad(\operatorname{deg}(g, x)<d)
$$

The polynomial $g=\operatorname{prem}(f, p, x)$ is the pseudoremainder of f by p

Assume f, p are differential polynomials and a ranking is fixed

$$
p=\dot{y}^{2}+8 x y-y
$$

It is possible to compute the pseudoremainder of f by $p, \dot{p}, \ddot{p}, \ldots$ This process is called Ritt's reduction

The leading derivative \dot{y} of p plays the role of x The initial $i_{p}(=1)$ of p plays the role of p_{d} when reducing by p The separant $s_{p}(=2 \dot{y})$ of p, which is the initial of every derivative of p, plays the role of p_{d} when reducing by any derivative of p

Specifications of Ritt's Reduction (v 1)

There exists $d, e \in \mathbb{N}$ and $g, q_{0}, q_{1}, \cdots \in \mathscr{F}\{y\}$ such that

$$
i_{p}^{d} s_{p}^{e} f=g+q_{0} p+q_{1} \dot{p}+\cdots
$$

Assume f, p are differential polynomials and a ranking is fixed

$$
p=\dot{y}^{2}+8 x y-y
$$

It is possible to compute the pseudoremainder of f by $p, \dot{p}, \ddot{p}, \ldots$ This process is called Ritt's reduction

The leading derivative \dot{y} of p plays the role of x The initial $i_{p}(=1)$ of p plays the role of p_{d} when reducing by p The separant $s_{p}(=2 \dot{y})$ of p, which is the initial of every derivative of p, plays the role of p_{d} when reducing by any derivative of p

Specifications of Ritt's Reduction (v2)

There exists a power product h of the initial and the separant of p and $g \in \mathscr{F}\{y\}$ such that

$$
h f=g \quad \bmod [p]
$$

Assume f, p are differential polynomials and a ranking is fixed

$$
p=\dot{y}^{2}+8 x y-y
$$

It is possible to compute the pseudoremainder of f by $p, \dot{p}, \ddot{p}, \ldots$ This process is called Ritt's reduction

There exists a power product h of i_{p}, s_{p} and $g \in \mathscr{F}\{y\}$ such that

$$
h f=g \quad \bmod [p]
$$

Assume f, p are differential polynomials and a ranking is fixed

$$
p=\dot{y}^{2}+8 x y-y
$$

It is possible to compute the pseudoremainder of f by $p, \dot{p}, \ddot{p}, \ldots$ This process is called Ritt's reduction

There exists a power product h of i_{p}, s_{p} and $g \in \mathscr{F}\{y\}$ such that

$$
h f=g \bmod [p]
$$

The process can be a full or a partial reduction
partial: g is free of $\ddot{y}, y^{(3)}, \ldots$ (proper derivatives of \dot{y})
full: \quad in addition, $\operatorname{deg}(g, \dot{y})<\operatorname{deg}(p, \dot{y})$

Remark The property of the partial remainder relies on the fact that proper derivatives of p have degree 1 in their leading derivatives

$$
\dot{p}=2 \dot{y} \ddot{y}+8 x \dot{y}-\dot{y}+8 y
$$

Solving in Abstract Differential Fields

It is the spirit of Ritt's Differential Algebra or Kolchin's Differential Algebra and Algebraic Groups

Though terribly abstract, it is sometimes the simplest and the most general point of view to have

To be combined with Seidenberg's Embedding Theorem which states that every abstract differential field is isomorphic to a field of formal power series
A. Seidenberg. Differential Algebra and the Analytic Case. 1958

$\mathbb{Z} / 5 \mathbb{Z}$ is a set of five equivalence classes
It is endowed with a ring structure by defining the sum and the product of two classes

The definitions make sense because the class of $a+b$ (resp. $a \times b$) depends on the classes of a and b, not of a and b

$\mathfrak{P}=\left\{\dot{y}^{2}-4 y, \ddot{y}-2\right\}$
$\mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\} / \mathfrak{P}$ is a set of infinitely many equivalence classes
It can be endowed with a differential ring structure
By considering pairs of equivalence classes, one can define the differential field of fractions of $\mathscr{F}\{y\} / \mathfrak{P}$ provided that \mathfrak{P} is prime

The solution in $\mathscr{F}\{y\} / \mathfrak{P}$ of $\mathfrak{P}=\left\{\dot{y}^{2}-4 y, \ddot{y}-2\right\}$ is \ldots

The solution in $\mathscr{F}\{y\} / \mathfrak{P}$ of $\mathfrak{P}=\left\{\dot{y}^{2}-4 y, \ddot{y}-2\right\}$ is \ldots

$$
y=y
$$

By the Embedding Theorem [Seidenberg, 1958], every such abstract differential field is isomorphic to a field of formal power series

Reduction to the Autonomous Case Almost Always Possible

A differential polynomial p in non autonomous if p explicitly depends on x

$$
\begin{equation*}
x \dot{y}+8(x-2) y^{2}-1=0 \tag{1}
\end{equation*}
$$

In Ritt and Kolchin differential algebra, there is no such thing as a non autonomous differential polynomial

At the price of one extra differential indeterminate and one extra differential equation (per derivation), the reduction process is always possible provided that coefficients belong to $\mathscr{F}[x]$ or $\mathscr{F}(x)$

$$
\begin{align*}
x \dot{y}+8(x-2) y^{2}-1 & =0 \tag{2}\\
\dot{x}-1 & =0
\end{align*}
$$

Eq (1) has no formal power series solution centered at $x=0$
Syst (2) has no formal power series solution for i.v. $x(0)=x_{0}=0$
Summary The reduction process transforms issues on expansion points into issues on initial values

Solving in Formal Power Series: Principle and Easy Case

Many tropical differential geometry problems consider non autonomous equations with coefficients in $\mathscr{F}[[x]]$

Such settings address the existence problem of formal power series solutions centered at the origin

In the easy case, we address a simpler but related problem: does there exist initial values for which formal power series solutions exist?

Recall the Brachistochrone equation

$$
y \dot{y}^{2}+y=D \quad(D \text { nonzero constant })
$$

It has formal power series solution but not for $y_{0}=0$

The Renaming Step

A differential equation states an equality between functions for every value of the independent variable

$$
\dot{y}(x)^{2}=4 y(x) \quad(\forall x)
$$

The "renaming step" (next slide) expresses the fact that, the equality holds in particular for at $x=0$ i.e. for "initial values" $y_{0}, y_{1}, \cdots=y(0), \dot{y}(0), \ldots$

$$
y_{1}^{2}=4 y_{0}
$$

It is sometimes convenient to say we look for a "non differential solution" of

$$
\dot{y}^{2}=4 y
$$

Looking for a formal power series centered at $x=\alpha$

$$
\overline{\bar{y}}=y_{0}+y_{1}(x-\alpha)+y_{2} \frac{(x-\alpha)^{2}}{2}+y_{3} \frac{(x-\alpha)^{3}}{6}+\cdots
$$

solution of

$$
p(x, y)=\dot{y}^{2}+8 x y-y
$$

Step 1: differentiate p

$$
\begin{aligned}
\dot{y}^{2}+8 x y-y & =0 \\
2 \dot{y} \ddot{y}+8 x \dot{y}-\dot{y}+8 y & =0 \\
2 \dot{y} y^{(3)}+2 \ddot{y}^{2}+8 x \ddot{y}-\ddot{y}+16 \dot{y} & =0
\end{aligned}
$$

Looking for a formal power series centered at $x=\alpha$

$$
\overline{\bar{y}}=y_{0}+y_{1}(x-\alpha)+y_{2} \frac{(x-\alpha)^{2}}{2}+y_{3} \frac{(x-\alpha)^{3}}{6}+\cdots
$$

solution of

$$
p(x, y)=\dot{y}^{2}+8 x y-y
$$

Step 1: differentiate p

$$
\begin{aligned}
\dot{y}^{2}+8 x y-y & =0 \\
2 \dot{y} \ddot{y}+8 x \dot{y}-\dot{y}+8 y & =0 \\
2 \dot{y} y^{(3)}+2 \ddot{y}^{2}+8 x \ddot{y}-\ddot{y}+16 \dot{y} & =0
\end{aligned}
$$

Step 2: rename $y^{(i)}$ as y_{i}

$$
\begin{array}{r}
y_{1}^{2}+8 x y_{0}-y_{0}=0 \\
2 y_{1} y_{2}+8 x y_{1}-y_{1}+8 y_{0}=0 \\
2 y_{1} y_{3}+2 y_{2}^{2}+8 x y_{2}-y_{2}+16 y_{1}=0
\end{array}
$$

Looking for a formal power series centered at $x=\alpha$

$$
\overline{\bar{y}}=y_{0}+y_{1}(x-\alpha)+y_{2} \frac{(x-\alpha)^{2}}{2}+y_{3} \frac{(x-\alpha)^{3}}{6}+\cdots
$$

solution of

$$
p(x, y)=\dot{y}^{2}+8 x y-y
$$

Step 1: differentiate p
Step 2: rename $y^{(i)}$ as y_{i}

$$
\begin{array}{r}
y_{1}^{2}+8 x y_{0}-y_{0}=0 \\
2 y_{1} y_{2}+8 x y_{1}-y_{1}+8 y_{0}=0 \\
2 y_{1} y_{3}+2 y_{2}^{2}+8 x y_{2}-y_{2}+16 y_{1}=0
\end{array}
$$

Looking for a formal power series centered at $x=\alpha$

$$
\overline{\bar{y}}=y_{0}+y_{1}(x-\alpha)+y_{2} \frac{(x-\alpha)^{2}}{2}+y_{3} \frac{(x-\alpha)^{3}}{6}+\cdots
$$

solution of

$$
p(x, y)=\dot{y}^{2}+8 x y-y
$$

Step 1: differentiate p
Step 2: rename $y^{(i)}$ as y_{i}

$$
\begin{array}{r}
y_{1}^{2}+8 x y_{0}-y_{0}=0 \\
2 y_{1} y_{2}+8 x y_{1}-y_{1}+8 y_{0}=0 \\
2 y_{1} y_{3}+2 y_{2}^{2}+8 x y_{2}-y_{2}+16 y_{1}=0
\end{array}
$$

Step 3: evaluate at $x=\alpha$ and denote $p_{i}=p^{(i)}\left(\alpha, y_{0}, y_{1}, y_{2}, \ldots\right)$

$$
\begin{array}{lll}
p_{0} & y_{1}^{2}+8 \alpha y_{0}-y_{0} & =0 \\
p_{1} & 2 y_{1} y_{2}+8 \alpha y_{1}-y_{1}+8 y_{0} & =0 \\
p_{2} & 2 y_{1} y_{3}+2 y_{2}^{2}+8 \alpha y_{2}-y_{2}+16 y_{1} & =0
\end{array}
$$

Looking for a formal power series centered at $x=\alpha$

$$
\overline{\bar{y}}=y_{0}+y_{1}(x-\alpha)+y_{2} \frac{(x-\alpha)^{2}}{2}+y_{3} \frac{(x-\alpha)^{3}}{6}+\cdots
$$

solution of

$$
p(x, y)=\dot{y}^{2}+8 x y-y
$$

Step 1: differentiate p
Step 2: rename $y^{(i)}$ as y_{i}
Step 3: evaluate at $x=\alpha$ and denote $p_{i}=p^{(i)}\left(\alpha, y_{0}, y_{1}, y_{2}, \ldots\right)$

$$
\begin{array}{ll}
p_{0} \quad y_{1}^{2}+8 \alpha y_{0}-y_{0} & =0 \\
p_{1} 2 y_{1} y_{2}+8 \alpha y_{1}-y_{1}+8 y_{0} & =0 \\
p_{2} 2 y_{1} y_{3}+2 y_{2}^{2}+8 \alpha y_{2}-y_{2}+16 y_{1} & =0
\end{array}
$$

Looking for a formal power series centered at $x=\alpha$

$$
\overline{\bar{y}}=y_{0}+y_{1}(x-\alpha)+y_{2} \frac{(x-\alpha)^{2}}{2}+y_{3} \frac{(x-\alpha)^{3}}{6}+\cdots
$$

solution of

$$
p(x, y)=\dot{y}^{2}+8 x y-y
$$

Step 1: differentiate p
Step 2: rename $y^{(i)}$ as y_{i}
Step 3: evaluate at $x=\alpha$ and denote $p_{i}=p^{(i)}\left(\alpha, y_{0}, y_{1}, y_{2}, \ldots\right)$

$$
\begin{array}{ll}
p_{0} \quad y_{1}^{2}+8 \alpha y_{0}-y_{0} & =0 \\
p_{1} 2 y_{1} y_{2}+8 \alpha y_{1}-y_{1}+8 y_{0} & =0 \\
p_{2} 2 y_{1} y_{3}+2 y_{2}^{2}+8 \alpha y_{2}-y_{2}+16 y_{1}=0
\end{array}
$$

Fact

$$
p(x, \overline{\bar{y}})=p_{0}+p_{1}(x-\alpha)+p_{2} \frac{(x-\alpha)^{2}}{2}+p_{3} \frac{(x-\alpha)^{3}}{6}+\cdots
$$

Looking for a formal power series centered at $x=\alpha$

$$
\overline{\bar{y}}=y_{0}+y_{1}(x-\alpha)+y_{2} \frac{(x-\alpha)^{2}}{2}+y_{3} \frac{(x-\alpha)^{3}}{6}+\cdots
$$

solution of

$$
p(x, y)=\dot{y}^{2}+8 x y-y
$$

Step 1: differentiate p
Step 2: rename $y^{(i)}$ as y_{i}
Step 3: evaluate at $x=\alpha$ and denote $p_{i}=p^{(i)}\left(\alpha, y_{0}, y_{1}, y_{2}, \ldots\right)$

$$
\begin{array}{ll}
p_{0} y_{1}^{2}+8 \alpha y_{0}-y_{0} & =0 \\
p_{1} 2 y_{1} y_{2}+8 \alpha y_{1}-y_{1}+8 y_{0} & =0 \\
p_{2} 2 y_{1} y_{3}+2 y_{2}^{2}+8 \alpha y_{2}-y_{2}+16 y_{1}=0
\end{array}
$$

Notice the separant $s_{p}=2 \dot{y}$, the initial of every derivative of p, which provides the leading coefficient of p_{1}, p_{2}, \ldots

$$
\begin{align*}
\overline{\bar{y}} & =y_{0}+y_{1}(x-\alpha)+y_{2} \frac{(x-\alpha)^{2}}{2}+y_{3} \frac{(x-\alpha)^{3}}{6}+\cdots \tag{3}\\
p(x, y) & =\dot{y}^{2}+8 x y-y \tag{4}
\end{align*}
$$

Steps 1, 2, 3: differentiate, rename, evaluate at $x=\alpha$

$$
\begin{array}{lll}
p_{0} & y_{1}^{2}+8 \alpha y_{0}-y_{0} & =0 \\
p_{1} & 2 y_{1} y_{2}+8 \alpha y_{1}-y_{1}+8 y_{0} & =0
\end{array}
$$

Step 4: solve and substitute the solution in $\overline{\bar{y}}$

$$
\begin{align*}
\overline{\bar{y}} & =y_{0}+y_{1}(x-\alpha)+y_{2} \frac{(x-\alpha)^{2}}{2}+y_{3} \frac{(x-\alpha)^{3}}{6}+\cdots \tag{3}\\
p(x, y) & =\dot{y}^{2}+8 x y-y \tag{4}
\end{align*}
$$

Steps 1, 2, 3: differentiate, rename, evaluate at $x=\alpha$

$$
\begin{array}{lll}
p_{0} & y_{1}^{2}+8 \alpha y_{0}-y_{0} & =0 \\
p_{1} & 2 y_{1} y_{2}+8 \alpha y_{1}-y_{1}+8 y_{0} & =0
\end{array}
$$

Step 4: solve and substitute the solution in $\overline{\bar{y}}$
Example Looking for y_{2} ? Compute the partial remainder g of \ddot{y} by p

$$
\dot{p}=2 \dot{y} \ddot{y}+8 x \dot{y}-\dot{y}+8 y
$$

Thus

$$
\begin{aligned}
\underbrace{(2 \dot{y})}_{h} \ddot{y} & =\underbrace{-8 x \dot{y}+\dot{y}-8 y}_{g} \bmod [p] \\
y_{2} & =\frac{g\left(\alpha, y_{0}, y_{1}\right)}{h\left(\alpha, y_{0}, y_{1}\right)}
\end{aligned}
$$

and

$$
\begin{align*}
\overline{\bar{y}} & =y_{0}+y_{1}(x-\alpha)+y_{2} \frac{(x-\alpha)^{2}}{2}+y_{3} \frac{(x-\alpha)^{3}}{6}+\cdots \tag{3}\\
p(x, y) & =\dot{y}^{2}+8 x y-y \tag{4}
\end{align*}
$$

Steps 1, 2, 3: differentiate, rename, evaluate at $x=\alpha$

$$
\begin{array}{lll}
p_{0} & y_{1}^{2}+8 \alpha y_{0}-y_{0} & =0 \\
p_{1} 2 y_{1} y_{2}+8 \alpha y_{1}-y_{1}+8 y_{0} & =0
\end{array}
$$

Step 4: solve and substitute the solution in $\overline{\bar{y}}$
Summary Every solution of the following system on initial values can be prolongated to a differential solution $\overline{\bar{y}}$

$$
y_{1}^{2}+8 \alpha y_{0}-y_{0}=0, \quad 2 y_{1} \neq 0
$$

Reformulation Every "non differential" zero of p which does not annihilate the initial and separant of p can be prolongated into a differential zero

A Famous Ritt Example

The solution set of

$$
\dot{y}^{2}-4 y=0
$$

can be decomposed in two cases

$$
\underbrace{\left\{\begin{array}{c}
\dot{y}^{2}=4 y, \\
2 \dot{y} \neq 0
\end{array}\right.}_{y(x)=(x+c)^{2}} \text { and } \underbrace{y=0}_{y(x)=0}
$$

The general solution $y(x)=(x+c)^{2}$ corresponds to initial values

$$
y_{0}, y_{1}, y_{2}=c^{2}, 2 c, 2
$$

One of these formal power series solutions $\left(y(x)=x^{2}\right)$ satisfies

$$
2 \dot{y} \neq 0 \quad 2 y_{1}=0
$$

The study of these formal power series solutions belong to the difficult case

Generalization of the Easy Case to Systems

$\mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$
$A=\left\{p_{1}, \ldots, p_{r}\right\}$ a triangular set of differential polynomials
ODE case: the elements of A must be pairwise partially reduced
PDE case: in addition, A must be coheremt
Note The coherence condition is due to A. Rosenfeld (1959) who generalizes a result of A. Seidenberg. Kolchin's definition hides its algorithmic nature
A. Rosenfeld. Specializations in Differential Algebra. 1959
A. Seidenberg An Elimination Theory in Differential Algebra. 1956

Remark Up to some encoding, Gröbner bases (1965) are a particular case of coherent systems

The Pairwise Partially Reduced Condition

$\mathscr{F}\{y, z\}$ with a single derivation
$A=\left\{p_{1}, \ldots, p_{r}\right\}$ a triangular set of differential polynomials
$H_{A}=i_{1} \cdots i_{r} s_{1} \cdots s_{r}$ the product of the initials and separants of A
The elements of A are not pairwise partially reduced

$$
A\left\{\begin{aligned}
z & =\ddot{y}, \\
\dot{y}^{2} & =4 y .
\end{aligned}\right.
$$

At steps 3 and 4 , the constraint $y_{2}=2$ is missed (assuming $y_{1} \neq 0$)

The Pairwise Partially Reduced Condition

$\mathscr{F}\{y, z\}$ with a single derivation
$A=\left\{p_{1}, \ldots, p_{r}\right\}$ a triangular set of differential polynomials
$H_{A}=i_{1} \cdots i_{r} s_{1} \cdots s_{r}$ the product of the initials and separants of A
Thanks to Ritt's partial reduction, the elements of A can be made pairwise partially reduced under the assumption $\dot{y} \neq 0$

$$
A\left\{\begin{align*}
z & =2, \tag{5}\\
\dot{y}^{2} & =4 y, \quad \dot{y} \neq 0 .
\end{align*}\right.
$$

Summary If the elements of A are pairwise partially reduced then every non differential zero of the following system can be prolongated into a differential zero

$$
A=0, \quad H_{A} \neq 0 .
$$

Remark The system may have no solution

The Coherence Condition

In $\mathscr{F}\{y, z\}$ endowed with $\partial / \partial x$ and $\partial / \partial t$
The elements of A are pairwise partially reduced and $H_{A}=1$ but A is not coherent

$$
A\left\{\begin{array}{l}
y_{x}=z \\
y_{t}=0
\end{array}\right.
$$

Not every non differential zero of $A=0$ can be prolongated to a differential zero since $z_{t}=0$ (A is not coherent)

The Coherence Condition

In $\mathscr{F}\{y, z\}$ endowed with $\partial / \partial x$ and $\partial / \partial t$
System A can be made coherent

$$
A\left\{\begin{array}{l}
y_{x}=z \\
y_{t}=0, \\
z_{t}=0
\end{array}\right.
$$

Def z_{t} is a particular case of a Δ-polynomial
Test If all Δ-polynomials of A are reduced to zero by A then A is coherent
Summary If A is coherent and its elements are pairwise partially reduced then every non differential zero of following system can be prolongated into a differential zero

$$
A=0, \quad H_{A} \neq 0
$$

Specification of the Differential Elimination Algorithm

Given an input system Σ and a ranking, it is possible to compute an equivalent set of finitely many regular differential chains

$$
A_{1}, \ldots, A_{\varrho}
$$

If this decomposition is empty $(\varrho=0)$ then $1 \in\{\Sigma\}$ (the perfect differential ideal) and Σ has no solution at all

If this decomposition is nonempty $(\varrho>0)$ then every non differential zero of

$$
A_{i}=0, \quad H_{A_{i}} \neq 0
$$

can be prolongated into a differential zero of Σ
Hence there exist initial values for which Σ has formal power series solutions

Solving in Formal Power Series: the Difficult Case

$$
p(x, y)=0 \quad(\operatorname{ord} p=n)
$$

Difficult cases arise when the separant $s(x, y)=\partial p / \partial y^{(n)}$ does not vanish identically but vanishes at the prescribed initial values

At some point, the existence problem of a formal power series solution amounts to find nonnegative integer solutions to polynomials in m variables (the number of derivations)

The PDE case mostly leads to undecidability results by Matiiassevich (1970) negative answer to Hilbert's 10th Problem

The ODE case $(m=1)$ seems to be algorithmic
J. Denef and L. Lipshitz. Power Series Solutions of Algebraic Differential Equations. 1984
A. Hurwitz. Sur le développement des fonctions satisfaisant à une équation différentielle algébrique. 1899

The Number of Initial Values Depends on the Initial Values

$$
\begin{aligned}
\overline{\bar{y}} & =y_{0}+y_{1} x+y_{2} \frac{x^{2}}{2}+y_{3} \frac{x^{3}}{6}+\cdots \quad \text { solution of } \\
p(x, y) & =0 \quad(\operatorname{ord} p=n)
\end{aligned}
$$

The number of needed initial values depends on the initial values

The Number of Initial Values Depends on the Initial Values

$$
\begin{aligned}
\overline{\bar{y}} & =y_{0}+y_{1} x+y_{2} \frac{x^{2}}{2}+y_{3} \frac{x^{3}}{6}+\cdots \quad \text { solution of } \\
p(x, y) & =0 \quad(\text { ord } p=n)
\end{aligned}
$$

Let us give ourselves infinitely many of them and encode them in a series

$$
\bar{y}=y_{0}+y_{1} x+y_{2} \frac{x^{2}}{2}+y_{3} \frac{x^{3}}{6}+\cdots \quad \text { (i.v. encoding series) }
$$

The Number of Initial Values Depends on the Initial Values

$$
\begin{aligned}
\overline{\bar{y}} & =y_{0}+y_{1} x+y_{2} \frac{x^{2}}{2}+y_{3} \frac{x^{3}}{6}+\cdots \quad \text { solution of } \\
p(x, y) & =0 \quad(\text { ord } p=n)
\end{aligned}
$$

Let us give ourselves infinitely many of them and encode them in a series

$$
\bar{y}=y_{0}+y_{1} x+y_{2} \frac{x^{2}}{2}+y_{3} \frac{x^{3}}{6}+\cdots \quad \text { (i.v. encoding series) }
$$

From p and \bar{y} compute
δ the number of needed initial values
β the size of the polynomial system to solve

$$
p_{0}=p_{1}=\cdots=p_{\beta-1}=0
$$

Thm Every solution of the polynomial system (if any) can be prolongated into a formal power series solution $\overline{\bar{y}}$

Leading Coefficients are Now Given by a Polynomial $A(q)$

$$
\begin{aligned}
p(x, y) & =y \ddot{y}+\dot{y}^{2}-6 y \\
s(x, y) & =y \\
\bar{y} & =y_{2} \frac{x^{2}}{2}+\cdots \quad\left(y_{0}=y_{1}=0\right) \\
k & =2 \quad\left(\text { the valuation of } s(x, \bar{y}), \text { assuming } y_{2} \neq 0\right) \\
A(q) & =y_{2} q^{2}+15 y_{2} q+56 y_{2}-12
\end{aligned}
$$

For $\left(y_{0}, y_{1}, y_{2}\right)=(0,0,2)$ we have $\beta=\delta=8$

$$
\begin{array}{llll}
p_{3} \frac{7}{3} y_{3} & =0 & \frac{A(-3}{3!} \\
p_{4} & 1 y_{4}+\frac{5}{12} y_{3}^{2} & =0 & \frac{A(-2}{4!} \\
p_{5} & \frac{3}{10} y_{5}+\frac{7}{24} y_{3} y_{4} & =0 & \frac{A(-1}{5!} \\
p_{6} & \frac{5}{72} y_{6}+\frac{7}{144} y_{4}^{2}+\frac{7}{90} y_{3} y_{5} & =0 & \frac{A(0)}{6!} \\
p_{7} & \frac{11}{840} y_{7}+\frac{1}{40} y_{4} y_{5}+\frac{1}{60} y_{3} y_{6} & =0 & \frac{A(1)}{7!}
\end{array}
$$

We have found $y(x)=x^{2}$

An Undecidability Result

The problem: does a given ordinary differential polynomial system have any nonzero formal power series solution centered at the origin? is algorithmically undecidable [Singer, 1978]

Singer's argument relies on the following system

$$
\begin{aligned}
x \dot{y} & =\alpha y \\
\dot{\alpha} & =0
\end{aligned}
$$

which has a nonzero formal power series solution $y(x)=x^{\alpha}$ if and only if α is a nonnegative integer (Hilbert's 10th Problem)

Denef and Lipshitz formula permits to solve the existence and uniqueness problem of a formal power series solution under the assumption that we can determine k (over our example, we had to assume $y_{2} \neq 0$)

