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Abstract 

 

Diffusion through a half space involves a classical parabolic partial differential 

equation that is encountered in many fields of physics and has significant 

engineering applications, concerning particularly heat and mass transfer. However, 

in the specialized literature, the solution is usually achieved restricting the 

problem to particular cases and attaining apparently different formulations, thus a 

comprehensive overview is hindered. In this paper, the solution of the diffusion 

equation in a half space with a boundary condition of the first kind is worked out 

by means of the Fourier’s Transform, the Green’s function and the similarity 

variable, with a proof of equivalence – not found elsewhere – of these different 

approaches. The keystone of the proof rests on the square completion method 

applied to Gaussian-like integrals, widely used in Quantum Field Theory. 

 

Keywords: Parabolic PDE, Dirichelet problem, Mass diffusion, Heat Conduction, 

Square Completion Method 

 

1 Introduction 
 

   One of the most important mathematical methods of Quantum Field Theory is 

square completion to compute Gaussian integrals that arise from the Path Integral 
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Approach pioneered by Feynman [1 - 2]. As Zee [3] says, “Believe it or not, a 

significant fraction of the theoretical physics literature consists of performing 

variations and elaborations of this basic Gaussian integral”. Although all books at 

the advanced undergraduate and most books at the graduate level use the method 

of canonical quantization (which avoids Gaussian integrals) or defer path integrals 

to the last chapters, the book by Zee introduces path integrals from the beginning. 

   The purpose of this paper is to show how the square completion method to 

compute Gaussian-like integrals allows understanding the equivalence of 

apparently very different formulations of the solution of the standard parabolic 

PDE encountered in heat conduction and other diffusion problems that play an 

important role in many Engineering applications. A paper by Slutsky [4] applied 

the full-blown machinery of path integrals to diffusion in the context of polymer 

physics. A similar though shorter treatment of linear polymer molecules as 

random walks is found in earlier works such as the books by Schulman [5] and 

Carrà [6]. On the other hand, Hall [7] very recently discussed the connection 

between random walks and path integrals. Our purpose is somewhat more limited 

and, at the same time, more accessible to a broader audience. We want to show 

that an important integral, which lies at the core of the path integral approach to 

Quantum Field Theory, emerges naturally from the juxtaposition of classical 

methods to solve the diffusion PDE and highlights the hidden connections among 

them. 

 

2 Problem Statement 
 

   We consider an important class of partial differential equations in the general 

form 

                            uD
t

u 2



 (1) 

 

belonging to the category of parabolic equations. They are used to represent in 

different contexts a kind of transport referred to as diffusion [8]. For instance, 

setting 

 Tu  , temperature [K] and D , thermal diffusivity [m2 s-1], Eq. (1) 

describes heat conduction in a homogeneous isotropic continuum with 

constant properties and without heat sources. This equation was first derived 

by Fourier [9]. 

 
Acu  , molar concentration of the chemical species A [mol m-3] and 

ABDD  , binary diffusivity [m2 s-1], Eq. (1) describes ordinary diffusion of 

the chemical species A in a binary mixture A+B with constant total 

concentration 
BA ccc  . This equation was first derived by Fick. A more 

general form would involve the chemical potential of the species [10] but this 

approximation still describes a wide field of applications. For example, a 
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classical problem in Metallurgy is the estimate of the decarburization depth in 

steel [11]. A variant of the diffusion PDE is also used in Nuclear Reactor 

Physics to model neutron density in the one-speed approximation [12]. 

 u , probability density function of the velocity of a particle and D , 

diffusion coefficient. This is known as the Fokker-Planck equation with zero 

drift coefficient [13]. It is interesting to note that this equation has been 

recently applied beyond Physics to study the volatility in financial markets 

[14]. 

   A classical problem is the determination of  txuu ,  in a half space  0x , 

initially at a uniform value 0u  with the interface subjected to a first kind 

boundary condition for 0t  (Dirichelet’s problem). The differential problem is 

stated as 

                       02

2

0      ttx
x

u
D

t

u










 (2a) 

                        00 0     ttxuu   (2b) 

                          00     ttxtuu i   (2c) 

                        00     ttxuu   (2d) 

    

It is convenient to set 00 u  (note that if u  is a solution, 0uu   is a solution 

as well) and 00 t  conventionally. 

 

 

3 General Solution by Means of Fourier Analysis 
 

   The problem is approached by the Fourier analysis [15]. At first, we consider 

the Fourier transform of Eq. (2c) with respect to time 

                      




 dttitxuxU 


 exp,0
2

1
,0   (3) 

where   is the angular frequency [rad s-1]. On the other hand,  txu ,0  is 

recovered by the antitransform 

                      




 


dtixUtxu exp,0
2

1
,0   (4) 

    

Notice that Eqs. (3) and (4) have the same coefficient   21
2


 . However, 

different choices are possible. The reader is referred to Appendix A for a brief 

discussion on this subject. 

   The variable separation method is applied to Eq. (2a) looking for particular 

solutions in the form 
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                              tixXtxu e x p,    (5) 

 

as suggested by the integrand in Eq. (4). 

   Replacing in Eq. (2a) and dividing both members by  tiexp , an ordinary 

differential equation is obtained: 

 

                          0
2

2

 X
D

i

dx

Xd 
  (6) 

 

   The characteristic equation associated to Eq. (6) is 

 

                         02 
D

i
   (7) 

giving 

                          
D

i
    (8) 

which is often called wavenumber [16] [rad m-1]. 

   Hence, the general solution of Eq. (6) turns out to be 

 

              




























  x

D

i
Cx

D

i
CxX





 e x pe x p   (9) 

   Replacing in Eq. (5) 

              




























  x

D

i
tiCx

D

i
tiCtxu





 e x pe x p;,  (10) 

 

which is often called a thermal wave even though the second-order derivative with 

respect to time, characteristic of the wave equation, does not appear in Eq. (1). A 

thorough discussion about the concept of wave and thermal waves is given by 

Salazar [17]. 

   The boundary conditions Eqs. (2c) and (2d) are applied to calculate the 

coefficients  C  and  C . 

    

From Eq. (2c) 

                 tixUtiCCtxu  e x p0,e x p;,0    (11) 

then 

                               ,0  xUCC  (12) 

   From Eq. (2d) 

                           0;,lim 


txu
x

 (13) 
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   Eq. (13) is applied under the assumption that D  is real and positive. This 

requirement is actually a consequence of the second principle of thermodynamics. 

On the other hand, if D  were imaginary Eq. (1) would turn into the well-known 

Schrödinger equation which does not describe diffusive transport, hence is not 

treated here. 

 

   If 0 , recalling that 

 

                          
D

i
D

i

2
1


  (14) 

Eq. (10) becomes 

 

            

   

 























































































x
D

x
D

tiC

x
D

x
D

tiCtxu

2
e x p

2
e x p                

2
exp

2
exp;,







 (15) 

   Passing to the limit, Eq. (13), as u  must be finite   0 C  is obtained. 

   Hence 

                  







 x

D
itixUtxu

2
1e x p0,00;,


  (16) 

   Repeating the same procedure for 0  

                 













 x

D
itixUtxu

2
1e x p0,00;,


  (17) 

    

    If 0 , Eq. (15) reduces to a constant that can be neglected as Eq. (2a) 

only contains derivatives of u. 

   A unique representation is obtained introducing the sign function, strictly 

related to the Heaviside step function as it will be shown in Section 5: 

                 












 x
D

itixUtxu
2

s g n1e x p,0;,


  (18) 

   By integration over the angular frequency it is obtained 

                 


 











 





dx
D

itixUtxu
2

s g n1e x p,0
2

1
,  (19) 

which, for 0x , reduces to Eq. (4). 

   Finally, to eliminate the transformed function U it is convenient to express 

the boundary condition Eq. (2c) from Eq. (3) as follows 
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dtdx
D

ittitxutxu
t

2
sgn1exp,0

2

1
,

  

                                                              (20) 

    

Handbooks usually report particular cases of Eq. (20). The reader should address 

in particular the book of Prestini [18] where the presented approach is developed 

in a less general way but with very interesting practical applications. Restricting 

the attention to the heat conduction problem, many authors deal with the cases of 

constant and periodic heating [19 - 26] though the general problem is not 

discussed in detail. 

 

4 The Similarity Solution 
 

   Most of the cited bibliography directly refer to the similarity solution of (2a). 

Actually, dimensional analysis shows that the dependence on x  and t  is 

condensed in the combinations 

 

                           B
Dt

x

Dt

x
B  or      

2

 (21) 

    

The former is sometimes called the Boltzmann number, whereas the latter is 

simply known as the similarity variable. The physical meaning of B  is discussed 

in Appendix B. 

   Generally speaking, similarity solutions are only a subset of the existing 

solutions. In this case, however, it can be shown that all the solutions are 

self-similar. 

   Adopting the Boltzmann number, the following identities hold 

 

                          
x

B

x

B

t

B

t

B 2
   and   








 (22) 

                          
dB

du

t

B

t

u





 (23) 

                          
dB

du

x

B

x

u 2





 (24) 

                          
2

2

2

2

22

2 42

dB

ud

x

B

dB

du

x

B

x

u





 (25) 

    

Hence, replacing in Eq. (2a), an ordinary differential equation is obtained: 
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                           0
4

2
2

2





dB

du

B

B

dB

ud
 (26) 

 

which is written as a first order equation setting dBduu   

                            0
4

2



 u

B

B

dB

ud



 (27) 

   Integration yields 

                            











4
e x p

1

B
B

C
u  (28) 

   Restoring dBduu   and performing a second integration taking into account 

Eq. (21) 

                            2

2

1
4

e x p2 CdCu 












  


 (29) 

    

   The integral in Eq. (29) cannot be evaluated as a combination of elementary 

functions. It is a transcendental function as it is shown by the Liouville’s theory 

[27]. 

   It is customary to define the error function 

                              

z

dxxzerf

0

2exp
2


 (30) 

such that 

                              1lim   and   00
z




zerferf  (31) 

   It is then obtained from Eq. (29) 

                           
21

2
e r f CCu 











 (32) 

where multiplicative factors and additive constants have been lumped in 1C   and 

2C   respectively. 

   A particularly useful case study is obtained if Eq. (2c) is written as 

1 ,0 ,0  uxt . This implies 12 C  whereas the initial condition Eq. (2b) 

yields 11 C  so that 

                           









2
e r f1


u  (33) 

   This is the response of the half-space to a step variation of u  on its interface. 

Figures 1a and 1b report  2u  and  txu , , respectively, to clarify the meaning 

of the term similarity. It is evident that each spatial distribution of u  at a certain 

time instant is self-similar because, when reported in terms of the similarity 

variable  , all the distributions collapse into a unique curve. 
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(a) 

 
(b) 

 

Figure 1 – Response of the half-space to a step variation of u on its interface in 

terms of the similarity variable (a) and of the natural variables (b). 

 

   It is also evident that the diffusive transport described by (1) occurs 

instantaneously in contrast with the basic tenets of Special Relativity. Actually, 

since  txu ,  0  , the propagation speed turns out to be infinite, meaning that 

the effect of a perturbation at the interface 0x  is immediately felt at any 

distance from the interface. This is a theoretical problem arising from the 

constitutive equations relating the diffusive flux to the gradient of u , such as 

Fourier’s law and Fick’s first law. However, this effect is quite small in the most 

common situations and it is usually neglected [28]. 

   To show that all the solutions of the problem defined by Eqs. (2a) to (2d) are 

self-similar, it is convenient to switch to a dimensionless formulation. Recalling 

the definition of the Boltzmann number, Eq. (21), characteristic time ct  and 

length cL  are chosen arbitrarily such that 

                              1
2


c

c

Dt

L
 (34) 

   As 0ct , cc DtL   and, choosing cu  as a characteristic value of u, the 

following set of dimensionless quantities is identified 

 

 



Diffusion through a half space                                     7735 

 

 

                              
ccc u

u
u

t

t
t

L

x
x      ,   ,  (35) 

    

Replacing in Eqs. (2a) to (2d) the dimensionless problem results 

 

                        00   
2

2









 









tx
x

u

t

u
 (36a) 

                        00     1   txu  (36b) 

                          00       txtuu i  (36c) 

                        0    1   txu  (36d) 

    

   Hence,    iutxuu ;,  or  ciccc uuttDtxuuu ;, , the latter 

showing that a double infinity of solutions is derived by choosing arbitrarily cu  

and ct , i.e. the set of all the solutions is split into two equivalence classes. As 

each class includes only self-similar solutions, all the possible solutions are 

self-similar. 

   At this point it is interesting to seek a general solution of problem defined by 

Eqs. (2a) to (2d) in the form of infinite series of particular solutions like Eq. (33) 

where self-similarity is evident rather than Eq. (20). In the following it is 

discussed the method for representing the new form of the solution and the 

equivalence with Eq. (20). 

 

 

5 Integral Representations of the Dirac’s  Function and 

Heaviside’s Step Applied to the Diffusion Problem 
 

   The Dirac’s delta function is defined as [29] 

                            

 
 

 










1

0

   ,0

dxx

Rxx







 (37) 

   Accordingly, an important property is that any function  yf  can be 

represented as 

                                




 dxxyxfyf   (38) 

   There are different representations [30] of such a function that today 

mathematicians prefer to call more properly a distribution. A useful one for the 
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 purpose of this paper is found in Mandl [31] 

 

                            




 dyixyx exp
2

1


  (39) 

    

   The following developments justify this choice. Actually, if Eq. (3) is replaced 

in Eq. (4), it yields 

                               














dtdttitxutxu
t

exp,
2

1
,  (40) 

   On the other hand, according to Eq. (38) 

                             





t

tdtttxutxu ,,  (41) 

   Comparing Eq. (40) and Eq. (41) it is seen that 

                            




 


 dttitt exp
2

1
 (42) 

which is equivalent to Eq. (39). 

    

   The Heaviside’s step function is defined as [3] 

                             10   ,210   ,00  tHtHtH  (43) 

    

   The relation between H and the sign function used in Eq. (20) is formally 

expressed as 

                           12s g n  tHt  (44) 

    

   The application of the step function usually requires, as seen for the Dirac’s 

delta, suitable representations. For the purpose of this paper, it is convenient to 

use the following [32]: 

                        
 






 dz
z

itz

i
tH

exp

2

1


 (45) 

   Considering Eq. (39) it can be shown that 

                        
 

 t
dt

tdH
  (46) 

 

which is more easily understood if H  is thought as the limit of a ramp that rises 

from 0 to 1 about 0t . 

   This relation is useful to transform Eq. (38) in another useful representation of 

any continuous function. Integrating by parts 
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td
td

df
ttHf

td
td

df
ttHttHtf

td
ttd

ttdH
tftdtttftf

         

         



 (47) 

 

The geometrical meaning of Eq. (47) is a representation of  tf  as the 

superposition of elementary steps of height df  (Duhamel’s formula) [20]. 

Equation (47) is then applied to the solution of problem defined by Eqs. (2a) to 

(2d) as follows: 

                      
 










 td

t

tu
ttHutxu

,0
,0,0  (48) 

where   0,0 u  since no perturbation is applied at the interface before the 

initial time. In any case, the value of  ,0u  would be only an additive constant. 

The same holds for  ,0u  since any physical perturbation has finite duration. 

The solution is then built as a continuous linear combination of the particular 

solution, Eq. (33), corresponding to the response of the half space to a constant 

perturbation at the interface, that is 

                    
 

 
































 td

ttD

x
e r f

t

tu
ttHtxu

2
1

,0
,  (49) 

   It is worthwhile noting that the argument of the error function is prevented 

from assuming imaginary values when tt   because, in this case,   0 ttH . 

   Equation (49) clearly shows that the diffusion process obeys to the principle of 

delayed causality. Actually, a generic boundary condition at the interface is 

decomposed as the superposition of elementary steps, the response to which is 

delayed by the time interval tt  . Some attempts to modify the Fourier’s law in 

order to prevent an infinite speed of propagation of the perturbations, as observed 

in the previous section, happened to violate the delayed causality principle [33]. 

 

6 Solution by Means of the Green’s Function 
 

   The solution of Eq. (2a) in the same form as Eq. (20) is also obtained by 

means of the Green’s function [34]. Since the derivation is less straightforward 

than making use of the Fourier’s transform, only an outline will be given in the 

following. For this purpose, it is convenient to consider the inhomogeneous 

diffusion equation: 
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                          txS
x

u
D

t

u
,

2

2










 (50) 

 

where  xtS ,  physically represents a source term. 

   The Green’s function  xtG ,  is the solution of Eq. (50) if 

 

                              txtxtxS ,, 2   (51) 

 

under appropriate initial and boundary conditions, that is 

                         tx
x

G
D

t

G
,2

2

2










 (52) 

    

   The relation between u  and G  is found as 

                              









t x

tdxdttxxGtxStxu ,,,  (53) 

    

    The Green’s function is determined as follows. 

At first,  txG ,  is written as Fourier’s back-transform of   ,g : 

                         
 

     









 




ddxtigtxG exp,
2

1
,

2   

                                                              (54) 

   Then the partial derivatives that appear in Eq. (52) result respectively 

                        
 

     













 




ddxtigi
t

G
exp,

2

1
2   

                                                              (55) 

                       
 

     













 




ddxtig
x

G
exp,

2

1 2

22

2

  

                                                              (56) 

   Furthermore, from Eq. (39) it is found 

                         
 

   









 




 ddxtitx exp
2

1
,

2

2
 (57) 

   Replacing Eqs. (55), (56) and (57) in Eq. (52) the Fourier’s back-transform of 

the Green’s function results 

                           
2

1
,




Di
g


  (58) 
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   Hence, from Eq. (54) 

 

                      
 

  






  

dd
Di

xti
txG  













22

exp

2

1
,  (59) 

which is more conveniently rewritten as 

                      
 

    
 

dxItitxG 




 ,exp
2

1
,

2
 (60) 

with 

                      
 














 d

Di

xi
xI

2

exp
,  (61) 

   Integration is performed by means of the residuals theorem and the Jordan’s 

lemma in the complex plane along the loop depicted in Figure 2. The integration 

loop is suitably selected so that, when lR , only the contribution along the 

diameter (which extends to the whole real axis) is different from zero, as a 

consequence of the Jordan’s lemma. 

   The integrand poles are: 

                          

   

   















D
iP

D
iP

2
10

2
10









 (62) 

 

 

 
Figure 2 – Integration loop and poles of the integrand for Eq. (61). Black dots 

represent the poles for 0 , the white ones for 0 . 
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   As lR  the integration loop only includes two poles, one for 0  and 

the other for 0 , which are unified by the sign function: 

                       
D

iP
2

s g n1s g n


   (63) 

   The residual is then 

                   
 

  

  
D

i

x
D

i

Di

xi
PR

P 










 2
s g n

2
s g n1e x p

e x p
lim

2























  

                                                              (64) 

   Hence, the residuals theorem allows writing 

                    

  

  
D

i

x
D

i

xI








2

s g n1

2
s g n1e x p2

,

















  (65) 

   Finally, replacing Eq. (65) in Eq. (60) 

                   

  

  
































d

D
i

x
D

iti

txG
2

sgn1

2
sgn1exp

2

1
,  (66) 

   The partial derivative of Eq. (66) with respect to x 

                     


 
























dx
D

iti
x

G

2
sgn1exp

4

1
 (67) 

coincides with Eq. (20) if the boundary condition is set as 

                    
 
2

,0
t

txu


  (68) 

   Actually, replacing Eq. (68) in Eq. (20) it follows 

                       


 




















dx
D

ititxu
2

sgn1exp
4

1
,0   

                                                              (69) 

    

   Despite the different sing in the square brackets, Eqs. (67) and (69) describe 

the same scalar field: it is sufficient to replace simultaneously   with   and 

t  with t . 
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In summary, it has been shown that the solution of Eq. (2a) with the boundary 

condition Eq. (68) is equivalent to the solution of Eq. (52). In other words, 

through the Green’s function the solution of the homogeneous diffusion equation 

is derived from the inhomogeneous one endowed with a suitable source term. 

 

7 Equivalence of the General Solutions by Means of the Square 

Completion Method 
 

   Apparently, the two general solutions developed in Sections 3 and 5, 

respectively, are quite different. In particular, Eq. (20) involves two improper 

integrals whereas only one appears in Eq. (49); Eq. (20) involves complex 

functions, whereas Eq. (49) is restricted to the real field; Eq. (20) involves the 

boundary condition  tu ,0 , whereas its derivative with respect to time appears in 

Eq. (49). Nevertheless, the boundary value problems involving Eq. (1) do have a 

unique solution [19] so that Eq. (20) and Eq. (49) must be equivalent. The proof 

of equivalence is given in the following. 

 

   Equation (20) is written as 

               






 




































dx
D

itdttitxutxu

t
2

sgn1expexp,0
2

1
,

 (70) 

   The inner integral is solved by parts considering that 

    0,0,0  txutxu  

 

           
 

  












 tdtti

t

txu

i
tdttitxu

t




 exp
,01

exp,0  (71) 

    

   Replacing in Eq. (70) 

    
  

  
 

 































t

td
t

txu
dx

D
i
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i
txu













,0

2
sgn1exp

exp

2

1
,   

                                                              (72) 

   Comparison between Eq. (49) and Eq. (72) shows that their equivalence 

would imply 

            

 
 

  
  



 























































dx

D
i
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i

ttD

x
erfttH

2
sgn1exp

exp

2

1

2
1

 (73) 
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   Denoting the left hand side as 1M  and the right hand side as 2M , both are 

rewritten eliminating  H  and  sgn   

 

                        
  






ttDx

dM
2

2

1 exp
2




 (74) 

                       


 







 





dx
D

i
tti

i
M exp

1

2

1
2  (75) 

   It will be shown that 

                       
x

M

x

M








 21  (76) 

  

which implies 21 MM   apart from an integration constant that is equal to zero 

according to the initial condition Eq. (2b). 

 

   From the Leibnitz formula 

                      
   


















ttD

x

ttDx

M

4
e x p

1 2

1


 (77) 

 

                       


 

















dx

D

i
tti

D

i

ix

M
exp

2

12  (78) 

    

   The latter expression is manipulated as first by applying to the argument of the 

exponential the square completion method [35], widely used in Quantum Field 

Theory to compute path integrals [5], [36]. 

 

              
   ttD

x

ttD

x
ttix

D

i
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42

2
2




  (79) 

   Hence 

     
 

 
 



 













































d

ttD

x
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D

i

ttD

x

ix

M
2

2

2

2
e x p

4
e x p

2

1

  

                                                              (80) 

   The integral in Eq. (80) is solved by substitution setting 

                         
 ttD

x
ttiy




2
  (81) 
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   Hence 

         
   

 


































 dyy

ttD
d

ttD

x
tti

D

i 2

2

exp
2

2
exp 


  

                                                              (82) 

   Further replacing 
2

2
2 z

y   implying dz
i

dy
2

2
  

                        
















 dz

z

i
dyy

2
exp

2

2
exp

2
2  (83) 

   It is known [36] that 

                      2
2

e x p
2















dz
z

 (84) 

    

   Incidentally, it is worthwhile mentioning that the first mathematician who 

studied the so-called Gaussian integrals was not Gauss but De Moivre in 1733 

[37]. 

   Replacing Eqs. (62) to (64) in Eq. (80) yields, finally 

                     
    x

M

ttD

x

ttDx

M






















 1

2

2

4
e x p

1


 (85) 

 

The equivalence of Eq. (20) and Eq. (49) is then proven thanks to the decisive 

resort to the square completion method, just as in many gaussian-like integrals 

found in the path integral approach to Quantum Field Theory. 

 

Appendix A 
 

   A few not quite trivial aspects about the Fourier transform require explanation 

to avoid misunderstanding. Eqs. (3) and (4) represent, respectively, the Fourier 

transform and the inverse Fourier transform of a function  tu . However, this 

representation is not unique, as different choices of the coefficients are possible 

[18] provided that their product is   1
2


 . In this paper the symmetric 

representation is used, i.e., both the coefficients are set equal to   21
2


 , but it is 

also common to find the anti-symmetric convention, where the factor   1
2


  

only appears in the inverse Fourier transform. On the other hand, this requirement 

on the coefficients could even be removed, as shown in James [38]. The preface 

of this book introduces the subject of Fourier’s analysis with this witty remark: 

“Showing a Fourier transform to a physics student generally produces the same 

reaction as showing a crucifix to Count Dracula”. An interesting historical 

overview of the Fourier Transform is given by Bracewell [39]. 
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Appendix B 
 

   Dimensional analysis is probably the easiest way to define the Boltzmann 

number. Nevertheless, its physical meaning is better understood considering 

diffusion at a molecular scale and introducing the concept of random walk [40]. 

   Consider a particle of a species A that diffuses through a substance B 

undergoing a random walk described by a broken line ...3210 PPPP where points 0P , 

1P , 
2P , ...3P  correspond to the particle random strikes. Neither the location of 

the points nor the length of the vector paths ... , , 322110 PPPPPP  can be predicted. 

However, if the random walk is made of a very large number of paths, some 

general property is statistically inferred. The final position NP  is related to the 

starting point 0P  by the relation 

                          



N

n

nnN PPPP
1

10
 (B1) 

   The absolute value of the overall path length is given by 

 

                          NNN PPPPPP 00

2

0   (B2) 

   The scalar product in Eq. (B2) is a summation of 2N  terms that comprises 

two subsets. The first one if formed by N  terms referring to the scalar product 

of a vector by itself. If N  the average value 

 

                          2

1

2

1

1
LPP

N

N

n

nn 



 (B3) 

is interpreted as the square of a random walk characteristic length. Similarly, it is 

defined an average time interval t  between two successive strikes such that the 

final position NP  is reached after the time 

 

                             tNNT   (B4) 

   The second subset contains the remaining NN 2  terms that are scalar 

products of couples of vectors 
nn PP 1

 with different indices. Due to the random 

nature of the particle motion, these vectors are uncorrelated both in direction and 

in absolute value, thus for N  their contribution is negligible. 

Consequently, from Eqs. (B3) and (B4), Eq. (B2) becomes 
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L
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2
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This result is written in a more interesting form as 

                             1
2

2

0



t

L
T

PP N

 (B6) 

where the left hand term shows the same form of the Boltzmann number Eq. (21) 

through the correspondences between 
2

0 NPP  and 2x , T  and t , 
t

L



2

 and D . 

   This heuristic argument is also useful to understand the microscopic origin of 

irreversibility: at each interaction of the particle, any information about the 

previous one is lost, hence diffusion cannot be inverted. A recent paper by Brazzle 

[41] discusses a pedagogical method to simulate diffusion by means of 

spreadsheet computation, which is widely available. Actual random walks are 

built on a variety of lattices. However the easiest method remains the one 

followed by Gautreau [40]. 
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