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1 Introduction

1.1 Preface

Electrons are massive, charged, elementary particles with a half-integer
spin, that govern the behavior of most atoms and materials. In condensed
matter physics, quantum mechanics is used to predict their behavior, lead-
ing to remarkable and sometimes counter intuitive phenomena. While free
electrons in vacuum are well understood, in condensed matter systems,
electrons acquire unusual properties from their interaction with the atomic
lattice.

Since the discovery of the mono-layered carbon crystal graphene [1, 2]
we know, that they can behave as massless particles called Dirac and
Weyl fermions. These exist as low energy excitations giving electrons
relativistic behaviour on non-relativistic-scales with a constant velocity
analogous to the speed of light. In other systems where superconductiv-
ity [3] is present electrons can exhibit transport without resistance as a
consequence of a Cooper pair condensate. This allows for exotic Bogoli-
ubov excitations that unlike free electrons are not eigenstates of charge.
Under special circumstances such Bogoliubov excitations can mimic spe-
cial Majorana particles. In these systems electron excitations uniquely
act as their own anti-particles [4]. While such states were first predicted
in particle physics it turns out that they can be realized as elementary
excitations in topological superconductors.

These examples highlight that, despite their apparent simplicity, elec-
trons can exhibit a plethora of fascinating quasi-particle excitations in
condensed matter systems. This thesis will examine the interplay of the
above mentioned phenomena that arise in robust systems as a consequence
of different symmetries as well as topological properties [5]. We will exam-
ine how such massless Dirac, Weyl, and Majorana quasi-particles interact
with the magnetic field giving rise to new and unique phenomena. In par-
ticular, this thesis will examine the formation of zeroth Landau levels in
superconducting systems, find transport signatures in Weyl superconduc-
tors [6, 7], as well as study a new type of delocalized solutions in the Fu-
Kane model [8]. It will explore disordered massless systems, finding new
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1 Introduction

predictions of localized states as well as unique spectral properties. Fi-
nally, it will study the recently predicted Kramers-Weyl semimetals [9, 10]
and show a new characteristic signature of the magneto-conductance.

While this thesis covers various different realizations of massless sys-
tems, the rest of this chapter will focus on introducing two of the most
relevant and recently discovered systems. After a brief demonstration
how massless fermions can arise in condensed matter system we will firsly
show how the interplay between Dirac states in a topological insulator and
superconductivity [11, 12] can give rise to the so called Fu-Kane model.
This part will describe how such a model can exhibit a transition between
a gapped and a gapless phase, as well as how this transition can inter-
play with the magnetic field to create Majorana excitations. Second, we
will focus on a recent realization of three-dimensional Weyl fermions [13],
demonstrating their special topological protection and discussing their
surface states, which give rise to new characteristic signatures.

1.2 Massless fermions in electronic systems

In the field of condensed matter physics, our focus lies on the study of
electrons far away from the relativistic limit. To predict their dynamics,
we use the well known Schrödinger equation

i~∂tΨ =

(
− ~2

2m
∇2 + V

)
Ψ. (1.1)

The right-hand side consists of two terms, − ~2

2m∇2 represents the kinetic
part, while V (x) describes the potential felt by the particles. When the
potential term is vanishing, the equation describes free electrons with the
well known quadratic dispersion relation

E =
p2

2m
, (1.2)

connecting the energy and momentum. When electrons interact with
the environment through the potential V (x), we can no longer write down
such a dispersion relation, as momentum is no longer a good quantum
number. In condensed matter physics, we are mostly interested in the be-
haviour of electrons inside crystal structures. These can be described by a
periodic potential that arises from the atomic structure. As a consequence
of this periodicity, we can define a new quasi-momentum quantum number
that forms a translationally invariant eigenspace.This quasi-momentum is
restricted to the finite Brillouin zone due to the periodic structure of the
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1.2 Massless fermions in electronic systems

potential. In such basisc we can diagonalize the Hamiltonians of crys-
talline systems and find new quasi-momentum dispersion relations.

For different forms of periodic potentials, the relation between the en-
ergies and quasi-momentum can take diverse forms. While the dispersion
now has to be periodic, in the simplest example, it still remains effec-
tively quadratic around the center of the Brillouin zone. As the quadratic
curvature can change, it can influence low-energy behaviour, altering the
effective mass of the low energy excitations. This can give rise to very
heavy quasi-particles with a flattened dispersionc as well as light excita-
tions with a vanishing effective mass.
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Figure 1.1: Example of a single band tight-binding Cosine dispersion. The
dispersion around the minima of the band resembles free electron quadratic
dispersion relation with a renormalized effective mass.

When the effective mass of elementary excitations becomes sufficiently
small, the corresponding quasi-particles need to be described by a rela-
tivistic theory. In this limit, we have to include a spinor degree of freedom
to satisfy the relativistic symmetries. These spinors can arise from the
various orbital degrees of freedom as well as the actual electron spin. In
such systems, we can describe the elementary excitations of electrons,
using the full relativistic Dirac equation. In two-dimensional case, this
reduces to

i~∂tΨ = (vfσxkx + vfσyky +Meffσz)Ψ, (1.3)
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1 Introduction

where we have assumed an isotropic Fermi velocity vf and used σ to
denote the two-dimensional Pauli matrices. Such an effective theory de-
scribes two species of quasi-particle excitations with symmetric disper-
sions

E± = ±
√
v2
fk

2
x + v2

fk
2
x +M2

eff. (1.4)

In general, most crystals can exhibit perturbations that keep such an
effective mass term finite. In such systems, the quasi-particle dispersion is
gapped with a quadratic behaviour for small momentum. However, some
crystals exhibit special symmetries that disallow such an effective mass.
In such cases, the two bands of the dispersion cross, resulting in a fully
gapless quasi-particle dispersion

E± = ±vf |~k|. (1.5)

These special types of quasi-particles, called massless fermions, exhibit
a relativistic linear dispersion. They propagate at a constant velocity vf
mimicking the behaviour of photons. Such massless excitations can be
generalized to different dimensions, giving rise to Majorana, Dirac and
Weyl quasi-particles. While these can arise as a consequence of various
crystalline symmetries, their protection can be understood using topolog-
ical arguments. With these, it is possible to prove the robustness of such
emergent relativistic excitations as well as the universality of their unique
properties.
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1.3 Dirac fermions to superconducting Majorana excitations
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Figure 1.2: (a) Dispersion around an avoided band crossing with a quadratic
behaviour around the band minima. (b) An example of a system where the
band crossing is protected, giving rise to a gapless point in momentum space
with a linear dispersion.

1.3 Dirac fermions to superconducting
Majorana excitations

In condensed matter physics, two dimensional massless fermions are called
Dirac fermions. They can be described by the two dimensional Dirac equa-
tion where a special symmetry prevents the additional mass term. Nature
presents us with various mechanisms that can protect these quasi-particle
excitations. One of the most famous examples is the single layer carbon
crystal graphene where its two gapless Dirac points are protected by an
approximate sublattice symmetry arising from the underlying hexagonal
lattice.

This thesis explores a more recent realization of Dirac fermions, specif-
ically surface excitations of a three-dimensional topological insulator. In
such systems, each surface exhibits a strongly protected Dirac cone due
to time-reversal symmetry. We will examine how the interplay between
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1 Introduction

such Dirac states and superconductivity gives rise to the Fu-Kane topo-
logical superconductor. While superconductivity in general gaps out the
Dirac fermions it is well known that in this model strong supercurrent can
be used to restore such gapless points. We have found that such super-
currents can induce another transition in the presence of magnetic field,
where Majorana zero-modes extend into a novel extended superconduct-
ing state resembling a Landau level. To combine all these ingredients we
will first focus on the way the magnetic field affects massless fermions.
We will then examine the proximity effect and the Fu-Kane model and
finally combine all these ingredients to discuss the Majorana zero energy
excitations.

1.3.1 Zeroth Landau level in a 3D topological
insulator

We start by introducing the three-dimensional topological insulator. We
generally define insulators as non-conducting systems characterized by a
large gap around the Fermi energy. Such gapped insulating systems are
classified as trivial if they can be continuously transformed into the atomic
limit and are therefore topologically equivalent to the vacuum. However,
not all insulators can be described in this way. There exists a special type
of insulator that cannot be transformed into the atomic limit without
closing the band-gap. These systems are called topological insulators and
are characterized by special edge states that arise from the gap closing on
the interface between the topologically non-trivial insulating bulk and the
trivial vacuum. In three dimensions, such topological insulators exhibit
two-dimensional surface states, which can be described by the effective
surface model

HTI = τzσxkx + τzσyky + τxσ0M(~k). (1.6)

Each surface of the three-dimensional topological insulator, represented
by Pauli matrices τ , exhibits a single Dirac fermion coupled together by
an effective mass term M(~k). The surfaces become fully decoupled when
they are separated from each other. In this limit, each surface exhibits a
single Dirac fermion that is protected by the time-reversal symmetry.
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1.3 Dirac fermions to superconducting Majorana excitations

Figure 1.3: Schematic representation of a three-dimensional topological insu-
lator. Each of the two surfaces (blue) exhibits a massless Dirac fermion.

When massless Dirac fermions are subjected to a magnetic field, they
exhibit a unique type of energy spectrum. In classical mechanics, charged
particles experience a Lorentz force that causes them to move in circular
trajectories known as cyclotron orbits. While this intuition can hold down
all the way to the quantum level, in quantum mechanics not all such orbits
allowed. We call this discrete set of possible states in a magnetic field
Landau levels[14]. These levels can be calculated by incorporating the
magnetic field into the free particle Schrödinger equation, resulting in a
quantized energy spectrum

En = ~ωc
(
n+

1

2

)
, (1.7)

where ωc = eB
m is the cyclotron frequency and n is a non-negative integer

number. When we study massless fermions, the quantization condition
changes into

ELLmassless = ±
√

2n~eBv2
f , (1.8)

where vf represents the Fermi velocity. The Landau levels are no longer
equally spaced and allow for a new type of cyclotron orbits that are bound
to exactly zero energy. These states are called zeroth Landau levels.
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Figure 1.4: The dispersion Landau levels (red) compared to their initial disper-
sion (gray) for (a) massive and (b) massless particles compared to their initial
dispersion.

1.3.2 Proximity effect and the Fu-Kane model

We can now explore what happens to the Dirac surface states under the
effect of superconductivity. While there are a number of materials that
can exhibit inherent superconducting properties at low temperatures, they
usually belong to the class of trivial superconductors. Alternatively, it
turns out that creating an interface between a superconducting and non-
superconducting material can allow Cooper pair tunneling. This process
is called the proximity effect and can induce an effective superconducting
pairing. Such proximitized systems can be described by the Bogoliubov-
De Gennes Hamiltonian

HBdG =

(
H(~k) ∆

∆† −T H(~k)T

)
, (1.9)

where ∆ denotes the superconducting pairing and T represents the
time-reversal symmetry. This method allows us to describe the mean-field
superconducting Hamiltonian by doubling the degrees of freedom. In par-
ticular, we artificially add hole-like degrees of freedom to the electronic
Hamiltonian and couple them together with a superconducting pairing
term ∆. Although superconducting states are not eigenstates of the elec-
tron number, this doubling allows us to introduce effective single-particle
excitations called the Bogoliubov quasi-particles.

This thesis focuses on a special model of a topological superconductor
called the Fu-Kane model. Such systems arise when we create an inter-
face between a three-dimensional topological insulator and a conventional
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1.3 Dirac fermions to superconducting Majorana excitations

superconductor. In this case, the Bogoliubov De-Gennes doubling cre-
ates an additional hole-like Dirac fermion on each surface. The pair of
Dirac fermions can now couple through superconducting pairing without
violating the time-reversal symmetry. Such coupling gives us the gapped
dispersion of the Fu-Kane model.

One of the characteristic signatures of superconductors is a dissipation-
less current called the supercurrent. This current can be interpreted as
the momentum of Cooper pairs. Such a current can split the electron-like
and hole-like states in the Brillouin zone. In the particular case of the Fu-
Kane heterostructure, this can separate the Dirac fermions in momentum
space. We can see this in the Bogoliubov de-Gennes Hamiltonian

HBdG =

(~k − ~K
)
· σ ∆

∆† −
(
~k + ~K

)
· σ

, (1.10)

in which the supercurrent momentum ~K acts as a constant vector po-
tential. It turns out that such separation slowly decouples the two Dirac
fermions. It was shown a sufficient super-current can fully counteract the
superconducting pairing creating a transition, restoring the gapless Dirac
cone.

Figure 1.5: Dispersion of a Fu-Kane model with increasing suppercurrent
strength (left to right), showing the transition from gapped massive Dirac fer-
mions in a Fu-Kane model to the gapless Dirac states.

1.3.3 Majorana zero-modes in a topological
superconductor

In our research, we investigated the effect of a magnetic field on the gap
closing transition in the Fu-Kane model. As this is a superconducting sys-
tem, the effects of a magnetic field can be very different. It is important to
note that superconductors exhibit a specific property called the Meissner
effect, whereby they expel the effects of magnetic fields. This phenomenon

9



1 Introduction

implies that the effects of a magnetic field cannot penetrate a supercon-
ductor beyond a certain depth, known as the London penetration length.
If we are interested in the effects of a magnetic field on bulk superconduc-
tors, we must focus on a specific group of superconductors called type-II
superconductors. In this case, the magnetic field penetrates the super-
conductor in the form of localized defects called Abrikosov vortices[15].
These vortices are strong defects that carry exactly one quantum of mag-
netic flux, denoted as Φ0 = h/(2e). The size of the defects is characterized
by the superconducting coherence length, denoted as ξ, which is approxi-
mately equal to 1/∆0, while they carry the flux Φ0 with circulating super-
currents that persist on a larger scale of the London penetration depth.
At the level of wavefunctions, the Abrikosov vortices induce a winding of
the superconducting phase parameter around their core by 2π.

Figure 1.6: Schematic representation of a type-II superconductor in a magnetic
field. The figure shows the magnetic flux-lines penetrating the superconducting
sample through vortices. Each vortex carries a single φ0 flux quanta and exhibits
a circulating supercurrent flow ~vs.

In the gapped regime of the Fu-Kane model, vortex defects trap a spe-
cial type of zero-energy excitation called Majorana zero-modes. These
quasi-particles are unique in that they are their own antiparticles. Al-
though they were originally predicted in particle physics to describe neu-
trinos, they can also appear in condensed matter systems as a consequence
of particle-hole symmetry. This is an anti-unitary symmetry that anti-
commutes with the Hamiltonian, resulting in eigenstates of a Bogoliubov-

10



1.3 Dirac fermions to superconducting Majorana excitations

de Gennes Hamiltonian that are symmetric around zero energy. While
eigenstates will generally occur in pairs around zero energy, a single zero-
energy excitation cannot be gapped as long as the symmetry is preserved,
resulting in isolated zero-energy excitations known as Majorana quasi-
particles. These quasi-particles are eigenstates of the particle-hole sym-
metry and appear as equal superpositions of electrons and holes. To form
a complete basis, such states always appear in pairs. Although this may
appear to nullify their protection, they can be strongly spatially separated,
allowing for protection against splitting from E=0 symmetrically in pairs.
Majorana operators can be defined from their fermionic counterparts as

γ1 = c† + c = γ†1 (1.11)

γ2 = i
(
c† − c

)
= γ†2. (1.12)

Because these operators are their own Hermitian conjugates, they ex-
hibit a special commutation relation

{
γi, γj

}
= 2δi,j . (1.13)

When these properties are combined, it turns out that Majorana zero-
energy excitations exhibit non-abelian exchange statistics. This means
that, unlike fermions and bosons, an exchange of Majoranas can fully
change the quantum state. This unique property, combined with their
strong protection, can be used in quantum computation to generate stable
topological qubits that are protected from all local decoherence effects.
Therefore, it is crucial to explore and discover viable new systems where
Majorana zero-energy excitations can appear.

In the case of the Fu-Kane model, these Majorana states are bound to
the vortex cores. Each vortex binds an exponentially localized zero-energy
solution. These states appear in the presence of a magnetic field inside
the superconducting gap, with a degeneracy equal to the number of flux
quanta, N = φ/φ0.
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1 Introduction

Figure 1.7: Probabilty density for zero mode solutions in a Fu-Kane supercon-
ductors. Majorana zero-modes are bound to the vortices of a superconductor
with a characteristic exponential decay.

While these are the characteristic excitations in the gapped regime, it is
known that the Fu-Kane superconductor becomes gapless in the presence
of a strong supercurrent. We have shown that such gapless points exhibit
a special type of zero-energy Landau levels. However, it turns out that
this is not always the case for superconducting systems. Even though
the magnetic field can become almost homogeneous in a sufficiently dense
vortex lattice, the vortices still act as scatterers, which generally broadens
the predicted zeroth Landau level[16].

In this thesis, we will present an example where a special symmetry
prevents this broadening. We will demonstrate that the Fu-Kane model
exhibits a unique type of symmetry called chiral symmetry. This is a local
unitary symmetry that anti-commutes with the Hamiltonian. It allows us
to write the Hamiltonian in a distinctive off-diagonal form described by

Hchiral =

(
0 Ξ

Ξ† 0

)
. (1.14)

This special form of the Hamiltonian enables us to invoke a theorem
known as the Index theorem [17]. This theorem tells us that chiral Hamil-
tonians exhibit a unique integer value known as the index. This index
can be calculated from the matrices Ξ and Ξ† by looking at their cor-
responding kernels. While the dimensionality of the kernels (number of
zero modes) of each of these two matrices can vary strongly, it turns out
that their difference is very robust. This difference then defines the index,
a topological invariant that cannot change under smooth local perturba-
tion. Moreover, this invariant directly corresponds to the total number of
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1.4 Weyl fermions in Kramers-Weyl semimetals

zero-modes in the system. Therefore, as long as the chiral symmetry is
preserved, the number of zero-modes is conserved by a special topological
protection. In this thesis, we will demonstrate that this invariant can not
only predict the Majorana zero-modes, but remains unchanged when the
Fu-Kane model transitions to the gapless regime. We will show how this
leads to a new zero-energy superconducting state, where Majorana states
delocalize into an extended Landau level state.

1.4 Weyl fermions in Kramers-Weyl
semimetals

The concept of massless fermions can be extended to three dimensions,
where they are known as Weyl fermions. These are found in specific
systems called Weyl semimetals [13]. In a two-band theory of a three-
dimensional crystal, there are no possible perturbations that could gap out
a Weyl cone. This is due to the fact that a three-dimensional Dirac equa-
tion requires a four-dimensional representation to describe massive par-
ticles. Thus, the protection of the gapless Weyl points is much stronger,
as they can only couple in pairs with opposite chirality. As we will later
see, they are protected by a topological number directly related to the
chirality of the Weyl fermion. This means that systems exhibiting Weyl
fermions, unlike Dirac systems, do not require an additional symmetry;
they only require pairs of Weyl fermions to be well separated. Such pairs
are then reconnected on the surface of Weyl semimetals with a special
class of two-dimensional surface states called Fermi arcs.

As Weyl cones in nature always appear in pairs of opposite chirality,
Weyl semimetals need to either break time-reversal or inversion symme-
try. This allows pairs of Weyl cones in momentum space to be split so that
gapless points do not overlap. While there are many different realizations
of Weyl fermions in nature, this thesis will focus on newly described sys-
tems that exhibit Kramers-Weyl fermions [9, 10]. These occur in crystals
with preserved time-reversal symmetry but broken inversion symmetry.
We have found new unique signatures of these novel states, specifically a
new type of magneto-oscillations that arise as a consequence of charac-
teristic long Fermi arcs as well as unique spectral statistics. To introduce
this work, we will first discuss the general protection of three-dimensional
gapless Weyl nodes. We will then focus on the specific form of Kramers-
Weyl systems. Finally, we will explain the idea of Fermi arcs as one of
the characteristic signatures of three-dimensional massless fermions and
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1 Introduction

explain their special extended form inside Kramers-Weyl semimetals.

1.4.1 Topological protection

As previously mentioned, the protection of Weyl points, unlike Dirac
cones, does not require additional symmetries. This can be easily under-
stood by examining the Weyl Hamiltonian, which shows that any pertur-
bation that maintains translation symmetry will simply shift the Weyl
cones in momentum space, while keeping a linear dispersion EWeyl ±√

(kx − Vx)2 + (ky − Vy)2 + (ky − Vy)2 without introducing an effective
mass.

-1.0 -0.5 0.0 0.5 1.0
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Figure 1.8: Gapless dispersion of a Weyl fermion. Left panel shows a Weyl
cone in the center of the Brillouoin zone while the right panel shows a cone
shifted in momentum space by a Vzσz perturbation.

This type of protection is indeed very strong and quite peculiar, as we
know that there must exist an atomic limit in which any system becomes
strongly gapped. It is possible to achieve such a limit by coupling together
two Weyl fermions, as is done in a four-dimensional representation of the
Dirac equation. This process is naturally resolved in nature, as Weyl
fermions can only appear in pairs. This allows the Weyl point to gap out,

giving us a fully gapped dispersion Emassive = ±
√
k2
x + k2

y + k2
z +M2 that

arises from the four-band Hamiltonian

HMassive = τz(~σ · k) + τxM. (1.15)

Here the τ Pauli matrices describe the different Weyl cones, with τz
representing two Weyl fermions with opposite chiralities, which plays an
important role in the gap opening mechanism.

We can rewrite this argument independently of the exact form of the
Hamiltonian by defining a topological invariant that characterizes each
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1.4 Weyl fermions in Kramers-Weyl semimetals

Weyl cone and its protection. To do so, we must examine the behavior of
the Berry curvature

Ωn(~k) = ∇k ×An(R), (1.16)

which takes the form of a quasi-magnetic field arising from the Berry
connection An. Such quasi-magnetic field defined by the Berry curvature
acts as a magnetic monopole around the Weyl points, with the charge of
such a monopole depending on the chirality of the Weyl fermion. As this
charge takes discrete values, we know that no perturbation can remove it
in a continuous manner. This charge therefore defines a topological invari-
ant that tells us that such a Weyl point cannot be removed by itself. The
only way to cancel out the monopole of the Berry curvature is to combine
it with an additional monopole of opposite charge. This argument agrees
with our previous prediction but is less reliant on the exact shape of the
Hamiltonian. It tells us that as long as our system exhibits such unmerged
monopoles in the Berry connection, the corresponding Weyl points will
remain protected.

To summarize, the protection of Weyl points does not require additional
symmetries, and it is a strong and peculiar type of protection. Coupling
together two Weyl fermions can lead to a fully gapped dispersion, while
the behavior of the Berry curvature provides a topological invariant that
characterizes the protection of each Weyl cone.

Figure 1.9: A schematic of the reconnection of two opposite monopoles of the
Berry connection around the Weyl points.

1.4.2 Kramers-Weyl semimetal

We will now focus on a specific realization of Weyl fermions that occurs
in Kramers-Weyl semimetals. Such systems are very exciting as they can
not only provide a new approach to discovering materials described by
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Weyl physics but also exhibit new characteristic behavior that is absent
in conventional Weyl semimetals. This new type of massless excitation
arises as a consequence of the preserved time-reversal symmetry. Specif-
ically, we know that time-reversal symmetric systems exhibit a special
degeneracy at time-reversal invariant points known as the Kramers de-
generacy. This means that we can find gapless points at each corner of
the three-dimensional Brillouin zone. As most crystals are invariant under
inversion symmetry, which relates E↑(k) = E↑(−k), the expansion around
the gapless form must be even in momentum. This usually results in fully
doubly degenerate bands around corners of the Brillouin zone with an
effective quadratic dispersion.

However, we can focus on special chiral crystals that break inversion
symmetry while still preserving time-reversal symmetry. These systems
still have Kramers doublets at all the corners of the Brillouin zone but
now exhibit a linear ~σ · ~δk expansion that describes Weyl excitations. This
implies that all effective two-band models with time-reversal symmetry
that break inversion symmetry will exhibit Weyl fermions at all the time-
reversal invariant points in the Brillouin zone.

While this statement seems very robust, it turns out that while these
Weyl cones are guaranteed to exist, they may not be easy to observe. This
is because of two additional properties of such systems. First, the Weyl
nodes can be strongly spread out in energies and can be quite far away
from the Fermi surface. Second, our arguments arise from the expansion
of the Hamiltonian for small momentum around the special degenerate
points. While this expansion is generally linear, nothing forbids the ap-
pearance of higher-order quadratic terms. This means that the Kramers-
Weyl cones are well-defined on the momentum scale where the linear term
remains the governing part of the expansion. In reality, this tells us that
we must consider systems that exhibit strong spin-orbit coupling in ad-
dition to the given prescription to study this novel realization of Weyl
fermions.
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1.4 Weyl fermions in Kramers-Weyl semimetals

Figure 1.10: A schematic example of a generic two band dispersion for a)
preserved, b) broken inversion symmetry. c) Schematic of the Kramers-Weyl
Brillouin zone, identifying the time-reversal invariant momenta and their core-
sponding Weyl cones.

Now that we have understood the mechanisms responsible for the emer-
gence of Kramers-Weyl fermions, it is important to explore the distin-
guishing features of these systems as compared to conventional Weyl semi-
metals. As we have already mentioned, Weyl fermions can only appear
in pairs of opposite chiralities in nature. In contrast to a conventional
three-dimensional semimetal, which typically hosts one or two pairs of
massless fermions, Kramers-Weyl semimetals always exhibit four pairs of
Weyl fermions with alternating chiralities. Since all these cones are pre-
cisely located at time-reversal-invariant momenta, they are guaranteed
to have a strong separation in momentum space. This not only confers
them with unusual robustness but is also quite distinct, as it is generally
difficult to strongly pair Weyl fermions in the Brillouin zone. The large
separation of the cones is responsible for unique signatures, as it forces
the Fermi arc surface states that connect the Weyl cones to span over the
entire Brillouin zone.

1.4.3 Fermi arcs

We have demonstrated that each Weyl point carries a topological invari-
ant representing the monopole charge of the Berry connection. In the
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bulk, such a monopole can only annihilate with its opposite partner, pro-
viding a mechanism for continuously transforming the Weyl system into
the atomic limit where the system is fully gapped. Alternatively, we can
consider a sharp interface where we truncate the Weyl semimetal, creat-
ing a contact with the surrounding vacuum. As the Weyl system exhibits
pairs of monopoles and the vacuum does not, these monopoles have to
recombine on the interface during the transition from the Weyl semimetal
to the vacuum. As a consequence, Weyl semimetals have to exhibit spe-
cial types of surface states that connect Weyl cones of opposite chiralities
and annihilate the monopole charges. These states are called Fermi arcs,
as they form special two-dimensional Fermi surfaces. They are massless
states with linear dispersion and are one of the characteristic signatures
of Weyl semimetals.

Figure 1.11: Left panel: Schematic representation of the Fermi arc surface
states reconnecting the Bulk Weyl cones. Right panel: A dispersion of a
Kramers-Weyl semimetal in a slab geometry showing the characteristic long
Fermi arcs spanning the whole Brillouin zone.

The signature of such surface states is directly related to the separation
of Weyl cones, as the Fermi arcs exhibit a higher density of states when
they span over a larger region of the Brillouin zone. For this reason,
Kramers-Weyl semimetals can be a good platform for their study, as they
guarantee a large momentum space separation. Additionally, it turns out
that unlike in conventional Weyl semimetals, Fermi arcs in Kramers-Weyl
materials create a new type of periodic Fermi surface structure, where
open orbits can form, giving us a completely unique magnetic behavior.
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1.5 Outline of this thesis

1.5 Outline of this thesis

This thesis covers a diverse range of massless electronic systems, which can
be broadly divided into three parts. The first part focuses on the study of
Dirac fermions and their properties. The second part focuses on the three-
dimensional crystals and the signatures of Weyl physics. Finally, the thesis
concludes with the last two chapters that concentrate on superconducting
Majorana excitations.

1.5.1 Part 1

This part delves into the localization properties of two-dimensional mass-
less fermions. We explore various condensed matter systems that exhibit
Dirac fermions and propose a novel technique for the study of Anderson
localization.

Chapter 2: Localization landscape of Dirac fermions

Non-interacting systems under the presence of random disorder exhibit
universal behavior called Anderson localization. This means that elec-
tronic wave functions become strongly localized, impairing transport prop-
erties in the system. While it is generally impossible to find all the local-
ization centers without diagonalization, it turns out that it is possible to
define a special function that is strongly sensitive to the localized behavior
of low-energy states. This function is called the Localization landscape
and it can be efficiently calculated for a Schrödinger equation of spinless
electrons with a positive definite Hamiltonian. In this chapter, we have
extended this idea to spinful systems described by the Dirac equation. In
particular, we have concentrated on systems with strong spin-orbit cou-
pling to be able to study localization in graphene, topological insulators,
and superconductors. We use the Ostrowski comparison matrix to treat
systems that are not positive definite and extend the localization land-
scape bound to their comparison matrix. This defines a new landscape
that can be efficiently calculated by solving the Hu(r) = 1 differential
equation, where H is the comparison matrix of a chosen Dirac Hamil-
tonian. As the comparison matrix is only sensitive to real Hamiltonian
elements, we were able to define a new equivalence class for Anderson lo-
calization. This allows us to find equivalent Hermitian and non-Hermitian
Hamiltonians that share the same localization properties.
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Figure 1.12: Localization centers of a disordered Dirac system (left) compared
to the comparison matrix Localization landscape predictions (right).

1.5.2 Part 2

The second part of this thesis focuses on the behavior of Weyl fermions
in the presence of a magnetic field. Specifically, we will investigate two
systems and examine new signatures of Kramers-Weyl fermions as pre-
viously described in the introduction. Additionally, we will explore the
transport properties of Landau levels in Weyl superconductors.

Chapter 3: Magnetic breakdown spectrum of a Kramers-Weyl
semimetal

Kramers-Weyl semimetals exhibit four widely separated pairs of Weyl fer-
mions at time reversal invariant points. In a finite sample, they give rise to
unique extended Fermi arcs that span through the whole Brillouin zone.
This chapter will focus on the consequences of the interplay between such
characteristic surface states and a magnetic field. In particular, we show
that the long Fermi arcs can form open orbits in momentum space. In the
presence of a magnetic field, these can interact and couple with the Lan-
dau levels formed from the closed orbits in the bulk, thereby broadening
their dispersion relation. We can use an effective model to describe this
behavior in terms of a one-dimensional superlattice induced by the mag-
netic breakdown. Such a model can predict resonant behaviors when the
dynamics are dominated by either open or closed orbits. This resonant
behavior can be observed in terms of 1/B periodic magneto-oscillations,
which are fully unique to the Kramers-Weyl semimetals compared to the
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usual Shubnikov-de Haas oscillations that arise from Landau level quan-
tization.

Figure 1.13: Figure shows the characteristic Fermi surface of a Kramers-Weyl
semimetal in a slab geometry, focused around a single Weyl cone. Such Fermi-
surface exhibits both open and closed orbits in the momentum space.

Chapter 4: Supercell symmetry modified spectral statistics of
Kramers-Weyl fermions

In this chapter, we continue to investigate the unique signatures of Kramers-
Weyl fermions. Using the predictions of random matrix theory, we ex-
plore the spectral statistics of a Kramers-Weyl toy model given by H =
v
∑
α σα sin kα+tσ0

∑
α cos kα in a chaotic quantum dot. We find a hidden

symmetry in the limit of small t that mimics a spinless time-reversal sym-
metry. This is a consequence of a special supercell symmetry that holds
exactly when t = 0. We examine the consequences of this additional sym-
metry by observing the level spacing distribution P (αsβ), where we find
that the calculated spectral statistic for small t truly obeys the orthogonal
β = 1 ensemble instead of the expected symplectic ensemble β = 4. While
this hidden symmetry is quickly broken for any realistic values of t, we
find that signatures of the transition can still be detected. In particular,
we show that this transition happens much slower when we observe the
transition from weak localization to weak antilocalization, providing us
with a new probe to detect the Kramers-Weyl fermions.
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Figure 1.14: Two limiting examples of the spacing distribution comparing the
orthogonal behaviour at small t and symplectic behaviour for large t.

Chapter 5: Chiral charge transfer along magnetic field lines in
a Weyl superconductor

A heterostructure consisting of alternating layers of a Weyl semimetal and
a conventional superconductor creates a gapless superconducting system
called a Weyl superconductor. It was recently shown that, unlike conven-
tional gapless superconductors, these systems exhibit a protected zeroth
Landau level in the presence of a magnetic field. This chapter follows up
on the recent study of the conductance signatures of these superconduct-
ing Landau levels. We have found a new conductance signature where the
conductance depends on the direction of the magnetic field compared to
the chiralities of the Weyl cones. This gives us a novel signature that can
directly probe the chiralities of superconducting Weyl fermions.
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Figure 1.15: Dispersion relation of the superconducting zeroth landau level in
the direction parallel to the magnetic field.

1.5.3 Part 3

The final section of this thesis will concentrate on the emergence of Majo-
rana fermions. Specifically, we will investigate the Fu-Kane heterostruc-
ture introduced earlier and study how the interaction between the mag-
netic field and supercurrent can displace Majorana fermions away from
the vortex cores.

Chapter 6: Deconfinement of Majorana vortex modes produces
a superconducting Landau level
Shared contribution with Micha l Pacholski; I was responsible for the numerical simulations.

A Fu-Kane superconductor in the presence of a magnetic field binds Ma-
jorana zero-energy excitations to the cores of the magnetic vortices. These
are strongly localized excitations, topologically protected because of their
exponentially small overlaps. This chapter examines how such protected
states behave in the presence of a strong supercurrent, which can be inter-

preted as a spatially oscillating pair potential ∆(~r) = ∆0e
2i ~K·~r describing

Cooper pairs with momentum ~K. We show that such a supercurrent
induces a delocalization transition when K > ∆0/~v, extending the Ma-
jorana modes into a new fully delocalized state with a unique oscillatory
pattern. Using the index theorem, we prove that at µ = 0, these states
surprisingly remain gapless despite their strong overlaps. In fact, they
form a dispersionless superconducting Landau level that is fully protected
from broadening by the inter-vortex scattering. We then find an exact
analytical solution for this new superconducting state and calculate the
characteristic wave vector as

√
K2 − (∆0/~v). We show that this striped
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1 Introduction

pattern can be used to measure the chirality of Majorana fermions and
propose a local density of states measurement to investigate such states
experimentally.

Figure 1.16: Two plots show the transition in the local density of states, in-
duced by the supercurrent, for a Fu-Kane model with a vortex lattice. The first
image is showing the strongly localized Majorana solutions at small supercur-
rent momentum ∆0 < K/~v while the second image shows the new strongly
oscillating extended states at ∆0 > K/~v.

Chapter 7: Magnus effect on a Majorana zero-mode

In the last chapter, we will continue studying the newly discovered de-
localization transition of Majorana zero-modes in the Fu-Kane model.
Specifically, we will examine how the dynamics of delocalization can man-
ifest as a manifestation of the Magnus effect. In our system, this effect
arises from the coupling between the superflow and the velocity profile
inside the vortex core. This effect induces an acceleration on the Majo-
rana vortex modes perpendicular to the superflow. As the supercurrent
velocity profile around the vortex core depends on the chirality, if the su-
percurrent is strong enough, it can induce a full escape where the localized
Majorana modes propagate away from the vortex core in the form of a
localized wave-packet with a constant velocity. This effect is extremely
surprising as, unlike the magnetic field, it is actually inducing a force
on chargeless Majorana states that do not feel the conventional Lorentz
force. We demonstrate this effect numerically by simulating a quench of
the superflow. Furthermore, we find a semiclassical description for the
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1.5 Outline of this thesis

wave packet that allows us to predict and match the final velocity of this
escape regime.

Figure 1.17: The escape behaviour of the chragless Majorana zero-modes under
the influence of a strong superflow. The figure shows the propagation of the wave
packet in a straight trajectory defined by chirality in the plane perpendicular
to the superflow.
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2 Localization landscape for
Dirac fermions

2.1 Introduction

The localization landscape is a new tool in the study of Anderson lo-
calization, pioneered in 2012 by Filoche and Mayboroda [18], which has
since stimulated much computational and conceptual progress [19–28].
The “landscape” of a Hamiltonian H is a function u(r) that provides an
upper bound for eigenstates ψ at energy E > 0:

|ψ(r)|/|ψ|max ≤ E u(r), |ψ|max = maxr|ψ(r)|. (2.1)

This inequality implies that a localized state is confined to spatial regions
where u & 1/E. Extensive numerical simulations [26] confirm the expec-
tation that higher and higher peaks in u identify the location of states at
smaller and smaller E.

Such a predictive power would be unremarkable for particles confined to
potential wells (deeper and deeper wells trap particles at lower and lower
energies). But Anderson localization happens because of wave interfer-
ence in a random “white noise” potential, and inspection of the potential
landscape V (r) gives no information on the localization landscape u(r).

Filoche and Mayboroda considered the localization of scalar waves, or
equivalently of spinless electrons, governed by the Schrödinger Hamilto-
nian H = −∇2 +V . They used the maximum principle for elliptic partial
differential equations to derive [18] that the inequality (2.1) holds if V > 0
and u is the solution of

[−∇2 + V (r)]u(r) = 1. (2.2)

Our objective here is to generalize this to spinful electrons, to include the
effects of spin-orbit coupling and study localization of Dirac fermions.
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2 Localization landscape for Dirac fermions

2.2 Construction of the landscape function

Our key innovation is to use Ostrowski’s comparison matrix [29–32] as a
general framework for the construction of a localization landscape on a
lattice. By definition, the comparison matrix H of a complex matrix H
has elements

Hnm =

{
|Hnn| if n = m,

−|Hnm| if n 6= m.
(2.3)

In our context the index n = 1, 2, . . . labels both the discrete space coordi-
nates as well as any internal (spinor) degrees of freedom. The comparison
theorem [29] states that if the comparison matrix is positive-definite, then
1

|H−1| ≤ H −1, (2.4)

where both the absolute value and the inequality is taken elementwise.
We apply Eq. (2.4) to an eigenstate Ψ of H at energy E,

|E−1Ψn| = |(H−1Ψ)n| ≤
∑
m

∣∣(H −1
)
nm

∣∣|Ψm|
≤ |Ψ|max

∑
m

(
H −1

)
nm
, (2.5)

with |Ψ|max = maxn |Ψn|. We now define a landscape function u with
elements un in terms of a set of linear equations with coefficients given by
the comparison matrix:

H u = 1⇔∑
mHnmum = 1, n = 1, 2, . . . N, (2.6)

which implies that ∑
m

(
H −1

)
nm

= un. (2.7)

Substitution into Eq. (2.5) thus gives the desired inequality

|Ψn|/|Ψ|max ≤ |E|un. (2.8)

As a sanity check, we make contact with the original landscape function
[18] for the Schrödinger Hamiltonian HS = p2/2m+ V , with V > 0. The
Laplacian is discretized in terms of nearest-neighbor hoppings on a lattice.
For each dimension

p2 7→ (~/a)2(2− 2 cos ka)⇒
(HS)nm = t0(2δnm − δn−1,m − δn+1,m) + Vnδnm,

(2.9)

1The comparison inequality (2.4) does not require a Hermitian H. More generally,

if H is not Hermitian and H has complex eigenvalues the requirement of positive-
definiteness is that all eigenvalues have positive real part. We give a general proof
of Eq. (2.4) in the Appendix (supplemental material).
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2.3 Rashba Hamiltonian

with lattice constant a and hopping matrix element t0 = ~2/2ma2. The

comparison matrix HS is equal to HS and is positive-definite, so that Eq.
(2.6) is a discretized version of the original landscape equation HSu = 1
[18, 33].

2.3 Rashba Hamiltonian

Our first novel application is to introduce spin-orbit coupling of the Rashba
form,

HR = HS + 1
2{λ, px}σy − 1

2{λ, py}σx. (2.10)

(The anticommutator {· · · } enforces Hermiticity when λ is spatially de-
pendent.) The comparison matrix is now no longer equal to the Hamilto-
nian, in 1D one has

(HR)ij = (HS)ij −
~
4a
|λi + λj |(δi−1,j + δi+1,j)σx. (2.11)

The i, j, indices label the spatial positions, the spinor indices are implicit
in the Pauli matrix.

As a test, to isolate the effect of spin-orbit coupling, we place all the
disorder in the Rashba strength λn, which fluctuates randomly from site to
site, uniformly in the interval (λ̄− δλ, λ̄+ δλ). The electrostatic potential

is a constant offset V0, chosen sufficiently large that HR is positive-definite
2. Examples in 1D and in 2D are shown in Figs. 2.1 and 2.2. The highest
peaks in the landscape function match well with the lowest eigenfunctions.

2.4 Dirac Hamiltonian

We next turn to Dirac fermions, first in 1D. The Dirac Hamiltonian

HD = vFpxσx + V σ0 + µσz (2.12)

contains a scalar potential V proportional to the 2×2 unit matrix σ0 and
a staggered potential µ proportional to σz, acting on the two-component

2A sufficient condition for a positive-definite comparison matrix H is that H is di-
agonally dominant, meaning |Hnn| >

∑
m 6=n |Hnm| for each n. For the Rashba

Hamiltonian (2.10) this implies V0 > d× (λ̄+δλ) on a d-dimensional square lattice.

A necessary and sufficient condition [32] for positive-definiteness of H is that there

exists a vector v with positive elements such that (H v)n > 0 for all n. For the
sufficient condition of diagonal dominance one would take v = (1, 1, . . . 1, 1).
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2 Localization landscape for Dirac fermions

Figure 2.1: Landscape function u(x) (red) and normalized wave function profile
|Ψ(x)|/E|Ψmax| (blue) for the 6 lowest (twofold degenerate) eigenstates of the
disordered 1D Rashba Hamiltonian (2.11) (parameters V0 = 4t0, λ̄ = 0, δλ =
3~/a, hard-wall boundary conditions). The 1D array has n = 1, 2, . . . 200 sites,
in the plot x = n shows the first spinor component and x = n+ 1/2 shows the
second spinor component. The wave functions are labeled by the corresponding
energy levels {E1, . . . E6} = {3.273, 3.3371, 3.414, 3.446, 3.508, 3.516} (in units
of t0).

wave function Ψ = (ψA, ψB). This would apply to a graphene nanorib-
bon on a substrate such as hexagonal boron nitride, which differentiates
between the two carbon atoms in the unit cell without causing intervalley
scattering [34].

The symmetric discretization ∂xΨ 7→ (1/2a)[Ψ(x+a)−Ψ(x−a)] suffers
from fermion doubling [35, 36] — it corresponds to a sin ka dispersion with
a second species of massless Dirac fermions at the edge of the Brillouin
zone (k = π/a). To avoid this, and restrict ourselves to a single valley, we
use a staggered-fermion discretization a la Susskind [37, 38]:

pxσxΨ 7→ (−i~/a)

(
ψB(x)− ψB(x− a)
ψA(x+ a)− ψA(x)

)
. (2.13)
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Figure 2.2: Same comparison as in Fig. 2.1, but now for the 2D Rashba
Hamiltonian, discretized on a 100 × 100 square lattice (parameters V0 = 6t0,
λ̄ = 2δλ = 2~/a, periodic boundary conditions).The left panel shows the spinor
norm |Ψn(r)| for the 10 lowest (twofold degenerate) eigenstates of HR. The
right panel shows the localization landscape. The black contours (computed at
10% of the peak height of |Ψ|) identify the location of the 10 eigenstates — to
show the close correspondence with the local maxima of u(r).

The corresponding dispersion 3

E(k) = ±t1
√

2− 2 cos ka, t1 = ~vF/a, (2.14)

has massless fermions only at the center of the Brillouin zone (k = 0).
The comparison matrix takes the form

(HD)ij =

(
|Vi + µi|δij −t1(δij + δi+1,j)

−t1(δij + δi−1,j) |Vi − µi|δij

)
. (2.15)

We take random V (x) ∈ (V̄ − δV, V̄ + δV ) and µ(x) ∈ (µ̄ − δµ, µ̄ + δµ),
chosen independently and uniformly at each lattice site. The condition
|Vi ± µi| > 2t1 ensures a positive-definite HD. As shown in Figs. 2.3 and

3The staggered discretization (2.13) corresponds to the tight-binding Hamiltonian
H = (~vF/a)σx sin ka + (~vF/a)(1 − cos ka)σy + V σ0 + µσz , which gives the dis-
persion relation (2.14) when V = µ = 0.
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2 Localization landscape for Dirac fermions

2.4, the landscape function computed from HDu = 1 again accurately
identifies the locations of the low-lying eigenfunctions (near the band edge
in Fig. 2.3 and near the gap in Fig. 2.4).

For the 2D Dirac equation we consider a chiral p-wave superconductor,
with Bogoliubov-De Gennes Hamiltonian [39]

HBdG = ∆(pxσx + pyσy) + (V + p2/2m)σz. (2.16)

The Pauli matrices act on the electron-hole degree of freedom of a Bogoli-
ubov quasiparticle, and the Hamiltonian is constrained by particle-hole
symmetry: σxHBdGσx = −H∗BdG. (A scalar offset ∝ σ0 is thus forbid-
den.) The pair potential ∆ opens a gap in the spectrum in the entire
Brillouin zone, provided that the electrostatic potential V is nonzero.
The gap-closing transition at V = 0 is a topological phase transition [40].

We take a uniform real ∆ (no vortices) and a disordered V (x, y), fluctu-
ating randomly from site to site in the interval (V̄ +δV, V̄ −δV ). Positive V
ensures we do not cross the gap-closing transition, so we will not be intro-
ducing Majorana zero-modes [41] (the levels are Andreev bound states).
Unlike in the case of graphene we can use the symmetric discretization
p 7→ sin ka — there is no need for a staggered discretization because the
kinetic energy p2 7→ 2 − 2 cos ka prevents fermion doubling at k = π/a.
Results are shown in Fig. 2.5.

Equivalence classes — In the final part of this chapter we move be-
yond applications to address a conceptual implication of the theory. Two
complex matrices A,B are called equimodular if |Anm| = |Bnm|. By the

construction (2.3), they have the same comparison matrix, A = B, and
therefore the same landscape function uA = uB , uniquely determined by
the same equation AuA = 1 = B uB . We thus obtain an equivalence
class for Anderson localization: Equimodular Hamiltonians have localized
states at the same position, identified by peaks in the landscape function.

We have checked this for the 2D Rashba Hamiltonian (2.10): Randomly
varying the sign of the coefficient λ(r) from site to site shifts the energy
levels around, but the states remain localized at the same positions. More
generally, one could try to vary the coefficients over the complex plane,
preserving the norm. This would produce a non-Hermitian eigenvalue
problem, and one might wonder whether the whole approach breaks down.
It does not, as we will now demonstrate.

The non-Hermitian Anderson Hamiltonian [42, 43]

H = −∇2 + V1(r) + iV2(r) (2.17)

has been studied in the context of a random laser [44]: a disordered optical
lattice with randomly varying absorption and amplication rates, described
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by a complex dielectric function V1 + iV2. On a d-dimensional square
lattice (lattice constant a), the discretization of −∇2 7→ a−2

∑d
i=1(2 −

2 cos kia) produces a spectral band width of W0 = 4d/a2.
The Hermitian Hamiltonian

Heff = −∇2 + Veff , Veff = | 12W0 + V1 + iV2| − 1
2W0, (2.18)

is positive-definite if Veff(r) > 0 for all r. The transformation from
complex V to real Veff does not change the landscape function, because
H = Heff = Heff . The localization landscapes are therefore the same and
we would expect the eigenstates 4 of H and Heff to appear at the same
positions, provided that Veff > 0. This works out, as shown in Fig. 2.6.

2.5 Conclusion and outlook

We have shown that the comparison matrix H provides a route to the
landscape function for Hamiltonians that are not of the Schrödinger form
H = −∇2 + V . We have explored Hamiltonians for massive or mass-
less Dirac fermions, with or without superconducting pairing. The broad
generality of the approach is highlighted by the application to the non-
Hermitian Anderson Hamiltonian.

The localization landscape can be used as a tool to quickly and effi-
ciently find low-lying localized states in a disordered medium, since the
landscape function u(r) is obtained from a single differential equation

H u = 1. These applications have been demonstrated for the Schrödinger
Hamiltonian [22–25], and we anticipate similar applications for the Dirac
Hamiltonian in the context of graphene or of topological insulators.

The comparison matrix offers a conceptual insight as well: Since equimod-
ular Hamiltonians have the same comparison matrix, they form an equiv-
alence class that localizes at the same spatial positions. This notion is
distinct from the familiar notion of “universality classes” of Anderson lo-
calization [45], which refers to ensemble-averaged properties. The equiv-
alence class, instead, refers to sample-specific properties.

As an outlook to future research, it would be interesting to extend the
approach from wave functions to energy levels. This has been recently
demonstrated for the Schrödinger Hamiltonian [26], where the peak height
of the localization function predicts the energy of the localized state. The

4Because H† = H∗, the left and right eigenvectors are each others complex conjugate
and we do not need to distinguish between these when plotting the absolute value
in Fig. 2.6b.
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2 Localization landscape for Dirac fermions

correlation between peak heights and energy levels evident in Fig. 2.1
suggests that the comparison matrix has this predictive power as well.
Another direction to investigate is to see if the comparison matrix would
make it possible to incorporate spin degrees of freedom in the many-body
localization landscape introduced recently [46].
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2.5 Conclusion and outlook

Figure 2.3: Panel ( a): Random scalar potential V (x) (red) and staggered
potential µ(x) (black) for the 1D Dirac Hamiltonian (2.12) (parameters V̄ = 3t1,
µ̄ = 0, δV = δµ = t1, hard-wall boundary conditions). Panel b): Corresponding
localization landscape (red) and eigenfunctions of the 12 lowest energy levels
(blue), at energies En near the band edge plotted in the inset (panel c). The
peaks in the localization landscape are not correlated in any obvious way with
the random potentials, but they accurately predict the location of the low-lying
modes.
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2 Localization landscape for Dirac fermions

Figure 2.4: Same as Fig. 2.3b, but now for a gapped system (V̄ = δV = 0,
µ̄ = 3.5 t1, δµ = 1.5 t1). The eigenfunctions of the 20 levels closest to the gap are
shown (blue, 2.3 t1 < |En| < 2.5 t1). There are only 10 distinct peaks, because
of an approximate ±E symmetry. The landscape function (red, rescaled by a
factor 1/4) accurately identifies the location of the states near the gap.
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2.5 Conclusion and outlook

Figure 2.5: Comparison of the landscape function (2D color scale plot) with
wave function amplitudes (3D profile) of the chiral p-wave superconductor
with Hamiltonian (2.16) (parameters ∆ = 1, V̄ = 6, δV = 4, in units of
t0 = ~2/2ma2). The wave functions show the five Andreev levels with small-
est En > 0 (E1, E2, . . . E5 = 3.763, 3.799, 3.875, 3.882, 3.893). (The charge-
conjugate states at −En have the same spinor amplitude |Ψ|.) The colors of
the wave function profile correspond to the landscape function, so a red wave
function peak indicates that u(x, y) peaks at the same position.
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Figure 2.6: Energy levels (panel a) and localized eigenstates (panels b,c) of the
non-Hermitian Hamiltonian H from Eq. (2.17) and its Hermitian counterpart
Heff from Eq. (2.18). The calculations are performed on a 2D square lattice
(lattice constant a ≡ 1, band width W0 = 8, periodic boundary conditions) for
potentials V1 and V2 randomly and independently chosen at each site, uniformly
in the interval (−1, 1). A constant offset V0 = 1 was added to V1 in order to
ensure a positive Veff . The mapping fromH to Heff preserves the spatial location
of the localized states, while the ordering of the energy levels |En| in absolute
value is changed. Panels b,c show the eigenstates of the five lowest energy levels
of Heff and the corresponding eigenstates of H. The locations are preserved but
E2 of H is pushed to higher absolute values.
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Appendices

2.A Derivation of the comparison inequality

The comparison inequality (2.4) is derived by Ostrowski [29]. Here we
give an alternative derivation, to make the chapter self-contained.

In the most general case the matrix H is a complex matrix, not nec-
essarily Hermitian. We will initially assume that the diagonal elements
Hnn are real ≥ 0 and relax that assumption at the end.

Decompose H = λ1 − L, with λ > maxnHnn, so that the diagonal
elements of L are all positive. If we denote by |L| the elementwise absolute
value of the matrix L, one has

λ1− |L| = H, (2.19)

under the assumption that Hnn ≥ 0.
Consider the Euclidean propagator e−Ht for t ≥ 0, and start from the

inequality ∣∣∑
m

(
e−Ht

)
nm

Ψm

∣∣ ≤∑m

∣∣(e−Ht)
nm

∣∣|Ψm|. (2.20)

We expand e−Ht in a Taylor series,

∣∣(e−Ht)
nm

∣∣ = e−λt

∣∣∣∣∣
∞∑
p=0

tp

p!
(Lp)nm

∣∣∣∣∣ (2.21)

≤ e−λt
∞∑
p=0

tp

p!
(|L|p)nm = e−λt

(
e|L|t

)
nm

=
(
e−H t

)
nm
.

Substitution into Eq. (2.20) gives∣∣∑
m

(
e−Ht

)
nm

Ψm

∣∣ ≤∑m

(
e−H t

)
nm
|Ψm|. (2.22)

This may also be written more compactly as

|e−Ht| ≤ e−Ht, (2.23)

with the understanding that the absolute value and inequality is taken
elementwise.
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2 Localization landscape for Dirac fermions

If we now assume that all eigenvalues of H have a positive real part,

then we may integrate both e−Ht and e−H t over t from 0 to ∞. On the
one hand we have, ∫ ∞

0

e−Ht dt = H−1, (2.24)

and on the other hand, in view of Eq. (2.23), we have∣∣∣∣∫ ∞
0

e−Ht dt

∣∣∣∣ ≤ ∫ ∞
0

|e−Ht| dt ≤
∫ ∞

0

e−H t dt = H −1. (2.25)

We thus arrive at the desired comparison inequality (2.4),

|H−1| ≤ H −1. (2.26)

The assumption that Hnn is real ≥ 0 can be removed my multiplying
H with the diagonal matrix

Dnm = δnm e
−i argHnn (2.27)

(setting Dnn = 1 if Hnn = 0). This matrix multiplication changes neither

the comparison matrix, DH = H, nor the absolute value of the inverse,
|(DH)−1| = |H−1D−1| = |H−1|, hence Eq. (2.26) still holds. Only the

assumption of positive-definite H remains.
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3 Magnetic breakdown
spectrum of a Kramers-Weyl
semimetal

3.1 Introduction

Kramers-Weyl fermions are massless low-energy excitations that may ap-
pear in the Brillouin zone near time-reversally invariant momenta (TRIM).
Their gapless nature is protected by Kramers degeneracy, which enforces
a band crossing at the TRIM. Crystals that support Kramers-Weyl fer-
mions have strong spin-orbit coupling and belong to one of the chiral point
groups, without reflection or mirror symmetry, to allow for a linear rather
than quadratic band splitting away from the TRIM. The materials are
called topological chiral crystals or Kramers-Weyl semimetals — to be
distinguished from generic Weyl semimetals where Kramers degeneracy
plays no role. Several candidates were predicted theoretically [9, 10] and
some have been realized in the laboratory [48–52].

These recent developments have motivated the search for observables
that would distinguish Kramers-Weyl fermions from generic Weyl fer-
mions [53–55]. Here we report on the fundamentally different Landau
level spectrum when the semimetal is confined to a thin slab in a perpen-
dicular magnetic field.

Generically, Landau levels are dispersionless: The energy does not de-
pend on the momentum in the plane perpendicular to the magnetic field
B. In contrast, we have found that the Landau levels of a Kramers-Weyl
semimetal are broadened into a Landau band. The band width oscillates
periodically in 1/B, producing an oscillatory contribution to the magne-
toconductance.

The phenomenology is similar to that encountered in a semiconductor
2D electron gas in a superlattice potential [56–60]. In that system the
dispersion is due to the drift velocity of cyclotron orbits in perpendicular
electric and magnetic fields. Here the surface Fermi arcs provide for open
orbits, connected to closed orbits by magnetic breakdown at Weyl points
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.1: Electron orbits in a thin slab geometry perpendicular to a magnetic
field (along the x-axis), for a generic Weyl semimetal [61, 62] (at the left) and
for a Kramers-Weyl semimetal (at the right). In each case we show separately
a front view (in the x–y plane, to show how the orbits switch between top and
bottom surfaces of the slab) and a top view (in the y–z plane, to indicate the
magnetic flux enclosed by the orbits). The Kramers-Weyl semimetal combines
open orbits (red arrows) with closed orbits enclosing either a large flux Φ or
a small flux δΦ. Open and closed orbits are coupled by a periodic chain of
magnetic breakdown events, spaced by l2m/a0 (with a0 the lattice constant and
lm =

√
~/eB the magnetic length). The open orbits broaden the Landau levels

into a band, the band width varies from minimal to maximal when δΦ is in-
cremented by h/e. Because δΦ ∝ Bl4m ∝ 1/B, the band width oscillations are
periodic in 1/B.

(see Fig. 3.1).

No open orbits appear in a generic Weyl semimetal [61, 62], because
the Weyl points are closely separated inside the first Brillouin zone, so
the Fermi arcs are short and do not cross the Brillouin zone boundaries
(a prerequisite for open orbits). The Landau band dispersion therefore
directly ties into a defining property [9] of a Kramers-Weyl semimetal:
surface Fermi arcs that span the entire Brillouin zone because they connect
TRIM at zone boundaries.

In the next two sections 3.2 and 3.3 we first compute the spectrum of a
Kramers-Weyl semimetal slab in zero magnetic field, to obtain the equi-
energy contours that govern the orbits when we apply a perpendicular
field. The resonant tunneling between open and closed orbits via magnetic
breakdown is studied in Sec. 3.4. With these preparations we are ready
to calculate the dispersive Landau bands and the magnetoconductance
oscillations in Secs. 3.5 and 3.6. The analytical calculations are then
compared with the numerical solution of a tight-binding model in Secs.
3.7 and 6.A. We conclude in Sec. 7.6.
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3.2 Boundary condition for Kramers-Weyl fermions

3.2 Boundary condition for Kramers-Weyl
fermions

The first step in our analysis is to characterize the surface Fermi arcs in a
Kramers-Weyl semimetal, which requires a determination of the boundary
condition for Kramers-Weyl fermions. This is more strongly constrained
by time-reversal symmetry than the familiar boundary condition on the
Dirac equation [63]. In that case the confinement by a Dirac mass Vµ =
µ(n̂‖ · σ) generates a boundary condition

Ψ = (n̂⊥ × n̂‖) · σΨ. (3.1)

The unit vectors n̂‖ and n̂⊥ are parallel and perpendicular to the bound-
ary, respectively.

Although σ 7→ −σ upon time reversal, the Dirac mass may still preserve
time-reversal symmetry if the Weyl fermions are not at a time-reversally
invariant momentum (TRIM). For example, in graphene a Dirac mass +µ
at the K-point in the Brillouin zone and a Dirac mass −µ at the K′-point
preserves time-reversal symmetry. In contrast, for Kramers-Weyl fermions
at a TRIM the Vµ term in the Hamiltonian is incompatible with time-
reversal symmetry. To preserve time-reversal symmetry the boundary
condition must couple two Weyl cones, it cannot be of the single-cone
form (3.1).

In App. 3.A we demonstrate that, indeed, pairs of Weyl cones at a TRIM
are coupled at the boundary of a Kramers-Weyl semimetal. Relying on
that result, we derive in this section the time-reversal invariant boundary
condition for Kramers-Weyl fermions.

We consider a Kramers-Weyl semimetal in a slab geometry, confined to
the y–z plane by boundaries at x = 0 and x = W . In a minimal description
we account for the coupling of two Weyl cones at the boundary. To first
order in momentum k, measured from a Weyl point, the Hamiltonian of
the uncoupled Weyl cones is

H±(k) =

(
H0(k) + ε 0

0 ±H0(k)− ε

)
,

H0(k) =
∑
α=x,y,zvαkασα.

(3.2)

The ± sign indicates whether the two Weyl cones have the same chirality
(+) or the opposite chirality (−). The two Weyl points need not be at
the same energy, we allow for an offset ε. We also allow for anisotropy in
the velocity components vα.
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

The σα’s are Pauli matrices acting on the spin degree of freedom. We
will also use τα Pauli matrices that act on the Weyl cone index, with σ0

and τ0 the corresponding 2× 2 unit matrix. We can then write

H+ = H0τ0 + ετz, H− = H0τz + ετz. (3.3)

The current operator in the x-direction is j+ = vxσxτ0 for H+ and j− =
vxσxτz for H−. The time-reversal operation T does not couple Weyl cones
at a TRIM, it only inverts the spin and momentum:

T H±(k)T −1 = σyH
∗
±(−k)σy = H±(k). (3.4)

An energy-independent boundary condition on the wave function Ψ has
the general form [63]

Ψ = M± ·Ψ, M± = M†±, M2
± = 1, (3.5)

in terms of a Hermitian and unitary matrix M±. The matrix M± an-
ticommutes with the current operator j± perpendicular to the surface,
to ensure current conservation. Time-reversal symmetry further requires
that

σyM
∗
±σy = M±. (3.6)

These restrictions reduce M± to the single-parameter form

M+(φ) = τyσy cosφ+ τyσz sinφ,

M−(φ) = τxσ0 cosφ+ τyσx sinφ.
(3.7)

The angle φ has a simple physical interpretation in the case H+,M+

case of two coupled Weyl cones of the same chirality: It determines the
direction of propagation of the helical surface states (the Fermi arcs). We
will take φ = 0 at x = 0 and φ = π at x = W . This produces a surface
state that is an eigenstate of τyσy with eigenvalue +1 on one surface and
eigenvalue −1 on the opposite surface, so a circulating surface state in the
±y-direction. (Alternatively, if we would take φ = ±π/2 the state would
circulate in the ±z-direction.)

Notice that these are helical rather than chiral surface states: The eigen-
states Ψ of τyσy with eigenvalue +1 contain both right-movers (σyΨ =
+Ψ) and left-movers (σyΨ = −Ψ). This is the key distinction with sur-
face states in a magnetic Weyl semimetal, which circulate unidirectionally
around the slab [13, 64–66].

In the case H−,M− that the coupled Weyl cones have the opposite
chirality there are no helical surface states and the physical interpretation
of the angle φ in Eq. (3.7) is less obvious. Since our interest here is in the
Fermi arcs, we will not consider that case further in what follows.
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3.3 Fermi surface of Kramers-Weyl fermions in a slab

3.3 Fermi surface of Kramers-Weyl fermions
in a slab

3.3.1 Dispersion relation

We calculate the energy spectrum of H+ with boundary condition M+

from Eq. (3.7) along the lines of Ref. 67. Integration in the x-direction
of the wave equation H±Ψ = EΨ with kx = −i~∂/∂x relates the wave
amplitudes at the top and bottom surface via Ψ(W ) = eiΞΨ(0), with

Ξ =
W

~vx
σx(E − vykyσy − vzkzσz − ετz). (3.8)

As discussed in Sec. 3.2 we impose the boundary condition Ψ = M+(0)Ψ
on the x = 0 surface and Ψ = M+(π)Ψ on the x = W surface.

The round-trip evolution

Ψ(0) = M+(0)e−iΞM+(π)eiΞΨ(0) (3.9)

then gives the determinantal equation

Det
(
1 + τyσye

−iΞτyσye
iΞ
)

= 0, (3.10)

which evaluates to

[E2 − ε2 + (vzkz)
2 − (vyky)2]

sinw− sinw+

q−q+

= 1 + cosw− cosw+, (3.11)

with the definitions

q2
± = (E ± ε)2 − (vyky)2 − (vzkz)

2, w± =
W

~vx
q±. (3.12)

In the zero-offset limit ε = 0 Eq. (3.11) reduces to the more compact
expression(

vzkz
q

tan
Wq

~vx

)2

= 1, q2 = E2 − (vyky)2 − (vzkz)
2, (3.13)

which is a squared Weiss equation [67, 68].
The dispersion relation E(ky, kz) which follows from Eq. (3.11) is plot-

ted in Fig. 3.2. The surface states (indicated in red) are nearly flat as
function of kz, so they propagate mainly in the ±y direction. In the limit
ε → 0 the bands cross at kz = 0, this crossing is removed by the energy
offset.
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.2: Dispersion relation E(ky, kz) as a function of kz for fixed ky = 1/W
(left panel) and as a function of ky for fixed kz = 1/W (right panel), calculated
from Eq. (3.11) for vx = vy = vz ≡ vF and ε = ~vF/W . The surface states
are indicated in red. The avoided crossings at kz = 0 become real crossings for
ε = 0.

3.3.2 Fermi surface topology

The equi-energy contours E(ky, kz) = EF are plotted in Fig. 3.3 for several
values of W . The topology of the Fermi surface changes at a critical width

Wc =
π

2

~vx
EF

+O(ε). (3.14)

At W = Wc the surface bands from upper and lower surface touch at the
Weyl point ky = kz = 0, and for larger widths the upper and lower surface
bands decouple from a bulk band, in the interior of the slab.

For ε = 0 the surface and bulk bands intersect at kz = 0 when W > Wc.
The gap δky which opens up for nonzero ε is

δky =
4

πvy
|ε|+O(ε2), W > Wc. (3.15)

For later use we also record the area S0 enclosed by the bulk band,

S0 = 4
3π
√

2(W/Wc − 1)3/2k2
F +O(W/Wc − 1)2 +O(ε), (3.16)
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3.4 Resonant tunneling between open and closed orbits in a magnetic field

Figure 3.3: Solid curves: equi-energy contours E(ky, kz) = EF for ε = 0 at
three values of W (in units of ~vF/EF with EF > 0): W = π/2 = Wc (red curve
in left panel), W = 1.4 < Wc (blue curve in left panel), and W = 1.8 > Wc

(blue curve in right panel). The calculations are based on Eq. (3.11) with
vx = vy = vz ≡ vF. The red dashed curve in the right panel shows the effect
of a nonzero ε = 0.1EF: The intersecting contours break up into two open
and one closed contour, separated at kz = 0 by a gap δky. The dotted arrows,
perpendicular to the equi-energy contours, point into the direction of motion in
real space. The assignment of the bands to the upper and lower surface is in
accord with the time-reversal symmetry requirement that a band stays on the
same surface when (ky, kz) 7→ −(ky, kz).

where we have defined the 2D Fermi wave vector of the Weyl fermions via

EF = ~kF
√
vyvz. (3.17)

3.4 Resonant tunneling between open and
closed orbits in a magnetic field

Upon application of a magnetic field B in the x-direction, perpendicular
to the slab, the Lorentz force causes a wave packet to drift along an equi-
energy contour. Because k̇ = eṙ ×B the orbit in real space is obtained
from the orbit in momentum space by rotation over π/2 and rescaling by
a factor ~/eB = l2m (magnetic length squared).

Inspection of Fig. 3.3 shows that for W > Wc closed orbits in the
interior of the slab coexist with open orbits on the surface. The open
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.4: Electron orbits in a magnetic field perpendicular to the slab, fol-
lowing from the Fermi surface in Fig. 3.3 (W > Wc, ε > 0). The tunneling
events (magnetic breakdown) between open and closed orbits are indicated.
These happen with probability TMB given by Eq. (3.18). Backscattering of the
open orbit via the closed orbit happens with probability R given by Eq. (3.19).
The area Sreal ∝ 1/B2 of the closed orbit in real space determines the 1/B
periodicity of the magnetoconductance oscillations via the resonance condition
BSreal = nh/e.

and closed orbits are coupled via tunneling through a momentum gap δky
(magnetic breakdown [69, 70]), with tunnel probability TMB = 1 − RMB

given by the Landau-Zener formula

TMB = exp(−Bc/B), Bc ' (~/e)δk2
y ' (~ε/evF)2. (3.18)

In the expression for the breakdown field Bc a numerical prefactor of order
unity is omitted [70, 71].

The real-space orbits are illustrated in Fig. 3.4: An electron in a Fermi
arc on the top surface switches to the bottom surface when the Fermi
arc terminates at a Weyl point [61]. The direction of propagation (helic-
ity) of the surface electron may change as a consequence of the magnetic
breakdown, which couples a right-moving electron on the top surface to a
left-moving electron on the bottom surface. This backscattering process
occurs with reflection probability

R =

∣∣∣∣ TMB

1−RMBeiφ

∣∣∣∣2 =
T 2

MB

T 2
MB + 4RMB sin2(φ/2)

. (3.19)

The phase shift φ accumulated in one round trip along the closed orbit is
determined by the enclosed area S0 in momentum space,

φ = S0l
2
m + 2πν, (3.20)

with ν ∈ [0, 1) a magnetic-field independent offset.
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3.5 Dispersive Landau bands

Figure 3.5: Equi-energy contours in the ky–kz plane, showing open orbits
coupled to closed orbits via magnetic breakdown (red dotted lines). The closed
contours encircle Weyl points at K = (0, 0) and K′ = (0, π/a0) — periodically
translated by the reciprocal lattice vector G = (0, 2π/a0). Arrows indicate the
spectral flow in a perpendicular magnetic field. The large area SΣ (yellow)
determines the spacing of the Landau bands, while the small area S0 and the
magnetic breakdown probabilities TMB, T

′
MB determine the band width.

Resonant tunneling through the closed orbit, resulting in R = 1, hap-
pens when φ is an integer multiple of 2π. We thus see that the resonances
are periodic in 1/B, with period

∆(1/B) =
2πe

~S0
≈ e

h
(W/Wc − 1)−3/2k−2

F . (3.21)

(We have substituted the small-ε expression (3.16) for S0.)
The Shubnikov-de Haas (SdH) oscillations due to Landau level quanti-

sation are also periodic in 1/B. Their period is determined by the area
SΣ ≈ 2πkF/a0 in Fig. 3.5, hence

∆(1/B)SdH =
2πe

~SΣ
≈ ea0

~kF
. (3.22)

Comparison with Eq. (3.21) shows that the period of the SdH oscillations
is smaller than that of the magnetic breakdown oscillations by a factor
kFa0(W/Wc − 1)3/2, which is typically � 1.

3.5 Dispersive Landau bands

Let us now discuss how magnetic breakdown converts the flat dispersion-
less Landau levels into dispersive bands. The mechanism crucially relies
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

on the fact that the surface Fermi arcs in a Kramers-Weyl semimetal
connect Weyl points at time-reversally invariant momenta. Consider two
TRIM K and K ′ in the (ky, kz) plane of the surface Brillouin zone. We
choose K = (0, 0) at the zone center and K ′ = (0, π/a0) at the zone
boundary, with G = (0, 2π/a0) a reciprocal lattice vector.

In the periodic zone scheme, the Weyl points can be repeated along the
kz-axis with period 2π/a0, to form an infinite one-dimensional chain (see
Fig. 3.5). The perpendicular magnetic field B induces a flow along this
chain in momentum space, which in real space is oriented along the y-axis
with period

L = (2π/a0)l2m = 2πvy/ωc, ωc = eBvya0/~. (3.23)

In the weak-field regime lm � a0 the period L of the magnetic-field in-
duced superlattice is large compared to the period a0 of the atomic lattice.
We seek the band structure of the superlattice.

We distinguish the Weyl points atK andK ′ by their different magnetic
breakdown probabilities, denoted respectively by TMB = 1 − RMB and
T ′MB = 1 − R′MB. We focus on the case that TMB and T ′MB are close to
unity and the areas S0 and S′0 of the closed orbits are the same — this
is the small-ε regime in Eqs. (3.16) and (3.18). (The more general case is
treated in App. 3.C.)

The phase shift ψ accumulated upon propagation from one Weyl point
to the next is gauge dependent, we choose the Landau gaugeA = (0,−Bz, 0).
For simplicity we ignore the curvature of the open orbits, approximating
them by straight contours along the line ky = E/~vy. The phase shift is
then given by

ψ =
E

~vy
π

a0
l2m =

πE

~ωc
, (3.24)

the same for each segment of an open orbit connecting two Weyl points.
The quantization condition for a Landau level at energy En is 2ψ+φ =

2πn, n = 1, 2, . . ., which amounts to the quantization in units of h/e of
the magnetic flux through the real-space area SΣl

4
m. Since SΣ � S0 the

Landau level spacing is governed by the energy dependence of ψ,

En+1 − En ≈ π(dψ/dE)−1 = ~ωc. (3.25)

The Landau level spacing increases ∝ B and not ∝
√
B, as one might have

expected for massless electrons. The origin of the difference is explained
in Fig. 3.6.

The Landau levels are flat when TMB = T ′MB = 1, so that there are no
open orbits. The open orbits introduce a dispersion along ky, see Fig. 3.7.
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3.6 Magnetoconductance oscillations

Figure 3.6: Equi-energy contours in the ky–kz plane for surface Fermi arcs
coupled by magnetic breakdown (left panel, schematic) and for the bulk cy-
clotron orbit of a Weyl fermion (right panel). The quantization condition for
the enclosed area is indicated, to explain why the Landau level spacing is ∝ B
for the Fermi arcs, while it is ∝

√
B for the cyclotron orbit.

Full expressions are given in App. 3.C. For RMB, R
′
MB � 1 and S0 = S′0

we have the dispersion

E(ky) = (n− ν)~ωc ± (~ωc/π) sin(φ/2)

×
(
RMB +R′MB + 2

√
RMBR′MB cos kyL

)1/2
, (3.26)

where the phase φ is to be evaluated at E = (n− ν)~ωc.
Each Landau level is split into two subbands having the same band

width

|E(0)− E(π/L)| =
2(~ωc/π)| sin(φ/2)|min(

√
RMB,

√
R′MB). (3.27)

The band width oscillates periodically in 1/B with period (3.21).

3.6 Magnetoconductance oscillations

The dispersive Landau bands leave observable signatures in electrical con-
duction, in the form of magnetoconductance oscillations due to the res-
onant coupling of closed and open orbits. These have been previously
studied when the open orbits are caused by an electrostatic superlattice
[56–60]. We apply that theory to our setting.

From the dispersion relation (3.26) we calculate the square of the group
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.7: Dispersion relation of the slab in a perpendicular magnetic field B,
calculated from Eqs. (3.47) and (3.48) (for W = 20 a0, TMB = 0.85, T ′MB = 0.95,
S0=S′0, ν = 0). In the left panel B is chosen such that the phase φ accumulated
by a closed orbit at E = 0.08 ~vF/a0 equals 11π, in the right panel φ = 10π.
When φ is an integer multiple of 2π the magnetic breakdown is resonant, all
orbits are closed and the Landau bands are dispersionless. When φ is a half-
integer multiple of 2π the magnetic breakdown is suppressed and the Landau
bands acquire a dispersion from the open orbits.

velocity V = ∂E/~∂ky, averaged over the Landau band,

〈V2〉 =
L
2π

∫ 2π/L

0

(
dE(ky)

~dky

)2

dky

= 2v2
y sin2(φ/2) min(RMB, R

′
MB). (3.28)

For weak impurity scattering, scattering rate 1/τimp � ωc, the effective
diffusion coefficient [60],

Deff = τimp〈V2〉, (3.29)

and the 2D density of states N2D = (π~vya0)−1 of the Landau band, de-
termine the oscillatory contribution δσyy to the longitudinal conductivity
via the Drude formula for a 2D electron gas,

δσyy = e2N2DDeff

=
4e2

h

vyτimp

a0
sin2(φ/2) min(RMB, R

′
MB). (3.30)
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3.7 Tight-binding model on a cubic lattice

The magnetoconductance oscillations due to magnetic breakdown (MB)
coexist with the Shubnikov-de Haas (SdH) oscillations due to Landau level
quantization. Both are periodic in 1/B, but with very different period,
see Eqs. (3.21) and (3.22).

The difference in period causes a different temperature dependence of
the magnetoconductance oscillations. A conductance measurement at
temperature T corresponds to an energy average over a range ∆E ≈ 4kBT
(being the full-width-at-half-maximum of the derivative of the Fermi-
Dirac distribution). The oscillations become unobservable when the en-
ergy average changes the area S0 or SΣ by more than π/l2m. This results
in different characteristic energy or temperature scales,

∆ESdH =
π

l2m

(
∂SΣ

∂E

)−1

' 1
2~ωc, (3.31a)

∆EMB =
π

l2m

(
∂S0

∂E

)−1

' 1
4

√
2(W/Wc − 1)−1/2 ~ωc

kFa0
. (3.31b)

(In the second equation we took W/Wc & 1.) For kFa0 � 1 and W/Wc

close to unity we may have ∆ESdH � ∆EMB, so there is an intermediate
temperature regime ∆ESdH . 4kBT . ∆EMB where the Shubnikov-de
Haas oscillations are suppressed while the magnetic breakdown oscillations
remain.

3.7 Tight-binding model on a cubic lattice

We have tested the analytical calculations from the previous sections nu-
merically, on a tight-binding model of a Kramers-Weyl semimetal [9]. In
this section we describe the model, results are presented in the next sec-
tion.

3.7.1 Hamiltonian

We take a simple cubic lattice (lattice constant a, one atom per unit cell),
when the nearest-neighbor hopping terms are the same in each direction
α ∈ {x, y, z}. There are two terms to consider, a spin-independent term
∝ t0 that is even in momentum and a spin-orbit coupling term ∝ t1σα
that is odd in momentum,

H = t0
∑
α

cos(kαa) + t1
∑
α

σα sin(kαa)− t0. (3.32)
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.8: Slice at y = 0 through the cubic lattice, rotated around the y-axis
by an angle φ = arctan(M/N) with M = 1, N = 2. The enlarged unit cell
(red square), parallel to a lattice termination at x = 0 and x = W , has volume
a′ × a′ × a = (N2 +M2)a3.

The offset is arbitrarily fixed at −t0.
There are 8 Weyl points (momenta k in the Brillouin zone of a linear

dispersion), located at kx, ky, kz ∈ {0, π} modulo 2π. The Weyl points
at (kx, ky, kz) = (0, 0, 0), (π, π, 0), (π, 0, π), (0, π, π) have positive chirality
and those at (π, π, π), (π, 0, 0), (0, π, 0), (0, 0, π) have negative chirality [9].

The geometry is a slab, with a normal n̂ in the x–z plane at an angle
φ with the x-axis (so the normal is rotated by φ around the y-axis). The
boundaries of the slab are constructed by removing all sites at x < 0 and
x > W . In the rotated basis aligned with the normal to the slab one has(

k′x
k′z

)
=

(
cosφ sinφ
− sinφ cosφ

)(
kx
kz

)
, k′y = ky. (3.33)

We will work in this rotated basis and for ease of notation omit the prime,
writing kx or k⊥ for the momentum component perpendicular to the slab
and (ky, kz) = k‖ for the parallel momenta.

3.7.2 Folded Brillouin zone

The termination of the lattice in the slab geometry breaks the translation
invariance in the perpendicular x-direction as well as in the z-direction
parallel to the surface. If the rotation angle φ ∈ (0, π/2] is chosen such that
tanφ = M/N is a rational number (M and N being coprime integers), the
translational invariance in the z-direction is restored with a larger lattice
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3.7 Tight-binding model on a cubic lattice

Figure 3.9: Slice at ky = 0 through the Brillouin zone of the rotated cubic
lattice, for rotation angles φ = arctan(M/N) with M = 1, N = 0, 1, 2, 3. Weyl
points of opposite chirality are marked by a green or red dot. The panel for
N = 3 shows how translation by reciprocal lattice vectors (blue arrows) folds
two Weyl points onto each other.

constant a′ = a
√
N2 +M2, see Fig. 3.8. There are then N2 +M2 atoms

in a unit cell.
In reciprocal space the enlarged unit cell folds the Brillouin zone. Rel-

ative to the original Brillouin zone the folded Brillouin zone is rotated by
an angle φ around the y-axis and scaled by a factor (N2 + M2)−1/2 in
the x and z-directions, see Fig. 3.9. The reciprocal lattice vectors in the
rotated basis are

ex = (2π/a′)x̂, ey = (2π/a)ŷ, ez = (2π/a′)ẑ. (3.34)

The corner in the ky = 0 plane of the original Brillouin zone (the M
point) has coordinates

π

a
(cosφ+ sinφ, cosφ− sinφ, 0) =

π

a′
(N +M,N −M, 0)

in the rotated lattice. Upon translation over a reciprocal lattice vector this
is folded onto the center of the Brillouin zone (the Γ point) when N +M
is an even integer, while it remains at a corner for N + M odd. The
midpoints of a zone boundary, the X and Z points, are folded similarly,
as summarized by

M 7→ Γ, Γ 7→ Γ, X 7→ M, Z 7→ M, for N +M even,

M 7→ M, Γ 7→ Γ, X 7→ X, Z 7→ Z, for N +M odd.

Since the Weyl points at Γ and M have the same chirality, for N + M
even we are in the situation that the surface of the slab couples Weyl
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

points of the same chirality — which is required for surface Fermi arcs to
appear (see Sec. 3.2). For N + M odd, in contrast, the Weyl points at
the Γ and X points of opposite chirality are coupled by the surface, since
these line up along the k⊥ axis. Then surface Fermi arcs will not appear.
In App. 3.B we present a general analysis, for arbitrary Bravais lattices,
that determines which lattice terminations support Fermi arcs and which
do not.

3.8 Tight-binding model results

We present results for M = N = 1, corresponding to a φ = π/4 rotation
of the lattice around the y-axis. The folded and rotated Brillouin zone
has a pair of Weyl points of + chirality at K = (0, 0, 0) and a second pair
of − chirality at K ′ = (π/a′, 0, π/a′) in the rotated coordinates (see Fig.
3.9, second panel, with a′ = a

√
2). There is a second pair translated by

ky = π/a.
Each Weyl point supports a pair of Weyl cones of the same chirality,

folded onto each other in the first Brillouin zone. The Weyl cones at K
have energy offset ε = |2t0|, while those atK ′ have ε′ = 0. We may adjust
the offset by adding a rotational symmetry breaking term δH = δt0 cos kza
to the tight-binding Hamiltonian (3.32). This changes the offsets into

ε = |2t0 + δt0|, ε′ = |δt0|. (3.35)

In Fig.3.10 we show how the Fermi arcs appear in the dispersion relation
connecting the Weyl cones at kz = 0 and kz = π/a′. This figure extends
the local description near a Weyl cone from Fig. 3.2 to the entire Brillouin
zone. The corresponding equi-energy contours are presented in Fig. 3.11.
Increasing the spin-independent hopping term t0 introduces more bands,
but the qualitative picture near the center of the Brillouin zone remains
the same as in Fig. 3.3 for W > Wc.

The effect on the dispersion of a magnetic field B, perpendicular to the
slab, is shown in Fig. 3.12 (see also App. 3.D). The field was incorpo-
rated in the tight-binding model via the Peierls substitution in the gauge
A = (0,−Bz, 0), with coordinate z restricted to |z| < L/2. Translational
invariance in the y-direction is maintained, so we have a one-dimensional
dispersion E(ky). The boundaries of the system at z = ±L/2 introduce
edge modes, which are visible in panel a as linearly dispersing modes near
ky = ± 1

2L/l
2
m (modulo π/a). Panels b,c,d focus on the region near ky = 0,

where these edge effects can be neglected. The effect on the dispersion of
a variation in ε and ε′ is qualitatively similar to that obtained from the
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3.9 Conclusion

Figure 3.10: Dispersion relations of a slab (thickness W = 10
√

2 a in the
x-direction, infinitely extended in the y–z plane) in zero magnetic field. The
plots are calculated from the tight-binding model of Sec. 6.A (with t0 = 0.04 t1,
δt0 = −0.02 t1, corresponding to ε = 0.06 t1, ε′ = 0.02 t1). The left and right
panels show the dispersion as a function of kz and ky, respectively. The curves
are colored according to the electron density on the surfaces: red for the bottom
surface, blue for the top surface, with bulk states appearing black.

analytical solution of the continuum model, compare the four panels of
Fig. 3.12 with the corresponding panels in Fig. 3.16.

The width δE of the dispersive Landau bands (from maximum to min-
imum energy) is plotted as a function of 1/B in Fig. 3.13 and the peri-
odicity ∆(1/B) is compared with the predicted Eq. (3.21) in Fig. 3.14.
To remove the rapid Shubnikov-De Haas (SdH) oscillations we averaged
over an energy interval ∆E around EF. This corresponds to a thermal
average at effective temperature Teff = ∆E/4kB. From Eq. (3.31), with
kFa ≈ 0.2, W/Wc ≈ 1.5, we estimate that the characteristic energy scale
at which the oscillations average out is five times smaller for the SdH os-
cillations than for the oscillations due to magnetic breakdown, consistent
with what we see in the numerics.

3.9 Conclusion

In conclusion, we have shown that Kramers-Weyl fermions (massless fer-
mions near time-reversally invariant momenta) confined to a thin slab
have a fundamentally different Landau level spectrum than generic mass-
less electrons: The Landau levels are not flat but broadened with a band
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.11: Panels a (full Brillouin zone) and b (zoom-in near ky = 0) show
equi-energy contours at E = 0.167 t1 (when W ≈ 1.5Wc), for the same system
as in Fig. 3.10. In panels c and d the spin-independent hopping term t0 is
increased by a factor 5 (at the same δt0 = −0.02 t1).

width that oscillates periodically in 1/B. The origin of the dispersion
is magnetic breakdown at Weyl points, which couples open orbits from
surface Fermi arcs to closed orbits in the interior of the slab.

The band width oscillations are observable as a slow modulation of
the conductance with magnetic field, on which the rapid Shubnikov-de
Haas oscillations are superimposed. The periodicities are widely sepa-
rated because the quantized areas in the Brillouin zone are very different
(compare the areas S0 and SΣ in Fig. 3.5). This is a robust feature of
the band structure of a Kramers-Weyl semimetal, as illustrated in the
model calculation of Fig. 3.11. Since generic Weyl fermions have only the
Shubnikov-de Haas oscillations, the observation of two distinct periodic-
ities in the magnetoconductance would provide for a unique signature of
Kramers-Weyl fermions.
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3.9 Conclusion

Figure 3.12: Dispersion relation of a strip (cross-section W × L with W =
10a′ and L = 30a′) in a perpendicular magnetic field B = 0.00707 (h/ea2)
(magnetic length lm = 4.74 a). The four panels correspond to t0/t1, δt0/t1
equal to 0, 0 (panel a), 0.04,−0.02 (panel b), 0.04,−0.04 (panel c), 0.16,−0.16
(panel d). The surface Fermi arcs near ky = 0 form closed orbits in panel a,
producing flat Landau levels, while in panel d they form open orbits with the
same linear dispersion as in zero field. Panels b,c show an intermediate regime
where magnetic breakdown between closed and open orbits produces Landau
bands with an oscillatory dispersion.

The dispersive Landau band is interpreted as the band structure of
a one-dimensional superlattice of magnetic breakdown centra, separated
in real space by a distance L = (eBa0/h)−1 — which in weak fields
is much larger than the atomic lattice constant a0. Such a magnetic
breakdown lattice has been studied in the past for massive electrons [70],
the Kramers-Weyl semimetals would provide an opportunity to investigate
their properties for massless electrons.

The tight-binding model calculations were performed using the Kwant
code [47].
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

t0 = 0.04 t1
t0 = 0.2 t1
t0 = 0.4 t1

Figure 3.13: Band width of the Landau levels versus inverse of magnetic field
for W = 10a′, L = 500a′, δt0 = −0.02 t1 and three different values of t0. The
band widths are averaged over an energy window ∆E = 0.004 t1 around the
Fermi energy EF = 0.167 t1. The rapid Shubnikov-de Haas oscillations are
averaged out, only the slow oscillations due to magnetic breakdown persist.

Figure 3.14: Periodicity in 1/B of the Landau band width oscillations as a
function of the Fermi energy, for W = 10a′, L = 500a′, t0 = 0.04 t1, and
δt0 = −0.02 t1. The filled data points are obtained numerically from the Landau
band spectrum, similarly to the data shown for one particular EF in Fig. 3.13.
The open circles are calculated from the area S0 of the closed orbit in momentum
space (as indicated in Fig. 3.11b), using the formula ∆(1/B) = 2πe/~S0.
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Appendices

3.A Coupling of time-reversally invariant
momenta by the boundary

The derivation of the boundary condition for Kramers-Weyl fermions in
Sec. 3.2 relies on pairwise coupling of Weyl cones at a TRIM by the
boundary. Let us demonstrate that this is indeed what happens.

Consider a 3D Bravais lattice and its Brillouin zone. A time-reversally-
invariant momentum (TRIM) is by definition a momentum K such that
K = −K+G withG a reciprocal lattice vector, or equivalently,K = 1

2G.
Now consider the restriction of the lattice to x > 0, by removing all lattice
points at x < 0. Assume that the restricted lattice is still periodic in the
y–z plane, with an enlarged unit cell. Fig. 3.8 shows an example for a
cubic lattice.

The enlarged unit cell will correspond to a reduced Brillouin zone, with
a new set of reciprocal lattice vectors G̃. The original set K1,K2,K3, . . .
of TRIM is folded onto a new set K̃1, K̃2, K̃3, . . . in the reduced Brillouin
zone. The folding may introduce degeneracies, such that two different
K’s are folded onto the same K̃. The statement to prove is this:

• Each TRIM K̃ in the folded Brillouin zone is either degenerate
(because twoK’s were folded onto the same K̃), or there is a second
TRIM K̃ ′ along the kx-axis.

Fig. 3.9 illustrates that this statement is true for the cubic lattice. We
wish to prove that it holds for any Bravais lattice.

Enlargement of the unit cell changes the primitive lattice vectors from
a1,a2,a3 into ã1, ã2, ã3. The two sets are related by integer coefficients
nij ,

ãi =

3∑
j=1

nijaj , nij ∈ Z. (3.36)

The corresponding primitive vectors b, b̃ in reciprocal space satisfy

bi · aj = 2πδij , b̃i · ãj = 2πδij . (3.37)
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Any momentum k can thus be expanded as

k =
1

2π

3∑
i=1

(ãi · k)b̃i =
1

2π

3∑
i,j=1

nij(aj · k)b̃i. (3.38)

A TRIM Kα in the first Brillouin zone of the original lattice is given
by

Kα = 1
2

3∑
i=1

mα,ibi, mα,i ∈ {0, 1}. (3.39)

The index α labels each TRIM, identified by the 8 distinct triples (mα,1,mα,2,mα,3) ∈
Z2 ⊗ Z2 ⊗ Z2. Subsitution into the expansion (3.38) gives

Kα = 1
2

3∑
l=1

mα,l

 1

2π

3∑
i,j=1

nij(aj · bl)b̃i


= 1

2

3∑
i,j=1

mα,jnij b̃i. (3.40)

mα,1mα,2mα,3

ni1 ni2 ni3 (mod 2) 000 001 010 011 100 101 110 111
000 0 0 0 0 0 0 0 0
001 0 1

2 0 1
2 0 1

2 0 1
2

010 0 0 1
2

1
2 0 0 1

2
1
2

011 0 1
2

1
2 0 0 1

2
1
2 0

100 0 0 0 0 1
2

1
2

1
2

1
2

101 0 1
2 0 1

2
1
2 0 1

2 0
110 0 0 1

2
1
2

1
2

1
2 0 0

111 0 1
2

1
2 0 1

2 0 0 1
2

Table 3.1: Values of να,i calculated from Eq. (3.41), for each triple ni1 ni2 ni3
and each triple mα,1 mα,2 mα,3 (both ∈ Z2⊗Z2⊗Z2). If we select any two rows
and intersect with any column to obtain an ordered pair of values ν, ν′, we can
then find a second column with the same ν, ν′ at the intersection.

We now fold Kα 7→ K̃α into the first Brillouin zone of the b̃ reciprocal
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3.B Criterion for the appearance of surface Fermi arcs

vectors,

K̃α =

3∑
i=1

να,ib̃i, να,i ∈ [0, 1),

να,i = 1
2

3∑
j=1

mα,jnij (mod 1).

(3.41)

In Table 3.1 we list for each TRIM and each choice of (ni1, ni2, ni3) ∈
Z2 ⊗ Z2 ⊗ Z2 the corresponding value of να,i ∈ {0, 1

2}.
We fix the y and z-components of K̃α by specifying να,2 and να,3 ∈
{0, 1

2} and ask how many choices of α remain, so how many values of α
satisfy the two equations

να,2 = 1
2

3∑
i=1

n2imα,i (mod 1),

να,3 = 1
2

3∑
i=1

n3imα,i (mod 1).

(3.42)

Inspection of Table 3.1 shows that the number of solutions is even.
More specifically, there are

• 8 solutions if n21, n22, n23 and n31, n32, n33 both equal 000 mod 2;

• 4 solutions if only one of n21, n22, n23 and n31, n32, n33 equals 000
mod 2;

• 4 solutions if n21, n22, n23 and n31, n32, n33 are identical and different
from 000 mod 2;

• 2 solutions otherwise.

The multiple solutions correspond to pairs Kα and Kβ that are either

folded onto the same K̃α = K̃β (if detn = 0 mod 2), or onto K̃α and K̃β

that differ only in the x-component (if detn = 1 mod 2). These are the
TRIM that are coupled by the boundary normal to the x-axis.

3.B Criterion for the appearance of surface
Fermi arcs

When the boundary couples only Weyl cones of the same chirality, these
persist and give rise to surface Fermi arcs. If, however, opposite chiralities
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

are coupled, then the boundary gaps out the Weyl cones and no Fermi
arcs appear. Which of these two possibilities is realized can be determined
by using that the parity of mα1 +mα2 +mα3 determines the chirality of
the Weyl cone at Kα.

Table 3.2 identifies for each choice of n21, n22, n33 and n31, n32, n33 how
many pairs of Weyl cones of opposite chirality are folded onto the same
point of the surface Brillouin zone. We conclude that surface Fermi arcs
appear if either

• n2i + n3i = 1 mod 2 for each i, or

• n21, n22, n23 = 111 mod 2, or

• n31, n32, n33 = 111 mod 2.

n31 n32 n33 (mod 2)
n21 n22 n23 (mod 2) 000 001 010 011 100 101 110 111

000 4 2 2 2 2 2 2 0
001 2 2 1 1 1 1 0 0
010 2 1 2 1 1 0 1 0
011 2 1 1 2 0 1 1 0
100 2 1 1 0 2 1 1 0
101 2 1 0 1 1 2 1 0
110 2 0 1 1 1 1 2 0
111 0 0 0 0 0 0 0 0

Table 3.2: Number of pairs of opposite-chirality Weyl cones that are coupled
by a surface termination characterized by the integers n2i, n3i, i ∈ {1, 2, 3}.
When this number equals 0 the surface couples only Weyl cones of the same
chirality and surface Fermi arcs will appear. If the number is different from zero
the surface does not support Fermi arcs.

3.C Calculation of the dispersive Landau
bands due to the coupling of open and
closed orbits

To calculate the effect of the coupling of open and closed orbits on the
Landau levels we apply the scattering theory of Refs. 60, 70, 72 to the equi-
energy contours shown in Fig. 3.15. We distinguish the two Weyl points at
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3.C Calculation of the dispersive Landau bands due to the coupling of open and closed orbits

kz = 0 and kz = π/a0 by their different magnetic breakdown probability,
denoted respectively by TMB = 1−RMB and T ′MB = 1−R′MB. The areas
of the closed orbits may also differ, we denote these by S0 and S′0 and the
corresponding phase shifts by φ = S0l

2
m + 2πν and φ′ = S′0l

2
m + 2πν.

The coupling of the closed and open orbits at these two Weyl points is
described by a pair of scattering matrices, given by(

b−L
b+R

)
=

(
r t
t r

)
·
(
b+L
b−R

)
, r =

TMBe
iφ/2

1−RMBeiφ
, (3.43a)

t = −
√
RMB +

TMB

√
RMBe

iφ

1−RMBeiφ
, (3.43b)

for the Weyl point at kz = 0, and similarly for the other Weyl point at
kz = π/a0 (with TMB 7→ T ′MB, φ 7→ φ′). The coefficients can be rearranged
in an energy-dependent transfer matrix,(

b+R
b−R

)
= T (E)

(
b+L
b−L

)
, T =

(
t− r2/t r/t
−r/t 1/t

)
, (3.44)

and similarly for T ′ (with t 7→ t′, r 7→ r′). The transfer matrices are
energy dependent via the energy dependence of S0 and hence of φ.

We ignore the curvature of the open orbits, approximating them by
straight contours along the line ky = E/~vy. The phase shift accumulated
upon propagation from one Weyl point to the next, in the Landau gauge
A = (0,−Bz, 0), is then given by

ψ =
E

~vy
π

a0
l2m =

πE

~ωc
, ωc = eBvya0/~. (3.45)

The full transfer matrix over the first Brillouin zone takes the form

Figure 3.15: Equi-energy contours in the ky–kz plane. The labeled wave am-
plitudes are related by the scattering and transfer matrices (3.43)–(3.46).
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.16: Dispersion relation of the slab in a perpendicular magnetic field,
calculated from Eqs. (3.47) and (3.48) for W = 1.8 a0, S0=S′0, ν = 1/2,
B = 0.1 ~/ea2

0. The four panels correspond to different choices of the mag-
netic breakdown probabilities TMB and T ′MB at the two Weyl points. At the two
extremes of strong and weak magnetic breakdown we see dispersionless Lan-
dau levels (left-most panel) and linearly dispersing surface modes (right-most
panel).

(
c+R
c−R

)
= Ttotal(E)

(
a+

R

a−R

)
,

Ttotal =

(
t′ − r′2/t′ r′/t′

−r′/t′ 1/t′

)(
eiψ 0
0 e−iψ

)(
t− r2/t r/t
−r/t 1/t

)(
eiψ 0
0 e−iψ

)
,

(3.46)

tr Ttotal =

(
eiφ −RMB

)(
eiφ

′ −R′MB

)
+
(
1− eiφRMB

)(
1− eiφ′

R′MB

)
e2iψ

(
eiφ − 1

)(
eiφ′ − 1

)√
RMBR′MB

−2TMBT
′
MBe

1
2 i(φ+φ′)+2iψ

e2iψ
(
eiφ − 1

)(
eiφ′ − 1

)√
RMBR′MB

.

(3.47)

Because det Ttotal = 1, the eigenvalues of Ttotal come in inverse pairs
λ, 1/λ. The transfer matrix translates the wave function over a period L
in real space, so we require that λ = eiqL for some real wave number q,
hence λ+ 1/λ = eiqL + e−iqL, or equivalently [72]

tr Ttotal(E) = 2 cos qL. (3.48)

(In the main text we denote q by ky, here we choose a different symbol as
a reminder that q is a conserved quantity, while the zero-field wave vector
is not.) A numerical solution of Eq. (3.48) is shown in Figs. 3.7 and 3.16.
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3.D Landau levels from surface Fermi arcs

Figure 3.17: Magnetic field dependence of the energy spacing of the Landau
levels near E = 0. The numerical data is for the slab geometry of Fig. 3.12
(W = 11a′, L = 30a′) at t0 = δt0 = 0 so that the probability of magnetic
breakdown is unity and the Landau levels are dispersionless. The predicted
energy spacing ~ωc = eBvFa

′ is the black dotted line.

For TMB and T ′MB close to unity an analytical solution En(q) for the
dispersive Landau bands can be obtained. We substitute ψ = π(n− ν)−
(φ + φ′)/4 + πδE/~ωc into Eq. (3.47) and expand to second order in δE
and to first order in RMB, R

′
MB. Then we equate to 2 cos qL to arrive at

E±n (q) = (n− ν)~ωc ± δE(q), (3.49a)

(πδE/~ωc)2 = ρ+ ρ′ + 2
√
ρρ′ cos qL, (3.49b)

ρ = RMB sin2(φ/2), ρ′ = R′MB sin2(φ′/2), (3.49c)

where φ and φ′ are evaluated at E = (n−ν)~ωc. Corrections are of second
order in RMB and R′MB and we have assumed that the areas S0, S

′
0 of the

closed orbit are small compared to kF/a0 — so that variations of φ and φ′

over the Landau band can be neglected relative to the band spacing ~ωc.

3.D Landau levels from surface Fermi arcs

As explained in Fig. 3.6, the spacing of Landau levels formed out of surface
Fermi arcs varies ∝ B — in contrast to the

√
B dependence for unconfined

massless electrons. In the tight-binding model of Sec. 6.A we can test this
by setting ε = ε′ = 0, so that there are only closed orbits and the Landau
levels are dispersionless. The expected quantization is

En = (n− ν)~ωc, ωc = eBvFa
′/~, n = 0, 1, 2, . . . (3.50)
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3 Magnetic breakdown spectrum of a Kramers-Weyl semimetal

Figure 3.18: Dispersion relation of the tight-binding model with t0 = δt0 = 0,
for B = 7.07 · 10−3 h/ea2, L = 30a′, and two values of W = 10a′ and 11a′. The
Landau levels are shifted by half a level spacing when W/a′ switches from odd
to even, indicating a shift of the offset ν from 0 to 1/2.

with vF the velocity in the surface Fermi arc, connecting Weyl points
spaced by π/a′. As shown in Fig. 3.17, this agrees nicely with the numer-
ics.

In an unconfined 2D electron gas, the offset ν equals 1/2 or 0 for massive
or massless electrons, respectively. For the surface Fermi arcs we observe
that ν depends on the parity of the number of unit cells between top
and bottom surface: ν = 0 if W/a′ is odd, while ν = 1/2 if W/a′ is
even. This parity effect suggests that the coupling of Fermi arc states on
opposite surfaces, needed to close the orbit in Fig. 3.1, introduces a phase
shift that depends on the parity of W/a′. We are not aware of such a
phase shift for generic Weyl semimetals [61, 62, 73, 74], it seems to be
a characteristic feature of Kramers-Weyl fermions that deserves further
study.
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4 Supercell symmetry
modified spectral statistics
of Kramers-Weyl fermions

4.1 Introduction

The Wigner surmise P (s) ∝ sβ for the probability distribution of level
spacings [75] is a quantum signature of chaos [76]. The exponent β, the
Dyson index [77], can take on the values 1, 2 or 4, depending on the pres-
ence or absence of time-reversal symmetry and spin-rotation symmetry.
Electrons in zero magnetic field have β = 1 in the absence of spin-orbit
coupling and β = 4 with spin-orbit coupling, while β = 2 in a magnetic
field irrespective of the spin degree of freedom. In the context of random-
matrix theory one says that the Hamiltonian belongs to the universality
class of the Gaussian Orthogonal Ensemble (β = 1, GOE), Gaussian Uni-
tary Ensemble (β = 2, GUE), or Gaussian Symplectic Ensemble (β = 4,
GSE).1

This classification applies both to massive electrons [78] (e.g. in a metal
grain or in a semiconductor quantum dot) and to massless electrons [79]
(e.g. in graphene or on the surface of a topological insulator). Here we
consider a specific model in the latter category: Massless electrons (Weyl
fermions) with a band crossing (Weyl point) enforced by Kramers de-
generacy [9, 10]. These low-energy excitations known as Kramers-Weyl
fermions appear at time-reversally invariant momenta Π in the Brillouin
zone (such that Π and −Π differ by a reciprocal lattice vector). A strong
spin-orbit coupling without reflection or mirror symmetry produces a lin-
ear band splitting ±(p −Π) · σ near each of the high-symmetry points.
The ± sign designates the chirality of the excitations.

On a three-dimensional (3D) cubic lattice (unit lattice constant a0) the

1The orthogonal, unitary, and symplectic matrices in this nomenclature refer to the
matrix that diagonalizes the Hamiltonian.
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4 Supercell symmetry modified spectral statistics of Kramers-Weyl fermions

Figure 4.1: Distribution of the level spacings δE (normalized by the mean
spacing 〈δE〉 ≡ δ = 4.04 · 10−3 v/a0) of the Hamiltonian (6.2), for t = 0 (blue)
and t 6= 0 (red), on a 20×20×20 cubic lattice. The potential V was chosen inde-
pendently on each site from a uniform distribution in the interval (−V0/2, V0/2)
with V0 = 1.5 v/a0. The solid and dashed black curves give the Wigner surmise
for β = 1 and β = 4, respectively.

Hamiltonian

H = v(σx sin px + σy sin py + σz sin pz)

+ tσ0(cos px + cos py + cos pz) + V (r)σ0 (4.1)

describes Kramers-Weyl fermions of positive chirality with momenta near
(0, 0, 0), (π, π, 0), (π, 0, π), (0, π, π) and of negative chirality near (π, π, π),
(π, 0, 0), (0, π, 0), (0, 0, π). The Hamiltonian contains spin-independent
terms, hopping terms ∝ cos pα and a scalar potential V , as well as spin-
orbit coupling terms ∝ σα sin pα.

The numerical study of the spectral statistics of Kramers-Weyl fermions
that prompted our investigation is shown in Fig. 4.1. A quantum dot is
formed by restricting the lattice to a small region and chaotic dynamics is
produced by a random potential. For t = 0 the level spacing distribution
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4.2 Supercell symmetry

is well described by the β = 1 Wigner surmise (orthogonal statistics),
while the spin-orbit coupling would have suggested symplectic β = 4
statistics. Paradoxically, the β = 4 distribution requires the addition of
spin-independent hopping.

In the next section we construct the “fake” time-reversal operation T ∗
that squares to +1 and is responsible for the β = 1 spacing distribution
when t = 0. The supercell symmetry that enables T ∗ is broken by the
cos p terms, which reveal the true T , squaring to −1 with a β = 4 spac-
ing distribution. In Sec. 4.3 we investigate how the symmetry breaking
manifests itself in a transport property (the magnetoconductance). The
analytical results are compared with numerical simulations in Sec. 6.A. In
the concluding section we make contact with the spectrum of lattice Dirac
operators on a torus, which shows a similar shift of symmetries when the
number of lattice sites changes from even to odd [80, 81].

4.2 Supercell symmetry

4.2.1 Zero magnetic field

The tight-binding Hamiltonian of a spin-1/2 degree of freedom with nearest-
neighbor hopping and on-site disorder on an orthorhombic lattice (lattice
constants ax, ay, az) has the generic form [9]

H =
∑

α=x,y,z

[
tασ0 cos aαpα + vασα sin aαpα

]
+ V (r)σ0. (4.2)

Both the spin-independent hopping energies tα and the spin-orbit coupling
amplitudes vα may be anisotropic. We set ~ equal to unity, pα = −i∂/∂xα
is the momentum operator, the Pauli spin matrices are σ = (σx, σy, σz),
and σ0 is the 2× 2 unit matrix.

The Hamiltonian (7.5) is constrained by the symplectic symmetry

H = σyH∗σy ≡ T HT . (4.3)

This is a time-reversal operation that changes the sign of both σ and p =
−i∇, leaving H invariant. The operator T = σy × complex conjugation
squares to −1, thus we expect GSE statistics, while GOE statistics would
require a time-reversal operator that squares to +1.

The eight flavors of Kramers-Weyl fermions at pα ∈ {0, π/aα} are dis-
placed in energy from E = 0 by the tα terms. Without these terms, the
Hamiltonian

H0 =
∑
α

vασα sin aαpα + V (r)σ0 (4.4)
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4 Supercell symmetry modified spectral statistics of Kramers-Weyl fermions

has the supercell symmetry2

UyH0U
†
y = H0, Uy = σye

iπnx+iπnz , nα =
xα
aα
∈ Z, (4.5)

which transforms px → px + π/ax, pz → pz + π/az, while leaving py
unaffected. The operator Uy thus maps each Kramers-Weyl fermion onto
a partner of the same chirality.

Since U2
y = 1 its eigenvalues are ±1 and we can block-diagonalize H0

in sectors of the Hilbert space where UyΨ = ±Ψ. In a given sector the
time-reversal operator T = σy × complex conjugation can be replaced by

T ∗ = ±T Uy = ∓eiπnx+iπnz × complex conjugation. (4.6)

The “fake” time-reversal operator T ∗ squares to +1, so each sector has
an orthogonal time-reversal symmetry.

The spin-independent hopping terms in the full Hamiltonian (7.5) break
the supercell symmetry if two or more of the tα’s are nonzero. (If only

a single tα 6= 0 the symmetry Uα = σαe
iπ

∑
α′ 6=α nα′ remains unbroken.)

We would thus expect a β = 1 to β = 4 transition in the level spacing
distribution P (s) ∝ sβ when t becomes larger than the mean level spacing
δ.

4.2.2 Nonzero magnetic field

A magnetic field B breaks time-reversal symmetry, driving both orthogo-
nal (β = 1) and symplectic (β = 4) level spacing distributions towards the
unitary (β = 2) result. The degeneracy of the β = 2 spectra is different
in the two cases.

For B = 0 each energy level is twofold degenerate (Kramers degener-
acy). In a magnetic field the degeneracy is broken for a nonzero tα, but
it remains when tx, ty, tz = 0 if the magnetic field enters only via the
substitution p→ p+ eA — so only as an orbital effect, no Zeeman effect
on the spin.

This persistent degeneracy is due to the fact that the supercell symme-
try Uα is not broken by the substitution p → p + eA. Starting from a
Hamiltonian which commutes with Ux and Uy and an energy eigenstate Ψ
such that UyΨ = Ψ we can then construct another eigenstate Ψ′ = UxΨ

2The unitary transformation (4.5) has a periodicity of twice the lattice constant,
hence the name “supercell symmetry”, suggested to us by Anton Akhmerov.
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4.3 Supercell symmetry effects on the conductance

at the same energy eigenvalue. The two states Ψ and Ψ′ are orthogonal,

〈Ψ|Ψ′〉 = 〈Ψ|Ux|Ψ〉 = 〈Ψ|U†yUxUy|Ψ〉
= −〈Ψ|Ux|Ψ〉 = −〈Ψ|Ψ′〉 ⇒ 〈Ψ|Ψ′〉 = 0, (4.7)

so the energy eigenvalue is twofold degenerate.

4.3 Supercell symmetry effects on the
conductance

The appearance of the supercell symmetry can be probed via the electrical
conductance G. In a magnetic field, the β = 1 → β = 2 transition gives
an increase in G (weak localization), while the β = 4→ β = 2 transition
gives a decrease in G (weak antilocalization). The theoretical prediction
for this quantum correction δG = G(B)−G(0) is [82]

δG =
2e2

h
×
{

1/3 for β = 1→ 2,

−1/6 for β = 4→ 2.
(4.8)

This result applies to the disorder-averaged conductance in a wire geom-
etry (length L large compared to the width W ), with a large number
N � 1 of propagating modes, in the diffusive regime (L much larger
than the mean free path l, but much smaller than the localization length
ξ = Nl).

An alternative way to probe the symmetry class is via the sample-
to-sample fluctuations of the conductance. According to the theory of
universal conductance fluctuations [83, 84], the variance VarG of the con-
ductance is proportional to g2/β, where g is the level degeneracy factor.
In our case the β = 1 → β = 2 transition happens at fixed g = 2, while
the β = 4 → β = 2 transition is accompanied by g = 2 → g = 1, hence
in both cases the magnetic field reduces the variance by a factor of two.
The predicted values in a wire geometry are [82]

VarG =

(
2e2

h

)2

×
{

2/15→ 1/15 for β = 1→ 2,

1/30→ 1/60 for β = 4→ 2.
(4.9)

For these quantum interference effects the crossover to β = 2 hap-
pens when the magnetic flux through the wire becomes larger than a flux
quantum h/e. Which of the two transitions applies, β = 1 → β = 2 or
β = 4 → β = 2, depends on whether the supercell symmetry breaking
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4 Supercell symmetry modified spectral statistics of Kramers-Weyl fermions

term t is small or large compared to the Thouless energy ET = (h/e2)Gδ.
In a diffusive multimode wire G � e2/h ⇒ ET � δ, hence the range
of t governed by the supercell symmetry is much larger for the conduc-
tance, when we need t� ET, than it is for the level repulsion, when the
condition is t� δ.

4.4 Numerical results

We have studied the effect of the supercell symmetry numerically, using
the Kwant tight-binding package [47, 85]. For computational efficiency
we took a 2D square lattice, rather than a 3D lattice, given by the Hamil-
tonian

H = v(σx sin a0px + σy sin a0py)

+ tσ0(cos a0px + cos a0py) + V (r)σ0. (4.10)

The random potential V was chosen independently on each site, uniformly
in the interval (−V0/2, V0/2).

For the level statistics we took a square geometry,3 on a lattice of size
200 a0 × 200 a0. We calculated the distribution of the nearest-neigbor
spacings of the twofold degenerate levels in the interval |E−0.2 v/a0| < 4 ·
10−3 v/a0 (mean level spacing δ = 3.56·10−4 v/a0, approximately constant
in this energy range), averaging over some 2000 disorder realizations. Note
that the disorder potential breaks chiral symmetry,4 so there is no ±E
symmetry in the spectrum.

As an extra check, we also calculated the ratio distribution [86], mean-
ing the probability distribution P (r) of the ratio rn = sn/sn−1 of two
consecutive level spacings sn = En+1 − En.

For the conductance we took a disordered wire of width W = 200 a0

and length L = 1000 a0. The end points are connected to heavily doped
metal leads, modelled on the lattice by breaking the transverse bonds. The
transmission matrix t at Fermi energy E determines the zero-temperature
two-terminal conductance G = (e2/h) Tr tt†. We took E = 0.2 v/a0, when
the number of propagating modes through the disordered region equals
N = 52 (counting degeneracies). The mean free path for V0 = 0.5 v/a0 is
estimated at l = 150 a0, from the Drude formula G ≈ (Ne2/h)(1+L/l)−1.

3In all our systems we truncate the lattice without applying periodic boundary con-
ditions. The parity of the number of lattice sites then does not matter.

4Chiral symmetry means that the Hamiltonian σx sin px + σy sin py anticommutes
with σz , enforcing a ±E symmetry in the spectrum. This symmetry plays no role
in our analysis, because it is broken by the V σ0 disorder potential.
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The localization length ξ = Nl is then larger than L, so we are in the
diffusive regime.

Fig. 4.2 shows the transition from the β = 1 to β = 4 level spacing
and ratio distributions. The transition from weak localization to weak
anti-localization is shown in Fig. 4.3, as well as the transition from β = 1
to β = 4 conductance fluctuations. It is difficult to fully reach the large-N
regime where the analytical results (4.8) and (4.9) apply, so the agreement
analytics–numerics remains qualitative for the conductance.

In Fig. 4.4 we show that the effect of the supercell symmetry is sup-
pressed more rapidly by the spin-independent hopping energy t if we con-
sider the level spacings (when we need t & δ) than it is if we consider
the conductance (when we need t & ET). In the conductance calcula-
tions G ≈ 7e2/h⇒ ET/δ ≈ 7, so we expect about an order of magnitude
difference in the onset of the two transitions, in accord with Fig. 4.4.

4.5 Conclusion

In summary, we have identified a supercell symmetry and a resulting
“fake” time-reversal symmetry operation, squaring to +1 rather than −1,
which explains the β = 1 spectral statistics of the Kramers-Weyl Hamilto-
nian (6.2) in the absence of the spin-independent hopping term ∝ t cos p.
The same symmetry is responsible for the appearance of weak localization
in the magnetoconductance.

The crossover from β = 1 to β = 4 level repulsion happens quickly,
when t becomes larger than the mean level spacing δ. The crossover from
weak localization to weak antilocalization happens at larger t, larger by a
factor of conductance G × h/e2. This delayed crossover in the magneto-
conductance may make the effect of the supercell symmetry more easily
observable.

A similar shift of symmetries has been observed when comparing two
discretization schemes of lattice Dirac operators on a torus [80, 81]. The
Dirac Hamiltonian −i∇ · σ needs a special “staggered” discretization of
the spatial derivative to make sure that the low-energy states are only
near p = 0. The “naive” discretization ∂f/∂x 7→ (2a)−1[f(x+ a)− f(x−
a)] introduces an additional Dirac cone at p = π/a (fermion doubling
[88, 89]).

If one then imposes periodic boundary conditions, the naive discretiza-
tion obeys the supercell symmetry (4.5) if the number of lattice sites is
even but not if it is odd. The way this works out for the spectral statistics
is different in Refs. [80, 81] than it is here, because of the presence of chiral
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symmetry, but the mechanism is the same.
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4.5 Conclusion

Figure 4.2: Top panel: Same as Fig. 4.1, but now for a 2D square lattice
(size 200 × 200, disorder strength V0 = 0.5 v/a0) and for four values of the
spin-independent hopping energy t. The bottom panel shows the corresponding
ratio distribution (with the β = 1 and β = 4 limits from Ref. 86).
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4 Supercell symmetry modified spectral statistics of Kramers-Weyl fermions

Figure 4.3: Magnetic field dependence of the conductance mean δG = 〈G(B)〉−
〈G(0)〉 (top panel) and conductance variance VarG = 〈G(B)2〉− 〈G(B)〉2 (bot-
tom panel), averaged over disorder in a conducting wire (length L = 1000, width
W = 200, disorder strength V0 = 0.5 v/a0, Fermi energy E = 0.2 v/a0). The
blue data points are in the presence of the supercell symmetry (t = 0), for the
gold data points the symmetry is broken (t = 0.1 v/a0). The arrows and dashed
lines indicate the analytical predictions (4.8) and (4.9) in the limit N →∞.
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4.5 Conclusion

Figure 4.4: Transition from β = 1 to β = 4 with increasing spin-independent
hopping energy t, as measured via the level spacing distribution (red data points,
same parameters as in Fig. 4.2) or via the variance of the conductance (blue
data points, same parameters as in Fig. 4.3, at B = 0). The transition is
quantified by an effective parameter βeff . For the conductance this is defined
by βeff = 8

15
(e2/h)2(VarG)−1. For the level spacing we fitted the data to the

Wigner surmise interpolation [87] P (s) = csβeff exp(−c′s2), with s = δE/δ and
coefficients c, c′ such that the zeroth and first moments of P (s) are equal to
unity.
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5 Chiral charge transfer along
magnetic field lines in a
Weyl superconductor

5.1 Introduction

Three-dimensional Weyl fermions have a definite chirality, given by the ±
sign in the Weyl Hamiltonian ±p ·σ. Three spatial dimensions are essen-
tial, if p · σ = pxσx + pyσy contains only two Pauli matrices, then +p · σ
and −p·σ can be transformed into each other by a unitary transformation
(conjugation with σz). The chirality is therefore a characteristic feature
of 3D Weyl semimetals, not shared by 2D graphene.

The search for observable signatures of chirality is a common theme
in the study of this new class of materials [13, 66, 90, 91]. The basic
mechanism used for that purpose is the chirality dependent motion in
a magnetic field: Weyl fermions in the zeroth Landau level propagate
parallel or antiparallel to the field lines, dependent on their chirality [92].
A population imbalance between the two chiralities then produces the
chiral magnetic effect [93, 94]: An electrical current along the field lines,
which changes sign if the field is inverted.

Here we present a novel, albeit less dramatic, signature of chirality:
An electrical conductance which depends on the magnetic field direction.
The effect appears if superconductivity is induced in a magnetic topo-
logical insulator, in the layered geometry of Meng and Balents [6] (see
Fig. 7.1). The superconductor cannot gap out the Weyl points of oppo-
site chirality, provided that the induced pair potential ∆0 remains smaller
than the magnetization energy β. The main effect of the superconduc-
tor is to renormalize the charge of the quasiparticles [95], by a factor
κ =

√
1−∆2

0/β
2.

A magnetic field B perpendicular to the layers penetrates in an array
of h/2e vortices. The zeroth Landau level is a dispersionless flat band
in the plane of the layers — the chirality of the Weyl fermions prevents
broadening of the Landau band by vortex scattering [96].
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5 Chiral charge transfer along magnetic field lines in a Weyl superconductor

Figure 5.1: Left panel: Weyl superconductor formed by alternating layers of
magnetic topological insulator (TI, magnetization β) and s-wave superconduc-
tor (S, pair potential ∆0, chemical potential µ), between normal-metal contacts
(N1 and N2. A magnetic field B perpendicular to the layers (along z) produces
a Landau band that is dispersionless in the x–y plane, with free propagation
in the z-direction. Right panel: Weyl points of opposite chirality at kz = ±K.
For µ 6= 0 the conductance G = I2/V1 depends on whether the magnetic field
points parallel or antiparallel to the vector from −K to +K.

Following Ref. 97 we probe the Landau band by electrical conduction: A
voltage V1 applied to contact N1 induces a current I2 = GV1 in contact N2.
This is a three-terminal circuit, the grounded superconductor being the
third terminal. The chemical potential µN in the normal-metal contacts
is assumed to be large compared to the value µ in the superconductor.
We calculate the dependence of the conductance G(±B) on the direction
of the magnetic field B, relative to the separation of the Weyl points of
opposite chirality.

When the chemical potential is at the Weyl point (µ = 0) the conduc-
tance is determined by the renormalized charge and B only enters via the
Landau band degeneracy [97],

G = κ2G0, G0 = (e2/h)NΦ, at µ = 0, (5.1)

with NΦ = eBS/h the flux through an area S in units of h/e. We gener-
alize this result to nonzero µ and find that

δG = G(B)−G(−B) = (4µ/β)(κ2 − κ)G0. (5.2)
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5.2 Weyl superconductor in a magnetic vortex lattice

The conductance thus depends on whether the magnetic field points from
+ chirality to − chirality, or the other way around.

The outline of the chapter is as follows. In the next section we formulate
the problem of electrical conduction along the magnetic vortices of a Weyl
superconductor. The key quantity to calculate is the charge e∗ transferred
by the quasiparticles across the normal-superconductor interface. At µ =
0 this is simply given by the renormalized charge κe of the Weyl fermions
[97], but that no longer holds at nonzero µ. In Secs. 5.3 and 5.4 we apply
a mode matching technique developed in Ref. 98 to calculate e∗. The
conductance then follows in Sec. 5.5. These are all analytical results, we
test them on a computer simulation of a tight-binding model in Sec. 6.A.
We conclude in Sec. 7.6.

5.2 Weyl superconductor in a magnetic
vortex lattice

We consider a three-dimensional Weyl superconductor [6] (Fermi velocity
vF, chemical potential µ, s-wave pair potential ∆0e

iφ), sandwiched be-
tween metal contacts N1 and N2 at z = ±L/2 (see Fig. 7.1). A magnetic
field B > 0 in the z-direction penetrates the superconductor in the form
of a vortex lattice. The superconducting phase φ winds by 2π around
each vortex (at position Rn),

∇×∇φ = 2πẑ
∑
n

δ(r −Rn). (5.3)

The Bogoliubov-De Gennes Hamiltonian is

H = vFνzτz(k · σ)− evFν0τz(A · σ) + ν0τ0β · σ
− µνzτ0σ0 + ∆0(νx cosφ− νy sinφ)τ0σ0. (5.4)

The Pauli matrices σα, τα, να act respectively on the spin, subband, and
electron-hole degree of freedom. We set ~ to unity and choose the electron
charge as +e. The magnetization β = βnβ (with nβ a unit vector) may
point in an arbitary direction relative to B = ∇×A = Bẑ. We choose a
gauge in which Az = 0 and both A and φ are z-independent.

The Weyl points in zero magnetic field are at momentum k = ±K =
±Knβ with

vFK = κβ, κ =
√

1−∆2
0/β

2. (5.5)
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5 Chiral charge transfer along magnetic field lines in a Weyl superconductor

The Weyl cones remain gapless provided that ∆0 < β. In a magnetic
field the states condense into Landau bands, dispersionless in the plane
perpendicular to B, but freely moving along B.

A quasiparticle in a Landau band, at energy E, has charge expectation
value Q = −e∂E/∂µ. At the Weyl point, µ = 0 = E, this equals [95]

Q0 = κe = e
√

1−∆2
0/β

2. (5.6)

We seek the charge e∗ transferred into the normal-metal contact by a
quasiparticle in the Landau band. At µ = 0 this was calculated in Ref.
97, with the result e∗ = Q0. We wish to generalize this to nonzero µ. For
that purpose we apply a methodology developed for a different problem
in Ref. 98, as described in the next section.

5.3 Fractional charge transfer

5.3.1 Matching condition

The particle current operator v̂z and charge current operator ĵz, both in
the z-direction, are given by

v̂z = ∂H/∂kz = vFνzτzσz,

ĵz = −∂H/∂Az = evFν0τzσz.
(5.7)

In what follows we set vF and e equal to unity, for ease of notation.

The chirality χ = ±1 of a mode in the superconductor (S) determines
whether it propagates in the +z direction or in the −z direction. We
position the normal-superconductor (NS) interface at z = 0, so that the
mode in S approaches it from z < 0 for χ = +1 and from z > 0 for
χ = −1.

We assume that the chemical potential µN in N is large compared to the
value µ in S. The potential step at the NS interface boosts the momentum
component kz perpendicular to the interface, without affecting the parallel
components kx, ky, so in N only modes are excited with |kz| � |kx|, |ky|.
These are eigenstates of νzτzσz with eigenvalue χ, moving away from the
interface in the +z direction if χ = +1 and in the −z direction for χ = −1.
Continuity of the wave function Ψ at the interface then gives the matching
condition

νzτzσzΨ = χΨ at z = 0. (5.8)
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5.3.2 Projection

Because the Hamiltonian (7.5) commutes with τz we can replace this Pauli
matrix by the subband index τ = ±1 and rewrite the matching condition
(5.8) as χτνzσzΨ = Ψ. We define the projection operator

P = 1
2 (1 + χτνzσz), such that PΨ = Ψ at z = 0, (5.9)

and project the Hamiltonian (7.5),

PHP = (τβz − χµ)P ĵzP + P k̂z v̂zP. (5.10)

We have used that A only has components in the x–y plane. The hat on
k̂z = −i∂/∂z is there to remind us it is an operator.

We take the z-dependent inner product

〈Ψ1|Ψ2〉z =

∫
dx

∫
dyΨ∗2(x, y, z)Ψ2(x, y, z) (5.11)

of Eq. (5.10),

(τβz − χµ)〈Ψ|P ĵzP|Ψ〉z = 〈Ψ|PδHP|Ψ〉z,
with δH = H− k̂z v̂z.

(5.12)

At the NS interface z = 0 the projector may be removed,

(τβz − χµ)〈Ψ|ĵz|Ψ〉0 = 〈Ψ|δH|Ψ〉0, (5.13)

since neither ĵz nor δH contain a z-derivative, so that these operators
commute with the limit z → 0 and we may replace PΨ by Ψ in view of
the matching condition (5.9). Eq. (5.13) is the key identity that allows us
to calculate the transferred charge.

5.3.3 Transferred charge

Let Ψ be an eigenstate of H at energy E. The transferred charge e∗

through the NS interface is given by the ratio

e∗ =
〈Ψ|ĵz|Ψ〉0
〈Ψ|v̂z|Ψ〉0

. (5.14)

Substitution of Eq. (5.13) equates this to

e∗ = (τβz − χµ)−1 〈Ψ|H − k̂z v̂z|Ψ〉0
〈Ψ|v̂z|Ψ〉0

(5.15a)

= (τβz − χµ)−1

(
χE − 〈Ψ|k̂z v̂z|Ψ〉0〈Ψ|v̂z|Ψ〉0

)
. (5.15b)
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The term χE appears because

〈Ψ|H|Ψ〉0 = E〈Ψ|Ψ〉0 = χE〈Ψ|v̂z|Ψ〉0, (5.16)

where in the last equality we used the matching condition (5.8).
Particle current conservation requires that

d

dz
〈Ψ|v̂z|Ψ〉z = 0. (5.17)

More generally, for our case of a z-independent Hamiltonian it holds that

d

dz
〈Ψ|f(k̂z)v̂z|Ψ〉z = 0 (5.18)

for any function of f of k̂z (see App. 5.A for a proof). Each of the two
expectation values 〈· · · 〉0 on the right-hand-side of Eq. (5.15b) can thus be
replaced by 〈· · · 〉z. This ratio can then be evaluated for large |z|, far from
the NS interface, where evanescent waves have decayed and Ψ ∝ eikzz is
an eigenstate of k̂z.

We finally obtain the transferred charge

e∗ = e
χE − vFkz
τβz − χµ

, (5.19)

reinstating units of e and vF. For µ = 0 = E, β = βz, kz = K = κβ/vF

we recover the result e∗ = ±κe = ±Q0 of Ref. 97.
It remains to relate the momentum kz of a propagating mode at the

Fermi level to the parameters of the Weyl superconductor. For that we
need the dispersion relation E(kz) of the Landau band, which we calculate
in the next section.

5.4 Dispersion relation of the Landau band

5.4.1 Block diagonalization

We calculate the dispersion relation of the Landau band by means of
the block diagonalization approach of Ref. 96. Starting from the BdG
Hamiltonian (7.5) we first make the Anderson gauge transformation [99]

H 7→ Ω†HΩ, with Ω =

(
eiφ 0
0 1

)
. (5.20)

86



5.4 Dispersion relation of the Landau band

The subblocks of Ω refer to the electron-hole (να) degree of freedom. The
resulting Hamiltonian is

H = νzτz(k + a) · σ + ν0τzq · σ + ν0τ0β · σ
− µνzτ0σ0 + ∆0νxτ0σ0, (5.21)

a = 1
2∇φ, q = 1

2∇φ−A. (5.22)

Both fields a and q have only components in the x–y plane and are z-
independent.

To focus on states near K we set k = κβ + δk and consider δk small.
The component parallel to β of a vector v is denoted by v‖ = v · nβ .

One more unitary transformation H 7→ U†HU with

U = σ‖ exp
(

1
2 iανyτzσ‖

)
,

tanα = −∆0

K
, cosα = −(1 + ∆2

0/K
2)−1/2 = −κ,

(5.23)

followed by a projection onto the ν = τ = ±1 blocks, gives a pair of 2× 2
low-energy Hamiltonians,

Hτ = τκµσ0 − (δk + a− τκq) · σ
+ (1− κ)(δk‖ + a‖ + τq‖)σ‖. (5.24)

Eq. (5.24) is an anisotropic Dirac Hamiltonian, the velocity parallel to
the magnetization is reduced by a factor κ. The same factor renormalizes
the quasiparticle charge,

Q = −e∂Hτ

∂µ
= −eτκ. (5.25)

The two Hamiltonians Hτ = H± near k = K thus describe quasiparticles
of opposite charge. Another pair of oppositely charged Weyl cones exists
near k = −K.

If β = (β sin θ, 0, β cos θ) makes an angle θ with the magnetic field we
have

Hτ = τκµσ0 −
∑
α=x,y

(δkα + aα − τκqα)σα − δkzσz

+ (1− κ)(δkx sin θ + δkz cos θ + ax sin θ + τqx sin θ)(σx sin θ + σz cos θ),
(5.26)

where we used that az = 0 = qz.
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5.4.2 Zeroth Landau band

A major simplification appears if the magnetization β and the magnetic
field B are either parallel or perpendicular, so cos θ ≡ γ ∈ {0,±1}. In
these cases the Hamiltonian (5.26) anticommutes with σz when µ = 0 =
δkz. This socalled chiral symmetry implies that the zeroth Landau band
is an eigenstate of σz, with eigenvalue −τ [96]. The dispersion relation
then follows immediately,

E(kz) = τκµ+ τδkz[1− (1− κ)γ2]

= χκµ+ χ(kz − κβγ)[1− (1− κ)γ2]. (5.27)

In the second equation we have identified the chirality index χ ≡ sign (dE/dkz) =
τ .

Equating E(kz) = E and solving for kz gives

kz = κβγ − κµ− χE
1− (1− κ)γ2

, (5.28)

to first order in E and µ. (Higher order terms are not captured by the
linearization around the Weyl point.)

We substitute Eq. (5.28) in the expression (5.19) for the transferred
charge,

e∗ =
χe

µ− βγ

(
κβγ − κµ− χE

1− (1− κ)γ2
− χE

)
. (5.29)

For β ‖ B this gives

e∗ = −χe ±κβ − µ+ χE(1/κ− 1)

±β − µ , γ = ±1. (5.30)

In contrast, for β ⊥ B the µ and E dependence drops out,

e∗ = −χκe, γ = 0. (5.31)

These are the results for the charge transferred by a mode with kz near
+K. The mode with kz near −K is its charge-conjugate, the transferred
charge is given by e∗(E) 7→ −e∗(−E).

5.4.3 Comparison of transferred charge and charge
expectation value

For the case χ = 1 that β is parallel to B we can use the more accurate
dispersion relation from Ref. 96, without making the linearization around
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Figure 5.2: Comparison of the transferred charge e∗ across the NS interface and
the charge expectation value Q of the Weyl fermions. The curves are computed
from Eqs. (5.33) and (5.36a) using k0 from the full nonlinear dispersion (5.32).

the Weyl point:

E(kz) = −χM(kz)− χM ′(kz)µ, M(kz) = β −
√

∆2
0 + k2

z . (5.32)

The solution kz = k0(µ) of the equation E(kz) = 0 then gives the trans-
ferred charge at the Fermi level (E = 0) via

e∗ = −χe k0(µ)

β − µ. (5.33)

As a check for the linearization, to first order we find

k0(µ) =
√
β2 −∆2

0 − µ+O(µ2), (5.34)

in agreement with Eq. (5.28) for E = 0, γ = 1. We checked that higher
order terms are relatively insignificant for |µ/β| . 0.1.

The resulting transferred charge

e∗ = −χeκ
[
1 + (µ/β)(1− 1/κ) +O(µ2)

]
(5.35)

can be compared with the charge expectation value

Q = χeM ′(k0) = − χek0√
∆2

0 + k2
0

(5.36a)

= −χeκ
[
1 + (µ/β)(κ− 1/κ) +O(µ2)

]
, (5.36b)
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see Fig. 6.4. We conclude that the µ-dependence of the transferred charge
e∗ is not simply accounted for by the µ-dependence of the charge expec-
tation value Q.

5.5 Conductance

5.5.1 Transmission matrix

The Landau band contains NΦ = eBS/h modes propagating along the
magnetic field through a cross-sectional area S. For each of these modes
the transmission matrix t(E) at energy E from contact N1 to N2 is a
rank-two matrix of the form

t(E) = eikzL|Ψ+
2 〉〈Ψ+

1 |+ e−ikzL|Ψ−2 〉〈Ψ−1 |. (5.37)

The incoming mode |Ψ±1 〉 from contact N1 is matched in S to a Landau
band mode at ±kz. This chiral mode propagates over a distance L to
contact N2, picking up a phase e±ikzL, and is then matched to an outgoing
mode |Ψ±2 〉. The matching condition gives a charge ±e∗(±E) to Ψ±n ,

〈Ψ±n |νz|Ψ±n 〉 = ±e∗(±E). (5.38)

The transmission matrix t(E) has electron and hole submatrices tee
and the (transmission of an electron as an electron or as a hole). These
determine the differential conductance

dI2
dV1

= G0 lim
E→eV1

Tr
(
t†eetee − t†hethe

)
= 1

2G0 Tr (1 + νz)t
†(eV1)νzt(eV1), (5.39)

with G0 = NΦe
2/h.

5.5.2 Linear response

The linear response conductance G = limV1→0 dI2/dV1 simplifies because
at the Fermi level we can use the particle-hole symmetry relations

νyσytνyσy = t∗

|Ψ+
n 〉 = νyσy|Ψ−n 〉∗

}
at E = 0. (5.40)

These two relations imply that

Tr t†νzt = 0

〈Ψ+
n |νz|Ψ−n 〉 = 0

}
at E = 0. (5.41)
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5.6 Numerical results

Figure 5.3: Dependence of the conductance G on the pair potential ∆0, com-
puted from the tight-binding model for B parallel to β (left panel) and for B
perpendicular to β (right panel). The parameters are d0 = 18 a0, L = 30 a0,
and µ = 0 (so there is no difference between parallel or antiparallel orientation
of B). The red and blue curves show the results with and without a large po-
tential step at the NS interfaces. The black curve is the µ = 0 result G = κ2G0

from Ref. 97.

The equation (5.39) for the differential conductance thus reduces in
linear response to

G = 1
2G0 Tr νzt

†νzt

= 1
2G0

∑
s=±
〈Ψs

2|νz|Ψs
2〉〈Ψs

1|νz|Ψs
1〉 = NΦ

(e∗)2

h
. (5.42)

The charge e 7→ e∗ quadratically renormalizes the conductance [97].

Application of Eq. (5.29) at E = 0 then gives the result

G/G0 =

{
κ2 ± (2µ/β)(κ2 − κ) if β ‖ B,
κ2 if β ⊥ B, (5.43)

to first order in µ. The ± sign refers to β parallel (+) or antiparallel (−)
to B. The difference δG = G(B) − G(−B) is thus given by the formula
(5.2) announced in the introduction.

5.6 Numerical results

To test these analytical results, we have calculated the conductance nu-
merically from a tight-binding model obtained by discretizing the Hamil-
tonian (7.5) of the Weyl superconductor on a cubic lattice (lattice constant
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5 Chiral charge transfer along magnetic field lines in a Weyl superconductor

Figure 5.4: Dependence of the conductance on the orientation of B, when it is
perpendicular to β and there is a large potential step at the NS interfaces (limit
µN → ∞). The colored curves show δG = G(B) − G(−B) as a function of µ,
computed from the tight-binding model (d0 = 18 a0, three values of ∆0/β, two
values of L). The black dotted line is the linear µ-dependence following from
Eq. (5.43).

a0):

HS = (vF/a0)τz
∑

α=x,y,z

σα sin(a0νzkα − ea0ν0Aα)

+ ν0τ0β · σ − µνzτ0σ0

+ ∆0(νx cosφ− νy sinφ)τ0σ0

+ (vF/a0)νzτxσ0

∑
α=x,y,z

(1− cos a0kα). (5.44)

The term on the last line is added to avoid fermion doubling.
The vortex lattice (a square array with lattice constant d0 and two

h/2e vortices per unit cell) is introduced as described in Ref. 96. The
scattering matrix is calculated using the Kwant code [47], and then the
linear-response conductance follows from

G =
I2
V1

=
e2

h
Tr (t†eetee − t†hethe), (5.45)
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5.7 Conclusion

where the trace is taken over all the NΦ modes in the magnetic Brillouin
zone and the transmission matrices are evaluated at the Fermi level (E =
0).

In Fig. 5.3 we compare the conductance with and without a potential
step at the NS interfaces. In the absence of a potential step, when the
Hamiltonian HN in N equals HS with ∆0 = 0, the conductance has the
bare value of G0 = NΦe

2/h, as long as ∆0 remains well below β. When
∆0 exceeds β a gap opens up at the Weyl point and the three-terminal
conductance G vanishes: All the carriers injected into the superconductor
by contact N1 are then drained to ground before they reach contact N2.

The theory developed here does not apply to this case µN = µ, but
instead addresses the more realistic case µN � µ of a large potential step
at the NS interfaces. In the numerics we implement the large-µN limit by
removing the transverse hoppings from the tight-binding Hamiltonian in
the normal-metal leads, which is then given by

HN = (vF/a0)νzτzσz sin a0kz + ν0τ0β · σ
+ (vF/a0)νzτxσ0(1− cos a0kz). (5.46)

As shown in the same Fig. 5.3, in that case the conductance at µ = 0
follows the predicted κ2 = 1−∆2

0/β
2 parabolic profile [97]. The agreement

is better for B perpendicular to β than it is for B parallel to β.
Fig. 5.4 is the test of our key result, the difference (5.2) of the conduc-

tance for B parallel or antiparallel to β. The linear µ-dependence has the
predicted slope, without any adjustable parameter. Backscattering from
the NS interfaces produces Fabry-Perot-type oscillations around this lin-
ear dependence, more rapidly oscillating when the separation L of the NS
interfaces is larger (compare dashed and solid curves).

5.7 Conclusion

In summary, we have calculated the charge e∗ that Weyl fermions in
a superconducting vortex lattice transport into a normal-metal contact.
When the chemical potential µ in the superconductor is at the Weyl point,
the transferred charge equals the charge expectation value Q0 of the Weyl
fermions [97] (in the limit of a large chemical potential µN in the metal
contacts). There is then no dependence on the relative orientation of
the magnetic field B and the separation vector β of the Weyl points of
opposite chirality. But when µ 6= 0 a dependence on B · β appears.

This signature of chirality shows up in the conductance, which differs
if B is parallel or antiparallel to β. It is not a large effect, a few percent
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5 Chiral charge transfer along magnetic field lines in a Weyl superconductor

(see Fig. 5.4), but since it is specifically tied to the sign of the magnetic
field it should stand out from other confounding effects.

We have taken a simple layered model for a Weyl superconductor [6],
to have a definite form for the pair potential. We expect the effect to be
generic for Weyl semimetals in which superconductivity is intrinsic rather
than induced [7, 100]. We also expect the effect to be robust to long-
range disorder scattering, in view of the chirality of the motion along the
magnetic field lines (backscattering needs to couple states at ±K).
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Appendices

5.A Derivation of Eq. (5.18)

We wish to show that the derivative

d

dz
〈Ψ|f(k̂z)v̂z|Ψ〉z

= 〈Ψ|f(k̂z)v̂z∂zΨ〉z + 〈∂zΨ|f(k̂z)v̂zΨ〉z
= i〈Ψ|f(k̂z)k̂z v̂zΨ〉z − i〈k̂z v̂zΨ|f(k̂z)Ψ〉z (5.47)

vanishes for any function f(k̂z) of k̂z = −i∂/∂z.
We rewrite

k̂z v̂zΨ = (H− δH)Ψ = (E − δH)Ψ (5.48)

and use firstly that

〈Ψ1|δHΨ2〉z = 〈δHΨ1|Ψ2〉z, (5.49)

because δH does not contain any z-derivatives, and secondly that

[f(k̂z), δH] = 0, (5.50)

because δH does not depend on z. This gives the sequence of identities

〈Ψ|f(k̂z)k̂z v̂zΨ〉z = 〈Ψ|f(k̂z)(H− δH)Ψ〉z
= 〈Ψ|f(k̂z)(E − δH)Ψ〉z
= 〈(E − δH)Ψ|f(k̂z)Ψ〉z
= 〈(H− δH)Ψ|f(k̂z)Ψ〉z
= 〈k̂z v̂zΨ|f(k̂z)Ψ〉z. (5.51)

Substitution into Eq. (5.47) then proves Eq. (5.18) from the main text.
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6 Deconfinement of Majorana
vortex modes produces a
superconducting Landau
level

6.1 Introduction

Deconfinement transitions in physics refer to transitions into a phase
where particles can exist as delocalized states, rather than only as bound
states. Unlike thermodynamic phase transitions, the deconfinement tran-
sition is not associated with a spontaneously broken symmetry but with
a change in the momentum space topology of the ground state [101]. A
prominent example in superconductors is the appearance of a Fermi sur-
face for Bogoliubov quasiparticles when a superconductor becomes gapless
[102–105]. Such a Bogoliubov Fermi surface has been observed recently
[106].

Motivated by these developments we consider here the deconfinement
transition for Majorana zero-modes in the vortex core of a topological
superconductor. We will demonstrate, analytically and by numerical sim-
ulations, that the delocalized phase at zero chemical potential remains
a highly degenerate zero-energy level — a superconducting counterpart
of the Majorana Landau level in a Kitaev spin liquid [107, 108]. Unlike
a conventional electronic Landau level, the Majorana Landau level has
a non-uniform density profile: quantum interference of the electron and
hole components creates spatial oscillations with a wave vector set by the
Cooper pair momentum that drives the deconfinement transition.

The system of Ref. 106 is shown in Fig. 7.1. It is a thin layer of topolog-
ical insulator deposited on a bulk superconductor, such that the proximity
effect induces a pairing gap ∆0 in the surface states. A superflow with
Cooper pair momentum K lowers the excitation energy for quasiparti-
cles with velocity v by the Doppler shift v ·K, closing the gap when vK
exceeds ∆0. Following Fu and Kane [8], we add a perpendicular mag-
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6 Deconfinement of Majorana vortex modes produces a superconducting LL

Figure 6.1: Schematic of the Fu-Kane heterostructure [8], a topological insula-
tor with induced superconductivity (gap ∆0) in a perpendicular magnetic field
B. Vortices (red) bind midgap states known as Majorana zero-modes. Here
we study the deconfinement transition in response to an in-plane supercurrent
(blue arrows, momentum K). When vK > ∆0 the zero-modes delocalize into a
Majorana Landau level.

netic field B to confine a Majorana zero-mode to the core of each h/2e
vortex that penetrates the superconductor. We seek to characterize the
deconfined phase that emerges when vK > ∆0.

6.2 Confined phase

To set the stage we first investigate the confined phase for vK < ∆0. Elec-
trons on the two-dimensional (2D) surface of a 3D topological insulator
have the Dirac Hamiltonian vk · σ − µ, with µ the chemical potential, v
the energy-independent Fermi velocity, k = (kx, ky) the momentum oper-
ator in the x–y surface plane, and σ = (σx, σy) two Pauli spin matrices.
(The 2 × 2 unit matrix σ0 is implicit when the Hamiltonian contains a
scalar term.) Application of a perpendicular magnetic field B (in the
z-direction), adds an in-plane vector potential A = (Ax, Ay) to the mo-
mentum, k 7→ k− eA. The electron charge is +e and for ease of notation
we will set v and ~ both equal to unity in most equations.

The superconducting substrate induces a pair potential ∆ = ∆0e
iφ.

The phase field φ(r) winds by ±2π around each vortex, at position Rn,

98



6.2 Confined phase

as expressed by

∇×∇φ(r) = ±2πẑ
∑
nδ(r −Rn), ∇2φ = 0. (6.1)

The pair potential couples electrons and holes in the 4× 4 Bogoliubov-De
Gennes (BdG) Hamiltonian

H =

(
Kσx + (k − eA) · σ ∆0e

iφ

∆0e
−iφ Kσx − (k + eA) · σ

)
, (6.2)

at zero chemical potential, including a superflow momentum fieldK ≥ 0 in
the x-direction 1. The superflow can be a screening current in response to
a magnetic field in the y-direction [106], or it can result from an externally
imposed flux bias or current bias. The Zeeman energy from an in-plane
magnetic field has an equivalent effect [103] (although it was estimated
to be negligible relative to the orbital effect of the field in the experiment
[106]).

For vK < ∆0 a pair of Majorana zero-modes will appear in each vortex
core, one at the top surface and one at the bottom surface. We consider
these separately 2. Setting ∆(r) = ∆0(r)e±iθ, in polar coordinates (r, θ)
for a ±2π phase vortex at the origin, we need to solve the zero-mode
equation H±Ψ± = 0 with

H± =

(
Kσx − (i∇+ eA) · σ ∆0(r)e±iθ

∆0(r)e∓iθ Kσx + (i∇− eA) · σ

)
. (6.3)

The pair potential amplitude ∆0(r) increases from 0 at r = 0 to a value
∆0 > 0 when r becomes larger than the superconducting coherence length
ξ0 = ~v/∆0.

When K = 0 this is a familiar calculation [109], which is readily gen-
eralized to K > 0. The Majorana zero-mode has a definite chirality C,
meaning that its four-component wave function Ψ± is an eigenstate of the
chirality operator Λ = diag (1,−1,−1, 1) with eigenvalue C = ±1. One

1The term Kσx in the BdG Hamiltonian (6.2) is equivalent, upon a gauge transfor-
mation, to a gradient 2Kx in φ.

2The overlap of states on the top and bottom surfaces of the topological insulator
thin film shifts the Majorana Landau away from E = 0 by the hybridization gap,
while keeping the spatial structure of the wave functions intact. We include this
effect in the calculations in App. 6.A of the Supplemental Material.
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6 Deconfinement of Majorana vortex modes produces a superconducting LL

Figure 6.2: Intensity profile |Ψ(x, y)|2 of a Majorana zero-mode in the vortex
lattice [110]. The left panel shows the confined phase (K < ∆0), the right
panel the deconfined phase (K > ∆0). The dotted square indicates the unit
cell containing a pair of h/2e vortices. These plots are for Majorana fermions of
positive chirality, for negative chirality the density profile is inverted y 7→ −y.

has Ψ+ = (iψ+, 0, 0, ψ+), Ψ− = (0, iψ−, ψ−, 0) with 3

ψ±(r) = e∓Kye∓χ(r) exp

(
−
∫ r

0

∆0(r′) dr′
)
, (6.4a)

χ(r) =
e

2π

∫
dr′B(r′) ln |r − r′|. (6.4b)

The factor e∓χ(r) is a power law for large r, so the zero-mode is confined
exponentially to the vortex core as long as K < ∆0. When K > ∆0 the
solution (6.4) is no longer normalizable, it diverges exponentially along
the y-axis. This signals a transition into a deconfined phase, which we
consider next.

3To understand how the solution (6.4) relates to the K = 0 solution in Ref. [109],
note the (non-unitary) transformation eKyΛH±eKyΛ = H± + Kσx, with Λ =
diag (1,−1,−1, 1). The spinor Ψ± is an eigenstate of Λ with eigenvalue ±1, so if
H±Ψ± = 0 for K = 0, then H±e±KyΨ± = 0 for K 6= 0.
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6.3 Deconfined phase

6.3 Deconfined phase

In Fig. 6.2 we show results from a numerical simulation of the decon-
finement transition for the model Hamiltonian described below. The left
panel shows zero-modes confined to a pair of vortex cores for K < ∆0,
the right panel shows the deconfined state for K > ∆0. The decay
|Ψ| ∝ e−Kye−∆0r in the confined phase is anisotropic, with a decay rate
∆0 along the x-axis and two different decay rates ∆0 ± K in the ±y-
direction. The direction into which the zero-mode decays more slowly is
set by the chirality 4: Fig. 6.2 shows C = +1 with a slow decay in the −y
direction, for C = −1 the slow decay is in the +y direction.

In the deconfined phase the zero-mode density profile has a pronounced
periodic modulation in the x-direction, parallel to the superflow, with
bifuration points at the vortex cores. This striped pattern is unexpected
for a Landau level. We present an analytical description.

6.4 Chiral symmetry protected Majorana
Landau level

The chiral symmetry of the Hamiltonian (6.2) plays a key role in our anal-
ysis of the Majorana Landau level, similar to the role it plays for Landau
level quantization in graphene [111, 112] and in a Weyl superconductor
[96]. Chiral symmetry means that H at µ = 0 anticommutes with Λ. The
Hamiltonian then becomes block-off-diagonal in the basis of eigenstates
of Λ,

U†HU =

(
0 Ξ

Ξ† 0

)
, U =

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, (6.5a)

Ξ =

(
k− − eA− +K ∆0e

iφ

∆0e
−iφ −k+ − eA+ +K

)
, (6.5b)

where we have abbreviated k± = kx ± iky, A± = Ax ± iAy.
A zero-mode is either a wave function (u, 0) of positive chirality with

Ξ†u = 0, or a wave function (0, u) of negative chirality with Ξu = 0. The

4The anisotropic decay of the Majorana zero-mode in the left panel of Fig. 6.2 can
be understood as the effect of the Magnus force which the superflow momentum
K = Kx̂ exerts on the axial spin S = Cẑ of the Majorana fermions (as determined
by their chirality C = ±1). The direction of slow decay of the zero-mode is given
by the cross product K × S.
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6 Deconfinement of Majorana vortex modes produces a superconducting LL

difference between the number of normalizable eigenstates of either chi-
rality is called the index of the Hamiltonian. It is topologically protected,
meaning insensitive to perturbations [113].

Vortices are strong scatterers [16], completely obscuring the Landau
level quantization in a nontopological superconductor [114]. Here chiral
symmetry ensures that the vortices cannot broaden the zeroth Landau
level.

6.5 Helmholtz equation for the Majorana
Landau level

Let us focus on the Landau level of positive chirality, described by the
equation Ξ†u = 0. This 2×2 matrix differential equation can be simplified
by the substitution

u(r) = e−Ky−q(r)e
1
2 iφ(r)σz ũ(r), (6.6)

with ∂xq = − 1
2∂yφ+ eAy, ∂yq = 1

2∂xφ− eAx, (6.7)

⇒
(
−i∂x + ∂y ∆0

∆0 i∂x + ∂y

)
ũ = 0. (6.8)

The fields A, φ, and K no longer appear explicitly in the differential equa-
tion (6.8) for ũ, but they still determine the solution by the requirements
of normalizability and single-valuedness of the zero-mode u.

Outside of the vortex core the spatial dependence of the pair potential
amplitude ∆0 may be neglected and one further simplification is possible:
Substitution of ũ = (f, g) gives g = ∆−1

0 (i∂x − ∂y)f and a scalar second-
order differential equation for f ,

∇2f = ∆2
0f. (6.9)

In the context of classical wave equations this is the Helmholtz equation
with imaginary wave vector.

Eq. (6.6) requires that ũ and hence f have an exponential envelope eKy

in the y-direction. The Helmholtz equation (6.9) then ties that to a plane
wave ∝ e±iQx in the x-direction, with wave vector Q =

√
K2 −∆2

0. This
already explains the striped pattern in the numerical simulations of Fig.
6.2. For a more detailed comparison we proceed to a full solution of the
Helmholtz equation.
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6.6 Analytical solution of the Majorana
Landau level wave function

The solutions of Eq. (6.9) for f are constrained by the requirements of
normalizability and single-valuedness of u. To determine the normaliz-
ability constraint we use that the field q(r) defined in Eq. (6.7) has the
integral representation 5

q(r) =
1

2Φ0

∫
dr′B(r′) ln |r − r′| − 1

2

∑
n

ln |r −Rn|. (6.10)

We consider N vortices (each of +2π vorticity) in a region S enclosing
a flux Φ = NΦ0, with Φ0 = h/2e the superconducting flux quantum 6.
If we set B → 0 outside of S, the field q(r) → 1

2 (Φ/Φ0 − N ) ln r = 0
for r → ∞. In view of Eq. (6.6), normalizability requires that e−Kyf is
square integrable for r → ∞. Near a vortex core e−qf ∝ |r − Rn|1/2f
must be square integrable 7.

Concerning the single-valuedness, the factor eiφ/2 in Eq. (6.6) intro-
duces a branch cut at each vortex position Rn, across which the function
f should change sign — to ensure a single-valued u. This is a local con-
straint: branch cuts can be connected pairwise, hence there is no sign
change in f on a contour encircling a vortex pair.

We have obtained an exact analytical solution [115] of the Helmholtz
equation in the limit that the separation of a vortex pair goes to zero. We
place the two vortices at the origin of a disc of radius R, enclosing a flux
h/e, with zero magnetic field outside of the disc. The envelope function

then equals e−q(r) = rmine
−r2min/2R

2

, with rmin = min(r,R).

The two independent solutions are given by ũ = (f1, f0) and ũ′ = σxũ
∗,

5The integral equation (6.10) for q(r) follows from the definition (6.7), which implies
that ∇2q(r) = ẑ · ∇ × (eA − 1

2
∇φ) = eB − π

∑
n δ(r −Rn). The Green function

of this 2D Poisson equation is (2π)−1 ln |r − r′|. Also note that Φ0 ≡ π/e in units
where ~ ≡ 1.

6We assume there is an even number of vortices in S. If the number of vortices is
odd, a zero-energy edge state along the perimeter of S will ensure that the total
number of Majorana zero-modes remains even.

7This normalization requirement at the vortex core ties the chirality of the Majorana
zero-modes to the sign of the vorticity. If we would have chosen −2π vortices
the field q(r) would tend to + 1

2
ln |r − Rn| near a vortex core, and the product

e−qf ∝ |r −Rn|−1/2f would not have been square integrable.
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6 Deconfinement of Majorana vortex modes produces a superconducting LL

with

fn = 2ine−inθKn(∆0r)−
∫ Q

−Q
dpCn(p)eixp+y

√
∆2

0+p2 ,

Cn(p) = ∆−n0 (∆2
0 + p2)−1/2

(
p−

√
∆2

0 + p2
)n
. (6.11)

The vortex pair is at the origin, with x + iy = reiθ, and Kn is a Bessel
function.

The corresponding zero-modes follow from Eq. (6.6),

u = e−q(r)e−Ky(eiθf1, e
−iθf0), u′ = σxu

∗. (6.12)

For small r the zero-modes tend to a constant (the factor 1/r from K1 is
canceled by the factor r from e−q). The large-r asymptotics follows upon
an expansion of the integrand around the extremal points ±Q, giving

fn → (−1)n
eKy

∆n
0

(
(K +Q)ne−iQx

iKx−Qy − (K −Q)neiQx

iKx+Qy

)
. (6.13)

The zero-modes decay as e−Kyfn ∝ 1/r for r � R, which needs to be
regularized for a square-integrable wave function 8, [116, 117]. In a chain
of vortices (spacing b), the superposition of the solution (6.13) decays
exponentially in the direction perpendicular to the chain [115]. The decay
length is λ = bK/Q or λ = bQ/K for a chain oriented along the x-axis or
y-axis, respectively.

6.7 Numerical simulation

For a numerical study of the deconfinement transition we represent the
topological insulator layer by the low-energy Hamiltonian [118, 119]

H0(k) = (v/a0)
∑
j=x,yσj sin kja0 + σzM(k)− µ,

M(k) = M0 − (M1/a
2
0)
∑
j=x,y(1− cos kja0),

(6.14)

in the basis Ψ = 2−1/2(ψ↑upper +ψ↑lower, ψ↓upper−ψ↓lower) of spin-up and
spin-down states on the upper and lower surfaces 9. The atomic lattice

8The 1/r decay of the deconfined Majorana zero-mode implies a density of states
peak which decays slowly ∝ 1/ lnL as a function of the system size L. There is
a formal similarity here with the zero-modes originating from vacancies in a 2D
bipartite lattice [116, 117].

9In the basis Ψ = (ψ↑upper, ψ↓upper, ψ↑lower, ψ↓lower) the 4 × 4 Hamiltonian of
the topological insulator layer is H0 = t0

∑
j=x,yτzσj sin kja0 + τxσ0M(k) − µ,
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6.7 Numerical simulation

Figure 6.3: Dispersion relation of the topological superconductor, calculated
from the model Hamiltonian (6.14) for zero magnetic field (black dashed lines,
chemical potential µ = 0) and in the presence of the magnetic vortex lattice
(colored flat bands at charge ±qeffe, for two values of µ). For both data sets
K = 2∆0 = 20 ~v/d0.

constant is a0, the Fermi velocity is v, and µ is the chemical potential.
Hybridization of the states on the two surfaces introduces the mass term
M(k). We set M0 = 0, to avoid the opening of a gap at k = 0 10, but
retain a nonzero M1 = 0.2 a0v in order to eliminate the fermion doubling
at a0k = (π, π).

In the corresponding BdG Hamiltonian the electron block H0(k−eA+
K) is coupled to the hole block −H0(k + eA −K) by the s-wave pair
potential ∆0e

iφ, which we take the same for both layers. We assume a
strong type-II superconductor, for which we can take a uniform magnetic
field B and uniform pair potential amplitude ∆0. The +2π vortices are
positioned on a square lattice (lattice constant d0 = 302 a0) with two
vortices per unit cell.

The spectrum is calculated using the Kwant tight-binding code [47,
120]. In Fig. 6.3 we show the dispersionless Landau levels, both for chem-
ical potential µ = 0 and for nonzero µ. The zeroth Landau level has
energy E0 = ±qeffµ, with qeffe the charge expectation value. For the

with Pauli matrix τz acting on the layer index. A unitary transformation block-
diagonalizes the Hamiltonian. One of the 2 × 2 blocks is given in Eq. (6.14), the
other block has M replaced by −M .

10The overlap of states on the top and bottom surfaces of the topological insulator
thin film shifts the Majorana Landau away from E = 0 by the hybridization gap,
while keeping the spatial structure of the wave functions intact. We include this
effect in the calculations in App. 6.A of the Supplemental Material.
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6 Deconfinement of Majorana vortex modes produces a superconducting LL

Figure 6.4: Left panel: Numerically calculated intensity profile |Ψ(x, y)|2 of
the zeroth Landau level in a vortex lattice with a pair of h/2e vortices at the
center of the unit cell (K = 2∆0 = 40 ~v/d0, µ = 0). Right panel: Analytical
result from the solution of the Helmholtz equation (6.9) for a single h/e vortex.

model Hamiltonian (6.2) we have [121] qeff = Q/K =
√

1−∆2
0/K

2. The

numerics at K = 2∆0 gives a value 0.85, within 2% of
√

3/4 = 0.866.
The first Landau level is expected at energy E1 = EL ± qeffµ with EL =√

4πqeff ~v/d0, again in very good agreement with the numerics. Notice
that the flatness of the dispersion persists at nonzero µ — even though
the topological protection due to chiral symmetry 11 is only rigorously
effective at µ = 0.

In Fig. 6.4 we compare numerical and analytical results for the case that
the two h/2e vortices are both placed at the center of the unit cell. The
agreement is quite satisfactory, given the different geometries (a vortex
lattice in the numerics, a single h/e vortex in the analytics) 12.

11The chiral symmetry at µ = 0 is broken by the mass term M(k) in the Hamiltonian
(6.14). This residual chiral symmetry breaking is visible in Fig. 6.3 as a very small
splitting of the µ = 0 Landau levels (green flat bands).

12The comparison between numerics and analytics in Fig. 6.4 involves no adjustable
parameters. To compare the same state in the degenerate zeroth Landau level we
choose the state with left-right reflection symmetry. There are two of these, the
other is compared in App. 6.E of the Supplemental Material.
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6.8 Striped local density of states

Figure 6.5: Electron and hole contributions to the local density of states in
the zeroth Landau level, along a line parallel to the x-axis which passes close
through a vortex core at x = y = 3d0/4. The curves are plots of

∑
k |ψe,h(x, y)|2

normalized to unit peak height at the vortex core. The parameters are K =
2∆0 = 40 ~v/d0, µ = 0.5 ~v/d0. The expected oscillation period of π~/Q =
0.091 d0 is indicated.

6.8 Striped local density of states

The striped pattern of the Majorana Landau level is observable by tun-
neling spectroscopy, which measures the local density of states

ρ(r) =
∑

k

[
|ψe(r)|2f ′(E0 − eV ) + |ψh(r)|2f ′(E0 + eV )

]
, (6.15)

averaged over the 2D magnetic Brillouin zone,
∑

k = (2π)−2
∫
dkxdky,

weighted by the derivative of the Fermi function. If E0 is much larger
than temperature, the sign of the bias voltage V determines whether the
electron component ψe or the hole component ψh contributes, so these
can be measured separately.

As shown in Fig. 6.5, the oscillations are most pronounced for the hole
component when µ > 0 (or equivalently the electron component when
µ < 0). This asymmetry in the tunneling current for V = ±E0 is an
additional experimental signature of the effect.

6.9 Conclusion

Concerning the experimental feasibility, we note that the gap closing due
to a superflow has already been observed [106], and Majorana vortex
lattices in a perpendicular field of 250 mT have been detected by scan-
ning probes in several experiments [124] — so by combining these two
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6 Deconfinement of Majorana vortex modes produces a superconducting LL

ingredients the Majorana Landau level should become accessible. The
main additional requirement is that the Fermi level is sufficiently small,
µ < min(EL,∆0) ' 1 meV at 250 mT, to benefit from the protection af-
forded by chiral symmetry. Experiments [125] where µ was tuned through
the charge neutrality point give confidence that this is feasible.

The striped interference pattern in the local density of states, with wave
number Q =

√
K2 − (∆0/~v)2 (' 2π/0.2µm for K = 2∆0/~v at typical

values of ∆0 = 1 meV and v = 105 m/s) should be accessible by scanning
probe spectroscopy. Surface defects would themselves introduce Friedel
oscillations in the density of states, but the highly directional pattern that
is the hallmark of the Majorana Landau level would stand out.

The Majorana Landau level provides a realization of a flat band with
extended wave functions, in which interaction effects are expected to be
enhanced due to the quenching of kinetic energy. Interacting Majorana
fermions in a Fu-Kane superconductor have been studied by placing vor-
tices in close proximity inside a quantum dot [126]. The deconfinement
transition provides a means to open up the system and obtain a fully 2D
flat band with widely separated vortices. An intriguing topic for further
research is to investigate how the exchange of vortices operates on this
highly degenerate manifold.
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Appendices

6.A Details of the numerical simulation

6.A.1 Tight-binding model

The model Hamiltonian we consider is

H± =

(
H±(k − eA+K) ∆0e

iφ

∆0e
−iφ −H±(k + eA−K)

)
, (6.16a)

H±(k) = ±(v/a0)σx sin a0kx ± (v/a0)σy sin a0ky

± σzM(k)− µ, (6.16b)

M(k) = M0 − (M1/a
2
0)(2− cos a0kx − cos a0ky). (6.16c)

The Hamiltonian acts on a spinor with the four components

Ψ±(k) =
1√
2


[ψ↑upper ± ψ↑lower](k)
[ψ↓upper ∓ ψ↓lower](k)

−i[ψ↓upper ± ψ↓lower]
∗(−k)

i[ψ↑upper ∓ ψ↑lower]
∗(−k)

, (6.17)

for spin-up and spin-down electrons on the upper and lower surface of the
topological insulator layer. The first two elements of the spinor Ψ refer
to electrons and the last two elements to holes. These are coupled by the
s-wave pair potential ∆0, which we take the same on both surfaces. The
particle-hole symmetry relation is

H±(k) = −σxνyH∗∓(−k)σxνy, (6.18)

where the σα and τα Pauli matrices act on the spin and electron-hole
degree of freedom, respectively.

For the mass term M(k) we take M0 = 0, M1 = 0.2 a0v, such that H0

has a single gapless Dirac point at k = 0. Near this Dirac point the upper
and lower surface are uncoupled, so the eigenstate can equivalently be
written in the single-surface basis (ψ↑, ψ↓,−iψ∗↓ , iψ∗↑). The effect of a gap
opening due to a nonzero M0 is examined at the end of this Appendix.
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6 Deconfinement of Majorana vortex modes produces a superconducting LL

The Hamiltonian is discretized on a square lattice (lattice constant a0)
with nearest neighbor hopping (hopping energy v/a0). The magnetic
field B is uniform in the z-direction, vector potential A = −Byx̂. The
superflow momentum is K = Kx̂. The amplitude ∆0 of the pair potential
is taken as a constant, the phase φ(x, y) winds by 2π around each vortex.

We take a square vortex lattice, with lattice constant d0 = Na0. The
flux through each magnetic unit cell is h/e, so it contains a pair of
h/2e vortices. The integer N determines the magnetic field via B =
(Na0)−2h/e. The vortices are placed on the diagonal of the magnetic
unit cell, at the positions (x, y) = (Na0/4)(1, 1) and (Na0/4)(3, 3). By
taking for N twice an odd integer, we ensure that the singularity in the
phase field at the vortex core does not coincide with a lattice point. The
phase field is discretized along the lines set out in App. B of Ref. 96.
The eigenvalues and eigenfunctions of H are calculated using the kwant
tight-binding code [47].

6.A.2 Additional numerical results

Here we collect some additional results to those shown in the main text.
In the confined phase vK < ∆0 we show in Fig. 6.6 the anisotropic decay
rates of the Majorana zero-modes bound to a vortex core, as in the left
panel of Fig. 6.2. The localization length (∆0/v−K)−1 of the zero-modes
diverges at the transition.

Fig. 6.7 shows how at the deconfinement transition the quasi-continuum
of excited states in the vortex core is reorganized into a sequence of Landau
levels. The critical exponents for the gap closing are different on the two
sides of the transition. In the confined phase the gap to the first excited
state scales with the inverse localization length, so ∝ (∆0/v − K)1. In
the deconfined phase the gap scales with the Landau level separation
EL ∝ √qeff , so ∝ (K −∆0/v)1/4.

In the deconfined phase vK > ∆0 we show in Fig. 6.8 the Landau levels
in the vortex lattice (complementing Fig. 6.3). Fig. 6.9 shows the local
density of states in the zeroth Landau level. This shows the variation
over the entire unit cell of the vortex lattice, to complement the line cut
through a vortex core shown in Fig. 6.5 of the main text.

6.A.3 Effect of overlap of top and bottom surface
states

A nonzero mass term ±M0σzνz in the Hamiltonian (6.16) opens up a
hybridization gap in the Dirac cone. Since the Majorana Landau level is
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Figure 6.6: Decay rate of the Majorana mode confined to a vortex core. The
data from the numerical simulation (colored points, ∆0 = 20 v/d0) closely fol-
lows the analytical prediction |Ψ| ∝ e−Kye−(∆0/v)r (dashed lines).

an eigenstate of the chirality operator Λ = σzνz, the effect of this term
is to displace the flat band away from E = 0 by an amount M0. In Fig.
6.10 we show numerical results that demonstrate this. Provided that M0

remains smaller than the Landau level separation EL, we do not expect
the overlap of top and bottom surface states to prevent the detection of
the Majorana Landau level. This is helpful because the overlap will favor
a strong proximity effect on both surfaces.

6.B Solution of the Helmholtz equation for
the Majorana Landau level

The general solution of the 2D Helmholtz equation ∇2f = ∆2
0f that gov-

erns the Majorana Landau level is a superposition of waves eipx±y
√
p2+∆2

0 .
Which superposition we need is determined by the requirement that e−Ky−q(r)f(x, y)
is square integrable in the x–y plane, with K > ∆0 > 0. We denote
Q =

√
K2 −∆2

0. For ease of notation we will set ∆0 ≡ 1 in this ap-
pendix.
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6 Deconfinement of Majorana vortex modes produces a superconducting LL

Figure 6.7: Excitation spectrum as a function of the superflow momentum
(parameters as in Fig. 6.2). For K < ∆0/v the states are confined to vortex
cores and form a quasi-continuum, for K > ∆0/v they are extended states
arranged into a sequence of Landau levels (distinguished by different colors, the
Majorana zero-modes are the light-green dots). The deconfinement transition
at K = ∆0/v is accompanied by a near closing of the gap to the first excited
state. The dashed curves show the expected gap scaling ∝ (∆0/v − K) and
∝ (K −∆0/v)1/4 on the two sides of the transition.

We construct a class of solutions for the case

q(r) = εr −N ln min(r, 1), N = 1, 2, . . . , (6.19)

corresponding to 2N vortices, each of vorticity +2π, at the origin. The
positive infinitesimal ε > 0 is introduced to regularize integrals at r →∞.
The restriction to an even number of overlapping vortices means that the
branch cut which connects vortices pairwise can be ignored. (We have not
succeeded in finding an analytical solution that incorporates the branch
cut, but of course in the numerics this is not a limitation.)

The superposition of elementary solutions eipx±y
√
p2+1 that cancels the
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–X X

MY

Γ

Figure 6.8: Dispersion relation in zero magnetic field (black dashed lines) and
in the presence of the magnetic vortex lattice (green solid lines, the right panel
shows the magnetic Brillouin zone). Both band structures are for µ = 0, and
the same parameters as in Fig. 6.3. The red dots indicate the Dirac points
at k = (±Q, 0) in zero magnetic field. The Landau levels are at ±

√
nEL,

n = 0, 1, 2, with EL =
√

4πqeff ~v/d0.

exponential growth factor e−Ky has the general form

f =


∫
|p|>Q dpC(p)eipx+y

√
p2+1 if y < 0,

−
∫
|p|<Q dpC(p)eipx+y

√
p2+1

+
∫
dpD(p)eipx−y

√
p2+1 if y > 0.

(6.20)

(We can use the symbol C twice without loss of generality because the
integration ranges do not overlap.)

The solution should be continuously differentiable at r 6= 0, which is
satisfied if f(x, y) and ∂yf(x, y) are continuous functions of y at y = 0, x 6=
0. The continuity requirement is that the Fourier transform

∫
· · · eipxdp

of C(p) equals the Fourier transform of D(p) for x 6= 0, which means
that C(p) and D(p) differ by a polynomial L(p) of p. [Recall that the
Fourier transform of a polynomial is given by derivatives of δ(x).] Simi-

larly, the requirement of a continuous derivative is that
√
p2 + 1C(p) and

−
√
p2 + 1D(p) differ by a polynomial T (p). The unique solution of these
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6 Deconfinement of Majorana vortex modes produces a superconducting LL

Figure 6.9: Local density of states in the unit cell of the vortex lattice, at
the energy E0 > 0 of the zeroth Landau level pushed above the Fermi level
by a chemical potential µ > 0. The color scale plot shows

∑
k |ψe,h(x, y)|2,

summed over the magnetic Brillouin zone, normalized to unit maximum value.
The white dotted line indicates the cut shown in Fig. 6.5 of the main text, at
the same parameters. The electron contribution to the local density of states
(right panel) and the hole contribution (left panel) can be measured separately
by tunnel spectroscopy at voltages V = E0 and V = −E0, respectively.

two requirements is

C(p) =
1
2T (p)√
p2 + 1

− 1
2L(p),

D(p) =
1
2T (p)√
p2 + 1

+ 1
2L(p).

(6.21)

We are free to choose a convenient basis for the polynomials T (p) and
L(p), we will choose one for which the integral over D(p) has a closed-form
expression. The basis polynomials Tn(p) and Ln(p), n = 0, 1, 2, . . . are

Tn(p) =
(
p+

√
p2 + 1

)n
+
(
p−

√
p2 + 1

)n
,

Ln(p) =

(
p+

√
p2 + 1

)n
√
p2 + 1

−

(
p−

√
p2 + 1

)n
√
p2 + 1

.

(6.22)
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Figure 6.10: Same as Fig. 6.8, but now for a nonzero mass term M0, to show
how the hybridization gap shifts the zeroth Landau level away from E = 0. The
plot shows the spectrum of the Hamiltonian H+ in Eq. (6.16), the spectrum
of H− has the zeroth Landau level shifted to −M0 (so that the full spectrum
is particle-hole symmetric). The parameters are K = 2∆0 = 20 ~v/d0, d0 =
102 a0, M0 = 0.02/a0, M1 = 0.2 a0.

This choice of basis is related to a basis of Chebyshev polynomials Tn, via
the identities

Tn(p) = 2(−i)nTn(ip),

Ln(p) = 2(−i)n−1
n−1∑
m=0

T2m−n+1(ip).
(6.23)

Note that

T−n(p) = (−1)nTn(p), L−n(p) = −(−1)nL−n(p). (6.24)

A complete basis for the pairs of polynomials T (p), L(p) is therefore given
by the two sets {Tn, Ln} ∪ {Tn,−Ln} with n = 0, 1, 2, . . ., or equivalently
by the single set {Tn, Ln} with n = 0,±1,±2, . . .. The corresponding
basis of the functions C(p) and D(p) in Eq. (6.21) is

Cn(p) =
1
2Tn(p)√
p2 + 1

− 1
2Ln(p) =

(
p−

√
p2 + 1

)n
√
p2 + 1

,

Dn(p) =
1
2Tn(p)√
p2 + 1

+ 1
2Ln(p) =

(
p+

√
p2 + 1

)n
√
p2 + 1

,

(6.25)
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with n = 0,±1,±2, . . ..
We next use the Bessel function identities 13

Kn(r) =

{
1

2in e
inθ
∫∞
−∞ dpDn(p)eipx−y

√
p2+1 if y ≥ 0,

1
2in e

inθ
∫∞
−∞ dpCn(p)eipx+y

√
p2+1 if y ≤ 0,

(6.26)

where r =
√
x2 + y2 and eiθ = (x+ iy)/r, to write the solution (6.20) in

the form

fn(x, y) =−
∫ Q

−Q
dp

(
p−

√
p2 + 1

)n
√
p2 + 1

eixp+y
√
p2+1

+ 2ine−inθKn(r), (6.27)

which is Eq. (6.11) in the main text (upon restoring the units of ∆0).
The function fn is the first component of the spinor ũ = (f, g), the

second component is

gn = (i∂x − ∂y)fn = fn−1. (6.28)

We now obtained an infinite countable set of solutions ũn = (fn, fn−1),
n = 0,±1,±2, . . . of the Helmholtz equation, such that e−Kye−εrũn is
square integrable at infinity. The condition that rN ũ is square integrable
at the origin (containing 2N overlapping vortices) selects a finite subset.
For r → 0 we have fn ' r−|n| if n 6= 0 and f0 ' ln r. Normalizability
requires that both |n| ≤ N and |n− 1| ≤ N , hence there are 2N allowed
values of n ∈ {−N + 1,−N + 2, . . .N − 1,N}.

All of this was for zero-modes Ψ = (f, g, 0, 0) of positive chirality, in a
lattice of +2π vortices. Alternatively, we can consider zero-modes Ψ =
(0, 0, f, g) of negative chirality in a lattice of −2π vortices. The differential
equations for f and g remain the same, but now the exponential factor
that needs to be canceled is eKy rather than e−Ky. The sign change gives
the negative chirality solution

fn(x, y) = −
∫ Q

−Q
dp

(
p−

√
p2 + 1

)n
√
p2 + 1

eixp−y
√
p2+1

+ 2ineinθKn(r), (6.29a)

gn = (i∂x − ∂y)fn = −fn+1. (6.29b)

The 2N zero-modes are now labeled by the index n ∈ {−N ,−N +
1, . . .N − 2,N − 1}.
13The identities (6.26) follow from the integral representation Kn(r) =

1
2

(r/2)n
∫∞
0 t−n−1 exp(−t− 1

4
r2/t) dt, upon the substitution p = 1

2
(t− 1/t).
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6.C Chain of vortices

6.C Chain of vortices

The regularization at infinity by the ε term in Eq. (6.19) is not needed if
we have a periodic lattice of vortices. We demonstrate this by considering
a linear chain of vortices at positions R`, spaced by b at an angle ϑ ∈
[0, π/2] with the x-axis. We take a linear superposition of the solutions
e−Kyfn(r −R`) from Eq. (6.27), with complex weights,

Fn(r) =

∞∑
`=−∞

ei`κe`Kb sinϑe−Kyfn(r −R`). (6.30)

We do not include the envelope e−q, because it tends to unity for large r
if we set ε ≡ 0. The Bloch phase κ is arbitrary.

We substitute the large-r expansion (6.13),

Fn → (−1)n
∞∑

`=−∞

ei`κ
(

(K +Q)ne−iQ(x−`b cosϑ)

iK(x− `b cosϑ)−Q(y − `b sinϑ)

)

−ei`κ
(

(K −Q)neiQ(x−`b cosϑ)

iK(x− `b cosϑ) +Q(y − `b sinϑ)

)
.

(6.31)

We seek the decay of Fn in the direction perpendicular to the chain, so
for large |ρ| when (x, y) = (−ρ sinϑ, ρ cosϑ).

We thus need to evaluate an infinite sum of the form 14

S(α, z) =

∞∑
`=−∞

ei`α

z + `
, α ∈ (0, 2π), z ∈ C\Z, (6.32a)

S(α, z) =
2πi

eiαz − ei(α−2π)z
. (6.32b)

In the limit |Im z| → ∞ this tends to

S(α, z)→
{
−2πie−(2π−α)Im z if Im z →∞,
2πieαIm z if Im z → −∞. (6.33)

Substitution of Eq. (6.32) into Eq. (6.31) gives, for x = −ρ sin θ, y =
ρ cos θ,

Fn →
(−1)n(K +Q)neiQρ sinϑ

Qb sinϑ− iKb cosϑ
S(α+, z−)

+
(−1)n(K −Q)ne−iQρ sinϑ

Qb sinϑ+ iKb cosϑ
S(α−, z+), (6.34)

14For a derivation of Eq. (6.32b), and its relation to the Lerch zeta function, see
https://mathoverflow.net/q/379157/11260.
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where we abbreviated

α± = κ±Qb cosϑ mod 2π,

z± =
ρ

b

1
2 sin 2ϑ± iKQ
K2 − sin2 ϑ

.
(6.35)

Provided that α± 6= 0 mod 2π, the decay is exponential: |Fn| '
e−c|ρ|/λ, with (reinserting the units of ∆0)

λ = b
K2 −∆2

0 sin2 ϑ

K
√
K2 −∆2

0

(6.36)

and c a coefficient of order unity that depends on the sign of ρ,

c =

{
min(α+, 2π − α−) if ρ > 0,

min(α−, 2π − α+) if ρ < 0.
(6.37)

For a chain oriented along the x-axis or y-axis we have λ equal to bK/Q
or bQ/K, respectively.

6.D Renormalized charge in the Majorana
Landau level

The charge expectation value of the deconfined zero-mode can be calcu-
lated by means of the block diagonalization approach of Ref. 96. Starting
from the BdG Hamiltonian (6.2) we first make the gauge transformation

H 7→ U†HU with U =

(
eiφ 0
0 1

)
, resulting in

H =

(
(k + a+ q) · σ − µ ∆0

∆0 −(k + a− q) · σ + µ

)
,

a = 1
2∇φ, q = 1

2∇φ− eA+Kx̂. (6.38)

We have included the chemical potential µ.
For K > ∆0 in zero magnetic field there are gapless Dirac points at

k = (kx, ky) = (K̃, 0) with

K̃ = ±κK, κ =
√

1−∆2
0/K

2. (6.39)

To focus on the effect of a magnetic field on states near K̃ we set kx =
K̃ + δkx and consider δkx small.
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A unitary transformation H 7→ V †HV with

V =

(
σ0 cos(α/2) σx sin(α/2)
−σx sin(α/2) σ0 cos(α/2)

)
, (6.40)

tanα = −∆0/K̃, cosα = −(1 + ∆2
0/K̃

2)−1/2 = −κ,

approximately block-diagonalizes the Hamiltonian; the 2× 2 off-diagonal
blocks contribute to the spectrum in second order in δkx, a, q, and µ.
The 2×2 block along the diagonal that describes the hole-like states near
k = (κK, 0) is given by

H+ = κµ− (κδkx + κax − qx)σx + (ky + ay − κqy)σy, (6.41)

while the electron-like states near k = (−κK, 0) are described by

H− = −κµ+ (κδkx + κax + qx)σx − (ky + ay + κqy)σy. (6.42)

The block diagonalization removes any interference between the elec-
tron and hole blocks, so this approximation cannot describe the striped
density of states of Fig. 6.2 — for that we need the Helmholtz equa-
tion considered in the main text. Because the charge operator Q̂ =
−e∂H±/∂µ = ∓κe commutes with H±, the expectation value is given
simply by

〈Q̂〉 = ∓κe⇒ qeff = κ. (6.43)

The Fermi velocity in the x-direction is renormalized by the same factor,
vx = κv, while vy is unaffected. This affects the Landau level energy
EL =

√
4π ~veff/d0 of the anisotropic Dirac cone, via veff =

√
vxvy =

√
κv.

6.E Comparison of numerics and analytics

In order to compare the analytic solution (6.11) of the Helmholtz equation
with the numerical results from the tight-binding Hamiltonian (6.14) we
proceed as follows. For the analytic solution we take a single pair of
vortices located at r = 0, in a uniform magnetic field with total flux h/e
in a large disc centered at the origin. There are then two independent
zero-modes u, u′ given by Eq. (6.12) with q(r) = − ln r.

For the numerical calculation we consider an infinite lattice of vortices,
with pairs of vortices positioned at points Rn = d0n, n ∈ Z2, in a
uniform magnetic field B = (h/e)d−2

0 , vector potential A = −B(y, 0).
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6 Deconfinement of Majorana vortex modes produces a superconducting LL

Figure 6.11: Comparison between numerical and analytical intensity profiles
|Ψ(x, y)|2, normalized to unit maximal value, for one of the two reflection-
symmetric states in the zeroth Landau level. The parameter values are the
same as in Fig. 6.4, which compared the other state.

The Hamiltonian commutes with the magnetic translation operator

Tn =

(
eihnyx/d0 0

0 e−ihnyx/d0

)
Tn ,

TnrT
†
n = r + d0n .

(6.44)

(The 2 × 2 matrix acts on the electron-hole degree of freedom.) The
eigenvalue eik·n of the eigenstates defines the magnetic momentum k ∈
[0, 2π)2. At each value of k there are two independent zero-modes.

To make sure we are comparing the same state in the degenerate man-
ifold we consider the operator product

Px =

(
0 e

1
2 iφ(r)

e−
1
2 iφ(r) 0

)
σxPx

(
e−

1
2 iφ(r) 0

0 e
1
2 iφ(r)

)
, (6.45)

with eigenvalues ±1, which is a symmetry respected both by the analytic
and by the numerical calculation. The operator Px is the mirror symmetry
operator in the x-direction,

PxxP
†
x = −x , PxyP

†
x = y . (6.46)
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6.E Comparison of numerics and analytics

The magnetic momentum transforms under Px as kx 7→ −kx, ky 7→ ky.
For the comparison we set k = 0, which is invariant under the action

of Px. Then we can take the two zero-modes obtained numerically to be
eigenstates of Px, and compare them with the corresponding eigenstates
obtained analytically. Those are

u±(r) = u(r)± u′(r) , (6.47)

which, in view of the fact that

fn(−x, y) = f∗n(x, y) (6.48)

are eigenfunctions of Px with eigenvalues ±1. Figs. 6.4 and 6.11 compare
the modulus squared of the +1 and −1 eigenstates of Px respectively, with
quite satisfactory correspondence.
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7 Magnus effect on a
Majorana zero-mode

7.1 Introduction

A topological superconductor can bind a Majorana fermion as a midgap
state in the core of a magnetic vortex [8, 127, 128]. This Majorana zero-
mode has been dubbed the “Zen particle” [129], because it embodies noth-
ingness: it has zero charge, zero spin, zero energy, and zero mass [130–132].
It does have a definite chirality, set by the sign of the ±2π winding of the
superconducting phase around the vortex [109].

A superflow couples to the circulating phase, producing a sideways force
on the vortex known as the Magnus force [133–136]. It was recently shown
[137] that the superflow also acts on the zero-mode, causing a deconfine-
ment transition when the Cooper pair momentum K exceeds the critical
value ∆0/vF (with ∆0 the superconducting gap and vF the Fermi veloc-
ity).

Here we follow up on that work and investigate the dynamics of the
transition, when the superconductor is quenched by the sudden appli-
cation of a superflow. Computer simulations show that the Majorana
zero-mode escapes from the vortex core as a wave packet with a constant
velocity vescape. A key result of our analysis is a calculation of the depen-
dence of this quantity on K,∆0, and vF, in a semiclassical approximation
that is found to agree well with the simulations. That calculation is pre-
sented in Sec. 7.4, after we have formulated the problem (Sec. 7.2) and
solved for the short-time dynamics (Sec. 7.3). We compare with computer
simulations in Sec. 7.5 and conclude in Sec. 7.6.

7.2 Quenched topological superconductor

The effect of a superflow on a topological superconductor has been demon-
strated experimentally [138] at the proximitized surface of a topological
insulator [8]. We focus on that platform [11, 12], see Fig. 7.1, described
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7 Magnus effect on a Majorana zero-mode

Figure 7.1: Schematic of a topological insulator with induced superconduc-
tivity (gap ∆0) in a perpendicular magnetic field B. A vortex (red, with a
2π winding of the superconducting phase φ) binds a Majorana zero-mode. An
in-plane supercurrent (blue arrows, Cooper pair momentum K) can deconfine
the zero-mode, producing a Majorana fermion wave packet that escapes with
velocity vescape in a direction perpendicular to the superflow.

by the four-band Bogoliubov-De Gennes Hamiltonian

H0 = vF(kxσx + kyσy)νz − evF(Axσx +Ayσy)ν0

− µσ0νz + ∆σ0(νx cosφ− νy sinφ). (7.1)

The surface is in the x–y plane, the in-plane momentum is k = −i∂r.
The electron charge is taken as +e, the Fermi velocity is vF and ~ is set
to unity. The Pauli matrices σα, να act, respectively, on the spin and
particle-hole degree of freedom. The corresponding 2 × 2 unit matrices
are σ0 and ν0. An s-wave superconducting pair potential ∆eiφ couples
electrons and holes. Time-reversal symmetry is broken by a perpendicular
magnetic field B, with vector potential A.

Charge-conjugation symmetry C = σyνyK is expressed by

CH0C = σyνyH∗0σyνy = −H0. (7.2)

The complex conjugation operation K is taken in the real-space basis, so
the momentum changes sign. When the Fermi energy µ = 0 is at the
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7.2 Quenched topological superconductor

Figure 7.2: Majorana fermion wave packet that escapes from a vortex (white
circle) in response to a quench of the superflow momentum K (in the x-
direction). The images show a color scale plot of |Ψ(x, y, t)|2 in the plane
of the superconductor, at different times following the quench at t = 0.
This is a numerical solution of the evolution equation (7.6), with Hamilto-
nian (7.5) discretized on a square lattice (lattice constant a, ∆0 = 0.04 ~vF/a,
B = (h/e)(302 a)−2, µ = 0). The initial condition at t = 0 is the Majorana
zero-mode Ψ+.

Dirac point there is additionally a chiral symmetry,

σzνzH0σzνz = −H0. (7.3)

We consider an h/2e vortex at the origin. The gap ∆ increases from
0 at the vortex core to ∆0 outside, on the scale of the superconducting
coherence length ξ0 = ~vF/∆0. The superconducting phase φ(r) winds
by ±2π around the vortex, eiφ(r) = r−1(x ± iy). In a strong type-II
superconductor (ξ0 much less than the London penetration length) the
magnetic field is approximately uniform. We take the gauge where A =
−Byx̂.

The vortex contains a Majorana zero-mode, a charge neutral bound
state with zero excitation energy [8]. Its wave function Ψ is an eigen-
state of the charge conjugation operator C. For µ = 0 chiral symmetry
demands that Ψ is also an eigenstate of σzνz. The combination of the two
symmetries enforces the form

Ψ+ = (eiγψ+, 0, 0, e
−iγψ+),

Ψ− = (0, eiγψ−, e
−iγψ−, 0),

(7.4)
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7 Magnus effect on a Majorana zero-mode

for a phase shift γ and a pair of real scalar functions ψ±(r). The sign
of the vorticity selects either Ψ+ or Ψ−. An explicit solution [8, 109] of
H0Ψ = 0 gives γ = π/4 and an exponential decay of ψ± on the scale of
ξ0.

The gapped surface is brought out of equilibrium by a superflow momen-
tum quench K(t). The superflow exerts a Magnus force on the Majorana
zero mode, which may cause it to escape from the vortex core [137]. A
computer simulation of the escape is shown in Fig. 7.2.

The superflow momentum quench enters the Hamiltonian in the form

H = H0 −K ·
∂H0

e∂A
= H0 + vF(K · σ)ν0, (7.5)

in accord with Galilean invariance. We assume an instantaneous quench
in the x-direction, K(t) = Kθ(t)x̂, so we seek the solution of the evolution
equation

i∂tΨ(t) = (H0 + vFKσxν0)Ψ(t), (7.6)

with initial condition Ψ(0) = Ψ± given by Eq. (7.4) The quench preserves
both particle-hole and chiral symmetries.

The full superflow momentum

P (r) = ps(r) +K (7.7)

includes also the contribution from the circulating momentum field ps
around the vortex cores. This divergence-free field has the gauge invariant
expression [139]

ps(r) = 1
2∇φ(r)− eA(r). (7.8)

For later use we note that the gauge transformation

H 7→ e−iφ(r)νz/2Heiφ(r)νz/2

= vF(k · σ)νz + vF(P · σ)ν0 − µσ0νz + ∆σ0νx (7.9)

explicitly writes the Hamiltonian in terms of the full superflow momentum.

7.3 Short-time dynamics

For the initial time dependence we may truncate the Taylor expansion of
the propagator e−itH,

Ψ(t) = e−itHΨ± =

∞∑
n=0

(−it)n
n!
HnΨ±. (7.10)
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7.3 Short-time dynamics

We calculate Ψ(t) to order t4, with the help of the polar-coordinate iden-
tity

(kx ± iky)f(r, ϕ) = ∓e±iϕ
(
±i∂f
∂r
− r−1 ∂f

∂ϕ

)
, (7.11)

and then compute the expectation value of the velocity,

〈ṙα(t)〉 = 〈Ψ(t)|∂H/∂kα|Ψ(t)〉 = vF〈Ψ(t)|σανz|Ψ(t)〉. (7.12)

We focus on the case µ = 0 of chiral symmetry.
To simplify the calculation we note that the magnetic field only affects

the dynamics on the scale of the magnetic length lm =
√
~/eB, which is

large compared to the vortex size ξ0 for magnetic fields small compared to
the upper critical field of the superconductor. For the short-time dynamics
we may ignore the magnetic field. In terms of the gap profile ∆(r) the
scalar function ψ± in the initial state (7.4) is then given by [8, 109]

ψ+(r) = ψ−(r) = c exp

(
−v−1

F

∫ r

0

dr′∆(r′)

)
, (7.13)

with c a normalization constant.
A simple closed-form expression results for a constant ∆ ≡ ∆0,

〈ẋ(t)〉 = − 2v2
F∆2

0Kt
3 cos 2γ +O(t5), (7.14a)

〈ẏ(t)〉 = − 2v2
FKt+ 4

3v
4
FK

3t3

+ 2
3v

2
F∆2

0Kt
3(10− 9 sin 2γ) +O(t5). (7.14b)

These are the formulas for +2π vorticity (initial condition Ψ+); for −2π
vorticity (initial condition Ψ−) the component 〈ẋ〉 is unchanged while 〈ẏ〉
changes sign.

The zero-mode has γ = π/4, hence the motion is fully in the y-direction,
with initial velocity

〈ẏ(t)〉 = ±2v2
FKt

(
−1 + 1

3 t
2(∆2

0 + 2v2
FK

2) +O(t4)
)
, (7.15)

for ±2π vorticity. Because of the dependence on the vorticity, we interpret
the initial acceleration ±2v2

FK as a manifestation of the Magnus force
acting on the zero-mode.

One may wonder whether the Lorentz force, which we have ignored in
this calculation, would deflect the particle away from the y-axis. This
is not the case, chiral symmetry enforces 〈ẋ(t)〉 = 0 for all t > 0 when
γ = π/4, see App. 7.A.
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7 Magnus effect on a Majorana zero-mode

7.4 Semiclassical calculation of the escape
velocity

A semiclassical approximation will allow us to obtain a simple analytical
expression for the velocity at which the Majorana fermion escapes from
the vortex core. For simplicity, we set µ = 0, so chiral symmetry applies.

Quite generally, a wave packet at position r and with wave vector k
has the semiclassical equations of motion [140, 141]

ṙ = ∂kE − k̇ × (∂k ×A) + (ṙ · ∂r)A− ∂k(a · ṙ) (7.16a)

k̇ = −∂rE + ṙ × (∂r × a)− (k̇ · ∂k)a+ ∂r(A · k̇). (7.16b)

The energy E(r,k) is an eigenvalue of the 4× 4 matrix H(r,k), obtained
from the Hamiltonian H by treating r and k as parameters — not as
operators. The corresponding eigenfunction |u(r,k)〉 is a rank-4 spinor,
normalized to unity, 〈u|u〉 = 1.

The fields A and a are defined by the connections

A(r,k) = 〈u(r,k)|i∂k|u(r,k)〉, (7.17a)

a(r,k) = 〈u(r,k)|i∂r|u(r,k)〉. (7.17b)

The state |u〉 is defined up to a complex phase factor. If |u〉 7→ eif(r,k)|u〉
the connections transform as A 7→ A− ∂kf and a 7→ a− ∂rf . These two
transformations leave the right-hand-side of Eq. (7.16) unchanged.

We apply this general formalism to the Hamiltonian (7.9), to ensure that
the full gauge invariant superflow momentum appears in the equations
of motion. Diagonalization of H(r,k) for µ = 0 gives four eigenstates
|un(r,k)〉 with eigenvalues

En(r,k) = sn

√
v2

FP (r)2 + ∆(r)2 + v2
Fk

2 + 2s′nvF

√
P (r)2∆(r)2 + v2

F

(
k · P (r)

)2
,

{s1, s
′
1} = {+,+}, {s2, s

′
2} = {−,+}, {s3, s

′
3} = {+,−}, {s4, s

′
4} = {−,−}.

(7.18)

We find that the connections (7.17) do not contribute to the equations
of motion (7.16), because they are given by the gradient of a scalar field,

An(r,k) = ∂kfn(r,k), an(r,k) = ∂rfn(r,k), (7.19)

fn = 1
2 arctan

(
P 2 + s′n

√
(k · P )2 + P 2∆2/v2

F

kxPy − kyPx

)
− 1

2 arctan(Py/Px). (7.20)
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7.4 Semiclassical calculation of the escape velocity

The semiclassical dynamics is therefore fully determined by the energy
landscape,

ṙ = ∂kEn, k̇ = −∂rEn. (7.21)

We consider a rotationally symmetric vortex, ∆(r) = ∆(r), P (r) =
Kx̂+ps(r)ẑ× r̂, so that E(−x, y,−kx, ky) = E(x, y, kx, ky). A trajectory
that starts out with x = 0, kx = 0 at t = 0 then will retain these values
for t > 0. The motion along the y-axis is determined by the equations of
motion

ẏ = ∂kyEn = v2
Fky/En, (7.22a)

k̇y = − ∂yEn = − 1

2En

d

dy

[
s′nvFP (y) + ∆(y)

]2
. (7.22b)

We denote ∆(x = 0, y) ≡ ∆(y) and P (x = 0, y) ≡ P (y).

Since dEn/dt = 0, the energy En is equal to its value at t = 0. Assuming
∆(0) = 0 and P (0) = |K| (vanishing pair potential and no circulating
superflow deep inside the vortex core), we have En = snvF|K|.

Far outside of the core, where ∆ ≈ ∆0 and P ≈ |K| are both y-
independent, one has k̇y = 0. The terminal ky should satisfy

v2
FK

2 = E2
n ⇒ v2

Fk
2
y = −∆2

0 − 2s′nvF|K|∆0, (7.23)

which has a real solution for s′n = −1 if vF|K| > ∆0/2. That is the
condition for escape of the Majorana fermion. The escape velocity is
given by

|vescape| = |K|−1
√

2vF|K|∆0 −∆2
0. (7.24)

The maximum |vescape| = vF is reached at |K| = ∆0/vF.

Notice that the quenched superconductor supports a quasiparticle es-
cape even though the excitation gap has not closed: the reduced gap
∆eff = ∆0 − vF|K| only closes for vF|K| > ∆0, while quasiparticle escape
is possible for vF|K| > ∆0/2. The reason is that the quench gives a fi-
nite energy vF|K| to the quasiparticle, so escape becomes possible when
vF|K| > ∆eff ⇒ vF|K| > ∆0/2.

The escaping wave packet is a superposition of the two states |un〉 with
s′n = −1 and sn = ±1. They satisfy the same equation of motion

ÿ = −v2
FU
′(y),

U(y) =
1

2K2

([
P (y)−∆(y)/vF

]2 −K2
)
,

(7.25)
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7 Magnus effect on a Majorana zero-mode

Figure 7.3: Plot of the potential U(y) that governs the equation of motion
(7.25) of the wave pet, calculated for the gap and superflow velocity profiles
(7.26). The arrows indicate the oscillatory motion for vF|K| < ∆0/2 and the
escape to infinity for vF|K| > ∆0/2. The direction in which the wave packet
escapes is minus the sign of K times the sign of the vorticity.

with initial conditions ẏ(0) = 0 and y(0) infinitesimal (needed to avoid the
discontinuous derivative ∆′(y) at y = 0) 1. This is the frictionless motion
in the potential landscape U(y), plotted in Fig. 7.3 for the functional
forms

∆(y) =
∆0|y|√
y2 + ξ2

0

, P (y) = |K|+ |y|/2
y2 + ξ2

0

(7.26)

appropriate for a vortex with coherence length ξ0 much smaller than the
London penetration length [139, 142].

For vF|K| > ∆0/2 one has U(∞) < U(0) so the motion escapes to
infinity, with a constant terminal velocity (7.24), for vF|K| < ∆0/2 the
motion is oscillatory.

The two states sn = ±1, at energies ±vF|K|, are related by particle-
hole symmetry, they have the same position but opposite momentum. The
semiclassical calculation neglects interference of the positive and negative
energy states, which is reliable for the long-time dynamics outside of the
vortex core, when the momentum difference is large and interference ef-
fects average out. In contrast, inside the vortex core the two states both

1The sign of the infinitesimal y(0) for the equation of motion (7.25) is minus the sign
of K times the sign of the vorticity, in accord with the short-time dynamics (7.15).
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7.5 Computer simulations

still have momentum approximately equal to zero, and their interference
cannot be neglected.

7.5 Computer simulations

We have simulated the wave packet dynamics by discretizing the Bogoliubov-
De Gennes Hamiltonian (7.1) on a square lattice (lattice constant a),

H = (vF/a)(σx sin akx + σy sin aky)νz − µσ0νz

+M(k)σzν0 − evF(Axσx +Ayσy)ν0

+ ∆σ0(νx cosφ− νy sinφ) + vFKσxν0, (7.27a)

M(k) = M0 − (M1/a
2)(2− cos akx − cos aky), (7.27b)

and evolving the zero-mode wave function via a finite-difference algorithm.
The M(k) term in Eq. (7.27) includes the effect of a small coupling be-
tween the top and bottom surfaces of the topological insulator of Fig. 7.1.
As in Ref. 137 we set M0 = 0, to avoid the opening of a gap at k = 0, but
retain a nonzero M1 = 0.2 avF in order to eliminate the fermion doubling
at k = (π/a, π/a).

We take a uniform magnetic field Bẑ = ∇×A, appropriate for a strong
type-II superconductor. The vortex array has a pair of h/2e vortices in
a magnetic unit cell of size d0 × d0, with d0 = 302 a (corresponding to a
magnetic field B = h/ed2

0.) The phase field φ(r) winds by 2π around each
vortex, at position Rn, as expressed by

∇×∇φ(r) = 2πẑ
∑
nδ(r −Rn), ∇2φ = 0. (7.28)

For the pair potential in a vortex core we take the gap profile ∆(r) =
∆0 tanh(r/r0), with ∆0 = 0.2 vF/a. The core size r0 is of order ξ0 =
vF/∆0, but for the sake of comparison with the semiclassics (which as-
sumes a smooth gap profile) we will also consider larger values of r0. The
gap ∆(r) is saturated at ∆0 for r > 70 a, to ensure that the vortex core is
fully contained within a single magnetic unit cell. We follow the dynamics
of the wave packet on a time scale that is sufficiently short that only a
single vortex plays a dominant role. To avoid interference from the other
vortex we set its core size to zero.

We use the package Tkwant for the calculations [85, 143]. See App. 7.B
for details on the simulation.

In Fig. 7.4 we show the time dependence of the propagation of the wave
packet along the y-axis, following a superflow quench at t = 0. We com-
pare

∫
|Ψ(x, y, t)|2 dx from the simulation with y(t) from the semiclassical
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7 Magnus effect on a Majorana zero-mode

Figure 7.4: Propagation of the zero-mode along the y-axis after the super-
flow momentum quench at t = 0. The color scale shows the density pro-
file

∫
|Ψ(x, y, t)|2 dx following from the computer simulation (∆0 = 0.2 vF/a,

r0 = 40 a, B = (h/e)(302 a)−2). The red curve results from integration of the
semiclassical equation of motion (7.25), for the same ∆(r) = ∆0 tanh(r/r0) gap
profile as in the numerics.

equation of motion (7.25) 2. The comparison has no adjustable param-
eters. As anticipated, the agreement is good outside of the vortex core
(K & ∆0/vF), where the interference of the positive and negative energy
wave packets can be neglected. The oscillatory motion of the wave packet
inside the vortex, for small K, is not well described by the semiclassics.

Fig. 7.5 compares the escape velocity obtained from the simulation with
the semiclassical formula (7.24). The numerical data nicely approaches
the semiclassics for larger and larger core sizes.

7.6 Conclusion

In summary, we have investigated the dynamics of the Majorana delocal-
ization transition reported in Ref. 137. A supercurrent can be used to
extract a Majorana fermion from the zero-mode bound to a vortex core.
The extraction process is governed by an effective potential well, see Fig.
7.3, which allows for escape with a constant terminal velocity vescape once
the supercurrent exceeds a critical value. A simple semiclassical calcula-
tion of this velocity agrees well with computer simulations.

The escape of the Majorana fermion should be observable by scanning
probe spectroscopy, as a current pulse when the probe is positioned near
a vortex, at right angles from the superflow. Close to the deconfinement

2For the comparison beween numerics and semiclassics in Fig. 7.4 it makes no signif-
icant difference whether we take P (y) ≡ K or include the near-field contribution
from the circulating superfluid momentum, as in Eq. (7.26).
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7.6 Conclusion

Figure 7.5: Escape velocity of a zero-mode wave packet from the vortex core,
as a function of the superflow momentum K. The data points follow from the
computer simulation, for different core sizes r0 (at fixed ∆0 = 0.2 vF/a). The
black dashed curve is the semiclassical result (7.24).

transition the escape velocity will be much smaller than the Fermi velocity
vF ≈ 105 m/s (see Fig. 7.5), which should make the observation more
feasible.

The internal degree of freedom of the Majorana zero-mode that couples
to the superflow via the Magnus effect is the chirality — zero-modes of
opposite chirality escape from the vortex in opposite directions. The
conformal field theory of non-Abelian anyons associates a “topological
spin” to a Majorana zero-mode [144–146]. As a topic for future research
we ask whether there is an analogous Magnus effect for the topological
spin. We note that the phase shift γ in the Majorana wave function (7.4)
affects the direction in which the superflow drives the quasiparticle, see
Eq. (7.14). The motion is strictly perpendicular to the superflow only for
γ = π/4. That this also happens to be the value of the topological spin
may or may not be accidental.
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Appendices

7.A Chiral symmetry prevents lateral
deflection by the Lorentz force

Fig. 7.2 shows that the Majorana fermion escapes from the vortex along
the y-direction, perpendicular to the superflow. We address the question
why the motion is not bent in the x-direction by the Lorentz force. Since
electrons and holes are deflected in the same direction by the Lorentz
force, charge-neutrality of the quasiparticle does not prevent the deflec-
tion. Chiral symmetry is essential.

To demonstrate this, we calculate the expectation value at µ = 0 of the
x-component of the velocity operator,

〈ẋ(t)〉 = vF〈Ψ(0)|eiHtσxνze−iHt|Ψ(0)〉. (7.29)

The superconducting vortex at the origin has pair potential ∆(r)e±iφ,
in polar coordinates (r, φ), with a rotationally symmetric amplitude ∆(r)
and a ±2π vorticity. The magnetic field B(r)ẑ is also assumed to be
rotationally symmetric, with vector potential A(r) = g(r)(−y, x, 0) [so
that B(r) = 2g(r) + rg′(r)].

The initial state Ψ(0) = Ψ± is a zero-mode bound to the vortex core,
given by [8, 109]

Ψ+ = c+e
+χ(r) exp

(
−v−1

F

∫ r

0

∆(r′)dr′
) eiπ/4

0
0

e−iπ/4

,

Ψ− = c−e
−χ(r) exp

(
−v−1

F

∫ r

0

∆(r′)dr′
) 0

eiπ/4

e−iπ/4

0

,
(7.30)

with c± a normalization constant and χ(r) chosen such that

∂yχ = eAx, ∂xχ = −eAy. (7.31)
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7 Magnus effect on a Majorana zero-mode

Note that χ(−x, y) = χ(x, y).
We introduce the operator Px which reflects x 7→ −x, kx 7→ −kx. Its

action on the Hamiltonian H = H0 + vFKσxν0 is given by

PxHPx = σxνyHσxνy if µ = 0, (7.32)

see Eq. (7.1). The zero-mode (7.30) is unchanged upon reflection, Ψ±(x, y) =
Ψ±(−x, y), and moreover

Ψ± = −σxνyΨ±. (7.33)

These identities imply that

Pxe−iHtΨ± = −σxνye−iHtΨ±. (7.34)

We now calculate, using also σxνz = PxσxνzPx, the expectation value
(7.29),

〈ẋ(t)〉 = vF〈Ψ±|eiHtσxνze−iHt|Ψ±〉
= vF〈Ψ±|eiHtPxσxνzPxe−iHt|Ψ±〉
= vF〈Ψ±|eiHt(−σxνy)(σxνz)(−σxνy)e−iHt|Ψ±〉
= − vF〈Ψ±|eiHtσxνze−iHt|Ψ±〉
= − 〈ẋ(t)〉 ⇒ 〈ẋ(t)〉 ≡ 0. (7.35)

The velocity component in the x-direction has zero expectation value for
all t, there is no lateral deflection by the Lorentz force at µ = 0.

7.B Details of the numerical calculations

The velocity operator is given by v = ∂H/∂k, with H the tight-binding
Hamiltonian (7.27). (In the continuous limit this reduces to vi = vFσiνz.)
We compute the expectation value 〈vy〉(t) as function of time. As a con-
sistency check we show in Fig. 7.6 the short-time dynamics together with
the analytical result (7.15). For longer times the wave packet may escape
from the vortex core. We determine the escape velocity by averaging
〈vy〉(t) over a brief time interval, see Fig. 7.7.

This is all data for µ = 0, when the expectation value of the velocity
component vx parallel to the superflow vanishes. A nonzero µ breaks
chiral symmetry and introduces a nonzero 〈vx〉, see Fig. 7.8. The sign of
µ dictates the direction of the deflection away from the y-axis.
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7.B Details of the numerical calculations

Figure 7.6: Initial time dependence of the expectation value of the velocity
vy of the Majorana wave packet (perpendicular to the superflow), for ∆0 =
0.04 vF/a, K = 2∆0/vF, in the limit r0 → 0 of a small vortex core. The dashed
curve is the analytical result from Eq. (7.15).

The short-time result (7.14) indicates that a deflection in the x-direction
is also possible without breaking chiral symmetry, if the initial wave packet
has a phase shift γ 6= π/4. Such a phase shift between the electron and
hole components could be induced by a voltage pulse. In Fig. 7.9 we show
that the numerics confirms this analytical expectation.
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7 Magnus effect on a Majorana zero-mode

Figure 7.7: Time dependence of the velocity when the Majorana wave packet is
driven out of the vortex core by the Magnus force. Four values of the superflow
momentum K are shown at fixed ∆0 = 0.2 vF/a. The average over the time
interval between the dashed lines is the escape velocity plotted in Fig. 7.5 (green
curve, for r0 = 20 a). For much shorter times the wave packet is still trapped
in the vortex core. For longer times the wave packet reaches the boundary of
the magnetic unit cell.

Figure 7.8: Dependence of the direction of the escape velocity on the chemical
potential µ (for fixed ∆0 = 0.2 vF/a, K = 2∆0/vF, and vortex core size r0 =
40 a).
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7.B Details of the numerical calculations

Figure 7.9: Dependence of the velocity vx parallel to the superflow on the
phase shift γ = π/4 + δγ between the electron and hole components of the
initial wave packet (for ∆0 = 0.04 vF/a, K = 2∆0/vF, r0 → 0). This is data
for µ = 0, the deflection in the x-direction happens when γ is pushed away
from π/4 by an initial voltage pulse. The solid curves are numerical results, the
dashed curves are the short-time analytics (7.14).
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[17] L. Alvarez-Gaumé, Supersymmetry and the Atiyah-Singer index the-
orem, Communications in Mathematical Physics 90, 161 (1983).

[18] M. Filoche and S. Mayboroda, Universal mechanism for Anderson
and weak localization, PNAS 109, 14761 (2012).

[19] M. Filoche and S. Mayboroda, The landscape of Anderson localization
in a disordered medium, Contemp. Math. 601, 113 (2013).

[20] D. N. Arnold, G. David, D. Jerison, S. Mayboroda, and M. Filoche,
Effective confining potential of quantum states in disordered media,
Phys. Rev. Lett. 116, 056602 (2016).

[21] S. Steinerberger, Localization of quantum states and landscape func-
tions, Proc. Amer. Math. Soc. 145, 2895 (2017).

[22] M. Filoche, M. Piccardo, Y.-R. Wu, C.-K. Li, C. Weisbuch, and S.
Mayboroda, Localization landscape theory of disorder in semiconduc-
tors. I. Theory and modeling, Phys. Rev. B 95, 144204 (2017).

[23] M. Piccardo, C.-K. Li, Y.-R. Wu, J. S. Speck, B. Bonef, R. M. Farrell,
M. Filoche, L. Martinelli, J. Peretti, and C. Weisbuch, Localization
landscape theory of disorder in semiconductors. II. Urbach tails of
disordered quantum well layers, Phys. Rev. B 95, 144205 (2017)

[24] C.-K. Li, M. Piccardo, L.-S. Lu, S. Mayboroda, L. Martinelli, J.
Peretti, J. S. Speck, C. Weisbuch, M. Filoche, and Y.-R. Wu, Local-
ization landscape theory of disorder in semiconductors. III. Applica-
tion to carrier transport and recombination in light emitting diodes,
Phys. Rev. B 95, 144206 (2017).

142



Bibliography

[25] Y. Chalopin, F. Piazza, S. Mayboroda, C. Weisbuch, and M.
Filoche Universality of fold-encoded localized vibrations in enzymes,
arXiv:1902.09939

[26] D. Arnold, D. Guy, M. Filoche, D. Jerison, and S. Mayboroda, Com-
puting spectra without solving eigenvalue problems, SIAM J. Scientif.
Comput. 41, B69 (2019).

[27] E. M. Harrell II and A. V. Maltsev, Localization and landscape func-
tions on quantum graphs, arXiv:1803.01186.

[28] C. W. J. Beenakker, Hidden landscape of an Anderson insulator, J.
Club Cond. Matt. (August, 2019,
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[59] P. Středa and A. H. MacDonald, Magnetic breakdown and magne-
toresistance oscillations in a periodically modulated two-dimensional
electron gas, Phys. Rev. B 41, 11892 (1990).

[60] V. M. Gvozdikov, Magnetoresistance oscillations in a periodically
modulated two-dimensional electron gas: The magnetic-breakdown
approach, Phys. Rev. B 75, 115106 (2007).

[61] A. C. Potter, I. Kimchi, and A. Vishwanath, Quantum oscillations
from surface Fermi-arcs in Weyl and Dirac semi-metals, Nature
Comm. 5, 5161 (2014).

[62] Y. Zhang, D. Bulmash, P. Hosur, A. C. Potter, and A. Vishwanath,
Quantum oscillations from generic surface Fermi arcs and bulk chiral
modes in Weyl semimetals, Sci. Rep. 6, 23741 (2016).

[63] A. R. Akhmerov and C. W. J. Beenakker, Boundary conditions for
Dirac fermions on a terminated honeycomb lattice, Phys. Rev. B 77,
085423 (2008).

[64] M. Z. Hasan, S.-Y. Xu, I. Belopolski, and S.-M. Huang, Discovery
of Weyl fermion semimetals and topological Fermi arc states, Annu.
Rev. Condens. Matter Phys. 8, 289(2017).

[65] A. A. Burkov, Weyl Metals, Annu. Rev. Condens. Matter Phys. 9,
359 (2018).

146



Bibliography

[66] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90, 15001
(2018).

[67] N. Bovenzi, M. Breitkreiz, T. E. O’Brien, J. Tworzyd lo, and C. W.
J. Beenakker, Twisted Fermi surface of a thin-film Weyl semimetal,
New J. Phys. 20, 023023 (2018).

[68] V. Barsan and V. Kuncser, Exact and approximate analytical solu-
tions of Weiss equation of ferromagnetism and their experimental
relevance, Phil. Mag. Lett. 97, 359 (2017).

[69] A. B. Pippard, Magnetic breakdown, in: Physics of Solids in Intense
Magnetic Fields (Springer, Boston, 1969).

[70] M. I. Kaganov and A. A. Slutskin, Coherent magnetic breakdown,
Phys. Rep. 98, 189 (1983).

[71] R. W. Stark and L. M. Falicov, Magnetic breakdown in metals, Prog.
Low Temp. Phys 5, 235 (1967).

[72] V. M. Gvozdikov, Thermodynamic oscillations in periodic magnetic
breakdown structures, Fiz. Nizk. Temp. 12, 705 (1986).

[73] A. Alexandradinata and L. Glazman, Geometric phase and orbital
moment in quantization rules for magnetic breakdown, Phys. Rev.
Lett. 119, 256601 (2017).

[74] M. Breitkreiz, N. Bovenzi, and J. Tworzyd lo, Phase shift of cy-
clotron orbits at type-I and type-II multi-Weyl nodes, Phys. Rev. B
98, 121403 (2018).

[75] E. P. Wigner, Random matrices in physics, SIAM Rev. 9, 1 (1967).

[76] F. Haake, S. Gnutzmann, and M. Kuś, Quantum Signatures of Chaos
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Samenvatting

Massaloze fermionen zijn een bijzonder type elementaire excitatie dat kan
ontstaan in elektronische systemen. In deze materialen gedragen elek-
tronen zich als massaloze deeltjes, waarmee ze het relativistische gedrag
van fotonen nabootsen. De massaloze aard van deze excitaties, samen
met hun karakteristieke lineaire dispersierelatie, kan een grote invloed
hebben op de macroscopische eigenschappen van elektronische systemen.
Sinds de ontdekking van grafeen in 2004 zijn verschillende nieuwe mate-
rialen ontdekt die zulke massaloze excitaties bevatten, wat heeft geleid
tot interessant en innovatieve toepassingen. Wiskundige methodes uit de
topologie hebben ons in staat gesteld om de lage-energie-eigenschappen
van veel van dergelijke massaloze systemen te beschrijven en te begrijpen.

Dit proefschrift is gewijd aan het onderzoeken van de effecten van mag-
netische velden op drie types van massaloze fermionen, genoemd naar hun
ontdekkers: Dirac-, Weyl- en Majorana-fermionen. We hebben enkele
nieuwe verschijningsvormen ontdekt, we geven aan hoe deze in experi-
menten kunnen worden gedetecteerd, en we beschrijven theoretische meth-
odes om ze diepgaander te onderzoeken.

Hoofdstuk 2 van dit proefschrift presenteert een nieuwe methode voor
het berekenen van een functie (het zogenaamde localisatielandschap), waarmee
we kunnen bestuderen hoe massaloze Dirac-fermionen door wanorde wor-
den gelocaliseerd.

De volgende drie hoofdstukken richten zich op Weyl-fermionen. Zo wor-
den massaloze fermionen in een drie-dimensionaal systeem genoemd. In
hoofdstukken 3 en 4 richten wij ons op de situatie dat de massaloze eigen-
schap het gevolg is van Kramers-ontaarding (men spreekt dan ook wel van
Kramers-Weyl fermionen). Hoofdstuk 5 voegt supergeleiding toe, we laten
zien hoe de elektrische geleiding in de aanwezigheid van een magnetisch
veld kan worden gebruikt om de chiraliteit (links- of rechtshandigheid)
van de deeltjes te bestuderen.

De laatste twee hoofdstukken van dit proefschrift richten zich op de
Majorana-fermionen in het Fu-Kane-model (een topologische isolator in
contact met een supergeleider). De Majorana-fermionen zitten vast in
een magnetische vortex, maar in hoofdstuk 6 laten we zien dat een su-
perstroom ze uit de vortex kan drijvern. Dit is het gevolg van de Mag-
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nuskracht, die werkzaam is ook al zijn de Majorana-fermionen ladingsneu-
traal. De dynamische eigenschappen van de Magnuskracht onderzoeken
we in hoofdstuk 7.
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Summary

Massless fermions are a unique type of elementary excitation that can arise
in electronic systems. In such materials, electrons behave as massless par-
ticles, mimicking the relativistic behavior of photons. The massless nature
of these excitations, along with their characteristic linear dispersion, can
have a major impact on the macroscopic properties of electronic systems.
Since the discovery of graphene in 2004, several new materials have been
discovered that contain such massless excitations, leading to interesting
and innovative applications. Mathematical methods from topology have
enabled us to describe and understand the low-energy properties of many
such massless systems, facilitating the use of strong analytical and numer-
ical tools for their study.

This thesis is dedicated to investigating the effects of magnetic fields
on massless topological systems, with a focus on those that exhibit Dirac,
Weyl, and Majorana fermions, named after their discoverers. Its main
contribution lies in the discovery of new sub-gap states, identification of
their experimental signatures, and development of new techniques for the
study of such condensed matter systems.

Chapter 2 presents a new method for computing a function, called the
”localization landscape”, which allows us to study how massless Dirac
fermions are localized by disorder.

The next three chapters focus on Weyl fermions, which are what mass-
less fermions are called in a three-dimensional system. In chapters 3 and
4, we focus on the situation where the massless property is the result of
Kramers degeneracy (also known as Kramers-Weyl fermions). Here, we
find new signatures in the magnetoconductance and spectral behavior that
are unique to this class of systems. In Chapter 5, we add superconductiv-
ity and show how the electrical conductivity in the presence of a magnetic
field can be used to study the chirality (left- or right-handedness) of the
particles.

The last two chapters of this thesis focus on Majorana fermions in the
Fu-Kane model (a topological insulator in contact with a superconductor).
The Majorana fermions are trapped in a magnetic vortex, but in Chapter
6, we show that a supercurrent can drive them out of the vortex, giving rise
to a new extended zero-mode solution. This is due to the Magnus force,
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which is active even though the Majorana fermions are charge-neutral.
We explore the dynamic properties of the Magnus force in Chapter 7.
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[4] A. Dońıs Vela, G. Lemut, M. J. Pacholski, J. Tworzyd lo and C.
W. J. Beenakker, Reflectionless Klein tunneling of Dirac fermions:
comparison of split-operator and staggered-lattice discretization of
the Dirac equation, J. Phys. Cond. Matt. 34, 364003 (2022).
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Stellingen
behorende bij het proefschrift

On topological properties of massless fermions in a magnetic field

1. Hermitian and non-Hermitian Hamiltonians with the same comparison ma-
trix have the same localization landscape. [chapter 2]

2. Kramers-Weyl semimetals with strong spin-orbit coupling have the linear
level repulsion of spinless fermions. [chapter 4]

3. Weyl fermions in a superconducting vortex lattice each transport a frac-
tional charge into a normal-metal contact. [chapter 5]

4. While Majorana zero-modes do not couple to electric fields, because of their
charge-neutrality, they do couple to the Magnus force from a superflow.
[chapter 7]

5. The functional inverse of the trapezoidal integration rule is a derivative
operator with a tangent dispersion.

6. The chirality polarization of the zeroth Landau level of two-dimensional
massless fermions is lost in a lattice formulation.

7. Stacey’s approach to lattice fermions yields a nonlocal Hamiltonian but a
local action. [R. Stacey, Phys. Rev. D 26, 468 (1982)]

8. Two-dimensional systems that exhibit Van Hove singularities at the bound-
aries of the Brillouin zone have non-zero bulk conductivity in the presence
of an external magnetic field. [V. A. Zakharov, A. Mert Bozkurt, A. R.
Akhmerov, D. O. Oriekhov, arXiv:1803.01186 (2023)]

Gal Lemut
13 June 2023
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